Science.gov

Sample records for high frequency phonons

  1. Coherent Phonon Rabi Oscillations with a High-Frequency Carbon Nanotube Phonon Cavity.

    PubMed

    Zhu, Dong; Wang, Xin-He; Kong, Wei-Cheng; Deng, Guang-Wei; Wang, Jiang-Tao; Li, Hai-Ou; Cao, Gang; Xiao, Ming; Jiang, Kai-Li; Dai, Xing-Can; Guo, Guang-Can; Nori, Franco; Guo, Guo-Ping

    2017-02-08

    Phonon-cavity electromechanics allows the manipulation of mechanical oscillations similar to photon-cavity systems. Many advances on this subject have been achieved in various materials. In addition, the coherent phonon transfer (phonon Rabi oscillations) between the phonon cavity mode and another oscillation mode has attracted many interest in nanoscience. Here, we demonstrate coherent phonon transfer in a carbon nanotube phonon-cavity system with two mechanical modes exhibiting strong dynamical coupling. The gate-tunable phonon oscillation modes are manipulated and detected by extending the red-detuned pump idea of photonic cavity electromechanics. The first- and second-order coherent phonon transfers are observed with Rabi frequencies 591 and 125 kHz, respectively. The frequency quality factor product fQm ∼ 2 × 10(12) Hz achieved here is larger than kBTbase/h, which may enable the future realization of Rabi oscillations in the quantum regime.

  2. A highly attenuating and frequency tailorable annular hole phononic crystal for surface acoustic waves.

    PubMed

    Ash, B J; Worsfold, S R; Vukusic, P; Nash, G R

    2017-08-02

    Surface acoustic wave (SAW) devices are widely used for signal processing, sensing and increasingly for lab-on-a-chip applications. Phononic crystals can control the propagation of SAW, analogous to photonic crystals, enabling components such as waveguides and cavities. Here we present an approach for the realisation of robust, tailorable SAW phononic crystals, based on annular holes patterned in a SAW substrate. Using simulations and experiments, we show that this geometry supports local resonances which create highly attenuating phononic bandgaps at frequencies with negligible coupling of SAWs into other modes, even for relatively shallow features. The enormous bandgap attenuation is up to an order-of-magnitude larger than that achieved with a pillar phononic crystal of the same size, enabling effective phononic crystals to be made up of smaller numbers of elements. This work transforms the ability to exploit phononic crystals for developing novel SAW device concepts, mirroring contemporary progress in photonic crystals.The control and manipulation of propagating sound waves on a surface has applications in on-chip signal processing and sensing. Here, Ash et al. deviate from standard designs and fabricate frequency tailorable phononic crystals with an order-of-magnitude increase in attenuation.

  3. Nonlinear control of high-frequency phonons in spider silk

    NASA Astrophysics Data System (ADS)

    Schneider, Dirk; Gomopoulos, Nikolaos; Koh, Cheong Y.; Papadopoulos, Periklis; Kremer, Friedrich; Thomas, Edwin L.; Fytas, George

    2016-10-01

    Spider dragline silk possesses superior mechanical properties compared with synthetic polymers with similar chemical structure due to its hierarchical structure comprised of partially crystalline oriented nanofibrils. To date, silk’s dynamic mechanical properties have been largely unexplored. Here we report an indirect hypersonic phononic bandgap and an anomalous dispersion of the acoustic-like branch from inelastic (Brillouin) light scattering experiments under varying applied elastic strains. We show the mechanical nonlinearity of the silk structure generates a unique region of negative group velocity, that together with the global (mechanical) anisotropy provides novel symmetry conditions for gap formation. The phononic bandgap and dispersion show strong nonlinear strain-dependent behaviour. Exploiting material nonlinearity along with tailored structural anisotropy could be a new design paradigm to access new types of dynamic behaviour.

  4. Nonlinear control of high-frequency phonons in spider silk.

    PubMed

    Schneider, Dirk; Gomopoulos, Nikolaos; Koh, Cheong Y; Papadopoulos, Periklis; Kremer, Friedrich; Thomas, Edwin L; Fytas, George

    2016-10-01

    Spider dragline silk possesses superior mechanical properties compared with synthetic polymers with similar chemical structure due to its hierarchical structure comprised of partially crystalline oriented nanofibrils. To date, silk's dynamic mechanical properties have been largely unexplored. Here we report an indirect hypersonic phononic bandgap and an anomalous dispersion of the acoustic-like branch from inelastic (Brillouin) light scattering experiments under varying applied elastic strains. We show the mechanical nonlinearity of the silk structure generates a unique region of negative group velocity, that together with the global (mechanical) anisotropy provides novel symmetry conditions for gap formation. The phononic bandgap and dispersion show strong nonlinear strain-dependent behaviour. Exploiting material nonlinearity along with tailored structural anisotropy could be a new design paradigm to access new types of dynamic behaviour.

  5. Experimental evidence of high-frequency complete elastic bandgap in pillar-based phononic slabs

    SciTech Connect

    Pourabolghasem, Reza; Mohammadi, Saeed; Eftekhar, Ali A.; Adibi, Ali; Khelif, Abdelkrim

    2014-12-08

    We present strong experimental evidence for the existence of a complete phononic bandgap, for Lamb waves, in the high frequency regime (i.e., 800 MHz) for a pillar-based phononic crystal (PnC) membrane with a triangular lattice of gold pillars on top. The membrane is composed of an aluminum nitride film stacked on thin molybdenum and silicon layers. Experimental characterization shows a large attenuation of at least 20 dB in the three major crystallographic directions of the PnC lattice in the frequency range of 760 MHz–820 MHz, which is in agreement with our finite element simulations of the PnC bandgap. The results of experiments are analyzed and the physics behind the attenuation in different spectral windows is explained methodically by assessing the type of Bloch modes and the in-plane symmetry of the displacement profile.

  6. Dynamical control of electron-phonon interactions with high-frequency light

    NASA Astrophysics Data System (ADS)

    Dutreix, C.; Katsnelson, M. I.

    2017-01-01

    This work addresses the one-dimensional problem of Bloch electrons when they are rapidly driven by a homogeneous time-periodic light and linearly coupled to vibrational modes. Starting from a generic time-periodic electron-phonon Hamiltonian, we derive a time-independent effective Hamiltonian that describes the stroboscopic dynamics up to the third order in the high-frequency limit. This yields nonequilibrium corrections to the electron-phonon coupling that are controllable dynamically via the driving strength. This shows in particular that local Holstein interactions in equilibrium are corrected by antisymmetric Peierls interactions out of equilibrium, as well as by phonon-assisted hopping processes that make the dynamical Wannier-Stark localization of Bloch electrons impossible. Subsequently, we revisit the Holstein polaron problem out of equilibrium in terms of effective Green's functions, and specify explicitly how the binding energy and effective mass of the polaron can be controlled dynamically. These tunable properties are reported within the weak- and strong-coupling regimes since both can be visited within the same material when varying the driving strength. This work provides some insight into controllable microscopic mechanisms that may be involved during the multicycle laser irradiations of organic molecular crystals in ultrafast pump-probe experiments, although it should also be suitable for realizations in shaken optical lattices of ultracold atoms.

  7. Broadband magnetoelastic coupling in magnonic-phononic crystals for high-frequency nanoscale spin-wave generation

    NASA Astrophysics Data System (ADS)

    Graczyk, Piotr; Kłos, Jarosław; Krawczyk, Maciej

    2017-03-01

    Spin waves are promising candidates for information carriers in advanced technology. The interactions between spin waves and acoustic waves in magnetic nanostructures are of much interest because of their potential application for spin-wave generation, amplification, and transduction. We investigate numerically the dynamics of magnetoelastic excitations in a one-dimensional magnonic-phononic crystal consisting of alternating layers of permalloy and cobalt. We use the plane-wave method and the finite-element method for frequency- and time-domain simulations, respectively. The studied structure is optimized for hybridization of specific spin-wave and acoustic dispersion branches in the entire Brillouin zone in a broad frequency range. We show that this type of periodic structure can be used for efficient generation of high-frequency spin waves.

  8. Ultra-high frequency, high Q/volume micromechanical resonators in a planar AlN phononic crystal

    NASA Astrophysics Data System (ADS)

    Ghasemi Baboly, M.; Alaie, S.; Reinke, C. M.; El-Kady, I.; Leseman, Z. C.

    2016-07-01

    This paper presents the first design and experimental demonstration of an ultrahigh frequency complete phononic crystal (PnC) bandgap aluminum nitride (AlN)/air structure operating in the GHz range. A complete phononic bandgap of this design is used to efficiently and simultaneously confine elastic vibrations in a resonator. The PnC structure is fabricated by etching a square array of air holes in an AlN slab. The fabricated PnC resonator resonates at 1.117 GHz, which corresponds to an out-of-plane mode. The measured bandgap and resonance frequencies are in very good agreement with the eigen-frequency and frequency-domain finite element analyses. As a result, a quality factor/volume of 7.6 × 1017/m3 for the confined resonance mode was obtained that is the largest value reported for this type of PnC resonator to date. These results are an important step forward in achieving possible applications of PnCs for RF communication and signal processing with smaller dimensions.

  9. Beam paths of flexural Lamb waves at high frequency in the first band within phononic crystal-based acoustic lenses

    SciTech Connect

    Zhao, J.; Boyko, O.; Bonello, B.

    2014-12-15

    This work deals with an analytical and numerical study of the focusing of the lowest order anti-symmetric Lamb wave in gradient index phononic crystals. Computing the ray trajectories of the elastic beam allowed us to analyze the lateral dimensions and shape of the focus, either in the inner or behind the phononic crystal-based acoustic lenses, for frequencies within a broad range in the first band. We analyzed and discussed the focusing behaviors inside the acoustic lenses where the focalization at sub-wavelength scale was achieved. The focalization behind the gradient index phononic crystal is shown to be efficient as well: we report on FMHM = 0.63λ at 11MHz.

  10. Phononic Frequency Comb via Intrinsic Three-Wave Mixing

    NASA Astrophysics Data System (ADS)

    Ganesan, Adarsh; Do, Cuong; Seshia, Ashwin

    2017-01-01

    Optical frequency combs have resulted in significant advances in optical frequency metrology and found wide applications in precise physical measurements and molecular fingerprinting. A direct analogue of frequency combs in the phononic or acoustic domain has not been reported to date. In this Letter, we report the first clear experimental evidence for a phononic frequency comb. We show that the phononic frequency comb is generated through the intrinsic coupling of a driven phonon mode with an autoparametrically excited subharmonic mode. The experiments depict the comb generation process evidenced by a spectral response consisting of equally spaced discrete and phase coherent comb lines. Through systematic experiments at different drive frequencies and amplitudes, we portray the well-connected process of phononic frequency comb formation and define the attributes to control the features associated with comb formation in such a system. In addition to the demonstration of frequency comb, the interplay between the nonlinear resonances and the well-known Duffing phenomenon is also observed.

  11. Phononic Frequency Comb via Intrinsic Three-Wave Mixing.

    PubMed

    Ganesan, Adarsh; Do, Cuong; Seshia, Ashwin

    2017-01-20

    Optical frequency combs have resulted in significant advances in optical frequency metrology and found wide applications in precise physical measurements and molecular fingerprinting. A direct analogue of frequency combs in the phononic or acoustic domain has not been reported to date. In this Letter, we report the first clear experimental evidence for a phononic frequency comb. We show that the phononic frequency comb is generated through the intrinsic coupling of a driven phonon mode with an autoparametrically excited subharmonic mode. The experiments depict the comb generation process evidenced by a spectral response consisting of equally spaced discrete and phase coherent comb lines. Through systematic experiments at different drive frequencies and amplitudes, we portray the well-connected process of phononic frequency comb formation and define the attributes to control the features associated with comb formation in such a system. In addition to the demonstration of frequency comb, the interplay between the nonlinear resonances and the well-known Duffing phenomenon is also observed.

  12. Wideband spectrum analysis of ultra-high frequency radio-wave signals due to advanced one-phonon non-collinear anomalous light scattering.

    PubMed

    Shcherbakov, Alexandre S; Arellanes, Adan Omar

    2017-04-20

    We present a principally new acousto-optical cell providing an advanced wideband spectrum analysis of ultra-high frequency radio-wave signals. For the first time, we apply a recently developed approach with the tilt angle to a one-phonon non-collinear anomalous light scattering. In contrast to earlier cases, now one can exploit a regime with the fixed optical wavelength for processing a great number of acoustic frequencies simultaneously in the linear regime. The chosen rutile-crystal combines a moderate acoustic velocity with low acoustic attenuation and allows us wide-band data processing within GHz-frequency acoustic waves. We have created and experimentally tested a 6-cm aperture rutile-made acousto-optical cell providing the central frequency 2.0 GHz, frequency bandwidth ∼0.52  GHz with the frequency resolution about 68.3 kHz, and ∼7620 resolvable spots. A similar cell permits designing an advanced ultra-high-frequency arm within a recently developed multi-band radio-wave acousto-optical spectrometer for astrophysical studies. This spectrometer is intended to operate with a few parallel optical arms for processing the multi-frequency data flows within astrophysical observations. Keeping all the instrument's advantages of the previous schematic arrangement, now one can create the highest-frequency arm using the developed rutile-based acousto-optical cell. It permits optimizing the performances inherent in that arm via regulation of both the central frequency and the frequency bandwidth for spectrum analysis.

  13. A new hybrid phononic crystal in low frequencies

    NASA Astrophysics Data System (ADS)

    Zhang, Z.; Han, X. K.

    2016-11-01

    A novel hybrid phononic crystal is designed to obtain wider band gaps in low frequency range. The hybrid phononic crystal consists of rubber slab with periodic holes and plumbum stubs. In comparison with the phononic crystal without periodic holes, the new designed phononic crystal can obtain wider band gaps and better vibration damping characteristics. The wider band gap can be attributed to the interaction of local resonance and Bragg scattering. The controlling of the BG is explained by the strain energy of the hybrid PC and the introduced effective mass. The effects of the geometrical parameters and the shapes of the stubs and holes on the controlling of waves are further studied.

  14. Electric field dependence of optical phonon frequencies in wurtzite GaN observed in GaN high electron mobility transistors

    NASA Astrophysics Data System (ADS)

    Bagnall, Kevin R.; Dreyer, Cyrus E.; Vanderbilt, David; Wang, Evelyn N.

    2016-10-01

    Due to the high dissipated power densities in gallium nitride (GaN) high electron mobility transistors (HEMTs), temperature measurement techniques with high spatial resolution, such as micro-Raman thermography, are critical for ensuring device reliability. However, accurately determining the temperature rise in the ON state of a transistor from shifts in the Raman peak positions requires careful decoupling of the simultaneous effects of temperature, stress, strain, and electric field on the optical phonon frequencies. Although it is well-known that the vertical electric field in the GaN epilayers can shift the Raman peak positions through the strain and/or stress induced by the inverse piezoelectric (IPE) effect, previous studies have not shown quantitative agreement between the strain and/or stress components derived from micro-Raman measurements and those predicted by electro-mechanical models. We attribute this discrepancy to the fact that previous studies have not considered the impact of the electric field on the optical phonon frequencies of wurtzite GaN apart from the IPE effect, which results from changes in the atomic coordinates within the crystal basis and in the electronic configuration. Using density functional theory, we calculated the zone center E2 (high), A1 (LO), and E2 (low) modes to shift by -1.39 cm-1/(MV/cm), 2.16 cm-1/(MV/cm), and -0.36 cm-1/(MV/cm), respectively, due to an electric field component along the c -axis, which are an order of magnitude larger than the shifts associated with the IPE effect. Then, we measured changes in the E2 (high) and A1 (LO) Raman peak positions with ≈1 μm spatial resolution in GaN HEMTs biased in the pinched OFF state and showed good agreement between the strain, stress, and electric field components derived from the measurements and our 3D electro-mechanical model. This study helps to explain the reason the pinched OFF state is a suitable reference for removing the contributions of the electric field and

  15. Phonon Mean Free Path Spectra Measured by Broadband Frequency Domain Thermoreflectance

    NASA Astrophysics Data System (ADS)

    Malen, Jonathan

    2014-03-01

    Nonmetallic crystalline materials conduct heat by the transport of quantized atomic lattice vibrations called phonons. Thermal conductivity depends on how far phonons travel between scattering events -- their mean free paths (MFPs). Due to the breadth of the phonon MFP spectrum, nanostructuring of materials and devices can reduce thermal conductivity from bulk by scattering long MFP phonons, while short MFP phonons are unaffected. We have developed a novel approach called Broadband Frequency Domain Thermoreflectance (BB-FDTR) that uses high-frequency laser heating to generate non-Fourier heat conduction that can sort phonons based on their MFPs. BB-FDTR outputs thermal conductivity as a function of heating frequency. Through non-equilibrium Boltzmann Transport Equation models this data can be converted to thermal conductivity accumulation, which describes how thermal conductivity is summed from phonons with different MFPs. Relative to alternative approaches, BB-FDTR yields order-of-magnitude improvements in the resolution and breadth of the thermal conductivity accumulation function. We will present data for GaAs, GaN, AlN, Si, and SiC that show interesting commonalities near their respective Debye temperatures and suggest that there may be a universal phonon MFP spectrum for small unit cell non-metals in the high temperature limit. At the time of this abstract submission we are also working on measurements of semiconductor alloys and select metals that will be presented if completed by the conference.

  16. Thermally stimulated 3–15 THz emission at plasmon-phonon frequencies in polar semiconductors

    SciTech Connect

    Požela, J. Požela, K.; Šilėnas, A.; Širmulis, E.; Kašalynas, I.; Jucienė, V.; Venckevičius, R.

    2014-12-15

    The possibilities of distinguishing highly coherent terahertz emission at a specified frequency from the incoherent thermal emission of a hot body are considered. It is experimentally shown that the smooth planar surface (with no diffraction guides) of heated GaAs and AlGaAs wafers emits directed continuous-wave (cw) terahertz radiation at coupled surface plasmon-phonon vibrational frequencies. The recording of terahertz reflectance spectra is demonstrated as a method for the identification of plasmons, optical phonons, and coupled plasmon-phonon vibrations in semiconductors.

  17. Phonon Drag Dislocations at High Pressures

    SciTech Connect

    Wolfer, W.G.

    1999-10-19

    Phonon drag on dislocations is the dominant process which determines the flow stress of metals at elevated temperatures and at very high plastic deformation rates. The dependence of the phonon drag on pressure or density is derived using a Mie-Grueneisen equation of state. The phonon drag is shown to increase nearly linearly with temperature but to decrease with density or pressure. Numerical results are presented for its variation for shock-loaded copper and aluminum. In these cases, density and temperature increase simultaneously, resulting in a more modest net increase in the dislocation drag coefficient. Nevertheless, phonon drag increases by more than an order of magnitude during shock deformations which approach melting. Since the dependencies of elastic moduli and of the phonon drag coefficient on pressure and temperature are fundamentally different, the effect of pressure on the constitutive law for plastic deformation can not simply be accounted for by its effect on the elastic shear modulus.

  18. Frequency stabilization of the zero-phonon line of a quantum dot via phonon-assisted active feedback

    SciTech Connect

    Hansom, Jack; Schulte, Carsten H. H.; Matthiesen, Clemens; Stanley, Megan J.; Atatüre, Mete

    2014-10-27

    We report on the feedback stabilization of the zero-phonon emission frequency of a single InAs quantum dot. The spectral separation of the phonon-assisted component of the resonance fluorescence provides a probe of the detuning between the zero-phonon transition and the resonant driving laser. Using this probe in combination with active feedback, we stabilize the zero-phonon transition frequency against environmental fluctuations. This protocol reduces the zero-phonon fluorescence intensity noise by a factor of 22 by correcting for environmental noise with a bandwidth of 191 Hz, limited by the experimental collection efficiency. The associated sub-Hz fluctuations in the zero-phonon central frequency are reduced by a factor of 7. This technique provides a means of stabilizing the quantum dot emission frequency without requiring access to the zero-phonon emission.

  19. Optical phonon lineshapes and transport in metallic carbon nanotubes under high bias voltage

    NASA Astrophysics Data System (ADS)

    Dietel, Jürgen; Kleinert, Hagen

    2010-11-01

    We calculate the current-voltage characteristic of metallic nanotubes lying on a substrate at high bias voltage showing that a bottleneck exists for short nanotubes in contrast to large ones. We attribute this to a redistribution of lower-lying acoustic phonons caused by phonon-phonon scattering with hot optical phonons. The current-voltage characteristic and the electron and phonon distribution functions are derived analytically, and serve to obtain in a self-contained way the frequency shift and line broadening of the zone-center optical phonons due to the electron-phonon coupling at high bias. We obtain a positive offset on the zero bias shift and no broadening of the optical phonon mode at very high voltages, in agreement with recent experiments.

  20. Phonon broadening in high entropy alloys

    NASA Astrophysics Data System (ADS)

    Körmann, Fritz; Ikeda, Yuji; Grabowski, Blazej; Sluiter, Marcel H. F.

    2017-09-01

    Refractory high entropy alloys feature outstanding properties making them a promising materials class for next-generation high-temperature applications. At high temperatures, materials properties are strongly affected by lattice vibrations (phonons). Phonons critically influence thermal stability, thermodynamic and elastic properties, as well as thermal conductivity. In contrast to perfect crystals and ordered alloys, the inherently present mass and force constant fluctuations in multi-component random alloys (high entropy alloys) can induce significant phonon scattering and broadening. Despite their importance, phonon scattering and broadening have so far only scarcely been investigated for high entropy alloys. We tackle this challenge from a theoretical perspective and employ ab initio calculations to systematically study the impact of force constant and mass fluctuations on the phonon spectral functions of 12 body-centered cubic random alloys, from binaries up to 5-component high entropy alloys, addressing the key question of how chemical complexity impacts phonons. We find that it is crucial to include both mass and force constant fluctuations. If one or the other is neglected, qualitatively wrong results can be obtained such as artificial phonon band gaps. We analyze how the results obtained for the phonons translate into thermodynamically integrated quantities, specifically the vibrational entropy. Changes in the vibrational entropy with increasing the number of elements can be as large as changes in the configurational entropy and are thus important for phase stability considerations. The set of studied alloys includes MoTa, MoTaNb, MoTaNbW, MoTaNbWV, VW, VWNb, VWTa, VWNbTa, VTaNbTi, VWNbTaTi, HfZrNb, HfMoTaTiZr.

  1. Role of acoustic phonons in frequency dependent electronic thermal conductivity of graphene

    NASA Astrophysics Data System (ADS)

    Bhalla, Pankaj

    2017-03-01

    We study the effect of the electron-phonon interaction on the finite frequency dependent electronic thermal conductivity of two dimensional graphene. We calculate it for various acoustic phonons present in graphene and characterized by different dispersion relations using the memory function approach. It is found that the electronic thermal conductivity κe (T) in the zero frequency limit follows different power law for the longitudinal/transverse and the flexural acoustic phonons. For the longitudinal/transverse phonons, κe (T) ∼T-1 at the low temperature and saturates at the high temperature. These signatures qualitatively agree with the results calculated by solving the Boltzmann equation analytically and numerically. Similarly, for the flexural phonons, we find that κe (T) shows T 1 / 2 law at the low temperature and then saturates at the high temperature. In the finite frequency regime, we observe that the real part of the electronic thermal conductivity, Re [κe (ω , T) ] follows ω-2 behavior at the low frequency and becomes frequency independent at the high frequency.

  2. Phonon Anomaly in High-Pressure Zn

    NASA Astrophysics Data System (ADS)

    Li, Zhiqiang; Tse, John S.

    2000-12-01

    The equation of states and phonon dispersions of hexagonal zinc have been calculated by the plane-wave pseudopotential method within the generalized-gradient approximation. Weak discontinuities are found in the pressure-volume relation as well as the c/a-volume curve. Phonon dispersions of Zn under pressure have been obtained with a direct method and the results are consistent with the neutron scattering data. At V/V0~0.88, the calculated frequencies of the acoustic phonons near the zone center softened substantially as a result of an electronic topological transition. The theoretical result is consistent with the observed anomaly in the Lam-Mössbauer factor at low temperature.

  3. Frequency transitions in phononic four-wave mixing

    NASA Astrophysics Data System (ADS)

    Ganesan, Adarsh; Do, Cuong; Seshia, Ashwin

    2017-08-01

    This work builds upon the recent demonstration of a phononic four-wave mixing pathway mediated by parametric resonance. In such a process, drive tones fd 1 and fd 2 associated with a specific phonon mode interact such that one of the drive tones also parametrically excites a second mode at a sub-harmonic frequency and such interactions result in a frequency comb f/d1 2 ±n (" separators="|fd 1-fd 2 ). However, the specific behaviour associated with the case where both drive tones can independently excite the sub-harmonic phonon mode has not been studied or previously described. While it may be plausible to expect the merger of two frequency combs f/d1 2 ±n (" separators="|fd 1-fd 2 ) and f/d2 2 ±n (" separators="|fd 1-fd 2 ), this paper indicates that only one of these mechanisms is selected and also shows an interesting transition linked to this process. The frequency transitions from f/d1 2 ±n (" separators="|fd 1-fd 2 ) to f/d2 2 ±n (" separators="|fd 1-fd 2 ) holds promise for computing applications.

  4. Temperature dependence of the Raman-active phonon frequencies in indium sulfide

    NASA Astrophysics Data System (ADS)

    Gasanly, N. M.; Özkan, H.; Aydinli, A.; Yilmaz, İ.

    1999-03-01

    The temperature dependence of the Raman-active mode frequencies in indium sulfide was measured in the range from 10 to 300 K. The analysis of the temperature dependence of the A g intralayer optical modes show that Raman frequency shift results from the change of harmonic frequency with volume expansion and anharmonic coupling to phonons of other branches. The pure-temperature contribution (phonon-phonon coupling) is due to three- and four-phonon processes.

  5. Quantum Theory of Conditional Phonon States in a Dual-Pumped Raman Optical Frequency Comb

    NASA Astrophysics Data System (ADS)

    Mondloch, Erin

    In this work, we theoretically and numerically investigate nonclassical phonon states created in the collective vibration of a Raman medium by the generation of a dual-pumped Raman optical frequency comb in an optical cavity. This frequency comb is generated by cascaded Raman scattering driven by two phase-locked pump lasers that are separated in frequency by three times the Raman phonon frequency. We characterize the variety of conditioned phonon states that are created when the number of photons in all optical frequency modes except the pump modes are measured. Almost all of these conditioned phonon states are extremely well approximated as three-phonon-squeezed states or Schrodinger-cat states, depending on the outcomes of the photon number measurements. We show how the combinations of first-, second-, and third-order Raman scattering that correspond to each set of measured photon numbers determine the fidelity of the conditioned phonon state with model three-phonon-squeezed states and Schrodinger-cat states. All of the conditioned phonon states demonstrate preferential growth of the phonon mode along three directions in phase space. That is, there are three preferred phase values that the phonon state takes on as a result of Raman scattering. We show that the combination of Raman processes that produces a given set of measured photon numbers always produces phonons in multiples of three. In the quantum number-state representation, these multiples of three are responsible for the threefold phase-space symmetry seen in the conditioned phonon states. With a semiclassical model, we show how this three-phase preference can also be understood in light of phase correlations that are known to spontaneously arise in single-pumped Raman frequency combs. Additionally, our semiclassical model predicts that the optical modes also grow preferentially along three phases, suggesting that the dual-pumped Raman optical frequency comb is partially phase-stabilized.

  6. A framework for solving atomistic phonon-structure scattering problems in the frequency domain using perfectly matched layer boundaries

    SciTech Connect

    Kakodkar, Rohit R.; Feser, Joseph P.

    2015-09-07

    We present a numerical approach to the solution of elastic phonon-interface and phonon-nanostructure scattering problems based on a frequency-domain decomposition of the atomistic equations of motion and the use of perfectly matched layer (PML) boundaries. Unlike molecular dynamic wavepacket analysis, the current approach provides the ability to simulate scattering from individual phonon modes, including wavevectors in highly dispersive regimes. Like the atomistic Green's function method, the technique reduces scattering problems to a system of linear algebraic equations via a sparse, tightly banded matrix regardless of dimensionality. However, the use of PML boundaries enables rapid absorption of scattered wave energies at the boundaries and provides a simple and inexpensive interpretation of the scattered phonon energy flux calculated from the energy dissipation rate in the PML. The accuracy of the method is demonstrated on connected monoatomic chains, for which an analytic solution is known. The parameters defining the PML are found to affect the performance and guidelines for selecting optimal parameters are given. The method is used to study the energy transmission coefficient for connected diatomic chains over all available wavevectors for both optical and longitudinal phonons; it is found that when there is discontinuity between sublattices, even connected chains of equivalent acoustic impedance have near-zero transmission coefficient for short wavelengths. The phonon scattering cross section of an embedded nanocylinder is calculated in 2D for a wide range of frequencies to demonstrate the extension of the method to high dimensions. The calculations match continuum theory for long-wavelength phonons and large cylinder radii, but otherwise show complex physics associated with discreteness of the lattice. Examples include Mie oscillations which terminate when incident phonon frequencies exceed the maximum available frequency in the embedded nanocylinder, and

  7. Electron-phonon coupling mechanisms for hydrogen-rich metals at high pressure

    NASA Astrophysics Data System (ADS)

    Tanaka, K.; Tse, J. S.; Liu, H.

    2017-09-01

    The mechanisms for strong electron-phonon coupling predicted for hydrogen-rich alloys with high superconducting critical temperature (Tc) are examined within the Migdal-Eliashberg theory. Analysis of the functional derivative of Tc with respect to the electron-phonon spectral function shows that at low pressures, when the alloys often adopt layered structures, bending vibrations have the most dominant effect. At very high pressures, the H-H interactions in two- and three-dimensional extended structures are weakened, resulting in mixed bent (libration) and stretch vibrations, and the electron-phonon coupling process is distributed over a broad frequency range leading to very high Tc.

  8. Temperature dependence of the A1(LO) and E2 (high) phonons in hexagonal InN nanowires

    NASA Astrophysics Data System (ADS)

    Song, B.; Jian, J. K.; Wang, G.; Bao, H. Q.; Chen, X. L.

    2007-06-01

    The frequencies and dampings of the zone-center optical phonon modes of A1(LO) (longitudinal-optical) and E2 (high) in wurtzite InN nanowires have been investigated by micro-Raman scattering in the temperature range from 80 to 300 K. Our results reveal that the phonon frequencies decrease and the linewidths broaden with increasing temperature. The obtained experimental data of the frequencies and linewidths at various temperatures can be well described by an empirical model which takes into account the contribution of the thermal expansion of lattice and symmetric decay of phonons into two and three identical phonons with lower energy. The results show that decay into two phonons is the probable channel for the A1(LO) mode and three-phonon decay dominates the E2 (high) mode.

  9. Phonon spectra of plutonium at high temperatures

    NASA Astrophysics Data System (ADS)

    Dorado, Boris; Bottin, François; Bouchet, Johann

    2017-03-01

    Ab initio molecular dynamics calculations are used to investigate the vibrational properties of the high-temperature δ and ɛ phases of plutonium. We combine the local-density approximation (LDA)+U for strong electron correlations and the temperature-dependent effective potential method in order to calculate the phonon spectra of the two phases, as well as their dependence on temperature. Our results show that the ɛ phase can only be stabilized when temperature and correlations are simultaneously accounted for. We are also able to quantify the degree of anharmonicity of the two phases. While the δ phase is fairly harmonic up to 1000 K, we find that the ɛ phase is strongly anharmonic, which explains why this structure dominates the phase diagram at high temperature.

  10. Fine Structure of the Low-Frequency Raman Phonon Bands of Single-Wall Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Iliev, M. N.; Litvinchuk, A. P.; Arepalli, S.; Nikolaev, P.; Scott, C. D.

    1999-01-01

    The Raman spectra of singled-wall carbon nanotubes (SWNT) produced by laser and are process were studied between 5 and 500 kappa. The line width vs. temperature dependence of the low-frequency Raman bands between 150 and 200/ cm deviates from that expected for phonon decay through phonon-phonon scattering mechanism. The experimental results and their analysis provided convincing evidence that each of the low-frequency Raman lines is a superposition of several narrower Raman lines corresponding to tubes of nearly the same diameter. The application of Raman spectroscopy to probe the distribution of SWNT by both diameter and chirality is discussed.

  11. Low-frequency spatial wave manipulation via phononic crystals with relaxed cell symmetry

    SciTech Connect

    Celli, Paolo; Gonella, Stefano

    2014-03-14

    Phononic crystals enjoy unique wave manipulation capabilities enabled by their periodic topologies. On one hand, they feature frequency-dependent directivity, which allows directional propagation of selected modes even at low frequencies. However, the stellar nature of the propagation patterns and the inability to induce single-beam focusing represent significant limitations of this functionality. On the other hand, one can realize waveguides by defecting the periodic structure of a crystal operating in bandgap mode along some desired path. Waveguides of this type are only activated in the relatively high and narrow frequency bands corresponding to total bandgaps, which limits their potential technological applications. In this work, we introduce a class of phononic crystals with relaxed cell symmetry and we exploit symmetry relaxation of a population of auxiliary microstructural elements to achieve spatial manipulation of elastic waves at very low frequencies, in the range of existence of the acoustic modes. By this approach, we achieve focusing without modifying the default static properties of the medium and by invoking mechanisms that are well suited to envision adaptive configurations for semi-active wave control.

  12. High temperature phonon dispersion in graphene using classical molecular dynamics

    SciTech Connect

    Anees, P. Panigrahi, B. K.; Valsakumar, M. C.

    2014-04-24

    Phonon dispersion and phonon density of states of graphene are calculated using classical molecular dynamics simulations. In this method, the dynamical matrix is constructed based on linear response theory by computing the displacement of atoms during the simulations. The computed phonon dispersions show excellent agreement with experiments. The simulations are done in both NVT and NPT ensembles at 300 K and found that the LO/TO modes are getting hardened at the Γ point. The NPT ensemble simulations capture the anharmonicity of the crystal accurately and the hardening of LO/TO modes is more pronounced. We also found that at 300 K the C-C bond length reduces below the equilibrium value and the ZA bending mode frequency becomes imaginary close to Γ along K-Γ direction, which indicates instability of the flat 2D graphene sheets.

  13. Terahertz Sum-Frequency Excitation of a Raman-Active Phonon

    NASA Astrophysics Data System (ADS)

    Maehrlein, Sebastian; Paarmann, Alexander; Wolf, Martin; Kampfrath, Tobias

    2017-09-01

    In stimulated Raman scattering, two incident optical waves induce a force oscillating at the difference of the two light frequencies. This process has enabled important applications such as the excitation and coherent control of phonons and magnons by femtosecond laser pulses. Here, we experimentally and theoretically demonstrate the so far neglected up-conversion counterpart of this process: THz sum-frequency excitation of a Raman-active phonon mode, which is tantamount to two-photon absorption by an optical transition between two adjacent vibrational levels. Coherent control of an optical lattice vibration of diamond is achieved by an intense terahertz pulse whose spectrum is centered at half the phonon frequency of 40 THz. Remarkably, the carrier-envelope phase of the THz pulse is directly transferred into the phase of the lattice vibration. New prospects in general infrared spectroscopy, action spectroscopy, and lattice trajectory control in the electronic ground state emerge.

  14. Intrinsic Plasmon-Phonon Interactions in Highly Doped Graphene: A Near-Field Imaging Study.

    PubMed

    Bezares, Francisco J; Sanctis, Adolfo De; Saavedra, J R M; Woessner, Achim; Alonso-González, Pablo; Amenabar, Iban; Chen, Jianing; Bointon, Thomas H; Dai, Siyuan; Fogler, Michael M; Basov, D N; Hillenbrand, Rainer; Craciun, Monica F; García de Abajo, F Javier; Russo, Saverio; Koppens, Frank H L

    2017-10-11

    As a two-dimensional semimetal, graphene offers clear advantages for plasmonic applications over conventional metals, such as stronger optical field confinement, in situ tunability, and relatively low intrinsic losses. However, the operational frequencies at which plasmons can be excited in graphene are limited by the Fermi energy EF, which in practice can be controlled electrostatically only up to a few tenths of an electronvolt. Higher Fermi energies open the door to novel plasmonic devices with unprecedented capabilities, particularly at mid-infrared and shorter-wave infrared frequencies. In addition, this grants us a better understanding of the interaction physics of intrinsic graphene phonons with graphene plasmons. Here, we present FeCl3-intercalated graphene as a new plasmonic material with high stability under environmental conditions and carrier concentrations corresponding to EF > 1 eV. Near-field imaging of this highly doped form of graphene allows us to characterize plasmons, including their corresponding lifetimes, over a broad frequency range. For bilayer graphene, in contrast to the monolayer system, a phonon-induced dipole moment results in increased plasmon damping around the intrinsic phonon frequency. Strong coupling between intrinsic graphene phonons and plasmons is found, supported by ab initio calculations of the coupling strength, which are in good agreement with the experimental data.

  15. Neutron Scattering Study of the High-energy Graphitic Phonons in Superconducting CaC6

    SciTech Connect

    Dean, M.P.; Walters, A.C.; Howard, C.A.; Weller, T.E.; Calandra, M.; Mauri, F.; Ellerby, M.; Saxena, S.S.; Ivanov, A.; McMorrow, D.F.

    2010-07-28

    We present the results of a neutron scattering study of the high energy phonons in the superconducting graphite intercalation compound CaC{sub 6}. The study was designed to address hitherto unexplored aspects of the lattice dynamics in CaC{sub 6}, and in particular any renormalization of the out-of-plane and in-plane graphitic phonon modes. We present a detailed comparison between the data and the results of density functional theory (DFT). A description is given of the analysis methods developed to account for the highly-textured nature of the samples. The DFT calculations are shown to provide a good description of the general features of the experimental data. This is significant in light of a number of striking disagreements in the literature between other experiments and DFT on CaC{sub 6}. The results presented here demonstrate that the disagreements are not due to any large inaccuracies in the calculated phonon frequencies.

  16. Neutron scattering study of the high-energy graphitic phonons in sperconducting CaC6

    SciTech Connect

    Dean, M.P.M.; Walters, A.C.; Howard, C.A.; Weller, T.E.; Calandra, M.; Mauri, F.; Ellerby, M.; Saxena, S.S.; Ivanov, A.; McMorrow, D.F.

    2010-07-28

    We present the results of a neutron scattering study of the high-energy phonons in the superconducting graphite intercalation compound CaC{sub 6} . The study was designed to address hitherto unexplored aspects of the lattice dynamics in CaC{sub 6} , and, in particular, any renormalization of the out-of-plane and in-plane graphitic phonon modes. We present a detailed comparison between the data and the results of density-functional theory (DFT). A description is given of the analysis methods developed to account for the highly textured nature of the samples. The DFT calculations are shown to provide a good description of the general features of the experimental data. This is significant in light of a number of striking disagreements in the literature between other experiments and DFT on CaC{sub 6} . The results presented here demonstrate that the disagreements are not due to any large inaccuracies in the calculated phonon frequencies.

  17. Calculated phonon spectra of plutonium at high temperatures.

    PubMed

    Dai, X; Savrasov, S Y; Kotliar, G; Migliori, A; Ledbetter, H; Abrahams, E

    2003-05-09

    We constructed computer-based simulations of the lattice dynamical properties of plutonium using an electronic structure method, which incorporates correlation effects among the f-shell electrons and calculates phonon spectra at arbitrary wavelengths. Our predicted spectrum for the face-centered cubic delta phase agrees well with experiments in the elastic limit and explains unusually large shear anisotropy of this material. The spectrum of the body-centered cubic phase shows an instability at zero temperature over a broad region of the wave vectors, indicating that this phase is highly anharmonic and can be stabilized at high temperatures by its phonon entropy.

  18. Frequency response of graphene phonons to heating and compression

    NASA Astrophysics Data System (ADS)

    Yang, X. X.; Li, J. W.; Zhou, Z. F.; Wang, Y.; Zheng, W. T.; Sun, Chang Q.

    2011-09-01

    The thermally softened and the mechanically stiffened graphene phonons have been formulated from the perspective of bond order-length-strength correlation with confirmation of the C-C bond length in the single-layer graphene contracting from 0.154 to 0.125 nm and the binding energy increasing from 0.65 to 1.04 eV. Matching theory to the measured temperature- and pressure-dependent Raman shift has derived that the Debye temperature drops from 2230 to 540 K, the atomic cohesive energy drops from 7.37 to 3.11 eV/atom, and the binding energy density increases from 250 to 320 eV/nm3 compared with the respective quantities of bulk diamond.

  19. Hypersonic phononic crystals.

    PubMed

    Gorishnyy, T; Ullal, C K; Maldovan, M; Fytas, G; Thomas, E L

    2005-03-25

    In this Letter we propose the use of hypersonic phononic crystals to control the emission and propagation of high frequency phonons. We report the fabrication of high quality, single crystalline hypersonic crystals using interference lithography and show that direct measurement of their phononic band structure is possible with Brillouin light scattering. Numerical calculations are employed to explain the nature of the observed propagation modes. This work lays the foundation for experimental studies of hypersonic crystals and, more generally, phonon-dependent processes in nanostructures.

  20. Electron-phonon metamaterial featuring nonlinear tri-interleaved piezoelectric topologies and its application in low-frequency vibration control

    NASA Astrophysics Data System (ADS)

    Bao, Bin; Guyomar, Daniel; Lallart, Mickaël

    2016-09-01

    This article proposes a nonlinear tri-interleaved piezoelectric topology based on the synchronized switch damping on inductor (SSDI) technique, which can be applied to phononic metamaterials for elastic wave control and effective low-frequency vibration reduction. A comparison of the attenuation performance is made between piezoelectric phononic metamaterial with distributed SSDI topology (each SSDI shunt being independently connected to a single piezoelectric element) and piezoelectric phononic metamaterial with the proposed electronic topology. Theoretical results show excellent band gap hybridization (near-coupling between Bragg scattering mechanism and wideband resonance mechanism induced by synchronized switch damping networks in piezoelectric phononic metamaterials) with the proposed electronic topology over the investigated frequency domain. Furthermore, piezoelectric phononic metamaterials with proposed electronic topology generated a better low-frequency broadband gap, which is experimentally validated by measuring the harmonic response of a piezoelectric phononic metamaterial beam under clamped-clamped boundary conditions.

  1. Phonon characteristics of high {Tc} superconductors from neutron Doppler broadening measurements

    SciTech Connect

    Trela, W.J.; Kwei, G.H.; Lynn, J.E.; Meggers, K.

    1994-12-01

    Statistical information on the phonon frequency spectrum of materials can be measured by neutron transmission techniques if they contain nuclei with low energy resonances, narrow enough to be Doppler-broadened, in their neutron cross sections. The authors have carried out some measurements using this technique for materials of the lanthanum barium cuprate class, La{sub 2{minus}x}Ba{sub x}CuO{sub 4}. Two samples with slightly different concentrations of oxygen, one being superconductive, the other not, were examined. Pure lanthanum cuprate was also measured. Lanthanum, barium and copper all have relatively low energy narrow resonances. Thus it should be possible to detect differences in the phonons carried by different kinds of atom in the lattice. Neutron cross section measurements have been made with high energy resolution and statistical precision on the 59m flight path of LANSCE, the pulsed spallation neutron source at Los Alamos National Laboratory. Measurements on all three materials were made over a range of temperatures from 15K to 300K, with small steps through the critical temperature region near 27K. No significant changes in the mean phonon energy of the lanthanum atoms were observed near the critical temperature of the super-conducting material. It appears however that the mean phonon energy of lanthanum in the superconductor is considerably higher than that in the non-superconductors. The samples used in this series of experiments were too thin in barium and copper to determine anything significant about their phonon spectra.

  2. Full quantification of frequency-dependent interfacial thermal conductance contributed by two- and three-phonon scattering processes from nonequilibrium molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Zhou, Yanguang; Hu, Ming

    2017-03-01

    Understanding phonon transport across interfaces serves as a major tool to advance a diverse spectrum of fundamental and applied research. Unlike bulk materials, where the three-phonon scattering process is relatively straightforward to investigate, little research has been dedicated to the detailed analysis of the three-phonon scattering process at interfaces due to the complexity of interfaces and the mismatch of phonon dispersions of the two connecting parts. Based on the nonequilibrium molecular dynamics simulation, which is one of the most popular approaches to investigate the thermal conductance, we develop an explicit theoretical framework by considering the full third-order force constants field to quantify the two- and three-phonon scattering at interfaces. Bulk Ar is used as a benchmark to validate the computational scheme by comparing the results with those using the all-order phonon scattering method [frequency-dependent directly decomposed method; Y. Zhou and M. Hu, Phys. Rev. B 92, 195205 (2015), 10.1103/PhysRevB.92.195205]. Then, Ar-heavy Ar and Si-Ge interfaces are studied and the respective role of two- and three-phonon scattering processes is quantitatively characterized at different temperatures. Moreover, all four different types of the three-phonon scattering process are explicitly evaluated. The method developed herein for splitting the two- and three-phonon scattering processes in the interfacial heat transport is expected to advance our understanding of the phonon process at interfaces, and will facilitate designing high-performance interfacial structures in terms of efficient thermal management.

  3. Structural Instabilities Related to Highly Anharmonic Phonons in Halide Perovskites.

    PubMed

    Marronnier, Arthur; Lee, Heejae; Geffroy, Bernard; Even, Jacky; Bonnassieux, Yvan; Roma, Guido

    2017-06-15

    Hybrid perovskites have emerged over the past five years as absorber layers for novel high-efficiency low-cost solar cells combining the advantages of organic and inorganic semiconductors. Unfortunately, electrical transport in these materials is still poorly understood. Employing the linear response approach of density functional theory, we reveal strong anharmonic effects and a double-well phonon instability at the center of the Brillouin zone for both cubic and orthorhombic phases of inorganic CsPbI3. Previously reported soft phonon modes are stabilized at the actual lower-symmetry equilibrium structure, which occurs in a very flat energy landscape, highlighting the strong competition between the different phases of CsPbI3. Factoring these low-energy phonons into electron-phonon interactions and band gap calculations could help better understand the electrical transport properties in these materials. Furthermore, the perovskite oscillations through the corresponding energy barrier could explain the underlying ferroelectricity and the dynamical Rashba effect predicted in halide perovskites for photovoltaics.

  4. Thickness-Dependent Coherent Phonon Frequency in Ultrathin FeSe/SrTiO₃ Films.

    PubMed

    Yang, Shuolong; Sobota, Jonathan A; Leuenberger, Dominik; Kemper, Alexander F; Lee, James J; Schmitt, Felix T; Li, Wei; Moore, Rob G; Kirchmann, Patrick S; Shen, Zhi-Xun

    2015-06-10

    Ultrathin FeSe films grown on SrTiO3 substrates are a recent milestone in atomic material engineering due to their important role in understanding unconventional superconductivity in Fe-based materials. By using femtosecond time- and angle-resolved photoelectron spectroscopy, we study phonon frequencies in ultrathin FeSe/SrTiO3 films grown by molecular beam epitaxy. After optical excitation, we observe periodic modulations of the photoelectron spectrum as a function of pump-probe delay for 1-unit-cell, 3-unit-cell, and 60-unit-cell thick FeSe films. The frequencies of the coherent intensity oscillations increase from 5.00 ± 0.02 to 5.25 ± 0.02 THz with increasing film thickness. By comparing with previous works, we attribute this mode to the Se A1g phonon. The dominant mechanism for the phonon softening in 1-unit-cell thick FeSe films is a substrate-induced lattice strain. Our results demonstrate an abrupt phonon renormalization due to a lattice mismatch between the ultrathin film and the substrate.

  5. Disentangling the Electronic and Phononic Glue in a High-Tc Superconductor

    NASA Astrophysics Data System (ADS)

    Dal Conte, S.; Giannetti, C.; Coslovich, G.; Cilento, F.; Bossini, D.; Abebaw, T.; Banfi, F.; Ferrini, G.; Eisaki, H.; Greven, M.; Damascelli, A.; van der Marel, D.; Parmigiani, F.

    2012-03-01

    Unveiling the nature of the bosonic excitations that mediate the formation of Cooper pairs is a key issue for understanding unconventional superconductivity. A fundamental step toward this goal would be to identify the relative weight of the electronic and phononic contributions to the overall frequency (Ω)-dependent bosonic function, Π(Ω). We performed optical spectroscopy on Bi2Sr2Ca0.92Y0.08Cu2O8+δ crystals with simultaneous time and frequency resolution; this technique allowed us to disentangle the electronic and phononic contributions by their different temporal evolution. The spectral distribution of the electronic excitations and the strength of their interaction with fermionic quasiparticles fully account for the high critical temperature of the superconducting phase transition.

  6. Disentangling the electronic and phononic glue in a high-Tc superconductor.

    PubMed

    Dal Conte, S; Giannetti, C; Coslovich, G; Cilento, F; Bossini, D; Abebaw, T; Banfi, F; Ferrini, G; Eisaki, H; Greven, M; Damascelli, A; van der Marel, D; Parmigiani, F

    2012-03-30

    Unveiling the nature of the bosonic excitations that mediate the formation of Cooper pairs is a key issue for understanding unconventional superconductivity. A fundamental step toward this goal would be to identify the relative weight of the electronic and phononic contributions to the overall frequency (Ω)-dependent bosonic function, Π(Ω). We performed optical spectroscopy on Bi(2)Sr(2)Ca(0.92)Y(0.08)Cu(2)O(8+δ) crystals with simultaneous time and frequency resolution; this technique allowed us to disentangle the electronic and phononic contributions by their different temporal evolution. The spectral distribution of the electronic excitations and the strength of their interaction with fermionic quasiparticles fully account for the high critical temperature of the superconducting phase transition.

  7. Acoustic beam splitting at low GHz frequencies in a defect-free phononic crystal

    NASA Astrophysics Data System (ADS)

    Guo, Yuning; Brick, Delia; Großmann, Martin; Hettich, Mike; Dekorsy, Thomas

    2017-01-01

    The directional waveguiding in a 2D phononic crystal is simulated based on the analysis of equifrequency contours. This approach is utilized to investigate acoustic beam splitting in a defect-free nanostructure in the low GHz range. We find relaxed limitations regarding the source parameters compared to similar approaches in the sonic regime. Finally, we discuss the possibility to design an acoustic interferometer device at the nanoscale at GHz frequencies.

  8. Hot carriers relaxation in highly excited polar semiconductors: Hot phonons versus phonon-plasmon coupling

    NASA Astrophysics Data System (ADS)

    Tea, Eric; Hamzeh, Hani; Aniel, Frédéric

    2011-12-01

    We present a study of the photo-excited charge carriers relaxation dynamics in polar semiconductors comparing calculations to pump probe experiments. Hot carrier densities in the 1018cm-3 range can easily be photo-generated using moderately intense optical excitations. This can lead to known phenomena, namely, hot phonon populations and the coupling of polar optical phonons with plasmon modes. However, these two phenomena can affect the hot carriers relaxation and have never been examined together. This is a problem for the theoretical study of future Hot Carrier Solar Cells, where the conditions allow both of these phenomena to occur. The charge carriers dynamics and the coupling of polar optical phonons with plasmon modes are treated by a Full Band Ensemble Monte Carlo simulation code featuring a self-consistent dielectric function. To take into consideration hot phonon populations and the subsequent phonon bottleneck for the carriers relaxation, the charge carriers simulation code is coupled to a phonon dedicated Ensemble Monte Carlo code. This enables for the first time an accurate study of both the charge carriers and phonon systems dynamics, the latter being most of the time overly simplified in previous studies. The present work explores to which extent the two aforementioned phenomena affect the photo-generated charge carriers relaxation in GaAs and can be easily adapted to other polar semiconductors.

  9. Nonharmonic phonons in α-iron at high temperatures

    NASA Astrophysics Data System (ADS)

    Mauger, L.; Lucas, M. S.; Muñoz, J. A.; Tracy, S. J.; Kresch, M.; Xiao, Yuming; Chow, Paul; Fultz, B.

    2014-08-01

    Phonon densities of states (DOS) of bcc α-Fe57 were measured from room temperature through the 1044 K Curie transition and the 1185 K fcc γ-Fe phase transition using nuclear resonant inelastic x-ray scattering. At higher temperatures all phonons shift to lower energies (soften) with thermal expansion, but the low transverse modes soften especially rapidly above 700 K, showing strongly nonharmonic behavior that persists through the magnetic transition. Interatomic force constants for the bcc phase were obtained by iteratively fitting a Born-von Kármán model to the experimental phonon spectra using a genetic algorithm optimization. The second-nearest-neighbor fitted axial force constants weakened significantly at elevated temperatures. An unusually large nonharmonic behavior is reported, which increases the vibrational entropy and accounts for a contribution of 35 meV/atom in the free energy at high temperatures. The nonharmonic contribution to the vibrational entropy follows the thermal trend of the magnetic entropy, and may be coupled to magnetic excitations. A small change in vibrational entropy across the α-γ structural phase transformation is also reported.

  10. Dynamics of low-frequency phonons in the YBa2Cu3O7-x superconductor studied by time- and frequency-domain spectroscopies

    NASA Astrophysics Data System (ADS)

    Misochko, O. V.; Kisoda, K.; Sakai, K.; Nakashima, S.

    2000-02-01

    We have investigated the temperature dependence of the optical reflectivity at femtosecond scale in YBa2Cu3O7-x superconductors. In both normal and superconducting states, we detect the oscillations associated with two A1g metal-ion modes and compare the phonon dynamics to those obtained by frequency-domain (Raman) spectroscopy. Apart from the considerable increase of amplitude for low-frequency mode in the superconducting state, we observe that its initial phase in the time domain is approximately π/4 shifted by the superconductivity, whereas for the high-frequency mode the initial phase shift is almost two times larger. Even though similar lattice anomalies are observed in both time and frequency domains, the systematic analysis shows that the coherent lattice dynamics is different from the ordinary (thermal state) dynamics probed by frequency-domain spectroscopy.

  11. Coherent phonon optics in a chip with an electrically controlled active device.

    PubMed

    Poyser, Caroline L; Akimov, Andrey V; Campion, Richard P; Kent, Anthony J

    2015-02-05

    Phonon optics concerns operations with high-frequency acoustic waves in solid media in a similar way to how traditional optics operates with the light beams (i.e. photons). Phonon optics experiments with coherent terahertz and sub-terahertz phonons promise a revolution in various technical applications related to high-frequency acoustics, imaging, and heat transport. Previously, phonon optics used passive methods for manipulations with propagating phonon beams that did not enable their external control. Here we fabricate a phononic chip, which includes a generator of coherent monochromatic phonons with frequency 378 GHz, a sensitive coherent phonon detector, and an active layer: a doped semiconductor superlattice, with electrical contacts, inserted into the phonon propagation path. In the experiments, we demonstrate the modulation of the coherent phonon flux by an external electrical bias applied to the active layer. Phonon optics using external control broadens the spectrum of prospective applications of phononics on the nanometer scale.

  12. Coherent phonon optics in a chip with an electrically controlled active device

    PubMed Central

    Poyser, Caroline L.; Akimov, Andrey V.; Campion, Richard P.; Kent, Anthony J.

    2015-01-01

    Phonon optics concerns operations with high-frequency acoustic waves in solid media in a similar way to how traditional optics operates with the light beams (i.e. photons). Phonon optics experiments with coherent terahertz and sub-terahertz phonons promise a revolution in various technical applications related to high-frequency acoustics, imaging, and heat transport. Previously, phonon optics used passive methods for manipulations with propagating phonon beams that did not enable their external control. Here we fabricate a phononic chip, which includes a generator of coherent monochromatic phonons with frequency 378 GHz, a sensitive coherent phonon detector, and an active layer: a doped semiconductor superlattice, with electrical contacts, inserted into the phonon propagation path. In the experiments, we demonstrate the modulation of the coherent phonon flux by an external electrical bias applied to the active layer. Phonon optics using external control broadens the spectrum of prospective applications of phononics on the nanometer scale. PMID:25652241

  13. Ultralow frequency acoustic bandgap and vibration energy recovery in tetragonal folding beam phononic crystal

    NASA Astrophysics Data System (ADS)

    Gao, Nansha; Wu, Jiu Hui; Yu, Lie; Hou, Hong

    2016-06-01

    This paper investigates ultralow frequency acoustic properties and energy recovery of tetragonal folding beam phononic crystal (TFBPC) and its complementary structure. The dispersion curve relationships, transmission spectra and displacement fields of the eigenmodes are studied with FEA in detail. Compared with the traditional three layer phononic crystal (PC) structure, this structure proposed in this paper not only unfold bandgaps (BGs) in lower frequency range (below 300 Hz), but also has lighter weight because of beam structural cracks. We analyze the relevant physical mechanism behind this phenomenon, and discuss the effects of the tetragonal folding beam geometric parameters on band structure maps. FEM proves that the multi-cell structures with different arrangements have different acoustic BGs when compared with single cell structure. Harmonic frequency response and piezoelectric properties of TFBPC are specifically analyzed. The results confirm that this structure does have the recovery ability for low frequency vibration energy in environment. These conclusions in this paper could be indispensable to PC practical applications such as BG tuning and could be applied in portable devices, wireless sensor, micro-electro mechanical systems which can recycle energy from vibration environment as its own energy supply.

  14. Insight into phonon scattering in Si nanowires through high-field hole transport: Impacts of boundary condition and comparison with bulk phonon approximation

    NASA Astrophysics Data System (ADS)

    Tanaka, H.; Suda, J.; Kimoto, T.

    2017-06-01

    The impact of how to model phonon scattering on hole transport in Si nanowires was studied based on Boltzmann’s transport equation. Boundary conditions for atomistic description of phonons in nanowires and approximation by bulk acoustic and optical phonons were analyzed in terms of their impacts on high-field hole transport. The boundary conditions for phonons influence the drift velocity and momentum relaxation time, especially at low electric field, but the energy relaxation time hardly depends on the boundary conditions. The impacts by the change of boundary conditions can be approximated by the change of the strength of acoustic phonon scattering in bulk phonon picture, though the behavior of energy relaxation and distribution function of holes can not be reproduced by bulk phonon approximation.

  15. Phonon-mediated high-T c superconductivity in hole-doped diamond-like crystalline hydrocarbon.

    PubMed

    Lian, Chao-Sheng; Wang, Jian-Tao; Duan, Wenhui; Chen, Changfeng

    2017-05-03

    We here predict by ab initio calculations phonon-mediated high-T c superconductivity in hole-doped diamond-like cubic crystalline hydrocarbon K 4-CH (space group I21/3). This material possesses three key properties: (i) an all-sp (3) covalent carbon framework that produces high-frequency phonon modes, (ii) a steep-rising electronic density of states near the top of the valence band, and (iii) a Fermi level that lies in the σ-band, allowing for a strong coupling with the C-C bond-stretching modes. The simultaneous presence of these properties generates remarkably high superconducting transition temperatures above 80 K at an experimentally accessible hole doping level of only a few percent. These results identify a new extraordinary electron-phonon superconductor and pave the way for further exploration of this novel superconducting covalent metal.

  16. Phonon-mediated high-T c superconductivity in hole-doped diamond-like crystalline hydrocarbon

    DOE PAGES

    Lian, Chao-Sheng; Wang, Jian-Tao; Duan, Wenhui; ...

    2017-05-03

    We here predict by ab initio calculations phonon-mediated high-T c superconductivity in hole-doped diamond-like cubic crystalline hydrocarbon K4-CH (space group I21/3). This material possesses three key properties: (i) an all-sp3 covalent carbon framework that produces high-frequency phonon modes, (ii) a steep-rising electronic density of states near the top of the valence band, and (iii) a Fermi level that lies in the σ-band, allowing for a strong coupling with the C-C bond-stretching modes. The simultaneous presence of these properties generates remarkably high superconducting transition temperatures above 80 K at an experimentally accessible hole doping level of only a few percent. Thesemore » results identify a new extraordinary electron-phonon superconductor and pave the way for further exploration of this novel superconducting covalent metal.« less

  17. Amplification of terahertz frequency acoustic phonons by drifting electrons in three-dimensional Dirac semimetals

    NASA Astrophysics Data System (ADS)

    Bhargavi, K. S.; Kubakaddi, S. S.

    2016-09-01

    The amplification coefficient α of acoustic phonons is theoretically investigated in a three-dimensional Dirac semimetal (3DDS) driven by a dc electric field E causing the drift of the electrons. It is numerically studied as a function of the frequency ωq, drift velocity vd, electron concentration ne, and temperature T in the Dirac semimetal Cd3As2. We find that the amplification of acoustic phonons (α ˜ hundreds of cm-1) takes place when the electron drift velocity vd is greater than the sound velocity vs. The amplification is found to occur at small E (˜few V/cm) due to large electron mobility. The frequency dependence of α shows amplification in the THz regime with a maximum αm occurring at the same frequency ωqm for different vd. The αm is found to increase with increasing vd. α vs ωq for different ne also shows a maximum, with αm shifting to higher ωq for larger ne. Each maximum is followed by a vanishing α at nearly "2kf cutoff," where kf is the Fermi wave vector. It is found that αm/ne and ωqm/ne1/3 are nearly constant. The αm ˜ ne can be used to identify the 3DDS phase as it differs from αm ˜ ne1/3 dependence in conventional bulk Cd3As2 semiconductor.

  18. Phonon manipulation with phononic crystals.

    SciTech Connect

    Kim Bongsang; Hopkins, Patrick Edward; Leseman, Zayd C.; Goettler, Drew F.; Su, Mehmet F.; El-Kady, Ihab Fathy; Reinke, Charles M.; Olsson, Roy H., III

    2012-01-01

    In this work, we demonstrated engineered modification of propagation of thermal phonons, i.e. at THz frequencies, using phononic crystals. This work combined theoretical work at Sandia National Laboratories, the University of New Mexico, the University of Colorado Boulder, and Carnegie Mellon University; the MESA fabrication facilities at Sandia; and the microfabrication facilities at UNM to produce world-leading control of phonon propagation in silicon at frequencies up to 3 THz. These efforts culminated in a dramatic reduction in the thermal conductivity of silicon using phononic crystals by a factor of almost 30 as compared with the bulk value, and about 6 as compared with an unpatterned slab of the same thickness. This work represents a revolutionary advance in the engineering of thermoelectric materials for optimal, high-ZT performance. We have demonstrated the significant reduction of the thermal conductivity of silicon using phononic crystal structuring using MEMS-compatible fabrication techniques and in a planar platform that is amenable to integration with typical microelectronic systems. The measured reduction in thermal conductivity as compared to bulk silicon was about a factor of 20 in the cross-plane direction [26], and a factor of 6 in the in-plane direction. Since the electrical conductivity was only reduced by a corresponding factor of about 3 due to the removal of conductive material (i.e., porosity), and the Seebeck coefficient should remain constant as an intrinsic material property, this corresponds to an effective enhancement in ZT by a factor of 2. Given the number of papers in literature devoted to only a small, incremental change in ZT, the ability to boost the ZT of a material by a factor of 2 simply by reducing thermal conductivity is groundbreaking. The results in this work were obtained using silicon, a material that has benefitted from enormous interest in the microelectronics industry and that has a fairly large thermoelectric power

  19. Phonons and defects in semiconductors and nanostructures: Phonon trapping, phonon scattering, and heat flow at heterojunctions

    SciTech Connect

    Estreicher, S. K. Gibbons, T. M.; Kang, By.; Bebek, M. B.

    2014-01-07

    Defects in semiconductors introduce vibrational modes that are distinct from bulk modes because they are spatially localized in the vicinity of the defect. Light impurities produce high-frequency modes often visible by Fourier-transform infrared absorption or Raman spectroscopy. Their vibrational lifetimes vary by orders of magnitude and sometimes exhibit unexpectedly large isotope effects. Heavy impurities introduce low-frequency modes sometimes visible as phonon replicas in photoluminescence bands. But other defects such as surfaces or interfaces exhibit spatially localized modes (SLMs) as well. All of them can trap phonons, which ultimately decay into lower-frequency bulk phonons. When heat flows through a material containing defects, phonon trapping at localized modes followed by their decay into bulk phonons is usually described in terms of phonon scattering: defects are assumed to be static scattering centers and the properties of the defect-related SLMs modes are ignored. These dynamic properties of defects are important. In this paper, we quantify the concepts of vibrational localization and phonon trapping, distinguish between normal and anomalous decay of localized excitations, discuss the meaning of phonon scattering in real space at the atomic level, and illustrate the importance of phonon trapping in the case of heat flow at Si/Ge and Si/C interfaces.

  20. Phononic crystal devices

    DOEpatents

    El-Kady, Ihab F [Albuquerque, NM; Olsson, Roy H [Albuquerque, NM

    2012-01-10

    Phononic crystals that have the ability to modify and control the thermal black body phonon distribution and the phonon component of heat transport in a solid. In particular, the thermal conductivity and heat capacity can be modified by altering the phonon density of states in a phononic crystal. The present invention is directed to phononic crystal devices and materials such as radio frequency (RF) tags powered from ambient heat, dielectrics with extremely low thermal conductivity, thermoelectric materials with a higher ratio of electrical-to-thermal conductivity, materials with phononically engineered heat capacity, phononic crystal waveguides that enable accelerated cooling, and a variety of low temperature application devices.

  1. Using high pressure to study thermal transport and phonon scattering mechanisms

    NASA Astrophysics Data System (ADS)

    Hohensee, Gregory Thomas

    The aerospace industry studies nanocomposites for heat dissipation and moderation of thermal expansion, and the semiconductor industry faces a Joule heating barrier in devices with high power density. My primary experimental tools are the diamond anvil cell (DAC) coupled with time-domain thermoreflectance (TDTR). TDTR is a precise optical method well-suited to measuring thermal conductivities and conductances at the nanoscale and across interfaces. The DAC-TDTR method yields thermal property data as a function of pressure, rather than temperature. This relatively unexplored independent variable can separate the components of thermal conductance and serve as an independent test for phonon-defect scattering models. I studied the effect of non-equilibrium thermal transport at the aluminum-coated surface of an exotic cuprate material Ca9La5Cu 24O41, which boasts a tenfold enhanced thermal conductivity along one crystalline axis where two-leg copper-oxygen spin-ladder structures carry heat in the form of thermalized magnetic excitations. Highly anisotropic materials are of interest for controlled thermal management applications, and the spin-ladder magnetic heat carriers ("magnons") are not well understood. I found that below room temperature, the apparent thermal conductivity of Ca9La5Cu24O41 depends on the frequency of the applied surface heating in TDTR. This occurs because the thermal penetration depth in the TDTR experiment is comparable to the length-scale for the equilibration of the magnons that are the dominant channel for heat conduction and the phonons that dominate the heat capacity. I applied a two-temperature model to analyze the TDTR data and extracted an effective volumetric magnon-phonon coupling parameter g for Ca9La5Cu24O 41 at temperatures from 75 K to 300 K; g varies by approximately two orders of magnitude over this range of temperature and has the value g = 1015 W m-3 K-1 near the peak of the thermal conductivity at T ≈ 180 K. To examine

  2. Phonon triggered rhombohedral lattice distortion in vanadium at high pressure

    PubMed Central

    Antonangeli, Daniele; Farber, Daniel L.; Bosak, Alexei; Aracne, Chantel M.; Ruddle, David G.; Krisch, Michael

    2016-01-01

    In spite of the simple body-centered-cubic crystal structure, the elements of group V, vanadium, niobium and tantalum, show strong interactions between the electronic properties and lattice dynamics. Further, these interactions can be tuned by external parameters, such as pressure and temperature. We used inelastic x-ray scattering to probe the phonon dispersion of single-crystalline vanadium as a function of pressure to 45 GPa. Our measurements show an anomalous high-pressure behavior of the transverse acoustic mode along the (100) direction and a softening of the elastic modulus C44 that triggers a rhombohedral lattice distortion occurring between 34 and 39 GPa. Our results provide the missing experimental confirmation of the theoretically predicted shear instability arising from the progressive intra-band nesting of the Fermi surface with increasing pressure, a scenario common to all transition metals of group V. PMID:27539662

  3. Phonon triggered rhombohedral lattice distortion in vanadium at high pressure

    SciTech Connect

    Antonangeli, Daniele; Farber, Daniel L.; Bosak, Alexei; Aracne, Chantel M.; Ruddle, David G.; Krisch, Michael

    2016-08-19

    In spite of the simple body-centered-cubic crystal structure, the elements of group V, vanadium, niobium and tantalum, show strong interactions between the electronic properties and lattice dynamics. Further, these interactions can be tuned by external parameters, such as pressure and temperature. We used inelastic x-ray scattering to probe the phonon dispersion of single-crystalline vanadium as a function of pressure to 45 GPa. Our measurements show an anomalous high-pressure behavior of the transverse acoustic mode along the (100) direction and a softening of the elastic modulus C44 that triggers a rhombohedral lattice distortion occurring between 34 and 39 GPa. Lastly, our results provide the missing experimental confirmation of the theoretically predicted shear instability arising from the progressive intra-band nesting of the Fermi surface with increasing pressure, a scenario common to all transition metals of group V.

  4. Phonon triggered rhombohedral lattice distortion in vanadium at high pressure

    DOE PAGES

    Antonangeli, Daniele; Farber, Daniel L.; Bosak, Alexei; ...

    2016-08-19

    In spite of the simple body-centered-cubic crystal structure, the elements of group V, vanadium, niobium and tantalum, show strong interactions between the electronic properties and lattice dynamics. Further, these interactions can be tuned by external parameters, such as pressure and temperature. We used inelastic x-ray scattering to probe the phonon dispersion of single-crystalline vanadium as a function of pressure to 45 GPa. Our measurements show an anomalous high-pressure behavior of the transverse acoustic mode along the (100) direction and a softening of the elastic modulus C44 that triggers a rhombohedral lattice distortion occurring between 34 and 39 GPa. Lastly, ourmore » results provide the missing experimental confirmation of the theoretically predicted shear instability arising from the progressive intra-band nesting of the Fermi surface with increasing pressure, a scenario common to all transition metals of group V.« less

  5. Phonon triggered rhombohedral lattice distortion in vanadium at high pressure

    NASA Astrophysics Data System (ADS)

    Antonangeli, Daniele; Farber, Daniel L.; Bosak, Alexei; Aracne, Chantel M.; Ruddle, David G.; Krisch, Michael

    2016-08-01

    In spite of the simple body-centered-cubic crystal structure, the elements of group V, vanadium, niobium and tantalum, show strong interactions between the electronic properties and lattice dynamics. Further, these interactions can be tuned by external parameters, such as pressure and temperature. We used inelastic x-ray scattering to probe the phonon dispersion of single-crystalline vanadium as a function of pressure to 45 GPa. Our measurements show an anomalous high-pressure behavior of the transverse acoustic mode along the (100) direction and a softening of the elastic modulus C44 that triggers a rhombohedral lattice distortion occurring between 34 and 39 GPa. Our results provide the missing experimental confirmation of the theoretically predicted shear instability arising from the progressive intra-band nesting of the Fermi surface with increasing pressure, a scenario common to all transition metals of group V.

  6. Phonon triggered rhombohedral lattice distortion in vanadium at high pressure.

    PubMed

    Antonangeli, Daniele; Farber, Daniel L; Bosak, Alexei; Aracne, Chantel M; Ruddle, David G; Krisch, Michael

    2016-08-19

    In spite of the simple body-centered-cubic crystal structure, the elements of group V, vanadium, niobium and tantalum, show strong interactions between the electronic properties and lattice dynamics. Further, these interactions can be tuned by external parameters, such as pressure and temperature. We used inelastic x-ray scattering to probe the phonon dispersion of single-crystalline vanadium as a function of pressure to 45 GPa. Our measurements show an anomalous high-pressure behavior of the transverse acoustic mode along the (100) direction and a softening of the elastic modulus C44 that triggers a rhombohedral lattice distortion occurring between 34 and 39 GPa. Our results provide the missing experimental confirmation of the theoretically predicted shear instability arising from the progressive intra-band nesting of the Fermi surface with increasing pressure, a scenario common to all transition metals of group V.

  7. Phonons in twisted bilayer graphene

    NASA Astrophysics Data System (ADS)

    Cocemasov, Alexandr I.; Nika, Denis L.; Balandin, Alexander A.

    2013-07-01

    We theoretically investigate phonon dispersion in AA-stacked, AB-stacked, and twisted bilayer graphene with various rotation angles. The calculations are performed using the Born-von Karman model for the intralayer atomic interactions and the Lennard-Jones potential for the interlayer interactions. It is found that the stacking order affects the out-of-plane acoustic phonon modes the most. The difference in the phonon densities of states in the twisted bilayer graphene and in AA- or AB-stacked bilayer graphene appears in the phonon frequency range 90-110 cm-1. Twisting bilayer graphene leads to the emergence of different phonon branches—termed hybrid folded phonons—which originate from the mixing of phonon modes from different high-symmetry directions in the Brillouin zone. The frequencies of the hybrid folded phonons depend strongly on the rotation angle and can be used for noncontact identification of the twist angles in graphene samples. The obtained results and the tabulated frequencies of phonons in twisted bilayer graphene are important for the interpretation of experimental Raman data and in determining the thermal conductivity of these material systems.

  8. Low-phonon-frequency chalcogenide crystalline hosts for rare earth lasers operating beyond three microns

    DOEpatents

    Payne, Stephen A.; Page, Ralph H.; Schaffers, Kathleen I.; Nostrand, Michael C.; Krupke, William F.; Schunemann, Peter G.

    2000-01-01

    The invention comprises a RE-doped MA.sub.2 X.sub.4 crystalline gain medium, where M includes a divalent ion such as Mg, Ca, Sr, Ba, Pb, Eu, or Yb; A is selected from trivalent ions including Al, Ga, and In; X is one of the chalcogenide ions S, Se, and Te; and RE represents the trivalent rare earth ions. The MA.sub.2 X.sub.4 gain medium can be employed in a laser oscillator or a laser amplifier. Possible pump sources include diode lasers, as well as other laser pump sources. The laser wavelengths generated are greater than 3 microns, as becomes possible because of the low phonon frequency of this host medium. The invention may be used to seed optical devices such as optical parametric oscillators and other lasers.

  9. Evolution of anatase surface active sites probed by in situ sum-frequency phonon spectroscopy.

    PubMed

    Cao, Yue; Chen, Shiyou; Li, Yadong; Gao, Yi; Yang, Deheng; Shen, Yuen Ron; Liu, Wei-Tao

    2016-09-01

    Surface active sites of crystals often govern their relevant surface chemistry, yet to monitor them in situ in real atmosphere remains a challenge. Using surface-specific sum-frequency spectroscopy, we identified the surface phonon mode associated with the active sites of undercoordinated titanium ions and conjoint oxygen vacancies, and used it to monitor them on anatase (TiO2) (101) under ambient conditions. In conjunction with theory, we determined related surface structure around the active sites and tracked the evolution of oxygen vacancies under ultraviolet irradiation. We further found that unlike in vacuum, the surface oxygen vacancies, which dominate the surface reactivity, are strongly regulated by ambient gas molecules, including methanol and water, as well as weakly associated species, such as nitrogen and hydrogen. The result revealed a rich interplay between prevailing ambient species and surface reactivity, which can be omnipresent in environmental and catalytic applications of titanium dioxides.

  10. Evolution of anatase surface active sites probed by in situ sum-frequency phonon spectroscopy

    PubMed Central

    Cao, Yue; Chen, Shiyou; Li, Yadong; Gao, Yi; Yang, Deheng; Shen, Yuen Ron; Liu, Wei-Tao

    2016-01-01

    Surface active sites of crystals often govern their relevant surface chemistry, yet to monitor them in situ in real atmosphere remains a challenge. Using surface-specific sum-frequency spectroscopy, we identified the surface phonon mode associated with the active sites of undercoordinated titanium ions and conjoint oxygen vacancies, and used it to monitor them on anatase (TiO2) (101) under ambient conditions. In conjunction with theory, we determined related surface structure around the active sites and tracked the evolution of oxygen vacancies under ultraviolet irradiation. We further found that unlike in vacuum, the surface oxygen vacancies, which dominate the surface reactivity, are strongly regulated by ambient gas molecules, including methanol and water, as well as weakly associated species, such as nitrogen and hydrogen. The result revealed a rich interplay between prevailing ambient species and surface reactivity, which can be omnipresent in environmental and catalytic applications of titanium dioxides. PMID:27704049

  11. Inverse design of high-Q wave filters in two-dimensional phononic crystals by topology optimization.

    PubMed

    Dong, Hao-Wen; Wang, Yue-Sheng; Zhang, Chuanzeng

    2017-04-01

    Topology optimization of a waveguide-cavity structure in phononic crystals for designing narrow band filters under the given operating frequencies is presented in this paper. We show that it is possible to obtain an ultra-high-Q filter by only optimizing the cavity topology without introducing any other coupling medium. The optimized cavity with highly symmetric resonance can be utilized as the multi-channel filter, raising filter and T-splitter. In addition, most optimized high-Q filters have the Fano resonances near the resonant frequencies. Furthermore, our filter optimization based on the waveguide and cavity, and our simple illustration of a computational approach to wave control in phononic crystals can be extended and applied to design other acoustic devices or even opto-mechanical devices.

  12. Weak Coupling Electron-Phonon for High Tc Superconductors

    NASA Astrophysics Data System (ADS)

    Labbe, J.

    1989-01-01

    Our opinion is that, in the high Tc copper oxides, the electronic correlations are not large enough to allow the localization of the electrons of the half-filled d-p sub-band. Thus, we treat them as itinerant electrons, in a bidimensional structure. And we show that, contrary to a widely held opinion, the electron-phonon interaction can induce high Tc superconductivity in these compounds, even in the weak coupling limit. This is due to the fact that, because of the bidimensionality, the electronic density of states is sharply peaked in the neighbourhood of the Fermi energy. A small coupling between nearest neighbouring CuO2 planes is sufficient to prevent a very large reduction of Tc by the critical fluctuations. The calculated isotope effect is much smaller than usually in the BCS theory. And, in our weak coupling theory, the antiferromagnetic (AF) phase is much more rapidly destabilized by dopping or internal charge transfer than the superconducting phase, which takes place when the AF phase has vanished.

  13. Extremely high electron mobility in a phonon-glass semimetal.

    PubMed

    Ishiwata, S; Shiomi, Y; Lee, J S; Bahramy, M S; Suzuki, T; Uchida, M; Arita, R; Taguchi, Y; Tokura, Y

    2013-06-01

    The electron mobility is one of the key parameters that characterize the charge-carrier transport properties of materials, as exemplified by the quantum Hall effect as well as high-efficiency thermoelectric and solar energy conversions. For thermoelectric applications, introduction of chemical disorder is an important strategy for reducing the phonon-mediated thermal conduction, but is usually accompanied by mobility degradation. Here, we show a multilayered semimetal β-CuAgSe overcoming such a trade-off between disorder and mobility. The polycrystalline ingot shows a giant positive magnetoresistance and Shubnikov de Haas oscillations, indicative of a high-mobility small electron pocket derived from the Ag s-electron band. Ni doping, which introduces chemical and lattice disorder, further enhances the electron mobility up to 90,000 cm(2) V(-1) s(-1) at 10 K, leading not only to a larger magnetoresistance but also a better thermoelectric figure of merit. This Ag-based layered semimetal with a glassy lattice is a new type of promising thermoelectric material suitable for chemical engineering.

  14. Extremely low-frequency Lamb wave band gaps in a sandwich phononic crystal thin plate

    NASA Astrophysics Data System (ADS)

    Shen, Li; Wu, Jiu Hui; Liu, Zhangyi; Fu, Gang

    2015-11-01

    In this paper, a kind of sandwich phononic crystal (PC) plate with silicon rubber scatterers embedded in polymethyl methacrylate (PMMA) matrix is proposed to demonstrate its low-frequency Lamb wave band gap (BG) characteristics. The dispersion relationship and the displacement vector fields of the basic slab modes and the locally resonant modes are investigated to show the BG formation mechanism. The anti-symmetric Lamb wave BG is further studied due to its important function in reducing vibration. The analysis on the BG characteristics of the PC through changing their geometrical parameters is performed. By optimizing the structure, a sandwich PC plate with a thickness of only 3 mm and a lower boundary (as low as 23.9 Hz) of the first anti-symmetric BG is designed. Finally, sound insulation experiment on a sandwich PC plate with the thickness of only 2.5 mm is conducted, showing satisfactory noise reduction effect in the frequency range of the anti-symmetric Lamb BG. Therefore, this kind of sandwich PC plate has potential applications in controlling vibration and noise in low-frequency ranges.

  15. Diameter dependence of TO phonon frequencies and the Kohn anomaly in armchair single-wall carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Telg, Hagen; Hároz, Erik H.; Duque, Juan G.; Tu, Xiaomin; Khripin, Constantine Y.; Fagan, Jeffrey A.; Zheng, Ming; Kono, Junichiro; Doorn, Stephen K.

    2014-12-01

    We present resonant Raman scattering experiments on nanotube samples enriched in metallic armchair single-wall carbon nanotubes (SWCNTs). We establish the transverse optical (ATO) phonon frequency for the (5,5) through (10,10) armchair species, ranging in diameter from 0.68 to 1.36 nm. The frequencies show a strong diameter dependence similar to that previously observed in semiconducting nanotubes. We show that the ATO frequencies in armchair SWCNTs are dramatically upshifted from those of semiconducting SWCNTs. Furthermore, using electrochemical doping, we demonstrated that the ATO frequencies in armchair SWCNTs are independent of the position of the Fermi level. These results suggest that the upshift is a result of a Kohn anomaly involving a forward-scattering mechanism of electrons close to the Fermi level. This is in contrast to the well-known Kohn anomaly that dominates the downshift of the ALO and E2 g phonons in nonarmchair metallic SWCNTs and graphene, respectively.

  16. Harmonicity and anharmonicity of phonon and surface phonon-polariton in high symmetry directions in wurtzite AlN

    NASA Astrophysics Data System (ADS)

    Karakachian, H.; Kazan, M.

    2017-07-01

    We report on the potential of self-nucleated AlN single crystals as tunable near-field infrared sources. A self-nucleated AlN crystal was grown with appropriate care to ensure minimal contact with crucible walls or other crystals. The grown crystal exhibits natural AlN growth characteristics with several well-developed facets of different orientations. The characteristics of surface-phonon-polariton (SPhP) modes on the developed crystal facets have been investigated. Reflectivity spectra were recorded from five facets of different orientations. The measured spectra were analyzed by a model taking into account the dependence of harmonicity and anharmonicity of the excited zone center optical phonons on the surface orientation. Consequently, the dielectric properties that determine the condition of existence, dispersion relations, and lifetimes of the SPhP modes were accurately retrieved. The dielectric functions were determined as a function of the angle of incidence and used to compute the characteristics of the SPhP modes on each of the measured facets. We found that facets of different orientations exhibit SPhP modes of different frequencies and lifetimes, which makes the investigated self-nucleated crystal potential candidates for tunable near-field infrared sources.

  17. Design and experimental validation of an adaptive phononic crystal using highly dissipative polymeric material interface

    NASA Astrophysics Data System (ADS)

    Billon, K.; Ouisse, M.; Sadoulet-Reboul, E.; Collet, M.; Chevallier, G.; Khelif, A.

    2017-04-01

    In this paper, some numerical tools for dispersion analysis of periodic structures are presented, with a focus on the ability of the methods to deal with dissipative behaviour of the systems. An adaptive phononic crystal based on the combination of metallic parts and highly dissipative polymeric interface is designed. The system consists in an infinite periodic bidirectional waveguide. The periodic cylindrical pillars include a layer of shape memory polymer and Aluminum. The mechanical properties of the polymer depend on both temperature and frequency and can radically change from glassy to rubbery state, with various combination of high/low stiffness and high/low dissipation. A fractional derivative Zener model is used for the description of the frequency-dependent behaviour of the polymer. A 3D finite element model of the cell is developed for the design of the metamaterial. The "Shifted-Cell Operator" technique consists in a reformulation of the PDE problem by "shifting" in terms of wave number the space derivatives appearing in the mechanical behaviour operator inside the cell, while imposing continuity boundary conditions on the borders of the domain. Damping effects can easily be introduced in the system and a quadratic eigenvalue problem yields to the dispersion properties of the periodic structure. In order to validate the design and the adaptive character of the metamaterial, results issued from a full 3D model of a finite structure embedding an interface composed by a distributed set of the unit cells are presented. Various driving temperature are used to change the behaviour of the system. After this step, a comparison between the results obtained using the tunable structure simulation and the experimental results is presented. Two states are obtained by changing the temperature of the polymeric interface: at 25°C, the bandgap is visible around a selected frequency. Above the glass transition, the phononic crystal tends to behave as an homogeneous plate.

  18. Influence of the electron-phonon interaction on the temperature dependence of the phonon mode frequency in the II-VI compound solid solutions

    SciTech Connect

    Woźny, M. Cebulski, J.; Sheregii, E. M.; Marcelli, A.; Piccinini, M.

    2015-01-14

    We present an experimental investigation of the temperature dependence of the TO-phonon mode frequencies for the HgTe-based II-VI semiconductor solid solutions. In the case of the ternary Hg{sub 0.9}Zn{sub 0.1}Te solid solution was shown a discontinuity in the temperature dependence of the HgTe-like T{sub 0}-mode and of the ZnTe-like T{sub 1}-mode, similar to the Hg{sub 0.85}Cd{sub 0.15}Te system [Sheregii et al., Phys. Rev. Lett. 102, 045504 (2009)]. A generalization of the theoretical temperature shift of the phonon mode frequency as analytic equation is derived that includes both the anharmonic contribution and the electron-phonon e-p interaction which in this case is returnable—the electron subsystem effect on the phonon one. Data show that our equation satisfactorily describes the temperature shift of both Hg{sub 0.85}Cd{sub 0.15}Te and Hg{sub 0.90}Zn{sub 0.10}Te containing Dirac point (E{sub g} ≡ Γ{sub 6} – Γ{sub 8} = 0) although one of the two constants describing the anharmonic shift of the HgTe-like mode should be positive what is abnormal too. In the case of the Hg{sub 0.80}Cd{sub 0.20}Te and Hg{sub 0.763}Zn{sub 0.237}Te solid solution, the role of the returnable e-p contribution is negligible but a positive temperature shift for the HgTe-like modes occurs. This result does not allow to explain the positive temperature shift of these modes merely by the contribution of the (e-p) interaction. Indeed, the relativistic contribution to the chemical bonds induces an abnormal temperature shift of the electron states in Hg-based semiconductors—the effect is expected since the Hg d spin-orbit split contribution to chemical bonds may lead to an abnormal temperature shift of the HgTe-like modes.

  19. Frequency characteristics of defect states in a two-dimensional phononic crystal with slit structure

    NASA Astrophysics Data System (ADS)

    Wang, X. P.; Jiang, P.; Chen, T. N.; Yu, K. P.

    2016-02-01

    In this paper, the defect state and band gap characteristics in a two-dimensional slit structure phononic crystal, consisting of slotted steel tubes embedded in an air matrix, are investigated theoretically and experimentally. Using the finite element method and supercell technique, the dispersion relationships and power transmission spectra of the slit structures are calculated. The vibration modes of the band gap edges are analyzed to clarify the mechanism of the generation of the band gaps. Additionally, the influence of the slit width on the band gaps in slit structure is investigated. The slit width was found to influence the band gaps; this is critical to understand for practical applications. Based on this finding, a method to form defect scatterers by changing the slit width of a single central scatterer, or one row of scatterers, in the perfect PC was developed. Defect bands can be induced by creating defects inside the original complete band gaps. The frequency can then be tuned by changing the slit width of defect scatterers. Meanwhile, the relationship between point defect and line defect is investigated. Finally, we verify the results of theoretical research by experiments. These results will help in fabricating devices such as acoustic filters and waveguides whose band frequency can be modulated.

  20. A Comprehensive Approach to Phonon Control for Enhanced Device Performance

    DTIC Science & Technology

    2006-07-12

    program include (i) the development of novel theoretical and experimental (ultrafast laser and x-ray) methods to generate and probe coherent high...frequency sound, optical phonons and polaritons, (ii) the improvement of phonon-based imaging techniques and development of new methods of phonon detection...acoustic phonon sources using both ultrafast lasers and electrical methods , and (iii) the application and improvement of state- of-the-art materials

  1. A study of frequency band structure in two-dimensional homogeneous anisotropic phononic K3-metamaterials

    NASA Astrophysics Data System (ADS)

    Gorshkov, V. N.; Navadeh, N.; Fallah, A. S.

    2017-09-01

    Phononic metamaterials are synthesised materials in which locally resonant units are arranged in a particular geometry of a substratum lattice and connected in a predefined topology. This study investigates dispersion surfaces in two-dimensional anisotropic acoustic metamaterials involving mass-in-mass units connected by massless springs in K3 topology. The reasons behind the particular choice of this topology are explained. Two sets of solutions for the eigenvalue problem | {\\boldsymbol{D}}({ω }2,{\\boldsymbol{k}})| =0 are obtained and the existence of absolutely different mechanisms of gap formation between acoustic and optical surface frequencies is shown as a bright display of quantum effects like strong coupling, energy splitting, and level crossings in classical mechanical systems. It has been concluded that a single dimensionless parameter i.e. relative mass controls the order of formation of gaps between different frequency surfaces. If the internal mass of the locally resonant mass-in-mass unit, m, increases relative to its external mass, M, then the coupling between the internal and external vibrations in the whole system rises sharply, and a threshold {μ }* is reached so that for m/M> {μ }* the optical vibrations break the continuous spectrum of ‘acoustic phonons’ creating the gap between them for any value of other system parameters. The methods to control gap parameters and polarisation properties of the optical vibrations created over these gaps were investigated. Dependencies of morphology and width of gaps for several anisotropic cases have been expounded and the physical meaning of singularity at the point of tangential contact between two adjacent frequency surfaces has been provided. Repulsion between different frequency band curves, as planar projections of surfaces, has been explained. The limiting case of isotropy has been discussed and it has been shown that, in the isotropic case, the lower gap always forms, irrespective of the value

  2. Thickness-dependent coherent phonon frequency in ultrathin FeSe/SrTiO3 films

    SciTech Connect

    Yang, Shuolong; Sobota, Jonathan A.; Leuenberger, Dominik; Kemper, Alexander F.; Lee, James J.; Schmitt, Felix T.; Li, Wei; Moore, Rob G.; Kirchmann, Patrick S.; Shen, Zhi -Xun

    2015-06-01

    Ultrathin FeSe films grown on SrTiO3 substrates are a recent milestone in atomic material engineering due to their important role in understanding unconventional superconductivity in Fe-based materials. By using femtosecond time- and angle-resolved photoelectron spectroscopy, we study phonon frequencies in ultrathin FeSe/SrTiO3 films grown by molecular beam epitaxy. After optical excitation, we observe periodic modulations of the photoelectron spectrum as a function of pump–probe delay for 1-unit-cell, 3-unit-cell, and 60-unit-cell thick FeSe films. The frequencies of the coherent intensity oscillations increase from 5.00 ± 0.02 to 5.25 ± 0.02 THz with increasing film thickness. By comparing with previous works, we attribute this mode to the Se A1g phonon. The dominant mechanism for the phonon softening in 1-unit-cell thick FeSe films is a substrate-induced lattice strain. Results demonstrate an abrupt phonon renormalization due to a lattice mismatch between the ultrathin film and the substrate.

  3. Resonance damping of the terahertz-frequency transverse acoustic phonon in the relaxor ferroelectric KT a1 -xN bxO3

    NASA Astrophysics Data System (ADS)

    Toulouse, J.; Iolin, E.; Hennion, B.; Petitgrand, D.; Erwin, R.

    2016-12-01

    The damping (Γ a ) of the transverse acoustic (TA) phonon in single crystals of the relaxor KT a1 -xN bxO3 with x =0.15 -0.17 was studied by means of high resolution inelastic cold neutron scattering near the (200) Brillouin Zone (BZ) point where diffuse scattering is absent, although it is present near (110). In a wide range of temperatures centered on the phase transition, T =195 K ÷108 K , the TA phonon width (damping) exhibits a step increase around momentum q =0.07 , goes through a shallow maximum at q =0.09 -0.12 , and remains high above and up to the highest momentum studied of q =0.16 . These experimental results are explained in terms of a resonant interaction between the TA phonon and the collective or correlated reorientation through tunneling of the off-center N b+5 ions. The observed TA damping is successfully reproduced in a simple model that includes an interaction between the TA phonon and a dispersionless localized mode (LM) with frequency ωL and damping ΓL(ΓL<ωL) , itself coupled to the transverse optic (TO) mode. Maximum damping of the TA phonon occurs when its frequency is ωa≈ωL . The values of ωL and ΓL are moderately dependent on temperature, but the oscillator strength, M2, of the resonant damping exhibits a strong maximum in the range T ˜120 K ÷150 K in which neutron diffuse scattering near the (110) BZ point is also maximum and the dielectric susceptibility exhibits the relaxor behavior. The maximum value of M appears to be due to the increasing number of polar nanodomains. In support of the proposed model, the observed value of ωL≈0.7 THz is found to be similar to the estimate previously obtained by Girshberg and Yacoby [J. Phys.: Condens. Matter 24, 015901 (2012)], 10.1088/0953-8984/24/1/015901. Alternatively, the TA phonon damping can be successfully fitted in the framework of an empirical Havriliak-Negami (HN) relaxation model that includes a strong resonancelike transient contribution.

  4. Observation of low- and high-energy Gamow-Teller phonon excitations in nuclei.

    PubMed

    Fujita, Y; Fujita, H; Adachi, T; Bai, C L; Algora, A; Berg, G P A; von Brentano, P; Colò, G; Csatlós, M; Deaven, J M; Estevez-Aguado, E; Fransen, C; De Frenne, D; Fujita, K; Ganioğlu, E; Guess, C J; Gulyás, J; Hatanaka, K; Hirota, K; Honma, M; Ishikawa, D; Jacobs, E; Krasznahorkay, A; Matsubara, H; Matsuyanagi, K; Meharchand, R; Molina, F; Muto, K; Nakanishi, K; Negret, A; Okamura, H; Ong, H J; Otsuka, T; Pietralla, N; Perdikakis, G; Popescu, L; Rubio, B; Sagawa, H; Sarriguren, P; Scholl, C; Shimbara, Y; Shimizu, Y; Susoy, G; Suzuki, T; Tameshige, Y; Tamii, A; Thies, J H; Uchida, M; Wakasa, T; Yosoi, M; Zegers, R G T; Zell, K O; Zenihiro, J

    2014-03-21

    Gamow-Teller (GT) transitions in atomic nuclei are sensitive to both nuclear shell structure and effective residual interactions. The nuclear GT excitations were studied for the mass number A = 42, 46, 50, and 54 "f-shell" nuclei in ((3)He, t) charge-exchange reactions. In the (42)Ca → (42)Sc reaction, most of the GT strength is concentrated in the lowest excited state at 0.6 MeV, suggesting the existence of a low-energy GT phonon excitation. As A increases, a high-energy GT phonon excitation develops in the 6-11 MeV region. In the (54)Fe → (54)Co reaction, the high-energy GT phonon excitation mainly carries the GT strength. The existence of these two GT phonon excitations are attributed to the 2 fermionic degrees of freedom in nuclei.

  5. Phononic crystal diffraction gratings

    NASA Astrophysics Data System (ADS)

    Moiseyenko, Rayisa P.; Herbison, Sarah; Declercq, Nico F.; Laude, Vincent

    2012-02-01

    When a phononic crystal is interrogated by an external source of acoustic waves, there is necessarily a phenomenon of diffraction occurring on the external enclosing surfaces. Indeed, these external surfaces are periodic and the resulting acoustic diffraction grating has a periodicity that depends on the orientation of the phononic crystal. This work presents a combined experimental and theoretical study on the diffraction of bulk ultrasonic waves on the external surfaces of a 2D phononic crystal that consists of a triangular lattice of steel rods in a water matrix. The results of transmission experiments are compared with theoretical band structures obtained with the finite-element method. Angular spectrograms (showing frequency as a function of angle) determined from diffraction experiments are then compared with finite-element simulations of diffraction occurring on the surfaces of the crystal. The experimental results show that the diffraction that occurs on its external surfaces is highly frequency-dependent and has a definite relation with the Bloch modes of the phononic crystal. In particular, a strong influence of the presence of bandgaps and deaf bands on the diffraction efficiency is found. This observation opens perspectives for the design of efficient phononic crystal diffraction gratings.

  6. Dirac-like point at the high symmetric M point in a square phononic crystal

    NASA Astrophysics Data System (ADS)

    Gao, Han-Feng; Zhang, Xin; Wu, Fu-Gen; Yao, Yuan-Wei; Li, Jing

    2016-05-01

    Using the accidental degeneracy of a doubly degenerate state and a single state, a new Dirac-like point was constructed at the high symmetric M point in a two-dimensional phononic crystal (PnC) that consists of a square array of square rods in water. When a plane wave at a frequency near the Dirac-like point impinges on the PnC slab from the left, the spatial phase experiences a minor change in the regions located near the incident interface, but this phase remains uniform in the far field. We also demonstrate two important properties that are correlated to these special field patterns: acoustic cloaking and wavefront reshaping.

  7. Evidence of scaling in the high pressure phonon dispersion relations of some elemental solids

    NASA Astrophysics Data System (ADS)

    Srivastava, Divya; Waghmare, Umesh V.; Sarkar, Subir K.

    2014-07-01

    First principles searches are carried out for the existence of an asymptotic scaling law for the zero temperature phonon dispersion relation of several elemental crystalline solids in the high pressure regime. The solids studied are Cu, Ni, Pd, Au, Al, and Ir in the face-centered-cubic (fcc) geometry and Fe, Re, and Os in the hexagonal-close-packed (hcp) geometry. At higher pressures, the dependence of the scale of frequency on pressure can be fitted well by a power law. Elements with a given crystalline geometry have values of the scaling exponent very close to each other (0.32 for fcc and 0.27 for hcp - with a scatter below five percent of the average).

  8. Origin of coherent phonons in Bi2Te3 excited by ultrafast laser pulses

    NASA Astrophysics Data System (ADS)

    Wang, Yaguo; Guo, Liang; Xu, Xianfan; Pierce, Jonathan; Venkatasubramanian, Rama

    2013-08-01

    Femtosecond laser pulses are used to excite coherent optical phonons in single crystal Bi2Te3 thin films. Oscillations from low- and high-frequency A1g phonon modes are observed. A perturbation model based on molecular dynamics reveals various possibilities of phonon generation due to complex interactions among different phonon modes. In order to elucidate the process of phonon generation, measurements on thin films with thicknesses below the optical absorption depth are carried out, showing that a gradient force is necessary to excite the observed A1g phonon modes, which provides a refined picture of displacive excitation of coherent phonon.

  9. High Frequency EPR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Gatteschi, D.

    EPR has traditionally been used in order to obtain structural information on transition metal compounds, with exciting frequencies in the range 9-35 GHz.The recent availability of high magnetic field has prompted the use of higher frequencies. In this contribution the advantages of using High-Field-High-Frequency EPR (HF EPR) experiments are reviewed. After a brief introduction aiming to recall the fundamentals of EPR spectroscopy, a short description of the experimental apparatus needed to perform HF EPR measurements is provided. The remaining sections report selected examples showing how much information can be obtained by HF EPR spectra. They range from individual ions with integer spin to molecular clusters. Particular attention is devoted to the so called Single Molecule Magnets, SMM, i.e. to molecular clusters which show slow relaxation of the magnetization at low temperature. This effect is due to Ising type magnetic anisotropy which has been efficiently monitored through HF EPR s pectroscopy.

  10. ALMA High Frequency Techniques

    NASA Astrophysics Data System (ADS)

    Meyer, J. D.; Mason, B.; Impellizzeri, V.; Kameno, S.; Fomalont, E.; Chibueze, J.; Takahashi, S.; Remijan, A.; Wilson, C.; ALMA Science Team

    2015-12-01

    The purpose of the ALMA High Frequency Campaign is to improve the quality and efficiency of science observing in Bands 8, 9, and 10 (385-950 GHz), the highest frequencies available to the ALMA project. To this end, we outline observing modes which we have demonstrated to improve high frequency calibration for the 12m array and the ACA, and we present the calibration of the total power antennas at these frequencies. Band-to-band (B2B) transfer and bandwidth switching (BWSW), techniques which improve the speed and accuracy of calibration at the highest frequencies, are most necessary in Bands 8, 9, and 10 due to the rarity of strong calibrators. These techniques successfully enable increased signal-to-noise on the calibrator sources (and better calibration solutions) by measuring the calibrators at lower frequencies (B2B) or in wider bandwidths (BWSW) compared to the science target. We have also demonstrated the stability of the bandpass shape to better than 2.4% for 1 hour, hidden behind random noise, in Band 9. Finally, total power observing using the dual sideband receivers in Bands 9 and 10 requires the separation of the two sidebands; this procedure has been demonstrated in Band 9 and is undergoing further testing in Band 10.

  11. Remote phonon scattering in field-effect transistors with a high κ insulating layer

    NASA Astrophysics Data System (ADS)

    Laikhtman, B.; Solomon, P. M.

    2008-01-01

    In this paper a remote phonon scattering of channel electrons in a field-effect transistor (FET) with a high dielectric constant (κ) insulator in between the gate and the channel is studied theoretically. The spectrum of phonons confined in the high κ layer and its modification by the gate screening is investigated. Only two phonon modes of five participate in the remote electron-phonon scattering. The gate suppresses one of the modes but increases scattering by the other. Numerical results for the channel mobility limited only by remote phonon scattering were obtained for a Si FET with a HfO2 layer and a SiO2 layer in between the channel and metallic gate. A surprising result is the reduction of the mobility compared to the case when the gate screening is absent. The dependence of the mobility on the widths of HfO2 and interfacial SiO2 layers on channel concentration and temperature was studied. The accuracy of the calculations based on the Boltzmann equation is discussed. Finally, a comparison of our results with available experimental data leads to the conclusion that the remote phonon scattering is not the dominating scattering mechanism.

  12. Spectroscopy of infrared-active phonons in high-temperature superconductors

    NASA Technical Reports Server (NTRS)

    Litvinchuk, A. P.; Thomsen, C.; Cardona, M.; Borjesson, L.

    1995-01-01

    For a large variety of superconducting materials both experimental and theoretical lattice dynamical studies have been performed to date. The assignment of the observed infrared- and Raman-active phonon modes to the particular lattice eigenmodes is generally accepted. We will concentrate here upon the analysis of the changes of the infrared-phonon parameters (frequency and linewidth) upon entering the superconducting state which, as will be shown, may provide information on the magnitude of the superconductivity-related gap and its dependence on the superconducting transition temperature Tc.

  13. Polar interface optical phonon modes and Fröhlich electron phonon interaction Hamiltonians in wurtzite quantum well wires

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Shi, Jun-jie

    2005-06-01

    Within the framework of the dielectric continuum approximation and Loudon's uniaxial crystal model, the interface optical (IO) phonon modes and the corresponding Fröhlich electron phonon interaction Hamiltonian in a wurtzite AlN/GaN/AlN quantum well wire (QWW) are derived and studied. Numerical calculations are mainly focused on the frequency dispersion of the IO phonons and electron phonon interaction coupling function. Results reveal that, in general, there are four branches of IO phonon modes in the systems. The dispersions of the four branches of IO phonon modes are obvious only when the axial direction wave number kz or the azimuthal quantum number m is small. The degenerating behaviour of the IO phonon modes in wurtzite QWW has also been observed for small kz or m. When kz or m are relatively large, with the increasing of them, the frequencies of these IO phonon modes converge to the two definite limiting frequencies in wurtzite single planar heterostructure, and this feature has been explained reasonably from the mathematical and physical viewpoints. The calculations of the electron phonon coupling function show that, though some branches of IO phonon modes exchange their localized positions with each other at a large m, there always exist two branches of IO phonon modes localized on each interface. The high-frequency IO phonon modes compared with the low-frequency ones play a more important role in the electron phonon interaction. Detailed comparison of the dispersion behaviours of the IO phonons and electron IO phonon couplings properties in wurtzite QWWs with those in zinc-blende QWWs has also been made.

  14. Resonance laser-plasma excitation of coherent terahertz phonons in the bulk of fluorine-bearing crystals under high-intensity femtosecond laser irradiation

    SciTech Connect

    Potemkin, F V; Mareev, E I; Khodakovskii, N G; Mikheev, P M

    2013-08-31

    The dynamics of coherent phonons in fluorine-containing crystals was investigated by pump-probe technique in the plasma production regime. Several phonon modes, whose frequencies are overtones of the 0.38-THz fundamental frequency, were simultaneously observed in a lithium fluoride crystal. Phonons with frequencies of 1 and 0.1 THz were discovered in a calcium fluoride crystal and coherent phonons with frequencies of 1 THz and 67 GHz were observed in a barium fluoride crystal. Furthermore, in the latter case the amplitudes of phonon mode oscillations were found to significantly increase 15 ps after laser irradiation. (interaction of laser radiation with matter)

  15. Model for topological phononics and phonon diode

    NASA Astrophysics Data System (ADS)

    Liu, Yizhou; Xu, Yong; Zhang, Shou-Cheng; Duan, Wenhui

    2017-08-01

    The quantum anomalous Hall effect, an exotic topological state first theoretically predicted by Haldane and recently experimentally observed, has attracted enormous interest for low-power-consumption electronics. In this work, we derived a Schrödinger-like equation of phonons, where topology-related quantities, time-reversal symmetry, and its breaking can be naturally introduced similar to the process for electrons. Furthermore, we proposed a phononic analog of the Haldane model, which makes the novel quantum (anomalous) Hall-like phonon states characterized by one-way gapless edge modes immune to scattering. The topologically nontrivial phonon states are useful not only for conducting phonons without dissipation but also for designing highly efficient phononic devices, like an ideal phonon diode, which could find important applications in future phononics.

  16. Optical phonon modes in rhombohedral boron monosulfide under high pressure

    SciTech Connect

    Cherednichenko, Kirill A.; Sokolov, Petr S.; Solozhenko, Vladimir L.; Kalinko, Aleksandr; Le Godec, Yann; Polian, Alain; Itié, Jean-Paul

    2015-05-14

    Raman spectra of rhombohedral boron monosulfide (r-BS) were measured under pressures up to 34 GPa at room temperature. No pressure-induced structural phase transition was observed, while strong pressure shift of Raman bands towards higher wavenumbers has been revealed. IR spectroscopy as a complementary technique has been used in order to completely describe the phonon modes of r-BS. All experimentally observed bands have been compared with theoretically calculated ones and modes assignment has been performed. r-BS enriched by {sup 10}B isotope was synthesized, and the effect of boron isotopic substitution on Raman spectra was observed and analyzed.

  17. Manipulation of Phonons with Phononic Crystals

    SciTech Connect

    Leseman, Zayd Chad

    2015-07-09

    There were three research goals associated with this project. First, was to experimentally demonstrate phonon spectrum control at THz frequencies using Phononic Crystals (PnCs), i.e. demonstrate coherent phonon scattering with PnCs. Second, was to experimentally demonstrate analog PnC circuitry components at GHz frequencies. The final research goal was to gain a fundamental understanding of phonon interaction using computational methods. As a result of this work, 7 journal papers have been published, 1 patent awarded, 14 conference presentations given, 4 conference publications, and 2 poster presentations given.

  18. [High frequency ultrasound].

    PubMed

    Sattler, E

    2015-07-01

    Diagnostic ultrasound has become a standard procedure in clinical dermatology. Devices with intermediate high frequencies of 7.5-15 MHz are used in dermato-oncology for the staging and postoperative care of skin tumor patients and in angiology for improved vessel diagnostics. In contrast, the high frequency ultrasound systems with 20-100 MHz probes offer a much higher resolution, yet with a lower penetration depth of about 1 cm. The main indications are the preoperative measurements of tumor thickness in malignant melanoma and other skin tumors and the assessment of inflammatory and soft tissue diseases, offering information on the course of these dermatoses and allowing therapy monitoring. This article gives an overview on technical principles, devices, mode of examination, influencing factors, interpretation of the images, indications but also limitations of this technique.

  19. High frequency reference electrode

    DOEpatents

    Kronberg, James W.

    1994-01-01

    A high frequency reference electrode for electrochemical experiments comprises a mercury-calomel or silver-silver chloride reference electrode with a layer of platinum around it and a layer of a chemically and electrically resistant material such as TEFLON around the platinum covering all but a small ring or "halo" at the tip of the reference electrode, adjacent to the active portion of the reference electrode. The voltage output of the platinum layer, which serves as a redox electrode, and that of the reference electrode are coupled by a capacitor or a set of capacitors and the coupled output transmitted to a standard laboratory potentiostat. The platinum may be applied by thermal decomposition to the surface of the reference electrode. The electrode provides superior high-frequency response over conventional electrodes.

  20. High frequency reference electrode

    DOEpatents

    Kronberg, J.W.

    1994-05-31

    A high frequency reference electrode for electrochemical experiments comprises a mercury-calomel or silver-silver chloride reference electrode with a layer of platinum around it and a layer of a chemically and electrically resistant material such as TEFLON around the platinum covering all but a small ring or halo' at the tip of the reference electrode, adjacent to the active portion of the reference electrode. The voltage output of the platinum layer, which serves as a redox electrode, and that of the reference electrode are coupled by a capacitor or a set of capacitors and the coupled output transmitted to a standard laboratory potentiostat. The platinum may be applied by thermal decomposition to the surface of the reference electrode. The electrode provides superior high-frequency response over conventional electrodes. 4 figs.

  1. Review of microwave electro-phononics in semiconductor nanostructures

    NASA Astrophysics Data System (ADS)

    Akimov, Andrey V.; Poyser, Caroline L.; Kent, Anthony J.

    2017-05-01

    Electro-phononics aims at developing devices which transform high frequency acoustic waves into electrical or microwave signals and back. This would eliminate the need for expensive and nonportable mode-locked lasers in phononic experiments increasing their ease and portability. The present review describes the main achievements in electro-phononics during the last decade. The first three sections of the review concern well developed ultrasonic and picosecond acoustic methods. While the next three sections give a review of recent experiments with various semiconductor nanodevices which allow the detection and generation of coherent acoustic phonons. Depending on the design of the electro-phononic device, it becomes possible to measure the actual or rectified temporal evolutions of the high-frequency acoustic field. A variation on these techniques is to exploit heterodyne mixing of coherent phonons with microwaves, it is then possible to perform sub-THz phonon spectroscopy experiments by lowering the frequency of the detected signal and using GHz detection electrical techniques. A further interesting approach is the phononic chip where various electro-phononic devices are integrated into a single complex nanostructure. Electro-phononic principles of the generation of THz phonons are developed utilizing the unique properties of doped semiconductor superlattices.

  2. High T{sub c} in cuprates as a universal property of the electron–phonon system

    SciTech Connect

    Mazur, E. A.; Kagan, Yu.

    2015-08-15

    The Eliashberg theory, which is generalized due to peculiar properties of the finite-width electron band for electron–phonon (EP) systems with a variable electron density of states (DOS), as well as with allowance for the electron–hole nonequivalence of the frequency behavior of the chemical potential renormalization depending on the doping level and electron correlations in the vertex function, is used to study T{sub c} in cuprates. The phonon contribution to the nodal anomalous electron Green’s function (GF) is considered. Pairing within the total width of the electron band, and not only in a narrow layer at the Fermi surface, is taken into account. The calculated frequency and temperature dependences, as well as the dependence on the doping level of the complex renormalization ReZ, ImZ of the mass, complex renormalization Reχ(ω), Imχ(ω) of the chemical potential, and DOS N(ε) renormalized due to the EP interaction are used to calculate the electron nodal anomalous GF. It is found that the effect of suppressing the high-frequency contribution to the Eliashberg equations derived anew for the EP system with a finite width of the electron band is a decisive factor for the manifestation of the effect of high-temperature superconductivity (HTSC). It is shown that in the vicinity of the optimal hole-type doping level in cuprates, the high value of T{sub c} is reproduced by the spectral function of the electron–phonon interaction, which is obtained from tunneling experiments. Upon an increase in the doping level, leading to an increase in the degree of electron–hole nonequivalence, the new logarithmic term appearing in the equations for T{sub c} has a tendency to increase T{sub c}, while intensification of damping of charge carriers (especially suppression of the cutoff factor) leads to a decrease in T{sub c}.

  3. Band structure and phonon properties of lithium fluoride at high pressure

    SciTech Connect

    Panchal, J. M.; Joshi, Mitesh; Gajjar, P. N.

    2016-05-23

    High pressure structural and electronic properties of Lithium Fluoride (LiF) have been studied by employing an ab-initio pseudopotential method and a linear response scheme within the density functional theory (DFT) in conjunction with quasi harmonic Debye model. The band structure and electronic density of states conforms that the LiF is stable and is having insulator behavior at ambient as well as at high pressure up to 1 Mbar. Conclusions based on Band structure, phonon dispersion and phonon density of states are outlined.

  4. High-frequency ECG

    NASA Technical Reports Server (NTRS)

    Tragardh, Elin; Schlegel, Todd T.

    2006-01-01

    The standard ECG is by convention limited to 0.05-150 Hz, but higher frequencies are also present in the ECG signal. With high-resolution technology, it is possible to record and analyze these higher frequencies. The highest amplitudes of the high-frequency components are found within the QRS complex. In past years, the term "high frequency", "high fidelity", and "wideband electrocardiography" have been used by several investigators to refer to the process of recording ECGs with an extended bandwidth of up to 1000 Hz. Several investigators have tried to analyze HF-QRS with the hope that additional features seen in the QRS complex would provide information enhancing the diagnostic value of the ECG. The development of computerized ECG-recording devices that made it possible to record ECG signals with high resolution in both time and amplitude, as well as better possibilities to store and process the signals digitally, offered new methods for analysis. Different techniques to extract the HF-QRS have been described. Several bandwidths and filter types have been applied for the extraction as well as different signal-averaging techniques for noise reduction. There is no standard method for acquiring and quantifying HF-QRS. The physiological mechanisms underlying HF-QRS are still not fully understood. One theory is that HF-QRS are related to the conduction velocity and the fragmentation of the depolarization wave in the myocardium. In a three-dimensional model of the ventricles with a fractal conduction system it was shown that high numbers of splitting branches are associated with HF-QRS. In this experiment, it was also shown that the changes seen in HF-QRS in patients with myocardial ischemia might be due to the slowing of the conduction velocity in the region of ischemia. This mechanism has been tested by Watanabe et al by infusing sodium channel blockers into the left anterior descending artery in dogs. In their study, 60 unipolar ECGs were recorded from the entire

  5. Reasons for high-temperature superconductivity in the electron–phonon system of hydrogen sulfide

    SciTech Connect

    Degtyarenko, N. N.; Mazur, E. A.

    2015-08-15

    We have calculated the electron and phonon spectra, as well as the densities of the electron and phonon states, of the stable orthorhombic structure of hydrogen sulfide SH{sub 2} in the pressure interval 100–180 GPa. It is found that at a pressure of 175 GPa, a set of parallel planes of hydrogen atoms is formed due to a structural modification of the unit cell under pressure with complete accumulation of all hydrogen atoms in these planes. As a result, the electronic properties of the system become quasi-two-dimensional. We have also analyzed the collective synphase and antiphase vibrations of hydrogen atoms in these planes, leading to the occurrence of two high-energy peaks in the phonon density of states.

  6. Scattering of phonons by vacancies

    SciTech Connect

    Ratsifaritana, C.A.; Klemens, P.G.

    1987-11-01

    The scattering of phonons by vacancies is estimated by a perturbation technique in terms of the missing mass and the missing linkages. An argument is given why distortion effects can be disregarded. The resonance frequency of the defect is sufficiently high so that resonance effects can be disregarded for phonons in the important frequency range for thermal conduction. The theory is applied to the thermal resistance by vacancies in cases where the vacancy concentration is known: potassium chloride with divalent cations, nonstoichiometric zirconium carbide, and tin telluride.

  7. Suppression of infrared instability in transsonic flows by condensation of zero-frequency short wave length phonons

    NASA Astrophysics Data System (ADS)

    Busch, Xavier; Michel, Florent; Parentani, Renaud

    2014-11-01

    We analyze the peculiar infrared instability that characterizes stationary inhomogeneous flows when their velocity crosses the sound speed by decreasing values. For definiteness, we work in the context of one-dimensional atomic Bose condensates. These flows are unstable under ultra-low real frequency perturbations because of the unbounded mode amplification near the sonic horizon. This results in a condensation of low-frequency phonons which produces a spatially structured flow in the supersonic domain. Numerical simulations reveal that this zero-frequency undulation suppresses the instability when its spatial extension is infinite, and when its phase is near that of a "shadow soliton" solution attached to the sonic horizon. These phenomena are akin to the condensation of rotons in flowing superfluid He 4 when exceeding the Landau velocity. They also pertain to shallow water waves propagating on transcritical flows.

  8. Power dependent phonon frequency within CdSe and CdMnSe nanosheets

    NASA Astrophysics Data System (ADS)

    Halder, Oindrila; Rath, S.

    2017-05-01

    The trend of tuning transitional materials in semiconductors is advancing everyday research. The composite behavior exhibited by doped nanoparticles is governed by many factors. These can either improve or adversely affect the desired electronic properties. In this work we have compared the Raman Scattering study of different power dependent excitations on CdSe nanosheets and manganese doped CdSe nanosheets and delved into the possibilities of their different electronic structures due to the phonon contribution.

  9. Ab initio theory of many-body interaction and phonon frequencies of rare-gas crystals under pressure in the model of deformable atoms

    NASA Astrophysics Data System (ADS)

    Troitskaya, E. P.; Chabanenko, V. V.; Gorbenko, Ie. Ie.; Pilipenko, E. A.

    2015-01-01

    Ab initio calculations of phonon frequencies of compressed rare-gas crystals have been performed taking into account the many-body interaction in the model of deformable atoms. In the short-range repulsive potential, along with the previously considered three-body interaction associated with the overlap of the electron shells of atoms, the three-body forces generated by the mutual deformation of the electron shells of the nearest-neighbor atoms have been investigated in the dipole approximation. The relevant forces make no contribution to the elastic moduli but affect the equation for lattice vibrations. At high compressions, the softening of the longitudinal mode at the points L and X is observed for all the rare-gas crystals, whereas the transverse mode T 1 is softened in the direction Σ and at the point L for solid xenon. This effect is enhanced by the three-body forces. There is a good agreement between the theoretical phonon frequencies and the experimental values at zero pressure.

  10. Low-frequency and tuning characteristic of band gap in a symmetrical double-sided locally resonant phononic crystal plate with slit structure

    NASA Astrophysics Data System (ADS)

    Wang, X. P.; Jiang, P.; Song, A. L.

    2016-09-01

    In this paper, the low-frequency and tuning characteristic of band gap in a two-dimensional phononic crystal structure, consisting of a square array of aluminum cylindrical stubs deposited on both sides of a thin rubber plate with slit structure, are investigated. Using the finite element method, the dispersion relationships and power transmission spectra of this structure are calculated. In contrast to a typical phononic crystal without slit structure, the proposed slit structure shows band gaps at lower frequencies. The vibration modes of the band gap edges are analyzed to clarify the mechanism of the lowest band gaps. Additionally, the influence of the slit parameters and stub parameters on the band gaps in slit structure are investigated. The geometrical parameters of the slits and stubs were found to influence the band gaps; this is critical to understand for practical applications. These results will help in fabricating phononic crystal structures whose band frequency can be modulated at lower frequencies.

  11. Noise temperature in graphene at high frequencies

    NASA Astrophysics Data System (ADS)

    Rengel, Raúl; Iglesias, José M.; Pascual, Elena; Martín, María J.

    2016-07-01

    A numerical method for obtaining the frequency-dependent noise temperature in monolayer graphene is presented. From the mobility and diffusion coefficient values provided by Monte Carlo simulation, the noise temperature in graphene is studied up to the THz range, considering also the influence of different substrate types. The influence of the applied electric field is investigated: the noise temperature is found to increase with the applied field, dropping down at high frequencies (in the sub-THz range). The results show that the low-frequency value of the noise temperature in graphene on a substrate tends to be reduced as compared to the case of suspended graphene due to the important effect of remote polar phonon interactions, thus indicating a reduced emitted noise power; however, at very high frequencies the influence of the substrate tends to be significantly reduced, and the differences between the suspended and on-substrate cases tend to be minimized. The values obtained are comparable to those observed in GaAs and semiconductor nitrides.

  12. Temperature dependent magnon-phonon coupling in bcc Fe from theory and experiment.

    PubMed

    Körmann, F; Grabowski, B; Dutta, B; Hickel, T; Mauger, L; Fultz, B; Neugebauer, J

    2014-10-17

    An ab initio based framework for quantitatively assessing the phonon contribution due to magnon-phonon interactions and lattice expansion is developed. The theoretical results for bcc Fe are in very good agreement with high-quality phonon frequency measurements. For some phonon branches, the magnon-phonon interaction is an order of magnitude larger than the phonon shift due to lattice expansion, demonstrating the strong impact of magnetic short-range order even significantly above the Curie temperature. The framework closes the previous simulation gap between the ferro- and paramagnetic limits.

  13. Dynamical stabilization of the body centered cubic phase in lanthanum and thorium by phonon-phonon interaction.

    PubMed

    Souvatzis, P; Björkman, T; Eriksson, O; Andersson, P; Katsnelson, M I; Rudin, S P

    2009-04-29

    A recently developed self-consistent ab initio lattice dynamical method has been applied to the high temperature body centered cubic (bcc) phase of La and Th, which are dynamically unstable at low temperatures. The bcc phase of these metals is found to be stabilized by phonon-phonon interactions. The calculated high temperature phonon frequencies for La are found to be in good agreement with the corresponding experimental data.

  14. Phonon lifetimes and phonon decay in InN

    NASA Astrophysics Data System (ADS)

    Pomeroy, J. W.; Kuball, M.; Lu, H.; Schaff, W. J.; Wang, X.; Yoshikawa, A.

    2005-05-01

    We report on the Raman analysis of A1(LO) (longitudinal optical) and E2 phonon lifetimes in InN and their temperature dependence from 80 to 700 K. Our experimental results show that among the various possible decay channels, the A1(LO) phonon decays asymmetrically into a high energy and a low energy phonon, whereas the E2 phonon predominantly decays into three phonons. Possible decay channels of the A1(LO) phonon may involve combinations of transverse optical and acoustic phonons. Phonon lifetimes of 1.3 and 4 ps were measured at 80 K for the A1(LO) and the E2 phonons, respectively. This rather long A1(LO) phonon lifetime suggests that hot phonon effects will play a role in InN for carrier relaxation.

  15. Phonon populations and electrical power dissipation in carbon nanotube transistors.

    PubMed

    Steiner, Mathias; Freitag, Marcus; Perebeinos, Vasili; Tsang, James C; Small, Joshua P; Kinoshita, Megumi; Yuan, Dongning; Liu, Jie; Avouris, Phaedon

    2009-05-01

    Carbon nanotubes and graphene are candidate materials for nanoscale electronic devices. Both materials show weak acoustic phonon scattering and long mean free paths for low-energy charge carriers. However, high-energy carriers couple strongly to optical phonons, which leads to current saturation and the generation of hot phonons. A non-equilibrium phonon distribution has been invoked to explain the negative differential conductance observed in suspended metallic nanotubes, while Raman studies have shown the electrical generation of hot G-phonons in metallic nanotubes. Here, we present a complete picture of the phonon distribution in a functioning nanotube transistor including the G and the radial breathing modes, the Raman-inactive zone boundary K mode and the intermediate-frequency mode populated by anharmonic decay. The effective temperatures of the high- and intermediate-frequency phonons are considerably higher than those of acoustic phonons, indicating a phonon-decay bottleneck. Most importantly, inclusion of scattering by substrate polar phonons is needed to fully account for the observed electronic transport behaviour.

  16. Interplay of out-of-equilibrium phonons and self-heating under high field transport conditions in graphene

    NASA Astrophysics Data System (ADS)

    Iglesias, José M.; Rengel, Raúl; Mokhtar Hamham, El; Pascual, Elena; Martín, María J.

    2017-08-01

    The interaction between out-of-equilibrium phonons and Joule heating in the static electron transport properties of monolayer graphene supported on \\text{Si}{{\\text{O}}2} is investigated. An ensemble Monte Carlo electronic transport engine with a self-consistent out-of-equilibrium phonon population is coupled to a thermal resistive model describing the heat dissipation, so experimental velocity-field curves are successfully reproduced for samples 7 μm wide and 4 μm long. The separate effect of self-heating and hot phonons is analyzed in depth, showing that neglecting the hot phonon effect yields to an overestimation of the lattice temperature and drift velocity. In particular, the lowest energy surface polar phonon mode is found to present a strong coupling between both effects, which need to be considered together in a consistent manner to correctly describe the heating of graphene samples at high fields.

  17. All-angle negative refraction of highly squeezed plasmon and phonon polaritons in graphene-boron nitride heterostructures.

    PubMed

    Lin, Xiao; Yang, Yi; Rivera, Nicholas; López, Josué J; Shen, Yichen; Kaminer, Ido; Chen, Hongsheng; Zhang, Baile; Joannopoulos, John D; Soljačić, Marin

    2017-06-27

    A fundamental building block for nanophotonics is the ability to achieve negative refraction of polaritons, because this could enable the demonstration of many unique nanoscale applications such as deep-subwavelength imaging, superlens, and novel guiding. However, to achieve negative refraction of highly squeezed polaritons, such as plasmon polaritons in graphene and phonon polaritons in boron nitride (BN) with their wavelengths squeezed by a factor over 100, requires the ability to flip the sign of their group velocity at will, which is challenging. Here we reveal that the strong coupling between plasmon and phonon polaritons in graphene-BN heterostructures can be used to flip the sign of the group velocity of the resulting hybrid (plasmon-phonon-polariton) modes. We predict all-angle negative refraction between plasmon and phonon polaritons and, even more surprisingly, between hybrid graphene plasmons and between hybrid phonon polaritons. Graphene-BN heterostructures thus provide a versatile platform for the design of nanometasurfaces and nanoimaging elements.

  18. High Resolution Frequency Swept Imaging.

    DTIC Science & Technology

    1980-02-14

    image resolution comparable to an ordinary photographic camera. In addition to inconvenient size, the cost of filling such a large aperture with... cost of implementing a LFTDR. Because of the large difference between the high frequency imaging frequencies and the low frequency reference frequency... cost . In addition since the measured reference phase must be multiplied by a factor a equal to the ratio of the imaging to the reference frequency

  19. High-frequency broadband transformers

    NASA Astrophysics Data System (ADS)

    London, S. E.; Tomashevich, S. V.

    1981-05-01

    A systematic review of the theory and design principles of high-frequency broadband transformers is presented. It is shown that the transformers of highest performance are those whose coils consist of strips of double-wire and multiwire transmission lines. Such devices are characterized by a wide operating frequency range, and make possible operation at microwave frequencies at high levels of transmitted power.

  20. Low-frequency bandgaps of two-dimensional phononic crystal plate composed of asymmetric double-sided cylinder stubs

    NASA Astrophysics Data System (ADS)

    Song, Ailing; Wang, Xiaopeng; Chen, Tianning; Jiang, Ping; Bao, Kai

    2016-03-01

    In this paper, we theoretically investigate the propagation characteristics of Lamb wave in a two-dimensional (2D) asymmetric phononic crystal (PC) plate composed of cylinder stubs of different radius deposited on both sides of a thin homogeneous plate. The dispersion relations, transmission spectra and displacement fields of the eigenmodes are calculated by using the finite element method (FEM). Two complete bandgaps (BGs) can be found in low-frequency range and the transmission spectra coincide with the band structures. We investigate the evolution of dispersion relations with the decrease of the upper stub radius. The physical mechanism of the upper stub radius effect is also studied with the displacement fields of the unit cell. Numerical results show that the symmetry of the stub radius can remarkably influence the band structures and the asymmetric double-sided plate exhibits a new bandgap (BG) in lower frequency range due to the coupling between the lower stub’s resonant mode and the plate’s Lamb mode becomes weak and the adjacent bands separate. Moreover, we further investigate the effect of the stub height on the dispersion relations and find that the BGs shift to lower frequency regions with the increase of the stub height. In addition, the BGs’ sensitivity to the upper stub radius and the stub height is discussed. The low-frequency BGs in the proposed PC plate can potentially be used to control and insulate vibration in low frequency range.

  1. Complete low-frequency bandgap in a two-dimensional phononic crystal with spindle-shaped inclusions

    NASA Astrophysics Data System (ADS)

    Ting, Wang; Hui, Wang; Mei-Ping, Sheng; Qing-Hua, Qin

    2016-04-01

    A two-dimensional phononic crystal (PC) structure possessing a relatively low frequency range of complete bandgap is presented. The structure is composed of periodic spindle-shaped plumbum inclusions in a rubber matrix which forms a square lattice. The dispersion relation, transmission spectrum and displacement field are studied using the finite element method in conjunction with the Bloch theorem. Numerical results show that the present PC structure can achieve a large complete bandgap in a relatively low frequency range compared with two inclusions of different materials, which is useful in low-frequency noise and vibration control and can be designed as a low frequency acoustic filter and waveguides. Moreover, the transmission spectrum and effective mass are evaluated to validate the obtained band structure. It is interesting to see that within the band gap the effective mass becomes negative, resulting in an imaginary wave speed and wave exponential attenuation. Finally, sensitivity analysis of the effect of geometrical parameters of the presented PC structure on the lowest bandgap is performed to investigate the variations of the bandgap width and frequency. Project supported by the China Scholarship Council.

  2. Hreels Studies of Surface Phonons in ALUMINUM/SILICON(111) and in High-Temperature Superconductors

    NASA Astrophysics Data System (ADS)

    Akavoor, Prasad Raman

    High Resolution Electron Energy Loss Spectroscopy (HREELS) studies have been performed on different ordered structures formed when Al is deposited on Si(111)-7 times 7 and annealed. These structures are (sqrt{3}timessqrt{3 })R30^circ, (sqrt {7}timessqrt{7})R19.1^ circ and 7 times 7-Al. Several phonons have been measured for the first time. For the sqrt{3} times sqrt{3} structure, loss peaks at 16 +/- 2, 32.3, 42.2 and 69.2 meV are found in the specular spectra (q = 0). Of these, the 32.3 and 69.2 meV phonons had been predicted by theory based on force-constant matrix calculations. Off -specular measurements have also been made in the overline {Gamma K} direction of the surface Brillouin zone (SBZ). Two simple lattice dynamical models are presented which explain most of the data. The models use force constants taken from an ab initio electronic structure calculation of Northrup. For other structures, phonon losses have been found and tentatively identified. In the last part of this thesis, we report measurements of surface optical phonons on high Tc superconductors. For Bi_2Sr_2CaCu _2O_{8+delta } (Bi2212), in addition to peaks near 50 and 80 meV (400 and 645 cm^{-1}) which have been previously observed, our loss spectra exhibit a new peak at 26 meV (210 cm^{-1} ). The temperature dependence of these peaks in the range between 45 K and 146 K is found to be rather weak. The 50 and 80 meV peaks shift to lower energy by approximately 1.5 meV over this range. Two interpretations of the data, one based on the work of Persson and Demuth and the other based on comparison to optical data are presented. Phonons have also been measured on Bi _2Sr_2CuO _{6+delta} (Bi2201). Bi2201 samples exhibit similar phonon structure as Bi2212. This is consistent with optical measurements. Search for the superconducting gap was done but no evidence of the gap was found in our spectra in contrast to some earlier EELS work.

  3. High frequency pulsed electromigration

    NASA Astrophysics Data System (ADS)

    Malone, David Wayne

    Electromigration life tests were performed on copper-alloyed aluminum test structures that were representative of modern CMOS metallization schemes, complete with Ti/TiN cladding layers and a tungsten-plug contact at the cathode. A total of 18 electrical stress treatments were applied. One was a DC current of 15 mA. The other 17 were pulsed currents, varied according to duty cycle and frequency. The pulse amplitude was 15 mA (˜2.7 × 10sp6 A/cmsp2) for all treatments. Duty cycles ranged from 33.3% to 80%, and frequencies fell into three rough ranges-100 KHz, 1 MHz, and 100 MHz. The ambient test temperature was 200sp°C in all experiments. Six to 9 samples were subjected to each treatment. Experimental data were gathered in the form of test stripe resistance versus time, R(t). For purposes of lifetime analysis, "failure" was defined by the criterion R(t)/R(0) = 1.10, and the median time to failure, tsb{50}, was used as the primary basis of comparison between test groups. It was found that the dependence of tsb{50} on pulse duty cycle conformed rather well to the so-called "average current density model" for duty cycles of 50% and higher. Lifetimes were less enhanced for a duty cycle of 33.3%, but they were still considerably longer than an "on-time" model would predict. No specific dependence of tsb{50} on pulse frequency was revealed by the data, that is, reasonably good predictions of tsb{50} could be made by recognizing the dominant influence of duty cycle. These findings confirm that IC miniaturization can be more aggressively pursued than an on-time prediction would allow. It is significant that this was found to be true for frequencies on the order of 100 MHz, where many present day digital applications operate. Post-test optical micrographs were obtained for each test subject in order to determine the location of electromigration damage. The pulse duty cycle was found to influence the location. Most damage occurred at the cathode contact, regardless of

  4. Acoustic phonons in chrysotile asbestos probed by high-resolution inelastic x-ray scattering

    SciTech Connect

    Mamontov, Eugene; Vakhrushev, S. B.; Kumzerov, Yu. A,; Alatas, A.

    2009-01-01

    Acoustic phonons in an individual, oriented fiber of chrysotile asbestos (chemical formula Mg{sub 3}Si{sub 2}O{sub 5}(OH){sub 4}) were observed at room temperature in the inelastic x-ray measurement with a very high (meV) resolution. The x-ray scattering vector was aligned along [1 0 0] direction of the reciprocal lattice, nearly parallel to the long axis of the fiber. The latter coincides with [1 0 0] direction of the direct lattice and the axes of the nano-channels. The data were analyzed using a damped harmonic oscillator model. Analysis of the phonon dispersion in the first Brillouin zone yielded the longitudinal sound velocity of (9200 {+-} 600) m/s.

  5. Engineering interactions between superconducting qubits and phononic nanostructures

    NASA Astrophysics Data System (ADS)

    Arrangoiz-Arriola, Patricio; Safavi-Naeini, Amir H.

    2016-12-01

    Nanomechanical systems can support highly coherent microwave-frequency excitations at cryogenic temperatures. However, generating sufficient coupling between these devices and superconducting quantum circuits is challenging due to the vastly different length scales of acoustic and electromagnetic excitations. Here we demonstrate a general method for calculating piezoelectric interactions between quantum circuits and arbitrary phononic nanostructures. We illustrate our technique by studying the coupling between a transmon qubit and bulk acoustic-wave, Lamb-wave, and phononic crystal resonators, and show that very large coupling rates are possible in all three cases. Our results suggest a route to phononic circuits and systems that are nonlinear at the single-phonon level.

  6. High frequency nanotube oscillator

    DOEpatents

    Peng, Haibing [Houston, TX; Zettl, Alexander K [Kensington, TX

    2012-02-21

    A tunable nanostructure such as a nanotube is used to make an electromechanical oscillator. The mechanically oscillating nanotube can be provided with inertial clamps in the form of metal beads. The metal beads serve to clamp the nanotube so that the fundamental resonance frequency is in the microwave range, i.e., greater than at least 1 GHz, and up to 4 GHz and beyond. An electric current can be run through the nanotube to cause the metal beads to move along the nanotube and changing the length of the intervening nanotube segments. The oscillator can operate at ambient temperature and in air without significant loss of resonance quality. The nanotube is can be fabricated in a semiconductor style process and the device can be provided with source, drain, and gate electrodes, which may be connected to appropriate circuitry for driving and measuring the oscillation. Novel driving and measuring circuits are also disclosed.

  7. Low-frequency phonons of few-layer graphene within a tight-binding model

    NASA Astrophysics Data System (ADS)

    Popov, Valentin N.; Van Alsenoy, Christian

    2014-12-01

    Few-layer graphene is a layered carbon material with covalent bonding in the layers and weak van der Waals interactions between the layers. The interlayer energy is more than two orders of magnitude smaller than the intralayer one, which hinders the description of the static and dynamic properties within electron band structure models. We overcome this difficulty by introducing two sets of matrix elements—one set for the covalent bonds in the graphene layers and another one for the van der Waals interactions between adjacent graphene layers in a tight-binding model of the band structure. Both sets of matrix elements are derived from an ab initio study on carbon dimers. The matrix elements are applied in the calculation of the phonon dispersion of graphite and few-layer graphene with AB and ABC layer stacking. The results for few-layer graphene with AB stacking agree well with the available experimental data, which justifies the application of the matrix elements to other layered carbon structures with van der Waals interactions such as few-layer graphene nanoribbons, multiwall carbon nanotubes, and carbon onions.

  8. Phonons and hybrid modes in the high and low temperature far infrared dynamics of hexagonal TmMnO3.

    PubMed

    Massa, Néstor E; del Campo, Leire; De Sousa Meneses, Domingos; Echegut, Patrick; Martínez-Lope, María Jesús; Alonso, José Antonio

    2014-07-09

    We report on temperature dependent TmMnO3 far infrared emissivity and reflectivity spectra from 1910 K to 4 K. At the highest temperature the number of infrared bands is lower than that predicted for centrosymmetric P63/mmc (D(4)(6h)) (Z = 2) space group due to high temperature anharmonicity and possible defect induced bitetrahedra misalignments. On cooling, at ~1600 ± 40 K, TmMnO3 goes from non-polar to an antiferroelectric-ferroelectric polar phase reaching the ferroelectric onset at ~700 K. Room temperature reflectivity is fitted using 19 oscillators and this number of phonons is maintained down to 4 K. A weak phonon anomaly in the band profile at 217 cm(-1) (4 K) suggests subtle Rare Earth magneto-electric couplings at ~TN and below. A low energy collective excitation is identified as a THz instability associated with room temperature eg electrons in a d-orbital fluctuating environment. It condenses into two modes that emerge pinned to the E-type antiferromagnetic order hardening simultaneously down to 4 K. They obey power laws with TN as the critical temperature and match known zone center magnons. The one peaking at 26 cm(-1), with critical exponent β=0.42 as for antiferromagnetic order in a hexagonal lattice, is dependent on the Rare Earth ion. The higher frequency companion at ~50 cm(-1), with β=0.25, splits at ~TN into two peaks. The weaker band of the two is assimilated to the upper branch of the gap opening in the transverse acoustical (TA) phonon branch crossing the magnetic dispersion found in YMnO3. (Petit et al 2007 Phys. Rev. Lett. 99 266604). The stronger second band at ~36 cm(-1) corresponds to the lower branch of the TA gap. We assign both excitations as zone center magneto-electric hybrid quasiparticles, concluding that in NdMnO3 perovskite the equivalent picture corresponds to an instability which may be driven by an external field to transform NdMnO3 into a multiferroic compound by perturbation enhancing the TA

  9. Temperature dependence of phonon-defect interactions: phonon scattering vs. phonon trapping

    PubMed Central

    Bebek, M. B.; Stanley, C. M.; Gibbons, T. M.; Estreicher, S. K.

    2016-01-01

    The interactions between thermal phonons and defects are conventionally described as scattering processes, an idea proposed almost a century ago. In this contribution, ab-initio molecular-dynamics simulations provide atomic-level insight into the nature of these interactions. The defect is the Si|X interface in a nanowire containing a δ-layer (X is C or Ge). The phonon-defect interactions are temperature dependent and involve the trapping of phonons for meaningful lengths of time in defect-related, localized, vibrational modes. No phonon scattering occurs and the momentum of the phonons released by the defect is unrelated to the momentum of the phonons that generated the excitation. The results are extended to the interactions involving only bulk phonons and to phonon-defect interactions at high temperatures. These do resemble scattering since phonon trapping occurs for a length of time short enough for the momentum of the incoming phonon to be conserved. PMID:27535463

  10. High-resolution spectroscopy of the zero-phonon line of the deep donor EL2 in GaAs

    SciTech Connect

    Hecht, C.; Kummer, R.; Thoms, M.; Winnacker, A.

    1997-05-01

    We investigated the zero-phonon line (ZPL) of the deep donor EL2 in GaAs by means of high-resolution absorption spectroscopy with a narrow-band laser. Frequency-selective bleaching ({open_quotes}spectral-hole burning{close_quotes}) experiments and the measurement of the temperature broadening of the ZPL prove an essentially homogeneous broadening of the transition. The observed asymmetry of the line shape is interpreted to be caused by a Fano resonance of the {sup 1}T{sub 2} excited state with the conduction band. A splitting of the {sup 1}T{sub 2} state as the reason for the asymmetry seems unrealistic. The homogeneous broadening of the ZPL prevents the use of spectral-hole burning spectroscopy to study the effect of external perturbations on the ZPL of the EL2. {copyright} {ital 1997} {ital The American Physical Society}

  11. Binaural beats at high frequencies.

    PubMed

    McFadden, D; Pasanen, E G

    1975-10-24

    Binaural beats have long been believed to be audible only at low frequencies, but an interaction reminiscent of a binaural beat can sometimes be heard when different two-tone complexes of high frequency are presented to the two ears. The primary requirement is that the frequency separation in the complex at one ear be slightly different from that in the other--that is, that there be a small interaural difference in the envelope periodicities. This finding is in accord with other recent demonstrations that the auditory system is not deaf to interaural time differences at high frequencies.

  12. Anharmonic effects in light scattering due to optical phonons in silicon

    NASA Astrophysics Data System (ADS)

    Balkanski, M.; Wallis, R. F.; Haro, E.

    1983-08-01

    Systematic measurements by light scattering of the linewidth and frequency shift of the q-->=0 optical phonon in silicon over the temperature range of 5-1400 K are presented. Both the linewidth and frequency shift exhibit a quadratic dependence on temperature at high temperatures. This indicates the necessity of including terms in the phonon proper self-energy corresponding to four-phonon anharmonic processes.

  13. Phonons in Ge nanowires

    NASA Astrophysics Data System (ADS)

    Peelaers, H.; Partoens, B.; Peeters, F. M.

    2009-09-01

    The phonon spectra of thin freestanding, hydrogen passivated, Ge nanowires are calculated by ab initio techniques. The effect of confinement on the phonon modes as caused by the small diameters of the wires is investigated. Confinement causes a hardening of the optical modes and a softening of the longitudinal acoustic modes. The stability of the nanowires, undoped or doped with B or P atoms, is investigated using the obtained phonon spectra. All considered wires were stable, except for highly doped, very thin nanowires.

  14. Sound and noisy light: Optical control of phonons in photoswitchable structures

    NASA Astrophysics Data System (ADS)

    Sklan, Sophia R.; Grossman, Jeffrey C.

    2015-10-01

    We present a means of controlling phonons via optical tuning. Taking as a model an array of photoresponsive materials (photoswitches) embedded in a matrix, we numerically analyze the vibrational response of an array of bistable harmonic oscillators with stochastic spring constants. Changing the intensity of light incident on the lattice directly controls the composition of the lattice and therefore the speed of sound. Furthermore, modulation of the phonon band structure at high frequencies results in a strong confinement of phonons. The applications of this regime for phonon waveguides, vibrational energy storage, and phononic transistors is examined.

  15. Sound and Noisy Light: Optical Control of Phonons in Photo-switchable Structures

    NASA Astrophysics Data System (ADS)

    Sklan, Sophia; Grossman, Jeffrey

    2015-03-01

    We present a novel means of controlling phonons via optical tuning. Taking as a model an array of photoresponsive materials (photoswitches) embedded in a matrix, we numerically analyze the vibrational response of an array of bistable harmonic oscillators with stochastic spring constants. Changing the intensity of light incident on the lattice directly controls the composition of the lattice and therefore the speed of sound. Furthermore, modulation of the phonon bandstructure at high frequencies results in a strong confinement of phonons. The applications of this regime for phonon wave-guides, vibrational energy storage, and phononic transistors is examined. Support provided by NSF GRF Grant No. 1122374.

  16. High power, high frequency component test facility

    NASA Technical Reports Server (NTRS)

    Roth, Mary Ellen; Krawczonek, Walter

    1990-01-01

    The NASA Lewis Research Center has available a high frequency, high power laboratory facility for testing various components of aerospace and/or terrestrial power systems. This facility is described here. All of its capabilities and potential applications are detailed.

  17. Geometrical tuning of thermal phonon spectrum in nanoribbons

    NASA Astrophysics Data System (ADS)

    Ramiere, Aymeric; Volz, Sebastian; Amrit, Jay

    2016-03-01

    Phonon spectral energy transmission in silicon nanoribbons is investigated using Monte-Carlo simulations in the boundary scattering regime by changing the length and width geometrical parameters. We show that the transition frequency from specular scattering to diffuse scattering is inversely proportional to the edge roughness σ with a geometry independent factor of proportionality. The increase of the length over width ratio \\zeta leads to a decrease of the energy transmission in the diffuse scattering regime which evolves as {{≤ft(1+{{\\zeta}0.59}\\right)}-1} . This trend is explained by developing a model of phonon energy transmission in the fully diffuse scattering regime which takes into account the probability for a diffusively scattered phonon to be directly transmitted from any position on the edge of the nanoribbon. This model establishes the importance of the solid angles in the energy transmission evolution with \\zeta . The transition from unity energy transmission in the specular scattering regime to reduced transmission in the diffuse scattering regime constitutes a low-pass frequency filter for phonons. Our simulations show an energy rejection rate better than 90% for high \\zeta , which paves the way for potential high performance filters. Filtering out high frequency phonons is of significant interest for phononic crystal applications, which use band engineering of phonons in the wave regime with low frequencies.

  18. Dynamical thermoelectric coefficients of bulk semiconductor crystals: Towards high thermoelectric efficiency at high frequencies

    SciTech Connect

    Ezzahri, Younès Joulain, Karl

    2014-06-14

    We investigate in this work the fundamental behavior of the dynamical thermoelectric coefficients of a bulk cubic semiconductor (SC) crystal. The treatment is based on solving Boltzmann electron transport equation in the frequency domain after simultaneous excitations by dynamical temperature and electric potential gradients, within the framework of the single relaxation time approximation. The SC crystal is assumed to be a linear, elastic homogenous, and isotropic medium having a parabolic energy band structure. We further assume to deal with one type of carriers (electrons or holes) that reside in a single energy band, and we neglect any phonon drag effect. Our approach allows us to obtain very compact expressions for the different dynamical thermoelectric coefficients that nicely capture the essential features of the dynamics of electron transport. We emphasize our study about the dynamical behavior of the thermoelectric figure of merit ZT(Ω) of the SC crystal by considering the coupled electron-phonon transport. Our study revealed a very interesting and compelling result in which ZT increases in the high frequency regime with respect to its steady-state value. The fundamental reason of this enhancement is due to the intrinsic uncoupling in the dynamics of electrons and phonons in the high frequency regime.

  19. Electron-phonon interaction model and prediction of thermal energy transport in SOI transistor.

    PubMed

    Jin, Jae Sik; Lee, Joon Sik

    2007-11-01

    An electron-phonon interaction model is proposed and applied to thermal transport in semiconductors at micro/nanoscales. The high electron energy induced by the electric field in a transistor is transferred to the phonon system through electron-phonon interaction in the high field region of the transistor. Due to this fact, a hot spot occurs, which is much smaller than the phonon mean free path in the Si-layer. The full phonon dispersion model based on the Boltzmann transport equation (BTE) with the relaxation time approximation is applied for the interactions among different phonon branches and different phonon frequencies. The Joule heating by the electron-phonon scattering is modeled through the intervalley and intravalley processes for silicon by introducing average electron energy. The simulation results are compared with those obtained by the full phonon dispersion model which treats the electron-phonon scattering as a volumetric heat source. The comparison shows that the peak temperature in the hot spot region is considerably higher and more localized than the previous results. The thermal characteristics of each phonon mode are useful to explain the above phenomena. The optical mode phonons of negligible group velocity obtain the highest energy density from electrons, and resides in the hot spot region without any contribution to heat transport, which results in a higher temperature in that region. Since the acoustic phonons with low group velocity show the higher energy density after electron-phonon scattering, they induce more localized heating near the hot spot region. The ballistic features are strongly observed when phonon-phonon scattering rates are lower than 4 x 10(10) S(-1).

  20. Theory of coherent phonon spectroscopy in carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Sanders, G. D.; Stanton, C. J.; Lim, Y. S.; Yee, K. J.; Kim, J. H.; Haroz, E. H.; Booshehri, L. G.; Kono, J.

    2008-03-01

    We develop a theory for the generation and detection of coherent phonons in single wall carbon nanotubes. Coherent phonons are generated in the nanotube by ultrafast laser pulses via the deformation potential electron-phonon interaction with the photogenerated carriers. The electronic states are treated in a tight binding formalism which gives a description of the states over the nanotube Brillouin zone while the nanotube phonon modes are treated in a valence force field model that includes bond-stretching, in-plane and out-of-plane bond-bending, and bond-twisting interactions. Equations of motion for the coherent phonon amplitudes are obtained in a density matrix formalism and we find that the coherent phonon amplitudes satisfy driven oscillator equations. In coherent phonon spectroscopy the coherent phonons are detected by ultrafast pump probe differential transmission measurements. We find that for uniform illumination with a 5 fs pump pulse only the q = 0 radial breathing mode and a high frequency G mode are strongly excited. We will discuss excitation strengths for different coherent phonon modes and compare to recent experiments.

  1. Stimulated emission of phonons in an acoustic cavity

    NASA Astrophysics Data System (ADS)

    Tilstra, Lieuwe Gijsbert

    2001-10-01

    This thesis will present experiments on stimulated emission of phonons in dilute ruby following complete population inversion of the Zeeman-split E(2E) Kramers doublet by selective pulsed optical pumping into its upper component. The resulting phonon avalanches are detected by use of the R1 luminescence emanating from the inverted zone, located near the end face where the laser beam enters the crystal. The phonons appear to team up into a highly directional phonon beam. The phonon frequency is tunable from, say, 10-100 GHz via the magnetic field splitting of the doublet. Remarkably, the population of the lower doublet component, which is a measure of the number of phonons generated, evolves with a sequence of distinct steps. The time interval in between these steps equals 2L/v, corresponding to the time the phonons need to return to the inverted zone by reflection at the opposite end face at a distance L. The end faces of the ruby crystal thus form an acoustic cavity. The phonon beam passes the inverted zone repeatedly to be amplified further, in a manner similar to light in an optical laser. In other words, the basic ingredients for a phonon laser have been established.

  2. [Principals of high frequency surgery].

    PubMed

    Bergler, W F; Hörmann, K; Hammerschmitt, N; Huber, K

    2004-10-01

    Electrosurgical instruments are routinely and daily applied at a variety of indications in Otorhinolaryngology. They can be used for cutting, coagulation and devitalisation. All have in common that the high frequency energy is transported into the tissue via an instrument and by this causes a thermal change. Depending on the duration and characteristic of the electricity a vaporisation of the tissue is effected through coagulation, devitalisation and carbonisation. The knowledge of the effects on the tissue by the choice of the different instrument parameters and application systems is essential for an ingenious therapeutically indication. In principal the following application methods for electrosurgery by modulation of the high frequency parameters are distinguished: the monopolar and the bipolar coagulation and devitalisation and the monopolar and the bipolar cutting. This article deals with the physical basis, the effects in the tissue as well as the single application methods of the high frequency surgery.

  3. Shear-horizontal surface acoustic wave phononic device with high density filling material for ultra-low power sensing applications

    SciTech Connect

    Richardson, M.; Bhethanabotla, V. R.; Sankaranarayanan, S. K. R. S.

    2014-06-23

    Finite element simulations of a phononic shear-horizontal surface acoustic wave (SAW) sensor based on ST 90°-X Quartz reveal a dramatic reduction in power consumption. The phononic sensor is realized by artificially structuring the delay path to form an acoustic meta-material comprised of a periodic microcavity array incorporating high-density materials such as tantalum or tungsten. Constructive interference of the scattered and secondary reflected waves at every microcavity interface leads to acoustic energy confinement in the high-density regions translating into reduced power loss. Tantalum filled cavities show the best performance while tungsten inclusions create a phononic bandgap. Based on our simulation results, SAW devices with tantalum filled microcavities were fabricated and shown to significantly decrease insertion loss. Our findings offer encouraging prospects for designing low power, highly sensitive portable biosensors.

  4. Phonon densities of states and related thermodynamic properties of high temperature ceramics.

    SciTech Connect

    Loong, C.-K.

    1998-08-28

    Structural components and semiconductor devices based on silicon nitride, aluminum nitride and gallium nitride are expected to function more reliably at elevated temperatures and at higher levels of performance because of the strong atomic bonding in these materials. The degree of covalency, lattice specific heat, and thermal conductivity are important design factors for the realization of advanced applications. We have determined the phonon densities of states of these ceramics by the method of neutron scattering. The results provide a microscopic interpretation of the mechanical and thermal properties. Moreover, experimental data of the static, structures, and dynamic excitations of atoms are essential to the validation of interparticle potentials employed for molecular-dynamics simulations of high-temperature properties of multi-component ceramic systems. We present an overview of neutron-scattering investigations of the atomic organization, phonon excitations, as well as calculations of related thermodynamic properties of Si{sub 3}N{sub 4}, {beta}-sialon, AlN and GaN. The results are compared with those of the oxide analogs such as SiO{sub 2} and Al{sub 2}O{sub 3}.

  5. Birefringent phononic structures

    SciTech Connect

    Psarobas, I. E. Exarchos, D. A.; Matikas, T. E.

    2014-12-15

    Within the framework of elastic anisotropy, caused in a phononic crystal due to low crystallographic symmetry, we adopt a model structure, already introduced in the case of photonic metamaterials, and by analogy, we study the effect of birefringence and acoustical activity in a phononic crystal. In particular, we investigate its low-frequency behavior and comment on the factors which determine chirality by reference to this model.

  6. High-Frequency Channel Characterization

    DTIC Science & Technology

    2005-09-30

    High-Frequency Channel Characterization Michael B. Porter, Paul Hursky, Martin Siderius Heat , Light, and Sound Research, Inc. 12730 High...Physical Sciences (Bruce Abraham) • Arizona State University (Tolga Duman, Subhadeep Roy) • Heat , Light, and Sound Research, Inc.(M. Porter, A. Abawi, P...NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Heat , Light, and Sound Research, Inc,12730 High

  7. Phonon Density of States and Sound Velocities of an Iron-Nickel Alloy at High Pressure

    NASA Astrophysics Data System (ADS)

    Miller, R. A.; Jackson, J. M.; Sturhahn, W.; Murphy, C. A.

    2012-12-01

    Seismological and cosmochemical studies suggest Earth's core is primarily composed of iron with ~5 to 10 wt% nickel and some light elements [e.g., 1]. Therefore, understanding the behavior of Fe-Ni alloys at high pressure is important for interpreting seismic data and for modeling the interior of the Earth. While many studies have investigated the properties of pure Fe at high pressure, the elastic and vibrational properties of Fe-Ni alloys at high pressure are not well known. We measured sound velocities and thermodynamic properties of 95%-enriched 57Fe alloyed with 10 wt% Ni at high-pressures in a Ne pressure medium. Measurements of high statistical quality were performed with nuclear resonant inelastic x-ray scattering (NRIXS) at 3ID-B of the Advanced Photon Source [e.g., 2 & 3]. The sample volume was determined at each compression point with in-line x-ray diffraction at 3ID-B before and after each NRIXS measurement. In this contribution, we will present derived partial phonon density of states, Debye sound velocities, and compressional and shear sound velocities for Fe0.9-Ni0.1 at high-pressures. [1] McDonough, W.F. (2004): Compositional Model for the Earth's Core. Elsevier Ltd., Oxford. [2] Murphy, C.A., J.M. Jackson, W. Sturhahn, and B. Chen (2011): Melting and thermal pressure of hcp-Fe from the phonon density of states, Phys. Earth Planet. Int., doi:10.1016/j.pepi.2011.07.001. [3] Murphy, C.A., J.M. Jackson, W. Sturhahn, and B. Chen (2011): Grüneisen parameter of hcp-Fe to 171 GPa, Geophys. Res. Lett., doi:10.1029/2011GL049531.

  8. Reduction in coherent phonon lifetime in Bi2Te3/Sb2Te3 superlattices

    NASA Astrophysics Data System (ADS)

    Wang, Yaguo; Xu, Xianfan; Venkatasubramanian, Rama

    2008-09-01

    Femtosecond pulses are used to excite A1g optical phonons in Bi2Te3, Sb2Te3, and Bi2Te3/Sb2Te3 superlattice. Time-resolved reflectivity measurements show both the low-frequency and high-frequency components of A1g phonon modes. By comparing the phonon lifetime, it is found that the scattering rate (inverse of lifetime) in superlattice is significantly higher than those in Bi2Te3 and Sb2Te3. This represents the direct measurement of coherent phonon lifetime reduction in superlattice structures, consistent with the observed reduction in thermal conductivity in superlattices.

  9. Ab initio downfolding for electron-phonon-coupled systems: Constrained density-functional perturbation theory

    NASA Astrophysics Data System (ADS)

    Nomura, Yusuke; Arita, Ryotaro

    2015-12-01

    We formulate an ab initio downfolding scheme for electron-phonon-coupled systems. In this scheme, we calculate partially renormalized phonon frequencies and electron-phonon coupling, which include the screening effects of high-energy electrons, to construct a realistic Hamiltonian consisting of low-energy electron and phonon degrees of freedom. We show that our scheme can be implemented by slightly modifying the density functional-perturbation theory (DFPT), which is one of the standard methods for calculating phonon properties from first principles. Our scheme, which we call the constrained DFPT, can be applied to various phonon-related problems, such as superconductivity, electron and thermal transport, thermoelectricity, piezoelectricity, dielectricity, and multiferroicity. We believe that the constrained DFPT provides a firm basis for the understanding of the role of phonons in strongly correlated materials. Here, we apply the scheme to fullerene superconductors and discuss how the realistic low-energy Hamiltonian is constructed.

  10. Phonon waveguides for electromechanical circuits.

    PubMed

    Hatanaka, D; Mahboob, I; Onomitsu, K; Yamaguchi, H

    2014-07-01

    Nanoelectromechanical systems (NEMS), utilizing localized mechanical vibrations, have found application in sensors, signal processors and in the study of macroscopic quantum mechanics. The integration of multiple mechanical elements via electrical or optical means remains a challenge in the realization of NEMS circuits. Here, we develop a phonon waveguide using a one-dimensional array of suspended membranes that offers purely mechanical means to integrate isolated NEMS resonators. We demonstrate that the phonon waveguide can support and guide mechanical vibrations and that the periodic membrane arrangement also creates a phonon bandgap that enables control of the phonon propagation velocity. Furthermore, embedding a phonon cavity into the phonon waveguide allows mobile mechanical vibrations to be dynamically switched or transferred from the waveguide to the cavity, thereby illustrating the viability of waveguide-resonator coupling. These highly functional traits of the phonon waveguide architecture exhibit all the components necessary to permit the realization of all-phononic NEMS circuits.

  11. High frequency integrated MOS filters

    NASA Technical Reports Server (NTRS)

    Peterson, C.

    1990-01-01

    Several techniques exist for implementing integrated MOS filters. These techniques fit into the general categories of sampled and tuned continuous-time filters. Advantages and limitations of each approach are discussed. This paper focuses primarily on the high frequency capabilities of MOS integrated filters.

  12. Calculating the Phonon Dispersion From First Principles

    NASA Astrophysics Data System (ADS)

    Ceballos, Frank; O'Hara, Andy; Slepko, Alexander; Demkov, Alexander

    2011-10-01

    The goal of this project was to construct a user-friendly tool that can compute the phonon dispersion for any solid with a periodic crystal structure. The phonon dispersion describes the crystal's vibrational properties and thermodynamic properties of the solid. Using the Vienna Ab-initio Simulation Package (VASP) we compute the forces between the atoms. Assuming harmonic approximation we numerically evaluate force constant matrix. The lattice Fourier transform of the force constants yields the dynamical matrix, whose eigenvalues and eigenvectors represent the allowed phonon frequencies and displacement patterns for specific k-vectors. Our code then plots the frequencies along high symmetry lines in the Brillouin zone. We will present our results for silicon, GaAs and ZrO2.

  13. High frequency power distribution system

    NASA Technical Reports Server (NTRS)

    Patel, Mikund R.

    1986-01-01

    The objective of this project was to provide the technology of high frequency, high power transmission lines to the 100 kW power range at 20 kHz frequency. In addition to the necessary design studies, a 150 m long, 600 V, 60 A transmission line was built, tested and delivered for full vacuum tests. The configuration analysis on five alternative configurations resulted in the final selection of the three parallel Litz straps configuration, which gave a virtually concentric design in the electromagnetic sense. Low inductance, low EMI and flexibility in handling are the key features of this configuration. The final design was made after a parametric study to minimize the losses, weight and inductance. The construction of the cable was completed with no major difficulties. The R,L,C parameters measured on the cable agreed well with the calculated values. The corona tests on insulation samples showed a safety factor of 3.

  14. High frequency power distribution system

    NASA Astrophysics Data System (ADS)

    Patel, Mikund R.

    1986-04-01

    The objective of this project was to provide the technology of high frequency, high power transmission lines to the 100 kW power range at 20 kHz frequency. In addition to the necessary design studies, a 150 m long, 600 V, 60 A transmission line was built, tested and delivered for full vacuum tests. The configuration analysis on five alternative configurations resulted in the final selection of the three parallel Litz straps configuration, which gave a virtually concentric design in the electromagnetic sense. Low inductance, low EMI and flexibility in handling are the key features of this configuration. The final design was made after a parametric study to minimize the losses, weight and inductance. The construction of the cable was completed with no major difficulties. The R,L,C parameters measured on the cable agreed well with the calculated values. The corona tests on insulation samples showed a safety factor of 3.

  15. GHz spurious mode free AlN lamb wave resonator with high figure of merit using one dimensional phononic crystal tethers

    NASA Astrophysics Data System (ADS)

    Wu, Guoqiang; Zhu, Yao; Merugu, Srinivas; Wang, Nan; Sun, Chengliang; Gu, Yuandong

    2016-07-01

    This letter reports a spurious mode free GHz aluminum nitride (AlN) lamb wave resonator (LWR) towards high figure of merit (FOM). One dimensional gourd-shape phononic crystal (PnC) tether with large phononic bandgaps is employed to reduce the acoustic energy dissipation into the substrate. The periodic PnC tethers are based on a 1 μm-thick AlN layer with 0.26 μm-thick Mo layer on top. A clean spectrum over a wide frequency range is obtained from the measurement, which indicates a wide-band suppression of spurious modes. Experimental results demonstrate that the fabricated AlN LWR has an insertion loss of 5.2 dB and a loaded quality factor (Q) of 1893 at 1.02 GHz measured in air. An impressive ratio of the resistance at parallel resonance (Rp) to the resistance at series resonance (Rs) of 49.8 dB is obtained, which is an indication of high FOM for LWR. The high Rp to Rs ratio is one of the most important parameters to design a radio frequency filter with steep roll-off.

  16. High-current, high-frequency capacitors

    NASA Astrophysics Data System (ADS)

    Renz, D. D.

    1983-06-01

    The NASA Lewis high-current, high-frequency capacitor development program was conducted under a contract with Maxwell Laboratories, Inc., San Diego, California. The program was started to develop power components for space power systems. One of the components lacking was a high-power, high-frequency capacitor. Some of the technology developed in this program may be directly usable in an all-electric airplane. The materials used in the capacitor included the following: the film is polypropylene, the impregnant is monoisopropyl biphenyl, the conductive epoxy is Emerson and Cuming Stycast 2850 KT, the foil is aluminum, the case is stainless steel (304), and the electrode is a modified copper-ceramic.

  17. High-current, high-frequency capacitors

    NASA Technical Reports Server (NTRS)

    Renz, D. D.

    1983-01-01

    The NASA Lewis high-current, high-frequency capacitor development program was conducted under a contract with Maxwell Laboratories, Inc., San Diego, California. The program was started to develop power components for space power systems. One of the components lacking was a high-power, high-frequency capacitor. Some of the technology developed in this program may be directly usable in an all-electric airplane. The materials used in the capacitor included the following: the film is polypropylene, the impregnant is monoisopropyl biphenyl, the conductive epoxy is Emerson and Cuming Stycast 2850 KT, the foil is aluminum, the case is stainless steel (304), and the electrode is a modified copper-ceramic.

  18. Photocarrier-phonon relaxation in highly excited monolayer transition-metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Morozov, V. G.; Dekeyser, C.; Ilyin, N.; Mishina, E.

    2017-02-01

    We formulate a microscopic model describing interaction between photoinjected carriers and optical phonons in monolayer transition-metal dichalcogenides which are an important example of 2D direct-bandgap semiconductors. The model takes account of the spin-valley structure of the conduction and valence bands. The evolution equations for the carrier and phonon quasi-temperatures are derived and the carrier-phonon relaxation time is estimated. We present the experimental pump-probe results for monolayer WSe2 conforming the theoretical prediction.

  19. Dispersive Phonon Imaging in Iii-V Semiconductors.

    NASA Astrophysics Data System (ADS)

    Hebboul, Saad Eddine

    Low-temperature transport properties of high-frequency acoustic phonons are investigated in GaAs, InSb, InP and InAs using the phonon-imaging technique. In this method, a focused laser beam provides a movable heat source on one side of a cooled crystal (<=q2 K). A single small phonon detector on the opposite face records the transmitted heat flux as a function of propagation direction. Ballistic phonons channel along directions in the crystal which are completely determined by the detailed shape of constant-energy surfaces in wavevector space. The resulting focusing patterns are characterized by sharp phonon caustics which are clearly identified from the continuous background due to scattered phonons. In the dispersive regime, where phonon wavelength is comparable to atomic spacing, the angular positions of these caustic lines are very sensitive to phonon frequency, thus providing a novel test for lattice dynamics theories. Experiments are performed with superconducting tunnel junctions and Al bolometers to probe both the high-frequency and low -frequency regimes, respectively. We find that large-k ballistic phonons give rise to distinct focusing patterns in all four types of crystals, with thicknesses varying between 0.4 and 0.8 mm. Due to isotope scattering in the bulk, tunnel-junction experiments yield well-defined caustic patterns with a dominant frequency given by the detector gap 2Delta. In InSb, where zone boundary frequencies are small (nu_ {TA} ~ 1.2 THz), the frequency dependence of the dispersive phonon focusing patterns are measured using PbTl (0.43, 0.59 THz) and PbBi (0.69, 0.73, 0.78, 0.82 THz) tunnel junction detectors. The results are interpreted with Monte Carlo calculations based on rigid, dipole, shell, and bond-charge models. Although each model yields satisfactory fits to the previously measured dispersion curves, the predicted patterns show remarkable differences in the caustic structures. This result underscores the utility of phonon imaging

  20. Micropillar Resonators for Optomechanics in the Extremely High 19-95-GHz Frequency Range

    NASA Astrophysics Data System (ADS)

    Anguiano, S.; Bruchhausen, A. E.; Jusserand, B.; Favero, I.; Lamberti, F. R.; Lanco, L.; Sagnes, I.; Lemaître, A.; Lanzillotti-Kimura, N. D.; Senellart, P.; Fainstein, A.

    2017-06-01

    Strong confinement, in all dimensions, and high mechanical frequencies are highly desirable for quantum optomechanical applications. We show that GaAs/AlAs micropillar cavities fully confine not only photons but also extremely high frequency (19-95 GHz) acoustic phonons. A strong increase of the optomechanical coupling upon reducing the pillar size is observed, together with record room-temperature Q -frequency products of 1 014. These mechanical resonators can integrate quantum emitters or polariton condensates, opening exciting perspectives at the interface with nonlinear and quantum optics.

  1. Brillouin-zone integration schemes: an efficiency study for the phonon frequency moments of the harmonic, solid, one-component plasma

    SciTech Connect

    Albers, R.C.; Gubernatis, J.E.

    1981-01-01

    The efficiency of four different Brillouin-zone integration schemes including the uniform mesh, special point method, special directions method, and Holas method are compared for calculating moments of the harmonic phonon frequencies of the solid one-component plasma. Very accurate values for the moments are also presented. The Holas method for which weights and integration points can easily be generated has roughly the same efficiency as the special directions method, which is much superior to the uniform mesh and special point methods for this problem.

  2. High Frequency Stable Oscillate boiling

    NASA Astrophysics Data System (ADS)

    Li, Fenfang; Gonzalez-Avila, Silvestre Roberto; Ohl, Claus Dieter

    2015-11-01

    We present an unexpected regime of resonant bubble oscillations on a thin metal film submerged in water, which is continuously heated with a focused CW laser. The oscillatory bubble dynamics reveals a remarkably stable frequency of several 100 kHz and is resolved from the side using video recordings at 1 million frames per second. The emitted sound is measured simultaneously and shows higher harmonics. Once the laser is switched on the water in contact with the metal layer is superheated and an explosively expanding cavitation bubble is generated. However, after the collapse a microbubble is nucleated from the bubble remains which displays long lasting oscillations. Generally, pinch-off from of the upper part of the microbubble is observed generating a continuous stream of small gas bubbles rising upwards. The cavitation expansion, collapse, and the jetting of gas bubbles are detected by the hydrophone and are correlated to the high speed video. We find the bubble oscillation frequency is dependent on the bubble size and surface tension. A preliminary model based on Marangoni flow and heat transfer can explain the high flow velocities observed, yet the origin of bubble oscillation is currently not well understood.

  3. High Frequency Dynamic Nuclear Polarization

    PubMed Central

    Ni, Qing Zhe; Daviso, Eugenio; Can, Thach V.; Markhasin, Evgeny; Jawla, Sudheer K.; Swager, Timothy M.; Temkin, Richard J.; Herzfeld, Judith; Griffin, Robert G.

    2013-01-01

    Conspectus During the three decades 1980–2010, magic angle spinning (MAS) NMR developed into the method of choice to examine many chemical, physical and biological problems. In particular, a variety of dipolar recoupling methods to measure distances and torsion angles can now constrain molecular structures to high resolution. However, applications are often limited by the low sensitivity of the experiments, due in large part to the necessity of observing spectra of low-γ nuclei such as the I = ½ species 13C or 15N. The difficulty is still greater when quadrupolar nuclei, like 17O or 27Al, are involved. This problem has stimulated efforts to increase the sensitivity of MAS experiments. A particularly powerful approach is dynamic nuclear polarization (DNP) which takes advantage of the higher equilibrium polarization of electrons (which conventionally manifests in the great sensitivity advantage of EPR over NMR). In DNP, the sample is doped with a stable paramagnetic polarizing agent and irradiated with microwaves to transfer the high polarization in the electron spin reservoir to the nuclei of interest. The idea was first explored by Overhauser and Slichter in 1953. However, these experiments were carried out on static samples, at magnetic fields that are low by current standards. To be implemented in contemporary MAS NMR experiments, DNP requires microwave sources operating in the subterahertz regime — roughly 150–660 GHz — and cryogenic MAS probes. In addition, improvements were required in the polarizing agents, because the high concentrations of conventional radicals that are required to produce significant enhancements compromise spectral resolution. In the last two decades scientific and technical advances have addressed these problems and brought DNP to the point where it is achieving wide applicability. These advances include the development of high frequency gyrotron microwave sources operating in the subterahertz frequency range. In addition, low

  4. Application of the sublattice method to the investigation of phonon spectra and frequency density of fluorite-structure crystals

    NASA Astrophysics Data System (ADS)

    Kirienko, T. P.; Poplavnoy, A. S.

    2010-09-01

    Phonon spectra and state densities of MeF2 (Me = Ca, Sr, Cd, Ba, or Pb) crystals are calculated in the basis of sublattice state vectors using the Born-Mayer model. The phonon spectra and the sublattice state densities are calculated in the field of the second frozen sublattice. It is demonstrated that optical crystal branches are mainly due to oscillations of fluorine ions; moreover, the topology of optical branches in the spectrum and the crystal state densities are close to the topology of the spectra and state densities of the fluorine sublattice in the frozen metal sublattice. Exception is CaF2 whose ion and cation masses are close in values.

  5. High-Frequency Inductor Materials

    NASA Astrophysics Data System (ADS)

    Varga, L. K.

    2014-01-01

    The Finemet-type nanocrystalline alloy represents an advanced soft-magnetic metal-metal-type nanocomposite with an eddy-current-determined high- frequency limit. A survey of different heat treatments under tensile stress is presented to tailor the hysteresis loop by induced transversal anisotropy. The flattened loop having reduced effective permeability enhances the eddy- current limit in the MHz region; For example, continuous stress annealing in a tubular furnace of 1 m length at 650°C, pulling the ribbon with a velocity of 4 m/min under a tensile stress of 200 MPa, results in a wound core having a permeability of 120 and a frequency limit of 10 MHz. Careful annealing preserves the static coercivity below 10 A/m. The power loss at 0.1 T and 100 kHz is only 82 mW/cm3, which is an order of magnitude lower then the values obtained for Sendust™ cores in similar conditions.

  6. Phonon spectrum and interaction between nanotubes in single-walled carbon nanotube bundles at high pressures and temperatures

    SciTech Connect

    Meletov, K. P.

    2012-12-15

    The Raman spectra of single-walled carbon nanotubes at temperatures up to 730 K and pressures up to 7 GPa have been measured. The behavior of phonon modes and the interaction between nanotubes in bundles have been studied. It has been found that the temperature shift of the vibrational G mode is completely reversible, whereas the temperature shift of radial breathing modes is partially irreversible and the softening of the modes and narrowing of phonon bands are observed. The temperature shift and softening of radial breathing modes are also observed when samples are irradiated by laser radiation with a power density of 6.5 kW/mm{sup 2}. The dependence of the relative frequency {Omega}/{Omega}{sub 0} for G{sup +} and G{sup -} phonon modes on the relative change A{sub 0}/A in the triangular lattice constant of bundles of nanotubes calculated using the thermal expansion coefficient and compressibility coefficient of nanotube bundles shows that the temperature shift of the G mode is determined by the softening of the C-C bond in nanotubes. An increase in the equilibrium distances between nanotubes at the breaking of random covalent C-C bonds between nanotubes in bundles of nanotubes is in my opinion the main reason for the softening of the radial breathing modes.

  7. Revealing the mechanism of passive transport in lipid bilayers via phonon-mediated nanometre-scale density fluctuations

    DOE PAGES

    Zhernenkov, Mikhail; Bolmatov, Dima; Soloviov, Dmitry; ...

    2016-05-12

    We report the high resolution inelastic x-ray study of the in-plane phonon excitations in dipalmitoyl phosphatidylcholine (DPPC) above and below main transition temperature. In the Lβ' gel phase, we observe high frequency longitudinal phonon mode previously predicted by the molecular dynamics simulations and for the first time, we reveal low frequency weakly dispersive transverse acoustic mode which softens and exhibits a low-frequency phonon gap when the DPPC lipid transitions into the Lα fluid phase. The phonon softening of the high frequency longitudinal excitations and the transformation of the transverse excitations upon the phase transition from the Lβ' to Lα phasemore » is explained within the framework of the phonon theory of liquids. These findings illustrate the importance of the collective dynamics of biomembranes and reveal that hydrocarbon tails can act as an efficient mediator in controlling the passive transport across the bilayer plane.« less

  8. Large-amplitude chirped coherent phonons in tellurium mediated by ultrafast photoexcited carrier diffusion

    NASA Astrophysics Data System (ADS)

    Kamaraju, N.; Kumar, Sunil; Anija, M.; Sood, A. K.

    2010-11-01

    We report femtosecond time-resolved reflectivity measurements of coherent phonons in tellurium performed over a wide range of temperatures (3-296 K) and pump-laser intensities. A totally symmetric A1 coherent phonon at 3.6 THz responsible for the oscillations in the reflectivity data is observed to be strongly positively chirped (i.e., phonon time period decreases at longer pump-probe delay times) with increasing photoexcited carrier density, more so at lower temperatures. We show that the temperature dependence of the coherent phonon frequency is anomalous (i.e, increasing with increasing temperature) at high photoexcited carrier density due to electron-phonon interaction. At the highest photoexcited carrier density of ˜1.4×1021cm-3 and the sample temperature of 3 K, the lattice displacement of the coherent phonon mode is estimated to be as high as ˜0.24Å . Numerical simulations based on coupled effects of optical absorption and carrier diffusion reveal that the diffusion of carriers dominates the nonoscillatory electronic part of the time-resolved reflectivity. Finally, using the pump-probe experiments at low carrier density of 6×1018cm-3 , we separate the phonon anharmonicity to obtain the electron-phonon coupling contribution to the phonon frequency and linewidth.

  9. Renormalisation of Nonequilibrium Phonons Under Strong Perturbative Influences.

    NASA Astrophysics Data System (ADS)

    Mehta, Sushrut Madhukar

    Effects of strong perturbative influences, namely the presence of a narrow distribution of acoustic phonons, and the presence of an electron plasma, on the dynamics of nonequilibrium, near zone center, longitudinal optical phonons in GaP have been investigated in two separate experiments. The study of the effects of the interaction between the LO phonons and a heavily populated, narrow distribution of acoustic phonons lead to the observation of a new optically driven nonequilibrium phonon state. Time Resolved Coherent Antistokes Raman Scattering (TR-CARS), with picosecond resolution, was used to investigate the new mode. In order to achieve high occupation numbers in the acoustic branch, the picosecond laser pulses used were amplified up to 1.0 GW/cm^2 peak power per laser beam. An important characteristic property of the new state which differentiates it from the well known LO phonon state is the fact that rather than having the single decay rate observed under thermal equilibrium, the new state has two decay rates. Moreover, these two decay rates depend strongly on the distribution of the acoustic phonon occupation number. The coupling of the LO phonons with an electron plasma, on the other hand, was investigated by measurements of the shape of the Raman scattered line associated with the phonon-plasmon coupled mode. The plasma was generated by thermal excitation of carriers in doped samples. It was possible to study a large variety of plasma excitations by controlling the concentration of the dopant and the ambient temperature. A complete, self consistant model based on standard dielectric response theory is presented, and applied to the measurements of the phonon-plasmon coupled mode. It is possible to recover, via this model, the effective coupled mode damping rate, the plasma damping rate, and the plasma frequency as functions of ambient temperature, or the carrier concentration.

  10. Amplifying High Frequency Acoustic Signals

    SciTech Connect

    Kunz, C

    2004-02-05

    In search of the hypothetical Higgs boson, a prototype electron accelerator structure has been developed for use in the Next Linear Collider (NLC), SLAC's proposed version of the machine necessary to create the predicted particle. The Next Linear Test Accelerator (NLCTA), designed to provide O.5GeV-lTeV center-of-mass collision energy, generates electromagnetic breakdowns inside its copper structure while the beam is running. The sparks vaporize the surface of the copper, and will eventually ruin the accelerator. They also create high-frequency (hf) acoustic signals (100 kHz-1 MHz). Acoustic sensors have been placed on the structure, however current knowledge regarding sound propagation in copper limits spark location to within one centimeter. A system was needed that simulates the sparks so further study of acoustic propagation can be pursued; the goal is locate them to within one millimeter. Various tests were done in order to identify an appropriate hf signal source, and to identify appropriate acoustic sensors to use. A high-voltage spark generator and the same sensors used on the actual structure proved most useful for the system. Two high-pass filters were also fabricated in order to measure signals that might be created above 2MHz. The 11-gain filter was used on the acoustic simulation system that was developed, and the 100-gain filter will be used on the NLCTA.

  11. High Frequency Linacs for Hadrontherapy

    NASA Astrophysics Data System (ADS)

    Amaldi, Ugo; Braccini, Saverio; Puggioni, Paolo

    The use of radiofrequency linacs for hadrontherapy was proposed about 20 years ago, but only recently has it been understood that the high repetition rate together with the possibility of very rapid energy variations offers an optimal solution to the present challenge of hadrontherapy: "paint" a moving tumor target in three dimensions with a pencil beam. Moreover, the fact that the energy, and thus the particle range, can be electronically adjusted implies that no absorber-based energy selection system is needed, which, in the case of cyclotron-based centers, is the cause of material activation. On the other side, a linac consumes less power than a synchrotron. The first part of this article describes the main advantages of high frequency linacs in hadrontherapy, the early design studies, and the construction and test of the first high-gradient prototype which accelerated protons. The second part illustrates some technical issues relevant to the design of copper standing wave accelerators, the present developments, and two designs of linac-based proton and carbon ion facilities. Superconductive linacs are not discussed, since nanoampere currents are sufficient for therapy. In the last two sections, a comparison with circular accelerators and an overview of future projects are presented.

  12. Direct measurement of coherent subterahertz acoustic phonons mean free path in GaAs

    NASA Astrophysics Data System (ADS)

    Legrand, R.; Huynh, A.; Jusserand, B.; Perrin, B.; Lemaître, A.

    2016-05-01

    The phonon mean free path is generally inferred from the measurement of thermal conductivity and we are still lacking precise information on this quantity. Recent advances in the field of high-frequency phonons transduction using semiconductor superlattices give the opportunity to fill this gap. We present experimental results on the attenuation of longitudinal acoustic phonons in GaAs in the frequency and temperature ranges 0.2-1 THz and 10-80 K respectively. Surprisingly, we observe a plateau in the frequency dependence of the attenuation above 0.7 THz, that we ascribe to a breakdown of Herring processes.

  13. High frequency, high power capacitor development

    NASA Technical Reports Server (NTRS)

    White, C. W.; Hoffman, P. S.

    1983-01-01

    A program to develop a special high energy density, high power transfer capacitor to operate at frequency of 40 kHz, 600 V rms at 125 A rms plus 600 V dc bias for space operation. The program included material evaluation and selection, a capacitor design was prepared, a thermal analysis performed on the design. Fifty capacitors were manufactured for testing at 10 kHz and 40 kHz for 50 hours at Industrial Electric Heating Co. of Columbus, Ohio. The vacuum endurance test used on environmental chamber and temperature plate furnished by Maxwell. The capacitors were energized with a special power conditioning apparatus developed by Industrial Electric Heating Co. Temperature conditions of the capacitors were monitored by IEHCo test equipment. Successful completion of the vacuum endurance test series confirmed achievement of the main goal of producing a capacitor or reliable operation at high frequency in an environment normally not hospitable to electrical and electronic components. The capacitor developed compared to a typical commercial capacitor at the 40 kHz level represents a decrease in size and weight by a factor of seven.

  14. High frequency, high power capacitor development

    NASA Astrophysics Data System (ADS)

    White, C. W.; Hoffman, P. S.

    1983-03-01

    A program to develop a special high energy density, high power transfer capacitor to operate at frequency of 40 kHz, 600 V rms at 125 A rms plus 600 V dc bias for space operation. The program included material evaluation and selection, a capacitor design was prepared, a thermal analysis performed on the design. Fifty capacitors were manufactured for testing at 10 kHz and 40 kHz for 50 hours at Industrial Electric Heating Co. of Columbus, Ohio. The vacuum endurance test used on environmental chamber and temperature plate furnished by Maxwell. The capacitors were energized with a special power conditioning apparatus developed by Industrial Electric Heating Co. Temperature conditions of the capacitors were monitored by IEHCo test equipment. Successful completion of the vacuum endurance test series confirmed achievement of the main goal of producing a capacitor or reliable operation at high frequency in an environment normally not hospitable to electrical and electronic components. The capacitor developed compared to a typical commercial capacitor at the 40 kHz level represents a decrease in size and weight by a factor of seven.

  15. High-frequency nanophotonic devices

    NASA Astrophysics Data System (ADS)

    Bimberg, D.; Fiol, G.; Meuer, C.; Laemmlin, M.; Kuntz, M.

    2007-02-01

    Recent results on GaAs-based high-speed mode-locked quantum dot (QD) lasers and optical amplifiers with an operation wavelength centered at 1290 nm are reviewed and their complex dependence on device and operating parameters is discussed on the basis of experimental data obtained with integrated fiber-based QD device modules. Hybrid and passive mode-locking of QD lasers with repetition frequencies between 5 and 80 GHz, sub-ps pulse widths, ultra-low timing jitter down to 190 fs, high output peak power beyond 1 W and suppression of Q-switching are reported, showing the large potential of this class of devices for O-band optical fiber applications. Results on cw and dynamical characterization of quantum dot semiconductor optical amplifiers are presented. QD amplifiers exhibit a close-to-ideal noise figure of 4 dB and demonstrate multi-wavelength amplification of three CWDM wavelengths simultaneously. Modelling of QD polarization dependence shows that it should be possible to achieve polarization insensitive SOAs using vertically coupled QD stacks. Amplification of ultra-fast 80 GHz optical combs and bit-error-free data signal amplification at 40 Gb/s with QD SOAs show the potential for their application in future 100 Gb Ethernet networks.

  16. First-principles prediction of doped graphane as a high-temperature electron-phonon superconductor.

    PubMed

    Savini, G; Ferrari, A C; Giustino, Feliciano

    2010-07-16

    We predict by first-principles calculations that p-doped graphane is an electron-phonon superconductor with a critical temperature above the boiling point of liquid nitrogen. The unique strength of the chemical bonds between carbon atoms and the large density of electronic states at the Fermi energy arising from the reduced dimensionality give rise to a giant Kohn anomaly in the optical phonon dispersions and push the superconducting critical temperature above 90 K. As evidence of graphane was recently reported, and doping of related materials such as graphene, diamond, and carbon nanostructures is well established, superconducting graphane may be feasible.

  17. Atomic frequency standards for ultra-high-frequency stability

    NASA Technical Reports Server (NTRS)

    Maleki, L.; Prestage, J. D.; Dick, G. J.

    1987-01-01

    The general features of the Hg-199(+) trapped-ion frequency standard are outlined and compared to other atomic frequency standards, especially the hydrogen maser. The points discussed are those which make the trapped Hg-199(+) standard attractive: high line Q, reduced sensitivity to external magnetic fields, and simplicity of state selection, among others.

  18. Variable-Range Hopping through Marginally Localized Phonons

    NASA Astrophysics Data System (ADS)

    Banerjee, Sumilan; Altman, Ehud

    2016-03-01

    We investigate the effect of coupling Anderson localized particles in one dimension to a system of marginally localized phonons having a symmetry protected delocalized mode at zero frequency. This situation is naturally realized for electrons coupled to phonons in a disordered nanowire as well as for ultracold fermions coupled to phonons of a superfluid in a one-dimensional disordered trap. To determine if the coupled system can be many-body localized we analyze the phonon-mediated hopping transport for both the weak and strong coupling regimes. We show that the usual variable-range hopping mechanism involving a low-order phonon process is ineffective at low temperature due to discreteness of the bath at the required energy. Instead, the system thermalizes through a many-body process involving exchange of a diverging number n ∝-log T of phonons in the low temperature limit. This effect leads to a highly singular prefactor to Mott's well-known formula and strongly suppresses the variable range hopping rate. Finally, we comment on possible implications of this physics in higher dimensional electron-phonon coupled systems.

  19. Variable-Range Hopping through Marginally Localized Phonons.

    PubMed

    Banerjee, Sumilan; Altman, Ehud

    2016-03-18

    We investigate the effect of coupling Anderson localized particles in one dimension to a system of marginally localized phonons having a symmetry protected delocalized mode at zero frequency. This situation is naturally realized for electrons coupled to phonons in a disordered nanowire as well as for ultracold fermions coupled to phonons of a superfluid in a one-dimensional disordered trap. To determine if the coupled system can be many-body localized we analyze the phonon-mediated hopping transport for both the weak and strong coupling regimes. We show that the usual variable-range hopping mechanism involving a low-order phonon process is ineffective at low temperature due to discreteness of the bath at the required energy. Instead, the system thermalizes through a many-body process involving exchange of a diverging number n∝-logT of phonons in the low temperature limit. This effect leads to a highly singular prefactor to Mott's well-known formula and strongly suppresses the variable range hopping rate. Finally, we comment on possible implications of this physics in higher dimensional electron-phonon coupled systems.

  20. High-Q cross-plate phononic crystal resonator for enhanced acoustic wave localization and energy harvesting

    NASA Astrophysics Data System (ADS)

    Yang, Aichao; Li, Ping; Wen, Yumei; Yang, Chao; Wang, Decai; Zhang, Feng; Zhang, Jiajia

    2015-05-01

    A high-Q cross-plate phononic crystal resonator (Cr-PCR) coupled with an electromechanical Helmholtz resonator (EMHR) is proposed to improve acoustic wave localization and energy harvesting. Owing to the strongly directional wave-scattering effect of the cross-plate corners, strong confinement of acoustic waves emerges. Consequently, the proposed Cr-PCR structure exhibits ∼353.5 times higher Q value and ∼6.1 times greater maximum pressure amplification than the phononic crystal resonator (Cy-PCR) (consisting of cylindrical scatterers) of the same size. Furthermore, the harvester using the proposed Cr-PCR and the EMHR has ∼22 times greater maximum output-power volume density than the previous harvester using Cy-PCR and EMHR structures.

  1. High frequency-heated air turbojet

    NASA Technical Reports Server (NTRS)

    Miron, J. H. D.

    1986-01-01

    A description is given of a method to heat air coming from a turbojet compressor to a temperature necessary to produce required expansion without requiring fuel. This is done by high frequency heating, which heats the walls corresponding to the combustion chamber in existing jets, by mounting high frequency coils in them. The current transformer and high frequency generator to be used are discussed.

  2. High Frequency Chandler Wobble Excitation

    NASA Astrophysics Data System (ADS)

    Seitz, F.; Stuck, J.; Thomas, M.

    2003-04-01

    and OMCT forcing fields give no hint for increased excitation power in the Chandler band. Thus it is assumed, that continuous high frequency excitation due to stochastic weather phenomena is responsible for the perpetuation of the Chandler wobble.

  3. Simultaneous high resolution meausurement of phonons and ionization created by particle interactions in a 60 g germanium crystal at 25 mK

    SciTech Connect

    Shutt, T.; Wang, N.; Ellman, B.; Giraud-Heraud, Y.; Stubbs, C.; Barnes, P.D. Jr.; Cummings, A.; Da Silva, A.; Emes, J.; Haller, E.E.; Lange, A.E.; Rich, J.; Ross, R.R.; Sadoulet, B.; Smith, G.; Stockwell, W.; White, S.; Young, B.A.; Yvon, D. Department of Physics, University of California at Berkeley, Berkeley, California 94720 Department of Material Science Mineral Engineering, University of California at Berkeley, Berkeley, California 94720 Lawrence Berkeley Laboratory, 1 Cyclotron Road, Berkeley, California 94720 Department of Physics, University of California at Santa Barbara, Santa Barbara, California 93106 Department d'Astrophysique, de Physique des Particules, de Physique Nucleaire et de l'Instrumentation Associee-Service Physique des Particles Centre I'Etudes Nucleaires de Saclay, 91191 Gif-sur-Yvett

    1992-12-14

    We demonstrate simultaneous high energy resolution (rms[approx]800 eV) measurements of ionization and phonons created by particle interactions in a semiconductor crystal of macroscopic size (60 g germanium) at 25 mK. We present first studies of charge collection at biases below 1 V/cm, and find that, contrary to commonly held opinion, the full recoil energy of particle interactions is recovered as phonons when charge trapping is negligible. We also report an unanticipated correlation between charge collection and phonon energy at very low bias, and discuss this effect in terms of charge trapping.

  4. High frequency testing of rubber mounts.

    PubMed

    Vahdati, Nader; Saunders, L Ken Lauderbaugh

    2002-04-01

    Rubber and fluid-filled rubber engine mounts are commonly used in automotive and aerospace applications to provide reduced cabin noise and vibration, and/or motion accommodations. In certain applications, the rubber mount may operate at frequencies as high as 5000 Hz. Therefore, dynamic stiffness of the mount needs to be known in this frequency range. Commercial high frequency test machines are practically nonexistent, and the best high frequency test machine on the market is only capable of frequencies as high as 1000 Hz. In this paper, a high frequency test machine is described that allows test engineers to study the high frequency performance of rubber mounts at frequencies up to 5000 Hz.

  5. High Frequency Electronic Packaging Technology

    NASA Technical Reports Server (NTRS)

    Herman, M.; Lowry, L.; Lee, K.; Kolawa, E.; Tulintseff, A.; Shalkhauser, K.; Whitaker, J.; Piket-May, M.

    1994-01-01

    Commercial and government communication, radar, and information systems face the challenge of cost and mass reduction via the application of advanced packaging technology. A majority of both government and industry support has been focused on low frequency digital electronics.

  6. High Frequency Electronic Packaging Technology

    NASA Technical Reports Server (NTRS)

    Herman, M.; Lowry, L.; Lee, K.; Kolawa, E.; Tulintseff, A.; Shalkhauser, K.; Whitaker, J.; Piket-May, M.

    1994-01-01

    Commercial and government communication, radar, and information systems face the challenge of cost and mass reduction via the application of advanced packaging technology. A majority of both government and industry support has been focused on low frequency digital electronics.

  7. Heat transport by phonons in crystalline materials and nanostructures

    NASA Astrophysics Data System (ADS)

    Koh, Yee Kan

    This dissertation presents experimental studies of heat transport by phonons in crystalline materials and nanostructures, and across solid-solid interfaces. Particularly, this dissertation emphasizes advancing understanding of the mean-free-paths (i.e., the distance phonons propagate without being scattered) of acoustic phonons, which are the dominant heat carriers in most crystalline semiconductor nanostructures. Two primary tools for the studies presented in this dissertation are time-domain thermoreflectance (TDTR) for measurements of thermal conductivity of nanostructures and thermal conductance of interfaces; and frequency-domain thermoreflectance (FDTR), which I developed as a direct probe of the mean-free-paths of dominant heat-carrying phonons in crystalline solids. The foundation of FDTR is the dependence of the apparent thermal conductivity on the frequency of periodic heat sources. I find that the thermal conductivity of semiconductor alloys (InGaP, InGaAs, and SiGe) measured by TDTR depends on the modulation frequency, 0.1 ≤ f ≤ 10 MHz, used in TDTR measurements. Reduction in the thermal conductivity of the semiconductor alloys at high f compares well to the reduction in the thermal conductivity of epitaxial thin films, indicating that frequency dependence and thickness dependence of thermal conductivity are fundamentally equivalent. I developed the frequency dependence of thermal conductivity into a convenient probe of phonon mean-free-paths, a technique which I call frequency-domain thermoreflectance (FDTR). In FDTR, I monitor the changes in the intensity of the reflected probe beam as a function of the modulation frequency. To facilitate the analysis of FDTR measurements, I developed a nonlocal theory for heat conduction by phonons at high heating frequencies. Calculations of the nonlocal theory confirm my experimental findings that phonons with mean-free-paths longer than two times the penetration depth do not contribute to the apparent thermal

  8. Edge waves and resonances in two-dimensional phononic crystal plates

    SciTech Connect

    Hsu, Jin-Chen Hsu, Chih-Hsun

    2015-05-07

    We present a numerical study on phononic band gaps and resonances occurring at the edge of a semi-infinite two-dimensional (2D) phononic crystal plate. The edge supports localized edge waves coupling to evanescent phononic plate modes that decay exponentially into the semi-infinite phononic crystal plate. The band-gap range and the number of edge-wave eigenmodes can be tailored by tuning the distance between the edge and the semi-infinite 2D phononic lattice. As a result, a phononic band gap for simultaneous edge waves and plate waves is created, and phononic cavities beside the edge can be built to support high-frequency edge resonances. We design an L3 edge cavity and analyze its resonance characteristics. Based on the band gap, high quality factor and strong confinement of resonant edge modes are achieved. The results enable enhanced control over acoustic energy flow in phononic crystal plates, which can be used in designing micro and nanoscale resonant devices and coupling of edge resonances to other types of phononic or photonic crystal cavities.

  9. Edge waves and resonances in two-dimensional phononic crystal plates

    NASA Astrophysics Data System (ADS)

    Hsu, Jin-Chen; Hsu, Chih-Hsun

    2015-05-01

    We present a numerical study on phononic band gaps and resonances occurring at the edge of a semi-infinite two-dimensional (2D) phononic crystal plate. The edge supports localized edge waves coupling to evanescent phononic plate modes that decay exponentially into the semi-infinite phononic crystal plate. The band-gap range and the number of edge-wave eigenmodes can be tailored by tuning the distance between the edge and the semi-infinite 2D phononic lattice. As a result, a phononic band gap for simultaneous edge waves and plate waves is created, and phononic cavities beside the edge can be built to support high-frequency edge resonances. We design an L3 edge cavity and analyze its resonance characteristics. Based on the band gap, high quality factor and strong confinement of resonant edge modes are achieved. The results enable enhanced control over acoustic energy flow in phononic crystal plates, which can be used in designing micro and nanoscale resonant devices and coupling of edge resonances to other types of phononic or photonic crystal cavities.

  10. Phononic crystals of spherical particles: A tight binding approach

    SciTech Connect

    Mattarelli, M.; Secchi, M.; Montagna, M.

    2013-11-07

    The vibrational dynamics of a fcc phononic crystal of spheres is studied and compared with that of a single free sphere, modelled either by a continuous homogeneous medium or by a finite cluster of atoms. For weak interaction among the spheres, the vibrational dynamics of the phononic crystal is described by shallow bands, with low degree of dispersion, corresponding to the acoustic spheroidal and torsional modes of the single sphere. The phonon displacements are therefore related to the vibrations of a sphere, as the electron wave functions in a crystal are related to the atomic wave functions in a tight binding model. Important dispersion is found for the two lowest phonon bands, which correspond to zero frequency free translation and rotation of a free sphere. Brillouin scattering spectra are calculated at some values of the exchanged wavevectors of the light, and compared with those of a single sphere. With weak interaction between particles, given the high acoustic impedance mismatch in dry systems, the density of phonon states consist of sharp bands separated by large gaps, which can be well accounted for by a single particle model. Based on the width of the frequency gaps, tunable with the particle size, and on the small number of dispersive acoustic phonons, such systems may provide excellent materials for application as sound or heat filters.

  11. Nature of One- and Two-Phonon Mixed Symmetry States in 92Zr and 94Mo from High-Resolution Electron and Proton Scattering

    SciTech Connect

    Neumann-Cosel, P. von; Burda, O.; Kuhar, M.; Lenhardt, A.; Ponomarev, V. Yu.; Richter, A.; Wambach, J.; Botha, N. T.; Fearick, R. W.; Carter, J.; Sideras-Haddad, E.; Foertsch, S. V.; Neveling, R.; Smit, F. D.; Fransen, C.; Fujita, H.; Pietralla, N.

    2006-03-13

    High-resolution inelastic electron (performed at the S-DALINAC) and proton (performed at iThemba LABS) scattering experiments on 92Zr and 94Mo with emphasis on E2 transitions are presented The measured form factors and angular distributions provide a measure for the F-spin purity, respectively the isovector nature, of the proposed one-phonon mixed symmetry states and furthermore provide a sensitive test of a possible two-phonon character of excited 2+ states.

  12. Dispersion of Interface Optical Phonons and Their Coupling with Electrons in Asymmetrical Wurtzite GaN/Ga1-xAlxN Quantum Wells

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Gao, Song; Shi, Jun-Jie

    Within the framework of the dielectric continuum model and Loudon's uniaxial crystal model, the properties of frequency dispersion of the interface optical (IO) phonon modes and the coupling functions of electron-IO-phonon interaction in an asymmetrical wurtzite quantum well (QW) are deduced and analyzed via the method of electrostatic potential expansion. Numerical results reveal that in general, there are four branches of IO phonon modes in the systems. The dispersions of the four branches of IO phonon modes are obvious only when the free wavenumber kt in xy plane is small. The degenerating behavior of all the four branches of IO phonon modes in the asymmetric wurtzite QWs has been clearly observed for small kt. When kt is relatively large, with the increase of kt, the frequencies of the IO phonon modes converge to the four definite limiting frequencies in the corresponding wurtzite single planar heterostructure. This feature is obviously different from that in symmetric wurtzite QW, and the mathematical and physical reasons have been analyzed in depth. The calculations of electron-phonon coupling function show that the electrostatic distribution of the IO modes is neither symmetrical nor antisymmetrical, and the high-frequency IO phonon branches and the short-wavelength IO phonon modes play a more important role in the electron-phonon interaction.

  13. 75 FR 81284 - Nationwide Use of High Frequency and Ultra High Frequency Active SONAR Technology; Draft...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-27

    ... SECURITY Coast Guard Nationwide Use of High Frequency and Ultra High Frequency Active SONAR Technology... of High Frequency (HF) and Ultra High Frequency (UHF) Sound Navigation and Ranging (SONAR) Technology... less than a week; however, for environmental disasters such as the Deepwater Horizon oil spill,...

  14. Electron-phonon coupling in high-temperature cuprate superconductors determined from electron relaxation rates.

    PubMed

    Gadermaier, C; Alexandrov, A S; Kabanov, V V; Kusar, P; Mertelj, T; Yao, X; Manzoni, C; Brida, D; Cerullo, G; Mihailovic, D

    2010-12-17

    We determined electronic relaxation times via pump-probe optical spectroscopy using sub-15 fs pulses for the normal state of two different cuprate superconductors. We show that the primary relaxation process is the electron-phonon interaction and extract a measure of its strength, the second moment of the Eliashberg function λ[ω2] = 800 ± 200 meV2 for La(1.85)Sr(0.15)CuO4 and λ[ω2] = 400 ± 100 meV2 for YBa(2)Cu(3)O(6.5). These values suggest a possible fundamental role of the electron-phonon interaction in the superconducting pairing mechanism.

  15. Thermally triggered phononic gaps in liquids at THz scale

    PubMed Central

    Bolmatov, Dima; Zhernenkov, Mikhail; Zav’yalov, Dmitry; Stoupin, Stanislav; Cunsolo, Alessandro; Cai, Yong Q.

    2016-01-01

    In this paper we present inelastic X-ray scattering experiments in a diamond anvil cell and molecular dynamic simulations to investigate the behavior of phononic excitations in liquid Ar. The spectra calculated using molecular dynamics were found to be in a good agreement with the experimental data. Furthermore, we observe that, upon temperature increases, a low-frequency transverse phononic gap emerges while high-frequency propagating modes become evanescent at the THz scale. The effect of strong localization of a longitudinal phononic mode in the supercritical phase is observed for the first time. The evidence for the high-frequency transverse phononic gap due to the transition from an oscillatory to a ballistic dynamic regimes of motion is presented and supported by molecular dynamics simulations. This transition takes place across the Frenkel line thermodynamic limit which demarcates compressed liquid and non-compressed fluid domains on the phase diagram and is supported by calculations within the Green-Kubo phenomenological formalism. These results are crucial to advance the development of novel terahertz thermal devices, phononic lenses, mirrors, and other THz metamaterials. PMID:26763899

  16. Thermally triggered phononic gaps in liquids at THz scale

    SciTech Connect

    Bolmatov, Dima; Zhernenkov, Mikhail; Zavyalov, Dmitry; Stoupin, Stanislav; Cunsolo, Alessandro; Cai, Yong Q.

    2016-01-14

    In this study we present inelastic X-ray scattering experiments in a diamond anvil cell and molecular dynamic simulations to investigate the behavior of phononic excitations in liquid Ar. The spectra calculated using molecular dynamics were found to be in a good agreement with the experimental data. Furthermore, we observe that, upon temperature increases, a low-frequency transverse phononic gap emerges while high-frequency propagating modes become evanescent at the THz scale. The effect of strong localization of a longitudinal phononic mode in the supercritical phase is observed for the first time. The evidence for the high-frequency transverse phononic gap due to the transition from an oscillatory to a ballistic dynamic regimes of motion is presented and supported by molecular dynamics simulations. This transition takes place across the Frenkel line thermodynamic limit which demarcates compressed liquid and non-compressed fluid domains on the phase diagram and is supported by calculations within the Green-Kubo phenomenological formalism. These results are crucial to advance the development of novel terahertz thermal devices, phononic lenses, mirrors, and other THz metamaterials.

  17. Thermally triggered phononic gaps in liquids at THz scale

    DOE PAGES

    Bolmatov, Dima; Zhernenkov, Mikhail; Zavyalov, Dmitry; ...

    2016-01-14

    In this study we present inelastic X-ray scattering experiments in a diamond anvil cell and molecular dynamic simulations to investigate the behavior of phononic excitations in liquid Ar. The spectra calculated using molecular dynamics were found to be in a good agreement with the experimental data. Furthermore, we observe that, upon temperature increases, a low-frequency transverse phononic gap emerges while high-frequency propagating modes become evanescent at the THz scale. The effect of strong localization of a longitudinal phononic mode in the supercritical phase is observed for the first time. The evidence for the high-frequency transverse phononic gap due to themore » transition from an oscillatory to a ballistic dynamic regimes of motion is presented and supported by molecular dynamics simulations. This transition takes place across the Frenkel line thermodynamic limit which demarcates compressed liquid and non-compressed fluid domains on the phase diagram and is supported by calculations within the Green-Kubo phenomenological formalism. These results are crucial to advance the development of novel terahertz thermal devices, phononic lenses, mirrors, and other THz metamaterials.« less

  18. High-Throughput Computational Screening of Electrical and Phonon Properties of Two-Dimensional Transition Metal Dichalcogenides

    NASA Astrophysics Data System (ADS)

    Williamson, Izaak; Hernandez, Andres Correa; Wong-Ng, Winnie; Li, Lan

    2016-10-01

    Two-dimensional transition metal dichalcogenides (2D-TMDs) are of broadening research interest due to their novel physical, electrical, and thermoelectric properties. Having the chemical formula MX 2, where M is a transition metal and X is a chalcogen, there are many possible combinations to consider for materials-by-design exploration. By identifying novel compositions and utilizing the lower dimensionality, which allows for improved thermoelectric performance (e.g., increased Seebeck coefficients without sacrificing electron concentration), MX 2 materials are promising candidates for thermoelectric applications. However, to develop these materials into wide-scale use, it is crucial to comprehensively understand the compositional affects. This work investigates the structure, electronic, and phonon properties of 18 different MX 2 materials compositions as a benchmark to explore the impact of various elements. There is significant correlation between properties of constituent transition metals (atomic mass and radius) and the structure/properties of the corresponding 2D-TMDs. As the mass of M increases, the n-type power factor and phonon frequency gap increases. Similarly, increases in the radius of M lead to increased layer thickness and Seebeck coefficient S. Our results identify key factors to optimize MX 2 compositions for desired performance.

  19. Landau damping with high frequency impedance

    SciTech Connect

    Blaskiewicz,M.

    2009-05-04

    Coupled bunch longitudinal stability in the presence of high frequency impedances is considered. A frequency domain technique is developed and compared with simulations. The frequency domain technique allows for absolute stability tests and is applied to the problem of longitudinal stability in RHIC with the new 56 MHz RF system.

  20. High Frequency Radar Astronomy With HAARP

    DTIC Science & Technology

    2003-01-01

    a period of several years, the High frequency Active Auroral Research Program ( HAARP ) transmitting array near Gakona, Alaska , has increased in total...High Frequency Radar Astronomy With HAARP Paul Rodriguez Naval Research Laboratory Information Technology Division Washington, DC 20375, USA Edward...high frequency (HF) radar facility used for research purposes. The basic science objective of HAARP is to study nonlinear effects associated with

  1. Dispersion and absorption in one-dimensional nonlinear lattices: A resonance phonon approach

    NASA Astrophysics Data System (ADS)

    Xu, Lubo; Wang, Lei

    2016-09-01

    Based on the linear response theory, we propose a resonance phonon (r-ph) approach to study the renormalized phonons in a few one-dimensional nonlinear lattices. Compared with the existing anharmonic phonon (a-ph) approach, the dispersion relations derived from this approach agree with the expectations of the effective phonon (e-ph) theory much better. The application is also largely extended, i.e., it is applicable in many extreme situations, e.g., high frequency, high temperature, etc., where the existing one can hardly work. Furthermore, two separated phonon branches (one acoustic and one optical) with a clear gap in between can be observed by the r-ph approach in a diatomic anharmonic lattice. While only one combined branch can be detected in the same lattice with both the a-ph approach and the e-ph theory.

  2. Temperature dependence of Raman-active phonons and anharmonic interactions in layered hexagonal BN

    NASA Astrophysics Data System (ADS)

    Cuscó, Ramon; Gil, Bernard; Cassabois, Guillaume; Artús, Luis

    2016-10-01

    We present a Raman scattering study of optical phonons in hexagonal BN for temperatures ranging from 80 to 600 K. The experiments were performed on high-quality, single-crystalline hexagonal BN platelets. The observed temperature dependence of the frequencies and linewidths of both Raman active E2 g optical phonons is analyzed in the framework of anharmonic decay theory, and possible decay channels are discussed in the light of density-functional theory calculations. With increasing temperature, the E2g high mode displays strong anharmonic interactions, with a linewidth increase that indicates an important contribution of four-phonon processes and a marked frequency downshift that can be attributed to a substantial effect of the four-phonon scattering processes (quartic anharmonicity). In contrast, the E2g low mode displays a very narrow linewidth and weak anharmonic interactions, with a frequency downshift that is primarily accounted for by the thermal expansion of the interlayer spacing.

  3. Heating-frequency-dependent thermal conductivity: An analytical solution from diffusive to ballistic regime and its relevance to phonon scattering measurements

    NASA Astrophysics Data System (ADS)

    Yang, Fan; Dames, Chris

    2015-04-01

    The heating-frequency dependence of the apparent thermal conductivity in a semi-infinite body with periodic planar surface heating is explained by an analytical solution to the Boltzmann transport equation. This solution is obtained using a two-flux model and gray mean free time approximation and verified numerically with a lattice Boltzmann method and numerical results from the literature. Extending the gray solution to the nongray regime leads to an integral transform and accumulation-function representation of the phonon scattering spectrum, where the natural variable is mean free time rather than mean free path, as often used in previous work. The derivation leads to an approximate cutoff conduction similar in spirit to that of Koh and Cahill [Phys. Rev. B 76, 075207 (2007), 10.1103/PhysRevB.76.075207] except that the most appropriate criterion involves the heater frequency rather than thermal diffusion length. The nongray calculations are consistent with Koh and Cahill's experimental observation that the apparent thermal conductivity shows a stronger heater-frequency dependence in a SiGe alloy than in natural Si. Finally these results are demonstrated using a virtual experiment, which fits the phase lag between surface temperature and heat flux to obtain the apparent thermal conductivity and accumulation function.

  4. Lightweight, high-frequency transformers

    NASA Technical Reports Server (NTRS)

    Schwarze, G. E.

    1983-01-01

    The 25-kVA space transformer was developed under contract by Thermal Technology Laboratory, Buffalo, N. Y. The NASA Lewis transformer technology program attempted to develop the baseline technology. For the 25-kVA transformer the input voltage was chosen as 200 V, the output voltage as 1500 V, the input voltage waveform as square wave, the duty cycle as continuous, the frequency range (within certain constraints) as 10 to 40 kHz, the operating temperatures as 85 deg. and 130 C, the baseplate temperature as 50 C, the equivalent leakage inductance as less than 10 micro-h, the operating environment as space, and the life expectancy as 10 years. Such a transformer can also be used for aircraft, ship and terrestrial applications.

  5. Propagation of high frequencies in Scandinavia

    SciTech Connect

    Bame, D.

    1989-04-01

    To determine if seismic signals at frequencies up to 50 Hz are useful for detecting events and discriminating between earthquakes and explosions, approximately 180 events from the three-component high-frequency seismic element (HFSE) installed at the center of the Norwegian Regional Seismic Array (NRSA) have been analyzed. The attenuation of high-frequency signals in Scandinavia varies with distance, azimuth, magnitude, and source effects. Most of the events were detected with HFSE, although detections were better on the NRSA where signal processing techniques were used. Based on a preliminary analysis, high-frequency data do not appear to be a useful discriminant in Scandinavia. 21 refs., 29 figs., 3 tabs.

  6. Raman electron spin-lattice relaxation with the Debye-type and with real phonon spectra in crystals

    NASA Astrophysics Data System (ADS)

    Hoffmann, Stanislaw K.; Lijewski, Stefan

    2013-02-01

    Electron spin-lattice relaxation temperature dependence was measured for Ti2+ (S = 1) and for Cu2+ (S = 1/2) ions in SrF2 single crystal by electron spin echo method in temperature range 4-109 K. The spin relaxation was governed by the two-phonon Raman processes. The relaxation theory is outlined and presented in a form suitable for applying with real phonon spectra. The experimental relaxation results were described using Debye-type phonon spectrum and the real phonon spectrum of SrF2 crystal. The Debye approximation does not fit well the results for SrF2 both at low and at high temperature. The relaxation rate is faster than that predicted by Debye-type phonon spectrum at low temperatures where excess of lattice vibrations over the Debye model exists but is slower at higher temperatures (above 50 K) where density of phonon states continuously decreases when approaching to the maximal acoustic phonon frequency. The expected deviation from Debye approximation was analyzed also for Cu2+ in NaCl and MgSiO3 crystals for which phonon spectra are available. The fitting with the real phonon spectrum allowed us to calculate spin-phonon coupling parameter as 267 cm-1 for Ti2+ and 1285 cm-1 for Cu2+ in SrF2.

  7. HIGH CURRENT RADIO FREQUENCY ION SOURCE

    DOEpatents

    Abdelaziz, M.E.

    1963-04-01

    This patent relates to a high current radio frequency ion source. A cylindrical plasma container has a coil disposed around the exterior surface thereof along the longitudinal axis. Means are provided for the injection of an unionized gas into the container and for applying a radio frequency signal to the coil whereby a radio frequency field is generated within the container parallel to the longitudinal axis thereof to ionize the injected gas. Cathode and anode means are provided for extracting transverse to the radio frequency field from an area midway between the ends of the container along the longitudinal axis thereof the ions created by said radio frequency field. (AEC)

  8. Lightning protection devices for high frequencies equipments

    SciTech Connect

    Pierre, J.

    1983-01-01

    Contents: Mechanism of a Lightning Stroke from Antenna to Ground; Principles of Protection Devices for Feeders; Electrical Characteristics of H.F. Protection Devices; Calculation of H.F. Protection Devices; Catalogue Devices for High Frequency Protection; Some Measurement Results for Tees; Measurement Results for Decoupling Line Devices; Installation of High Frequency Devices.

  9. Phonon-based scalable platform for chip-scale quantum computing

    NASA Astrophysics Data System (ADS)

    Reinke, Charles M.; El-Kady, Ihab

    2016-12-01

    We present a scalable phonon-based quantum computer on a phononic crystal platform. Practical schemes involve selective placement of a single acceptor atom in the peak of the strain field in a high-Q phononic crystal cavity that enables coupling of the phonon modes to the energy levels of the atom. We show theoretical optimization of the cavity design and coupling waveguide, along with estimated performance figures of the coupled system. A qubit can be created by entangling a phonon at the resonance frequency of the cavity with the atom states. Qubits based on this half-sound, half-matter quasi-particle, called a phoniton, may outcompete other quantum architectures in terms of combined emission rate, coherence lifetime, and fabrication demands.

  10. Phonon-based scalable platform for chip-scale quantum computing

    SciTech Connect

    Reinke, Charles M.; El-Kady, Ihab

    2016-12-19

    Here, we present a scalable phonon-based quantum computer on a phononic crystal platform. Practical schemes involve selective placement of a single acceptor atom in the peak of the strain field in a high-Q phononic crystal cavity that enables coupling of the phonon modes to the energy levels of the atom. We show theoretical optimization of the cavity design and coupling waveguide, along with estimated performance figures of the coupled system. A qubit can be created by entangling a phonon at the resonance frequency of the cavity with the atom states. Qubits based on this half-sound, half-matter quasi-particle, called a phoniton, may outcompete other quantum architectures in terms of combined emission rate, coherence lifetime, and fabrication demands.

  11. Phonon-based scalable platform for chip-scale quantum computing

    DOE PAGES

    Reinke, Charles M.; El-Kady, Ihab

    2016-12-19

    Here, we present a scalable phonon-based quantum computer on a phononic crystal platform. Practical schemes involve selective placement of a single acceptor atom in the peak of the strain field in a high-Q phononic crystal cavity that enables coupling of the phonon modes to the energy levels of the atom. We show theoretical optimization of the cavity design and coupling waveguide, along with estimated performance figures of the coupled system. A qubit can be created by entangling a phonon at the resonance frequency of the cavity with the atom states. Qubits based on this half-sound, half-matter quasi-particle, called a phoniton,more » may outcompete other quantum architectures in terms of combined emission rate, coherence lifetime, and fabrication demands.« less

  12. Phononic crystal plate with hollow pillars connected by thin bars

    NASA Astrophysics Data System (ADS)

    Jin, Yabin; Pennec, Yan; Pan, Yongdong; Djafari-Rouhani, Bahram

    2017-01-01

    A new type of phononic crystal plate consisting of hollow pillars on a bar-connected plate is proposed. With respect to usual pillar based phononic crystal plates, the Bragg band gap can be tuned to be much wider and extended to a sub-wavelength region, and the low frequency gap can be moved to an extremely low frequency range. Such a structure can generate quadrapolar, hexapolar and octopolar whispering-gallery modes (WGMs) inside the band gaps with very high confinement and quality factors. By filling the hollow pillars with a liquid, these WGMs, together with additional localized compressional and solid-liquid coupling modes, can be tuned either by varying the inner radius of the pillars or controlling the height of the liquid. We discuss some possible functionalities of these phononic crystals for the purpose of sensing the acoustic properties of liquids, multiplexer and wireless communication.

  13. Psychophysical tuning curves at very high frequencies

    NASA Astrophysics Data System (ADS)

    Yasin, Ifat; Plack, Christopher J.

    2005-10-01

    For most normal-hearing listeners, absolute thresholds increase rapidly above about 16 kHz. One hypothesis is that the high-frequency limit of the hearing-threshold curve is imposed by the transmission characteristics of the middle ear, which attenuates the sound input [Masterton et al., J. Acoust. Soc. Am. 45, 966-985 (1969)]. An alternative hypothesis is that the high-frequency limit of hearing is imposed by the tonotopicity of the cochlea [Ruggero and Temchin, Proc. Nat. Acad. Sci. U.S.A. 99, 13206-13210 (2002)]. The aim of this study was to test these hypotheses. Forward-masked psychophysical tuning curves (PTCs) were derived for signal frequencies of 12-17.5 kHz. For the highest signal frequencies, the high-frequency slopes of some PTCs were steeper than the slope of the hearing-threshold curve. The results also show that the human auditory system displays frequency selectivity for characteristic frequencies (CFs) as high as 17 kHz, above the frequency at which absolute thresholds begin to increase rapidly. The findings suggest that, for CFs up to 17 kHz, the high-frequency limitation in humans is imposed in part by the middle-ear attenuation, and not by the tonotopicity of the cochlea.

  14. 78 FR 70567 - Nationwide Use of High Frequency and Ultra High Frequency Active SONAR Technology; Final...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-26

    ...] Nationwide Use of High Frequency and Ultra High Frequency Active SONAR Technology; Final Programmatic... Programmatic Environmental Assessment (PEA) for the Nationwide Use of High Frequency (HF) and Ultra High..., for environmental disasters such as the Deepwater Horizon oil spill, SONAR equipment could be used...

  15. A high frequency silicon pressure sensor

    NASA Technical Reports Server (NTRS)

    Kahng, S. K.; Gross, C.

    1980-01-01

    Theoretical and design considerations as well as fabrication and experimental work involved in the development of high-frequency silicon pressure sensors with an ultra-small diaphragm are discussed. A sensor is presented with a rectangular diaphragm of 0.0127 cm x 0.0254 cm x 1.06 micron; the sensor has a natural frequency of 625 kHz and a sensitivity of 0.82 mv/v-psi. High-frequency results from shock tube testing and low-frequency (less than 50 kHz) comparison with microphones are given.

  16. Phonon Heat Conduction In Nanostructures: Ballistic, Coherent, Localized, Hydrodynamic, and Divergent Modes

    NASA Astrophysics Data System (ADS)

    Chen, Gang

    In this talk, we will discuss different modes of heat conduction in nanostructures. Ballistic transport happens when phonon mean free path is longer than the characteristic size of the structure. We will discuss how we compute phonon mean free path distributions based on first-principles and measure the distributions with optical pump-probe techniques by exploring ballistic phonon transport processes. In superlattice structures, ballistic phonon transport across the whole thickness of the superlattices implies phase coherence. We observed this coherent transport in GaAs/AlAs superlattices with fixed periodic thickness and varying number of periods. Simulations show that although high frequency phonons are scattering by roughness, remaining long wavelength phonons maintain their phase and traverse the superlattices ballistically. Accessing the coherent heat conduction regime opens a new venue for phonon engineering. We show further that phonon heat conduction localization happens in GaAs/AlAs superlattice by placing ErAs nanodots at interfaces. This heat-conduction localization phenomenon is confirmed by nonequilibrium atomic Green's function simulation. These ballistic and localization effects can be exploited to improve thermoelectric energy conversion materials via reducing their thermal conductivity. In another opposite, we will discuss phonon hydrodynamic transport mode in graphene via first-principle simulations. In this mode, phonons drift with an average velocity under a temperature gradient, similar to fluid flow in a pipe. Conditions for observing such phonon hydrodynamic modes will be discussed. Finally, we will talk about the one-dimensional nature of heat conduction in polymer chains. Such 1D nature can lead to divergent thermal conductivity. Inspired by simulation, we have experimentally demonstrated high thermal conductivity in ultra-drawn polyethylene nanofibers and sheets. Work supported by DOE Office of Basic Energy Sciences under Award Number: DE

  17. Reversible optical switching of highly confined phonon-polaritons with an ultrathin phase-change material

    NASA Astrophysics Data System (ADS)

    Li, Peining; Yang, Xiaosheng; Maß, Tobias W. W.; Hanss, Julian; Lewin, Martin; Michel, Ann-Katrin U.; Wuttig, Matthias; Taubner, Thomas

    2016-08-01

    Surface phonon-polaritons (SPhPs), collective excitations of photons coupled with phonons in polar crystals, enable strong light-matter interaction and numerous infrared nanophotonic applications. However, as the lattice vibrations are determined by the crystal structure, the dynamical control of SPhPs remains challenging. Here, we realize the all-optical, non-volatile, and reversible switching of SPhPs by controlling the structural phase of a phase-change material (PCM) employed as a switchable dielectric environment. We experimentally demonstrate optical switching of an ultrathin PCM film (down to 7 nm, <λ/1,200) with single laser pulses and detect ultra-confined SPhPs (polariton wavevector kp > 70k0, k0 = 2π/λ) in quartz. Our proof of concept allows the preparation of all-dielectric, rewritable SPhP resonators without the need for complex fabrication methods. With optimized materials and parallelized optical addressing we foresee application potential for switchable infrared nanophotonic elements, for example, imaging elements such as superlenses and hyperlenses, as well as reconfigurable metasurfaces and sensors.

  18. Temperature Dependence of Phonons in Pyrolitic Graphite

    DOE R&D Accomplishments Database

    Brockhouse, B. N.; Shirane, G.

    1977-01-01

    Dispersion curves for longitudinal and transverse phonons propagating along and near the c-axis in pyrolitic graphite at temperatures between 4°K and 1500°C have been measured by neutron spectroscopy. The observed frequencies decrease markedly with increasing temperature (except for the transverse optical ''rippling'' modes in the hexagonal planes). The neutron groups show interesting asymmetrical broadening ascribed to interference between one phonon and many phonon processes.

  19. Electron-phonon scattering effect on the lattice thermal conductivity of silicon nanostructures.

    PubMed

    Fu, Bo; Tang, Guihua; Li, Yifei

    2017-09-13

    Nanostructuring technology has been widely employed to reduce the thermal conductivity of thermoelectric materials because of the strong phonon-boundary scattering. Optimizing the carrier concentration can not only improve the electrical properties, but also affect the lattice thermal conductivity significantly due to the electron-phonon scattering. The lattice thermal conductivity of silicon nanostructures considering electron-phonon scattering is investigated for comparing the lattice thermal conductivity reductions resulting from nanostructuring technology and the carrier concentration optimization. We performed frequency-dependent simulations of thermal transport systematically in nanowires, solid thin films and nanoporous thin films by solving the phonon Boltzmann transport equation using the discrete ordinate method. All the phonon properties are based on the first-principles calculations. The results show that the lattice thermal conductivity reduction due to the electron-phonon scattering decreases as the feature size of nanostructures goes down and could be ignored at low feature sizes (50 nm for n-type nanowires and 20 nm for p-type nanowires and n-type solid thin films) or a high porosity (0.6 for n-type 500 nm-thick nanoporous thin films) even when the carrier concentration is as high as 10(21) cm(-3). Similarly, the size effect due to the phonon-boundary scattering also becomes less significant with the increase of carrier concentration. The findings provide a fundamental understanding of electron and phonon transports in nanostructures, which is important for the optimization of nanostructured thermoelectric materials.

  20. Apparatus for measuring high frequency currents

    NASA Technical Reports Server (NTRS)

    Hagmann, Mark J. (Inventor); Sutton, John F. (Inventor)

    2003-01-01

    An apparatus for measuring high frequency currents includes a non-ferrous core current probe that is coupled to a wide-band transimpedance amplifier. The current probe has a secondary winding with a winding resistance that is substantially smaller than the reactance of the winding. The sensitivity of the current probe is substantially flat over a wide band of frequencies. The apparatus is particularly useful for measuring exposure of humans to radio frequency currents.

  1. High-frequency conductivity of photoionized plasma

    SciTech Connect

    Anakhov, M. V.; Uryupin, S. A.

    2016-08-15

    The tensor of the high-frequency conductivity of a plasma created via tunnel ionization of atoms in the field of linearly or circularly polarized radiation is derived. It is shown that the real part of the conductivity tensor is highly anisotropic. In the case of a toroidal velocity distribution of photoelectrons, the possibility of amplification of a weak high-frequency field polarized at a sufficiently large angle to the anisotropy axis of the initial nonequilibrium distribution is revealed.

  2. Optical phonons in PbTe/CdTe multilayer heterostructures

    SciTech Connect

    Novikova, N. N.; Yakovlev, V. A.; Kucherenko, I. V.; Karczewski, G.; Aleshchenko, Yu. A.; Muratov, A. V.; Zavaritskaya, T. N.; Melnik, N. N.

    2015-05-15

    The infrared reflection spectra of PbTe/CdTe multilayer nanostructures grown by molecular-beam epitaxy are measured in the frequency range of 20–5000 cm{sup −1} at room temperature. The thicknesses and high-frequency dielectric constants of the PbTe and CdTe layers and the frequencies of the transverse optical (TO) phonons in these structures are determined from dispersion analysis of the spectra. It is found that the samples under study are characterized by two TO phonon frequencies, equal to 28 and 47 cm{sup −1}. The first frequency is close to that of TO phonons in bulk PbTe, and the second is assigned to the optical mode in structurally distorted interface layers. The Raman-scattering spectra upon excitation with the radiation of an Ar{sup +} laser at 514.5 nm are measured at room and liquid-nitrogen temperatures. The weak line at 106 cm{sup −1} observed in these spectra is attributed to longitudinal optical phonons in the interface layers.

  3. Phonon density of states of Fe2O3 across high-pressure structural and electronic transitions

    NASA Astrophysics Data System (ADS)

    Lin, Jung-Fu; Tse, John S.; Alp, Esen E.; Zhao, Jiyong; Lerche, Michael; Sturhahn, Wolfgang; Xiao, Yuming; Chow, Paul

    2011-08-01

    High-pressure phonon density of states (PDOS) of Fe2O3 across structural and electronic transitions has been investigated by nuclear resonant inelastic x-ray scattering (NRIXS) and first-principles calculations together with synchrotron Mössbauer, x-ray diffraction, and x-ray emission spectroscopies. Drastic changes in elastic, thermodynamic, and vibrational properties of Fe2O3 occur across the Rh2O3(II)-type structural transition at 40-50 GPa, whereas the Mott insulator-metal transition occurring after the structural transition only causes nominal changes in the properties of the Fe2O3. The observed anomalous mode-softening behavior of the elastic constants is associated with the structural transition at 40-50 GPa, leading to substantial changes in the Debye-like part of the PDOS in the terahertz acoustic phonons. Our experimental and theoretical studies provide new insights into the effects of the structural and electronic transitions in the transition-metal oxide (TMO) compounds.

  4. Prestin and high frequency hearing in mammals

    PubMed Central

    Zhang, Shuyi; Liu, Yang

    2011-01-01

    Recent evidence indicates that the evolution of ultrasonic hearing in echolocating bats and cetaceans has involved adaptive amino acid replacements in the cochlear gene prestin. A substantial number of these changes have occurred in parallel in both groups, suggesting that particular amino acid residues might confer greater auditory sensitivity to high frequencies. Here we review some of these findings, and consider whether similar signatures of prestin protein sequence evolution also occur in mammals that possess high frequency hearing for passive localization and conversely, whether this gene has undergone less change in mammals that lack high frequency hearing. PMID:21655450

  5. Enhanced plane wave expansion analysis for the band structure of bulk modes in two-dimensional high-contrast solid-solid phononic crystals

    NASA Astrophysics Data System (ADS)

    Baboly, Mohammadhosein Ghasemi; Soliman, Yasser; Su, Mehmet F.; Reinke, Charles M.; Leseman, Zayd C.; El-Kady, Ihab

    2014-11-01

    Plane wave expansion analyses that use the inverse rule to obtain the Fourier coefficients of the elastic tensor instead of the more conventional Laurent's rule, exhibit faster convergence rates for solid-solid phononic crystals. In this work, the band structure convergence of calculations using the inverse rule is investigated and applied to the case of high acoustic impedance contrast solid-solid phononic crystals, previously known for convergence difficulties. Results are contrasted to those obtained with the conventional plane wave expansion method. The inverse rule is found to converge at a much rate for all ranges of impedance contrast, and the ratio between the computational times needed to obtain a convergent band structure for a high-contrast solid-solid phononic crystal with the conventional plane wave expansion method using 1369 reciprocal lattice vectors is as large as 6800:1. This ratio decreases for material sets with lower impedance contrast; however, the inverse rule is still faster for a given error threshold for even the lowest impedance contrast phononic crystals reported in the literature. This convergence enhancement is a major factor in reconsidering the plane wave expansion method as an important tool in obtaining propagating elastic modes in phononic crystals.

  6. Nonlocal dynamics of dissipative phononic fluids

    NASA Astrophysics Data System (ADS)

    Nemati, Navid; Lee, Yoonkyung E.; Lafarge, Denis; Duclos, Aroune; Fang, Nicholas

    2017-06-01

    We describe the nonlocal effective properties of a two-dimensional dissipative phononic crystal made by periodic arrays of rigid and motionless cylinders embedded in a viscothermal fluid such as air. The description is based on a nonlocal theory of sound propagation in stationary random fluid/rigid media that was proposed by Lafarge and Nemati [Wave Motion 50, 1016 (2013), 10.1016/j.wavemoti.2013.04.007]. This scheme arises from a deep analogy with electromagnetism and a set of physics-based postulates including, particularly, the action-response procedures, whereby the effective density and bulk modulus are determined. Here, we revisit this approach, and clarify further its founding physical principles through presenting it in a unified formulation together with the two-scale asymptotic homogenization theory that is interpreted as the local limit. Strong evidence is provided to show that the validity of the principles and postulates within the nonlocal theory extends to high-frequency bands, well beyond the long-wavelength regime. In particular, we demonstrate that up to the third Brillouin zone including the Bragg scattering, the complex and dispersive phase velocity of the least-attenuated wave in the phononic crystal which is generated by our nonlocal scheme agrees exactly with that reproduced by a direct approach based on the Bloch theorem and multiple scattering method. In high frequencies, the effective wave and its associated parameters are analyzed by treating the phononic crystal as a random medium.

  7. Turbulence in unsteady flow at high frequencies

    NASA Technical Reports Server (NTRS)

    Kuhn, Gary D.

    1990-01-01

    Turbulent flows subjected to oscillations of the mean flow were simulated using a large-eddy simulation computer code for flow in a channel. The objective of the simulations was to provide better understanding of the effects of time-dependent disturbances on the turbulence of a boundary layer and of the underlying physical phenomena regarding the basic interaction between the turbulence and external disturbances. The results confirmed that turbulence is sensitive to certain ranges of frequencies of disturbances. However, no direct connection was found between the frequency of imposed disturbances and the characteristic 'burst' frequency of turbulence. New insight into the nature of turbulence at high frequencies was found. Viscous phenomena near solid walls were found to be the dominant influence for high-frequency perturbations.

  8. Turbulence in unsteady flow at high frequencies

    NASA Technical Reports Server (NTRS)

    Kuhn, Gary D.

    1990-01-01

    Turbulent flows subjected to oscillations of the mean flow were simulated using a large-eddy simulation computer code for flow in a channel. The objective of the simulations was to provide better understanding of the effects of time-dependent disturbances on the turbulence of a boundary layer and of the underlying physical phenomena regarding the basic interaction between the turbulence and external disturbances. The results confirmed that turbulence is sensitive to certain ranges of frequencies of disturbances. However, no direct connection was found between the frequency of imposed disturbances and the characteristic 'burst' frequency of turbulence. New insight into the nature of turbulence at high frequencies was found. Viscous phenomena near solid walls were found to be the dominant influence for high-frequency perturbations.

  9. Overview of the Advanced High Frequency Branch

    NASA Technical Reports Server (NTRS)

    Miranda, Felix A.

    2015-01-01

    This presentation provides an overview of the competencies, selected areas of research and technology development activities, and current external collaborative efforts of the NASA Glenn Research Center's Advanced High Frequency Branch.

  10. An introduction to high frequency radioteletype systems

    NASA Astrophysics Data System (ADS)

    Pinnau, Roger R.

    1989-10-01

    A basic introductory guide is provided to modern High Frequency (HF) data communications systems. Described are modern commercial radioteletype systems, data communication protocols, and various secrets of the trade.

  11. Neural coding of high-frequency tones

    NASA Technical Reports Server (NTRS)

    Howes, W. L.

    1976-01-01

    Available evidence was presented indicating that neural discharges in the auditory nerve display characteristic periodicities in response to any tonal stimulus including high-frequency stimuli, and that this periodicity corresponds to the subjective pitch.

  12. Real-time, high frequency QRS electrocardiograph

    NASA Technical Reports Server (NTRS)

    Schlegel, Todd T. (Inventor); DePalma, Jude L. (Inventor); Moradi, Saeed (Inventor)

    2006-01-01

    Real time cardiac electrical data are received from a patient, manipulated to determine various useful aspects of the ECG signal, and displayed in real time in a useful form on a computer screen or monitor. The monitor displays the high frequency data from the QRS complex in units of microvolts, juxtaposed with a display of conventional ECG data in units of millivolts or microvolts. The high frequency data are analyzed for their root mean square (RMS) voltage values and the discrete RMS values and related parameters are displayed in real time. The high frequency data from the QRS complex are analyzed with imbedded algorithms to determine the presence or absence of reduced amplitude zones, referred to herein as RAZs. RAZs are displayed as go, no-go signals on the computer monitor. The RMS and related values of the high frequency components are displayed as time varying signals, and the presence or absence of RAZs may be similarly displayed over time.

  13. Elastic Constants, Optical Phonons, and Molecular Relaxations in the High Temperature Plastic Phase of the CH3NH3PbBr3 Hybrid Perovskite.

    PubMed

    Létoublon, Antoine; Paofai, Serge; Rufflé, Benoît; Bourges, Philippe; Hehlen, Bernard; Michel, Thierry; Ecolivet, Claude; Durand, Olivier; Cordier, Stéphane; Katan, Claudine; Even, Jacky

    2016-10-06

    Low frequency dynamics has been studied in a CH3NH3PbBr3 hybrid perovskite single crystal by using four different spectroscopy techniques: coherent inelastic neutron, Raman and Brillouin scatterings, and ultrasound measurements. Sound velocities were measured over five decades in energy to yield the complete set of elastic constants in a hybrid halide perovskite crystal in the pseudocubic plastic phase. The C44 shear elastic constant is very small, leading to a particularly low resistance to shear stress. Brillouin scattering has been used to study the relaxation dynamics of methylammonium cations and to evidence translation-rotation coupling associated with the cubic to tetragonal phase transition at Tc ≈ 230 K. Low frequency and highly damped optical phonons observed using both Raman and inelastic neutron below 18 meV, do not present softening close to Tc. The critical dynamics at Tc ≈ 230 K is compatible with an order-disorder character, dominated by relaxational motions of the molecules.

  14. Anisotropic phonon coupling in the relaxor ferroelectric (Na1/2Bi1/2)TiO3 near its high-temperature phase transition

    NASA Astrophysics Data System (ADS)

    Cai, Ling; Toulouse, Jean; Luo, Haosu; Tian, Wei

    2014-08-01

    The lead free relaxor Na1/2Bi1/2TiO3 (NBT) undergoes a structural cubic-to-tetragonal transition near 800 K which is caused by the cooperative rotations of O6 octahedra. These rotations are also accompanied by the displacements of the cations and the formation of the polar nanodomains (PNDs) that are responsible for the characteristic dielectric dispersion of relaxor ferroelectrics. Because of their intrinsic properties, spontaneous polarization, and lack of inversion symmetry, these PNDs are also piezoelectric and can mediate an interaction between polarization and strain or couple the optic and acoustic phonons. Because PNDs introduce a local tetragonal symmetry, the phonon coupling they mediate is found to be anisotropic. In this paper we present inelastic neutron scattering results on coupled transverse acoustic (TA) and transverse optic (TO) phonons in the [110] and [001] directions and across the cubic-tetragonal phase transition at TC˜800 K. The phonon spectra are analyzed using a mode coupling model. In the [110] direction, as in other relaxors and some ferroelectric perovskites, a precipitous drop of the TO phonon into the TA branch or "waterfall" is observed at a certain qwf˜0.14 r.l.u. In the [001] direction, the highly overdamped line shape can be fitted with closely positioned bare mode energies which are largely overlapping along the dispersion curves. Two competing lattice coupling mechanism are proposed to explain these observations.

  15. Engineering dissipation with phononic spectral hole burning.

    PubMed

    Behunin, R O; Kharel, P; Renninger, W H; Rakich, P T

    2017-03-01

    Optomechanics, nano-electromechanics, and integrated photonics have brought about a renaissance in phononic device physics and technology. Central to this advance are devices and materials supporting ultra-long-lived photonic and phononic excitations that enable novel regimes of classical and quantum dynamics based on tailorable photon-phonon coupling. Silica-based devices have been at the forefront of such innovations for their ability to support optical excitations persisting for nearly 1 billion cycles, and for their low optical nonlinearity. While acoustic phonon modes can persist for a similar number of cycles in crystalline solids at cryogenic temperatures, it has not been possible to achieve such performance in silica, as silica becomes acoustically opaque at low temperatures. We demonstrate that these intrinsic forms of phonon dissipation are greatly reduced (by >90%) by nonlinear saturation using continuous drive fields of disparate frequencies. The result is a form of steady-state phononic spectral hole burning that produces a wideband transparency window with optically generated phonon fields of modest (nW) powers. We developed a simple model that explains both dissipative and dispersive changes produced by phononic saturation. Our studies, conducted in a microscale device, represent an important step towards engineerable phonon dynamics on demand and the use of glasses as low-loss phononic media.

  16. Engineering dissipation with phononic spectral hole burning

    NASA Astrophysics Data System (ADS)

    Behunin, R. O.; Kharel, P.; Renninger, W. H.; Rakich, P. T.

    2017-03-01

    Optomechanics, nano-electromechanics, and integrated photonics have brought about a renaissance in phononic device physics and technology. Central to this advance are devices and materials supporting ultra-long-lived photonic and phononic excitations that enable novel regimes of classical and quantum dynamics based on tailorable photon-phonon coupling. Silica-based devices have been at the forefront of such innovations for their ability to support optical excitations persisting for nearly 1 billion cycles, and for their low optical nonlinearity. While acoustic phonon modes can persist for a similar number of cycles in crystalline solids at cryogenic temperatures, it has not been possible to achieve such performance in silica, as silica becomes acoustically opaque at low temperatures. We demonstrate that these intrinsic forms of phonon dissipation are greatly reduced (by >90%) by nonlinear saturation using continuous drive fields of disparate frequencies. The result is a form of steady-state phononic spectral hole burning that produces a wideband transparency window with optically generated phonon fields of modest (nW) powers. We developed a simple model that explains both dissipative and dispersive changes produced by phononic saturation. Our studies, conducted in a microscale device, represent an important step towards engineerable phonon dynamics on demand and the use of glasses as low-loss phononic media.

  17. Engineering dissipation with phononic spectral hole burning

    NASA Astrophysics Data System (ADS)

    Behunin, R. O.; Kharel, P.; Renninger, W. H.; Rakich, P. T.

    2016-12-01

    Optomechanics, nano-electromechanics, and integrated photonics have brought about a renaissance in phononic device physics and technology. Central to this advance are devices and materials supporting ultra-long-lived photonic and phononic excitations that enable novel regimes of classical and quantum dynamics based on tailorable photon-phonon coupling. Silica-based devices have been at the forefront of such innovations for their ability to support optical excitations persisting for nearly 1 billion cycles, and for their low optical nonlinearity. While acoustic phonon modes can persist for a similar number of cycles in crystalline solids at cryogenic temperatures, it has not been possible to achieve such performance in silica, as silica becomes acoustically opaque at low temperatures. We demonstrate that these intrinsic forms of phonon dissipation are greatly reduced (by >90%) by nonlinear saturation using continuous drive fields of disparate frequencies. The result is a form of steady-state phononic spectral hole burning that produces a wideband transparency window with optically generated phonon fields of modest (nW) powers. We developed a simple model that explains both dissipative and dispersive changes produced by phononic saturation. Our studies, conducted in a microscale device, represent an important step towards engineerable phonon dynamics on demand and the use of glasses as low-loss phononic media.

  18. An informatics based analysis of the impact of isotope substitution on phonon modes in graphene

    SciTech Connect

    Broderick, Scott; Srinivasan, Srikant; Rajan, Krishna; Ray, Upamanyu; Balasubramanian, Ganesh

    2014-06-16

    It is shown by informatics that the high frequency short ranged modes exert a significant influence in impeding thermal transport through isotope substituted graphene nanoribbons. Using eigenvalue decomposition methods, we have extracted features in the phonon density of states spectra that reveal correlations between isotope substitution and phonon modes. This study also provides a data driven computational framework for the linking of materials chemistry and transport properties in 2D systems.

  19. Enhanced electron-phonon coupling for a semiconductor charge qubit in a surface phonon cavity

    PubMed Central

    Chen, J. C. H.; Sato, Y.; Kosaka, R.; Hashisaka, M.; Muraki, K.; Fujisawa, T.

    2015-01-01

    Electron-phonon coupling is a major decoherence mechanism, which often causes scattering and energy dissipation in semiconductor electronic systems. However, this electron-phonon coupling may be used in a positive way for reaching the strong or ultra-strong coupling regime in an acoustic version of the cavity quantum electrodynamic system. Here we propose and demonstrate a phonon cavity for surface acoustic waves, which is made of periodic metal fingers that constitute Bragg reflectors on a GaAs/AlGaAs heterostructure. Phonon band gap and cavity phonon modes are identified by frequency, time and spatially resolved measurements of the piezoelectric potential. Tunneling spectroscopy on a double quantum dot indicates the enhancement of phonon assisted transitions in a charge qubit. This encourages studying of acoustic cavity quantum electrodynamics with surface phonons. PMID:26469629

  20. Microfabricated phononic crystal devices and applications

    NASA Astrophysics Data System (ADS)

    Olsson, R. H., III; El-Kady, I.

    2009-01-01

    Phononic crystals are the acoustic wave analogue of photonic crystals. Here a periodic array of scattering inclusions located in a homogeneous host material forbids certain ranges of acoustic frequencies from existence within the crystal, thus creating what are known as acoustic bandgaps. The majority of previously reported phononic crystal devices have been constructed by hand, assembling scattering inclusions in a viscoelastic medium, predominantly air, water or epoxy, resulting in large structures limited to frequencies below 1 MHz. Recently, phononic crystals and devices have been scaled to VHF (30-300 MHz) frequencies and beyond by utilizing microfabrication and micromachining technologies. This paper reviews recent developments in the area of micro-phononic crystals including design techniques, material considerations, microfabrication processes, characterization methods and reported device structures. Micro-phononic crystal devices realized in low-loss solid materials are emphasized along with their potential application in radio frequency communications and acoustic imaging for medical ultrasound and nondestructive testing. The reported advances in batch micro-phononic crystal fabrication and simplified testing promise not only the deployment of phononic crystals in a number of commercial applications but also greater experimentation on a wide variety of phononic crystal structures.

  1. Scanning Tunneling Microscopy Observation of Phonon Condensate

    DOE PAGES

    Altfeder, Igor; Balatsky, Alexander V.; Voevodin, Andrey A.; ...

    2017-02-22

    Using quantum tunneling of electrons into vibrating surface atoms, phonon oscillations can be observed on the atomic scale. Phonon interference patterns with unusually large signal amplitudes have been revealed by scanning tunneling microscopy in intercalated van der Waals heterostructures. Our results show that the effective radius of these phonon quasi-bound states, the real-space distribution of phonon standing wave amplitudes, the scattering phase shifts, and the nonlinear intermode coupling strongly depend on the presence of defect-induced scattering resonance. The observed coherence of these quasi-bound states most likely arises from phase- and frequency-synchronized dynamics of all phonon modes, and indicates the formationmore » of many-body condensate of optical phonons around resonant defects. We found that increasing the strength of the scattering resonance causes the increase of the condensate droplet radius without affecting the condensate fraction inside it. The condensate can be observed at room temperature.« less

  2. Scanning Tunneling Microscopy Observation of Phonon Condensate

    PubMed Central

    Altfeder, Igor; Voevodin, Andrey A.; Check, Michael H.; Eichfeld, Sarah M.; Robinson, Joshua A.; Balatsky, Alexander V.

    2017-01-01

    Using quantum tunneling of electrons into vibrating surface atoms, phonon oscillations can be observed on the atomic scale. Phonon interference patterns with unusually large signal amplitudes have been revealed by scanning tunneling microscopy in intercalated van der Waals heterostructures. Our results show that the effective radius of these phonon quasi-bound states, the real-space distribution of phonon standing wave amplitudes, the scattering phase shifts, and the nonlinear intermode coupling strongly depend on the presence of defect-induced scattering resonance. The observed coherence of these quasi-bound states most likely arises from phase- and frequency-synchronized dynamics of all phonon modes, and indicates the formation of many-body condensate of optical phonons around resonant defects. We found that increasing the strength of the scattering resonance causes the increase of the condensate droplet radius without affecting the condensate fraction inside it. The condensate can be observed at room temperature. PMID:28225066

  3. Scanning Tunneling Microscopy Observation of Phonon Condensate.

    PubMed

    Altfeder, Igor; Voevodin, Andrey A; Check, Michael H; Eichfeld, Sarah M; Robinson, Joshua A; Balatsky, Alexander V

    2017-02-22

    Using quantum tunneling of electrons into vibrating surface atoms, phonon oscillations can be observed on the atomic scale. Phonon interference patterns with unusually large signal amplitudes have been revealed by scanning tunneling microscopy in intercalated van der Waals heterostructures. Our results show that the effective radius of these phonon quasi-bound states, the real-space distribution of phonon standing wave amplitudes, the scattering phase shifts, and the nonlinear intermode coupling strongly depend on the presence of defect-induced scattering resonance. The observed coherence of these quasi-bound states most likely arises from phase- and frequency-synchronized dynamics of all phonon modes, and indicates the formation of many-body condensate of optical phonons around resonant defects. We found that increasing the strength of the scattering resonance causes the increase of the condensate droplet radius without affecting the condensate fraction inside it. The condensate can be observed at room temperature.

  4. Scanning Tunneling Microscopy Observation of Phonon Condensate

    NASA Astrophysics Data System (ADS)

    Altfeder, Igor; Voevodin, Andrey A.; Check, Michael H.; Eichfeld, Sarah M.; Robinson, Joshua A.; Balatsky, Alexander V.

    2017-02-01

    Using quantum tunneling of electrons into vibrating surface atoms, phonon oscillations can be observed on the atomic scale. Phonon interference patterns with unusually large signal amplitudes have been revealed by scanning tunneling microscopy in intercalated van der Waals heterostructures. Our results show that the effective radius of these phonon quasi-bound states, the real-space distribution of phonon standing wave amplitudes, the scattering phase shifts, and the nonlinear intermode coupling strongly depend on the presence of defect-induced scattering resonance. The observed coherence of these quasi-bound states most likely arises from phase- and frequency-synchronized dynamics of all phonon modes, and indicates the formation of many-body condensate of optical phonons around resonant defects. We found that increasing the strength of the scattering resonance causes the increase of the condensate droplet radius without affecting the condensate fraction inside it. The condensate can be observed at room temperature.

  5. High frequency conductivity in carbon nanotubes

    SciTech Connect

    Abukari, S. S. Mensah, S. Y.; Twum, A.; Mensah, N. G.; Adu, K. A.; Rabiu, M.

    2012-12-15

    We report on theoretical analysis of high frequency conductivity in carbon nanotubes. Using the kinetic equation with constant relaxation time, an analytical expression for the complex conductivity is obtained. The real part of the complex conductivity is initially negative at zero frequency and become more negative with increasing frequency, until it reaches a resonance minimum at ω ∼ ω{sub B} for metallic zigzag CNs and ω < ω{sub B} for armchair CNs. This resonance enhancement is indicative for terahertz gain without the formation of current instabilities induced by negative dc conductivity. We noted that due to the high density of states of conduction electrons in metallic zigzag carbon nanotubes and the specific dispersion law inherent in hexagonal crystalline structure result in a uniquely high frequency conductivity than the corresponding values for metallic armchair carbon nanotubes. We suggest that this phenomenon can be used to suppress current instabilities that are normally associated with a negative dc differential conductivity.

  6. Accuracy of High Frequency Maximum Usable Frequencies (MUF) Prediction.

    DTIC Science & Technology

    1981-09-15

    shown in Figure 35 to be rat er constant at about 20 percent for MINIMUF-3.5. Whereas for HFMUFES 4 it is above 30 per- 57 CL - a / C 4L 4’ w I Z. LL U...Predictin2 the Performance of High-Frequency Skywave Telecomunication Systems (the use of the HFMJFES 4 Program), by GW Haydon, M Leftin , and R Rosich...in Ionospheric Maping by Numerical Methods, by WB Jones, RP Graham, and M Leftin , 12 May 1966. (Also Environmental Science Services Administration

  7. Extremely high frequency RF effects on electronics.

    SciTech Connect

    Loubriel, Guillermo Manuel; Vigliano, David; Coleman, Phillip Dale; Williams, Jeffery Thomas; Wouters, Gregg A.; Bacon, Larry Donald; Mar, Alan

    2012-01-01

    The objective of this work was to understand the fundamental physics of extremely high frequency RF effects on electronics. To accomplish this objective, we produced models, conducted simulations, and performed measurements to identify the mechanisms of effects as frequency increases into the millimeter-wave regime. Our purpose was to answer the questions, 'What are the tradeoffs between coupling, transmission losses, and device responses as frequency increases?', and, 'How high in frequency do effects on electronic systems continue to occur?' Using full wave electromagnetics codes and a transmission-line/circuit code, we investigated how extremely high-frequency RF propagates on wires and printed circuit board traces. We investigated both field-to-wire coupling and direct illumination of printed circuit boards to determine the significant mechanisms for inducing currents at device terminals. We measured coupling to wires and attenuation along wires for comparison to the simulations, looking at plane-wave coupling as it launches modes onto single and multiconductor structures. We simulated the response of discrete and integrated circuit semiconductor devices to those high-frequency currents and voltages, using SGFramework, the open-source General-purpose Semiconductor Simulator (gss), and Sandia's Charon semiconductor device physics codes. This report documents our findings.

  8. High power, high frequency, vacuum flange

    DOEpatents

    Felker, Brian; McDaniel, Michael R.

    1993-01-01

    An improved waveguide flange is disclosed for high power operation that helps prevent arcs from being initiated at the junctions between waveguide sections. The flanges at the end of the waveguide sections have counterbores surrounding the waveguide tubes. When the sections are bolted together the counterbores form a groove that holds a fully annealed copper gasket. Each counterbore has a beveled step that is specially configured to insure the gasket forms a metal-to-metal vacuum seal without gaps or sharp edges. The resultant inner surface of the waveguide is smooth across the junctions between waveguide sections, and arcing is prevented.

  9. High frequency dynamic pressure calibration technique

    NASA Technical Reports Server (NTRS)

    Davis, P. A.; Zasimowich, R. F.

    1985-01-01

    A high frequency dynamic calibration technique for pressure transducers has been developed using a siren pressure generator (SPG). The SPG is an inlet-area-modulated device generating oscillating waveforms with dynamic pressure amplitudes up to 58.6 kPa (8.5 psi) in a frequency range of 1 to 10 kHz. A description of the generator, its operating characteristics and instrumentation used for pressure amplitude and frequency measurements is given. Waveform oscillographs and spectral analysis of the pressure transducers' output signals are presented.

  10. High frequency dynamic pressure calibration technique

    NASA Astrophysics Data System (ADS)

    Davis, P. A.; Zasimowich, R. F.

    A high frequency dynamic calibration technique for pressure transducers has been developed using a siren pressure generator (SPG). The SPG is an inlet-area-modulated device generating oscillating waveforms with dynamic pressure amplitudes up to 58.6 kPa (8.5 psi) in a frequency range of 1 to 10 kHz. A description of the generator, its operating characteristics and instrumentation used for pressure amplitude and frequency measurements is given. Waveform oscillographs and spectral analysis of the pressure transducers' output signals are presented.

  11. High power radio frequency attenuation device

    DOEpatents

    Kerns, Quentin A.; Miller, Harold W.

    1984-01-01

    A resistor device for attenuating radio frequency power includes a radio frequency conductor connected to a series of fins formed of high relative magnetic permeability material. The fins are dimensional to accommodate the skin depth of the current conduction therethrough, as well as an inner heat conducting portion where current does not travel. Thermal connections for air or water cooling are provided for the inner heat conducting portions of each fin. Also disclosed is a resistor device to selectively alternate unwanted radio frequency energy in a resonant cavity.

  12. High sensitivity phonon-mediated kinetic inductance detector with combined amplitude and phase read-out

    NASA Astrophysics Data System (ADS)

    Cardani, L.; Casali, N.; Colantoni, I.; Cruciani, A.; Bellini, F.; Castellano, M. G.; Cosmelli, C.; D'Addabbo, A.; Di Domizio, S.; Martinez, M.; Tomei, C.; Vignati, M.

    2017-01-01

    Developing wide-area cryogenic light detectors with baseline resolution better than 20 eV is one of the priorities of next generation bolometric experiments searching for rare interactions, as the simultaneous read-out of the light and heat signals enables background suppression through particle identification. Among the proposed technological approaches for the phonon sensor, the naturally multiplexed Kinetic Inductance Detectors (KIDs) stand out for their excellent intrinsic energy resolution and reproducibility. The potential of this technique was proved by the CALDER project that reached a baseline resolution of 154 ± 7 eV RMS by sampling a 2 × 2 cm2 Silicon substrate with 4 Aluminum KIDs. In this paper, we present a prototype of Aluminum KID with improved geometry and quality factor. The design improvement, as well as the combined analysis of amplitude and phase signals, allowed to reach a baseline resolution of 82 ± 4 eV by sampling the same substrate with a single Aluminum KID.

  13. High resolution 3D imaging of living cells with sub-optical wavelength phonons

    PubMed Central

    Pérez-Cota, Fernando; Smith, Richard J.; Moradi, Emilia; Marques, Leonel; Webb, Kevin F.; Clark, Matt

    2016-01-01

    Label-free imaging of living cells below the optical diffraction limit poses great challenges for optical microscopy. Biologically relevant structural information remains below the Rayleigh limit and beyond the reach of conventional microscopes. Super-resolution techniques are typically based on the non-linear and stochastic response of fluorescent labels which can be toxic and interfere with cell function. In this paper we present, for the first time, imaging of live cells using sub-optical wavelength phonons. The axial imaging resolution of our system is determined by the acoustic wavelength (λa = λprobe/2n) and not on the NA of the optics allowing sub-optical wavelength acoustic sectioning of samples using the time of flight. The transverse resolution is currently limited to the optical spot size. The contrast mechanism is significantly determined by the mechanical properties of the cells and requires no additional contrast agent, stain or label to image the cell structure. The ability to breach the optical diffraction limit to image living cells acoustically promises to bring a new suite of imaging technologies to bear in answering exigent questions in cell biology and biomedicine. PMID:27996028

  14. High resolution 3D imaging of living cells with sub-optical wavelength phonons

    NASA Astrophysics Data System (ADS)

    Pérez-Cota, Fernando; Smith, Richard J.; Moradi, Emilia; Marques, Leonel; Webb, Kevin F.; Clark, Matt

    2016-12-01

    Label-free imaging of living cells below the optical diffraction limit poses great challenges for optical microscopy. Biologically relevant structural information remains below the Rayleigh limit and beyond the reach of conventional microscopes. Super-resolution techniques are typically based on the non-linear and stochastic response of fluorescent labels which can be toxic and interfere with cell function. In this paper we present, for the first time, imaging of live cells using sub-optical wavelength phonons. The axial imaging resolution of our system is determined by the acoustic wavelength (λa = λprobe/2n) and not on the NA of the optics allowing sub-optical wavelength acoustic sectioning of samples using the time of flight. The transverse resolution is currently limited to the optical spot size. The contrast mechanism is significantly determined by the mechanical properties of the cells and requires no additional contrast agent, stain or label to image the cell structure. The ability to breach the optical diffraction limit to image living cells acoustically promises to bring a new suite of imaging technologies to bear in answering exigent questions in cell biology and biomedicine.

  15. High-speed flattening of crystallized glass substrates by dressed-photon-phonon etching

    NASA Astrophysics Data System (ADS)

    Nomura, W.; Yatsui, T.; Kawazoe, T.; Tate, N.; Ohtsu, M.

    2015-12-01

    Dressed-photon-phonon (DPP) etching is a non-contact flattening technology that realizes ultra-flat surfaces and has been reported to achieve an arithmetic mean surface roughness, R a, on the order of 0.1 nm in various materials, such as fused silica, plastic films, and GaN crystal. In this study, we successfully flattened the surface of a crystallized glass substrate in several seconds using laser light with a higher power density than that used in previous studies. The target substrate had an initial appearance similar to frosted glass, with an R a of 92.5 nm. We performed DPP etching under a Cl2 atmosphere using a CW laser with a wavelength of 532 nm, a power of 8 W, and a spot diameter of 0.2 mm. After 1 s of processing, we obtained a flat surface with an R a of 5.00 nm. This surface roughness equaled or surpassed that of a substrate flattened by conventional chemical mechanical polishing, with an R a of 5.77 nm. Through the detailed analysis of atomic force microscopic images, we found the DPP etching resulted in the smaller standard deviation of the height difference than CMP in the smaller lateral size than 50 nm.

  16. Phonon quarticity induced by changes in phonon-tracked hybridization during lattice expansion and its stabilization of rutile TiO2

    DOE PAGES

    Lan, Tian; Li, Chen W.; Hellman, O.; ...

    2015-08-11

    Although the rutile structure of TiO2 is stable at high temperatures, the conventional quasiharmonic approximation predicts that several acoustic phonons decrease anomalously to zero frequency with thermal expansion, incorrectly predicting a structural collapse at temperatures well below 1000 K. In this paper, inelastic neutron scattering was used to measure the temperature dependence of the phonon density of states (DOS) of rutile TiO2 from 300 to 1373 K. Surprisingly, these anomalous acoustic phonons were found to increase in frequency with temperature. First-principles calculations showed that with lattice expansion, the potentials for the anomalous acoustic phonons transform from quadratic to quartic, stabilizingmore » the rutile phase at high temperatures. In these modes, the vibrational displacements of adjacent Ti and O atoms cause variations in hybridization of 3d electrons of Ti and 2p electrons of O atoms. Finally, with thermal expansion, the energy variation in this “phonon-tracked hybridization” flattens the bottom of the interatomic potential well between Ti and O atoms, and induces a quarticity in the phonon potential.« less

  17. Phonon quarticity induced by changes in phonon-tracked hybridization during lattice expansion and its stabilization of rutile TiO2

    NASA Astrophysics Data System (ADS)

    Lan, Tian; Li, C. W.; Hellman, O.; Kim, D. S.; Muñoz, J. A.; Smith, H.; Abernathy, D. L.; Fultz, B.

    2015-08-01

    Although the rutile structure of TiO2 is stable at high temperatures, the conventional quasiharmonic approximation predicts that several acoustic phonons decrease anomalously to zero frequency with thermal expansion, incorrectly predicting a structural collapse at temperatures well below 1000 K. Inelastic neutron scattering was used to measure the temperature dependence of the phonon density of states (DOS) of rutile TiO2 from 300 to 1373 K. Surprisingly, these anomalous acoustic phonons were found to increase in frequency with temperature. First-principles calculations showed that with lattice expansion, the potentials for the anomalous acoustic phonons transform from quadratic to quartic, stabilizing the rutile phase at high temperatures. In these modes, the vibrational displacements of adjacent Ti and O atoms cause variations in hybridization of 3 d electrons of Ti and 2 p electrons of O atoms. With thermal expansion, the energy variation in this "phonon-tracked hybridization" flattens the bottom of the interatomic potential well between Ti and O atoms, and induces a quarticity in the phonon potential.

  18. Piezoelectric surface acoustical phonon amplification in graphene on a GaAs substrate

    SciTech Connect

    Nunes, O. A. C.

    2014-06-21

    We study the interaction of Dirac Fermions in monolayer graphene on a GaAs substrate in an applied electric field by the combined action of the extrinsic potential of piezoelectric surface acoustical phonons of GaAs (piezoelectric acoustical (PA)) and of the intrinsic deformation potential of acoustical phonons in graphene (deformation acoustical (DA)). We find that provided the dc field exceeds a threshold value, emission of piezoelectric (PA) and deformation (DA) acoustical phonons can be obtained in a wide frequency range up to terahertz at low and high temperatures. We found that the phonon amplification rate R{sup PA,DA} scales with T{sub BG}{sup S−1} (S=PA,DA), T{sub BG}{sup S} being the Block−Gru{sup ¨}neisen temperature. In the high-T Block−Gru{sup ¨}neisen regime, extrinsic PA phonon scattering is suppressed by intrinsic DA phonon scattering, where the ratio R{sup PA}/R{sup DA} scales with ≈1/√(n), n being the carrier concentration. We found that only for carrier concentration n≤10{sup 10}cm{sup −2}, R{sup PA}/R{sup DA}>1. In the low-T Block−Gru{sup ¨}neisen regime, and for n=10{sup 10}cm{sup −2}, the ratio R{sup PA}/R{sup DA} scales with T{sub BG}{sup DA}/T{sub BG}{sup PA}≈7.5 and R{sup PA}/R{sup DA}>1. In this regime, PA phonon dominates the electron scattering and R{sup PA}/R{sup DA}<1 otherwise. This study is relevant to the exploration of the acoustic properties of graphene and to the application of graphene as an acoustical phonon amplifier and a frequency-tunable acoustical phonon device.

  19. Wave phenomena in phononic crystals

    NASA Astrophysics Data System (ADS)

    Sukhovich, Alexey

    Novel wave phenomena in two- and three-dimensional (2D and 3D) phononic crystals were investigated experimentally using ultrasonic techniques. These ultrasonic techniques allow the full wave field to be imaged directly, which is a considerable advantage in fundamental studies of wave propagation in periodic media. Resonant tunnelling of ultrasonic waves was successfully observed for the first time by measuring the transmission of ultrasound pulses through a double barrier consisting of two 3D phononic crystals separated by a cavity. This effect is the classical analogue of resonant tunnelling of a quantum mechanical particle through a double potential barrier, in which transmission reaches unity at resonant frequencies. For phononic crystals, the tunnelling peak was found to be less than unity, an effect that was explained by absorption. Absorption introduces a small propagating component inside the crystals in addition to the dominant evanescent mode at band gap frequencies, and causes leakage of the pulse from the cavity. The dynamics of resonant tunnelling was explored by measuring the group velocities of the ultrasonic pulses. Very slow and very fast velocities were found at frequencies close to and at the resonance, respectively. These extreme values are less than the speed of sound in air and greater than the speed of sound in any of the crystal's constituent materials. Negative refraction and focusing effects in 2D phononic crystals were also observed. Negative refraction of ultrasound was demonstrated unambiguously in a prism-shaped 2D crystal at frequencies in the 2nd pass band, where the equifrequency contours are circular so that the wave vector and group velocity are antiparallel. The Multiple Scattering Theory and Snell's law allowed theoretical predictions of the refraction angles. Excellent agreement was found between theory and experiment. The negative refraction experiments revealed a mechanism that can be used to focus ultrasound using a flat

  20. High frequency ultrasonic scattering by biological tissues

    NASA Astrophysics Data System (ADS)

    Shung, K. Kirk; Maruvada, Subha

    2002-05-01

    High frequency (HF) diagnostic ultrasonic imaging devices at frequencies higher than 20 MHz have found applications in ophthalmology, dermatology, and vascular surgery. To be able to interpret these images and to further the development of these devices, a better understanding of ultrasonic scattering in biological tissues such as blood, liver, myocardium in the high frequency range is crucial. This work has previously been hampered by the lack of suitable transducers. With the availability of HF transducers going to 90 MHz, HF attenuation and backscatter experiments have been made on porcine red blood cell (RBC) suspensions, for which much data on attenuation and backscatter can be found in the literature in the lower frequency range for frequencies, from 30 to 90 MHz and on bovine tissues for frequencies from 10 to 30 MHz using a modified substitution method that allow the utilization of focused transducers. These results will be reviewed in this talk along with relevant theoretical models that could be applied to interpreting them. The relevance of the parameter that has been frequently used in the biomedical ultrasound literature to describe backscattering, the backscattering coefficient, will be critically examined.

  1. Degradation of PAHs by high frequency ultrasound.

    PubMed

    Manariotis, Ioannis D; Karapanagioti, Hrissi K; Chrysikopoulos, Constantinos V

    2011-04-01

    Polycyclic aromatic hydrocarbons (PAHs) are persistent organic compounds, which have been reported in the literature to efficiently degrade at low (e.g. 20 kHz) and moderate (e.g. 506 kHz) ultrasound frequencies. The present study focuses on degradation of naphthalene, phenanthrene, and pyrene by ultrasound at three different relatively high frequencies (i.e. 582, 862, and 1142 kHz). The experimental results indicate that for all three frequencies and power inputs ≥ 133 W phenanthrene degrades to concentrations lower than our experimental detection limit (<1 μg/L). Phenanthrene degrades significantly faster at 582 kHz than at 862 and 1142 kHz. For all three frequencies, the degradation rates per unit mass are similar for naphthalene and phenanthrene and lower for pyrene. Furthermore, naphthalene degradation requires less energy than phenanthrene, which requires less energy than pyrene under the same conditions. No hexane-extractable metabolites were identified in the solutions.

  2. High-frequency micromechanical columnar resonators

    PubMed Central

    Kehrbusch, Jenny; Ilin, Elena A; Bozek, Peter; Radzio, Bernhard; Oesterschulze, Egbert

    2009-01-01

    High-frequency silicon columnar microresonators are fabricated using a simple but effective technological scheme. An optimized fabrication scheme was invented to obtain mechanically protected microcolumns with lateral dimensions controlled on a scale of at least 1 μm. In this paper, we investigate the influence of the environmental conditions on the mechanical resonator properties. At ambient conditions, we observed a frequency stability δf/f of less than 10−6 during 5 h of operation at almost constant temperature. However, varying the temperature shifts the frequency by approximately −173 Hz °C− 1. In accordance with a viscous damping model of the ambient gas, we perceived that the quality factor of the first flexural mode decreased with the inverse of the square root of pressure. However, in the low-pressure regime, a linear dependence was observed. We also investigated the influence of the type of the immersing gas on the resonant frequency. PMID:27877296

  3. Folded acoustic phonons in (Al,Ga)As quasiperiodic superlattices

    NASA Astrophysics Data System (ADS)

    Nakayama, M.; Kato, H.; Nakashima, S.

    1987-08-01

    We have investigated Raman scattering by acoustic phonons in (Al,Ga)As Fibonacci superlattices grown by molecular-beam epitaxy. Many sharp doublet peaks, which are analogous to those produced by Raman scattering by folded acoustic phonons in periodic superlattices, appear at nonequal intervals in the Raman spectra. Assuming that the quasiperiodicities originating in the Fibonacci sequence cause zone-folding effects on acoustic phonons, folded-phonon frequencies calculated using an elastic continuum model are in good agreement with observed doublet-peak frequencies. We also discuss the intensity profiles of Raman scattering by folded phonons on the basis of a photoelastic model.

  4. RF Breakdown in High Frequency Accelerators

    SciTech Connect

    Doebert, S

    2004-05-27

    RF breakdown in high-frequency accelerators appears to limit the maximum achievable gradient as well as the reliability of such devices. Experimental results from high power tests, obtained mostly in the framework of the NLC/GLC project at 11 GHz and from the CLIC study at 30 GHz, will be used to illustrate the important issues. The dependence of the breakdown phenomena on rf pulse length, operating frequency and fabrication material will be described. Since reliability is extremely important for large scale accelerators such as a linear collider, the measurements of breakdown rate as a function of the operating gradient will be highlighted.

  5. A High Power Frequency Doubled Fiber Laser

    NASA Technical Reports Server (NTRS)

    Thompson, Robert J.; Tu, Meirong; Aveline, Dave; Lundblad, Nathan; Maleki, Lute

    2003-01-01

    This viewgraph presentation reports on the development of a high power 780 nm laser suitable for space applications of laser cooling. A possible solution is to use frequency doubling of high power 1560 nm telecom lasers. The presentation shows a diagram of the frequency conversion, and a graph of the second harmonic generation in one crystal, and the use of the cascading crystals. Graphs show the second harmonic power as a function of distance between crystals, second harmonic power vs. pump power, tunability of laser systems.

  6. A High Power Frequency Doubled Fiber Laser

    NASA Technical Reports Server (NTRS)

    Thompson, Robert J.; Tu, Meirong; Aveline, Dave; Lundblad, Nathan; Maleki, Lute

    2003-01-01

    This viewgraph presentation reports on the development of a high power 780 nm laser suitable for space applications of laser cooling. A possible solution is to use frequency doubling of high power 1560 nm telecom lasers. The presentation shows a diagram of the frequency conversion, and a graph of the second harmonic generation in one crystal, and the use of the cascading crystals. Graphs show the second harmonic power as a function of distance between crystals, second harmonic power vs. pump power, tunability of laser systems.

  7. Metrology For High-Frequency Nanoelectronics

    SciTech Connect

    Wallis, T. Mitch; Imtiaz, Atif; Nembach, Hans T.; Rice, Paul; Kabos, Pavel

    2007-09-26

    Two metrological tools for high-frequency measurements of nanoscale systems are described: (i) two/N-port analysis of nanoscale devices as well as (ii) near-field scanning microwave microscopy (NSMM) for materials characterization. Calibrated two/N-port measurements were made on multiwalled carbon nanotubes (MWNT) welded to a coplanar waveguide. Significant changes in the extracted high-frequency electrical response of the welded MWNT were measured when the contacts to the MWNT were modified. Additionally, NSMM was used to characterize films of nanotube soot deposited on copper and sapphire substrates. The material properties of the films showed a strong dependence on the substrate material.

  8. Temperature dependence of coherent phonons in TbVO4 crystal probed by ultrafast optical spectroscopy

    NASA Astrophysics Data System (ADS)

    Jin, Z.; Ma, H.; Li, D.; Wang, L.; Ma, G.; Guo, F.; Chen, J.

    2011-07-01

    Coherent optical phonons in terbium vanadate (TbVO4) are investigated by using femtosecond time-resolved pump-probe spectroscopy at temperatures from 20 to 300 K. Combined with the Raman spectrum, the coherent phonon mode is attributed to an optical phonon mode of B1g symmetry. The main generation mechanism of the coherent optical phonons is revealed to be the impulsive stimulated Raman scattering. The temperature dependence of the dephasing time reveals that the main mechanism of the coherent phonon population decay is anharmonic phonon-phonon coupling, which causes a redshift of the coherent phonon frequency with increasing temperature.

  9. High frequency inductive lamp and power oscillator

    DOEpatents

    MacLennan, Donald A.; Dymond, Jr., Lauren E.; Gitsevich, Aleksandr; Grimm, William G.; Kipling, Kent; Kirkpatrick, Douglas A.; Ola, Samuel A.; Simpson, James E.; Trimble, William C.; Tsai, Peter; Turner, Brian P.

    2001-01-01

    A high frequency inductively coupled electrodeless lamp includes an excitation coil with an effective electrical length which is less than one half wavelength of a driving frequency applied thereto, preferably much less. The driving frequency may be greater than 100 MHz and is preferably as high as 915 MHz. Preferably, the excitation coil is configured as a non-helical, semi-cylindrical conductive surface having less than one turn, in the general shape of a wedding ring. At high frequencies, the current in the coil forms two loops which are spaced apart and parallel to each other. Configured appropriately, the coil approximates a Helmholtz configuration. The lamp preferably utilizes an bulb encased in a reflective ceramic cup with a pre-formed aperture defined therethrough. The ceramic cup may include structural features to aid in alignment and I or a flanged face to aid in thermal management. The lamp head is preferably an integrated lamp head comprising a metal matrix composite surrounding an insulating ceramic with the excitation integrally formed on the ceramic. A novel solid-state oscillator preferably provides RF power to the lamp. The oscillator is a single active element device capable of providing over 70 watts of power at over 70% efficiency. Various control circuits may be employed to adjust the driving frequency of the oscillator.

  10. High frequency inductive lamp and power oscillator

    DOEpatents

    MacLennan, Donald A.; Turner, Brian P.; Dolan, James T.; Kirkpatrick, Douglas A.; Leng, Yongzhang

    2000-01-01

    A high frequency inductively coupled electrodeless lamp includes an excitation coil with an effective electrical length which is less than one half wavelength of a driving frequency applied thereto, preferably much less. The driving frequency may be greater than 100 MHz and is preferably as high as 915 MHz. Preferably, the excitation coil is configured as a non-helical, semi-cylindrical conductive surface having less than one turn, in the general shape of a wedding ring. At high frequencies, the current in the coil forms two loops which are spaced apart and parallel to each other. Configured appropriately, the coil approximates a Helmholtz configuration. The lamp preferably utilizes an bulb encased in a reflective ceramic cup with a pre-formed aperture defined therethrough. The ceramic cup may include structural features to aid in alignment and/or a flanged face to aid in thermal management. The lamp head is preferably an integrated lamp head comprising a metal matrix composite surrounding an insulating ceramic with the excitation integrally formed on the ceramic. A novel solid-state oscillator preferably provides RF power to the lamp. The oscillator is a single active element device capable of providing over 70 watts of power at over 70% efficiency. Various control circuits may be employed to match the driving frequency of the oscillator to a plurality of tuning states of the lamp.

  11. High-Resolution Faraday Rotation and Electron-Phonon Coupling in Surface States of the Bulk-Insulating Topological Insulator Cu_{0.02}Bi_{2}Se_{3}.

    PubMed

    Wu, Liang; Tse, Wang-Kong; Brahlek, M; Morris, C M; Aguilar, R Valdés; Koirala, N; Oh, S; Armitage, N P

    2015-11-20

    We have utilized time-domain magnetoterahertz spectroscopy to investigate the low-frequency optical response of the topological insulator Cu_{0.02}Bi_{2}Se_{3} and Bi_{2}Se_{3} films. With both field and frequency dependence, such experiments give sufficient information to measure the mobility and carrier density of multiple conduction channels simultaneously. We observe sharp cyclotron resonances (CRs) in both materials. The small amount of Cu incorporated into the Cu_{0.02}Bi_{2}Se_{3} induces a true bulk insulator with only a single type of conduction with a total sheet carrier density of ~4.9×10^{12}/cm^{2} and mobility as high as 4000 cm^{2}/V·s. This is consistent with conduction from two virtually identical topological surface states (TSSs) on the top and bottom of the film with a chemical potential ~145 meV above the Dirac point and in the bulk gap. The CR broadens at high fields, an effect that we attribute to an electron-phonon interaction. This assignment is supported by an extended Drude model analysis of the zero-field Drude conductance. In contrast, in normal Bi_{2}Se_{3} films, two conduction channels were observed, and we developed a self-consistent analysis method to distinguish the dominant TSSs and coexisting trivial bulk or two-dimensional electron gas states. Our high-resolution Faraday rotation spectroscopy on Cu_{0.02}Bi_{2}Se_{3} paves the way for the observation of quantized Faraday rotation under experimentally achievable conditions to push the chemical potential in the lowest Landau level.

  12. Weak electron–phonon coupling contributing to high thermoelectric performance in n-type PbSe

    PubMed Central

    Wang, Heng; Pei, Yanzhong; LaLonde, Aaron D.; Snyder, G. Jeffrey

    2012-01-01

    PbSe is a surprisingly good thermoelectric material due, in part, to its low thermal conductivity that had been overestimated in earlier measurements. The thermoelectric figure of merit, zT, can exceed 1 at high temperatures in both p-type and n-type PbSe, similar to that found in PbTe. While the p-type lead chalcogenides (PbSe and PbTe) benefit from the high valley degeneracy (12 or more at high temperature) of the valence band, the n-type versions are limited to a valley degeneracy of 4 in the conduction band. Yet the n-type lead chalcogenides achieve a zT nearly as high as the p-type lead chalcogenides. This effect can be attributed to the weaker electron–phonon coupling (lower deformation potential coefficient) in the conduction band as compared with that in the valence band, which leads to higher mobility of electrons compared to that of holes. This study of PbSe illustrates the importance of the deformation potential coefficient of the charge-carrying band as one of several key parameters to consider for band structure engineering and the search for high performance thermoelectric materials. PMID:22615358

  13. High resolution low frequency ultrasonic tomography.

    PubMed

    Lasaygues, P; Lefebvre, J P; Mensah, S

    1997-10-01

    Ultrasonic reflection tomography results from a linearization of the inverse acoustic scattering problem, named the inverse Born approximation. The goal of ultrasonic reflection tomography is to obtain reflectivity images from backscattered measurements. This is a Fourier synthesis problem and the first step is to correctly cover the frequency space of the object. For this inverse problem, we use the classical algorithm of tomographic reconstruction by summation of filtered backprojections. In practice, only a limited number of views are available with our mechanical rig, typically 180, and the frequency bandwidth of the pulses is very limited, typically one octave. The resolving power of the system is them limited by the bandwidth of the pulse. Low and high frequencies can be restored by use of a deconvolution algorithm that enhances resolution. We used a deconvolution technique based on the Papoulis method. The advantage of this technique is conservation of the overall frequency information content of the signals. The enhancement procedure was tested by imaging a square aluminium rod with a cross-section less than the wavelength. In this application, the central frequency of the transducer was 250 kHz so that the central wavelength was 6 mm whereas the cross-section of the rod was 4 mm. Although the Born approximation was not theoretically valid in this case (high contrast), a good reconstruction was obtained.

  14. Raman scattering study of anharmonic phonon decay in InN

    NASA Astrophysics Data System (ADS)

    Domènech-Amador, Núria; Cuscó, Ramon; Artús, Luis; Yamaguchi, Tomohiro; Nanishi, Yasushi

    2011-06-01

    We present Raman scattering measurements on wurtzite InN over a temperature range from 80 to 660 K. To investigate all phonon modes of the wurtzite structure, measurements were performed on c and m faces of high-quality InN epilayers. High-resolution measurements of the low-frequency E2 mode reveal a slight anharmonic broadening of such a long-lived phonon due to up-conversion processes and a substantial contribution of background impurity broadening in the determination of its linewidth. An analysis of the anharmonicity and lifetimes of the InN phonons is carried out. Possible decay channels including up-conversion processes and four-phonon processes are discussed on the basis of density functional theory calculations.

  15. Revealing the mechanism of passive transport in lipid bilayers via phonon-mediated nanometre-scale density fluctuations

    SciTech Connect

    Zhernenkov, Mikhail; Bolmatov, Dima; Soloviov, Dmitry; Zhernenkov, Kirill; Toperverg, Boris P.; Cunsolo, Alessandro; Bosak, Alexey; Cai, Yong Q.

    2016-05-12

    The passive transport of molecules through a cell membrane relies on thermal motions of the lipids. However, the nature of transmembrane transport and the precise mechanism remain elusive and call for a comprehensive study of phonon excitations. Here we report a high resolution inelastic X-ray scattering study of the in-plane phonon excitations in 1,2-dipalmitoyl-sn-glycero-3-phosphocholine above and below the main transition temperature. In the gel phase, for the first time, we observe low-frequency transverse modes, which exhibit a phonon gap when the lipid transitions into the fluid phase. We argue that the phonon gap signifies the formation of short-lived nanometre-scale lipid clusters and transient pores, which facilitate the passive molecular transport across the bilayer plane. Finally, our findings suggest that the phononic motion of the hydrocarbon tails provides an effective mechanism of passive transport, and illustrate the importance of the collective dynamics of biomembranes.

  16. Revealing the mechanism of passive transport in lipid bilayers via phonon-mediated nanometre-scale density fluctuations

    PubMed Central

    Zhernenkov, Mikhail; Bolmatov, Dima; Soloviov, Dmitry; Zhernenkov, Kirill; Toperverg, Boris P.; Cunsolo, Alessandro; Bosak, Alexey; Cai, Yong Q.

    2016-01-01

    The passive transport of molecules through a cell membrane relies on thermal motions of the lipids. However, the nature of transmembrane transport and the precise mechanism remain elusive and call for a comprehensive study of phonon excitations. Here we report a high resolution inelastic X-ray scattering study of the in-plane phonon excitations in 1,2-dipalmitoyl-sn-glycero-3-phosphocholine above and below the main transition temperature. In the gel phase, for the first time, we observe low-frequency transverse modes, which exhibit a phonon gap when the lipid transitions into the fluid phase. We argue that the phonon gap signifies the formation of short-lived nanometre-scale lipid clusters and transient pores, which facilitate the passive molecular transport across the bilayer plane. Our findings suggest that the phononic motion of the hydrocarbon tails provides an effective mechanism of passive transport, and illustrate the importance of the collective dynamics of biomembranes. PMID:27175859

  17. High spectral purity Kerr frequency comb radio frequency photonic oscillator

    PubMed Central

    Liang, W.; Eliyahu, D.; Ilchenko, V. S.; Savchenkov, A. A.; Matsko, A. B.; Seidel, D.; Maleki, L.

    2015-01-01

    Femtosecond laser-based generation of radio frequency signals has produced astonishing improvements in achievable spectral purity, one of the basic features characterizing the performance of an radio frequency oscillator. Kerr frequency combs hold promise for transforming these lab-scale oscillators to chip-scale level. In this work we demonstrate a miniature 10 GHz radio frequency photonic oscillator characterized with phase noise better than −60 dBc Hz−1 at 10 Hz, −90 dBc Hz−1 at 100 Hz and −170 dBc Hz−1 at 10 MHz. The frequency stability of this device, as represented by Allan deviation measurements, is at the level of 10−10 at 1–100 s integration time—orders of magnitude better than existing radio frequency photonic devices of similar size, weight and power consumption. PMID:26260955

  18. High spectral purity Kerr frequency comb radio frequency photonic oscillator.

    PubMed

    Liang, W; Eliyahu, D; Ilchenko, V S; Savchenkov, A A; Matsko, A B; Seidel, D; Maleki, L

    2015-08-11

    Femtosecond laser-based generation of radio frequency signals has produced astonishing improvements in achievable spectral purity, one of the basic features characterizing the performance of an radio frequency oscillator. Kerr frequency combs hold promise for transforming these lab-scale oscillators to chip-scale level. In this work we demonstrate a miniature 10 GHz radio frequency photonic oscillator characterized with phase noise better than -60 dBc Hz(-1) at 10 Hz, -90 dBc Hz(-1) at 100 Hz and -170 dBc Hz(-1) at 10 MHz. The frequency stability of this device, as represented by Allan deviation measurements, is at the level of 10(-10) at 1-100 s integration time-orders of magnitude better than existing radio frequency photonic devices of similar size, weight and power consumption.

  19. [High-frequency oscillatory ventilation in neonates].

    PubMed

    2002-09-01

    High-frequency oscillatory ventilation (HFOV) may be considered as an alternative in the management of severe neonatal respiratory failure requiring mechanical ventilation. In patients with diffuse pulmonary disease, HFOV can applied as a rescue therapy with a high lung volume strategy to obtain adequate alveolar recruitment. We review the mechanisms of gas exchange, as well as the indications, monitoring and special features of the use HVOF in the neonatal period.

  20. Molecular dynamics study of phonon screening in graphene

    NASA Astrophysics Data System (ADS)

    Javvaji, Brahmanandam; Roy Mahapatra, D.; Raha, S.

    2014-04-01

    Phonon interaction with electrons or phonons or with structural defects result in a phonon mode conversion. The mode conversion is governed by the frequency wave-vector dispersion relation. The control over phonon mode or the screening of phonon in graphene is studied using the propagation of amplitude modulated phonon wave-packet. Control over phonon properties like frequency and velocity opens up several wave guiding, energy transport and thermo-electric applications of graphene. One way to achieve this control is with the introduction of nano-structured scattering in the phonon path. Atomistic model of thermal energy transport is developed which is applicable to devices consisting of source, channel and drain parts. Longitudinal acoustic phononmode is excited fromone end of the device. Molecular dynamics based time integration is adopted for the propagation of excited phonon to the other end of the device. The amount of energy transfer is estimated from the relative change of kinetic energy. Increase in the phonon frequency decreases the kinetic energy transmission linearly in the frequency band of interest. Further reduction in transmission is observed with the tuning of channel height of the device by increasing the boundary scattering. Phonon mode selective transmission control have potential application in thermal insulation or thermo-electric application or photo-thermal amplification.

  1. High efficiency quantum cascade laser frequency comb

    PubMed Central

    Lu, Quanyong; Wu, Donghai; Slivken, Steven; Razeghi, Manijeh

    2017-01-01

    An efficient mid-infrared frequency comb source is of great interest to high speed, high resolution spectroscopy and metrology. Here we demonstrate a mid-IR quantum cascade laser frequency comb with a high power output and narrow beatnote linewidth at room temperature. The active region was designed with a strong-coupling between the injector and the upper lasing level for high internal quantum efficiency and a broadband gain. The group velocity dispersion was engineered for efficient, broadband mode-locking via four wave mixing. The comb device exhibits a narrow intermode beatnote linewidth of 50.5 Hz and a maximum wall-plug efficiency of 6.5% covering a spectral coverage of 110 cm−1 at λ ~ 8 μm. The efficiency is improved by a factor of 6 compared with previous demonstrations. The high power efficiency and narrow beatnote linewidth will greatly expand the applications of quantum cascade laser frequency combs including high-precision remote sensing and spectroscopy. PMID:28262834

  2. High efficiency quantum cascade laser frequency comb

    NASA Astrophysics Data System (ADS)

    Lu, Quanyong; Wu, Donghai; Slivken, Steven; Razeghi, Manijeh

    2017-03-01

    An efficient mid-infrared frequency comb source is of great interest to high speed, high resolution spectroscopy and metrology. Here we demonstrate a mid-IR quantum cascade laser frequency comb with a high power output and narrow beatnote linewidth at room temperature. The active region was designed with a strong-coupling between the injector and the upper lasing level for high internal quantum efficiency and a broadband gain. The group velocity dispersion was engineered for efficient, broadband mode-locking via four wave mixing. The comb device exhibits a narrow intermode beatnote linewidth of 50.5 Hz and a maximum wall-plug efficiency of 6.5% covering a spectral coverage of 110 cm‑1 at λ ~ 8 μm. The efficiency is improved by a factor of 6 compared with previous demonstrations. The high power efficiency and narrow beatnote linewidth will greatly expand the applications of quantum cascade laser frequency combs including high-precision remote sensing and spectroscopy.

  3. High efficiency quantum cascade laser frequency comb.

    PubMed

    Lu, Quanyong; Wu, Donghai; Slivken, Steven; Razeghi, Manijeh

    2017-03-06

    An efficient mid-infrared frequency comb source is of great interest to high speed, high resolution spectroscopy and metrology. Here we demonstrate a mid-IR quantum cascade laser frequency comb with a high power output and narrow beatnote linewidth at room temperature. The active region was designed with a strong-coupling between the injector and the upper lasing level for high internal quantum efficiency and a broadband gain. The group velocity dispersion was engineered for efficient, broadband mode-locking via four wave mixing. The comb device exhibits a narrow intermode beatnote linewidth of 50.5 Hz and a maximum wall-plug efficiency of 6.5% covering a spectral coverage of 110 cm(-1) at λ ~ 8 μm. The efficiency is improved by a factor of 6 compared with previous demonstrations. The high power efficiency and narrow beatnote linewidth will greatly expand the applications of quantum cascade laser frequency combs including high-precision remote sensing and spectroscopy.

  4. Ionospheric modifications in high frequency heating experiments

    SciTech Connect

    Kuo, Spencer P.

    2015-01-15

    Featured observations in high-frequency (HF) heating experiments conducted at Arecibo, EISCAT, and high frequency active auroral research program are discussed. These phenomena appearing in the F region of the ionosphere include high-frequency heater enhanced plasma lines, airglow enhancement, energetic electron flux, artificial ionization layers, artificial spread-F, ionization enhancement, artificial cusp, wideband absorption, short-scale (meters) density irregularities, and stimulated electromagnetic emissions, which were observed when the O-mode HF heater waves with frequencies below foF2 were applied. The implication and associated physical mechanism of each observation are discussed and explained. It is shown that these phenomena caused by the HF heating are all ascribed directly or indirectly to the excitation of parametric instabilities which instigate anomalous heating. Formulation and analysis of parametric instabilities are presented. The results show that oscillating two stream instability and parametric decay instability can be excited by the O-mode HF heater waves, transmitted from all three heating facilities, in the regions near the HF reflection height and near the upper hybrid resonance layer. The excited Langmuir waves, upper hybrid waves, ion acoustic waves, lower hybrid waves, and field-aligned density irregularities set off subsequent wave-wave and wave-electron interactions, giving rise to the observed phenomena.

  5. Ionospheric modifications in high frequency heating experiments

    NASA Astrophysics Data System (ADS)

    Kuo, Spencer P.

    2015-01-01

    Featured observations in high-frequency (HF) heating experiments conducted at Arecibo, EISCAT, and high frequency active auroral research program are discussed. These phenomena appearing in the F region of the ionosphere include high-frequency heater enhanced plasma lines, airglow enhancement, energetic electron flux, artificial ionization layers, artificial spread-F, ionization enhancement, artificial cusp, wideband absorption, short-scale (meters) density irregularities, and stimulated electromagnetic emissions, which were observed when the O-mode HF heater waves with frequencies below foF2 were applied. The implication and associated physical mechanism of each observation are discussed and explained. It is shown that these phenomena caused by the HF heating are all ascribed directly or indirectly to the excitation of parametric instabilities which instigate anomalous heating. Formulation and analysis of parametric instabilities are presented. The results show that oscillating two stream instability and parametric decay instability can be excited by the O-mode HF heater waves, transmitted from all three heating facilities, in the regions near the HF reflection height and near the upper hybrid resonance layer. The excited Langmuir waves, upper hybrid waves, ion acoustic waves, lower hybrid waves, and field-aligned density irregularities set off subsequent wave-wave and wave-electron interactions, giving rise to the observed phenomena.

  6. The LASI high-frequency ellipticity system

    SciTech Connect

    Sternberg, B.K.; Poulton, M.M.

    1995-12-31

    A high-frequency, high-resolution, electromagnetic (EM) imaging system has been developed for environmental geophysics surveys. Some key features of this system include: (1) rapid surveying to allow dense spatial sampling over a large area, (2) high-accuracy measurements which are used to produce a high-resolution image of the subsurface, (3) measurements which have excellent signal-to-noise ratio over a wide bandwidth (31 kHz to 32 MHz), (4) large-scale physical modeling to produce accurate theoretical responses over targets of interest in environmental geophysics surveys, (5) rapid neural network interpretation at the field site, and (6) visualization of complex structures during the survey.

  7. The LASI high-frequency ellipticity system

    SciTech Connect

    Sternberg, B.K.; Poulton, M.M.

    1995-10-01

    A high-frequency, high-resolution, electromagnetic (EM) imaging system has been developed for environmental geophysics surveys. Some key features of this system include: (1) rapid surveying to allow dense spatial sampling over a large area, (2) high-accuracy measurements which are used to produce a high-resolution image of the subsurface, (3) measurements which have excellent signal-to-noise ratio over a wide bandwidth (31 kHz to 32 MHz), (4) large-scale physical modeling to produce accurate theoretical responses over targets of interest in environmental geophysics surveys, (5) rapid neural network interpretation at the field site, and (6) visualization of complex structures during the survey.

  8. Frequency dependent polarization analysis of high-frequency seismograms

    NASA Astrophysics Data System (ADS)

    Park, Jeffrey; Vernon, Frank L., III; Lindberg, Craig R.

    1987-11-01

    We present a multitaper algorithm to estimate the polarization of particle motion as a function of frequency from three-component seismic data. This algorithm is based on a singular value decomposition of a matrix of eigenspectra at a given frequency. The right complex eigenvector zˆ corresonding to the largest singular value of the matrix has the same direction as the dominant polarization of seismic motion at that frequency. The elements of the polarization vector zˆ specify the relative amplitudes and phases of motion measured along the recorded components within a chosen frequency band. The width of this frequency band is determined by the time-bandwidth product of the prolate spheroidal tapers used in the analysis. We manipulate the components of zˆ to determine the apparent azimuth and angle of incidence of seismic motion as a function of frequency. The orthogonality of the eigentapers allows one to calculate easily uncertainties in the estimated azimuth and angle of incidence. We apply this algorithm to data from the Anza Seismic Telemetered Array in the frequency band 0 ≤ ƒ ≤ 30 Hz. The polarization is not always a smooth function of frequency and can exhibit sharp jumps, suggesting the existence of scattered modes within the crustal waveguide and/or receiver site resonances.

  9. High-frequency resonant-tunneling oscillators

    NASA Technical Reports Server (NTRS)

    Brown, E. R.; Parker, C. D.; Calawa, A. R.; Manfra, M. J.; Chen, C. L.

    1991-01-01

    Advances in high-frequency resonant-tunneling-diode (RTD) oscillators are described. Oscillations up to a frequency of 420 GHz have been achieved in the GaAs/AlAs system. Recent results obtained with In0.53Ga0.47As/AlAs and InAs/AlSb RTDs show a greatly increased power density and indicate the potential for fundamental oscillations up to about 1 THz. These results are consistent with a lumped-element equivalent circuit model of the RTD. The model shows that the maximum oscillation frequency of the GaAs/AlAs RTDs is limited primarily by series resistance, and that the power density is limited by low peak-to-valley current ratio.

  10. High Frequency Laser-Based Ultrasound

    SciTech Connect

    Huber, R; Chinn, D; Balogun, O; Murray, T

    2005-09-12

    To obtain micrometer resolution of materials using acoustics requires frequencies around 1 GHz. Attenuation of such frequencies is high, limiting the thickness of the parts that can be characterized. Although acoustic microscopes can operate up to several GHz in frequency, they are used primarily as a surface characterization tool. The use of a pulsed laser for acoustic generation allows generation directly in the part, eliminating the loss of energy associated with coupling the energy from a piezoelectric transducer to the part of interest. The use of pulsed laser acoustic generation in combination with optical detection is investigated for the non-contact characterization of materials with features that must be characterized to micrometer resolution.

  11. Monolithic phononic crystals with a surface acoustic band gap from surface phonon-polariton coupling.

    PubMed

    Yudistira, D; Boes, A; Djafari-Rouhani, B; Pennec, Y; Yeo, L Y; Mitchell, A; Friend, J R

    2014-11-21

    We theoretically and experimentally demonstrate the existence of complete surface acoustic wave band gaps in surface phonon-polariton phononic crystals, in a completely monolithic structure formed from a two-dimensional honeycomb array of hexagonal shape domain-inverted inclusions in single crystal piezoelectric Z-cut lithium niobate. The band gaps appear at a frequency of about twice the Bragg band gap at the center of the Brillouin zone, formed through phonon-polariton coupling. The structure is mechanically, electromagnetically, and topographically homogeneous, without any physical alteration of the surface, offering an ideal platform for many acoustic wave applications for photonics, phononics, and microfluidics.

  12. Electronic properties and electron-phonon interaction in complex, multicomponent alloys in application to high-entropy alloys

    NASA Astrophysics Data System (ADS)

    Samolyuk, German; Daene, Markus; Stocks, George Malcolm; Caro, Jose Alfredo; Stoller, Roger

    2015-03-01

    High-entropy alloys (HEAs) have recently been developed as nontraditional alloy systems. They are composed of multiple elements at or near equiatomic ratios that form random solid solutions on simple underlying fcc or bcc lattices. In recent years HEAs have attracted significant attention due to their high strength, ductility and possible high radiation resistance. The complexity of the alloys results in very interesting electronic system behavior. Even in thermal equilibrium, disorder, especially extreme disorder, has important impacts on all electronic, atomic, and magnetic properties. In the current work we present results of first principle investigation of the electronic and magnetic properties of Ni-based multicomponent concentrated alloys using the coherent potential approximation (CPA). The influence of electronic structure modifications on the electron mean free path and values of electron-phonon coupling are calculated, together with preliminary results on similar quantities obtained by Time Dependent DFT. We discuss possible effects of tuning the mean free path and energy dissipation mechanisms to defect production and recombination in HEAs under irradiation.

  13. Protection circuitry for high frequency ultrasonic NDE

    NASA Astrophysics Data System (ADS)

    Chaggares, N. Chris; Tang, Raymond K.; Sinclair, A. N., Prof.; Foster, F. S., Prof.; Haraierciwz, Kasia; Starkoski, Brian

    2000-05-01

    Most commercial ultrasonic NDE equipment employs a voltage spike to stimulate a piezoelectric transducer. To protect the signal processing unit from damage from this spike, a voltage limiter or "diode clamp" is included in the pulser-receiver, and limits the voltage reaching the amplifier or oscilloscope. In this project, the deleterious effects of such limiters on the ultrasonic echo in the high frequency (50-100 MHz range) have been quantified: these effects include significant distortion in the frequency content, and oscillations causing a drop in timing resolution by over a factor of 2. To address these problems, a high-voltage high-frequency switch has been designed to replace the voltage limiter; the switch directs the high-voltage spike away from the signal processing/display unit, towards an impedance-matched termination. A prototype circuit has been built, based on two high-voltage MOSFET's acting as a switch for the bi-polar stimulation pulse. The reduction in echo distortion and improvement in time resolution have been successfully modeled with the CAD tool HSPICE, although parasitic capacitance in the current generation of commercial MOSFET's is a continuing concern.

  14. High frequency x-ray generator basics.

    PubMed

    Sobol, Wlad T

    2002-02-01

    The purpose of this paper is to present basic functional principles of high frequency x-ray generators. The emphasis is put on physical concepts that determine the engineering solutions to the problem of efficient generation and control of high voltage power required to drive the x-ray tube. The physics of magnetically coupled circuits is discussed first, as a background for the discussion of engineering issues related to high-frequency power transformer design. Attention is paid to physical processes that influence such factors as size, efficiency, and reliability of a high voltage power transformer. The basic electrical circuit of a high frequency generator is analyzed next, with focus on functional principles. This section investigates the role and function of basic components, such as power supply, inverter, and voltage doubler. Essential electronic circuits of generator control are then examined, including regulation of voltage, current and timing of electrical power delivery to the x-ray tube. Finally, issues related to efficient feedback control, including basic design of the AEC circuitry are reviewed.

  15. Reprogrammable Phononic Metasurfaces.

    PubMed

    Bilal, Osama R; Foehr, André; Daraio, Chiara

    2017-08-25

    Phononic metamaterials rely on the presence of resonances in a structured medium to control the propagation of elastic waves. Their response depends on the geometry of their fundamental building blocks. A major challenge in metamaterials design is the realization of basic building blocks that can be tuned dynamically. Here, a metamaterial plate is realized that can be dynamically tuned by harnessing geometric and magnetic nonlinearities in the individual unit cells. The proposed tuning mechanism allows a stiffness variability of the individual unit cells and can control the amplitude of transmitted excitation through the plate over three orders of magnitude. The concepts can be extended to metamaterials at different scales, and they can be applied in a broad range of engineering applications, from seismic shielding at low frequency to ultrasonic cloaking at higher frequency ranges. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. High Frequency Plasma Generators for Ion Thrusters

    NASA Technical Reports Server (NTRS)

    Divergilio, W. F.; Goede, H.; Fosnight, V. V.

    1981-01-01

    The results of a one year program to experimentally adapt two new types of high frequency plasma generators to Argon ion thrusters and to analytically study a third high frequency source concept are presented. Conventional 30 cm two grid ion extraction was utilized or proposed for all three sources. The two plasma generating methods selected for experimental study were a radio frequency induction (RFI) source, operating at about 1 MHz, and an electron cyclotron heated (ECH) plasma source operating at about 5 GHz. Both sources utilize multi-linecusp permanent magnet configurations for plasma confinement. The plasma characteristics, plasma loading of the rf antenna, and the rf frequency dependence of source efficiency and antenna circuit efficiency are described for the RFI Multi-cusp source. In a series of tests of this source at Lewis Research Center, minimum discharge losses of 220+/-10 eV/ion were obtained with propellant utilization of .45 at a beam current of 3 amperes. Possible improvement modifications are discussed.

  17. High-frequency Rayleigh-wave method

    USGS Publications Warehouse

    Xia, J.; Miller, R.D.; Xu, Y.; Luo, Y.; Chen, C.; Liu, J.; Ivanov, J.; Zeng, C.

    2009-01-01

    High-frequency (???2 Hz) Rayleigh-wave data acquired with a multichannel recording system have been utilized to determine shear (S)-wave velocities in near-surface geophysics since the early 1980s. This overview article discusses the main research results of high-frequency surface-wave techniques achieved by research groups at the Kansas Geological Survey and China University of Geosciences in the last 15 years. The multichannel analysis of surface wave (MASW) method is a non-invasive acoustic approach to estimate near-surface S-wave velocity. The differences between MASW results and direct borehole measurements are approximately 15% or less and random. Studies show that simultaneous inversion with higher modes and the fundamental mode can increase model resolution and an investigation depth. The other important seismic property, quality factor (Q), can also be estimated with the MASW method by inverting attenuation coefficients of Rayleigh waves. An inverted model (S-wave velocity or Q) obtained using a damped least-squares method can be assessed by an optimal damping vector in a vicinity of the inverted model determined by an objective function, which is the trace of a weighted sum of model-resolution and model-covariance matrices. Current developments include modeling high-frequency Rayleigh-waves in near-surface media, which builds a foundation for shallow seismic or Rayleigh-wave inversion in the time-offset domain; imaging dispersive energy with high resolution in the frequency-velocity domain and possibly with data in an arbitrary acquisition geometry, which opens a door for 3D surface-wave techniques; and successfully separating surface-wave modes, which provides a valuable tool to perform S-wave velocity profiling with high-horizontal resolution. ?? China University of Geosciences (Wuhan) and Springer-Verlag GmbH 2009.

  18. Probing electronic lifetimes and phonon anharmonicities in high-quality chemical vapor deposited graphene by magneto-Raman spectroscopy

    SciTech Connect

    Neumann, Christoph Stampfer, Christoph; Halpaap, Donatus; Banszerus, Luca; Schmitz, Michael; Beschoten, Bernd; Reichardt, Sven; Watanabe, Kenji; Taniguchi, Takashi

    2015-12-07

    We present a magneto-Raman study on high-quality single-layer graphene grown by chemical vapor deposition (CVD) that is fully encapsulated in hexagonal boron nitride by a dry transfer technique. By analyzing the Raman D, G, and 2D peaks, we find that the structural quality of the samples is comparable with state-of-the-art exfoliated graphene flakes. From B-field dependent Raman measurements, we extract the broadening and associated lifetime of the G peak due to anharmonic effects. Furthermore, we determine the decay width and lifetime of Landau level (LL) transitions from magneto-phonon resonances as a function of laser power. At low laser power, we find a minimal decay width of 140 cm{sup −1} highlighting the high electronic quality of the CVD-grown graphene. At higher laser power, we observe an increase of the LL decay width leading to a saturation, with the corresponding lifetime saturating at a minimal value of 18 fs.

  19. Theoretical studies on phonon density of states in nonstoichiometric palladium hydrides

    NASA Astrophysics Data System (ADS)

    Anzai, D.; Matsuo, S.; Hatakenaka, N.; Ogita, N.; Matsuda, K.; Yasuzuka, S.

    2017-04-01

    We investigate the phonon density of states in nonstoichiometric palladium hydrides PdH x , in order to clarify the contribution of lattice vibrations to superconductivity. We employ the Burger-MacLachlan model, which considers a one-dimensional triply-connected diatomic chains with randomly distributed vacancies, focusing on the <111> direction in the rock-salt lattice of PdH x . The phonon density of states is calculated by the Forced Oscillator Method suitable for random systems. We find that phonon modes at high frequencies change from localized to collective modes with increasing x and the crossover stoichiometry is consistent with that of the appearance of superconductivity. These results support the optical phonon mechanism for superconductivity in PdH x .

  20. Using van Hove singularities of the two-phonon density of states to investigate the intrinsically localized vibrations of NaI crystal.

    NASA Astrophysics Data System (ADS)

    Agyare, Benjamin; Riseborough, Peter

    2017-01-01

    Intrinsically Localized Modes (ILMs) have purportedly been observed in NaI but only for wave-vectors, q at the corner of the 3-D Brillouin Zone. It has been suggested that, for high-symmetry q vectors, several van Hove singularities may converge at one frequency producing a large peak in the two-phonon density of state and giving rise to ILMs with these q values. We fit the experimentally determined acoustic and the optic phonon modes using a nearest neighbor and a next-nearest neighbor force constant. We find that the two-phonon density of states, for fixed q exhibits non-divergent van Hove singularities. The frequencies of these features are found to vary as q is varied. We intend to search for q values at which the two-phonon density of states is enhanced and then examine whether the anharmonic interactions can bind the two-phonon excitations to produce a quantized ILM.

  1. High Frequency Guided Wave Virtual Array SAFT

    NASA Astrophysics Data System (ADS)

    Roberts, R.; Pardini, A.; Diaz, A.

    2003-03-01

    The principles of the synthetic aperture focusing technique (SAFT) are generalized for application to high frequency plate wave signals. It is shown that a flaw signal received in long-range plate wave propagation can be analyzed as if the signals were measured by an infinite array of transducers in an unbounded medium. It is shown that SAFT-based flaw sizing can be performed with as few as three or less actual measurement positions.

  2. High-Frequency Percussive Ventilation Revisited

    DTIC Science & Technology

    2010-01-01

    physiologic and clin- ical outcomes. Pediatric and adult inhalational injury studies have linked HFPV to an improvement in static lung compliance...sedation–analgesic combinations (usually fentanyl with the individual or combined use of midazolam and propofol and/or dexmedetomidine), patient...1998;84:1174–7. 34. Frantz ID III, Close RH. Alveolar pressure swings during high frequency ventilation in rabbits. Pediatr Res 1985;19:162–6. 35. Pillow

  3. Cooling phonons with phonons: Acoustic reservoir engineering with silicon-vacancy centers in diamond

    NASA Astrophysics Data System (ADS)

    Kepesidis, K. V.; Lemonde, M.-A.; Norambuena, A.; Maze, J. R.; Rabl, P.

    2016-12-01

    We study a setup where a single negatively-charged silicon-vacancy center in diamond is magnetically coupled to a low-frequency mechanical bending mode and via strain to the high-frequency phonon continuum of a semiclamped diamond beam. We show that under appropriate microwave driving conditions, this setup can be used to induce a laser-cooling-like effect for the low-frequency mechanical vibrations, where the high-frequency longitudinal compression modes of the beam serve as an intrinsic low-temperature reservoir. We evaluate the experimental conditions under which cooling close to the quantum ground state can be achieved and describe an extended scheme for the preparation of a stationary entangled state between two mechanical modes. By relying on intrinsic properties of the mechanical beam only, this approach offers an interesting alternative for quantum manipulation schemes of mechanical systems, where otherwise efficient optomechanical interactions are not available.

  4. Effect of lattice mismatch on phonon transmission and interface thermal conductance across dissimilar material interfaces

    NASA Astrophysics Data System (ADS)

    Li, Xiaobo; Yang, Ronggui

    2012-08-01

    When phonons transport across a material interface, they experience reflection, transmission, and mode conversion, which results in a local temperature jump at the interface and thus dramatically changes the thermal conductivity of nanostructured materials. Phonon transmission across lattice-matched interfaces has been studied extensively in recent years with the atomistic Green's function (AGF) approach, which usually uses one unit cell to represent the cross section along the interface. However, modeling phonon transmission across realistic material interfaces is much more challenging because realistic interfaces are usually lattice-mismatched ones with atomic reconstruction, defects, and species mixing, which demands a larger cross-sectional area for the AGF simulation. In this paper, an integrated molecular dynamics (MD) and AGF approach is developed to study the phonon transmission across lattice-mismatched interfaces. MD simulation is used to simulate atomic reconstruction close to the interface. The recursive AGF approach is then employed to calculate frequency-dependent phonon transmission across lattice-mismatched interfaces with defects and species mixing, which addresses the numerical challenge in calculating phonon transmission for a relatively large cross-sectional area with reduced computational cost. The study of the relaxed interface formed from two semi-infinite bulk materials shows that lattice mismatch increases the lattice disorder and decreases the adhesion energy, which in turn lowers phonon transmission and reduces the interface thermal conductance across lattice-mismatched interfaces. Low-frequency phonons can be significantly scattered by increasing the defect size across the interface, while high-frequency phonons can be scattered almost completely (phonon transmission < 0.1) across an alloyed layer as thin as 2.27 nm. The effect of lattice mismatch on phonon transmission becomes smaller for interfaces with defects and species mixing. The

  5. High Efficiency Four-Wave Mixing with Relaxation Coupling of Longitude-Optical Phonons in Semiconductor Quantum Wells

    NASA Astrophysics Data System (ADS)

    She, Yan-Chao; Zheng, Xue-Jun; Wang, Deng-Long; Ding, Jian-Wen

    2015-05-01

    The time-dependent analysis of four-wave mixing (FWM) has been performed in four-level double semiconductor quantum wells (SQWs) considering the cross-coupling of the longitude-optical phonons (LOP) relaxation. It is shown that both the amplitude and the conversion efficiency of the FWM field enhance greatly with the increasing strength of cross-coupling of LOP relaxation. Interestingly, a double peak value of the conversion efficiency is obtained under a relatively weak single-photon detuning considering the LOP coupling. When the detuning becomes stronger, the double peaks turn into one peak appearing at the line respect to the about equality two control fields. The results can be interpreted by the effect of electromagnetically induced transparency and the indirect transition. Such controlled high efficiency FWM based on the cross-coupling LOP may have potential applications in quantum control and communications. Supported by Program for Changjiang Scholars and Innovative Research Team in University under Grant (IRT1080), National Natural Science Foundation of China under Grant Nos. 51272158, 11374252, and 51372214, Changjiang Scholar Incentive Program under Grant No. [2009] 17, Scientific Research Fund of Hunan Provincial Education Department of China under Grant No. 12A140, the Science and Technology Foundation of Guizhou Province of China under Grant No. J20122314

  6. Phonon-plasmon coupled modes in GaN

    NASA Astrophysics Data System (ADS)

    Dyson, A.

    2009-04-01

    The phonon lifetime in GaN is known to exhibit a dependence on electron density. Recent noise measurements have also shown the lifetime to be temperature dependent. The source of these dependences is the coupling of the phonon and plasmon populations through the dielectric function. The effect of this anharmonicity is illustrated by comparing the frequency and wavevector dependent coupled-mode momentum relaxation rate with the phonon momentum relaxation rate obtained by Callen. A simple model that includes the anharmonic interaction and phonon migration yields phonon lifetimes depending on both electron density and temperature.

  7. Inverter design for high frequency power distribution

    NASA Technical Reports Server (NTRS)

    King, R. J.

    1985-01-01

    A class of simple resonantly commutated inverters are investigated for use in a high power (100 KW - 1000 KW) high frequency (10 KHz - 20 KHz) AC power distribution system. The Mapham inverter is found to provide a unique combination of large thyristor turn-off angle and good utilization factor, much better than an alternate 'current-fed' inverter. The effects of loading the Mapham inverter entirely with rectifier loads are investigated by simulation and with an experimental 3 KW 20 KHz inverter. This inverter is found to be well suited to a power system with heavy rectifier loading.

  8. Phonon analog of topological nodal semimetals

    NASA Astrophysics Data System (ADS)

    Po, Hoi Chun; Bahri, Yasaman; Vishwanath, Ashvin

    2016-05-01

    Topological band structures in electronic systems like topological insulators and semimetals give rise to highly unusual physical properties. Analogous topological effects have also been discussed in bosonic systems, but the novel phenomena typically occur only when the system is excited by finite-frequency probes. A mapping recently proposed by C. L. Kane and T. C. Lubensky [Nat. Phys. 10, 39 (2014), 10.1038/nphys2835], however, establishes a closer correspondence. It relates the zero-frequency excitations of mechanical systems to topological zero modes of fermions that appear at the edges of an otherwise gapped system. Here we generalize the mapping to systems with an intrinsically gapless bulk. In particular, we construct mechanical counterparts of topological semimetals. The resulting gapless bulk modes are physically distinct from the usual acoustic Goldstone phonons and appear even in the absence of continuous translation invariance. Moreover, the zero-frequency phonon modes feature adjustable momenta and are topologically protected as long as the lattice coordination is unchanged. Such protected soft modes with tunable wave vector may be useful in designing mechanical structures with fault-tolerant properties.

  9. High to very high frequency metal/anomaly detector

    NASA Astrophysics Data System (ADS)

    Heinz, Daniel C.; Brennan, Michael L.; Steer, Michael B.; Melber, Adam W.; Cua, John T.

    2014-05-01

    Typical metal detectors work at very low to low frequencies. In this paper, a metal/anomaly detector design that operates in the high to very high frequency range is presented. This design uses a high-Q tuned loop antenna for metal/anomaly detection. By measuring the return loss or voltage standing wave ratio a frequency notch can be detected. Tuning to the optimal location of the notch can be accomplished by monitoring the phase response. This phase monitoring technique can be used to ground balance the detector. As a metal object is moved along the longitudinal axis of the loop antenna a substantial shift in the frequency of the notch is detected. For metal targets, the frequency shift is positive, and for ferrite and other targets, the frequency shift is negative. This frequency shift is created by the proximity of the target causing a change in the impedance of the antenna. Experiments with a prototype antenna show long-range detection with low power requirements. The detector requires only one loop with one winding which is used for both transmit and receive. This allows for a metal/anomaly detector with a very simple design. The design is lightweight and, depending on loop size, significantly increases detection depth performance. In the full paper, modeling and further experimental results will be presented. Performance results for various types of soil and for different types of targets are presented.

  10. High-frequency plasma-heating apparatus

    DOEpatents

    Brambilla, Marco; Lallia, Pascal

    1978-01-01

    An array of adjacent wave guides feed high-frequency energy into a vacuum chamber in which a toroidal plasma is confined by a magnetic field, the wave guide array being located between two toroidal current windings. Waves are excited in the wave guide at a frequency substantially equal to the lower frequency hybrid wave of the plasma and a substantially equal phase shift is provided from one guide to the next between the waves therein. For plasmas of low peripheral density gradient, the guides are excited in the TE.sub.01 mode and the output electric field is parallel to the direction of the toroidal magnetic field. For exciting waves in plasmas of high peripheral density gradient, the guides are excited in the TM.sub.01 mode and the magnetic field at the wave guide outlets is parallel to the direction of the toroidal magnetic field. The wave excited at the outlet of the wave guide array is a progressive wave propagating in the direction opposite to that of the toroidal current and is, therefore, not absorbed by so-called "runaway" electrons.

  11. Parametric nanomechanical amplification at very high frequency.

    PubMed

    Karabalin, R B; Feng, X L; Roukes, M L

    2009-09-01

    Parametric resonance and amplification are important in both fundamental physics and technological applications. Here we report very high frequency (VHF) parametric resonators and mechanical-domain amplifiers based on nanoelectromechanical systems (NEMS). Compound mechanical nanostructures patterned by multilayer, top-down nanofabrication are read out by a novel scheme that parametrically modulates longitudinal stress in doubly clamped beam NEMS resonators. Parametric pumping and signal amplification are demonstrated for VHF resonators up to approximately 130 MHz and provide useful enhancement of both resonance signal amplitude and quality factor. We find that Joule heating and reduced thermal conductance in these nanostructures ultimately impose an upper limit to device performance. We develop a theoretical model to account for both the parametric response and nonequilibrium thermal transport in these composite nanostructures. The results closely conform to our experimental observations, elucidate the frequency and threshold-voltage scaling in parametric VHF NEMS resonators and sensors, and establish the ultimate sensitivity limits of this approach.

  12. Computer modeling of tactical high frequency antennas

    NASA Astrophysics Data System (ADS)

    Gregory, Bobby G., Jr.

    1992-06-01

    The purpose of this thesis was to compare the performance of three tactical high frequency antennas to be used as possible replacement for the Tactical Data Communications Central (TDCC) antennas. The antennas were modeled using the Numerical Electromagnetics Code, Version 3 (NEC3), and the Eyring Low Profile and Buried Antenna Modeling Program (PAT7) for several different frequencies and ground conditions. The performance was evaluated by comparing gain at the desired takeoff angles, the voltage standing wave ratio of each antenna, and its omni-directional capability. The buried antenna models, the ELPA-302 and horizontal dipole, were most effective when employed over poor ground conditions. The best performance under all conditions tested was demonstrated by the HT-20T. Each of these antennas have tactical advantages and disadvantages and can optimize communications under certain conditions. The selection of the best antenna is situation dependent. An experimental test of these models is recommended to verify the modeling results.

  13. High-frequency ultrasonic wire bonding systems

    PubMed

    Tsujino; Yoshihara; Sano; Ihara

    2000-03-01

    The vibration characteristics of longitudinal-complex transverse vibration systems with multiple resonance frequencies of 350-980 kHz for ultrasonic wire bonding of IC, LSI or electronic devices were studied. The complex vibration systems can be applied for direct welding of semiconductor tips (face-down bonding, flip-chip bonding) and packaging of electronic devices. A longitudinal-complex transverse vibration bonding system consists of a complex transverse vibration rod, two driving longitudinal transducers 7.0 mm in diameter and a transverse vibration welding tip. The vibration distributions along ceramic and stainless-steel welding tips were measured at up to 980 kHz. A high-frequency vibration system with a height of 20.7 mm and a weight of less than 15 g was obtained.

  14. High-power femtosecond Raman frequency shifter.

    PubMed

    Vicario, Carlo; Shalaby, Mostafa; Konyashchenko, Aleksandr; Losev, Leonid; Hauri, Christoph P

    2016-10-15

    We report on the generation of broadband, high-energy femtosecond pulses centered at 1.28 μm by stimulated Raman scattering in a pressurized hydrogen cell. Stimulated Raman scattering is performed by two chirped and delayed pulses originating from a multi-mJ Ti:sapphire amplifier. The Stokes pulse carries record-high energy of 4.4 mJ and is recompressed down to 66 fs by a reflective grating pair. We characterized the short-wavelength mid-infrared source in view of energy stability, beam profile, and conversion efficiency at repetition rates of 100 and 10 Hz. The demonstrated high-energy frequency shifter will benefit intense THz sources based on highly nonlinear organic crystals.

  15. Thermal boundary conductance accumulation and interfacial phonon transmission: Measurements and theory

    NASA Astrophysics Data System (ADS)

    Cheaito, Ramez; Gaskins, John T.; Caplan, Matthew E.; Donovan, Brian F.; Foley, Brian M.; Giri, Ashutosh; Duda, John C.; Szwejkowski, Chester J.; Constantin, Costel; Brown-Shaklee, Harlan J.; Ihlefeld, Jon F.; Hopkins, Patrick E.

    2015-01-01

    a platform for analyzing the spectral phononic contribution to interfacial thermal transport in our experimentally measured data of metal/substrate thermal boundary conductance. Based on the assumptions made in this work and the measurement results on different metals on native oxide/silicon and sapphire substrates, we demonstrate that high-frequency phonons dictate the transport across metal/Si interfaces, especially in low Debye temperature metals with low-cutoff frequencies.

  16. A high frequency electromagnetic impedance imaging system

    SciTech Connect

    Tseng, Hung-Wen; Lee, Ki Ha; Becker, Alex

    2003-01-15

    Non-invasive, high resolution geophysical mapping of the shallow subsurface is necessary for delineation of buried hazardous wastes, detecting unexploded ordinance, verifying and monitoring of containment or moisture contents, and other environmental applications. Electromagnetic (EM) techniques can be used for this purpose since electrical conductivity and dielectric permittivity are representative of the subsurface media. Measurements in the EM frequency band between 1 and 100 MHz are very important for such applications, because the induction number of many targets is small and the ability to determine the subsurface distribution of both electrical properties is required. Earlier workers were successful in developing systems for detecting anomalous areas, but quantitative interpretation of the data was difficult. Accurate measurements are necessary, but difficult to achieve for high-resolution imaging of the subsurface. We are developing a broadband non-invasive method for accurately mapping the electrical conductivity and dielectric permittivity of the shallow subsurface using an EM impedance approach similar to the MT exploration technique. Electric and magnetic sensors were tested to ensure that stray EM scattering is minimized and the quality of the data collected with the high-frequency impedance (HFI) system is good enough to allow high-resolution, multi-dimensional imaging of hidden targets. Additional efforts are being made to modify and further develop existing sensors and transmitters to improve the imaging capability and data acquisition efficiency.

  17. One-dimensional hypersonic phononic crystals.

    PubMed

    Gomopoulos, N; Maschke, D; Koh, C Y; Thomas, E L; Tremel, W; Butt, H-J; Fytas, G

    2010-03-10

    We report experimental observation of a normal incidence phononic band gap in one-dimensional periodic (SiO(2)/poly(methyl methacrylate)) multilayer film at gigahertz frequencies using Brillouin spectroscopy. The band gap to midgap ratio of 0.30 occurs for elastic wave propagation along the periodicity direction, whereas for inplane propagation the system displays an effective medium behavior. The phononic properties are well captured by numerical simulations. The porosity in the silica layers presents a structural scaffold for the introduction of secondary active media for potential coupling between phonons and other excitations, such as photons and electrons.

  18. Material considerations for high frequency, high power capacitors

    NASA Technical Reports Server (NTRS)

    White, W.; Galperin, I.

    1983-01-01

    Dielectric materials chosen for use in this high frequency, high power capacitor must endure hard vacuum conditions, high currents (up to 125 A rms), and frequencies up to 40 kHz. Temperature requirements for this type of capacitor are that capacitor operation must be efficient up to 125 C. A more stringent requirement for the sold dielectric is that the temperature coefficient of dissipation factor should indicate self stabilization well below 125 C. In addition, the dielectric temperature coefficient of capacitance should be negative.

  19. Material considerations for high frequency, high power capacitors

    NASA Astrophysics Data System (ADS)

    White, W.; Galperin, I.

    1983-10-01

    Dielectric materials chosen for use in this high frequency, high power capacitor must endure hard vacuum conditions, high currents (up to 125 A rms), and frequencies up to 40 kHz. Temperature requirements for this type of capacitor are that capacitor operation must be efficient up to 125 C. A more stringent requirement for the sold dielectric is that the temperature coefficient of dissipation factor should indicate self stabilization well below 125 C. In addition, the dielectric temperature coefficient of capacitance should be negative.

  20. Phonon density of states of single-crystal SrF e2A s2 across the collapsed phase transition at high pressure

    NASA Astrophysics Data System (ADS)

    Wang, Y. Q.; Lu, P. C.; Wu, J. J.; Liu, J.; Wang, X. C.; Zhao, J. Y.; Bi, W.; Alp, E. E.; Park, C. Y.; Popov, D.; Jin, C. Q.; Sun, J.; Lin, J. F.

    2016-07-01

    To help our understanding of the structural and superconducting transitions in ferropnictides, partial phonon density of states (PDOS) of iron in a single-crystal SrF e2A s2 pnictide have been investigated from both out-of-plane and in-plane polarizations with respect to the basal plane of the crystal structure using nuclear resonant inelastic x-ray scattering in a high-pressure diamond anvil cell at ambient temperature. The partial PDOS of iron in the pnictide crystal changes dramatically at approximately 8 GPa, which can be associated with the tetragonal (T) to collapsed tetragonal (CT) isostructural transition as evidenced in high-pressure x-ray diffraction measurements and theoretical calculations. Across the T-CT phase transition, analysis of the PDOS spectra shows a rapid stiffening of the optical phonon modes and a dramatic increase of the Lamb-Mössbauer factor (fLM) and mean force constant which can be associated with the rapid decrease of the c axis and the anomalous expansion of the a axis. Theoretically calculated Fe partial PDOS and lattice parameters of SrF e2A s2 further reveal the strong correlation between the lattice parameters and phonons. Our results show that the T-CT transition can induce significant changes in the vibrational, elastic, and thermodynamic properties of SrF e2A s2 single crystal at high pressure.

  1. Role of phonons in negative thermal expansion and high pressure phase transitions in β-eucryptite: An ab-initio lattice dynamics and inelastic neutron scattering study

    NASA Astrophysics Data System (ADS)

    Singh, Baltej; Gupta, Mayanak Kumar; Mittal, Ranjan; Zbiri, Mohamed; Rols, Stephane; Patwe, Sadequa Jahedkhan; Achary, Srungarpu Nagabhusan; Schober, Helmut; Tyagi, Avesh Kumar; Chaplot, Samrath Lal

    2017-02-01

    β-Eucryptite (LiAlSiO4) shows anisotropic thermal expansion as well as one-dimensional super-ionic conductivity. We have performed the lattice dynamical calculations using ab-initio density functional theory along with inelastic neutron scattering measurements. The anisotropic stress dependence of the phonon spectrum is calculated to obtain the thermal expansion behavior along various axes. The calculations show that the Grüneisen parameters of the low-energy phonon modes around 10 meV have large negative values and govern the negative thermal expansion behavior at low temperatures along both the "a"- and "c"-axes. On the other hand, anisotropic elasticity along with anisotropic positive values of the Grüneisen parameters of the high-energy modes in the range 30-70 meV are responsible for the thermal expansion at high temperatures, which is positive in the a-b plane and negative along the c-axis. The analysis of the polarization vectors of the phonon modes sheds light on the mechanism of the anomalous thermal expansion behavior. The softening of a Γ-point mode at about 2 GPa may be related to the high-pressure phase transition.

  2. Compressibility measurements and phonon spectra of hexagonal transition-metal nitrides at high pressure: {epsilon}-TaN, {delta}-MoN, and Cr{sub 2}N

    SciTech Connect

    Soignard, Emmanuel; Shebanova, Olga; McMillan, Paul F.

    2007-01-01

    We report compressibility measurements for three transition metal nitrides ({epsilon}-TaN, {delta}-MoN, Cr{sub 2}N) that have structures based on hexagonal arrangements of the metal atoms. The studies were performed using monochromatic synchrotron x-ray diffraction at high pressure in a diamond anvil cell. The three nitride compounds are well-known high hardness materials, and they are found to be highly incompressible. The bulk modulus values measured for {epsilon}-TaN, Cr{sub 2}N, and {delta}-MoN are K{sub 0}=288(6) GPa, 275(23) GPa, and 345(9) GPa, respectively. The data were analyzed using a linearized plot of reduced pressure (F) vs the Eulerian finite strain variable f within a third-order Birch-Murnaghan equation of state formulation. The K{sub 0}{sup '} values for {epsilon}-TaN and {delta}-MoN were 4.7(0.5) and 3.5(0.3), respectively, close to the value of K{sub 0}{sup '}=4 that is typically assumed in fitting compressibility data in equation of state studies using a Birch-Murnaghan equation. However, Cr{sub 2}N was determined to have a much smaller value, K{sub 0}{sup '}=2.0(2.0), indicating a significantly smaller degree of structural stiffening with increased pressure. We also present Raman data for {epsilon}-TaN and {delta}-MoN at high pressure in order to characterize the phonon behavior in these materials. All of the Raman active modes for {epsilon}-TaN were identified using polarized spectroscopy. Peaks at low frequency are due to Ta motions, whereas modes at higher wave number contain a large component of N motion. The high frequency modes associated with Ta-N stretching vibrations are more sensitive to compression than the metal displacements occurring at lower wave number. The mode assignments can be generally extended to {delta}-MoN, that has a much more complex Raman spectrum. The x-ray and Raman data for {epsilon}-TaN show evidence for structural disordering occurring above 20 GPa, whereas no such change is observed for {delta}-MoN.

  3. High frequency plasma generator for ion thrusters

    NASA Technical Reports Server (NTRS)

    Goede, H.; Divergilio, W. F.; Fosnight, V. V.; Komatsu, G.

    1984-01-01

    The results of a program to experimentally develop two new types of plasma generators for 30 cm electrostatic argon ion thrusters are presented. The two plasma generating methods selected for this study were by radio frequency induction (RFI), operating at an input power frequency of 1 MHz, and by electron cyclotron heating (ECH) at an operating frequency of 5.0 GHz. Both of these generators utilize multiline cusp permanent magnet configurations for plasma confinement and beam profile optimization. The program goals were to develop a plasma generator possessing the characteristics of high electrical efficiency (low eV/ion) and simplicity of operation while maintaining the reliability and durability of the conventional hollow cathode plasma sources. The RFI plasma generator has achieved minimum discharge losses of 120 eV/ion while the ECH generator has obtained 145 eV/ion, assuming a 90% ion optical transparency of the electrostatic acceleration system. Details of experimental tests with a variety of magnet configurations are presented.

  4. Aerodynamics of high frequency flapping wings

    NASA Astrophysics Data System (ADS)

    Hu, Zheng; Roll, Jesse; Cheng, Bo; Deng, Xinyan

    2010-11-01

    We investigated the aerodynamic performance of high frequency flapping wings using a 2.5 gram robotic insect mechanism developed in our lab. The mechanism flaps up to 65Hz with a pair of man-made wing mounted with 10cm wingtip-to-wingtip span. The mean aerodynamic lift force was measured by a lever platform, and the flow velocity and vorticity were measured using a stereo DPIV system in the frontal, parasagittal, and horizontal planes. Both near field (leading edge vortex) and far field flow (induced flow) were measured with instantaneous and phase-averaged results. Systematic experiments were performed on the man-made wings, cicada and hawk moth wings due to their similar size, frequency and Reynolds number. For insect wings, we used both dry and freshly-cut wings. The aerodynamic force increase with flapping frequency and the man-made wing generates more than 4 grams of lift at 35Hz with 3 volt input. Here we present the experimental results and the major differences in their aerodynamic performances.

  5. High-frequency graphene voltage amplifier.

    PubMed

    Han, Shu-Jen; Jenkins, Keith A; Valdes Garcia, Alberto; Franklin, Aaron D; Bol, Ageeth A; Haensch, Wilfried

    2011-09-14

    While graphene transistors have proven capable of delivering gigahertz-range cutoff frequencies, applying the devices to RF circuits has been largely hindered by the lack of current saturation in the zero band gap graphene. Herein, the first high-frequency voltage amplifier is demonstrated using large-area chemical vapor deposition grown graphene. The graphene field-effect transistor (GFET) has a 6-finger gate design with gate length of 500 nm. The graphene common-source amplifier exhibits ∼5 dB low frequency gain with the 3 dB bandwidth greater than 6 GHz. This first AC voltage gain demonstration of a GFET is attributed to the clear current saturation in the device, which is enabled by an ultrathin gate dielectric (4 nm HfO(2)) of the embedded gate structures. The device also shows extrinsic transconductance of 1.2 mS/μm at 1 V drain bias, the highest for graphene FETs using large-scale graphene reported to date.

  6. Nanoscale pillar hypersonic surface phononic crystals

    NASA Astrophysics Data System (ADS)

    Yudistira, D.; Boes, A.; Graczykowski, B.; Alzina, F.; Yeo, L. Y.; Sotomayor Torres, C. M.; Mitchell, A.

    2016-09-01

    We report on nanoscale pillar-based hypersonic phononic crystals in single crystal Z-cut lithium niobate. The phononic crystal is formed by a two-dimensional periodic array of nearly cylindrical nanopillars 240 nm in diameter and 225 nm in height, arranged in a triangular lattice with a 300-nm lattice constant. The nanopillars are fabricated by the recently introduced nanodomain engineering via laser irradiation of patterned chrome followed by wet etching. Numerical simulations and direct measurements using Brillouin light scattering confirm the simultaneous existence of nonradiative complete surface phononic band gaps. The band gaps are found below the sound line at hypersonic frequencies in the range 2-7 GHz, formed from local resonances and Bragg scattering. These hypersonic structures are realized directly in the piezoelectric material lithium niobate enabling phonon manipulation at significantly higher frequencies than previously possible with this platform, opening new opportunities for many applications in plasmonic, optomechanic, microfluidic, and thermal engineering.

  7. High Frequency Self-pulsing Microplasmas

    NASA Astrophysics Data System (ADS)

    Lassalle, John; Pollard, William; Staack, David

    2014-10-01

    Pulsing behavior in high-pressure microplasmas was studied. Microplasmas are of interest because of potential application in plasma switches for robust electronics. These devices require fast switching. Self-pulsing microplasmas were generated in a variable-length spark gap at pressures between 0 and 220 psig in Air, Ar, N2, H2, and He for spark gap lengths from 15 to 1810 μm. Resulting breakdown voltages varied between 90 and 1500 V. Voltage measurements show pulse frequencies as high as 8.9 MHz in argon at 100 psig. These findings demonstrate the potential for fast switching of plasma switches that incorporate high-pressure microplasmas. Work was supported by the National Science Foundation, Grant #1057175, and the Department of Defense, ARO Grant #W911NF1210007.

  8. Relaxation of a hot-electron-two-mode-phonon system in highly excited CdS1-xSex crystals

    NASA Astrophysics Data System (ADS)

    Žukauskas, A.; Juršėnas, S.

    1995-02-01

    An investigation of the electron-hole-plasma effective-temperature relaxation in highly excited CdS1-xSex mixed crystals is presented. The slow (~100-ps) relaxation stage, attributed to the depopulation of the fragments (decay products) of the initially produced nonequilibrium LO phonons, is examined with variation of the alloy composition. The relevant relaxation time dependence on x exhibiting a remarkable drop at small CdSe mole fractions is analyzed in terms of a two-route energy relaxation model considering hot-carrier plasma and two generations of nonequilibrium phonons each originating from both pure constituents of the alloy. The disorder-enhanced cross relaxation between two sublattices of the alloy is inferred to account for the experimental results.

  9. Low Exciton-Phonon Coupling, High Charge Carrier Mobilities, and Multiexciton Properties in Two-Dimensional Lead, Silver, Cadmium, and Copper Chalcogenide Nanostructures.

    PubMed

    Ding, Yuchen; Singh, Vivek; Goodman, Samuel M; Nagpal, Prashant

    2014-12-18

    The development of two-dimensional (2D) nanomaterials has revealed novel physical properties, like high carrier mobilities and the tunable coupling of charge carriers with phonons, which can enable wide-ranging applications in optoelectronic and thermoelectric devices. While mechanical exfoliation of graphene and some transition metal dichalcogenides (e.g., MoS2, WSe2) has enabled their fabrication as 2D semiconductors and integration into devices, lack of similar syntheses for other 2D semiconductor materials has hindered further progress. Here, we report measurements of fundamental charge carrier interactions and optoelectronic properties of 2D nanomaterials made from two-monolayers-thick PbX, CdX, Cu2X, and Ag2X (X = S, Se) using colloidal syntheses. Extremely low coupling of charge carriers with phonons (2-6-fold lower than bulk and other low-dimensional semiconductors), high carrier mobilities (0.2-1.2 cm(2) V(-1) s(-1), without dielectric screening), observation of infrared surface plasmons in ultrathin 2D semiconductor nanostructures, strong quantum-confinement, and other multiexcitonic properties (different phonon coupling and photon-to-charge collection efficiencies for band-edge and higher-energy excitons) can pave the way for efficient solution-processed devices made from these 2D nanostructured semiconductors.

  10. Phonon Cooling by an Optomechanical Heat Pump.

    PubMed

    Dong, Ying; Bariani, F; Meystre, P

    2015-11-27

    We propose and analyze theoretically a cavity optomechanical analog of a heat pump that uses a polariton fluid to cool mechanical modes coupled to a single precooled phonon mode via external modulation of the substrate of the mechanical resonator. This approach permits us to cool phonon modes of arbitrary frequencies not limited by the cavity-optical field detuning deep into the quantum regime from room temperature.

  11. Enhanced phonon scattering by nanovoids in high thermoelectric power factor polysilicon thin films

    NASA Astrophysics Data System (ADS)

    Dunham, Marc T.; Lorenzi, Bruno; Andrews, Sean C.; Sood, Aditya; Asheghi, Mehdi; Narducci, Dario; Goodson, Kenneth E.

    2016-12-01

    The ability to tune the thermal conductivity of semiconductor materials is of interest for thermoelectric applications, in particular, for doped silicon, which can be readily integrated in electronic microstructures and have a high thermoelectric power factor. Here, we examine the impact of nanovoids on the thermal conductivity of highly doped, high-power factor polysilicon thin films using time-domain thermoreflectance. Voids are formed through ion implantation and annealing, evolving from many small (˜4 nm mean diameter) voids after 500 °C anneal to fewer, larger (˜29 nm mean diameter) voids with a constant total volume fraction after staged thermal annealing to 1000 °C. The thermal conductivity is reduced to 65% of the non-implanted reference film conductivity after implantation and 500 °C anneal, increasing with anneal temperature until fully restored after 800 °C anneal. The void size distributions are determined experimentally using small-angle and wide-angle X-ray scattering. While we believe multiple physical mechanisms are at play, we are able to corroborate the positive correlation between measurements of thermal conductivity and void size with Monte Carlo calculations and a scattering probability based on Matthiessen's rule. The data suggest an opportunity for thermal conductivity suppression combined with the high power factor for increased material zT and efficiency of nanostructured polysilicon as a thermoelectric material.

  12. High-Frequency Fluctuations During Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Jara-Almonte, J.; Ji, H.; Daughton, W. S.; Roytershteyn, V.; Yamada, M.; Yoo, J.; Fox, W. R., II

    2014-12-01

    During collisionless reconnection, the decoupling of the field from the plasma is known to occur only within the localized ion and electron diffusion regions, however predictions from fully kinetic simulations do not agree with experimental observations on the size of the electron diffusion region, implying differing reconnection mechanisms. Previous experiments, along with 2D and 3D simulations, have conclusively shown that this discrepancy cannot be explained by either classical collisions or Lower-Hybrid Drift Instability (Roytershtyn 2010, 2013). Due to computational limitations, however, previous simulations were constrained to have minimal scale separation between the electron skin depth and the Debye length (de/λD ~ 10), much smaller than in experiments (de/λD ~ 300). This lack of scale-separation can drastically modify the electrostatic microphysics within the diffusion layer. Using 3D, fully explicit kinetic simulations with a realistic and unprecedentedly large separation between the Debye length and the electron skin depth, de/λD = 64, we show that high frequency electrostatic waves (ω >> ωLH) can exist within the electron diffusion region. These waves generate small-scale turbulence within the electron diffusion region which acts to broaden the layer. Anomalous resistivity is also generated by the turbulence and significantly modifies the force balance. In addition to simulation results, initial experimental measurements of high frequency fluctuations (electrostatic and electromagnetic, f ≤ 1 GHz) in the Magnetic Reconnection Experiment (MRX) will be presented.

  13. Interpretation of temperature dependence of the in-plane electrical resistivity in YBa 2Cu 4O 8: Electron-phonon approach

    NASA Astrophysics Data System (ADS)

    Varshney, Dinesh; Yogi, A.; Choudhary, K. K.

    2010-12-01

    In this paper, we undertake a quantitative analysis of observed temperature-dependent in-plane normal state electrical resistivity of single crystal YBa 2Cu 4O 8. The analysis is within the framework of classical electron-phonon i.e., Bloch-Gruneisen model of resistivity. It is based on the inherent acoustic (low frequency) phonons ( ω ac) as well as high frequency optical phonons ( ω op), the contributions to the phonon resistivity were first estimated. The optical phonons of the oxygen breathing mode yields a relatively larger contribution to the resistivity compared to the contribution of acoustic phonons. Estimated contribution to in-plane electrical resistivity by considering both phonons i.e., ω ac and ω op, along with the zero-limited resistivity, when subtracted from single crystal data infers a quadratic temperature dependence over most of the temperature range [80 ⩽ T ⩽ 300]. Quadratic temperature dependence of ρ diff. = [ ρ exp - { ρ0 + ρ e-ph (= ρ ac + ρ op)}] is understood in terms of electron-electron inelastic scattering. The relevant energy gap expressions within the Nambu-Eliashberg approach are solved imposing experimental constraints on their solution (critical temperature T c). It is found that the indirect-exchange formalism provides a unique set of electronic parameters [electron-phonon ( λ ph), electron-charge fluctuations ( λ pl), electron-electron ( μ) and Coulomb screening parameter ( μ*)] which, in particular, reproduce the reported value of T c.

  14. Fundamentals of bipolar high-frequency surgery.

    PubMed

    Reidenbach, H D

    1993-04-01

    In endoscopic surgery a very precise surgical dissection technique and an efficient hemostasis are of decisive importance. The bipolar technique may be regarded as a method which satisfies both requirements, especially regarding a high safety standard in application. In this context the biophysical and technical fundamentals of this method, which have been known in principle for a long time, are described with regard to the special demands of a newly developed field of modern surgery. After classification of this method into a general and a quasi-bipolar mode, various technological solutions of specific bipolar probes, in a strict and in a generalized sense, are characterized in terms of indication. Experimental results obtained with different bipolar instruments and probes are given. The application of modern microprocessor-controlled high-frequency surgery equipment and, wherever necessary, the integration of additional ancillary technology into the specialized bipolar instruments may result in most useful and efficient tools of a key technology in endoscopic surgery.

  15. Anisotropic strain and phonon deformation potentials in GaN

    SciTech Connect

    Darakchieva, V.; Arwin, H.; Paskov, P. P.; Monemar, B.; Paskova, T.; Hommel, D.; Schubert, M.; Heuken, M.; Off, J.; Scholz, F.; Haskell, B. A.; Fini, P. T.; Speck, J. S.; Nakamura, S.

    2007-05-15

    We report optical phonon frequency studies in anisotropically strained c-plane- and a-plane-oriented GaN films by generalized infrared spectroscopic ellipsometry and Raman scattering spectroscopy. The anisotropic strain in the films is obtained from high-resolution x-ray diffraction measurements. Experimental evidence for splitting of the GaN E{sub 1}(TO), E{sub 1}(LO), and E{sub 2} phonons under anisotropic strain in the basal plane is presented, and their phonon deformation potentials c{sub E{sub 1}}{sub (TO)}, c{sub E{sub 1}}{sub (LO)}, and c{sub E{sub 2}} are determined. A distinct correlation between anisotropic strain and the A{sub 1}(TO) and E{sub 1}(LO) frequencies of a-plane GaN films reveals the a{sub A{sub 1}}{sub (TO)}, b{sub A{sub 1}}{sub (TO)}, a{sub E{sub 1}}{sub (LO)}, and b{sub E{sub 1}}{sub (LO)} phonon deformation potentials. The a{sub A{sub 1}}{sub (TO)} and b{sub A{sub 1}}{sub (TO)} are found to be in very good agreement with previous results from Raman experiments [V. Yu. Davydov et al., J. Appl. Phys. 82, 5097 (1997)]. Our a{sub A{sub 1}}{sub (TO)} and a{sub E{sub 1}}{sub (LO)} phonon deformation potentials agree well with recently reported theoretical estimations [J.-M. Wagner and F. Bechstedt, Phys. Rev. B 66, 115202 (2002)], while b{sub A{sub 1}}{sub (TO)} and b{sub E{sub 1}}{sub (LO)} are found to be significantly larger than the theoretical values. A discussion of the observed differences is presented.

  16. Aspect-ratio driven evolution of high-order resonant modes and near-field distributions in localized surface phonon polariton nanostructures

    PubMed Central

    Ellis, Chase T.; Tischler, Joseph G.; Glembocki, Orest J.; Bezares, Francisco J.; Giles, Alexander J.; Kasica, Richard; Shirey, Loretta; Owrutsky, Jeffrey C.; Chigrin, Dmitry N.; Caldwell, Joshua D.

    2016-01-01

    Polar dielectrics have garnered much attention as an alternative to plasmonic metals in the mid- to long-wave infrared spectral regime due to their low optical losses. As such, nanoscale resonators composed of these materials demonstrate figures of merit beyond those achievable in plasmonic equivalents. However, until now, only low-order, phonon-mediated, localized polariton resonances, known as surface phonon polaritons (SPhPs), have been observed in polar dielectric optical resonators. In the present work, we investigate the excitation of 16 distinct high-order, multipolar, localized surface phonon polariton resonances that are optically excited in rectangular pillars etched into a semi-insulating silicon carbide substrate. By elongating a single pillar axis we are able to significantly modify the far- and near-field properties of localized SPhP resonances, opening the door to realizing narrow-band infrared sources with tailored radiation patterns. Such control of the near-field behavior of resonances can also impact surface enhanced infrared optical sensing, which is mediated by polarization selection rules, as well as the morphology and strength of resonator hot spots. Furthermore, through the careful choice of polar dielectric material, these results can also serve as the guiding principles for the generalized design of optical devices that operate from the mid- to far-infrared. PMID:27622525

  17. A review of electron-phonon coupling seen in the high-Tc superconductors by angle-resolved photoemission studies (ARPES)

    NASA Astrophysics Data System (ADS)

    Cuk, T.; Lu, D. H.; Zhou, X. J.; Shen, Z.-X.; Devereaux, T. P.; Nagaosa, N.

    2005-01-01

    This issue of pss (b) - basic solid state physics contains a collection of Review Articles on the rather controversially discussed topic of Electron-Phonon Interaction in High-Temperature Superconductors, guest-edited by Miodrag Kuli, Johann Wolfgang Goethe-Universität Frankfurt/Main, Germany, with a Preface written by V. L. Ginzburg and E. G. Maksimov [1].The cover picture, taken from the review [2] by T. Cuk et al., shows plots of the electron-phonon coupling vertex, g2(k, k), where k, k are the initial and final electron momentum for electrons scattered by the bond-buckling phonon B1g (the out-of-phase vibration of the in-plane oxygen) in a tight-binding model of the copper-oxygen plane. The momentum dependence of this vertex, along with the d-wave superconducting gap and the van Hove singularity at the anti-node, accounts for the momentum dependence of the collective mode coupling seen in angle-resolved photoemission data on Bi2212.The present issue also sees the start of our rapid research letters, the fastest peer-reviewed publication medium in solid state physics. For more information see www.pss-rapid.com and the Editorial by the Editor-in-Chief Martin Stutzmann on page 7 [3].

  18. Interfacial electron and phonon scattering processes in high-powered nanoscale applications.

    SciTech Connect

    Hopkins, Patrick E.

    2011-10-01

    The overarching goal of this Truman LDRD project was to explore mechanisms of thermal transport at interfaces of nanomaterials, specifically linking the thermal conductivity and thermal boundary conductance to the structures and geometries of interfaces and boundaries. Deposition, fabrication, and post possessing procedures of nanocomposites and devices can give rise to interatomic mixing around interfaces of materials leading to stresses and imperfections that could affect heat transfer. An understanding of the physics of energy carrier scattering processes and their response to interfacial disorder will elucidate the potentials of applying these novel materials to next-generation high powered nanodevices and energy conversion applications. An additional goal of this project was to use the knowledge gained from linking interfacial structure to thermal transport in order to develop avenues to control, or 'tune' the thermal transport in nanosystems.

  19. High throughput solution of Boltzmann transport equation: phonons, thermal conductivity and beyond

    NASA Astrophysics Data System (ADS)

    Plata, Jose; Nath, Pinku; Usanmaz, Demet; Toher, Cormac; Fornari, Marco; Buongiorno Nardelli, Marco; Curtarolo, Stefano

    Quantatively accurate predictions of the lattice thermal conductivity have important implications for key technologies ranging from thermoelectrics to thermal barrier coatings. Of the many approaches with varying computational costs and accuracy, which have been developed in the last years, the solution of the Boltzmann transport equation (BTE) is the only approach that guarantees accurate predictions of this property. We have implemented this methodology in the AFLOW high throughput materials science framework, which enables us to compute these anharmonic force constants and solve BTE to obtain the lattice thermal conductivity and related properties automatically in a single step. This technique can be combined with less expensive methodologies previously implemented in AFLOW to create an efficient and fast framework to accelerate the discovery of materials with interesting thermal properties.

  20. Phonon conduction in GaN-diamond composite substrates

    NASA Astrophysics Data System (ADS)

    Cho, Jungwan; Francis, Daniel; Altman, David H.; Asheghi, Mehdi; Goodson, Kenneth E.

    2017-02-01

    The integration of strongly contrasting materials can enable performance benefits for semiconductor devices. One example is composite substrates of gallium nitride (GaN) and diamond, which promise dramatically improved conduction cooling of high-power GaN transistors. Here, we examine phonon conduction in GaN-diamond composite substrates fabricated using a GaN epilayer transfer process through transmission electron microscopy, measurements using time-domain thermoreflectance, and semiclassical transport theory for phonons interacting with interfaces and defects. Thermoreflectance amplitude and ratio signals are analyzed at multiple modulation frequencies to simultaneously extract the thermal conductivity of GaN layers and the thermal boundary resistance across GaN-diamond interfaces at room temperature. Uncertainties in the measurement of these two properties are estimated considering those of parameters, including the thickness of a topmost metal transducer layer, given as an input to a multilayer thermal model, as well as those associated with simultaneously fitting the two properties. The volume resistance of an intermediate, disordered SiN layer between the GaN and diamond, as well as a presence of near-interfacial defects in the GaN and diamond, dominates the measured GaN-diamond thermal boundary resistances as low as 17 m2 K GW-1. The GaN thermal conductivity data are consistent with the semiclassical phonon thermal conductivity integral model that accounts for the size effect as well as phonon scattering on point defects at concentrations near 3 × 1018 cm-3.

  1. Plasma effects in high frequency radiative transfer

    SciTech Connect

    Alonso, C.T.

    1981-02-08

    This paper is intended as a survey of collective plasma processes which can affect the transfer of high frequency radiation in a hot dense plasma. We are rapidly approaching an era when this subject will become important in the laboratory. For pedagogical reasons we have chosen to examine plasma processes by relating them to a particular reference plasma which will consist of fully ionized carbon at a temperature kT=1 KeV (10/sup 70/K) and an electron density N = 3 x 10/sup 23/cm/sup -3/, (which corresponds to a mass density rho = 1 gm/cm/sup 3/ and an ion density N/sub i/ = 5 x 10/sup 22/ cm/sup -3/). We will consider the transport in such a plasma of photons ranging from 1 eV to 1 KeV in energy. Such photons will probably be frequently used as diagnostic probes of hot dense laboratory plasmas.

  2. Frequency stable high power lasers in space

    NASA Technical Reports Server (NTRS)

    Byer, Robert L.

    1989-01-01

    The concept of a laser heterodyne gravity wave antenna that would operate in solar orbit with a one million kilometer path length is discussed. Laser technology that would be appropriate for operation of this space-based gravity wave detector is also discussed. The rapid progress in diode laser coupled with the energy storage and potentially sub-Hertz linewidths of solid state lasers, and the possibility of efficient frequency conversion by nonlinear optical techniques defines a technology that is appropriate for laser interferometry in space. The present status of diode-laser-pumped, solid state lasers is summarized and future progress is projected in areas of linewidth control, high average power, operating efficiency, and operational lifetimes that are essential for space-based applications.

  3. High frequency oscillators for chaotic radar

    NASA Astrophysics Data System (ADS)

    Beal, A. N.; Blakely, J. N.; Corron, N. J.; Dean, R. N.

    2016-05-01

    This work focuses on implementing a class of exactly solvable chaotic oscillators at speeds that allow real world radar applications. The implementation of a chaotic radar using a solvable system has many advantages due to the generation of aperiodic, random-like waveforms with an analytic representation. These advantages include high range resolution, no range ambiguity, and spread spectrum characteristics. These systems allow for optimal detection of a noise-like signal by the means of a linear matched filter using simple and inexpensive methods. This paper outlines the use of exactly solvable chaos in ranging systems, while addressing electronic design issues related to the frequency dependence of the system's stretching function introduced by the use of negative impedance converters (NICs).

  4. High-Frequency Mechanostimulation of Cell Adhesion.

    PubMed

    Kadem, Laith F; Suana, K Grace; Holz, Michelle; Wang, Wei; Westerhaus, Hannes; Herges, Rainer; Selhuber-Unkel, Christine

    2017-01-02

    Cell adhesion is regulated by molecularly defined protein interactions and by mechanical forces, which can activate a dynamic restructuring of adhesion sites. Previous attempts to explore the response of cell adhesion to forces have been limited to applying mechanical stimuli that involve the cytoskeleton. In contrast, we here apply a new, oscillatory type of stimulus through push-pull azobenzenes. Push-pull azobenzenes perform a high-frequency, molecular oscillation upon irradiation with visible light that has frequently been applied in polymer surface relief grating. We here use these oscillations to address single adhesion receptors. The effect of molecular oscillatory forces on cell adhesion has been analyzed using single-cell force spectroscopy and gene expression studies. Our experiments demonstrate a reinforcement of cell adhesion as well as upregulated expression levels of adhesion-associated genes as a result of the nanoscale "tickling" of integrins. This novel type of mechanical stimulus provides a previously unprecedented molecular control of cellular mechanosensing.

  5. Phonon induced optical gain in a current carrying two-level quantum dot

    NASA Astrophysics Data System (ADS)

    Eskandari-asl, Amir

    2017-05-01

    In this work we consider a current carrying two level quantum dot(QD) that is coupled to a single mode phonon bath. Using self-consistent Hartree-Fock approximation, we obtain the I-V curve of QD. By considering the linear response of our system to an incoming classical light, we see that depending on the parametric regime, the system could have weak or strong light absorption or may even show lasing. This lasing occurs at high enough bias voltages and is explained by a population inversion considering side bands, while the total electron population in the higher level is less than the lower one. The frequency at which we have the most significant lasing depends on the level spacing and phonon frequency and not on the electron-phonon coupling strength.

  6. Pump pulse duration dependence of coherent phonon amplitudes in antimony

    SciTech Connect

    Misochko, O. V.

    2016-08-15

    Coherent optical phonons of A{sub 1k} and E{sub k} symmetry in antimony have been studied using the femtosecond pump–probe technique. By varying the pump-pulse duration and keeping the probe duration constant, it was shown that the amplitude of coherent phonons of both symmetries exponentially decreases with increasing pulse width. It was found that the amplitude decay rate for the fully symmetric phonons with larger frequency is greater than that of the doubly degenerate phonons, whereas the frequency and lifetime for coherent phonons of both symmetries do not depend on the pump-pulse duration. Based on this data, the possibility of separation between dynamic and kinematic contributions to the generation mechanism of coherent phonons is discussed.

  7. Modulating action of low frequency oscillations on high frequency instabilities in Hall thrusters

    SciTech Connect

    Liqiu, Wei E-mail: weiliqiu@hit.edu.cn; Liang, Han; Ziyi, Yang; Jing, Li; Yong, Cao; Daren, Yu; Jianhua, Du

    2015-02-07

    It is found that the low frequency oscillations have modulating action on high frequency instabilities in Hall thrusters. The physical mechanism of this modulation is discussed and verified by numerical simulations. Theoretical analyses indicate that the wide-range fluctuations of plasma density and electric field associated with the low frequency oscillations affect the electron drift velocity and anomalous electron transport across the magnetic field. The amplitude and frequency of high frequency oscillations are modulated by low frequency oscillations, which show the periodic variation in the time scale of low frequency oscillations.

  8. Soft surfaces of nanomaterials enable strong phonon interactions

    NASA Astrophysics Data System (ADS)

    Bozyigit, Deniz; Yazdani, Nuri; Yarema, Maksym; Yarema, Olesya; Lin, Weyde Matteo Mario; Volk, Sebastian; Vuttivorakulchai, Kantawong; Luisier, Mathieu; Juranyi, Fanni; Wood, Vanessa

    2016-03-01

    Phonons and their interactions with other phonons, electrons or photons drive energy gain, loss and transport in materials. Although the phonon density of states has been measured and calculated in bulk crystalline semiconductors, phonons remain poorly understood in nanomaterials, despite the increasing prevalence of bottom-up fabrication of semiconductors from nanomaterials and the integration of nanometre-sized components into devices. Here we quantify the phononic properties of bottom-up fabricated semiconductors as a function of crystallite size using inelastic neutron scattering measurements and ab initio molecular dynamics simulations. We show that, unlike in microcrystalline semiconductors, the phonon modes of semiconductors with nanocrystalline domains exhibit both reduced symmetry and low energy owing to mechanical softness at the surface of those domains. These properties become important when phonons couple to electrons in semiconductor devices. Although it was initially believed that the coupling between electrons and phonons is suppressed in nanocrystalline materials owing to the scarcity of electronic states and their large energy separation, it has since been shown that the electron-phonon coupling is large and allows high energy-dissipation rates exceeding one electronvolt per picosecond (refs 10, 11, 12, 13). Despite detailed investigations into the role of phonons in exciton dynamics, leading to a variety of suggestions as to the origins of these fast transition rates and including attempts to numerically calculate them, fundamental questions surrounding electron-phonon interactions in nanomaterials remain unresolved. By combining the microscopic and thermodynamic theories of phonons and our findings on the phononic properties of nanomaterials, we are able to explain and then experimentally confirm the strong electron-phonon coupling and fast multi-phonon transition rates of charge carriers to trap states. This improved understanding of phonon

  9. Resonant interactions between discrete phonons in quinhydrone driven by nonlinear electron-phonon coupling

    NASA Astrophysics Data System (ADS)

    Rury, Aaron S.

    2016-06-01

    This study reports experimental, computational, and theoretical evidence for a previously unobserved coherent phonon-phonon interaction in an organic solid that can be described by the application of Fano's analysis to a case without the presence of a continuum. Using Raman spectroscopy of the hydrogen-bonded charge-transfer material quinhydrone, two peaks appear near 700 cm-1 we assign as phonons whose position and line-shape asymmetry depend on the sample temperature and light scattering excitation energy. Density functional theory calculations find two nearly degenerate phonons possessing frequencies near the values found in experiment that share similar atomic motion out of the aromatic plane of electron donor and acceptor molecules of quinhydrone. Further analytical modeling of the steady-state light scattering process using the Peierls-Hubbard Hamiltonian and time-dependent perturbation theory motivates assignment of the physical origin of the asymmetric features of each peak's line shape to an interaction between two discrete phonons via nonlinear electron-phonon coupling. In the context of analytical model results, characteristics of the experimental spectra upon 2.33 eV excitation of the Raman scattering process are used to qualify the temperature dependence of the magnitude of this coupling in the valence band of quinhydrone. These results broaden the range of phonon-phonon interactions in materials in general while also highlighting the rich physics and fundamental attributes specific to organic solids that may determine their applicability in next generation electronics and photonics technologies.

  10. Phonon quarticity induced by changes in phonon-tracked hybridization during lattice expansion and its stabilization of rutile TiO2

    SciTech Connect

    Lan, Tian; Li, Chen W.; Hellman, O.; Kim, D. S.; Muñoz, Jorge A.; Smith, Hillary; Abernathy, Douglas L.; Fultz, B.

    2015-08-11

    Although the rutile structure of TiO2 is stable at high temperatures, the conventional quasiharmonic approximation predicts that several acoustic phonons decrease anomalously to zero frequency with thermal expansion, incorrectly predicting a structural collapse at temperatures well below 1000 K. In this paper, inelastic neutron scattering was used to measure the temperature dependence of the phonon density of states (DOS) of rutile TiO2 from 300 to 1373 K. Surprisingly, these anomalous acoustic phonons were found to increase in frequency with temperature. First-principles calculations showed that with lattice expansion, the potentials for the anomalous acoustic phonons transform from quadratic to quartic, stabilizing the rutile phase at high temperatures. In these modes, the vibrational displacements of adjacent Ti and O atoms cause variations in hybridization of 3d electrons of Ti and 2p electrons of O atoms. Finally, with thermal expansion, the energy variation in this “phonon-tracked hybridization” flattens the bottom of the interatomic potential well between Ti and O atoms, and induces a quarticity in the phonon potential.

  11. Self Consistent Ambipolar Transport and High Frequency Oscillatory Transient in Graphene Electronics

    DTIC Science & Technology

    2015-08-17

    acceleration of free carriers in constant electric fields followed by sudden LO phonon emission , where carriers lose the quasi-totality of their...kinetic energy to repeat the succession of acceleration and LO phonon emission . Our study showed that in the presence of an ac field , THz oscillations...especially at high fields , where carriers overshoot the OP energy before emission . For this purpose, the Boltzmann formalism is used to solve for the steady

  12. Phonon Analysis in Multiphonon Transitions

    NASA Astrophysics Data System (ADS)

    Huang, Kun; Gu, Zongquan

    In the investigation of multiphonon transitions, single-mode or single-frequency models are widely used. In view of the fact that such oversimplified models can be seriously inadequate, the present work bridges the gap between the complexity of the general formal theory and the simplicity required for concrete applications by introducing the concept of multi-frequency models. That is, the theory is so formulated that a general system can be approximated by multi-frequency models of any degree of elaboration. A statistical thermodynamic formalism is developed for treating such multi-frequency models, which, on the one hand, greatly reduces the labour of calculation with such models and, on the other hand, leads directly to a simple statistical distribution law for numbers of phonons of each frequency participating in a multiphonon transition. Applications of the theory to concrete models lead to certain general conclusions on frequency dispersion effects in multiphonon transitions. The use of the theory is further demonstrated by fully accounting for the paradoxical experimental results reported by Jia and Yen that the isotopic substitution of H by D in CsMn Cl3· 2H2O reduces the multiphonon nonradiative transition probability of excited Mn2+ ion by more than ten-fold, and yet leaves the corresponding luminescence phonon sideband little changed. In the last section of the paper, the relation between the statistical thermodynamic formalism and existing multiphonon transition theory is elucidated, thereby the theoretical basis of the statistical formalism becomes clearly defined.

  13. Revealing the mechanism of passive transport in lipid bilayers via phonon-mediated nanometre-scale density fluctuations

    SciTech Connect

    Zhernenkov, Mikhail; Bolmatov, Dima; Soloviov, Dmitry; Zhernenkov, Kirill; Toperverg, Boris P.; Cunsolo, Alessandro; Bosak, Alexey; Cai, Yong

    2016-05-12

    We report the high resolution inelastic x-ray study of the in-plane phonon excitations in dipalmitoyl phosphatidylcholine (DPPC) above and below main transition temperature. In the Lβ' gel phase, we observe high frequency longitudinal phonon mode previously predicted by the molecular dynamics simulations and for the first time, we reveal low frequency weakly dispersive transverse acoustic mode which softens and exhibits a low-frequency phonon gap when the DPPC lipid transitions into the Lα fluid phase. The phonon softening of the high frequency longitudinal excitations and the transformation of the transverse excitations upon the phase transition from the Lβ' to Lα phase is explained within the framework of the phonon theory of liquids. These findings illustrate the importance of the collective dynamics of biomembranes and reveal that hydrocarbon tails can act as an efficient mediator in controlling the passive transport across the bilayer plane.

  14. The influence of temperature on the average number of optical phonons in a polar slab of semiconductors

    NASA Astrophysics Data System (ADS)

    Wang, Xiu-qing

    2017-03-01

    The effects of temperature T, average number of optical phonons N, the phonon frequency ω and slab thickness d in a polar slab were investigated using the linear combination operator and unitary transformation methods. The results showed that the phonon frequency ω increases with increasing temperature T, but the average number of optical phonons N and phonon frequency ω decreases with the increase in slab thickness d. When the slab thickness is <5 nm, N decreases sharply, and when the slab thickness is <10 nm, the phonon frequency ω and slab thickness d changed significantly.

  15. Plant Responses to High Frequency Electromagnetic Fields

    PubMed Central

    Vian, Alain; Davies, Eric; Gendraud, Michel; Bonnet, Pierre

    2016-01-01

    High frequency nonionizing electromagnetic fields (HF-EMF) that are increasingly present in the environment constitute a genuine environmental stimulus able to evoke specific responses in plants that share many similarities with those observed after a stressful treatment. Plants constitute an outstanding model to study such interactions since their architecture (high surface area to volume ratio) optimizes their interaction with the environment. In the present review, after identifying the main exposure devices (transverse and gigahertz electromagnetic cells, wave guide, and mode stirred reverberating chamber) and general physics laws that govern EMF interactions with plants, we illustrate some of the observed responses after exposure to HF-EMF at the cellular, molecular, and whole plant scale. Indeed, numerous metabolic activities (reactive oxygen species metabolism, α- and β-amylase, Krebs cycle, pentose phosphate pathway, chlorophyll content, terpene emission, etc.) are modified, gene expression altered (calmodulin, calcium-dependent protein kinase, and proteinase inhibitor), and growth reduced (stem elongation and dry weight) after low power (i.e., nonthermal) HF-EMF exposure. These changes occur not only in the tissues directly exposed but also systemically in distant tissues. While the long-term impact of these metabolic changes remains largely unknown, we propose to consider nonionizing HF-EMF radiation as a noninjurious, genuine environmental factor that readily evokes changes in plant metabolism. PMID:26981524

  16. Extremely high-frequency therapy in oncology.

    PubMed

    Teppone, Mikhail; Avakyan, Romen

    2010-11-01

    This article represents a review of the literature, mainly from Russian sources, dealing with the therapeutic application of low-intensity electromagnetic radiation in the millimeter band applied to experimental and clinical oncology. At the early stage of these studies, efficacy and safety of millimeter electromagnetic radiation (extremely high frequency [EHF]) was proved for various types of malignant tumors. The majority of the further studies demonstrated the high efficacy and safety of millimeter wave radiation in treating patients suffering from both benign and malignant tumors. Developments led to treatment on skin melanoma, cancer of the ear-nose-throat, bowel and breast cancer, cancer of the uterus, lung, and stomach, solid tumors, as well as lymphoma. The main indications for this therapy are (1) preparation prior to radical treatment; (2) prevention and treatment of side-effects and complications from chemotherapy and radiotherapy; (3) prevention of metastases, relapses, and dissemination of the tumor; (4) treatment of the paraneoplastic syndrome; and (5) palliative therapy of incurable patients. In spite of the fact that not all mechanisms underlying effects of EHF therapy are known as yet, this therapeutic modality has been shown to have great potential in clinical oncology from studies performed in Eastern Europe and Russia.

  17. Phononic crystals of poroelastic spheres

    NASA Astrophysics Data System (ADS)

    Alevizaki, A.; Sainidou, R.; Rembert, P.; Morvan, B.; Stefanou, N.

    2016-11-01

    An extension of the layer-multiple-scattering method to phononic crystals of poroelastic spheres immersed in a fluid medium is developed. The applicability of the method is demonstrated on specific examples of close-packed fcc crystals of submerged water-saturated meso- and macroporous silica microspheres. It is shown that, by varying the pore size and/or the porosity, the transmission, reflection, and absorption spectra of finite slabs of these crystals are significantly altered. Strong absorption, driven by the slow waves in the poroelastic material and enhanced by multiple scattering, leads to negligible transmittance over an extended frequency range, which might be useful for practical applications in broadband acoustic shielding. The results are analyzed by reference to relevant phononic dispersion diagrams in the viscous and inertial coupling limits, and a consistent interpretation of the underlying physics is provided.

  18. Ab initio phonon limited transport

    NASA Astrophysics Data System (ADS)

    Verstraete, Matthieu

    We revisit the thermoelectric (TE) transport properties of two champion materials, PbTe and SnSe, using fully first principles methods. In both cases the performance of the material is due to subtle combinations of structural effects, scattering, and phase space reduction. In PbTe anharmonic effects are completely opposite to the predicted quasiharmonic evolution of phonon frequencies and to frequently (and incorrectly) cited extrapolations of experiments. This stabilizes the material at high T, but also tends to enhance its thermal conductivity, in a non linear manner, above 600 Kelvin. This explains why PbTe is in practice limited to room temperature applications. SnSe has recently been shown to be the most efficient TE material in bulk form. This is mainly due to a strongly enhanced carrier concentration and electrical conductivity, after going through a phase transition from 600 to 800 K. We calculate the transport coefficients as well as the defect concentrations ab initio, showing excellent agreement with experiment, and elucidating the origin of the double phase transition as well as the new charge carriers. AH Romero, EKU Gross, MJ Verstraete, and O Hellman PRB 91, 214310 (2015) O. Hellman, IA Abrikosov, and SI Simak, PRB 84 180301 (2011)

  19. High Frequency Electromagnetic Propagation/Scattering Codes

    DTIC Science & Technology

    2000-09-01

    Journal of Mathematical Analysis and Applications , 77...Frequency Limiting, Journal of Mathematical Analysis and Applications , 77, 469-481 (1980). [12] Y.T. Lo, S.W. Lee, editors, Antenna Handbook, Theory...Widom, Eigenvalue Distribution of Time and Frequency Limiting, Journal of Mathematical Analysis and Applications , 77, 469-481 (1980). [20] D.

  20. ENGLISH WORDS OF VERY HIGH FREQUENCY.

    ERIC Educational Resources Information Center

    CARD, WILLIAM; MCDAVID, VIRGINIA

    THE BIAS OF THE FREQUENCY OF THE 122 MOST COMMONLY USED ENGLISH WORDS WAS STUDIED. THE METHOD USED TO ASSEMBLE THESE DATA IS DESCRIBED FULLY. THE MOST FREQUENTLY USED WORDS WERE TAKEN FROM A DISSERTATION BY GEORGE K. MONROE, "PHONEMIC TRANSCRIPTION OF GRAPHIC POSTBASE AFFIXES IN ENGLISH," GODFREY DEWEY, "RELATIVE FREQUENCY OF ENGLISH SPEECH…

  1. Clinical Utilisation of High-frequency DPOAEs.

    PubMed

    Poling, Gayla; Lee, Jungmee; Siegel, Jonathan; Dhar, Sumitrajit

    2012-01-01

    The value of assessing auditory function at frequencies above 8kHz to detect age-related changes and ototoxic damage in the cochlea is well established but not commonplace. Physiological changes in the auditory periphery due to age and ototoxicity are initially evident, and most prominent, at frequencies above 8kHz [1]. The most well investigated use of hearing thresholds and otoacoustic emissions above 8kHz is in monitoring auditory function in patients undergoing chemotherapy [2]. Ototoxic changes in hearing thresholds at frequencies between 10-14kHz prior to the manifestation of any changes at lower frequencies have been consistently documented in these patients. Age-related changes in hearing also appear at frequencies above 8kHz prior to any observable changes at regular audiometric frequencies [3]. The value of using hearing thresholds at frequencies above 8kHz to detect noise-induced hearing loss is debated in the literature with some reports of hearing thresholds at frequencies above 8kHz demonstrating more sensitivity to noise-induced damage than others [4].

  2. A High Frequency Model of Cascade Noise

    NASA Technical Reports Server (NTRS)

    Envia, Edmane

    1998-01-01

    Closed form asymptotic expressions for computing high frequency noise generated by an annular cascade in an infinite duct containing a uniform flow are presented. There are two new elements in this work. First, the annular duct mode representation does not rely on the often-used Bessel function expansion resulting in simpler expressions for both the radial eigenvalues and eigenfunctions of the duct. In particular, the new representation provides an explicit approximate formula for the radial eigenvalues obviating the need for solutions of the transcendental annular duct eigenvalue equation. Also, the radial eigenfunctions are represented in terms of exponentials eliminating the numerical problems associated with generating the Bessel functions on a computer. The second new element is the construction of an unsteady response model for an annular cascade. The new construction satisfies the boundary conditions on both the cascade and duct walls simultaneously adding a new level of realism to the noise calculations. Preliminary results which demonstrate the effectiveness of the new elements are presented. A discussion of the utility of the asymptotic formulas for calculating cascade discrete tone as well as broadband noise is also included.

  3. Laser for high frequency modulated interferometry

    DOEpatents

    Mansfield, D.K.; Vocaturo, M.; Guttadora, L.J.

    1991-07-23

    A Stark-tuned laser operating in the 119 micron line of CH[sub 3]OH has an output power of several tens of milliwatts at 30 Watts of pump power while exhibiting a doublet splitting of about ten MHz with the application of a Stark field on the order of 500 volts/cm. This output power allows for use of the laser in a multi-channel interferometer, while its high operating frequency permits the interferometer to measure rapid electron density changes in a pellet injected or otherwise fueled plasma such as encountered in magnetic fusion devices. The laser includes a long far-infrared (FIR) pyrex resonator tube disposed within a cylindrical water jacket and incorporating charged electrodes for applying the Stark field to a gas confined therein. With the electrodes located within the resonator tube, the resonator tube walls are cooled by a flowing coolant without electrical breakdown in the coolant liquid during application of the Stark field. Wall cooling allows for substantially increased FIR output powers. Provision is made for introducing a buffer gas into the resonator tube for increasing laser output power and its operating bandwidth. 10 figures.

  4. Laser for high frequency modulated interferometry

    DOEpatents

    Mansfield, Dennis K.; Vocaturo, Michael; Guttadora, Lawrence J.

    1991-01-01

    A Stark-tuned laser operating in the 119 micron line of CH.sub.3 OH has an output power of several tens of milliwatts at 30 Watts of pump power while exhibiting a doublet splitting of about ten MHz with the application of a Stark field on the order of 500 volts/cm. This output power allows for use of the laser in a multi-channel interferometer, while its high operating frequency permits the interferometer to measure rapid electron density changes in a pellet injected or otherwise fueled plasma such as encountered in magnetic fusion devices. The laser includes a long far-infrared (FIR) pyrex resonator tube disposed within a cylindrical water jacket and incorporating charged electrodes for applying the Stark field to a gas confined therein. With the electrodes located within the resonator tube, the resonator tube walls are cooled by a flowing coolant without electrical breakdown in the coolant liquid during application of the Stark field. Wall cooling allows for substantially increased FIR output powers. Provision is made for introducing a buffer gas into the resonator tube for increasing laser output power and its operating bandwidth.

  5. High-Frequency Observations of Blazars

    NASA Technical Reports Server (NTRS)

    Marscher, A. P.; Marchenko-Jorstad, S. G.; Mattox, J. R.; Wehrle, A. E.; Aller, M. F.

    2000-01-01

    We report on the results of high-frequency VLBA observations of 42 gamma-ray bright blazars monitored at 22 and 43 GHz between 1993.9 and 1997.6. In 1997 the observations included polarization-sensitive imaging. The cores of gamma-ray blazars are only weakly polarized, with EVPAs (electric-vector position angles) usually within 40 deg of the local direction of the jet. The EVPAs of the jet components are usually within 20 deg of the local jet direction. The apparent speeds of the gamma-ray bright blazars are considerably faster than in the general population of bright compact radio sources. Two X-ray flares (observed with RXTE) of the quasar PKS 1510-089 appear to be related to radio flares, but with the radio leading the X-ray variations by about 2 weeks. This can be explained either by synchrotron self-Compton emission in a component whose variations are limited by light travel time or by the Mirror Compton model.

  6. High-Frequency Observations of Blazars

    NASA Technical Reports Server (NTRS)

    Marscher, A. P.; Marchenko-Jorstad, S. G.; Mattox, J. R.; Wehrle, A. E.; Aller, M. F.

    2000-01-01

    We report on the results of high-frequency VLBA observations of 42 gamma ray bright blazars monitored at 22 and 43 GHz between 1993.9 and 1997-6. In 1997 the observations included polarization-sensitive imaging. The cores of gamma ray blazars are only weakly polarized, with EVPAs (electric-vector position angles) usually within 40 degrees of the local direction of the jet. The EVPAs of the jet components are usually within 20 degrees of the local jet direction. The apparent speeds of the gamma ray bright blazars are considerably faster than in the general population of bright compact radio sources. Two X-ray flares (observed with RXTE) of the quasar PKS 1510-089 appear to be related to radio flares, but with the radio leading the X-ray variations by about 2 weeks. This can be explained either by synchrotron self-Compton emission in a component whose variations are limited by light travel time or by the Mirror Compton model.

  7. High-Frequency Observations of Blazars

    NASA Technical Reports Server (NTRS)

    Marscher, A. P.; Marchenko-Jorstad, S. G.; Mattox, J. R.; Wehrle, A. E.; Aller, M. F.

    2000-01-01

    We report on the results of high-frequency VLBA observations of 42 gamma ray bright blazars monitored at 22 and 43 GHz between 1993.9 and 1997-6. In 1997 the observations included polarization-sensitive imaging. The cores of gamma ray blazars are only weakly polarized, with EVPAs (electric-vector position angles) usually within 40 degrees of the local direction of the jet. The EVPAs of the jet components are usually within 20 degrees of the local jet direction. The apparent speeds of the gamma ray bright blazars are considerably faster than in the general population of bright compact radio sources. Two X-ray flares (observed with RXTE) of the quasar PKS 1510-089 appear to be related to radio flares, but with the radio leading the X-ray variations by about 2 weeks. This can be explained either by synchrotron self-Compton emission in a component whose variations are limited by light travel time or by the Mirror Compton model.

  8. Inelastic x-ray scattering measurements of phonon dispersion and lifetimes in PbTe1-x Se x alloys

    NASA Astrophysics Data System (ADS)

    Tian, Zhiting; Li, Mingda; Ren, Zhensong; Ma, Hao; Alatas, Ahmet; Wilson, Stephen D.; Li, Ju

    2015-09-01

    PbTe1-x Se x alloys are of special interest to thermoelectric applications. Inelastic x-ray scattering determination of phonon dispersion and lifetimes along the high symmetry directions for PbTe1-x Se x alloys are presented. By comparing with calculated results based on the virtual crystal model calculations combined with ab initio density functional theory, the validity of virtual crystal model is evaluated. The results indicate that the virtual crystal model is overall a good assumption for phonon frequencies and group velocities despite the softening of transverse acoustic phonon modes along [1 1 1] direction, while the treatment of lifetimes warrants caution. In addition, phonons remain a good description of vibrational modes in PbTe1-x Se x alloys.

  9. Laboratory investigation on the role of tubular shaped micro resonators phononic crystal insertion on the absorption coefficient of profiled sound absorber

    NASA Astrophysics Data System (ADS)

    Yahya, I.; Kusuma, J. I.; Harjana; Kristiani, R.; Hanina, R.

    2016-02-01

    This paper emphasizes the influence of tubular shaped microresonators phononic crystal insertion on the sound absorption coefficient of profiled sound absorber. A simple cubic and two different bodies centered cubic phononic crystal lattice model were analyzed in a laboratory test procedure. The experiment was conducted by using transfer function based two microphone impedance tube method refer to ASTM E-1050-98. The results show that sound absorption coefficient increase significantly at the mid and high-frequency band (600 - 700 Hz) and (1 - 1.6 kHz) when tubular shaped microresonator phononic crystal inserted into the tested sound absorber element. The increment phenomena related to multi-resonance effect that occurs when sound waves propagate through the phononic crystal lattice model that produce multiple reflections and scattering in mid and high-frequency band which increases the sound absorption coefficient accordingly

  10. Infrared probe of spin-phonon coupling in antiferromagnetic honeycomb lattice compound Li₂MnO₃.

    PubMed

    Song, Seungjae; Lee, Sanghyun; Jeon, Seyoung; Park, Je-Geun; Moon, S J

    2015-12-09

    We investigated temperature-dependent infrared-active phonon modes of honeycomb Li2MnO3 which shows an antiferromagnetic transition at T(N)  =  36 K. In the far-infrared frequency region, we observed fourteen phonon modes. We obtained the temperature dependence of each phonon mode from the analysis of optical conductivity spectra by using the Lorentz and the Fano-type oscillator models. We found that the resonance frequencies of nine phonon modes showed an anomalous behavior near T(N) that should be attributed to the spin-phonon coupling. We calculated the magnitude of the spin-phonon coupling constant from the shift in the resonance frequencies of the phonon modes below T(N). Our results suggest that Li2MnO3 is weakly frustrated and that spin-phonon coupling plays a role in antiferromagnetic ordering.

  11. Phonon thermal transport outside of local equilibrium in nanowires via molecular dynamics

    SciTech Connect

    Zhou Ya; Strachan, Alejandro

    2013-03-28

    We study thermal transport through Pt nanowires that bridge planar contacts as a function of wire length and vibrational frequency of the contacts. When phonons in the contacts have lower average frequencies than those in the wires thermal transport occurs under conditions away from local equilibrium with low-frequency phonons experiencing a higher thermal gradient than high-frequency ones. This results in a size-dependent increase in the effective thermal conductivity of the wire with decreasing vibrational frequencies of the contacts. The interfacial resistivity when heat flows from the wire to the contact is also size-dependent and has the same physical origin in the lack of full equilibration in short nanowires. We develop a model based on a 1D atomic chain that captures the salient physics of the MD results.

  12. Phonon thermal transport outside of local equilibrium in nanowires via molecular dynamics.

    PubMed

    Zhou, Ya; Strachan, Alejandro

    2013-03-28

    We study thermal transport through Pt nanowires that bridge planar contacts as a function of wire length and vibrational frequency of the contacts. When phonons in the contacts have lower average frequencies than those in the wires thermal transport occurs under conditions away from local equilibrium with low-frequency phonons experiencing a higher thermal gradient than high-frequency ones. This results in a size-dependent increase in the effective thermal conductivity of the wire with decreasing vibrational frequencies of the contacts. The interfacial resistivity when heat flows from the wire to the contact is also size-dependent and has the same physical origin in the lack of full equilibration in short nanowires. We develop a model based on a 1D atomic chain that captures the salient physics of the MD results.

  13. Probing Phonons in Plutonium

    NASA Astrophysics Data System (ADS)

    Wong, Joe

    2004-03-01

    The phonon spectra of plutonium and its alloys have been sought after in the past few decades following the discovery of this actinide element in 1941, but with no success. This was due to a combination of the high neutron absorption cross section of 239Pu, the common isotope, and non-availability of large single crystals of any Pu-bearing materials. We have recent designed a high resolution inelastic x-ray scattering experiment using a bright synchrotron x-ray beam at the European Sychrotron Radiation Facility (ESRF), Grenoble and mapped the full phonon dispersion curves of an fcc delta-phase polycrystalline Pu-Ga alloy (1). Several unusual features including, a large elastic anisotropy, a small shear elastic modulus C', a Kohn-like anomaly in the T1[011] branch, and a pronounced softening of the [111] transverse modes are found. These features can be related to the phase transitions of plutonium and to strong coupling between the lattice structure and the 5f valence instabilities. Our results also provide a critical test for theoretical treatments of highly correlated 5f electron systems as exemplified by recent dynamical mean field theory (DMFT) calculations for d-plutonium.(2) This work was performed in collaboration with Dr. M. Krisch (ESRF)) and Prof. T.-C. Chiang (UIU), and under the auspices of the U. S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48. 1. Joe Wong et al. Science, vol.301, 1078 (2003) 2. X. Dai et al. Science, vol.300, 953 (2003)

  14. Phonon engineering for nanostructures.

    SciTech Connect

    Aubry, Sylvie; Friedmann, Thomas Aquinas; Sullivan, John Patrick; Peebles, Diane Elaine; Hurley, David H.; Shinde, Subhash L.; Piekos, Edward Stanley; Emerson, John Allen

    2010-01-01

    Understanding the physics of phonon transport at small length scales is increasingly important for basic research in nanoelectronics, optoelectronics, nanomechanics, and thermoelectrics. We conducted several studies to develop an understanding of phonon behavior in very small structures. This report describes the modeling, experimental, and fabrication activities used to explore phonon transport across and along material interfaces and through nanopatterned structures. Toward the understanding of phonon transport across interfaces, we computed the Kapitza conductance for {Sigma}29(001) and {Sigma}3(111) interfaces in silicon, fabricated the interfaces in single-crystal silicon substrates, and used picosecond laser pulses to image the thermal waves crossing the interfaces. Toward the understanding of phonon transport along interfaces, we designed and fabricated a unique differential test structure that can measure the proportion of specular to diffuse thermal phonon scattering from silicon surfaces. Phonon-scale simulation of the test ligaments, as well as continuum scale modeling of the complete experiment, confirmed its sensitivity to surface scattering. To further our understanding of phonon transport through nanostructures, we fabricated microscale-patterned structures in diamond thin films.

  15. Self-consistent phonons in MgSiO3 perovskite

    NASA Astrophysics Data System (ADS)

    Zhang, D.; Sun, T.; Wentzcovitch, R. M.

    2012-12-01

    There are numerous materials under conditions of interest for which MD is required but still too demanding for first principles. In these cases 1) phonon-phonon interactions are non-negligible, 2) the material is on the verge of mechanical and/or vibrational instabilities, 3) or the material is stabilized by anharmonic fluctuations at high temperatures. MD is suitable for investigating these states as intrinsic anharmonic effects caused by phonon-phonon interactions are naturally included, but the requirement on size and length of the simulations call for more efficient and accurate approaches for phase space sampling. Indeed, MD needs thousands of atoms and 10^4 to 10^5 picosenconds of simulations for thorough sampling of phase space and accurate free energy calculations (e.g. in thermodynamical integration method). Nevertheless, we note that none of these states can be physical-properly addressed by quasi-harmonic approximation (QHA) approach. This is because QHA overlooks the intrinsic harmonicity and only suits mechanically and dynamically stable phases with a limited range in temperature (Up to approximately 2/3 of the melting temperature). Recently, a new breed of methods for calculating anharmonic vibrational spectra has been developed. These methods use MD to extract phonon frequencies renormalized by phonon-phonon interactions (self-consistent phonons - SCPh). More than one procedure to extract SCPh frequencies has been introduced and applied to solids with lattice structures relatively simple compared to those of silicate minerals. Here, we developed an efficient approach that can offer SCPh dispersions in materials with complex crystal lattice structures containing tens of atoms per primitive cell. First-principles MD simulations on supercells containing hundreds of atoms permits the extraction of dynamical matrices and force-constant matrices that can be Fourier interpolated to produce SCPh dispersions. Thoroughly sampling of these dispersions

  16. Fibre Bragg gratings subject to high strain at high frequencies

    NASA Astrophysics Data System (ADS)

    Jackson, D. A.

    2011-05-01

    A simple optical interrogation scheme based on an erbium doped fibre super-fluorescent source and a high Finesse Fabry Perot driven at effective frequencies of 20 kHz over ~ 60nm range is used to recover the output signals from Fibre Bragg Gratings (FBG) that can be deployed in a serial array. The FBG were modulated at frequencies up to 10 kHz and strains up to ~4000μstrain. These signals were recovered in the time domain with a very high bandwidth digital scope using a two dimensional waterfall display consisting of a number of segments where the time between segments is equal to the inverse of the system scanning frequency; essentially the sequential 'x' axis tick markers in a conventional x-y graph format. The amplitude induced changes in the wavelength of the FBG are converted to different times and observed as sequential horizontal scans along the time axis of the waterfall, correspond to the variations in the wavelength of the FBG (y axis). Signals from serial FBG arrays appear at different time slices on the time axis enabling near simultaneous determination of the induced strain of each grating.

  17. A High Power Frequency Doubled Fiber Laser

    NASA Technical Reports Server (NTRS)

    Thompson, Rob; Tu, Meirong; Aveline, Dave; Lundblad, Nathan; Maleki, Lute

    2003-01-01

    This slide presentation reviews the power frequencies for the doubled fiber laser. It includes information on the 780 nm laser, second harmonic generation in one crystal, cascading crystals, the tenability of laser systems, laser cooling, and directions for future work.

  18. A High Power Frequency Doubled Fiber Laser

    NASA Technical Reports Server (NTRS)

    Thompson, Rob; Tu, Meirong; Aveline, Dave; Lundblad, Nathan; Maleki, Lute

    2003-01-01

    This slide presentation reviews the power frequencies for the doubled fiber laser. It includes information on the 780 nm laser, second harmonic generation in one crystal, cascading crystals, the tenability of laser systems, laser cooling, and directions for future work.

  19. Observation of Odd Symmetry Surface Phonon Modes on NICKEL(100) and SILVER(100) Surfaces Using the New Multichannel High Resolution Electron Energy Loss Spectrometer

    NASA Astrophysics Data System (ADS)

    Jeong, Eue-Jin

    A multichannel detection high resolution electron analyzer has been constructed and tested. The capabilities of achieving out-of-plane scattering geometry, high resolution and high sensitivity has made it possible to detect for the first time the odd-symmetry surface phonon modes on Ni(100) and Ag(100) surfaces. Initial tests were performed to verify the performance of the spectrometer. The best instrumental resolution obtained was 3.5 meV and analyzer count rate could be maintained at 1000 Hz in large angle scattering geometry. This represents an improvement in performance of a factor of at least 50 compared to the existing conventional single channel spectrometers. Odd symmetry surface phonon modes found on Ag(100) surfaces have been measured to be 3.2 meV which agrees closely with available calculations. An additional interesting feature found to be interesting is that the background width of odd symmetry modes appear to be narrower than that of the even symmetry mode scattering data. This effect has not been predicted or explained by theory. As it stands now, the large angle high-resolution electron energy loss cross sections are not completely characterized by theory.

  20. Molecular Solid EOS based on Quasi-Harmonic Oscillator approximation for phonons

    SciTech Connect

    Menikoff, Ralph

    2014-09-02

    A complete equation of state (EOS) for a molecular solid is derived utilizing a Helmholtz free energy. Assuming that the solid is nonconducting, phonon excitations dominate the specific heat. Phonons are approximated as independent quasi-harmonic oscillators with vibrational frequencies depending on the specific volume. The model is suitable for calibrating an EOS based on isothermal compression data and infrared/Raman spectroscopy data from high pressure measurements utilizing a diamond anvil cell. In contrast to a Mie-Gruneisen EOS developed for an atomic solid, the specific heat and Gruneisen coefficient depend on both density and temperature.

  1. Three material and four material one-dimensional phononic crystals

    NASA Astrophysics Data System (ADS)

    Kriegel, Ilka; Scotognella, Francesco

    2017-01-01

    In this work, we studied one-dimensional phononic structures for selective acoustic filtering. The structures are composed of three and four materials which have different elastic properties. We have observed that the phononic band gaps split in two and three transmission valleys for the three-material and the four-material based phononic structures, respectively. Furthermore, the number of transmission peaks between the split gaps is directly related to the number of unit cells composing the phononic structures. The observations of this work can be useful for the fabrication of acoustic filters with the possibility to select the transmission of particular frequencies.

  2. High-Frequency and Very-high-Frequency (HF&VHF) above-groundelectromagnetic impedance measurements

    SciTech Connect

    Frangos, William; Becker, Alex; Lee, K.H.

    2002-09-20

    We have field-tested an apparatus for measuring the electromagnetic impedance above the ground at a plurality of frequencies in the 0.3 - 30 MHz range. This window in the frequency spectrum, which lies between frequencies used for GPR and those used for conventional loop-loop EM soundings, has not been used because of difficulties in fielding equipment for making absolute and accurate measurements. Model and physical parameter studies however confirm that data in this frequency band can be used to construct high-resolution maps of electrical conductivity and permittivity of near-surface material. Our equipment was assembled using commercial electric and magnetic antennas. The magnetic loop source is excited by a conventional signal generator - power amplifier assembly. Signal detection is accomplished using RF lock-in amplifiers. All system elements are appropriately isolated by optic - fiber links. We estimate a measurement accuracy of about {+-} 10% for an 8-m separation between source and detector. Field tests were done at the University of California Richmond Field Station where the near surface electrical structure is well known. The experimental data at this site are mainly a function of electrical conductivity. In this context, we have obtained good agreement with the known local variations in resistivity both with depth and with position along a 35-m traverse. Additional tests in more resistive regimes where dielectric permittivity is not negligible yield spectral data compatible with the less well known near-surface electrical properties.

  3. High Frequency QRS ECG Accurately Detects Cardiomyopathy

    NASA Technical Reports Server (NTRS)

    Schlegel, Todd T.; Arenare, Brian; Poulin, Gregory; Moser, Daniel R.; Delgado, Reynolds

    2005-01-01

    High frequency (HF, 150-250 Hz) analysis over the entire QRS interval of the ECG is more sensitive than conventional ECG for detecting myocardial ischemia. However, the accuracy of HF QRS ECG for detecting cardiomyopathy is unknown. We obtained simultaneous resting conventional and HF QRS 12-lead ECGs in 66 patients with cardiomyopathy (EF = 23.2 plus or minus 6.l%, mean plus or minus SD) and in 66 age- and gender-matched healthy controls using PC-based ECG software recently developed at NASA. The single most accurate ECG parameter for detecting cardiomyopathy was an HF QRS morphological score that takes into consideration the total number and severity of reduced amplitude zones (RAZs) present plus the clustering of RAZs together in contiguous leads. This RAZ score had an area under the receiver operator curve (ROC) of 0.91, and was 88% sensitive, 82% specific and 85% accurate for identifying cardiomyopathy at optimum score cut-off of 140 points. Although conventional ECG parameters such as the QRS and QTc intervals were also significantly longer in patients than controls (P less than 0.001, BBBs excluded), these conventional parameters were less accurate (area under the ROC = 0.77 and 0.77, respectively) than HF QRS morphological parameters for identifying underlying cardiomyopathy. The total amplitude of the HF QRS complexes, as measured by summed root mean square voltages (RMSVs), also differed between patients and controls (33.8 plus or minus 11.5 vs. 41.5 plus or minus 13.6 mV, respectively, P less than 0.003), but this parameter was even less accurate in distinguishing the two groups (area under ROC = 0.67) than the HF QRS morphologic and conventional ECG parameters. Diagnostic accuracy was optimal (86%) when the RAZ score from the HF QRS ECG and the QTc interval from the conventional ECG were used simultaneously with cut-offs of greater than or equal to 40 points and greater than or equal to 445 ms, respectively. In conclusion 12-lead HF QRS ECG employing

  4. High Frequency QRS ECG Accurately Detects Cardiomyopathy

    NASA Technical Reports Server (NTRS)

    Schlegel, Todd T.; Arenare, Brian; Poulin, Gregory; Moser, Daniel R.; Delgado, Reynolds

    2005-01-01

    High frequency (HF, 150-250 Hz) analysis over the entire QRS interval of the ECG is more sensitive than conventional ECG for detecting myocardial ischemia. However, the accuracy of HF QRS ECG for detecting cardiomyopathy is unknown. We obtained simultaneous resting conventional and HF QRS 12-lead ECGs in 66 patients with cardiomyopathy (EF = 23.2 plus or minus 6.l%, mean plus or minus SD) and in 66 age- and gender-matched healthy controls using PC-based ECG software recently developed at NASA. The single most accurate ECG parameter for detecting cardiomyopathy was an HF QRS morphological score that takes into consideration the total number and severity of reduced amplitude zones (RAZs) present plus the clustering of RAZs together in contiguous leads. This RAZ score had an area under the receiver operator curve (ROC) of 0.91, and was 88% sensitive, 82% specific and 85% accurate for identifying cardiomyopathy at optimum score cut-off of 140 points. Although conventional ECG parameters such as the QRS and QTc intervals were also significantly longer in patients than controls (P less than 0.001, BBBs excluded), these conventional parameters were less accurate (area under the ROC = 0.77 and 0.77, respectively) than HF QRS morphological parameters for identifying underlying cardiomyopathy. The total amplitude of the HF QRS complexes, as measured by summed root mean square voltages (RMSVs), also differed between patients and controls (33.8 plus or minus 11.5 vs. 41.5 plus or minus 13.6 mV, respectively, P less than 0.003), but this parameter was even less accurate in distinguishing the two groups (area under ROC = 0.67) than the HF QRS morphologic and conventional ECG parameters. Diagnostic accuracy was optimal (86%) when the RAZ score from the HF QRS ECG and the QTc interval from the conventional ECG were used simultaneously with cut-offs of greater than or equal to 40 points and greater than or equal to 445 ms, respectively. In conclusion 12-lead HF QRS ECG employing

  5. Phonon response of some heavy Fermion systems in dynamic limit

    NASA Astrophysics Data System (ADS)

    Sahoo, Jitendra; Shadangi, Namita; Nayak, Pratibindhya

    2017-05-01

    The phonon excitation spectrum of some Heavy Fermion (HF) systems in the presence of electron-phonon interaction is studied in the dynamic limit (ω≠0). The renormalized excitation phonon frequencies (ω˜ = ω/ω0) are evaluated through Periodic Anderson Model (PAM) in the presence of electron-phonon interaction using Zubarev-type double time temperature-dependent Green function. The calculated renormalized phonon energy is analyzed through the plots of (ω˜ = ω/ω0) against temperature for different system parameters like effective coupling strength ‘g’ and the position of f-level ‘d’. The observed behavior is analyzed and found to agree with the general features of HF systems found in experiments. Further, it is observed that in finite but small q-values the propagating phonons harden and change to localized peaks.

  6. Phonon impedance matching: minimizing interfacial thermal resistance of thin films

    NASA Astrophysics Data System (ADS)

    Polanco, Carlos; Zhang, Jingjie; Ghosh, Avik

    2014-03-01

    The challenge to minimize interfacial thermal resistance is to allow a broad band spectrum of phonons, with non-linear dispersion and well defined translational and rotational symmetries, to cross the interface. We explain how to minimize this resistance using a frequency dependent broadening matrix that generalizes the notion of acoustic impedance to the whole phonon spectrum including symmetries. We show how to ``match'' two given materials by joining them with a single atomic layer, with a multilayer material and with a graded superlattice. Atomic layer ``matching'' requires a layer with a mass close to the arithmetic mean (or spring constant close to the harmonic mean) to favor high frequency phonon transmission. For multilayer ``matching,'' we want a material with a broadening close to the geometric mean to maximize transmission peaks. For graded superlattices, a continuous sequence of geometric means translates to an exponentially varying broadening that generates a wide-band antireflection coating for both the coherent and incoherent limits. Our results are supported by ``first principles'' calculations of thermal conductance for GaAs / Gax Al1 - x As / AlAs thin films using the Non-Equilibrium Greens Function formalism coupled with Density Functional Perturbation Theory. NSF-CAREER (QMHP 1028883), NSF-IDR (CBET 1134311), XSEDE.

  7. Nebulisation on a disposable array structured with phononic lattices.

    PubMed

    Reboud, Julien; Wilson, Rab; Zhang, Yi; Ismail, Mohd H; Bourquin, Yannyk; Cooper, Jonathan M

    2012-04-07

    We demonstrate the use of a phononic crystal to enable the nebulisation of liquid droplets from low-cost disposable arrays, using surface acoustic waves (SAW). The SAWs were generated using interdigitated transducers (IDT) on a piezoelectric surface (LiNbO(3)) and the acoustic waves were coupled into a disposable phononic crystal structure, referred to as a superstrate. Using its excellent reflecting properties, the phononic structures confined the acoustic field within the superstrate, resulting in the concentration of the acoustic energy, in a manner controllable by the excitation frequency. We show that this capability mitigates against coupling losses incurred by the use of a disposable superstrate, greatly reducing the time needed to nebulise a drop of water with respect to an unstructured superstrate for a given power. We also demonstrate that by changing the excitation frequency, it is possible to change the spatial position at which the acoustic energy is concentrated, providing a means to specifically nebulise drops across an array. These results open up a promising future for the use of phonofluidics in high-throughput sample handling applications, such as drug delivery or the "soft" transfer of samples to a mass spectrometer in the field of proteomics. This journal is © The Royal Society of Chemistry 2012

  8. Oxygen Vacancy Induced Flat Phonon Mode at FeSe /SrTiO3 interface.

    PubMed

    Xie, Yun; Cao, Hai-Yuan; Zhou, Yang; Chen, Shiyou; Xiang, Hongjun; Gong, Xin-Gao

    2015-06-12

    A high-frequency optical phonon mode of SrTiO3 (STO) was found to assist the high-temperature superconductivity observed recently at the interface between monolayer FeSe and STO substrate. However, the origin of this mode is not clear. Through first-principles calculations, we find that there is a novel polar phonon mode on the surface layers of the STO substrate, which does not exist in the STO crystals. The oxygen vacancies near the FeSe/STO interface drives the dispersion of this phonon mode to be flat and lowers its energy, whereas the charge transfer between STO substrate and FeSe monolayer further reduces its energy to 81 meV. This energy is in good agreement with the experimental value fitted by Lee et al. for the phonon mode responsible for the observed replica band separations and the increased superconducting gap. The oxygen-vacancy-induced flat and polar phonon mode provides clues for understanding the origin of high Tc superconductivity at the FeSe/STO interface.

  9. Oxygen Vacancy Induced Flat Phonon Mode at FeSe /SrTiO3 interface

    PubMed Central

    Xie, Yun; Cao, Hai-Yuan; Zhou, Yang; Chen, Shiyou; Xiang, Hongjun; Gong, Xin-Gao

    2015-01-01

    A high-frequency optical phonon mode of SrTiO3 (STO) was found to assist the high-temperature superconductivity observed recently at the interface between monolayer FeSe and STO substrate. However, the origin of this mode is not clear. Through first-principles calculations, we find that there is a novel polar phonon mode on the surface layers of the STO substrate, which does not exist in the STO crystals. The oxygen vacancies near the FeSe/STO interface drives the dispersion of this phonon mode to be flat and lowers its energy, whereas the charge transfer between STO substrate and FeSe monolayer further reduces its energy to 81 meV. This energy is in good agreement with the experimental value fitted by Lee et al. for the phonon mode responsible for the observed replica band separations and the increased superconducting gap. The oxygen-vacancy-induced flat and polar phonon mode provides clues for understanding the origin of high Tc superconductivity at the FeSe/STO interface. PMID:26067548

  10. Attenuation estimation using the peak frequency method with high-resolution time-frequency transforms

    NASA Astrophysics Data System (ADS)

    Tary, J. B.; Van der Baan, M.; Herrera, R. H.

    2016-12-01

    Seismic waves attenuate during their propagation due to Earth anelasticity. Attenuation is usually estimated by frequency domain methods such as the spectral ratio and frequency shift methods. These methods compare large frequency bandwidths of the spectra of two waveforms to compute attenuation. Time-frequency distribution resulting from high-resolution time-frequency transforms are highly localized which prevent their use to compute attenuation with these methods.The peak frequency method only requires the estimation of peak frequencies for a pair of waveforms to estimate attenuation, which is then compatible with high-resolution transforms. We here employ three transforms, namely basis pursuit, synchrosqueezing transform, and complete ensemble empirical mode decomposition (CEEMD). We evaluate their performance regarding attenuation estimation using synthetic examples with different signal-to-noise ratios, and compare their results to those of the spectral ratio and frequency shift methods. In most cases basis pursuit and the synchrosqueezing transform provide accurate results, while CEEMD show a higher sensitivity to the presence of noise.We then apply the three high-resolution transforms and the peak frequency method to two case studies, a seismic reflection profile and a vertical seismic profile (VSP). We employ centroid frequencies instead of peak frequencies because they provide stabler frequency estimates which are then transferred to stabler attenuation estimates. In the case of the seismic reflection profile, the three time-frequency transforms show small increases in centroid frequencies superimposed on a general decreasing trend. This likely corresponds to local tuning effects due to the layering superimposed on the effect of intrinsic attenuation. For the VSP, the three time-frequency transforms show consistent patterns in centroid frequencies and quality factors. These results show the worth of high-resolution transforms for attenuation estimation.

  11. Coherent acoustic phonons in YBa2Cu3O7/La1/3Ca2/3MnO3 superlattices

    NASA Astrophysics Data System (ADS)

    Li, Wei; He, Bin; Zhang, Chunfeng; Liu, Shenghua; Liu, Xiaoran; Middey, S.; Chakhalian, J.; Wang, Xiaoyong; Xiao, Min

    2016-03-01

    We investigate photo-induced coherent acoustic phonons in complex oxide superlattices consisting of high-Tc superconductor YBa2Cu3O7-x and ferromagnetic manganite La1/3Ca2/3MnO3 epitaxial layers with broadband pump-probe spectroscopy. Two oscillatory components have been observed in time-resolved differential reflectivity spectra. Based on the analysis, the slow oscillation mode with a frequency sensitive to the probe wavelength is ascribed to the stimulated Brillouin scattering due to the photon reflection by propagating train of coherent phonons. The fast oscillation mode with a probe-wavelength-insensitive frequency is attributed to the Bragg oscillations caused by specular phonon reflections at oxide interfaces or the electron-coupling induced modulation due to free carrier absorption in the metallic superlattices. Our findings suggest that oxide superlattice is an ideal system to tailor the coherent behaviors of acoustic phonons and to manipulate the thermal and acoustic properties.

  12. An inkjet vision measurement technique for high-frequency jetting

    SciTech Connect

    Kwon, Kye-Si Jang, Min-Hyuck; Park, Ha Yeong; Ko, Hyun-Seok

    2014-06-15

    Inkjet technology has been used as manufacturing a tool for printed electronics. To increase the productivity, the jetting frequency needs to be increased. When using high-frequency jetting, the printed pattern quality could be non-uniform since the jetting performance characteristics including the jetting speed and droplet volume could vary significantly with increases in jet frequency. Therefore, high-frequency jetting behavior must be evaluated properly for improvement. However, it is difficult to measure high-frequency jetting behavior using previous vision analysis methods, because subsequent droplets are close or even merged. In this paper, we present vision measurement techniques to evaluate the drop formation of high-frequency jetting. The proposed method is based on tracking target droplets such that subsequent droplets can be excluded in the image analysis by focusing on the target droplet. Finally, a frequency sweeping method for jetting speed and droplet volume is presented to understand the overall jetting frequency effects on jetting performance.

  13. An inkjet vision measurement technique for high-frequency jetting.

    PubMed

    Kwon, Kye-Si; Jang, Min-Hyuck; Park, Ha Yeong; Ko, Hyun-Seok

    2014-06-01

    Inkjet technology has been used as manufacturing a tool for printed electronics. To increase the productivity, the jetting frequency needs to be increased. When using high-frequency jetting, the printed pattern quality could be non-uniform since the jetting performance characteristics including the jetting speed and droplet volume could vary significantly with increases in jet frequency. Therefore, high-frequency jetting behavior must be evaluated properly for improvement. However, it is difficult to measure high-frequency jetting behavior using previous vision analysis methods, because subsequent droplets are close or even merged. In this paper, we present vision measurement techniques to evaluate the drop formation of high-frequency jetting. The proposed method is based on tracking target droplets such that subsequent droplets can be excluded in the image analysis by focusing on the target droplet. Finally, a frequency sweeping method for jetting speed and droplet volume is presented to understand the overall jetting frequency effects on jetting performance.

  14. Bright optical centre in diamond with narrow, highly polarised and nearly phonon-free fluorescence at room temperature

    NASA Astrophysics Data System (ADS)

    John, Roger; Lehnert, Jan; Mensing, Michael; Spemann, Daniel; Pezzagna, Sébastien; Meijer, Jan

    2017-05-01

    Using shallow implantation of ions and molecules with masses centred at 27 atomic mass units (amu) in diamond, a new artificial optical centre with unique properties has been created. The centre shows a linearly polarised fluorescence with a main narrow emission line mostly found at 582 nm, together with a weak vibronic sideband at room temperature. The fluorescence lifetime is ∼2 ns and the brightest centres are more than three times brighter than the nitrogen-vacancy centres. A majority of the centres shows stable fluorescence whereas some others present a blinking behaviour, at faster or slower rates. Furthermore, a second kind of optical centre has been simultaneously created in the same diamond sample, within the same ion implantation run. This centre has a narrow zero-phonon line (ZPL) at ∼546 nm and a broad phonon sideband at room temperature. Interestingly, optically detected magnetic resonance (ODMR) has been measured on several single 546 nm centres and two resonance peaks are found at 0.99 and 1.27 GHz. In view of their very similar ODMR and optical spectra, the 546 nm centre is likely to coincide with the ST1 centre, reported once (with a ZPL at 550 nm), but of still unknown nature. These new kinds of centres are promising for quantum information processing, sub-diffraction optical imaging or use as single-photon sources.

  15. Non-equilibrium Phonons in CaWO4: Issues for Phonon Mediated Particle Detectors

    NASA Astrophysics Data System (ADS)

    Msall, Madeleine; Head, Timothy; Jumper, Daniel

    2009-03-01

    The CRESST experiment looks for evidence of dark matter particles colliding with nuclei in CaWO4, using cryogenic bolometers sensitive to energy deposition ˜ 10 keV with a few percent accuracy. Calibration of the energy deposited in the phonon system depends upon the details of the evolution of the non-equilibrium energy in the CaWO4 absorber. Our phonon images sensitively measure variations in angular phonon flux, providing key information about the elastic constants and scattering rates that determine the energy evolution. Phonon pulses, created by focused photoexcitation of a 150 nm Cu film, are detected after propagation through 3 mm of CaWO4. The 20 ns Ar-ion laser pulse creates a localized (10-3 mm^2) source of 10-20 K blackbody phonons. The sample is at 2 K. Our images show that the elastic constants derived from ultrasonic velocities along high symmetry axes do not accurately predict the total phonon flux along non-symmetry directions. We present new data on the dependence of phonon flux on excitation level and discuss the influence of isotope and anharmonic decay on the shape of phonon pulses in these ultrapure samples. Thanks to J.P. Wolfe and the Frederick Seitz Materials Research Laboratory, Urbana, IL, for partial support of this work.

  16. The nature of phonons and solitary waves in alpha-helical proteins.

    PubMed Central

    Lawrence, A. F.; McDaniel, J. C.; Chang, D. B.; Birge, R. R.

    1987-01-01

    A parametric study of the Davydov model of energy transduction in alpha-helical proteins is described. Previous investigations have shown that the Davydov model predicts that nonlinear interactions between phonons and amide-I excitations can stabilize the latter and produce a long-lived combined excitation (the so-called Davydov soliton), which propagates along the helix. The dynamics of this solitary wave are approximately those of solitons described using the nonlinear Schrödinger equation. The present study extends these previous investigations by analyzing the effect of helix length and nonlinear coupling efficiency on the phonon spectrum in short and medium length alpha-helical segments. The phonon energy accompanying amide-I excitation shows periodic variation in time with fluctuations that follow three different time scales. The phonon spectrum is highly dependent upon chain length but a majority of the energy remains localized in normal mode vibrations even in the long chain alpha-helices. Variation of the phonon-exciton coupling coefficient changes the amplitudes but not the frequencies of the phonon spectrum. The computed spectra contain frequencies ranging from 200 GHz to 6 THz, and as the chain length is increased, the long period oscillations increase in amplitude. The most important prediction of this study, however, is that the dynamics predicted by the numerical calculations have more in common with dynamics described by using the Frohlich polaron model than by using the Davydov soliton. Accordingly, the relevance of the Davydov soliton model was applied to energy transduction in alpha-helical proteins is questionable. We conclude that the Raman lines that have been assigned to solitons in E. coli are either associated with low frequency normal modes or are instrumental- or fluorescence-induced artifacts. PMID:3593874

  17. Superconducting tunnel junction refrigerator based on phonon deficit effect

    NASA Astrophysics Data System (ADS)

    Melkonyan, Gurgen Garniki

    The work presented in this thesis is divided into two related areas. The first area of research is a study of superconductor-insulator-normal metal (SIN) or superconductor-insulator-superconductor ( SIS) tunnel junctions as cooling device. The efficiency of these refrigerators depends on the tunneling transparency of the insulating barrier. The second area of research is a study of the quantum action which permits to define quantum chaos in analogy to classical chaos. We study the "phonon deficit effect" in a low temperature superconductor-insulator-normal metal and low temperature superconductor-insulator-low temperature superconductor tunnel junctions using kinetic equations which have been derived many years ago. The mechanism of the "phonon deficit effect" is based on the violation of the detailed balance of hole and electron quasiparticle distributions in superconductors under certain circumstances. We propose a micro-refrigerator design with phonon filters which increases the efficiency of the microrefrigerator. As filter we chose superlattice filters (Bragg grating) to suppress emitted phonons by superconductor-insulator-superconductor tunnel junction and thus prevent heating of the solid. At the same time we permit phonons with frequencies in the absorption window to enter into superconductor-insulator-superconductor tunnel junction and be absorbed by electrons. We demonstrated theoretically that in some temperature region the phonon absorption exists over all frequencies in low temperature SIN tunnel junctions. Using Bragg grating filters increases the efficiency of SIS and SIN tunnel junction microrefrigerators. The low temperature superconductors are effective below 30--40 K. There is no other kind of solid state micro-refrigerators working in the range of 30K to 150K. The recently discovered high temperature superconductors are possible candidates to this region. An expression of the tunnel current for the superconductor-insulator-normal metal tunnel

  18. High permeability-high frequency stable MnZn ferrites

    NASA Astrophysics Data System (ADS)

    Kalarus, J.; Kogias, G.; Holz, D.; Zaspalis, V. T.

    2012-09-01

    Modern MnZn ferrite applications require high magnetic initial permeability and exceptional frequency stability; the former implies large grains, while the latter high grain boundary resistivity. In this article the optimization of the final firing process is described for achieving both. The optimization is based on the homogeneous dissolution of dopants under oxidative conditions and their subsequent precipitation along grain boundaries. This was accomplished by integrating isothermal plateaus at the upper stadia of the cooling stage of the final firing process. MnZn ferrites of the basic composition [Mn0.47Zn0.47Fe0.062+]Fe23+O4 were synthesized with initial permeability (measured at f=10 kHz, B<0.1 mT, T=25 °C) 12,600 and losses, expressed as tan(δ)/μi, of 3.1×10-6 at 10 kHz and 20.5×10-6 at 100 kHz (B<0.1 mT, T=25 °C), that reflect good frequency stability. These results could be reproduced in pilot production scale.

  19. High vs low frequency neural oscillations in schizophrenia.

    PubMed

    Moran, Lauren V; Hong, L Elliot

    2011-07-01

    There is growing recognition that neural oscillations are important in a wide range of perceptual and cognitive functions. One of the key issues in electrophysiological studies of schizophrenia is whether high or low frequency oscillations, or both, are related to schizophrenia because many brain functions are modulated with frequency specificities. Many recent electrophysiological studies of schizophrenia have focused on high frequency oscillations at gamma band and in general support gamma band dysfunction in schizophrenia. We discuss the concept that gamma oscillation abnormalities in schizophrenia often occur in the background of oscillation abnormalities of lower frequencies. The review discusses the basic neurobiology for the emergence of oscillations of all frequency bands in association with networks of inhibitory interneurons and the convergence and divergence of such mechanisms in generating high vs low frequency oscillations. We then review the literature of oscillatory frequency abnormalities identified in each frequency band in schizophrenia. By describing some of the key functional roles exerted by gamma, low frequencies, and their cross-frequency coupling, we conceptualize that even isolated alterations in gamma or low frequency oscillations may impact the interactions of high and low frequency bands that are involved in key cognitive functions. The review concludes that studying the full spectrum and the interaction of gamma and low frequency oscillations may be critical for deciphering the complex electrophysiological abnormalities observed in schizophrenia patients.

  20. High-Frequency, High-Temperature Fretting Experiments

    NASA Technical Reports Server (NTRS)

    Matlik, J. F.; Farris, T. N.; Haake, F. K.; Swanson, G. R.; Duke, G. C.

    2005-01-01

    Fretting is a structural damage mechanism observed when two nominally clamped surfaces are subjected to an oscillatory loading. A critical location for fretting induced damage has been identified at the blade/disk and blade/damper interfaces of gas turbine engine turbomachinery and space propulsion components. The high-temperature, high-frequency loading environment seen by these components lead to severe stress gradients at the edge-of-contact. These contact stresses drive crack nucleation and propagation in fretting and are very sensitive to the geometry of the contacting bodies, the contact loads, materials, temperature, and contact surface tribology (friction). To diagnose the threat that small and relatively undetectable fretting cracks pose to damage tolerance and structural integrity of in-service components, the objective of this work is to develop a well-characterized experimental fretting rig capable of investigating fretting behavior of advanced aerospace alloys subjected to load and temperature conditions representative of such turbomachinery components.

  1. Long-Lived, Coherent Acoustic Phonon Oscillations in GaN Single Crystals

    SciTech Connect

    Wu, S.; Geiser, P.; Jun, J.; Karpinski, J.; Park, J.-R.; Sobolewski, R.

    2006-01-31

    We report on coherent acoustic phonon (CAP) oscillations studied in high-quality bulk GaN single crystals with a two-color femtosecond optical pump-probe technique. Using a far-above-the-band gap ultraviolet excitation (~270 nm wavelength) and a near-infrared probe beam (~810 nm wavelength), the long-lived, CAP transients were observed within a 10 ns time-delay window between the pump and probe pulses, with a dispersionless (proportional to the probe-beam wave vector) frequency of ~45 GHz. The measured CAP attenuation corresponded directly to the absorption of the probe light in bulk GaN, indicating that the actual (intrinsic) phonon-wave attenuation in our crystals was significantly smaller than the measured 65.8 cm^-1 value. The velocity of the phonon propagation was equal to the velocity of sound in GaN.

  2. Laser-excitation of electrons and nonequilibrium energy transfer to phonons in copper

    NASA Astrophysics Data System (ADS)

    Weber, S. T.; Rethfeld, B.

    2017-09-01

    After the irradiation of a copper sample with an ultrashort laser pulse, electrons do not follow a Fermi distribution anymore but instead are in a nonequilibrium state. In contrast, the lattice cannot be excited directly by the laser pulse, due to the frequency mismatch. The energy increase in the phononic system only happens due to electron-phonon scattering. We investigate the initial electron dynamics using full Boltzmann-type collision integrals, including material-dependent characteristics by implementing a realistic density of states. We show results on the absorbed energy, details of the electronic nonequilibrium and the resulting electron-phonon coupling parameter in dependence on the photon energy. Our results show a counteracting dependence on the photon energy, which, on the one hand, enables the d-band electrons to absorb high-energy photons and on the other hand, increases the probability of multi-photon absorption.

  3. High Frequency Shock During Random Vibration Testing

    DTIC Science & Technology

    2016-05-10

    Testing Level Natural Frequency (Hz) Ch. 17 Q Factor Test 1: White Noise 192.5 47.97 Test 2: -18 dB 192.5 51.11 Test 3: -15 dB 192.5 50.14 Test 4...12 dB 192.5 52.55 Test 5: -9 dB 192.5 44.99 Test 6: -6 dB 190 47.22 Test 7: White Noise 192.5 48.78 • -6dB Random Input • Shock origination...c o u s ti c P re s s u re ( P a ) Pre and Post White Noise Comparison Resonant frequencies and damping are unchanged after the shock event during

  4. High frequency model of stacked film capacitors

    NASA Astrophysics Data System (ADS)

    Talbert, T.; Joubert, C.; Daude, N.; Glaize, C.

    2001-11-01

    Polypropylene metallized capacitors are of general use in power electronics because of their reliability, their self-healing capabilities, and their low price. Though the behavior of metallized coiled capacitors has been discussed, no work has been carried out on stacked and flattened metallized capacitors. The purpose of this article is to suggest an analytical model of resonance frequency, stray inductance and impedance of stacked capacitors. We first solve the equation of propagation of the magnetic potential vector (A) in the dielectric of an homogeneous material. Then, we suggest an original method of resolution, like the one used for resonant cavities, in order to present an analytical solution of the problem. Finally, we give some experimental results proving that the physical knowledge of the parameters of the capacitor (dimension of the component, and material constants), enables us to calculate an analytical model of resonance frequency, stray inductance and impedance of stacked capacitors.

  5. Phonon suppression of the coherence peak in nuclear spin relaxation rate in strong coupling superconductor TIMo 6Se 7.5. Comparison with high- Tc superconductor

    NASA Astrophysics Data System (ADS)

    Yoshio, Kitaoka; Shigeki, Ohsugi; Kunisuke, Asayama; Tsukio, Ohtani

    1992-03-01

    The phonon suppression effect on the coherence peak just below Tc in the nuclear spin relaxation rate {1}/{T 1} has been investigated by 205Tl NMR of a Chevrel phase superconductor TlMO 6Se 7.5 with Tc = 12.2 K. The lack of a coherence peak of 205( {1}/{T 1) } is demonstrated in a strong coupling superconductor TlMo 6Se 7.5 while the exponential decrease of {1}/{T 1} is confirmed over four orders of magnitude below 0.8 Tc (10 K) with 2 Δ=4.5 kBTc. As argued by Allen and Rainer, the strong electron-phonon decay channels open to excitation cause the unexpectedly strong damping of the quasi-particles in all dynamical properties, being the origin of the depression of the coherence peak. From a comparison with an s-wave model in which the quasi-particle damping is taken into account, it is reinforced that the unusual relaxation behavior observed in high- Tc cuprates, i.e. a power-lawT-dependence with no coherence peak below Tc cannot be accounted for by the conventional theory of the superconductivity and/or the model based on “s-wave” paring.

  6. Nonlinear electron-phonon coupling in doped manganites

    DOE PAGES

    Esposito, Vincent; Fechner, M.; Mankowsky, R.; ...

    2017-06-15

    Here, we employ time-resolved resonant x-ray diffraction to study the melting of charge order and the associated insulator-to-metal transition in the doped manganite Pr0.5Ca0.5MnO3 after resonant excitation of a high-frequency infrared-active lattice mode. We find that the charge order reduces promptly and highly nonlinearly as function of excitation fluence. Density-functional theory calculations suggest that direct anharmonic coupling between the excited lattice mode and the electronic structure drives these dynamics, highlighting a new avenue of nonlinear phonon control.

  7. Significant Reduction of Lattice Thermal Conductivity by the Electron-Phonon Interaction in Silicon with High Carrier Concentrations: A First-Principles Study

    NASA Astrophysics Data System (ADS)

    Liao, Bolin; Qiu, Bo; Zhou, Jiawei; Huberman, Samuel; Esfarjani, Keivan; Chen, Gang

    2015-03-01

    The electron-phonon interaction is well known to create major resistance to electron transport in metals and semiconductors, whereas fewer studies are directed to its effect on phonon transport, especially in semiconductors. We calculate the phonon lifetimes due to scattering with electrons (or holes), combine them with the intrinsic lifetimes due to the anharmonic phonon-phonon interaction, all from first principles, and evaluate the effect of the electron-phonon interaction on the lattice thermal conductivity of silicon. Unexpectedly, we find a significant reduction of the lattice thermal conductivity at room temperature as the carrier concentration goes above 1019 cm-3 (the reduction reaches up to 45% in p -type silicon at around 1021 cm-3 ), a range of great technological relevance to thermoelectric materials.

  8. Effects of interelectrode gap on high frequency and very high frequency capacitively coupled plasmas

    SciTech Connect

    Bera, Kallol; Rauf, Shahid; Ramaswamy, Kartik; Collins, Ken

    2009-07-15

    Capacitively coupled plasma (CCP) discharges using high frequency (HF) and very high frequency (VHF) sources are widely used for dielectric etching in the semiconductor industry. A two-dimensional fluid plasma model is used to investigate the effects of interelectrode gap on plasma spatial characteristics of both HF and VHF CCPs. The plasma model includes the full set of Maxwell's equations in their potential formulation. The peak in plasma density is close to the electrode edge at 13.5 MHz for a small interelectrode gap. This is due to electric field enhancement at the electrode edge. As the gap is increased, the plasma produced at the electrode edge diffuses to the chamber center and the plasma becomes more uniform. At 180 MHz, where electromagnetic standing wave effects are strong, the plasma density peaks at the chamber center at large interelectrode gap. As the interelectrode gap is decreased, the electron density increases near the electrode edge due to inductive heating and electrostatic electron heating, which makes the plasma more uniform in the interelectrode region.

  9. Micromachined high Q inductors for high-frequency applications

    NASA Astrophysics Data System (ADS)

    Park, Jae Y.; Allen, Mark G.

    1998-09-01

    To meet requirements in mobile communication and microwave integrated circuits, miniaturization of the inductive components that many of these systems require is of key importance. At present, active circuitry is used which simulates inductor performance and which has high Q-factor and inductance; however, such circuitry has higher power consumption and higher potential for noise injection than passive inductive components. An alternate approach is to fabricate integrated inductors, in which lithographic techniques are used to pattern an inductor directly on a substrate or a chip. However, integrated inductors can suffer from low Q-factor and high parasitic effects due to substrate proximity. To expand the applications of integrated inductors, these characteristics must be improved. High Q integrated spiral inductors are investigated using olymer/metal multilayer processing techniques and surface micromachining techniques. These inductors have spiral geometry with an air core and a large air gap (4Oim height) between the coils and the substrate (to reduce substrate capacitance), and thick, highly conductive electroplated copper conductor lines (to increase the quality factor). Various inductor geometries are investigated by designing and fabricating several inductors with differing core areas and numbers of turns. The fabricated inductors have a Q-factor of 40-75 at 300-700 MHz and an inductance at these frequencies between 30-7OnH.

  10. High-mechanical-frequency characteristics of optomechanical crystal cavity with coupling waveguide

    PubMed Central

    Huang, Zhilei; Cui, Kaiyu; Bai, Guoren; Feng, Xue; Liu, Fang; Zhang, Wei; Huang, Yidong

    2016-01-01

    Optomechanical crystals have attracted great attention recently for their ability to realize strong photon-phonon interaction in cavity optomechanical systems. By far, the operation of cavity optomechanical systems with high mechanical frequency has to employ tapered fibres or one-sided waveguides with circulators to couple the light into and out of the cavities, which hinders their on-chip applications. Here, we demonstrate larger-centre-hole nanobeam structures with on-chip transmission-coupling waveguide. The measured mechanical frequency is up to 4.47 GHz, with a high mechanical Q-factor of 1.4 × 103 in the ambient environment. The corresponding optomechanical coupling rate is calculated and measured to be 836 kHz and 1.2 MHz, respectively, while the effective mass is estimated to be 136 fg. With the transmission waveguide coupled structure and a small footprint of 3.4 μm2, this simple cavity can be directly used as functional components or integrated with other on-chip devices in future practical applications. PMID:27686419

  11. High Frequency Acoustic Propagation using Level Set Methods

    DTIC Science & Technology

    2007-01-01

    solution of the high frequency approximation to the wave equation. Traditional solutions to the Eikonal equation in high frequency acoustics are...curvature can be extracted at any point of the front from the level set function (provided the normal and curvature are well-defined at that point ), and... points per wavelength to resolve the wave). Ray tracing is therefore the current standard for high frequency propagation modeling. LSM may provide

  12. High-frequency Probing Diagnostic for Hall Current Plasma Thrusters

    SciTech Connect

    A.A. Litvak; Y. Raitses; N.J. Fisch

    2001-10-25

    High-frequency oscillations (1-100 MHz) in Hall thrusters have apparently eluded significant experimental scrutiny. A diagnostic setup, consisting of a single Langmuir probe, a special shielded probe connector-positioner, and an electronic impedance-matching circuit, was successfully built and calibrated. Through simultaneous high-frequency probing of the Hall thruster plasma at multiple locations, high-frequency plasma waves have been identified and characterized for various thruster operating conditions.

  13. On-clip high frequency reliability and failure test structures

    DOEpatents

    Snyder, E.S.; Campbell, D.V.

    1997-04-29

    Self-stressing test structures for realistic high frequency reliability characterizations. An on-chip high frequency oscillator, controlled by DC signals from off-chip, provides a range of high frequency pulses to test structures. The test structures provide information with regard to a variety of reliability failure mechanisms, including hot-carriers, electromigration, and oxide breakdown. The system is normally integrated at the wafer level to predict the failure mechanisms of the production integrated circuits on the same wafer. 22 figs.

  14. On-clip high frequency reliability and failure test structures

    DOEpatents

    Snyder, Eric S.; Campbell, David V.

    1997-01-01

    Self-stressing test structures for realistic high frequency reliability characterizations. An on-chip high frequency oscillator, controlled by DC signals from off-chip, provides a range of high frequency pulses to test structures. The test structures provide information with regard to a variety of reliability failure mechanisms, including hot-carriers, electromigration, and oxide breakdown. The system is normally integrated at the wafer level to predict the failure mechanisms of the production integrated circuits on the same wafer.

  15. Probing phonons in plutonium

    SciTech Connect

    Wong, Joe; Krisch, M.; Farber, D.; Occelli, F.; Schwartz, A.; Chiang, T.C.; Wall, M.; Boro, C.; Xu, Ruqing

    2010-11-16

    Plutonium (Pu) is well known to have complex and unique physico-chemical properties. Notably, the pure metal exhibits six solid-state phase transformations with large volume expansions and contractions along the way to the liquid state: {alpha} {yields} {beta} {yields} {gamma} {yields} {delta} {yields} {delta}{prime} {yields} {var_epsilon} {yields} liquid. Unalloyed Pu melts at a relatively low temperature {approx}640 C to yield a higher density liquid than that of the solid from which it melts, (Figure 1). Detailed understanding of the properties of plutonium and plutonium-based alloys is critical for the safe handling, utilization, and long-term storage of these important, but highly toxic materials. However, both technical and and safety issues have made experimental observations extremely difficult. Phonon dispersion curves (PDCs) are key experimenta l data to the understanding of the basic properties of Pu materials such as: force constants, sound velocities, elastic constants, thermodynamics, phase stability, electron-phonon coupling, structural relaxation, etc. However, phonon dispersion curves (PDCs) in plutonium (Pu) and its alloys have defied measurement for the past few decades since the discovery of this element in 1941. This is due to a combination of the high thermal-neutron absorption cross section of plutonium and the inability to grow the large single crystals (with dimensions of a few millimeters) necessary for inelastic neutron scattering. Theoretical simulations of the Pu PDC continue to be hampered by the lack of suitable inter -atomic potentials. Thus, until recently the PDCs for Pu and its alloys have remained unknown experimentally and theoretically. The experimental limitations have recently been overcome by using a tightly focused undulator x-ray micro-beam scattered from single -grain domains in polycrystalline specimens. This experimental approach has been applied successfully to map the complete PDCs of an fcc d-Pu-Ga alloy using the

  16. High Frequency Acoustic Suppression - Experimental & Computational Overview

    DTIC Science & Technology

    2003-02-01

    mechanisms were the same. One of the drawbacks to the microjet impinging jet experiments was, however, that there was no obvious forcing frequency...Reduced In Impinging Jet Problem With 110 psi (Ref. 31) Application of Supersonic Microjets (Ref. 31). -s3 ~100. i 1 0 r 14’ ~10 100 10’ log top...cavity problem. The first step was to use the same actuator as in the Wiltse & Glezer experiment (Figure 5) and to modify the original free -jet

  17. A high frequency resonance gravity gradiometer

    NASA Astrophysics Data System (ADS)

    Bagaev, S. N.; Bezrukov, L. B.; Kvashnin, N. L.; Krysanov, V. A.; Oreshkin, S. I.; Motylev, A. M.; Popov, S. M.; Rudenko, V. N.; Samoilenko, A. A.; Skvortsov, M. N.; Yudin, I. S.

    2014-06-01

    A new setup OGRAN—the large scale opto-acoustical gravitational detector is described. As distinguished from known gravitational bar detectors it uses the optical interferometrical readout for registering weak variations of gravity gradient at the kilohetz frequency region. At room temperature, its sensitivity is limited only by the bar Brownian noise at the bandwidth close to 100 Hz. It is destined for a search for rare events—gravitational pulses coincident with signals of neutrino scintillator (BUST) in the deep underground of Baksan Neutrino Observatory of INR RAS.

  18. A high frequency resonance gravity gradiometer

    SciTech Connect

    Bagaev, S. N.; Kvashnin, N. L.; Skvortsov, M. N.; Bezrukov, L. B.; Krysanov, V. A.; Oreshkin, S. I.; Motylev, A. M.; Popov, S. M.; Samoilenko, A. A.; Yudin, I. S.; Rudenko, V. N.

    2014-06-15

    A new setup OGRAN—the large scale opto-acoustical gravitational detector is described. As distinguished from known gravitational bar detectors it uses the optical interferometrical readout for registering weak variations of gravity gradient at the kilohetz frequency region. At room temperature, its sensitivity is limited only by the bar Brownian noise at the bandwidth close to 100 Hz. It is destined for a search for rare events—gravitational pulses coincident with signals of neutrino scintillator (BUST) in the deep underground of Baksan Neutrino Observatory of INR RAS.

  19. A high frequency resonance gravity gradiometer.

    PubMed

    Bagaev, S N; Bezrukov, L B; Kvashnin, N L; Krysanov, V A; Oreshkin, S I; Motylev, A M; Popov, S M; Rudenko, V N; Samoilenko, A A; Skvortsov, M N; Yudin, I S

    2014-06-01

    A new setup OGRAN--the large scale opto-acoustical gravitational detector is described. As distinguished from known gravitational bar detectors it uses the optical interferometrical readout for registering weak variations of gravity gradient at the kilohetz frequency region. At room temperature, its sensitivity is limited only by the bar Brownian noise at the bandwidth close to 100 Hz. It is destined for a search for rare events--gravitational pulses coincident with signals of neutrino scintillator (BUST) in the deep underground of Baksan Neutrino Observatory of INR RAS.

  20. Self isolating high frequency saturable reactor

    DOEpatents

    Moore, James A.

    1998-06-23

    The present invention discloses a saturable reactor and a method for decoupling the interwinding capacitance from the frequency limitations of the reactor so that the equivalent electrical circuit of the saturable reactor comprises a variable inductor. The saturable reactor comprises a plurality of physically symmetrical magnetic cores with closed loop magnetic paths and a novel method of wiring a control winding and a RF winding. The present invention additionally discloses a matching network and method for matching the impedances of a RF generator to a load. The matching network comprises a matching transformer and a saturable reactor.

  1. Analysis of High Frequency Seismic Data

    DTIC Science & Technology

    1990-10-01

    2 -4 iv 2.3 Relative noise power ia, narrow frequency bands as a function of time for noise segments at NORESS and KKL...Central Sweden Figure 2. The upper perspective diagram shows the number of events (ill all 5946) as a function of geograp ~hical location out to 1500 kml...al. (1986) obtained 1-18 I~igure i2. Number of events with magnitude ML>2.O and ML>3.Q as a fUnction of geograp ~hical location in relation to NORr.SS

  2. High efficiency, oxidation resistant radio frequency susceptor

    DOEpatents

    Besmann, Theodore M.; Klett, James W.

    2004-10-26

    An article and method of producing an article for converting energy from one form to another having a pitch-derived graphitic foam carbon foam substrate and a single layer coating applied to all exposed surfaces wherein the coating is either silicon carbide or carbides formed from a Group IVA metal. The article is used as fully coated carbon foam susceptors that more effectively absorb radio frequency (RF) band energy and more effectively convert the RF energy into thermal band energy or sensible heat. The essentially non-permeable coatings also serve as corrosion or oxidation resistant barriers.

  3. High-frequency asymptotics of circular dichroism

    NASA Astrophysics Data System (ADS)

    Pospelov, M. E.

    1996-07-01

    Circular dichroism of optically active isotropic media of chiral molecules Im(n+-n-)/Im(n++n-) falls off as ω-2 at frequencies Ry<<ω<>Z2Ry, where Z is a typical nuclear charge of atoms in the chiral group. The contribution of the spin of electron to the circular dichroism appears in the second order in spin-orbit perturbation only. The polarization of photoelectrons in the absorption of unpolarized light is connected with the chirality of molecule and constitutes Z2α3 from the degree of geometrical asymmetry.

  4. Blocking Phonon Transport by Structural Resonances in Alloy-Based Nanophononic Metamaterials Leads to Ultralow Thermal Conductivity

    NASA Astrophysics Data System (ADS)

    Xiong, Shiyun; Sääskilahti, Kimmo; Kosevich, Yuriy A.; Han, Haoxue; Donadio, Davide; Volz, Sebastian

    2016-07-01

    Understanding the design rules to obtain materials that enable a tight control of phonon transport over a broad range of frequencies would aid major developments in thermoelectric energy harvesting, heat management in microelectronics, and information and communication technology. Using atomistic simulations we show that the metamaterials approach relying on localized resonances is very promising to engineer heat transport at the nanoscale. Combining designed resonant structures to alloying can lead to extremely low thermal conductivity in silicon nanowires. The hybridization between resonant phonons and propagating modes greatly reduces the group velocities and the phonon mean free paths in the low frequency acoustic range below 4 THz. Concurrently, alloy scattering hinders the propagation of high frequency thermal phonons. Our calculations establish a rationale between the size, shape, and period of the resonant structures, and the thermal conductivity of the nanowire, and demonstrate that this approach is even effective to block phonon transport in wavelengths much longer than the size and period of the surface resonant structures. A further consequence of using resonant structures is that they are not expected to scatter electrons, which is beneficial for thermoelectric applications.

  5. The effect of n- and p-type doping on coherent phonons in GaN.

    PubMed

    Ishioka, Kunie; Kato, Keiko; Ohashi, Naoki; Haneda, Hajime; Kitajima, Masahiro; Petek, Hrvoje

    2013-05-22

    The effect of doping on the carrier-phonon interaction in wurtzite GaN is investigated by pump-probe reflectivity measurements using 3.1 eV light in near resonance with the fundamental band gap of 3.39 eV. Coherent modulations of the reflectivity due to the E2 and A1(LO) modes, as well as the 2A1(LO) overtone are observed. Doping of acceptor and donor atoms enhances the dephasing of the polar A1(LO) phonon via coupling with plasmons, with the effect of donors being stronger. Doping also enhances the relative amplitude of the coherent A1(LO) phonon with respect to that of the high-frequency E2 phonon, though it does not affect the relative intensity in Raman spectroscopic measurements. We attribute this enhanced coherent amplitude to the transient depletion field screening (TDFS) excitation mechanism, which, in addition to impulsive stimulated Raman scattering (ISRS), contributes to the generation of coherent polar phonons even for sub-band gap excitation. Because the TDFS mechanism requires photoexcitation of carriers, we argue that the interband transition is made possible at a surface with photon energies below the bulk band gap through the Franz-Keldysh effect.

  6. Interaction of electrons with optical phonons localized in a quantum well

    SciTech Connect

    Pozela, J. Pozela, K.; Juciene, V.; Suziedelis, A.; Shkolnik, A. S.; Mikhrin, S. S.; Mikhrin, V. S.

    2009-12-15

    The scattering rate of electrons in a quantum well by localized polar optical and interface phonons is considered. The dependence of the force of the electron-phonon interaction on the frequency of optical phonons in materials of the heterostructure forming the electron and phonon quantum wells is determined. It is shown that, by varying the composition of semiconductors forming the quantum well and its barriers, it is possible to vary the scattering rates of electrons by a factor of several times. The scattering rates of electrons by polar optical phonons are calculated depending on the fractions In{sub x} and In{sub y} in the composition of semiconductors forming the In{sub x}Al{sub 1-x}As/In{sub y}Ga{sub 1-y}As quantum wells. Dependences of the mobility and saturated drift velocity of electrons in high electric fields and quantum wells In{sub y}Ga{sub 1-y}As on the composition of the In{sub x}Al{sub 1-x}As barriers introduced into quantum wells are determined experimentally. The electron mobility increases, while the saturated drift velocity decreases as the fraction of In{sub x} in the composition of barriers is increased.

  7. Active and passive vibration isolation in piezoelectric phononic rods with external voltage excitation

    NASA Astrophysics Data System (ADS)

    Zhang, Qicheng; Lan, Yu; Lu, Wei; Wang, Shuai

    2017-05-01

    Active piezoelectric materials are applied to one-dimensional phononic crystals, for the control of longitudinal vibration propagation both in active and passive modes. Based on the electromechanical coupling between the acoustical vibration and electric field, the electromechanical equivalent method is taken to theoretically predict the transmission spectrum of the longitudinal vibration. It is shown that the phononic rod can suppress the vibration efficiently at the frequencies of interest, by actively optimizing the motions of piezoelectric elements. In an illustrated phononic rod of 11.2cm long, active tunable isolations of more than 20dB at low frequencies (500Hz-14kHz) are generated by controlling the excitation voltages of piezoelectric elements. Meanwhile, passive fixed isolation at high frequencies (14k-63kHz) are presented by its periodicity characteristics. Finite element simulations and vibration experiments on the rod demonstrate the effectiveness of the approach in terms of its vibration isolation capabilities and tunable characteristics. This phononic rod can be manufactured easily and provides numerous potential applications in designing isolation mounts and platforms.

  8. Computational modeling of geometry dependent phonon transport in silicon nanostructures

    NASA Astrophysics Data System (ADS)

    Cheney, Drew A.

    Recent experiments have demonstrated that thermal properties of semiconductor nanostructures depend on nanostructure boundary geometry. Phonons are quantized mechanical vibrations that are the dominant carrier of heat in semiconductor materials and their aggregate behavior determine a nanostructure's thermal performance. Phonon-geometry scattering processes as well as waveguiding effects which result from coherent phonon interference are responsible for the shape dependence of thermal transport in these systems. Nanoscale phonon-geometry interactions provide a mechanism by which nanostructure geometry may be used to create materials with targeted thermal properties. However, the ability to manipulate material thermal properties via controlling nanostructure geometry is contingent upon first obtaining increased theoretical understanding of fundamental geometry induced phonon scattering processes and having robust analytical and computational models capable of exploring the nanostructure design space, simulating the phonon scattering events, and linking the behavior of individual phonon modes to overall thermal behavior. The overall goal of this research is to predict and analyze the effect of nanostructure geometry on thermal transport. To this end, a harmonic lattice-dynamics based atomistic computational modeling tool was created to calculate phonon spectra and modal phonon transmission coefficients in geometrically irregular nanostructures. The computational tool is used to evaluate the accuracy and regimes of applicability of alternative computational techniques based upon continuum elastic wave theory. The model is also used to investigate phonon transmission and thermal conductance in diameter modulated silicon nanowires. Motivated by the complexity of the transmission results, a simplified model based upon long wavelength beam theory was derived and helps explain geometry induced phonon scattering of low frequency nanowire phonon modes.

  9. Calibration of High Frequency MEMS Microphones

    NASA Technical Reports Server (NTRS)

    Shams, Qamar A.; Humphreys, William M.; Bartram, Scott M.; Zuckewar, Allan J.

    2007-01-01

    Understanding and controlling aircraft noise is one of the major research topics of the NASA Fundamental Aeronautics Program. One of the measurement technologies used to acquire noise data is the microphone directional array (DA). Traditional direction array hardware, consisting of commercially available condenser microphones and preamplifiers can be too expensive and their installation in hard-walled wind tunnel test sections too complicated. An emerging micro-machining technology coupled with the latest cutting edge technologies for smaller and faster systems have opened the way for development of MEMS microphones. The MEMS microphone devices are available in the market but suffer from certain important shortcomings. Based on early experiments with array prototypes, it has been found that both the bandwidth and the sound pressure level dynamic range of the microphones should be increased significantly to improve the performance and flexibility of the overall array. Thus, in collaboration with an outside MEMS design vendor, NASA Langley modified commercially available MEMS microphone as shown in Figure 1 to meet the new requirements. Coupled with the design of the enhanced MEMS microphones was the development of a new calibration method for simultaneously obtaining the sensitivity and phase response of the devices over their entire broadband frequency range. Over the years, several methods have been used for microphone calibration. Some of the common methods of microphone calibration are Coupler (Reciprocity, Substitution, and Simultaneous), Pistonphone, Electrostatic actuator, and Free-field calibration (Reciprocity, Substitution, and Simultaneous). Traditionally, electrostatic actuators (EA) have been used to characterize air-condenser microphones for wideband frequency ranges; however, MEMS microphones are not adaptable to the EA method due to their construction and very small diaphragm size. Hence a substitution-based, free-field method was developed to

  10. Phonon dispersion of indium along [111

    SciTech Connect

    Bakulin, A. S.; Overhauser, A. W.; Kaiser, H.; Werner, S. A.; Fernandez-Baca, J. A.; Smith, H. G.

    2001-02-01

    The phonon spectrum of indium along [111], measured by inelastic neutron scattering, is reported. The two shear modes at the zone-boundary point (1/2, 1/2, 1/2) are split slightly (on account of a 7.5% tetragonal distortion). They have very low frequencies, {approx}0.7 and 1.0 THz, compared to the longitudinal mode, {approx}3.4 THz. These measurements verify the theoretical dispersion predicted by the dynamic pseudopotential theory of phonons for free-electron-like metals.

  11. High frequency properties of resonant tunneling diode

    NASA Astrophysics Data System (ADS)

    Sheng, H. Y.; Sinkkonen, J.

    The small signal analysis for the resonant tunneling diode (RTD) is carried out by using a semiclassical transport theory. Multiple scattering effects are accounted for in an optical approximation by using a complex mean free path. An analytical expression for the conduction current is given. The results show that the negative differential conductance prevails up to the frequency f0 limited by the quantum well transit time. The imaginary part of the admittance can be presented by a series inductance as has been recently found experimentally. In addition, the equivalent circuit has a capacitor in parallel with the conductance-inductance branch. Above f0 the admittance shows an oscillatory behaviour. The oscillations are associated with the quantum well transit time resonances.

  12. Polaronic behavior and electron-phonon interaction in cuprates

    NASA Astrophysics Data System (ADS)

    Gunnarsson, Olle

    2005-03-01

    Photoemission and neutron scattering indicate a substantial electron-phonon coupling in high-Tc cuprates. To address the associated anomalous softening of a half-breathing Cu-O bond-stretching phonon, we derive a t-J model with electron-phonon coupling.^1 Using input parameters from band structure calculations and solving the model by exact diagonalization, we obtain a good description of the phonon softening.^1 We study the interplay of the electron-phonon and Coulomb interactions for a (weakly) doped Mott-Hubbard insulator. Using sum-rules, we find that that the effect of the electron-phonon interaction on the phonon self-energy is strongly suppressed, while there is no corresponding suppression for the electron self-energy or the phonon-induced carrier-carrier interaction.^2 Photoemission suggests polaronic behavior in undoped cuprates. Calculating the electron-phonon interaction in a shell model of an undoped cuprate, we find sufficiently strong coupling to give polaronic behavior. Using an adiabatic approximation, we discuss the dispersion and width of the corresponding phonon side-band. ^1O. Rösch and O. Gunnarsson, Phys. Rev. Lett. 92, 146403 (2004); ^2O. Rösch and O. Gunnarsson, Phys. Rev. Lett. (in press), cond-mat/0407064.

  13. Self-demodulation of high-frequency ultrasound.

    PubMed

    Vos, Hendrik J; Goertz, David E; de Jong, Nico

    2010-03-01

    High-frequency (>10 MHz) ultrasound is used in, e.g., small animal imaging or intravascular applications. Currently available ultrasound contrast agents (UCAs) have a suboptimal response for high frequencies. This study therefore investigates the nonlinear propagation effects in a high-frequency ultrasound field (25 MHz) and its use for standard UCA and diagnostic frequencies (1-3 MHz). Nonlinear mixing of two high-frequency carrier waves produces a low-frequency wave, known as the self-demodulation or parametric array effect. Hydrophone experiments showed that the self-demodulated field of a focused 25 MHz transducer (850 kPa source pressure) has an amplitude of 45 kPa at 1.5 MHz in water. Such pressure level is sufficient for UCA excitation. Experimental values are confirmed by numerical simulations using the Khokhlov-Zabolotskaya-Kuznetsov equation on a spatially convergent grid.

  14. Phonon thermal transport through tilt grain boundaries in strontium titanate

    SciTech Connect

    Zheng, Zexi; Chen, Xiang; Yang, Shengfeng; Xiong, Liming; Chen, Youping; Deng, Bowen; Chernatynskiy, Aleksandr

    2014-08-21

    In this work, we perform nonequilibrium molecular dynamics simulations to study phonon scattering at two tilt grain boundaries (GBs) in SrTiO{sub 3}. Mode-wise energy transmission coefficients are obtained based on phonon wave-packet dynamics simulations. The Kapitza conductance is then quantified using a lattice dynamics approach. The obtained results of the Kapitza conductance of both GBs compare well with those obtained by the direct method, except for the temperature dependence. Contrary to common belief, the results of this work show that the optical modes in SrTiO{sub 3} contribute significantly to phonon thermal transport, accounting for over 50% of the Kapitza conductance. To understand the effect of the GB structural disorder on phonon transport, we compare the local phonon density of states of the atoms in the GB region with that in the single crystalline grain region. Our results show that the excess vibrational modes introduced by the structural disorder do not have a significant effect on phonon scattering at the GBs, but the absence of certain modes in the GB region appears to be responsible for phonon reflections at GBs. This work has also demonstrated phonon mode conversion and simultaneous generation of new modes. Some of the new modes have the same frequency as the initial wave packet, while some have the same wave vector but lower frequencies.

  15. Acoustic Bloch oscillations in a two-dimensional phononic crystal

    NASA Astrophysics Data System (ADS)

    He, Zhaojian; Peng, Shasha; Cai, Feiyan; Ke, Manzhu; Liu, Zhengyou

    2007-11-01

    We report the observation of acoustic Bloch oscillations at megahertz frequency in a two-dimensional phononic crystal. By creating periodically arrayed cavities with a decreasing gradient in width along one direction in the phononic crystal, acoustic Wannier-Stark ladders are created in the frequency domain. The oscillatory motion of an incident Gaussian pulse inside the sample is demonstrated by both simulation and experiment.

  16. Phononic glass: a robust acoustic-absorption material.

    PubMed

    Jiang, Heng; Wang, Yuren

    2012-08-01

    In order to achieve strong wide band acoustic absorption under high hydrostatic pressure, an interpenetrating network structure is introduced into the locally resonant phononic crystal to fabricate a type of phononic composite material called "phononic glass." Underwater acoustic absorption coefficient measurements show that the material owns high underwater sound absorption coefficients over 0.9 in 12-30 kHz. Moreover, the quasi-static compressive behavior shows that the phononic glass has a compressive strength over 5 MPa which is crucial for underwater applications.

  17. Phase velocity limit of high-frequency photon density waves

    NASA Astrophysics Data System (ADS)

    Haskell, Richard C.; Svaasand, Lars O.; Madsen, Sten; Rojas, Fabio E.; Feng, T.-C.; Tromberg, Bruce J.

    1995-05-01

    In frequency-domain photon migration (FDPM), two factors make high modulation frequencies desirable. First, with frequencies as high as a few GHz, the phase lag versus frequency plot has sufficient curvature to yield both the scattering and absorption coefficients of the tissue under examination. Second, because of increased attenuation, high frequency photon density waves probe smaller volumes, an asset in small volume in vivo or in vitro studies. This trend toward higher modulation frequencies has led us to re-examine the derivation of the standard diffusion equation (SDE) from the Boltzman transport equation. We find that a second-order time-derivative term, ordinarily neglected in the derivation, can be significant above 1 GHz for some biological tissue. The revised diffusion equation, including the second-order time-derivative, is often termed the P1 equation. We compare the dispersion relation of the P1 equation with that of the SDE. The P1 phase velocity is slower than that predicted by the SDE; in fact, the SDE phase velocity is unbounded with increasing modulation frequency, while the P1 phase velocity approaches c/sqrt(3) is attained only at modulation frequencies with periods shorter than the mean time between scatterings of a photon, a frequency regime that probes the medium beyond the applicability of diffusion theory. Finally we caution that values for optical properties deduced from FDPM data at high frequencies using the SDE can be in error by 30% or more.

  18. High frequency properties of a CNT-based nanorelay

    NASA Astrophysics Data System (ADS)

    Jonsson, L. M.; Axelsson, S.; Nord, T.; Viefers, S.; Kinaret, J. M.

    2004-11-01

    We have theoretically investigated the high frequency properties of a carbon-nanotube-based three-terminal nanoelectromechanical relay. The intrinsic mechanical frequency of the relay is in the GHz regime, and the electromechanical coupling shows a non-linear resonant behaviour in this frequency range. We discuss how these resonances may be detected and show that the resonance frequencies can be tuned by the bias voltage. Also, we show that the influence of external electromagnetic fields on the relay is negligible at all frequencies.

  19. Electron-Phonon Coupling and Superconducting Critical Temperature of the YIr2Si2 and LaIr2Si2 High-Temperature Polymorphs from First-Principles

    NASA Astrophysics Data System (ADS)

    Billington, David; Nickau, Simon A. C.; Farley, Tom; Ward, Jack R.; Sperring, Rosie F.; Millichamp, Thomas E.; Ernsting, David; Dugdale, Stephen B.

    2014-04-01

    Ab initio calculations of the electronic structure and lattice-vibrational properties were performed on the superconducting high-temperature polymorphs of YIr2Si2 and LaIr2Si2. The electron-phonon coupling constants λep were found to be 0.61 and 0.56 for YIr2Si2 and LaIr2Si2, respectively. The superconducting critical temperatures estimated from the Allen-Dynes formula agree well with the available experimental data and indicate that the superconductivity in these compounds can be explained by intermediate strength electron-phonon coupling.

  20. Effects of high frequency current in welding aluminum alloy 6061

    NASA Technical Reports Server (NTRS)

    Fish, R. E.

    1968-01-01

    Uncontrolled high frequency current causes cracking in the heat-affected zone of aluminum alloy 6061 weldments during tungsten inert gas ac welding. Cracking developed when an improperly adjusted superimposed high frequency current was agitating the semimolten metal in the areas of grain boundary.

  1. Influence of Smoking on Ultra-High-Frequency Auditory Sensitivity.

    PubMed

    Prabhu, Prashanth; Varma, Gowtham; Dutta, Kristi Kaveri; Kumar, Prajwal; Goyal, Swati

    2017-04-01

    In this study, an attempt was made to determine the effect of smoking on ultra-high-frequency auditory sensitivity. The study also attempted to determine the relationship between the nature of smoking and ultra-high-frequency otoacoustic emissions (OAEs) and thresholds. The study sample included 25 smokers and 25 non-smokers. A detailed history regarding their smoking habits was collected. High-frequency audiometric thresholds and amplitudes of high-frequency distortion-product OAEs were analyzed for both ears from all participants. The results showed that the ultra-high-frequency thresholds were elevated and that there was reduction in the amplitudes of ultra-high-frequency OAEs in smokers. There was an increased risk of auditory damage with chronic smoking. The study results highlight the application of ultra-high-frequency OAEs and ultra-high-frequency audiometry for the early detection of auditory impairment. However, similar studies should be conducted on a larger population for better generalization of the results.

  2. Infrared dielectric anisotropy and phonon modes of rutile TiO2

    NASA Astrophysics Data System (ADS)

    Schöche, S.; Hofmann, T.; Korlacki, R.; Tiwald, T. E.; Schubert, M.

    2013-04-01

    Spectroscopic ellipsometry in the mid-infrared and far-infrared spectral range and generalized ellipsometry in the mid-infrared spectral range are used to investigate the anisotropic dielectric response of rutile TiO2. The ordinary and extraordinary dielectric function tensor components and all infrared active phonon mode parameters of single crystalline rutile TiO2 are determined with high accuracy for wavelengths from 3 μm to 83 μm. The data were acquired from samples of (001), (100), and (111) surfaces cut from bulk single crystals. A factorized model dielectric function is employed in order to determine the frequencies and damping parameters of the transverse and longitudinal phonon modes with A2u and Eu symmetries. The bands of total reflection of s- and p-polarized light in dependence of the angle of incidence for highly symmetric sample cuts and orientations are derived. Excellent agreement with phonon modes reported in literature is obtained. Introduction of two additional modes for ordinary as well as extraordinary component of the dielectric function tensor was necessary to most accurately match the experimental data. The spectral position of the additional modes is compared to the calculated phonon density of states. The low-frequency dielectric constants are calculated from the determined phonon mode parameters and the high-frequency dielectric constants by applying the Lyddanne-Sachs-Teller relation. The presented data revise existing infrared optical function data and will be suitable for interpretation of any kind of infrared spectra for bulk TiO2 single crystal substrates, thin films, and TiO2 nanostructures.

  3. Parametric excitation of high-frequency electromagnetic waves by the lower-frequency dipole pumping

    SciTech Connect

    Gamayunov, K.V. ); Khazanov, G.V. ); Krivorutsky, E.N.; Veryaev, A.A. )

    1993-01-01

    The possibility of parametric excitation of high-frequency electromagnetic waves by lower-frequency dipole pumping is studied. It is shown that the obtained general dispersive equation may be reduced to the Mathieu equation, provided the case of the flux instability is neglected. In the framework of the developed approach, the excitation of magnetohydrodynamic waves and whistler oscillations is examined.

  4. Ballistic phonon and thermal radiation transport across a minute vacuum gap in between aluminum and silicon thin films: Effect of laser repetitive pulses on transport characteristics

    NASA Astrophysics Data System (ADS)

    Yilbas, B. S.; Ali, H.

    2016-08-01

    Short-pulse laser heating of aluminum and silicon thin films pair with presence of a minute vacuum gap in between them is considered and energy transfer across the thin films pair is predicted. The frequency dependent Boltzmann equation is used to predict the phonon intensity distribution along the films pair for three cycles of the repetitive short-pulse laser irradiation on the aluminum film surface. Since the gap size considered is within the Casimir limit, thermal radiation and ballistic phonon contributions to energy transfer across the vacuum gap is incorporated. The laser irradiated field is formulated in line with the Lambert's Beer law and it is considered as the volumetric source in the governing equations of energy transport. In order to assess the phonon intensity distribution in the films pair, equivalent equilibrium temperature is introduced. It is demonstrated that thermal separation of electron and lattice sub-systems in the aluminum film, due to the short-pulse laser irradiation, takes place and electron temperature remains high in the aluminum film while equivalent equilibrium temperature for phonons decays sharply in the close region of the aluminum film interface. This behavior is attributed to the phonon boundary scattering at the interface and the ballistic phonon transfer to the silicon film across the vacuum gap. Energy transfer due to the ballistic phonon contribution is significantly higher than that of the thermal radiation across the vacuum gap.

  5. Structural drilling using the high-frequency (sonic) rotary method

    NASA Astrophysics Data System (ADS)

    Šporin, Jurij; Vukelić, Željko

    2017-03-01

    In Slovenia, there is widespread use of structural drilling along with classical core drilling. Recently, however, the need has arisen for a highly effective core drilling method with the aid of which high-quality core might be obtained. In order to achieve this aim, one among several Slovenian companies dealing with geological surveying has decided to implement structural drilling using a high-frequency drilling method. The following article presents the theoretical foundations for such a high-frequency method, as well as the manner of its implementation. In the final part of the article, a practical comparison between the conventional and the high-frequency core drilling methods is also provided.

  6. Monitoring method and apparatus using high-frequency carrier

    DOEpatents

    Haynes, H.D.

    1996-04-30

    A method and apparatus for monitoring an electrical-motor-driven device by injecting a high frequency carrier signal onto the power line current. The method is accomplished by injecting a high frequency carrier signal onto an AC power line current. The AC power line current supplies the electrical-motor-driven device with electrical energy. As a result, electrical and mechanical characteristics of the electrical-motor-driven device modulate the high frequency carrier signal and the AC power line current. The high frequency carrier signal is then monitored, conditioned and demodulated. Finally, the modulated high frequency carrier signal is analyzed to ascertain the operating condition of the electrical-motor-driven device. 6 figs.

  7. Monitoring method and apparatus using high-frequency carrier

    DOEpatents

    Haynes, Howard D.

    1996-01-01

    A method and apparatus for monitoring an electrical-motor-driven device by injecting a high frequency carrier signal onto the power line current. The method is accomplished by injecting a high frequency carrier signal onto an AC power line current. The AC power line current supplies the electrical-motor-driven device with electrical energy. As a result, electrical and mechanical characteristics of the electrical-motor-driven device modulate the high frequency carrier signal and the AC power line current. The high frequency carrier signal is then monitored, conditioned and demodulated. Finally, the modulated high frequency carrier signal is analyzed to ascertain the operating condition of the electrical-motor-driven device.

  8. Thermal transport in phononic crystals: The role of zone folding effect

    NASA Astrophysics Data System (ADS)

    Dechaumphai, Edward; Chen, Renkun

    2012-04-01

    Recent experiments [Yu et al., Nature Nanotech 5, 718 (2010); Tang et al., Nano Lett. 10, 4279 (2010); Hopkins etal., Nano Lett. 11, 107(2011)] on silicon based nanoscale phononic crystals demonstrated substantially reduced thermal conductivity compared to bulk Si, which cannot be explained by incoherent phonon boundary scattering within the Boltzmann Transport Equation (BTE). In this paper, partial coherent treatment of phonons, where phonons are regarded as either wave or particles depending on their frequencies, was considered. Phonons with mean free path smaller than the characteristic size of phononic crystals are treated as particles and the transport in this regime is modeled by BTE with phonon boundary scattering taken into account. On the other hand, phonons with mean free path longer than the characteristic size are treated as waves. In this regime, phonon dispersion relations are computed using the Finite Difference Time Domain (FDTD) method and are found to be modified due to the zone folding effect. The new phonon spectra are then used to compute phonon group velocity and density of states for thermal conductivity modeling. Our partial coherent model agrees well with the recent experimental results on in-plane thermal conductivity of phononic crystals. Our study highlights the importance of zone folding effect on thermal transport in phononic crystals.

  9. Nanohertz frequency determination for the gravity probe B high frequency superconducting quantum interference device signal.

    PubMed

    Salomon, M; Conklin, J W; Kozaczuk, J; Berberian, J E; Keiser, G M; Silbergleit, A S; Worden, P; Santiago, D I

    2011-12-01

    In this paper, we present a method to measure the frequency and the frequency change rate of a digital signal. This method consists of three consecutive algorithms: frequency interpolation, phase differencing, and a third algorithm specifically designed and tested by the authors. The succession of these three algorithms allowed a 5 parts in 10(10) resolution in frequency determination. The algorithm developed by the authors can be applied to a sampled scalar signal such that a model linking the harmonics of its main frequency to the underlying physical phenomenon is available. This method was developed in the framework of the gravity probe B (GP-B) mission. It was applied to the high frequency (HF) component of GP-B's superconducting quantum interference device signal, whose main frequency f(z) is close to the spin frequency of the gyroscopes used in the experiment. A 30 nHz resolution in signal frequency and a 0.1 pHz/s resolution in its decay rate were achieved out of a succession of 1.86 s-long stretches of signal sampled at 2200 Hz. This paper describes the underlying theory of the frequency measurement method as well as its application to GP-B's HF science signal.

  10. From Modal Mixing to Tunable Functional Switches in Nonlinear Phononic Crystals

    NASA Astrophysics Data System (ADS)

    Ganesh, R.; Gonella, S.

    2015-02-01

    We introduce a paradigm for spatial and modal wave manipulation based on nonlinear phononic crystals and explore its potential for engineering wave control systems with tunable, adaptive, and multifunctional characteristics. Our approach exploits nonlinear mechanisms to stretch the frequency signature of the wave response and distribute it over multiple modes, thereby activating a mixture of modal characteristics and enabling functionalities associated with high-frequency optical modes, even while operating in the low-frequency regime. To elucidate the versatility of this approach, we consider different granular crystal configurations that span the available landscape of crystal topologies and wave control functionalities. The ability to switch between complementary functionalities allows rethinking nonlinear phononic crystals as programmable acoustic ports that form the building blocks of a new structural logic framework enabled by nonlinearity.

  11. Phonon Scattering Dynamics of Thermophoretic Motion in Carbon Nanotube Oscillators.

    PubMed

    Prasad, Matukumilli V D; Bhattacharya, Baidurya

    2016-04-13

    Using phonon wave packet molecular dynamics simulations, we find that anomalous longitudinal acoustic (LA) mode phonon scattering in low to moderate energy ranges is responsible for initiating thermophoretic motion in carbon nanotube oscillators. The repeated scattering of a single mode LA phonon wave packet near the ends of the inner nanotube provides a net unbalanced force that, if large enough, initiates thermophoresis. By applying a coherent phonon pulse on the outer tube, which generalizes the single mode phonon wave packet, we are able to achieve thermophoresis in a carbon nanotube oscillator. We also find the nature of the unbalanced force on end-atoms to be qualitatively similar to that under an imposed thermal gradient. The thermodiffusion coefficient obtained for a range of thermal gradients and core lengths suggest that LA phonon scattering is the dominant mechanism for thermophoresis in longer cores, whereas for shorter cores, it is the highly diffusive mechanism that provides the effective force.

  12. Reduction of Thermal Conductivity by Nanoscale 3D Phononic Crystal

    PubMed Central

    Yang, Lina; Yang, Nuo; Li, Baowen

    2013-01-01

    We studied how the period length and the mass ratio affect the thermal conductivity of isotopic nanoscale three-dimensional (3D) phononic crystal of Si. Simulation results by equilibrium molecular dynamics show isotopic nanoscale 3D phononic crystals can significantly reduce the thermal conductivity of bulk Si at high temperature (1000 K), which leads to a larger ZT than unity. The thermal conductivity decreases as the period length and mass ratio increases. The phonon dispersion curves show an obvious decrease of group velocities in 3D phononic crystals. The phonon's localization and band gap is also clearly observed in spectra of normalized inverse participation ratio in nanoscale 3D phononic crystal. PMID:23378898

  13. Reduction of thermal conductivity by nanoscale 3D phononic crystal.

    PubMed

    Yang, Lina; Yang, Nuo; Li, Baowen

    2013-01-01

    We studied how the period length and the mass ratio affect the thermal conductivity of isotopic nanoscale three-dimensional (3D) phononic crystal of Si. Simulation results by equilibrium molecular dynamics show isotopic nanoscale 3D phononic crystals can significantly reduce the thermal conductivity of bulk Si at high temperature (1000 K), which leads to a larger ZT than unity. The thermal conductivity decreases as the period length and mass ratio increases. The phonon dispersion curves show an obvious decrease of group velocities in 3D phononic crystals. The phonon's localization and band gap is also clearly observed in spectra of normalized inverse participation ratio in nanoscale 3D phononic crystal.

  14. High temperature pressurized high frequency testing rig and test method

    DOEpatents

    De La Cruz, Jose; Lacey, Paul

    2003-04-15

    An apparatus is described which permits the lubricity of fuel compositions at or near temperatures and pressures experienced by compression ignition fuel injector components during operation in a running engine. The apparatus consists of means to apply a measured force between two surfaces and oscillate them at high frequency while wetted with a sample of the fuel composition heated to an operator selected temperature. Provision is made to permit operation at or near the flash point of the fuel compositions. Additionally a method of using the subject apparatus to simulate ASTM Testing Method D6079 is disclosed, said method involving using the disclosed apparatus to contact the faces of prepared workpieces under a measured load, sealing the workface contact point into the disclosed apparatus while immersing said contact point between said workfaces in a lubricating media to be tested, pressurizing and heating the chamber and thereby the fluid and workfaces therewithin, using the disclosed apparatus to impart a differential linear motion between the workpieces at their contact point until a measurable scar is imparted to at least one workpiece workface, and then evaluating the workface scar.

  15. Real-Time, High-Frequency QRS Electrocardiograph

    NASA Technical Reports Server (NTRS)

    Schlegel, Todd T.; DePalma, Jude L.; Moradi, Saeed

    2003-01-01

    An electronic system that performs real-time analysis of the low-amplitude, high-frequency, ordinarily invisible components of the QRS portion of an electrocardiographic signal in real time has been developed. Whereas the signals readily visible on a conventional electrocardiogram (ECG) have amplitudes of the order of a millivolt and are characterized by frequencies <100 Hz, the ordinarily invisible components have amplitudes in the microvolt range and are characterized by frequencies from about 150 to about 250 Hz. Deviations of these high-frequency components from a normal pattern can be indicative of myocardial ischemia or myocardial infarction

  16. A MEMS-based high frequency x-ray chopper.

    PubMed

    Siria, A; Dhez, O; Schwartz, W; Torricelli, G; Comin, F; Chevrier, J

    2009-04-29

    Time-resolved x-ray experiments require intensity modulation at high frequencies (advanced rotating choppers have nowadays reached the kHz range). We here demonstrate that a silicon microlever oscillating at 13 kHz with nanometric amplitude can be used as a high frequency x-ray chopper. We claim that using micro-and nanoelectromechanical systems (MEMS and NEMS), it will be possible to achieve higher frequencies in excess of hundreds of megahertz. Working at such a frequency can open a wealth of possibilities in chemistry, biology and physics time-resolved experiments.

  17. Condenser Microphone Protective Grid Correction for High Frequency Measurements

    NASA Technical Reports Server (NTRS)

    Lee, Erik; Bennett, Reginald

    2010-01-01

    Use of a protective grid on small diameter microphones can prolong the lifetime of the unit, but the high frequency effects can complicate data interpretation. Analytical methods have been developed to correct for the grid effect at high frequencies. Specifically, the analysis pertains to quantifying the microphone protective grid response characteristics in the acoustic near field of a rocket plume noise source. A frequency response function computation using two microphones will be explained. Experimental and instrumentation setup details will be provided. The resulting frequency response function for a B&K 4944 condenser microphone protective grid will be presented, along with associated uncertainties

  18. High frequency microbubble-switched oscillations modulated by microfluidic transistors

    NASA Astrophysics Data System (ADS)

    Yang, Fanghao; Dai, Xianming; Li, Chen

    2012-08-01

    Creating high frequency two-phase oscillations (HF-TPOs) remains an important goal in advancing microscale fluidic logic devices, micro-mixers, micro-actuators, and flow controls. However, thermally driven TPO frequency has been hindered by confinements of compressible vapor bubbles and low thermal diffusivity in microfluidic systems. In this study, a mechanism creating high frequency microbubbles growth/collapse cycle has been developed to achieve HF-TPOs. A "microfluidic transistor" was conceptualized and fabricated to passively sustain and modulate HF-TPOs. Three orders of magnitude higher TPO frequency has been achieved compared to TPOs reported in literatures under similar working conditions.

  19. High speed readout electronics development for frequency-multiplexed kinetic inductance detector design optimization

    NASA Astrophysics Data System (ADS)

    Bourrion, O.; Vescovi, C.; Catalano, A.; Calvo, M.; D'Addabbo, A.; Goupy, J.; Boudou, N.; Macias-Perez, J. F.; Monfardini, A.

    2013-12-01

    Microwave Kinetic Inductance Detectors (MKID) are a promising solution for space-borne mm-wave astronomy. To optimize their design and make them insensitive to the ballistic phonons created by cosmic-ray interactions in the substrate, the phonon propagation in silicon must be studied. A dedicated fast readout electronics, using channelized Digital Down Conversion for monitoring up to 12 MKIDs over a 100 MHz bandwidth was developed. Thanks to the fast ADC sampling and steep digital filtering, In-phase and Quadrature samples, having a high dynamic range, are provided at ~ 2 Msps. This paper describes the technical solution chosen and the results obtained.

  20. High-frequency filtering of strong-motion records

    USGS Publications Warehouse

    Douglas, J.; Boore, D.M.

    2011-01-01

    The influence of noise in strong-motion records is most problematic at low and high frequencies where the signal to noise ratio is commonly low compared to that in the mid-spectrum. The impact of low-frequency noise (5 Hz) on computed pseudo-absolute response spectral accelerations (PSAs). In contrast to the case of low-frequency noise our analysis shows that filtering to remove high-frequency noise is only necessary in certain situations and that PSAs can often be used up to 100 Hz even if much lower high-cut corner frequencies are required to remove the noise. This apparent contradiction can be explained by the fact that PSAs are often controlled by ground accelerations associated with much lower frequencies than the natural frequency of the oscillator because path and site attenuation (often modelled by Q and κ, respectively) have removed the highest frequencies. We demonstrate that if high-cut filters are to be used, then their corner frequencies should be selected on an individual basis, as has been done in a few recent studies.

  1. Phonon interference in crystalline and amorphous confined nanoscopic films

    NASA Astrophysics Data System (ADS)

    Liang, Zhi; Wilson, Thomas E.; Keblinski, Pawel

    2017-02-01

    Using molecular dynamics phonon wave packet simulations, we study phonon transmission across hexagonal (h)-BN and amorphous silica (a-SiO2) nanoscopic thin films sandwiched by two crystalline leads. Due to the phonon interference effect, the frequency-dependent phonon transmission coefficient in the case of the crystalline film (Si|h-BN|Al heterostructure) exhibits a strongly oscillatory behavior. In the case of the amorphous film (Si|a-SiO2|Al and Si|a-SiO2|Si heterostructures), in spite of structural disorder, the phonon transmission coefficient also exhibits oscillatory behavior at low frequencies (up to ˜1.2 THz), with a period of oscillation consistent with the prediction from the two-beam interference equation. Above 1.2 THz, however, the phonon interference effect is greatly weakened by the diffuse scattering of higher-frequency phonons within an a-SiO2 thin film and at the two interfaces confining the a-SiO2 thin film.

  2. Phonon localization drives polar nanoregions in a relaxor ferroelectric.

    PubMed

    Manley, M E; Lynn, J W; Abernathy, D L; Specht, E D; Delaire, O; Bishop, A R; Sahul, R; Budai, J D

    2014-04-10

    Relaxor ferroelectrics exemplify a class of functional materials where interplay between disorder and phase instability results in inhomogeneous nanoregions. Although known for about 30 years, there is no definitive explanation for polar nanoregions (PNRs). Here we show that ferroelectric phonon localization drives PNRs in relaxor ferroelectric PMN-30%PT using neutron scattering. At the frequency of a preexisting resonance mode, nanoregions of standing ferroelectric phonons develop with a coherence length equal to one wavelength and the PNR size. Anderson localization of ferroelectric phonons by resonance modes explains our observations and, with nonlinear slowing, the PNRs and relaxor properties. Phonon localization at additional resonances near the zone edges explains competing antiferroelectric distortions known to occur at the zone edges. Our results indicate the size and shape of PNRs that are not dictated by complex structural details, as commonly assumed, but by phonon resonance wave vectors. This discovery could guide the design of next generation relaxor ferroelectrics.

  3. Broadband high-frequency waves detected at dipolarization fronts

    NASA Astrophysics Data System (ADS)

    Yang, J.; Cao, J. B.; Fu, H. S.; Wang, T. Y.; Liu, W. L.; Yao, Z. H.

    2017-04-01

    Dipolarization front (DF) is a sharp boundary most probably separating the reconnection jet from the background plasma sheet. So far at this boundary, the observed waves are mainly in low-frequency range (e.g., magnetosonic waves and lower hybrid waves). Few high-frequency waves are observed in this region. In this paper, we report the broadband high-frequency wave emissions at the DF. These waves, having frequencies extending from the electron cyclotron frequency fce, up to the electron plasma frequency fpe, could contribute 10% to the in situ measurement of intermittent energy conversion at the DF layer. Their generation may be attributed to electron beams, which are simultaneously observed at the DF as well.

  4. Close correlation between magnetic properties and the soft phonon mode of the structural transition in BaFe2As2 and SrFe2As2

    DOE PAGES

    Parshall, D.; Pintschovius, L.; Niedziela, Jennifer L.; ...

    2015-04-27

    Pmore » arent compounds of Fe-based superconductors undergo a structural phase transition from a tetragonal to an orthorhombic structure. We investigated the temperature dependence of the frequencies of TA phonons that extrapolate to the shear vibrational mode at the zone center, which corresponds to the orthorhombic deformation of the crystal structure at low temperatures in BaFe2As2 and SrFe2As2. We found that acoustic phonons at small wave vectors soften gradually towards the transition from high temperatures, tracking the increase of the size of slowly fluctuating magnetic domains. On cooling below the transition to base temperature the phonons harden, following the square of the magnetic moment (which we find is proportional to the anisotropy gap). Finally, our results provide evidence for close correlation between magnetic and phonon properties in Fe-based superconductors.« less

  5. Polarization Properties of AGN at High Frequencies

    NASA Astrophysics Data System (ADS)

    Jorstad, S. G.

    2009-08-01

    I discuss variability of polarization in the core region of parsec scale radio jets and connections between 7 mm polarization in the VLBI core and polarization at shorter wavelengths from the whole source for a sample of AGN with highly relativistic jets known as blazars. The sources show pronounced diversity in polarization behavior that is not clearly understood. I discuss possible reasons for these differences as well as the role that VSOP-2 can play in exploring the magnetic field in the most compact regions of jets.

  6. Advanced high frequency partial discharge measuring system

    NASA Technical Reports Server (NTRS)

    Karady, George G.

    1994-01-01

    This report explains the Advanced Partial Discharge Measuring System in ASU's High Voltage Laboratory and presents some of the results obtained using the setup. While in operation an insulation is subjected to wide ranging temperature and voltage stresses. Hence, it is necessary to study the effect of temperature on the behavior of partial discharges in an insulation. The setup described in this report can be used to test samples at temperatures ranging from -50 C to 200 C. The aim of conducting the tests described herein is to be able to predict the behavior of an insulation under different operating conditions in addition to being able to predict the possibility of failure.

  7. HF (High-Frequency) Channel Probe.

    DTIC Science & Technology

    1985-05-31

    ionosphere can be calculated from the relation [Basler and Scott, 19731 (~ 2R(R + [’ -Cos (D-)] +h’(5.1) where R is the radius of the earth (6359 km for...emanating from the earth at high latitudes are a convected sunward on the dawn- and dusk-sides of the auroral zones. When they reach the noon sector, the...for refracting HF radio waves back to the earth , the plasma is essentially swept along with the flux tubes delineated by the magnetic field lines. The

  8. Preface: Phonons 2007

    NASA Astrophysics Data System (ADS)

    Perrin, Bernard

    2007-06-01

    Conference logo The conference PHONONS 2007 was held 15-20 July 2007 in the Conservatoire National des Arts et Métiers (CNAM) Paris, France. CNAM is a college of higher technology for training students in the application of science to industry, founded by Henri Grégoire in 1794. This was the 12th International Conference on Phonon Scattering in Condensed Matter. This international conference series, held every 3 years, started in France at Sainte-Maxime in 1972. It was then followed by meetings at Nottingham (1975), Providence (1979), Stuttgart (1983), Urbana-Champaign (1986), Heidelberg (1989), Ithaca (1992), Sapporo (1995), Lancaster (1998), Dartmouth (2001) and St Petersburg (2004). PHONONS 2007 was attended by 346 delegates from 37 different countries as follows: France 120, Japan 45, Germany 25, USA 25, Russia 21, Italy 13, Poland 9, UK 9, Canada 7, The Netherlands 7, Finland 6, Spain 6, Taiwan 6, Greece 4, India 4, Israel 4, Ukraine 4, Serbia 3, South Africa 3, Argentina 2, Belgium 2, China 2, Iran 2, Korea 2, Romania 2, Switzerland 2, and one each from Belarus, Bosnia-Herzegovina, Brazil, Bulgaria, Egypt, Estonia, Mexico, Moldova, Morocco, Saudi Arabia, Turkey. There were 5 plenary lectures, 14 invited talks and 84 oral contributions; 225 posters were presented during three poster sessions. The first plenary lecture was given by H J Maris who presented fascinating movies featuring the motion of a single electron in liquid helium. Robert Blick gave us a review on the new possibilities afforded by nanotechnology to design nano-electomechanical systems (NEMS) and the way to use them to study elementary and fundamental processes. The growing interest for phonon transport studies in nanostructured materials was demonstrated by Arun Majumdar. Andrey Akimov described how ultrafast acoustic solitons can monitor the optical properties of quantum wells. Finally, Maurice Chapellier told us how

  9. Transient high-frequency ultrasonic water atomization

    NASA Astrophysics Data System (ADS)

    Barreras, F.; Amaveda, H.; Lozano, A.

    2002-06-01

    An experimental study was performed to improve the understanding of the characteristics of ultrasonic water atomization when excited with waves in the MHz range. In the present experiments, small volumes of water were atomized, observing the temporal evolution of the process. Typical diameters of the resulting droplets are of the order of a few microns. To visualize them, images were acquired with very high magnification. Appropriate lenses were used to enable high resolution at a distance from the flow. Droplet size distributions were also calculated with a Malvern diffractometer. Droplet exit velocity was measured using particle image velocimetry. It was noticeable that, as the remaining liquid mass deposited over the ultrasonic transducer decreased, the atomization characteristics changed, and a second peak of larger droplets appeared in the size distribution function. This phenomenon is related to the change in the curvature of the liquid surface. Although results are not conclusive, it appears that, under the conditions in this study, some observations about droplet formation are better described by cavitation phenomena rather than by the simplified surface wave theory usually invoked to explain these processes.

  10. Development of Graphene for High Frequency Electronics

    NASA Astrophysics Data System (ADS)

    Robinson, Joshua; Snyder, David; Fanton, Mark; Hollander, Matthew; Labella, Michael; Trumbull, Kathleen; Cavalero, Randall; Weiland, Brian; The Pennsylvania State University Team

    2011-03-01

    The practicality and success of a graphene technology depends on the ability to regularly and controllably synthesize graphene; integrate it with metals and dielectrics; and to develop device designs that take advantage of graphene's unique properties. We demonstrate graphene synthesis on SiC(0001) and Sapphire with 1.5% variation in sheet resistance across 100mm wafers. Hall mobility measurements indicate that direct growth of graphene on sapphire leads to a 2x increase in mobility (2200 cm2 /Vs) compared to silicon sublimation from SiC(0001). Additionally, we have developed high quality ohmic contacts to graphene, which improves the contact resistance by nearly 6000x (5 x 10-8 Ohm-cm2) compared to untreated metal/graphene interfaces. Finally, we discuss integration of ultra-thin high-k dielectrics and their impact on graphene transport. Atomic layer deposited oxide heterostructures (seed not equal to overlayer) have deleterious effects on Hall mobility while homostructures lead to an increase in Hall mobility. Importantly, 5nm thick EBPVD Hf O2 gate dielectrics are successfully demonstrated and show improved Hall mobility, on-off ratio, and transconductance relative to Al 2 O3 gates and heterostructure gates.

  11. High frequency fishbones excited by near perpendicular neutral beam injection

    SciTech Connect

    Zhou Deng

    2006-07-15

    The high frequency fishbone instability observed in experiments with near perpendicular neutral beam injection is interpreted as the ideal internal kink mode destabilized by circulating energetic ions. The mode frequency is close to the transit frequency of circulating ions. The beta value of the circulating ions is required to peak on the magnetic axis and the average value within the q=1 magnetic surface must exceed a critical value for the mode to grow up.

  12. Phononic crystal with low filling fraction and absolute acoustic band gap in the audible frequency range: A theoretical and experimental study

    NASA Astrophysics Data System (ADS)

    Vasseur, J. O.; Deymier, P. A.; Khelif, A.; Lambin, Ph.; Djafari-Rouhani, B.; Akjouj, A.; Dobrzynski, L.; Fettouhi, N.; Zemmouri, J.

    2002-05-01

    The propagation of acoustic waves in a two-dimensional composite medium constituted of a square array of parallel copper cylinders in air is investigated both theoretically and experimentally. The band structure is calculated with the plane wave expansion (PWE) method by imposing the condition of elastic rigidity to the solid inclusions. The PWE results are then compared to the transmission coefficients computed with the finite difference time domain (FDTD) method for finite thickness composite samples. In the low frequency regime, the band structure calculations agree with the FDTD results indicating that the assumption of infinitely rigid inclusion retains the validity of the PWE results to this frequency domain. These calculations predict that this composite material possesses a large absolute forbidden band in the domain of the audible frequencies. The FDTD spectra reveal also that hollow and filled cylinders produce very similar sound transmission suggesting the possibility of realizing light, effective sonic insulators. Experimental measurements show that the transmission through an array of hollow Cu cylinders drops to noise level throughout frequency interval in good agreement with the calculated forbidden band.

  13. High-frequency energy in singing and speech

    NASA Astrophysics Data System (ADS)

    Monson, Brian Bruce

    While human speech and the human voice generate acoustical energy up to (and beyond) 20 kHz, the energy above approximately 5 kHz has been largely neglected. Evidence is accruing that this high-frequency energy contains perceptual information relevant to speech and voice, including percepts of quality, localization, and intelligibility. The present research was an initial step in the long-range goal of characterizing high-frequency energy in singing voice and speech, with particular regard for its perceptual role and its potential for modification during voice and speech production. In this study, a database of high-fidelity recordings of talkers was created and used for a broad acoustical analysis and general characterization of high-frequency energy, as well as specific characterization of phoneme category, voice and speech intensity level, and mode of production (speech versus singing) by high-frequency energy content. Directionality of radiation of high-frequency energy from the mouth was also examined. The recordings were used for perceptual experiments wherein listeners were asked to discriminate between speech and voice samples that differed only in high-frequency energy content. Listeners were also subjected to gender discrimination tasks, mode-of-production discrimination tasks, and transcription tasks with samples of speech and singing that contained only high-frequency content. The combination of these experiments has revealed that (1) human listeners are able to detect very subtle level changes in high-frequency energy, and (2) human listeners are able to extract significant perceptual information from high-frequency energy.

  14. Temperature Dependence of Brillouin Light Scattering Spectra of Acoustic Phonons in Silicon

    NASA Astrophysics Data System (ADS)

    Somerville, Kevin; Klimovich, Nikita; An, Kyongmo; Sullivan, Sean; Weathers, Annie; Shi, Li; Li, Xiaoqin

    2015-03-01

    Thermal management represents an outstanding challenge in many areas of technology. Electrons, optical phonons, and acoustic phonons are often driven out of local equilibrium in electronic devices or during laser-material interaction processes. Interest in non-equilibrium transport processes has motivated the development of Raman spectroscopy as a local temperature sensor of optical phonons and intermediate frequency acoustic phonons, whereas Brillouin light scattering (BLS) has recently been explored as a temperature sensor of low-frequency acoustic phonons. Here, we report temperature dependent BLS spectra of silicon, with Raman spectra taken simultaneously for comparison. The origins of the observed temperature dependence of the BLS peak position, linewidth, and intensity are examined in order to evaluate their potential use as temperature sensors for acoustic phonons. We determine that the integrated BLS intensity can be used measure the temperature of specific acoustic phonon modes. This work is supported by National Science Foundation (NSF) Thermal Transport Processes Program under Grant CBET-1336968.

  15. Ultrafast optical generation of coherent phonons in CdTe1-xSex quantum dots

    NASA Astrophysics Data System (ADS)

    Bragas, A. V.; Aku-Leh, C.; Costantino, S.; Ingale, Alka; Zhao, J.; Merlin, R.

    2004-05-01

    We report on the impulsive generation of coherent optical phonons in CdTe0.68Se0.32 nanocrystallites embedded in a glass matrix. Pump-probe experiments using femtosecond laser pulses were performed by tuning the laser central energy to resonate with the absorption edge of the nanocrystals. We identify two longitudinal optical phonons, one longitudinal acoustic phonon and a fourth mode of a mixed longitudinal-transverse nature. The amplitude of the optical phonons as a function of the laser central energy exhibits a resonance that is well described by a model based on impulsive stimulated Raman scattering. The phases of the coherent phonons reveal coupling between different modes. At low power density excitations, the frequency of the optical coherent phonons deviates from values obtained from spontaneous Raman scattering. This behavior is ascribed to the presence of electronic impurity states which modify the nanocrystal dielectric function and, thereby, the frequency of the infrared-active phonons.

  16. The ADMX-HF (High Frequency) Experiment

    NASA Astrophysics Data System (ADS)

    Lehnert, K. W.

    2013-04-01

    For many years, the Axion Dark Matter eXperiment (ADMX) has searched for dark-matter axions by their resonant conversion to photons in a high-Q microwave cavity embedded in a strong magnetic field; to date focusing on the ˜1 GHz range, or ma˜ few micro-eV. A second platform, ADMX-HF is now being constructed at Yale University which will focus on technology development and a first look at data in the ˜10 GHz range. Consisting of a 9T superconducting magnet (40 cm long x 14 cm diameter), a dilution refrigerator and a quantum-limited receiver based on Josephson Parametric Amplifiers (JPA) ADMX-HF is projected to achieve sensitivity within the axion model band, despite its smaller volume than ADMX. ADMX-HF is a collaboration of Yale, JILA/Colorado, UC Berkeley and LLNL, and by agreement will create a unified data set with ADMX.

  17. High-frequency multimodal atomic force microscopy

    PubMed Central

    Nievergelt, Adrian P; Adams, Jonathan D; Odermatt, Pascal D

    2014-01-01

    Summary Multifrequency atomic force microscopy imaging has been recently demonstrated as a powerful technique for quickly obtaining information about the mechanical properties of a sample. Combining this development with recent gains in imaging speed through small cantilevers holds the promise of a convenient, high-speed method for obtaining nanoscale topography as well as mechanical properties. Nevertheless, instrument bandwidth limitations on cantilever excitation and readout have restricted the ability of multifrequency techniques to fully benefit from small cantilevers. We present an approach for cantilever excitation and deflection readout with a bandwidth of 20 MHz, enabling multifrequency techniques extended beyond 2 MHz for obtaining materials contrast in liquid and air, as well as soft imaging of delicate biological samples. PMID:25671141

  18. [Experiences in high frequency audiometry and possible applications (author's transl)].

    PubMed

    Dieroff, H G

    1976-09-01

    Observations on the ultrasonic perception of noise-impaired persons gave rise to use the high frequency audiometry described by Fletcher for the early recognition of noise-induced damages. Using commercial equipment we found that the earpiece was not adapted to high frequency conditions. The adaptation problem and ways of modification are described in detail. After having improved the coupling features reproducible hearing curves were obtained. Examinations were carried out on workers, whose noise exposure exceeded the critical intensity by only a few dB. The following 3 categories of impairment were found: 1. Normal hearing between 125 and 8,000 Hz as well as in the high frequency region. 2. Unsignificant noise-induced impairments between 125 and 8,000 Hz; no high frequency hearing. 3. Acoustic hearing; no high frequency hearing. The results are discussed. It is supposed that high frequency hearing losses due to noise and chemical noxious exposure (streptomycin) are valuable in diagnostics and prognostics. Accordingly persons are to be assessed as noise sensitive, when there is no more high frequency hearing before practising noise work.

  19. Control of coherent information via on-chip photonic-phononic emitter-receivers.

    PubMed

    Shin, Heedeuk; Cox, Jonathan A; Jarecki, Robert; Starbuck, Andrew; Wang, Zheng; Rakich, Peter T

    2015-03-05

    Rapid progress in integrated photonics has fostered numerous chip-scale sensing, computing and signal processing technologies. However, many crucial filtering and signal delay operations are difficult to perform with all-optical devices. Unlike photons propagating at luminal speeds, GHz-acoustic phonons moving at slower velocities allow information to be stored, filtered and delayed over comparatively smaller length-scales with remarkable fidelity. Hence, controllable and efficient coupling between coherent photons and phonons enables new signal processing technologies that greatly enhance the performance and potential impact of integrated photonics. Here we demonstrate a mechanism for coherent information processing based on travelling-wave photon-phonon transduction, which achieves a phonon emit-and-receive process between distinct nanophotonic waveguides. Using this device, physics--which supports GHz frequencies--we create wavelength-insensitive radiofrequency photonic filters with frequency selectivity, narrow-linewidth and high power-handling in silicon. More generally, this emit-receive concept is the impetus for enabling new signal processing schemes.

  20. High-frequency Broadband Modulations of Electroencephalographic Spectra

    PubMed Central

    Onton, Julie; Makeig, Scott

    2009-01-01

    High-frequency cortical potentials in electroencephalographic (EEG) scalp recordings have low amplitudes and may be confounded with scalp muscle activities. EEG data from an eyes-closed emotion imagination task were linearly decomposed using independent component analysis (ICA) into maximally independent component (IC) processes. Joint decomposition of IC log spectrograms into source- and frequency-independent modulator (IM) processes revealed three distinct classes of IMs that separately modulated broadband high-frequency (∼15–200 Hz) power of brain, scalp muscle, and likely ocular motor IC processes. Multi-dimensional scaling revealed significant but spatially complex relationships between mean broadband brain IM effects and the valence of the imagined emotions. Thus, contrary to prevalent assumption, unitary modes of spectral modulation of frequencies encompassing the beta, gamma, and high gamma frequency ranges can be isolated from scalp-recorded EEG data and may be differentially associated with brain sources and cognitive activities. PMID:20076775

  1. Interface Strategy To Achieve Tunable High Frequency Attenuation.

    PubMed

    Lv, Hualiang; Zhang, Haiqian; Ji, Guangbin; Xu, Zhichuan J

    2016-03-01

    Among all polarizations, the interface polarization effect is the most effective, especially at high frequency. The design of various ferrite/iron interfaces can significantly enhance the materials' dielectric loss ability at high frequency. This paper presents a simple method to generate ferrite/iron interfaces to enhance the microwave attenuation at high frequency. The ferrites were coated onto carbonyl iron and could be varied to ZnFe2O4, CoFe2O4, Fe3O4, and NiFe2O4. Due to the ferrite/iron interface inducing a stronger dielectric loss effect, all of these materials achieved broad effective frequency width at a coating layer as thin as 1.5 mm. In particular, an effective frequency width of 6.2 GHz could be gained from the Fe@NiFe2O4 composite.

  2. High performance vapour-cell frequency standards

    NASA Astrophysics Data System (ADS)

    Gharavipour, M.; Affolderbach, C.; Kang, S.; Bandi, T.; Gruet, F.; Pellaton, M.; Mileti, G.

    2016-06-01

    We report our investigations on a compact high-performance rubidium (Rb) vapour-cell clock based on microwave-optical double-resonance (DR). These studies are done in both DR continuous-wave (CW) and Ramsey schemes using the same Physics Package (PP), with the same Rb vapour cell and a magnetron-type cavity with only 45 cm3 external volume. In the CW-DR scheme, we demonstrate a DR signal with a contrast of 26% and a linewidth of 334 Hz; in Ramsey-DR mode Ramsey signals with higher contrast up to 35% and a linewidth of 160 Hz have been demonstrated. Short-term stabilities of 1.4×10-13 τ-1/2 and 2.4×10-13 τ-1/2 are measured for CW-DR and Ramsey-DR schemes, respectively. In the Ramsey-DR operation, thanks to the separation of light and microwave interactions in time, the light-shift effect has been suppressed which allows improving the long-term clock stability as compared to CW-DR operation. Implementations in miniature atomic clocks are considered.

  3. Applications of high-frequency radar

    NASA Astrophysics Data System (ADS)

    Headrick, J. M.; Thomason, J. F.

    1998-07-01

    Efforts to extend radar range by an order of magnitude with use of the ionosphere as a virtual mirror started after the end of World War II. A number of HF radar programs were pursued, with long-range nuclear burst and missile launch detection demonstrated by 1956. Successful east coast radar aircraft detect and track tests extending across the Atlantic were conducted by 1961. The major obstacles to success, the large target-to-clutter ratio and low signal-to-noise ratio, were overcome with matched filter Doppler processing. To search the areas that a 2000 nautical mile (3700 km) radar can reach, very complex and high dynamic range processing is required. The spectacular advances in digital processing technology have made truly wide-area surveillance possible. Use of the surface attached wave over the oceans can enable HF radar to obtain modest extension of range beyond the horizon. The decameter wavelengths used by both skywave and surface wave radars require large physical antenna apertures, but they have unique capabilities for air and surface targets, many of which are of resonant scattering dimensions. Resonant scattering from the ocean permits sea state and direction estimation. Military and commercial applications of HF radar are in their infancy.

  4. Phonon dispersion of Cu oxides from ab initio DFPT+U+J calculations

    NASA Astrophysics Data System (ADS)

    Cococcioni, M.; Himmetoglu, B.; Floris, A.

    2012-12-01

    After almost three decades from its discovery high Tc superconductivity is still waiting for a comprehensive explanation. Ab initio computer simulations can play a very important role in clarifying the physics of high Tc superconductors. One particular aspect, still under investigation, is the role played by the electron-phonon coupling in the onset of superconductivity at finite doping. To explore the effects of this coupling on the behavior of these materials is a formidable task as it requires the ability to efficiently compute phonons and to precisely capture the effects of electronic correlation (the parent materials of high Tc superconductors are, in general, correlated oxides). In this work we present the latest extension of density functional perturbation theory (DFPT - used to compute the vibrational properties of materials) to the corrected DFT+U+J functional we recently introduced to study the effects of electronic correlation on Cu oxides. The phonon frequencies and modes of CaCuO2, a prototype of high Tc parent materials, are computed and discussed in comparison with available experiments and calculations based on "standard" DFT approximations. This new numerical tool will be very important to investigate the role of electron-phonon couplings on the structural and transport properties of many transition-metal minerals for which electronic localization and magnetism play a very important role.

  5. Surface Phonons and Polaritons.

    DTIC Science & Technology

    1976-01-01

    for an impurity in the surface of a crystal could be observed in the one phonon cross section for the resonant absorption or e.ission of ,—rays by...localized at the surface. The w5 — dependence has a simple physical origin. It is well known that the cross section for scattering of bulk phonons by a...propagate. In Section II of the present Chapter we present the theory underlying the surface induced vibrational properties of crystals which we have

  6. The Influence of High-Frequency Envelope Information on Low-Frequency Vowel Identification in Noise.

    PubMed

    Schubotz, Wiebke; Brand, Thomas; Kollmeier, Birger; Ewert, Stephan D

    2016-01-01

    Vowel identification in noise using consonant-vowel-consonant (CVC) logatomes was used to investigate a possible interplay of speech information from different frequency regions. It was hypothesized that the periodicity conveyed by the temporal envelope of a high frequency stimulus can enhance the use of the information carried by auditory channels in the low-frequency region that share the same periodicity. It was further hypothesized that this acts as a strobe-like mechanism and would increase the signal-to-noise ratio for the voiced parts of the CVCs. In a first experiment, different high-frequency cues were provided to test this hypothesis, whereas a second experiment examined more closely the role of amplitude modulations and intact phase information within the high-frequency region (4-8 kHz). CVCs were either natural or vocoded speech (both limited to a low-pass cutoff-frequency of 2.5 kHz) and were presented in stationary 3-kHz low-pass filtered masking noise. The experimental results did not support the hypothesized use of periodicity information for aiding low-frequency perception.

  7. [High-frequency ventilation. I. Distribution of alveolar pressure amplitudes during high frequency oscillation in the lung model].

    PubMed

    Theissen, J; Lunkenheimer, P P; Niederer, P; Bush, E; Frieling, G; Lawin, P

    1987-09-01

    The pattern of intrapulmonary pressure distribution was studied during high-frequency ventilation in order to explain the inconsistent results reported in the literature. Methods. Pressure and flow velocity (hot-wire anemometry) were measured in different lung compartments: 1. In transalveolar chambers sealed to the perforated pleural surfaces of dried pig lungs; 2. In emphysema-simulating airbags sealed to the isolated bronchial trees of dried pig lungs; and 3. In transalveolar chambers sealed to the perforated pleural surfaces of freshly excised pig lungs. Results. 1. The pressure amplitudes change from one area to another and depending on the exciting frequency. 2. High-frequency oscillation is associated with an increase in pressure amplitude when the exciting frequency rises, whereas with conventional high-frequency jet ventilation the pressure amplitude is more likely to decrease with frequency. 3. During high-frequency jet ventilation the local pressure amplitude changes with the position of the tube in the trachea rather than with the exciting frequency. 4. When the volume of the measuring chamber is doubled the resulting pressure amplitude falls to half the control value. 5. The pressure amplitude and mean pressure measured in the transalveolar chamber vary more or less independently from the peak flow velocity. High-frequency ventilation is thus seen to be a frequency-dependant, inhomogeneous mode of ventilation that can essentially be homogenized by systematically changing the exciting frequency. The frequency-dependant response to different lung areas to excitation is likely to result from an intrabronchially-localized aerodynamic effect rather than the mechanical properties of the lung parenchyma.

  8. High-frequency threshold measurements using insert earphones.

    PubMed

    Tang, H; Letowski, T

    1992-10-01

    Several recent studies have reported large intersubject variability of high-frequency thresholds measured with circumaural earphones. In the present study, high-frequency thresholds of 10 subjects were measured with circumaural (Sennheiser HD-250) and insert (Etymotic ER-1) earphones at 10, 12, 14, and 16 kHz. Overall results show significantly smaller variability of the threshold data obtained with insert earphones than with circumaural earphones. The above data indicate that insert earphones may be more suitable for high-frequency testing than circumaural earphones.

  9. Factors Affecting the Benefits of High-Frequency Amplification

    ERIC Educational Resources Information Center

    Horwitz, Amy R.; Ahlstrom, Jayne B.; Dubno, Judy R.

    2008-01-01

    Purpose: This study was designed to determine the extent to which high-frequency amplification helped or hindered speech recognition as a function of hearing loss, gain-frequency response, and background noise. Method: Speech recognition was measured monaurally under headphones for nonsense syllables low-pass filtered in one-third-octave steps…

  10. High-frequency hearing in seals and sea lions.

    PubMed

    Cunningham, Kane A; Reichmuth, Colleen

    2016-01-01

    Existing evidence suggests that some pinnipeds (seals, sea lions, and walruses) can detect underwater sound at frequencies well above the traditional high-frequency hearing limits for their species. This phenomenon, however, is not well studied: Sensitivity patterns at frequencies beyond traditional high-frequency limits are poorly resolved, and the nature of the auditory mechanism mediating hearing at these frequencies is unknown. In the first portion of this study, auditory sensitivity patterns in the 50-180 kHz range were measured for one California sea lion (Zalophus californianus), one harbor seal (Phoca vitulina), and one spotted seal (Phoca largha). Results show the presence of two distinct slope-regions at the high-frequency ends of the audiograms of all three subjects. The first region is characterized by a rapid decrease in sensitivity with increasing frequency-i.e. a steep slope-followed by a region of much less rapid sensitivity decrease-i.e. a shallower slope. In the second portion of this study, a masking experiment was conducted to investigate how the basilar membrane of a harbor seal subject responded to acoustic energy from a narrowband masking noise centered at 140 kHz. The measured masking pattern suggests that the initial, rapid decrease in sensitivity on the high-frequency end of the subject's audiogram is not due to cochlear constraints, as has been previously hypothesized, but rather to constraints on the conductive mechanism. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Magneto-photon-phonon interaction in a parabolically confined quantum dot in the presence of high magnetic fields and intense terahertz radiation fields

    NASA Astrophysics Data System (ADS)

    Wang, W. Y.; Xu, W.

    2012-07-01

    We present a theoretical study on magneto-photon-phonon interaction in a parabolically confined quantum dot subjected simultaneously to static magnetic field and radiation field. A nonperturbative treatment for electron-photon interaction is proposed by solving analytically the time-dependent Schrödinger equation in which the magnetic field and the radiation field are included exactly. We employ the energy-balance equation approach on the basis of the Boltzmann equation to evaluate the energy transfer rate induced by optical transition events. It is found that for relatively low radiation levels, two peaks of the cyclotron resonance (CR) appear at two Kohn's frequencies ω±, and the strength and the width of the CR increase with radiation intensity. The CR at ω+ is more prominent than that at ω-. When the radiation become intense, the splitting of the CR peaks can be observed and the splitting increases with radiation intensity. The physics reasons behind these interesting findings are discussed. This study is pertinent to the application of intense terahertz radiation sources such as free-electron lasers in the investigation into low-dimensional semiconductor systems.

  12. Radio-frequency (RF) electromagnetic emissions from materials under high-frequency mechanical excitation

    NASA Astrophysics Data System (ADS)

    Sorensen, Christian; Moore, David

    2017-01-01

    Direct contact piezoelectric transducers were used to excite compacted polycrystalline dielectric material samples with high amplitude but short duration ultrasound through a frequency range of 50 kHz to 10 MHz, while near field RF emissions were measured in 12 frequency bands from 18 to 750 GHz using a suite of detectors. Emissions were observed only in three detectors, covering the 40-75 GHz, 110-170 GHz, and 170-260 GHz frequency ranges. Emission amplitudes appear to rise nonlinearly with applied ultrasound amplitude, and the emission amplitudes versus ultrasound frequency are different than the thermal responses of these samples. Data comparing thermal responses and electromagnetic emissions versus ultrasound frequency and amplitude for several sample types (oxidizers and energetic materials) are reported.

  13. Spin-phonon coupling in multiferroic YbMnO3 studied by Raman scattering

    NASA Astrophysics Data System (ADS)

    Fukumura, H.; Hasuike, N.; Harima, H.; Kisoda, K.; Fukae, K.; Yoshimura, T.; Fujimura, N.

    2009-02-01

    Hexagonal YbMnO3 bulk polycrystals were prepared and studied by Raman scattering in the temperature range of 15-300 K. A total of 15 phonon modes of A1, E1 and E2 type were identified. Some E2 phonon modes showed anomalous temperature variations in frequency at TN~80 K, suggesting a coupling between the spin and phonon systems below TN. As another evidence of spin-phonon coupling, softening of an A1-phonon mode for the O-Mn vibration was observed at ~TN. Substitution of Mn by Al suggests this view.

  14. PHONONS IN INTRINSIC JOSEPHSON SYSTEMS

    SciTech Connect

    C. PREIS; K. SCHMALZL; ET AL

    2000-10-01

    Subgap structures in the I-V curves of layered superconductors are explained by the excitation of phonons by Josephson oscillations. In the presence of a magnetic field applied parallel to the layers additional structures due to fluxon motion appear. Their coupling with phonons is investigated theoretically and a shift of the phonon resonances in strong magnetic fields is predicted.

  15. Dynamically coupled plasmon-phonon modes in GaP: An indirect-gap polar semiconductor

    NASA Astrophysics Data System (ADS)

    Ishioka, Kunie; Brixius, Kristina; Höfer, Ulrich; Rustagi, Avinash; Thatcher, Evan M.; Stanton, Christopher J.; Petek, Hrvoje

    2015-11-01

    The ultrafast coupling dynamics of coherent optical phonons and the photoexcited electron-hole plasma in the indirect gap semiconductor GaP are investigated by experiment and theory. For below-gap excitation and probing by 800-nm light, only the bare longitudinal optical (LO) phonons are observed. For above-gap excitation with 400-nm light, the photoexcitation creates a high density, nonequilibrium e -h plasma, which introduces an additional, faster decaying oscillation due to an LO phonon-plasmon coupled (LOPC) mode. The LOPC mode frequency exhibits very similar behavior for both n - and p -doped GaP, downshifting from the LO to the transverse optical (TO) phonon frequency limits with increasing photoexcited carrier density. We assign the LOPC mode to the LO phonons coupled with the photoexcited multicomponent plasma. For the 400-nm excitation, the majority of the photoexcited electrons are scattered from the Γ valley into the satellite X valley, while the light and spin-split holes are scattered into the heavy hole band, within 30 fs. The resulting mixed plasma is strongly damped, leading to the LOPC frequency appearing in the reststrahlen gap. Due to the large effective masses of the X electrons and heavy holes, the coupled mode appears most distinctly at carrier densities ≳5 ×1018cm-3 . We perform theoretical calculations of the nuclear motions and the electronic polarizations following an excitation with an ultrashort optical pulse to obtain the transient reflectivity responses of the coupled modes. We find that, while the longitudinal diffusion of photoexcited carriers is insignificant, the lateral inhomogeneity of the photoexcited carriers due to the laser intensity profile should be taken into account to reproduce the major features of the observed coupled mode dynamics.

  16. Phonon dispersion in hypersonic two-dimensional phononic crystal membranes

    NASA Astrophysics Data System (ADS)

    Graczykowski, B.; Sledzinska, M.; Alzina, F.; Gomis-Bresco, J.; Reparaz, J. S.; Wagner, M. R.; Sotomayor Torres, C. M.

    2015-02-01

    We investigate experimentally and theoretically the acoustic phonon propagation in two-dimensional phononic crystal membranes. Solid-air and solid-solid phononic crystals were made of square lattices of holes and Au pillars in and on 250 nm thick single crystalline Si membrane, respectively. The hypersonic phonon dispersion was investigated using Brillouin light scattering. Volume reduction (holes) or mass loading (pillars) accompanied with second-order periodicity and local resonances are shown to significantly modify the propagation of thermally activated GHz phonons. We use numerical modeling based on the finite element method to analyze the experimental results and determine polarization, symmetry, or three-dimensional localization of observed modes.

  17. High-frequency thresholds: circumaural earphone versus insert earphone.

    PubMed

    Valente, M; Valente, M; Goebel, J

    1992-11-01

    Benefits of high-frequency audiometry in monitoring hearing sensitivity of patients administered ototoxic medications are well established. High-frequency thresholds have been reported to be variable, due in part to small differences in the placement of the earphone diaphragm over the opening of the ear canal. Reliability may be improved by using insert earphones (ER-2) when obtaining high-frequency thresholds. The purposes of this study were to determine high-frequency threshold test-retest reliability using Koss HV/1A+ and ER-2 earphones and to determine if significant differences are present between high-frequency thresholds obtained using these two earphones. Results obtained on 40 ears of 20 normal hearing adults revealed that differences between the test and retest thresholds for each earphone were not significant. Intrasubject threshold differences between the test and retest thresholds for each earphone were, for the most part, within +/- 10 dB at all test frequencies. Further, significantly greater intensity was required to measure threshold when using the ER-2 earphone when compared to the Koss HV/1A+ at all test frequencies.

  18. High-frequency subband compressed sensing MRI using quadruplet sampling.

    PubMed

    Sung, Kyunghyun; Hargreaves, Brian A

    2013-11-01

    To present and validate a new method that formalizes a direct link between k-space and wavelet domains to apply separate undersampling and reconstruction for high- and low-spatial-frequency k-space data. High- and low-spatial-frequency regions are defined in k-space based on the separation of wavelet subbands, and the conventional compressed sensing problem is transformed into one of localized k-space estimation. To better exploit wavelet-domain sparsity, compressed sensing can be used for high-spatial-frequency regions, whereas parallel imaging can be used for low-spatial-frequency regions. Fourier undersampling is also customized to better accommodate each reconstruction method: random undersampling for compressed sensing and regular undersampling for parallel imaging. Examples using the proposed method demonstrate successful reconstruction of both low-spatial-frequency content and fine structures in high-resolution three-dimensional breast imaging with a net acceleration of 11-12. The proposed method improves the reconstruction accuracy of high-spatial-frequency signal content and avoids incoherent artifacts in low-spatial-frequency regions. This new formulation also reduces the reconstruction time due to the smaller problem size. Copyright © 2012 Wiley Periodicals, Inc.

  19. High density terahertz frequency comb produced by coherent synchrotron radiation

    PubMed Central

    Tammaro, S.; Pirali, O.; Roy, P.; Lampin, J.-F.; Ducournau, G.; Cuisset, A.; Hindle, F.; Mouret, G.

    2015-01-01

    Frequency combs have enabled significant progress in frequency metrology and high-resolution spectroscopy extending the achievable resolution while increasing the signal-to-noise ratio. In its coherent mode, synchrotron radiation is accepted to provide an intense terahertz continuum covering a wide spectral range from about 0.1 to 1 THz. Using a dedicated heterodyne receiver, we reveal the purely discrete nature of this emission. A phase relationship between the light pulses leads to a powerful frequency comb spanning over one decade in frequency. The comb has a mode spacing of 846 kHz, a linewidth of about 200 Hz, a fractional precision of about 2 × 10−10 and no frequency offset. The unprecedented potential of the comb for high-resolution spectroscopy is demonstrated by the accurate determination of pure rotation transitions of acetonitrile. PMID:26190043

  20. High density terahertz frequency comb produced by coherent synchrotron radiation.

    PubMed

    Tammaro, S; Pirali, O; Roy, P; Lampin, J-F; Ducournau, G; Cuisset, A; Hindle, F; Mouret, G

    2015-07-20

    Frequency combs have enabled significant progress in frequency metrology and high-resolution spectroscopy extending the achievable resolution while increasing the signal-to-noise ratio. In its coherent mode, synchrotron radiation is accepted to provide an intense terahertz continuum covering a wide spectral range from about 0.1 to 1 THz. Using a dedicated heterodyne receiver, we reveal the purely discrete nature of this emission. A phase relationship between the light pulses leads to a powerful frequency comb spanning over one decade in frequency. The comb has a mode spacing of 846 kHz, a linewidth of about 200 Hz, a fractional precision of about 2 × 10(-10) and no frequency offset. The unprecedented potential of the comb for high-resolution spectroscopy is demonstrated by the accurate determination of pure rotation transitions of acetonitrile.