Sample records for high fructose consumption

  1. Endocrine and metabolic effects of consuming beverages sweetened with fructose, glucose, sucrose, or high-fructose corn syrup.

    PubMed

    Stanhope, Kimber L; Havel, Peter J

    2008-12-01

    Our laboratory has investigated 2 hypotheses regarding the effects of fructose consumption: 1) the endocrine effects of fructose consumption favor a positive energy balance, and 2) fructose consumption promotes the development of an atherogenic lipid profile. In previous short- and long-term studies, we showed that consumption of fructose-sweetened beverages with 3 meals results in lower 24-h plasma concentrations of glucose, insulin, and leptin in humans than does consumption of glucose-sweetened beverages. We have also tested whether prolonged consumption of high-fructose diets leads to increased caloric intake or decreased energy expenditure, thereby contributing to weight gain and obesity. Results from a study conducted in rhesus monkeys produced equivocal results. Carefully controlled and adequately powered long-term studies are needed to address these hypotheses. In both short- and long-term studies, we showed that consumption of fructose-sweetened beverages substantially increases postprandial triacylglycerol concentrations compared with glucose-sweetened beverages. In the long-term studies, apolipoprotein B concentrations were also increased in subjects consuming fructose, but not in those consuming glucose. Data from a short-term study comparing consumption of beverages sweetened with fructose, glucose, high-fructose corn syrup, and sucrose suggest that high-fructose corn syrup and sucrose increase postprandial triacylglycerol to an extent comparable with that induced by 100% fructose alone. Increased consumption of fructose-sweetened beverages along with increased prevalence of obesity, metabolic syndrome, and type 2 diabetes underscore the importance of investigating the metabolic consequences of fructose consumption in carefully controlled experiments.

  2. Chronic Alcohol Consumption Causes Liver Injury in High-Fructose-Fed Male Mice Through Enhanced Hepatic Inflammatory Response

    PubMed Central

    Song, Ming; Chen, Theresa; Prough, Russell A.; Cave, Matthew C.; McClain, Craig J.

    2017-01-01

    Background Obesity and the metabolic syndrome occur in approximately one-third of patients with alcoholic liver disease (ALD). The increased consumption of fructose parallels the increased prevalence of obesity and the metabolic syndrome in the United States and worldwide. In this study, we investigated whether dietary high fructose potentiates chronic alcohol-induced liver injury, and explored potential mechanism(s). Methods Six-week-old male C57BL/6J mice were assigned to 4 groups: control, high fructose, chronic ethanol (EtOH), and high fructose plus chronic alcohol. The mice were fed either control diet or high-fructose diet (60%, w/w) for 18 weeks. Chronic alcohol-fed mice were given 20% (v/v) ethanol (Meadows-Cook model) ad libitum as the only available liquid from the 9th week through the 18th week. Liver injury, steatosis, hepatic inflammatory gene expression, and copper status were assessed. Results High-fructose diet and chronic alcohol consumption alone each induce hepatic fat accumulation and impair copper status. However, the combination of dietary high fructose plus chronic alcohol synergistically induced liver injury as evidenced by robustly increased plasma alanine aminotransferase and aspartate aminotransferase, but the combination did not exacerbate hepatic fat accumulation nor worsen copper status. Moreover, FE-fed mice were characterized by prominent microvesicular steatosis. High-fructose diet and chronic alcohol ingestion together led to a significant up-regulation of Kupffer cell (KC) M1 phenotype gene expression (e.g., tumor necrosis factor-a and monocyte chemoattractant protein-1), as well as Toll-like receptor 4 (TLR4) signaling gene expression, which is also associated with the up-regulation of KCs and activation marker gene expression, including Emr1, CD68, and CD163. Conclusions Our data suggest that dietary high fructose may potentiate chronic alcohol consumption-induced liver injury. The underlying mechanism might be due to the

  3. Twenty-four-hour endocrine and metabolic profiles following consumption of high-fructose corn syrup-, sucrose-, fructose-, and glucose-sweetened beverages with meals.

    PubMed

    Stanhope, Kimber L; Griffen, Steven C; Bair, Brandi R; Swarbrick, Michael M; Keim, Nancy L; Havel, Peter J

    2008-05-01

    We have reported that, compared with glucose-sweetened beverages, consuming fructose-sweetened beverages with meals results in lower 24-h circulating glucose, insulin, and leptin concentrations and elevated triacylglycerol (TG). However, pure fructose and glucose are not commonly used as sweeteners. High-fructose corn syrup (HFCS) has replaced sucrose as the predominant sweetener in beverages in the United States. We compared the metabolic/endocrine effects of HFCS with sucrose and, in a subset of subjects, with pure fructose and glucose. Thirty-four men and women consumed 3 isocaloric meals with either sucrose- or HFCS-sweetened beverages, and blood samples were collected over 24 h. Eight of the male subjects were also studied when fructose- or glucose-sweetened beverages were consumed. In 34 subjects, 24-h glucose, insulin, leptin, ghrelin, and TG profiles were similar between days that sucrose or HFCS was consumed. Postprandial TG excursions after HFCS or sucrose were larger in men than in women. In the men in whom the effects of 4 sweeteners were compared, the 24-h glucose and insulin responses induced by HFCS and sucrose were intermediate between the lower responses during consumption of fructose and the higher responses during glucose. Unexpectedly, postprandial TG profiles after HFCS or sucrose were not intermediate but comparably high as after pure fructose. Sucrose and HFCS do not have substantially different short-term endocrine/metabolic effects. In male subjects, short-term consumption of sucrose and HFCS resulted in postprandial TG responses comparable to those induced by fructose.

  4. Twenty-four Hour Endocrine and Metabolic Profiles Following Consumption of High Fructose Corn Syrup-, Sucrose- Fructose-, and Glucose-Sweetened Beverages with Meals

    PubMed Central

    Stanhope, Kimber L.; Griffen, Steven C.; Bair, Brandi R.; Swarbrick, Michael M.; Keim, Nancy L.; Havel, Peter J.

    2011-01-01

    Background We have reported that compared with glucose-sweetened beverages, consuming fructose-sweetened beverages with meals results in lower 24-h circulating glucose, insulin and leptin concentrations, and elevated triacylglycerol (TG). However, pure fructose and glucose are not commonly used as sweeteners. High fructose corn syrup (HFCS) has replaced sucrose as the predominant sweetener in beverages in the U.S. Objective We compared the metabolic/endocrine effects of HFCS with sucrose, and in a subset of subjects with pure fructose and glucose. Design 34 men and women consumed 3 isocaloric meals with either sucrose- or HFCS-sweetened beverages, and blood samples were collected over 24 hours. Eight of the male subjects were also studied when fructose- or glucose-sweetened beverages were consumed. Results In 34 subjects, 24-h glucose, insulin, leptin, ghrelin and TG profiles were similar between days that sucrose or HFCS were consumed. Postprandial TG excursions after HFCS or sucrose were larger in men than women. In the men in whom the effects of 4 sweeteners were compared, the 24-h glucose and insulin responses induced by HFCS and sucrose were intermediate between the lower responses during consumption of fructose and the higher responses during glucose. Unexpectedly, postprandial TG profiles after HFCS or sucrose were not intermediate, but comparably high as after pure fructose. Conclusions Sucrose and HFCS do not have substantially different short-term endocrine/metabolic effects. In male subjects, short-term consumption of sucrose and HFCS resulted in postprandial TG responses comparable to those induced by fructose. PMID:18469239

  5. The health implications of sucrose, high-fructose corn syrup, and fructose: what do we really know?

    PubMed

    Rippe, James M

    2010-07-01

    The epidemic of obesity and related metabolic diseases continues to extract an enormous health toll. Multiple potential causes for obesity have been suggested, including increased fat consumption, increased carbohydrate consumption, decreased physical activity, and, most recently, increased fructose consumption. Most literature cited in support of arguments suggesting a link between obesity and fructose consumption is epidemiologic and does not establish cause and effect. The causes of obesity are well-known and involve the overconsumption of calories from all sources. Research employing a pure fructose model distorts the real-world situation of fructose consumption, which predominantly comes from sweeteners containing roughly equal proportions of glucose and fructose. The fructose hypothesis has the potential to distract us from further exploration and amelioration of known causes of obesity. Randomized prospective trials of metabolic consequences of fructose consumption at normal population levels and from sources typically found in the human diet such as sucrose and high-fructose corn syrup are urgently needed. 2010 Diabetes Technology Society.

  6. The Health Implications of Sucrose, High-Fructose Corn Syrup, and Fructose: What Do We Really Know?

    PubMed Central

    Rippe, James M.

    2010-01-01

    The epidemic of obesity and related metabolic diseases continues to extract an enormous health toll. Multiple potential causes for obesity have been suggested, including increased fat consumption, increased carbohydrate consumption, decreased physical activity, and, most recently, increased fructose consumption. Most literature cited in support of arguments suggesting a link between obesity and fructose consumption is epidemiologic and does not establish cause and effect. The causes of obesity are well-known and involve the overconsumption of calories from all sources. Research employing a pure fructose model distorts the real-world situation of fructose consumption, which predominantly comes from sweeteners containing roughly equal proportions of glucose and fructose. The fructose hypothesis has the potential to distract us from further exploration and amelioration of known causes of obesity. Randomized prospective trials of metabolic consequences of fructose consumption at normal population levels and from sources typically found in the human diet such as sucrose and high-fructose corn syrup are urgently needed. PMID:20663468

  7. Effect of steady-state methadone on high fructose corn syrup consumption in rats.

    PubMed

    Daniels, Stephen; Pratt, Mick; Zhou, Yan; Leri, Francesco

    2018-02-01

    Patients undergoing methadone maintenance treatment self-report enhanced preferences for, and excessive consumption of, foods rich in sugar. However, it is unclear whether these are direct pharmacological effects of methadone or the consequences of metabolic dysfunctions induced by addiction to illicit opiates. Hence, the current study in drug-naïve male Sprague-Dawley rats explored the effects of steady-state methadone delivered by osmotic mini-pumps (13 days; 0, 10, 30 mg/kg/day) on consumption of rat chow and a palatable, sweet, liquid high fructose corn syrup solution. Six days after the removal of the pumps, mRNA expression of genes involved in responses to stress and rewards were quantified: pro-opiomelanocortin in the hypothalamus, mu-opioid receptor in the nucleus accumbens, and dopamine D2 receptor in the dorsal striatum. Taste reactivity and locomotion tests were also performed throughout the study. It was found that methadone increased caloric intake from high fructose corn syrup and reduced caloric intake from chow, effects that could not be directly ascribed to changes in high fructose corn syrup taste reactivity or motor functions. However, the changes in caloric intake displayed significant tolerance, and mRNA expression analysis suggested that methadone attenuated the effect of high fructose corn syrup on pro-opiomelanocortin mRNA, and possibly on dopamine D2 receptor mRNA. These findings in rats suggest that the pharmacological effect of methadone, administered to achieve steady-state maintenance, may not be the primary cause of dietary alterations reported by patients maintained on methadone.

  8. Fructose consumption as a risk factor for non-alcoholic fatty liver disease.

    PubMed

    Ouyang, Xiaosen; Cirillo, Pietro; Sautin, Yuri; McCall, Shannon; Bruchette, James L; Diehl, Anna Mae; Johnson, Richard J; Abdelmalek, Manal F

    2008-06-01

    While the rise in non-alcoholic fatty liver disease (NAFLD) parallels the increase in obesity and diabetes, a significant increase in dietary fructose consumption in industrialized countries has also occurred. The increased consumption of high fructose corn syrup, primarily in the form of soft drinks, is linked with complications of the insulin resistance syndrome. Furthermore, the hepatic metabolism of fructose favors de novo lipogenesis and ATP depletion. We hypothesize that increased fructose consumption contributes to the development of NAFLD. A dietary history and paired serum and liver tissue were obtained from patients with evidence of biopsy-proven NAFLD (n=49) without cirrhosis and controls (n=24) matched for gender, age (+/-5 years), and body mass index (+/-3 points). Consumption of fructose in patients with NAFLD was nearly 2- to 3-fold higher than controls [365 kcal vs 170 kcal (p<0.05)]. In patients with NAFLD (n=6), hepatic mRNA expression of fructokinase (KHK), an important enzyme for fructose metabolism, and fatty acid synthase, an important enzyme for lipogenesis were increased (p=0.04 and p=0.02, respectively). In an AML hepatocyte cell line, fructose resulted in dose-dependent increase in KHK protein and activity. The pathogenic mechanism underlying the development of NAFLD may be associated with excessive dietary fructose consumption.

  9. Soft drink consumption and obesity: it is all about fructose.

    PubMed

    Bray, George A

    2010-02-01

    The purpose of the review is to suggest that fructose, a component of both sucrose (common sugar) and high fructose corn syrup, should be of concern to both healthcare providers and the public. Consumption of sugar-sweetened beverages has increased steadily over the past century and with this increase has come more and more reports associating their use with the risk of overweight, diabetes and cardiometabolic disease. In a meta-analysis of the relationship between soft drink consumption and cardiometabolic risk, there was a 24% overall increased risk comparing the top and bottom quantiles of consumption. Several factors might account for this increased risk, including increased carbohydrate load and increased amounts of dietary fructose. Fructose acutely increases thermogenesis, triglycerides and lipogenesis as well as blood pressure, but has a smaller effect on leptin and insulin release than comparable amounts of glucose. In controlled feeding studies, changes in body weight, fat storage and triglycerides are observed as well as an increase in inflammatory markers. The present review concludes on the basis of the data assembled here that in the amounts currently consumed, fructose is hazardous to the cardiometabolic health of many children, adolescents and adults.

  10. The effect of high-fructose corn syrup consumption on triglycerides and uric acid.

    PubMed

    Angelopoulos, Theodore J; Lowndes, Joshua; Zukley, Linda; Melanson, Kathleen J; Nguyen, Von; Huffman, Anik; Rippe, James M

    2009-06-01

    Rates of overweight and obesity have been on a steady rise for decades, and the problems society faces from this and associated metabolic diseases are many. As a result, the need to understand the contributing factors is great. A very compelling case can be made that excess sugar consumption has played a significant role. In addition, fructose, as a component of the vast majority of caloric sweeteners, is seen to be particularly insidious. Evidence shows that fructose bypasses many of the body's satiating signals, thus potentially promoting overconsumption of energy, weight gain, and the development on insulin resistance. It has also been shown to increase uric acid levels, which in turn promotes many of the abnormalities seen in the metabolic syndrome including hypertriglyceridemia. However, the main source of fructose in the diet is high-fructose corn syrup (HFCS), an artificially manufactured disaccharide that is only 55% fructose. This review highlights the fact that limited data are available about the metabolic effects of HFCS compared with other caloric sweeteners. The data suggest that HFCS yields similar metabolic responses to other caloric sweeteners such as sucrose.

  11. Consumption of high-fructose corn syrup in beverages may play a role in the epidemic of obesity.

    PubMed

    Bray, George A; Nielsen, Samara Joy; Popkin, Barry M

    2004-04-01

    Obesity is a major epidemic, but its causes are still unclear. In this article, we investigate the relation between the intake of high-fructose corn syrup (HFCS) and the development of obesity. We analyzed food consumption patterns by using US Department of Agriculture food consumption tables from 1967 to 2000. The consumption of HFCS increased > 1000% between 1970 and 1990, far exceeding the changes in intake of any other food or food group. HFCS now represents > 40% of caloric sweeteners added to foods and beverages and is the sole caloric sweetener in soft drinks in the United States. Our most conservative estimate of the consumption of HFCS indicates a daily average of 132 kcal for all Americans aged > or = 2 y, and the top 20% of consumers of caloric sweeteners ingest 316 kcal from HFCS/d. The increased use of HFCS in the United States mirrors the rapid increase in obesity. The digestion, absorption, and metabolism of fructose differ from those of glucose. Hepatic metabolism of fructose favors de novo lipogenesis. In addition, unlike glucose, fructose does not stimulate insulin secretion or enhance leptin production. Because insulin and leptin act as key afferent signals in the regulation of food intake and body weight, this suggests that dietary fructose may contribute to increased energy intake and weight gain. Furthermore, calorically sweetened beverages may enhance caloric overconsumption. Thus, the increase in consumption of HFCS has a temporal relation to the epidemic of obesity, and the overconsumption of HFCS in calorically sweetened beverages may play a role in the epidemic of obesity.

  12. Fructose content in popular beverages made with and without high-fructose corn syrup.

    PubMed

    Walker, Ryan W; Dumke, Kelly A; Goran, Michael I

    2014-01-01

    Excess fructose consumption is hypothesized to be associated with risk for metabolic disease. Actual fructose consumption levels are difficult to estimate because of the unlabeled quantity of fructose in beverages. The aims of this study were threefold: 1) re-examine the fructose content in previously tested beverages using two additional assay methods capable of detecting other sugars, especially maltose, 2) compare data across all methods to determine the actual free fructose-to-glucose ratio in beverages made either with or without high-fructose corn syrup (HFCS), and 3) expand the analysis to determine fructose content in commonly consumed juice products. Sugar-sweetened beverages (SSBs) and fruit juice drinks that were either made with or without HFCS were analyzed in separate, independent laboratories via three different methods to determine sugar profiles. For SSBs, the three independent laboratory methods showed consistent and reproducible results. In SSBs made with HFCS, fructose constituted 60.6% ± 2.7% of sugar content. In juices sweetened with HFCS, fructose accounted for 52.1% ± 5.9% of sugar content, although in some juices made from 100% fruit, fructose concentration reached 65.35 g/L accounting for 67% of sugars. Our results provide evidence of higher than expected amounts of free fructose in some beverages. Popular beverages made with HFCS have a fructose-to-glucose ratio of approximately 60:40, and thus contain 50% more fructose than glucose. Some pure fruit juices have twice as much fructose as glucose. These findings suggest that beverages made with HFCS and some juices have a sugar profile very different than sucrose, in which amounts of fructose and glucose are equivalent. Current dietary analyses may underestimate actual fructose consumption. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Consumption of fructose and high fructose corn syrup increase postprandial triglycerides, LDL-cholesterol, and apolipoprotein-B in young men and women.

    PubMed

    Stanhope, Kimber L; Bremer, Andrew A; Medici, Valentina; Nakajima, Katsuyuki; Ito, Yasuki; Nakano, Takamitsu; Chen, Guoxia; Fong, Tak Hou; Lee, Vivien; Menorca, Roseanne I; Keim, Nancy L; Havel, Peter J

    2011-10-01

    The American Heart Association Nutrition Committee recommends women and men consume no more than 100 and 150 kcal of added sugar per day, respectively, whereas the Dietary Guidelines for Americans, 2010, suggests a maximal added sugar intake of 25% or less of total energy. To address this discrepancy, we compared the effects of consuming glucose, fructose, or high-fructose corn syrup (HFCS) at 25% of energy requirements (E) on risk factors for cardiovascular disease. PARTICIPANTS, DESIGN AND SETTING, AND INTERVENTION: Forty-eight adults (aged 18-40 yr; body mass index 18-35 kg/m(2)) resided at the Clinical Research Center for 3.5 d of baseline testing while consuming energy-balanced diets containing 55% E complex carbohydrate. For 12 outpatient days, they consumed usual ad libitum diets along with three servings per day of glucose, fructose, or HFCS-sweetened beverages (n = 16/group), which provided 25% E requirements. Subjects then consumed energy-balanced diets containing 25% E sugar-sweetened beverages/30% E complex carbohydrate during 3.5 d of inpatient intervention testing. Twenty-four-hour triglyceride area under the curve, fasting plasma low-density lipoprotein (LDL), and apolipoprotein B (apoB) concentrations were measured. Twenty-four-hour triglyceride area under the curve was increased compared with baseline during consumption of fructose (+4.7 ± 1.2 mmol/liter × 24 h, P = 0.0032) and HFCS (+1.8 ± 1.4 mmol/liter × 24 h, P = 0.035) but not glucose (-1.9 ± 0.9 mmol/liter × 24 h, P = 0.14). Fasting LDL and apoB concentrations were increased during consumption of fructose (LDL: +0.29 ± 0.082 mmol/liter, P = 0.0023; apoB: +0.093 ± 0.022 g/liter, P = 0.0005) and HFCS (LDL: +0.42 ± 0.11 mmol/liter, P < 0.0001; apoB: +0.12 ± 0.031 g/liter, P < 0.0001) but not glucose (LDL: +0.012 ± 0.071 mmol/liter, P = 0.86; apoB: +0.0097 ± 0.019 g/liter, P = 0.90). Consumption of HFCS-sweetened beverages for 2 wk at 25% E increased risk factors for cardiovascular

  14. Serum uric acid concentrations and fructose consumption are independently associated with NASH in children and adolescents.

    PubMed

    Mosca, Antonella; Nobili, Valerio; De Vito, Rita; Crudele, Annalisa; Scorletti, Eleonora; Villani, Alberto; Alisi, Anna; Byrne, Christopher D

    2017-05-01

    NASH in children and adolescents with proven non-alcoholic fatty liver disease (NAFLD). We show that both dietary fructose consumption and serum UA concentrations are independently associated with NASH and fructose consumption was independently linked with high serum UA concentrations. Copyright © 2017 European Association for the Study of the Liver. All rights reserved.

  15. Consumption of Fructose and High Fructose Corn Syrup Increase Postprandial Triglycerides, LDL-Cholesterol, and Apolipoprotein-B in Young Men and Women

    PubMed Central

    Bremer, Andrew A.; Medici, Valentina; Nakajima, Katsuyuki; Ito, Yasuki; Nakano, Takamitsu; Chen, Guoxia; Fong, Tak Hou; Lee, Vivien; Menorca, Roseanne I.; Keim, Nancy L.; Havel, Peter J.

    2011-01-01

    Context: The American Heart Association Nutrition Committee recommends women and men consume no more than 100 and 150 kcal of added sugar per day, respectively, whereas the Dietary Guidelines for Americans, 2010, suggests a maximal added sugar intake of 25% or less of total energy. Objective: To address this discrepancy, we compared the effects of consuming glucose, fructose, or high-fructose corn syrup (HFCS) at 25% of energy requirements (E) on risk factors for cardiovascular disease. Participants, Design and Setting, and Intervention: Forty-eight adults (aged 18–40 yr; body mass index 18–35 kg/m2) resided at the Clinical Research Center for 3.5 d of baseline testing while consuming energy-balanced diets containing 55% E complex carbohydrate. For 12 outpatient days, they consumed usual ad libitum diets along with three servings per day of glucose, fructose, or HFCS-sweetened beverages (n = 16/group), which provided 25% E requirements. Subjects then consumed energy-balanced diets containing 25% E sugar-sweetened beverages/30% E complex carbohydrate during 3.5 d of inpatient intervention testing. Main Outcome Measures: Twenty-four-hour triglyceride area under the curve, fasting plasma low-density lipoprotein (LDL), and apolipoprotein B (apoB) concentrations were measured. Results: Twenty-four-hour triglyceride area under the curve was increased compared with baseline during consumption of fructose (+4.7 ± 1.2 mmol/liter × 24 h, P = 0.0032) and HFCS (+1.8 ± 1.4 mmol/liter × 24 h, P = 0.035) but not glucose (−1.9 ± 0.9 mmol/liter × 24 h, P = 0.14). Fasting LDL and apoB concentrations were increased during consumption of fructose (LDL: +0.29 ± 0.082 mmol/liter, P = 0.0023; apoB: +0.093 ± 0.022 g/liter, P = 0.0005) and HFCS (LDL: +0.42 ± 0.11 mmol/liter, P < 0.0001; apoB: +0.12 ± 0.031 g/liter, P < 0.0001) but not glucose (LDL: +0.012 ± 0.071 mmol/liter, P = 0.86; apoB: +0.0097 ± 0.019 g/liter, P = 0.90). Conclusions: Consumption of HFCS

  16. High dietary fructose intake: Sweet or bitter life?

    PubMed

    Collino, Massimo

    2011-06-15

    Epidemiological data show that the consumption of added sugars as ingredients in processed or prepared foods and caloric beverages has dramatically increased. Fructose and fructose-based sweeteners are the most commonly added sugars and high-fructose corn syrup (HFCS-55: 55% fructose, 42% glucose and 3% higher saccharides) accounts for over 40% of all added caloric sweeteners. Concerns regarding the health risk of added sugar follow the demonstration that the consumption of foods and beverages high in sugars is associated with an increased prevalence of obesity, insulin resistance, dyslipidemia and, more recently, ischemic heart and kidney diseases. The molecular mechanism(s) underlying the detrimental effects of sugar are not completely understood and their elucidation is critical to provide new insights on the health risk of fructose-based sweeteners. A better understanding of the key role of fructose overconsumption in the development of metabolic disorders may contribute to planning new strategies for preventing deleterious dietary behaviors from becoming established and, thus, curbing the rise in the number of insulin-resistant, obese and diabetic populations worldwide.

  17. Differential Responses of Plasma Adropin Concentrations To Dietary Glucose or Fructose Consumption In Humans.

    PubMed

    Butler, Andrew A; St-Onge, Marie-Pierre; Siebert, Emily A; Medici, Valentina; Stanhope, Kimber L; Havel, Peter J

    2015-10-05

    Adropin is a peptide hormone encoded by the Energy Homeostasis Associated (ENHO) gene whose physiological role in humans remains incompletely defined. Here we investigated the impact of dietary interventions that affect systemic glucose and lipid metabolism on plasma adropin concentrations in humans. Consumption of glucose or fructose as 25% of daily energy requirements (E) differentially affected plasma adropin concentrations (P < 0.005) irrespective of duration, sex or age. Glucose consumption reduced plasma adropin from 3.55 ± 0.26 to 3.28 ± 0.23 ng/ml (N = 42). Fructose consumption increased plasma adropin from 3.63 ± 0.29 to 3.93 ± 0.34 ng/ml (N = 45). Consumption of high fructose corn syrup (HFCS) as 25% E had no effect (3.43 ± 0.32 versus 3.39 ± 0.24 ng/ml, N = 26). Overall, the effect of glucose, HFCS and fructose on circulating adropin concentrations were similar to those observed on postprandial plasma triglyceride concentrations. Furthermore, increases in plasma adropin levels with fructose intake were most robust in individuals exhibiting hypertriglyceridemia. Individuals with low plasma adropin concentrations also exhibited rapid increases in plasma levels following consumption of breakfasts supplemented with lipids. These are the first results linking plasma adropin levels with dietary sugar intake in humans, with the impact of fructose consumption linked to systemic triglyceride metabolism. In addition, dietary fat intake may also increase circulating adropin concentrations.

  18. [Fructose and fructose intolerance].

    PubMed

    Buzás, György Miklós

    2016-10-01

    Although fructose was discovered in 1794, it was realised in recent decades only that its malabsorption can lead to intestinal symptoms while its excessive consumption induces metabolic disturbances. Fructose is a monosaccharide found naturally in most fruits and vegetables. Dietary intake of fructose has gradually increased in the past decades, especially because of the consumption of high fructose corn syrup. With its 16.4 kg/year consumption, Hungary ranks secondly after the United States. Fructose is absorbed in the small intestine by facilitated transport mediated by glucose transporter proteins-2 and -5, and arrives in the liver cells. Here it is transformed enzymatically into fructose-1-phosphate and then, fructose-1,5-diphosphate, which splits further into glyceraldehyde and dihydroxyacetone-phosphate, entering the process of glycolysis, triglyceride and uric acid production. The prevalence of fructose intolerance varies strongly, depending on the method used. The leading symptoms of fructose intolerance are similar, but less severe than those of lactose intolerance. Multiple secondary symptoms can also occur. A symptom-based diagnosis of fructose intolerance is possible, but the gold standard is the H 2 breath test, though this is less accurate than in lactose testing. Measuring fructosaemia is costly, cumbersome and not widely used. Fructose intolerance increases intestinal motility and sensitivity, promotes biofilm formation and contributes to the development of gastrooesophageal reflux. Long-term use of fructose fosters the development of dental caries and non-alcoholic steatohepatitis. Its role in carcinogenesis is presently investigated. The cornerstone of dietary management for fructose intolerance is the individual reduction of fructose intake and the FODMAP diet, led by a trained dietetician. The newly introduced xylose-isomerase is efficient in reducing the symptoms of fructose intolerance. Orv. Hetil., 2016, 157(43), 1708-1716.

  19. Differential Responses of Plasma Adropin Concentrations To Dietary Glucose or Fructose Consumption In Humans

    PubMed Central

    Butler, Andrew A.; St-Onge, Marie-Pierre; Siebert, Emily A.; Medici, Valentina; Stanhope, Kimber L.; Havel, Peter J.

    2015-01-01

    Adropin is a peptide hormone encoded by the Energy Homeostasis Associated (ENHO) gene whose physiological role in humans remains incompletely defined. Here we investigated the impact of dietary interventions that affect systemic glucose and lipid metabolism on plasma adropin concentrations in humans. Consumption of glucose or fructose as 25% of daily energy requirements (E) differentially affected plasma adropin concentrations (P < 0.005) irrespective of duration, sex or age. Glucose consumption reduced plasma adropin from 3.55 ± 0.26 to 3.28 ± 0.23 ng/ml (N = 42). Fructose consumption increased plasma adropin from 3.63 ± 0.29 to 3.93 ± 0.34 ng/ml (N = 45). Consumption of high fructose corn syrup (HFCS) as 25% E had no effect (3.43 ± 0.32 versus 3.39 ± 0.24 ng/ml, N = 26). Overall, the effect of glucose, HFCS and fructose on circulating adropin concentrations were similar to those observed on postprandial plasma triglyceride concentrations. Furthermore, increases in plasma adropin levels with fructose intake were most robust in individuals exhibiting hypertriglyceridemia. Individuals with low plasma adropin concentrations also exhibited rapid increases in plasma levels following consumption of breakfasts supplemented with lipids. These are the first results linking plasma adropin levels with dietary sugar intake in humans, with the impact of fructose consumption linked to systemic triglyceride metabolism. In addition, dietary fat intake may also increase circulating adropin concentrations. PMID:26435060

  20. Excess Maternal Fructose Consumption Increases Fetal Loss and Impairs Endometrial Decidualization in Mice

    PubMed Central

    Saben, Jessica L.; Asghar, Zeenat; Rhee, Julie S.; Drury, Andrea; Scheaffer, Suzanne

    2016-01-01

    The most significant increase in metabolic syndrome over the previous decade occurred in women of reproductive age, which is alarming given that metabolic syndrome is associated with reproductive problems including subfertility and early pregnancy loss. Individuals with metabolic syndrome often consume excess fructose, and several studies have concluded that excess fructose intake contributes to metabolic syndrome development. Here, we examined the effects of increased fructose consumption on pregnancy outcomes in mice. Female mice fed a high-fructose diet (HFrD) for 6 weeks developed glucose intolerance and mild fatty liver but did not develop other prominent features of metabolic syndrome such as weight gain, hyperglycemia, and hyperinsulinemia. Upon mating, HFrD-exposed mice had lower pregnancy rates and smaller litters at midgestation than chow-fed controls. To explain this phenomenon, we performed artificial decidualization experiments and found that HFrD consumption impaired decidualization. This appeared to be due to decreased circulating progesterone as exogenous progesterone administration rescued decidualization. Furthermore, HFrD intake was associated with decreased bone morphogenetic protein 2 expression and signaling, both of which were restored by exogenous progesterone. Finally, expression of forkhead box O1 and superoxide dismutase 2 [Mn] proteins were decreased in the uteri of HFrD-fed mice, suggesting that HFrD consumption promotes a prooxidative environment in the endometrium. In summary, these data suggest that excess fructose consumption impairs murine fertility by decreasing steroid hormone synthesis and promoting an adverse uterine environment. PMID:26677880

  1. High fructose consumption induces DNA methylation at PPARα and CPT1A promoter regions in the rat liver

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohashi, Koji; Munetsuna, Eiji; Yamada, Hiroya, E-mail: hyamada@fujita-hu.ac.jp

    DNA methylation status is affected by environmental factors, including nutrition. Fructose consumption is considered a risk factor for the conditions that make up metabolic syndrome such as dyslipidemia. However, the pathogenetic mechanism by which fructose consumption leads to metabolic syndrome is unclear. Based on observations that epigenetic modifications are closely related to induction of metabolic syndrome, we hypothesized that fructose-induced metabolic syndrome is caused by epigenetic alterations. Male SD rats were designated to receive water or 20% fructose solution for 14 weeks. mRNA levels for peroxisome proliferator-activated receptor alpha (PPARα) and carnitine palmitoyltransferase 1A (CPT1A) was analyzed using Real-time PCR.more » Restriction digestion and real-time PCR (qAMP) was used for the analysis of DNA methylation status. Hepatic lipid accumulation was also observed by fructose intake. Fructose feeding also significantly decreased mRNA levels for PPARα and CPT1A. qAMP analysis demonstrated the hypermethylation of promoter regions of PPARα and CTP1A genes. Fructose-mediated attenuated gene expression may be mediated by alterations of DNA methylation status, and pathogenesis of metabolic syndrome induced by fructose relates to DNA methylation status. - Highlights: • No general consensus has been reached regarding the molecular mechanisms of the pathogenesis of fructose-induced diseases. • Significant increase in hepatic total methylation level was observed after fructose-supplemented feeding. • Fructose feeding significantly decreased mRNA levels for PPARα and CPT1A. • qAMP analysis demonstrated the hypermethylation of promoter regions of PPARα and CTP1A genes. • Fructose-mediated attenuated gene expression may be mediated by alterations of DNA methylation status in rat liver.« less

  2. Health Implications of High-Fructose Intake and Current Research12

    PubMed Central

    Dornas, Waleska C; de Lima, Wanderson G; Pedrosa, Maria L; Silva, Marcelo E

    2015-01-01

    Although fructose consumption has dramatically increased and is suspected to be causally linked to metabolic abnormalities, the mechanisms involved are still only partially understood. We discuss the available data and investigate the effects of dietary fructose on risk factors associated with metabolic disorders. The evidence suggests that fructose may be a predisposing cause in the development of insulin resistance in association with the induction of hypertriglyceridemia. Experiments in animals have shown this relation when they are fed diets very high in fructose or sucrose, and human studies also show this relation, although with conflicting results due to the heterogeneity of the studies. The link between increased fructose consumption and increases in uric acid also has been confirmed as a potential risk factor for metabolic syndrome, and insulin resistance/hyperinsulinemia may be causally related to the development of hypertension. Collectively, these results suggest a link between high fructose intake and insulin resistance, although future studies must be of reasonable duration, use defined populations, and improve comparisons regarding the effects of relevant doses of nutrients on specific endpoints to fully understand the effect of fructose intake in the absence of potential confounding factors. PMID:26567197

  3. Association of fructose consumption and components of metabolic syndrome in human studies: a systematic review and meta-analysis.

    PubMed

    Kelishadi, Roya; Mansourian, Marjan; Heidari-Beni, Motahar

    2014-05-01

    The aim of this study was to review the current corpus of human studies to determine the association of various doses and durations of fructose consumption on metabolic syndrome. We searched human studies in PubMed, Scopus, Ovid, ISI Web of Science, Cochrane library, and Google Scholar databases. We searched for the following keywords in each paper: metabolic syndrome x, insulin resistance, blood glucose, blood sugar, fasting blood sugar, triglycerides, lipoproteins, HDL, cholesterol, LDL, blood pressure, mean arterial pressure, systolic blood pressure, diastolic blood pressure, hypertens*, waist circumference, and fructose, sucrose, high-fructose corn syrup, or sugar. Overall, 3102 articles were gathered. We excluded studies on natural fructose content of foods, non-clinical trials, and trials in which fructose was recommended exclusively as sucrose or high-fructose corn syrup. Overall, 3069 articles were excluded. After review by independent reviewers, 15 studies were included in the meta-analysis. Fructose consumption was positively associated with increased fasting blood sugar (FBS; summary mean difference, 0.307; 95% confidence interval [CI], 0.149-0.465; P = 0.002), elevated triglycerides (TG; 0.275; 95% CI, 0.014-0.408; P = 0.002); and elevated systolic blood pressure (SBP; 0.297; 95% CI, 0.144-0.451; P = 0.002). The corresponding figure was inverse for high-density lipoprotein (HDL) cholesterol (-0.267; 95% CI, -0.406 to -0.128; P = 0.001). Significant heterogeneity existed between studies, except for FBS. After excluding studies that led to the highest effect on the heterogeneity test, the association between fructose consumption and TG, SBP, and HDL became non-significant. The results did not show any evidence of publication bias. No missing studies were identified with the trim-and-fill method. Fructose consumption from industrialized foods has significant effects on most components of metabolic syndrome. Copyright © 2014 Elsevier Inc. All rights

  4. The protective role of low-concentration alcohol in high-fructose induced adverse cardiovascular events in mice.

    PubMed

    Wu, Xiaoqi; Pan, Bo; Wang, Ying; Liu, Lingjuan; Huang, Xupei; Tian, Jie

    2018-01-01

    Cardiovascular disease remains a worldwide public health issue. As fructose consumption is dramatically increasing, it has been demonstrated that a fructose-rich intake would increase the risk of cardiovascular disease. In addition, emerging evidences suggest that low concentration alcohol intake may exert a protective effect on cardiovascular system. This study aimed to investigate whether low-concentration alcohol consumption would prevent the adverse effects on cardiovascular events induced by high fructose in mice. From the results of hematoxylin-eosin staining, echocardiography, heart weight/body weight ratio and the expression of hypertrophic marker ANP, we found high-fructose result in myocardial hypertrophy and the low-concentration alcohol consumption would prevent the cardiomyocyte hypertrophy from happening. In addition, we observed low-concentration alcohol consumption could inhibit mitochondria swollen induced by high-fructose. The elevated levels of glucose, triglyceride, total cholesterol in high-fructose group were reduced by low concentration alcohol. Low expression levels of SIRT1 and PPAR-γ induced by high-fructose were significantly elevated when fed with low-concentration alcohol. The histone lysine 9 acetylation (acH3K9) level was decreased in PPAR-γ promoter in high-fructose group but elevated when intake with low concentration alcohol. The binding levels of histone deacetylase SIRT1 were increased in the same region in high-fructose group, while the low concentration alcohol can prevent the increased binding levels. Overall, our study indicates that low-concentration alcohol consumption could inhibit high-fructose related myocardial hypertrophy, cardiac mitochondria damaged and disorders of glucose-lipid metabolism. Furthermore, these findings also provide new insights into histone acetylation-deacetylation mechanisms of low-concentration alcohol treatment that may contribute to the prevention of cardiovascular disease induced by high-fructose

  5. Fructose Consumption, Lipogenesis, and Non-Alcoholic Fatty Liver Disease.

    PubMed

    Ter Horst, Kasper W; Serlie, Mireille J

    2017-09-06

    Increased fructose consumption has been suggested to contribute to non-alcoholic fatty liver disease (NAFLD), dyslipidemia, and insulin resistance, but a causal role of fructose in these metabolic diseases remains debated. Mechanistically, hepatic fructose metabolism yields precursors that can be used for gluconeogenesis and de novo lipogenesis (DNL). Fructose-derived precursors also act as nutritional regulators of the transcription factors, including ChREBP and SREBP1c, that regulate the expression of hepatic gluconeogenesis and DNL genes. In support of these mechanisms, fructose intake increases hepatic gluconeogenesis and DNL and raises plasma glucose and triglyceride levels in humans. However, epidemiological and fructose-intervention studies have had inconclusive results with respect to liver fat, and there is currently no good human evidence that fructose, when consumed in isocaloric amounts, causes more liver fat accumulation than other energy-dense nutrients. In this review, we aim to provide an overview of the seemingly contradicting literature on fructose and NAFLD. We outline fructose physiology, the mechanisms that link fructose to NAFLD, and the available evidence from human studies. From this framework, we conclude that the cellular mechanisms underlying hepatic fructose metabolism will likely reveal novel targets for the treatment of NAFLD, dyslipidemia, and hepatic insulin resistance. Finally, fructose-containing sugars are a major source of excess calories, suggesting that a reduction of their intake has potential for the prevention of NAFLD and other obesity-related diseases.

  6. The effects of high fructose syrup.

    PubMed

    Moeller, Suzen M; Fryhofer, Sandra Adamson; Osbahr, Albert J; Robinowitz, Carolyn B

    2009-12-01

    High fructose corn syrup (HFCS) has become an increasingly common food ingredient in the last 40 years. However, there is concern that HFCS consumption increases the risk for obesity and other adverse health outcomes compared to other caloric sweeteners. The most commonly used types of HFCS (HFCS-42 and HFCS-55) are similar in composition to sucrose (table sugar), consisting of roughly equal amounts of fructose and glucose. The primary difference is that these monosaccharides exist free in solution in HFCS, but in disaccharide form in sucrose. The disaccharide sucrose is easily cleaved in the small intestine, so free fructose and glucose are absorbed from both sucrose and HFCS. The advantage to food manufacturers is that the free monosaccharides in HFCS provide better flavor enhancement, stability, freshness, texture, color, pourability, and consistency in foods in comparison to sucrose. Because the composition of HFCS and sucrose is so similar, particularly on absorption by the body, it appears unlikely that HFCS contributes more to obesity or other conditions than sucrose does. Nevertheless, few studies have evaluated the potentially differential effect of various sweeteners, particularly as they relate to health conditions such as obesity, which develop over relatively long periods of time. Improved nutrient databases are needed to analyze food consumption in epidemiologic studies, as are more strongly designed experimental studies, including those on the mechanism of action and relationship between fructose dose and response. At the present time, there is insufficient evidence to ban or otherwise restrict use of HFCS or other fructose-containing sweeteners in the food supply or to require the use of warning labels on products containing HFCS. Nevertheless, dietary advice to limit consumption of all added caloric sweeteners, including HFCS, is warranted.

  7. High-Fructose Consumption Impairs the Redox System and Protein Quality Control in the Brain of Syrian Hamsters: Therapeutic Effects of Melatonin.

    PubMed

    Bermejo-Millo, Juan Carlos; Guimarães, Marcela Rodrigues Moreira; de Luxán-Delgado, Beatriz; Potes, Yaiza; Pérez-Martínez, Zulema; Díaz-Luis, Andrea; Caballero, Beatriz; Solano, Juan José; Vega-Naredo, Ignacio; Coto-Montes, Ana

    2018-02-28

    Although numerous studies have demonstrated the harmful effect of excessive fructose consumption at the systemic level, there is little information on its effects in the central nervous system. The purpose of the present work was to study the cellular alterations related to oxidative stress and protein quality control systems induced by a high-fructose diet in the brain of Syrian hamsters and their possible attenuation by exogenous melatonin. High-fructose intake induced type II diabetes together with oxidative damage, led to alterations of the unfolded protein response by activating the eIF2α branch, and impaired the macroautophagic machinery in the brain, favoring the accumulation of aggregates labeled for selective degradation and neurodegeneration markers such as β-amyloid (1-42), tau-p-S199, and tau-p-S404. Melatonin attenuated the manifestation of type II diabetes and reduced oxidative stress, deactivated eIF2α, and decreased tau-p-S404 levels in the brain of animals fed a high-fructose diet.

  8. Comparison of breath testing with fructose and high fructose corn syrups in health and IBS

    PubMed Central

    Skoog, S. M.; Bharucha, A. E.; Zinsmeister, A. R.

    2008-01-01

    Although incomplete fructose absorption has been implicated to cause gastrointestinal symptoms, foods containing high fructose corn syrup (HFCS) contain glucose. Glucose increases fructose absorption in healthy subjects. Our hypothesis was that fructose intolerance is less prevalent after HFCS consumption compared to fructose alone in healthy subjects and irritable bowel syndrome (IBS). Breath hydrogen levels and gastrointestinal symptoms were assessed after 40 g of fructose (12% solution) prepared either in water or as HFCS, administered in double-blind randomized order on 2 days in 20 healthy subjects and 30 patients with IBS. Gastrointestinal symptoms were recorded on 100-mm Visual Analogue Scales. Breath hydrogen excretion was more frequently abnormal (P < 0.01) after fructose (68%) than HFCS (26%) in controls and patients. Fructose intolerance (i.e. abnormal breath test and symptoms) was more prevalent after fructose than HFCS in healthy subjects (25% vs 0%, P = 0.002) and patients (40% vs 7%, P = 0.062). Scores for several symptoms (e.g. bloating r = 0.35) were correlated (P ≤ 0.01) to peak breath hydrogen excretion after fructose but not HFCS; in the fructose group, this association did not differ between healthy subjects and patients. Symptoms were not significantly different after fructose compared to HFCS. Fructose intolerance is more prevalent with fructose alone than with HFCS in health and in IBS. The prevalence of fructose intolerance is not significantly different between health and IBS. Current methods for identifying fructose intolerance should be modified to more closely reproduce fructose ingestion in daily life. PMID:18221251

  9. Comparison of breath testing with fructose and high fructose corn syrups in health and IBS.

    PubMed

    Skoog, S M; Bharucha, A E; Zinsmeister, A R

    2008-05-01

    Although incomplete fructose absorption has been implicated to cause gastrointestinal symptoms, foods containing high fructose corn syrup (HFCS) contain glucose. Glucose increases fructose absorption in healthy subjects. Our hypothesis was that fructose intolerance is less prevalent after HFCS consumption compared to fructose alone in healthy subjects and irritable bowel syndrome (IBS). Breath hydrogen levels and gastrointestinal symptoms were assessed after 40 g of fructose (12% solution) prepared either in water or as HFCS, administered in double-blind randomized order on 2 days in 20 healthy subjects and 30 patients with IBS. Gastrointestinal symptoms were recorded on 100-mm Visual Analogue Scales. Breath hydrogen excretion was more frequently abnormal (P < 0.01) after fructose (68%) than HFCS (26%) in controls and patients. Fructose intolerance (i.e. abnormal breath test and symptoms) was more prevalent after fructose than HFCS in healthy subjects (25% vs. 0%, P = 0.002) and patients (40% vs. 7%, P = 0.062). Scores for several symptoms (e.g. bloating r = 0.35) were correlated (P < or = 0.01) to peak breath hydrogen excretion after fructose but not HFCS; in the fructose group, this association did not differ between healthy subjects and patients. Symptoms were not significantly different after fructose compared to HFCS. Fructose intolerance is more prevalent with fructose alone than with HFCS in health and in IBS. The prevalence of fructose intolerance is not significantly different between health and IBS. Current methods for identifying fructose intolerance should be modified to more closely reproduce fructose ingestion in daily life.

  10. Temporal metabolomic responses of cultured HepG2 liver cells to high fructose and high glucose exposures

    USDA-ARS?s Scientific Manuscript database

    High fructose consumption has been implicated with deleterious effects on human health, including hyperlipidemia elicited through de novo lipogenesis. However, more global effects of fructose on cellular metabolism have not been elucidated. In order to explore the metabolic impact of fructose-contai...

  11. Challenging the Fructose Hypothesis: New Perspectives on Fructose Consumption and Metabolism123

    PubMed Central

    White, John S.

    2013-01-01

    The field of sugar metabolism, and fructose metabolism in particular, has experienced a resurgence of interest in the past decade. The “fructose hypothesis” alleges that the fructose component common to all major caloric sweeteners (sucrose, high-fructose corn syrup, honey, and fruit juice concentrates) plays a unique and causative role in the increasing rates of cardiovascular disease, hypertension, diabetes, cancer, and nonalcoholic fatty liver disease. This review challenges the fructose hypothesis by comparing normal U.S. levels and patterns of fructose intake with contemporary experimental models and looking for substantive cause-and-effect evidence from real-world diets. It is concluded that 1) fructose intake at normal population levels and patterns does not cause biochemical outcomes substantially different from other dietary sugars and 2) extreme experimental models that feature hyperdosing or significantly alter the usual dietary glucose-to-fructose ratio are not predictive of typical human outcomes or useful to public health policymakers. It is recommended that granting agencies and journal editors require more physiologically relevant experimental designs and clinically important outcomes for fructose research. PMID:23493541

  12. Excess free fructose, high-fructose corn syrup and adult asthma: the Framingham Offspring Cohort.

    PubMed

    DeChristopher, Luanne R; Tucker, Katherine L

    2018-05-01

    There is growing evidence that intakes of high-fructose corn syrup (HFCS), HFCS-sweetened soda, fruit drinks and apple juice - a high-fructose 100 % juice - are associated with asthma, possibly because of the high fructose:glucose ratios and underlying fructose malabsorption, which may contribute to enteral formation of pro-inflammatory advanced glycation end products, which bind receptors that are mediators of asthma. Cox proportional hazards models were used to assess associations between intakes of these beverages and asthma risk, with data from the Framingham Offspring Cohort. Diet soda and orange juice - a 100 % juice with a 1:1 fructose:glucose ratio - were included for comparison. Increasing intake of any combination of HFCS-sweetened soda, fruit drinks and apple juice was significantly associated with progressively higher asthma risk, plateauing at 5-7 times/week v. never/seldom, independent of potential confounders (hazard ratio 1·91, P<0·001). About once a day consumers of HFCS-sweetened soda had a 49 % higher risk (P<0·011), moderate apple juice consumers (2-4 times/week) had a 61 % higher risk (P<0·007) and moderate fruit drink consumers had a 58 % higher risk (P<0·009), as compared with never/seldom consumers. There were no associations with diet soda/orange juice. These associations are possibly because of the high fructose:glucose ratios, and fructose malabsorption. Recommendations to reduce consumption may be inadequate to address asthma risk, as associations are evident even with moderate intake of these beverages, including apple juice - a 100 % juice. The juice reductions in the US Special Supplemental Nutrition Program for Women, Infants, and Children in 2009, and the plateauing/decreasing asthma prevalence (2010-2013), particularly among non-Hispanic black children, may be related. Further research regarding the consequences of fructose malabsorption is needed.

  13. Does consumption of high-fructose corn syrup beverages cause obesity in children?

    PubMed

    Morgan, R E

    2013-08-01

    The consumption of high-fructose corn syrup (HFCS) beverages has increased since the 1970s. At the same time, childhood obesity is on the rise, causing children to be at risk of heart disease, diabetes and other diseases. Healthcare providers have attributed childhood obesity to the consumption of HFCS in the form of beverages. This article will look at the available research and determine if there is scientific evidence underlying the idea that sweetened soft drinks, especially those containing HFCS, could cause or contribute to childhood obesity. A thorough literature search was performed using the ISI Web of Sciences, PubMed and Scopus databases within the years 2006-2012. The search generated 19 results. The articles were screened, and six were deemed eligible: four systematic reviews and two meta-analyses. Two systematic reviews found that there is no relationship between consumption of HFCS beverages and obesity in children. The other two systematic reviews found possible links between HFCS and childhood obesity. The meta-analysis articles found that consumption of HFCS beverages can contribute to childhood obesity, and limitation of sweetened beverages may help decrease obesity in children. Available research studies demonstrate inconclusive scientific evidence definitively linking HFCS to obesity in children. © 2013 The Author. Pediatric Obesity © 2013 International Association for the Study of Obesity.

  14. High fructose consumption in pregnancy alters the perinatal environment without increasing metabolic disease in the offspring.

    PubMed

    Lineker, Christopher; Kerr, Paul M; Nguyen, Patricia; Bloor, Ian; Astbury, Stuart; Patel, Nikhil; Budge, Helen; Hemmings, Denise G; Plane, Frances; Symonds, Michael E; Bell, Rhonda C

    2016-10-01

    Maternal carbohydrate intake is one important determinant of fetal body composition, but whether increased exposure to individual sugars has long-term adverse effects on the offspring is not well established. Therefore, we examined the effect of fructose feeding on the mother, placenta, fetus and her offspring up to 6 months of life when they had been weaned onto a standard rodent diet and not exposed to additional fructose. Dams fed fructose were fatter, had raised plasma insulin and triglycerides from mid-gestation and higher glucose near term. Maternal resistance arteries showed changes in function that could negatively affect regulation of blood pressure and tissue perfusion in the mother and development of the fetus. Fructose feeding had no effect on placental weight or fetal metabolic profiles, but placental gene expression for the glucose transporter GLUT1 was reduced, whereas the abundance of sodium-dependent neutral amino acid transporter-2 was raised. Offspring born to fructose-fed and control dams were similar at birth and had similar post-weaning growth rates, and neither fat mass nor metabolic profiles were affected. In conclusion, raised fructose consumption during reproduction results in pronounced maternal metabolic and vascular effects, but no major detrimental metabolic effects were observed in offspring up to 6 months of age.

  15. Fructose Consumption in the Development of Obesity and the Effects of Different Protocols of Physical Exercise on the Hepatic Metabolism.

    PubMed

    Pereira, Rodrigo Martins; Botezelli, José Diego; da Cruz Rodrigues, Kellen Cristina; Mekary, Rania A; Cintra, Dennys Esper; Pauli, José Rodrigo; da Silva, Adelino Sanchez Ramos; Ropelle, Eduardo Rochete; de Moura, Leandro Pereira

    2017-04-20

    Fructose consumption has been growing exponentially and, concomitant with this, the increase in the incidence of obesity and associated complications has followed the same behavior. Studies indicate that fructose may be a carbohydrate with greater obesogenic potential than other sugars. In this context, the liver seems to be a key organ for understanding the deleterious health effects promoted by fructose consumption. Fructose promotes complications in glucose metabolism, accumulation of triacylglycerol in the hepatocytes, and alterations in the lipid profile, which, associated with an inflammatory response and alterations in the redox state, will imply a systemic picture of insulin resistance. However, physical exercise has been indicated for the treatment of several chronic diseases. In this review, we show how each exercise protocol (aerobic, strength, or a combination of both) promote improvements in the obesogenic state created by fructose consumption as an improvement in the serum and liver lipid profile (high-density lipoprotein (HDL) increase and decrease triglyceride (TG) and low-density lipoprotein (LDL) levels) and a reduction of markers of inflammation caused by an excess of fructose. Therefore, it is concluded that the practice of aerobic physical exercise, strength training, or a combination of both is essential for attenuating the complications developed by the consumption of fructose.

  16. Fructose Consumption in the Development of Obesity and the Effects of Different Protocols of Physical Exercise on the Hepatic Metabolism

    PubMed Central

    Pereira, Rodrigo Martins; Botezelli, José Diego; da Cruz Rodrigues, Kellen Cristina; Mekary, Rania A.; Cintra, Dennys Esper; Pauli, José Rodrigo; da Silva, Adelino Sanchez Ramos; Ropelle, Eduardo Rochete; de Moura, Leandro Pereira

    2017-01-01

    Fructose consumption has been growing exponentially and, concomitant with this, the increase in the incidence of obesity and associated complications has followed the same behavior. Studies indicate that fructose may be a carbohydrate with greater obesogenic potential than other sugars. In this context, the liver seems to be a key organ for understanding the deleterious health effects promoted by fructose consumption. Fructose promotes complications in glucose metabolism, accumulation of triacylglycerol in the hepatocytes, and alterations in the lipid profile, which, associated with an inflammatory response and alterations in the redox state, will imply a systemic picture of insulin resistance. However, physical exercise has been indicated for the treatment of several chronic diseases. In this review, we show how each exercise protocol (aerobic, strength, or a combination of both) promote improvements in the obesogenic state created by fructose consumption as an improvement in the serum and liver lipid profile (high-density lipoprotein (HDL) increase and decrease triglyceride (TG) and low-density lipoprotein (LDL) levels) and a reduction of markers of inflammation caused by an excess of fructose. Therefore, it is concluded that the practice of aerobic physical exercise, strength training, or a combination of both is essential for attenuating the complications developed by the consumption of fructose. PMID:28425939

  17. Mini review on fructose metabolism.

    PubMed

    Akram, M; Hamid, Abdul

    2013-01-01

    Fructose is a monosaccharide and reducing sugar. It is present in sucrose and honey. Researchers around the world have come together in a just-published study that offers new ideas about how fructose consumption results in obesity and metabolic syndrome, which can lead to diabetes. In this review, we discuss that how fructose causes fatty liver, obesity and insulin resistance. We also discuss the effects of consumption of high fructose corn syrup, dietary fructose, fructose-induced changes in metabolism.: © 2013 Asian Oceanian Association for the Study of Obesity . Published by Elsevier Ltd. All rights reserved.

  18. Effect of Caffeic Acid Phenethyl Ester on Vascular Damage Caused by Consumption of High Fructose Corn Syrup in Rats

    PubMed Central

    Gun, Aburrahman; Bilgic, Sedat; Kocaman, Nevin; Ozan, Gonca

    2016-01-01

    Fructose corn syrup is cheap sweetener and prolongs the shelf life of products, but fructose intake causes hyperinsulinemia, hypertriglyceridemia, and hypertension. All of them are referred to as metabolic syndrome and they are risk factors for cardiovascular diseases. Hence, the harmful effects of increased fructose intake on health and their prevention should take greater consideration. Caffeic Acid Phenethyl Ester (CAPE) has beneficial effects on metabolic syndrome and vascular function which is important in the prevention of cardiovascular disease. However, there are no known studies about the effect of CAPE on fructose-induced vascular dysfunction. In this study, we examined the effect of CAPE on vascular dysfunction due to high fructose corn syrup (HFCS). HFCS (6 weeks, 30% fed with drinking water) caused vascular dysfunction, but treatment with CAPE (50 micromol/kg i.p. for the last two weeks) effectively restored this problem. Additionally, hypertension in HFCS-fed rats was also decreased in CAPE supplemented rats. CAPE supplements lowered HFCS consumption-induced raise in blood glucose, homocysteine, and cholesterol levels. The aorta tissue endothelial nitric oxide synthase (eNOS) production was decreased in rats given HFCS and in contrast CAPE supplementation efficiently increased its production. The presented results showed that HFCS-induced cardiovascular abnormalities could be prevented by CAPE treatment. PMID:27042260

  19. Effect of Caffeic Acid Phenethyl Ester on Vascular Damage Caused by Consumption of High Fructose Corn Syrup in Rats.

    PubMed

    Gun, Aburrahman; Ozer, Mehmet Kaya; Bilgic, Sedat; Kocaman, Nevin; Ozan, Gonca

    2016-01-01

    Fructose corn syrup is cheap sweetener and prolongs the shelf life of products, but fructose intake causes hyperinsulinemia, hypertriglyceridemia, and hypertension. All of them are referred to as metabolic syndrome and they are risk factors for cardiovascular diseases. Hence, the harmful effects of increased fructose intake on health and their prevention should take greater consideration. Caffeic Acid Phenethyl Ester (CAPE) has beneficial effects on metabolic syndrome and vascular function which is important in the prevention of cardiovascular disease. However, there are no known studies about the effect of CAPE on fructose-induced vascular dysfunction. In this study, we examined the effect of CAPE on vascular dysfunction due to high fructose corn syrup (HFCS). HFCS (6 weeks, 30% fed with drinking water) caused vascular dysfunction, but treatment with CAPE (50 micromol/kg i.p. for the last two weeks) effectively restored this problem. Additionally, hypertension in HFCS-fed rats was also decreased in CAPE supplemented rats. CAPE supplements lowered HFCS consumption-induced raise in blood glucose, homocysteine, and cholesterol levels. The aorta tissue endothelial nitric oxide synthase (eNOS) production was decreased in rats given HFCS and in contrast CAPE supplementation efficiently increased its production. The presented results showed that HFCS-induced cardiovascular abnormalities could be prevented by CAPE treatment.

  20. Fructose, insulin resistance, and metabolic dyslipidemia

    PubMed Central

    Basciano, Heather; Federico, Lisa; Adeli, Khosrow

    2005-01-01

    Obesity and type 2 diabetes are occurring at epidemic rates in the United States and many parts of the world. The "obesity epidemic" appears to have emerged largely from changes in our diet and reduced physical activity. An important but not well-appreciated dietary change has been the substantial increase in the amount of dietary fructose consumption from high intake of sucrose and high fructose corn syrup, a common sweetener used in the food industry. A high flux of fructose to the liver, the main organ capable of metabolizing this simple carbohydrate, perturbs glucose metabolism and glucose uptake pathways, and leads to a significantly enhanced rate of de novo lipogenesis and triglyceride (TG) synthesis, driven by the high flux of glycerol and acyl portions of TG molecules from fructose catabolism. These metabolic disturbances appear to underlie the induction of insulin resistance commonly observed with high fructose feeding in both humans and animal models. Fructose-induced insulin resistant states are commonly characterized by a profound metabolic dyslipidemia, which appears to result from hepatic and intestinal overproduction of atherogenic lipoprotein particles. Thus, emerging evidence from recent epidemiological and biochemical studies clearly suggests that the high dietary intake of fructose has rapidly become an important causative factor in the development of the metabolic syndrome. There is an urgent need for increased public awareness of the risks associated with high fructose consumption and greater efforts should be made to curb the supplementation of packaged foods with high fructose additives. The present review will discuss the trends in fructose consumption, the metabolic consequences of increased fructose intake, and the molecular mechanisms leading to fructose-induced lipogenesis, insulin resistance and metabolic dyslipidemia. PMID:15723702

  1. Fructose Malabsorption and Intolerance: Effects of Fructose with and without Simultaneous Glucose Ingestion

    PubMed Central

    Latulippe, Marie E.; Skoog, Suzanne M.

    2011-01-01

    Concern exists that increasing fructose consumption, particularly in the form of high-fructose corn syrup, is resulting in increasing rates of fructose intolerance and aggravation of clinical symptoms in individuals with irritable bowel syndrome. Most clinical trials designed to test this hypothesis have used pure fructose, a form not commonly found in the food supply, often in quantities and concentrations that exceed typical fructose intake levels. In addition, the amount of fructose provided in tests for malabsorption, which is thought to be a key cause of intolerance, often exceeds the normal physiological absorption capacity for this sugar. To help health professionals accurately identify and treat this condition, this article reviews clinical data related to understanding fructose malabsorption and intolerance (i.e., malabsorption that manifests with symptoms) relative to usual fructose and other carbohydrate intake. Because simultaneous consumption of glucose attenuates fructose malabsorption, information on the fructose and glucose content of foods, beverages, and ingredients representing a variety of food categories is provided. PMID:21793722

  2. Fructose malabsorption and intolerance: effects of fructose with and without simultaneous glucose ingestion.

    PubMed

    Latulippe, Marie E; Skoog, Suzanne M

    2011-08-01

    Concern exists that increasing fructose consumption, particularly in the form of high-fructose corn syrup, is resulting in increasing rates of fructose intolerance and aggravation of clinical symptoms in individuals with irritable bowel syndrome. Most clinical trials designed to test this hypothesis have used pure fructose, a form not commonly found in the food supply, often in quantities and concentrations that exceed typical fructose intake levels. In addition, the amount of fructose provided in tests for malabsorption, which is thought to be a key cause of intolerance, often exceeds the normal physiological absorption capacity for this sugar. To help health professionals accurately identify and treat this condition, this article reviews clinical data related to understanding fructose malabsorption and intolerance (i.e., malabsorption that manifests with symptoms) relative to usual fructose and other carbohydrate intake. Because simultaneous consumption of glucose attenuates fructose malabsorption, information on the fructose and glucose content of foods, beverages, and ingredients representing a variety of food categories is provided.

  3. High-fructose corn syrup and sucrose have equivalent effects on energy-regulating hormones at normal human consumption levels.

    PubMed

    Yu, Zhiping; Lowndes, Joshua; Rippe, James

    2013-12-01

    Intake of high-fructose corn syrup (HFCS) has been suggested to contribute to the increased prevalence of obesity, whereas a number of studies and organizations have reported metabolic equivalence between HFCS and sucrose. We hypothesized that HFCS and sucrose would have similar effects on energy-regulating hormones and metabolic substrates at normal levels of human consumption and that these values would not change over a 10-week, free-living period at these consumption levels. This was a randomized, prospective, double-blind, parallel group study in which 138 adult men and women consumed 10 weeks of low-fat milk sweetened with either HFCS or sucrose at levels of the 25th, 50th, and 90th percentile population consumption of fructose (the equivalent of 40, 90, or 150 g of sugar per day in a 2000-kcal diet). Before and after the 10-week intervention, 24-hour blood samples were collected. The area under the curve (AUC) for glucose, insulin, leptin, active ghrelin, triglyceride, and uric acid was measured. There were no group differences at baseline or posttesting for all outcomes (interaction, P > .05). The AUC response of glucose, active ghrelin, and uric acid did not change between baseline and posttesting (P > .05), whereas the AUC response of insulin (P < .05), leptin (P < .001), and triglyceride (P < .01) increased over the course of the intervention when the 6 groups were averaged. We conclude that there are no differences in the metabolic effects of HFCS and sucrose when compared at low, medium, and high levels of consumption. © 2013 Elsevier Inc. All rights reserved.

  4. Direct renal effects of a fructose-enriched diet: interaction with high salt intake

    PubMed Central

    Ares, Gustavo R.

    2015-01-01

    Consumption of fructose has increased during the last 50 years. Excessive fructose consumption has a detrimental effect on mammalian health but the mechanisms remain unclear. In humans, a direct relationship exists between dietary intake of added sugars and increased risk for cardiovascular disease mortality (52). While the causes for this are unclear, we recently showed that fructose provided in the drinking water induces a salt-dependent increase in blood pressure in Sprague-Dawley rats in a matter of days (6). However, little is known about the effects of fructose in renal salt handling and whether combined intake of high fructose and salt can lead to salt-sensitive hypertension before the development of metabolic abnormalities. The long-term (more than 4 wk) adverse effects of fructose intake on renal function are not just due to fructose but are also secondary to alterations in metabolism which may have an impact on renal function. This minireview focuses on the acute effect of fructose intake and its effect on salt regulation, as they affect blood pressure. PMID:26447210

  5. High-fructose diet during periadolescent development increases depressive-like behavior and remodels the hypothalamic transcriptome in male rats

    PubMed Central

    Harrell, Constance S.; Burgado, Jillybeth; Kelly, Sean D.; Johnson, Zachary P.; Neigh, Gretchen N.

    2015-01-01

    Fructose consumption, which promotes insulin resistance, hypertension, and dyslipidemia, has increased by over 25% since the 1970s. In addition to metabolic dysregulation, fructose ingestion stimulates the hypothalamic-pituitary-adrenal (HPA) axis leading to elevations in glucocorticoids. Adolescents are the greatest consumers of fructose, and adolescence is a critical period for maturation of the HPA axis. Repeated consumption of high levels of fructose during adolescence has the potential to promote long-term dysregulation of the stress response. Therefore, we determined the extent to which consumption of a diet high in fructose affected behavior, serum corticosterone, and hypothalamic gene expression using a whole-transcriptomics approach. In addition, we examined the potential of a high-fructose diet to interact with exposure to chronic adolescent stress. Male Wistar rats fed the periadolescent high-fructose diet showed increased anxiety-like behavior in the elevated plus maze and depressive-like behavior in the forced swim test in adulthood, irrespective of stress history. Periadolescent fructose-fed rats also exhibited elevated basal corticosterone concentrations relative to their chow-fed peers. These behavioral and hormonal responses to the high-fructose diet did not occur in rats fed fructose during adulthood only. Finally, rats fed the high-fructose diet throughout development underwent marked hypothalamic transcript expression remodeling, with 966 genes (5.6%) significantly altered and a pronounced enrichment of significantly altered transcripts in several pathways relating to regulation of the HPA axis. Collectively, the data presented herein indicate that diet, specifically one high in fructose, has the potential to alter behavior, HPA axis function, and the hypothalamic transcriptome in male rats. PMID:26356038

  6. Effects of fructose consumption on food intake and biochemical and body parameters in Wistar rats.

    PubMed

    Ramos, Viviane Wagner; Batista, Leandro Oliveira; Albuquerque, Kelse Tibau

    2017-12-01

    Increased fructose consumption is associated with various metabolic changes that favor the onset of obesity and related comorbidities. The objective of this study was to assess the effects of chronic fructose consumption on body weight and adipose tissue, as well as on serum glucose and triglyceride levels. Thirty-day-old Wistar rats were divided into two groups: fructose (F) and control (C), which had free access to commercial chow and either water or a 20% fructose solution. Body mass was measured weekly and food consumption at 30, 60 and 90 days. At 90 days, the animals were killed by decapitation and fat deposits (mesenteric, epididymal and retroperitoneal) were removed and blood collected for measurement of glucose and triglyceride levels. There was no significant difference in body weight gain, but the percentage of body fat was higher in group F. This group also consumed less feed at 60 and 90 days and had higher consumption of fructose solution than water in group C at 30 and 60 days. This meant higher calorie intake in group F and lower feed efficiency. Retroperitoneal and epididymal fat deposits and triglycerides were higher in group F than in group C. Consumption of fructose solution for eight weeks, while not directly reflected in body weight gain, did increase abdominal fat in group F compared to group C, as well as changing triglyceride levels. These two factors increase risk of cardiovascular disease. Copyright © 2017 Sociedade Portuguesa de Cardiologia. Publicado por Elsevier España, S.L.U. All rights reserved.

  7. Fructose and high fructose corn syrup

    USDA-ARS?s Scientific Manuscript database

    Fructose, a monosaccharide, is naturally present in fruits, vegetables and honey, usually accompanied by other sugars including glucose and the disaccharide sucrose. It is also found as a component of sweeteners used in many processed food products, usually as sucrose or high fructose corn syrup (HF...

  8. The obesogenic effect of high fructose exposure during early development

    PubMed Central

    Goran, Michael I.; Dumke, Kelly; Bouret, Sebastien G.; Kayser, Brandon; Walker, Ryan W.; Blumberg, Bruce

    2016-01-01

    Obesogens are compounds that disrupt the function and development of adipose tissue or the normal metabolism of lipids, leading to an increased risk of obesity and associated diseases. Evidence for the adverse effects of industrial and agricultural obesogens, such as tributyltin, bisphenol A and other organic pollutants is well-established. Current evidence suggests that high maternal consumption of fat promotes obesity and increased metabolic risk in offspring, but less is known about the effects of other potential nutrient obesogens. Widespread increase in dietary fructose consumption over the past 30 years is associated with chronic metabolic and endocrine disorders and alterations in feeding behaviour that promote obesity. In this Perspectives, we examine the evidence linking high intakes of fructose with altered metabolism and early obesity. We review the evidence suggesting that high fructose exposure during critical periods of development of the fetus, neonate and infant can act as an obesogen by affecting lifelong neuroendocrine function, appetite control, feeding behaviour, adipogenesis, fat distribution and metabolic systems. These changes ultimately favour the long-term development of obesity and associated metabolic risk. PMID:23732284

  9. Temporal metabolomic responses of cultured HepG2 liver cells to high fructose and high glucose exposures.

    PubMed

    Meissen, John K; Hirahatake, Kristin M; Adams, Sean H; Fiehn, Oliver

    2015-06-01

    High fructose consumption has been implicated with deleterious effects on human health, including hyperlipidemia elicited through de novo lipogenesis. However, more global effects of fructose on cellular metabolism have not been elucidated. In order to explore the metabolic impact of fructose-containing nutrients, we applied both GC-TOF and HILIC-QTOF mass spectrometry metabolomic strategies using extracts from cultured HepG2 cells exposed to fructose, glucose, or fructose + glucose. Cellular responses were analyzed in a time-dependent manner, incubated in media containing 5.5 mM glucose + 5.0 mM fructose in comparison to controls incubated in media containing either 5.5 mM glucose or 10.5 mM glucose. Mass spectrometry identified 156 unique known metabolites and a large number of unknown compounds, which revealed metabolite changes due to both utilization of fructose and high-carbohydrate loads independent of hexose structure. Fructose was shown to be partially converted to sorbitol, and generated higher levels of fructose-1-phosphate as a precursor for glycolytic intermediates. Differentially regulated ratios of 3-phosphoglycerate to serine pathway intermediates in high fructose media indicated a diversion of carbon backbones away from energy metabolism. Additionally, high fructose conditions changed levels of complex lipids toward phosphatidylethanolamines. Patterns of acylcarnitines in response to high hexose exposure (10.5 mM glucose or glucose/fructose combination) suggested a reduction in mitochondrial beta-oxidation.

  10. High-fructose corn syrup-55 consumption alters hepatic lipid metabolism and promotes triglyceride accumulation.

    PubMed

    Mock, Kaitlin; Lateef, Sundus; Benedito, Vagner A; Tou, Janet C

    2017-01-01

    High-fructose corn syrup-55 (HFCS-55) has been suggested to be more lipogenic than sucrose, which increases the risk for nonalcoholic fatty liver disease (NAFLD) and dyslipidemia. The study objectives were to determine the effects of drinking different sugar-sweetened solutions on hepatic gene expression in relation to liver fatty acid composition and risk of NAFLD. Female rats were randomly assigned (n=7 rats/group) to drink water or water sweetened with 13% (w/v) HFCS-55, sucrose or fructose for 8 weeks. Rats drinking HFCS-55 solution had the highest (P=.03) hepatic total lipid and triglyceride content and histological evidence of fat infiltration. Rats drinking HFCS-55 solution had the highest hepatic de novo lipogenesis indicated by the up-regulation of stearoyl-CoA desaturase-1 and the highest (P<.001) oleic acid (18:1n-9) content. This was accompanied by reduced β-oxidation indicated by down-regulation of hepatic peroxisome proliferator-activated receptor α. Disposal of excess lipids by export of triglyceride-rich lipoprotein from the liver was increased as shown by up-regulation of gene expression of microsomal triglyceride transfer protein in rats drinking sucrose, but not HFCS-55 solution. The observed lipogenic effects were attributed to the slightly higher fructose content of HFCS-55 solution in the absence of differences in macronutrient and total caloric intake between rats drinking HFCS-55 and sucrose solution. Results from gene expression and fatty acid composition analysis showed that, in a hypercaloric state, some types of sugars are more detrimental to the liver. Based on these preclinical study results, excess consumption of caloric sweetened beverage, particularly HFCS-sweetened beverages, should be limited. Published by Elsevier Inc.

  11. High-Fructose Corn-Syrup-Sweetened Beverage Intake Increases 5-Hour Breast Milk Fructose Concentrations in Lactating Women.

    PubMed

    Berger, Paige K; Fields, David A; Demerath, Ellen W; Fujiwara, Hideji; Goran, Michael I

    2018-05-24

    This study determined the effects of consuming a high-fructose corn syrup (HFCS)-sweetened beverage on breast milk fructose, glucose, and lactose concentrations in lactating women. At six weeks postpartum, lactating mothers ( n = 41) were randomized to a crossover study to consume a commercially available HFCS-sweetened beverage or artificially sweetened control beverage. At each session, mothers pumped a complete breast milk expression every hour for six consecutive hours. The baseline fasting concentrations of breast milk fructose, glucose, and lactose were 5.0 ± 1.3 µg/mL, 0.6 ± 0.3 mg/mL, and 6.8 ± 1.6 g/dL, respectively. The changes over time in breast milk sugars were significant only for fructose (treatment × time, p < 0.01). Post hoc comparisons showed the HFCS-sweetened beverage vs. control beverage increased breast milk fructose at 120 min (8.8 ± 2.1 vs. 5.3 ± 1.9 µg/mL), 180 min (9.4 ± 1.9 vs. 5.2 ± 2.2 µg/mL), 240 min (7.8 ± 1.7 vs. 5.1 ± 1.9 µg/mL), and 300 min (6.9 ± 1.4 vs. 4.9 ± 1.9 µg/mL) (all p < 0.05). The mean incremental area under the curve for breast milk fructose was also different between treatments (14.7 ± 1.2 vs. -2.60 ± 1.2 µg/mL × 360 min, p < 0.01). There was no treatment × time interaction for breast milk glucose or lactose. Our data suggest that the consumption of an HFCS-sweetened beverage increased breast milk fructose concentrations, which remained elevated up to five hours post-consumption.

  12. The role of fructose in metabolism and cancer.

    PubMed

    Charrez, Bérénice; Qiao, Liang; Hebbard, Lionel

    2015-05-01

    Fructose consumption has dramatically increased in the last 30 years. The principal form has been in the form of high-fructose corn syrup found in soft drinks and processed food. The effect of excessive fructose consumption on human health is only beginning to be understood. Fructose has been confirmed to induce several obesity-related complications associated with the metabolic syndrome. Here we present an overview of fructose metabolism and how it contrasts with that of glucose. In addition, we examine how excessive fructose consumption can affect de novo lipogenesis, insulin resistance, inflammation, and reactive oxygen species production. Fructose can also induce a change in the gut permeability and promote the release of inflammatory factors to the liver, which has potential implications in increasing hepatic inflammation. Moreover, fructose has been associated with colon, pancreas, and liver cancers, and we shall discuss the evidence for these observations. Taken together, data suggest that sustained fructose consumption should be curtailed as it is detrimental to long-term human health.

  13. Resistance Exercise Attenuates High-Fructose, High-Fat-Induced Postprandial Lipemia

    PubMed Central

    Wilburn, Jessie R; Bourquin, Jeffrey; Wysong, Andrea; Melby, Christopher L

    2015-01-01

    INTRODUCTION Meals rich in both fructose and fat are commonly consumed by many Americans, especially young men, which can produce a significant postprandial lipemic response. Increasing evidence suggests that aerobic exercise can attenuate the postprandial increase in plasma triacylglycerols (TAGs) in response to a high-fat or a high-fructose meal. However, it is unknown if resistance exercise can dampen the postprandial lipemic response to a meal rich in both fructose and fat. METHODS Eight apparently healthy men (Mean ± SEM; age = 27 ± 2 years) participated in a crossover study to examine the effects of acute resistance exercise on next-day postprandial lipemia resulting from a high-fructose, high-fat meal. Participants completed three separate two-day conditions in a random order: (1) EX-COMP: a full-body weightlifting workout with the provision of additional kilocalories to compensate for the estimated net energy cost of exercise on day 1, followed by the consumption of a high-fructose, high-fat liquid test meal the next morning (day 2) (~600 kcal) and the determination of the plasma glucose, lactate, insulin, and TAG responses during a six-hour postprandial period; (2) EX-DEF: same condition as EX-COMP but without exercise energy compensation on day 1; and (3) CON: no exercise control. RESULTS The six-hour postprandial plasma insulin and lactate responses did not differ between conditions. However, the postprandial plasma TAG concentrations were 16.5% and 24.4% lower for EX-COMP (551.0 ± 80.5 mg/dL × 360 minutes) and EX-DEF (499.4 ± 73.5 mg/dL × 360 minutes), respectively, compared to CON (660.2 ± 95.0 mg/dL × 360 minutes) (P < 0.05). CONCLUSIONS A single resistance exercise bout, performed ~15 hours prior to a high-fructose, high-fat meal, attenuated the postprandial TAG response, as compared to a no-exercise control condition, in healthy, resistance-trained men. PMID:26508874

  14. Resistance Exercise Attenuates High-Fructose, High-Fat-Induced Postprandial Lipemia.

    PubMed

    Wilburn, Jessie R; Bourquin, Jeffrey; Wysong, Andrea; Melby, Christopher L

    2015-01-01

    Meals rich in both fructose and fat are commonly consumed by many Americans, especially young men, which can produce a significant postprandial lipemic response. Increasing evidence suggests that aerobic exercise can attenuate the postprandial increase in plasma triacylglycerols (TAGs) in response to a high-fat or a high-fructose meal. However, it is unknown if resistance exercise can dampen the postprandial lipemic response to a meal rich in both fructose and fat. Eight apparently healthy men (Mean ± SEM; age = 27 ± 2 years) participated in a crossover study to examine the effects of acute resistance exercise on next-day postprandial lipemia resulting from a high-fructose, high-fat meal. Participants completed three separate two-day conditions in a random order: (1) EX-COMP: a full-body weightlifting workout with the provision of additional kilocalories to compensate for the estimated net energy cost of exercise on day 1, followed by the consumption of a high-fructose, high-fat liquid test meal the next morning (day 2) (~600 kcal) and the determination of the plasma glucose, lactate, insulin, and TAG responses during a six-hour postprandial period; (2) EX-DEF: same condition as EX-COMP but without exercise energy compensation on day 1; and (3) CON: no exercise control. The six-hour postprandial plasma insulin and lactate responses did not differ between conditions. However, the postprandial plasma TAG concentrations were 16.5% and 24.4% lower for EX-COMP (551.0 ± 80.5 mg/dL × 360 minutes) and EX-DEF (499.4 ± 73.5 mg/dL × 360 minutes), respectively, compared to CON (660.2 ± 95.0 mg/dL × 360 minutes) (P < 0.05). A single resistance exercise bout, performed ~15 hours prior to a high-fructose, high-fat meal, attenuated the postprandial TAG response, as compared to a no-exercise control condition, in healthy, resistance-trained men.

  15. Adverse effects of dietary fructose.

    PubMed

    Gaby, Alan R

    2005-12-01

    The consumption of fructose, primarily from high-fructose corn syrup (HFCS), has increased considerably in the United States during the past several decades. Intake of HFCS may now exceed that of the other major caloric sweetener, sucrose. Some nutritionists believe fructose is a safer form of sugar than sucrose, particularly for people with diabetes mellitus, because it does not adversely affect blood-glucose regulation, at least in the short-term. However, fructose has potentially harmful effects on other aspects of metabolism. In particular, fructose is a potent reducing sugar that promotes the formation of toxic advanced glycation end-products, which appear to play a role in the aging process; in the pathogenesis of the vascular, renal, and ocular complications of diabetes; and in the development of atherosclerosis. Fructose has also been implicated as the main cause of symptoms in some patients with chronic diarrhea or other functional bowel disturbances. In addition, excessive fructose consumption may be responsible in part for the increasing prevalence of obesity, diabetes mellitus, and non-alcoholic fatty liver disease. Although the long-term effects of fructose consumption have not been adequately studied in humans, the available evidence suggests it may be more harmful than is generally recognized. The extent to which a person might be adversely affected by dietary fructose depends both on the amount consumed and on individual tolerance. With a few exceptions, the relatively small amounts of fructose that occur naturally in fruits and vegetables are unlikely to have deleterious effects, and this review is not meant to discourage the consumption of these healthful foods.

  16. Consumption of Alcopops During Brain Maturation Period: Higher Impact of Fructose Than Ethanol on Brain Metabolism.

    PubMed

    El Hamrani, Dounia; Gin, Henri; Gallis, Jean-Louis; Bouzier-Sore, Anne-Karine; Beauvieux, Marie-Christine

    2018-01-01

    Alcopops are flavored alcoholic beverages sweetened by sodas, known to contain fructose. These drinks have the goal of democratizing alcohol among young consumers (12-17 years old) and in the past few years have been considered as fashionable amongst teenagers. Adolescence, however, is a key period for brain maturation, occurring in the prefrontal cortex and limbic system until 21 years old. Therefore, this drinking behavior has become a public health concern. Despite the extensive literature concerning the respective impacts of either fructose or ethanol on brain, the effects following joint consumption of these substrates remains unknown. Our objective was to study the early brain modifications induced by a combined diet of high fructose (20%) and moderate amount of alcohol in young rats by 13 C Nuclear Magnetic Resonance (NMR) spectroscopy. Wistar rats had isocaloric pair-fed diets containing fructose (HF, 20%), ethanol (Et, 0.5 g/day/kg) or both substrates at the same time (HFEt). After 6 weeks of diet, the rats were infused with 13 C-glucose and brain perchloric acid extracts were analyzed by NMR spectroscopy ( 1 H and 13 C). Surprisingly, the most important modifications of brain metabolism were observed under fructose diet. Alterations, observed after only 6 weeks of diet, show that the brain is vulnerable at the metabolic level to fructose consumption during late-adolescence throughout adulthood in rats. The main result was an increase in oxidative metabolism compared to glycolysis, which may impact lactate levels in the brain and may, at least partially, explain memory impairment in teenagers consuming alcopops.

  17. Gut microbial adaptation to dietary consumption of fructose, artificial sweeteners and sugar alcohols: implications for host-microbe interactions contributing to obesity.

    PubMed

    Payne, A N; Chassard, C; Lacroix, C

    2012-09-01

    The Western diet, comprised of highly refined carbohydrates and fat but reduced complex plant polysaccharides, has been attributed to the prevalence of obesity. A concomitant rise in the consumption of fructose and sugar substitutes such as sugar alcohols, artificial sweeteners, even rare sugars, has mirrored this trend, as both probable contributor and solution to the epidemic. Acknowledgement of the gut microbiota as a factor involved in obesity has sparked much controversy as to the cause and consequence of this relationship. Dietary intakes are a known modulator of gut microbial phylogeny and metabolic activity, frequently exploited to stimulate beneficial bacteria, promoting health benefits. Comparably little research exists on the impact of 'unconscious' dietary modulation on the resident commensal community mediated by increased fructose and sugar substitute consumption. This review highlights mechanisms of potential host and gut microbial fructose and sugar substitute metabolism. Evidence is presented suggesting these sugar compounds, particularly fructose, condition the microbiota, resulting in acquisition of a westernized microbiome with altered metabolic capacity. Disturbances in host-microbe interactions resulting from fructose consumption are also explored. © 2012 The Authors. obesity reviews © 2012 International Association for the Study of Obesity.

  18. Fructose: should we worry?

    PubMed

    Bray, G A

    2008-12-01

    Obesity is a growing problem. In the broadest strokes, it is due to a small positive energy balance that persists over a sufficiently long time. Some forms of obesity develop independent of the type of diet that is eaten, whereas others are dependent on the diet. Among the former are individuals with leptin deficiency or genetic defects in the melanocortin 4 receptor. Most human obesity, however, occurs in the presence of highly palatable foods--fat and calorically sweetened beverages. The increase in obesity in the last 35 years has paralleled the increasing use of high-fructose corn syrup (HFCS), which first appeared just before 1970. Current soft drinks and many other foods are sweetened with this product because it is inexpensive and has useful manufacturing properties. The fructose in HFCS and sugar makes beverages very sweet, and this sweetness may underlie the relation of obesity to soft drink consumption. Fructose consumption has also been related to the metabolic syndrome and to abnormal lipid patterns. This evidence suggests that we should worry about our current level of fructose consumption, which has been increasing steadily for over 200 years and now represents over 10% of the energy intake of some people.

  19. Is fructose the optimal low glycemic index sweetener?

    PubMed

    Bantle, John P

    2006-01-01

    Fructose is a monosaccharide which is abundant in nature. It is the sweetest naturally occurring carbohydrate. The availability of fructose increased substantially when it became possible in the 1960s to economically produce high fructose syrups from corn starch and other starches. Such high fructose syrups are now used to sweeten soft drinks, fruit drinks, baked goods, jams, syrups and candies. The most recent data available suggest that fructose consumption is increasing worldwide. Fructose presently accounts for about 10% of average total energy intake in the United States. Studies in both healthy and diabetic subjects demonstrated that fructose produced a smaller postprandial rise in plasma glucose and serum insulin than other common carbohydrates. Substitution of dietary fructose for other carbohydrates produced a 13% reduction in mean plasma glucose in a study of type-1 and type-2 diabetic subjects. However, there is concern that fructose may aggravate lipemia, particularly in men. In one study, daylong plasma triglycerides (estimated by determining the area under response curves) in healthy men was 32% greater during a high fructose diet than during a high glucose diet. There is also concern that fructose may be a factor contributing to the growing worldwide prevalence of obesity. Increasing fructose consumption is temporally associated with the increase in obesity. Moreover, on theoretical grounds, dietary fructose might increase energy intake. Fructose stimulates insulin secretion less than does glucose and glucose-containing carbohydrates. Since insulin increases leptin release, lower circulating insulin and leptin after fructose ingestion might inhibit appetite less than consumption of other carbohydrates and lead to increased energy intake. However, there is not yet any convincing experimental evidence that dietary fructose does increase energy intake. Although evidence that fructose has adverse effects is limited, adding fructose in large amounts to

  20. Fructose containing sugars do not raise blood pressure or uric acid at normal levels of human consumption.

    PubMed

    Angelopoulos, Theodore J; Lowndes, Joshua; Sinnett, Stephanie; Rippe, James M

    2015-02-01

    The impact of fructose, commonly consumed with sugars by humans, on blood pressure and uric acid has yet to be defined. A total of 267 weight-stable participants drank sugar-sweetened milk every day for 10 weeks as part of their usual, mixed-nutrient diet. Groups 1 and 2 had 9% estimated caloric intake from fructose or glucose, respectively, added to milk. Groups 3 and 4 had 18% of estimated caloric intake from high fructose corn syrup or sucrose, respectively, added to the milk. Blood pressure and uric acid were determined prior to and after the 10-week intervention. There was no effect of sugar type on either blood pressure or uric acid (interaction P>.05), and a significant time effect for blood pressure was noted (P<.05). The authors conclude that 10 weeks of consumption of fructose at the 50th percentile level, whether consumed as pure fructose or with fructose-glucose-containing sugars, does not promote hyperuricemia or increase blood pressure. © 2014 Wiley Periodicals, Inc.

  1. Fructose consumption reduces hippocampal synaptic plasticity underlying cognitive performance

    PubMed Central

    Cisternas, Pedro; Salazar, Paulina; Serrano, Felipe G.; Montecinos-Oliva, Carla; Arredondo, Sebastián B.; Varela-Nallar, Lorena; Barja, Salesa; Vio, Carlos P.; Gomez-Pinilla, Fernando; Inestrosa, Nibaldo C.

    2017-01-01

    Metabolic syndrome (MetS) is a global epidemic, which involves a spectrum of metabolic disorders comprising diabetes and obesity. The impact of MetS on the brain is becoming to be a concern, however, the poor understanding of mechanisms involved has limited the development of therapeutic strategies. We induced a MetS-like condition by exposing mice to fructose feeding for 7 weeks. There was a dramatic deterioration in the capacity of the hippocampus to sustain synaptic plasticity in the forms of long-term potentiation (LTP) and long-term depression (LTD). Mice exposed to fructose showed a reduction in the number of contact zones and the size of postsynaptic densities (PSDs) in the hippocampus, as well as a decrease in hippocampal neurogenesis. There was an increase in lipid peroxidation likely associated with a deficiency in plasma membrane excitability. Consistent with an overall hippocampal dysfunction, there was a subsequent decrease in hippocampal dependent learning and memory performance, i.e., spatial learning and episodic memory. Most of the pathological sequel of MetS in the brain was reversed three month after discontinue fructose feeding. These results are novel to show that MetS triggers a cascade of molecular events, which disrupt hippocampal functional plasticity, and specific aspects of learning and memory function. The overall information raises concerns about the risk imposed by excessive fructose consumption on the pathology of neurological disorders. PMID:26300486

  2. Early Life Exposure to Fructose and Offspring Phenotype: Implications for Long Term Metabolic Homeostasis

    PubMed Central

    Sloboda, Deborah M.; Li, Minglan; Patel, Rachna; Clayton, Zoe E.; Yap, Cassandra; Vickers, Mark H.

    2014-01-01

    The consumption of artificially sweetened processed foods, particularly high in fructose or high fructose corn syrup, has increased significantly in the past few decades. As such, interest into the long term outcomes of consuming high levels of fructose has increased significantly, particularly when the exposure is early in life. Epidemiological and experimental evidence has linked fructose consumption to the metabolic syndrome and associated comorbidities—implicating fructose as a potential factor in the obesity epidemic. Yet, despite the widespread consumption of fructose-containing foods and beverages and the rising incidence of maternal obesity, little attention has been paid to the possible adverse effects of maternal fructose consumption on the developing fetus and long term effects on offspring. In this paper we review studies investigating the effects of fructose intake on metabolic outcomes in both mother and offspring using human and experimental studies. PMID:24864200

  3. High Dietary Fructose Intake on Cardiovascular Disease Related Parameters in Growing Rats.

    PubMed

    Yoo, SooYeon; Ahn, Hyejin; Park, Yoo Kyoung

    2016-12-26

    The objective of this study was to determine the effects of a high-fructose diet on cardiovascular disease (CVD)-related parameters in growing rats. Three-week-old female Sprague Dawley rats were randomly assigned to four experimental groups; a regular diet group (RD: fed regular diet based on AIN-93G, n = 8), a high-fructose diet group (30Frc: fed regular diet with 30% fructose, n = 8), a high-fat diet group (45Fat: fed regular diet with 45 kcal% fat, n = 8) or a high fructose with high-fat diet group (30Frc + 45Fat, fed diet 30% fructose with 45 kcal% fat, n = 8). After an eight-week treatment period, the body weight, total-fat weight, serum glucose, insulin, lipid profiles and pro-inflammatory cytokines, abdominal aortic wall thickness, and expressions of eNOS and ET-1 mRNA were analyzed. The result showed that total-fat weight was higher in the 30Frc, 45Fat, and 30Frc + 45Fat groups compared to the RD group ( p < 0.05). Serum triglyceride (TG) levels were highest in the 30Frc group than the other groups ( p < 0.05). The abdominal aorta of 30Frc, 45Fat, and 30Frc + 45Fat groups had higher wall thickness than the RD group ( p < 0.05). Abdominal aortic eNOS mRNA level was decreased in 30Frc, 45Fat, and 30Frc + 45Fat groups compared to the RD group ( p < 0.05), and also 45Fat and 30Frc + 45Fat groups had decreased mRNA expression of eNOS compared to the 30Frc group ( p < 0.05). ET-1 mRNA level was higher in 30Frc, 45Fat, and 30Frc + 45Fat groups than the RD group ( p < 0.05). Both high fructose consumption and high fat consumption in growing rats had similar negative effects on CVD-related parameters.

  4. Fructose metabolism and metabolic disease

    USDA-ARS?s Scientific Manuscript database

    Increased sugar consumption is increasingly considered a contributor to the worldwide epidemics of obesity and diabetes and their associated cardiometabolic risks. As a result of its unique metabolic properties, the fructose component of sugar may be particularly harmful. Diets high in fructose can ...

  5. Fructose, high-fructose corn syrup, sucrose, and nonalcoholic fatty liver disease or indexes of liver health: a systematic review and meta-analysis.

    PubMed

    Chung, Mei; Ma, Jiantao; Patel, Kamal; Berger, Samantha; Lau, Joseph; Lichtenstein, Alice H

    2014-09-01

    Concerns have been raised about the concurrent temporal trend between simple sugar intakes, especially of fructose or high-fructose corn syrup (HFCS), and rates of nonalcoholic fatty liver disease (NAFLD) in the United States. We examined the effect of different amounts and forms of dietary fructose on the incidence or prevalence of NAFLD and indexes of liver health in humans. We conducted a systematic review of English-language, human studies of any design in children and adults with low to no alcohol intake and that reported at least one predetermined measure of liver health. The strength of the evidence was evaluated by considering risk of bias, consistency, directness, and precision. Six observational studies and 21 intervention studies met the inclusion criteria. The overall strength of evidence for observational studies was rated insufficient because of high risk of biases and inconsistent study findings. Of 21 intervention studies, 19 studies were in adults without NAFLD (predominantly healthy, young men) and 1 study each in adults or children with NAFLD. We found a low level of evidence that a hypercaloric fructose diet (supplemented by pure fructose) increases liver fat and aspartate aminotransferase (AST) concentrations in healthy men compared with the consumption of a weight-maintenance diet. In addition, there was a low level of evidence that hypercaloric fructose and glucose diets have similar effects on liver fat and liver enzymes in healthy adults. There was insufficient evidence to draw a conclusion for effects of HFCS or sucrose on NAFLD. On the basis of indirect comparisons across study findings, the apparent association between indexes of liver health (ie, liver fat, hepatic de novo lipogenesis, alanine aminotransferase, AST, and γ-glutamyl transpeptase) and fructose or sucrose intake appear to be confounded by excessive energy intake. Overall, the available evidence is not sufficiently robust to draw conclusions regarding effects of fructose

  6. Consumption of sucrose and high-fructose corn syrup does not increase liver fat or ectopic fat deposition in muscles.

    PubMed

    Bravo, Stephen; Lowndes, Joshua; Sinnett, Stephanie; Yu, Zhiping; Rippe, James

    2013-06-01

    It has been postulated that fructose-induced triglyceride synthesis is augmented when accompanied by glucose. Chronic elevations could lead to excess fat accumulation in the liver and ectopic fat deposition in muscles, which in turn could contribute to the induction of abnormalities in glucose homeostasis, insulin resistance, and the subsequent development of type 2 diabetes. Our objective was to evaluate the effect of the addition of commonly consumed fructose- and (or) glucose-containing sugars in the usual diet on liver fat content and intramuscular adipose tissue. For 10 weeks, 64 individuals (mean age, 42.16 ± 11.66 years) consumed low-fat milk sweetened with either high-fructose corn syrup (HFCS) or sucrose; the added sugar matched consumption levels of fructose in the 25th, 50th, and 90th percentiles of the population. The fat content of the liver was measured with unenhanced computed tomography imaging, and the fat content of muscle was assessed with magnetic resonance imaging. When the 6 HFCS and sucrose groups were averaged, there was no change over the course of 10 weeks in the fat content of the liver (13.32% ± 10.49% vs. 13.21% ± 10.75%; p > 0.05), vastus lateralis muscle (3.07 ± 0.74 g per 100 mL vs. 3.15 ± 0.84 g per 100 mL; p > 0.05), or gluteus maximus muscle (4.08 ± 1.50 g per 100 mL vs. 4.24 ± 1.42 g per 100 mL; p > 0.05). Group assignment did not affect the result (interaction > 0.05). These data suggest that when fructose is consumed as part of a typical diet in normally consumed sweeteners, such as sucrose or HFCS, ectopic fat storage in the liver or muscles is not promoted.

  7. Fructose: it's "alcohol without the buzz".

    PubMed

    Lustig, Robert H

    2013-03-01

    What do the Atkins Diet and the traditional Japanese diet have in common? The Atkins Diet is low in carbohydrate and usually high in fat; the Japanese diet is high in carbohydrate and usually low in fat. Yet both work to promote weight loss. One commonality of both diets is that they both eliminate the monosaccharide fructose. Sucrose (table sugar) and its synthetic sister high fructose corn syrup consist of 2 molecules, glucose and fructose. Glucose is the molecule that when polymerized forms starch, which has a high glycemic index, generates an insulin response, and is not particularly sweet. Fructose is found in fruit, does not generate an insulin response, and is very sweet. Fructose consumption has increased worldwide, paralleling the obesity and chronic metabolic disease pandemic. Sugar (i.e., fructose-containing mixtures) has been vilified by nutritionists for ages as a source of "empty calories," no different from any other empty calorie. However, fructose is unlike glucose. In the hypercaloric glycogen-replete state, intermediary metabolites from fructose metabolism overwhelm hepatic mitochondrial capacity, which promotes de novo lipogenesis and leads to hepatic insulin resistance, which drives chronic metabolic disease. Fructose also promotes reactive oxygen species formation, which leads to cellular dysfunction and aging, and promotes changes in the brain's reward system, which drives excessive consumption. Thus, fructose can exert detrimental health effects beyond its calories and in ways that mimic those of ethanol, its metabolic cousin. Indeed, the only distinction is that because fructose is not metabolized in the central nervous system, it does not exert the acute neuronal depression experienced by those imbibing ethanol. These metabolic and hedonic analogies argue that fructose should be thought of as "alcohol without the buzz."

  8. Sugar or high fructose corn syrup-what should nurses teach patients and families?

    PubMed

    Sobel, Linda L; Dalby, Elizabeth

    2014-04-01

    There is lack of consensus in the lay literature to support consumption of table sugar as a preferred sweetener when compared to high fructose corn syrup (HFCS). The purpose of this study was to search the literature for evidence to determine the health effects of consumption of table sugar (sucrose) and HFCS on blood glucose, lipid levels, obesity, and appetite as well as to make recommendations for patient and family teaching of those at risk for developing negative health outcomes, including coronary heart disease. Nursing and health-related databases, including CINAHL, PubMed, Cochrane Central Registry of Controlled Trials, and Health and Wellness were searched for research articles, which were compared and evaluated for purpose, sample size, procedure, findings, and level of evidence. Five studies that met inclusion criteria were evaluated. No difference was found in changes in blood glucose levels, lipid levels, or appetite between table sugar consumption and HFCS consumption. When only fructose was consumed, lipid levels were significantly increased. The evidence suggests that fructose, found in both table sugar and HFCS, has a negative effect on health outcomes. Clinicians should teach patients and families that all sugar consumption should be closely monitored and kept below the 40 g/day recommended by the World Health Organization. © 2014 Sigma Theta Tau International.

  9. Biocatalytic strategies for the production of high fructose syrup from inulin.

    PubMed

    Singh, R S; Chauhan, Kanika; Pandey, Ashok; Larroche, Christian

    2018-07-01

    The consumption of natural and low calorie sugars has increased enormously from the past few decades. To fulfil the demands, the production of healthy sweeteners as an alternative to sucrose has recently received considerable interest. Fructose is the most health beneficial and safest sugar amongst them. It is generally recognised as safe (GRAS) and has become an important food ingredient due its sweetening and various health promising functional properties. Commercially, high fructose syrup is prepared from starch by multienzymatic process. Single-step enzymatic hydrolysis of inulin using inulinase has emerged as an alternate to the conventional approach to reduce complexity, time and cost. The present review, outlines the enzymatic strategies used for the preparation of high fructose syrup from inulin/inulin-rich plant materials in batch and continuous systems, and its conclusions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Fructose, high-fructose corn syrup, sucrose, and nonalcoholic fatty liver disease or indexes of liver health: a systematic review and meta-analysis1234

    PubMed Central

    Chung, Mei; Ma, Jiantao; Patel, Kamal; Berger, Samantha; Lau, Joseph; Lichtenstein, Alice H

    2014-01-01

    Background: Concerns have been raised about the concurrent temporal trend between simple sugar intakes, especially of fructose or high-fructose corn syrup (HFCS), and rates of nonalcoholic fatty liver disease (NAFLD) in the United States. Objective: We examined the effect of different amounts and forms of dietary fructose on the incidence or prevalence of NAFLD and indexes of liver health in humans. Design: We conducted a systematic review of English-language, human studies of any design in children and adults with low to no alcohol intake and that reported at least one predetermined measure of liver health. The strength of the evidence was evaluated by considering risk of bias, consistency, directness, and precision. Results: Six observational studies and 21 intervention studies met the inclusion criteria. The overall strength of evidence for observational studies was rated insufficient because of high risk of biases and inconsistent study findings. Of 21 intervention studies, 19 studies were in adults without NAFLD (predominantly healthy, young men) and 1 study each in adults or children with NAFLD. We found a low level of evidence that a hypercaloric fructose diet (supplemented by pure fructose) increases liver fat and aspartate aminotransferase (AST) concentrations in healthy men compared with the consumption of a weight-maintenance diet. In addition, there was a low level of evidence that hypercaloric fructose and glucose diets have similar effects on liver fat and liver enzymes in healthy adults. There was insufficient evidence to draw a conclusion for effects of HFCS or sucrose on NAFLD. Conclusions: On the basis of indirect comparisons across study findings, the apparent association between indexes of liver health (ie, liver fat, hepatic de novo lipogenesis, alanine aminotransferase, AST, and γ-glutamyl transpeptase) and fructose or sucrose intake appear to be confounded by excessive energy intake. Overall, the available evidence is not sufficiently robust

  11. Energy and fructose from beverages sweetened with sugar or high-fructose corn syrup pose a health risk for some people.

    PubMed

    Bray, George A

    2013-03-01

    Sugar intake in the United States has increased by >40 fold since the American Revolution. The health concerns that have been raised about the amounts of sugar that are in the current diet, primarily as beverages, are the subject of this review. Just less than 50% of the added sugars (sugar and high-fructose corn syrup) are found in soft drinks and fruit drinks. The intake of soft drinks has increased 5-fold between 1950 and 2000. Most meta-analyses have shown that the risk of obesity, diabetes, cardiovascular disease, and metabolic syndrome are related to consumption of beverages sweetened with sugar or high-fructose corn syrup. Calorically sweetened beverage intake has also been related to the risk of nonalcoholic fatty liver disease, and, in men, gout. Calorically sweetened beverages contribute to obesity through their caloric load, and the intake of beverages does not produce a corresponding reduction in the intake of other food, suggesting that beverage calories are "add-on" calories. The increase in plasma triglyceride concentrations by sugar-sweetened beverages can be attributed to fructose rather than glucose in sugar. Several randomized trials of sugar-containing soft drinks versus low-calorie or calorie-free beverages show that either sugar, 50% of which is fructose, or fructose alone increases triglycerides, body weight, visceral adipose tissue, muscle fat, and liver fat. Fructose is metabolized primarily in the liver. When it is taken up by the liver, ATP decreases rapidly as the phosphate is transferred to fructose in a form that makes it easy to convert to lipid precursors. Fructose intake enhances lipogenesis and the production of uric acid. By worsening blood lipids, contributing to obesity, diabetes, fatty liver, and gout, fructose in the amounts currently consumed is hazardous to the health of some people.

  12. Response of genes involved in lipid metabolism in rat epididymal white adipose tissue to different fasting conditions after long-term fructose consumption.

    PubMed

    Li, Jin-Xiu; Ke, Da-Zhi; Yao, Ling; Wang, Shang; Ma, Peng; Liu, Li; Zuo, Guo-Wei; Jiang, Li-Rong; Wang, Jian-Wei

    2017-03-04

    There has been much concern regarding the dietary fructose contributes to the development of metabolic syndrome. High-fructose diet changes the expression of genes involved in lipid metabolism. Levels of a number of hepatic lipogenic enzymes are increased by a high-carbohydrate diet in fasted-refed model rats/mice. Both the white adipose tissue (WAT) and the liver play a key role in the maintenance of nutrient homeostasis. Here, the aim of this study was to analyze the expression of key genes related to lipid metabolism in epididymal WAT (eWAT) in response to different fasting condition after long-term chronic fructose consumption. Rats were fed standard chow supplemented with 10% w/v fructose solution for 5 weeks, and killed after chow-fasting and fructose withdrawal (fasting) or chow-fasting and continued fructose (fructose alone) for 14 h. Blood parameters and the expression of genes involved in fatty acid synthesis (ChREBP, SREBP-1c, FAS, SCD1), triglyceride biosynthesis (DGAT-1, DGAT-2) and lipid mobilization (ATGL, HSL) in eWAT were analyzed. In addition, mRNA levels of PPAR-γ, CD36 and LPL were also detected. As expected, fructose alone increased the mRNA expression of FAS, SCD1, and correspondingly decreased ATGL and HSL mRNA levels. However, ChREBP, DGAT-2, ATGL and HSL mRNA levels restored near to normal while FAS and SCD1 tend to basic level under fasting condition. The mRNA expression of SREBP-1c, PPAR-γ and LPL did not changed at any situations but CD36 mRNA decreased remarkably in fructose alone group. In conclusion, these findings demonstrate that genes involved in lipid metabolism in rat eWAT are varied in response to different fasting conditions after long-term fructose consumption. Copyright © 2017. Published by Elsevier Inc.

  13. Physical Activity Offsets the Negative Effects of a High Fructose Diet

    PubMed Central

    Bidwell, Amy J; Fairchild, Timothy J; Redmond, Jessica; Wang, Long; Keslacy, Stefan; Kanaley, Jill A

    2014-01-01

    Objective To determine the interaction between a high fructose diet and PA levels on postprandial lipidemia and inflammation in normal weight, recreationally active individuals. METHODS Twenty-two men and women (age: 21.2 ± 0.6 yrs; BMI = 22.5 ± 0.6 kg/m2) consumed an additional 75 g of fructose for 14 days on two separate occasions: high physical activity (~12,500 steps/day: FR+Active) and low PA (~ 4,500 steps/day; FR+Inactive). A fructose-rich test meal was given prior to and at the end of each intervention. Blood was sampled at baseline and for 6 h after the meal for triglycerides (TG), very-low density lipoproteins (VLDL), total cholesterol (TC), glucose, insulin, tumor necrosis factor-α (TNF-α), interleukin 6 (IL-6) and c-reactive protein (CRP). RESULTS Log transformed TG AUC significantly increased from pre (10.1 ± 0.1 mg/dL x min for 6 h) to post (10.3 ± 0.08 mg/dL x min for 6 h; p = 0.04) in the FR+Inactive intervention with an 88% increase in Δpeak[TG] (p=0.009) and an 84% increase in Δpeak[VLDL] (p=0.002). Δpeak[IL-6] also increased by 116% after FR+Inactive intervention (p=0.009). Insulin tAUC significantly decreased after FR+Active intervention (p=0.04) with no change in AUC after the FR+Inactive intervention. No changes were observed in glucose, TNF-α and CRP concentrations (p>0.05). CONCLUSIONS Low physical activity during a period of high fructose intake augments fructose-induced postprandial lipidemia and inflammation while high PA minimizes these fructose-induced metabolic disturbances. Even within a young healthy population, maintenance of high PA (>12500 steps/day) decreases susceptibility to cardiovascular risk factors associated with elevated fructose consumption. PMID:24848492

  14. Divergent outcomes of fructose consumption on exercise capacity of rats: friend or foe.

    PubMed

    Sun, Angela; Huang, An; Kertowidjojo, Elizabeth; Song, Su; Hintze, Thomas H; Sun, Dong

    2017-02-01

    To test the hypothesis that high fructose (HF) consumption divergently affects exercise capability as a function of feeding duration, rats were fed a normal (as control) diet or a normal caloric diet with HF for 3, 6, 10, and 30 days, respectively, and then were run on a treadmill. Results show that running distance and work were significantly increased, which was associated with greater exercise oxygen consumption in rats fed HF for 3 (HF-3D) and 6 days, but were decreased in rats fed HF for 30 days (HF-30D) compared with rats in their respective control groups. Shear stress-induced vasodilation (SSID) in isolated plantaris muscle arterioles was significantly greater in the HF-3D group than the control group. The difference in SSID between the two groups was abolished by N ω -nitro-l-arginine methyl ester (L-NAME), suggesting a nitric oxide (NO)-mediated response. Expression of phosphorylated/activated endothelial NO synthase (eNOS) and release of nitrite/NO were significantly increased in vessels of animals in the HF-3D group than controls. In contrast, arterioles isolated from the hypertensive rats in the HF-30D group displayed significantly attenuated NO-mediated SSID accompanied with greater production of superoxide compared with vessels of control animals. Additionally, the NO-dependent modulation of myocardial oxygen consumption (MV̇o 2 ) was also impaired in the HF-30D group, and was prevented by blocking superoxide production with apocynin, an inhibitor that also normalized the reduced SSID in the HF-30D group. In conclusion, short-term (3-6 days) HF feeding enhances exercise potential via an increase in endothelial sensitivity to shear stress, which stimulates eNOS to release NO, leading to better tissue perfusion and utilization of oxygen. However, long-term (30 days) HF feeding initiates endothelial dysfunction by superoxide-dependent mechanisms to compromise exercise performance. NEW & NOTEWORTHY The evidence that short-term fructose intake

  15. Fructose: Pure, White, and Deadly? Fructose, by Any Other Name, Is a Health Hazard

    PubMed Central

    Bray, George A.

    2010-01-01

    The worldwide consumption of sucrose, and thus fructose, has risen logarithmically since 1800. Many concerns about the health hazards of calorie-sweetened beverages, including soft drinks and fruit drinks and the fructose they provide, have been voiced over the past 10 years. These concerns are related to higher energy intake, risk of obesity, risk of diabetes, risk of cardiovascular disease, risk of gout in men, and risk of metabolic syndrome. Fructose appears to be responsible for most of the metabolic risks, including high production of lipids, increased thermogenesis, and higher blood pressure associated with sugar or high fructose corn syrup. Some claim that sugar is natural, but natural does not assure safety. PMID:20663467

  16. Fructose: pure, white, and deadly? Fructose, by any other name, is a health hazard.

    PubMed

    Bray, George A

    2010-07-01

    The worldwide consumption of sucrose, and thus fructose, has risen logarithmically since 1800. Many concerns about the health hazards of calorie-sweetened beverages, including soft drinks and fruit drinks and the fructose they provide, have been voiced over the past 10 years. These concerns are related to higher energy intake, risk of obesity, risk of diabetes, risk of cardiovascular disease, risk of gout in men, and risk of metabolic syndrome. Fructose appears to be responsible for most of the metabolic risks, including high production of lipids, increased thermogenesis, and higher blood pressure associated with sugar or high fructose corn syrup. Some claim that sugar is natural, but natural does not assure safety. 2010 Diabetes Technology Society.

  17. The Role of Fructose, Sucrose and High-fructose Corn Syrup in Diabetes.

    PubMed

    Cozma, Adrian I; Sievenpiper, John L

    2014-02-01

    Concerns are growing regarding the role of dietary sugars in the development of obesity and cardiometabolic diseases, including diabetes. High-fructose corn syrup (HFCS) and sucrose are the most important dietary sweeteners. Both HFCS and sucrose have overlapping metabolic actions with adverse effects attributed to their fructose moiety. Ecological studies have linked the rise in fructose availability with the increases in obesity and diabetes worldwide. This link has been largely underpinned by animal models and select human trials of fructose overfeeding at high levels of exposure. Although prospective cohort studies have shown significant associations comparing the highest with the lowest levels of intake sugar-sweetened beverages, these associations are small, do not hold at moderate levels of intake and are subject to collinearity effects from related dietary and lifestyle factors. Most systematic reviews and meta-analyses from controlled feeding trials have shown that fructose-containing sugars in isocaloric exchange for other carbohydrates do not show evidence of harm and, in the case of fructose, may even have advantages for glycaemic control, especially at small doses. Nevertheless, trials in which fructose-containing sugars supplement diets with excess energy have shown adverse effects, effects that appear more attributable to the excess energy than the sugar. There is no unequivocal evidence that fructose intake at moderate doses is directly related with adverse metabolic effects, although there is potentially cause for concern where fructose is provided at high doses or contributes excess energy to diets. Further investigation is warranted due to the significant knowledge gaps and weaknesses in existing research.

  18. The Role of Fructose, Sucrose and High-fructose Corn Syrup in Diabetes

    PubMed Central

    Cozma, Adrian I

    2014-01-01

    Abstract Concerns are growing regarding the role of dietary sugars in the development of obesity and cardiometabolic diseases, including diabetes. High-fructose corn syrup (HFCS) and sucrose are the most important dietary sweeteners. Both HFCS and sucrose have overlapping metabolic actions with adverse effects attributed to their fructose moiety. Ecological studies have linked the rise in fructose availability with the increases in obesity and diabetes worldwide. This link has been largely underpinned by animal models and select human trials of fructose overfeeding at high levels of exposure. Although prospective cohort studies have shown significant associations comparing the highest with the lowest levels of intake sugar-sweetened beverages, these associations are small, do not hold at moderate levels of intake and are subject to collinearity effects from related dietary and lifestyle factors. Most systematic reviews and meta-analyses from controlled feeding trials have shown that fructose-containing sugars in isocaloric exchange for other carbohydrates do not show evidence of harm and, in the case of fructose, may even have advantages for glycaemic control, especially at small doses. Nevertheless, trials in which fructose-containing sugars supplement diets with excess energy have shown adverse effects, effects that appear more attributable to the excess energy than the sugar. There is no unequivocal evidence that fructose intake at moderate doses is directly related with adverse metabolic effects, although there is potentially cause for concern where fructose is provided at high doses or contributes excess energy to diets. Further investigation is warranted due to the significant knowledge gaps and weaknesses in existing research. PMID:29872464

  19. Three Months of High-Fructose Feeding Fails to Induce Excessive Weight Gain or Leptin Resistance in Mice

    PubMed Central

    Tillman, Erik J.; Morgan, Donald A.; Rahmouni, Kamal; Swoap, Steven J.

    2014-01-01

    High-fructose diets have been implicated in obesity via impairment of leptin signaling in humans and rodents. We investigated whether fructose-induced leptin resistance in mice could be used to study the metabolic consequences of fructose consumption in humans, particularly in children and adolescents. Male C57Bl/6 mice were weaned to a randomly assigned diet: high fructose, high sucrose, high fat, or control (sugar-free, low-fat). Mice were maintained on their diets for at least 14 weeks. While fructose-fed mice regularly consumed more kcal and expended more energy, there was no difference in body weight compared to control by the end of the study. Additionally, after 14 weeks, both fructose-fed and control mice displayed similar leptin sensitivity. Fructose-feeding also did not change circulating glucose, triglycerides, or free fatty acids. Though fructose has been linked to obesity in several animal models, our data fail to support a role for fructose intake through food lasting 3 months in altering of body weight and leptin signaling in mice. The lack of impact of fructose in the food of growing mice on either body weight or leptin sensitivity over this time frame was surprising, and important information for researchers interested in fructose and body weight regulation. PMID:25211467

  20. High Dietary Fructose: Direct or Indirect Dangerous Factors Disturbing Tissue and Organ Functions.

    PubMed

    Zhang, Dong-Mei; Jiao, Rui-Qing; Kong, Ling-Dong

    2017-03-29

    High dietary fructose is a major contributor to insulin resistance and metabolic syndrome, disturbing tissue and organ functions. Fructose is mainly absorbed into systemic circulation by glucose transporter 2 (GLUT2) and GLUT5, and metabolized in liver to produce glucose, lactate, triglyceride (TG), free fatty acid (FFA), uric acid (UA) and methylglyoxal (MG). Its extrahepatic absorption and metabolism also take place. High levels of these metabolites are the direct dangerous factors. During fructose metabolism, ATP depletion occurs and induces oxidative stress and inflammatory response, disturbing functions of local tissues and organs to overproduce inflammatory cytokine, adiponectin, leptin and endotoxin, which act as indirect dangerous factors. Fructose and its metabolites directly and/or indirectly cause oxidative stress, chronic inflammation, endothelial dysfunction, autophagy and increased intestinal permeability, and then further aggravate the metabolic syndrome with tissue and organ dysfunctions. Therefore, this review addresses fructose-induced metabolic syndrome, and the disturbance effects of direct and/or indirect dangerous factors on the functions of liver, adipose, pancreas islet, skeletal muscle, kidney, heart, brain and small intestine. It is important to find the potential correlations between direct and/or indirect risk factors and healthy problems under excess dietary fructose consumption.

  1. High Dietary Fructose: Direct or Indirect Dangerous Factors Disturbing Tissue and Organ Functions

    PubMed Central

    Zhang, Dong-Mei; Jiao, Rui-Qing; Kong, Ling-Dong

    2017-01-01

    High dietary fructose is a major contributor to insulin resistance and metabolic syndrome, disturbing tissue and organ functions. Fructose is mainly absorbed into systemic circulation by glucose transporter 2 (GLUT2) and GLUT5, and metabolized in liver to produce glucose, lactate, triglyceride (TG), free fatty acid (FFA), uric acid (UA) and methylglyoxal (MG). Its extrahepatic absorption and metabolism also take place. High levels of these metabolites are the direct dangerous factors. During fructose metabolism, ATP depletion occurs and induces oxidative stress and inflammatory response, disturbing functions of local tissues and organs to overproduce inflammatory cytokine, adiponectin, leptin and endotoxin, which act as indirect dangerous factors. Fructose and its metabolites directly and/or indirectly cause oxidative stress, chronic inflammation, endothelial dysfunction, autophagy and increased intestinal permeability, and then further aggravate the metabolic syndrome with tissue and organ dysfunctions. Therefore, this review addresses fructose-induced metabolic syndrome, and the disturbance effects of direct and/or indirect dangerous factors on the functions of liver, adipose, pancreas islet, skeletal muscle, kidney, heart, brain and small intestine. It is important to find the potential correlations between direct and/or indirect risk factors and healthy problems under excess dietary fructose consumption. PMID:28353649

  2. Sucrose, high-fructose corn syrup, and fructose, their metabolism and potential health effects: what do we really know?

    PubMed

    Rippe, James M; Angelopoulos, Theodore J

    2013-03-01

    Both controversy and confusion exist concerning fructose, sucrose, and high-fructose corn syrup (HFCS) with respect to their metabolism and health effects. These concerns have often been fueled by speculation based on limited data or animal studies. In retrospect, recent controversies arose when a scientific commentary was published suggesting a possible unique link between HFCS consumption and obesity. Since then, a broad scientific consensus has emerged that there are no metabolic or endocrine response differences between HFCS and sucrose related to obesity or any other adverse health outcome. This equivalence is not surprising given that both of these sugars contain approximately equal amounts of fructose and glucose, contain the same number of calories, possess the same level of sweetness, and are absorbed identically through the gastrointestinal tract. Research comparing pure fructose with pure glucose, although interesting from a scientific point of view, has limited application to human nutrition given that neither is consumed to an appreciable degree in isolation in the human diet. Whether there is a link between fructose, HFCS, or sucrose and increased risk of heart disease, metabolic syndrome, or fatty infiltration of the liver or muscle remains in dispute with different studies using different methodologies arriving at different conclusions. Further randomized clinical trials are needed to resolve many of these issues. The purpose of this review is to summarize current knowledge about the metabolism, endocrine responses, and potential health effects of sucrose, HFCS, and fructose.

  3. No difference in ad libitum energy intake in healthy men and women consuming beverages sweetened with fructose, glucose, or high-fructose corn syrup: a randomized trial.

    PubMed

    Kuzma, Jessica N; Cromer, Gail; Hagman, Derek K; Breymeyer, Kara L; Roth, Christian L; Foster-Schubert, Karen E; Holte, Sarah E; Callahan, Holly S; Weigle, David S; Kratz, Mario

    2015-12-01

    Increased energy intake is consistently observed in individuals consuming sugar-sweetened beverages (SSBs), likely mainly because of an inadequate satiety response to liquid calories. However, SSBs have a high content of fructose, the consumption of which acutely fails to trigger responses in key signals involved in energy homeostasis. It is unclear whether the fructose content of SSBs contributes to the increased energy intake in individuals drinking SSBs. We investigated whether the relative amounts of fructose and glucose in SSBs modifies ad libitum energy intake over 8 d in healthy adults without fructose malabsorption. We conducted 2 randomized, controlled, double-blind crossover studies to compare the effects of consuming 4 servings/d of a fructose-, glucose-, or aspartame-sweetened beverage (study A; n = 9) or a fructose-, glucose-, or high-fructose corn syrup (HFCS)-sweetened beverage (study B; n = 24) for 8 d on overall energy intake. SSBs were provided at 25% of estimated energy requirement, or an equivalent volume of the aspartame-sweetened beverage, and consumption was mandatory. All solid foods were provided at 125% of estimated energy requirements and were consumed ad libitum. In study A, ad libitum energy intake was 120% ± 10%, 117% ± 12%, and 102% ± 15% of estimated energy requirements when subjects consumed the fructose-, glucose-, and aspartame-sweetened beverages. Energy intake was significantly higher in the fructose and glucose phases than in the aspartame phase (P < 0.003 for each), with no difference between the fructose and glucose phases (P = 0.462). In study B, total energy intake during the fructose, HFCS, and glucose phases was 116% ± 14%, 116% ± 16%, and 116% ± 16% of the subject's estimated total energy requirements (P = 0.880). In healthy adults, total 8-d ad libitum energy intake was increased in individuals consuming SSBs compared with aspartame-sweetened beverages. The energy overconsumption observed in individuals consuming

  4. Glycemic effect of nutritive sweeteners: Honey, sugar and high fructose corn syrup

    USDA-ARS?s Scientific Manuscript database

    Controversy currently exists over whether all nutritive sweeteners produce similar metabolic effects. Using a randomized, crossover design we evaluated the effects of chronic consumption of 3 nutritive sweeteners (honey, sucrose and high fructose corn syrup (HFCS)) on glucose tolerance in overweigh...

  5. The role of high-fructose corn syrup in metabolic syndrome and hypertension.

    PubMed

    Ferder, Leon; Ferder, Marcelo Damián; Inserra, Felipe

    2010-04-01

    Obesity and related diseases are an important and growing health concern in the United States and around the world. Soft drinks and other sugar-sweetened beverages are now the primary sources of added sugars in Americans' diets. The metabolic syndrome is a cluster of common pathologies, including abdominal obesity linked to an excess of visceral fat, fatty liver, insulin resistance, hyperinsulinemia, dyslipidemia, and hypertension. Trends in all of these alterations are related to the consumption of dietary fructose and the introduction of high-fructose corn syrup (HFCS) as a sweetener in soft drinks and other foods. Experimental and clinical evidence suggests a progressive association between HFCS consumption, obesity, and the other injury processes. However, experimental HFCS consumption seems to produce some of the changes associated with metabolic syndrome even without increasing the body weight. Metabolic damage associated with HFCS probably is not limited to obesity-pathway mechanisms.

  6. Energy and Fructose From Beverages Sweetened With Sugar or High-Fructose Corn Syrup Pose a Health Risk for Some People12

    PubMed Central

    Bray, George A.

    2013-01-01

    Sugar intake in the United States has increased by >40 fold since the American Revolution. The health concerns that have been raised about the amounts of sugar that are in the current diet, primarily as beverages, are the subject of this review. Just less than 50% of the added sugars (sugar and high-fructose corn syrup) are found in soft drinks and fruit drinks. The intake of soft drinks has increased 5-fold between 1950 and 2000. Most meta-analyses have shown that the risk of obesity, diabetes, cardiovascular disease, and metabolic syndrome are related to consumption of beverages sweetened with sugar or high-fructose corn syrup. Calorically sweetened beverage intake has also been related to the risk of nonalcoholic fatty liver disease, and, in men, gout. Calorically sweetened beverages contribute to obesity through their caloric load, and the intake of beverages does not produce a corresponding reduction in the intake of other food, suggesting that beverage calories are “add-on” calories. The increase in plasma triglyceride concentrations by sugar-sweetened beverages can be attributed to fructose rather than glucose in sugar. Several randomized trials of sugar-containing soft drinks versus low-calorie or calorie-free beverages show that either sugar, 50% of which is fructose, or fructose alone increases triglycerides, body weight, visceral adipose tissue, muscle fat, and liver fat. Fructose is metabolized primarily in the liver. When it is taken up by the liver, ATP decreases rapidly as the phosphate is transferred to fructose in a form that makes it easy to convert to lipid precursors. Fructose intake enhances lipogenesis and the production of uric acid. By worsening blood lipids, contributing to obesity, diabetes, fatty liver, and gout, fructose in the amounts currently consumed is hazardous to the health of some people. PMID:23493538

  7. 21 CFR 184.1866 - High fructose corn syrup.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false High fructose corn syrup. 184.1866 Section 184... as GRAS § 184.1866 High fructose corn syrup. (a) High fructose corn syrup, a sweet, nutritive... to the identity and specifications listed in the monograph entitled “High-Fructose Corn Syrup” in the...

  8. 21 CFR 184.1866 - High fructose corn syrup.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false High fructose corn syrup. 184.1866 Section 184... Listing of Specific Substances Affirmed as GRAS § 184.1866 High fructose corn syrup. (a) High fructose... entitled “High-Fructose Corn Syrup” in the Food Chemicals Codex, 4th ed. (1996), pp. 191-192, which is...

  9. 21 CFR 184.1866 - High fructose corn syrup.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false High fructose corn syrup. 184.1866 Section 184... Listing of Specific Substances Affirmed as GRAS § 184.1866 High fructose corn syrup. (a) High fructose... entitled “High-Fructose Corn Syrup” in the Food Chemicals Codex, 4th ed. (1996), pp. 191-192, which is...

  10. 21 CFR 184.1866 - High fructose corn syrup.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true High fructose corn syrup. 184.1866 Section 184.1866... Listing of Specific Substances Affirmed as GRAS § 184.1866 High fructose corn syrup. (a) High fructose... entitled “High-Fructose Corn Syrup” in the Food Chemicals Codex, 4th ed. (1996), pp. 191-192, which is...

  11. 21 CFR 184.1866 - High fructose corn syrup.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false High fructose corn syrup. 184.1866 Section 184... Listing of Specific Substances Affirmed as GRAS § 184.1866 High fructose corn syrup. (a) High fructose... entitled “High-Fructose Corn Syrup” in the Food Chemicals Codex, 4th ed. (1996), pp. 191-192, which is...

  12. Fructose and NAFLD: The Multifaceted Aspects of Fructose Metabolism

    PubMed Central

    Jegatheesan, Prasanthi; De Bandt, Jean-Pascal

    2017-01-01

    Among various factors, such as an unhealthy diet or a sedentarity lifestyle, excessive fructose consumption is known to favor nonalcoholic fatty liver disease (NAFLD), as fructose is both a substrate and an inducer of hepatic de novo lipogenesis. The present review presents some well-established mechanisms and new clues to better understand the pathophysiology of fructose-induced NAFLD. Beyond its lipogenic effect, fructose intake is also at the onset of hepatic inflammation and cellular stress, such as oxidative and endoplasmic stress, that are key factors contributing to the progression of simple steatosis to nonalcoholic steatohepatitis (NASH). Beyond its hepatic effects, this carbohydrate may exert direct and indirect effects at the peripheral level. Excessive fructose consumption is associated, for example, with the release by the liver of several key mediators leading to alterations in the communication between the liver and the gut, muscles, and adipose tissue and to disease aggravation. These multifaceted aspects of fructose properties are in part specific to fructose, but are also shared in part with sucrose and glucose present in energy–dense beverages and foods. All these aspects must be taken into account in the development of new therapeutic strategies and thereby to better prevent NAFLD. PMID:28273805

  13. No difference in ad libitum energy intake in healthy men and women consuming beverages sweetened with fructose, glucose, or high-fructose corn syrup: a randomized trial1

    PubMed Central

    Kuzma, Jessica N; Cromer, Gail; Hagman, Derek K; Breymeyer, Kara L; Roth, Christian L; Foster-Schubert, Karen E; Holte, Sarah E; Callahan, Holly S; Weigle, David S; Kratz, Mario

    2015-01-01

    Background: Increased energy intake is consistently observed in individuals consuming sugar-sweetened beverages (SSBs), likely mainly because of an inadequate satiety response to liquid calories. However, SSBs have a high content of fructose, the consumption of which acutely fails to trigger responses in key signals involved in energy homeostasis. It is unclear whether the fructose content of SSBs contributes to the increased energy intake in individuals drinking SSBs. Objective: We investigated whether the relative amounts of fructose and glucose in SSBs modifies ad libitum energy intake over 8 d in healthy adults without fructose malabsorption. Design: We conducted 2 randomized, controlled, double-blind crossover studies to compare the effects of consuming 4 servings/d of a fructose-, glucose-, or aspartame-sweetened beverage (study A; n = 9) or a fructose-, glucose-, or high-fructose corn syrup (HFCS)–sweetened beverage (study B; n = 24) for 8 d on overall energy intake. SSBs were provided at 25% of estimated energy requirement, or an equivalent volume of the aspartame-sweetened beverage, and consumption was mandatory. All solid foods were provided at 125% of estimated energy requirements and were consumed ad libitum. Results: In study A, ad libitum energy intake was 120% ± 10%, 117% ± 12%, and 102% ± 15% of estimated energy requirements when subjects consumed the fructose-, glucose-, and aspartame-sweetened beverages. Energy intake was significantly higher in the fructose and glucose phases than in the aspartame phase (P < 0.003 for each), with no difference between the fructose and glucose phases (P = 0.462). In study B, total energy intake during the fructose, HFCS, and glucose phases was 116% ± 14%, 116% ± 16%, and 116% ± 16% of the subject’s estimated total energy requirements (P = 0.880). Conclusions: In healthy adults, total 8-d ad libitum energy intake was increased in individuals consuming SSBs compared with aspartame-sweetened beverages. The

  14. Effect of a High-Fructose Weight-Maintaining Diet on Lipogenesis and Liver Fat

    PubMed Central

    Noworolski, Susan M.; Wen, Michael J.; Dyachenko, Artem; Prior, Jessica L.; Weinberg, Melissa E.; Herraiz, Laurie A.; Tai, Viva W.; Bergeron, Nathalie; Bersot, Thomas P.; Rao, Madhu N.; Schambelan, Morris; Mulligan, Kathleen

    2015-01-01

    Context: Consumption of high-fructose diets promotes hepatic fatty acid synthesis (de novo lipogenesis [DNL]) and an atherogenic lipid profile. It is unclear whether these effects occur independent of positive energy balance and weight gain. Objectives: We compared the effects of a high-fructose, (25% of energy content) weight-maintaining diet to those of an isocaloric diet with the same macronutrient distribution but in which complex carbohydrate (CCHO) was substituted for fructose. Design, Setting, and Participants: Eight healthy men were studied as inpatients for consecutive 9-day periods. Stable isotope tracers were used to measure fractional hepatic DNL and endogenous glucose production (EGP) and its suppression during a euglycemic-hyperinsulinemic clamp. Liver fat was measured by magnetic resonance spectroscopy. Results: Weight remained stable. Regardless of the order in which the diets were fed, the high-fructose diet was associated with both higher DNL (average, 18.6 ± 1.4% vs 11.0 ± 1.4% for CCHO; P = .001) and higher liver fat (median, +137% of CCHO; P = .016) in all participants. Fasting EGP and insulin-mediated glucose disposal did not differ significantly, but EGP during hyperinsulinemia was greater (0.60 ± 0.07 vs 0.46 ± 0.06 mg/kg/min; P = .013) with the high-fructose diet, suggesting blunted suppression of EGP. Conclusion: Short-term high-fructose intake was associated with increased DNL and liver fat in healthy men fed weight-maintaining diets. PMID:25825943

  15. Sucrose, High-Fructose Corn Syrup, and Fructose, Their Metabolism and Potential Health Effects: What Do We Really Know?12

    PubMed Central

    Rippe, James M.; Angelopoulos, Theodore J.

    2013-01-01

    Both controversy and confusion exist concerning fructose, sucrose, and high-fructose corn syrup (HFCS) with respect to their metabolism and health effects. These concerns have often been fueled by speculation based on limited data or animal studies. In retrospect, recent controversies arose when a scientific commentary was published suggesting a possible unique link between HFCS consumption and obesity. Since then, a broad scientific consensus has emerged that there are no metabolic or endocrine response differences between HFCS and sucrose related to obesity or any other adverse health outcome. This equivalence is not surprising given that both of these sugars contain approximately equal amounts of fructose and glucose, contain the same number of calories, possess the same level of sweetness, and are absorbed identically through the gastrointestinal tract. Research comparing pure fructose with pure glucose, although interesting from a scientific point of view, has limited application to human nutrition given that neither is consumed to an appreciable degree in isolation in the human diet. Whether there is a link between fructose, HFCS, or sucrose and increased risk of heart disease, metabolic syndrome, or fatty infiltration of the liver or muscle remains in dispute with different studies using different methodologies arriving at different conclusions. Further randomized clinical trials are needed to resolve many of these issues. The purpose of this review is to summarize current knowledge about the metabolism, endocrine responses, and potential health effects of sucrose, HFCS, and fructose. PMID:23493540

  16. Physiological handling of dietary fructose-containing sugars: implications for health.

    PubMed

    Campos, V C; Tappy, L

    2016-03-01

    Fructose has always been present in our diet, but its consumption has increased markedly over the past 200 years. This is mainly due to consumption of sucrose or high-fructose corn syrup in industrial foods and beverages. Unlike glucose, fructose cannot be directly used as an energy source by all cells of the human body and needs first to be converted into glucose, lactate or fatty acids in the liver, intestine and kidney. Because of this specific two-step metabolism, some energy is consumed in splanchnic organs to convert fructose into other substrates, resulting in a lower net energy efficiency of fructose compared with glucose. A high intake of fructose-containing sugars is associated with body weight gain in large cohort studies, and fructose can certainly contribute to energy imbalance leading to obesity. Whether fructose-containing foods promote obesity more than other energy-dense foods remains controversial, however. A short-term (days-weeks) high-fructose intake is not associated with an increased fasting glycemia nor to an impaired insulin-mediated glucose transport in healthy subjects. It, however, increases hepatic glucose production, basal and postprandial blood triglyceride concentrations and intrahepatic fat content. Whether these metabolic alterations are early markers of metabolic dysfunction or merely adaptations to the specific two-step fructose metabolism remain unknown.

  17. High-fructose corn syrup, energy intake, and appetite regulation.

    PubMed

    Melanson, Kathleen J; Angelopoulos, Theodore J; Nguyen, Von; Zukley, Linda; Lowndes, Joshua; Rippe, James M

    2008-12-01

    High-fructose corn syrup (HFCS) has been implicated in excess weight gain through mechanisms seen in some acute feeding studies and by virtue of its abundance in the food supply during years of increasing obesity. Compared with pure glucose, fructose is thought to be associated with insufficient secretion of insulin and leptin and suppression of ghrelin. However, when HFCS is compared with sucrose, the more commonly consumed sweetener, such differences are not apparent, and appetite and energy intake do not differ in the short-term. Longer-term studies on connections between HFCS, potential mechanisms, and body weight have not been conducted. The main objective of this review was to examine collective data on associations between consumption of HFCS and energy balance, with particular focus on energy intake and its regulation.

  18. Effect of Restriction of Foods with High Fructose Corn Syrup Content on Metabolic Indices and Fatty Liver in Obese Children.

    PubMed

    Ibarra-Reynoso, Lorena Del Rocio; López-Lemus, Hilda Lissette; Garay-Sevilla, Ma Eugenia; Malacara, Juan Manuel

    2017-01-01

    We examined the effect of restriction of foods with high fructose content in obese school children. In a clinical study, we selected 54 obese children 6 to 11 years old with high fructose consumption (>70 g/day) in order indicate dietary fructose restriction (<20 g/day) for 6 weeks. Anthropometry, liver ultrasound as well as glucose, insulin, lipids, leptin, IGFBP1, and RBP4 serum levels were collected. The group of children had 80% adherence and reported decreased fructose consumption (110 ± 38.6 to 11.4 ± 12.0 g/day) and also a significant decrease in caloric (2,384 ± 568 to 1,757 ± 387 kcal/day) and carbohydrate consumption (302 ± 80.4 to 203 ± 56.0 g/day). The severity of steatosis improved significantly after fructose restriction (p < 0.000001). However, no changes in BMI, systolic blood pressure, or diastolic blood pressure were found. Only triglyceride levels decreased (1.44 ± 0.43 to 1.31 ± 0.38 mmol/l), High-densitiy lipoprotein cholesterol showed a marginal increase (1.45 ± 0.19 to 1.56 ± 0.44 mmol/l). Insulin resistance and RBP4 did not change. In school children, the restriction of high fructose foods with a decrease of caloric and carbohydrate intake at 6 weeks did not induce weight loss; however, triglyceride levels and hepatic steatosis decreased. Differences with other studies in regard to weight loss may be explained by adaptive changes on metabolic expenditure. © 2017 The Author(s) Published by S. Karger GmbH, Freiburg.

  19. Effect of Restriction of Foods with High Fructose Corn Syrup Content on Metabolic Indices and Fatty Liver in Obese Children

    PubMed Central

    Ibarra-Reynoso, Lorena del Rocio; López-Lemus, Hilda Lissette; Garay-Sevilla, Ma Eugenia; Malacara, Juan Manuel

    2017-01-01

    Objective We examined the effect of restriction of foods with high fructose content in obese school children. Methods In a clinical study, we selected 54 obese children 6 to 11 years old with high fructose consumption (>70 g/day) in order indicate dietary fructose restriction (<20 g/day) for 6 weeks. Anthropometry, liver ultrasound as well as glucose, insulin, lipids, leptin, IGFBP1, and RBP4 serum levels were collected. Results The group of children had 80% adherence and reported decreased fructose consumption (110 ± 38.6 to 11.4 ± 12.0 g/day) and also a significant decrease in caloric (2,384 ± 568 to 1,757 ± 387 kcal/day) and carbohydrate consumption (302 ± 80.4 to 203 ± 56.0 g/day). The severity of steatosis improved significantly after fructose restriction (p < 0.000001). However, no changes in BMI, systolic blood pressure, or diastolic blood pressure were found. Only triglyceride levels decreased (1.44 ± 0.43 to 1.31 ± 0.38 mmol/l), High-densitiy lipoprotein cholesterol showed a marginal increase (1.45 ± 0.19 to 1.56 ± 0.44 mmol/l). Insulin resistance and RBP4 did not change. Conclusions In school children, the restriction of high fructose foods with a decrease of caloric and carbohydrate intake at 6 weeks did not induce weight loss; however, triglyceride levels and hepatic steatosis decreased. Differences with other studies in regard to weight loss may be explained by adaptive changes on metabolic expenditure. PMID:28787728

  20. Short-term high dietary fructose intake had no effects on insulin sensitivity and secretion or glucose and lipid metabolism in healthy, obese adolescents

    USDA-ARS?s Scientific Manuscript database

    There is virtually no information on the metabolic impact of dietary fructose intake in adolescents despite their high fructose consumption, particularly via sweetened beverages. To determine the short-term metabolic effects of dietary fructose intake in obese adolescents, six volunteers (3 M/3 F; 1...

  1. Fructose, pregnancy and later life impacts.

    PubMed

    Regnault, Timothy R H; Gentili, Sheridan; Sarr, Ousseynou; Toop, Carla R; Sloboda, Deborah M

    2013-11-01

    Fructose is an increasingly common constituent of the Westernized diet due to cost and production efficiencies. Although an integral component of our pre-industrial revolution diet, over the past two decades human and animal studies have highlighted that excessive fructose intake appears to be associated with adverse metabolic effects. Excessive intake of fructose is the combined result of increased total energy consumption and increased portion sizes of foods, which often incorporate the fructose-containing sugars sucrose and high-fructose corn-syrup (HFCS). The adverse metabolic effects following excessive fructose consumption have become a hot topic in mainstream media and there is now rigorous scientific debate regarding periods of exposure, dosage levels, interactive effects with other sugars and fats and mechanisms underlying the actions of fructose. There is still a degree of controversy regarding the extent to which sugars such as sucrose and HFCS have contributed to the current epidemic of obesity and diabetes. Furthermore, an increasing number of infants are being exposed to sugar-sweetened food and beverages before birth and during early postnatal life, highlighting the importance of determining the long-term effects of this perinatal exposure on the developing offspring. There are limited human observational and controlled studies identifying associations of excessive sweetened food and beverage consumption with poor pregnancy outcomes. Animal research has demonstrated an increased incidence of gestational diabetes as well as altered maternal, fetal and offspring metabolic function, although the long-term effects and the mechanism underlying these perturbations are ill defined. This review aims to understand the role of early life fructose exposure in modifying postnatal risk of disease in the offspring, focusing on fructose intake during pregnancy and in early postnatal life. © 2013 Wiley Publishing Asia Pty Ltd.

  2. Higher Dietary Fructose Is Associated with Impaired Hepatic ATP Homeostasis in Obese Individuals with Type 2 Diabetes

    PubMed Central

    Abdelmalek, Manal F.; Lazo, Mariana; Horska, Alena; Bonekamp, Susanne; Lipkin, Edward W.; Balasubramanyam, Ashok; Bantle, John P.; Johnson, Richard J.; Diehl, Anna Mae; Clark, Jeanne M.

    2012-01-01

    Fructose consumption predicts increased hepatic fibrosis in those with nonalcoholic fatty liver disease (NAFLD). Due to its ability to lower hepatic adenosine triphosphate (ATP) levels, habitual fructose consumption could result in more hepatic ATP depletion and impaired ATP recovery. The degree of ATP depletion following an intravenous fructose challenge test in low versus high fructose consumers was assessed. We evaluated diabetic adults enrolled in the Look AHEAD Fatty Liver Ancillary Study (n=244) for whom dietary fructose consumption estimated by a 130-item Food Frequency questionnaire, hepatic ATP measured by phosphorus MRS (31P MRS) and uric acid (UA) levels were performed (n=105). In a subset of participants (n=25), an intravenous fructose challenge was utilized to assess change in hepatic ATP content. The relationships between dietary fructose, UA and hepatic ATP depletion at baseline and following intravenous fructose challenge was evaluated in low (<15 g/d) vs. high (≥15 g/d) fructose consumers. High dietary fructose consumers had slightly lower baseline hepatic ATP levels and a greater absolute change in hepatic α-ATP/Pi ratio (0.08 vs. 0.03, p=0.05) and γ-ATP /Pi ratio following an intravenous fructose challenge (0.03 vs. 0.06, p=0.06). Patients with high UA (≥5.5 mg/dl) showed a lower minimum liver ATP/Pi ratio post-fructose challenge (4.5 vs. 7.0, p = 0.04). Conclusions High fructose consumption depletes hepatic ATP and impairs recovery from ATP depletion following an intravenous fructose challenge. Subjects with high UA show a greater nadir in hepatic ATP in response to fructose. Both high dietary fructose intake and elevated UA level may predict more severe hepatic ATP depletion in response to fructose and hence may be risk factors for the development and progression of NAFLD. PMID:22467259

  3. Genetically Engineered Escherichia coli Nissle 1917 Synbiotics Reduce Metabolic Effects Induced by Chronic Consumption of Dietary Fructose

    PubMed Central

    Somabhai, Chaudhari Archana; Raghuvanshi, Ruma; Nareshkumar, G.

    2016-01-01

    Aims To assess protective efficacy of genetically modified Escherichia coli Nissle 1917 (EcN) on metabolic effects induced by chronic consumption of dietary fructose. Materials and Methods EcN was genetically modified with fructose dehydrogenase (fdh) gene for conversion of fructose to 5-keto-D-fructose and mannitol-2-dehydrogenase (mtlK) gene for conversion to mannitol, a prebiotic. Charles foster rats weighing 150–200 g were fed with 20% fructose in drinking water for two months. Probiotic treatment of EcN (pqq), EcN (pqq-glf-mtlK), EcN (pqq-fdh) was given once per week 109 cells for two months. Furthermore, blood and liver parameters for oxidative stress, dyslipidemia and hyperglycemia were estimated. Fecal samples were collected to determine the production of short chain fatty acids and pyrroloquinoline quinone (PQQ) production. Results EcN (pqq-glf-mtlK), EcN (pqq-fdh) transformants were confirmed by restriction digestion and functionality was checked by PQQ estimation and HPLC analysis. There was significant increase in body weight, serum glucose, liver injury markers, lipid profile in serum and liver, and decrease in antioxidant enzyme activity in high-fructose-fed rats. However the rats treated with EcN (pqq-glf-mtlK) and EcN (pqq-fdh) showed significant reduction in lipid peroxidation along with increase in serum and hepatic antioxidant enzyme activities. Restoration of liver injury marker enzymes was also seen. Increase in short chain fatty acids (SCFA) demonstrated the prebiotic effects of mannitol and gluconic acid. Conclusions Our study demonstrated the effectiveness of probiotic EcN producing PQQ and fructose metabolizing enzymes against the fructose induced hepatic steatosis suggesting that its potential for use in treating fructose induced metabolic syndrome. PMID:27760187

  4. The expression and activity of antioxidant enzymes in the liver of rats exposed to high-fructose diet in the period from weaning to adulthood.

    PubMed

    Glban, Alhadi M; Vasiljević, Ana; Veličković, Nataša; Nikolić-Kokić, Aleksandra; Blagojević, Duško; Matić, Gordana; Nestorov, Jelena

    2015-08-30

    Increased fructose consumption correlates with rising prevalence of various metabolic disorders, some of which were linked to oxidative stress. The relationship between fructose consumption and oxidative stress is complex and effects of a fructose-rich diet on the young population have not been fully elucidated. The aim of this study was to investigate whether high-fructose diet applied in the period from weaning to adulthood induces oxidative stress in the liver, thus contributing to induction or aggravation of metabolic disturbances in later adulthood. To that end we examined the effects of high-fructose diet on expression and activity of antioxidant enzymes, markers of lipid peroxidation and protein damage in the liver as the main fructose metabolizing tissue. High-fructose diet increased only SOD2 (mitochondrial manganese superoxide dismutase) activity, with no effect on other antioxidant enzymes, lipid peroxidation or accumulation of damaged proteins in the liver. The results show that fructose-induced metabolic disturbances could not be attributed to oxidative stress, at least not at young age. The absence of oxidative stress in the liver observed herein implies that young organisms are capable of maintaining redox homeostasis when challenged by fructose-derived energy overload. © 2014 Society of Chemical Industry.

  5. Dietary fructose in nonalcoholic fatty liver disease.

    PubMed

    Vos, Miriam B; Lavine, Joel E

    2013-06-01

    Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease in adults and children. A number of genetic and environmental factors are known to predispose individuals to NAFLD. Certain dietary sugars, particularly fructose, are suspected to contribute to the development of NAFLD and its progression. The increasing quantity of fructose in the diet comes from sugar additives (most commonly sucrose and high fructose corn syrup) in beverages and processed foods. Substantial links have been demonstrated between increased fructose consumption and obesity, dyslipidemia, and insulin resistance. Growing evidence suggests that fructose contributes to the development and severity of NAFLD. In human studies, fructose is associated with increasing hepatic fat, inflammation, and possibly fibrosis. Whether fructose alone can cause NAFLD or if it serves only as a contributor when consumed excessively in the setting of insulin resistance, positive energy balance, and sedentary lifestyle is unknown. Sufficient evidence exists to support clinical recommendations that fructose intake be limited through decreasing foods and drinks high in added (fructose-containing) sugars. Copyright © 2013 American Association for the Study of Liver Diseases.

  6. The effects of Mucuna pruriens on the renal oxidative stress and transcription factors in high-fructose-fed rats.

    PubMed

    Ulu, Ramazan; Gozel, Nevzat; Tuzcu, Mehmet; Orhan, Cemal; Yiğit, İrem Pembegül; Dogukan, Ayhan; Telceken, Hafize; Üçer, Özlem; Kemeç, Zeki; Kaman, Dilara; Juturu, Vijaya; Sahin, Kazim

    2018-05-31

    In the present study, we evaluated the effects of M. pruriens administration on metabolic parameters, oxidative stress and kidney nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and nuclear factor (erythroid-derived 2)-like 2 (Nrf2) signaling pathways in high-fructose fed rats. Male rats (n = 28) were divided into 4 groups as control, M. pruriens, fructose, and M. pruriens plus fructose. All rats were fed a standard diet supplemented or no supplemented with M. pruriens (200 mg/kg/d by gavage). Fructose was given in drinking water for 8 weeks. High fructose consumption led to an increase in the serum level of glucose, triglyceride, urea and renal malondialdehyde (MDA) levels. Although M. pruriens treatment reduced triglyceride and MDA levels, it did not affect other parameters. M. pruriens supplementation significantly decreased the expression of NF-ҡB and decreased expression of Nrf2 and HO-1 proteins in the kidney. This study showed that the adverse effects of high fructose were alleviated by M. pruriens supplementation via modulation of the expression of kidney nuclear transcription factors in rats fed high fructose diet. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Fructose: It’s “Alcohol Without the Buzz”123

    PubMed Central

    Lustig, Robert H.

    2013-01-01

    What do the Atkins Diet and the traditional Japanese diet have in common? The Atkins Diet is low in carbohydrate and usually high in fat; the Japanese diet is high in carbohydrate and usually low in fat. Yet both work to promote weight loss. One commonality of both diets is that they both eliminate the monosaccharide fructose. Sucrose (table sugar) and its synthetic sister high fructose corn syrup consist of 2 molecules, glucose and fructose. Glucose is the molecule that when polymerized forms starch, which has a high glycemic index, generates an insulin response, and is not particularly sweet. Fructose is found in fruit, does not generate an insulin response, and is very sweet. Fructose consumption has increased worldwide, paralleling the obesity and chronic metabolic disease pandemic. Sugar (i.e., fructose-containing mixtures) has been vilified by nutritionists for ages as a source of “empty calories,” no different from any other empty calorie. However, fructose is unlike glucose. In the hypercaloric glycogen-replete state, intermediary metabolites from fructose metabolism overwhelm hepatic mitochondrial capacity, which promotes de novo lipogenesis and leads to hepatic insulin resistance, which drives chronic metabolic disease. Fructose also promotes reactive oxygen species formation, which leads to cellular dysfunction and aging, and promotes changes in the brain’s reward system, which drives excessive consumption. Thus, fructose can exert detrimental health effects beyond its calories and in ways that mimic those of ethanol, its metabolic cousin. Indeed, the only distinction is that because fructose is not metabolized in the central nervous system, it does not exert the acute neuronal depression experienced by those imbibing ethanol. These metabolic and hedonic analogies argue that fructose should be thought of as “alcohol without the buzz.” PMID:23493539

  8. Amelioration of High Fructose-Induced Cardiac Hypertrophy by Naringin.

    PubMed

    Park, Jung Hyun; Ku, Hyeong Jun; Kim, Jae Kyeom; Park, Jeen-Woo; Lee, Jin Hyup

    2018-06-21

    Heart failure is a frequent unfavorable outcome of pathological cardiac hypertrophy. Recent increase in dietary fructose consumption mirrors the rise in prevalence of cardiovascular diseases such as cardiac hypertrophy leading to concerns raised by public health experts. Mitochondria, comprising 30% of cardiomyocyte volume, play a central role in modulating redox-dependent cellular processes such as metabolism and apoptosis. Furthermore, mitochondrial dysfunction is a key cause of pathogenesis of fructose-induced cardiac hypertrophy. Naringin, a major flavanone glycoside in citrus species, has displayed strong antioxidant potential in models of oxidative stress. In this study, we evaluated protective effects of naringin against fructose-induced cardiac hypertrophy and associated mechanisms of action, using in vitro and in vivo models. We found that naringin suppressed mitochondrial ROS production and mitochondrial dysfunction in cardiomyocytes exposed to fructose and consequently reduced cardiomyocyte hypertrophy by regulating AMPK-mTOR signaling axis. Furthermore, naringin counteracted fructose-induced cardiomyocyte apoptosis, and this function of naringin was linked to its ability to inhibit ROS-dependent ATM-mediated p53 signaling. This result was supported by observations in in vivo mouse model of cardiac hypertrophy. These findings indicate a novel role for naringin in protecting against fructose-induced cardiac hypertrophy and suggest unique therapeutic strategies for prevention of cardiovascular diseases.

  9. Dietary fructose and metabolic syndrome and diabetes.

    PubMed

    Bantle, John P

    2009-06-01

    Studies in both healthy and diabetic subjects demonstrated that fructose produced a smaller postprandial rise in plasma glucose and serum insulin than other common carbohydrates. Substitution of dietary fructose for other carbohydrates produced a 13% reduction in mean plasma glucose in a study of type 1 and type 2 diabetic subjects. However, there is concern that fructose may aggravate lipemia. In 1 study, day-long plasma triglycerides in healthy men were 32% greater while they consumed a high-fructose diet than while they consumed a high-glucose diet. There is also concern that fructose may be a factor contributing to the growing worldwide prevalence of obesity. Fructose stimulates insulin secretion less than does glucose and glucose-containing carbohydrates. Because insulin increases leptin release, lower circulating insulin and leptin after fructose ingestion might inhibit appetite less than consumption of other carbohydrates and lead to increased energy intake. However, there is no convincing experimental evidence that dietary fructose actually does increase energy intake. There is also no evidence that fructose accelerates protein glycation. High fructose intake has been associated with increased risk of gout in men and increased risk of kidney stones. Dietary fructose appears to have adverse effects on postprandial serum triglycerides, so adding fructose in large amounts to the diet is undesirable. Glucose may be a suitable replacement sugar. The fructose that occurs naturally in fruits and vegetables provides only a modest amount of dietary fructose and should not be of concern.

  10. Fructose and metabolic diseases: new findings, new questions.

    PubMed

    Tappy, Luc; Lê, Kim A; Tran, Christel; Paquot, Nicolas

    2010-01-01

    There has been much concern regarding the role of dietary fructose in the development of metabolic diseases. This concern arises from the continuous increase in fructose (and total added caloric sweeteners consumption) in recent decades, and from the increased use of high-fructose corn syrup (HFCS) as a sweetener. A large body of evidence shows that a high-fructose diet leads to the development of obesity, diabetes, and dyslipidemia in rodents. In humans, fructose has long been known to increase plasma triglyceride concentrations. In addition, when ingested in large amounts as part of a hypercaloric diet, it can cause hepatic insulin resistance, increased total and visceral fat mass, and accumulation of ectopic fat in the liver and skeletal muscle. These early effects may be instrumental in causing, in the long run, the development of the metabolic syndrome. There is however only limited evidence that fructose per se, when consumed in moderate amounts, has deleterious effects. Several effects of a high-fructose diet in humans can be observed with high-fat or high-glucose diets as well, suggesting that an excess caloric intake may be the main factor involved in the development of the metabolic syndrome. The major source of fructose in our diet is with sweetened beverages (and with other products in which caloric sweeteners have been added). The progressive replacement of sucrose by HFCS is however unlikely to be directly involved in the epidemy of metabolic disease, because HFCS appears to have basically the same metabolic effects as sucrose. Consumption of sweetened beverages is however clearly associated with excess calorie intake, and an increased risk of diabetes and cardiovascular diseases through an increase in body weight. This has led to the recommendation to limit the daily intake of sugar calories. Copyright © 2010 Elsevier Inc. All rights reserved.

  11. A critical examination of the evidence relating high fructose corn syrup and weight gain.

    PubMed

    Forshee, Richard A; Storey, Maureen L; Allison, David B; Glinsmann, Walter H; Hein, Gayle L; Lineback, David R; Miller, Sanford A; Nicklas, Theresa A; Weaver, Gary A; White, John S

    2007-01-01

    The use of high fructose corn syrup (HFCS) has increased over the past several decades in the United States while overweight and obesity rates have risen dramatically. Some scientists hypothesize that HFCS consumption has uniquely contributed to the increasing mean body mass index (BMI) of the U.S. population. The Center for Food, Nutrition, and Agriculture Policy convened an expert panel to discuss the published scientific literature examining the relationship between consumption of HFCS or "soft drinks" (proxy for HFCS) and weight gain. The authors conducted original analysis to address certain gaps in the literature. Evidence from ecological studies linking HFCS consumption with rising BMI rates is unreliable. Evidence from epidemiologic studies and randomized controlled trials is inconclusive. Studies analyzing the differences between HFCS and sucrose consumption and their contributions to weight gain do not exist. HFCS and sucrose have similar monosaccharide compositions and sweetness values. The fructose:glucose (F:G) ratio in the U.S. food supply has not appreciably changed since the introduction of HFCS in the 1960s. It is unclear why HFCS would affect satiety or absorption and metabolism of fructose any differently than would sucrose. Based on the currently available evidence, the expert panel concluded that HFCS does not appear to contribute to overweight and obesity any differently than do other energy sources. Research recommendations were made to improve our understanding of the association of HFCS and weight gain.

  12. Metabolic responses to prolonged consumption of glucose- and fructose-sweetened beverages are not associated with postprandial or 24-h glucose and insulin excursions123

    PubMed Central

    Stanhope, Kimber L; Griffen, Steven C; Bremer, Andrew A; Vink, Roel G; Schaefer, Ernst J; Nakajima, Katsuyuki; Schwarz, Jean-Marc; Beysen, Carine; Berglund, Lars; Keim, Nancy L; Havel, Peter J

    2011-01-01

    Background: Consumption of sugar-sweetened beverages has been shown to be associated with dyslipidemia, insulin resistance, fatty liver, diabetes, and cardiovascular disease. It has been proposed that adverse metabolic effects of chronic consumption of sugar-sweetened beverages are a consequence of increased circulating glucose and insulin excursions, ie, dietary glycemic index (GI). Objective: We determined whether the greater adverse effects of fructose than of glucose consumption were associated with glucose and insulin exposures. Design: The subjects were studied in a metabolic facility and consumed energy-balanced diets containing 55% of energy as complex carbohydrate for 2 wk (GI = 64). The subjects then consumed 25% of energy requirements as fructose- or glucose-sweetened beverages along with their usual ad libitum diets for 8 wk at home and then as part of energy-balanced diets for 2 wk at the metabolic facility (fructose GI = 38, glucose GI = 83). The 24-h glucose and insulin profiles and fasting plasma glycated albumin and fructosamine concentrations were measured 0, 2, 8, and 10 wk after beverage consumption. Results: Consumption of fructose-sweetened beverages lowered glucose and insulin postmeal peaks and the 23-h area under the curve compared with the baseline diet and with the consumption of glucose-sweetened beverages (all P < 0.001, effect of sugar). Plasma glycated albumin concentrations were lower 10 wk after fructose than after glucose consumption (P < 0.01, effect of sugar), whereas fructosamine concentrations did not differ between groups. Conclusion: The results suggest that the specific effects of fructose, but not of glucose and insulin excursions, contribute to the adverse effects of consuming sugar-sweetened beverages on lipids and insulin sensitivity. This study is registered at clinicaltrials.gov as NCT01165853. PMID:21613559

  13. Effect of fructose consumption on insulin sensitivity in nondiabetic subjects: a systematic review and meta-analysis of diet-intervention trials.

    PubMed

    Ter Horst, Kasper W; Schene, Merle R; Holman, Rebecca; Romijn, Johannes A; Serlie, Mireille J

    2016-12-01

    High fructose consumption has been suggested to contribute to several features of metabolic syndrome including insulin resistance, but to our knowledge, no previous meta-analyses have investigated the effect of fructose on insulin sensitivity in nondiabetic subjects. We performed a systematic review and meta-analysis of controlled diet-intervention studies in nondiabetic subjects to determine the effect of fructose on insulin sensitivity. We searched MEDLINE, EMBASE, and the Cochrane Library for relevant trials on the basis of predetermined eligibility criteria. Two investigators independently performed the study selection, quality assessment, and data extraction. Results were pooled with the use of the generic inverse-variance method with random effects weighting and were expressed as mean differences (MDs) or standardized mean differences (SMDs) with 95% CIs. Twenty-nine articles that described 46 comparisons in 1005 normal-weight and overweight or obese participants met the eligibility criteria. An energy-matched (isocaloric) exchange of dietary carbohydrates by fructose promoted hepatic insulin resistance (SMD: 0.47; 95% CI: 0.03, 0.91; P = 0.04) but had no effect on fasting plasma insulin concentrations (MD: -0.79 pmol/L; 95% CI: -6.41, 4.84 pmol/L; P = 0.78), the homeostasis model assessment of insulin resistance (HOMA-IR) (MD: 0.13; 95% CI: -0.07, 0.34; P = 0.21), or glucose disposal rates under euglycemic hyperinsulinemic clamp conditions (SMD: 0.00; 95% CI: 20.41, 0.41; P = 1.00). Hypercaloric fructose (∼25% excess of energy compared with that of the weight-maintenance control diet) raised fasting plasma insulin concentrations (MD: 3.38 pmol/L; 95% CI: 0.03, 6.73 pmol/L; P < 0.05) and induced hepatic insulin resistance (SMD: 0.77; 95% CI: 0.28, 1.26; P < 0.01) without affecting the HOMA-IR (MD: 0.18; 95% CI: -0.02, 0.39; P = 0.08) or glucose disposal rates (SMD: 0.10; 95% CI: -0.21, 0.40; P = 0.54). Results may have been limited by the low quality, small

  14. Rats’ preferences for high fructose corn syrup vs. sucrose and sugar mixtures

    PubMed Central

    Ackroff, Karen; Sclafani, Anthony

    2011-01-01

    High fructose corn syrup (HFCS) has replaced sucrose in many food products, which has prompted research comparing these two sweeteners in rodents. The present study examined the relative palatability of HFCS and sucrose for rats, offering 11% carbohydrate solutions to match the content of common beverages for human consumption. The animals initially preferred HFCS to sucrose but after separate experience with each solution they switched to sucrose preference. Approximating the composition of HFCS with a mixture of fructose and glucose (55:45) yielded a solution that was less attractive than sucrose or HFCS. However, HFCS contains a small amount of glucose polymers, which are very attractive to rats. A 55:42:3 mixture of fructose, glucose and glucose polymers (Polycose) was equally preferred to HFCS and was treated similarly to HFCS in comparisons vs. sucrose. Post-oral effects of sucrose, which is 50% fructose and 50% glucose, may be responsible for the shift in preference with experience. This shift, and the relatively small magnitude of differences in preference for HFCS and sucrose, suggest that palatability factors probably do not contribute to any possible difference in weight gain responses to these sweeteners. PMID:21236278

  15. Rats' preferences for high fructose corn syrup vs. sucrose and sugar mixtures.

    PubMed

    Ackroff, Karen; Sclafani, Anthony

    2011-03-28

    High fructose corn syrup (HFCS) has replaced sucrose in many food products, which has prompted research comparing these two sweeteners in rodents. The present study examined the relative palatability of HFCS and sucrose for rats, offering 11% carbohydrate solutions to match the content of common beverages for human consumption. The animals initially preferred HFCS to sucrose but after separate experience with each solution they switched to sucrose preference. Approximating the composition of HFCS with a mixture of fructose and glucose (55:45) yielded a solution that was less attractive than sucrose or HFCS. However, HFCS contains a small amount of glucose polymers, which are very attractive to rats. A 55:42:3 mixture of fructose, glucose and glucose polymers (Polycose) was equally preferred to HFCS and was treated similarly to HFCS in comparisons vs. sucrose. Post-oral effects of sucrose, which is 50% fructose and 50% glucose, may be responsible for the shift in preference with experience. This shift, and the relatively small magnitude of differences in preference for HFCS and sucrose, suggest that palatability factors probably do not contribute to any possible difference in weight gain responses to these sweeteners. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Fructose impairs glucose-induced hepatic triglyceride synthesis

    PubMed Central

    2011-01-01

    Obesity, type 2 diabetes and hyperlipidemia frequently coexist and are associated with significantly increased morbidity and mortality. Consumption of refined carbohydrate and particularly fructose has increased significantly in recent years and has paralled the increased incidence of obesity and diabetes. Human and animal studies have demonstrated that high dietary fructose intake positively correlates with increased dyslipidemia, insulin resistance, and hypertension. Metabolism of fructose occurs primarily in the liver and high fructose flux leads to enhanced hepatic triglyceride accumulation (hepatic steatosis). This results in impaired glucose and lipid metabolism and increased proinflammatory cytokine expression. Here we demonstrate that fructose alters glucose-stimulated expression of activated acetyl CoA carboxylase (ACC), pSer hormone sensitive lipase (pSerHSL) and adipose triglyceride lipase (ATGL) in hepatic HepG2 or primary hepatic cell cultures in vitro. This was associated with increased de novo triglyceride synthesis in vitro and hepatic steatosis in vivo in fructose- versus glucose-fed and standard-diet fed mice. These studies provide novel insight into the mechanisms involved in fructose-mediated hepatic hypertriglyceridemia and identify fructose-uptake as a new potential therapeutic target for lipid-associated diseases. PMID:21261970

  17. Grape powder consumption affects the expression of neurodegeneration-related brain proteins in rats chronically fed a high-fructose-high-fat diet.

    PubMed

    Liao, Hsiang; Chou, Liang-Mao; Chien, Yi-Wen; Wu, Chi-Hao; Chang, Jung-Su; Lin, Ching-I; Lin, Shyh-Hsiang

    2017-05-01

    Abnormal glucose metabolism in the brain is recognized to be associated with cognitive decline. Because grapes are rich in polyphenols that produce antioxidative and blood sugar-lowering effects, we investigated how grape consumption affects the expression and/or phosphorylation of neurodegeneration-related brain proteins in aged rats fed a high-fructose-high-fat (HFHF) diet. Wistar rats were maintained on the HFHF diet from the age of 8 weeks to 66 weeks, and then on an HFHF diet containing either 3% or 6% grape powder as an intervention for 12 weeks. Western blotting was performed to measure the expression/phosphorylation levels of several cortical and hippocampal proteins, including amyloid precursor protein (APP), tau, phosphatidylinositol-3-kinase (PI3K), extracellular signal-regulated kinase (ERK), receptor for advanced glycation end products (RAGEs), erythroid 2-related factor 2 (Nrf2) and brain-derived neurotrophic factor (BDNF). Inclusion of up to 6% grape powder in the diet markedly reduced RAGE expression and tau hyperphosphorylation, but upregulated the expression of Nrf2 and BDNF, as well as the phosphorylation of PI3K and ERK, in the brain tissues of aged rats fed the HFHF diet. Thus, grape powder consumption produced beneficial effects in HFHF-diet-fed rats, exhibiting the potential to ameliorate changes in neurodegeneration-related proteins in the brain. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. A critical examination of the evidence relating high fructose corn syrup and weight gain

    USDA-ARS?s Scientific Manuscript database

    The use of high fructose corn syrup (HFCS) has increased over the past several decades in the United States while overweight and obesity rates have risen dramatically. Some scientists hypothesize that HFCS consumption has uniquely contributed to the increasing mean body mass index (BMI) of the U.S....

  19. Consumption of sucrose, but not high fructose corn syrup, leads to increased adiposity and dyslipidaemia in the pregnant and lactating rat.

    PubMed

    Toop, C R; Muhlhausler, B S; O'Dea, K; Gentili, S

    2015-02-01

    Excess consumption of added sugars, including sucrose and high fructose corn syrup (HFCS-55), have been implicated in the global epidemics of obesity and type 2 diabetes. This study aimed to investigate and compare the impact of maternal consumption of sucrose or HFCS-55 during pregnancy and lactation on the metabolic health of the dam and her offspring at birth. Female Albino Wistar rats were given access to chow and water, in addition to a sucrose or HFCS-55 beverage (10% w/v) before, and during pregnancy and lactation. Maternal glucose tolerance was determined throughout the study, and a postmortem was conducted on dams following lactation, and on offspring within 24 h of birth. Sucrose and HFCS-55 consumption resulted in increased total energy intake compared with controls, however the increase from sucrose consumption was accompanied by a compensatory decrease in chow consumption. There was no effect of sucrose or HFCS-55 consumption on body weight, however sucrose consumption resulted in increased adiposity and elevated total plasma cholesterol in the dam, while HFCS-55 consumption resulted in increased plasma insulin and decreased plasma non-esterified fatty acids (NEFA). Maternal HFCS-55 consumption was associated with decreased relative liver weight and plasma NEFA in the offspring at birth. There was no effect of either treatment on pup weight at birth. These findings suggest that both sucrose and HFCS-55 consumption during pregnancy and lactation have the potential to impact negatively on maternal metabolic health, which may have adverse consequences for the long-term health of the offspring.

  20. The sweet path to metabolic demise: fructose and lipid synthesis

    PubMed Central

    Herman, Mark A.; Samuel, Varman T.

    2016-01-01

    Epidemiological studies link fructose consumption with metabolic disease, an association attributable in part to fructose mediated lipogenesis. The mechanisms governing fructose-induced lipogenesis and disease remain debated. Acutely, fructose increases de novo lipogenesis through the efficient and uninhibited action of Ketohexokinase and Aldolase B, which yields substrates for fatty-acid synthesis. Chronic fructose consumption further enhances the capacity for hepatic fructose metabolism via activation of several key transcription factors (i.e. SREBP1c and ChREBP), which augment expression of lipogenic enzymes, increasing lipogenesis, further compounding hypertriglyceridemia, and hepatic steatosis. Hepatic insulin resistance develops from diacylglycerol-PKCε mediated impairment of insulin signaling and possibly additional mechanisms. Initiatives that decrease fructose consumption and therapies that block fructose mediated lipogenesis are needed to avert future metabolic pandemics. PMID:27387598

  1. High fructose corn syrup use in beverages: Composition, manufacturing, properties, consumption, and health effects

    USDA-ARS?s Scientific Manuscript database

    High-fructose corn syrup (HFCS) has been used in beverages for more than 30 years. Technology to produce it was developed in the 1960s, it was introduced to the food and beverage industry as a liquid sweetener alternative to sucrose (sugar) in the 1970s, and it fully replaced sucrose in the USA in m...

  2. SGLT5 Reabsorbs Fructose in the Kidney but Its Deficiency Paradoxically Exacerbates Hepatic Steatosis Induced by Fructose

    PubMed Central

    Fukuzawa, Taku; Fukazawa, Masanori; Ueda, Otoya; Shimada, Hideaki; Kito, Aki; Kakefuda, Mami; Kawase, Yosuke; Wada, Naoko A.; Goto, Chisato; Fukushima, Naoshi; Jishage, Kou-ichi; Honda, Kiyofumi; King, George L.; Kawabe, Yoshiki

    2013-01-01

    Although excessive fructose intake is epidemiologically linked with dyslipidemia, obesity, and diabetes, the mechanisms regulating plasma fructose are not well known. Cells transfected with sodium/glucose cotransporter 5 (SGLT5), which is expressed exclusively in the kidney, transport fructose in vitro; however, the physiological role of this transporter in fructose metabolism remains unclear. To determine whether SGLT5 functions as a fructose transporter in vivo, we established a line of mice lacking the gene encoding SGLT5. Sodium-dependent fructose uptake disappeared in renal brush border membrane vesicles from SGLT5-deficient mice, and the increased urinary fructose in SGLT5-deficient mice indicated that SGLT5 was the major fructose reabsorption transporter in the kidney. From this, we hypothesized that urinary fructose excretion induced by SGLT5 deficiency would ameliorate fructose-induced hepatic steatosis. To test this hypothesis we compared SGLT5-deficient mice with wild-type mice under conditions of long-term fructose consumption. Paradoxically, however, fructose-induced hepatic steatosis was exacerbated in the SGLT5-deficient mice, and the massive urinary fructose excretion was accompanied by reduced levels of plasma triglycerides and epididymal fat but fasting hyperinsulinemia compared with fructose-fed wild-type mice. There was no difference in food consumption, water intake, or plasma fructose between the two types of mice. No compensatory effect by other transporters reportedly involved in fructose uptake in the liver and kidney were indicated at the mRNA level. These surprising findings indicated a previously unrecognized link through SGLT5 between renal fructose reabsorption and hepatic lipid metabolism. PMID:23451068

  3. Mechanism of activation of glycogen phosphorylase by fructose in the liver. Stimulation of phosphorylase kinase related to the consumption of adenosine triphosphate.

    PubMed

    Van de Werve, G; Hers, H G

    1979-01-15

    1. A dose-dependent activation of phosphorylase and consumption of ATP was observed in isolated hepatocytes incubated in the presence of fructose; histone kinase and phosphorylase kinase activities were unchanged at doses of this sugar that were fully effective on phosphorylase. The activation of phosphorylase by fructose was also observed in cells incubated in a Ca2+-free medium as well as in the livers of rats in vivo. 2. In a liver high-speed supernatant, fructose, tagatose and sorbose stimulated the activity of phosphorylase kinase; this effect was dependent on the presence of K+ ions, which are required for the activity of fructokinase; it was accompanied by the transformation of ATP into ADP. In the presence of hexokinase, glucose also stimulated phosphorylase kinase, both in an Na+ or a K+ medium. 3. The activities of partially purified muscle or liver phosphorylase kinase were unchanged in the presence of fructose. 4. Some properties of liver phosphorylase kinase are described, including a high molecular weight and an inhibition at ATP/Mg ratios above 0.5, as well as an effect of ATP concentration on the hysteretic behaviour of this enzyme. 5. The effect of fructose on the activation of phosphorylase is discussed in relation to the comsumption of ATP.

  4. Diabetes regulates fructose absorption through thioredoxin-interacting protein

    PubMed Central

    Dotimas, James R; Lee, Austin W; Schmider, Angela B; Carroll, Shannon H; Shah, Anu; Bilen, Julide; Elliott, Kayla R; Myers, Ronald B; Soberman, Roy J; Yoshioka, Jun; Lee, Richard T

    2016-01-01

    Metabolic studies suggest that the absorptive capacity of the small intestine for fructose is limited, though the molecular mechanisms controlling this process remain unknown. Here we demonstrate that thioredoxin-interacting protein (Txnip), which regulates glucose homeostasis in mammals, binds to fructose transporters and promotes fructose absorption by the small intestine. Deletion of Txnip in mice reduced fructose transport into the peripheral bloodstream and liver, as well as the severity of adverse metabolic outcomes resulting from long-term fructose consumption. We also demonstrate that fructose consumption induces expression of Txnip in the small intestine. Diabetic mice had increased expression of Txnip in the small intestine as well as enhanced fructose uptake and transport into the hepatic portal circulation. The deletion of Txnip in mice abolished the diabetes-induced increase in fructose absorption. Our results indicate that Txnip is a critical regulator of fructose metabolism and suggest that a diabetic state can promote fructose uptake. DOI: http://dx.doi.org/10.7554/eLife.18313.001 PMID:27725089

  5. Diabetes regulates fructose absorption through thioredoxin-interacting protein.

    PubMed

    Dotimas, James R; Lee, Austin W; Schmider, Angela B; Carroll, Shannon H; Shah, Anu; Bilen, Julide; Elliott, Kayla R; Myers, Ronald B; Soberman, Roy J; Yoshioka, Jun; Lee, Richard T

    2016-10-11

    Metabolic studies suggest that the absorptive capacity of the small intestine for fructose is limited, though the molecular mechanisms controlling this process remain unknown. Here we demonstrate that thioredoxin-interacting protein (Txnip), which regulates glucose homeostasis in mammals, binds to fructose transporters and promotes fructose absorption by the small intestine. Deletion of Txnip in mice reduced fructose transport into the peripheral bloodstream and liver, as well as the severity of adverse metabolic outcomes resulting from long-term fructose consumption. We also demonstrate that fructose consumption induces expression of Txnip in the small intestine. Diabetic mice had increased expression of Txnip in the small intestine as well as enhanced fructose uptake and transport into the hepatic portal circulation. The deletion of Txnip in mice abolished the diabetes-induced increase in fructose absorption. Our results indicate that Txnip is a critical regulator of fructose metabolism and suggest that a diabetic state can promote fructose uptake.

  6. High-Fructose Corn Syrup: What Are the Concerns?

    MedlinePlus

    Healthy Lifestyle Nutrition and healthy eating What is high-fructose corn syrup? What are the health concerns? Answers from Katherine Zeratsky, R.D., L.D. High-fructose corn syrup is a common sweetener in sodas and fruit- ...

  7. The effects of fructose-containing sugars on weight, body composition and cardiometabolic risk factors when consumed at up to the 90th percentile population consumption level for fructose.

    PubMed

    Lowndes, Joshua; Sinnett, Stephanie; Yu, Zhiping; Rippe, James

    2014-08-08

    The American Heart Association (AHA) and World Health Organization (WHO) have recommended restricting calories from added sugars at lower levels than the Institute of Medicine (IOM) recommendations, which are incorporated in the Dietary Guidelines for Americans 2010 (DGAs 2010). Sucrose (SUC) and high fructose corn syrup (HFCS) have been singled out for particular concern, because of their fructose content, which has been specifically implicated for its atherogenic potential and possible role in elevating blood pressure through uric acid-mediated endothelial dysfunction. This study explored the effects when these sugars are consumed at typical population levels up to the 90th percentile population consumption level for fructose. Three hundred fifty five overweight or obese individuals aged 20-60 years old were placed on a eucaloric diet for 10 weeks, which incorporated SUC- or HFCS-sweetened, low-fat milk at 8%, 18% or 30% of calories. There was a slight change in body weight in the entire cohort (169.1 ± 30.6 vs. 171.6 ± 31.8 lbs, p < 0.01), a decrease in HDL (52.9 ± 12.2 vs. 52.0 ± 13.9 mg/dL, p < 0.05) and an increase in triglycerides (104.1 ± 51.8 vs. 114.1 ± 64.7 mg/dL, p < 0.001). However, total cholesterol (183.5 ± 42.8 vs. 184.4 mg/dL, p > 0.05), LDL (110.3 ± 32.0 vs. 110.5 ± 38.9 mg/dL, p > 0.05), SBP (109.4 ± 10.9 vs. 108.3 ± 10.9 mmHg, p > 0.05) and DBP (72.1 ± 8.0 vs. 71.3 ± 8.0 mmHg, p > 0.05) were all unchanged. In no instance did the amount or type of sugar consumed affect the response to the intervention (interaction p > 0.05). These data suggest that: (1) when consumed as part of a normal diet, common fructose-containing sugars do not raise blood pressure, even when consumed at the 90th percentile population consumption level for fructose (five times the upper level recommended by the AHA and three times the upper level recommended by WHO); (2) changes in the lipid profile are mixed, but modest.

  8. Exercise performed immediately after fructose ingestion enhances fructose oxidation and suppresses fructose storage.

    PubMed

    Egli, Léonie; Lecoultre, Virgile; Cros, Jérémy; Rosset, Robin; Marques, Anne-Sophie; Schneiter, Philippe; Hodson, Leanne; Gabert, Laure; Laville, Martine; Tappy, Luc

    2016-02-01

    Exercise prevents the adverse effects of a high-fructose diet through mechanisms that remain unknown. We assessed the hypothesis that exercise prevents fructose-induced increases in very-low-density lipoprotein (VLDL) triglycerides by decreasing the fructose conversion into glucose and VLDL-triglyceride and fructose carbon storage into hepatic glycogen and lipids. Eight healthy men were studied on 3 occasions after 4 d consuming a weight-maintenance, high-fructose diet. On the fifth day, the men ingested an oral (13)C-labeled fructose load (0.75 g/kg), and their total fructose oxidation ((13)CO2 production), fructose storage (fructose ingestion minus (13)C-fructose oxidation), fructose conversion into blood (13)C glucose (gluconeogenesis from fructose), blood VLDL-(13)C palmitate (a marker of hepatic de novo lipogenesis), and lactate concentrations were monitored over 7 postprandial h. On one occasion, participants remained lying down throughout the experiment [fructose treatment alone with no exercise condition (NoEx)], and on the other 2 occasions, they performed a 60-min exercise either 75 min before fructose ingestion [exercise, then fructose condition (ExFru)] or 90 min after fructose ingestion [fructose, then exercise condition (FruEx)]. Fructose oxidation was significantly (P < 0.001) higher in the FruEx (80% ± 3% of ingested fructose) than in the ExFru (46% ± 1%) and NoEx (49% ± 1%). Consequently, fructose storage was lower in the FruEx than in the other 2 conditions (P < 0.001). Fructose conversion into blood (13)C glucose, VLDL-(13)C palmitate, and postprandial plasma lactate concentrations was not significantly different between conditions. Compared with sedentary conditions, exercise performed immediately after fructose ingestion increases fructose oxidation and decreases fructose storage. In contrast, exercise performed before fructose ingestion does not significantly alter fructose oxidation and storage. In both conditions, exercise did not abolish

  9. Ginger extract diminishes chronic fructose consumption-induced kidney injury through suppression of renal overexpression of proinflammatory cytokines in rats.

    PubMed

    Yang, Ming; Liu, Changjin; Jiang, Jian; Zuo, Guowei; Lin, Xuemei; Yamahara, Johji; Wang, Jianwei; Li, Yuhao

    2014-05-27

    The metabolic syndrome is associated with an increased risk of development and progression of chronic kidney disease. Renal inflammation is well known to play an important role in the initiation and progression of tubulointerstitial injury of the kidneys. Ginger, one of the most commonly used spices and medicinal plants, has been demonstrated to improve diet-induced metabolic abnormalities. However, the efficacy of ginger on the metabolic syndrome-associated kidney injury remains unknown. This study aimed to investigate the impact of ginger on fructose consumption-induced adverse effects in the kidneys. The fructose control rats were treated with 10% fructose in drinking water over 5 weeks. The fructose consumption in ginger-treated rats was adjusted to match that of fructose control group. The ethanolic extract of ginger was co-administered (once daily by oral gavage). The indexes of lipid and glucose homeostasis were determined enzymatically, by ELISA and/or histologically. Gene expression was analyzed by Real-Time PCR. In addition to improve hyperinsulinemia and hypertriglyceridemia, supplement with ginger extract (50 mg/kg) attenuated liquid fructose-induced kidney injury as characterized by focal cast formation, slough and dilation of tubular epithelial cells in the cortex of the kidneys in rats. Furthermore, ginger also diminished excessive renal interstitial collagen deposit. By Real-Time PCR, renal gene expression profiles revealed that ginger suppressed fructose-stimulated monocyte chemoattractant protein-1 and its receptor chemokine (C-C motif) receptor-2. In accord, overexpression of two important macrophage accumulation markers CD68 and F4/80 was downregulated. Moreover, overexpressed tumor necrosis factor-alpha, interleukin-6, transforming growth factor-beta1 and plasminogen activator inhibitor (PAI)-1 were downregulated. Ginger treatment also restored the downregulated ratio of urokinase-type plasminogen activator to PAI-1. The present results

  10. Ginger extract diminishes chronic fructose consumption-induced kidney injury through suppression of renal overexpression of proinflammatory cytokines in rats

    PubMed Central

    2014-01-01

    Background The metabolic syndrome is associated with an increased risk of development and progression of chronic kidney disease. Renal inflammation is well known to play an important role in the initiation and progression of tubulointerstitial injury of the kidneys. Ginger, one of the most commonly used spices and medicinal plants, has been demonstrated to improve diet-induced metabolic abnormalities. However, the efficacy of ginger on the metabolic syndrome-associated kidney injury remains unknown. This study aimed to investigate the impact of ginger on fructose consumption-induced adverse effects in the kidneys. Methods The fructose control rats were treated with 10% fructose in drinking water over 5 weeks. The fructose consumption in ginger-treated rats was adjusted to match that of fructose control group. The ethanolic extract of ginger was co-administered (once daily by oral gavage). The indexes of lipid and glucose homeostasis were determined enzymatically, by ELISA and/or histologically. Gene expression was analyzed by Real-Time PCR. Results In addition to improve hyperinsulinemia and hypertriglyceridemia, supplement with ginger extract (50 mg/kg) attenuated liquid fructose-induced kidney injury as characterized by focal cast formation, slough and dilation of tubular epithelial cells in the cortex of the kidneys in rats. Furthermore, ginger also diminished excessive renal interstitial collagen deposit. By Real-Time PCR, renal gene expression profiles revealed that ginger suppressed fructose-stimulated monocyte chemoattractant protein-1 and its receptor chemokine (C-C motif) receptor-2. In accord, overexpression of two important macrophage accumulation markers CD68 and F4/80 was downregulated. Moreover, overexpressed tumor necrosis factor-alpha, interleukin-6, transforming growth factor-beta1 and plasminogen activator inhibitor (PAI)-1 were downregulated. Ginger treatment also restored the downregulated ratio of urokinase-type plasminogen activator to PAI-1

  11. Review of the role of refined dietary sugars (fructose and glucose) in the genesis of retinal disease.

    PubMed

    Kearney, Frances M; Fagan, Xavier J; Al-Qureshi, Salmaan

    2014-08-01

    This review examines the current evidence of the relationship between sugar consumption and the development of retinal and other eye diseases including diabetic retinopathy, hypertensive retinopathy, age-related macular degeneration, non-arteritic anterior ischaemic optic neuropathy and cataract. Sucrose is comprised of fructose and glucose. Sugar consumption has increased five-fold over the last century, with high quantities of sucrose and high-fructose corn syrup found in processed food and soft drinks. This increased consumption is increasingly recognized as a central factor in the rapidly rising rates of obesity and type 2 diabetes. The body metabolizes fructose and glucose differently, with fructose appearing to have the greater propensity to contribute to the metabolic syndrome. This review examines the effect of high rates of dietary consumption of refined carbohydrates on the eye, including the effect of chronic hyperglycaemia on microvascular disease in diabetic retinopathy, and the pathophysiological changes in the retinal circulation in hypertensive retinopathy. © 2013 Royal Australian and New Zealand College of Ophthalmologists.

  12. Role of the Enterocyte in Fructose-Induced Hypertriglyceridaemia.

    PubMed

    Steenson, Simon; Umpleby, A Margot; Lovegrove, Julie A; Jackson, Kim G; Fielding, Barbara A

    2017-04-01

    Dietary fructose has been linked to an increased post-prandial triglyceride (TG) level; which is an established independent risk factor for cardiovascular disease. Although much research has focused on the effects of fructose consumption on liver-derived very-low density lipoprotein (VLDL); emerging evidence also suggests that fructose may raise post-prandial TG levels by affecting the metabolism of enterocytes of the small intestine. Enterocytes have become well recognised for their ability to transiently store lipids following a meal and to thus control post-prandial TG levels according to the rate of chylomicron (CM) lipoprotein synthesis and secretion. The influence of fructose consumption on several aspects of enterocyte lipid metabolism are discussed; including de novo lipogenesis; apolipoprotein B48 and CM-TG production; based on the findings of animal and human isotopic tracer studies. Methodological issues affecting the interpretation of fructose studies conducted to date are highlighted; including the accurate separation of CM and VLDL. Although the available evidence to date is limited; disruption of enterocyte lipid metabolism may make a meaningful contribution to the hypertriglyceridaemia often associated with fructose consumption.

  13. Role of the Enterocyte in Fructose-Induced Hypertriglyceridaemia

    PubMed Central

    Steenson, Simon; Umpleby, A. Margot; Lovegrove, Julie A.; Jackson, Kim G.; Fielding, Barbara A.

    2017-01-01

    Dietary fructose has been linked to an increased post-prandial triglyceride (TG) level; which is an established independent risk factor for cardiovascular disease. Although much research has focused on the effects of fructose consumption on liver-derived very-low density lipoprotein (VLDL); emerging evidence also suggests that fructose may raise post-prandial TG levels by affecting the metabolism of enterocytes of the small intestine. Enterocytes have become well recognised for their ability to transiently store lipids following a meal and to thus control post-prandial TG levels according to the rate of chylomicron (CM) lipoprotein synthesis and secretion. The influence of fructose consumption on several aspects of enterocyte lipid metabolism are discussed; including de novo lipogenesis; apolipoprotein B48 and CM-TG production; based on the findings of animal and human isotopic tracer studies. Methodological issues affecting the interpretation of fructose studies conducted to date are highlighted; including the accurate separation of CM and VLDL. Although the available evidence to date is limited; disruption of enterocyte lipid metabolism may make a meaningful contribution to the hypertriglyceridaemia often associated with fructose consumption. PMID:28368310

  14. Fructose and NAFLD: The Multifaceted Aspects of  Fructose Metabolism.

    PubMed

    Jegatheesan, Prasanthi; De Bandt, Jean-Pascal

    2017-03-03

    Among various factors, such as an unhealthy diet or a sedentarity lifestyle, excessive fructose consumption is known to favor nonalcoholic fatty liver disease (NAFLD), as fructose is both a substrate and an inducer of hepatic de novo lipogenesis. The present review presents some well-established mechanisms and new clues to better understand the pathophysiology of fructose-induced NAFLD. Beyond its lipogenic effect, fructose intake is also at the onset of hepatic inflammation and cellular stress, such as oxidative and endoplasmic stress, that are key factors contributing to the progression of simple steatosis to nonalcoholic steatohepatitis (NASH). Beyond its hepatic effects, this carbohydrate may exert direct and indirect effects at the peripheral level. Excessive fructose consumption is associated, for example, with the release by the liver of several key mediators leading to alterations in the communication between the liver and the gut, muscles, and adipose tissue and to disease aggravation. These multifaceted aspects of fructose properties are in part specific to fructose, but are also shared in part with sucrose and glucose present in energy- dense beverages and foods. All these aspects must be taken into account in the development of new therapeutic strategies and thereby to better prevent NAFLD.

  15. High-fructose diet is as detrimental as high-fat diet in the induction of insulin resistance and diabetes mediated by hepatic/pancreatic endoplasmic reticulum (ER) stress.

    PubMed

    Balakumar, M; Raji, L; Prabhu, D; Sathishkumar, C; Prabu, P; Mohan, V; Balasubramanyam, M

    2016-12-01

    In the context of high human consumption of fructose diets, there is an imperative need to understand how dietary fructose intake influence cellular and molecular mechanisms and thereby affect β-cell dysfunction and insulin resistance. While evidence exists for a relationship between high-fat-induced insulin resistance and metabolic disorders, there is lack of studies in relation to high-fructose diet. Therefore, we attempted to study the effect of different diets viz., high-fat diet (HFD), high-fructose diet (HFS), and a combination (HFS + HFD) diet on glucose homeostasis and insulin sensitivity in male Wistar rats compared to control animals fed with normal pellet diet. Investigations include oral glucose tolerance test, insulin tolerance test, histopathology by H&E and Masson's trichrome staining, mRNA expression by real-time PCR, protein expression by Western blot, and caspase-3 activity by colorimetry. Rats subjected to high-fat/fructose diets became glucose intolerant, insulin-resistant, and dyslipidemic. Compared to control animals, rats subjected to different combination of fat/fructose diets showed increased mRNA and protein expression of a battery of ER stress markers both in pancreas and liver. Transcription factors of β-cell function (INSIG1, SREBP1c and PDX1) as well as hepatic gluconeogenesis (FOXO1 and PEPCK) were adversely affected in diet-induced insulin-resistant rats. The convergence of chronic ER stress towards apoptosis in pancreas/liver was also indicated by increased levels of CHOP mRNA & increased activity of both JNK and Caspase-3 in rats subjected to high-fat/fructose diets. Our study exposes the experimental support in that high-fructose diet is equally detrimental in causing metabolic disorders.

  16. The effects of resveratrol on hepatic oxidative stress in metabolic syndrome model induced by high fructose diet.

    PubMed

    Yilmaz Demirtas, C; Bircan, F S; Pasaoglu, O T; Turkozkan, N

    2018-01-01

    The purpose of this study was to evaluate probable protective effects of resveratrol treatment on hepatic oxidative events in a rat model of metabolic syndrome (MetS). Thirty-two male adult rats were randomly divided into 4 groups: control, fructose, resveratrol, and fructose plus resveratrol. To induce MetS, fructose solution (20 % in drinking water) was used. Resveratrol (10 mg/kg/day) was given by oral gavage. All treatments were given for 8 weeks. Serum lipid profile, glucose and insulin levels, liver total oxidant status (TOS) levels and paraoxonase (PON), glutathione peroxidase (GPx), superoxide dismutase (SOD) and catalase (CAT) activities were analyzed. Fructose-fed rats displayed statistically significant increases in TOS levels, and decreases in PON activity compared to the control group. Resveratrol treatment moderately prevented the decrease in liver PON activity caused by fructose. On the other hand, resveratrol, alone or in combination with fructose, did not change the TOS levels when compared to the fructose group. The SOD and CAT activities in all groups did not change. In this experimental design, high-fructose consumption led to elevated TOS levels and low PON activities. The resveratrol therapy shown beneficial effects on PON activity. However, it was found to behave like a prooxidant when administered together with fructose and alone in some parameters. Our results can inspire the development of new clinical therapy in patients with MetS (Tab. 2, Ref. 34).

  17. Resveratrol Prevents the Development of Hypertension Programmed by Maternal Plus Post-Weaning High-Fructose Consumption Through Modulation of Oxidative Stress, Nutrient-Sensing Signals, and Gut Microbiota.

    PubMed

    Tain, You-Lin; Lee, Wei-Chia; Wu, Kay L H; Leu, Steve; Chan, Julie Y H

    2018-04-30

    High-fructose (HF) intake, oxidative stress, nutrient-sensing signals, and gut microbiota dysbiosis are closely related to the development of hypertension. We investigated whether resveratrol can prevent hypertension induced by maternal plus post-weaning HF diets in adult offspring via the above-mentioned mechanisms. Female Sprague-Dawley rats received either a normal (ND) or 60% high-fructose (HF) diet during gestation and lactation. Male offspring were assigned to five groups (maternal diet/post-weaning diet; n = 8/group): ND/ND, ND/HF, HF/ND, HF/HF, and HF/HF+ Resveratrol. Resveratrol (50 mg/L) was administered in drinking water from weaning to three months of age. We found that HF/HF induced hypertension in adult offspring. Maternal HF diet altered gut microbiota composition in adult offspring, including decreasing the abundance of genera Bacteroides, Dysgonomonas, and Turicibacter, while increasing phylum Verrucomicrobia and Akkermansia muciniphila. Additionally, HF/HF diets increased oxidative stress and decreased renal mRNA expression of Prkaa2, Prkag2, Ppara, Pparb, Ppargc1a, and Sirt4. Resveratrol reduced renal oxidative stress, activated nutrient-sensing signals, modulated gut microbiota, and prevented associated HF/HF-induced programmed hypertension. Targeting oxidative stress, nutrient-sensing signals, and gut microbiota by resveratrol might be a useful therapeutic strategy for treatment of hypertension induced by excessive consumption of fructose in the adult rat offspring. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  18. Activation of Kupffer Cells Is Associated with a Specific Dysbiosis Induced by Fructose or High Fat Diet in Mice

    PubMed Central

    Ferrere, Gladys; Leroux, Anne; Wrzosek, Laura; Puchois, Virginie; Gaudin, Françoise; Ciocan, Dragos; Renoud, Marie-Laure; Naveau, Sylvie; Perlemuter, Gabriel; Cassard, Anne-Marie

    2016-01-01

    The increase consumption of fructose in diet is associated with liver inflammation. As a specific fructan substrate, fructose may modify the gut microbiota which is involved in obesity-induced liver disease. Here, we aimed to assess whether fructose-induced liver damage was associated with a specific dysbiosis, especially in mice fed a high fat diet (HFD). To this end, four groups of mice were fed with normal and HFD added or not with fructose. Body weight and glucose sensitivity, liver inflammation, dysbiosis and the phenotype of Kupffer cells were determined after 16 weeks of diet. Food intake was increased in the two groups of mice fed with the HFD. Mice fed with HFD and fructose showed a higher infiltration of lymphocytes into the liver and a lower inflammatory profile of Kupffer cells than mice fed with the HFD without fructose. The dysbiosis associated with diets showed that fructose specifically prevented the decrease of Mouse intestinal bacteria in HFD fed mice and increased Erysipelotrichi in mice fed with fructose, independently of the amount of fat. In conclusion, fructose, used as a sweetener, induced a dysbiosis which is different in presence of fat in the diet. Consequently, the activation of Kupffer cells involved in mice model of HFD-induced liver inflammation was not observed in an HFD/fructose combined diet. These data highlight that the complexity of diet composition could highly impact the development of liver lesions during obesity. Specific dysbiosis associated with the diet could explain that the progressions of liver damage are different. PMID:26731543

  19. Fructose utilization during exercise in men: rapid conversion of ingested fructose to circulating glucose.

    PubMed

    Jandrain, B J; Pallikarakis, N; Normand, S; Pirnay, F; Lacroix, M; Mosora, F; Pachiaudi, C; Gautier, J F; Scheen, A J; Riou, J P

    1993-05-01

    The aim of the present study was to compare the metabolic fate of repeated doses of fructose or glucose ingested every 30 min during long-duration moderate-intensity exercise in men. Healthy volunteers exercised for 3 h on a treadmill at 45% of their maximal oxygen consumption rate. "Naturally labeled" [13C]glucose or [13C]fructose was given orally at 25-g doses every 30 min (total feeding: 150 g; n = 6 in each group). Substrate utilization was evaluated by indirect calorimetry, and exogenous sugar oxidation was measured by isotope ratio mass spectrometry on expired CO2. Results were corrected for baseline drift in 13C/12C ratio in expired air due to exercise alone. Fructose conversion to plasma glucose was measured combining gas chromatography and isotope ratio mass spectrometry. Most of the ingested glucose was oxidized: 81 +/- 4 vs. 57 +/- 2 g/3 h for fructose (2P < 0.005). Exogenous glucose covered 20.8 +/- 1.4% of the total energy need (+/- 6.7 MJ) compared with 14.0 +/- 0.6% for fructose (2P < 0.005). The contribution of total carbohydrates was significantly higher and that of lipids significantly lower with glucose than with fructose. The blood glucose response was similar in both protocols. From 90 to 180 min, 55-60% of circulating glucose was derived from ingested fructose. In conclusion, when ingested repeatedly during moderate-intensity prolonged exercise, fructose is metabolically less available than glucose, despite a high rate of conversion to circulating glucose.

  20. Impact of Fish Oil Supplementation and Interruption of Fructose Ingestion on Glucose and Lipid Homeostasis of Rats Drinking Different Concentrations of Fructose

    PubMed Central

    Sulis, Paola M.; Motta, Katia; Barbosa, Amanda M.; Besen, Matheus H.; da Silva, Julia S.; Nunes, Everson A.

    2017-01-01

    Background. Continuous fructose consumption may cause elevation of circulating triacylglycerol. However, how much of this alteration is reverted after the removal of fructose intake is not known. We explored this question and compared the efficacy of this approach with fish oil supplementation. Methods. Male Wistar rats were divided into the following groups: control (C), fructose (F) (water intake with 10% or 30% fructose for 9 weeks), fish oil (FO), and fructose/fish oil (FFO). Fish oil was supplemented only for the last 33 days of fructose ingestion. Half of the F group remained for additional 8 weeks without fructose ingestion (FR). Results. Fructose ingestion reduced food intake to compensate for the increased energy obtained through water ingestion, independent of fructose concentration. Fish oil supplementation exerted no impact on these parameters, but the removal of fructose from water recovered both ingestion behaviors. Plasma triacylglycerol augmented significantly during the second and third weeks (both fructose groups). Fish oil supplementation did not attenuate the elevation in triacylglycerol caused by fructose intake, but the interruption of sugar consumption normalized this parameter. Conclusion. Elevation in triacylglyceridemia may be recovered by removing fructose from diet, suggesting that it is never too late to repair improper dietary habits. PMID:28929113

  1. Impact of Fish Oil Supplementation and Interruption of Fructose Ingestion on Glucose and Lipid Homeostasis of Rats Drinking Different Concentrations of Fructose.

    PubMed

    Sulis, Paola M; Motta, Katia; Barbosa, Amanda M; Besen, Matheus H; da Silva, Julia S; Nunes, Everson A; Rafacho, Alex

    2017-01-01

    Background. Continuous fructose consumption may cause elevation of circulating triacylglycerol. However, how much of this alteration is reverted after the removal of fructose intake is not known. We explored this question and compared the efficacy of this approach with fish oil supplementation. Methods. Male Wistar rats were divided into the following groups: control (C), fructose (F) (water intake with 10% or 30% fructose for 9 weeks), fish oil (FO), and fructose/fish oil (FFO). Fish oil was supplemented only for the last 33 days of fructose ingestion. Half of the F group remained for additional 8 weeks without fructose ingestion (FR). Results. Fructose ingestion reduced food intake to compensate for the increased energy obtained through water ingestion, independent of fructose concentration. Fish oil supplementation exerted no impact on these parameters, but the removal of fructose from water recovered both ingestion behaviors. Plasma triacylglycerol augmented significantly during the second and third weeks (both fructose groups). Fish oil supplementation did not attenuate the elevation in triacylglycerol caused by fructose intake, but the interruption of sugar consumption normalized this parameter. Conclusion. Elevation in triacylglyceridemia may be recovered by removing fructose from diet, suggesting that it is never too late to repair improper dietary habits.

  2. Maternal high fructose and low protein consumption during pregnancy and lactation share some but not all effects on early-life growth and metabolic programming of rat offspring.

    PubMed

    Arentson-Lantz, Emily J; Zou, Mi; Teegarden, Dorothy; Buhman, Kimberly K; Donkin, Shawn S

    2016-09-01

    Maternal nutritional stress during pregnancy acts to program offspring metabolism. We hypothesized that the nutritional stress caused by maternal fructose or low protein intake during pregnancy would program the offspring to develop metabolic aberrations that would be exacerbated by a diet rich in fructose or fat during adult life. The objective of this study was to characterize and compare the fetal programming effects of maternal fructose with the established programming model of a low-protein diet on offspring. Male offspring from Sprague-Dawley dams fed a 60% starch control diet, a 60% fructose diet, or a low-protein diet throughout pregnancy and lactation were weaned onto either a 60% starch control diet, 60% fructose diet, or a 30% fat diet for 15 weeks. Offspring from low-protein and fructose-fed dam showed retarded growth (P<.05) at weaning (50.3, 29.6 vs 59.1±0.8 g) and at 18 weeks of age (420, 369 vs 464±10.9 g). At 18 weeks of age, offspring from fructose dams expressed greater quantities (P<.05) of intestinal Pgc1a messenger RNA compared with offspring from control or low-protein dams (1.31 vs 0.89, 0.85; confidence interval, 0.78-1.04). Similarly, maternal fructose (P=.09) and low-protein (P<.05) consumption increased expression of Pgc1a in offspring liver (7.24, 2.22 vs 1.22; confidence interval, 2.11-3.45). These data indicate that maternal fructose feeding is a programming model that shares some features of maternal protein restriction such as retarded growth, but is unique in programming of selected hepatic and intestinal transcripts. Copyright © 2016. Published by Elsevier Inc.

  3. Effects of sucrose and high fructose corn syrup consumption on spatial memory function and hippocampal neuroinflammation in adolescent rats.

    PubMed

    Hsu, Ted M; Konanur, Vaibhav R; Taing, Lilly; Usui, Ryan; Kayser, Brandon D; Goran, Michael I; Kanoski, Scott E

    2015-02-01

    Excessive consumption of added sugars negatively impacts metabolic systems; however, effects on cognitive function are poorly understood. Also unknown is whether negative outcomes associated with consumption of different sugars are exacerbated during critical periods of development (e.g., adolescence). Here we examined the effects of sucrose and high fructose corn syrup-55 (HFCS-55) intake during adolescence or adulthood on cognitive and metabolic outcomes. Adolescent or adult male rats were given 30-day access to chow, water, and either (1) 11% sucrose solution, (2) 11% HFCS-55 solution, or (3) an extra bottle of water (control). In adolescent rats, HFCS-55 intake impaired hippocampal-dependent spatial learning and memory in a Barne's maze, with moderate learning impairment also observed for the sucrose group. The learning and memory impairment is unlikely based on nonspecific behavioral effects as adolescent HFCS-55 consumption did not impact anxiety in the zero maze or performance in a non-spatial response learning task using the same mildly aversive stimuli as the Barne's maze. Protein expression of pro-inflammatory cytokines (interleukin 6, interleukin 1β) was increased in the dorsal hippocampus for the adolescent HFCS-55 group relative to controls with no significant effect in the sucrose group, whereas liver interleukin 1β and plasma insulin levels were elevated for both adolescent-exposed sugar groups. In contrast, intake of HFCS-55 or sucrose in adults did not impact spatial learning, glucose tolerance, anxiety, or neuroinflammatory markers. These data show that consumption of added sugars, particularly HFCS-55, negatively impacts hippocampal function, metabolic outcomes, and neuroinflammation when consumed in excess during the adolescent period of development. © 2014 Wiley Periodicals, Inc.

  4. No differential effect of beverages sweetened with fructose, high-fructose corn syrup, or glucose on systemic or adipose tissue inflammation in normal-weight to obese adults: a randomized controlled trial.

    PubMed

    Kuzma, Jessica N; Cromer, Gail; Hagman, Derek K; Breymeyer, Kara L; Roth, Christian L; Foster-Schubert, Karen E; Holte, Sarah E; Weigle, David S; Kratz, Mario

    2016-08-01

    Sugar-sweetened beverage (SSB) consumption and low-grade chronic inflammation are both independently associated with type 2 diabetes and cardiovascular disease. Fructose, a major component of SSBs, may acutely trigger inflammation, which may be one link between SSB consumption and cardiometabolic disease. We sought to determine whether beverages sweetened with fructose, high-fructose corn syrup (HFCS), and glucose differentially influence systemic inflammation [fasting plasma C-reactive protein and interleukin-6 (IL-6) as primary endpoints] acutely and before major changes in body weight. Secondary endpoints included adipose tissue inflammation, intestinal permeability, and plasma fetuin-A as potential mechanistic links between fructose intake and low-grade inflammation. We conducted a randomized, controlled, double-blind, crossover design dietary intervention (the Diet and Systemic Inflammation Study) in 24 normal-weight to obese adults without fructose malabsorption. Participants drank 4 servings/d of fructose-, glucose-, or HFCS-sweetened beverages accounting for 25% of estimated calorie requirements while consuming a standardized diet ad libitum for three 8-d periods. Subjects consumed 116% of their estimated calorie requirement while drinking the beverages with no difference in total energy intake or body weight between groups as reported previously. Fasting plasma concentrations of C-reactive protein and IL-6 did not differ significantly at the end of the 3 diet periods. We did not detect a consistent differential effect of the diets on measures of adipose tissue inflammation except for adiponectin gene expression in adipose tissue (P = 0.005), which was lowest after the glucose phase. We also did not detect consistent evidence of a differential impact of these sugars on measures of intestinal permeability (lactulose:mannitol test, plasma zonulin, and plasma lipopolysaccharide-binding protein). Excessive amounts of fructose, HFCS, and glucose from SSBs

  5. Chronic High Fructose Intake Reduces Serum 1,25 (OH)2D3 Levels in Calcium-Sufficient Rodents

    PubMed Central

    Douard, Veronique; Patel, Chirag; Lee, Jacklyn; Tharabenjasin, Phuntila; Williams, Edek; Fritton, J. Christopher; Sabbagh, Yves; Ferraris, Ronaldo P.

    2014-01-01

    Excessive fructose consumption inhibits adaptive increases in intestinal Ca2+ transport in lactating and weanling rats with increased Ca2+ requirements by preventing the increase in serum levels of 1,25(OH)2D3. Here we tested the hypothesis that chronic fructose intake decreases 1,25(OH)2D3 levels independent of increases in Ca2+ requirements. Adult mice fed for five wk a high glucose-low Ca2+ diet displayed expected compensatory increases in intestinal and renal Ca2+ transporter expression and activity, in renal CYP27B1 (coding for 1α-hydroxylase) expression as well as in serum 1,25(OH)2D3 levels, compared with mice fed isocaloric glucose- or fructose-normal Ca2+ diets. Replacing glucose with fructose prevented these increases in Ca2+ transporter, CYP27B1, and 1,25(OH)2D3 levels induced by a low Ca2+ diet. In adult mice fed for three mo a normal Ca2+ diet, renal expression of CYP27B1 and of CYP24A1 (24-hydroxylase) decreased and increased, respectively, when the carbohydrate source was fructose instead of glucose or starch. Intestinal and renal Ca2+ transporter activity and expression did not vary with dietary carbohydrate. To determine the time course of fructose effects, a high fructose or glucose diet with normal Ca2+ levels was fed to adult rats for three mo. Serum levels of 1,25(OH)2D3 decreased and of FGF23 increased significantly over time. Renal expression of CYP27B1 and serum levels of 1,25(OH)2D3 still decreased in fructose- compared to those in glucose-fed rats after three mo. Serum parathyroid hormone, Ca2+ and phosphate levels were normal and independent of dietary sugar as well as time of feeding. Thus, chronically high fructose intakes can decrease serum levels of 1,25(OH)2D3 in adult rodents experiencing no Ca2+ stress and fed sufficient levels of dietary Ca2+. This finding is highly significant because fructose constitutes a substantial portion of the average diet of Americans already deficient in vitamin D. PMID:24718641

  6. Compared to sucrose, previous consumption of fructose and glucose monosaccharides reduces survival and fitness of female mice.

    PubMed

    Ruff, James S; Hugentobler, Sara A; Suchy, Amanda K; Sosa, Mirtha M; Tanner, Ruth E; Hite, Megumi E; Morrison, Linda C; Gieng, Sin H; Shigenaga, Mark K; Potts, Wayne K

    2015-03-01

    Intake of added sugar has been shown to correlate with many human metabolic diseases, and rodent models have characterized numerous aspects of the resulting disease phenotypes. However, there is a controversy about whether differential health effects occur because of the consumption of either of the two common types of added sugar-high-fructose corn syrup (fructose and glucose monosaccharides; F/G) or table sugar (sucrose, a fructose and glucose disaccharide). We tested the equivalence of sucrose- vs. F/G-containing diets on mouse (Mus musculus) longevity, reproductive success, and social dominance. We fed wild-derived mice, outbred mice descended from wild-caught ancestors, a diet in which 25% of the calories came from either an equal ratio of F/G or an isocaloric amount of sucrose (both diets had 63% of total calories as carbohydrates). Exposure lasted 40 wk, starting at weaning (21 d of age), and then mice (104 females and 56 males) were released into organismal performances assays-seminatural enclosures where mice competed for territories, resources, and mates for 32 wk. Within enclosures all mice consumed the F/G diet. Females initially fed the F/G diet experienced a mortality rate 1.9 times the rate (P = 0.012) and produced 26.4% fewer offspring than females initially fed sucrose (P = 0.001). This reproductive deficiency was present before mortality differences, suggesting the F/G diet was causing physiologic performance deficits prior to mortality. No differential patterns in survival, reproduction, or social dominance were observed in males, indicating a sex-specific outcome of exposure. This study provides experimental evidence that the consumption of human-relevant levels of F/G is more deleterious than an isocaloric amount of sucrose for key organism-level health measures in female mice. © 2015 American Society for Nutrition.

  7. Modulation of hepatic inflammation and energy-sensing pathways in the rat liver by high-fructose diet and chronic stress.

    PubMed

    Veličković, Nataša; Teofilović, Ana; Ilić, Dragana; Djordjevic, Ana; Vojnović Milutinović, Danijela; Petrović, Snježana; Preitner, Frederic; Tappy, Luc; Matić, Gordana

    2018-05-29

    High-fructose consumption and chronic stress are both associated with metabolic inflammation and insulin resistance. Recently, disturbed activity of energy sensor AMP-activated protein kinase (AMPK) was recognized as mediator between nutrient-induced stress and inflammation. Thus, we analyzed the effects of high-fructose diet, alone or in combination with chronic stress, on glucose homeostasis, inflammation and expression of energy sensing proteins in the rat liver. In male Wistar rats exposed to 9-week 20% fructose diet and/or 4-week chronic unpredictable stress we measured plasma and hepatic corticosterone level, indicators of glucose homeostasis and lipid metabolism, hepatic inflammation (pro- and anti-inflammatory cytokine levels, Toll-like receptor 4, NLRP3, activation of NFκB, JNK and ERK pathways) and levels of energy-sensing proteins AMPK, SIRT1 and peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α). High-fructose diet led to glucose intolerance, activation of NFκB and JNK pathways and increased intrahepatic IL-1β, TNFα and inhibitory phosphorylation of insulin receptor substrate 1 on Ser 307 . It also decreased phospho-AMPK/AMPK ratio and increased SIRT1 expression. Stress alone increased plasma and hepatic corticosterone but did not influence glucose tolerance, nor hepatic inflammatory or energy-sensing proteins. After the combined treatment, hepatic corticosterone was increased, glucose tolerance remained preserved, while hepatic inflammation was partially prevented despite decreased AMPK activity. High-fructose diet resulted in glucose intolerance, hepatic inflammation, decreased AMPK activity and reduced insulin sensitivity. Chronic stress alone did not exert such effects, but when applied together with high-fructose diet it could partially prevent fructose-induced inflammation, presumably due to increased hepatic glucocorticoids.

  8. No differential effect of beverages sweetened with fructose, high-fructose corn syrup, or glucose on systemic or adipose tissue inflammation in normal-weight to obese adults: a randomized controlled trial1

    PubMed Central

    Cromer, Gail; Breymeyer, Kara L; Roth, Christian L; Weigle, David S

    2016-01-01

    Background: Sugar-sweetened beverage (SSB) consumption and low-grade chronic inflammation are both independently associated with type 2 diabetes and cardiovascular disease. Fructose, a major component of SSBs, may acutely trigger inflammation, which may be one link between SSB consumption and cardiometabolic disease. Objective: We sought to determine whether beverages sweetened with fructose, high-fructose corn syrup (HFCS), and glucose differentially influence systemic inflammation [fasting plasma C-reactive protein and interleukin-6 (IL-6) as primary endpoints] acutely and before major changes in body weight. Secondary endpoints included adipose tissue inflammation, intestinal permeability, and plasma fetuin-A as potential mechanistic links between fructose intake and low-grade inflammation. Design: We conducted a randomized, controlled, double-blind, crossover design dietary intervention (the Diet and Systemic Inflammation Study) in 24 normal-weight to obese adults without fructose malabsorption. Participants drank 4 servings/d of fructose-, glucose-, or HFCS-sweetened beverages accounting for 25% of estimated calorie requirements while consuming a standardized diet ad libitum for three 8-d periods. Results: Subjects consumed 116% of their estimated calorie requirement while drinking the beverages with no difference in total energy intake or body weight between groups as reported previously. Fasting plasma concentrations of C-reactive protein and IL-6 did not differ significantly at the end of the 3 diet periods. We did not detect a consistent differential effect of the diets on measures of adipose tissue inflammation except for adiponectin gene expression in adipose tissue (P = 0.005), which was lowest after the glucose phase. We also did not detect consistent evidence of a differential impact of these sugars on measures of intestinal permeability (lactulose:mannitol test, plasma zonulin, and plasma lipopolysaccharide-binding protein). Conclusion: Excessive

  9. Fructose, Glucocorticoids and Adipose Tissue: Implications for the Metabolic Syndrome.

    PubMed

    Legeza, Balázs; Marcolongo, Paola; Gamberucci, Alessandra; Varga, Viola; Bánhegyi, Gábor; Benedetti, Angiolo; Odermatt, Alex

    2017-04-26

    The modern Western society lifestyle is characterized by a hyperenergetic, high sugar containing food intake. Sugar intake increased dramatically during the last few decades, due to the excessive consumption of high-sugar drinks and high-fructose corn syrup. Current evidence suggests that high fructose intake when combined with overeating and adiposity promotes adverse metabolic health effects including dyslipidemia, insulin resistance, type II diabetes, and inflammation. Similarly, elevated glucocorticoid levels, especially the enhanced generation of active glucocorticoids in the adipose tissue due to increased 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1) activity, have been associated with metabolic diseases. Moreover, recent evidence suggests that fructose stimulates the 11β-HSD1-mediated glucocorticoid activation by enhancing the availability of its cofactor NADPH. In adipocytes, fructose was found to stimulate 11β-HSD1 expression and activity, thereby promoting the adipogenic effects of glucocorticoids. This article aims to highlight the interconnections between overwhelmed fructose metabolism, intracellular glucocorticoid activation in adipose tissue, and their metabolic effects on the progression of the metabolic syndrome.

  10. Fructose, Glucocorticoids and Adipose Tissue: Implications for the Metabolic Syndrome

    PubMed Central

    Legeza, Balázs; Marcolongo, Paola; Gamberucci, Alessandra; Varga, Viola; Bánhegyi, Gábor; Benedetti, Angiolo; Odermatt, Alex

    2017-01-01

    The modern Western society lifestyle is characterized by a hyperenergetic, high sugar containing food intake. Sugar intake increased dramatically during the last few decades, due to the excessive consumption of high-sugar drinks and high-fructose corn syrup. Current evidence suggests that high fructose intake when combined with overeating and adiposity promotes adverse metabolic health effects including dyslipidemia, insulin resistance, type II diabetes, and inflammation. Similarly, elevated glucocorticoid levels, especially the enhanced generation of active glucocorticoids in the adipose tissue due to increased 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1) activity, have been associated with metabolic diseases. Moreover, recent evidence suggests that fructose stimulates the 11β-HSD1-mediated glucocorticoid activation by enhancing the availability of its cofactor NADPH. In adipocytes, fructose was found to stimulate 11β-HSD1 expression and activity, thereby promoting the adipogenic effects of glucocorticoids. This article aims to highlight the interconnections between overwhelmed fructose metabolism, intracellular glucocorticoid activation in adipose tissue, and their metabolic effects on the progression of the metabolic syndrome. PMID:28445389

  11. Straight talk about high-fructose corn syrup: what it is and what it ain't.

    PubMed

    White, John S

    2008-12-01

    High-fructose corn syrup (HFCS) is a fructose-glucose liquid sweetener alternative to sucrose (common table sugar) first introduced to the food and beverage industry in the 1970s. It is not meaningfully different in composition or metabolism from other fructose-glucose sweeteners like sucrose, honey, and fruit juice concentrates. HFCS was widely embraced by food formulators, and its use grew between the mid-1970s and mid-1990s, principally as a replacement for sucrose. This was primarily because of its sweetness comparable with that of sucrose, improved stability and functionality, and ease of use. Although HFCS use today is nearly equivalent to sucrose use in the United States, we live in a decidedly sucrose-sweetened world: >90% of the nutritive sweetener used worldwide is sucrose. Here I review the history, composition, availability, and characteristics of HFCS in a factual manner to clarify common misunderstandings that have been a source of confusion to health professionals and the general public alike. In particular, I evaluate the strength of the popular hypothesis that HFCS is uniquely responsible for obesity. Although examples of pure fructose causing metabolic upset at high concentrations abound, especially when fed as the sole carbohydrate source, there is no evidence that the common fructose-glucose sweeteners do the same. Thus, studies using extreme carbohydrate diets may be useful for probing biochemical pathways, but they have no relevance to the human diet or to current consumption. I conclude that the HFCS-obesity hypothesis is supported neither in the United States nor worldwide.

  12. Sugar content of popular sweetened beverages based on objective laboratory analysis: focus on fructose content.

    PubMed

    Ventura, Emily E; Davis, Jaimie N; Goran, Michael I

    2011-04-01

    The consumption of fructose, largely in the form of high fructose corn syrup (HFCS), has risen over the past several decades and is thought to contribute negatively to metabolic health. However, the fructose content of foods and beverages produced with HFCS is not disclosed and estimates of fructose content are based on the common assumption that the HFCS used contains 55% fructose. The objective of this study was to conduct an objective laboratory analysis of the sugar content and composition in popular sugar-sweetened beverages with a particular focus on fructose content. Twenty-three sugar-sweetened beverages along with four standard solutions were analyzed for sugar profiles using high-performance liquid chromatography (HPLC) in an independent, certified laboratory. Total sugar content was calculated as well as percent fructose in the beverages that use HFCS as the sole source of fructose. Results showed that the total sugar content of the beverages ranged from 85 to 128% of what was listed on the food label. The mean fructose content in the HFCS used was 59% (range 47-65%) and several major brands appear to be produced with HFCS that is 65% fructose. Finally, the sugar profile analyses detected forms of sugar that were inconsistent with what was listed on the food labels. This analysis revealed significant deviations in sugar amount and composition relative to disclosures from producers. In addition, the tendency for use of HFCS that is higher in fructose could be contributing to higher fructose consumption than would otherwise be assumed.

  13. Fructose as a key player in the development of fatty liver disease.

    PubMed

    Basaranoglu, Metin; Basaranoglu, Gokcen; Sabuncu, Tevfik; Sentürk, Hakan

    2013-02-28

    We aimed to investigate whether increased consumption of fructose is linked to the increased prevalence of fatty liver. The prevalence of nonalcoholic steatohepatitis (NASH) is 3% and 20% in nonobese and obese subjects, respectively. Obesity is a low-grade chronic inflammatory condition and obesity-related cytokines such as interleukin-6, adiponectin, leptin, and tumor necrosis factor-α may play important roles in the development of nonalcoholic fatty liver disease (NAFLD). Additionally, the prevalence of NASH associated with both cirrhosis and hepatocellular carcinoma was reported to be high among patients with type 2 diabetes with or without obesity. Our research group previously showed that consumption of fructose is associated with adverse alterations of plasma lipid profiles and metabolic changes in mice, the American Lifestyle-Induced Obesity Syndrome model, which included consumption of a high-fructose corn syrup in amounts relevant to that consumed by some Americans. The observation reinforces the concerns about the role of fructose in the obesity epidemic. Increased availability of fructose (e.g., high-fructose corn syrup) increases not only abnormal glucose flux but also fructose metabolism in the hepatocyte. Thus, the anatomic position of the liver places it in a strategic buffering position for absorbed carbohydrates and amino acids. Fructose was previously accepted as a beneficial dietary component because it does not stimulate insulin secretion. However, since insulin signaling plays an important role in central mechanisms of NAFLD, this property of fructose may be undesirable. Fructose has a selective hepatic metabolism, and provokes a hepatic stress response involving activation of c-Jun N-terminal kinases and subsequent reduced hepatic insulin signaling. As high fat diet alone produces obesity, insulin resistance, and some degree of fatty liver with minimal inflammation and no fibrosis, the fast food diet which includes fructose and fats produces

  14. Fatty liver promotes fibrosis in monkeys consuming high fructose.

    PubMed

    Cydylo, Michael A; Davis, Ashley T; Kavanagh, Kylie

    2017-02-01

    Nonalcoholic fatty liver diseases (NAFLD) are related to development of liver fibrosis which currently has few therapeutic options. Rodent models of NAFLD inadequately model the fibrotic aspects of the disease and fail to demonstrate the spectrum of cardiometabolic diseases without genetic manipulation. This study aimed to document a monkey model of fatty liver and fibrosis, which naturally develop cardiometabolic disease pathophysiologies. Twenty-seven cynomolgus monkeys (Macaca fascicularis) fed diets either low or high in simple carbohydrates, supplied as fructose [control and high-fructose diet (HRr)], on low-fat, cholesterol-free background were studied. The HFr was consumed for up to 7 years, and liver tissue was histologically evaluated for fat and fibrosis extent. The HFr diet increased steatosis, and its extent was related to duration of fructose exposure. Lipid droplet size also increased with HFr duration; however, compared with control, the lipid droplets were smaller on average. Fibrosis extent was significantly greater with fructose feeding and was predicted by fructose exposure, extent of fatty liver, and age. These data are the first to demonstrate that high-carbohydrate diets alone can generate both liver fat and fibrosis and thus allow further study of mechanisms and therapeutic options in the translational animal model. © 2017 The Obesity Society.

  15. Compared to Sucrose, Previous Consumption of Fructose and Glucose Monosaccharides Reduces Survival and Fitness of Female Mice123

    PubMed Central

    Ruff, James S; Hugentobler, Sara A; Suchy, Amanda K; Sosa, Mirtha M; Tanner, Ruth E; Hite, Megumi E; Morrison, Linda C; Gieng, Sin H; Shigenaga, Mark K; Potts, Wayne K

    2015-01-01

    Background: Intake of added sugar has been shown to correlate with many human metabolic diseases, and rodent models have characterized numerous aspects of the resulting disease phenotypes. However, there is a controversy about whether differential health effects occur because of the consumption of either of the two common types of added sugar—high-fructose corn syrup (fructose and glucose monosaccharides; F/G) or table sugar (sucrose, a fructose and glucose disaccharide). Objectives: We tested the equivalence of sucrose- vs. F/G-containing diets on mouse (Mus musculus) longevity, reproductive success, and social dominance. Methods: We fed wild-derived mice, outbred mice descended from wild-caught ancestors, a diet in which 25% of the calories came from either an equal ratio of F/G or an isocaloric amount of sucrose (both diets had 63% of total calories as carbohydrates). Exposure lasted 40 wk, starting at weaning (21 d of age), and then mice (104 females and 56 males) were released into organismal performances assays—seminatural enclosures where mice competed for territories, resources, and mates for 32 wk. Within enclosures all mice consumed the F/G diet. Results: Females initially fed the F/G diet experienced a mortality rate 1.9 times the rate (P = 0.012) and produced 26.4% fewer offspring than females initially fed sucrose (P = 0.001). This reproductive deficiency was present before mortality differences, suggesting the F/G diet was causing physiologic performance deficits prior to mortality. No differential patterns in survival, reproduction, or social dominance were observed in males, indicating a sex-specific outcome of exposure. Conclusion: This study provides experimental evidence that the consumption of human-relevant levels of F/G is more deleterious than an isocaloric amount of sucrose for key organism-level health measures in female mice. PMID:25733457

  16. Aldolase-B knockout in mice phenocopies hereditary fructose intolerance in humans.

    PubMed

    Oppelt, Sarah A; Sennott, Erin M; Tolan, Dean R

    2015-03-01

    The rise in fructose consumption, and its correlation with symptoms of metabolic syndrome (MBS), has highlighted the need for a better understanding of fructose metabolism. To that end, valid rodent models reflecting the same metabolism as in humans, both biochemically and physiologically, are critical. A key to understanding any type of metabolism comes from study of disease states that affect such metabolism. A serious defect of fructose metabolism is the autosomal recessive condition called hereditary fructose intolerance (HFI), caused by mutations in the human aldolase B gene (Aldob). Those afflicted with HFI experience liver and kidney dysfunction after fructose consumption, which can lead to death, particularly during infancy. With very low levels of fructose exposure, HFI patients develop non-alcoholic fatty acid liver disease and fibrosis, sharing liver pathologies also seen in MBS. A major step toward establishing that fructose metabolism in mice mimics that of humans is reported by investigating the consequences of targeting the mouse aldolase-B gene (Aldo2) for deletion in mice (Aldo2(-/-)). The Aldo2(-/-) homozygous mice show similar pathology following exposure to fructose as humans with HFI such as failure to thrive, liver dysfunction, and potential morbidity. Establishing that this mouse reflects the symptoms of HFI in humans is critical for comparison of rodent studies to the human condition, where this food source is increasing, and increasingly controversial. This animal should provide a valuable resource for answering remaining questions about fructose metabolism in HFI, as well as help investigate the biochemical mechanisms leading to liver pathologies seen in MBS from high fructose diets. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Maternal fructose intake disturbs ovarian estradiol synthesis in rats.

    PubMed

    Munetsuna, Eiji; Yamada, Hiroya; Yamazaki, Mirai; Ando, Yoshitaka; Mizuno, Genki; Ota, Takeru; Hattori, Yuji; Sadamoto, Nao; Suzuki, Koji; Ishikawa, Hiroaki; Hashimoto, Shuji; Ohashi, Koji

    2018-06-01

    Recent increases in fructose consumption have raised concerns regarding the potential adverse intergenerational effects, as maternal fructose intake may induce physiological dysfunction in offspring. However, no reports are available regarding the effect of excess maternal fructose on reproductive tissues such as the ovary. Notably, the maternal intrauterine environment has been demonstrated to affect ovarian development in the subsequent generation. Given the fructose is transferred to the fetus, excess fructose consumption may affect offspring ovarian development. As ovarian development and its function is maintained by 17β-estradiol, we therefore investigated whether excess maternal fructose intake influences offspring ovarian estradiol synthesis. Rats received a 20% fructose solution during gestation and lactation. After weaning, offspring ovaries were isolated. Offspring from fructose-fed dams showed reduced StAR and P450(17α) mRNA levels, along with decreased protein expression levels. Conversely, attenuated P450arom protein level was found in the absence of mRNA expression alteration. Consistent with these phenomena, decreased circulating levels of estradiol were observed. Furthermore, estrogen receptor α (ERα) protein levels were also down-regulated. In accordance, the mRNA for progesterone receptor, a transcriptional target of ERα, was decreased. These results suggest that maternal fructose might alter ovarian physiology in the subsequent generation. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Formation of Hydroxymethylfurfural in Domestic High Fructose Corn Syrup and Its Toxicity to the Honey Bee (Apis mellifera)

    USDA-ARS?s Scientific Manuscript database

    In the U.S. high fructose corn syrup (HFCS) has become a sucrose replacement for honey bees and has widespread use as a sweetener in many processed foods and beverages for human consumption. It is utilized by commercial beekeepers as a food for honey bees for several reasons: to promote brood produ...

  19. Beneficial Effects of Phyllanthus amarus Against High Fructose Diet Induced Insulin Resistance and Hepatic Oxidative Stress in Male Wistar Rats.

    PubMed

    Putakala, Mallaiah; Gujjala, Sudhakara; Nukala, Srinivasulu; Desireddy, Saralakumari

    2017-11-01

    Insulin resistance (IR) is a characteristic feature of obesity, type 2 diabetes mellitus, and cardiovascular diseases. Emerging evidence suggests that the high-fructose consumption is a potential and important factor responsible for the rising incidence of IR. The present study investigates the beneficial effects of aqueous extract of Phyllanthus amarus (PAAE) on IR and oxidative stress in high-fructose (HF) fed male Wistar rats. HF diet (66% of fructose) and PAAE (200 mg/kg body weight/day) were given concurrently to the rats for a period of 60 days. Fructose-fed rats showed weight gain, hyperglycemia, hyperinsulinemia, impaired glucose tolerance, impaired insulin sensitivity, dyslipidemia, hyperleptinemia, and hypoadiponectinemia (P < 0.05) after 60 days. Co-administration of PAAE along with HF diet significantly ameliorated all these alterations. Regarding hepatic antioxidant status, higher lipid peroxidation and protein oxidation, lower reduced glutathione levels and lower activities of enzymatic antioxidants, and the histopathological changes like mild to severe distortion of the normal architecture as well as the prominence and widening of the liver sinusoids observed in the HF diet-fed rats were significantly prevented by PAAE treatment. These findings indicate that PAAE is beneficial in improving insulin sensitivity and attenuating metabolic syndrome and hepatic oxidative stress in fructose-fed rats.

  20. Naringin ameliorates endothelial dysfunction in fructose-fed rats.

    PubMed

    Malakul, Wachirawadee; Pengnet, Sirinat; Kumchoom, Chanon; Tunsophon, Sakara

    2018-03-01

    High fructose consumption is associated with metabolic disorders including hyperglycemia and dyslipidemia, in addition to endothelial dysfunction. Naringin, a flavonoid present in citrus fruit, has been reported to exhibit lipid lowering, antioxidant, and cardiovascular protective properties. Therefore, the present study investigated the effect of naringin on fructose-induced endothelial dysfunction in rats and its underlying mechanisms. Male Sprague-Dawley rats were given 10% fructose in drinking water for 12 weeks, whereas control rats were fed drinking water alone. Naringin (100 mg/kg) was orally administered to fructose fed rats during the last 4 weeks of the study. Following 12 weeks, blood samples were collected for measurement of blood glucose, serum lipid profile and total nitrate/nitrite (NOx). Vascular function was assessed by isometric tension recording. Aortic expression of endothelial nitric oxide synthase (eNOS), phosphorylated eNOS (p-eNOS), and nitrotyrosine were evaluated by western blot analysis. Fructose feeding induced increased levels of blood glucose, total cholesterol, triglyceride, and low density lipoprotein. In rat aortae, fructose reduced acethycholine-induced vasorelaxation, without affecting sodium nitroprusside-induced vasorelaxation. Treatment of fructose-fed rats with naringin restored fructose-induced metabolic alterations and endothelial dysfunction. Fructose-fed rats also exhibited decreased serum NOx level, reduced eNOS and p-eNOS protein expression, and enhanced nitrotyrosine expression in aortae. These alterations were improved by naringin treatment. The results of the present study suggested that naringin treatment preserves endothelium-dependent relaxation in aortae from fructose fed rats. This effect is primarily mediated through an enhanced NO bioavailability via increased eNOS activity and decreased NO inactivated to peroxynitrite in aortae.

  1. High fructose diet feeding accelerates diabetic nephropathy in Spontaneously Diabetic Torii (SDT) rats.

    PubMed

    Toyoda, Kaoru; Suzuki, Yusuke; Muta, Kyotaka; Masuyama, Taku; Kakimoto, Kochi; Kobayashi, Akio; Shoda, Toshiyuki; Sugai, Shoichiro

    2018-01-01

    Diabetic nephropathy (DN) is one of the complications of diabetes and is now the most common cause of end-stage renal disease. Fructose is a simple carbohydrate that is present in fruits and honey and is used as a sweetener because of its sweet taste. Fructose has been reported to have the potential to progress diabetes and DN in humans even though fructose itself does not increase postprandial plasma glucose levels. In this study, we investigated the effects of high fructose intake on the kidney of the Spontaneously Diabetic Torii (SDT) rats which have renal lesions similar to those in DN patients and compared these with the effects in normal SD rats. This study revealed that a 4-week feeding of the high fructose diet increased urinary excretion of kidney injury makers for tubular injury and accelerated mainly renal tubular and interstitial lesions in the SDT rats but not in normal rats. The progression of the nephropathy in the SDT rats was considered to be related to increased internal uric acid and blood glucose levels due to the high fructose intake. In conclusion, high fructose intake exaggerated the renal lesions in the SDT rats probably due to effects on the tubules and interstitium through metabolic implications for uric acid and glucose.

  2. Effects of high fructose corn syrup and sucrose on the pharmacokinetics of fructose and acute metabolic and hemodynamic responses in healthy subjects

    PubMed Central

    Le, MyPhuong T.; Frye, Reginald F.; Rivard, Christopher J.; Cheng, Jing; McFann, Kim K.; Segal, Mark S.; Johnson, Richard J.; Johnson, Julie A.

    2011-01-01

    Objective It is unclear whether high fructose corn syrup (HFCS), which contains a higher amount of fructose and provides an immediate source of free fructose, induces greater systemic concentrations of fructose as compared to sucrose. It is also unclear whether exposure to higher levels of fructose leads to increased fructose-induced adverse effects. The objective was to prospectively compare the effects of HFCS- versus sucrose-sweetened soft drinks on acute metabolic and hemodynamic effects. Materials/Methods Forty men and women consumed 24 oz of HFCS- or sucrose-sweetened beverages in a randomized crossover design study. Blood and urine samples were collected over 6 hr. Blood pressure, heart rate, fructose, and a variety of other metabolic biomarkers were measured. Results Fructose area under the curve and maximum concentration, dose normalized glucose area under the curve and maximum concentration, relative bioavailability of glucose, changes in postprandial concentrations of serum uric acid, and systolic blood pressure maximum levels were higher when HFCS-sweetened beverages were consumed as compared to sucrose-sweetened beverages. Conclusions Compared to sucrose, HFCS leads to greater fructose systemic exposure and significantly different acute metabolic effects. PMID:22152650

  3. Effects of high-fructose corn syrup and sucrose on the pharmacokinetics of fructose and acute metabolic and hemodynamic responses in healthy subjects.

    PubMed

    Le, Myphuong T; Frye, Reginald F; Rivard, Christopher J; Cheng, Jing; McFann, Kim K; Segal, Mark S; Johnson, Richard J; Johnson, Julie A

    2012-05-01

    It is unclear whether high-fructose corn syrup (HFCS), which contains a higher amount of fructose and provides an immediate source of free fructose, induces greater systemic concentrations of fructose as compared with sucrose. It is also unclear whether exposure to higher levels of fructose leads to increased fructose-induced adverse effects. The objective was to prospectively compare the effects of HFCS- vs sucrose-sweetened soft drinks on acute metabolic and hemodynamic effects. Forty men and women consumed 24 oz of HFCS- or sucrose-sweetened beverages in a randomized crossover design study. Blood and urine samples were collected over 6 hours. Blood pressure, heart rate, fructose, and a variety of other metabolic biomarkers were measured. Fructose area under the curve and maximum concentration, dose-normalized glucose area under the curve and maximum concentration, relative bioavailability of glucose, changes in postprandial concentrations of serum uric acid, and systolic blood pressure maximum levels were higher when HFCS-sweetened beverages were consumed as compared with sucrose-sweetened beverages. Compared with sucrose, HFCS leads to greater fructose systemic exposure and significantly different acute metabolic effects. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Lower Doses of Fructose Extend Lifespan in Caenorhabditis elegans

    PubMed Central

    Zheng, Jolene; Gao, Chenfei; Wang, Mingming; Tran, Phuongmai; Mai, Nancy; Finley, John W.; Heymsfield, Steven B.; Greenway, Frank L.; Li, Zhaoping; Heber, David; Burton, Jeffrey H.; Johnson, William D.; Laine, Roger A.

    2016-01-01

    Epidemiological studies indicate that the increased consumption of sugars including sucrose and fructose in beverages correlate with the prevalence of obesity, type-2 diabetes, insulin resistance, hyperinsulinemia, hypertriglyceridemia, and hypertension in humans. A few reports suggest that fructose extends lifespan in Saccharomyces cerevisiae. In Anopheles gambiae, fructose, glucose, or glucose plus fructose also extended lifespan. New results presented here suggest that fructose extends lifespan in Caenorhabditis elegans (C. elegans) wild type (N2). C. elegans were fed standard laboratory food source (E. coli OP50), maintained in liquid culture. Experimental groups received additional glucose (111 mM), fructose (55 mM, 111 mM, or 555 mM), sucrose (55 mM, 111 mM, or 555 mM), glucose (167 mM) plus fructose (167 mM) (G&F), or high fructose corn syrup (HFCS, 333 mM). In four replicate experiments, fructose dose-dependently increased mean lifespan at 55 mM or 111 m Min N2, but decreased lifespan at 555 mM (P < 0.001). Sucrose did not affect the lifespan. Glucose reduced lifespan (P < 0.001). Equal amount of G&F or HFCS reduced lifespan (P < 0.0001). Intestinal fat deposition (IFD) was increased at a higher dose of fructose (555 mM), glucose (111 mM), and sucrose (55 mM, 111 mM, and 555 mM). Here we report a biphasic effect of fructose increasing lifespan at lower doses and shortening lifespan at higher doses with an inverse effect on IFD. In view of reports that fructose increases lifespan in yeast, mosquitoes and now nematodes, while decreasing fat deposition (in nematodes) at lower concentrations, further research into the relationship of fructose to lifespan and fat accumulation in vertebrates and mammals is indicated. PMID:27680107

  5. Lower Doses of Fructose Extend Lifespan in Caenorhabditis elegans.

    PubMed

    Zheng, Jolene; Gao, Chenfei; Wang, Mingming; Tran, Phuongmai; Mai, Nancy; Finley, John W; Heymsfield, Steven B; Greenway, Frank L; Li, Zhaoping; Heber, David; Burton, Jeffrey H; Johnson, William D; Laine, Roger A

    2017-05-04

    Epidemiological studies indicate that the increased consumption of sugars including sucrose and fructose in beverages correlate with the prevalence of obesity, type-2 diabetes, insulin resistance, hyperinsulinemia, hypertriglyceridemia, and hypertension in humans. A few reports suggest that fructose extends lifespan in Saccharomyces cerevisiae. In Anopheles gambiae, fructose, glucose, or glucose plus fructose also extended lifespan. New results presented here suggest that fructose extends lifespan in Caenorhabditis elegans (C. elegans) wild type (N2). C. elegans were fed standard laboratory food source (E. coli OP50), maintained in liquid culture. Experimental groups received additional glucose (111 mM), fructose (55 mM, 111 mM, or 555 mM), sucrose (55 mM, 111 mM, or 555 mM), glucose (167 mM) plus fructose (167 mM) (G&F), or high fructose corn syrup (HFCS, 333 mM). In four replicate experiments, fructose dose-dependently increased mean lifespan at 55 mM or 111 m Min N2, but decreased lifespan at 555 mM (P < 0.001). Sucrose did not affect the lifespan. Glucose reduced lifespan (P < 0.001). Equal amount of G&F or HFCS reduced lifespan (P < 0.0001). Intestinal fat deposition (IFD) was increased at a higher dose of fructose (555 mM), glucose (111 mM), and sucrose (55 mM, 111 mM, and 555 mM). Here we report a biphasic effect of fructose increasing lifespan at lower doses and shortening lifespan at higher doses with an inverse effect on IFD. In view of reports that fructose increases lifespan in yeast, mosquitoes and now nematodes, while decreasing fat deposition (in nematodes) at lower concentrations, further research into the relationship of fructose to lifespan and fat accumulation in vertebrates and mammals is indicated.

  6. Dietary fructose as a risk factor for non-alcoholic fatty liver disease (NAFLD).

    PubMed

    Alwahsh, Salamah Mohammad; Gebhardt, Rolf

    2017-04-01

    Glucose is a major energy source for the entire body, while fructose metabolism occurs mainly in the liver. Fructose consumption has increased over the last decade globally and is suspected to contribute to the increased incidence of non-alcoholic fatty liver disease (NAFLD). NAFLD is a manifestation of metabolic syndrome affecting about one-third of the population worldwide and has progressive pathological potential for liver cirrhosis and cancer through non-alcoholic steatohepatitis (NASH). Here we have reviewed the possible contribution of fructose to the pathophysiology of NAFLD. We critically summarize the current findings about several regulators, and their potential mechanisms, that have been studied in humans and animal models in response to fructose exposure. A novel hypothesis on fructose-dependent perturbation of liver regeneration and metabolism is advanced. Fructose intake could affect inflammatory and metabolic processes, liver function, gut microbiota, and portal endotoxin influx. The role of the brain in controlling fructose ingestion and the subsequent development of NAFLD is highlighted. Although the importance for fructose (over)consumption for NAFLD in humans is still debated and comprehensive intervention studies are invited, understanding of how fructose intake can favor these pathological processes is crucial for the development of appropriate noninvasive diagnostic and therapeutic approaches to detect and treat these metabolic effects. Still, lifestyle modification, to lessen the consumption of fructose-containing products, and physical exercise are major measures against NAFLD. Finally, promising drugs against fructose-induced insulin resistance and hepatic dysfunction that are emerging from studies in rodents are reviewed, but need further validation in human patients.

  7. Replacement of Sugar Syrup with High-Fructose Syrup in Imitation Maple Syrup

    DTIC Science & Technology

    1975-01-01

    Corn syrupa Liquid sugar1- High - fructose syrupc Corn syrupa High - fructose syrup Corn syrupa TADLE 1. Thin Syrup Formulation...c <&> y &> - — 4ß ^ 11 12 13 14 15 16 17 IB % SOLIDS BASIS ISOSWEET 100 HIGH FRUCTOSE CORN SYRUP (Courtesy of Staley) "’ ■ "MMM—MM...iJjffVllMW! fmmmm,,m*w.mn’i’»l’« mm ■ " "’" ’" W ’ "~ FrnT1ŕ" "■ «»<■■ MBMH

  8. [Fructose as a factor of Carbonyl and oxidative stress development and accelerated aging in the yeast Saccharomyces].

    PubMed

    Lozins'ka, L M; Semchyshyn, G M

    2011-01-01

    Excessive and prolonged consumption of fructose may lead to the development of metabolic disorders. However, the mechanisms of disturbances are still discussed. In the present work, the budding yeast Saccharomyces cerevisiae has been used as a model to compare the effects of prolonged consumption of different concentrations of glucose and fructose on certain physiology-biochemical parameters of eukaryotes. It has been shown that the yeast growth, their metabolic activity, intracellular level of glycogen and oxidized proteins were higher in cells grown on fructose. The observation is consistent with the data on a higher in vitro ability of fructose than glucose to initiate glycation which products of which are highly reactive a-dicarbonyl compounds and activated oxygen forms. Thus the intensity of carbonyl and oxidative stress is higher in cells grown on fructose. This can explain a higher rate of aging of yeast consuming fructose as a source of carbon and energy as compared to cells growing on glucose. However, carbohydrate restriction used in this study ham- pered the accumulation of glycogen and oxidized proteins and did not reveal any difference between markers of aging and carbonyl and oxidative stress in yeast grown on glucose and fructose.

  9. Carbohydrate intake and nonalcoholic fatty liver disease: fructose as a weapon of mass destruction

    PubMed Central

    Basaranoglu, Gokcen; Bugianesi, Elisabetta

    2015-01-01

    Excessive accumulation of triglycerides (TG) in liver, in the absence of significant alcohol consumption is nonalcoholic fatty liver disease (NAFLD). NAFLD is a significant risk factor for developing cirrhosis and an independent predictor of cardiovascular disease. High fructose corn syrup (HFCS)-containing beverages were associated with metabolic abnormalities, and contributed to the development of NAFLD in human trials. Ingested carbohydrates are a major stimulus for hepatic de novo lipogenesis (DNL) and are more likely to directly contribute to NAFLD than dietary fat. Substrates used for the synthesis of newly made fatty acids by DNL are primarily glucose, fructose, and amino acids. Epidemiological studies linked HFCS consumption to the severity of fibrosis in patients with NAFLD. New animal studies provided additional evidence on the role of carbohydrate-induced DNL and the gut microbiome in NAFLD. The excessive consumption of HFCS-55 increased endoplasmic reticulum stress, activated the stress-related kinase, caused mitochondrial dysfunction, and increased apoptotic activity in the liver. A link between dietary fructose intake, increased hepatic glucose transporter type-5 (Glut5) (fructose transporter) gene expression and hepatic lipid peroxidation, MyD88, TNF-α levels, gut-derived endotoxemia, toll-like receptor-4, and NAFLD was reported. The lipogenic and proinflammatory effects of fructose appear to be due to transient ATP depletion by its rapid phosphorylation within the cell and from its ability to raise intracellular and serum uric acid levels. However, large prospective studies that evaluated the relationship between fructose and NAFLD were not performed yet. PMID:26005677

  10. Treating fructose-induced metabolic changes in mice with high-intensity interval training: insights in the liver, white adipose tissue, and skeletal muscle.

    PubMed

    Motta, Victor F; Bargut, Thereza L; Aguila, Marcia B; Mandarim-de-Lacerda, Carlos A

    2017-10-01

    Fructose-rich caloric sweeteners induce adverse changes in the metabolism of humans. The study evaluated the effects of high-intensity interval training (HIIT) on a fructose feeding model, focusing on the liver, white adipose tissue (WAT), skeletal muscle, and their interplay. Male C57BL/6 mice were fed for 18 wk one of the following diets: control (C; 5% of total energy from fructose) or fructose (F; 55% of total energy from fructose). In the 10th week, for an additional 8-wk period, the groups were divided into nontrained (NT) or HIIT groups, totaling four groups: C-NT, C-HIIT, F-NT, and F-HIIT. At the end of the experiment, fructose consumption in the F-NT group led to a high systolic blood pressure, high plasma triglycerides, insulin resistance with glucose intolerance, and lower insulin sensitivity. We also observed liver steatosis, adipocyte hypertrophy, and diminished gene expressions of peroxisome proliferator-activated receptor-γ coactivator 1-α and fibronectin type III domain containing 5 (FNDC5; irisin) in this F-NT group. These results were accompanied by decreased gene expressions of nuclear respiratory factor 1 and mitochondrial transcription factor A (markers of mitochondrial biogenesis), and peroxisome proliferator-activated receptor-α and carnitine palmitoyltransferase 1 (markers of β-oxidation). HIIT improved all of these data in the C-HIIT and F-HIIT groups. In conclusion, in mice fed a fructose diet, HIIT improved body mass, blood pressure, glucose metabolism, and plasma triglycerides. Liver, WAT, and skeletal muscle were positively modulated by HIIT, indicating HIIT as a coadjutant treatment for diseases affecting these tissues. NEW & NOTEWORTHY We investigated the effects of high-intensity interval training (HIIT) in mice fed a fructose-rich diet and the resulting severe negative effect on the liver, white adipose tissue (WAT), and skeletal muscle, which reduced the expression of fibronectin type III domain containing 5 (FNDC5, irisin) and

  11. Altered Brain Response to Drinking Glucose and Fructose in Obese Adolescents

    PubMed Central

    Sinha, Rajita; Arora, Jagriti; Giannini, Cosimo; Kubat, Jessica; Malik, Saima; Van Name, Michelle A.; Santoro, Nicola; Savoye, Mary; Duran, Elvira J.; Pierpont, Bridget; Cline, Gary; Constable, R. Todd; Sherwin, Robert S.

    2016-01-01

    Increased sugar-sweetened beverage consumption has been linked to higher rates of obesity. Using functional MRI, we assessed brain perfusion responses to drinking two commonly consumed monosaccharides, glucose and fructose, in obese and lean adolescents. Marked differences were observed. In response to drinking glucose, obese adolescents exhibited decreased brain perfusion in brain regions involved in executive function (prefrontal cortex [PFC]) and increased perfusion in homeostatic appetite regions of the brain (hypothalamus). Conversely, in response to drinking glucose, lean adolescents demonstrated increased PFC brain perfusion and no change in perfusion in the hypothalamus. In addition, obese adolescents demonstrated attenuated suppression of serum acyl-ghrelin and increased circulating insulin level after glucose ingestion; furthermore, the change in acyl-ghrelin and insulin levels after both glucose and fructose ingestion was associated with increased hypothalamic, thalamic, and hippocampal blood flow in obese relative to lean adolescents. Additionally, in all subjects there was greater perfusion in the ventral striatum with fructose relative to glucose ingestion. Finally, reduced connectivity between executive, homeostatic, and hedonic brain regions was observed in obese adolescents. These data demonstrate that obese adolescents have impaired prefrontal executive control responses to drinking glucose and fructose, while their homeostatic and hedonic responses appear to be heightened. Thus, obesity-related brain adaptations to glucose and fructose consumption in obese adolescents may contribute to excessive consumption of glucose and fructose, thereby promoting further weight gain. PMID:27207544

  12. Early Life Fructose Exposure and Its Implications for Long-Term Cardiometabolic Health in Offspring.

    PubMed

    Zheng, Jia; Feng, Qianyun; Zhang, Qian; Wang, Tong; Xiao, Xinhua

    2016-11-01

    It has become increasingly clear that maternal nutrition can strongly influence the susceptibility of adult offspring to cardiometabolic disease. For decades, it has been thought that excessive intake of fructose, such as sugar-sweetened beverages and foods, has been linked to increased risk of obesity, type 2 diabetes, and cardiovascular disease in various populations. These deleterious effects of excess fructose consumption in adults are well researched, but limited data are available on the long-term effects of high fructose exposure during gestation, lactation, and infancy. This review aims to examine the evidence linking early life fructose exposure during critical periods of development and its implications for long-term cardiometabolic health in offspring.

  13. Fructose Containing Sugars at Normal Levels of Consumption Do Not Effect Adversely Components of the Metabolic Syndrome and Risk Factors for Cardiovascular Disease

    PubMed Central

    Angelopoulos, Theodore J.; Lowndes, Joshua; Sinnett, Stephanie; Rippe, James M.

    2016-01-01

    The objective of the current study was to explore our hypothesis that average consumption of fructose and fructose containing sugars would not increase risk factors for cardiovascular disease (CVD) and the metabolic syndrome (MetS). A randomized, double blind, parallel group study was conducted where 267 individuals with BMI between 23 and 35 kg/m2 consumed low fat sugar sweetened milk, daily for ten weeks as part of usual weight-maintenance diet. One group consumed 18% of calories from high fructose corn syrup (HFCS), another group consumed 18% of calories from sucrose, a third group consumed 9% of calories from fructose, and the fourth group consumed 9% of calories from glucose. There was a small change in waist circumference (80.9 ± 9.5 vs. 81.5 ± 9.5 cm) in the entire cohort, as well as in total cholesterol (4.6 ± 1.0 vs. 4.7 ± 1.0 mmol/L, p < 0.01), triglycerides (TGs) (11.5 ± 6.4 vs. 12.6 ± 8.9 mmol/L, p < 0.01), and systolic (109.2 ± 10.2 vs. 106.1 ± 10.4 mmHg, p < 0.01) and diastolic blood pressure (69.8 ± 8.7 vs. 68.1 ± 9.7 mmHg, p < 0.01). The effects of commonly consumed sugars on components of the MetS and CVD risk factors are minimal, mixed and not clinically significant. PMID:27023594

  14. Fructose Containing Sugars at Normal Levels of Consumption Do Not Effect Adversely Components of the Metabolic Syndrome and Risk Factors for Cardiovascular Disease.

    PubMed

    Angelopoulos, Theodore J; Lowndes, Joshua; Sinnett, Stephanie; Rippe, James M

    2016-03-23

    The objective of the current study was to explore our hypothesis that average consumption of fructose and fructose containing sugars would not increase risk factors for cardiovascular disease (CVD) and the metabolic syndrome (MetS). A randomized, double blind, parallel group study was conducted where 267 individuals with BMI between 23 and 35 kg/m² consumed low fat sugar sweetened milk, daily for ten weeks as part of usual weight-maintenance diet. One group consumed 18% of calories from high fructose corn syrup (HFCS), another group consumed 18% of calories from sucrose, a third group consumed 9% of calories from fructose, and the fourth group consumed 9% of calories from glucose. There was a small change in waist circumference (80.9 ± 9.5 vs. 81.5 ± 9.5 cm) in the entire cohort, as well as in total cholesterol (4.6 ± 1.0 vs. 4.7 ± 1.0 mmol/L, p < 0.01), triglycerides (TGs) (11.5 ± 6.4 vs. 12.6 ± 8.9 mmol/L, p < 0.01), and systolic (109.2 ± 10.2 vs. 106.1 ± 10.4 mmHg, p < 0.01) and diastolic blood pressure (69.8 ± 8.7 vs. 68.1 ± 9.7 mmHg, p < 0.01). The effects of commonly consumed sugars on components of the MetS and CVD risk factors are minimal, mixed and not clinically significant.

  15. Fructose, exercise, and health.

    PubMed

    Johnson, Richard J; Murray, Robert

    2010-01-01

    The large daily energy intake common among athletes can be associated with a large daily intake of fructose, a simple sugar that has been linked to metabolic disorders. Fructose commonly is found in foods and beverages as a natural component (e.g., in fruits) or as an added ingredient (as sucrose or high fructose corn syrup [HFCS]). A growing body of research suggests that excessive intake of fructose (e.g., >50 g.d(-1)) may be linked to development of the metabolic syndrome (obesity, dyslipidemia, hypertension, insulin resistance, proinflammatory state, prothrombosis). The rapid metabolism of fructose in the liver and resultant drop in hepatic adenosine triphosphate (ATP) levels have been linked with mitochondrial and endothelial dysfunction, alterations that could predispose to obesity, diabetes, and hypertension. However, for athletes, a positive aspect of fructose metabolism is that, in combination with other simple sugars, fructose stimulates rapid fluid and solute absorption in the small intestine and helps increase exogenous carbohydrate oxidation during exercise, an important response for improving exercise performance. Although additional research is required to clarify the possible health-related implications of long-term intake of large amounts of dietary fructose among athletes, regular exercise training and consequent high daily energy expenditure may protect athletes from the negative metabolic responses associated with chronically high dietary fructose intake.

  16. Consuming fructose-sweetened, not glucose-sweetened, beverages increases visceral adiposity and lipids and decreases insulin sensitivity in overweight/obese humans

    PubMed Central

    Stanhope, Kimber L.; Schwarz, Jean Marc; Keim, Nancy L.; Griffen, Steven C.; Bremer, Andrew A.; Graham, James L.; Hatcher, Bonnie; Cox, Chad L.; Dyachenko, Artem; Zhang, Wei; McGahan, John P.; Seibert, Anthony; Krauss, Ronald M.; Chiu, Sally; Schaefer, Ernst J.; Ai, Masumi; Otokozawa, Seiko; Nakajima, Katsuyuki; Nakano, Takamitsu; Beysen, Carine; Hellerstein, Marc K.; Berglund, Lars; Havel, Peter J.

    2009-01-01

    Studies in animals have documented that, compared with glucose, dietary fructose induces dyslipidemia and insulin resistance. To assess the relative effects of these dietary sugars during sustained consumption in humans, overweight and obese subjects consumed glucose- or fructose-sweetened beverages providing 25% of energy requirements for 10 weeks. Although both groups exhibited similar weight gain during the intervention, visceral adipose volume was significantly increased only in subjects consuming fructose. Fasting plasma triglyceride concentrations increased by approximately 10% during 10 weeks of glucose consumption but not after fructose consumption. In contrast, hepatic de novo lipogenesis (DNL) and the 23-hour postprandial triglyceride AUC were increased specifically during fructose consumption. Similarly, markers of altered lipid metabolism and lipoprotein remodeling, including fasting apoB, LDL, small dense LDL, oxidized LDL, and postprandial concentrations of remnant-like particle–triglyceride and –cholesterol significantly increased during fructose but not glucose consumption. In addition, fasting plasma glucose and insulin levels increased and insulin sensitivity decreased in subjects consuming fructose but not in those consuming glucose. These data suggest that dietary fructose specifically increases DNL, promotes dyslipidemia, decreases insulin sensitivity, and increases visceral adiposity in overweight/obese adults. PMID:19381015

  17. Fructose Consumption Does Not Worsen Bone Deficits Resulting From High-Fat Feeding in Young Male Rats

    PubMed Central

    Yarrow, Joshua F.; Toklu, Hale Z.; Balaez, Alex; Phillips, Ean G.; Otzel, Dana M.; Chen, Cong; Wronski, Thomas J.; Aguirre, J. Ignacio; Sakarya, Yasemin; Tümer, Nihal; Scarpace, Philip J.

    2016-01-01

    Dietary-induced obesity (DIO) resulting from high-fat (HF) or high-sugar diets produces a host of deleterious metabolic consequences including adverse bone development. We compared the effects of feeding standard rodent chow (Control), a 30% moderately HF (starch-based/sugar-free) diet, or a combined 30%/40% HF/high-fructose (HF/F) diet for 12 weeks on cancellous/cortical bone development in male Sprague-Dawley rats aged 8 weeks. Both HF feeding regimens reduced the lean/fat mass ratio, elevated circulating leptin, and reduced serum total antioxidant capacity (tAOC) when compared with Controls. Distal femur cancellous bone mineral density (BMD) was 23–34% lower in both HF groups (p<0.001) and was characterized by lower cancellous bone volume (BV/TV, p<0.01), lower trabecular number (Tb.N, p<0.001), and increased trabecular separation versus Controls (p<0.001). Cancellous BMD, BV/TV, and Tb.N were negatively associated with leptin and positively associated with tAOC at the distal femur. Similar cancellous bone deficits were observed at the proximal tibia, along with increased bone marrow adipocyte density (p<0.05), which was negatively associated with BV/TV and Tb.N. HF/F animals also exhibited lower osteoblast surface and reduced circulating osteocalcin (p<0.05). Cortical thickness (p<0.01) and tissue mineral density (p<0.05) were higher in both HF-fed groups versus Controls, while whole bone biomechanical characteristics were not different among groups. These results demonstrate that “westernized” HF diets worsen cancellous, but not cortical, bone parameters in skeletally-immature male rats and that fructose incorporation into HF diets does not exacerbate bone loss. In addition, they suggest that leptin and/or oxidative stress may influence DIO-induced alterations in adolescent bone development. PMID:26855373

  18. Fructose consumption does not worsen bone deficits resulting from high-fat feeding in young male rats.

    PubMed

    Yarrow, Joshua F; Toklu, Hale Z; Balaez, Alex; Phillips, Ean G; Otzel, Dana M; Chen, Cong; Wronski, Thomas J; Aguirre, J Ignacio; Sakarya, Yasemin; Tümer, Nihal; Scarpace, Philip J

    2016-04-01

    Dietary-induced obesity (DIO) resulting from high-fat (HF) or high-sugar diets produces a host of deleterious metabolic consequences including adverse bone development. We compared the effects of feeding standard rodent chow (Control), a 30% moderately HF (starch-based/sugar-free) diet, or a combined 30%/40% HF/high-fructose (HF/F) diet for 12weeks on cancellous/cortical bone development in male Sprague-Dawley rats aged 8weeks. Both HF feeding regimens reduced the lean/fat mass ratio, elevated circulating leptin, and reduced serum total antioxidant capacity (tAOC) when compared with Controls. Distal femur cancellous bone mineral density (BMD) was 23-34% lower in both HF groups (p<0.001) and was characterized by lower cancellous bone volume (BV/TV, p<0.01), lower trabecular number (Tb.N, p<0.001), and increased trabecular separation versus Controls (p<0.001). Cancellous BMD, BV/TV, and Tb.N were negatively associated with leptin and positively associated with tAOC at the distal femur. Similar cancellous bone deficits were observed at the proximal tibia, along with increased bone marrow adipocyte density (p<0.05), which was negatively associated with BV/TV and Tb.N. HF/F animals also exhibited lower osteoblast surface and reduced circulating osteocalcin (p<0.05). Cortical thickness (p<0.01) and tissue mineral density (p<0.05) were higher in both HF-fed groups versus Controls, while whole bone biomechanical characteristics were not different among groups. These results demonstrate that "westernized" HF diets worsen cancellous, but not cortical, bone parameters in skeletally-immature male rats and that fructose incorporation into HF diets does not exacerbate bone loss. In addition, they suggest that leptin and/or oxidative stress may influence DIO-induced alterations in adolescent bone development. Published by Elsevier Inc.

  19. High-fructose corn syrup: is this what's for dinner?

    PubMed

    Duffey, Kiyah J; Popkin, Barry M

    2008-12-01

    Research on trends in consumption of added sugar and high-fructose corn syrup (HFCS) in the United States has largely focused on calorically sweetened beverages and ignored other sources. We aimed to examine US consumption of added sugar and HFCS to determine long-term trends in availability and intake from beverages and foods. We used 2 estimation techniques and data from the Nationwide Food Consumption Surveys (1965 and 1977), Continuing Survey of Food Intake by Individuals (1989-1991), and the National Health and Nutrition Examination Surveys (1999-2000, 2001-2002, and 2003-2004) to examine trends in HFCS and added sugar both overall and within certain food and beverage groups. Availability and consumption of HFCS and added sugar increased over time until a slight decline between 2000 and 2004. By 2004, HFCS provided roughly 8% of total energy intake compared with total added sugar of 377 kcal x person(-1) x d(-1), accounting for 17% of total energy intake. Although food and beverage trends were similar, soft drinks and fruit drinks provided the most HFCS (158 and 40 kcal x person(-1) x d(-1) in 2004, respectively). Moreover, among the top 20% of individuals, 896 kcal x person(-1) x d(-1) of added sugar was consumed compared with 505 kcal x person(-1) x d(-1) of HFCS. Among consumers, sweetened tea and desserts also represented major contributors of calories from added sugar (>100 kcal x person(-1) x d(-1)). Although increased intake of calories from HFCS is important to examine, the health effect of overall trends in added caloric sweeteners should not be overlooked.

  20. Fructose-Containing Sugars and Cardiovascular Disease12

    PubMed Central

    Rippe, James M; Angelopoulos, Theodore J

    2015-01-01

    Cardiovascular disease (CVD) is the single largest cause of mortality in the United States and worldwide. Numerous risk factors have been identified for CVD, including a number of nutritional factors. Recently, attention has been focused on fructose-containing sugars and their putative link to risk factors for CVD. In this review, we focus on recent studies related to sugar consumption and cardiovascular risk factors including lipids, blood pressure, obesity, insulin resistance, diabetes, and the metabolic syndrome. We then examine the scientific basis for competing recommendations for sugar intake. We conclude that although it appears prudent to avoid excessive consumption of fructose-containing sugars, levels within the normal range of human consumption are not uniquely related to CVD risk factors with the exception of triglycerides, which may rise when simple sugars exceed 20% of energy per day, particularly in hypercaloric settings. PMID:26178027

  1. Fructose toxicity: is the science ready for public health actions?

    PubMed Central

    Tappy, Luc; Mittendorfer, Bettina

    2013-01-01

    Summary Purpose of review The assumption that fructose may be “toxic” and involved in the pathogenesis of non communicable diseases such as obesity, diabetes mellitus, dyslipidemia, and even cancer has resulted in the call for public health action, such as introducing taxes on sweetened beverages. This review evaluates the scientific basis for such action. Recent findings Although some studies hint towards some potential adverse effects of excessive fructose consumption especially when combined with excess energy intake, the results from clinical trials do not support a significant detrimental effect of fructose on metabolic health when consumed as part of a weight maintaining diet in amounts consistent with the average estimated fructose consumption in Western countries. However, definitive studies are missing. Summary and conclusion Public health policies to eliminate or limit fructose in the diet should be considered premature. Instead, efforts should be made to promote a healthy life style that includes physical activity and nutritious foods while avoiding intake of excess calories until solid evidence to support action against fructose is available. Public health is almost certainly to benefit more from policies that are aimed at promoting what is known to be good than from policies that are prohibiting what is not (yet) known to be bad. PMID:22617566

  2. Effects of natural mineral-rich water consumption on the expression of sirtuin 1 and angiogenic factors in the erectile tissue of rats with fructose-induced metabolic syndrome

    PubMed Central

    Pereira, Cidália D; Severo, Milton; Rafael, Luísa; Martins, Maria João; Neves, Delminda

    2014-01-01

    Consuming a high-fructose diet induces metabolic syndrome (MS)-like features, including endothelial dysfunction. Erectile dysfunction is an early manifestation of endothelial dysfunction and systemic vascular disease. Because mineral deficiency intensifies the deleterious effects of fructose consumption and mineral ingestion is protective against MS, we aimed to characterize the effects of 8 weeks of natural mineral-rich water consumption on the structural organization and expression of vascular growth factors and receptors on the corpus cavernosum (CC) in 10% fructose-fed Sprague-Dawley rats (FRUCT). Differences were not observed in the organization of the CC either on the expression of vascular endothelial growth factor (VEGF) or the components of the angiopoietins/Tie2 system. However, opposing expression patterns were observed for VEGF receptors (an increase and a decrease for VEGFR1 and VEGFR2, respectively) in FRUCT animals, with these patterns being strengthened by mineral-rich water ingestion. Mineral-rich water ingestion (FRUCTMIN) increased the proportion of smooth muscle cells compared with FRUCT rats and induced an upregulatory tendency of sirtuin 1 expression compared with the control and FRUCT groups. Western blot results were consistent with the dual immunofluorescence evaluation. Plasma oxidized low-density lipoprotein and plasma testosterone levels were similar among the experimental groups, although a tendency for an increase in the former was observed in the FRUCTMIN group. The mineral-rich water-treated rats presented changes similar to those observed in rats treated with MS-protective polyphenol-rich beverages or subjected to energy restriction, which led us to hypothesize that the effects of mineral-rich water consumption may be more vast than those directly observed in this study. PMID:24625878

  3. Adverse effects of fructose on cardiometabolic risk factors and hepatic lipid metabolism in subjects with abdominal obesity.

    PubMed

    Taskinen, M-R; Söderlund, S; Bogl, L H; Hakkarainen, A; Matikainen, N; Pietiläinen, K H; Räsänen, S; Lundbom, N; Björnson, E; Eliasson, B; Mancina, R M; Romeo, S; Alméras, N; Pepa, G D; Vetrani, C; Prinster, A; Annuzzi, G; Rivellese, A; Després, J-P; Borén, J

    2017-08-01

    Overconsumption of dietary sugars, fructose in particular, is linked to cardiovascular risk factors such as type 2 diabetes, obesity, dyslipidemia and nonalcoholic fatty liver disease. However, clinical studies have to date not clarified whether these adverse cardiometabolic effects are induced directly by dietary sugars, or whether they are secondary to weight gain. To assess the effects of fructose (75 g day -1 ), served with their habitual diet over 12 weeks, on liver fat content and other cardiometabolic risk factors in a large cohort (n = 71) of abdominally obese men. We analysed changes in body composition, dietary intake, an extensive panel of cardiometabolic risk markers, hepatic de novo lipogenesis (DNL), liver fat content and postprandial lipid responses after a standardized oral fat tolerance test (OFTT). Fructose consumption had modest adverse effects on cardiometabolic risk factors. However, fructose consumption significantly increased liver fat content and hepatic DNL and decreased β-hydroxybutyrate (a measure of β-oxidation). The individual changes in liver fat were highly variable in subjects matched for the same level of weight change. The increase in liver fat content was significantly more pronounced than the weight gain. The increase in DNL correlated positively with triglyceride area under the curve responses after an OFTT. Our data demonstrated adverse effects of moderate fructose consumption for 12 weeks on multiple cardiometabolic risk factors in particular on liver fat content despite only relative low increases in weight and waist circumference. Our study also indicates that there are remarkable individual differences in susceptibility to visceral adiposity/liver fat after real-world daily consumption of fructose-sweetened beverages over 12 weeks. © 2017 The Association for the Publication of the Journal of Internal Medicine.

  4. Effects of high-fructose corn syrup and sucrose consumption on circulating glucose, insulin, leptin, and ghrelin and on appetite in normal-weight women.

    PubMed

    Melanson, Kathleen J; Zukley, Linda; Lowndes, Joshua; Nguyen, Von; Angelopoulos, Theodore J; Rippe, James M

    2007-02-01

    Fructose has been implicated in obesity, partly due to lack of insulin-mediated leptin stimulation and ghrelin suppression. Most work has examined effects of pure fructose, rather than high-fructose corn syrup (HFCS), the most commonly consumed form of fructose. This study examined effects of beverages sweetened with HFCS or sucrose (Suc), when consumed with mixed meals, on blood glucose, insulin, leptin, ghrelin, and appetite. Thirty lean women were studied on two randomized 2-d visits during which HFCS- and Suc-sweetened beverages were consumed as 30% of energy on isocaloric diets during day 1 while blood was sampled. On day 2, food was eaten ad libitum. Subjects rated appetite at designated times throughout visits. No significant differences between the two sweeteners were seen in fasting plasma glucose, insulin, leptin, and ghrelin (P > 0.05). The within-day variation in all four items was not different between the two visits (P > 0.05). Net areas under the curve were similar for glucose, insulin, and leptin (P > 0.05). There were no differences in energy or macronutrient intake on day 2. The only appetite variable that differed between sweeteners was desire to eat, which had a higher area under the curve the day after Suc compared with HFCS. These short-term results suggest that, when fructose is consumed in the form of HFCS, the measured metabolic responses do not differ from Suc in lean women. Further research is required to examine appetite responses and to determine if these findings hold true for obese individuals, males, or longer periods.

  5. Acute effects of feeding fructose, glucose and sucrose on blood lipid levels and systemic inflammation.

    PubMed

    Jameel, Faizan; Phang, Melinda; Wood, Lisa G; Garg, Manohar L

    2014-12-16

    Recent studies have demonstrated a relationship between fructose consumption and risk of developing metabolic syndrome. Mechanisms by which dietary fructose mediates metabolic changes are poorly understood. This study compared the effects of fructose, glucose and sucrose consumption on post-postprandial lipemia and low grade inflammation measured as hs-CRP. This was a randomized, single blinded, cross-over trial involving healthy subjects (n=14). After an overnight fast, participants were given one of 3 different isocaloric drinks, containing 50 g of either fructose or glucose or sucrose dissolved in water. Blood samples were collected at baseline, 30, 60 and 120 minutes post intervention for the analysis of blood lipids, glucose, insulin and high sensitivity C-reactive protein (hs-CRP). Glucose and sucrose supplementation initially resulted in a significant increase in glucose and insulin levels compared to fructose supplementation and returned to near baseline values within 2 hours. Change in plasma cholesterol, LDL and HDL-cholesterol (measured as area under curve, AUC) was significantly higher when participants consumed fructose compared with glucose or sucrose (P<0.05). AUC for plasma triglyceride levels however remained unchanged regardless of the dietary intervention. Change in AUC for hs-CRP was also significantly higher in subjects consuming fructose compared with those consuming glucose (P<0.05), but not sucrose (P=0.07). This study demonstrates that fructose as a sole source of energy modulates plasma lipids and hsCRP levels in healthy individuals. The significance of increase in HDL-cholesterol with a concurrent increase in LDL-cholesterol and elevated hs-CRP levels remains to be delineated when considering health effects of feeding fructose-rich diets. ACTRN12614000431628.

  6. High-Fructose Corn Syrup: Is this what’s for dinner?

    PubMed Central

    Duffey, Kiyah J.; Popkin, Barry M.

    2009-01-01

    Background Research on trends in consumption of added sugar and high fructose corn syrup (HFCS) in the U.S. has largely focused on calorically-sweetened beverages, ignoring other sources. Objective To examine U.S. consumption of added sugar and HFCS to determine long-term trends in availability and intake from beverages and foods. Design We used two estimation techniques and data from the Nationwide Food Consumption Surveys (1965 and 1977), Continuing Survey of Food Intake in Individuals (1989–1991) and the National Health and Nutrition Examination Surveys (1999–2000, 2001–2002 and 2003–2004) to examine trends in HFCS and added sugar, including: (a) overall trends, and (b) within certain food and beverage groups. Results Availability and consumption of HFCS and added sugar increased over time until a slight decline between 2000 and 2004. By 2004, HFCS provided roughly 8% of total energy intake compared to total added sugar of 377 kcal/person/d, accounting for 17% of total energy intake. While food and beverage trends were similar, soft drinks and fruit drinks provided the most HFCS (158 and 40 kcal/person/d in 2004, respectively). Moreover, among the top 20% of individuals, 896 kcal/person/d of added sugar was consumed compared to 505 kcal/person/d of HFCS. Among consumers, sweetened tea and desserts also represented major contributors of calories from added sugar (over 100 kcal/person/d). Conclusion While increased intake of calories from HFCS is important to examine, the health affect of overall trends in added caloric sweeteners should not be overlooked. PMID:19064537

  7. Intestinal Barrier Function and the Gut Microbiome Are Differentially Affected in Mice Fed a Western-Style Diet or Drinking Water Supplemented with Fructose.

    PubMed

    Volynets, Valentina; Louis, Sandrine; Pretz, Dominik; Lang, Lisa; Ostaff, Maureen J; Wehkamp, Jan; Bischoff, Stephan C

    2017-05-01

    Background: The consumption of a Western-style diet (WSD) and high fructose intake are risk factors for metabolic diseases. The underlying mechanisms are largely unclear. Objective: To unravel the mechanisms by which a WSD and fructose promote metabolic disease, we investigated their effects on the gut microbiome and barrier function. Methods: Adult female C57BL/6J mice were fed a sugar- and fat-rich WSD or control diet (CD) for 12 wk and given access to tap water or fructose-supplemented water. The microbiota was analyzed with the use of 16S rRNA gene sequencing. Barrier function was studied with the use of permeability tests, and endotoxin, mucus thickness, and gene expressions were measured. Results: The WSD increased body weight gain but not endotoxin translocation compared with the CD. In contrast, high fructose intake increased endotoxin translocation 2.6- and 3.8-fold in the groups fed the CD + fructose and WSD + fructose, respectively, compared with the CD group. The WSD + fructose treatment also induced a loss of mucus thickness in the colon (-46%) and reduced defensin expression in the ileum and colon. The lactulose:mannitol ratio in the WSD + fructose mice was 1.8-fold higher than in the CD mice. Microbiota analysis revealed that fructose, but not the WSD, increased the Firmicutes:Bacteroidetes ratio by 88% for CD + fructose and 63% for WSD + fructose compared with the CD group. Bifidobacterium abundance was greater in the WSD mice than in the CD mice (63-fold) and in the WSD + fructose mice than in the CD + fructose mice (330-fold). Conclusions: The consumption of a WSD or high fructose intake differentially affects gut permeability and the microbiome. Whether these differences are related to the distinct clinical outcomes, whereby the WSD primarily promotes weight gain and high fructose intake causes barrier dysfunction, needs to be investigated in future studies. © 2017 American Society for Nutrition.

  8. Formation of Fructose-Mediated Advanced Glycation End Products and Their Roles in Metabolic and Inflammatory Diseases.

    PubMed

    Gugliucci, Alejandro

    2017-01-01

    Fructose is associated with the biochemical alterations that promote the development of metabolic syndrome (MetS), nonalcoholic fatty liver disease, and type 2 diabetes. Its consumption has increased in parallel with MetS. It is metabolized by the liver, where it stimulates de novo lipogenesis. The triglycerides synthesized lead to hepatic insulin resistance and dyslipidemia. Fructose-derived advanced glycation end products (AGEs) may be involved via the Maillard reaction. Fructose has not been a main focus of glycation research because of the difficulty in measuring its adducts, and, more importantly, because although it is 10 times more reactive than glucose, its plasma concentration is only 1% of that of glucose. In this focused review, I summarize exogenous and endogenous fructose metabolism, fructose glycation, and in vitro, animal, and human data. Fructose is elevated in several tissues of diabetic patients where the polyol pathway is active, reaching the same order of magnitude as glucose. It is plausible that the high reactivity of fructose, directly or via its metabolites, may contribute to the formation of intracellular AGEs and to vascular complications. The evidence, however, is still unconvincing. Two areas that have been overlooked so far and should be actively explored include the following: 1) enteral formation of fructose AGEs, generating an inflammatory response to the receptor for AGEs (which may explain the strong association between fructose consumption and asthma, chronic bronchitis, and arthritis); and 2) inactivation of hepatic AMP-activated protein kinase by a fructose-mediated increase in methylglyoxal flux (perpetuating lipogenesis, fatty liver, and insulin resistance). If proven correct, these mechanisms would put the fructose-mediated Maillard reaction in the limelight again as a contributing factor in chronic inflammatory diseases and MetS. © 2017 American Society for Nutrition.

  9. Metabolic responses to prolonged consumption of glucose- and fructose-sweetened beverages are not associated with postprandial or 24-hour glucose and insulin excursions

    USDA-ARS?s Scientific Manuscript database

    It has been proposed that the adverse metabolic effects of chronic consumption of sugar-sweetened beverages which contain both glucose and fructose are a consequence of increased circulating glucose and insulin excursions, i.e dietary glycemic index (GI). Objective: We determined if the greater adv...

  10. High Fructose/High Fat Diets Mediate Changes in Protein Carbonyl Content in the Rat Brain With and Without Ozone Exposure

    EPA Science Inventory

    The consumption of diets rich in fat or fructose have been correlated to a rise in type-2 diabetes and obesity. These diet-induced physiological changes have been shown previously to cause an increase in responsiveness to air pollutants such as ozone (03). 03 is a pervasive air p...

  11. Dual probiotic strains suppress high fructose-induced metabolic syndrome

    PubMed Central

    Park, Do-Young; Ahn, Young-Tae; Huh, Chul-Sung; McGregor, Robin A; Choi, Myung-Sook

    2013-01-01

    AIM: To investigate the effect of novel probiotics on the clinical characteristics of high-fructose induced metabolic syndrome. METHODS: Male Wistar rats aged 4 wk were fed a 70% w/w high-fructose diet (n = 27) or chow diet (n = 9) for 3 wk to induce metabolic syndrome, the rats were then randomized into groups and administered probiotic [Lactobacillus curvatus (L. curvatus) HY7601 and Lactobacillus plantarum (L. plantarum) KY1032] at 109 cfu/d or 1010 cfu/d or placebo by oral gavage for 3 wk. Food intake and body weight were measured once a week. After 6 wk, the rats were fasted for 12 h, then anesthetized with diethyl ether and sacrificed. Blood samples were taken from the inferior vena cava for plasma analysis of glucose, insulin, C-peptide, total-cholesterol, triglycerides and thiobarbituric acid-reacting substances. Real-time polymerase chain reaction was performed using mouse-specific Taqman probe sets to assess genes related to fatty acid β-oxidation, lipogenesis and cholesterol metabolism in the liver. Target gene expression was normalized to the housekeeping gene, glyceraldehyde-3-phosphate dehydrogenase. RESULTS: Rodents fed a high-fructose diet developed clinical characteristics of the metabolic syndrome including increased plasma glucose, insulin, triglycerides, total cholesterol and oxidative stress levels, as well as increased liver mass and liver lipids compared to chow fed controls. Probiotic treatment (L. curvatus HY7601 and L. plantarum KY1032) at high (1010 cfu/d) or low dosage (109 cfu/d) lowered plasma glucose, insulin, triglycerides and oxidative stress levels. Only high-dose probiotic treatment reduced liver mass and liver cholesterol. Probiotic treatment reduced lipogenesis via down-regulation of SREBP1, FAS and SCD1 mRNA levels and increased β-oxidation via up-regulation of PPARα and CPT2 mRNA levels. CONCLUSION: Probiotic L. curvatus HY7601 and L. plantarum KY1032 combined suppressed the clinical characteristics of high-fructose

  12. Altered Brain Response to Drinking Glucose and Fructose in Obese Adolescents.

    PubMed

    Jastreboff, Ania M; Sinha, Rajita; Arora, Jagriti; Giannini, Cosimo; Kubat, Jessica; Malik, Saima; Van Name, Michelle A; Santoro, Nicola; Savoye, Mary; Duran, Elvira J; Pierpont, Bridget; Cline, Gary; Constable, R Todd; Sherwin, Robert S; Caprio, Sonia

    2016-07-01

    Increased sugar-sweetened beverage consumption has been linked to higher rates of obesity. Using functional MRI, we assessed brain perfusion responses to drinking two commonly consumed monosaccharides, glucose and fructose, in obese and lean adolescents. Marked differences were observed. In response to drinking glucose, obese adolescents exhibited decreased brain perfusion in brain regions involved in executive function (prefrontal cortex [PFC]) and increased perfusion in homeostatic appetite regions of the brain (hypothalamus). Conversely, in response to drinking glucose, lean adolescents demonstrated increased PFC brain perfusion and no change in perfusion in the hypothalamus. In addition, obese adolescents demonstrated attenuated suppression of serum acyl-ghrelin and increased circulating insulin level after glucose ingestion; furthermore, the change in acyl-ghrelin and insulin levels after both glucose and fructose ingestion was associated with increased hypothalamic, thalamic, and hippocampal blood flow in obese relative to lean adolescents. Additionally, in all subjects there was greater perfusion in the ventral striatum with fructose relative to glucose ingestion. Finally, reduced connectivity between executive, homeostatic, and hedonic brain regions was observed in obese adolescents. These data demonstrate that obese adolescents have impaired prefrontal executive control responses to drinking glucose and fructose, while their homeostatic and hedonic responses appear to be heightened. Thus, obesity-related brain adaptations to glucose and fructose consumption in obese adolescents may contribute to excessive consumption of glucose and fructose, thereby promoting further weight gain. © 2016 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  13. Specific regions of the brain are capable of fructose metabolism.

    PubMed

    Oppelt, Sarah A; Zhang, Wanming; Tolan, Dean R

    2017-02-15

    High fructose consumption in the Western diet correlates with disease states such as obesity and metabolic syndrome complications, including type II diabetes, chronic kidney disease, and non-alcoholic fatty acid liver disease. Liver and kidneys are responsible for metabolism of 40-60% of ingested fructose, while the physiological fate of the remaining fructose remains poorly understood. The primary metabolic pathway for fructose includes the fructose-transporting solute-like carrier transport proteins 2a (SLC2a or GLUT), including GLUT5 and GLUT9, ketohexokinase (KHK), and aldolase. Bioinformatic analysis of gene expression encoding these proteins (glut5, glut9, khk, and aldoC, respectively) identifies other organs capable of this fructose metabolism. This analysis predicts brain, lymphoreticular tissue, placenta, and reproductive tissues as possible additional organs for fructose metabolism. While expression of these genes is highest in liver, the brain is predicted to have expression levels of these genes similar to kidney. RNA in situ hybridization of coronal slices of adult mouse brains validate the in silico expression of glut5, glut9, khk, and aldoC, and show expression across many regions of the brain, with the most notable expression in the cerebellum, hippocampus, cortex, and olfactory bulb. Dissected samples of these brain regions show KHK and aldolase enzyme activity 5-10 times the concentration of that in liver. Furthermore, rates of fructose oxidation in these brain regions are 15-150 times that of liver slices, confirming the bioinformatics prediction and in situ hybridization data. This suggests that previously unappreciated regions across the brain can use fructose, in addition to glucose, for energy production. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Specific regions of the brain are capable of fructose metabolism

    PubMed Central

    Oppelt, Sarah A.; Zhang, Wanming; Tolan, Dean R.

    2017-01-01

    High fructose consumption in the Western diet correlates with disease states such as obesity and metabolic syndrome complications, including type II diabetes, chronic kidney disease, and nonalcoholic fatty acid liver disease. Liver and kidneys are responsible for metabolism of 40–60% of ingested fructose, while the physiological fate of the remaining fructose remains poorly understood. The primary metabolic pathway for fructose includes the fructose-transporting solute-like carrier transport proteins 2a (SLC2a or GLUT), including GLUT5 and GLUT9, ketohexokinase (KHK), and aldolase. Bioinformatic analysis of gene expression encoding these proteins (glut5, glut9, khk, and aldoC, respectively) identifies other organs capable of this fructose metabolism. This analysis predicts brain, lymphoreticular tissue, placenta, and reproductive tissues as possible additional organs for fructose metabolism. While expression of these genes is highest in liver, the brain is predicted to have expression levels of these genes similar to kidney. RNA in situ hybridization of coronal slices of adult mouse brains validate the in silico expression of glut5, glut9, khk, and aldoC, and show expression across many regions of the brain, with the most notable expression in the cerebellum, hippocampus, cortex, and olfactory bulb. Dissected samples of these brain regions show KHK and aldolase enzyme activity 5–10 times the concentration of that in liver. Furthermore, rates of fructose oxidation in these brain regions are 15–150 times that of liver slices, confirming the bioinformatics prediction and in situ hybridization data. This suggests that previously unappreciated regions across the brain can use fructose, in addition to glucose, for energy production. PMID:28034722

  15. The Role of Carbohydrate Response Element Binding Protein in Intestinal and Hepatic Fructose Metabolism.

    PubMed

    Iizuka, Katsumi

    2017-02-22

    Many articles have discussed the relationship between fructose consumption and the incidence of obesity and related diseases. Fructose is absorbed in the intestine and metabolized in the liver to glucose, lactate, glycogen, and, to a lesser extent, lipids. Unabsorbed fructose causes bacterial fermentation, resulting in irritable bowl syndrome. Therefore, understanding the mechanisms underlying intestinal and hepatic fructose metabolism is important for the treatment of metabolic syndrome and fructose malabsorption. Carbohydrate response element binding protein (ChREBP) is a glucose-activated transcription factor that controls approximately 50% of de novo lipogenesis in the liver. ChREBP target genes are involved in glycolysis (Glut2, liver pyruvate kinase), fructolysis (Glut5, ketohexokinase), and lipogenesis (acetyl CoA carboxylase, fatty acid synthase). ChREBP gene deletion protects against high sucrose diet-induced and leptin-deficient obesity, because Chrebp -/- mice cannot consume fructose or sucrose. Moreover, ChREBP contributes to some of the physiological effects of fructose on sweet taste preference and glucose production through regulation of ChREBP target genes, such as fibroblast growth factor-21 and glucose-6-phosphatase catalytic subunits. Thus, ChREBP might play roles in fructose metabolism. Restriction of excess fructose intake will be beneficial for preventing not only metabolic syndrome but also irritable bowl syndrome.

  16. The Role of Carbohydrate Response Element Binding Protein in Intestinal and Hepatic Fructose Metabolism

    PubMed Central

    Iizuka, Katsumi

    2017-01-01

    Many articles have discussed the relationship between fructose consumption and the incidence of obesity and related diseases. Fructose is absorbed in the intestine and metabolized in the liver to glucose, lactate, glycogen, and, to a lesser extent, lipids. Unabsorbed fructose causes bacterial fermentation, resulting in irritable bowl syndrome. Therefore, understanding the mechanisms underlying intestinal and hepatic fructose metabolism is important for the treatment of metabolic syndrome and fructose malabsorption. Carbohydrate response element binding protein (ChREBP) is a glucose-activated transcription factor that controls approximately 50% of de novo lipogenesis in the liver. ChREBP target genes are involved in glycolysis (Glut2, liver pyruvate kinase), fructolysis (Glut5, ketohexokinase), and lipogenesis (acetyl CoA carboxylase, fatty acid synthase). ChREBP gene deletion protects against high sucrose diet-induced and leptin-deficient obesity, because Chrebp−/− mice cannot consume fructose or sucrose. Moreover, ChREBP contributes to some of the physiological effects of fructose on sweet taste preference and glucose production through regulation of ChREBP target genes, such as fibroblast growth factor-21 and glucose-6-phosphatase catalytic subunits. Thus, ChREBP might play roles in fructose metabolism. Restriction of excess fructose intake will be beneficial for preventing not only metabolic syndrome but also irritable bowl syndrome. PMID:28241431

  17. Effects of consuming fructose- or glucose-sweetened beverages for 10 weeks on lipids, insulin sensitivity and adiposity

    USDA-ARS?s Scientific Manuscript database

    Animal studies have documented that, compared with glucose, dietary fructose promotes dyslipidemia and insulin resistance. Experimental evidence that fructose consumption in humans promotes dyslipidemia and insulin resistance compared with glucose consumption has been equivocal. We tested the hypoth...

  18. Impact of perinatal exposure to sucrose or high fructose corn syrup (HFCS-55) on adiposity and hepatic lipid composition in rat offspring.

    PubMed

    Toop, Carla R; Muhlhausler, Beverly S; O'Dea, Kerin; Gentili, Sheridan

    2017-07-01

    Fructose-containing sugars, including sucrose and high fructose corn syrup (HFCS), have been implicated in the epidemics of obesity and type 2 diabetes. Few studies have evaluated the impact of perinatal exposure to these sugars on metabolic and physiological outcomes in the offspring. Using a rat model, offspring exposed to a maternal sucrose or HFCS diet during the prenatal and/or suckling periods were found to have altered adiposity and liver fat content and composition at weaning. Plasma levels of free fatty acids remained elevated in young adulthood, but consumption of a control diet following weaning appeared to ameliorate most other effects of perinatal exposure to a maternal high-sugar diet. Guidelines for maternal nutrition should advise limiting consumption of fructose-containing sugars, and it is particularly important that these recommendations include maternal nutrition during lactation. Perinatal exposure to excess maternal intake of added sugars, including fructose and sucrose, is associated with an increased risk of obesity and type 2 diabetes in adult life. However, it is unknown to what extent the type of sugar and the timing of exposure affect these outcomes. The aim of this study was to determine the impact of exposure to maternal consumption of a 10% (w/v) beverage containing sucrose or high fructose corn syrup-55 (HFCS-55) during the prenatal and/or suckling periods on offspring at 3 and 12 weeks, utilising a cross-fostering approach in a rodent model. Perinatal sucrose exposure decreased plasma glucose concentrations in offspring at 3 weeks, but did not alter glucose tolerance. Increased adiposity was observed in 3-week-old offspring exposed to sucrose or HFCS-55 during suckling, with increased hepatic fat content in HFCS-55-exposed offspring. In terms of specific fatty acids, hepatic monounsaturated (omega-7 and -9) fatty acid content was elevated at weaning, and was most pronounced in sucrose offspring exposed during both the prenatal and

  19. Formation of Fructose-Mediated Advanced Glycation End Products and Their Roles in Metabolic and Inflammatory Diseases12

    PubMed Central

    2017-01-01

    Fructose is associated with the biochemical alterations that promote the development of metabolic syndrome (MetS), nonalcoholic fatty liver disease, and type 2 diabetes. Its consumption has increased in parallel with MetS. It is metabolized by the liver, where it stimulates de novo lipogenesis. The triglycerides synthesized lead to hepatic insulin resistance and dyslipidemia. Fructose-derived advanced glycation end products (AGEs) may be involved via the Maillard reaction. Fructose has not been a main focus of glycation research because of the difficulty in measuring its adducts, and, more importantly, because although it is 10 times more reactive than glucose, its plasma concentration is only 1% of that of glucose. In this focused review, I summarize exogenous and endogenous fructose metabolism, fructose glycation, and in vitro, animal, and human data. Fructose is elevated in several tissues of diabetic patients where the polyol pathway is active, reaching the same order of magnitude as glucose. It is plausible that the high reactivity of fructose, directly or via its metabolites, may contribute to the formation of intracellular AGEs and to vascular complications. The evidence, however, is still unconvincing. Two areas that have been overlooked so far and should be actively explored include the following: 1) enteral formation of fructose AGEs, generating an inflammatory response to the receptor for AGEs (which may explain the strong association between fructose consumption and asthma, chronic bronchitis, and arthritis); and 2) inactivation of hepatic AMP-activated protein kinase by a fructose-mediated increase in methylglyoxal flux (perpetuating lipogenesis, fatty liver, and insulin resistance). If proven correct, these mechanisms would put the fructose-mediated Maillard reaction in the limelight again as a contributing factor in chronic inflammatory diseases and MetS. PMID:28096127

  20. No difference between high-fructose and high-glucose diets on liver triacylglycerol or biochemistry in healthy overweight men.

    PubMed

    Johnston, Richard D; Stephenson, Mary C; Crossland, Hannah; Cordon, Sally M; Palcidi, Elisa; Cox, Eleanor F; Taylor, Moira A; Aithal, Guruprasad P; Macdonald, Ian A

    2013-11-01

    Diets high in fructose have been proposed to contribute to nonalcoholic fatty liver disease. We compared the effects of high-fructose and matched glucose intake on hepatic triacylglycerol (TAG) concentration and other liver parameters. In a double-blind study, we randomly assigned 32 healthy but centrally overweight men to groups that received either a high-fructose or high-glucose diet (25% energy). These diets were provided during an initial isocaloric period of 2 weeks, followed by a 6-week washout period, and then again during a hypercaloric 2-week period. The primary outcome measure was hepatic level of TAG, with additional assessments of TAG levels in serum and soleus muscle, hepatic levels of adenosine triphosphate, and systemic and hepatic insulin resistance. During the isocaloric period of the study, both groups had stable body weights and concentrations of TAG in liver, serum, and soleus muscle. The high-fructose diet produced an increase of 22 ± 52 μmol/L in the serum level of uric acid, whereas the high-glucose diet led to a reduction of 23 ± 25 μmol/L (P < .01). The high-fructose diet also produced an increase of 0.8 ± 0.9 in the homeostasis model assessment of insulin resistance, whereas the high-glucose diet produced an increase of only 0.1 ± 0.7 (P = .03). During the hypercaloric period, participants in the high-fructose and high-glucose groups had similar increases in weight (1.0 ± 1.4 vs 0.6 ± 1.0 kg; P = .29) and absolute concentration of TAG in liver (1.70% ± 2.6% vs 2.05% ± 2.9%; P = .73) and serum (0.36 ± 0.75 vs 0.33 ± 0.38 mmol/L; P = .91), and similar results in biochemical assays of liver function. Body weight changes were associated with changes in liver biochemistry and concentration of TAGs. In the isocaloric period, overweight men who were on a high-fructose or a high-glucose diet did not develop any significant changes in hepatic concentration of TAGs or serum levels of liver enzymes. However, in the

  1. Consumption of Honey, Sucrose, and High-Fructose Corn Syrup Produces Similar Metabolic Effects in Glucose-Tolerant and -Intolerant Individuals.

    PubMed

    Raatz, Susan K; Johnson, LuAnn K; Picklo, Matthew J

    2015-10-01

    Public health recommendations call for a reduction in added sugars; however, controversy exists over whether all nutritive sweeteners produce similar metabolic effects. The objective was to compare the effects of the chronic consumption of 3 nutritive sweeteners [honey, sucrose, and high-fructose corn syrup containing 55% fructose (HFCS55)] on circulating glucose, insulin, lipids, and inflammatory markers; body weight; and blood pressure in individuals with normal glucose tolerance (GT) and those with impaired glucose tolerance (IGT). In a crossover design, participants consumed daily, in random order, 50 g carbohydrate from assigned sweeteners for 2 wk with a 2- to 4-wk washout period between treatments. Participants included 28 GT and 27 IGT volunteers with a mean age of 38.9 ± 3.6 y and 52.1 ± 2.7 y, respectively, and a body mass index (in kg/m(2)) of 26 ± 0.8 and 31.5 ± 1.0, respectively. Body weight, blood pressure (BP), serum inflammatory markers, lipids, fasting glucose and insulin, and oral-glucose-tolerance tests (OGTTs) were completed pre- and post-treatment. The OGTT incremental areas under the curve (iAUCs) for glucose and insulin were determined and homeostasis model assessment of insulin resistance (HOMA-IR) scores were calculated. Body weight and serum glucose, insulin, inflammatory markers, and total and LDL-cholesterol concentrations were significantly higher in the IGT group than in the GT group at baseline. Glucose, insulin, HOMA-IR, and the OGTT iAUC for glucose or insulin did not differ by treatment, but all responses were significantly higher in the IGT group compared with the GT group. Body weight was unchanged by treatment. Systolic BP was unchanged, whereas diastolic BP was significantly lower in response to sugar intake across all treatments. An increase in high-sensitivity C-reactive protein (hsCRP) was observed in the IGT group in response to all sugars. No treatment effect was observed for interleukin 6. HDL cholesterol did not

  2. Fructose intake at current levels in the United States may cause gastrointestinal distress in normal adults.

    PubMed

    Beyer, Peter L; Caviar, Elena M; McCallum, Richard W

    2005-10-01

    Fructose intake has increased considerably in the United States, primarily as a result of increased consumption of high-fructose corn syrup, fruits and juices, and crystalline fructose. The purpose was to determine how often fructose, in amounts commonly consumed, would result in malabsorption and/or symptoms in healthy persons. Fructose absorption was measured using 3-hour breath hydrogen tests and symptom scores were used to rate subjective responses for gas, borborygmus, abdominal pain, and loose stools. The study included 15 normal, free-living volunteers from a medical center community and was performed in a gastrointestinal specialty clinic. Subjects consumed 25- and 50-g doses of crystalline fructose with water after an overnight fast on separate test days. Mean peak breath hydrogen, time of peak, area under the curve (AUC) for breath hydrogen and gastrointestinal symptoms were measured during a 3-hour period after subjects consumed both 25- and 50-g doses of fructose. Differences in mean breath hydrogen, AUC, and symptom scores between doses were analyzed using paired t tests. Correlations among peak breath hydrogen, AUC, and symptoms were also evaluated. More than half of the 15 adults tested showed evidence of fructose malabsorption after 25 g fructose and greater than two thirds showed malabsorption after 50 g fructose. AUC, representing overall breath hydrogen response, was significantly greater after the 50-g dose. Overall symptom scores were significantly greater than baseline after each dose, but scores were only marginally greater after 50 g than 25 g. Peak hydrogen levels and AUC were highly correlated, but neither was significantly related to symptoms. Fructose, in amounts commonly consumed, may result in mild gastrointestinal distress in normal people. Additional study is warranted to evaluate the response to fructose-glucose mixtures (as in high-fructose corn syrup) and fructose taken with food in both normal people and those with

  3. Fructose Mediated Non-Alcoholic Fatty Liver Is Attenuated by HO-1-SIRT1 Module in Murine Hepatocytes and Mice Fed a High Fructose Diet

    PubMed Central

    Sodhi, Komal; Puri, Nitin; Favero, Gaia; Stevens, Sarah; Meadows, Charles; Abraham, Nader G.; Rezzani, Rita; Ansinelli, Hayden; Lebovics, Edward; Shapiro, Joseph I.

    2015-01-01

    Background Oxidative stress underlies the etiopathogenesis of nonalcoholic fatty liver disease (NAFLD), obesity and cardiovascular disease (CVD). Heme Oxygenase-1 (HO-1) is a potent endogenous antioxidant gene that plays a key role in decreasing oxidative stress. Sirtuin1 (SIRT1) belongs to the family of NAD-dependent de-acyetylases and is modulated by cellular redox. Hypothesis We hypothesize that fructose-induced obesity creates an inflammatory and oxidative environment conducive to the development of NAFLD and metabolic syndrome. The aim of this study is to determine whether HO-1 acts through SIRT1 to form a functional module within hepatocytes to attenuate steatohepatitis, hepatic fibrosis and cardiovascular dysfunction. Methods and Results We examined the effect of fructose, on hepatocyte lipid accumulation and fibrosis in murine hepatocytes and in mice fed a high fructose diet in the presence and absence of CoPP, an inducer of HO-1, and SnMP, an inhibitor of HO activity. Fructose increased oxidative stress markers and decreased HO-1 and SIRT1 levels in hepatocytes (p<0.05). Further fructose supplementation increased FAS, PPARα, pAMPK and triglycerides levels; CoPP negated this increase. Concurrent treatment with CoPP and SIRT1 siRNA in hepatocytes increased FAS, PPARα, pAMPK and triglycerides levels suggesting that HO-1 is upstream of SIRT1 and suppression of SIRT1 attenuates the beneficial effects of HO-1. A high fructose diet increased insulin resistance, blood pressure, markers of oxidative stress and lipogenesis along with fibrotic markers in mice (p<0.05). Increased levels of HO-1 increased SIRT1 levels and ameliorated fructose-mediated lipid accumulation and fibrosis in liver along with decreasing vascular dysfunction (p<0.05 vs. fructose). These beneficial effects of CoPP were reversed by SnMP. Conclusion Taken together, our study demonstrates, for the first time, that HO-1 induction attenuates fructose-induced hepatic lipid deposition, prevents the

  4. The role of fructose transporters in diseases linked to excessive fructose intake

    PubMed Central

    Douard, Veronique; Ferraris, Ronaldo P

    2013-01-01

    Fructose intake has increased dramatically since humans were hunter-gatherers, probably outpacing the capacity of human evolution to make physiologically healthy adaptations. Epidemiological data indicate that this increasing trend continued until recently. Excessive intakes that chronically increase portal and peripheral blood fructose concentrations to >1 and 0.1 mm, respectively, are now associated with numerous diseases and syndromes. The role of the fructose transporters GLUT5 and GLUT2 in causing, contributing to or exacerbating these diseases is not well known. GLUT5 expression seems extremely low in neonatal intestines, and limited absorptive capacities for fructose may explain the high incidence of malabsorption in infants and cause problems in adults unable to upregulate GLUT5 levels to match fructose concentrations in the diet. GLUT5- and GLUT2-mediated fructose effects on intestinal electrolyte transporters, hepatic uric acid metabolism, as well as renal and cardiomyocyte function, may play a role in fructose-induced hypertension. Likewise, GLUT2 may contribute to the development of non-alcoholic fatty liver disease by facilitating the uptake of fructose. Finally, GLUT5 may play a role in the atypical growth of certain cancers and fat tissues. We also highlight research areas that should yield information needed to better understand the role of these GLUTs in fructose-induced diseases. PMID:23129794

  5. Liquiritigenin attenuates cardiac injury induced by high fructose-feeding through fibrosis and inflammation suppression.

    PubMed

    Xie, Xiong-Wei

    2017-02-01

    Diabetes combined with cardiomyopathy is considered as an essential complication, showing diastolic persistently and causing cardiac injury, which is linked to fibrosis progression and inflammation response. Fibrosis and inflammation response are two markers for cardiomyopathy. Liquiritigenin is a flavanone, isolated from Radix glycyrrhiza, which exhibits various biological properties, including anti-cancer and anti-inflammatory activities. Here, in our study, the protective effects and anti-inflammatory activity of liquiritigenin were explored in mice and cardiac muscle cells treated by fructose to reveal the possible mechanism by which liquiritigenin attenuates cardiac injury. The mice were separated into five groups. The diabetic model of mouse was established with 30% high fructose feeding. Liquiritigenin dramatically reduced the lipid accumulation induced by high fructose diet. Compared to mice only treated with high fructose, mice in the presence of liquiritigenin after fructose feeding developed less cardiac fibrosis with lower levels of alpha smooth muscle-actin (α-SMA), Collagen type I, Collagen type II, TGF-β1 and Procol1a1. Additionally, liquiritigenin markedly down-regulated inflammatory cytokines secretion and phosphorylated NF-κB via inhibiting IKKα/IκBα signaling pathway. Our results indicate that liquiritigenin has a protective role in high fructose feeding-triggered cardiac injury through fibrosis and inflammation response suppression by inactivating NF-κB signaling pathway. Thus, liquiritigenin may be a potential candidate for diabetes-associated cardiac injury. Copyright © 2016. Published by Elsevier Masson SAS.

  6. High-yield production of pure tagatose from fructose by a three-step enzymatic cascade reaction.

    PubMed

    Lee, Seon-Hwa; Hong, Seung-Hye; Kim, Kyoung-Rok; Oh, Deok-Kun

    2017-08-01

    To produce tagatose from fructose with a high conversion rate and to establish a high-yield purification method of tagatose from the reaction mixture. Fructose at 1 M (180 g l -1 ) was converted to 0.8 M (144 g l -1 ) tagatose by a three-step enzymatic cascade reaction, involving hexokinase, plus ATP, fructose-1,6-biphosphate aldolase, phytase, over 16 h with a productivity of 9 g l -1 h -1 . No byproducts were detected. Tagatose was recrystallized from ethanol to a purity of 99.9% and a yield of 96.3%. Overall, tagatose at 99.9% purity was obtained from fructose with a yield of 77%. This is the first biotechnological production of tagatose from fructose and the first application of solvent recrystallization for the purification of rare sugars.

  7. Endogenous fructose production and metabolism in the liver contributes to the development of metabolic syndrome

    PubMed Central

    Lanaspa, Miguel A; Ishimoto, Takuji; Li, Nanxing; Cicerchi, Christina; Orlicky, David J.; Ruzicky, Philip; Rivard, Christopher; Inaba, Shinichiro; Roncal-Jimenez, Carlos A.; Bales, Elise S.; Diggle, Christine P.; Asipu, Aruna; Petrash, J. Mark; Kosugi, Tomoki; Maruyama, Shoichi; Sanchez-Lozada, Laura G.; McManaman, James L.; Bonthron, David T; Sautin, Yuri Y.; Johnson, Richard J.

    2013-01-01

    Carbohydrates with high glycemic index are proposed to promote the development of obesity, insulin resistance and fatty liver, but the mechanism by which this occurs remains unknown. High serum glucose concentrations glucose are known to induce the polyol pathway and increase fructose generation in the liver. Here we show that this hepatic, endogenously-produced fructose causes systemic metabolic changes. We demonstrate that mice unable to metabolize fructose are protected from an increase in energy intake and body weight, visceral obesity, fatty liver, elevated insulin levels and hyperleptinemia after exposure to 10% glucose for 14 weeks. In normal mice, glucose consumption is accompanied by aldose reductase and polyol pathway activation in steatotic areas. In this regard, we show that aldose reductase deficient mice were protected against glucose-induced fatty liver. We conclude that endogenous fructose generation and metabolism in the liver represents an important mechanism whereby glucose promotes the development of metabolic syndrome. PMID:24022321

  8. Oral solution of fructose promotes SREBP-1c high-expression in the hypothalamus of Wistar rats.

    PubMed

    Batista, Leandro Oliveira; Ramos, Viviane Wagner; Rosas Fernández, Mariana Alejandra; Concha Vilca, Carlos Marcelo; Albuquerque, Kelse Tibau de

    2018-01-25

    We evaluate whether the consumption of fructose for 8 weeks affects enzymes and transcription factors of the lipogenic and inflammatory pathways in the hypothalamus of Wistar rats. At 30 days, the animals were divided into groups: Control (C) and Fructose (F) and maintained with free access to feed and filtered water (C) or aqueous solution of purified fructose at 20% (F). RT-PCR and Western blotting were performed for the target genes and proteins. In F group, results showed a lower feed intake, an increase in glycemia (146.20 ± 6.09 vs. 102.32 ± 4.58; n: 9) and triacylglycerol (F: 191.65 ± 13.51 vs. C: 131.69 ± 6.49; n: 9) and there was no difference in water and energy consumption. We identified a higher content of acetyl-CoA carboxylase (ACC) (F: 133.93 ± 5.58 vs. C: 100 ± 0.0; n: 9-10) and NFκB (F: 125.5 ± 8.85 vs. C: 100 ± 0; n: 14) in group F, whereas fatty acid synthase (FAS) was lower (F: 85.90 ± 4.81 vs. C: 100 ± 0.0; n: 4-6). SREBP-1c gene expression was higher in F vs. C group (F: 4.08 ± 0.44 vs. C: 1.13 ± 0.15; n: 5-6), although we did not found difference between groups in the gene expression for ACC, SREBP-2, and NFκB. Dietary fructose can change important lipogenic and inflammatory factors in the hypothalamus of rats and it leads to regulation of transcription factors before changes in body mass are evident.

  9. Dietary fructose-induced hepatocellular carcinoma development manifested in mice lacking apoptosis inhibitor of macrophage (AIM).

    PubMed

    Ozawa, Takayuki; Maehara, Natsumi; Kai, Toshihiro; Arai, Satoko; Miyazaki, Toru

    2016-12-01

    The consumption of fructose, including the use of high-fructose corn syrup as a sweetener, has increased continuously in recent decades. Although the involvement of fructose in the development of metabolic diseases has been emphasized recently, whether fructose intake increases susceptibility to steatosis-associated hepatocellular carcinoma (HCC) is unclear. Here, we investigated this issue using mice lacking a circulating protein, apoptosis inhibitor of macrophage (AIM, encoded by cd5l). AIM does not induce carcinogenesis of hepatocytes, but provokes necrotic death specifically in AIM-bound cancer cells through complement cascade activation, thereby preventing HCC tumor development in wild-type mice. When subjected to a high-fructose diet (HFrD), AIM-deficient (AIM -/- ) mice showed liver steatosis and subsequent liver inflammation as well as fibrosis, but at much milder levels compared with mice fed a high-fat diet. However, AIM -/- mice were markedly susceptible to HCC tumor development, whereas no wild-type mice developed the disease. Systemic metabolic states, including obesity and insulin resistance, were similar in both types of mice after HFrD challenge, indicating no influence of AIM on HFrD-induced metabolic changes. Our results suggest that dietary fructose increases the risk for liver carcinogenesis and that individuals with low blood AIM levels may be susceptible to HCC under chronic fructose intake. © 2016 The Authors. Genes to Cells published by Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd.

  10. Prevention of fructose-induced hypertension by dietary vitamins.

    PubMed

    Vasdev, Sudesh; Longerich, Linda; Gill, Vicki

    2004-01-01

    Essential hypertension in humans may develop through a combination of genetic and environmental factors. Diet has long been under investigation as a potential effector of blood pressure. A diet high in sucrose or fructose can give rise to hyperlipidemia, insulin resistance and hypertension. Insulin resistance, glucose intolerance and oxidative stress are common features of hypertension. If glucose metabolism through the glycolytic pathway is impaired, as in insulin resistance, there will be a build-up of glyceraldehyde, glyceraldehyde-3-phosphate and dihydroxyacetone phosphate with further metabolism to methylglyoxal, a highly reactive ketoaldehyde. Excess aldehydes can bind sulfhydryl groups of membrane proteins, altering membrane calcium channels, increasing cytosolic free calcium, peripheral vascular resistance and blood pressure. The presence of reactive aldehydes can also lead to oxidative stress. Dietary management through lower sucrose or fructose intake and increased consumption of vitamins improves glucose metabolism, lowers tissue aldehydes, increases anti-oxidant capacity and may also prevent hypertension.

  11. High fructose-mediated attenuation of insulin receptor signaling does not affect PDGF-induced proliferative signaling in vascular smooth muscle cells.

    PubMed

    Osman, Islam; Poulose, Ninu; Ganapathy, Vadivel; Segar, Lakshman

    2016-11-15

    Insulin resistance is associated with accelerated atherosclerosis. Although high fructose is known to induce insulin resistance, it remains unclear as to how fructose regulates insulin receptor signaling and proliferative phenotype in vascular smooth muscle cells (VSMCs), which play a major role in atherosclerosis. Using human aortic VSMCs, we investigated the effects of high fructose treatment on insulin receptor substrate-1 (IRS-1) serine phosphorylation, insulin versus platelet-derived growth factor (PDGF)-induced phosphorylation of Akt, S6 ribosomal protein, and extracellular signal-regulated kinase (ERK), and cell cycle proteins. In comparison with PDGF (a potent mitogen), neither fructose nor insulin enhanced VSMC proliferation and cyclin D1 expression. d-[ 14 C(U)]fructose uptake studies revealed a progressive increase in fructose uptake in a time-dependent manner. Concentration-dependent studies with high fructose (5-25mM) showed marked increases in IRS-1 serine phosphorylation, a key adapter protein in insulin receptor signaling. Accordingly, high fructose treatment led to significant diminutions in insulin-induced phosphorylation of downstream signaling components including Akt and S6. In addition, high fructose significantly diminished insulin-induced ERK phosphorylation. Nevertheless, high fructose did not affect PDGF-induced key proliferative signaling events including phosphorylation of Akt, S6, and ERK and expression of cyclin D1 protein. Together, high fructose dysregulates IRS-1 phosphorylation state and proximal insulin receptor signaling in VSMCs, but does not affect PDGF-induced proliferative signaling. These findings suggest that systemic insulin resistance rather than VSMC-specific dysregulation of insulin receptor signaling by high fructose may play a major role in enhancing atherosclerosis and neointimal hyperplasia. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Fructose metabolism in the cerebellum.

    PubMed

    Funari, Vincent A; Crandall, James E; Tolan, Dean R

    2007-01-01

    Under normal physiological conditions, the brain utilizes only a small number of carbon sources for energy. Recently, there is growing molecular and biochemical evidence that other carbon sources, including fructose, may play a role in neuro-energetics. Fructose is the number one commercial sweetener in Western civilization with large amounts of fructose being toxic, yet fructose metabolism remains relatively poorly characterized. Fructose is purportedly metabolized via either of two pathways, the fructose-1-phosphate pathway and/or the fructose-6-phosphate pathway. Many early metabolic studies could not clearly discriminate which of these two pathways predominates, nor could they distinguish which cell types in various tissues are capable of fructose metabolism. In addition, the lack of good physiological models, the diet-induced changes in gene expression in many tissues, the involvement of multiple genes in multiple pathways involved in fructose metabolism, and the lack of characterization of some genes involved in fructose metabolism have complicated our understanding of the physiological role of fructose in neuro-energetics. A recent neuro-metabolism study of the cerebellum demonstrated fructose metabolism and co-expression of the genes specific for the fructose 1-phosphate pathway, GLUT5 (glut5) and ketohexokinase (khk), in Purkinje cells suggesting this as an active pathway in specific neurons? Meanwhile, concern over the rapid increase in dietary fructose, particularly among children, has increased awareness about how fructose is metabolized in vivo and what effects a high fructose diet might have. In this regard, establishment of cellular and molecular studies and physiological characterization of the important and/or deleterious roles fructose plays in the brain is critical. This review will discuss the status of fructose metabolism in the brain with special reference to the cerebellum and the physiological roles of the different pathways.

  13. Substitution of soy protein for casein prevents oxidative modification and inflammatory response induced in rats fed high fructose diet.

    PubMed

    Sreeja, S; Geetha, Rajagopalan; Priyadarshini, Emayavaramban; Bhavani, Krishnamoorthy; Anuradha, Carani Venkatraman

    2014-01-01

    Fructose-rich diet is known to cause metabolic dysregulation, oxidative stress, and inflammation. We aimed to compare the effects of two dietary proteins of animal and plant origins on fructose-induced oxidative stress and inflammatory changes in liver. Wistar rats were fed either starch or fructose (60%) diet with casein or soy protein (20%) as the protein source for 8 weeks. Glucose and insulin, glycated hemoglobin and fructosamine, AOPP, and FRAP were determined in circulation. Intracellular ROS, oxidatively modified proteins (4-HNE and 3-NT adducts), adiponectin, TNF- α , IL-6 and PAI-1 mRNA expression, phosphorylation and activation of JNK and IKK β , and NF- κ B binding activity were assayed in liver. In comparison with starch fed group, fructose + casein group registered significant decline in antioxidant potential and increase in plasma glucose, insulin, and glycated proteins. Increased ROS production, 4-HNE and 3-NT modified proteins, JNK and IKK β activation, and NF- κ B binding activity were observed in them along with increased gene expression of PAI-1, IL-6, and TNF- α and decreased adiponectin expression. Substitution of soy protein for casein reduced oxidative modification and inflammatory changes in fructose-fed rats. These data suggest that soy protein but not casein can avert the adverse effects elicited by chronic consumption of fructose.

  14. NFKB activity decreased in BALB/c mice with high fat diet and fructose

    NASA Astrophysics Data System (ADS)

    Nur'aini, Farida Dewi; Rahayu, Sri; Rifa'i, Muhaimin

    2017-05-01

    Excessive consumption of fat and fructose leads to obesity due to lipid accumulation. The excessive lipid causes hypertrophy in the adipocytes which lead to cell death. Consequently, dead adipocytes will produce adipokines, which cause macrophages and lymphocytes to infiltrate into the adipose tissue, elevating pro-inflammatory cytokines, thus triggering the production of pro-inflammatory cytokines through NFκB activity. Elicited soybeans extract (ESE) with bacteria and light contain Glyceollin and Isoflavones, which inhibit the activation of NFKB and reduce plasma cholesterol levels by upregulating cholesterol metabolism. This study aimed to analyze the effect of ESE against the relative number of CD4+ NFκB+ cells in BALB/c mice spleen after administrated by high-fat diet food and fructose (HFD) for 20 weeks. Mice were given orally with ESE after administrated by HFD at dose 78 mg/kgBW (D1), 104 mg/kgBW (D2), and 130 mg/kgBW (D3) for 4 weeks. This study also used positive control (HFD mice model without ESE treatment) and normal mice. Identification of NFKB activation was conducted using Flowcytometry analytical methods. Our result indicated that ESE could decrease significantly activation of NFκB in CD4 cell compare than positive control. The optimum dose that can decrease the relative number of CD4+ NFκB+ cells is dose 3.

  15. Fructose Malabsorption in Systemic Sclerosis

    PubMed Central

    Marie, Isabelle; Leroi, Anne-Marie; Gourcerol, Guillaume; Levesque, Hervé; Ménard, Jean-François; Ducrotte, Philippe

    2015-01-01

    Abstract The deleterious effect of fructose, which is increasingly incorporated in many beverages, dairy products, and processed foods, has been described; fructose malabsorption has thus been reported in up to 2.4% of healthy subjects, leading to digestive clinical symptoms (eg, pain, distension, diarrhea). Because digestive involvement is frequent in patients with systemic sclerosis (SSc), we hypothesized that fructose malabsorption could be responsible for intestinal manifestations in these patients. The aims of this prospective study were to: determine the prevalence of fructose malabsorption, in SSc; predict which SSc patients are at risk of developing fructose malabsorption; and assess the outcome of digestive symptoms in SSc patients after initiation of standardized low-fructose diet. Eighty consecutive patients with SSc underwent fructose breath test. All SSc patients also completed a questionnaire on digestive symptoms, and a global symptom score (GSS) was calculated. The prevalence of fructose malabsorption was as high as 40% in SSc patients. We also observed a marked correlation between the presence of fructose malabsorption and: higher values of GSS score of digestive symptoms (P = 0.000004); and absence of delayed gastric emptying (P = 0.007). Furthermore, in SSc patients with fructose malabsorption, the median value of GSS score of digestive symptoms was lower after initiation of standardized low-fructose diet (4 before vs. 1 after; P = 0.0009). Our study underscores that fructose malabsorption often occurs in SSc patients. Our findings are thus relevant for clinical practice, highlighting that fructose breath test is a helpful, noninvasive method by: demonstrating fructose intolerance in patients with SSc; and identifying the group of SSc patients with fructose intolerance who may benefit from low-fructose diet. Interestingly, because the present series also shows that low-fructose diet resulted in a marked decrease of gastrointestinal

  16. Effects of Red Wine Tannat on Oxidative Stress Induced by Glucose and Fructose in Erythrocytes in Vitro

    PubMed Central

    Pazzini, Camila Eliza Fernandes; Colpo, Ana Ceolin; Poetini, Márcia Rósula; Pires, Cauê Ferreira; de Camargo, Vanessa Brum; Mendez, Andreas Sebastian Loureiro; Azevedo, Miriane Lucas; Soares, Júlio César Mendes; Folmer, Vanderlei

    2015-01-01

    The literature indicates that red wine presents in its composition several substances that are beneficial to health. This study has investigated the antioxidant effects of Tannat red wine on oxidative stress induced by glucose and fructose in erythrocytes in vitro, with the purpose to determine some of its majoritarian phenolic compounds and its antioxidant capacity. Erythrocytes were incubated using different concentrations of glucose and fructose in the presence or absence of wine. From these erythrocytes were determined the production of thiobarbituric acid reactive species (TBARS), glucose consumption, and osmotic fragility. Moreover, quantification of total phenolic, gallic acid, caffeic acid, epicatechin, resveratrol, and DPPH scavenging activity in wine were also assessed. Red wine showed high levels of polyphenols analyzed, as well as high antioxidant potential. Erythrocytes incubated with glucose and fructose had an increase in lipid peroxidation and this was prevented by the addition of wine. The wine increased glucose uptake into erythrocytes and was able to decrease the osmotic fragility of erythrocytes incubated with fructose. Altogether, these results suggest that wine leads to a reduction of the oxidative stress induced by high concentrations of glucose and fructose. PMID:26078708

  17. Pcal_0111, a highly thermostable bifunctional fructose-1,6-bisphosphate aldolase/phosphatase from Pyrobaculum calidifontis.

    PubMed

    Aziz, Iram; Rashid, Naeem; Ashraf, Raza; Bashir, Qamar; Imanaka, Tadayuki; Akhtar, Muhammad

    2017-05-01

    Pyrobaculum calidifontis genome harbors an open reading frame Pcal_0111 annotated as fructose bisphosphate aldolase. Although the gene is annotated as fructose bisphosphate aldolase, it exhibits a high homology with previously reported fructose-1,6-bisphosphate aldolase/phosphatase from Thermoproteus neutrophilus. To examine the biochemical properties of Pcal_0111, we have cloned and expressed the gene in Escherichia coli. Purified recombinant Pcal_0111 catalyzed both phosphatase and aldolase reactions with specific activity values of 4 U and 1.3 U, respectively. These values are highest among the fructose 1,6-bisphosphatases/aldolases characterized from archaea. The enzyme activity increased linearly with the increase in temperature until 100 °C. Recombinant Pcal_0111 is highly stable with a half-life of 120 min at 100 °C. There was no significant change in the circular dichroism spectra of the protein up to 90 °C. The enzyme activity was not affected by AMP but strongly inhibited by ATP with an IC 50 value of 0.75 mM and mildly by ADP. High thermostability and inhibition by ATP make Pcal_0111 a unique fructose 1,6-bisphosphatase/aldolase.

  18. Effects of Fructose vs Glucose on Regional Cerebral Blood Flow in Brain Regions Involved With Appetite and Reward Pathways

    PubMed Central

    Page, Kathleen A.; Chan, Owen; Arora, Jagriti; Belfort-DeAguiar, Renata; Dzuira, James; Roehmholdt, Brian; Cline, Gary W.; Naik, Sarita; Sinha, Rajita; Constable, R. Todd; Sherwin, Robert S.

    2014-01-01

    Importance Increases in fructose consumption have paralleled the increasing prevalence of obesity, and high-fructose diets are thought to promote weight gain and insulin resistance. Fructose ingestion produces smaller increases in circulating satiety hormones compared with glucose ingestion, and central administration of fructose provokes feeding in rodents, whereas centrally administered glucose promotes satiety. Objective To study neurophysiological factors that might underlie associations between fructose consumption and weight gain. Design, Setting, and Participants Twenty healthy adult volunteers underwent 2 magnetic resonance imaging sessions at Yale University in conjunction with fructose or glucose drink ingestion in a blinded, random-order, crossover design. Main Outcome Measures Relative changes in hypothalamic regional cerebral blood flow (CBF) after glucose or fructose ingestion. Secondary outcomes included whole-brain analyses to explore regional CBF changes, functional connectivity analysis to investigate correlations between the hypothalamus and other brain region responses, and hormone responses to fructose and glucose ingestion. Results There was a significantly greater reduction in hypothalamic CBF after glucose vs fructose ingestion (–5.45 vs 2.84 mL/g per minute, respectively; mean difference, 8.3 mL/g per minute [95% CI of mean difference, 1.87-14.70]; P=.01). Glucose ingestion (compared with baseline) increased functional connectivity between the hypothalamus and the thalamus and striatum. Fructose increased connectivity between the hypothalamus and thalamus but not the striatum. Regional CBF within the hypothalamus, thalamus, insula, anterior cingulate, and striatum (appetite and reward regions) was reduced after glucose ingestion compared with baseline (P<.05 significance threshold, family-wise error [FWE] whole-brain corrected). In contrast, fructose reduced regional CBF in the thalamus, hippocampus, posterior cingulate cortex, fusiform

  19. Comparative Effects of Fructose and Glucose on Lipogenic Gene Expression and Intermediary Metabolism in HepG2 Liver Cells

    PubMed Central

    Fiehn, Oliver; Adams, Sean H.

    2011-01-01

    Consumption of large amounts of fructose or sucrose increases lipogenesis and circulating triglycerides in humans. Although the underlying molecular mechanisms responsible for this effect are not completely understood, it is possible that as reported for rodents, high fructose exposure increases expression of the lipogenic enzymes fatty acid synthase (FAS) and acetyl-CoA carboxylase (ACC-1) in human liver. Since activation of the hexosamine biosynthesis pathway (HBP) is associated with increases in the expression of FAS and ACC-1, it raises the possibility that HBP-related metabolites would contribute to any increase in hepatic expression of these enzymes following fructose exposure. Thus, we compared lipogenic gene expression in human-derived HepG2 cells after incubation in culture medium containing glucose alone or glucose plus 5 mM fructose, using the HBP precursor 10 mM glucosamine (GlcN) as a positive control. Cellular metabolite profiling was conducted to analyze differences between glucose and fructose metabolism. Despite evidence for the active uptake and metabolism of fructose by HepG2 cells, expression of FAS or ACC-1 did not increase in these cells compared with those incubated with glucose alone. Levels of UDP-N-acetylglucosamine (UDP-GlcNAc), the end-product of the HBP, did not differ significantly between the glucose and fructose conditions. Exposure to 10 mM GlcN for 10 minutes to 24 hours resulted in 8-fold elevated levels of intracellular UDP-GlcNAc (P<0.001), as well as a 74–126% increase in FAS (P<0.05) and 49–95% increase in ACC-1 (P<0.01) expression above controls. It is concluded that in HepG2 liver cells cultured under standard conditions, sustained exposure to fructose does not result in an activation of the HBP or increased lipogenic gene expression. Should this scenario manifest in human liver in vivo, it would suggest that high fructose consumption promotes triglyceride synthesis primarily through its action to provide lipid precursor

  20. Liver zonation in children with non-alcoholic fatty liver disease: Associations with dietary fructose and uric acid concentrations.

    PubMed

    Nobili, Valerio; Mosca, Antonella; De Vito, Rita; Raponi, Massimiliano; Scorletti, Eleonora; Byrne, Christopher D

    2018-06-01

    As dietary components are delivered directly to the periportal zone of the liver lobule, there is the potential for greater injury in this zone (zone 1) compared to the perivenous zone (zone 3). We investigated the associations between dietary fructose consumption and uric acid concentrations and differential zonal injury in periportal and perivenous zones. A total of 271 children's histological images were scored in 5 periportal and 5 perivenous zones for steatosis, ballooning, inflammation and fibrosis severity. Dietary fructose consumption (g/d) was assessed and uric acid measured in serum. Logistic regression was undertaken to test associations between both high fructose consumption and hyperuricaemia, and histological disease in periportal and perivenous zones. Children with a mean age of 12.5 years were included in the study. Inflammation (mean ± SD) was increased in the periportal vs perivenous zones (0.78 ± 0.43 vs 0.41 ± 0.48, P = .041). There were non-significant trends towards greater steatosis, ballooning and fibrosis in the periportal zone. In the fully adjusted models, high fructose intake was associated with disease in both zones. Example for periportal and perivenous zones, respectively, steatosis 1.56 (1.12, 2.49) and 1.21 (1.09, 2.73); inflammation 4.29 (2.31, 5.88) and 3.69 (2.14, 4.56); and fibrosis 2.72 (1.43, 3.76) and 1.96 (1.24, 2.37). Hyperuricaemia (uric acid ≥5.9 mg/dL) was associated with inflammation in the periportal zone 1.71 (1.17, 2.35); and was associated with steatosis and fibrosis in both zones; for example, for periportal and perivenous zones, respectively, steatosis 2.98 (1.65, 3.23) and 1.14 (1.05, 1.99); and fibrosis, 2.65 (1.35, 2.99) and 1.31 (1.13, 2.17). High fructose consumption is associated with disease severity in both lobular zones and hyperuricaemia may be associated with more severe disease in the periportal zone. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Low intensity exercise prevents disturbances in rat cardiac insulin signaling and endothelial nitric oxide synthase induced by high fructose diet.

    PubMed

    Stanišić, Jelena; Korićanac, Goran; Ćulafić, Tijana; Romić, Snježana; Stojiljković, Mojca; Kostić, Milan; Pantelić, Marija; Tepavčević, Snežana

    2016-01-15

    Increase in fructose consumption together with decrease in physical activity contributes to the development of metabolic syndrome and consequently cardiovascular diseases. The current study examined the preventive role of exercise on defects in cardiac insulin signaling and function of endothelial nitric oxide synthase (eNOS) in fructose fed rats. Male Wistar rats were divided into control, sedentary fructose (received 10% fructose for 9 weeks) and exercise fructose (additionally exposed to low intensity exercise) groups. Concentration of triglycerides, glucose, insulin and visceral adipose tissue weight were determined to estimate metabolic syndrome development. Expression and/or phosphorylation of cardiac insulin receptor (IR), insulin receptor substrate 1 (IRS1), tyrosine-specific protein phosphatase 1B (PTP1B), Akt, extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) and eNOS were evaluated. Fructose overload increased visceral adipose tissue, insulin concentration and homeostasis model assessment index. Exercise managed to decrease visceral adiposity and insulin level and to increase insulin sensitivity. Fructose diet increased level of cardiac PTP1B and pIRS1 (Ser307), while levels of IR and ERK1/2, as well as pIRS1 (Tyr 632), pAkt (Ser473, Thr308) and pERK1/2 were decreased. These disturbances were accompanied by reduced phosphorylation of eNOS at Ser1177. Exercise managed to prevent most of the disturbances in insulin signaling caused by fructose diet (except phosphorylation of IRS1 at Tyr 632 and phosphorylation and protein expression of ERK1/2) and consequently restored function of eNOS. Low intensity exercise could be considered as efficient treatment of cardiac insulin resistance induced by fructose diet. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  2. Fructose intake and risk of gout and hyperuricemia: a systematic review and meta-analysis of prospective cohort studies.

    PubMed

    Jamnik, Joseph; Rehman, Sara; Blanco Mejia, Sonia; de Souza, Russell J; Khan, Tauseef A; Leiter, Lawrence A; Wolever, Thomas M S; Kendall, Cyril W C; Jenkins, David J A; Sievenpiper, John L

    2016-10-03

    The prevalence of hyperuricemia and gout has increased in recent decades. The role of dietary fructose in the development of these conditions remains unclear. To conduct a systematic review and meta-analysis of prospective cohort studies investigating the association fructose consumption with incident gout and hyperuricemia. MEDLINE, EMBASE and the Cochrane Library were searched (through September 2015). We included prospective cohort studies that assessed fructose consumption and incident gout or hyperuricemia. 2 independent reviewers extracted relevant data and assessed study quality using the Newcastle-Ottawa Scale. We pooled natural-log transformed risk ratios (RRs) using the generic inverse variance method. Interstudy heterogeneity was assessed (Cochran Q statistic) and quantified (I 2 statistic). The overall quality of the evidence was assessed using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach. 2 studies involving 125 299 participants and 1533 cases of incident gout assessed the association between fructose consumption and incident gout over an average of 17 years of follow-up. No eligible studies assessed incident hyperuricemia as an outcome. Fructose consumption was associated with an increase in the risk of gout (RR=1.62, 95% CI 1.28 to 2.03, p<0.0001) with no evidence of interstudy heterogeneity (I 2 =0%, p=0.33) when comparing the highest (>11.8% to >11.9% total energy) and lowest (<6.9% to <7.5% total energy) quantiles of consumption. Despite a dose-response gradient, the overall quality of evidence as assessed by GRADE was low, due to indirectness. There were only two prospective cohort studies involving predominantly white health professionals that assessed incident gout, and none assessed hyperuricemia. Fructose consumption was associated with an increased risk of developing gout in predominantly white health professionals. More prospective studies are necessary to understand better the role of fructose

  3. Fructose-Drinking Water Induced Nonalcoholic Fatty Liver Disease and Ultrastructural Alteration of Hepatocyte Mitochondria in Male Wistar Rat

    PubMed Central

    Thent, Zar Chi; Haji Suhaimi, Farihah

    2015-01-01

    Background. Nonalcoholic fatty liver disease (NAFLD) is one of the complications of the metabolic syndrome. It encompasses a wide range of disease spectrum from simple steatosis to liver cirrhosis. Structural alteration of hepatic mitochondria might be involved in the pathogenesis of NAFLD. Aims. In the present study, we used a newly established model of fructose-induced metabolic syndrome in male Wistar rats in order to investigate the ultrastructural changes in hepatic mitochondria that occur with fructose consumption and their association with NAFLD pathogenesis. Methods. The concentration of fructose-drinking water (FDW) used in this study was 20%. Six male Wistar rats were supplemented with FDW 20% for eight weeks. Body composition and metabolic parameters were measured before and after 8 weeks of FDW 20%. Histomorphology of the liver was evaluated and ultrastructural changes of mitochondria were assessed with transmission electron micrograph. Results. After 8 weeks of fructose consumption, the animals developed several features of the metabolic syndrome. Moreover, fructose consumption led to the development of macrovesicular hepatic steatosis and mitochondrial ultrastructural changes, such as increase in mitochondrial size, disruption of the cristae, and reduction of matrix density. Conclusion. We conclude that in male Wistar rat 8-week consumption of FDW 20% leads to NAFLD likely via mitochondrial structural alteration. PMID:26273656

  4. Sugar consumption, metabolic disease and obesity: The state of the controversy.

    PubMed

    Stanhope, Kimber L

    2016-01-01

    The impact of sugar consumption on health continues to be a controversial topic. The objective of this review is to discuss the evidence and lack of evidence that allows the controversy to continue, and why resolution of the controversy is important. There are plausible mechanisms and research evidence that supports the suggestion that consumption of excess sugar promotes the development of cardiovascular disease (CVD) and type 2 diabetes (T2DM) both directly and indirectly. The direct pathway involves the unregulated hepatic uptake and metabolism of fructose, leading to liver lipid accumulation, dyslipidemia, decreased insulin sensitivity and increased uric acid levels. The epidemiological data suggest that these direct effects of fructose are pertinent to the consumption of the fructose-containing sugars, sucrose and high fructose corn syrup (HFCS), which are the predominant added sugars. Consumption of added sugar is associated with development and/or prevalence of fatty liver, dyslipidemia, insulin resistance, hyperuricemia, CVD and T2DM, often independent of body weight gain or total energy intake. There are diet intervention studies in which human subjects exhibited increased circulating lipids and decreased insulin sensitivity when consuming high sugar compared with control diets. Most recently, our group has reported that supplementing the ad libitum diets of young adults with beverages containing 0%, 10%, 17.5% or 25% of daily energy requirement (Ereq) as HFCS increased lipid/lipoprotein risk factors for CVD and uric acid in a dose-response manner. However, un-confounded studies conducted in healthy humans under a controlled, energy-balanced diet protocol that enables determination of the effects of sugar with diets that do not allow for body weight gain are lacking. Furthermore, recent reports conclude that there are no adverse effects of consuming beverages containing up to 30% Ereq sucrose or HFCS, and the conclusions from several meta-analyses suggest

  5. Sugar consumption, metabolic disease and obesity: The state of the controversy

    PubMed Central

    Stanhope, Kimber L.

    2016-01-01

    The impact of sugar consumption on health continues to be a controversial topic. The objective of this review is to discuss the evidence and lack of evidence that allows the controversy to continue, and why resolution of the controversy is important. There are plausible mechanisms and research evidence that support the suggestion that consumption of excess sugar promotes the development of cardiovascular disease (CVD) and type 2 diabetes (T2DM) both directly and indirectly. The direct pathway involves the unregulated hepatic uptake and metabolism of fructose, which leads to liver lipid accumulation, dyslipidemia, decreased insulin sensitivity and increased uric acid levels. The epidemiological data suggest that these direct effects of fructose are pertinent to the consumption of the fructose-containing sugars, sucrose and HFCS, which are the predominant added sugars. Consumption of added sugar is associated with development and/or prevalence of fatty liver, dyslipidemia, insulin resistance, hyperuricemia, cardiovascular disease and type 2 diabetes, and many of these associations are independent of body weight gain or total energy intake. There are diet intervention studies in which human subjects exhibited increased circulating lipids and decreased insulin sensitivity when consuming high sugar compared with control diets. Most recently, our group has reported that supplementing the ad libitum diets of young adults with beverages containing 0, 10, 17.5 or 25% of daily energy requirement (Ereq) as high fructose corn syrup (HFCS) increased lipid/lipoprotein risk factors for cardiovascular disease (CVD) and uric acid in a dose response manner. However, un-confounded studies conducted in healthy humans under a controlled, energy-balanced diet protocol that allow determination of the effects of sugar with diets that do not allow for body weight gain are lacking. Furthermore, there are recent reports that conclude that there are no adverse effects of consuming beverages

  6. Dietary phenolic acids reverse insulin resistance, hyperglycaemia, dyslipidaemia, inflammation and oxidative stress in high-fructose diet-induced metabolic syndrome rats.

    PubMed

    Ibitoye, Oluwayemisi B; Ajiboye, Taofeek O

    2017-12-20

    This study investigated the influence of caffeic, ferulic, gallic and protocatechuic acids on high-fructose diet-induced metabolic syndrome in rats. Oral administration of the phenolic acids significantly reversed high-fructose diet-mediated increase in body mass index and blood glucose. Furthermore, phenolic acids restored high-fructose diet-mediated alterations in metabolic hormones (insulin, leptin and adiponectin). Similarly, elevated tumour necrosis factor-α, interleukin-6 and -8 were significantly lowered. Administration of phenolic acids restored High-fructose diet-mediated increase in the levels of lipid parameters and indices of atherosclerosis, cardiac and cardiovascular diseases. High-fructose diet-mediated decrease in activities of antioxidant enzymes (superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase and glucose 6-phosphate dehydrogenase) and increase in oxidative stress biomarkers (reduced glutathione, lipid peroxidation products, protein oxidation and fragmented DNA) were significantly restored by the phenolic acids. The result of this study shows protective influence of caffeic acid, ferulic acid, gallic acid and protocatechuic acid in high-fructose diet-induced metabolic syndrome.

  7. Longitudinal Associations of High-Fructose Diet with Cardiovascular Events and Potential Risk Factors: Tehran Lipid and Glucose Study.

    PubMed

    Bahadoran, Zahra; Mirmiran, Parvin; Tohidi, Maryam; Azizi, Fereidoun

    2017-08-21

    The relationship between fructose and cardiovascular disease (CVD) remains controversial. In this study, we aimed to assess possible association of dietary intakes of fructose with the risk of CVD events in a prospective population-based study. Participants without CVD ( n = 2369) were recruited from the Tehran Lipid and Glucose Study and followed a mean of 6.7 years. Dietary data were collected using a validated 168 item semi-quantitative food frequency questionnaire. Dietary total fructose (TF) intake was calculated by sum of natural fructose (NF) in fruits and vegetables and added fructose (AF) in commercial foods. Multivariate Cox proportional hazard regression models, adjusted for potential confounders, were used to estimate the risk of CVD across tertiles of dietary fructose. Linear regression models were used to indicate association of fructose intakes with changes of CVD risk factors over the study period. The mean age of participants (43.5% men) was 38.1 ± 13.3 years at baseline. During an average of 6.7 ± 1.4 years of follow-up, 79 participants experienced CVD outcomes. The mean daily intake of TF was 6.4 ± 3.7% of total energy (3.6 ± 2.0 from AF and 2.7 ± 1.8 from NF). Higher consumption of TF (≥7.4% vs. <4.5% of total energy) was accompanied with an increased risk of CVD (HR = 1.81, 95% CI = 1.04-3.15); higher energy intake from AF was also related to incidence of CVD (HR = 1.80, 95% CI = 1.04-3.12), whereas NF was not associated with the risk of CVD outcomes. Both AF and TF were also related to changes of systolic and diastolic blood pressures, waist circumference, serum insulin and creatinine levels, as well as HDL-C. Our data provides further evidence regarding undesirable effects of fructose intake in relation to risk of CVD events.

  8. Fructose intake during gestation and lactation differentially affects the expression of hippocampal neurosteroidogenic enzymes in rat offspring.

    PubMed

    Mizuno, Genki; Munetsuna, Eiji; Yamada, Hiroya; Ando, Yoshitaka; Yamazaki, Mirai; Murase, Yuri; Kondo, Kanako; Ishikawa, Hiroaki; Teradaira, Ryoji; Suzuki, Koji; Ohashi, Koji

    2017-02-01

    Neurosteroids, steroidal hormones synthesized de novo from cholesterol within the brain, stimulate hippocampal functions such as neuron protection and synapse formation. Previously, we examined the effect of maternal fructose on the transcriptional regulation of neurosteroidogenic enzymes. We found that the mRNA expression level of the steroidogenic acute regulatory protein (StAR), peripheral benzodiazepine receptor (PBR), cytochrome P450(11β), 11β-hydroxysteroid dehydrogenase (HSD), and 17β-HSD was altered. However, we could not determine whether maternal fructose intake played a role in the gestation or lactation period because the dam rats were fed fructose solution during both periods. Thus, in this study, we analyzed the hippocampi of the offspring of dams fed fructose during the gestation or lactation period. Maternal fructose consumption during either the gestation or lactation period did not affect the mRNA levels of StAR, P450(17α), 11β-HSD-2, and 17β-HSD-1. PBR expression was down-regulated, even when rats consumed fructose during the lactation period only, while fructose consumption during gestation tended to activate the expression of P450(11β)-2. We found that maternal fructose intake during gestation and lactation differentially affected the expression of hippocampal neurosteroidogenic enzymes in the offspring.

  9. Fructose and satiety.

    PubMed

    Moran, Timothy H

    2009-06-01

    A role for the increased intake of dietary fructose in general and high-fructose corn syrup (HFCS) in particular in the current obesity epidemic has been proposed. Consumed fructose and glucose have different rates of gastric emptying, are differentially absorbed from the gastrointestinal tract, result in different endocrine profiles, and have different metabolic fates, providing multiple opportunities for the 2 saccharides to differentially affect food intake. The consequences of fructose and glucose on eating have been studied under a variety of experimental situations in both model systems and man. The results have been inconsistent, and the particular findings appear to depend on the timing of saccharide administration or ingestion relative to a test meal situation, whether the saccharides are administered as pure sugars or as components of a dietary preload, and the overall volume of the preload. These factors rather than intrinsic differences in the saccharides' ability to induce satiety appear to carry many of the differential effects on food intake that have been found. On balance, the case for fructose being less satiating than glucose or HFCS being less satiating than sucrose is not compelling.

  10. A fructose receptor functions as a nutrient sensor in the Drosophila brain

    PubMed Central

    Miyamoto, Tetsuya; Slone, Jesse; Song, Xiangyu; Amrein, Hubert

    2012-01-01

    SUMMARY Internal nutrient sensors play important roles in feeding behavior, yet their molecular structure and mechanism of action are poorly understood. Using Ca2+ imaging and behavioral assays, we show that the Gustatory Receptor 43a functions as a narrowly tuned fructose receptor in taste neurons. Remarkably, GR43a also functions as a fructose receptor in the brain. Interestingly, hemolymph fructose levels are tightly linked to feeding status: after nutritious carbohydrate consumption, fructose levels rise several fold and reach a concentration sufficient to activate GR43a in the brain. By using different feeding paradigms and artificial activation of Gr43a-expressing brain neurons, we show that GR43a is both necessary and sufficient to sense hemolymph fructose and promote feeding in hungry flies, but suppress feeding in satiated flies. Thus, our studies indicate that the Gr43a-expressing brain neurons function as a nutrient sensor for hemolymph fructose and assign opposing valence to feeding experiences in a satiation-dependent manner. PMID:23178127

  11. Fructose Degradation in the Haloarchaeon Haloferax volcanii Involves a Bacterial Type Phosphoenolpyruvate-Dependent Phosphotransferase System, Fructose-1-Phosphate Kinase, and Class II Fructose-1,6-Bisphosphate Aldolase

    PubMed Central

    Pickl, Andreas; Johnsen, Ulrike

    2012-01-01

    The halophilic archaeon Haloferax volcanii utilizes fructose as a sole carbon and energy source. Genes and enzymes involved in fructose uptake and degradation were identified by transcriptional analyses, deletion mutant experiments, and enzyme characterization. During growth on fructose, the gene cluster HVO_1495 to HVO_1499, encoding homologs of the five bacterial phosphotransferase system (PTS) components enzyme IIB (EIIB), enzyme I (EI), histidine protein (HPr), EIIA, and EIIC, was highly upregulated as a cotranscript. The in-frame deletion of HVO_1499, designated ptfC (ptf stands for phosphotransferase system for fructose) and encoding the putative fructose-specific membrane component EIIC, resulted in a loss of growth on fructose, which could be recovered by complementation in trans. Transcripts of HVO_1500 (pfkB) and HVO_1494 (fba), encoding putative fructose-1-phosphate kinase (1-PFK) and fructose-1,6-bisphosphate aldolase (FBA), respectively, as well as 1-PFK and FBA activities were specifically upregulated in fructose-grown cells. pfkB and fba knockout mutants did not grow on fructose, whereas growth on glucose was not inhibited, indicating the functional involvement of both enzymes in fructose catabolism. Recombinant 1-PFK and FBA obtained after homologous overexpression were characterized as having kinetic properties indicative of functional 1-PFK and a class II type FBA. From these data, we conclude that fructose uptake in H. volcanii involves a fructose-specific PTS generating fructose-1-phosphate, which is further converted via fructose-1,6-bisphosphate to triose phosphates by 1-PFK and FBA. This is the first report of the functional involvement of a bacterial-like PTS and of class II FBA in the sugar metabolism of archaea. PMID:22493022

  12. The Effects of Fructose and Glucose on High Intensity Endurance Performance.

    ERIC Educational Resources Information Center

    McMurray, Robert G.; And Others

    1983-01-01

    To evaluate the effects of drinking glucose and fructose before prolonged exercise, six female runners were given glucose, fructose, saccharin, or plain water to drink before running to exhaustion. Metabolic processes were monitored. The best performance came from those drinking water alone. Fructose seemed preferable to glucose, however.…

  13. The Dietary Fructose:Vitamin C Intake Ratio Is Associated with Hyperuricemia in African-American Adults.

    PubMed

    Zheng, Zihe; Harman, Jane L; Coresh, Josef; Köttgen, Anna; McAdams-DeMarco, Mara A; Correa, Adolfo; Young, Bessie A; Katz, Ronit; Rebholz, Casey M

    2018-03-01

    A high fructose intake has been shown to be associated with increased serum urate concentration, whereas ascorbate (vitamin C) may lower serum urate by competing with urate for renal reabsorption. We assessed the combined association, as the fructose:vitamin C intake ratio, and the separate associations of dietary fructose and vitamin C intakes on prevalent hyperuricemia. We conducted cross-sectional analyses of dietary intakes of fructose and vitamin C and serum urate concentrations among Jackson Heart Study participants, a cohort of African Americans in Jackson, Mississippi, aged 21-91 y. In the analytic sample (n = 4576), multivariable logistic regression was used to examine the separate associations of dietary intakes of fructose and vitamin C and the fructose:vitamin C intake ratio with prevalent hyperuricemia (serum urate ≥7 mg/dL), after adjusting for age, sex, smoking, waist circumference, systolic blood pressure, estimated glomerular filtration rate, diuretic medication use, vitamin C supplement use, total energy intake, alcohol consumption, and dietary intake of animal protein. Analyses for individual dietary factors (vitamin C, fructose) were adjusted for the other dietary factor. In the fully adjusted model, there were 17% greater odds of hyperuricemia associated with a doubling of the fructose:vitamin C intake ratio (OR: 1.17; 95% CI: 1.08, 1.28), 20% greater odds associated with a doubling of fructose intake (OR: 1.20; 95% CI: 1.08, 1.34), and 13% lower odds associated with a doubling of vitamin C intake (OR: 0.87; 95% CI: 0.78, 0.97). Dietary fructose and the fructose:vitamin C intake ratio were more strongly associated with hyperuricemia among men than women (P-interaction ≤ 0.04). Dietary intakes of fructose and vitamin C are associated with prevalent hyperuricemia in a community-based population of African Americans.

  14. High fructose diet-induced metabolic syndrome: Pathophysiological mechanism and treatment by traditional Chinese medicine.

    PubMed

    Pan, Ying; Kong, Ling-Dong

    2018-04-01

    Fructose is a natural monosaccharide broadly used in modern society. Over the past few decades, epidemiological studies have demonstrated that high fructose intake is an etiological factor of metabolic syndrome (MetS). This review highlights research advances on fructose-induced MetS, especially the underlying pathophysiological mechanism as well as pharmacotherapy by traditional Chinese medicine (TCM), using the PubMed, Web of science, China National Knowledge Infrastructure, China Science and Technology Journal and Wanfang Data. This review focuses on de novo lipogenesis (DNL) and uric acid (UA) production, two unique features of fructolysis different from glucose glycolysis. High level of DNL and UA production can result in insulin resistance, the key pathological event in developing MetS, mostly through oxidative stress and inflammation. Some other pathologies like the disturbance in brain and gut microbiota in the development of fructose-induced MetS in the past years, are also discussed. In management of MetS, TCM is an excellent representative in alternative and complementary medicine with a complete theory system and substantial herbal remedies. TCMs against MetS or MetS components, including Chinese patent medicines, TCM compound formulas, single TCM herbs and active compounds of TCM herbs, are reviewed on their effects and molecular mechanisms. TCMs with hypouricemic activity, which specially target fructose-induced MetS, are highlighted. And new technologies and strategies (such as high-throughput assay and systems biology) in this field are further discussed. In summary, fructose-induced MetS is a multifactorial disorder with the underlying complex mechanisms. Current clinical and pre-clinical evidence supports the potential of TCMs in management of MetS. Additionally, TCMs may show some advantages against complex MetS as their holistic feature through multiple target actions. However, further work is needed to confirm the effectivity and safety of TCMs

  15. Fructose Administration Increases Intraoperative Core Temperature by Augmenting Both Metabolic Rate and the Vasoconstriction Threshold

    PubMed Central

    Mizobe, Toshiki; Nakajima, Yasufumi; Ueno, Hiroshi; Sessler, Daniel I.

    2006-01-01

    Background We tested the hypothesis that intravenous fructose ameliorates intraoperative hypothermia both by increasing metabolic rate and the vasoconstriction threshold (triggering core temperature) Methods 40 patients scheduled for open abdominal surgery were divided into two equal groups and randomly assigned to intravenous fructose infusion (0.5 g·kg−1·h−1 for 4 h, starting 3 h before induction of anesthesia and continuing for 4 hours) or an equal volume of saline. Each treatment group was subdivided: esophageal core temperature, thermoregulatory vasoconstriction, and plasma concentrations were determined in half, and oxygen consumption was determined in the remainder. Patients were monitored for 3 h after induction of anesthesia. Results Patient characteristics, anesthetic management, and circulatory data were similar in the four groups. Mean final core temperature (3 h after induction of anesthesia) was 35.7±0.4°C (mean ± SD) in the fructose group and 35.1±0.4°C in the saline group (P=0.001). The vasoconstriction threshold was greater in the fructose (36.2±0.3°C) than in the saline group (35.6±0.3°C; P<0.001). Oxygen consumption immediately before anesthesia induction in the fructose group (214±18 ml/min) was significantly greater than in the saline group (181±8 ml/min, P<0.001). Oxygen consumption was 4.0 L greater in the fructose patients during 3 hours of anesthesia; the predicted difference in mean-body temperature based only on the difference in metabolic rates was thus only 0.4°C. Epinephrine, norepinephrine, and angiotensin II concentrations, and plasma renin activity were similar in each treatment group. Conclusions Preoperative fructose infusion helped maintain normothermia by augmenting both metabolic heat production and increasing the vasoconstriction threshold. PMID:16732081

  16. Intake of high-fructose corn syrup sweetened soft drinks, fruit drinks and apple juice is associated with prevalent arthritis in US adults, aged 20-30 years.

    PubMed

    DeChristopher, L R; Uribarri, J; Tucker, K L

    2016-03-07

    There is a link between joint and gut inflammation of unknown etiology in arthritis. Existing research indicates that regular consumption of high-fructose corn syrup sweetened (HFCS) soft drinks, but not diet soft drinks, may be associated with increased risk of seropositive rheumatoid arthritis (RA) in women, independent of other dietary and lifestyle factors. One unexplored hypothesis for this association is that fructose malabsorption, due to regular consumption of excess free fructose (EFF) and HFCS, contributes to fructose reactivity in the gastrointestinal tract and intestinal in situ formation of enFruAGEs, which once absorbed, travel beyond the intestinal boundaries to other tissues and promote inflammation. In separate studies, the accumulation of advanced glycation end-products has been associated with joint inflammation in RA. Objective of this study was to assess the association between EFF beverages intake and non-age, non-wear and tear-associated arthritis in US young adults. In this cross sectional study of 1209 adults aged 20-30y, (Nutrition and Health Examination Surveys 2003-2006) exposure variables were high EFF beverages, including HFCS sweetened soft drinks, and any combination of HFCS sweetened soft drinks, fruit drinks (FD) and apple juice, referred to as tEFF. Analyses of diet soda and diet FD were included for comparison. The outcome was self-reported arthritis. Rao Scott Ҳ(2) was used for prevalence differences and logistic regression for associations, adjusted for confounders. Young adults consuming any combination of high EFF beverages (tEFF) ⩾5 times/week (but not diet soda) were three times as likely to have arthritis as non/low consumers (odds ratios=3.01; p⩽0.021; 95% confidence intervals=1.20-7.59), independent of all covariates, including physical activity, other dietary factors, blood glucose and smoking. EFF beverage intake is significantly associated with arthritis in US adults aged 20-30 years, possibly due to the

  17. Fructose and sugar: A major mediator of non-alcoholic fatty liver disease.

    PubMed

    Jensen, Thomas; Abdelmalek, Manal F; Sullivan, Shelby; Nadeau, Kristen J; Green, Melanie; Roncal, Carlos; Nakagawa, Takahiko; Kuwabara, Masanari; Sato, Yuka; Kang, Duk-Hee; Tolan, Dean R; Sanchez-Lozada, Laura G; Rosen, Hugo R; Lanaspa, Miguel A; Diehl, Anna Mae; Johnson, Richard J

    2018-05-01

    Non-alcoholic fatty liver disease (NAFLD) is the hepatic manifestation of metabolic syndrome; its rising prevalence parallels the rise in obesity and diabetes. Historically thought to result from overnutrition and a sedentary lifestyle, recent evidence suggests that diets high in sugar (from sucrose and/or high-fructose corn syrup [HFCS]) not only increase the risk of NAFLD, but also non-alcoholic steatohepatitis (NASH). Herein, we review the experimental and clinical evidence that fructose precipitates fat accumulation in the liver, due to both increased lipogenesis and impaired fat oxidation. Recent evidence suggests that the predisposition to fatty liver is linked to the metabolism of fructose by fructokinase C, which results in ATP consumption, nucleotide turnover and uric acid generation that mediate fat accumulation. Alterations to gut permeability, the microbiome, and associated endotoxemia contribute to the risk of NAFLD and NASH. Early clinical studies suggest that reducing sugary beverages and total fructose intake, especially from added sugars, may have a significant benefit on reducing hepatic fat accumulation. We suggest larger, more definitive trials to determine if lowering sugar/HFCS intake, and/or blocking uric acid generation, may help reduce NAFLD and its downstream complications of cirrhosis and chronic liver disease. Copyright © 2018 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  18. Cynanchum wilfordii Radix attenuates liver fat accumulation and damage by suppressing hepatic cyclooxygenase-2 and mitogen-activated protein kinase in mice fed with a high-fat and high-fructose diet.

    PubMed

    Jang, Seon-A; Lee, SungRyul; Sohn, Eun-Hwa; Yang, Jaehyuk; Park, Dae Won; Jeong, Yong Joon; Kim, Inhye; Kwon, Jung Eun; Song, Hae Seong; Cho, Young Mi; Meng, Xue; Koo, Hyun Jung; Kang, Se Chan

    2016-09-01

    Excessive consumption of fat and fructose augments the pathological progression of nonalcoholic fatty liver disease through hepatic fibrosis, inflammation, and hepatic de novo lipogenesis. We hypothesized that supplementation with Cynanchum wilfordii extract (CWE) decreases fat accumulation in the liver by suppressing cyclooxygenase-2 (COX-2), the nuclear translocation of nuclear factor κB (NF-κB), and p38 mitogen-activated protein kinase (MAPK). The beneficial effect of CWE was evaluated in a murine model of nonalcoholic fatty liver disease. Mice were fed either a normal diet or an atherogenic diet with fructose (ATHFR) in the presence or absence of CWE (50, 100, or 200 mg/kg; n=6/group). Treatment with ATHFR induced a hepatosplenomegaly-like condition (increased liver and spleen weight); this pathological change was attenuated in the presence of CWE. The ATHFR group exhibited impaired liver function, as evidenced by increased blood levels of glutamic oxaloacetic transaminase and glutamic pyruvic transaminase, fat accumulation in the liver, and lipid profiles. Supplementation of CWE (100 and 200 mg/kg, P<.05) ameliorated these impaired liver functions. Atherogenic diet with fructose increased the protein levels of COX-2 and p38 MAPK, as well as the nuclear translocation of NF-κB. These signaling pathways, which are associated with the inflammatory response, were markedly suppressed after CWE treatment (100 and 200 mg/kg). In summary, CWE supplementation reduced high-fat and high-fructose diet-induced fat accumulation and damage in the liver by suppressing COX-2, NF-κB, and p38 MAPK. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Consumption of fructose and high fructose corn syrup increase postprandial triglycerides, LDL-cholestrol, and apolipoprotein-b in young men and women

    USDA-ARS?s Scientific Manuscript database

    While the American Heart Association Nutrition Committee has recommended that added sugar consumption be limited to 100-150 kcal/d, it has been reported that long-term sugar intakes as high as 25-50% of energy do not have adverse effects on metabolic syndrome components in human subjects. The object...

  20. Short-term fructose ingestion affects the brain independently from establishment of metabolic syndrome.

    PubMed

    Jiménez-Maldonado, Alberto; Ying, Zhe; Byun, Hyae Ran; Gomez-Pinilla, Fernando

    2018-01-01

    Chronic fructose ingestion is linked to the global epidemic of metabolic syndrome (MetS), and poses a serious threat to brain function. We asked whether a short period (one week) of fructose ingestion potentially insufficient to establish peripheral metabolic disorder could impact brain function. We report that the fructose treatment had no effect on liver/body weight ratio, weight gain, glucose tolerance and insulin sensitivity, was sufficient to reduce several aspects of hippocampal plasticity. Fructose consumption reduced the levels of the neuronal nuclear protein NeuN, Myelin Basic Protein, and the axonal growth-associated protein 43, concomitant with a decline in hippocampal weight. A reduction in peroxisome proliferator-activated receptor gamma coactivator-1 alpha and Cytochrome c oxidase subunit II by fructose treatment is indicative of mitochondrial dysfunction. Furthermore, the GLUT5 fructose transporter was increased in the hippocampus after fructose ingestion suggesting that fructose may facilitate its own transport to brain. Fructose elevated levels of ketohexokinase in the liver but did not affect SIRT1 levels, suggesting that fructose is metabolized in the liver, without severely affecting liver function commensurable to an absence of metabolic syndrome condition. These results advocate that a short period of fructose can influence brain plasticity without a major peripheral metabolic dysfunction. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Adding glucose to food and solutions to enhance fructose absorption is not effective in preventing fructose-induced functional gastrointestinal symptoms: randomised controlled trials in patients with fructose malabsorption.

    PubMed

    Tuck, C J; Ross, L A; Gibson, P R; Barrett, J S; Muir, J G

    2017-02-01

    In healthy individuals, the absorption of fructose in excess of glucose in solution is enhanced by the addition of glucose. The present study aimed to assess the effects of glucose addition to fructose or fructans on absorption patterns and genesis of gastrointestinal symptoms in patients with functional bowel disorders. Randomised, blinded, cross-over studies were performed in healthy subjects and functional bowel disorder patients with fructose malabsorption. The area-under-the-curve (AUC) was determined for breath hydrogen and symptom responses to: (i) six sugar solutions (fructose in solution) (glucose; sucrose; fructose; fructose + glucose; fructan; fructan + glucose) and (ii) whole foods (fructose in foods) containing fructose in excess of glucose given with and without additional glucose. Intake of fermentable short chain carbohydrates (FODMAPs; fermentable, oligo-, di-, monosaccharides and polyols) was controlled. For the fructose in solution study, in 26 patients with functional bowel disorders, breath hydrogen was reduced after glucose was added to fructose compared to fructose alone [mean (SD) AUC 92 (107) versus 859 (980) ppm 4 h -1 , respectively; P = 0.034). Glucose had no effect on breath hydrogen response to fructans (P = 1.000). The six healthy controls showed breath hydrogen patterns similar to those with functional bowel disorders. No differences in symptoms were experienced with the addition of glucose, except more nausea when glucose was added to fructose (P = 0.049). In the fructose in foods study, glucose addition to whole foods containing fructose in excess of glucose in nine patients with functional bowel disorders and nine healthy controls had no significant effect on breath hydrogen production or symptom response. The absence of a favourable response on symptoms does not support the concomitant intake of glucose with foods high in either fructose or fructans in patients with functional bowel disorders. © 2016 The British Dietetic

  2. Dioscoreophyllum cumminsii (Stapf) Diels leaves halt high-fructose induced metabolic syndrome: Hyperglycemia, insulin resistance, inflammation and oxidative stress.

    PubMed

    Ajiboye, T O; Aliyu, H; Tanimu, M A; Muhammad, R M; Ibitoye, O B

    2016-11-04

    Dioscoreophyllum cumminsii is widely used in the management and treatment of diabetes and obesity in Nigeria. This study evaluates the effect of aqueous leaf extract of D. cumminsii on high-fructose diet-induced metabolic syndrome. Seventy male rats were randomized into seven groups. All rats were fed with high-fructose diet for 9 weeks except groups A and C rats, which received control diet. In addition to the diet treatment, groups A and B rats received distilled water for 3 weeks starting from the seventh week of the experimental period. Rats in groups C-F orally received 400, 100, 200 and 400mg/kg body weight of aqueous leaf extract of D. cumminsii respectively, while group G received 300mg/kg bodyweight of metformin for 3 weeks starting from the seventh week. There was significant (p<0.05) reduction in high-fructose diet-mediated increase in body weight, body mass index, abdominal circumference, blood glucose, insulin, leptin and insulin resistance by aqueous leaf extract of D. cumminsii. Conversely, high-fructose diet-mediated decrease in adiponectin was reversed by the extract. Increased levels of cholesterol, triglycerides, low-density lipoprotein cholesterol, very low-density lipoprotein cholesterol, atherogenic index, cardiac index and coronary artery index were significantly lowered by the extract, while high-fructose diet mediated decrease in high-density lipoprotein cholesterol was increased by the extract. Tumour necrosis factor-α, interleukin-6 and interleukin-8 levels increased significantly in high-fructose diet-fed rats, which were significantly reversed by the extract. High-fructose mediated-decrease in superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, glucose 6-phosphate dehydrogenase and glutathione reduced were significantly reversed by aqueous leaf extract of D. cumminsii. Conversely, elevated levels of malondialdehyde, conjugated dienes, lipid hydroperoxides, protein carbonyl and fragmented DNA were

  3. High-fat, high-fructose, high-cholesterol feeding causes severe NASH and cecal microbiota dysbiosis in juvenile Ossabaw swine

    USDA-ARS?s Scientific Manuscript database

    Pediatric obesity and nonalcoholic steatohepatitis (NASH) are on the rise in industrialized countries, yet our ability to mechanistically examine this relationship is limited by the lack of a suitable higher animal models. Here, we examined the effects of high-fat, high-fructose corn syrup, high-cho...

  4. Intake of high-fructose corn syrup sweetened soft drinks, fruit drinks and apple juice is associated with prevalent arthritis in US adults, aged 20–30 years

    PubMed Central

    DeChristopher, L R; Uribarri, J; Tucker, K L

    2016-01-01

    Objective: There is a link between joint and gut inflammation of unknown etiology in arthritis. Existing research indicates that regular consumption of high-fructose corn syrup sweetened (HFCS) soft drinks, but not diet soft drinks, may be associated with increased risk of seropositive rheumatoid arthritis (RA) in women, independent of other dietary and lifestyle factors. One unexplored hypothesis for this association is that fructose malabsorption, due to regular consumption of excess free fructose (EFF) and HFCS, contributes to fructose reactivity in the gastrointestinal tract and intestinal in situ formation of enFruAGEs, which once absorbed, travel beyond the intestinal boundaries to other tissues and promote inflammation. In separate studies, the accumulation of advanced glycation end-products has been associated with joint inflammation in RA. Objective of this study was to assess the association between EFF beverages intake and non-age, non-wear and tear-associated arthritis in US young adults. Methods: In this cross sectional study of 1209 adults aged 20–30y, (Nutrition and Health Examination Surveys 2003–2006) exposure variables were high EFF beverages, including HFCS sweetened soft drinks, and any combination of HFCS sweetened soft drinks, fruit drinks (FD) and apple juice, referred to as tEFF. Analyses of diet soda and diet FD were included for comparison. The outcome was self-reported arthritis. Rao Scott Ҳ2 was used for prevalence differences and logistic regression for associations, adjusted for confounders. Results: Young adults consuming any combination of high EFF beverages (tEFF) ⩾5 times/week (but not diet soda) were three times as likely to have arthritis as non/low consumers (odds ratios=3.01; p⩽0.021; 95% confidence intervals=1.20–7.59), independent of all covariates, including physical activity, other dietary factors, blood glucose and smoking. Conclusion: EFF beverage intake is significantly associated with arthritis in US adults

  5. High-fat, high-fructose, high-cholesterol feeding causes severe NASH and cecal microbiota dysbiosis in juvenile Ossabaw swine.

    PubMed

    Panasevich, M R; Meers, G M; Linden, M A; Booth, F W; Perfield, J W; Fritsche, K L; Wankhade, Umesh D; Chintapalli, Sree V; Shankar, K; Ibdah, J A; Rector, R S

    2018-01-01

    Pediatric obesity and nonalcoholic steatohepatitis (NASH) are on the rise in industrialized countries, yet our ability to mechanistically examine this relationship is limited by the lack of a suitable higher animal models. Here, we examined the effects of high-fat, high-fructose corn syrup, high-cholesterol Western-style diet (WD)-induced obesity on NASH and cecal microbiota dysbiosis in juvenile Ossabaw swine. Juvenile female Ossabaw swine (5 wk old) were fed WD (43.0% fat; 17.8% high-fructose corn syrup; 2% cholesterol) or low-fat diet (CON/lean; 10.5% fat) for 16 wk ( n = 6 each) or 36 wk ( n = 4 each). WD-fed pigs developed obesity, dyslipidemia, and systemic insulin resistance compared with CON pigs. In addition, obese WD-fed pigs developed severe NASH, with hepatic steatosis, hepatocyte ballooning, inflammatory cell infiltration, and fibrosis after 16 wk, with further exacerbation of histological inflammation and fibrosis after 36 wk of WD feeding. WD feeding also resulted in robust cecal microbiota changes including increased relative abundances of families and genera in Proteobacteria ( P < 0.05) (i.e., Enterobacteriaceae, Succinivibrionaceae, and Succinivibrio) and LPS-containing Desulfovibrionaceae and Desulfovibrio and a greater ( P < 0.05) predicted microbial metabolic function for LPS biosynthesis, LPS biosynthesis proteins, and peptidoglycan synthesis compared with CON-fed pigs. Overall, juvenile Ossabaw swine fed a high-fat, high-fructose, high-cholesterol diet develop obesity and severe microbiota dysbiosis with a proinflammatory signature and a NASH phenotype directly relevant to the pediatric/adolescent and young adult population.

  6. Effects of Dietary Fructose Restriction on Liver Fat, De Novo Lipogenesis, and Insulin Kinetics in Children With Obesity.

    PubMed

    Schwarz, Jean-Marc; Noworolski, Susan M; Erkin-Cakmak, Ayca; Korn, Natalie J; Wen, Michael J; Tai, Viva W; Jones, Grace M; Palii, Sergiu P; Velasco-Alin, Moises; Pan, Karen; Patterson, Bruce W; Gugliucci, Alejandro; Lustig, Robert H; Mulligan, Kathleen

    2017-09-01

    Consumption of sugar is associated with obesity, type 2 diabetes mellitus, nonalcoholic fatty liver disease, and cardiovascular disease. The conversion of fructose to fat in liver (de novo lipogenesis [DNL]) may be a modifiable pathogenetic pathway. We determined the effect of 9 days of isocaloric fructose restriction on DNL, liver fat, visceral fat (VAT), subcutaneous fat, and insulin kinetics in obese Latino and African American children with habitual high sugar consumption (fructose intake >50 g/d). Children (9-18 years old; n = 41) had all meals provided for 9 days with the same energy and macronutrient composition as their standard diet, but with starch substituted for sugar, yielding a final fructose content of 4% of total kilocalories. Metabolic assessments were performed before and after fructose restriction. Liver fat, VAT, and subcutaneous fat were determined by magnetic resonance spectroscopy and imaging. The fractional DNL area under the curve value was measured using stable isotope tracers and gas chromatography/mass spectrometry. Insulin kinetics were calculated from oral glucose tolerance tests. Paired analyses compared change from day 0 to day 10 within each child. Compared with baseline, on day 10, liver fat decreased from a median of 7.2% (interquartile range [IQR], 2.5%-14.8%) to 3.8% (IQR, 1.7%-15.5%) (P < .001) and VAT decreased from 123 cm 3 (IQR, 85-145 cm 3 ) to 110 cm 3 (IQR, 84-134 cm 3 ) (P < .001). The DNL area under the curve decreased from 68% (IQR, 46%-83%) to 26% (IQR, 16%-37%) (P < .001). Insulin kinetics improved (P < .001). These changes occurred irrespective of baseline liver fat. Short-term (9 days) isocaloric fructose restriction decreased liver fat, VAT, and DNL, and improved insulin kinetics in children with obesity. These findings support efforts to reduce sugar consumption. ClinicalTrials.gov Number: NCT01200043. Copyright © 2017 AGA Institute. Published by Elsevier Inc. All rights reserved.

  7. Carbohydrate composition of high fructose corn syrups (HFCS) used for bee feeding. Effect on honey composition.

    USDA-ARS?s Scientific Manuscript database

    In the present study, carbohydrate composition of high fructose corn syrups (HFCS) from commercial manufacturers as well as from beekeepers was deeply characterised by GC-MS. Sucrose syryps (SS) were also included in this work for comparison. Fructosyl-fructoses and some unknown carbohydrates prob...

  8. High d(+)-fructose diet adversely affects testicular weight gain in weaning rats─protection by moderate d(+)-glucose diet.

    PubMed

    Shibata, Katsumi; Fukuwatari, Tsutomu

    2013-01-01

    The use of high D(+)-fructose corn syrup has increased over the past several decades in the developed countries, while overweight and obesity rates and the related diseases have risen dramatically. However, we found that feeding a high D(+)-fructose diet (80% D(+)-fructose as part of the diet) to weaning rats for 21 days led to reduced food intake (50% less, P < 0.0001) and thus delayed the weight gains in the body (40% less, P < 0.0001) and testes (40% less, P < 0.0001) compared to the no D(+)-fructose diet. We also challenged a minimum requirement of dietary D(+)-glucose for preventing the adverse effects of D(+)-fructose, such as lower food intake and reduction of body weight and testicular weight; the minimum requirement of D(+)-glucose was ≈23% of the diet. This glucose amount may be the minimum requirement of exogenous glucose for reducing weight gain.

  9. Elevated Serum Triglyceride and Retinol-Binding Protein 4 Levels Associated with Fructose-Sweetened Beverages in Adolescents

    PubMed Central

    Chan, Te-Fu; Lin, Wei-Ting; Chen, Yi-Ling; Huang, Hsiao-Ling; Yang, Wei-Zeng; Lee, Chun-Ying; Chen, Meng-Hsueh; Wang, Tsu-Nai; Huang, Meng-Chuan; Chiu, Yu-Wen; Huang, Chun-Chi; Tsai, Sharon; Lin, Chih-Lung; Lee, Chien-Hung

    2014-01-01

    Background The metabolic effect of fructose in sugar-sweetened beverages (SSB) has been linked to de novo lipogenesis and uric acid (UA) production. Objectives This study investigated the biological effects of SSB consumption on serum lipid profiles and retinol-binding protein 4 (RBP4) among Taiwanese adolescents. Methods We evaluated the anthropometric parameters and biochemical outcomes of 200 representative adolescents (98 boys and 102 girls) who were randomly selected from a large-scale cross-sectional study. Data were analyzed using multiple regression models adjusted for covariates. Results Increased SSB consumption was associated with increased waist and hip circumferences, body mass index (BMI) values and serum UA, triglyceride (TG) and RBP4 levels. Adolescents who consumed >500 ml/day of beverages half-to-heavily sweetened with high-fructose corn syrup (HFCS) exhibited TG and RBP4 levels 22.7 mg/dl and 13.92 ng/ml higher than non-drinkers, respectively. HFCS drinkers with hyperuricemia had higher TG levels than HFCS drinkers with normal UA levels (98.6 vs. 81.6 mg/dl). The intake of HFCS-rich SSBs and high value of BMI (≥24) interactively reinforced RBP4 levels among overweight/obese adolescents. Circulating RBP4 levels were significantly correlated with weight-related outcomes and TG and UA concentration among HFCS drinkers (r = 0.253 to 0.404), but not among non-drinkers. Conclusions High-quantity HFCS-rich beverage consumption is associated with higher TG and RBP4 levels. Hyperuricemia is likely to intensify the influence of HFCS-rich SSB intake on elevated TG levels, and in overweight and obese adolescents, high BMI may modify the action of fructose on higher circulating levels of RBP4. PMID:24475021

  10. High lactic acid and fructose production via Mn2+-mediated conversion of inulin by Lactobacillus paracasei.

    PubMed

    Petrov, Kaloyan; Popova, Luiza; Petrova, Penka

    2017-06-01

    Lactobacillus paracasei DSM 23505 is able to produce high amounts of lactic acid (LA) by simultaneous saccharification and fermentation (SSF) of inulin. Aiming to obtain the highest possible amounts of LA and fructose, the present study is devoted to evaluate the impact of bivalent metal ions on the process of inulin conversion. It was shown that Mn 2+ strongly increases the activity of the purified key enzyme β-fructosidase. In vivo, batch fermentation kinetics revealed that the high Mn 2+ concentrations accelerated inulin hydrolysis by raise of the inulinase activity, and increased sugars conversion to LA through enhancement of the whole glycolytic flux. The highest LA concentration and yield were reached by addition of 15 mM Mn 2+ -151 g/L (corresponding to 40% increase) and 0.83 g/g, respectively. However, the relative quantification by real-time reverse transcription assay showed that the presence of Mn 2+ decreases the expression levels of fosE gene encoding β-fructosidase. Contrariwise, the full exclusion of metal ions resulted in fosE gene expression enhancement, blocked fructose transport, and hindered fructose conversion thus leading to huge fructose accumulation. During fed-batch with optimized medium and fermentation parameters, the fructose content reached 35.9% (w/v), achieving yield of 467 g fructose from 675 g inulin containing chicory flour powder (0.69 g/g). LA received in course of the batch fermentation and fructose gained by the fed-batch are the highest amounts ever obtained from inulin, thus disclosing the key role of Mn 2+ as a powerful tool to guide inulin conversion to targeted bio-chemicals.

  11. Alpha lipoic acid attenuates high-fructose-induced pancreatic toxicity.

    PubMed

    Topsakal, Senay; Ozmen, Ozlem; Cankara, Fatma Nihan; Yesilot, Sukriye; Bayram, Dilek; Genç Özdamar, Nilüfer; Kayan, Sümeyra

    2016-01-01

    Chronic consumption of high-fructose corn syrup (HFCS) causes several problems such as insulin resistance. The goal of the study was to investigate pancreatic damage induced by chronic HFCS consumption and the protective effects of alpha lipoic acid (ALA) on pancreatic cells. Wistar Albino, 4-month-old, female rats weighing 250-300 g were randomly distributed into three groups, each containing eight rats. The study included an HFCS group, an HFCS + ALA-administered group and a control group (CON). The prepared 30% solution of HFCS (F30) (24% fructose, 28% dextrose) was added to the drinking water for 10 weeks. ALA treatment was begun 4 weeks after the first HFCS administration (100 mg/kg/oral, last 6 weeks). Rats were anaesthetised and euthanised by cervical dislocation 24 h after the last ALA administration. Blood samples for biochemical tests (amylase, lipase, malondialdehyde (MDA) and catalase (CAT)) and tissue samples for histopathological and immunohistochemical examinations (caspase-3, insulin and glucagon) were collected. Comparing the control and HFCS groups, serum glucose (150.92 ± 39.77 and 236.50 ± 18.28, respectively, p < 0.05), amylase (2165.00 ± 150.76 and 3027.66 ± 729.19, respectively, p < 0.01), lipase (5.58 ± 2.22 and 11.51 ± 2.74, respectively, p < 0.01) and pancreatic tissue MDA (0.0167 ± 0.004 and 0.0193 ± 0.006, respectively, p < 0.05) levels were increased, whereas tissue CAT (0.0924 ± 0.029 and 0.0359 ± 0.023, respectively, p < 0.05) activity decreased in the HFCS group significantly. Histopathological examination revealed degenerative and necrotic changes in Langerhans islet cells and slight inflammatory cell infiltration in pancreatic tissue in the HFCS group. Immunohistochemically there was a significant decrease in insulin (2.85 ± 0.37 and 0.87 ± 0.64, respectively, p < 0.001) and glucagon (2.71 ± 0.48 and 1.00 ± 0.75, respectively, p < 0.001) secreting cell scores, whereas a

  12. A High-Fructose-High-Coconut Oil Diet Induces Dysregulating Expressions of Hippocampal Leptin and Stearoyl-CoA Desaturase, and Spatial Memory Deficits in Rats

    PubMed Central

    Lin, Ching-I; Shen, Chu-Fu; Hsu, Tsui-Han; Lin, Shyh-Hsiang

    2017-01-01

    We investigated the effects of high-fructose-high-fat diets with different fat compositions on metabolic parameters, hippocampal-dependent cognitive function, and brain leptin (as well as stearoyl-CoA desaturase (SCD1) mRNA expressions). Thirty-two male Wistar rats were divided into 3 groups, a control group (n = 8), a high-fructose soybean oil group (37.5% of fat calories, n = 12), and a high-fructose coconut oil group (37.5% of fat calories, n = 12) for 20 weeks. By the end of the study, the coconut oil group exhibited significantly higher serum fasting glucose, fructosamine, insulin, leptin, and triglyceride levels compared to those of the control and soybean oil groups. However, hippocampal leptin expression and leptin receptor mRNA levels were significantly lower, while SCD1 mRNA was significantly higher in rats fed the high-fructose-high-coconut oil diet than in rats fed the other experimental diets. In addition, the coconut oil group spent significantly less time in the target quadrant on the probe test in the Morris water maze (MWM) task. Rats fed the high-fructose-high-coconut oil diet for 20 weeks were prone to develop hyperglycemia, hyperinsulinemia, hyperleptinemia, and hypertriglyceridemia. These metabolic consequences may contribute to hippocampal-dependent memory impairment, accompanied by a lower central leptin level, and a higher SCD1 gene expression in the brain. PMID:28621759

  13. A High-Fructose-High-Coconut Oil Diet Induces Dysregulating Expressions of Hippocampal Leptin and Stearoyl-CoA Desaturase, and Spatial Memory Deficits in Rats.

    PubMed

    Lin, Ching-I; Shen, Chu-Fu; Hsu, Tsui-Han; Lin, Shyh-Hsiang

    2017-06-16

    We investigated the effects of high-fructose-high-fat diets with different fat compositions on metabolic parameters, hippocampal-dependent cognitive function, and brain leptin (as well as stearoyl-CoA desaturase (SCD1) mRNA expressions). Thirty-two male Wistar rats were divided into 3 groups, a control group ( n = 8), a high-fructose soybean oil group (37.5% of fat calories, n = 12), and a high-fructose coconut oil group (37.5% of fat calories, n = 12) for 20 weeks. By the end of the study, the coconut oil group exhibited significantly higher serum fasting glucose, fructosamine, insulin, leptin, and triglyceride levels compared to those of the control and soybean oil groups. However, hippocampal leptin expression and leptin receptor mRNA levels were significantly lower, while SCD1 mRNA was significantly higher in rats fed the high-fructose-high-coconut oil diet than in rats fed the other experimental diets. In addition, the coconut oil group spent significantly less time in the target quadrant on the probe test in the Morris water maze (MWM) task. Rats fed the high-fructose-high-coconut oil diet for 20 weeks were prone to develop hyperglycemia, hyperinsulinemia, hyperleptinemia, and hypertriglyceridemia. These metabolic consequences may contribute to hippocampal-dependent memory impairment, accompanied by a lower central leptin level, and a higher SCD1 gene expression in the brain.

  14. Dietary fructose but not starch is responsible for hyperlipidemia associated with copper deficiency in rats: effect of high-fat diet.

    PubMed

    Fields, M; Lewis, C G

    1999-02-01

    To test the hypothesis that copper deficiency in rats may be hyperlipidemic only when the diets consumed contain nutrients which contribute to blood lipids such as fructose and high fat. Weanling male Sprague Dawley rats were fed diets which contained either starch or fructose as their sole carbohydrate source. The diets were either inadequate (0.6 microg Cu/g) or adequate (6.0 microg Cu/g) in copper and contained either high (300 g/kg) or low (60 g/kg) fat. At the end of the 4th week the rats were killed. Livers were analyzed for copper content. Plasma was analyzed for cholesterol and triglyceride concentrations. High-fat diet did not increase blood lipids in rats fed a copper-deficient diet containing starch. In contrast, the combination of high-fat diet with fructose increased blood triglycerides and fructose with copper deficiency resulted in a significant increases in blood cholesterol. Hyperlipidemia of copper deficiency in rats is dependent on synergistic effects between dietary fructose and copper deficiency and fructose and amount of dietary fat. Hyperlipidemia does not develop if starch is the main source of dietary carbohydrate in a copper-deficient diet even if a high-fat diet is fed.

  15. Intake of high fructose corn syrup sweetened soft drinks is associated with prevalent chronic bronchitis in U.S. Adults, ages 20-55 y.

    PubMed

    DeChristopher, Luanne Robalo; Uribarri, Jaime; Tucker, Katherine L

    2015-10-16

    High fructose corn syrup (HFCS) sweetened soft drink intake has been linked with asthma in US high-schoolers. Intake of beverages with excess free fructose (EFF), including apple juice, and HFCS sweetened fruit drinks and soft drinks, has been associated with asthma in children. One hypothesis for this association is that underlying fructose malabsorption and fructose reactivity in the GI may contribute to in situ formation of enFruAGEs. EnFruAGEs may be an overlooked source of advanced glycation end-products (AGE) that contribute to lung disease. AGE/ RAGEs are elevated in COPD lungs. EFF intake has increased in recent decades, and intakes may exceed dosages associated with adult fructose malabsorption in subsets of the population. Intestinal dysfunction has been shown to be elevated in COPD patients. The objective of this study was to investigate the association between HFCS sweetened soft drink intake and chronic bronchitis (CB), a common manifestation of COPD, in adults. In this cross sectional analysis, the outcome variable was self-reported existing chronic bronchitis or history of CB. Exposure variable was non-diet soda. Rao Scott Ҳ(2) was used for prevalence differences and logistic regression for associations, adjusted for age, sex, race-ethnicity, BMI, smoking, exposure to in-home smoking, pre-diabetes, diabetes, SES, total energy and total fruits and beverages consumption. Data are from the National Health and Nutrition Examination Survey 2003-2006. 2801 adults aged 20-55 y. There was a statistically significant correlation between intake of non-diet soft drinks and greater prevalence and odds of chronic bronchitis (p < 0.05). Independent of all covariates, intake of non-diet soda ≥5 times a week (vs. non/low non-diet soda) was associated with nearly twice the likelihood of having chronic bronchitis (OR = 1.80; p = 0.047; 95% CI 1.01-3.20). HFCS sweetened soft drink intake is correlated with chronic bronchitis in US adults aged 20-55 y

  16. Peel flour of Passiflora edulis Var. Flavicarpa supplementation prevents the insulin resistance and hepatic steatosis induced by low-fructose-diet in young rats.

    PubMed

    Goss, M J; Nunes, M L O; Machado, I D; Merlin, L; Macedo, N B; Silva, A M O; Bresolin, T M B; Santin, J R

    2018-06-01

    The increase in fructose consumption in the last decades has an important correlation with the growth of overweight population. Fructose is a monosaccharide found in fruits, vegetables and honey, however, it is widely used in processed food and beverages such as sweeteners. This monosaccharide is metabolized in the liver, so it can produce glucose, lactate, triglycerides, free fatty acids and uric acid, which are responsible for negative effects on the liver and extrahepatic tissues. One effect of the high consumption of fructose is the resistance to Insulin, which appears to be an important issue in the development of metabolic abnormalities observed in animals that were subjected to a high fructose diet. The population and, consequently, the market search for natural sources to manage metabolic abnormalities is increasing, but, adequate scientific proof still is necessary. The Passiflora edulis peel flour (PEPF) is a byproduct of the juice industry, and, represents an important source of fiber and bioactive compounds. The present study investigates the PEPF supplementation (30%) effects on insulin sensitivity, adiposity and metabolic parameters in young rats that were given beverages enriched with 10% of fructose for 8 weeks. Fructose intake induced insulin resistance, increased serum triglycerides levels, growth of fat deposits in the liver and widening of the diameter of adipocytes. In contrast, the group that received PEPF did not present such abnormalities, which could be related to the presence of fiber or bioactive compounds (phenolics compounds, e.g., caffeic acid and isoorientin) in its composition, as identified by analytical methods. Thus, for the first time, it has been demonstrated that PEPF supplementation prevents insulin resistance and hepatic steatosis induced by low-fructose-diet in young rats. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  17. Carrot juice ingestion attenuates high fructose-induced circulatory pro-inflammatory mediators in weanling Wistar rats.

    PubMed

    Mahesh, Malleswarapu; Bharathi, Munugala; Raja Gopal Reddy, Mooli; Pappu, Pranati; Putcha, Uday Kumar; Vajreswari, Ayyalasomayajula; Jeyakumar, Shanmugam M

    2017-03-01

    Adipose tissue, an endocrine organ, plays a vital role not only in energy homeostasis, but also in the development and/or progression of various metabolic diseases, such as insulin resistance, type 2 diabetes and non-alcoholic fatty liver disease (NAFLD), via several factors and mechanisms, including inflammation. This study tested, whether carrot juice administration affected the adipose tissue development and its inflammatory status in a high fructose diet-induced rat model. For this purpose, male weanling Wistar rats were divided into four groups and fed either control or high fructose diet of AIN-93G composition with or without carrot juice ingestion for an 8 week period. Administration of carrot juice did not affect the adiposity and cell size of visceral fat depot; retroperitoneal white adipose tissue (RPWAT), which was corroborated with unaltered expression of genes involved in adipogenic and lipogenic pathways. However, it significantly reduced the high fructose diet-induced elevation of plasma free fatty acid (FFA) (P ≤ 0.05), macrophage chemoattractant protein 1 (MCP1) (P ≤ 0.01) and high sensitive C-reactive protein (hsCRP) (P ≤ 0.05) levels. Carrot juice administration attenuated the high fructose diet-induced elevation of levels of circulatory FFA and pro-inflammatory mediators; MCP1 and hsCRP without affecting the adiposity and cell size of visceral fat depot; RPWAT. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  18. Fructose-rich beverages and risk of gout in women.

    PubMed

    Choi, Hyon K; Willett, Walter; Curhan, Gary

    2010-11-24

    Fructose-rich beverages such as sugar-sweetened soda and orange juice can increase serum uric acid levels and, thus, the risk of gout, but prospective data on the relationship are limited. To examine the relationship between intake of fructose-rich beverages and fructose and the risk of incident gout among women. In the Nurses' Health Study, a US prospective cohort study spanning 22 years (1984-2006), we analyzed data from 78,906 women with no history of gout at baseline who provided information on intake of beverages and fructose through validated food frequency questionnaires. Incident cases that met the American College of Rheumatology survey criteria for gout. During 22 years of follow-up, we documented 778 confirmed incident cases of gout. Increasing intake of sugar-sweetened soda was independently associated with increasing risk of gout. Compared with consumption of less than 1 serving per month of sugar-sweetened soda, the multivariate relative risk of gout for 1 serving per day was 1.74 (95% confidence interval [CI], 1.19-2.55) and for 2 or more servings per day was 2.39 (95% CI, 1.34-4.26) (P<.001 for trend). The corresponding relative risks for orange juice were 1.41 (95% CI, 1.03-1.93) and 2.42 (95% CI, 1.27-4.63) (P = .02 for trend). The absolute risk differences corresponding to these relative risks were 36 and 68 cases per 100,000 person-years for sugar-sweetened soda and 14 and 47 cases per 100,000 person-years for orange juice, respectively. Diet soft drinks were not associated with the risk of gout (P = .27 for trend). Compared with the lowest quintile of fructose intake, the multivariate relative risk of gout in the top quintile was 1.62 (95% CI, 1.20-2.19; P = .004 for trend) (risk difference of 28 cases per 100,000 person-years). Among this cohort of women, consumption of fructose-rich beverages is associated with an increased risk of incident gout, although the contribution of these beverages to the risk of gout in the population is likely

  19. High Consumption of Iron Exacerbates Hyperlipidemia, Atherosclerosis, and Female Sterility in Zebrafish via Acceleration of Glycation and Degradation of Serum Lipoproteins.

    PubMed

    Kim, So-Hee; Yadav, Dhananjay; Kim, Suk-Jeong; Kim, Jae-Ryong; Cho, Kyung-Hyun

    2017-07-02

    Elevated serum iron level is linked with an increased risk of diabetes and atherosclerosis. However, the pathological mechanism by which iron affects serum lipoprotein levels is unknown. To elucidate the mechanism, a high dose of ferrous ion was applied (final 60 µM, 120 µM) to human serum lipoproteins, macrophages, and human dermal fibroblast (HDF) cells. Iron-treated lipoproteins showed loss of antioxidant ability along with protein degradation and multimerization, especially co-treatment with fructose (final 10 mM). In the presence of fructose, HDF cells showed 3.5-fold more severe cellular senescence, as compared to the control, dependent on the dosage of fructose. In macrophages, phagocytosis of acetylated low-density lipoprotein (acLDL) was more accelerated by ferrous ion, occurring at a rate that was up to 1.8-fold higher, than acLDL alone. After 24 weeks supplementation with 0.05% and 0.1% ferrous ion in the diet (wt/wt), serum total cholesterol (TC) level was elevated 3.7- and 2.1-fold, respectively, under normal diet (ND). Serum triglyceride (TG) was elevated 1.4- and 1.7-fold, respectively, under ND upon 0.05% and 0.1% ferrous ion supplementation. Serum glucose level was elevated 2.4- and 1.2-fold under ND and high cholesterol diet (HCD), respectively. However, body weight was decreased by the Fe 2+ consumption. Iron consumption caused severe reduction of embryo laying and reproduction ability, especially in female zebrafish via impairment of follicular development. In conclusion, ferrous ion treatment caused more pro-atherogenic, and pro-senescence processes in human macrophages and dermal cells. High consumption of iron exacerbated hyperlipidemia and hyperglycemia as well as induced fatty liver changes and sterility along with reduction of female fertility.

  20. Effect of Fructose on Glycemic Control in Diabetes

    PubMed Central

    Cozma, Adrian I.; Sievenpiper, John L.; de Souza, Russell J.; Chiavaroli, Laura; Ha, Vanessa; Wang, D. David; Mirrahimi, Arash; Yu, Matt E.; Carleton, Amanda J.; Di Buono, Marco; Jenkins, Alexandra L.; Leiter, Lawrence A.; Wolever, Thomas M.S.; Beyene, Joseph; Kendall, Cyril W.C.; Jenkins, David J.A.

    2012-01-01

    OBJECTIVE The effect of fructose on cardiometabolic risk in humans is controversial. We conducted a systematic review and meta-analysis of controlled feeding trials to clarify the effect of fructose on glycemic control in individuals with diabetes. RESEARCH DESIGN AND METHODS We searched MEDLINE, EMBASE, and the Cochrane Library (through 22 March 2012) for relevant trials lasting ≥7 days. Data were aggregated by the generic inverse variance method (random-effects models) and expressed as mean difference (MD) for fasting glucose and insulin and standardized MD (SMD) with 95% CI for glycated hemoglobin (HbA1c) and glycated albumin. Heterogeneity was assessed by the Cochran Q statistic and quantified by the I2 statistic. Trial quality was assessed by the Heyland methodological quality score (MQS). RESULTS Eighteen trials (n = 209) met the eligibility criteria. Isocaloric exchange of fructose for carbohydrate reduced glycated blood proteins (SMD −0.25 [95% CI −0.46 to −0.04]; P = 0.02) with significant intertrial heterogeneity (I2 = 63%; P = 0.001). This reduction is equivalent to a ∼0.53% reduction in HbA1c. Fructose consumption did not significantly affect fasting glucose or insulin. A priori subgroup analyses showed no evidence of effect modification on any end point. CONCLUSIONS Isocaloric exchange of fructose for other carbohydrate improves long-term glycemic control, as assessed by glycated blood proteins, without affecting insulin in people with diabetes. Generalizability may be limited because most of the trials were <12 weeks and had relatively low MQS (<8). To confirm these findings, larger and longer fructose feeding trials assessing both possible glycemic benefit and adverse metabolic effects are required. PMID:22723585

  1. Increased diuresis, renal vascular reactivity, and blood pressure levels in young rats fed high sodium, moderately high fructose, or their association: a comparative evaluation.

    PubMed

    Da Silva, Rita de Cássia Vilhena A F; de Souza, Priscila; da Silva-Santos, José Eduardo

    2016-12-01

    Excessive intakes of sodium or fructose have been described as risk factors for hypertension. We hypothesized that even a moderately high fructose diet (6% fructose), either alone or in combination with high sodium (4% NaCl), may impair diuresis and renal and systemic vascular reactivity, contributing to the onset of high blood pressure in rats. Male Wistar rats were fed chow containing 4% NaCl (HS), 6% fructose (MHF), or both 4% NaCl and 6% fructose (HSMHF) for 6 weeks and had their diuresis, plasma creatinine, vascular reactivity of perfused kidneys and systemic arterial pressure evaluated. We found no differences in augmented diuresis among animals given HS, MHF, or HSMHF diets. After 6 weeks both the HS and HSMHF groups had increased weight in their left kidneys, but only the HSMHF group showed augmented plasma creatinine. The effects of phenylephrine on renal vascular perfusion pressure were similarly enhanced in kidneys from the HS, MHF, and HSMHF groups, but not on the systemic arterial pressure. Although when evaluated in anesthetized rats, only the HSMHF group presented augmented blood pressure, evaluation in conscious animals revealed that both the MHF and HSMHF diets, but not the HS alone, were able to induce tachycardia and hypertension. In conclusion, a MHF diet containing 6% fructose was enough to render the renal vascular bed hyperreactive to phenylephrine and to induce both hypertension and tachycardia. The combination of 6% fructose with 4% NaCl led to plasma accumulation of creatinine and accelerated the development of tachycardia.

  2. Genetically engineered Escherichia coli Nissle 1917 synbiotic counters fructose-induced metabolic syndrome and iron deficiency.

    PubMed

    Chaudhari, Archana Somabhai; Raghuvanshi, Ruma; Kumar, G Naresh

    2017-06-01

    Consumption of fructose leads to metabolic syndrome, but it is also known to increase iron absorption. Present study investigates the effect of genetically modified Escherichia coli Nissle 1917 (EcN) synbiotic along with fructose on non-heme iron absorption. Charles foster rats weighing 150-200 g were fed with iron-deficient diet for 2 months. Probiotic treatment of EcN (pqq) and EcN (pqq-glf-mtlK) was given once per week, 10 9  cells after 2 months with fructose in drinking water. Iron levels, blood, and liver parameters for oxidative stress, hyperglycemia, and dyslipidemia were estimated. Transferrin-bound iron levels in the blood decreased significantly after 10 weeks of giving iron-deficient diet. Probiotic treatment of EcN (pqq-glf-mtlK) and fructose together led to the restoration of normal transferrin-bound iron levels and blood and hepatic antioxidant levels as compared to iron-deficient control group. The probiotic also led to the restoration of body weight along with levels of serum and hepatic lipid, blood glucose, and antioxidant in the blood and liver as compared to iron-deficient control group. Restoration of liver injury marker enzymes was also seen. Administration of EcN-producing PQQ and mannitol dehydrogenase enzyme together with fructose led to increase in the transferrin-bound iron levels in the blood and amelioration of consequences of metabolic syndrome caused due to fructose consumption.

  3. Change in postprandial substrate oxidation after a high fructose meal is related to Body Mass Index (BMI) in Healthy Men

    PubMed Central

    Smeraglio, Anne C.; Kennedy, Emily K.; Horgan, Angela; Purnell, Jonathan Q.; Gillingham, Melanie B.

    2013-01-01

    Oral fructose decreases fat oxidation and increases carbohydrate (CHO) oxidation in obese subjects, but the metabolic response to fructose in lean individuals is less well understood. The purpose of this study was to assess the effects of a single fructose-rich mixed meal on substrate oxidation in young healthy non-obese males. We hypothesized that a decrease in fat oxidation and an increase in carbohydrate oxidation would be observed following a fructose-rich mixed meal compared to a glucose-rich mixed meal. Twelve healthy males, normal to overweight and age 23–31 years old, participated in a double-blind, cross-over study. Each participant completed two study visits, eating a mixed meal containing 30% of the calories from either fructose or glucose. Blood samples for glucose, insulin, triglycerides, and leptin as well as gas exchange by indirect calorimetry were measured intermittently for 7 hours. Serum insulin was higher after a fructose mixed meal but plasma glucose, plasma leptin and serum triglycerides were not different. Mean postprandial respiratory quotient and estimated fat oxidation did not differ between the fructose and glucose meals. The change in fat oxidation between the fructose and glucose rich meals negatively correlated with BMI (r=−0.59, P=0.04 and r=−0.59, P=0.04 at the 4 and 7 hour time points, respectively). In healthy non-obese males, BMI correlates with altered postprandial fat oxidation after a high-fructose mixed meal. The metabolic response to a high fructose meal may be modulated by BMI. PMID:23746558

  4. Determination of fructose metabolic pathways in normal and fructose-intolerant children: A sup 13 C NMR study using (U- sup 13 C)fructose

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gopher, A.; Lapidot, A.; Vaisman, N.

    1990-07-01

    An inborn deficiency in the ability of aldolase B to split fructose 1-phosphate is found in humans with hereditary fructose intolerance (HFI). A stable isotope procedure to elucidate the mechanism of conversion of fructose to glucose in normal children and in HFI children has been developed. A constant infusion of D-(U-{sup 13}C)fructose was given nasogastrically to control and to HFI children. Hepatic fructose conversion to glucose was estimated by examination of {sup 13}C NMR spectra of plasma glucose. Significantly lower values ({approx}3-fold) for fructose conversion to glucose were obtained for the HFI patients as compared to the controls. A quantitativemore » determination of the metabolic pathways of fructose conversion to glucose was derived from {sup 13}C NMR measurement of plasma ({sup 13}C)glucose isotopomer populations. The finding of isotopomer populations of three adjacent {sup 13}C atoms at glucose C-4 ({sup 13}C{sub 3}-{sup 13}C{sub 4}-{sup 13}C{sub 5}) suggests that there is a direct pathway from fructose, by-passing fructose-1-phosphate aldolase, to fructose 1,6-bisphosphate. The metabolism of fructose by fructose-1-phosphate aldolase activity accounts for only {approx}50% of the total amount of hepatic fructose conversion to glucose. In view of the marked decline by 67% in synthesis of glucose from fructose in HFI subjects found in this study, the extent of ({sup 13}C)glucose formation from a trace amount of (U-{sup 13}C)fructose infused into the patient can be used as a safe and noninvasive diagnostic test for inherent faulty fructose metabolism.« less

  5. Effect of a high-fructose diet on glucose tolerance, plasma lipid and hemorheological parameters during oral contraceptive administration in female rats.

    PubMed

    Olatunji, Lawrence Aderemi; Oyeyipo, Ibukun Peter; Usman, Taofeek Oluwamayowa

    2013-01-01

    Oral contraceptive (OC) use and increased fructose feeding have been associated with altered cardiometabolic effects. The effect of increased dietary fructose during OC use on cardiometabolic parameters is unknown. We investigated the effects of a high-fructose diet on body weight gain, fasting blood glucose, glucose tolerance, plasma lipid and hemorheological parameters in female rats treated with a combination of OC steroids (norgestrel/ethinyl estradiol; NEE). Rats were given (p.o.) vehicle, high-dose NEE (10.0 μg norgestrel/1.0 μg ethinyl estradiol) or low-dose NEE (1.0 μg norgestrel/0.1 μg ethinyl estradiol) with or without high dietary fructose daily for 6 weeks. Results demonstrated that high-dose NEE but not low-dose NEE treatment led to significant increases in hematocrit, blood viscosity, and decreases in body weight gain, glucose tolerance, and plasma HDL-cholesterol level. Both NEE treatments resulted in significant increases in plasma viscosity and triglyceride. Increased dietary fructose without NEE treatment produced significant increases in fasting blood glucose, hematocrit, blood and plasma viscosities, while increased dietary fructose significantly potentiated the effects on blood and plasma viscosities observed during NEE treatment. Conversely, the effects of NEE treatment on body weight gain, glucose tolerance, plasma triglyceride and HDL-cholesterol were significantly attenuated. In conclusion, the results indicate that increase in dietary fructose may worsen abnormal blood rheology. The results also demonstrate that increased dietary fructose may not impact negatively on glucose and lipid metabolisms during OC use. The findings imply that fructose-enriched diet might be an important consideration during OC use regarding blood rheological properties.

  6. Fructose suppresses uric acid excretion to the intestinal lumen as a result of the induction of oxidative stress by NADPH oxidase activation.

    PubMed

    Kaneko, Chihiro; Ogura, Jiro; Sasaki, Shunichi; Okamoto, Keisuke; Kobayashi, Masaki; Kuwayama, Kaori; Narumi, Katsuya; Iseki, Ken

    2017-03-01

    A high intake of fructose increases the risk for hyperuricemia. It has been reported that long-term fructose consumption suppressed renal uric acid excretion and increased serum uric acid level. However, the effect of single administration of fructose on excretion of uric acid has not been clarified. We used male Wistar rats, which were orally administered fructose (5g/kg). Those rats were used in each experiment at 12h after administration. Single administration of fructose suppressed the function of ileal uric acid excretion and had no effect on the function of renal uric acid excretion. Breast cancer resistance protein (BCRP) predominantly contributes to intestinal excretion of uric acid as an active homodimer. Single administration of fructose decreased BCRP homodimer level in the ileum. Moreover, diphenyleneiodonium (DPI), an inhibitor of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (Nox), recovered the suppression of the function of ileal uric acid excretion and the Bcrp homodimer level in the ileum of rats that received single administration of fructose. Single administration of fructose decreases in BCRP homodimer level, resulting in the suppression the function of ileal uric acid excretion. The suppression of the function of ileal uric acid excretion by single administration of fructose is caused by the activation of Nox. The results of our study provide a new insight into the mechanism of fructose-induced hyperuricemia. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. High fructose corn syrup induces metabolic dysregulation and altered dopamine signaling in the absence of obesity.

    PubMed

    Meyers, Allison M; Mourra, Devry; Beeler, Jeff A

    2017-01-01

    The contribution of high fructose corn syrup (HFCS) to metabolic disorder and obesity, independent of high fat, energy-rich diets, is controversial. While high-fat diets are widely accepted as a rodent model of diet-induced obesity (DIO) and metabolic disorder, the value of HFCS alone as a rodent model of DIO is unclear. Impaired dopamine function is associated with obesity and high fat diet, but the effect of HFCS on the dopamine system has not been investigated. The objective of this study was to test the effect of HFCS on weight gain, glucose regulation, and evoked dopamine release using fast-scan cyclic voltammetry. Mice (C57BL/6) received either water or 10% HFCS solution in combination with ad libitum chow for 15 weeks. HFCS consumption with chow diet did not induce weight gain compared to water, chow-only controls but did induce glucose dysregulation and reduced evoked dopamine release in the dorsolateral striatum. These data show that HFCS can contribute to metabolic disorder and altered dopamine function independent of weight gain and high-fat diets.

  8. High fructose corn syrup induces metabolic dysregulation and altered dopamine signaling in the absence of obesity

    PubMed Central

    2017-01-01

    The contribution of high fructose corn syrup (HFCS) to metabolic disorder and obesity, independent of high fat, energy-rich diets, is controversial. While high-fat diets are widely accepted as a rodent model of diet-induced obesity (DIO) and metabolic disorder, the value of HFCS alone as a rodent model of DIO is unclear. Impaired dopamine function is associated with obesity and high fat diet, but the effect of HFCS on the dopamine system has not been investigated. The objective of this study was to test the effect of HFCS on weight gain, glucose regulation, and evoked dopamine release using fast-scan cyclic voltammetry. Mice (C57BL/6) received either water or 10% HFCS solution in combination with ad libitum chow for 15 weeks. HFCS consumption with chow diet did not induce weight gain compared to water, chow-only controls but did induce glucose dysregulation and reduced evoked dopamine release in the dorsolateral striatum. These data show that HFCS can contribute to metabolic disorder and altered dopamine function independent of weight gain and high-fat diets. PMID:29287121

  9. Exposure to cigarette smoke disturbs adipokines secretion causing intercellular damage and insulin resistance in high fructose diet-induced metabolic disorder mice.

    PubMed

    Kim, Sanghwa; Lee, Ah Young; Kim, Hyeon-Jeong; Hong, Seong-Ho; Go, Ryeo-Eun; Choi, Kyung-Chul; Kang, Kyung-Sun; Cho, Myung-Haing

    2017-12-16

    A large amount of fructose intake along with smoking is associated with increased incidence of diseases linked to metabolic syndrome. More research is necessary to understand the complex mechanism that ultimately results in metabolic syndrome and the effect, if any, of high fructose dietary intake and smoking on individual health. In this study, we investigated changes in ER-Golgi network and disturbance to secretion of adipokines induced by cigarette smoking (CS) and excess fructose intake and their contribution to the disruption of metabolic homeostasis. We used high fructose-induced metabolic disorder mice model by feeding them with high fructose diet for 8 weeks. For CS exposure experiment, these mice were exposed to CS for 28 days according to OECD guideline 412. Our results clearly showed that the immune system was suppressed and ER stress was induced in mice with exposure to CS and fed with high fructose. Furthermore, their concentrations of adipokines including leptin and adiponectin were aberrant. Such alteration in secretion of adipokines could cause insulin resistance which may lead to the development of type 2 diabetes. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Fructose levels are markedly elevated in cerebrospinal fluid compared to plasma in pregnant women.

    PubMed

    Hwang, Janice J; Johnson, Andrea; Cline, Gary; Belfort-DeAguiar, Renata; Snegovskikh, Denis; Khokhar, Babar; Han, Christina S; Sherwin, Robert S

    2015-01-01

    Fructose, unlike glucose, promotes feeding behavior in rodents and its ingestion exerts differential effects in the human brain. However, plasma fructose is typically 1/1000 th of glucose levels and it is unclear to what extent fructose crosses the blood-brain barrier. We investigated whether local endogenous central nervous system (CNS) fructose production from glucose via the polyol pathway (glucose → sorbitol → fructose) contributes to brain exposure to fructose. In this observational study, fasting glucose, sorbitol and fructose concentrations were measured using gas-chromatography-liquid mass spectroscopy in cerebrospinal fluid (CSF), maternal plasma, and venous cord blood collected from 25 pregnant women (6 lean, 10 overweight/obese, and 9 T2DM/gestational DM) undergoing spinal anesthesia and elective cesarean section. As expected, CSF glucose was ~ 60% of plasma glucose levels. In contrast, fructose was nearly 20-fold higher in CSF than in plasma (p < 0.001), and CSF sorbitol was ~ 9-times higher than plasma levels (p < 0.001). Moreover, CSF fructose correlated positively with CSF glucose (ρ 0.45, p = 0.02) and sorbitol levels (ρ 0.75, p < 0.001). Cord blood sorbitol was also ~ 7-fold higher than maternal plasma sorbitol levels (p = 0.001). There were no differences in plasma, CSF, and cord blood glucose, fructose, or sorbitol levels between groups. These data raise the possibility that fructose may be produced endogenously in the human brain and that the effects of fructose in the human brain and placenta may extend beyond its dietary consumption.

  11. Fructose Levels Are Markedly Elevated in Cerebrospinal Fluid Compared to Plasma in Pregnant Women

    PubMed Central

    Hwang, Janice J.; Johnson, Andrea; Cline, Gary; Belfort-DeAguiar, Renata; Snegovskikh, Denis; Khokhar, Babar; Han, Christina S.; Sherwin, Robert S.

    2015-01-01

    Background Fructose, unlike glucose, promotes feeding behavior in rodents and its ingestion exerts differential effects in the human brain. However, plasma fructose is typically 1/1000th of glucose levels and it is unclear to what extent fructose crosses the blood-brain barrier. We investigated whether local endogenous central nervous system (CNS) fructose production from glucose via the polyol pathway (glucose→sorbitol→fructose) contributes to brain exposure to fructose. Methods In this observational study, fasting glucose, sorbitol and fructose concentrations were measured using gas-chromatography-liquid mass spectroscopy in cerebrospinal fluid (CSF), maternal plasma, and venous cord blood collected from 25 pregnant women (6 lean, 10 overweight/obese, and 9 T2DM/gestational DM) undergoing spinal anesthesia and elective cesarean section. Results As expected, CSF glucose was ~60% of plasma glucose levels. In contrast, fructose was nearly 20-fold higher in CSF than in plasma (p < 0.001), and CSF sorbitol was ~9-times higher than plasma levels (p < 0.001). Moreover, CSF fructose correlated positively with CSF glucose (ρ 0.45, p = 0.02) and sorbitol levels (ρ 0.75, p < 0.001). Cord blood sorbitol was also ~7-fold higher than maternal plasma sorbitol levels (p = 0.001). There were no differences in plasma, CSF, and cord blood glucose, fructose, or sorbitol levels between groups. Conclusions These data raise the possibility that fructose may be produced endogenously in the human brain and that the effects of fructose in the human brain and placenta may extend beyond its dietary consumption. PMID:26035307

  12. Immobilization of Recombinant Glucose Isomerase for Efficient Production of High Fructose Corn Syrup.

    PubMed

    Jin, Li-Qun; Xu, Qi; Liu, Zhi-Qiang; Jia, Dong-Xu; Liao, Cheng-Jun; Chen, De-Shui; Zheng, Yu-Guo

    2017-09-01

    Glucose isomerase is the important enzyme for the production of high fructose corn syrup (HFCS). One-step production of HFCS containing more than 55% fructose (HFCS-55) is receiving much attention for its industrial applications. In this work, the Escherichia coli harboring glucose isomerase mutant TEGI-W139F/V186T was immobilized for efficient production of HFCS-55. The immobilization conditions were optimized, and the maximum enzyme activity recovery of 92% was obtained. The immobilized glucose isomerase showed higher pH, temperature, and operational stabilities with a K m value of 272 mM and maximum reaction rate of 23.8 mM min -1 . The fructose concentration still retained above 55% after the immobilized glucose isomerase was reused for 10 cycles, and more than 85% of its initial activity was reserved even after 15 recycles of usage at temperature of 90 °C. The results highlighted the immobilized glucose isomerase as a potential biocatalyst for HFCS-55 production.

  13. Reduced-calorie avocado paste attenuates metabolic factors associated with a hypercholesterolemic-high fructose diet in rats.

    PubMed

    Pahua-Ramos, María Elena; Garduño-Siciliano, Leticia; Dorantes-Alvarez, Lidia; Chamorro-Cevallos, German; Herrera-Martínez, Julieta; Osorio-Esquivel, Obed; Ortiz-Moreno, Alicia

    2014-03-01

    The objective of this study was to evaluate the effect of reduced-calorie avocado paste on lipid serum profile, insulin sensitivity, and hepatic steatosis in rats fed a hypercholesterolemic-high fructose diet. Thirty five male Wistar rats were randomly separated in five groups: Control group (ground commercial diet); hypercholesterolemic diet plus 60% fructose solution (HHF group); hypercholesterolemic diet plus 60% fructose solution supplemented with avocado pulp (HHF+A group); hypercholesterolemic diet plus 60% fructose solution supplemented with reduced-calorie avocado paste (HHF+P group); and hypercholesterolemic diet plus 60% fructose solution supplemented with a reduced-calorie avocado paste plus fiber (HHF+FP group). The A, P, and FP were supplemented at 2 g/kg/d. The study was carried out for seven weeks. Rats belonging to the HHF group exhibited significantly (P ≤ 0.05) higher total cholesterol, triglycerides, and insulin levels in serum as well as lower insulin sensitivity than the control group. Supplementation with reduced-calorie avocado paste showed a significant (P ≤ 0.05) decrease in total cholesterol (43.1%), low-density lipoprotein (45.4%), and triglycerides (32.8%) in plasma as well as elevated insulin sensitivity compared to the HHF group. Additionally, the liver enzymes alanine aminotransferase and aspartate aminotransferase decreased significantly in the HHF-P group (39.8 and 35.1%, respectively). These results are likely due to biocompounds present in the reduced-calorie avocado paste, such as polyphenols, carotenoids, chlorophylls, and dietary fibre, which are capable of reducing oxidative stress. Therefore, reduced-calorie avocado paste attenuates the effects of a hypercholesterolemic-high fructose diet in rats.

  14. [Hereditary fructose intolerance].

    PubMed

    Rumping, Lynne; Waterham, Hans R; Kok, Irene; van Hasselt, Peter M; Visser, Gepke

    2014-01-01

    Hereditary fructose intolerance (HFI) is a rare metabolic disease affecting fructose metabolism. After ingestion of fructose, patients may present with clinical symptoms varying from indefinite gastrointestinal symptoms to life-threatening hypoglycaemia and hepatic failure. A 13-year-old boy was referred to the department of metabolic diseases because of an abnormal fructose loading test. He was known with persistent gastrointestinal symptoms since infancy. His dietary history revealed an avoidance of fruit and sweets. Because malabsorption was suspected, an oral fructose loading test was performed. During this test, he developed severe vagal symptoms which were probably caused by a potentially fatal hypoglycaemia. The diagnosis of HFI was confirmed by genetic analysis. A good dietary history may be of important help in the diagnosis of HFI. On suspicion of HFI, genetic analysis is easy and the first choice in the diagnostic work-up. With timely diagnosis and adequate dietary treatment patients have an excellent prognosis. Fructose loading tests as part of the diagnostics can be dangerous.

  15. Glucocorticoid Antagonism Reduces Insulin Resistance and Associated Lipid Abnormalities in High-Fructose-Fed Mice.

    PubMed

    Priyadarshini, Emayavaramban; Anuradha, Carani Venkatraman

    2017-02-01

    High intake of dietary fructose causes perturbation in lipid metabolism and provokes lipid-induced insulin resistance. A rise in glucocorticoids (GCs) has recently been suggested to be involved in fructose-induced insulin resistance. The objective of the study was to investigate the effect of GC blockade on lipid abnormalities in insulin-resistant mice. Insulin resistance was induced in mice by administering a high-fructose diet (HFrD) for 60 days. Mifepristone (RU486), a GC antagonist, was administered to HFrD-fed mice for the last 18 days, and the intracellular and extracellular GC levels, the glucocorticoid receptor (GR) activation and the expression of GC-regulated genes involved in lipid metabolism were examined. HFrD elevated the intracellular GC content in both liver and adipose tissue and enhanced the GR nuclear translocation. The plasma GC level remained unchanged. The levels of free fatty acids and triglycerides in plasma were elevated, accompanied by increased plasma insulin and glucose levels and decreased hepatic glycogen content. Treatment with RU486 reduced plasma lipid levels, tissue GC levels and the expression of GC-targeted genes involved in lipid accumulation, and it improved insulin sensitivity. This study demonstrated that HFrD-induced lipid accumulation and insulin resistance are mediated by enhanced GC in liver and adipose tissue and that GC antagonism might reduce fructose-induced lipid abnormalities and insulin resistance. Copyright © 2016 Canadian Diabetes Association. Published by Elsevier Inc. All rights reserved.

  16. Fructose and saturated fats predispose hyperinsulinemia in lean male rat offspring

    USDA-ARS?s Scientific Manuscript database

    Background: Early exposure to suboptimal nutrition during perinatal period imposes risk to metabolic disorders later in life. Fructose intake has been associated with increases in de novo lipogensis, dyslipidemia, insulin resistance and obesity. Excess consumption of saturated fat is associated w...

  17. Effect of high-fructose and high-fat diets on pulmonary sensitivity, motor activity, and body composition of brown Norway rats exposed to ozone

    EPA Pesticide Factsheets

    pulmonary parameters, BALF biomarkers, body composition, motor activity data collected from rats exposed to ozone after high fructose or high fat diets.This dataset is associated with the following publication:Gordon , C., P. Phillips , A. Johnstone , T. Beasley , A. Ledbetter , M. Schladweiler , S. Snow, and U. Kodavanti. Effect of High Fructose and High Fat Diets on Pulmonary Sensitivity, Motor Activity, and Body Composition of Brown Norway Rats Exposed to Ozone. INHALATION TOXICOLOGY. Taylor & Francis, Inc., Philadelphia, PA, USA, 28(5): 203-15, (2016).

  18. Feasibility study of determination of high-fructose syrup content of Acacia honey by terahertz technique

    NASA Astrophysics Data System (ADS)

    Liu, Wen; Zhang, Yuying; Han, Donghai

    2016-11-01

    The authenticity problem of honey with difficult identification and great economic value highlights the certain limitations of the existing examination methods to distinguish the inauthentic honey. Terahertz technique is sensitive to water and has abundant information about saccharides' intermolecular interactions . This paper is tried to determine high-fructose-syrup content of Acacia honey by terahertz technique combined with chemometric methods. RMSEC and RMSEP of PLS model was 0.0967 and 0.108, respectively, confirming the reliability of the technique. This work shows that it was possible to determine high-fructose-syrup content of Acacia honey by terahertz technique.

  19. High Fructose Corn Syrup, Mercury, and Autism--Is There a Link?

    ERIC Educational Resources Information Center

    Opalinski, Heather A.

    2012-01-01

    The purpose of this article is to review relevant background literature and research regarding the evidence linking high fructose corn syrup (HFCS), mercury, and the increased incidence of autism among the population in the United States. Results of review suggest that rigorous scientific studies need to be performed to conclusively identify the…

  20. Clinical Research Strategies for Fructose Metabolism12

    PubMed Central

    Laughlin, Maren R.; Bantle, John P.; Havel, Peter J.; Parks, Elizabeth; Klurfeld, David M.; Teff, Karen; Maruvada, Padma

    2014-01-01

    Fructose and simple sugars are a substantial part of the western diet, and their influence on human health remains controversial. Clinical studies in fructose nutrition have proven very difficult to conduct and interpret. NIH and USDA sponsored a workshop on 13–14 November 2012, “Research Strategies for Fructose Metabolism,” to identify important scientific questions and parameters to be considered while designing clinical studies. Research is needed to ascertain whether there is an obesogenic role for fructose-containing sugars via effects on eating behavior and energy balance and whether there is a dose threshold beyond which these sugars promote progression toward diabetes and liver and cardiovascular disease, especially in susceptible populations. Studies tend to fall into 2 categories, and design criteria for each are described. Mechanistic studies are meant to validate observations made in animals or to elucidate the pathways of fructose metabolism in humans. These highly controlled studies often compare the pure monosaccharides glucose and fructose. Other studies are focused on clinically significant disease outcomes or health behaviors attributable to amounts of fructose-containing sugars typically found in the American diet. These are designed to test hypotheses generated from short-term mechanistic or epidemiologic studies and provide data for health policy. Discussion brought out the opinion that, although many mechanistic questions concerning the metabolism of monosaccharide sugars in humans remain to be addressed experimentally in small highly controlled studies, health outcomes research meant to inform health policy should use large, long-term studies using combinations of sugars found in the typical American diet rather than pure fructose or glucose. PMID:24829471

  1. Ursodeoxycholic Acid Ameliorates Fructose-Induced Metabolic Syndrome in Rats

    PubMed Central

    2014-01-01

    The metabolic syndrome (MS) is characterized by insulin resistance, dyslipidemia and hypertension. It is associated with increased risk of cardiovascular diseases and type-2 diabetes. Consumption of fructose is linked to increased prevalence of MS. Ursodeoxycholic acid (UDCA) is a steroid bile acid with antioxidant, anti-inflammatory activities and has been shown to improve insulin resistance. The current study aims to investigate the effect of UDCA (150 mg/kg) on MS induced in rats by fructose administration (10%) in drinking water for 12 weeks. The effects of UDCA were compared to fenofibrate (100 mg/kg), an agonist of PPAR-α receptors. Treatment with UDCA or fenofibrate started from the 6th week after fructose administration once daily. Fructose administration resulted in significant increase in body weight, elevations of blood glucose, serum insulin, cholesterol, triglycerides, advanced glycation end products (AGEs), uric acid levels, insulin resistance index and blood pressure compared to control rats. Moreover, fructose increased oxidative stress in aortic tissues indicated by significant increases of malondialdehyde (MDA), expression of iNOS and reduction of reduced glutathione (GSH) content. These disturbances were associated with decreased eNOS expression, increased infiltration of leukocytes and loss of aortic vascular elasticity. Treatment with UDCA successfully ameliorated the deleterious effects of fructose. The protective effect of UDCA could be attributed to its ability to decrease uric acid level, improve insulin resistance and diminish oxidative stress in vascular tissues. These results might support possible clinical application of UDCA in MS patients especially those present with liver diseases, taking into account its tolerability and safety. However, further investigations on human subjects are needed before the clinical application of UDCA for this indication. PMID:25202970

  2. Lifetime Exposure to a Constant Environment Amplifies the Impact of a Fructose-Rich Diet on Glucose Homeostasis during Pregnancy.

    PubMed

    Song, Aleida; Astbury, Stuart; Hoedl, Abha; Nielsen, Brent; Symonds, Michael E; Bell, Rhonda C

    2017-03-25

    The need to refine rodent models of human-related disease is now being recognized, in particular the rearing environment that can profoundly modulate metabolic regulation. Most studies on pregnancy and fetal development purchase and transport young females into the research facility, which after a short period of acclimation are investigated (Gen0). We demonstrate that female offspring (Gen1) show an exaggerated hyperinsulinemic response to pregnancy when fed a standard diet and with high fructose intake, which continues throughout pregnancy. Markers of maternal hepatic metabolism were differentially influenced, as the gene expression of acetyl-CoA-carboxylase was raised in Gen1 given fructose and controls, whereas glucose transporter 5 and fatty acid synthase expression were only raised with fructose. Gen1 rats weighed more than Gen0 throughout the study, although fructose feeding raised the percent body fat but not body weight. We show that long-term habituation to the living environment has a profound impact on the animal's metabolic responses to nutritional intervention and pregnancy. This has important implications for interpreting many studies investigating the influence of maternal consumption of fructose on pregnancy outcomes and offspring to date.

  3. Long-Term, Fructose-Induced Metabolic Syndrome-Like Condition Is Associated with Higher Metabolism, Reduced Synaptic Plasticity and Cognitive Impairment in Octodon degus.

    PubMed

    Rivera, Daniela S; Lindsay, Carolina B; Codocedo, Juan F; Carreño, Laura E; Cabrera, Daniel; Arrese, Marco A; Vio, Carlos P; Bozinovic, Francisco; Inestrosa, Nibaldo C

    2018-04-13

    There has been a progressive increase in the incidence of fructose-induced metabolic disorders, such as metabolic syndrome (MetS). Moreover, novel evidence reported negative effects of high-fructose diets in brain function. This study was designed to evaluate for the first time the effects of long-term fructose consumption (LT-FC) on the normal ageing process in a long-lived animal model rodent, Octodon degus or degu. Moreover, we could replicate human sugar consumption behaviour over time, leading us to understand then the possible mechanisms by which this MetS-like condition could affect cognitive abilities. Our results support that 28 months (from pup to adulthood) of a 15% solution of fructose induced clinical conditions similar to MetS which includes an insulin-resistance scenario together with elevated basal metabolic rate and non-alcoholic fatty liver disease. Additionally, we extended our analysis to evaluate the impact of this MetS-like condition on the functional and cognitive brain processes. Behavioural test suggests that fructose-induced MetS-like condition impair hippocampal-dependent and independent memory performance. Moreover, we also reported several neuropathological events as impaired hippocampal redox balance, together with synaptic protein loss. These changes might be responsible for the alterations in synaptic plasticity and transmitter release observed in these cognitively impaired animals. Our results indicate that LT-FC induced several facets of MetS that eventually could trigger brain disorders, in particular, synaptic dysfunction and reduced cognition.

  4. Uric acid and transforming growth factor in fructose-induced production of reactive oxygen species in skeletal muscle

    PubMed Central

    Maarman, Gerald J.; Ojuka, Edward

    2016-01-01

    The consumption of fructose, a major constituent of the modern diet, has raised increasing concern about the effects of fructose on health. Research suggests that excessive intake of fructose (>50 g/d) causes hyperuricemia, insulin resistance, mitochondrial dysfunction, de novo lipogenesis by the liver, and increased production of reactive oxygen species (ROS) in muscle. In a number of tissues, uric acid has been shown to stimulate the production of ROS via activation of transforming growth factor β1 and NADPH (nicotinamide adenine dinucleotide phosphate) oxidase 4. The role of uric acid in fructose-induced production of ROS in skeletal muscle, however, has not been investigated. This review examines the evidence for fructose-induced production of ROS in skeletal muscle, highlights proposed mechanisms, and identifies gaps in current knowledge. PMID:26946251

  5. High-Fructose Intake Impairs the Hepatic Hypolipidemic Effects of a High-Fat Fish-Oil Diet in C57BL/6 Mice.

    PubMed

    Wooten, Joshua S; Nick, Tayler N; Seija, Andrew; Poole, Kaylee E; Stout, Kelsey B

    2016-12-01

    Overnutrition of saturated fats and fructose is one of the major factors for the development of nonalcoholic fatty liver disease. Because omega-3 polyunsaturated fatty acids (n-3fa) have established lipid lowering properties, we tested the hypothesis that n-3fa prevents high-fat and fructose-induced fatty liver disease in mice. Male C57BL/6J mice were randomly assigned to one of the following diet groups for 14 weeks: normal diet (ND), high-fat lard-based diet (HFD), HFD with fructose (HFD + Fru), high-fat fish-oil diet (FOD), or FOD + Fru. Despite for the development of obesity and insulin resistance, FOD had 65.3% lower ( P  < 0.001) hepatic triglyceride levels than HFD + Fru, which was blunted to a 38.5% difference ( P  = 0.173) in FOD + Fru. The lower hepatic triglyceride levels were associated with a lower expression of lipogenic genes LXRα and FASN, as well as the expression of genes associated with fatty acid uptake and triglyceride synthesis, CD36 and SCD1, respectively. Conversely, the blunted hypotriglyceride effect of FOD + Fru was associated with a higher expression of CD36 and SCD1. During overnutrition, a diet rich in n-3fa may prevent the severity of hepatic steatosis; however, when juxtaposed with a diet high in fructose, the deleterious effects of overnutrition blunted the hypolipidemic effects of n-3fa.

  6. (p-ClPhSe)2 stimulates carbohydrate metabolism and reverses the metabolic alterations induced by high fructose load in rats.

    PubMed

    Quines, Caroline B; Rosa, Suzan G; Chagas, Pietro M; Velasquez, Daniela; Prado, Vinicius C; Nogueira, Cristina W

    2017-09-01

    The modern life leads to excess consumption of food rich in fructose; however, the long-term changes in carbohydrate and lipid metabolism could lead to metabolic dysfunction in humans. The present study evaluated the in vitro insulin-mimetic action of p-chloro-diphenyl diselenide (p-ClPhSe) 2 . The second aim of this study was to investigate if (p-ClPhSe) 2 reverses metabolic dysfunction induced by fructose load in Wistar rats. The insulin-mimetic action of (p-ClPhSe) 2  at concentrations of 50 and 100 μM was determined in slices of rat skeletal muscle. (p-ClPhSe) 2  at a concentration of 50 μM stimulated the glucose uptake by 40% in skeletal muscle. A dose-response curve revealed that (p-ClPhSe) 2  at a dose of 25 mg/kg reduced (∼20%) glycemia in rats treated with fructose (5 g/kg, i.g.). The administration of fructose impaired the liver homeostasis and (p-ClPhSe) 2 (25 mg/kg) protected against the increase (∼25%) in the G-6-Pase and isocitrate dehydrogenase activities and reduced the triglyceride content (∼25%) in the liver. (p-ClPhSe) 2 regulated the liver homeostasis by stimulating hexokinase activity (∼27%), regulating the TCA cycle activity (increased the ATP and citrate synthase activity (∼15%)) and increasing the glycogen levels (∼67%). In conclusion, (p-ClPhSe) 2 stimulated carbohydrate metabolism and reversed metabolic dysfunction in rats fed with fructose. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Endocrine and metabolic effects of consuming fructose- and glucose-sweetened beverages with meals in obese men and women: influence of insulin resistance on plasma triglyceride responses.

    PubMed

    Teff, Karen L; Grudziak, Joanne; Townsend, Raymond R; Dunn, Tamara N; Grant, Ryan W; Adams, Sean H; Keim, Nancy L; Cummings, Bethany P; Stanhope, Kimber L; Havel, Peter J

    2009-05-01

    Compared with glucose-sweetened beverages, consumption of fructose-sweetened beverages with meals elevates postprandial plasma triglycerides and lowers 24-h insulin and leptin profiles in normal-weight women. The effects of fructose, compared with glucose, ingestion on metabolic profiles in obese subjects has not been studied. The objective of the study was to compare the effects of fructose- and glucose-sweetened beverages consumed with meals on hormones and metabolic substrates in obese subjects. The study had a within-subject design conducted in the clinical and translational research center. Participants included 17 obese men (n = 9) and women (n = 8), with a body mass index greater than 30 kg/m(2). Subjects were studied under two conditions involving ingestion of mixed nutrient meals with either glucose-sweetened beverages or fructose-sweetened beverages. The beverages provided 30% of total kilocalories. Blood samples were collected over 24 h. Area under the curve (24 h AUC) for glucose, lactate, insulin, leptin, ghrelin, uric acid, triglycerides (TGs), and free fatty acids was measured. Compared with glucose-sweetened beverages, fructose consumption was associated with lower AUCs for insulin (1052.6 +/- 135.1 vs. 549.2 +/- 79.7 muU/ml per 23 h, P < 0.001) and leptin (151.9 +/- 22.7 vs. 107.0 +/- 15.0 ng/ml per 24 h, P < 0.03) and increased AUC for TG (242.3 +/- 96.8 vs. 704.3 +/- 124.4 mg/dl per 24 h, P < 0.0001). Insulin-resistant subjects exhibited larger 24-h TG profiles (P < 0.03). In obese subjects, consumption of fructose-sweetened beverages with meals was associated with less insulin secretion, blunted diurnal leptin profiles, and increased postprandial TG concentrations compared with glucose consumption. Increases of TGs were augmented in obese subjects with insulin resistance, suggesting that fructose consumption may exacerbate an already adverse metabolic profile present in many obese subjects.

  8. Fructose consumption during pregnancy and lactation induces fatty liver and glucose intolerance in rats

    PubMed Central

    Zou, Mi; Arentson, Emily J.; Teegarden, Dorothy; Koser, Stephanie L.; Onyskow, Laurie; Donkin, Shawn S.

    2015-01-01

    Nutritional insults during pregnancy and lactation are health risks for mother and offspring. Both fructose and low protein diets are linked to hepatic steatosis and insulin resistance in non-pregnant animals. We hypothesized that dietary fructose or low protein intake during pregnancy may exacerbate the already compromised glucose homeostasis to induce gestational diabetes and fatty liver. Therefore, we investigated and compared the effects of low protein or fructose intake on hepatic steatosis and insulin resistance in unmated controls and pregnant and lactating rats. Sprague-Dawley rats were fed either a control (CT), a 63% fructose (FR) or an 8% protein (LP) diet. Glucose tolerance test at day 17 of the study revealed greater (P < 0.05) blood glucose at 10 (75.6 vs. 64.0 ± 4.8 mg/dl) and 20 (72.4 vs. 58.6 ± 4.0 mg/dl) min after glucose dose and greater area under the curve (4302.3 vs. 3763.4 ± 263.6 mg·dl−1·min−1) for FR-fed dams compared with CT-fed dams. The rats were euthanized at 21 days postpartum. Both the FR- and LP-fed dams had enlarged (P < 0.05) livers (9.3, 7.1 vs. 4.8 ± 0.2 % body weight) and elevated (P < 0.05) liver triacylglycerol (216.0, 130.0 vs. 19.9 ± 12.6 mg/g liver weight) compared with CT-fed dams. FR induced fatty liver and glucose intolerance in pregnant and lactating rats, but not unmated control rats. The data demonstrate a unique physiological status response to diet resulting in the development of gestational diabetes coupled with hepatic steatosis in FR-fed dams, which is more severe than a LP diet. PMID:22935342

  9. Severe NAFLD with hepatic necroinflammatory changes in mice fed trans fats and a high-fructose corn syrup equivalent.

    PubMed

    Tetri, Laura H; Basaranoglu, Metin; Brunt, Elizabeth M; Yerian, Lisa M; Neuschwander-Tetri, Brent A

    2008-11-01

    The aims of this study were to determine whether combining features of a western lifestyle in mice with trans fats in a high-fat diet, high-fructose corn syrup in the water, and interventions designed to promote sedentary behavior would cause the hepatic histopathological and metabolic abnormalities that characterize nonalcoholic steatohepatitis (NASH). Male C57BL/6 mice fed ad libitum high-fat chow containing trans fats (partially hydrogenated vegetable oil) and relevant amounts of a high-fructose corn syrup (HFCS) equivalent for 1-16 wk were compared with mice fed standard chow or mice with trans fats or HFCS omitted. Cage racks were removed from western diet mice to promote sedentary behavior. By 16 wk, trans fat-fed mice became obese and developed severe hepatic steatosis with associated necroinflammatory changes. Plasma alanine aminotransferase levels increased, as did liver TNF-alpha and procollagen mRNA, indicating an inflammatory and profibrogenic response to injury. Glucose intolerance and impaired fasting glucose developed within 2 and 4 wk, respectively. Plasma insulin, resistin, and leptin levels increased in a profile similar to that seen in patients with NASH. The individual components of this diet contributed to the phenotype independently; isocaloric replacement of trans fats with lard established that trans fats played a major role in promoting hepatic steatosis and injury, whereas inclusion of HFCS promoted food consumption, obesity, and impaired insulin sensitivity. Combining risk factors for the metabolic syndrome by feeding mice trans fats and HFCS induced histological features of NASH in the context of a metabolic profile similar to patients with this disease. Because dietary trans fats promoted liver steatosis and injury, their role in the epidemic of NASH needs further evaluation.

  10. Comparison of sugar molecule decomposition through glucose and fructose: a high-level quantum chemical study.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Assary, R. S.; Curtiss, L. A.; MSD)

    Efficient chemical conversion of biomass is essential to produce sustainable energy and industrial chemicals. Industrial level conversion of glucose to useful chemicals, such as furfural, hydroxymethylfurfural, and levulinic acid, is a major step in the biomass conversion but is difficult because of the formation of undesired products and side reactions. To understand the molecular level reaction mechanisms involved in the decomposition of glucose and fructose, we have carried out high-level quantum chemical calculations [Gaussian-4 (G4) theory]. Selective 1,2-dehydration, keto-enol tautomerization, isomerization, retro-aldol condensation, and hydride shifts of glucose and fructose molecules were investigated. Detailed kinetic and thermodynamic analyses indicate that,more » for acyclic glucose and fructose molecules, the dehydration and isomerization require larger activation barriers compared to the retro-aldol reaction at 298 K in neutral medium. The retro-aldol reaction results in the formation of C2 and C4 species from glucose and C3 species from fructose. The formation of the most stable C3 species, dihydroxyacetone from fructose, is thermodynamically downhill. The 1,3-hydride shift leads to the cleavage of the C-C bond in the acyclic species; however, the enthalpy of activation is significantly higher (50-55 kcal/mol) than that of the retro-aldol reaction (38 kcal/mol) mainly because of the sterically hindered distorted four-membered transition state compared to the hexa-membered transition state in the retro-aldol reaction. Both tautomerization and dehydration are catalyzed by a water molecule in aqueous medium; however, water has little effect on the retro-aldol reaction. Isomerization of glucose to fructose and glyceraldehyde to dihydroxyacetone proceeds through hydride shifts that require an activation enthalpy of about 40 kcal/mol at 298 K in water medium. This investigation maps out accurate energetics of the decomposition of glucose and fructose

  11. Fructose intervention for 12 weeks does not impair glycemic control or incretin hormone responses during oral glucose or mixed meal tests in obese men.

    PubMed

    Matikainen, N; Söderlund, S; Björnson, E; Bogl, L H; Pietiläinen, K H; Hakkarainen, A; Lundbom, N; Eliasson, B; Räsänen, S M; Rivellese, A; Patti, L; Prinster, A; Riccardi, G; Després, J-P; Alméras, N; Holst, J J; Deacon, C F; Borén, J; Taskinen, M-R

    2017-06-01

    Incretin hormones glucagon-like peptide (GLP)-1 and glucose-dependent insulinotropic polypeptide (GIP) are affected early on in the pathogenesis of metabolic syndrome and type 2 diabetes. Epidemiologic studies consistently link high fructose consumption to insulin resistance but whether fructose consumption impairs the incretin response remains unknown. As many as 66 obese (BMI 26-40 kg/m 2 ) male subjects consumed fructose-sweetened beverages containing 75 g fructose/day for 12 weeks while continuing their usual lifestyle. Glucose, insulin, GLP-1 and GIP were measured during oral glucose tolerance test (OGTT) and triglycerides (TG), GLP-1, GIP and PYY during a mixed meal test before and after fructose intervention. Fructose intervention did not worsen glucose and insulin responses during OGTT, and GLP-1 and GIP responses during OGTT and fat-rich meal were unchanged. Postprandial TG response increased significantly, p = 0.004, and we observed small but significant increases in weight and liver fat content, but not in visceral or subcutaneous fat depots. However, even the subgroups who gained weight or liver fat during fructose intervention did not worsen their glucose, insulin, GLP-1 or PYY responses. A minor increase in GIP response during OGTT occurred in subjects who gained liver fat (p = 0.049). In obese males with features of metabolic syndrome, 12 weeks fructose intervention 75 g/day did not change glucose, insulin, GLP-1 or GIP responses during OGTT or GLP-1, GIP or PYY responses during a mixed meal. Therefore, fructose intake, even accompanied with mild weight gain, increases in liver fat and worsening of postprandial TG profile, does not impair glucose tolerance or gut incretin response to oral glucose or mixed meal challenge. Copyright © 2017 The Italian Society of Diabetology, the Italian Society for the Study of Atherosclerosis, the Italian Society of Human Nutrition, and the Department of Clinical Medicine and Surgery, Federico II University

  12. Effect of high-fructose and high-fat diets on pulmonary sensitivity, motor activity, and body composition of brown Norway rats exposed to ozone.

    PubMed

    Gordon, C J; Phillips, P M; Johnstone, A F M; Beasley, T E; Ledbetter, A D; Schladweiler, M C; Snow, S J; Kodavanti, U P

    2016-04-01

    Diet-induced obesity has been suggested to lead to increased susceptibility to air pollutants such as ozone (O3); however, there is little experimental evidence. Thirty day old male and female Brown Norway rats were fed a normal, high-fructose or high-fat diet for 12 weeks and then exposed to O3 (acute - air or 0.8 ppm O3 for 5 h, or subacute - air or 0.8 ppm O3 for 5 h/d 1 d/week for 4 weeks). Body composition was measured non-invasively using NMR. Ventilatory parameters and exploratory behavior were measured after the third week of subacute exposure. Bronchoalveolar lavage fluid (BALF) and blood chemistry data were collected 18 h after acute O3 and 18 h after the fourth week of subacute O3. The diets led to increased body fat in male but not female rats. O3-induced changes in ventilatory function were either unaffected or improved with the fructose and fat diets. O3-induced reduction in exploratory behavior was attenuated with fructose and fat diets in males and partially in females. O3 led to a significant decrease in body fat of males fed control diet but not the fructose or fat diet. O3 led to significant increases in BALF eosinophils, increase in albumin, and reductions in macrophages. Female rats appeared to be more affected than males to O3 regardless of diet. Overall, treatment with high-fructose and high-fat diets attenuated some O3 induced effects on pulmonary function, behavior, and metabolism. Exacerbation of toxicity was observed less frequently.

  13. High-fructose corn syrup causes vascular dysfunction associated with metabolic disturbance in rats: protective effect of resveratrol.

    PubMed

    Akar, Fatma; Uludağ, Orhan; Aydın, Ali; Aytekin, Yasin Atacan; Elbeg, Sehri; Tuzcu, Mehmet; Sahin, Kazim

    2012-06-01

    High-fructose corn syrup (HFCS) is used in many prepared foods and soft drinks. However, limited data is available on the consequences of HFCS consumption on metabolic and cardiovascular functions. This study was, therefore, designed to assess whether HFCS drinking influences the endothelial and vascular function in association with metabolic disturbances in rats. Additionally, resveratrol was tested at challenge with HFCS. We investigated the effects of HFCS (10% and 20%) and resveratrol (50mg/l) beverages on several metabolic parameters as well as endothelial relaxation, vascular contractions, expressions of endothelial nitric oxide synthase (eNOS), sirtuin 1 (SIRT1), gp91(phox) and p22(phox) proteins and superoxide generation in the aortas. Consumption of HFCS (20%) increased serum triglyceride, VLDL and insulin levels as well as blood pressure. Impaired relaxation to acetylcholine and intensified contractions to phenylephrine and angiotensin II were associated with decreased eNOS and SIRT1 whereas increased gp91(phox) and p22(phox) proteins, along with provoked superoxide production in the aortas from HFCS-treated rats. Resveratrol supplementation efficiently restored HFCS-induced deteriorations. Thus, intake of HFCS leads to vascular dysfunction by decreasing vasoprotective factors and provoking oxidative stress in association with metabolic disturbances. Resveratrol has a protective potential against the harmful consequences of HFCS consumption. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Aberrant expression of microRNA induced by high-fructose diet: implications in the pathogenesis of hyperlipidemia and hepatic insulin resistance.

    PubMed

    Sud, Neetu; Zhang, Hanyuan; Pan, Kaichao; Cheng, Xiao; Cui, Juan; Su, Qiaozhu

    2017-05-01

    Fructose is a highly lipogenic sugar that can alter energy metabolism and trigger metabolic disorders. In the current study, microRNAs (miRNAs) altered by a high-fructose diet were comprehensively explored to elucidate their significance in the pathogenesis of chronic metabolic disorders. miRNA expression profiling using small noncoding RNA sequencing revealed that 19 miRNAs were significantly upregulated and 26 were downregulated in the livers of high-fructose-fed mice compared to chow-fed mice. Computational prediction and functional analysis identified 10 miRNAs, miR-19b-3p, miR-101a-3p, miR-30a-5p, miR-223-3p, miR-378a-3p, miR-33-5p, miR-145a-3p, miR-128-3p, miR-125b-5p and miR-582-3p, assembled as a regulatory network to potentially target key genes in lipid and lipoprotein metabolism and insulin signaling at multiple levels. qRT-PCR analysis of their potential target genes [IRS-1, FOXO1, SREBP-1c/2, ChREBP, insulin-induced gene-2 (Insig-2), microsomal triglyceride transfer protein (MTTP) and apolipoprotein B (apoB)] demonstrated that fructose-induced alterations of miRNAs were also reflected in mRNA expression profiles of their target genes. Moreover, the miRNA profile induced by high-fructose diet differed from that induced by high-fat diet, indicating that miRNAs mediate distinct pathogenic mechanisms in dietary-induced metabolic disorders. This study presents a comprehensive analysis of a new set of hepatic miRNAs, which were altered by high-fructose diet and provides novel insights into the interaction between miRNAs and their target genes in the development of metabolic syndrome. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. The response of male and female rats to a high-fructose diet during adolescence following early administration of Hibiscus sabdariffa aqueous calyx extracts.

    PubMed

    Ibrahim, K G; Chivandi, E; Mojiminiyi, F B O; Erlwanger, K H

    2017-12-01

    Metabolic syndrome is linked to the consumption of fructose-rich diets. Nutritional and pharmacological interventions perinatally can cause epigenetic changes that programme an individual to predispose or protect them from the development of metabolic diseases later. Hibiscus sabdariffa (HS) reportedly has anti-obesity and hypocholesterolaemic properties in adults. We investigated the impact of neonatal intake of HS on the programming of metabolism by fructose. A total of 85 4-day-old Sprague Dawley rats were divided randomly into three groups. The control group (n=27, 12 males, 15 females) received distilled water at 10 ml/kg body weight. The other groups received either 50 mg/kg (n=30, 13 males, 17 females) or 500 mg/kg (n=28, 11 males, 17 females) of an HS aqueous calyx extract orally till postnatal day (PND) 14. There was no intervention from PND 14 to PND 21 when the pups were weaned. The rats in each group were then divided into two groups; one continued on a normal diet and the other received fructose (20% w/v) in their drinking water for 30 days. The female rats that were administered with HS aqueous calyx extract as neonates were protected against fructose-induced hypertriglyceridaemia and increased liver lipid deposition. The early administration of HS resulted in a significant (P⩽0.05) increase in plasma cholesterol concentrations with or without a secondary fructose insult. In males, HS prevented the development of fructose-induced hypercholesterolaemia. The potential beneficial and detrimental effects of neonatal HS administration on the programming of metabolism in rats need to be considered in the long-term well-being of children.

  16. Dietary fructose and glucose differentially affect lipid and glucose homeostasis.

    PubMed

    Schaefer, Ernst J; Gleason, Joi A; Dansinger, Michael L

    2009-06-01

    Absorbed glucose and fructose differ in that glucose largely escapes first-pass removal by the liver, whereas fructose does not, resulting in different metabolic effects of these 2 monosaccharides. In short-term controlled feeding studies, dietary fructose significantly increases postprandial triglyceride (TG) levels and has little effect on serum glucose concentrations, whereas dietary glucose has the opposite effects. When dietary glucose and fructose have been directly compared at approximately 20-25% of energy over a 4- to 6-wk period, dietary fructose caused significant increases in fasting TG and LDL cholesterol concentrations, whereas dietary glucose did not, but dietary glucose did increase serum glucose and insulin concentrations in the postprandial state whereas dietary fructose did not. When fructose at 30-60 g ( approximately 4-12% of energy) was added to the diet in the free-living state, there were no significant effects on lipid or glucose biomarkers. Sucrose and high-fructose corn syrup (HFCS) contain approximately equal amounts of fructose and glucose and no metabolic differences between them have been noted. Controlled feeding studies at more physiologic dietary intakes of fructose and glucose need to be conducted. In our view, to decrease the current high prevalence of obesity, dyslipidemia, insulin resistance, and diabetes, the focus should be on restricting the intake of excess energy, sucrose, HFCS, and animal and trans fats and increasing exercise and the intake of vegetables, vegetable oils, fish, fruit, whole grains, and fiber.

  17. Experience-dependent escalation of glucose drinking and the development of glucose preference over fructose - association with glucose entry into the brain.

    PubMed

    Wakabayashi, Ken T; Spekterman, Laurence; Kiyatkin, Eugene A

    2016-06-01

    Glucose, a primary metabolic substrate for cellular activity, must be delivered to the brain for normal neural functions. Glucose is also a unique reinforcer; in addition to its rewarding sensory properties and metabolic effects, which all natural sugars have, glucose crosses the blood-brain barrier and acts on glucoreceptors expressed on multiple brain cells. To clarify the role of this direct glucose action in the brain, we compared the neural and behavioural effects of glucose with those induced by fructose, a sweeter yet metabolically equivalent sugar. First, by using enzyme-based biosensors in freely moving rats, we confirmed that glucose rapidly increased in the nucleus accumbens in a dose-dependent manner after its intravenous delivery. In contrast, fructose induced a minimal response only after a large-dose injection. Second, we showed that naive rats during unrestricted access consumed larger volumes of glucose than fructose solution; the difference appeared with a definite latency during the initial exposure and strongly increased during subsequent tests. When rats with equal sugar experience were presented with either glucose or fructose in alternating order, the consumption of both substances was initially equal, but only the consumption of glucose increased during subsequent sessions. Finally, rats with equal glucose-fructose experience developed a strong preference for glucose over fructose during a two-bottle choice procedure; the effect appeared with a definite latency during the initial test and greatly amplified during subsequent tests. Our results suggest that direct entry of glucose in the brain and its subsequent effects on brain cells could be critical for the experience-dependent escalation of glucose consumption and the development of glucose preference over fructose. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.

  18. Second generation biofuels: Thermochemistry of glucose and fructose

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osmont, A.; Catoire, L.; C.N.R.S. - I.N.S.I.S., I.C.A.R.E., 1C, Avenue de la Recherche Scientifique, 45071 Orleans Cedex 2

    2010-06-15

    The energetic conversion of biomass into syngas or biogas is a more and more important topic. In the framework of these studies, improved understanding of glucose and fructose thermal decomposition and oxidation appears crucial. For this task, thermodynamic data are needed to make possible, for instance, the building of a detailed chemical kinetic model of glucose and fructose reactivity at high temperature. A semitheoretical protocol, presented elsewhere, is used for the estimation of the thermodynamic data of glucose and fructose in the gas phase. Five isomers of glucose and five isomers of fructose are considered and the lowest-energy conformers aremore » found to be {beta}-D-glucopyranose for glucose and {beta}-D-fructopyranose for fructose. The data for all 10 isomers are provided in the CHEMKIN-NASA format. (author)« less

  19. Trends in the consumption of low-calorie sweeteners.

    PubMed

    Sylvetsky, Allison C; Rother, Kristina I

    2016-10-01

    Low-calorie sweeteners (LCS) offer a palatable alternative to caloric sugars such as sucrose (table sugar) and high fructose corn syrup and are commonly found in soft drinks, sweetener packets, grains, snack foods, dairy products, hygiene products, and medications. Consumption of LCS has increased significantly in recent years and while this trend is expected to continue, controversy exists surrounding their use. The purpose of this article is to review trends in the consumption of LCS, to summarize differences in LCS consumption across socio-demographic subgroups and subtypes of LCS-containing products, and to highlight important challenges in the accurate assessment of LCS consumption. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Production of the potential sweetener 5-ketofructose from fructose in fed-batch cultivation with Gluconobacter oxydans.

    PubMed

    Herweg, Elena; Schöpping, Marie; Rohr, Katja; Siemen, Anna; Frank, Oliver; Hofmann, Thomas; Deppenmeier, Uwe; Büchs, Jochen

    2018-07-01

    Sweeteners improve the dietary properties of many foods. A candidate for a new natural sweetener is 5-ketofructose. In this study a fed-batch process for the production of 5-ketofructose was developed. A Gluconobacter oxydans strain overexpressing a fructose dehydrogenase from G. japonicus was used and the sensory properties of 5-ketofructose were analyzed. The compound showed an identical sweet taste quality as fructose and a similar intrinsic sweet threshold concentration of 16.4 mmol/L. The production of 5-ketofructose was characterized online by monitoring of the respiration activity in shake flasks. Pulsed and continuous fructose feeding was realized in 2 L stirred tank reactors and maximum fructose consumption rates were determined. 5-Ketofructose concentrations of up to 489 g/L, product yields up to 0.98 g 5-KF /g fructose and space time yields up to 8.2 g/L/h were reached highlighting the potential of the presented process. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Antidiabetic and antihiperlipidemic effect of Andrographis paniculata (Burm. f.) Nees and andrographolide in high-fructose-fat-fed rats

    PubMed Central

    Nugroho, Agung Endro; Andrie, Mohamad; Warditiani, Ni Kadek; Siswanto, Eka; Pramono, Suwidjiyo; Lukitaningsih, Endang

    2012-01-01

    Objectives: Andrographis paniculata (Burm. f.) Nees originates from India and grows widely in many areas in Southeast Asian countries. Andrographis paniculata (Burm. f.) Nees has shown an antidiabetic effect in type 1 DM rats. The present study investigates the purified extract of the plant and its active compound andrographolide for antidiabetic and antihyperlipidemic effects in high-fructose-fat-fed rats, a model of type 2 DM rats. Materials and Methods: Hyperglycemia in rats was induced by high-fructose-fat diet containing 36% fructose, 15% lard, and 5% egg yolks in 0.36 g/200 gb.wt. 55 days. The rats were treated with the extract or test compound on the 50th day. Antidiabetic activity was measured by estimating mainly the pre– and postprandial blood glucose levels and other parameters such as cholesterol, LDL, triglyceride, and body weight. Results: The purified extract and andrographolide significantly (P<0.05) decreased the levels of blood glucose, triglyceride, and LDL compared to controls. However, no changes were observed in serum cholesterol and rat body weight. Metformin also showed similar effects on these parameters. Conclusions: Andrographis paniculata (Burm. f.) Nees or its active compound andrographolide showed hypoglycemic and hypolipidemic effects in high-fat-fructose-fed rat. PMID:22701250

  2. Severe NAFLD with hepatic necroinflammatory changes in mice fed trans fats and a high-fructose corn syrup equivalent

    PubMed Central

    Tetri, Laura H.; Basaranoglu, Metin; Brunt, Elizabeth M.; Yerian, Lisa M.; Neuschwander-Tetri, Brent A.

    2008-01-01

    The aims of this study were to determine whether combining features of a western lifestyle in mice with trans fats in a high-fat diet, high-fructose corn syrup in the water, and interventions designed to promote sedentary behavior would cause the hepatic histopathological and metabolic abnormalities that characterize nonalcoholic steatohepatitis (NASH). Male C57BL/6 mice fed ad libitum high-fat chow containing trans fats (partially hydrogenated vegetable oil) and relevant amounts of a high-fructose corn syrup (HFCS) equivalent for 1–16 wk were compared with mice fed standard chow or mice with trans fats or HFCS omitted. Cage racks were removed from western diet mice to promote sedentary behavior. By 16 wk, trans fat-fed mice became obese and developed severe hepatic steatosis with associated necroinflammatory changes. Plasma alanine aminotransferase levels increased, as did liver TNF-α and procollagen mRNA, indicating an inflammatory and profibrogenic response to injury. Glucose intolerance and impaired fasting glucose developed within 2 and 4 wk, respectively. Plasma insulin, resistin, and leptin levels increased in a profile similar to that seen in patients with NASH. The individual components of this diet contributed to the phenotype independently; isocaloric replacement of trans fats with lard established that trans fats played a major role in promoting hepatic steatosis and injury, whereas inclusion of HFCS promoted food consumption, obesity, and impaired insulin sensitivity. Combining risk factors for the metabolic syndrome by feeding mice trans fats and HFCS induced histological features of NASH in the context of a metabolic profile similar to patients with this disease. Because dietary trans fats promoted liver steatosis and injury, their role in the epidemic of NASH needs further evaluation. PMID:18772365

  3. Chromatographic separation of fructose from date syrup.

    PubMed

    Al Eid, Salah M

    2006-01-01

    The objective of this study is to provide a process for separating fructose from a mixture of sugars containing essentially fructose and glucose, obtained from date palm fruits. The extraction procedure of date syrup from fresh dates gave a yield of 86.5% solids after vacuum drying. A process for separating fructose from an aqueous solution of date syrup involved adding the date syrup solutions (20, 30 and 40% by weight) to a chromatographic column filled with Dowex polystyrene strong cation exchange gel matrix resin Ca2 + and divinylbenzene, a functional group, sulfonic acid, particle size 320 microm, with a flow rate of 0.025 and 0.05 bed volume/min, under 30 and 70 degrees C column temperature. After the date sugar solution batch, a calculated quantity of water was added to the column. Glucose was retained by the resin more weakly than fructose and proceeded faster into the water batch flowing ahead. Three fractions were collected: a glucose-rich fraction, a return fraction, and a fructose-rich fraction. The return fraction is based on when the peaks of fructose and glucose were reached, which could be determined by means of an analyzer (polarimeter) based on the property of glucose and fructose solutions to turn the polarization level of polarized light. A high yield of fructose is obtained at 70 degrees C column temperature with a flow rate of 0.025 bed volume/min and date syrup solution containing 40% sugar concentration. The low recovery by weight obtained using date syrup solutions having a sugar concentration of 20 and 30%, encourages the use of a concentration of 40%. However, with the 40% date syrup supply the average concentrations of glucose and fructose in the return fractions were more than 40%, which can be used for diluting the thick date syrup solution extracted from dates.

  4. Alternate-day fasting diet improves fructose-induced insulin resistance in mice.

    PubMed

    Beigy, M; Vakili, S; Berijani, S; Aminizade, M; Ahmadi-Dastgerdi, M; Meshkani, R

    2013-12-01

    Increased fructose consumption is linked to insulin resistance, weight gain, hyperlipidemia and hypertension. Although the advantages of several dietary restriction regimens have been demonstrated, the effects of alternate-day fasting (ADF) on fructose-induced insulin resistance have not yet been studied. This study is based on a new modification on ADF by combining the fructose-rich solution (10% w/v) and regular mice diet. Mice were randomly allocated into four groups: ADF50% (50% restriction in chow food intake but ad libitum fructose drink), ADF100% (100% restriction for chow food but ad libitum fructose drink), control (ad libitum chow food intake plus tap water) and daily food and fructose (DFF) (had free access to both chow and fructose solution). Biweekly fasting blood sugar (FBS), glucose tolerance test (GTT) and insulin tolerance test (ITT) were conducted. All groups gained weight during the study (p < 0.05). Body weights of DFF and control groups did not differ from that of ADF groups, but ADF50% gained more (p < 0.01) weights than ADF100% through the study. Total calorie intake (feed + fast days) of ADF50% was higher than that of ADF100% (p < 0.001) and control (p < 0.03). In addition, ADF groups consumed more energy than the control and DFF groups in feed (ad libitum) days (p < 0.05). At the end of the study, the mean FBS levels in the control and ADF100% groups were similar and significantly lower in relation to that of DFF and ADF50% groups (p < 0.01). Measurements of area under the curve in GTT and ITT revealed that the ADF100% group was more insulin-sensitive than the DFF and ADF50% groups. In conclusion, these data suggest that the ADF100% improves fructose-induced insulin resistance in mice. © 2013 Blackwell Verlag GmbH.

  5. Erythrocyte osmotic fragility and general health status of adolescent Sprague Dawley rats supplemented with Hibiscus sabdariffa aqueous calyx extracts as neonates followed by a high-fructose diet post-weaning.

    PubMed

    Ibrahim, K G; Lembede, B W; Chivandi, E; Erlwanger, K

    2018-02-01

    High-fructose diets (HFD) can cause oxidative damage to tissues including erythrocyte cell membranes. Hibiscus sabdariffa (HS) has protective antioxidant properties. Rats were used to investigate whether the consumption of HS by neonates would result in long-term effects on their erythrocyte osmotic fragility (EOF) and general health when later fed a high-fructose diet post-weaning through adolescence. Eighty of four-day-old Sprague Dawley rat pups were divided randomly into three treatment groups. The controls (n = 27) received distilled water at 10 ml/kg b. w, while the other groups received either 50 mg/kg (n = 28) or 500 mg/kg (n = 25) of an HS aqueous calyx extract orally till post-natal day 14. The rats in each group were weaned and divided into two subgroups; one continued on normal rat chow, and the other received fructose (20% w/v) in their drinking water for 30 days. Blood was collected in heparinised tubes and added to serially diluted (0.0-0.85%) phosphate-buffered saline to determine the EOF. Clinical markers of health status were determined with an automated chemical analyser. HS extracts did not programme metabolism in the growing rats to alter their general health and EOF in response to the HFD. © 2017 Blackwell Verlag GmbH.

  6. Uric acid and transforming growth factor in fructose-induced production of reactive oxygen species in skeletal muscle.

    PubMed

    Madlala, Hlengiwe P; Maarman, Gerald J; Ojuka, Edward

    2016-04-01

    The consumption of fructose, a major constituent of the modern diet, has raised increasing concern about the effects of fructose on health. Research suggests that excessive intake of fructose (>50 g/d) causes hyperuricemia, insulin resistance, mitochondrial dysfunction, de novo lipogenesis by the liver, and increased production of reactive oxygen species (ROS) in muscle. In a number of tissues, uric acid has been shown to stimulate the production of ROS via activation of transforming growth factor β1 and NADPH (nicotinamide adenine dinucleotide phosphate) oxidase 4. The role of uric acid in fructose-induced production of ROS in skeletal muscle, however, has not been investigated. This review examines the evidence for fructose-induced production of ROS in skeletal muscle, highlights proposed mechanisms, and identifies gaps in current knowledge. © The Author(s) 2016. Published by Oxford University Press on behalf of the International Life Sciences Institute. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  7. Effects of Natural Products on Fructose-Induced Nonalcoholic Fatty Liver Disease (NAFLD).

    PubMed

    Chen, Qian; Wang, Tingting; Li, Jian; Wang, Sijian; Qiu, Feng; Yu, Haiyang; Zhang, Yi; Wang, Tao

    2017-01-31

    As a sugar additive, fructose is widely used in processed foods and beverages. Excessive fructose consumption can cause hepatic steatosis and dyslipidemia, leading to the development of metabolic syndrome. Recent research revealed that fructose-induced nonalcoholic fatty liver disease (NAFLD) is related to several pathological processes, including: (1) augmenting lipogenesis; (2) leading to mitochondrial dysfunction; (3) stimulating the activation of inflammatory pathways; and (4) causing insulin resistance. Cellular signaling research indicated that partial factors play significant roles in fructose-induced NAFLD, involving liver X receptor (LXR)α, sterol regulatory element binding protein (SREBP)-1/1c, acetyl-CoA carboxylase (ACC), fatty acid synthase (FAS), stearoyl-CoA desaturase (SCD), peroxisome proliferator-activated receptor α (PPARα), leptin nuclear factor-erythroid 2-related factor 2 (Nrf2), nuclear factor kappa B (NF-κB), tumor necrosis factor α (TNF-α), c-Jun amino terminal kinase (JNK), phosphatidylinositol 3-kinase (PI3K) and adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK). Until now, a series of natural products have been reported as regulators of NAFLD in vivo and in vitro. This paper reviews the natural products (e.g., curcumin, resveratrol, and (-)-epicatechin) and their mechanisms of ameliorating fructose-induced NAFLD over the past years. Although, as lead compounds, natural products usually have fewer activities compared with synthesized compounds, it will shed light on studies aiming to discover new drugs for NAFLD.

  8. Effects of chronic sugar consumption on lipid accumulation and autophagy in the skeletal muscle.

    PubMed

    De Stefanis, Daniela; Mastrocola, Raffaella; Nigro, Debora; Costelli, Paola; Aragno, Manuela

    2017-02-01

    In recent years, the increasing consumption of soft drinks containing high-fructose corn syrup or sucrose has caused a rise in fructose intake, which has been related to the epidemic of metabolic diseases. As fructose and glucose intake varies in parallel, it is still unclear what the effects of the increased consumption of the two single sugars are. In the present study, the impact of chronic consumption of glucose or fructose on skeletal muscle of healthy mice was investigated. C57BL/6J male mice received water (C), 15 % fructose (ChF) or 15 % glucose (ChG) to drink for up to 7 months. Lipid metabolism and markers of inflammation and autophagy were assessed in gastrocnemius muscle. Increased body weight and gastrocnemius muscle mass, as well as circulating glucose, insulin, and lipid plasma levels were observed in sugar-drinking mice. Although triglycerides increased in the gastrocnemius muscle of both ChF and ChG mice (+32 and +26 %, vs C, respectively), intramyocellular lipids accumulated to a significantly greater extent in ChF than in ChG animals (ChF +10 % vs ChG). Such perturbations were associated with increased muscle interleukin-6 levels (threefold of C) and with the activation of autophagy, as demonstrated by the overexpression of LC3B-II (ChF, threefold and ChG, twofold of C) and beclin-1 (ChF, sevenfold and ChG, tenfold of C). The present results suggest that intramyocellular lipids and the pro-inflammatory signaling could contribute to the onset of insulin resistance and lead to the induction of autophagy, which could be an adaptive response to lipotoxicity.

  9. Reduction of liver fructokinase expression and improved hepatic inflammation and metabolism in liquid fructose-fed rats after atorvastatin treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vila, Laia; Rebollo, Alba; Adalsteisson, Gunnar S.

    Consumption of beverages that contain fructose favors the increasing prevalence of metabolic syndrome alterations in humans, including non-alcoholic fatty liver disease (NAFLD). Although the only effective treatment for NAFLD is caloric restriction and weight loss, existing data show that atorvastatin, a hydroxymethyl-glutaryl-CoA reductase inhibitor, can be used safely in patients with NAFLD and improves hepatic histology. To gain further insight into the molecular mechanisms of atorvastatin's therapeutic effect on NAFLD, we used an experimental model that mimics human consumption of fructose-sweetened beverages. Control, fructose (10% w/v solution) and fructose + atorvastatin (30 mg/kg/day) Sprague-Dawley rats were sacrificed after 14 days.more » Plasma and liver tissue samples were obtained to determine plasma analytes, liver histology, and the expression of liver proteins that are related to fatty acid synthesis and catabolism, and inflammatory processes. Fructose supplementation induced hypertriglyceridemia and hyperleptinemia, hepatic steatosis and necroinflammation, increased the expression of genes related to fatty acid synthesis and decreased fatty acid {beta}-oxidation activity. Atorvastatin treatment completely abolished histological signs of necroinflammation, reducing the hepatic expression of metallothionein-1 and nuclear factor kappa B binding. Furthermore, atorvastatin reduced plasma (x 0.74) and liver triglyceride (x 0.62) concentrations, decreased the liver expression of carbohydrate response element binding protein transcription factor (x0.45) and its target genes, and increased the hepatic activity of the fatty acid {beta}-oxidation system (x 1.15). These effects may be related to the fact that atorvastatin decreased the expression of fructokinase (x 0.6) in livers of fructose-supplemented rats, reducing the metabolic burden on the liver that is imposed by continuous fructose ingestion. - Graphical Abstract: Display Omitted Research Highlights

  10. Fructose 2,6-bisphosphate and the climacteric in bananas.

    PubMed

    Ball, K L; ap Rees, T

    1988-11-15

    This work was done to test the view that there is a marked rise in the content of fructose 2,6-bisphosphate during the climacteric of the fruit of banana (Musa cavendishii Lamb ex. Paxton). Bananas were ripened in the dark in a continuous stream of air in the absence of exogenous ethylene. CO2 production and the contents of fructose 2,6-bisphosphate and sucrose were monitored over a 15-day period. A range of extraction procedures for fructose 2,6-bisphosphate were compared. Recovery of fructose 2,6-bisphosphate added to samples of unripe fruit varied from poor to unmeasurable. Recoveries from samples of ripe fruit were high. It is argued that this differential recovery of fructose 2,6-bisphosphate undermines claims that the amount of this compound increases at the climacteric. When recoveries are taken into account, our data suggest that there is no major change in fructose 2,6-bisphosphate content during the onset of the climacteric in bananas.

  11. Vasopressin Mediates the Renal Damage Induced by Limited Fructose Rehydration in Recurrently Dehydrated Rats.

    PubMed

    García-Arroyo, Fernando E; Tapia, Edilia; Blas-Marron, Mónica G; Gonzaga, Guillermo; Silverio, Octaviano; Cristóbal, Magdalena; Osorio, Horacio; Arellano-Buendía, Abraham S; Zazueta, Cecilia; Aparicio-Trejo, Omar Emiliano; Reyes-García, Juan G; Pedraza-Chaverri, José; Soto, Virgilia; Roncal-Jiménez, Carlos; Johnson, Richard J; Sánchez-Lozada, Laura G

    2017-01-01

    Recurrent dehydration and heat stress cause chronic kidney damage in experimental animals. The injury is exacerbated by rehydration with fructose-containing beverages. Fructose may amplify dehydration-induced injury by directly stimulating vasopressin release and also by acting as a substrate for the aldose reductase-fructokinase pathway, as both of these systems are active during dehydration. The role of vasopressin in heat stress associated injury has not to date been explored. Here we show that the amplification of renal damage mediated by fructose in thermal dehydration is mediated by vasopressin. Fructose rehydration markedly enhanced vasopressin (copeptin) levels and activation of the aldose reductase-fructokinase pathway in the kidney. Moreover, the amplification of the renal functional changes (decreased creatinine clearance and tubular injury with systemic inflammation, renal oxidative stress, and mitochondrial dysfunction) were prevented by the blockade of V1a and V2 vasopressin receptors with conivaptan. On the other hand, there are also other operative mechanisms when water is used as rehydration fluid that produce milder renal damage that is not fully corrected by vasopressin blockade. Therefore, we clearly showed evidence of the cross-talk between fructose, even at small doses, and vasopressin that interact to amplify the renal damage induced by dehydration. These data may be relevant for heat stress nephropathy as well as for other renal pathologies due to the current generalized consumption of fructose and deficient hydration habits.

  12. Postexercise repletion of muscle energy stores with fructose or glucose in mixed meals.

    PubMed

    Rosset, Robin; Lecoultre, Virgile; Egli, Léonie; Cros, Jérémy; Dokumaci, Ayse Sila; Zwygart, Karin; Boesch, Chris; Kreis, Roland; Schneiter, Philippe; Tappy, Luc

    2017-03-01

    Background: Postexercise nutrition is paramount to the restoration of muscle energy stores by providing carbohydrate and fat as precursors of glycogen and intramyocellular lipid (IMCL) synthesis. Compared with glucose, fructose ingestion results in lower postprandial glucose and higher lactate and triglyceride concentrations. We hypothesized that these differences in substrate concentration would be associated with a different partition of energy stored as IMCLs or glycogen postexercise. Objective: The purpose of this study was to compare the effect of isocaloric liquid mixed meals containing fat, protein, and either fructose or glucose on the repletion of muscle energy stores over 24 h after a strenuous exercise session. Design: Eight male endurance athletes (mean ± SEM age: 29 ± 2 y; peak oxygen consumption: 66.8 ± 1.3 mL · kg -1 · min -1 ) were studied twice. On each occasion, muscle energy stores were first lowered by a combination of a 3-d controlled diet and prolonged exercise. After assessment of glycogen and IMCL concentrations in vastus muscles, subjects rested for 24 h and ingested mixed meals providing fat and protein together with 4.4 g/kg fructose (the fructose condition; FRU) or glucose (the glucose condition; GLU). Postprandial metabolism was assessed over 6 h, and glycogen and IMCL concentrations were measured again after 24 h. Finally, energy metabolism was evaluated during a subsequent exercise session. Results: FRU and GLU resulted in similar IMCL [+2.4 ± 0.4 compared with +2.0 ± 0.6 mmol · kg -1 wet weight · d -1 ; time × condition (mixed-model analysis): P = 0.45] and muscle glycogen (+10.9 ± 0.9 compared with +12.3 ± 1.9 mmol · kg -1 wet weight · d -1 ; time × condition: P = 0.45) repletion. Fructose consumption in FRU increased postprandial net carbohydrate oxidation and decreased net carbohydrate storage (estimating total, muscle, and liver glycogen synthesis) compared with GLU (+117 ± 9 compared with +135 ± 9 g/6 h

  13. Soybean Oil Is More Obesogenic and Diabetogenic than Coconut Oil and Fructose in Mouse: Potential Role for the Liver.

    PubMed

    Deol, Poonamjot; Evans, Jane R; Dhahbi, Joseph; Chellappa, Karthikeyani; Han, Diana S; Spindler, Stephen; Sladek, Frances M

    2015-01-01

    The obesity epidemic in the U.S. has led to extensive research into potential contributing dietary factors, especially fat and fructose. Recently, increased consumption of soybean oil, which is rich in polyunsaturated fatty acids (PUFAs), has been proposed to play a causal role in the epidemic. Here, we designed a series of four isocaloric diets (HFD, SO-HFD, F-HFD, F-SO-HFD) to investigate the effects of saturated versus unsaturated fat, as well as fructose, on obesity and diabetes. C57/BL6 male mice fed a diet moderately high in fat from coconut oil and soybean oil (SO-HFD, 40% kcal total fat) showed statistically significant increases in weight gain, adiposity, diabetes, glucose intolerance and insulin resistance compared to mice on a diet consisting primarily of coconut oil (HFD). They also had fatty livers with hepatocyte ballooning and very large lipid droplets as well as shorter colonic crypt length. While the high fructose diet (F-HFD) did not cause as much obesity or diabetes as SO-HFD, it did cause rectal prolapse and a very fatty liver, but no balloon injury. The coconut oil diet (with or without fructose) increased spleen weight while fructose in the presence of soybean oil increased kidney weight. Metabolomics analysis of the liver showed an increased accumulation of PUFAs and their metabolites as well as γ-tocopherol, but a decrease in cholesterol in SO-HFD. Liver transcriptomics analysis revealed a global dysregulation of cytochrome P450 (Cyp) genes in SO-HFD versus HFD livers, most notably in the Cyp3a and Cyp2c families. Other genes involved in obesity (e.g., Cidec, Cd36), diabetes (Igfbp1), inflammation (Cd63), mitochondrial function (Pdk4) and cancer (H19) were also upregulated by the soybean oil diet. Taken together, our results indicate that in mice a diet high in soybean oil is more detrimental to metabolic health than a diet high in fructose or coconut oil.

  14. Soybean Oil Is More Obesogenic and Diabetogenic than Coconut Oil and Fructose in Mouse: Potential Role for the Liver

    PubMed Central

    Deol, Poonamjot; Evans, Jane R.; Dhahbi, Joseph; Chellappa, Karthikeyani; Han, Diana S.; Spindler, Stephen; Sladek, Frances M.

    2015-01-01

    The obesity epidemic in the U.S. has led to extensive research into potential contributing dietary factors, especially fat and fructose. Recently, increased consumption of soybean oil, which is rich in polyunsaturated fatty acids (PUFAs), has been proposed to play a causal role in the epidemic. Here, we designed a series of four isocaloric diets (HFD, SO-HFD, F-HFD, F-SO-HFD) to investigate the effects of saturated versus unsaturated fat, as well as fructose, on obesity and diabetes. C57/BL6 male mice fed a diet moderately high in fat from coconut oil and soybean oil (SO-HFD, 40% kcal total fat) showed statistically significant increases in weight gain, adiposity, diabetes, glucose intolerance and insulin resistance compared to mice on a diet consisting primarily of coconut oil (HFD). They also had fatty livers with hepatocyte ballooning and very large lipid droplets as well as shorter colonic crypt length. While the high fructose diet (F-HFD) did not cause as much obesity or diabetes as SO-HFD, it did cause rectal prolapse and a very fatty liver, but no balloon injury. The coconut oil diet (with or without fructose) increased spleen weight while fructose in the presence of soybean oil increased kidney weight. Metabolomics analysis of the liver showed an increased accumulation of PUFAs and their metabolites as well as γ-tocopherol, but a decrease in cholesterol in SO-HFD. Liver transcriptomics analysis revealed a global dysregulation of cytochrome P450 (Cyp) genes in SO-HFD versus HFD livers, most notably in the Cyp3a and Cyp2c families. Other genes involved in obesity (e.g., Cidec, Cd36), diabetes (Igfbp1), inflammation (Cd63), mitochondrial function (Pdk4) and cancer (H19) were also upregulated by the soybean oil diet. Taken together, our results indicate that in mice a diet high in soybean oil is more detrimental to metabolic health than a diet high in fructose or coconut oil. PMID:26200659

  15. Dissociable Behavioral, Physiological and Neural Effects of Acute Glucose and Fructose Ingestion: A Pilot Study

    PubMed Central

    Schmidt, André; Zimak, Nina; Peterli, Ralph; Beglinger, Christoph; Borgwardt, Stefan

    2015-01-01

    Previous research has revealed that glucose and fructose ingestion differentially modulate release of satiation hormones. Recent studies have begun to elucidate brain-gut interactions with neuroimaging approaches such as magnetic resonance imaging (MRI), but the neural mechanism underlying different behavioral and physiological effects of glucose and fructose are unclear. In this paper, we have used resting state functional MRI to explore whether acute glucose and fructose ingestion also induced dissociable effects in the neural system. Using a cross-over, double-blind, placebo-controlled design, we compared resting state functional connectivity (rsFC) strengths within the basal ganglia/limbic network in 12 healthy lean males. Each subject was administered fructose, glucose and placebo on three separate occasions. Subsequent correlation analysis was used to examine relations between rsFC findings and plasma concentrations of satiation hormones and subjective feelings of appetite. Glucose ingestion induced significantly greater elevations in plasma glucose, insulin, GLP-1 and GIP, while feelings of fullness increased and prospective food consumption decreased relative to fructose. Furthermore, glucose increased rsFC of the left caudatus and putamen, precuneus and lingual gyrus more than fructose, whereas within the basal ganglia/limbic network, fructose increased rsFC of the left amygdala, left hippocampus, right parahippocampus, orbitofrontal cortex and precentral gyrus more than glucose. Moreover, compared to fructose, the increased rsFC after glucose positively correlated with the glucose-induced increase in insulin. Our findings suggest that glucose and fructose induce dissociable effects on rsFC within the basal ganglia/limbic network, which are probably mediated by different insulin levels. A larger study would be recommended in order to confirm these findings. PMID:26107810

  16. Comparing the effects of sucrose and high-fructose corn syrup on lipid metabolism and the risk of cardiovascular disease in male rats.

    PubMed

    Sadowska, Joanna; Bruszkowska, Magda

    2017-01-01

    The objective of this study was to compare, in an animal model, the effect of different sugar types (sucrose vs. high-fructose corn syrup 55%) consumed as 10% by weight of the diet (11.6% of daily caloric intake) on the amount of food consumed, body weight, fatty tissue deposits, concentrations of selected lipids, and atherogenic indices of blood plasma. Material and method. The experiment was carried out on 30 5-month-old Wistar male rats, fed three differ- ent diets, containing, amongst other foods, (1) ground unrefined cereal grains, (2) sucrose, (3) high-fructose corn syrup. Results. Weight gains in animals on sucrose or high-fructose corn syrup diets were higher than those con- suming basic feed, but the effect was not associated with perivisceral fat accumulation. It has been found that all the atherogenic indices (Castelli’s Risk Index I, Castelli’s Risk Index II, Atherogenic Index of Plasma, Atherogenic Coefficient) were statistically significantly higher in animals on a high-fructose corn syrup diet compared to both the control group and those on a sucrose diet. Conclusion. The effect of the 55% high-fructose corn syrup on the tested parameters of lipid metabolism was not equivalent to that of sucrose. Using HFCS-55 instead of sucrose has an adverse effect on blood lipid parameters, while weight gains and peri-organ fat deposits are comparable. Moreover, the obtained results confirm that tested animals were susceptible to the adverse effects of sugars added to their diet, even in small amounts. This emphasises the need to precisely control the amount of added sugars in. nd. The objective of this study was to compare, in an animal model, the effect of different sugar types (sucrose vs. high-fructose corn syrup 55%) consumed as 10% by weight of the diet (11.6% of daily caloric intake) on the amount of food consumed, body weight, fatty tissue deposits, concentrations of selected lipids, and atherogenic indices of blood plasma. Material and method

  17. Production of substantially pure fructose

    DOEpatents

    Hatcher, Herbert J.; Gallian, John J.; Leeper, Stephen A.

    1990-01-01

    A process is disclosed for the production of substantially pure fructose from sucrose-containing substrates. The process comprises converting the sucrose to levan and glucose, purifying the levan by membrane technology, hydrolyzing the levan to form fructose monomers, and recovering the fructose.

  18. Dietary fructose augments ethanol-induced liver pathology.

    PubMed

    Thomes, Paul G; Benbow, Jennifer H; Brandon-Warner, Elizabeth; Thompson, Kyle J; Jacobs, Carl; Donohue, Terrence M; Schrum, Laura W

    2017-05-01

    Certain dietary components when combined with alcohol exacerbate alcohol-induced liver injury (ALI). Here, we tested whether fructose, a major ingredient of the western diet, enhances the severity of ALI. We fed mice ethanol for 8 weeks in the following Lieber-DeCarli diets: (a) Regular (contains olive oil); (b) corn oil (contains corn oil); (c) fructose (contains fructose and olive oil) and (d) corn+fructose (contains fructose and corn oil). We compared indices of metabolic function and liver pathology among the different groups. Mice fed fructose-free and fructose-containing ethanol diets exhibited similar levels of blood alcohol, blood glucose and signs of disrupted hepatic insulin signaling. However, only mice given fructose-ethanol diets showed lower insulin levels than their respective controls. Compared with their respective pair-fed controls, all ethanol-fed mice exhibited elevated levels of serum ALT; the inflammatory cytokines TNF-α, MCP-1 and MIP-2; hepatic lipid peroxides and triglycerides. All the latter parameters were significantly higher in mice given fructose-ethanol diets than those fed fructose-free ethanol diets. Mice given fructose-free or fructose-containing ethanol diets each had higher levels of hepatic lipogenic enzymes than controls. However, the level of the lipogenic enzyme fatty acid synthase (FAS) was significantly higher in livers of mice given fructose control and fructose-ethanol diets than in all other groups. Our findings indicate that dietary fructose exacerbates ethanol-induced steatosis, oxidant stress, inflammation and liver injury, irrespective of the dietary fat source, to suggest that inclusion of fructose in or along with alcoholic beverages increases the risk of more severe ALI in heavy drinkers. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Long-Term Fructose Intake Increases Adipogenic Potential: Evidence of Direct Effects of Fructose on Adipocyte Precursor Cells

    PubMed Central

    Zubiría, María Guillermina; Alzamendi, Ana; Moreno, Griselda; Rey, María Amanda; Spinedi, Eduardo; Giovambattista, Andrés

    2016-01-01

    We have previously addressed that fructose rich diet (FRD) intake for three weeks increases the adipogenic potential of stromal vascular fraction cells from the retroperitoneal adipose tissue (RPAT). We have now evaluated the effect of prolonged FRD intake (eight weeks) on metabolic parameters, number of adipocyte precursor cells (APCs) and in vitro adipogenic potential from control (CTR) and FRD adult male rats. Additionally, we have examined the direct fructose effects on the adipogenic capacity of normal APCs. FRD fed rats had increased plasma levels of insulin, triglyceride and leptin, and RPAT mass and adipocyte size. FACS studies showed higher APCs number and adipogenic potential in FRD RPAT pads; data is supported by high mRNA levels of competency markers: PPARγ2 and Zfp423. Complementary in vitro experiments indicate that fructose-exposed normal APCs displayed an overall increased adipogenic capacity. We conclude that the RPAT mass expansion observed in eight week-FRD fed rats depends on combined accelerated adipogenesis and adipocyte hypertrophy, partially due to a direct effect of fructose on APCs. PMID:27049396

  20. Long-Term Fructose Intake Increases Adipogenic Potential: Evidence of Direct Effects of Fructose on Adipocyte Precursor Cells.

    PubMed

    Zubiría, María Guillermina; Alzamendi, Ana; Moreno, Griselda; Rey, María Amanda; Spinedi, Eduardo; Giovambattista, Andrés

    2016-04-02

    We have previously addressed that fructose rich diet (FRD) intake for three weeks increases the adipogenic potential of stromal vascular fraction cells from the retroperitoneal adipose tissue (RPAT). We have now evaluated the effect of prolonged FRD intake (eight weeks) on metabolic parameters, number of adipocyte precursor cells (APCs) and in vitro adipogenic potential from control (CTR) and FRD adult male rats. Additionally, we have examined the direct fructose effects on the adipogenic capacity of normal APCs. FRD fed rats had increased plasma levels of insulin, triglyceride and leptin, and RPAT mass and adipocyte size. FACS studies showed higher APCs number and adipogenic potential in FRD RPAT pads; data is supported by high mRNA levels of competency markers: PPARγ2 and Zfp423. Complementary in vitro experiments indicate that fructose-exposed normal APCs displayed an overall increased adipogenic capacity. We conclude that the RPAT mass expansion observed in eight week-FRD fed rats depends on combined accelerated adipogenesis and adipocyte hypertrophy, partially due to a direct effect of fructose on APCs.

  1. Excessive fructose intake causes 1,25-(OH)2D3-dependent inhibition of intestinal and renal calcium transport in growing rats

    PubMed Central

    Douard, Veronique; Sabbagh, Yves; Lee, Jacklyn; Patel, Chirag; Kemp, Francis W.; Bogden, John D.; Lin, Sheldon

    2013-01-01

    We recently discovered that chronic high fructose intake by lactating rats prevented adaptive increases in rates of active intestinal Ca2+ transport and in levels of 1,25-(OH)2D3, the active form of vitamin D. Since sufficient Ca2+ absorption is essential for skeletal growth, our discovery may explain findings that excessive consumption of sweeteners compromises bone integrity in children. We tested the hypothesis that 1,25-(OH)2D3 mediates the inhibitory effect of excessive fructose intake on active Ca2+ transport. First, compared with those fed glucose or starch, growing rats fed fructose for 4 wk had a marked reduction in intestinal Ca2+ transport rate as well as in expression of intestinal and renal Ca2+ transporters that was tightly associated with decreases in circulating levels of 1,25-(OH)2D3, bone length, and total bone ash weight but not with serum parathyroid hormone (PTH). Dietary fructose increased the expression of 24-hydroxylase (CYP24A1) and decreased that of 1α-hydroxylase (CYP27B1), suggesting that fructose might enhance the renal catabolism and impair the synthesis, respectively, of 1,25-(OH)2D3. Serum FGF23, which is secreted by osteocytes and inhibits CYP27B1 expression, was upregulated, suggesting a potential role of bone in mediating the fructose effects on 1,25-(OH)2D3 synthesis. Second, 1,25-(OH)2D3 treatment rescued the fructose effect and normalized intestinal and renal Ca2+ transporter expression. The mechanism underlying the deleterious effect of excessive fructose intake on intestinal and renal Ca2+ transporters is a reduction in serum levels of 1,25-(OH)2D3. This finding is significant because of the large amounts of fructose now consumed by Americans increasingly vulnerable to Ca2+ and vitamin D deficiency. PMID:23571713

  2. Fructose-induced increases in expression of intestinal fructolytic and gluconeogenic genes are regulated by GLUT5 and KHK

    PubMed Central

    Patel, Chirag; Douard, Veronique; Yu, Shiyan; Tharabenjasin, Phuntila; Gao, Nan

    2015-01-01

    Marked increases in fructose consumption have been tightly linked to metabolic diseases. One-third of ingested fructose is metabolized in the small intestine, but the underlying mechanisms regulating expression of fructose-metabolizing enzymes are not known. We used genetic mouse models to test the hypothesis that fructose absorption via glucose transporter protein, member 5 (GLUT5), metabolism via ketohexokinase (KHK), as well as GLUT5 trafficking to the apical membrane via the Ras-related protein in brain 11a (Rab11a)-dependent endosomes are required for the regulation of intestinal fructolytic and gluconeogenic enzymes. Fructose feeding increased the intestinal mRNA and protein expression of these enzymes in the small intestine of adult wild-type (WT) mice compared with those gavage fed with lysine or glucose. Fructose did not increase expression of these enzymes in the GLUT5 knockout (KO) mice. Blocking intracellular fructose metabolism by KHK ablation also prevented fructose-induced upregulation. Glycolytic hexokinase I expression was similar between WT and GLUT5- or KHK-KO mice and did not vary with feeding solution. Gavage feeding with the fructose-specific metabolite glyceraldehyde did not increase enzyme expression, suggesting that signaling occurs before the hydrolysis of fructose to three-carbon compounds. Impeding GLUT5 trafficking to the apical membrane using intestinal epithelial cell-specific Rab11a-KO mice impaired fructose-induced upregulation. KHK expression was uniformly distributed along the villus but was localized mainly in the basal region of the cytosol of enterocytes. The feedforward upregulation of fructolytic and gluconeogenic enzymes specifically requires GLUT5 and KHK and may proactively enhance the intestine's ability to process anticipated increases in dietary fructose concentrations. PMID:26084694

  3. Significantly greater triglyceridemia in Black African compared to White European men following high added fructose and glucose feeding: a randomized crossover trial.

    PubMed

    Goff, Louise M; Whyte, Martin B; Samuel, Miriam; Harding, Scott V

    2016-09-02

    Black African (BA) populations are losing the cardio-protective lipid profile they historically exhibited, which may be linked with increasing fructose intakes. The metabolic effects of high fructose diets and how they relate to blood lipids are documented for Caucasians, but have not been described in BA individuals. The principle objective of this pilot study was to assess the independent impacts of high glucose and fructose feeding in men of BA ancestry compared to men of White European (WE) ancestry on circulating triglyceride (TG) concentrations. Healthy males, aged 25-60 years, of BA (n = 9) and WE (n = 11) ethnicity were randomly assigned to 2 feeding days in a crossover design, providing mixed nutrient meals with 20 % total daily caloric requirements from either added glucose or fructose. Circulating TG, non-esterified fatty acids (NEFA), glucose, insulin and C-peptide were measured over two 24-h periods. Fasting TGs were lower in BAs than WEs on the fructose feeding day (p < 0.05). There was a trend for fasting TG concentrations 24 h following fructose feeding to increase in both BA (baseline median fasting: 0.80, IQR 0.6-1.1 vs 24-h median post-fructose: 1.09, 0.8-1.4 mmol/L; p = 0.06) and WE (baseline median fasting 1.10, IQR 0.9-1.5 vs 24-h median post-fructose: 1.16, IQR 0.96-1.73 mmol/L; p = 0.06). Analysis within ethnic group demonstrated that in TG iAUC was significantly higher in BA compared to WE on both glucose (35, IQR 11-56 vs -4, IQR -10-1 mmol/L/min; p = 0.004) and fructose (48, IQR 15-68 vs 13, IQR -7-38 mmol/L/min; p = 0.04). Greater suppression of postprandial NEFA was evident in WE than BA after glucose feeding (-73, IQR -81- -52 vs -26, IQR -48- -3 nmol/L/min; p = 0.001) but there was no ethnic difference following fructose feeding. Understanding the metabolic effects of dietary acculturation and Westernisation that occurs in Black communities is important for developing prevention strategies for

  4. Dietary fructose enhances the incidence of precancerous hepatocytes induced by administration of diethylnitrosamine in rat

    PubMed Central

    2013-01-01

    Background Nonalcoholic fatty liver disease (NAFLD) is a risk for hepatocellular carcinoma (HCC), but the association between a high-fructose diet and HCC is not fully understood. In this study, we investigated whether a high-fructose diet affects hepatocarcinogenesis induced by administration of diethylnitrosamine (DEN). Methods Seven-week-old male Sprague–Dawley rats were fed standard chow (controls), a high-fat diet (54% fat), or a high-fructose diet (66% fructose) for 8 weeks. All rats were given DEN at 50 μg/L in drinking water during the same period. Precancerous hepatocytes were detected by immunostaining of the placental form of glutathione-S-transferase (GST-P). The number of GST-P-positive hepatocytes was assessed in liver specimens. Results Serum levels of total cholesterol were similar among the three groups, but serum triglyceride, fasting blood glucose, and insulin levels were higher in the high-fructose group compared to the high-fat group. In contrast, hepatic steatosis was more severe in the high-fat group compared with the high-fructose and control groups, but the incidence of GST-P-positive specimens was significantly higher in the high-fructose group compared to the other two groups. The average number of GST-P-positive hepatocytes in GST-P positive specimens in the high-fructose group was also higher than those in the other two groups. This high prevalence of GST-P-positive hepatocytes was accompanied by higher levels of 8-hydroxydeoxyguanosine in serum and liver tissue. Conclusions These results indicate that dietary fructose, rather than dietary fat, increases the incidence of precancerous hepatocytes induced by administration of DEN via insulin resistance and oxidative stress in rat. Thus, excessive fructose intake may be a potential risk factor for hepatocarcinogenesis. PMID:24321741

  5. Kefir peptides prevent high-fructose corn syrup-induced non-alcoholic fatty liver disease in a murine model by modulation of inflammation and the JAK2 signaling pathway.

    PubMed

    Chen, H L; Tsai, T C; Tsai, Y C; Liao, J W; Yen, C C; Chen, C M

    2016-12-12

    In recent years, people have changed their eating habits, and high-fructose-containing bubble tea has become very popular. High-fructose intake has been suggested to be a key factor that induces non-alcoholic fatty liver disease (NAFLD). Kefir, a fermented milk product composed of microbial symbionts, has demonstrated numerous biological activities, including antibacterial, antioxidant and immunostimulating effects. The present study aims to evaluate the effects of kefir peptides on high-fructose-induced hepatic steatosis and the possible molecular mechanism. An animal model of 30% high-fructose-induced NAFLD in C57BL/6J mice was established. The experiment is divided into the following six groups: (1) normal: H 2 O drinking water; (2) mock: H 2 O+30% fructose; (3) KL: low-dose kefir peptides (50 mg kg -1 )+30% fructose; (4) KM: medium-dose kefir peptides (100 mg kg -1 )+30% fructose; (5) KH: high-dose kefir peptides (150 mg kg -1 )+30% fructose; and (6) CFM: commercial fermented milk (100 mg kg -1 )+30% fructose. The results show that kefir peptides improve fatty liver syndrome by decreasing body weight, serum alanine aminotransferase, triglycerides, insulin and hepatic triglycerides, cholesterol, and free fatty acids as well as the inflammatory cytokines (TNF-α, IL-6 and IL-1β) that had been elevated in fructose-induced NAFLD mice. In addition, kefir peptides markedly increased phosphorylation of AMPK to downregulate its targeted enzymes, ACC (acetyl-CoA carboxylase) and SREBP-1c (sterol regulatory element-binding protein 1), and inhibited de novo lipogenesis. Furthermore, kefir peptides activated JAK2 to stimulate STAT3 phosphorylation, which can translocate to the nucleus, and upregulated several genes, including the CPT1 (carnitine palmitoyltransferase-1) involved in fatty acid oxidation. Our data have demonstrated that kefir peptides can improve the symptoms of NAFLD, including body weight, energy intake, inflammatory reaction and the

  6. Kefir peptides prevent high-fructose corn syrup-induced non-alcoholic fatty liver disease in a murine model by modulation of inflammation and the JAK2 signaling pathway

    PubMed Central

    Chen, H L; Tsai, T C; Tsai, Y C; Liao, J W; Yen, C C; Chen, C M

    2016-01-01

    Objective: In recent years, people have changed their eating habits, and high-fructose-containing bubble tea has become very popular. High-fructose intake has been suggested to be a key factor that induces non-alcoholic fatty liver disease (NAFLD). Kefir, a fermented milk product composed of microbial symbionts, has demonstrated numerous biological activities, including antibacterial, antioxidant and immunostimulating effects. The present study aims to evaluate the effects of kefir peptides on high-fructose-induced hepatic steatosis and the possible molecular mechanism. Results: An animal model of 30% high-fructose-induced NAFLD in C57BL/6J mice was established. The experiment is divided into the following six groups: (1) normal: H2O drinking water; (2) mock: H2O+30% fructose; (3) KL: low-dose kefir peptides (50 mg kg−1)+30% fructose; (4) KM: medium-dose kefir peptides (100 mg kg−1)+30% fructose; (5) KH: high-dose kefir peptides (150 mg kg−1)+30% fructose; and (6) CFM: commercial fermented milk (100 mg kg−1)+30% fructose. The results show that kefir peptides improve fatty liver syndrome by decreasing body weight, serum alanine aminotransferase, triglycerides, insulin and hepatic triglycerides, cholesterol, and free fatty acids as well as the inflammatory cytokines (TNF-α, IL-6 and IL-1β) that had been elevated in fructose-induced NAFLD mice. In addition, kefir peptides markedly increased phosphorylation of AMPK to downregulate its targeted enzymes, ACC (acetyl-CoA carboxylase) and SREBP-1c (sterol regulatory element-binding protein 1), and inhibited de novo lipogenesis. Furthermore, kefir peptides activated JAK2 to stimulate STAT3 phosphorylation, which can translocate to the nucleus, and upregulated several genes, including the CPT1 (carnitine palmitoyltransferase-1) involved in fatty acid oxidation. Conclusion: Our data have demonstrated that kefir peptides can improve the symptoms of NAFLD, including body weight, energy intake

  7. Plasminogen activator inhibitor-1, monocyte chemoattractant protein-1, e-selectin and C-reactive protein levels in response to 4-week very-high-fructose or -glucose diets.

    PubMed

    Silbernagel, G; Machann, J; Häring, H-U; Fritsche, A; Peter, A

    2014-01-01

    High intake of added sweeteners is considered to have a causal role in the pathogenesis of cardiometabolic disorders. Especially, high-fructose intake is regarded as potentially harmful to cardiometabolic health. It may cause not only weight gain but also low-grade inflammation, which represents an independent risk factor for developing type 2 diabetes and cardiovascular disease. In particular, fructose has been suggested to induce plasminogen activator inhibitor-1 (PAI-1) expression in the liver and to increase circulating inflammatory cytokines. We therefore aimed to investigate, whether high-fructose diet has an impact on PAI-1, monocyte chemoattractant protein-1 (MCP-1), e-selectin and C-reactive protein (CRP) concentrations in healthy humans. We studied 20 participants (12 males and 8 females) of the TUebingen FRuctose Or Glucose study. This is an exploratory, parallel, prospective, randomized, single-blinded, outpatient, hypercaloric, intervention study. The participants had a mean age of 30.9 ± 2.1 years and a mean body mass index of 26.0 ± 0.5 kg/m(2) and they received 150 g of either fructose or glucose per day for 4 weeks. There were neither significant changes of PAI-1, MCP-1, e-selectin and CRP after fructose (n=10) and glucose (n=10) intervention nor treatment effects (all P>0.2). Moreover, we did not observe longitudinal associations of the inflammatory parameters with triglycerides, liver fat, visceral fat and body weight in the fructose group. Temporary high-fructose intake does not seem to cause inflammation in apparently healthy people in this secondary analysis of a small feeding trial.

  8. Chronic Fructose Ingestion as a Major Health Concern: Is a Sedentary Lifestyle Making It Worse? A Review

    PubMed Central

    Bidwell, Amy J.

    2017-01-01

    Obesity contributes to metabolic abnormalities such as insulin resistance, dyslipidemia, hypertension, and glucose intolerance, all of which are risk factors associated with metabolic syndrome. The growing prevelance of metabolic syndrome seems to be an end result of our current lifestyle which promotes high caloric, high-fat foods and minimal physical activity, resulting in a state of positive energy balance. Increased adiposity and physical inactivity may represent the beginning of the appearance of these risk factors. Understanding the metabolic and cardiovascular disturbances associated with diet and exercise habits is a crucial step towards reducing the risk factors for metabolic syndrome. Although considerable research has been conducted linking chronic fructose ingestion to the increased prevalence of obesity and metabolic syndrome risk factors, these studies have mainly been performed on animals, and/or in a post-absorptive state. Further, the magnitude of the effect of fructose may depend on other aspects of the diet, including the total amount of carbohydrates and fats in the diet and the overall consumption of meals. Therefore, the overall aim of this review paper is to examine the effects of a diet high in fructose on postprandial lipidemia, inflammatory markers and glucose tolerance, all risk factors for diabetes and cardiovascular disease. Moreover, an objective is to investigate whether increased physical activity can alter such effects. PMID:28555043

  9. Chronic Fructose Ingestion as a Major Health Concern: Is a Sedentary Lifestyle Making It Worse? A Review.

    PubMed

    Bidwell, Amy J

    2017-05-28

    Obesity contributes to metabolic abnormalities such as insulin resistance, dyslipidemia, hypertension, and glucose intolerance, all of which are risk factors associated with metabolic syndrome. The growing prevelance of metabolic syndrome seems to be an end result of our current lifestyle which promotes high caloric, high-fat foods and minimal physical activity, resulting in a state of positive energy balance. Increased adiposity and physical inactivity may represent the beginning of the appearance of these risk factors. Understanding the metabolic and cardiovascular disturbances associated with diet and exercise habits is a crucial step towards reducing the risk factors for metabolic syndrome. Although considerable research has been conducted linking chronic fructose ingestion to the increased prevalence of obesity and metabolic syndrome risk factors, these studies have mainly been performed on animals, and/or in a post-absorptive state. Further, the magnitude of the effect of fructose may depend on other aspects of the diet, including the total amount of carbohydrates and fats in the diet and the overall consumption of meals. Therefore, the overall aim of this review paper is to examine the effects of a diet high in fructose on postprandial lipidemia, inflammatory markers and glucose tolerance, all risk factors for diabetes and cardiovascular disease. Moreover, an objective is to investigate whether increased physical activity can alter such effects.

  10. Ketohexokinase C blockade ameliorates fructose-induced metabolic dysfunction in fructose-sensitive mice.

    PubMed

    Lanaspa, Miguel A; Andres-Hernando, Ana; Orlicky, David J; Cicerchi, Christina; Jang, Cholsoon; Li, Nanxing; Milagres, Tamara; Kuwabara, Masanari; Wempe, Michael F; Rabinowitz, Joshua D; Johnson, Richard J; Tolan, Dean R

    2018-04-23

    Increasing evidence suggests a role for excessive intake of fructose in the Western diet as a contributor to the current epidemics of metabolic syndrome and obesity. Hereditary fructose intolerance (HFI) is a difficult and potentially lethal orphan disease associated with impaired fructose metabolism. In HFI, the deficiency of aldolase B results in the accumulation of intracellular phosphorylated fructose, leading to phosphate sequestration and depletion, increased adenosine triphosphate (ATP) turnover, and a plethora of conditions that lead to clinical manifestations such as fatty liver, hyperuricemia, Fanconi syndrome, and severe hypoglycemia. Unfortunately, there is currently no treatment for HFI, and avoiding sugar and fructose has become challenging in our society. In this report, through use of genetically modified mice and pharmacological inhibitors, we demonstrate that the absence or inhibition of ketohexokinase (Khk), an enzyme upstream of aldolase B, is sufficient to prevent hypoglycemia and liver and intestinal injury associated with HFI. Herein we provide evidence for the first time to our knowledge of a potential therapeutic approach for HFI. Mechanistically, our studies suggest that it is the inhibition of the Khk C isoform, not the A isoform, that protects animals from HFI.

  11. Blunted suppression of acyl-ghrelin in response to fructose ingestion in obese adolescents: the role of insulin resistance.

    PubMed

    Van Name, Michelle; Giannini, Cosimo; Santoro, Nicola; Jastreboff, Ania M; Kubat, Jessica; Li, Fangyong; Kursawe, Romy; Savoye, Mary; Duran, Elvira; Dziura, James; Sinha, Rajita; Sherwin, Robert S; Cline, Gary; Caprio, Sonia

    2015-03-01

    Fructose consumption has risen alongside obesity and diabetes. Gut hormones involved in hunger and satiety (ghrelin and PYY) may respond differently to fructose compared with glucose ingestion. This study evaluated the effects of glucose and fructose ingestion on ghrelin and PYY in lean and obese adolescents with differing insulin sensitivity. Adolescents were divided into lean (n = 14), obese insulin sensitive (n = 12) (OIS), and obese insulin resistant (n = 15) (OIR). In a double-blind, cross-over design, subjects drank 75 g of glucose or fructose in random order, serum was obtained every 10 minutes for 60 minutes. Baseline acyl-ghrelin was highest in lean and lowest in OIR (P = 0.02). After glucose ingestion, acyl-ghrelin decreased similarly in lean and OIS but was lower in OIR (vs. lean, P = 0.03). Suppression differences were more pronounced after fructose (lean vs. OIS, P = 0.008, lean vs. OIR, P < 0.001). OIS became significantly hungrier after fructose (P = 0.015). PYY was not significantly different at baseline, varied minimally after glucose, and rose after fructose. Compared with lean, OIS adolescents have impaired acyl-ghrelin responses to fructose but not glucose, whereas OIR adolescents have blunted responses to both. Diminished suppression of acyl-ghrelin in childhood obesity, particularly if accompanied by insulin resistance, may promote hunger and overeating. © 2015 The Obesity Society.

  12. Blunted Suppression of Acyl-Ghrelin in Response to Fructose Ingestion in Obese Adolescents: the Role of Insulin Resistance

    PubMed Central

    Van Name, Michelle; Giannini, Cosimo; Santoro, Nicola; Jastreboff, Ania; Kubat, Jessica; Li, Fangyong; Kursawe, Romy; Savoye, Mary; Duran, Elvira; Dziura, James; Sinha, Rajita; Sherwin, Robert; Cline, Gary; Caprio, Sonia

    2015-01-01

    Objective Fructose consumption has risen alongside obesity and diabetes. Gut hormones involved in hunger and satiety (ghrelin and PYY) may respond differently to fructose compared to glucose ingestion. We evaluated the effects of glucose and fructose ingestion on ghrelin and PYY in lean and obese adolescents with differing insulin sensitivity. Methods Adolescents were divided into lean (n=14), obese insulin sensitive (n=12) (OIS), and obese insulin resistant (n=15) (OIR). In a double-blind, cross-over design, subjects drank 75g of glucose or fructose in random order, serum was obtained every 10 minutes for 60 minutes. Results Baseline acyl-ghrelin was highest in lean and lowest in OIR (p=0.02). After glucose ingestion acyl-ghrelin decreased similarly in lean and OIS, but appeared lower in OIR (vs lean p=0.03). Suppression differences were more pronounced after fructose (lean vs. OIS p=0.008, lean vs. OIR p<0.001). OIS became significantly hungrier after fructose (p=0.015). PYY was not significantly different at baseline, varied minimally after glucose, and rose after fructose. Conclusion Compared to lean, OIS adolescents have impaired acyl-ghrelin responses to fructose but not glucose, whereas OIR adolescents have blunted responses to both. Diminished suppression of acyl-ghrelin in childhood obesity, particularly if accompanied by insulin resistance, may promote hunger and overeating. PMID:25645909

  13. Fructose-Rich Diet Affects Mitochondrial DNA Damage and Repair in Rats.

    PubMed

    Cioffi, Federica; Senese, Rosalba; Lasala, Pasquale; Ziello, Angela; Mazzoli, Arianna; Crescenzo, Raffaella; Liverini, Giovanna; Lanni, Antonia; Goglia, Fernando; Iossa, Susanna

    2017-03-24

    Evidence indicates that many forms of fructose-induced metabolic disturbance are associated with oxidative stress and mitochondrial dysfunction. Mitochondria are prominent targets of oxidative damage; however, it is not clear whether mitochondrial DNA (mtDNA) damage and/or its lack of repair are events involved in metabolic disease resulting from a fructose-rich diet. In the present study, we evaluated the degree of oxidative damage to liver mtDNA and its repair, in addition to the state of oxidative stress and antioxidant defense in the liver of rats fed a high-fructose diet. We used male rats feeding on a high-fructose or control diet for eight weeks. Our results showed an increase in mtDNA damage in the liver of rats fed a high-fructose diet and this damage, as evaluated by the expression of DNA polymerase γ, was not repaired; in addition, the mtDNA copy number was found to be significantly reduced. A reduction in the mtDNA copy number is indicative of impaired mitochondrial biogenesis, as is the finding of a reduction in the expression of genes involved in mitochondrial biogenesis. In conclusion, a fructose-rich diet leads to mitochondrial and mtDNA damage, which consequently may have a role in liver dysfunction and metabolic diseases.

  14. Maternal dietary free or bound fructose diversely influence developmental programming of lipogenesis.

    PubMed

    Yuruk, Armagan Aytug; Nergiz-Unal, Reyhan

    2017-12-01

    Maternal dietary choices throughout preconception, pregnancy, and lactation irreversibly affect the development of fetal tissues and organs, known as fetal programming. Recommendations tend to emphasize reducing added sugars. However, the impact of maternal dietary free or bound fructose in added sugars on developmental programming of lipogenesis is unknown. Virgin Sprague-Dawley rats were randomly divided into five groups. Rats were given feed and plain water (control) or water containing maltodextrin (vehicle), fructose, high-fructose corn syrup (HFCS) containing 55% fructose, sucrose (20% w/v) for 12 weeks before mating and throughout the pregnancy and lactation periods. Body weight, water, and feed intake were measured throughout the study. At the end of the lactation period, blood was drawn to determine the fasting levels of glucose, insulin, triglycerides, and non-esterified fatty acids (NEFA) in blood. Triglycerides and acetyl Co-A Carboxylase-1 (ACC1) levels in livers were analyzed, and insulin resistance was calculated. The energy intake of dams in the HFCS group was higher than in the fructose group, while weight gain was less in the HFCS group than in the fructose group. HFCS resulted in greater insulin resistance in dams, whereas free fructose had a robust effect on the fetal programming of insulin resistance. Free fructose and HFCS in the maternal diet increased blood and liver triglycerides and NEFA content in pups. Furthermore, fructose and HFCS exposure increased phosphorylated ACC1 as compared to maltodextrin and control, indicating greater fatty acid synthesis in pups and dams. Different types of added sugar in the maternal diet have different metabolic effects on the developmental programming of lipogenesis. Consequently, high fructose intake via processed foods may increase the risk for chronic diseases, and free fructose might contribute to developmental programming of chronic diseases more than bound fructose.

  15. Effect of green tea extract microencapsulation on hypertriglyceridemia and cardiovascular tissues in high fructose-fed rats

    PubMed Central

    Jung, Moon Hee; Seong, Pil Nam; Kim, Myung Hwan; Myong, Na-Hye

    2013-01-01

    The application of polyphenols has attracted great interest in the field of functional foods and nutraceuticals due to their potential health benefits in humans. However, the effectiveness of polyphenols depends on their bioactivity and bioavailability. In the present study, the bioactive component from green tea extract (GTE) was administrated orally (50 mg/kg body weight/day) as free or in a microencapsulated form with maltodextrin in rats fed a high fructose diet. High fructose diet induced features of metabolic syndrome including hypertriglyceridemia, hyperuricemia, increased serum total cholesterol, and retroperitoneal obesity. In addition, myocardial fibrosis was increased. In rats receiving high fructose diet, the lowering of blood triglycerides, total cholesterol, non esterified fatty acid (NEFA) and uric acid, as well as the reduction in final body weight and retroperitoneal fat weight associated with the administration of GTE, led to a reversal of the features of metabolic syndrome (P < 0.05). In particular, the administration of microencapsulated GTE decreased myocardial fibrosis and increased liver catalase activity consistent with a further alleviation of serum NEFA, and hyperuricemia compared to administration of GTE. Taken together, our results suggest that microencapsulation of the bioactive components of GTE might have a protective effect on cardiovasucular system by attenuating the adverse features of myocardial fibrosis, decreasing uric acid levels and increasing hepatic catalase activity effectively by protecting their bioactivities. PMID:24133615

  16. Tartary buckwheat flavonoids ameliorate high fructose-induced insulin resistance and oxidative stress associated with the insulin signaling and Nrf2/HO-1 pathways in mice.

    PubMed

    Hu, Yuanyuan; Hou, Zuoxu; Yi, Ruokun; Wang, Zhongming; Sun, Peng; Li, Guijie; Zhao, Xin; Wang, Qiang

    2017-08-01

    The present study was conducted to explore the effects of a purified tartary buckwheat flavonoid fraction (TBF) on insulin resistance and hepatic oxidative stress in mice fed high fructose in drinking water (20%) for 8 weeks. The results indicated that continuous administration of TBF dose-dependently improved the insulin sensitivity and glucose intolerance in high fructose-fed mice. TBF treatment also reversed the reduced level of insulin action on the phosphorylation of insulin receptor substrate-1 (IRS-1), protein kinase B (Akt) and phosphatidylinositol 3-kinase (PI3K), as well as the translocation of glucose transporter type 4 (GLUT4) in the insulin-resistant liver. Furthermore, TBF was found to exert high antioxidant capacity as it acts as a shield against oxidative stress induced by high fructose by restoring the antioxidant status, and modulating nuclear factor E2 related factor 2 (Nrf2) translocation to the nucleus with subsequently up-regulated antioxidative enzyme protein expression. Histopathological examinations revealed that impaired pancreatic/hepatic tissues were effectively restored in high fructose-fed mice following TBF treatment. Our results show that TBF intake is effective in preventing the conversion of high fructose-induced insulin resistance and hepatic oxidative stress in mice by improving the insulin signaling molecules and the Nrf2 signal pathway in the liver.

  17. Effect of fructose and sucralose on flow-mediated vasodilatation in healthy, white European males.

    PubMed

    Memon, Muhammad Qasim; Simpson, Elizabeth Jane; Macdonald, Ian Andrew

    2014-07-01

    To assess how acute consumption of fructose affects flow-mediated dilatation in brachial artery. The randomised cross-over study was conducted at the University of Nottingham's Medical School, Nottingham, United Kingdom in July 2009. Ten healthy, white European males visited the laboratory twice, on separate mornings. On each visit, the volunteers consumed water (3 ml/kg bodyweight) and rested semi-supine on the bed. After 30 minutes, baseline diastolic brachial artery diameter and blood velocity was measured. At 60 minutes, blood velocity and five scans of brachial artery diameter were recorded before a blood pressure cuff was inflated on the forearm for 5 minutes and at 50-60-70-80 and 90 sec after cuff deflation. Fifteen minutes later, the volunteers consumed 500 ml of test-drink containing either fructose (0.75 g/kg bodyweight) or sucralose (sweetness-matched with fructose drink); 45 minutes later, baseline and flow-mediated dilatation was re-measured. Pre-drink and post-drink baseline values were similar on two occasions (p > 0.05). Brachial artery diameter increased (p < 0.05) by 7 +/- 3% pre-fructose and by 6.9 +/- 3% above baseline values post-fructose with no significant difference in these responses (p < 0.15). It increased (p < 0.05) by 5.9 +/- 3% above baseline before and by 6.7 +/- 2% (p < 0.01) after sucralose; a significant difference was noted in these flow-mediated dilatation responses (p < 0.02). Responses before and after sucralose were not different from those before and after fructose (p < 0.294). Acute ingestion of fructose or sucralose had no effect on flow-mediated dilatation measured at brachial artery.

  18. Cinnamon counteracts the negative effects of a high fat/high fructose diet on behavior, brain insulin signaling and Alzheimer-associated changes

    USDA-ARS?s Scientific Manuscript database

    Insulin resistance leads to memory impairment. Cinnamon (CN) improves whole body insulin resistance but its effects in the brain are not known. Changes in behavior, insulin signaling, and Alzheimer-associated gene expression in the brain were measured in male Wistar rats fed a high fat/high fructose...

  19. Maternal fructose and/or salt intake and reproductive outcome in the rat: effects on growth, fertility, sex ratio, and birth order.

    PubMed

    Gray, Clint; Long, Sophie; Green, Charlotte; Gardiner, Sheila M; Craigon, Jim; Gardner, David S

    2013-09-01

    Maternal diet can significantly skew the secondary sex ratio away from the expected value of 0.5 (proportion males), but the details of how diet may do this are unclear. Here, we altered dietary levels of salt (4% salt in the feed) and/or fructose (10% in the drinking water) of pregnant rats to model potential effects that consumption of a "Western diet" might have on maternofetal growth, development, and sex ratio. We demonstrate that excess fructose consumption before and during pregnancy lead to a marked skew in the secondary sex ratio (proportion of males, 0.60; P < 0.006). The effect was not mediated by selective developmental arrest of female embryos or influenced by fetal position in the uterine horn or sex-specific effects on sperm motility, suggesting a direct effect of glycolyzable monosaccharide on the maternal ovary and/or ovulated oocyte. Furthermore, combined excess maternal consumption of salt and fructose-sweetened beverage significantly reduced fertility, reflected as a 50% reduction in preimplantation and term litter size. In addition, we also noted birth order effects in the rat, with sequential implantation sites tending to be occupied by the same sex.

  20. Are agrochemicals present in high fructose corn syrup fed to honey bees (Apis mellifera L.)?

    USDA-ARS?s Scientific Manuscript database

    Honey bee colonies are commonly fed high fructose corn syrup (HFCS) as a nectar substitute. Many agrochemicals are applied to corn during cultivation including systemic neonicotinoids. Whether agrochemicals are present in HFCS fed to bees is unknown. Samples from the major manufacturers and distri...

  1. A comparison between the impact of two types of dietary protein on brain glucose concentrations and oxidative stress in high fructose-induced metabolic syndrome rats.

    PubMed

    Madani, Zohra; Malaisse, Willy J; Ait-Yahia, Dalila

    2015-09-01

    The present study explored the potential of fish proteins to counteract high glucose levels and oxidative stress induced by fructose in the brain. A total of 24 male Wistar rats consumed sardine protein or casein with or without high fructose (64%). After 2 months, brain tissue was used for analyses. The fructose rats exhibited an increase in body mass index (BMI), body weight, absolute and relative brain weights and brain glucose; however, there was a decrease in food and water intake. Fructose disrupts membrane homeostasis, as evidenced by an increase in the brain hydroperoxides and a decrease in catalase (CAT) and glutathione peroxidase (GSH-Px) compared to the control. The exposure to the sardine protein reduced BMI, food intake, glucose and hydroperoxides, and increased CAT and GSH-Px in the brain. In conclusion, the metabolic dysfunctions associated with the fructose treatment were ameliorated by the presence of sardine protein in the diet by decreasing BMI, brain glucose and lipid peroxidation, and increasing CAT and GSH-Px activities.

  2. The emerging role of dietary fructose in obesity and cognitive decline.

    PubMed

    Lakhan, Shaheen E; Kirchgessner, Annette

    2013-08-08

    The incidence of obesity has increased dramatically over the past several years, and in parallel, so has the prevalence of type 2 diabetes (T2D). Numerous studies have demonstrated that both obesity and T2D are associated with lower cognitive performance, cognitive decline, and dementia. Intake of dietary fructose has also increased. In fact, high-fructose corn syrup (HFCS) accounts for as much as 40% of caloric sweeteners used in the United States. Given the increase in the incidence of Alzheimer's disease (AD), characterized by an age-related decline in memory and cognitive functioning, in this report we review the effects of obesity on cognitive performance and the impact of high fructose intake in promoting cognitive decline. The paper then considers the effects of omega-3 fatty acids (FAs), which have been linked to promising results in cognitive function including ameliorating the impact of a high-fructose diet.

  3. Effects of stevia on synaptic plasticity and NADPH oxidase level of CNS in conditions of metabolic disorders caused by fructose.

    PubMed

    Chavushyan, V A; Simonyan, K V; Simonyan, R M; Isoyan, A S; Simonyan, G M; Babakhanyan, M A; Hovhannisyian, L E; Nahapetyan, Kh H; Avetisyan, L G; Simonyan, M A

    2017-12-19

    Excess dietary fructose intake associated with metabolic syndrome and insulin resistance and increased risk of developing type 2 diabetes. Previous animal studies have reported that diabetic animals have significantly impaired behavioural and cognitive functions, pathological synaptic function and impaired expression of glutamate receptors. Correction of the antioxidant status of laboratory rodents largely prevents the development of fructose-induced plurimetabolic changes in the nervous system. We suggest a novel concept of efficiency of Stevia leaves for treatment of central diabetic neuropathy. By in vivo extracellular studies induced spike activity of hippocampal neurons during high frequency stimulation of entorhinal cortex, as well as neurons of basolateral amygdala to high-frequency stimulation of the hippocampus effects of Stevia rebaudiana Bertoni plant evaluated in synaptic activity in the brain of fructose-enriched diet rats. In the conditions of metabolic disorders caused by fructose, antioxidant activity of Stevia rebaudiana was assessed by measuring the NOX activity of the hippocampus, amygdala and spinal cord. In this study, the characteristic features of the metabolic effects of dietary fructose on synaptic plasticity in hippocampal neurons and basolateral amygdala and the state of the NADPH oxidase (NOX) oxidative system of these brain formations are revealed, as well as the prospects for development of multitarget and polyfunctional phytopreparations (with adaptogenic, antioxidant, antidiabetic, nootropic activity) from native raw material of Stevia rebaudiana. Stevia modulates degree of expressiveness of potentiation/depression (approaches but fails to achieve the norm) by shifting the percentage balance in favor of depressor type of responses during high-frequency stimulation, indicating its adaptogenic role in plasticity of neural networks. Under the action of fructose an increase (3-5 times) in specific quantity of total fraction of NOX

  4. The impact of high fructose on cardiovascular system: Role of α-lipoic acid.

    PubMed

    Saygin, M; Asci, H; Cankara, F N; Bayram, D; Yesilot, S; Candan, I A; Alp, H H

    2016-02-01

    The aim of this study was to evaluate the role of α-lipoic acid (α-LA) on oxidative damage and inflammation that occur in endothelium of aorta and heart while constant consumption of high-fructose corn syrup (HFCS). The rats were randomly divided into three groups with each group containing eight rats. The groups include HFCS, HFCS + α-LA treatment, and control. HFCS was given to the rats at a ratio of 30% of F30 corn syrup in drinking water for 10 weeks. α-LA treatment was given to the rats at a dose of 100 mg/kg/day orally for the last 6 weeks. At the end of the experiment, the rats were killed by cervical dislocation. The blood samples were collected for biochemical studies, and the aortic and cardiac tissues were collected for evaluation of oxidant-antioxidant system, tissue bath, and pathological examination. HFCS had increased the levels of malondialdehyde, creatine kinase MB, lactate dehydrogenase, and uric acid and showed significant structural changes in the heart of the rats by histopathology. Those changes were improved by α-LA treatment as it was found in this treatment group. Immunohistochemical expressions of tumor necrosis factor α and inducible nitric oxide synthase were increased in HFCS group, and these receptor levels were decreased by α-LA treatment. All the tissue bath studies supported these findings. Chronic consumption of HFCS caused several problems like cardiac and endothelial injury of aorta by hyperuricemia and induced oxidative stress and inflammation. α-LA treatment reduced uric acid levels, oxidative stress, and corrected vascular responses. α-LA can be added to cardiac drugs due to its cardiovascular protective effects against the cardiovascular diseases. © The Author(s) 2015.

  5. Effect of dietary fructose on portal and systemic serum fructose levels in rats and in KHK−/− and GLUT5−/− mice

    PubMed Central

    Patel, Chirag; Sugimoto, Keiichiro; Douard, Veronique; Shah, Ami; Inui, Hiroshi; Yamanouchi, Toshikazu

    2015-01-01

    Elevated blood fructose concentrations constitute the basis for organ dysfunction in fructose-induced metabolic syndrome. We hypothesized that diet-induced changes in blood fructose concentrations are regulated by ketohexokinase (KHK) and the fructose transporter GLUT5. Portal and systemic fructose concentrations determined by HPLC in wild-type mice fed for 7 days 0% free fructose were <0.07 mM, were independent of time after feeding, were similar to those of GLUT5−/−, and did not lead to hyperglycemia. Postprandial fructose levels, however, increased markedly in those fed isocaloric 20% fructose, causing significant hyperglycemia. Deletion of KHK prevented fructose-induced hyperglycemia, but caused dramatic hyperfructosemia (>1 mM) with reversed portal to systemic gradients. Systemic fructose in wild-type and KHK−/− mice changed by 0.34 and 1.8 mM, respectively, for every millimolar increase in portal fructose concentration. Systemic glucose varied strongly with systemic, but not portal, fructose levels in wild-type, and was independent of systemic and portal fructose in KHK−/−, mice. With ad libitum feeding for 12 wk, fructose-induced hyperglycemia in wild-type, but not hyperfructosemia in KHK−/− mice, increased HbA1c concentrations. Increasing dietary fructose to 40% intensified the hyperfructosemia of KHK−/− and the fructose-induced hyperglycemia of wild-type mice. Fructose perfusion or feeding in rats also caused duration- and dose-dependent hyperfructosemia and hyperglycemia. Significant levels of blood fructose are maintained independent of dietary fructose, KHK, and GLUT5, probably by endogenous synthesis of fructose. KHK prevents hyperfructosemia and fructose-induced hyperglycemia that would markedly increase HbA1c levels. These findings explain the hyperfructosemia of human hereditary fructosuria as well as the hyperglycemia of fructose-induced metabolic syndrome. PMID:26316589

  6. (R)-α-Lipoic acid inhibits fructose-induced myoglobin fructation and the formation of advanced glycation end products (AGEs) in vitro.

    PubMed

    Ghelani, Hardik; Razmovski-Naumovski, Valentina; Pragada, Rajeswara Rao; Nammi, Srinivas

    2018-01-15

    Fructose-mediated protein glycation (fructation) has been linked to an increase in diabetic and cardiovascular complications due to over consumption of high-fructose containing diets in recent times. The objective of the present study is to evaluate the protective effect of (R)-α-lipoic acid (ALA) against fructose-induced myoglobin fructation and the formation of advanced glycation end products (AGEs) in vitro. The anti-glycation activity of ALA was determined using the formation of AGEs fluorescence intensity, iron released from the heme moiety of myoglobin and the level of fructosamine. The fructation-induced myoglobin oxidation was examined using the level of protein carbonyl content and thiol group estimation. The results showed that co-incubation of myoglobin (1 mg/mL), fructose (1 M) and ALA (1, 2 and 4 mM) significantly inhibited the formation of AGEs during the 30 day study period. ALA markedly decreased the levels of fructosamine, which is directly associated with the reduction of AGEs formation. Furthermore, ALA significantly reduced free iron release from myoglobin which is attributed to the protection of myoglobin from fructose-induced glycation. The results also demonstrated a significant protective effect of ALA on myoglobin oxidative damages, as seen from decreased protein carbonyl content and increased protein thiols. These findings provide new insights into the anti-glycation properties of ALA and emphasize that ALA supplementation is beneficial in the prevention of AGEs-mediated diabetic and cardiovascular complications.

  7. Consumption of a diet low in advanced glycation end products for 4 weeks improves insulin sensitivity in overweight women.

    PubMed

    Mark, Alicja Budek; Poulsen, Malene Wibe; Andersen, Stine; Andersen, Jeanette Marker; Bak, Monika Judyta; Ritz, Christian; Holst, Jens Juul; Nielsen, John; de Courten, Barbora; Dragsted, Lars Ove; Bügel, Susanne Gjedsted

    2014-01-01

    OBJECTIVE High-heat cooking of food induces the formation of advanced glycation end products (AGEs), which are thought to impair glucose metabolism in type 2 diabetic patients. High intake of fructose might additionally affect endogenous formation of AGEs. This parallel intervention study investigated whether the addition of fructose or cooking methods influencing the AGE content of food affect insulin sensitivity in overweight individuals. RESEARCH DESIGN AND METHODS Seventy-four overweight women were randomized to follow either a high- or low-AGE diet for 4 weeks, together with consumption of either fructose or glucose drinks. Glucose and insulin concentrations-after fasting and 2 h after an oral glucose tolerance test-were measured before and after the intervention. Homeostasis model assessment of insulin resistance (HOMA-IR) and insulin sensitivity index were calculated. Dietary and urinary AGE concentrations were measured (liquid chromatography tandem mass spectrometry) to estimate AGE intake and excretion. RESULTS When adjusted for changes in anthropometric measures during the intervention, the low-AGE diet decreased urinary AGEs, fasting insulin concentrations, and HOMA-IR, compared with the high-AGE diet. Addition of fructose did not affect any outcomes. CONCLUSIONS Diets with high AGE content may increase the development of insulin resistance. AGEs can be reduced by modulation of cooking methods but is unaffected by moderate fructose intake.

  8. Increased oxidative stress and apoptosis in peripheral blood mononuclear cells of fructose-fed rats.

    PubMed

    Porto, Marcella L; Lírio, Layla M; Dias, Ananda T; Batista, Alan T; Campagnaro, Bianca P; Mill, José G; Meyrelles, Silvana S; Baldo, Marcelo P

    2015-12-01

    Measuring of oxidative stress in peripheral blood mononuclear cells is a suitable model of dietary induced systemic oxidative stress. Thus, we aimed to evaluate whether a chronic high fructose intake could induce oxidative damage in peripheral blood and bone marrow mononuclear cells of rats. Animals were randomly assigned to the following groups: Control group (standard rat chow and tap water n=8), and Fructose group (standard rat chow and a 10% fructose solution in the drinking water n=8). Reactive oxygen species and cytokines were measure using flow cytometry in peripheral blood and bone-marrow mononuclear cells. Apoptotic cell death and the advanced oxidation protein products (AOPP) were also determined. We observed a significant increase in ROS production in peripheral blood mononuclear cells of fructose group as compared to control rats. Apoptosis and the AOPP were higher in those animals underwent high fructose intake. Serum levels of IL-6 and IL-12 were also increased after 12 weeks of high fructose intake. We concluded that fructose intake leads to systemic oxidative stress and pro-inflammatory condition which affect peripheral blood mononuclear cells and bone-marrow mononuclear cells viability. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. [Estimation of the consumption frequency of high glucose corn syrup by patients with hypertension].

    PubMed

    Semków-Pochwatko, Aneta; Stolarz-Skrzypek, Katarzyna; Czarnecka, Danuta

    Hypertension is a major health problem in modern times, due to its high prevalence. This is an important risk factor for cardiovascular disease, which are the main cause of death in developed countries. The component of prevention and non-pharmacological treatment of hypertension is a proper diet. More and more often an adequate supply of sugars in the diet is emphasized. In recent years particular attention was paid to the consumption of HFCS (high fructose corn syrup), which is present in many processed foods. The aim of this study was to estimate the frequency of consumption of HFCS products among patients with hypertension. The study involved 108 people diagnosed with hypertension, who attended to the Hypertensive Clinic in Krakow. The study was conducted in the form of Food Frequency Questionnaire (FFQ) of 24 selected beverages and solid products, which are a source of HFCS. In addition, the survey included 6 questions about nutrition knowledge on HFCS. The examination took place from October 2014. to March 2015. The vast majority of patients indicated consumption of products with HFSC. The most popular products proved to be sweets (especially chocolate bars, wafers) and fruit drinks and nectars. Frequent consumption of cola drinks was also observed, which were more often chosen by men than women. Younger respondents (<55 years old) more often than respondents over 55. years old chose sweets. At the same time our survey indicated unsatisfactory level of nutritional knowledge on HFCS among patients. The consumption of HFCS in patients with hypertension is common, at low knowledge of its harmful effects on health. Therefore there is apparent need for dietary education of patients with hypertension in this area.

  10. Role of Dietary Fructose and Hepatic De Novo Lipogenesis in Fatty Liver Disease.

    PubMed

    Softic, Samir; Cohen, David E; Kahn, C Ronald

    2016-05-01

    Nonalcoholic fatty liver disease (NAFLD) is a liver manifestation of metabolic syndrome. Overconsumption of high-fat diet (HFD) and increased intake of sugar-sweetened beverages are major risk factors for development of NAFLD. Today the most commonly consumed sugar is high fructose corn syrup. Hepatic lipids may be derived from dietary intake, esterification of plasma free fatty acids (FFA) or hepatic de novo lipogenesis (DNL). A central abnormality in NAFLD is enhanced DNL. Hepatic DNL is increased in individuals with NAFLD, while the contribution of dietary fat and plasma FFA to hepatic lipids is not significantly altered. The importance of DNL in NAFLD is further established in mouse studies with knockout of genes involved in this process. Dietary fructose increases levels of enzymes involved in DNL even more strongly than HFD. Several properties of fructose metabolism make it particularly lipogenic. Fructose is absorbed via portal vein and delivered to the liver in much higher concentrations as compared to other tissues. Fructose increases protein levels of all DNL enzymes during its conversion into triglycerides. Additionally, fructose supports lipogenesis in the setting of insulin resistance as fructose does not require insulin for its metabolism, and it directly stimulates SREBP1c, a major transcriptional regulator of DNL. Fructose also leads to ATP depletion and suppression of mitochondrial fatty acid oxidation, resulting in increased production of reactive oxygen species. Furthermore, fructose promotes ER stress and uric acid formation, additional insulin independent pathways leading to DNL. In summary, fructose metabolism supports DNL more strongly than HFD and hepatic DNL is a central abnormality in NAFLD. Disrupting fructose metabolism in the liver may provide a new therapeutic option for the treatment of NAFLD.

  11. Early Life Exposure to Fructose Alters Maternal, Fetal and Neonatal Hepatic Gene Expression and Leads to Sex-Dependent Changes in Lipid Metabolism in Rat Offspring

    PubMed Central

    Clayton, Zoe E.; Vickers, Mark H.; Bernal, Angelica; Yap, Cassandra; Sloboda, Deborah M.

    2015-01-01

    Aim Fructose consumption is associated with altered hepatic function and metabolic compromise and not surprisingly has become a focus for perinatal studies. We have previously shown that maternal fructose intake results in sex specific changes in fetal, placental and neonatal outcomes. In this follow-up study we investigated effects on maternal, fetal and neonatal hepatic fatty acid metabolism and immune modulation. Methods Pregnant rats were randomised to either control (CON) or high-fructose (FR) diets. Fructose was given in solution and comprised 20% of total caloric intake. Blood and liver samples were collected at embryonic day 21 (E21) and postnatal day (P)10. Maternal liver samples were also collected at E21 and P10. Liver triglyceride and glycogen content was measured with standard assays. Hepatic gene expression was measured with qPCR. Results Maternal fructose intake during pregnancy resulted in maternal hepatic ER stress, hepatocellular injury and increased levels of genes that favour lipogenesis. These changes were associated with a reduction in the NLRP3 inflammasome. Fetuses of mothers fed a high fructose diet displayed increased hepatic fructose transporter and reduced fructokinase mRNA levels and by 10 days of postnatal age, also have hepatic ER stress, and elevated IL1β mRNA levels. At P10, FR neonates demonstrated increased hepatic triglyceride content and particularly in males, associated changes in the expression of genes regulating beta oxidation and the NLRP3 inflammasome. Further, prenatal fructose results in sex-dependant changes in levels of key clock genes. Conclusions Maternal fructose intake results in age and sex-specific alterations in maternal fetal and neonatal free fatty acid metabolism, which may be associated in disruptions in core clock gene machinery. How these changes are associated with hepatic inflammatory processes is still unclear, although suppression of the hepatic inflammasome, as least in mothers and male neonates may

  12. Lactoferrin Dampens High-Fructose Corn Syrup-Induced Hepatic Manifestations of the Metabolic Syndrome in a Murine Model

    PubMed Central

    Li, Yi-Chieh; Hsieh, Chang-Chi

    2014-01-01

    Hepatic manifestations of the metabolic syndrome are related obesity, type 2 diabetes/insulin resistance and non-alcoholic fatty liver disease. Here we investigated how the anti-inflammatory properties of lactoferrin can protect against the onset of hepatic manifestations of the metabolic syndrome by using a murine model administered with high-fructose corn syrup. Our results show that a high-fructose diet stimulates intestinal bacterial overgrowth and increases intestinal permeability, leading to the introduction of endotoxin into blood circulation and liver. Immunohistochemical staining of Toll-like receptor-4 and thymic stromal lymphopoietin indicated that lactoferrin can modulate lipopolysaccharide-mediated inflammatory cascade. The important regulatory roles are played by adipokines including interleukin-1β, interleukin-6, tumor necrosis factor-α, monocyte chemotactic protein-1, and adiponectin, ultimately reducing hepatitis and decreasing serum alanine aminotransferase release. These beneficial effects of lactoferrin related to the downregulation of the lipopolysaccharide-induced inflammatory cascade in the liver. Furthermore, lactoferrin reduced serum and hepatic triglycerides to prevent lipid accumulation in the liver, and reduced lipid peroxidation, resulting in 4-hydroxynonenal accumulation. Lactoferrin reduced oral glucose tolerance test and homeostasis model assessment-insulin resistance. Lactoferrin administration thus significantly lowered liver weight, resulting from a decrease in the triglyceride and cholesterol synthesis that activates hepatic steatosis. Taken together, these results suggest that lactoferrin protected against high-fructose corn syrup induced hepatic manifestations of the metabolic syndrome. PMID:24816278

  13. Lactoferrin dampens high-fructose corn syrup-induced hepatic manifestations of the metabolic syndrome in a murine model.

    PubMed

    Li, Yi-Chieh; Hsieh, Chang-Chi

    2014-01-01

    Hepatic manifestations of the metabolic syndrome are related obesity, type 2 diabetes/insulin resistance and non-alcoholic fatty liver disease. Here we investigated how the anti-inflammatory properties of lactoferrin can protect against the onset of hepatic manifestations of the metabolic syndrome by using a murine model administered with high-fructose corn syrup. Our results show that a high-fructose diet stimulates intestinal bacterial overgrowth and increases intestinal permeability, leading to the introduction of endotoxin into blood circulation and liver. Immunohistochemical staining of Toll-like receptor-4 and thymic stromal lymphopoietin indicated that lactoferrin can modulate lipopolysaccharide-mediated inflammatory cascade. The important regulatory roles are played by adipokines including interleukin-1β, interleukin-6, tumor necrosis factor-α, monocyte chemotactic protein-1, and adiponectin, ultimately reducing hepatitis and decreasing serum alanine aminotransferase release. These beneficial effects of lactoferrin related to the downregulation of the lipopolysaccharide-induced inflammatory cascade in the liver. Furthermore, lactoferrin reduced serum and hepatic triglycerides to prevent lipid accumulation in the liver, and reduced lipid peroxidation, resulting in 4-hydroxynonenal accumulation. Lactoferrin reduced oral glucose tolerance test and homeostasis model assessment-insulin resistance. Lactoferrin administration thus significantly lowered liver weight, resulting from a decrease in the triglyceride and cholesterol synthesis that activates hepatic steatosis. Taken together, these results suggest that lactoferrin protected against high-fructose corn syrup induced hepatic manifestations of the metabolic syndrome.

  14. Hypothesis: Could Excessive Fructose Intake and Uric Acid Cause Type 2 Diabetes?

    PubMed Central

    Johnson, Richard J.; Perez-Pozo, Santos E.; Sautin, Yuri Y.; Manitius, Jacek; Sanchez-Lozada, Laura Gabriela; Feig, Daniel I.; Shafiu, Mohamed; Segal, Mark; Glassock, Richard J.; Shimada, Michiko; Roncal, Carlos; Nakagawa, Takahiko

    2009-01-01

    We propose that excessive fructose intake (>50 g/d) may be one of the underlying etiologies of metabolic syndrome and type 2 diabetes. The primary sources of fructose are sugar (sucrose) and high fructose corn syrup. First, fructose intake correlates closely with the rate of diabetes worldwide. Second, unlike other sugars, the ingestion of excessive fructose induces features of metabolic syndrome in both laboratory animals and humans. Third, fructose appears to mediate the metabolic syndrome in part by raising uric acid, and there are now extensive experimental and clinical data supporting uric acid in the pathogenesis of metabolic syndrome. Fourth, environmental and genetic considerations provide a potential explanation of why certain groups might be more susceptible to developing diabetes. Finally, we discuss the counterarguments associated with the hypothesis and a potential explanation for these findings. If diabetes might result from excessive intake of fructose, then simple public health measures could have a major impact on improving the overall health of our populace. PMID:19151107

  15. The emerging role of dietary fructose in obesity and cognitive decline

    PubMed Central

    2013-01-01

    The incidence of obesity has increased dramatically over the past several years, and in parallel, so has the prevalence of type 2 diabetes (T2D). Numerous studies have demonstrated that both obesity and T2D are associated with lower cognitive performance, cognitive decline, and dementia. Intake of dietary fructose has also increased. In fact, high-fructose corn syrup (HFCS) accounts for as much as 40% of caloric sweeteners used in the United States. Given the increase in the incidence of Alzheimer’s disease (AD), characterized by an age-related decline in memory and cognitive functioning, in this report we review the effects of obesity on cognitive performance and the impact of high fructose intake in promoting cognitive decline. The paper then considers the effects of omega-3 fatty acids (FAs), which have been linked to promising results in cognitive function including ameliorating the impact of a high-fructose diet. PMID:23924506

  16. Fructose and Cardiometabolic Health: What the Evidence from Sugar-Sweetened Beverages Tells Us

    PubMed Central

    Malik, Vasanti S; Hu, Frank B

    2015-01-01

    Recent attention has focused on fructose as having a unique role in the pathogenesis cardiometabolic diseases. However since we rarely consume fructose in isolation, the major source of fructose in the diet comes from fructose-containing sugars, sucrose and high fructose corn syrup, in sugar sweetened beverages. Intake of these beverages has been consistently linked to increased risk of obesity, type 2 diabetes and cardiovascular disease in various populations. Putative underlying mechanisms include incomplete compensation for liquid calories, adverse glycemic effects and increased hepatic metabolism of fructose leading to de novo lipogenesis, production of uric acid and accumulation of visceral and ectopic fat. In this review we summarize the epidemiological and clinical trial evidence evaluating added sugars especially sugar-sweetened beverages, and risk of obesity, diabetes and cardiovascular disease addressing potential biological mechanisms with an emphasis on fructose physiology. We also discuss strategies to reduce intake of fructose-containing beverages. PMID:26429086

  17. A causal role for uric acid in fructose-induced metabolic syndrome.

    PubMed

    Nakagawa, Takahiko; Hu, Hanbo; Zharikov, Sergey; Tuttle, Katherine R; Short, Robert A; Glushakova, Olena; Ouyang, Xiaosen; Feig, Daniel I; Block, Edward R; Herrera-Acosta, Jaime; Patel, Jawaharlal M; Johnson, Richard J

    2006-03-01

    The worldwide epidemic of metabolic syndrome correlates with an elevation in serum uric acid as well as a marked increase in total fructose intake (in the form of table sugar and high-fructose corn syrup). Fructose raises uric acid, and the latter inhibits nitric oxide bioavailability. Because insulin requires nitric oxide to stimulate glucose uptake, we hypothesized that fructose-induced hyperuricemia may have a pathogenic role in metabolic syndrome. Four sets of experiments were performed. First, pair-feeding studies showed that fructose, and not dextrose, induced features (hyperinsulinemia, hypertriglyceridemia, and hyperuricemia) of metabolic syndrome. Second, in rats receiving a high-fructose diet, the lowering of uric acid with either allopurinol (a xanthine oxidase inhibitor) or benzbromarone (a uricosuric agent) was able to prevent or reverse features of metabolic syndrome. In particular, the administration of allopurinol prophylactically prevented fructose-induced hyperinsulinemia (272.3 vs.160.8 pmol/l, P < 0.05), systolic hypertension (142 vs. 133 mmHg, P < 0.05), hypertriglyceridemia (233.7 vs. 65.4 mg/dl, P < 0.01), and weight gain (455 vs. 425 g, P < 0.05) at 8 wk. Neither allopurinol nor benzbromarone affected dietary intake of control diet in rats. Finally, uric acid dose dependently inhibited endothelial function as manifested by a reduced vasodilatory response of aortic artery rings to acetylcholine. These data provide the first evidence that uric acid may be a cause of metabolic syndrome, possibly due to its ability to inhibit endothelial function. Fructose may have a major role in the epidemic of metabolic syndrome and obesity due to its ability to raise uric acid.

  18. Acute effect of fructose intake from sugar-sweetened beverages on plasma uric acid: a randomised controlled trial.

    PubMed

    Carran, E L; White, S J; Reynolds, A N; Haszard, J J; Venn, B J

    2016-09-01

    Excessive fructose intake has been linked to hyperuricaemia. Our aim was to test whether 355 and 600 ml of commercial sugar-sweetened soft drinks would acutely raise plasma uric acid. Forty-one participants were randomised to a control group or an intervention group. The control group consumed 600 ml of fructose and 600 ml of glucose beverages. The soft drink group consumed 355 and 600 ml of beverages in random order. The control beverages were matched for fructose content with 600 ml of soft drink (26.7 g). Blood samples were collected at baseline, 30 and 60 min and analysed for plasma uric acid. Plasma uric acid concentrations were 13 (95% confidence interval: (CI): 3, 23) and 17 μmol/l (95% CI: 6, 28) higher 30 and 60 min after consumption of 600 ml of soft drink compared with the glucose control. The corresponding values for the fructose beverage were 22 (95% CI: 16, 29) and 23 μmol/l (95% CI: 14, 33). There was no significant difference in the increase in uric acid following the 600-ml soft drink compared with the fructose control at 30 min (6 μmol/l; 95% CI: -4, 15) or 60 min (5 μmol/l; 95% CI: -7, 17). There was no difference in the uric-acid-raising effect between the 355 and 600 ml volumes at 30 min (-1 μmol/l; 95% CI: -9, 6) or 60 min (-5 μmol/l; 95% CI: -10, 1). Small and transient increases in plasma uric acid are likely after consumption of sucrose-sweetened commercially available single-serve soft drinks in volumes as small as 355 ml.

  19. Hibiscus sabdariffa calyx palliates insulin resistance, hyperglycemia, dyslipidemia and oxidative rout in fructose-induced metabolic syndrome rats.

    PubMed

    Ajiboye, Taofeek O; Raji, Hikmat O; Adeleye, Abdulwasiu O; Adigun, Nurudeen S; Giwa, Oluwayemisi B; Ojewuyi, Oluwayemisi B; Oladiji, Adenike T

    2016-03-30

    The effect of Hibiscus sabdariffa calyx extract was evaluated in high-fructose-induced metabolic syndrome rats. Insulin resistance, hyperglycemia, dyslipidemia and oxidative rout were induced in rats using high-fructose diet. High-fructose diet-fed rats were administered 100 and 200 mg kg(-1) body weight of H. sabdariffa extract for 3 weeks, starting from week 7 of high-fructose diet treatment. High-fructose diet significantly (P < 0.05) increased the serum levels of blood glucose, insulin, total cholesterol (TC), triacylglycerol (TAG), low-density lipoprotein cholesterol (LDLc) and very-low-density lipoprotein cholesterol (VLDLc), with a concomitant reduction in high-density lipoprotein cholesterol (HDLc). These alterations were significantly ameliorated by the extract. High-fructose diet-mediated decreases in the activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), glutathione reductase (GSH-red) and glucose 6-phosphate dehydrogenase (Glc 6-PD) were significantly (P < 0.05) attenuated. Altered levels of reduced glutathione (GSH) and glutathione disulfide (GSSG) were significantly (P < 0.05) restored to normal. High-fructose diet-mediated increases in the concentrations of malondialdehyde, conjugated dienes, lipid hydroperoxides, protein carbonyl and percentage fragmented DNA were significantly (P < 0.05) lowered by the Hibiscus extract. Overall, aqueous extract of H. sabdariffa palliates insulin resistance, hyperglycemia, dyslipidemia and oxidative rout in high-fructose-induced metabolic syndrome rats. © 2015 Society of Chemical Industry.

  20. d-Fructose-Decorated Poly(ethylene imine) for Human Breast Cancer Cell Targeting.

    PubMed

    Englert, Christoph; Pröhl, Michael; Czaplewska, Justyna A; Fritzsche, Carolin; Preußger, Elisabeth; Schubert, Ulrich S; Traeger, Anja; Gottschaldt, Michael

    2017-08-01

    The high affinity of GLUT5 transporter for d-fructose in breast cancer cells has been discussed intensely. In this contribution, high molar mass linear poly(ethylene imine) (LPEI) is functionalized with d-fructose moieties to combine the selectivity for the GLUT5 transporter with the delivery potential of PEI for genetic material. The four-step synthesis of a thiol-group bearing d-fructose enables the decoration of a cationic polymer backbone with d-fructose via thiol-ene photoaddition. The functionalization of LPEI is confirmed by 2D NMR techniques, elemental analysis, and size exclusion chromatography. Importantly, a d-fructose decoration of 16% renders the polymers water-soluble and eliminates the cytotoxicity of PEI in noncancer L929 cells, accompanied by a reduced unspecific cellular uptake of the genetic material. In contrast, the cytotoxicity as well as the cell specific uptake is increased for triple negative MDA-MB-231 breast cancer cells. Therefore, the introduction of d-fructose shows superior potential for cell targeting, which can be assumed to be GLUT5 dependent. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Added fructose: a principal driver of type 2 diabetes mellitus and its consequences.

    PubMed

    DiNicolantonio, James J; O'Keefe, James H; Lucan, Sean C

    2015-03-01

    Data from animal experiments and human studies implicate added sugars (eg, sucrose and high-fructose corn syrup) in the development of diabetes mellitus and related metabolic derangements that raise cardiovascular (CV) risk. Added fructose in particular (eg, as a constituent of added sucrose or as the main component of high-fructose sweeteners) may pose the greatest problem for incident diabetes, diabetes-related metabolic abnormalities, and CV risk. Conversely, whole foods that contain fructose (eg, fruits and vegetables) pose no problem for health and are likely protective against diabetes and adverse CV outcomes. Several dietary guidelines appropriately recommend consuming whole foods over foods with added sugars, but some (eg, recommendations from the American Diabetes Association) do not recommend restricting fructose-containing added sugars to any specific level. Other guidelines (such as from the Institute of Medicine) allow up to 25% of calories as fructose-containing added sugars. Intake of added fructose at such high levels would undoubtedly worsen rates of diabetes and its complications. There is no need for added fructose or any added sugars in the diet; reducing intake to 5% of total calories (the level now suggested by the World Health Organization) has been shown to improve glucose tolerance in humans and decrease the prevalence of diabetes and the metabolic derangements that often precede and accompany it. Reducing the intake of added sugars could translate to reduced diabetes-related morbidity and premature mortality for populations. Copyright © 2015 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.

  2. Role of Dietary Fructose and Hepatic de novo Lipogenesis in Fatty Liver Disease

    PubMed Central

    Softic, Samir; Cohen, David E.; Kahn, C. Ronald

    2016-01-01

    Non-alcoholic fatty liver disease (NAFLD) is a liver manifestation of metabolic syndrome. Overconsumption of high-fat diet (HFD) and increased intake of sugar sweetened beverages are major risk-factors for development of NAFLD. Today the most commonly consumed sugar is high fructose corn syrup. Hepatic lipids may be derived from dietary intake, esterification of plasma free fatty acids (FFA) or hepatic de novo lipogenesis (DNL). A central abnormality in NAFLD is enhanced de novo lipogenesis. Hepatic de novo lipogenesis is increased in individuals with NAFLD, while the contribution of dietary fat and plasma FFA to hepatic lipids is not significantly altered. The importance of DNL in NAFLD is further established in mouse studies with knockout of genes involved in this process. Dietary fructose increases levels of enzymes involved in DNL even more strongly than HFD. Several properties of fructose metabolism make it particularly lipogenic. Fructose is absorbed via portal vein and delivered to the liver in much higher concentrations as compared to other tissues. Fructose increases protein levels of all DNL enzymes during its conversion into triglycerides. Additionally, fructose supports lipogenesis in the setting of insulin resistance as fructose does not require insulin for its metabolism and it directly stimulates SREBP1c, a major transcriptional regulator of DNL. Fructose also leads to ATP depletion and suppression of mitochondrial fatty acid oxidation resulting in increased production of reactive oxygen species. Furthermore fructose promotes ER stress and uric acid formation, additional insulin independent pathways leading to DNL. In summary, fructose metabolism supports DNL more strongly than HFD and hepatic DNL is a central abnormality in NAFLD. Disrupting fructose metabolism in the liver may provide a new therapeutic option for the treatment of NAFLD. PMID:26856717

  3. Fructose-human serum albumin interaction undergoes numerous biophysical and biochemical changes before forming AGEs and aggregates.

    PubMed

    Zaman, Asif; Arif, Zarina; Moinuddin; Alam, Khursheed

    2018-04-01

    Fructose is a reducing and highly lipogenic sugar that has unique metabolic effects in the liver. Non-enzymatic fructosylation of proteins generates advanced glycation end products (AGEs). Human serum albumin (HSA) may undergo fructosylation vis-à-vis AGEs formation. High fructose consumption may lead to structurally altered and functionally compromised fructosylated-HSA-AGEs, which can cause damage to hepatocytes resulting in hepatic macro- and microvesicular steatosis. In this study, HSA was incubated with varying concentrations of fructose for 10days and the induced changes were studied. Fructosylated-HSA exhibited hyperchromicity, increased AGE-specific fluorescence, quenching of tryptophan fluorescence and increased melting temperature. Nε-[carboxymethyl]-lysine (CML), was detected by liquid chromatography mass spectrometry (LC-MS). Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) results showed decreased mobility in fructosylated-HSA. Perturbations in secondary and tertiary structure were revealed by fourier transform-infrared spectroscopy (FT-IR), supported by far- and near-UV circular dichroism (CD). Dynamic light scattering (DLS) and Matrix-Assisted Laser Desorption Ionization-Time of Flight (MALDI-TOF) mass spectrometry studies suggested increase in molecular mass of fructosylated-HSA. Amyloidogenic aggregates were confirmed from Congo red, Thioflavin T assay and Scanning electron microscope (SEM). These investigations confirmed the structural alterations in fructosylated-HSA and warrants further study to probe the role of fructosylated-HSA-AGEs in hepatopathy vis-à-vis fatty liver diseases. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Fructose-containing sugars, blood pressure, and cardiometabolic risk: a critical review.

    PubMed

    Ha, Vanessa; Jayalath, Viranda H; Cozma, Adrian I; Mirrahimi, Arash; de Souza, Russell J; Sievenpiper, John L

    2013-08-01

    Excessive fructose intake from high-fructose corn syrup (HFCS) and sucrose has been implicated as a driving force behind the increasing prevalence of obesity and its downstream cardiometabolic complications including hypertension, gout, dyslidpidemia, metabolic syndrome, diabetes, and non-alcoholic fatty liver disease (NAFLD). Most of the evidence to support these relationships draws heavily on ecological studies, animal models, and select human trials of fructose overfeeding. There are a number of biological mechanisms derived from animal models to explain these relationships, including increases in de novo lipogenesis and uric acid-mediated hypertension. Differences between animal and human physiology, along with the supraphysiologic level at which fructose is fed in these models, limit their translation to humans. Although higher level evidence from large prospective cohorts studies has shown significant positive associations comparing the highest with the lowest levels of intake of sugar-sweetened beverages (SSBs), these associations do not hold true at moderate levels of intake or when modeling total sugars and are subject to collinearity effects from related dietary and lifestyle factors. The highest level of evidence from controlled feeding trials has shown a lack of cardiometabolic harm of fructose and SSBs under energy-matched conditions at moderate levels of intake. It is only when fructose-containing sugars or SSBs are consumed at high doses or supplement diets with excess energy that a consistent signal for harm is seen. The available evidence suggests that confounding by excess energy is an important consideration in assessing the role of fructose-containing sugars and SSBs in the epidemics of hypertension and other cardiometabolic diseases.

  5. Fructose content and composition of commercial HFCS-sweetened carbonated beverages.

    PubMed

    White, J S; Hobbs, L J; Fernandez, S

    2015-01-01

    The obesigenic and related health effects of caloric sweeteners are subjects of much current research. Consumers can properly adjust their diets to conform to nutritional recommendations only if the sugars composition of foods and beverages is accurately measured and reported, a matter of recent concern. We tested the hypothesis that high-fructose corn syrup (HFCS) used in commercial carbonated beverages conforms to commonly assumed fructose percentages and industry technical specifications, and fulfills beverage product label regulations and Food Chemicals Codex-stipulated standards. A high-pressure liquid chromatography method was developed and verified for analysis of sugars in carbonated beverages sweetened with HFCS-55. The method was used to measure percent fructose in three carbonated beverage categories. Method verification was demonstrated by acceptable linearity (R(2)>0.99), accuracy (94-104% recovery) and precision (RSD < 2%). Fructose comprised 55.58% of total sugars (95% confidence interval 55.51-55.65%), based on 160 total measurements by 2 independent laboratories of 80 randomly selected carbonated beverages sweetened with HFCS-55. The difference in fructose measurements between laboratories was significant but small (0.1%), and lacked relevance. Differences in fructose by product category or by product age were not statistically significant. Total sugars content of carbonated beverages showed close agreement within product categories (95% confidence interval = 0.01-0.54%). Using verified analytical methodology for HFCS-sweetened carbonated beverages, this study confirmed the hypothesis that fructose as a percentage of total sugars is in close agreement with published specifications in industry technical data sheets, published literature values and governmental standards and requirements. Furthermore, total sugars content of commercial beverages is consistent with common industry practices for canned and bottled products and met the US Federal

  6. Divergent effects of glucose and fructose on hepatic lipogenesis and insulin signaling.

    PubMed

    Softic, Samir; Gupta, Manoj K; Wang, Guo-Xiao; Fujisaka, Shiho; O'Neill, Brian T; Rao, Tata Nageswara; Willoughby, Jennifer; Harbison, Carole; Fitzgerald, Kevin; Ilkayeva, Olga; Newgard, Christopher B; Cohen, David E; Kahn, C Ronald

    2017-11-01

    Overconsumption of high-fat diet (HFD) and sugar-sweetened beverages are risk factors for developing obesity, insulin resistance, and fatty liver disease. Here we have dissected mechanisms underlying this association using mice fed either chow or HFD with or without fructose- or glucose-supplemented water. In chow-fed mice, there was no major physiological difference between fructose and glucose supplementation. On the other hand, mice on HFD supplemented with fructose developed more pronounced obesity, glucose intolerance, and hepatomegaly as compared to glucose-supplemented HFD mice, despite similar caloric intake. Fructose and glucose supplementation also had distinct effects on expression of the lipogenic transcription factors ChREBP and SREBP1c. While both sugars increased ChREBP-β, fructose supplementation uniquely increased SREBP1c and downstream fatty acid synthesis genes, resulting in reduced liver insulin signaling. In contrast, glucose enhanced total ChREBP expression and triglyceride synthesis but was associated with improved hepatic insulin signaling. Metabolomic and RNA sequence analysis confirmed dichotomous effects of fructose and glucose supplementation on liver metabolism in spite of inducing similar hepatic lipid accumulation. Ketohexokinase, the first enzyme of fructose metabolism, was increased in fructose-fed mice and in obese humans with steatohepatitis. Knockdown of ketohexokinase in liver improved hepatic steatosis and glucose tolerance in fructose-supplemented mice. Thus, fructose is a component of dietary sugar that is distinctively associated with poor metabolic outcomes, whereas increased glucose intake may be protective.

  7. Divergent effects of glucose and fructose on hepatic lipogenesis and insulin signaling

    PubMed Central

    Softic, Samir; Gupta, Manoj K.; Wang, Guo-Xiao; Fujisaka, Shiho; O’Neill, Brian T.; Rao, Tata Nageswara; Willoughby, Jennifer; Harbison, Carole; Fitzgerald, Kevin; Ilkayeva, Olga; Newgard, Christopher B.; Cohen, David E.

    2017-01-01

    Overconsumption of high-fat diet (HFD) and sugar-sweetened beverages are risk factors for developing obesity, insulin resistance, and fatty liver disease. Here we have dissected mechanisms underlying this association using mice fed either chow or HFD with or without fructose- or glucose-supplemented water. In chow-fed mice, there was no major physiological difference between fructose and glucose supplementation. On the other hand, mice on HFD supplemented with fructose developed more pronounced obesity, glucose intolerance, and hepatomegaly as compared to glucose-supplemented HFD mice, despite similar caloric intake. Fructose and glucose supplementation also had distinct effects on expression of the lipogenic transcription factors ChREBP and SREBP1c. While both sugars increased ChREBP-β, fructose supplementation uniquely increased SREBP1c and downstream fatty acid synthesis genes, resulting in reduced liver insulin signaling. In contrast, glucose enhanced total ChREBP expression and triglyceride synthesis but was associated with improved hepatic insulin signaling. Metabolomic and RNA sequence analysis confirmed dichotomous effects of fructose and glucose supplementation on liver metabolism in spite of inducing similar hepatic lipid accumulation. Ketohexokinase, the first enzyme of fructose metabolism, was increased in fructose-fed mice and in obese humans with steatohepatitis. Knockdown of ketohexokinase in liver improved hepatic steatosis and glucose tolerance in fructose-supplemented mice. Thus, fructose is a component of dietary sugar that is distinctively associated with poor metabolic outcomes, whereas increased glucose intake may be protective. PMID:28972537

  8. Fructose and Cardiometabolic Health: What the Evidence From Sugar-Sweetened Beverages Tells Us.

    PubMed

    Malik, Vasanti S; Hu, Frank B

    2015-10-06

    Recent attention has focused on fructose as having a unique role in the pathogenesis of cardiometabolic diseases. However, because we rarely consume fructose in isolation, the major source of fructose in the diet comes from fructose-containing sugars, sucrose and high fructose corn syrup, in sugar-sweetened beverages and foods. Intake of sugar-sweetened beverages has been consistently linked to increased risk of obesity, type 2 diabetes, and cardiovascular disease in various populations. Putative underlying mechanisms include incomplete compensation for liquid calories, adverse glycemic effects, and increased hepatic metabolism of fructose leading to de novo lipogenesis, production of uric acid, and accumulation of visceral and ectopic fat. In this review we summarize the epidemiological and clinical trial evidence evaluating added sugars, especially sugar-sweetened beverages, and the risk of obesity, diabetes, and cardiovascular disease and address potential biological mechanisms with an emphasis on fructose physiology. We also discuss strategies to reduce intake of fructose-containing beverages. Copyright © 2015 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  9. High-fructose corn syrup: everything you wanted to know, but were afraid to ask.

    PubMed

    Fulgoni, Victor

    2008-12-01

    The annual American Society for Nutrition Public Information Committee symposium for 2007 titled "High Fructose Corn Syrup (HFCS): Everything You Wanted to Know, But Were Afraid to Ask" served as a platform to address the controversy surrounding HFCS. Speakers from academia and industry came together to provide up-to-date information on this food ingredient. The proceedings from the symposium covered 1) considerable background on what HFCS is and why it is used as a food ingredient, 2) the contribution HFCS makes to consumers' diets, and 3) the latest research on the metabolic effects of HFCS. The data presented indicated that HFCS is very similar to sucrose, being about 55% fructose and 45% glucose, and thus, not surprisingly, few metabolic differences were found comparing HFCS and sucrose. That said, HFCS does contribute to added sugars and calories, and those concerned with managing their weight should be concerned about calories from beverages and other foods, regardless of HFCS content.

  10. Virgin coconut oil maintains redox status and improves glycemic conditions in high fructose fed rats.

    PubMed

    Narayanankutty, Arunaksharan; Mukesh, Reshma K; Ayoob, Shabna K; Ramavarma, Smitha K; Suseela, Indu M; Manalil, Jeksy J; Kuzhivelil, Balu T; Raghavamenon, Achuthan C

    2016-01-01

    Virgin Coconut Oil (VCO), extracted from fresh coconut kernel possess similar fatty acid composition to that of Copra Oil (CO), a product of dried kernel. Although CO forms the predominant dietary constituent in south India, VCO is being promoted for healthy life due to its constituent antioxidant molecules. High fructose containing CO is an established model for insulin resistance and steatohepatitis in rodents. In this study, replacement of CO with VCO in high fructose diet markedly improved the glucose metabolism and dyslipidemia. The animals fed VCO diet had only 17 % increase in blood glucose level compared to CO fed animals (46 %). Increased level of GSH and antioxidant enzyme activities in VCO fed rats indicate improved hepatic redox status. Reduced lipid peroxidation and carbonyl adducts in VCO fed rats well corroborate with the histopathological findings that hepatic damage and steatosis were comparatively reduced than the CO fed animals. These results suggest that VCO could be an efficient nutraceutical in preventing the development of diet induced insulin resistance and associated complications possibly through its antioxidant efficacy.

  11. Effects of dietary fructose on liver steatosis in overfed mule ducks.

    PubMed

    Davail, S; Rideau, N; Bernadet, M D; André, J M; Guy, G; Hoo-Paris, R

    2005-01-01

    Overfeeding of some waterfowl species results in obesity, which is mainly characterized by a dramatic hepatic steatosis induced by strong accumulation of lipids synthesized from dietary glucose in the liver. In mammals, fructose is known to be able to raise plasma triacylglycerol concentrations significantly; consequently, this may induce obesity. The aim of this study was to assess the effect of partial replacement of dietary glucose provided by corn starch with fructose on metabolism and fatty liver production in the Mule ducks. On the basis of 9.5 kg maize (132,920 kJ) given twice a day for 14 days, a supplementation of 9,800 kJ was provided in form of glucose, sucrose or high fructose corn syrup (HFCS: 50 % glucose, 42 % fructose and 8 % other saccharides). Fatty liver weight in ducks fed with glucose supplementation was 499 +/- 21 g. Sucrose or HFCS supplementation brought about a significant increase in liver weight (+ 18.7 % and + 16.3 % vs. glucose supplementation respectively, p < 0.05). These results suggest that the dietary fructose favors the liver steatosis by increasing hepatic lipogenesis. Postprandial plasma insulin concentrations were similar in ducks fed diets with or without fructose, suggesting that the effect of fructose on liver steatosis is not mediated by insulin.

  12. Reactive Oxygen Species-Induced TXNIP Drives Fructose-Mediated Hepatic Inflammation and Lipid Accumulation Through NLRP3 Inflammasome Activation

    PubMed Central

    Zhang, Xian; Zhang, Jian-Hua; Chen, Xu-Yang; Hu, Qing-Hua; Wang, Ming-Xing; Jin, Rui; Zhang, Qing-Yu; Wang, Wei; Wang, Rong; Kang, Lin-Lin; Li, Jin-Sheng; Li, Meng

    2015-01-01

    Abstract Aims: Increased fructose consumption predisposes the liver to nonalcoholic fatty liver disease (NAFLD), but the mechanisms are elusive. Thioredoxin-interacting protein (TXNIP) links oxidative stress to NOD-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome activation and this signaling axis may be involved in fructose-induced NAFLD. Here, we explore the role of reactive oxygen species (ROS)-induced TXNIP overexpression in fructose-mediated hepatic NLRP3 inflammasome activation, inflammation, and lipid accumulation. Results: Rats were fed a 10% fructose diet for 8 weeks and treated with allopurinol and quercetin during the last 4 weeks. Five millimolars of fructose-exposed hepatocytes (primary rat hepatocytes, rat hepatic parenchymal cells [RHPCs], HLO2, HepG2) were co-incubated with antioxidants or caspase-1 inhibitor or subjected to TXNIP or NLRP3 siRNA interference. Fructose induced NLRP3 inflammasome activation and pro-inflammatory cytokine secretion, janus-activated kinase 2/signal transducers and activators of transcription 3-mediated inflammatory signaling, and expression alteration of lipid metabolism-related genes in cultured hepatocytes and rat livers. NLRP3 silencing and caspase-1 suppression blocked these effects in primary rat hepatocytes and RHPCs, confirming that inflammasome activation alters hepatocyte lipid metabolism. Hepatocellular ROS and TXNIP were increased in animal and cell models. TXNIP silencing blocked NLRP3 inflammasome activation, inflammation, and lipid metabolism perturbations but not ROS induction in fructose-exposed hepatocytes, whereas antioxidants addition abrogated TXNIP induction and diminished the detrimental effects in fructose-exposed hepatocytes and rat livers. Innovation and Conclusions: This study provides a novel mechanism for fructose-induced NAFLD pathogenesis by which the ROS-TXNIP pathway mediates hepatocellular NLRP3 inflammasome activation, inflammation and lipid accumulation. Antioxidant

  13. High-intensity interval training has beneficial effects on cardiac remodeling through local renin-angiotensin system modulation in mice fed high-fat or high-fructose diets.

    PubMed

    de Oliveira Sá, Guilherme; Dos Santos Neves, Vívian; de Oliveira Fraga, Shyrlei R; Souza-Mello, Vanessa; Barbosa-da-Silva, Sandra

    2017-11-15

    HIIT (high-intensity interval training) has the potential to reduce cardiometabolic risk factors, but the effects on cardiac remodeling and local RAS (renin-angiotensin system) in mice fed high-fat or high-fructose diets still need to be fully addressed. Sixty male C57BL/6 mice (12weeks old) were randomly divided into three groups, control (C), High-fat (HF), or High-fructose diet (HRU) and were monitored for eight weeks before being submitted to the HIIT. Each group was randomly assigned to 2 subgroups, one subgroup was started on a 12-week HIIT protocol (T=trained group), while the other subgroup remained non-exercised (NT=not-trained group). HIIT reduced BM and systolic blood pressure in high-fat groups, while enhanced insulin sensitivity after high-fat or high-fructose intake. Moreover, HIIT reduced left ventricular hypertrophy in HF-T and HFRU-T. Notably, HIIT modulated key factors in the local left ventricular renin-angiotensin-system (RAS): reduced protein expression of renin, ACE (Angiotensin-converting enzyme), and (Angiotensin type 2 receptor) AT2R in HF-T and HFRU-T groups but reduced (Angiotensin type 1 receptor) AT1R protein expression only in the high-fat trained group. HIIT modulated ACE2/Ang (1-7)/Mas receptor axis. ACE2 mRNA gene expression was enhanced in HF-T and HFRU-T groups, complying with elevated Mas (Mas proto-oncogene, G protein-coupled receptor) receptor mRNA gene expression after HIIT. This study shows the effectiveness of HIIT sessions in producing improvements in insulin sensitivity and mitigating LV hypertrophy, though hypertension was controlled only in the high-fat-fed submitted to HIIT protocol. Local RAS system in the heart mediates these findings and receptor MAS seems to play a pivotal role when it comes to the amelioration of cardiac structural and functional remodeling due to HIIT. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Effect of High Fructose and High Fat Diets on Pulmonary Sensitivity, Motor Activity, and Body Composition of Brown Norway Rats Exposed to Ozone

    EPA Science Inventory

    Diet-induced obesity has been suggested to lead to increased susceptibility to air pollutants such as ozone (03); however, there is little experimental evidence. Thirty day old male and female Brown Norway rats were fed a normal, high-fructose or high-fat diet for 12 weeks and th...

  15. Fructose-enriched diet induces inflammation and reduces antioxidative defense in visceral adipose tissue of young female rats.

    PubMed

    Kovačević, Sanja; Nestorov, Jelena; Matić, Gordana; Elaković, Ivana

    2017-02-01

    The consumption of refined, fructose-enriched food continuously increases and has been linked to development of obesity, especially in young population. Low-grade inflammation and increased oxidative stress have been implicated in the pathogenesis of obesity-related disorders including type 2 diabetes. In this study, we examined alterations in inflammation and antioxidative defense system in the visceral adipose tissue (VAT) of fructose-fed young female rats, and related them to changes in adiposity and insulin sensitivity. We examined the effects of 9-week fructose-enriched diet applied immediately after weaning on nuclear factor κB (NF-κB) intracellular distribution, and on the expression of pro-inflammatory cytokines (IL-1β and TNFα) and key antioxidative enzymes in the VAT of female rats. Insulin signaling in the VAT was evaluated at the level of insulin receptor substrate-1 (IRS-1) protein and its inhibitory phosphorylation on Ser 307 . Fructose-fed rats had increased VAT mass along with increased NF-κB nuclear accumulation and elevated IL-1β, but not TNFα expression. The protein levels of antioxidative defense enzymes, mitochondrial manganese superoxide dismutase 2, and glutathione peroxidase, were reduced, while the protein content of IRS-1 and its inhibitory phosphorylation were not altered by fructose diet. The results suggest that fructose overconsumption-related alterations in pro-inflammatory markers and antioxidative capacity in the VAT of young female rats can be implicated in the development of adiposity, but do not affect inhibitory phosphorylation of IRS-1.

  16. Quercetin attenuates high fructose feeding-induced atherosclerosis by suppressing inflammation and apoptosis via ROS-regulated PI3K/AKT signaling pathway.

    PubMed

    Lu, Xue-Li; Zhao, Cui-Hua; Yao, Xin-Liang; Zhang, Han

    2017-01-01

    Quercetin is a dietary flavonoid compound extracted from various plants, such as apple and onions. Previous studies have revealed its anti-inflammatory, anti-cancer, antioxidant and anti-apoptotic activities. This study investigated the ability of quercetin to inhibit high fructose feeding- or LPS-induced atherosclerosis through regulating oxidative stress, apoptosis and inflammation response in vivo and in vitro experiments. 50 and 100mg/kg quercetin were used in our study, showing significant inhibitory role in high fructose-induced atherosclerosis via reducing reactive oxygen species (ROS) levels, Caspase-3 activation, inflammatory cytokines releasing, the number of terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL)-positive cells and collagen contents as well as modulating apoptosis- and inflammation-related proteins expression. We also explored the protective effects of quercetin on atherosclerosis by phosphatidylinositide 3-kinases (PI3K)/Protein kinase B (AKT)-associated Bcl-2/Caspase-3 and nuclear factor kappa B (NF-κB) signal pathways activation, promoting AKT and Bcl-2 expression and reducing Caspase-3 and NF-κB activation. Quercetin reduced the atherosclerotic plaque size in vivo in high fructose feeding-induced mice assessed by oil red O. Also, in vitro experiments, quercetin displayed inhibitory role in LPS-induced ROS production, inflammatory response and apoptosis, which were linked with PI3K/AKT-regulated Caspase-3 and NF-κB activation. In conclusion, our results showed that quercetin inhibited atherosclerotic plaque development in high fructose feeding mice via PI3K/AKT activation regulated by ROS. Copyright © 2016. Published by Elsevier Masson SAS.

  17. Moderate (20%) fructose-enriched diet stimulates salt-sensitive hypertension with increased salt retention and decreased renal nitric oxide.

    PubMed

    Gordish, Kevin L; Kassem, Kamal M; Ortiz, Pablo A; Beierwaltes, William H

    2017-04-01

    Previously, we reported that 20% fructose diet causes salt-sensitive hypertension. In this study, we hypothesized that a high salt diet supplemented with 20% fructose (in drinking water) stimulates salt-sensitive hypertension by increasing salt retention through decreasing renal nitric oxide. Rats in metabolic cages consumed normal rat chow for 5 days (baseline), then either: (1) normal salt for 2 weeks, (2) 20% fructose in drinking water for 2 weeks, (3) 20% fructose for 1 week, then fructose + high salt (4% NaCl) for 1 week, (4) normal chow for 1 week, then high salt for 1 week, (5) 20% glucose for 1 week, then glucose + high salt for 1 week. Blood pressure, sodium excretion, and cumulative sodium balance were measured. Systolic blood pressure was unchanged by 20% fructose or high salt diet. 20% fructose + high salt increased systolic blood pressure from 125 ± 1 to 140 ± 2 mmHg ( P  < 0.001). Cumulative sodium balance was greater in rats consuming fructose + high salt than either high salt, or glucose + high salt (114.2 ± 4.4 vs. 103.6 ± 2.2 and 98.6 ± 5.6 mEq/Day19; P  < 0.05). Sodium excretion was lower in fructose + high salt group compared to high salt only: 5.33 ± 0.21 versus 7.67 ± 0.31 mmol/24 h; P  < 0.001). Nitric oxide excretion was 2935 ± 256  μ mol/24 h in high salt-fed rats, but reduced by 40% in the 20% fructose + high salt group (2139 ± 178  μ mol /24 hrs P  < 0.01). Our results suggest that fructose predisposes rats to salt-sensitivity and, combined with a high salt diet, leads to sodium retention, increased blood pressure, and impaired renal nitric oxide availability. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  18. The Establishment of Metabolic Syndrome Model by Induction of Fructose Drinking Water in Male Wistar Rats

    PubMed Central

    Thent, Zar Chi; Sapri, Shaiful Ridzwan; Sahruddin, Natasya Nadia; Mohd Yusof, Mohd Rafizul; Haji Suhaimi, Farihah

    2014-01-01

    Background. Metabolic syndrome can be caused by modification of diet by means of consumption of high carbohydrate and high fat diet such as fructose. Aims. To develop a metabolic syndrome rat model by induction of fructose drinking water (FDW) in male Wistar rats. Methods. Eighteen male Wistar rats were fed with FDW 20% and FDW 25% for a duration of eight weeks. The physiological changes with regard to food and fluid intake, as well as calorie intake, were measured. The metabolic changes such as obesity, dyslipidaemia, hypertension, and hyperglycaemia were determined. Data was presented in mean ± SEM subjected to one-way ANOVA. Results. Male Wistar rats fed with FDW 20% for eight weeks developed significant higher obesity parameters compared to those fed with FDW 25%. There was hypertrophy of adipocytes in F20 and F25. There were also systolic hypertension, hypertriglyceridemia, and hyperglycemia in both groups. Conclusion. We conclude that the metabolic syndrome rat model is best established with the induction of FDW 20% for eight weeks. This was evident in the form of higher obesity parameter which caused the development of the metabolic syndrome. PMID:25045660

  19. Microcirculatory effects of zinc on fructose-fed hamsters.

    PubMed

    Castiglione, R C; Barros, C M M R; Boa, B C S; Bouskela, E

    2016-04-01

    Fructose is a major dietary component directly related to vascular dysfunction and diseases such as obesity, diabetes, and hypertension. Zinc is considered a non-pharmacological alternative for treating diabetes due to its antioxidant and hyperglycemia-lowering effects in diabetic animals. Therefore, the aim of this study was to evaluate the effects of dietary zinc supplementation on the microcirculatory parameters of fructose-fed hamsters. Male hamsters (Mesocricetus auratus) were fed drinking water substituted by 10% fructose solution for 60 days, whereas control animals were fed drinking water alone. Their microcirculatory function was evaluated using cheek pouch preparation, as well as their blood glucose and serum insulin levels. Their microcirculatory responses to acetylcholine (ACh, an endothelium-dependent vasodilator) and to sodium nitroprusside (SNP, an endothelium-independent vasodilator) as well as the increase in macromolecular permeability induced by 30 min of ischemia/reperfusion (I/R) were noted. Endothelium-dependent vasodilation was significantly increased in control animals with high zinc supplementation compared to the groups without zinc supplementation. Zinc was able to protect against plasma leakage induced by I/R in all control and fructose-fed groups, although the microvascular permeability was higher in animals fed drinking water substituted by 10% fructose solution compared to those fed filtered drinking water alone. Our results indicate that dietary zinc supplementation can improve microvascular dysfunction by increasing endothelial-dependent dilatation and reducing the increase in macromolecular permeability induced by I/R in fructose-fed animals. Copyright © 2015 The Italian Society of Diabetology, the Italian Society for the Study of Atherosclerosis, the Italian Society of Human Nutrition, and the Department of Clinical Medicine and Surgery, Federico II University. Published by Elsevier B.V. All rights reserved.

  20. High-fructose corn syrup-induced hepatic dysfunction in rats: improving effect of resveratrol.

    PubMed

    Sadi, Gokhan; Ergin, Volkan; Yilmaz, Guldal; Pektas, M Bilgehan; Yildirim, O Gokhan; Menevse, Adnan; Akar, Fatma

    2015-09-01

    The increased consumption of high-fructose corn syrup (HFCS) may contribute to the worldwide epidemic of fatty liver. In this study, we have investigated whether HFCS intake (20% beverages) influences lipid synthesis and accumulation in conjunction with insulin receptor substrate-1/2 (IRS-1; IRS-2), endothelial nitric oxide synthase (eNOS), sirtuin 1 (SIRT1) and inducible NOS (iNOS) expressions in liver of rats. Resveratrol was tested for its potential efficacy on changes induced by HFCS. Animals were randomly divided into four groups as control, resveratrol, HFCS and resveratrol plus HFCS (resveratrol + HFCS). HFCS was given as 20% solutions in drinking water. Feeding of all rats was maintained by a standard diet that enriched with or without resveratrol for 12 weeks. Dietary HFCS increased triglyceride content and caused mild microvesicular steatosis in association with up-regulation of fatty acid synthase and sterol regulatory element binding protein (SREBP)-1c in liver of rats. Moreover, HFCS feeding impaired hepatic expression levels of IRS-1, eNOS and SIRT1 mRNA/proteins, but did not change iNOS level. Resveratrol promoted IRS, eNOS and SIRT1, whereas suppressed SREBP-1c expression in rats fed with HFCS. Resveratrol supplementation considerably restored hepatic changes induced by HFCS. The improvement of hepatic insulin signaling and activation of SIRT1 by resveratrol may be associated with decreased triglyceride content and expression levels of the lipogenic genes of the liver.

  1. Involvement of glucocorticoid prereceptor metabolism and signaling in rat visceral adipose tissue lipid metabolism after chronic stress combined with high-fructose diet.

    PubMed

    Bursać, Biljana; Djordjevic, Ana; Veličković, Nataša; Milutinović, Danijela Vojnović; Petrović, Snježana; Teofilović, Ana; Gligorovska, Ljupka; Preitner, Frederic; Tappy, Luc; Matić, Gordana

    2018-05-03

    Both fructose overconsumption and increased glucocorticoids secondary to chronic stress may contribute to overall dyslipidemia. In this study we specifically assessed the effects and interactions of dietary fructose and chronic stress on lipid metabolism in the visceral adipose tissue (VAT) of male Wistar rats. We analyzed the effects of 9-week 20% high fructose diet and 4-week chronic unpredictable stress, separately and in combination, on VAT histology, glucocorticoid prereceptor metabolism, glucocorticoid receptor subcellular redistribution and expression of major metabolic genes. Blood triglycerides and fatty acid composition were also measured to assess hepatic Δ9 desaturase activity. The results showed that fructose diet increased blood triglycerides and Δ9 desaturase activity. On the other hand, stress led to corticosterone elevation, glucocorticoid receptor activation and decrease in adipocyte size, while phosphoenolpyruvate carboxykinase, adipose tissue triglyceride lipase, FAT/CD36 and sterol regulatory element binding protein-1c (SREBP-1c) were increased, pointing to VAT lipolysis and glyceroneogenesis. The combination of stress and fructose diet was associated with marked stimulation of fatty acid synthase and acetyl-CoA carboxylase mRNA level and with increased 11β-hydroxysteroid dehydrogenase type 1 and hexose-6-phosphate dehydrogenase protein levels, suggesting a coordinated increase in hexose monophosphate shunt and de novo lipogenesis. It however did not influence the level of peroxisome proliferator-activated receptor-gamma, SREBP-1c and carbohydrate responsive element-binding protein. In conclusion, our results showed that only combination of dietary fructose and stress increase glucocorticoid prereceptor metabolism and stimulates lipogenic enzyme expression suggesting that interaction between stress and fructose may be instrumental in promoting VAT expansion and dysfunction. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Consumption of honey, sucrose, and high fructose corn syrup produce similar metabolic effects in glucose tolerant and glucose intolerant individuals

    USDA-ARS?s Scientific Manuscript database

    Background: Current public health recommendations call for reduction of added sugars; however, controversy exits over whether all nutritive sweeteners produce similar metabolic effects. Objective: To compare effects of chronic consumption of three nutritive sweeteners (honey, sucrose and high fructo...

  3. Molecular dynamics simulations of the dielectric properties of fructose aqueous solutions

    NASA Astrophysics Data System (ADS)

    Sonoda, Milton T.; Elola, M. Dolores; Skaf, Munir S.

    2016-10-01

    The static dielectric permittivity and dielectric relaxation properties of fructose aqueous solutions of different concentrations ranging from 1.0 to 4.0 mol l-1 are investigated by means of molecular dynamics simulations. The contributions from intra- and interspecies molecular correlations were computed individually for both the static and frequency-dependent dielectric properties, and the results were compared with the available experimental data. Simulation results in the time- and frequency-domains were analyzed and indicate that the presence of fructose has little effect on the position of the fast, high-frequency (>500 cm-1) components of the dielectric response spectrum. The low-frequency (<0.1 cm-1) components, however, are markedly influenced by sugar concentration. Our analysis indicates that fructose-fructose and fructose-water interactions strongly affect the rotational-diffusion regime of molecular motions in the solutions. Increasing fructose concentration not only enhances sugar-sugar and sugar-water low frequency contributions to the dielectric loss spectrum but also slows down the reorientational dynamics of water molecules. These results are consistent with previous computer simulations carried out for other disaccharide aqueous solutions.

  4. Partial purification and characterization of exoinulinase from Kluyveromyces marxianus YS-1 for preparation of high-fructose syrup.

    PubMed

    Singh, Ram Sarup; Dhaliwal, Rajesh; Puri, Munish

    2007-05-01

    An extracellular exoinulinase (2,1-beta-D fructan fructanohydrolase, EC 3.2.1.7), which catalyzes the hydrolysis of inulin into fructose and glucose, was purified 23.5-fold by ethanol precipitation, followed by Sephadex G-100 gel permeation from a cell-free extract of Kluyveromyces marxianus YS-1. The partially purified enzyme exhibited considerable activity between pH 5 to 6, with an optimum pH of 5.5, while it remained stable (100%) for 3 h at the optimum temperature of 50 degrees C. Mn2+ and Ca2+ produced a 2.4-fold and 1.2-fold enhancement in enzyme activity, whereas Hg2+ and Ag2+ completely inhibited the inulinase. A preparation of the partially purified enzyme effectively hydrolyzed inulin, sucrose, and raffinose, yet no activity was found with starch, lactose, and maltose. The enzyme preparation was then successfully used to hydrolyze pure inulin and raw inulin from Asparagus racemosus for the preparation of a high-fructose syrup. In a batch system, the exoinulinase hydrolyzed 84.8% of the pure inulin and 86.7% of the raw Asparagus racemosus inulin, where fructose represented 43.6 mg/ml and 41.3 mg/ml, respectively.

  5. The link between soda intake and asthma: science points to the high-fructose corn syrup, not the preservatives: a commentary.

    PubMed

    DeChristopher, L R; Uribarri, J; Tucker, K L

    2016-11-28

    Recent research conducted by investigators at the National Center for Chronic Disease Prevention and Health Promotion-a division of the US Centers for Disease Control and Prevention (CDC)-found that 'Regular-Soda Intake, Independent of Weight Status, is Associated with Asthma among US High School Students.' On the basis of their review of prior studies, researchers hypothesized that the association may be due to high intake of sodium benzoate, a commonly used preservative in US soft drinks. But a closer look at these prior research studies suggests that there is no strong scientific evidence that the preservatives in US soft drinks are associated with asthma. Importantly, other recent research suggests that the association may be with the unpaired (excess free) fructose in high fructose corn syrup.

  6. Selected Phytochemicals and Culinary Plant Extracts Inhibit Fructose Uptake in Caco-2 Cells.

    PubMed

    Lee, Yurim; Lim, Yeni; Kwon, Oran

    2015-09-18

    This study compared the ability of nine culinary plant extracts containing a wide array of phytochemicals to inhibit fructose uptake and then explored the involvement of intestinal fructose transporters and phytochemicals for selected samples. The chemical signature was characterized by high performance liquid chromatography with mass spectrometry. Inhibition of [(14)C]-fructose uptake was tested by using human intestinal Caco-2 cells. Then, the relative contribution of the two apical-facing intestinal fructose transporters, GLUT2 and GLUT5, and the signature components for fructose uptake inhibition was confirmed in naive, phloretin-treated and forskolin-treated Caco-2 cells. HPLC/MS analysis of the chemical signature revealed that guava leaf contained quercetin and catechin, and turmeric contained curcumin, bisdemethoxycurcumin and dimethoxycurcumin. Similar inhibition of fructose uptake (by ~50%) was observed with guava leaf and turmeric in Caco-2 cells, but with a higher contribution of GLUT2 for turmeric and that of GLUT5 for guava leaf. The data suggested that, in turmeric, demethoxycurcumin specifically contributed to GLUT2-mediated fructose uptake inhibition, and curcumin did the same to GLUT5-mediated fructose uptake inhibition, but GLUT2 inhibition was more potent. By contrast, in guava leaf, catechin specifically contributed to GLUT5-mediated fructose uptake inhibition, and quercetin affected both GLUT5- and GLUT2-mediated fructose uptake inhibition, resulting in the higher contribution of GLUT5. These results suggest that demethoxycurcumin is an important contributor to GLUT2-mediated fructose uptake inhibition for turmeric extract, and catechin is the same to GLUT5-mediated fructose uptake inhibition for guava leaf extract. Quercetin, curcumin and bisdemethoxycurcumin contributed to both GLUT5- and GLUT2-mediated fructose uptake inhibition, but the contribution to GLUT5 inhibition was higher than the contribution to GLUT2 inhibition.

  7. Resveratrol prevents high-fructose corn syrup-induced vascular insulin resistance and dysfunction in rats.

    PubMed

    Babacanoglu, C; Yildirim, N; Sadi, G; Pektas, M B; Akar, F

    2013-10-01

    Dietary intake of fructose and sucrose can cause development of metabolic and cardiovascular disorders. The consequences of high-fructose corn syrup (HFCS), a commonly consumed form of fructose and glucose, have poorly been examined. Therefore, in this study, we investigated whether HFCS intake (10% and 20% beverages for 12 weeks) impacts vascular reactivity to insulin and endothelin-1 in conjunction with insulin receptor substrate-1(IRS-1), endothelial nitric oxide synthase (eNOS) and inducible NOS (iNOS) mRNA/proteins levels in aorta of rats. At challenge, we tested the effectiveness of resveratrol (28-30 mg/kg body weight/day) on outcomes of HFCS feeding. HFCS (20%) diet feeding increased plasma triglyceride, VLDL, cholesterol, insulin and glucose levels, but not body weights of rats. Impaired nitric oxide-mediated relaxation to insulin (10⁻⁹ to 3×10⁻⁶ M), and enhanced contraction to endothelin-1 (10⁻¹¹ to 10⁻⁸ M) were associated with decreased expression of IRS-1 and eNOS mRNA and protein, but increased expression of iNOS, in aortas of rats fed with HFCS. Resveratrol supplementation restored many features of HFCS-induced disturbances, probably by regulating eNOS and iNOS production. In conclusion, dietary HFCS causes vascular insulin resistance and endothelial dysfunction through attenuating IRS-1 and eNOS expressions as well as increasing iNOS in rats. Resveratrol has capability to recover HFCS-induced disturbances. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  8. Psidium guajava Linn. leaf extract affects hepatic glucose transporter-2 to attenuate early onset of insulin resistance consequent to high fructose intake: An experimental study

    PubMed Central

    Mathur, R.; Dutta, Shagun; Velpandian, T.; Mathur, S.R.

    2015-01-01

    Background: Insulin resistance (IR) is amalgam of pathologies like altered glucos metabolism, dyslipidemia, impaired glucose tolerance, non-alcoholic fatty liver disease, and associated with type-II diabetes and cardiometabolic diseases. One of the reasons leading to its increased and early incidence is understood to be a high intake of processed fructose containing foods and beverages by individuals, especially, during critical developmental years. Objective: To investigate the preventive potential of aqueous extract of Psidium guajava leaves (PG) against metabolic pathologies, vis-à-vis, IR, dyslipidemia, hyperleptinemia and hypertension, due to excess fructose intake initiated during developmental years. Materials and Methods: Post-weaning (4 weeks old) male rats were provided fructose (15%) as drinking solution, ad libitum, for 8 weeks and assessed for food and water/fructose intake, body weight, fasting blood sugar, mean arterial pressure, lipid biochemistry, endocrinal (insulin, leptin), histopathological (fatty liver) and immunohistochemical (hepatic glucose transporter [GLUT2]) parameters. Parallel treatment groups were administered PG in doses of 250 and 500 mg/kg/d, po × 8 weeks and assessed for same parameters. Using extensive liquid chromatography-mass spectrometry protocols, PG was analyzed for the presence of phytoconstituents like Myrecetin, Luteolin, Kaempferol and Guavanoic acid and validated to contain Quercetin up to 9.9%w/w. Results: High fructose intake raised circulating levels of insulin and leptin and hepatic GLUT2 expression to promote IR, dyslipidemia, and hypertension that were favorably re-set with PG. Although PG is known for its beneficial role in diabetes mellitus, for the first time we report its potential in the management of lifelong pathologies arising from high fructose intake initiated during developmental years. PMID:25829790

  9. Self-assembled block copolymer photonic crystal for selective fructose detection.

    PubMed

    Ayyub, Omar B; Ibrahim, Michael B; Briber, Robert M; Kofinas, Peter

    2013-08-15

    The use of one-dimensional photonic crystals fabricated from a self-assembled lamellar block copolymer as a sensitive and selective fructose sensor is investigated. The polystyrene-b-poly(2-vinyl pyridine) (PS-b-P2VP) films are functionalized with 2-(bromomethyl)phenylboronic acid. The boronic acid moiety confined within the lamellar morphology can reversibly bind to sugars such as fructose, imparting the photonic properties of the PS-b-P2VP film. The films exhibit a detection limit of 500 μM in water and 1mM in phosphate buffered saline. Exposure to a 50 mM solution of fructose invokes a highly visible color change from blue to orange. The films are also able to selectively recognize and respond to fructose in competitive studies in the presence of glucose, mannose and sucrose. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Sodium 4-phenylbutyrate prevents murine dietary steatohepatitis caused by trans-fatty acid plus fructose.

    PubMed

    Morinaga, Maki; Kon, Kazuyoshi; Saito, Hiroaki; Arai, Kumiko; Kusama, Hiromi; Uchiyama, Akira; Yamashina, Shunhei; Ikejima, Kenichi; Watanabe, Sumio

    2015-11-01

    Excess consumption of trans-fatty acid could increase the risk of non-alcoholic steatohepatitis (NASH); however, treatment targeting trans-fatty acid-induced NASH has not been examined. Here we focused on the influence of trans-fatty acid intake on endoplasmic reticulum (ER) stress in hepatocytes, so we investigated the effect of the chemical chaperone 4-phenylbutyric acid (PBA), on trans-fatty acid-caused steatohepatitis using diabetic KK-A(y) mice. Elaidic acid (EA, trans-fatty acid) alone did not cause definitive liver injury. In contrast, EA plus low-dose fructose induced extensive apoptosis in hepatocytes with severe fat accumulation. EA plus fructose significantly increased ER stress markers such as glucose-regulated protein 78 (GRP78), eukaryotic initiation factor 2α (eIF2α) and phosphorylated c-jun N-terminal kinase (JNK), while PBA significantly reduced this response. In vitro, EA promoted expression of GRP78 and phosphorylation of eIF2α in primary-cultured hepatocytes. EA also increased hepatocellular susceptibility to low-dose tert-butyl hydroperoxide. Treatment with PBA significantly reduced these responses. In conclusion, EA potentiates susceptibly to non-hazardous dose of fructose, and increases ER and oxidative stress. PBA improved steatohepatitis induced by EA plus fructose through amelioration of ER stress. Therefore, ER stress-targeted therapy using a chemical chaperone is a promising novel strategy for trans-fatty acid-induced steatohepatitis.

  11. Fructose content and composition of commercial HFCS-sweetened carbonated beverages

    PubMed Central

    White, J S; Hobbs, L J; Fernandez, S

    2015-01-01

    Objective: The obesigenic and related health effects of caloric sweeteners are subjects of much current research. Consumers can properly adjust their diets to conform to nutritional recommendations only if the sugars composition of foods and beverages is accurately measured and reported, a matter of recent concern. We tested the hypothesis that high-fructose corn syrup (HFCS) used in commercial carbonated beverages conforms to commonly assumed fructose percentages and industry technical specifications, and fulfills beverage product label regulations and Food Chemicals Codex-stipulated standards. Design: A high-pressure liquid chromatography method was developed and verified for analysis of sugars in carbonated beverages sweetened with HFCS-55. The method was used to measure percent fructose in three carbonated beverage categories. Method verification was demonstrated by acceptable linearity (R2>0.99), accuracy (94–104% recovery) and precision (RSD<2%). Result: Fructose comprised 55.58% of total sugars (95% confidence interval 55.51–55.65%), based on 160 total measurements by 2 independent laboratories of 80 randomly selected carbonated beverages sweetened with HFCS-55. The difference in fructose measurements between laboratories was significant but small (0.1%), and lacked relevance. Differences in fructose by product category or by product age were not statistically significant. Total sugars content of carbonated beverages showed close agreement within product categories (95% confidence interval=0.01–0.54%). Conclusions: Using verified analytical methodology for HFCS-sweetened carbonated beverages, this study confirmed the hypothesis that fructose as a percentage of total sugars is in close agreement with published specifications in industry technical data sheets, published literature values and governmental standards and requirements. Furthermore, total sugars content of commercial beverages is consistent with common industry practices for canned and

  12. Opposing effects of fructokinase C and A isoforms on fructose-induced metabolic syndrome in mice

    PubMed Central

    Ishimoto, Takuji; Lanaspa, Miguel A.; Le, MyPhuong T.; Garcia, Gabriela E.; Diggle, Christine P.; MacLean, Paul S.; Jackman, Matthew R.; Asipu, Aruna; Roncal-Jimenez, Carlos A.; Kosugi, Tomoki; Rivard, Christopher J.; Maruyama, Shoichi; Rodriguez-Iturbe, Bernardo; Sánchez-Lozada, Laura G.; Bonthron, David T.; Sautin, Yuri Y.; Johnson, Richard J.

    2012-01-01

    Fructose intake from added sugars correlates with the epidemic rise in obesity, metabolic syndrome, and nonalcoholic fatty liver disease. Fructose intake also causes features of metabolic syndrome in laboratory animals and humans. The first enzyme in fructose metabolism is fructokinase, which exists as two isoforms, A and C. Here we show that fructose-induced metabolic syndrome is prevented in mice lacking both isoforms but is exacerbated in mice lacking fructokinase A. Fructokinase C is expressed primarily in liver, intestine, and kidney and has high affinity for fructose, resulting in rapid metabolism and marked ATP depletion. In contrast, fructokinase A is widely distributed, has low affinity for fructose, and has less dramatic effects on ATP levels. By reducing the amount of fructose for metabolism in the liver, fructokinase A protects against fructokinase C-mediated metabolic syndrome. These studies provide insights into the mechanisms by which fructose causes obesity and metabolic syndrome. PMID:22371574

  13. PPARβ/δ ameliorates fructose-induced insulin resistance in adipocytes by preventing Nrf2 activation.

    PubMed

    Barroso, Emma; Rodríguez-Rodríguez, Rosalía; Chacón, Matilde R; Maymó-Masip, Elsa; Ferrer, Laura; Salvadó, Laia; Salmerón, Emilio; Wabistch, Martin; Palomer, Xavier; Vendrell, Joan; Wahli, Walter; Vázquez-Carrera, Manuel

    2015-05-01

    We studied whether PPARβ/δ deficiency modifies the effects of high fructose intake (30% fructose in drinking water) on glucose tolerance and adipose tissue dysfunction, focusing on the CD36-dependent pathway that enhances adipose tissue inflammation and impairs insulin signaling. Fructose intake for 8 weeks significantly increased body and liver weight, and hepatic triglyceride accumulation in PPARβ/δ-deficient mice but not in wild-type mice. Feeding PPARβ/δ-deficient mice with fructose exacerbated glucose intolerance and led to macrophage infiltration, inflammation, enhanced mRNA and protein levels of CD36, and activation of the JNK pathway in white adipose tissue compared to those of water-fed PPARβ/δ-deficient mice. Cultured adipocytes exposed to fructose also exhibited increased CD36 protein levels and this increase was prevented by the PPARβ/δ activator GW501516. Interestingly, the levels of the nuclear factor E2-related factor 2 (Nrf2), a transcription factor reported to up-regulate Cd36 expression and to impair insulin signaling, were increased in fructose-exposed adipocytes whereas co-incubation with GW501516 abolished this increase. In agreement with Nrf2 playing a role in the fructose-induced CD36 protein level increases, the Nrf2 inhibitor trigonelline prevented the increase and the reduction in insulin-stimulated AKT phosphorylation caused by fructose in adipocytes. Protein levels of the well-known Nrf2 target gene quinone oxidoreductase 1 (Nqo1) were increased in water-fed PPARβ/δ-null mice, suggesting that PPARβ/δ deficiency increases Nrf2 activity; and this increase was exacerbated in fructose-fed PPARβ/δ-deficient mice. These findings indicate that the combination of high fructose intake and PPARβ/δ deficiency increases CD36 protein levels via Nrf2, a process that promotes chronic inflammation and insulin resistance in adipose tissue. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Manifestations of Renal Impairment in Fructose-induced Metabolic Syndrome.

    PubMed

    Bratoeva, Kameliya; Stoyanov, George S; Merdzhanova, Albena; Radanova, Mariya

    2017-11-07

    Introduction International studies show an increased incidence of chronic kidney disease (CKD) in patients with metabolic syndrome (MS). It is assumed that the major components of MS - obesity, insulin resistance, dyslipidemia, and hypertension - are linked to renal damage through the systemic release of several pro-inflammatory mediators, such as uric acid (UA), C-reactive protein (CRP), and generalized oxidative stress. The aim of the present study was to investigate the extent of kidney impairment and manifestations of dysfunction in rats with fructose-induced MS. Methods We used a model of high-fructose diet in male Wistar rats with 35% glucose-fructose corn syrup in drinking water over a duration of 16 weeks. The experimental animals were divided into two groups: control and high-fructose drinking (HFD). Serum samples were obtained from both groups for laboratory study, and the kidneys were extracted for observation via light microscopy examination. Results All HFD rats developed obesity, hyperglycemia, hypertriglyceridemia, increased levels of CRP and UA (when compared to the control group), and oxidative stress with high levels of malondialdehyde and low levels of reduced glutathione. The kidneys of the HFD group revealed a significant increase in kidney weight in the absence of evidence of renal dysfunction and electrolyte disturbances. Under light microscopy, the kidneys of the HFD group revealed amyloid deposits in Kimmelstiel-Wilson-like nodules and the walls of the large caliber blood vessels, early-stage atherosclerosis with visible ruptures and scarring, hydropic change (vacuolar degeneration) in the epithelial cells covering the proximal tubules, and increased eosinophilia in the distant tubules when compared to the control group. Conclusion Under the conditions of a fructose-induced metabolic syndrome, high serum UA and CRP correlate to the development of early renal disorders without a clinical manifestation of renal dysfunction. These

  15. Ilex paraguariensis and its main component chlorogenic acid inhibit fructose formation of advanced glycation endproducts with amino acids at conditions compatible with those in the digestive system.

    PubMed

    Bains, Yasmin; Gugliucci, Alejandro

    2017-03-01

    We have previously shown that Ilex paraguariensis extracts have potent antiglycation actions. Associations of excess free fructose consumption with inflammatory diseases have been proposed to be mediated through in situ enteral formation of fructose AGEs, which, after being absorbed may contribute to inflammatory diseases via engagement of RAGE. In this proof of principle investigation we show fluorescent AGE formation between amino acids (Arg, Lys, Gly at 10-50mM) and fructose (10-50mM) under time, temperature, pH and concentrations compatible with the digestive system lumen and its inhibition by Ilex paraguariensis extracts. Incubation of amino acids with fructose (but not glucose) leads to a time dependent formation of AGE fluorescence, already apparent after just 1h incubation, a time frame well compatible with the digestive process. Ilex paraguariensis (mate tea) inhibited AGE formation by 83% at 50μl/ml (p<0.001). Its main phenolics, caffeic acid and cholorogenic acid were as potent as aminoguanidine-a specific antiglycation agent: IC50 of 0.9mM (p<0.001). Our results suggest that AGE adducts form between fructose and amino acids at times and concentrations plausibly found in the intestines. The reaction is inhibited by mate tea and its individual phenolics (caffeic acid and chlorogenic acids). The study provides the first evidence for the proposed mechanism to explain epidemiological correlations between excess fructose consumption and inflammatory diseases. Enteral fructose-AGE formation would be inhibited by co-intake of Ilex paraguariensis, and potentially other beverages, fruits and vegetables that contain comparable concentrations of phenolics as in IP (mate tea). Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Renin inhibition improves metabolic syndrome, and reduces angiotensin II levels and oxidative stress in visceral fat tissues in fructose-fed rats

    PubMed Central

    Chen, Jin-Shuen

    2017-01-01

    Renin–angiotensin system in visceral fat plays a crucial role in the pathogenesis of metabolic syndrome in fructose-fed rats. However, the effects of renin inhibition on visceral adiposity in metabolic syndrome are not fully investigated. We investigated the effects of renin inhibition on visceral adiposity in fructose-fed rats. Male Wistar–Kyoto rats were divided into 4 groups for 8-week experiments: Group Con (standard chow diet), Group Fru (high-fructose diet; 60% fructose), Group FruA (high-fructose diet and concurrent aliskiren treatment; 100 mg/kg body weight [BW] per day), and Group FruB (high-fructose diet and subsequent, i.e. 4 weeks after initiating high-fructose feeding, aliskiren treatment; 100 mg/kg BW per day). The high-fructose diet induced metabolic syndrome, increased visceral fat weights and adipocyte sizes, and augmented angiotensin II (Ang II), NADPH oxidase (NOX) isoforms expressions, oxidative stress, and dysregulated production of adipocytokines from visceral adipose tissues. Concurrent and subsequent aliskiren administration ameliorated metabolic syndrome, dysregulated adipocytokines, and visceral adiposity in high fructose-fed hypertensive rats, and was associated with reducing Ang II levels, NOX isoforms expressions and oxidative stress in visceral fat tissues. Therefore, this study demonstrates renin inhibition could improve metabolic syndrome, and reduce Ang II levels and oxidative stress in visceral fat tissue in fructose-fed rats, and suggests that visceral adipose Ang II plays a crucial role in the pathogenesis of metabolic syndrome in fructose-fed rats. PMID:28700686

  17. Renin inhibition improves metabolic syndrome, and reduces angiotensin II levels and oxidative stress in visceral fat tissues in fructose-fed rats.

    PubMed

    Chou, Chu-Lin; Lin, Heng; Chen, Jin-Shuen; Fang, Te-Chao

    2017-01-01

    Renin-angiotensin system in visceral fat plays a crucial role in the pathogenesis of metabolic syndrome in fructose-fed rats. However, the effects of renin inhibition on visceral adiposity in metabolic syndrome are not fully investigated. We investigated the effects of renin inhibition on visceral adiposity in fructose-fed rats. Male Wistar-Kyoto rats were divided into 4 groups for 8-week experiments: Group Con (standard chow diet), Group Fru (high-fructose diet; 60% fructose), Group FruA (high-fructose diet and concurrent aliskiren treatment; 100 mg/kg body weight [BW] per day), and Group FruB (high-fructose diet and subsequent, i.e. 4 weeks after initiating high-fructose feeding, aliskiren treatment; 100 mg/kg BW per day). The high-fructose diet induced metabolic syndrome, increased visceral fat weights and adipocyte sizes, and augmented angiotensin II (Ang II), NADPH oxidase (NOX) isoforms expressions, oxidative stress, and dysregulated production of adipocytokines from visceral adipose tissues. Concurrent and subsequent aliskiren administration ameliorated metabolic syndrome, dysregulated adipocytokines, and visceral adiposity in high fructose-fed hypertensive rats, and was associated with reducing Ang II levels, NOX isoforms expressions and oxidative stress in visceral fat tissues. Therefore, this study demonstrates renin inhibition could improve metabolic syndrome, and reduce Ang II levels and oxidative stress in visceral fat tissue in fructose-fed rats, and suggests that visceral adipose Ang II plays a crucial role in the pathogenesis of metabolic syndrome in fructose-fed rats.

  18. Starbon/High-Amylose Corn Starch-Supported N-Heterocyclic Carbene-Iron(III) Catalyst for Conversion of Fructose into 5-Hydroxymethylfurfural.

    PubMed

    Matharu, Avtar S; Ahmed, Suleiman; Almonthery, Badriya; Macquarrie, Duncan J; Lee, Yoon-Sik; Kim, Yohan

    2018-02-22

    Iron-N-heterocyclic carbene complexes (Fe-NHCs) have come to prominence because of their applicability in diverse catalytic reactions, ranging from C-C cross-coupling and C-X bond formation to substitution, reduction, polymerization, and dehydration reactions. The detailed synthesis, characterization, and application of novel heterogeneous Fe-NHC catalysts immobilized on mesoporous expanded high-amylose corn starch (HACS) and Starbon 350 (S350) for facile fructose conversion into 5-hydroxymethylfurfural (HMF) is reported. Both catalyst types showed good performance for the dehydration of fructose to HMF when the reaction was tested at 100 °C with varying time (10 min, 20 min, 0.5 h, 1 h, 3 h and 6 h). For Fe-NHC/S350, the highest HMF yield was 81.7 % (t=0.5 h), with a TOF of 169 h -1 , fructose conversion of 95 %, and HMF selectivity of 85.7 %, whereas for Fe-NHC/expanded HACS, the highest yield was 86 % (t=0.5 h), with a TOF of 206 h -1 , fructose conversion of 87 %, and HMF selectivity of 99 %. Iron loadings of 0.26 and 0.30 mmol g -1 were achieved for Fe-NHC/expanded starch and Fe-NHC/S350, respectively. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Application of agonist-receptor modeling to the sweetness synergy between high fructose corn syrup and sucralose, and between high-potency sweeteners.

    PubMed

    Wolf, P A; Bridges, J R; Wicklund, R

    2010-03-01

    The agonist-receptor-transducer model of D. Ennis is applied to beverage formulations sweetened with high fructose corn syrup, sucralose, and other high-potency sweeteners, confirming the utility of the model, and supports the growing volume of evidence for multiple binding sites on the sweetness receptor. The model is further simplified to require less parameters for other sweetener blend systems whenever potency information is available for the single sweeteners.

  20. Dietary Omega-3 Fatty Acid Deficiency and High Fructose intake in the Development of Metabolic Syndrome Brain, Metabolic Abnormalities, and Non-Alcoholic Fatty Liver Disease

    PubMed Central

    Simopoulos, Artemis P.

    2013-01-01

    Western diets are characterized by both dietary omega-3 fatty acid deficiency and increased fructose intake. The latter found in high amounts in added sugars such as sucrose and high fructose corn syrup (HFCS). Both a low intake of omega-3 fatty acids or a high fructose intake contribute to metabolic syndrome, liver steatosis or non-alcoholic fatty liver disease (NAFLD), promote brain insulin resistance, and increase the vulnerability to cognitive dysfunction. Insulin resistance is the core perturbation of metabolic syndrome. Multiple cognitive domains are affected by metabolic syndrome in adults and in obese adolescents, with volume losses in the hippocampus and frontal lobe, affecting executive function. Fish oil supplementation maintains proper insulin signaling in the brain, ameliorates NAFLD and decreases the risk to metabolic syndrome suggesting that adequate levels of omega-3 fatty acids in the diet can cope with the metabolic challenges imposed by high fructose intake in Western diets which is of major public health importance. This review presents the current status of the mechanisms involved in the development of the metabolic syndrome, brain insulin resistance, and NAFLD a most promising area of research in Nutrition for the prevention of these conditions, chronic diseases, and improvement of Public Health. PMID:23896654

  1. The link between soda intake and asthma: science points to the high-fructose corn syrup, not the preservatives: a commentary

    PubMed Central

    DeChristopher, L R; Uribarri, J; Tucker, K L

    2016-01-01

    Recent research conducted by investigators at the National Center for Chronic Disease Prevention and Health Promotion—a division of the US Centers for Disease Control and Prevention (CDC)—found that 'Regular-Soda Intake, Independent of Weight Status, is Associated with Asthma among US High School Students.' On the basis of their review of prior studies, researchers hypothesized that the association may be due to high intake of sodium benzoate, a commonly used preservative in US soft drinks. But a closer look at these prior research studies suggests that there is no strong scientific evidence that the preservatives in US soft drinks are associated with asthma. Importantly, other recent research suggests that the association may be with the unpaired (excess free) fructose in high fructose corn syrup. PMID:27892935

  2. Comparative effects of fructose and glucose on lipogenic gene expression and intermediary metabolism in HepG2 liver cells

    USDA-ARS?s Scientific Manuscript database

    It is well established that the consumption of large amounts of fructose or sucrose increases lipogenesis and circulating triglycerides in humans. Although the underlying molecular mechanisms responsible for this effect are not completely understood, it is possible that as reported for rodents, hig...

  3. Comparisons of pollen substitute diets for honey bees: consumption rates by colonies and effects on brood and adult populations.

    USDA-ARS?s Scientific Manuscript database

    Commercially available pollen substitute diets for honey bees (Apis mellifera L.) were evaluated for consumption and colony growth (brood and adult populations) and compared with pollen cake and high fructose corn syrup (HFCS). Two trials were conducted; the first for 3 months during the fall and w...

  4. Increased methylglyoxal formation with upregulation of renin angiotensin system in fructose fed Sprague Dawley rats.

    PubMed

    Dhar, Indu; Dhar, Arti; Wu, Lingyun; Desai, Kaushik M

    2013-01-01

    The current epidemic of obesity and type 2 diabetes is attributed to a high carbohydrate diet, containing mainly high fructose corn syrup and sucrose. More than two thirds of diabetic patients have hypertension. Methylglyoxal is a highly reactive dicarbonyl generated during glucose and fructose metabolism, and a major precursor of advanced glycation end products (AGEs). Plasma methylglyoxal levels are increased in hypertensive rats and diabetic patients. Our aim was to examine the levels of methylglyoxal, mediators of the renin angiotensin system and blood pressure in male Sprague-Dawley rats treated with a high fructose diet (60% of total calories) for 4 months. The thoracic aorta and kidney were used for molecular studies, along with cultured vascular smooth muscle cells (VSMCs). HPLC, Western blotting and Q-PCR were used to measure methylglyoxal and reduced glutathione (GSH), proteins and mRNA, respectively. Fructose treated rats developed a significant increase in blood pressure. Methylglyoxal level and protein and mRNA for angiotensin II, AT1 receptor, adrenergic α1D receptor and renin were significantly increased, whereas GSH levels were decreased, in the aorta and/or kidney of fructose fed rats. The protein expression of the receptor for AGEs (RAGE) and NF-κB were also significantly increased in the aorta of fructose fed rats. MG treated VSMCs showed increased protein for angiotensin II, AT1 receptor, and α1D receptor. The effects of methylglyoxal were attenuated by metformin, a methylglyoxal scavenger and AGEs inhibitor. In conclusion, we report a strong association between elevated levels of methylglyoxal, RAGE, NF-κB, mediators of the renin angiotensin system and blood pressure in high fructose diet fed rats.

  5. Combination of alcohol and fructose exacerbates metabolic imbalance in terms of hepatic damage, dyslipidemia, and insulin resistance in rats.

    PubMed

    Alwahsh, Salamah Mohammad; Xu, Min; Schultze, Frank Christian; Wilting, Jörg; Mihm, Sabine; Raddatz, Dirk; Ramadori, Giuliano

    2014-01-01

    Although both alcohol and fructose are particularly steatogenic, their long-term effect in the development of a metabolic syndrome has not been studied in vivo. Consumption of fructose generally leads to obesity, whereas ethanol can induce liver damage in the absence of overweight. Here, Sprague-Dawley rats were fed ad libitum for 28 days on five diets: chow (control), liquid Lieber-DeCarli (LDC) diet, LDC +30%J of ethanol (L-Et) or fructose (L-Fr), and LDC combined with 30%J ethanol and 30%J fructose (L-EF). Body weight (BW) and liver weight (LW) were measured. Blood and liver samples were harvested and subjected to biochemical tests, histopathological examinations, and RT-PCR. Alcohol-containing diets substantially reduced the food intake and BW (≤3rd week), whereas fructose-fed animals had higher LW than controls (P<0.05). Additionally, leukocytes, plasma AST and leptin levels were the highest in the fructose-administered rats. Compared to the chow and LDC diets, the L-EF diet significantly elevated blood glucose, insulin, and total-cholesterol levels (also vs. the L-Et group). The albumin and Quick-test levels were the lowest, whereas ALT activity was the highest in the L-EF group. Moreover, the L-EF diet aggravated plasma triglyceride and reduced HDL-cholesterol levels more than 2.7-fold compared to the sum of the effects of the L-Et and L-Fr diets. The decreased hepatic insulin clearance in the L-EF group vs. control and LDC groups was reflected by a significantly decreased C-peptide:insulin ratio. All diets except the control caused hepatosteatosis, as evidenced by Nile red and H&E staining. Hepatic transcription of insulin receptor substrate-1/2 was mainly suppressed by the L-Fr and L-EF diets. The L-EF diet did not enhance the mitochondrial β-oxidation of fatty acids (Cpt1α and Ppar-α expressions) compared to the L-Et or L-Fr diet. Together, our data provide evidence for the coaction of ethanol and fructose with a high-fat-diet on dyslipidemia and

  6. Fructose and glucose differentially affect aging and carbonyl/oxidative stress parameters in Saccharomyces cerevisiae cells.

    PubMed

    Semchyshyn, Halyna M; Lozinska, Liudmyla M; Miedzobrodzki, Jacek; Lushchak, Volodymyr I

    2011-05-15

    Fructose is commonly used as an industrial sweetener and has been excessively consumed in human diets in the last decades. High fructose intake is causative in the development of metabolic disorders, but the mechanisms underlying fructose-induced disturbances are under debate. Fructose compared to glucose has been found to be a more potent initiator of the glycation reaction. Therefore, we supposed that glucose and fructose might have different vital effects. Here we compare the effects of glucose and fructose on yeast cell viability and markers of carbonyl/oxidative stress. Analysis of the parameters in cells growing on glucose and fructose clearly reveals that yeast growing on fructose has higher levels of carbonyl groups in proteins, α-dicarbonyl compounds and reactive oxygen species. This may explain the observation that fructose-supplemented growth as compared with growth on glucose resulted in more pronounced age-related decline in yeast reproductive ability and higher cell mortality. The results are discussed from the point of view that fructose rather than glucose is more extensively involved in glycation and ROS generation in vivo, yeast aging and development of carbonyl/oxidative stress. It should be noted that carbohydrate restriction used in this study does not reveal a significant difference between markers of aging and carbonyl/oxidative stress in yeasts cultivated on glucose and fructose. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. A mathematical analysis of adaptations to the metabolic fate of fructose in essential fructosuria subjects.

    PubMed

    Allen, R J; Musante, Cynthia J

    2018-04-17

    Fructose is a major component of Western diets and is implicated in the pathogenesis of obesity and type 2 diabetes. In response to an oral challenge, the majority of fructose is cleared during "first-pass" liver metabolism, primarily via phosphorylation by ketohexokinase (KHK). A rare benign genetic deficiency in KHK, called essential fructosuria (EF), leads to altered fructose metabolism. The only reported symptom of EF is the appearance of fructose in the urine following either oral or intravenous fructose administration. Here we develop and use a mathematical model to investigate the adaptations to altered fructose metabolism in people with EF. Firstly, the model is calibrated to fit available data in normal healthy subjects. Then, to mathematically represent EF subjects we systematically implement metabolic adaptations such that model simulations match available data for this phenotype. We hypothesize that these modifications represent the major metabolic adaptations present in these subjects. This modeling approach suggests that several other aspects of fructose metabolism, beyond hepatic KHK deficiency, are altered and contribute to the etiology of this benign condition. Specifically, we predict that fructose absorption into the portal vein is altered, peripheral metabolism is slowed, renal re-absorption of fructose is mostly ablated and that alternate pathways for hepatic metabolism of fructose are up-regulated. Moreover, these findings have implications for drug discovery and development, suggesting that the therapeutic targeting of fructose metabolism could lead to unexpected metabolic adaptations, potentially due to a physiological response to high fructose conditions.

  8. Comparison of productivity of colonies of honey bees, Apis mellifera, supplemented with sucrose or high fructose corn syrup

    USDA-ARS?s Scientific Manuscript database

    Honey bee colony feeding trials were conducted to determine whether differential effects of carbohydrate feeding (sucrose syrup vs. high fructose corn syrups) were detected between colonies fed exclusively on these syrups. In one experiment, colonies installed within a closed arena had increased pr...

  9. The protective effect of juglanin on fructose-induced hepatitis by inhibiting inflammation and apoptosis through TLR4 and JAK2/STAT3 signaling pathways in fructose-fed rats.

    PubMed

    Zhou, Guang-Yao; Yi, Yong-Xiang; Jin, Ling-Xiang; Lin, Wei; Fang, Pei-Pei; Lin, Xiu-Zheng; Zheng, Yi; Pan, Chen-Wei

    2016-07-01

    High fructose-feeding is an essential causative factor leading to the development and progression of hepatitis associated with high levels of endotoxin (LPS). Juglanin, as a natural compound extracted from the crude Polygonum aviculare, displayed inhibitory activity against inflammation response and cancer growth. However, researches about its role on anti-inflammation and apoptosis are far from available. Here, it is the first time that juglanin was administrated to investigate whether it inhibits fructose-feeding-induced hepatitis in rats and to elucidate the possible mechanism by which juglanin might recover it. Fructose-feeding rats were orally administrated with juglanin of 5, 10 and 20mg/kg for 6 weeks, respectively. Juglanin exer