Science.gov

Sample records for high gain fel

  1. Recent Progress in High-Gain FEL Theory

    SciTech Connect

    Huang, Z.; /SLAC

    2005-09-30

    High-gain free electron lasers (FEL) are being developed as extremely bright x-ray sources of a next-generation radiation facility. In this paper, we review the basic theory and the recent progress in understanding the startup, the exponential growth and the saturation of the high-gain process, emphasizing the self-amplified spontaneous emission (SASE). We will also discuss how the FEL performance may be affected by various errors and wakefield effects in the undulator.

  2. Dispersion relations for 1D high-gain FELs

    SciTech Connect

    Webb, S.D.; Litvinenko, V.N.

    2010-08-23

    We present analytical results for the one-dimensional dispersion relation for high-gain FELs. Using kappa-n distributions, we obtain analytical relations between the dispersion relations for various order kappa distributions. Since an exact solution exists for the kappa-1 (Lorentzian) distribution, this provides some insight into the number of modes on the way to the Gaussian distribution.

  3. STARS A Two Stage High Gain Harmonic Generation FEL Demonstrator

    SciTech Connect

    M. Abo-Bakr; W. Anders; J. Bahrdt; P. Budz; K.B. Buerkmann-Gehrlein; O. Dressler; H.A. Duerr; V. Duerr; W. Eberhardt; S. Eisebitt; J. Feikes; R. Follath; A. Gaupp; R. Goergen; K. Goldammer; S.C. Hessler; K. Holldack; E. Jaeschke; Thorsten Kamps; S. Klauke; J. Knobloch; O. Kugeler; B.C. Kuske; P. Kuske; A. Meseck; R. Mitzner; R. Mueller; M. Neeb; A. Neumann; K. Ott; D. Pfluckhahn; T. Quast; M. Scheer; Th. Schroeter; M. Schuster; F. Senf; G. Wuestefeld; D. Kramer; Frank Marhauser

    2007-08-01

    BESSY is proposing a demonstration facility, called STARS, for a two-stage high-gain harmonic generation free electron laser (HGHG FEL). STARS is planned for lasing in the wavelength range 40 to 70 nm, requiring a beam energy of 325 MeV. The facility consists of a normal conducting gun, three superconducting TESLA-type acceleration modules modified for CW operation, a single stage bunch compressor and finally a two-stage HGHG cascaded FEL. This paper describes the faciliy layout and the rationale behind the operation parameters.

  4. Saturnus: the UCLA high-gain infrared FEL project

    NASA Astrophysics Data System (ADS)

    Aghamir, F.; Barletta, W. A.; Cline, D. B.; Dodd, J. W.; Hartman, S. C.; Katsouleas, T. C.; Kolonko, J.; Park, S.; Pellegrini, C.; Terrien, J.-C.; Davis, J. G.; Joshi, C. J.; Luhmann, N. C.; McDermott, D. B.; Ivanchenkov, S. N.; Lachin, Yu.; Varfolomeev, A. A.

    1991-07-01

    We present the status of Saturnus: an infrared FEL operating in the 10 μm wavelength region, driven by a compact 20 MeV linac with a photoinjector, under construction at UCLA. The 1.5 cm period, 0.5 T peak-field undulator is being built at the Kurchatov IAE. The FEL is being designed to operate primarily in the self-amplified spontaneous emission mode. We plan to study the startup from noise, optical guiding, saturation, sidebands and superradiance, with emphasis on the effects important for future short-wavelength operation of FELs. The photoinjector follows closely the Brookhaven design. Electrons are injected into an accelerating section based on the plane-wave transformer design developed by Swenson at SAIC. Simulation of the linac and FEL show a gain length of 10 cm, and saturation power of 50 MW.

  5. Possibility of a high-power, high-gain amplifier FEL

    SciTech Connect

    Nguyen, D. C.; Freund, H. P.

    2002-01-01

    High-gain amplifier FEL offer many unique advantages such as robust operation without a high-Q optical cavity and potentially high extraction eaciencies with the use of tapered wigglers. Although a high average power, cw amplifier FEL has not been demonstrated, many key physics issues such as electron beam brightness requirements, single-pass gains, saturation, etc. have been resolved. In this paper, we study the feasibility of a high-power FEL based on the high-gain amplifier concept. We show that with suitable electron beam parameters, i.e. high peak current, low emittance, low energy spread, and sufficient tapered wiggler length, peak output power of 1 QW and optical pulse energy of 8 mJ can be achieved. We also outline a possible configuration of a high-power, high-gain amplifier FEL with energy recovery.

  6. Strong focusing influence on high gain FEL characteristics

    SciTech Connect

    Smirnov, A.; Varfolomeev, A.

    1995-12-31

    The use of intrinsic alternating focusing in a linac-driven FEL with planar undulator is considered numerically. The analysis is done on the basis of TDA code for soft X-ray FEL with FD lattice implementing focusing of quadrupole and periodic sextupole type. The influence of the focusing (type and phase advance) on FEL performance and the reasons of difference in FEL performance for focusing of two kinds are analyzed. A possibility of some kind of beam conditioning for intrinsic focusing is discussed.

  7. Analysis of FEL-based CeC amplification at high gain limit

    SciTech Connect

    Wang, G.; Litvinenko, V.; Jing, Y.

    2015-05-03

    An analysis of Coherent electron Cooling (CeC) amplifier based on 1D Free Electron Laser (FEL) theory was previously performed with exact solution of the dispersion relation, assuming electrons having Lorentzian energy distribution. At high gain limit, the asymptotic behavior of the FEL amplifier can be better understood by Taylor expanding the exact solution of the dispersion relation with respect to the detuning parameter. In this work, we make quadratic expansion of the dispersion relation for Lorentzian energy distribution and investigate how longitudinal space charge and electrons’ energy spread affect the FEL amplification process.

  8. Self-seeded FEL wavelength extension with high-gain harmonic generation

    NASA Astrophysics Data System (ADS)

    Zeng, Ling; Qin, Weilun; Zhao, Gang; Huang, Senlin; Ding, Yuantao; Huang, Zhirong; Marcus, Gabriel; Liu, Kexin

    2016-09-01

    We study a self-seeded high-gain harmonic generation (HGHG) free-electron laser (FEL) scheme to extend the wavelength of a soft X-ray FEL. This scheme uses a regular self-seeding monochromator to generate a seed laser at the wavelength of 1.52 nm, followed by a HGHG configuration to produce coherent, narrow-bandwidth harmonic radiations at the GW level. The 2nd and 3rd harmonic radiation is investigated with start-to-end simulations. Detailed studies of the FEL performance and shot-to-shot fluctuations are presented.

  9. Optimization of single-step tapering amplitude and energy detuning for high-gain FELs

    NASA Astrophysics Data System (ADS)

    Li, He-Ting; Jia, Qi-Ka

    2015-01-01

    We put forward a method to optimize the single-step tapering amplitude of undulator strength and initial energy tuning of electron beam to maximize the saturation power of high gain free-electron lasers (FELs), based on the physics of longitudinal electron beam phase space. Using the FEL simulation code GENESIS, we numerically demonstrate the accuracy of the estimations for parameters corresponding to the linac coherent light source and the Tesla test facility.

  10. An analysis of the saturation of a high gain FEL

    SciTech Connect

    Gluckstern, R.L.; Okamoto, Hiromi; Krinsky, S.

    1992-12-01

    We study the saturated state of an untapered free electron laser in the Compton regime, arising after exponential amplification of an initial low level of radiation by an initially monoenergetic, unbunched electron beam. The saturated state of the FEL is described by oscillations about an equilibrium state. Using the two invariants of the motion, and certain assumptions motivated by computer simulations, we provide approximate analytic descriptions of the radiation field and electron distribution in the saturation regime. We first consider a one-dimensional approximation, and later extend our approach to treat an electron beam of finite radial extent. Of note is a result on the radiated power in the case of an electron beam with small radius.

  11. High gain FEL amplification of charge modulation caused by a hadron

    SciTech Connect

    Litvinenko,V.; Ben-Zvi, I.; Hao, Y.; Kayran, D.; Pozdeyev, E.; Wang, G.; Reiche, S.; Shevchenko, O.; Vinokurov, N. A.

    2008-08-24

    In scheme of coherent electron cooling (CeC) [1,2], a modulation of electron beam density induced by a copropagation hadron is amplified in high gain FEL. The resulting amplified modulation of electron beam, its shape, form and its lethargy determine number of important properties of the coherent electron cooling. In this talk we present both analytical and numerical (using codes RON [3] and Genesis [4]) evaluations of the corresponding Green functions. We also discuss influence of electron beam parameters on the FEL response.

  12. Oscillator Seeding of a High Gain Harmonic Generation FEL in a Radiator-First Configuration

    SciTech Connect

    Gandhi, P.; Wurtele, J.; Penn, G.; Reinsch, M.

    2012-05-20

    A longitudinally coherent X-ray pulse from a high repetition rate free electron laser (FEL) is desired for a wide variety of experimental applications. However, generating such a pulse with a repetition rate greater than 1 MHz is a significant challenge. The desired high repetition rate sources, primarily high harmonic generation with intense lasers in gases or plasmas, do not exist now, and, for the multi-MHz bunch trains that superconducting accelerators can potentially produce, are likely not feasible with current technology. In this paper, we propose to place an oscillator downstream of a radiator. The oscillator generates radiation that is used as a seed for a high gain harmonic generation (HGHG) FEL which is upstream of the oscillator. For the first few pulses the oscillator builds up power and, until power is built up, the radiator has no HGHG seed. As power in the oscillator saturates, the HGHG is seeded and power is produced. The dynamics and stability of this radiator-first scheme is explored analytically and numerically. A single-pass map is derived using a semi-analytic model for FEL gain and saturation. Iteration of the map is shown to be in good agreement with simulations. A numerical example is presented for a soft X-ray FEL.

  13. Effects of undulator interruptions on the performance of high-gain FEL amplifiers

    SciTech Connect

    Kim, K.J.; Xie, M.; Pelligrini, C.

    1995-12-31

    The high-gain amplifiers for short wavelength free electron lasers (FELs) such as the LCLS project require a long undulator. The construction of the undulator as well as the FEL operation would become easier if the undulator could be interrupted with drift sections every few gain lengths. We have investigated the influence of such interruption on the FEL performances. Three effects are considered: (i) the diffraction loss, (ii) the phase mismatch and, (iii) the phase smearing due to velocity spread and to dispersion errors. The effect (i) is the loss during the process in which the optical mode in a section of the undulator leaves the undulator, propagates through the free space and then re-enters and re-adjusts in the next section. The effect (ii) is the fact that the phase of the optical beam is displaced with respect to the electrons density modulation for optical FEL interaction due to the slippage of the electron beam in the interruption region. The effect (iii) is the fact that electrons velocity spread, emittance, and dispersion due to misalignment of the quadrupoles used for additional focusing lead to a reduction of the bunching factor. We present an approximate analysis of these effects. When applied to the LCLS parameters, we find that the effect (i) is negligible, the effect (ii) gives a condition on the length of the drift section, and the effects (iii) are small, but could be non-negligible if there are sufficient number of interruptions.

  14. SOFT X-RAY FEL BY CASCADING STAGES OF HIGH GAIN HARMONIC GENERATION.

    SciTech Connect

    YU,L.H.

    2003-04-17

    Short wavelength Free-Electron Lasers are perceived as the next generation of synchrotron light sources. In the past decade, significant advances have been made in the theory and technology of high brightness electron beams and single pass FELs. These developments facilitate the construction of practical VUV FELs and make x-ray FELs possible. Self-Amplified Spontaneous Emission (SASE) and High Gain Harmonic Generation (HGHG)[17-19] are the two leading candidates for x-ray FELs. The first lasing of HGHG proof-of-principle experiment succeeded in August, 1999 in Brookhaven National Laboratory. The experimental results agree with the theory prediction. Compared with SASE FEL, the following advantages of HGHG FEL were confirmed; (1) Better longitudinal coherence, and hence, much narrower bandwidth than SASE. (2) More stable central wavelength, (3) More stable output energy. In this introduction, we will first briefly describe the principle of HGHG in Section A. Then in Section B, we give a general description about how to produce soft x-ray by cascading HGHG scheme. In section 2, we give a detailed description of the system design. Then, in section 3, we give a description of an analytical estimate for the HGHG process, and the calculation of the parameters of different parts of the system. The estimate is found to agree with simulation within about a factor 2 for most cases we studied. The stability issue, the sensitivity to parameter variation, the harmonic contents of the final output, and the noise degradation issue of such HGHG scheme are discussed in Section 4. The results are presented in Section 4. Finally, in Section 5, we will give some discussion of the challenges in development of the system. The conclusion is given in Section 6.

  15. DEMONSTRATION OF 3D EFFECTS WITH HIGH GAIN AND EFFICIENCY IN A UV FEL OSCILLATOR

    SciTech Connect

    Stephen Benson; George Biallas; Keith Blackburn; James Boyce; Donald Bullard; James Coleman; Cody Dickover; David Douglas; Forrest Ellingsworth; Pavel Evtushenko; Carlos Hernandez-Garcia; Christopher Gould; Joseph Gubeli; David Hardy; Kevin Jordan; John Klopf; James Kortze; Robert Legg; Matthew Marchlik; Steven Moore; George Neil; Thomas Powers; Daniel Sexton; Michelle D. Shinn; Christopher Tennant; Richard Walker; Anne Watson; Gwyn Williams; Frederick Wilson; Shukui Zhang

    2011-03-01

    We report on the performance of a high gain UV FEL oscillator operating on an energy recovery linac at Jefferson Lab. The high brightness of the electron beam leads to both gain and efficiency that cannot be reconciled with a one-dimensional model. Three-dimensional simulations do predict the performance with reasonable precision. Gain in excess of 100% per pass and an efficiency close to 1/2NW, where NW is the number of wiggler periods, is seen. The laser mirror tuning curves currently permit operation in the wavelength range of 438 to 362 nm. Another mirror set allows operation at longer wavelengths in the red with even higher gain and efficiency.

  16. Evolution of electron beam phase space distribution in a high-gain FEL

    SciTech Connect

    Webb,S.D.; Litvinenko, V. N.

    2009-08-23

    FEL-based coherent electron cooling (CEC) offers a new avenue to achieve high luminosities in high energy colliders such as RHIC, LHC, and eRHIC. Traditional treatments consider the FEL as an amplifier of optical waves with specific initial conditions, focusing on the resulting field. CEC requires knowledge of the phase space distribution of the electron beam in the FEL. We present 1D analytical results for the phase space distribution of an electron beam with an arbitrary initial current profile, and discuss approaches of expanding to 3D results.

  17. PRELIMINARY MEASURMENTS OF THE HIGH-GAIN FEL RADIATION PROPERTIES ALONG THE RADIATOR.

    SciTech Connect

    SHAFTAN,T.; LOOS,H.; SHEEHY,B.; YU,L.H.

    2004-08-29

    We present preliminary experimental results on evolution of properties of the DUV FEL [1,2] radiation along the radiator. Intercepting the electron beam at the different locations inside the undulator we recorded and analyzed transverse profiles, spectra and intensity of the FEL output. Shot-to-shot fluctuations of the FEL radiation may significantly affect the accuracy of measurement. In the paper we present and discuss a single-shot measurement technique, based on a special imaging system.

  18. Development of a 3D FEL code for the simulation of a high-gain harmonic generation experiment.

    SciTech Connect

    Biedron, S. G.

    1999-02-26

    Over the last few years, there has been a growing interest in self-amplified spontaneous emission (SASE) free-electron lasers (FELs) as a means for achieving a fourth-generation light source. In order to correctly and easily simulate the many configurations that have been suggested, such as multi-segmented wigglers and the method of high-gain harmonic generation, we have developed a robust three-dimensional code. The specifics of the code, the comparison to the linear theory as well as future plans will be presented.

  19. HIGH AVERAGE POWER OPTICAL FEL AMPLIFIERS.

    SciTech Connect

    BEN-ZVI, ILAN, DAYRAN, D.; LITVINENKO, V.

    2005-08-21

    Historically, the first demonstration of the optical FEL was in an amplifier configuration at Stanford University [l]. There were other notable instances of amplifying a seed laser, such as the LLNL PALADIN amplifier [2] and the BNL ATF High-Gain Harmonic Generation FEL [3]. However, for the most part FELs are operated as oscillators or self amplified spontaneous emission devices. Yet, in wavelength regimes where a conventional laser seed can be used, the FEL can be used as an amplifier. One promising application is for very high average power generation, for instance FEL's with average power of 100 kW or more. The high electron beam power, high brightness and high efficiency that can be achieved with photoinjectors and superconducting Energy Recovery Linacs (ERL) combine well with the high-gain FEL amplifier to produce unprecedented average power FELs. This combination has a number of advantages. In particular, we show that for a given FEL power, an FEL amplifier can introduce lower energy spread in the beam as compared to a traditional oscillator. This properly gives the ERL based FEL amplifier a great wall-plug to optical power efficiency advantage. The optics for an amplifier is simple and compact. In addition to the general features of the high average power FEL amplifier, we will look at a 100 kW class FEL amplifier is being designed to operate on the 0.5 ampere Energy Recovery Linac which is under construction at Brookhaven National Laboratory's Collider-Accelerator Department.

  20. Simulation of the short pulse effects in the start-up from noise in high-gain FELS

    SciTech Connect

    Hahn, S.J.; Kim, K.J.

    1995-12-31

    The spatio-temporal evolution of high-gain free electron lasers from noise is investigated by 1-D simulation calculation. To understand the discrepancy between the experimental result and theoretical prediction of the self-amplified spontaneous emission (SASE), the strong slippage effect in the short pulse electron beam and the coherent bunched beam effect are considered. When the length over which the electron density varies significantly is comparable or smaller than the FEL wavelength, the initial noise level would be increased due to the enhanced coherence between electrons. With a proper computer modeling of the start-up from noise including the energy spread, the overall performance and characteristics of SASE are studied. This work will be helpful to increase the credibility of the simulation calculation to predict the SASE performance in all wave-length regions.

  1. FEL gain optimisation and spontaneous radiation

    SciTech Connect

    Bali, L.M.; Srivastava, A.; Pandya, T.P.

    1995-12-31

    Colson have evaluated FEL gains for small deviations from perfect electron beam injection, with radiation of the same polarisation as that of the wiggler fields. We find that for optimum gain the polarisation of the optical field should be the same as that of the spontaneous emission under these conditions. With a helical wiggler the axial oscillations resulting from small departures from perfect electron beam injection lead to injection dependent unequal amplitudes and phases of the spontaneous radiation in the two transverse directions. Viewed along the axis therefore the spontaneous emission is elliptically polarised. The azimuth of the ellipse varies with the difference of phase of the two transverse components of spontaneous emission but the eccentricity remains the same. With planar wigglers the spontaneous emission viewed in the axial direction is linearly polarised, again with an injection dependent azimuth. For optimum coherent gain of a radiation field its polarisation characteristics must be the same as those of the spontaneous radiation with both types of wiggler. Thus, with a helical wiggler and the data reported earlier, an increase of 10% in the FEL gain at the fundamental frequency and of 11% at the fifth harmonic has been calculated in the small gain per pass limit. Larger enhancements in gain may result from more favourable values of input parameters.

  2. Gain results for low voltage FEL

    SciTech Connect

    Shaw, A.; Stuart, R.A.; Al-Shamma`a, A.

    1995-12-31

    We have designed and constructed a low voltage (130 kV) FEL system capable of operating in the microwave frequency range for which the electron beam current is cw (rather than pulsed) in time at a level of {approximately} 12 mA. The gain of this system has been measured as a function of the electron beam accelerating voltage and current level, and the input microwave frequency (8-10 GHz). The results are compared with the predictions of a simple theoretical model.

  3. JUNGFRAU 0.2: prototype characterization of a gain-switching, high dynamic range imaging system for photon science at SwissFEL and synchrotrons

    NASA Astrophysics Data System (ADS)

    Jungmann-Smith, J. H.; Bergamaschi, A.; Cartier, S.; Dinapoli, R.; Greiffenberg, D.; Johnson, I.; Maliakal, D.; Mezza, D.; Mozzanica, A.; Ruder, Ch; Schaedler, L.; Schmitt, B.; Shi, X.; Tinti, G.

    2014-12-01

    JUNGFRAU (adJUstiNg Gain detector FoR the Aramis User station) is a two-dimensional pixel detector for photon science applications at free electron lasers and synchrotron light sources. It is developed for the SwissFEL currently under construction at the Paul Scherrer Institute, Switzerland. Characteristics of this application-specific integrating circuit readout chip include single photon sensitivity and low noise over a dynamic range of over four orders of magnitude of photon input signal. These characteristics are achieved by a three-fold gain-switching preamplifier in each pixel, which automatically adjusts its gain to the amount of charge deposited on the pixel. The final JUNGFRAU chip comprises 256 × 256 pixels of 75 × 75 μm2 each. Arrays of 2 × 4 chips are bump-bonded to monolithic detector modules of about 4 × 8 cm2. Multi-module systems up to 16 Mpixels are planned for the end stations at SwissFEL. A readout rate in excess of 2 kHz is anticipated, which serves the readout requirements of SwissFEL and enables high count rate synchrotron experiments with a linear count rate capability of > 20 MHz/pixel. Promising characterization results from a 3.6 × 3.6 mm2 prototype (JUNGFRAU 0.2) with fluorescence X-ray, infrared laser and synchrotron irradiation are shown. The results include an electronic noise as low as 100 electrons root-mean-square, which enables single photon detection down to X-ray energies of about 2 keV. Noise below the Poisson fluctuation of the photon number and a linearity error of the pixel response of about 1% are demonstrated. First imaging experiments successfully show automatic gain switching. The edge spread function of the imaging system proves to be comparable in quality to single photon counting hybrid pixel detectors.

  4. Small-signal gain in a gas-loaded FEL

    SciTech Connect

    Goloviznin, V.V.; Amersfoort, P.W. van

    1995-12-31

    At present, existing FEL facilities operate in the infrared and visible ranges of wavelengths. Generation of shorter waves (in the VUV and X-ray region) is of great scientific interest, but this would require a very expensive accelerator which could provide a high-current electron beam in the GeV-range of energies. A promising way to relax requirements on electron energy by introduction of a gas into the optical cavity was proposed nearly ten years ago. For small deviations from the vacuum wavelength, the idea was confirmed in experiments performed in Stanford; however, a detailed theory of such a device is still not developed. We present an analysis of the small-signal gain in a gas-loaded free-electron laser. Multiple scattering of electrons by the atoms of the gas inside the optical cavity is shown to lead to two additional effects, as compared to the case of a vacuum FEL: a loss of coherence between different parts of the electron trajectory and an enhancement of the phase {open_quotes}jitter{close_quotes}. Both effects become increasingly important at short wavelengths and significantly reduce the small-signal gain per pass. In 1D approximation analytical expressions are obtained and numerical calculations are made to estimate beam and undulator parameters necessary for lasing in the vacuum ultraviolet. Hydrogen-filled FELs are shown to have good prospects for this at today`s technological level. To operate in the range of wavelengths 125-140 nm, an electron beam should have an energy above 50 MeV and a good quality: a normalised emittance of the order of 5{pi} mm-mrad and an energy spread below 10{sup -3}. All these parameters are achieveable with modern linacs and photoinjectors.

  5. FEL gain calculation for imperfectly matched electron beams

    NASA Astrophysics Data System (ADS)

    Swent, R. L.; Berryman, K. W.

    1995-04-01

    We present here the details of an analytical small-signal gain calculation. The analysis builds on the basic one-dimensional analytical calculation by modeling the effects of finite electron beam size and imperfect matching of the electron beam to the wiggler. The calculation uses TRANSPORT [SLAC-91, Rev. 2 (1977)] parameters to describe the electron beam in order to easily take the output of beam transport calculations and use them as the input for FEL gain calculations. The model accepts an arbitrary TRANSPORT beam and includes the effects of energy spread, beam size, betatron oscillations, and focussing in the wiggle plane. The model has allowed us to calculate the range over which our FEL can be tuned by changing the electron energy alone (i.e., without changing any magnets).

  6. FEL and Optical Klystron Gain for an Electron Beam with Oscillatory Energy Distribution

    SciTech Connect

    Stupakov, G.; Ding, Y.; Huang, Z.; /SLAC

    2009-12-09

    If the energy spread of a beam is larger then the Pierce parameter, the FEL gain length increases dramatically and the FEL output gets suppressed. We show that if the energy distribution of such a beam is made oscillatory on a small scale, the gain length can be considerably decreased. Such an oscillatory energy distribution is generated by first modulating the beam energy with a laser via the mechanism of inverse FEL, and then sending it through a strong chicane. We show that this approach also works for the optical klystron enhancement scheme. Our analytical results are corroborated by numerical simulations.

  7. Gain enhancement plasma-loaded FEL in the presence of beat waves

    SciTech Connect

    Shamamian, A.H.; Gevorgian, L.A.

    1995-12-31

    An expression for the dielectric permittivity of underdense plasma interacting with laser beat waves is derived. It is shown that the presence of beat waves in plasma results in an effective growth of the plasma frequency. The FEL Gain is investigated in the case when the frequency of soft photons weakly depending on the electron beam energy and the synchronism condition is maintained. It is shown that the plasma beat waves lead to the essential increase in FEL gain.

  8. Powerful electrostatic FEL: Regime of operation, recovery of the spent electron beam and high voltage generator

    SciTech Connect

    Boscolo, I.; Gong, J.

    1995-02-01

    FEL, driven by a Cockcroft-Walton electrostatic accelerator with the recovery of the spent electron beam, is proposed as powerful radiation source for plasma heating. The low gain and high gain regimes are compared in view of the recovery problem and the high gain regime is shown to be much more favourable. A new design of the onion Cockcroft-Walton is presented.

  9. High average power CW FELs (Free Electron Laser) for application to plasma heating: Designs and experiments

    SciTech Connect

    Booske, J.H.; Granatstein, V.L.; Radack, D.J.; Antonsen, T.M. Jr.; Bidwell, S.; Carmel, Y.; Destler, W.W.; Latham, P.E.; Levush, B.; Mayergoyz, I.D.; Zhang, Z.X. . Lab. for Plasma Research); Freund, H.P. )

    1989-01-01

    A short period wiggler (period {approximately} 1 cm), sheet beam FEL has been proposed as a low-cost source of high average power (1 MW) millimeter-wave radiation for plasma heating and space-based radar applications. Recent calculation and experiments have confirmed the feasibility of this concept in such critical areas as rf wall heating, intercepted beam ( body'') current, and high voltage (0.5 - 1 MV) sheet beam generation and propagation. Results of preliminary low-gain sheet beam FEL oscillator experiments using a field emission diode and pulse line accelerator have verified that lasing occurs at the predicted FEL frequency. Measured start oscillation currents also appear consistent with theoretical estimates. Finally, we consider the possibilities of using a short-period, superconducting planar wiggler for improved beam confinement, as well as access to the high gain, strong pump Compton regime with its potential for highly efficient FEL operation.

  10. FEL gain as a function of phace displacements induced by undulator intersection gaps

    SciTech Connect

    Varfolomeev, A.A.

    1995-12-31

    Gain characteristics are analytically considered for FEL based on a multisection undulator with short intersection gaps. It is shown that small phase displacements between laser beam and electron beam respectively caused by the above intersection gaps can seriously change the gain resonance frequency as well as gain curve shape. This effect is different from that of OK and can be used for fast undulator tuning or for its tapering. Gain characteristics are analitically considered for FEL based on a multisection undulator with short intersection gaps. It is shown that small phase displacements between laser beam and electron beam respectively caused by the above intersection gaps can seriously change the gain resonance frequency as well as gain curve shape. This effect is different from that of OK and can be used for fast undulator tuning or for its tapering.

  11. Gain length dependence on phase shake in the VUV-FEL at the TESLA Test Facility

    SciTech Connect

    Pflueger, J.; Pierini, P.

    1995-12-31

    The TTF VUV FEL, which is in its design stage at DESY, consists of a 30 m long SASE FEL which will radiate around 6 nm, driven by a superconducting linac with final energy of 1 GeV. One of the important issues in its design is the undulator performance, which is studied in this paper. The present setup, including FODO lattice, is discussed in this paper. Results of simulations, including the realistic wiggler field errors and beam stearing, are presented. Dependence of the performance, in particular the gain and saturation length as well as the saturation peak power, on the wiggler field errors is discussed.

  12. Reduction of undulator radiation and FEL small gain due to wiggler errors

    SciTech Connect

    Friedman, A.

    1991-01-01

    A deterministic approach is taken to study the effect of errors in the wiggler magnet field on the spontaneous emission and the gain of Free Electron Lasers. A 3D formulation is used to derive the reduction in spontaneous emission due to changes in the time of flight of the electrons. A generalization of Madey's theorem to 3D is then used to calculate the reduction in the FEL small gain. 6 refs.

  13. Synchronously injected amplifiers, a novel approach to high-average-power FEL

    SciTech Connect

    Nguyen, D.C.; Fortgang, C.M.; Goldstein, J.C.; Kinross-Wright, J.M.; Sheffield, R.L.

    1996-11-01

    Two new FEL ideas based on synchronously injected amplifiers are described. Both of these rely on the synchronous injection of the optical signal into a high-gain, high-efficiency tapered wiggler. The first concept, called Regenerative Amplifier FEL (RAFEL), uses an optical feedback loop to provide a coherent signal at the wiggler entrance so that the optical power can reach saturation rapidly. The second idea requires the use of a uniform wiggler in the feedback loop to generate light that can be synchronously injected back into the first wiggler. The compact Advanced FEL is being modified to implement the RAFEL concept. We describe future operation of the Advanced FEL at high average current and discuss the possibility of generating 1 kW average power.

  14. Coherence and linewidth studies of a 4-nm high power FEL

    SciTech Connect

    Fawley, W.M.; Sessler, A.M.; Scharlemann, E.T.

    1993-05-01

    Recently the SSRL/SLAC and its collaborators elsewhere have considered the merits of a 2 to 4-nm high power FEL utilizing the SLAC linac electron beam. The FEL would be a single pass amplifier excited by spontaneous emission rather than an oscillator, in order to eliminate the need for a soft X-ray resonant cavity. We have used GINGER, a multifrequency 2D FEL simulation code, to study the expected linewidth and coherence properties of the FEL, in both the exponential and saturated gain regimes. We present results concerning the effective shot noise input power and mode shape, the expected subpercent output line widths, photon flux, and the field temporal and spatial correlation functions. We also discuss the effects of tapering the wiggler upon the output power and line width.

  15. Gain measurements on a waveguide FEL amplifier with pre-bunched electron beam

    SciTech Connect

    Dearden, G.; Mayhew, S.E.; Lucas, J.

    1995-12-31

    A theory proposed by Doria et al. suggests that a synchronous pre-bunched electron beam should amplify radiation with a power gain which is inversely proportional to the square root of the input power. We have measured the power gain experimentally for a waveguide FEL system using a low-voltage (55kV) pre-bunched electron beam produced by a waveguide cavity buncher. The gain has been observed as a function of the electron beam current and energy; the results are compared with theory.

  16. Gain narrowing of temporal and spectral widths in the UVSOR-FEL

    SciTech Connect

    Kimura, K.; Yamazaki, J.; Kinoshita, T.

    1995-12-31

    Storage ring free electron laser (SR-FEL) dynamics on the UVSOR-FEL in the visible region has been studied with measurements of the temporal and the spectral widths of the laser micropulse. The micro- and the macro-temporal structures were measured using a dual sweep streak camera. We have also investigated spectral evolution of the laser with a Fabry-Perot etalon. Only a slow sweep function of the streak camera has been used for a fringe pattern formed by the air gap etalon to derive time-dependent variations of the spectral shape. We have measured the time-averaged pulsewidths and linewidths as a function of the ring current. We observed that every macropulse contains internal substructures in both the temporal and the spectral distributions. The internal substructure, however, disappeared when the spectra of more than fifty macropulses were superimposed, and the envelope of the distribution became close to a Gaussian. We have found that the pulsewidth and the linewidth become narrower as the ring current decays. In the gain-switching mode, the micropulse duration and the linewidth at the maximum ring current were 80 ps(FWHM) and 0.3 nm(FWHM), respectively, and decreased down to 20 ps and 0.1 nm just above the threshold current. The temporal and the spectral widths seem to follow the gain behavior. Assuming that the pulsewidth and the linewidth depend on the laser gain, the bandwidth in weakly saturated situation such as SR-FEL is determined by the gain narrowing of the laser amplifier. Because the gain evolution is able to be deduced from the macropulse shape, we can obtain the relation between the bandwidth and an effective gain above the mirror loss. The temporal and the spectral evolutions of the UVSOR-FEL were well explained by the gain narrowing related to a gain integrated from the oscillation build-up to the gain saturation. Detail of the experiment and the analysis will be presented.

  17. High-power FEL design issues - a critical review

    SciTech Connect

    Litvinenko, V.N.; Madey, J.M.J.; O`Shea, P.G.

    1995-12-31

    The high-average power capability of FELs has been much advertised but little realized. In this paper we provide a critical analysis of the technological and economic issues associated with high-average power FEL operation from the UV to near IR. The project of IR FEL for the Siberian Center of photochemical researches is described. The distinguished features of this project are the use of the race-track microtron-recuperator and the {open_quotes}electron output of radiation{close_quotes}. The building for the machine is under reconstruction now. About half of hardware has been manufactured. The assembly of installation began.

  18. A HIGH REPETITION RATE VUV-SOFT X-RAY FEL CONCEPT

    SciTech Connect

    Corlett, J.; Byrd, J.; Fawley, W.M.; Gullans, M.; Li, D.; Lidia,S.M.; Padmore, H.; Penn, G.; Pogorelov, I.; Qiang, J.; Robin, D.; Sannibale, F.; Staples, J.W.; Steier, C.; Venturini, M.; Virostek, S.; Wan, W.; Wells, R.; Wilcox, R.; Wurtele, J.; Zholents, A.

    2007-06-24

    We report on design studies for a seeded FEL light source that is responsive to the scientific needs of the future. The FEL process increases radiation flux by several orders of magnitude above existing incoherent sources, and offers the additional enhancements attainable by optical manipulations of the electron beam: control of the temporal duration and bandwidth of the coherent output, reduced gain length in the FEL, utilization of harmonics to attain shorter wavelengths, and precise synchronization of the x-ray pulse with seed laser systems. We describe an FEL facility concept based on a high repetition rate RF photocathode gun, that would allow simultaneous operation of multiple independent FEL's, each producing high average brightness, tunable over the VUV-soft x-ray range, and each with individual performance characteristics determined by the configuration of the FEL. SASE, enhanced-SASE (ESASE), seeded, harmonic generation, and other configurations making use of optical manipulations of the electron beam may be employed, providing a wide range of photon beam properties to meet varied user demands.

  19. NATIONAL HIGH MAGENTIC FIELD LABORATORY FEL INJECTOR DESIGN CONSIDERATION

    SciTech Connect

    Pavel Evtushenko; Stephen Benson; David Douglas; George Neil

    2007-06-25

    A Numerical study of beam dynamics was performed for two injector systems for the proposed National High Magnetic Field Laboratory at the Florida State University (FSU) Free Electron Laser (FEL) facility. The first considered a system consisting of a thermionic DC gun, two buncher cavities operated at 260 MHz and 1.3 GHz and two TESLA type cavities, and is very similar to the injector of the ELBE Radiation Source. The second system we studied uses a DC photogun (a copy of JLab FEL electron gun), one buncher cavity operated at 1.3 GHz and two TESLA type cavities. The study is based on PARMELA simulations and takes into account operational experience of both the JLab FEL and the Radiation Source ELBE. The simulations predict the second system will have a much smaller longitudinal emittance. For this reason the DC photo gun based injector is preferred for the proposed FSU FEL facility.

  20. Status report on the development of a high-power UV/IR FEL at CEBAF

    SciTech Connect

    Benson, S.; Bohn, C.; Dylla, H.F.

    1995-12-31

    Last year we presented a design for a kilowatt industrial UV FEL based on a superconducting RF accelerator delivering 5 mA of electron-beam current at 200 MeV with energy recovery to enhance efficiency. Since then, we have progressed toward resolving several issues associated with that design. More exact simulations of the injector have resulted in a more accurate estimate of the injector performance. A new injection method has reduced the longitudinal and transverse emittance at the linac entrance. A more compact lattice has been designed for the UV FEL, and a new recirculation scheme has been identified which greatly increases the threshold for longitudinal instabilities. We decided to use a wiggler from the Advanced Photon Source which leads to a robust high-gain FEL. Analysis of the stability of an RF control system based on CEBAF control modules indicates that only minor modifications will be needed to apply them to this FEL. Detailed magnet specifications, vacuum-chamber beam apertures, and diagnostic specifications have been developed for the recirculation arcs. The design of the optical cavity has been conceptualized, and control systems have been devised to regulate mirror distortion. A half-scale model of one of the end-corner cubes has been built and tested. Finally, three-dimensional simulations have been carried out which indicate that the FEL should exceed its minimum design goals with adequate performance margin.

  1. High harmonic generation in undulators for FEL

    NASA Astrophysics Data System (ADS)

    Zhukovsky, K.

    2016-02-01

    The analytical study of the undulator radiation (UR), accounting for major sources of the spectral line broadening is presented. Analytical expressions for the UR spectrum and intensity are obtained. They demonstrate possibilities of the compensation of the divergency by the constant magnetic component. Some examples of single and double frequency undulators are considered. Generation of harmonics is studied with account for homogeneous and inhomogeneous broadening in real devices. The obtained results with account for all broadening sources are applied for evaluation of free electron laser (FEL) performance and compared with those, obtained with the ideal undulator.

  2. Application of the green function formalism to nonlinear evolution of the low gain FEL oscillator

    SciTech Connect

    Shvets, G.; Wurtele, J.S.; Gardent, D.

    1995-12-31

    A matrix formalism for the optical pulse evolution in the frequency domain, is applied to the nonlinear regime of operation. The formalism was previously developed for studies of the linear evolution of the low-gain FEL oscillator with an arbitrary shape of the electron beam. By varying experimentally controllable parameters, such as cavity detunning and cavity losses, different regimes of operation of the FEL oscillator, such as a steady state saturation and limit cycle saturation, are studied numerically. It is demonstrated that the linear supermodes, numerically obtained from the matrix formalism, provide an appropriate framework for analyzing the periodic change in the output power in the limit cycle regime. The frequency of this oscillation is related to the frequencies of the lowest-order linear supermodes. The response of the output radiation to periodic variation of the electron energy is studied. It is found that the response is enhanced when the frequency of the energy variation corresponds to the difference of per-pass phase advances of the lowest linear supermodes. Finally, various nonlinear models are tested to capture the steady state saturation and limit cycle variation of the EM field in the oscillator cavity.

  3. Compensation of FEL gain reduction by emittance effects in a strong focusing lattice

    NASA Astrophysics Data System (ADS)

    Reiche, S.

    2000-05-01

    As the constraint of a small transverse emittance becomes more severe, the higher the electron beam energy in an FEL. To compensate for the transverse and thus the longitudinal velocity spread, a compensation scheme has been proposed previously by Derbenev and Sessler et al., for Free Electron Lasers by introducing a correlation between the energy and the average betatron amplitude of each electron. This compensation scheme is based on a constant absolute value of the transverse velocity, a feature of the natural focusing of undulators, and does not include strong focusing of a superimposed quadrupole lattice. This paper focuses on the electron motion in a strong focusing lattice with a variation in the axial velocity. The resulting reduction of the compensation efficiency is analyzed using simulations. It is seen that the compensation scheme is not much affected if the lattice cell length is shorter than the gain length. For the results presented in this paper, the parameters of the proposed TESLA X-ray FEL have been used.

  4. A high-average power tapered FEL amplifier at submillimeter frequencies using sheet electron beams and short-period wigglers

    SciTech Connect

    Bidwell, S.W.; Radack, D.J.; Antonsen, T.M. Jr.; Booske, J.H.; Carmel, Y.; Destler, W.W.; Granatstein, V.L.; Levush, B.; Latham, P.E.; Zhang, Z.X.

    1990-01-01

    A high-average-power FEL amplifier operating at submillimeter frequencies is under development at the University of Maryland. Program goals are to produce a CW, {approximately}1 MW, FEL amplifier source at frequencies between 280 GHz and 560 GHz. To this end, a high-gain, high-efficiency, tapered FEL amplifier using a sheet electron beam and a short-period (superconducting) wiggler has been chosen. Development of this amplifier is progressing in three stages: (1) beam propagation through a long length ({approximately}1 m) of short period ({lambda}{sub {omega}} = 1 cm) wiggler, (2) demonstration of a proof-of-principle amplifier experiment at 98 GHz, and (3) designs of a superconducting tapered FEL amplifier meeting the ultimate design goal specifications. 17 refs., 1 fig., 1 tab.

  5. A high-average-power FEL for industrial applications

    SciTech Connect

    Dylla, H.F.; Benson, S.; Bisognano, J.

    1995-12-31

    CEBAF has developed a comprehensive conceptual design of an industrial user facility based on a kilowatt UV (150-1000 nm) and IR (2-25 micron) FEL driven by a recirculating, energy-recovering 200 MeV superconducting radio-frequency (SRF) accelerator. FEL users{endash}CEBAF`s partners in the Laser Processing Consortium, including AT&T, DuPont, IBM, Northrop-Grumman, 3M, and Xerox{endash}plan to develop applications such as polymer surface processing, metals and ceramics micromachining, and metal surface processing, with the overall effort leading to later scale-up to industrial systems at 50-100 kW. Representative applications are described. The proposed high-average-power FEL overcomes limitations of conventional laser sources in available power, cost-effectiveness, tunability and pulse structure. 4 refs., 3 figs., 2 tabs.

  6. Rapid Postnatal Weight Gain and Visceral Adiposity in Adulthood: The Fels Longitudinal Study

    PubMed Central

    Demerath, Ellen W.; Reed, Derek; Choh, Audrey C.; Soloway, Laura; Lee, Miryoung; Czerwinski, Stefan A.; Chumlea, William C.; Siervogel, Rogers M.; Towne, Bradford

    2009-01-01

    Rapid infant weight gain is associated with increased abdominal adiposity, but there is no published report of the relationship of early infant growth to differences in specific adipose tissue depots in the abdomen, including visceral adipose tissue (VAT). In this study, we tested the associations of birth weight, infant weight gain, and other early life traits with VAT, abdominal subcutaneous adipose tissue (ASAT), and other body composition measures using magnetic resonance imaging (MRI) and dual-energy X-ray absorptiometry in middle adulthood (mean age = 46.5 years). The sample included 233 appropriate for gestational age singleton white children (114 males) enrolled in the Fels Longitudinal Study. Multivariate-adjusted general linear models were used to test the association of infant weight gain (from 0 to 2 years), maternal BMI, gestational age, parity, maternal age, and other covariates with adulthood body composition. Compared to infants with slow weight gain, rapid weight gain was associated with elevated risk of obesity (adjusted odds ratio = 4.1, 95% confidence interval = 1.4, 11.1), higher total body fat (+7 kg, P = 0.0002), percent body fat (+5%, P = 0.0006), logVAT mass (+0.43 kg, P = 0.02), logASAT mass (+0.47 kg, P = 0.001), and percent abdominal fat (+5%, P = 0.03). There was no evidence that the increased abdominal adipose tissue was due to a preferential deposition of VAT. In conclusion, rapid infant weight gain is associated with increases in both VAT and ASAT, as well as total adiposity and the risk of obesity in middle adulthood. PMID:19373221

  7. FEL POTENTIAL OF THE HIGH CURRENT ERLs AT BNL.

    SciTech Connect

    KAYRAN,D.; BEN-ZVI, I.; LITVINENKO, V.; POZDEYEV, E.; MATVEENKO, A.; SHEVCHENKO, O.; VINOKUROV, N.

    2007-08-26

    An ampere class 20 MeV superconducting Energy Recovery Linac (ERL) is under construction at Brookhaven National Laboratory (BNL) for testing concepts for high-energy electron cooling and electron-ion colliders. This ERL prototype will be used as a test bed to study issues relevant for very high current ERLs. High average current and high performance of electron beam with some additional components make this ERL an excellent driver for high power far infrared Free Electron Laser (FEL). A possibility for future up-grade to a two-pass ERL is considered. We present the status and our plans for construction and commissioning of the ERL. We discus a FEL potential based on electron beam provided by BNL ERL.

  8. Design considerations on a high-power VUV FEL

    SciTech Connect

    Ciocci, F.; Dattoli, G.; Angelis, A. De; Garosi, F.; Giannessi, L.; Torre, A.; Faatz, B.; Ottaviani, P.L.

    1995-07-01

    The authors explore the feasibility conditions of a high-power FEL operating in the VUV region (below 100 nm) and exploiting a coupled oscillator triplicator configuration. A high quality beam from a linac is passed through a FEL oscillator and produces laser radiation at 240 nm. The same beam is extracted and then injected into a second undulator tuned at the third harmonic of the first. The bunching produced in the oscillator allows the start up of the laser signal in the second section which operates as an amplifier. The authors discuss the dynamical behavior of the system and the dependence of the output power on the characteristics of the e-beam and of the oscillator. The possibility of enhancing the output power, adding a tapered section to the second undulator, is finally analyzed.

  9. EXPERIMENTAL DEMONSTRATION OF WAVELENGTH TUNING IN HIGH-GAIN HARMONIC GENERATION FREE ELECTRON LASER.

    SciTech Connect

    SHAFTAN,T.; JOHNSON,E.; KRINSKY,S.; LOOS,H.; MURPHY,J.B.; RAKOWSKY,G.; ROSE,J.; SHEEHY,B.; SKARITKA,J.; WANG,X.J.; WU,Z.; YU,L.H.

    2004-08-29

    Tunability is one of the key aspects of any laser system. In High-Gain Harmonic Generation Free Electron Laser (HGHG FEL) the seed laser determines the output wavelength. Conventional scheme of tunable HGHG FEL requires tunable seed laser. The alternative scheme [1] is based on compression of the electron bunch with energy-time correlation (chirped bunch) in the FEL dispersive section. The chirped energy modulation, induced by the seed laser with constant wavelength, compressed as the whole bunch undergoes compression. In this paper we discuss experimental verification of the proposed approach at the DUV FEL [2,3] and compare experimental results with analytical estimates.

  10. Lightning control system using high power microwave FEL

    SciTech Connect

    Shiho, M.; Watanbe, A.; Kawasaki, S.

    1995-12-31

    A research project for developing a thunder lightning control system using an induction linac based high power microwave free electron laser (FEL) started at JAERI The system will produce weakly ionized plasma rod in the atmosphere by high power microwaves and control a lightning path, away from , e. g., nuclear power stations and rocket launchers. It has been known that about MW/cm{sup 2} power density is enough for the atmospheric breakdown in the microwave region, and which means high power microwave FEL with GW level output power is feasible for atmospheric breakdown, and accordingly is feasible for thunder lightning control tool with making a conductive plasma channel in the atmosphere. From the microwave attenuation consideration in the atmosphere, FEL of 35GHz(0.13dB/km), 90GHz(0.35dB/km), 140GHz(1.7dB/km), and of 270 GHz(4.5dB/km) are the best candidates for the system. Comparing with other proposed lightning control system using visible or ultraviolet laser, the system using microwave has an advantage that microwave suffers smaller attenuation by rain or snow which always exist in the real atmospheric circumstances when lightning occurs.

  11. Energy stability in a high average power FEL

    SciTech Connect

    Mermings, L.; Bisognano, J.; Delayen, J.

    1995-12-31

    Recirculating, energy-recovering linacs can be used as driver accelerators for high power FELs. Instabilities which arise from fluctuations of the cavity fields or beam current are investigated. Energy changes can cause beam loss on apertures, or, when coupled to M, phase oscillations. Both effects change the beam induced voltage in the cavities and can lead to unstable variations of the accelerating field. Stability analysis for small perturbations from equilibrium is performed and threshold currents are determined. Furthermore, the analytical model is extended to include feedback. Comparison with simulation results derived from direct integration of the equations of motion is presented. Design strategies to increase the instability threshold are discussed and the UV Demo FEL, proposed for construction at CEBAF, and the INP Recuperatron at Novosibirsk are used as examples.

  12. Three-Dimensional Analysis of Frequency-Chirped FELs

    SciTech Connect

    Huang, Z.; Ding, Y.; Wu, J.; /SLAC

    2010-09-14

    Frequency-chirped free-electron lasers (FELs) are useful to generate a large photon bandwidth or a shorter x-ray pulse duration. In this paper, we present a three-dimensional analysis of a high-gain FEL driven by the energy-chirped electron beam. We show that the FEL eigenmode equation is the same for a frequency-chirped FEL as for an undulator-tapered FEL. We study the transverse effects of such FELs including mode properties and transverse coherence.

  13. Helicopter high gain control

    NASA Technical Reports Server (NTRS)

    Cunningham, T. B.; Nunn, E. C.

    1979-01-01

    High gain control is explored through a design study of the CH-47B helicopter. The plans are designed to obtain the maximum bandwidth possible given the hardware constraints. Controls are designed with modal control theory to specific bandwidths and closed loop mode shapes. Comparisons are made to an earlier complementary filter approach. Bandwidth improvement by removal of limitations is explored in order to establish hardware and mechanization options. Improvements in the pitch axis control system and in the rate gyro sensor noise characteristics in all axes are discussed. The use of rotor state feedback is assessed.

  14. Collapsible high gain antenna

    NASA Technical Reports Server (NTRS)

    Cribb, H. E. (Inventor)

    1973-01-01

    A lightweight small high gain antenna which is capable of being packaged in a collapsed form and automatically expanded when in use is described. The antenna includes a cylindrical housing having a rod with a piston adjacent to one end extending through it. Attached to the outer end of the rod in a normally collapsed state is a helical wire coil. When the gas producing means is activated the piston and rod are shifted outwardly to expand the wire coil. A latch is provided for holding the helical coil in the expanded position.

  15. Development of a high average power, CW, MM-wave FEL

    SciTech Connect

    Ramian, G.

    1995-12-31

    Important operational attributes of FELs remain to be demonstrated including high average power and single-frequency, extremely narrow-linewidth lasing. An FEL specifically designed to achieve these goals for scientific research applications is currently under construction. Its most salient feature is operation in a continuous-wave (CW) mode with an electrostatically generated, high-current, recirculating, DC electron beam.

  16. High Power Operation of the JLab IR FEL Driver Accelerator

    SciTech Connect

    Kevin Beard; Stephen Benson; George Biallas; James Boyce; Donald Bullard; James Coleman; David Douglas; H. Dylla; Richard Evans; Pavel Evtushenko; Christopher Gould; Albert Grippo; Joseph Gubeli; David Hardy; Carlos Hernandez-Garcia; J. Hovater; Kevin Jordan; John Klopf; Rui Li; Steven Moore; George Neil; Benard Poelker; Thomas Powers; Joseph Preble; Robert Rimmer; Daniel Sexton; Michelle D. Shinn; Christopher Tennant; Richard Walker; Gwyn Williams; Shukui Zhang

    2007-08-01

    Operation of the JLab IR Upgrade FEL at CW powers in excess of 10 kW requires sustained production of high electron beam powers by the driver ERL. This in turn demands attention to numerous issues and effects, including: cathode lifetime; control of beamline and RF system vacuum during high current operation; longitudinal space charge; longitudinal and transverse matching of irregular/large volume phase space distributions; halo management; management of remnant dispersive effects; resistive wall, wake-field, and RF heating of beam vacuum chambers; the beam break up instability; the impact of coherent synchrotron radiation (both on beam quality and the performance of laser optics); magnetic component stability and reproducibility; and RF stability and reproducibility. We discuss our experience with these issues and describe the modus vivendi that has evolved during prolonged high current, high power beam and laser operation.

  17. Multicolor High-Gain Free-Electron Laser Driven by Seeded Microbunching Instability.

    PubMed

    Roussel, E; Ferrari, E; Allaria, E; Penco, G; Di Mitri, S; Veronese, M; Danailov, M; Gauthier, D; Giannessi, L

    2015-11-20

    Laser-heater systems are essential tools to control and optimize high-gain free-electron lasers (FELs) working in the x-ray wavelength range. Indeed, these systems induce a controllable increase of the energy spread of the electron bunch. The heating suppresses longitudinal microbunching instability which otherwise would limit the FEL performance. Here, we demonstrate that, through the action of the microbunching instability, a long-wavelength modulation of the electron beam induced by the laser heater at low energy can persist until the beam entrance into the undulators. This coherent longitudinal modulation is exploited to control the FEL spectral properties, in particular, multicolor extreme-ultraviolet FEL pulses can be generated through a frequency mixing of the modulations produced by the laser heater and the seed laser in the electron beam. We present an experimental demonstration of this novel configuration carried out at the FERMI FEL. PMID:26636852

  18. Multicolor High-Gain Free-Electron Laser Driven by Seeded Microbunching Instability

    NASA Astrophysics Data System (ADS)

    Roussel, E.; Ferrari, E.; Allaria, E.; Penco, G.; Di Mitri, S.; Veronese, M.; Danailov, M.; Gauthier, D.; Giannessi, L.

    2015-11-01

    Laser-heater systems are essential tools to control and optimize high-gain free-electron lasers (FELs) working in the x-ray wavelength range. Indeed, these systems induce a controllable increase of the energy spread of the electron bunch. The heating suppresses longitudinal microbunching instability which otherwise would limit the FEL performance. Here, we demonstrate that, through the action of the microbunching instability, a long-wavelength modulation of the electron beam induced by the laser heater at low energy can persist until the beam entrance into the undulators. This coherent longitudinal modulation is exploited to control the FEL spectral properties, in particular, multicolor extreme-ultraviolet FEL pulses can be generated through a frequency mixing of the modulations produced by the laser heater and the seed laser in the electron beam. We present an experimental demonstration of this novel configuration carried out at the FERMI FEL.

  19. Computations of longitudinal electron dynamics in the recirculating cw RF accelerator-recuperator for the high average power FEL

    NASA Astrophysics Data System (ADS)

    Sokolov, A. S.; Vinokurov, N. A.

    1994-03-01

    The use of optimal longitudinal phase-energy motion conditions for bunched electrons in a recirculating RF accelerator gives the possibility to increase the final electron peak current and, correspondingly, the FEL gain. The computer code RECFEL, developed for simulations of the longitudinal compression of electron bunches with high average current, essentially loading the cw RF cavities of the recirculator-recuperator, is briefly described and illustrated by some computational results.

  20. Towards short wavelengths FELs workshop

    SciTech Connect

    Ben-Zvi, I.; Winick, H.

    1993-12-01

    This workshop was caged because of the growing perception in the FEL source community that recent advances have made it possible to extend FEL operation to wavelengths about two orders of magnitude shorter than the 240 nm that has been achieved to date. In addition short wavelength FELs offer the possibilities of extremely high peak power (several gigawatts) and very short pulses (of the order of 100 fs). Several groups in the USA are developing plans for such short wavelength FEL facilities. However, reviewers of these plans have pointed out that it would be highly desirable to first carry out proof-of-principle experiments at longer wavelengths to increase confidence that the shorter wavelength devices will indeed perform as calculated. The need for such experiments has now been broadly accepted by the FEL community. Such experiments were the main focus of this workshop as described in the following objectives distributed to attendees: (1) Define measurements needed to gain confidence that short wavelength FELs will perform as calculated. (2) List possible hardware that could be used to carry out these measurements in the near term. (3) Define a prioritized FEL physics experimental program and suggested timetable. (4) Form collaborative teams to carry out this program.

  1. A pure permanent magnet-two plane focusing-tapered wiggler for a high average power FEL

    SciTech Connect

    Fortgang, C.M.

    1996-11-01

    A high-average power FEL is under construction at Los Alamos. The FEL will have aspects of both an oscillator and a SASE (self-amplified spontaneous emission) device. That is, a high-gain and high- extraction efficiency wiggler will be used with a very low-Q optical resonator. FEL simulations reveal that a tapered wiggler with two- plane focusing is required to obtain desired performance. The wiggler is comprised of a I meter long untapered section followed by a 1 meter tapered section. The taper is achieved with the magnetic gap and not the wiggler period which is constant at 2 cm. The gap is tapered from 5.9 mm to 8.8 mm. The, gap, rather than the period, is tapered to avoid vignetting of the 16 {mu}m optical beam. Two-plane focusing is necessary to maintain high current density and thus high gain through out the 2 meter long wiggler. Several magnetic designs have been considered for the wiggler. The leading candidate approach is a pure permanent wiggler with pole faces that are cut to roughly approximate the classical parabolic pole face design. Focusing is provided by the sextupole component of the wiggler magnetic field and is often called ``natural`` or ``betatron`` focusing. Details of the design will be presented.

  2. Lasing with a Near-Confocal cavity in a high power FEL

    SciTech Connect

    Stephen Benson; George Neil; Michelle D. Shinn

    2002-01-01

    Lasing at high power in FELs has been achieved so far only with a near-concentric resonator [1]. Though this design can scale up to quite high power, it is ultimately limited by the mirror steering stability as the resonator design approaches concentricity. This constraint may be avoided by using a near-confocal resonator operated in a ring configuration. It is found that, if a small amount of gain focusing is present, the near-confocal resonator eigenmodes are modified such that the lowest order mode collapses around the electron beam and is large in the return (non-focusing) direction. This eigenmode is stable and is relatively insensitive to changes in the mirror radii of curvature and the strength of the electron beam focusing. This paper will present the theory of this new concept.

  3. RF coupler for high-power CW FEL photoinjector

    SciTech Connect

    Kurennoy, S.; Young, L. M.

    2003-01-01

    A high-current emittance-compensated RF photoinjector is a key enabling technology for a high-power CW FEL. The design presently under way is a 100-mA 2.5-cell {pi}-mode, 700-MHz, normal conducting demonstration CW RF photoinjector. This photoinjector will be capable of accelerating 3 nC per bunch with an emittance at the wiggler less than 10 mm-mrad. The paper presents results for the RF coupling from ridged wave guides to hte photoinjector RF cavity. The LEDA and SNS couplers inspired this 'dog-bone' design. Electromagnetic modeling of the coupler-cavity system has been performed using both 2-D and 3-D frequency-domain calculations, and a novel time-domain approach with MicroWave Studio. These simulations were used to adjust the coupling coefficient and calculate the power-loss distribution on the coupling slot. The cooling of this slot is a rather challenging thermal management project.

  4. Operating synchrotron light sources with a high gain free electron laser

    NASA Astrophysics Data System (ADS)

    Di Mitri, S.; Cornacchia, M.

    2015-11-01

    Since the 1980s synchrotron light sources have been considered as drivers of a high repetition rate (RR), high gain free electron laser (FEL) inserted in a by-pass line or in the ring itself. As of today, the high peak current required by the laser is not deemed to be compatible with the standard multi-bunch filling pattern of synchrotrons, and in particular with the operation of insertion device (ID) beamlines. We show that this problem can be overcome by virtue of magnetic bunch length compression in a ring section, and that, after lasing, the beam returns to equilibrium conditions without beam quality disruption. Bunch length compression brings a double advantage: the high peak current stimulates a high gain FEL emission, while the large energy spread makes the beam less sensitive to the FEL heating and to the microwave instability in the ring. The beam’s large energy spread at the undulator is matched to the FEL energy bandwidth through a transverse gradient undulator. Feasibility of lasing at 25 nm is shown for the Elettra synchrotron light source at 1 GeV, and scaling to shorter wavelengths as a function of momentum compaction, beam energy and transverse emittance in higher energy, larger rings is discussed. For the Elettra case study, a low (100 Hz) and a high (463 kHz) FEL RR are considered, corresponding to an average FEL output power at the level of ∼1 W (∼1013 photons per pulse) and ∼300 W (∼1011 photons per pulse), respectively. We also find that, as a by-product of compression, the ∼5 W Renieri’s limit on the average FEL power can be overcome. Our conclusion is that existing and planned synchrotron light sources may be made compatible with this new hybrid IDs-plus-FEL operational mode, with little impact on the standard beamlines functionality.

  5. Status of the project of Novosibirsk high power FEL

    SciTech Connect

    Pinayev, I.V.; Erg, G.I.; Gavrilov, N.G.

    1995-12-31

    The project of IR FEL for the Siberian Center of photochemical researches is described. The distinguished features of this project are the use of the race-track microtron-recuperator and the {open_quotes}electron output of radiation{close_quotes}. The building for the machine is under reconstruction now. About half of hardware has been manufactured. The assembly of installation began.

  6. Prospects for a soft x-ray FEL powered by a relativistic-klystron high-gradient accelerator (RK-HGA)

    SciTech Connect

    Shay, H.D.; Barletta, W.A.; Yu, S.S.; Schlueter, R.; Deis, G.A.

    1989-09-28

    We present here the concept of x-ray FELs using high gain, single-pass amplifiers with electron beams accelerated in high gradient structures powered by relativistic klystrons. Other authors have also considered x-ray FELs; the unique aspect of this paper is the use of high gradient acceleration. One of the authors has previously presented preliminary studies on this concept. The intent in this paper is to display the results of a top level design study on a high gain FEL, to present its sensitivity to a variety of fabrication and tuning errors, to discuss several mechanisms for increasing gain yet more, and to present explicitly the output characteristics of such an FEL. The philosophy of the design study is to find a plausible operating point which employs existing or nearly existing state-of-the-art technologies while minimizing the accelerator and wiggler lengths. The notion is to distribute the technical risk as evenly as possible over the several technologies so that each must advance only slightly in order to make this design feasible. This study entailed no systematic investigation of possible costs so that, for example, the sole criterion for balancing the trade-off between beam energy and wiggler length is that the two components have comparable lengths. 20 refs., 10 figs., 1 tab.

  7. Strategies for minimizing emittance growth in high charge CW FEL injectors

    SciTech Connect

    Liu, H.

    1995-12-31

    This paper is concerned with the best strategies for designing low emittance, high charge CW FEL injectors. This issue has become more and more critical as today`s interest in FELs is toward UV wavelength high average power operation. The challenge of obtaining the smallest possible emittance is discussed from both the practical point of view and the beam physics point of view. Various mechanisms responsible for beam emittance growth are addressed in detail. Finally, the design of a high charge injector test stand at CEBAF is chosen to help illustrate the design strategies and emittance growth mechanisms discussed in this paper.

  8. A Dynamic Feedback Model for High Repetition Rate LINAC-Driven FELS

    SciTech Connect

    Mellado Munoz, M.; Doolittle, L.; Emma, P.; Huang, G.; Ratti, A.; Serrano, C.; Byrd, J. M.

    2012-05-20

    One of the concepts for the next generation of linacdriven FELs is a CW superconducting linac driving an electron beam with MHz repetition rates. One of the challenges for next generation FELs is improve the stability of the xray pulses by improving the shot-to-shot stability of the energy, charge, peak current, and timing jitter of the electron beam. A high repetition rate FEL with a CW linac presents an opportunity to use a variety of broadband feedbacks to stabilize the beam parameters. To understand the performance of such a feedback system, we are developing a dynamic model of the machine with a focus on the longitudinal beam properties. The model is being developed as an extension of the LITrack code and includes the dynamics of the beam-cavity interaction, RF feedback, beam-based feedback, and multibunch effects. In this paper, we present a detailed description of this model.

  9. High gain photoconductive semiconductor switching

    SciTech Connect

    Zutavern, F.J.; Loubriel, G.M.; O'Malley, M.W.; Helgeson, W.D.; McLaughlin, D.L.

    1991-01-01

    Switching properties are reported for high gain photoconductive semiconductor switches (PCSS). A 200 ps pulse width laser was used in tests to examine the relations between electric field, rise time, delay, and minimum optical trigger energy for switches which reached 80 kV in a 50 {Omega} transmission line with rise times as short as 600 ps. Infrared photoluminescence was imaged during high gain switching providing direct evidence for current filamentation. Implications of these measurements for the theoretical understanding and practical development of these switches are discussed. 16 refs., 10 figs.

  10. A project of accelerator-recuperator for Novosibirsk high-power FEL

    NASA Astrophysics Data System (ADS)

    Bolotin, V. P.; Vinokurov, N. A.; Kayran, D. A.; Knyazev, B. A.; Kolobanov, E. I.; Kotenkov, V. V.; Kubarev, V. V.; Kulipanov, G. N.; Matveenko, A. N.; Medvedev, L. E.; Miginsky, S. V.; Mironenko, L. A.; Oreshkov, A. D.; Ovchar, V. K.; Popik, V. M.; Salikova, T. V.; Serednyakov, S. S.; Skrinsky, A. N.; Tcheskidov, V. G.; Shevchenko, O. A.; Scheglov, M. A.

    2006-12-01

    The first stage of the Novosibirsk high-power free-electron laser (FEL) was commissioned in 2003. It is driven by a CW energy recovery linac. The next step will be the full-scale machine, a four-track accelerator-recuperator based on the same RF accelerating structure. This upgrade will permit to get shorter wavelengths in the infrared region and increase the average power of the FEL by several times. The scheme and some technical details of the project are set out. The installation will be a prototype for future multiturn accelerator-recuperators.

  11. A fully quantum theory of high-gain free-electron laser

    NASA Astrophysics Data System (ADS)

    Bonifacio, R.; Fares, H.

    2016-08-01

    The previous theory of high-gain free-electron laser (FEL) operating in the quantum regime is semiclassical because the electron dynamic is quantized but the radiation field is classically described. Here, we present for the first time a fully quantum-mechanical theory where also the field is quantized. We shall restrict to the FEL operation in the steady-state regime where the slippage length is much smaller than the bunch length. The results predicted by this theory are quite different from those of the semiclassical theory.

  12. FEL Oscillators

    SciTech Connect

    George Neil

    2003-05-12

    FEL Oscillators have been around since 1977 providing not only a test bed for the physics of Free Electron Lasers and electron/photon interactions but as a workhorse of scientific research. More than 30 FEL oscillators are presently operating around the world spanning a wavelength range from the mm region to the ultraviolet using DC and rf linear accelerators and storage rings as electron sources. The characteristics that have driven the development of these sources are the desire for high peak and average power, high micropulse energies, wavelength tunability, timing flexibility, and wavelengths that are unavailable from more conventional laser sources. Substantial user programs have been performed using such sources encompassing medicine, biology, solid state research, atomic and molecular physics, effects of non-linear fields, surface science, polymer science, pulsed laser vapor deposition, to name just a few.

  13. First Lasing of the Regenerative Amplifier FEL

    SciTech Connect

    Nguyen, D.C.; Sheffield, R.L.; Fortang, C.M.; Goldstein, J.C.; Kinross-Wright, J.M.; Ebrahim, N.A.

    1998-08-17

    The Regenerative Amplifier Free-Electron Laser (RAFEL) is a high-gain RF-linac FEL capable of producing high optical power from a compact design. The combination of a high-gain and small optical feedback enables the FEL to reach saturation and produce a high optical power and high extraction efficiency without risk of optical damage to the mirrors. This paper summarizes the first lasing of the Regenerative Amplifier FEL and describes recent experimental results. The highest optical energy achieved thus far at 16.3 {micro}m is 1.7 J over an 9-{micro}s macropulse, corresponding to an average power during the macropulse of 190 kW. They deduce an energy of 1.7 mJ in each 16 ps micropulse, corresponding to a peak power of 110 MW.

  14. Normal conducting RF cavity of high current photoinjector for high power CW FEL.

    SciTech Connect

    Kurennoy, S.; Schrage, D. L.; Wood R. L.; Schultheiss, T.; Rathke, J.; Christina, V.; Young, L. M.

    2004-01-01

    An RF photoinjector capable of producing high continuous average current with low emittance and energy spread is a key enabling technology for high power CW FEL. The design of a 2.5-cell {pi}-mode 700-MHz normal-conducting RF photoinjector cavity with magnetic emittance compensation is completed. With the electric field gradients of 7, 7, and 5 MV/m in the three cells, the photoinjector will produce a 2.5-MeV electron beam with 3-nC charge per bunch and 7 mm-mrad transverse rms emittance. Electromagnetic modeling was used extensively to optimize ridge-loaded tapered waveguides and RF couplers, which led to a new improved coupler-iris design. The results, combined with a thermal/stress analysis, show that the challenging problem of cavity cooling can be successfully solved. A demo 100-mA (at 35-MHz bunch-repetition rate) photoinjector is being manufactured. The design is scalable to higher power levels by increasing the bunch repetition rate, and provides a path to a MW-class amplifier FEL. The cavity design and details of RF coupler modeling are presented.

  15. Normal-conducting RF cavity of high current photoinjector for high power CW FEL.

    SciTech Connect

    Kurennoy, S.; Schrage, D. L.; Wood R. L.; Schultheiss, T.; Rathke, J.; Young, L. M.

    2004-01-01

    An RF photoinjector capable of producing high continuous average current with low emittance and energy spread is a key enabling technology for high power CW FEL. The design of a 2.5-cell, {pi}-mode, 700-MHz normal-conducting RF photoinjector cavity with magnetic emittance compensation is completed. With the electric field gradients of 7.7, and 5 MV/m in the three cells, the photoinjector will produce a 2.5-MeV electron beam with 3-nC charge per bunch and the transverse rms emittance 7 mm-mrad. Electromagnetic modeling was used extensively to optimize ridge-loaded tapered waveguides and RF couplers, which led to a new, improved coupler iris design. The results, combined with a thermal and stress analysis, show that the challenging problem of cavity cooling can be successfully solved. The manufacturing of a demo 100-mA (at 35 MHz bunch repetition rate) photoinjector is underway. The design is scalable to higher power levels by increasing the electron bunch repetition rate, and provides a path to a MW-class amplifier FEL. This paper presents the cavity design and details of RF coupler modeling.

  16. Seeded FEL Microbunching Experiments at the UCLA Neptune Laboratory

    SciTech Connect

    Tochitsky, S. Ya.; Musumeci, P.; Rosenzweig, J. B.; Joshi, C.; Gottschalk, S. C.

    2010-11-04

    Seeded high-gain FELs, which can generate very powerful radiation pulses in a relatively compact undulator and simultaneously modulate the electron beam longitudinally at the seed wavelength, are important tools for advanced accelerator development. A single-pass 0.5-9 THz FEL amplifier-buncher driven by a regular photoinjector is being built at the UCLA Neptune Laboratory. FEL interactions at 340 {mu}m (1 THz) are considered for the first experiment, since time-resolved measurements of longitudinal current distribution of the bunched beam using the RF deflecting cavity are possible. A design of a 0.2-2.0 {mu}m FEL using the same undulators is presented. In this case the FEL is driven by a high-peak current beam from the laser-plasma accelerator tunable in the 100-300 MeV range.

  17. Design Studies for a High-Repetition-Rate FEL Facility at LBNL.

    SciTech Connect

    CORLETT, J.; BELKACEM, A.; BYRD, J. M.; FAWLEY, W.; KIRZ, J.; LIDIA, S.; MCCURDY, W.; PADMORE, H.; PENN, G.; POGORELOV, I.; QIANG, J.; ROBIN, D.; SANNIBALE, F.; SCHOENLEIN, R.; STAPLES, J.; STEIER, C.; VENTURINI, M.; WAN, W.; WILCOX, R.; ZHOLENTS, A.

    2007-10-04

    Lawrence Berkeley National Laboratory (LBNL) is working to address the needs of the primary scientific Grand Challenges now being considered by the U.S. Department of Energy, Office of Basic Energy Sciences: we are exploring scientific discovery opportunities, and new areas of science, to be unlocked with the use of advanced photon sources. A partnership of several divisions at LBNL is working to define the science and instruments needed in the future. To meet these needs, we propose a seeded, high-repetition-rate, free-electron laser (FEL) facility. Temporally and spatially coherent photon pulses, of controlled duration ranging from picosecond to sub-femtosecond, are within reach in the vacuum ultraviolet (VUV) to soft X-ray regime, and LBNL is developing critical accelerator physics and technologies toward this goal. We envision a facility with an array of FELs, each independently configurable and tunable, providing a range of photon-beam properties with high average and peak flux and brightness.

  18. Saturation and pulsed FEL dynamics

    SciTech Connect

    Giannessi, L.; Mezi, L.

    1995-12-31

    The behavior of a FEL operating in the saturated pulsed regime, may be reproduced by the linear FEL integral equation, suitably modified to include saturation effects through a gain depression coefficient depending on the laser intensity. This simple method allows to evaluate several FEL parameters like gain, efficiency, band-width and optical pulse duration as functions of the optical cavity length, only with a numerical integration. The predictions have been compared with available experimental and numerical data, and the method has been applied to estimate the operating characteristics of some planned FEL experiments.

  19. Studies of a Linac Driver for a High Repetition Rate X-Ray FEL

    SciTech Connect

    Venturini, M.; Corlett, J.; Doolittle, L.; Filippetto, D.; Papadopoulos, C.; Penn, G.; Prosnitz, D.; Qiang, J.; Reinsch, M.; Ryne, R.; Sannibale, F.; Staples, J.; Wells, R.; Wurtele, J.; Zolotorev, M.; Zholents, A.

    2011-06-01

    We report on on-going studies of a superconducting CW linac driver intended to support a high repetition rate FEL operating in the soft x-rays spectrum. We present a pointdesign for a 1.8 GeV machine tuned for 300 pC bunches and delivering low-emittance, low-energy spread beams as needed for the SASE and seeded beamlines.

  20. Unidirectional high gain brake stop

    NASA Technical Reports Server (NTRS)

    Lang, David J. (Inventor)

    1987-01-01

    This invention relates to a unidirectional high gain brake arrangement that includes in combination a shaft mounted for rotation within a housing. The shaft is rotatable in either direction. A brake is selectively releasably coupled to the housing and to the shaft. The brake has a first member. An intermittent motion device is respectively coupled through the first member to the housing and through a one-way clutch to the shaft. The brake also has a second member that is mechanically coupled to the first brake member and to the housing. The intermittent motion device causes the brake to be activated by movement imparted to the first brake member after a preset number of revolutions of the shaft in one direction. The brake is released by rotation of the shaft in an opposite direction whereby torque transmitted through the one-way clutch to the first brake member is removed.

  1. High-gain antenna & terrain

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Areas of rocky Martian terrain are seen in this image, taken by the Imager for Mars Pathfinder (IMP) on Sol 2. Portions of a lander petal and deflated airbag are at lower left. The dark disk at center is the high-gain antenna, and the silver cylindrical objects at upper right are part of the antenna's mechanism. An area of relatively smooth terrain is seen at upper right, which may offer clues to how this area was formed, and may be a future target for Sojourner's studies. The black area at lower right and small strip at top center is missing data.

    Mars Pathfinder was developed and managed by the Jet Propulsion Laboratory (JPL) for the National Aeronautics and Space Administration. The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  2. High-efficiency FEL-oscillator with Bragg resonator operated in reversed guide field regime

    SciTech Connect

    Kaminsky, A.K.; Sedykh, S.N.; Sergeyev, A.P.

    1995-12-31

    The aim of the present work was to develop a narrow-band FEL-oscillator working in millimeter wavelength with, high efficiency. It looked promising to combine the high selective property of Bragg resonator with high efficiency and other advantages of FEL operation in the reversed guide-field regime. An experimental study of the FEL was performed using lilac LIU-3000 (JINR, Dubna) with the electron energy of 1 MeV, beam current up to 200 A and pulse duration of 200 ns. The beam was injected into the internction region with guide magnetic field of 2.9 kGs. Transverse oscillations of electrons were pumped by the helical wiggler with the period length of 6 cm and the field slowly up-tapering over the initial 6 periods. The FEI electrodynamic system consisted of a circular waveguide with diameter 20 mm and two Bragg reflectors. The H wave of the circular waveguide was shown for operation. Two effective feedback waves were observed in {open_quotes}cold{close_quotes} electrodynamic measurement in correspondence with calculations; the E wave near the frequency of 31. 5 GHz and the E wave - 37.5 GHz. The width of the both reflection resonances was about 2%. In {open_quotes}hot{close_quotes} experiments the radiation on the designed H wave and frequencies corresponding to the both feedback waves was registered separately. Selection of the frequency was realized by varying of the wiggler field strength. The spectrum was measured with a set of the cut--off waveguide filters with inaccuracy less than 2%. Calibrated Semiconductor detectors wire used to measure the radiation power. The radiation with the frequencies of 37.5 and 31.5 GHz was observed in vicinity of the wiggler field amplitude of 2.5 kGs. The measured spectrum width of the output FEL-oscillator radiation did not exceed the width of the Bragg reflector resonances for the both feedback waves.

  3. Development of photoinjector RF cavity for high-power CW FEL

    NASA Astrophysics Data System (ADS)

    Kurennoy, S. S.; Schrage, D. L.; Wood, R. L.; Young, L. M.; Schultheiss, T.; Christina, V.; Rathke, J.

    2004-08-01

    An RF photoinjector capable of producing high continuous average current with low emittance and energy spread is a key enabling technology for high-power CW FEL. A preliminary design of the first, and the most challenging, section of a 700-MHz CW RF normal-conducting photoinjector—a 2.5-cell, pi-mode cavity with solenoidal magnetic field for emittance compensation—is completed. Beam dynamics simulations demonstrate that this cavity with an electric field gradient of 7 MV/m will produce an electron beam at 2.7 MeV with the transverse rms emittance 7 mm mrad at 3 nC of charge per bunch. Electromagnetic field computations combined with a thermal and stress analysis show that the challenging problem of cavity cooling can be successfully resolved. We are in the process of building a 100-mA (3 nC of bunch charge at 33.3 MHz bunch repetition rate) photoinjector for demonstration purposes. Its performance parameters will enable a robust 100-kW-class FEL operation with electron beam energy below 100 MeV. The design is scalable to higher power levels by increasing the electron bunch repetition rate and provides a path to a MW-class amplifier FEL.

  4. Thermal Acoustic Sensor for High Pulse Energy X-ray FEL Beams

    SciTech Connect

    Smith, T.J.; Frisch, J.C.; Kraft, E.M.; Loos, J.; Bentsen, G.S.; /Rochester U.

    2011-12-13

    The pulse energy density of X-ray FELs will saturate or destroy conventional X-ray diagnostics, and the use of large beam attenuation will result in a beam that is dominated by harmonics. We present preliminary results at the LCLS from a pulse energy detector based on the thermal acoustic effect. In this type of detector an X-ray resistant material (boron carbide in this system) intercepts the beam. The pulse heating of the target material produces an acoustic pulse that can be detected with high frequency microphones to produce a signal that is linear in the absorbed energy. The thermal acoustic detector is designed to provide first- and second-order calorimetric measurement of X-ray FEL pulse energy. The first-order calorimetry is a direct temperature measurement of a target designed to absorb all or most of the FEL pulse power with minimal heat leak. The second-order measurement detects the vibration caused by the rapid thermoelastic expansion of the target material each time it absorbs a photon pulse. Both the temperature change and the amplitude of the acoustic signal are directly related to the photon pulse energy.

  5. Phase-stable, microwave FEL amplifier

    SciTech Connect

    Carlsten, B.E.; Fazio, M.V.; Haynes, W.B.; May, L.; Potter, M.

    1995-07-01

    Free-electron laser (FEL) amplifiers have demonstrated high efficiency and high output power for microwave wavelengths. However, using present technology, microwave FEL amplifiers are not phase stable enough to be suitable for driving linear accelerators, where several much amplifiers need to be phase locked. The growing wave`s phase sensitivity to the beam voltage in the small-signal gain regime is responsible for the largest contribution to this phase instability. We discuss a scheme that reduces the phase sensitivity to the beam voltage by operating off synchronism and matching the phase variation resulting from the desynchronism to the phase variation from the reduced plasma wavenumber as the beam voltage changes.

  6. High current gain transistor laser.

    PubMed

    Liang, Song; Qiao, Lijun; Zhu, Hongliang; Wang, Wei

    2016-06-10

    A transistor laser (TL), having the structure of a transistor with multi-quantum wells near its base region, bridges the functionality gap between lasers and transistors. However, light emission is produced at the expense of current gain for all the TLs reported up to now, leading to a very low current gain. We propose a novel design of TLs, which have an n-doped InP layer inserted in the emitter ridge. Numerical studies show that a current flow aperture for only holes can be formed in the center of the emitter ridge. As a result, the common emitter current gain can be as large as 143.3, which is over 15 times larger than that of a TL without the aperture. Besides, the effects of nonradiative recombination defects can be reduced greatly because the flow of holes is confined in the center region of the emitter ridge.

  7. High current gain transistor laser

    NASA Astrophysics Data System (ADS)

    Liang, Song; Qiao, Lijun; Zhu, Hongliang; Wang, Wei

    2016-06-01

    A transistor laser (TL), having the structure of a transistor with multi-quantum wells near its base region, bridges the functionality gap between lasers and transistors. However, light emission is produced at the expense of current gain for all the TLs reported up to now, leading to a very low current gain. We propose a novel design of TLs, which have an n-doped InP layer inserted in the emitter ridge. Numerical studies show that a current flow aperture for only holes can be formed in the center of the emitter ridge. As a result, the common emitter current gain can be as large as 143.3, which is over 15 times larger than that of a TL without the aperture. Besides, the effects of nonradiative recombination defects can be reduced greatly because the flow of holes is confined in the center region of the emitter ridge.

  8. High current gain transistor laser

    PubMed Central

    Liang, Song; Qiao, Lijun; Zhu, Hongliang; Wang, Wei

    2016-01-01

    A transistor laser (TL), having the structure of a transistor with multi-quantum wells near its base region, bridges the functionality gap between lasers and transistors. However, light emission is produced at the expense of current gain for all the TLs reported up to now, leading to a very low current gain. We propose a novel design of TLs, which have an n-doped InP layer inserted in the emitter ridge. Numerical studies show that a current flow aperture for only holes can be formed in the center of the emitter ridge. As a result, the common emitter current gain can be as large as 143.3, which is over 15 times larger than that of a TL without the aperture. Besides, the effects of nonradiative recombination defects can be reduced greatly because the flow of holes is confined in the center region of the emitter ridge. PMID:27282466

  9. Experimental results of a sheet-beam, high power, FEL amplifier with application to magnetic fusion research

    SciTech Connect

    Cheng, S.; Destler, W.W.; Granatstein, V.L.

    1995-12-31

    The experimental study of sheet-beam FELs as candidate millimeter-wave sources for heating magnetic fusion plasmas has achieved a major milestone. In a proof-of-principle, pulsed experiment, saturated FEL amplifier operation was achieved with 250 kW of output power at 86 GHz. Input microwave power was 1 kW, beam voltage was 450 kV and beam current was 17 A. The planar wiggler had a peak value of 3.8 kG, a period of 0.96 cm and was 71 cm long. The linear gain of 30 dB, saturated gain of 24 dB and saturated efficiency of 3% all are in good agreement with theoretical prediction. Follow-on work would include development of a thermionic sheet-beam electron-gun compatible with CW FEL operation, adding a section of tapered wiggler to increase the output power to levels in excess of 1 megawatt, and increasing the FEL frequency.

  10. Statistical properties of radiation power levels from a high-gain free-electron laser at and beyond saturation

    SciTech Connect

    Schroeder, Carl B.; Fawley, William M.; Esarey, Eric

    2002-09-24

    We investigate the statistical properties (e.g., shot-to-shot power fluctuations) of the radiation from a high-gain free-electron laser (FEL) operating in the nonlinear regime. We consider the case of an FEL amplifier reaching saturation whose shot-to-shot fluctuations in input radiation power follow a gamma distribution. We analyze the corresponding output power fluctuations at and beyond first saturation, including beam energy spread effects, and find that there are well-characterized values of undulator length for which the fluctuation level reaches a minimum.

  11. AN EXPERIMENTAL TEST OF SUPERRADIANCE IN A SINGLE PASS SEEDED FEL.

    SciTech Connect

    WATANABE, T.; LIU, D.; MURPHY, J.B.; ROSE, J.; SHAFTAN, T.; TSANG, T.; WANG, X.J.; YU, L.H.

    2005-08-21

    Superradiance and nonlinear evolution of a FEL pulse in a single-pass FEL were experimentally demonstrated at the National Synchrotron Light Source (NSLS) Source Development Laboratory (SDL). The experiment was performed using a 1.5 ps high-brightness electron beam and a 100fs Ti:Sapphire seed laser. The seed laser and electron beam interact in the 10 meter long NISUS undulator with a period of 3.89 cm. The FEL spectrum, energy and pulse length along the undulator were measured. FEL saturation was observed, and gain of more the 200 (relative to seed laser) was measured. Both FEL spectrum widening and pulse length shortening were observed; FEL pulses as short as 65 fs FWHM were measured. The superradiance and nonlinear evolution were also simulated using the numerical code GENESIS1.3 yielding good agreement with the experimental results.

  12. Study of waveguide resonators for FEL operating at submillimeter wavelengths

    SciTech Connect

    Yakover, I.M.; Pinhasi, Y.; Gover, A.

    1995-12-31

    This paper presents theoretical results of waveguide resonator study for FEL operating at the submillimeter wavelength region. Because of increased ohmic losses it is harder to obtain high Q waveguide cavities at these wavelengths. The following unconventional multimode waveguides: metal-dielectric, corrugated and curved parallel plates, were considered. The type and structure of the operating modes were determined and their attenuation constant, effective mode area and wave impedance were calculated. On the basis of this analysis small-signal gain simulations were made. We have performed a parametric study of the various FEL oscillator cavity designs based on the parameters of the Israeli Tandem FEL experiment. It was found that an FEL utilizing unconventional waveguides has much better performance in comparison to an FEL based on conventional multimode rectangular and circular waveguides. In particular, promising design parameters for a sub-mm wavelength FEL utilizing a metal-dielectric waveguide were identified: gain of 45%/Amp and ohmic losses of 2% at frequency 300 GHz, and gain of 20%/Amp and ohmic losses 1% at frequency 675 GHz.

  13. Sensitivity and alternative operating point studies on a high charge CW FEL injector test stand at CEBAF

    SciTech Connect

    Liu, H.; Kehne, D.; Benson, S.

    1995-12-31

    A high charge CW FEL injector test stand is being built at CEBAF based on a 500 kV DC laser gun, a 1500 MHz room-temperature buncher, and a high-gradient ({approx}10 MV/m) CEBAF cryounit containing two 1500 MHz CEBAF SRF cavities. Space-charge-dominated beam dynamics simulations show that this injector should be an excellent high-brightness electron beam source for CW UV FELs if the nominal parameters assigned to each component of the system are experimentally achieved. Extensive sensitivity and alternative operating point studies have been conducted numerically to establish tolerances on the parameters of various injector system components. The consequences of degraded injector performance, due to failure to establish and/or maintain the nominal system design parameters, on the performance of the main accelerator and the FEL itself are discussed.

  14. Optics-free x-ray FEL oscillator

    SciTech Connect

    Litvinenko, V.N.; Hao, Y.; Kayran, D.; Trbojevic, D.

    2011-03-28

    There is a need for an Optics-Free FEL Oscillators (OFFELO) to further the advantages of free-electron lasers and turning them in fully coherent light sources. While SASE (Self-Amplified Spontaneous Emission) FELs demonstrated the capability of providing very high gain and short pulses of radiation and scalability to the X-ray range, the spectra of SASE FELs remains rather wide ({approx}0.5%-1%) compared with typical short wavelengths FEL-oscillators (0.01%-0.0003% in OK-4 FEL). Absence of good optics in VUV and X-ray ranges makes traditional oscillator schemes with very high average and peak spectral brightness either very complex or, strictly speaking, impossible. In this paper, we discuss lattice of the X-ray optics-free FEL oscillator and present results of initial computer simulations of the feedback process and the evolution of FEL spectrum in X-ray OFFELO. We also discuss main limiting factors and feasibility of X-ray OFFELO.

  15. Very high gain Nd:YLF amplifiers

    SciTech Connect

    Knights, M.G.; Thomas, M.D.; Chicklis, E.P.; Rines, G.A.; Seka, W.

    1988-05-01

    The authors report on high gain Nd:YLF rod amplifiers in which single-pass, small signal gains of over 1700 have been obtained along with stored energy densitiesgreater than or equal to0.4J/cm/sup 3/. The ability of Nd:YLF amplifiers to support such gains is a result of high parasitic oscillation thresholds, due primarily to the low refractive index of the material. These results suggest that Nd:YLF is an excellent candidate for amplifiers where high specific stored energies and/or very high gains are required.

  16. High temperature electronic gain device

    DOEpatents

    McCormick, J. Byron; Depp, Steven W.; Hamilton, Douglas J.; Kerwin, William J.

    1979-01-01

    An integrated thermionic device suitable for use in high temperature, high radiation environments. Cathode and control electrodes are deposited on a first substrate facing an anode on a second substrate. The substrates are sealed to a refractory wall and evacuated to form an integrated triode vacuum tube.

  17. Spontaneous emission effects in optically pumped x-ray FEL

    SciTech Connect

    Smetanin, I.V.; Grigor`ev, S.V.

    1995-12-31

    An effect of spontaneous emission in both quantum and classical regimes of the optically pumped X-ray free electron laser (FEL) in investigated. The quantum properties of an FEL are determined by the ratio of the separation {h_bar} between the absorption and emission lines (i.e. the quanta emitted) and their effective width {Delta}{epsilon} {eta}={h_bar}/{Delta}{epsilon}. In the conventional classical regime {eta} {much_lt} 1 an electron emits and absorbes a great number of shortwavelength photons over the interaction region, the gain in FEL being the result of these competitive processes. In the quantum limit {eta} {much_gt} 1 the emission and absorption lines are completely separated and thus the FEL becomes a two-level quantum oscillator with a completely inverted active medium. Spontaneous emission causes the electron to leave the range of energies where resonant interaction with the laser field occurs, thus effectively reducing the number of particles that take part in generating the induced X-ray signal. This effect is found to be crucial for lasing in optically pumped X-ray FEL. The characteristic relaxation times are calculated for both classical and quantum FEL regimes. It is shown that spontaneous emission results in FEL electron beam threshold current, which is of rather high value. An optimal range of pumping laser intensities is determined.

  18. Laser-plasma interactions from thin tapes for high-energy electron accelerators and seeding compact FELs

    NASA Astrophysics Data System (ADS)

    Shaw, Brian Henry

    This thesis comprises a detailed investigation of the physics of using a plasma mirror (PM) from a tape by reflecting ultrashort pulses from a laser-triggered surface plasma. The tapes used in the characterization of the PM are VHS and computer data storage tape. The tapes are 6.6 m (computer storage tape) and 15 m (VHS) thick. Each tape is 0.5 inches wide, and 10s of meters of tape are spooled using a tape drive; providing thousands of shots on a single reel of tape. The amount of reflected energy of the PM was studied for different input intensities. The fluence was varied by translating the focus of the laser upstream and downstream of the tape, which changed the spot size on the tape surface and hence changed the fluence. This study measured reflectances from both sides of the two tapes, and for input light of both s and p-polarizations. Lastly, an analytic model was developed to understand the reflectance as a function of fluence for each tape material and polarization. Another application that benefits from the advancements of LPA technology is an LPAbased FEL. By sending a high quality electron bunch through an undulator (a periodic structure of positive and negative magnetic poles), the electrons oscillate transversely to the propagation axis and produce radiation. The 1.5 m THUNDER undulator at the BELLA Center has been commissioned using electron beams of 400MeV beams with broad energy spread (35%). To produce a coherent LPA-based FEL, the beam quality would need to improve to sub-percent level energy spread. A seed source could be used to help induce bunching of the electron beam within the undulator. This thesis described the experimental investigation of the physics of using solid-based surface high-harmonic generation (SHHG) from a thin tape as a possible seed source for an FEL. A thin tape placed within centimeters of the undulator's entrance could act as a harmonic generating source, while simultaneously transmitting an electron beam. This removes

  19. Physics design for the ATA (Advanced Test Accelerator) tapered wiggler 10. 6. mu. FEL (Free-Electron Laser) amplifier experiment

    SciTech Connect

    Fawley, W.M.

    1985-05-09

    The design and construction of a high-gain, tapered wiggler 10.6 ..mu.. Free Electron Laser (FEL) amplifier to operate with the 50 MeV e-beam is underway. This report discussed the FEL simulation and the physics motivations behind the tapered wiggler design and initial experimental diagnostics.

  20. A compact FEL upconverter of coherent radiation

    SciTech Connect

    Liu, Y.; Marshall, T.C.

    1995-12-31

    The objective is to generate a powerful millimeter-wave FEL signal in a single pass, using a coherent microwave source (24GHz) to prebunch the electron beam for a harmonically-related wave (72GHz). We use the Columbia FEL facility, operating the electron beam at 600kV, 100A; undulator period = 1.85cm and 250G (K = 0.25); electron beam diameter = 3mm inside a 8.5 mm ID drift tube; guiding field of 8800G. Under these conditions, both the microwave signal (5kW input) and the millimeter signal will show travelling-wave gain in the TE11 mode. We report initial experimental results for the millimeter wave spectrum and find an overall power gain of {approximately}20 for the 24GHz input wave. Also presented will be numerical solutions of the wave growth using the FEL equations with slippage. This device has the advantage of producing a high-power FEL output in a single-pass travelling-wave configuration, obtaining a millimeter wave which is phase-referenced to a coherent laboratory source.

  1. Design of a high average-power FEL driven by an existing 20 MV electrostatic-accelerator

    SciTech Connect

    Kimel, I.; Elias, L.R.

    1995-12-31

    There are some important applications where high average-power radiation is required. Two examples are industrial machining and space power-beaming. Unfortunately, up to date no FEL has been able to show more than 10 Watts of average power. To remedy this situation we started a program geared towards the development of high average-power FELs. As a first step we are building in our CREOL laboratory, a compact FEL which will generate close to 1 kW in CW operation. As the next step we are also engaged in the design of a much higher average-power system based on a 20 MV electrostatic accelerator. This FEL will be capable of operating CW with a power output of 60 kW. The idea is to perform a high power demonstration using the existing 20 MV electrostatic accelerator at the Tandar facility in Buenos Aires. This machine has been dedicated to accelerate heavy ions for experiments and applications in nuclear and atomic physics. The necessary adaptations required to utilize the machine to accelerate electrons will be described. An important aspect of the design of the 20 MV system, is the electron beam optics through almost 30 meters of accelerating and decelerating tubes as well as the undulator. Of equal importance is a careful design of the long resonator with mirrors able to withstand high power loading with proper heat dissipation features.

  2. High-gain harmonic generation of soft X-rays with the `fresh bunch` technique

    SciTech Connect

    Yu, Li-Hua; Ben-Zvi, I.

    1996-10-01

    We report numerical simulations (using the TDA code) and analytic verification of the generation of 64 {Angstrom} high power soft X- rays from an exponential regime single pass seeded FEL. The seed is generated in the FEL using the High Gain Harmonic Generation (HGHG) technique combined with the `Fresh bunch` technique. A seed pulse at 2944 {Angstrom} is generated by conventional laser techniques. The seed pulse produces an intense energy modulation of the rear part of a I GeV, 1245 {Angstrom} electron beam in a `modulator` wiggler. In the `radiator` wiggler, (resonant to 64 {Angstrom}), the energy modulation creates beam density modulation followed by radiation of the 46{sup th} harmonic of the seed. We use a magnetic delay to position the 64 A{Angstrom} radiation at the undisturbed front of the bunch to serve as a seed for a single pass, exponential growth FEL. After a 9 m long exponential section followed by a 7 m long tapered section the radiation power reaches 3.3 GW.

  3. The Galileo high gain antenna deployment anomaly

    NASA Technical Reports Server (NTRS)

    Johnson, Michael R.

    1994-01-01

    On April 11, 1991, the Galileo spacecraft executed a sequence that would open the spacecraft's High Gain Antenna. The Antenna's launch restraint had been released just after deployment sequence, the antenna, which opens like an umbrella, never reached the fully deployed position. The analyses and tests that followed allowed a conclusive determination of the likely failure mechanisms and pointed to some strategies to use for recovery of the high gain antenna.

  4. Photon Source Capabilities of the Jefferson Lab FEL

    SciTech Connect

    Benson, S. V.; Douglas, D. R.; Evtushenko, P.; Hannon, F. E.; Hernandez-Garcia, C.; Klopf, J. M.; Legg, R. A.; Neil, G. R.; Shinn, M. D.; Tennant, C. D.; Zhang, S.; Williams, G. P.

    2013-03-22

    Jefferson Lab operates a superconducting energy recovered linac which is operated with CW RF and which powers oscillator-based IR and UV Free Electron Lasers (FELs) with diffraction limited sub-picosecond pulses with >10{sup 13} photons per pulse (1.0%BW) at pulse repetition frequencies up to 75 MHz. Useful harmonics extend into the vacuum ultraviolet (VUV). Based on FEL model calculations validated using this facility, we have designed both an oscillator-based VUV-FEL that would produce 6 10{sup12} coherent (0.5% BW) 100 eV photons per pulse at multi-MHz repetition rates in the fundamental, and a dual FEL configuration that would allow simultaneous lasing lasing at THz and UV wavelengths. The VUV-FEL would utilize a novel high gain, low Q cavity, while the THz source would be an FEL oscillator with a short wiggler providing diffraction limited pulses with pulse energy exceeding 50 microJoules. The THz source would use the exhaust beam from a UVFEL. Such multiphoton capabilities would provide unique opportunities for out of equilibrium dynamical studies at time-scales down to 50 fs. The fully coherent nature of all these sources results in peak and average brightness values that are many orders of magnitude higher than storage rings. We acknowledge support from the Commonwealth of Virginia. Jefferson Lab is supported by the U.S. DOE under Contract No. DE-AC05-84-ER40150.

  5. The Shanghai high-gain harmonic generation DUV free-electron laser

    NASA Astrophysics Data System (ADS)

    Zhao, Z. T.; Dai, Z. M.; Zhao, X. F.; Liu, D. K.; Zhou, Q. G.; He, D. H.; Jia, Q. K.; Chen, S. Y.; Dai, J. P.

    2004-08-01

    The Shanghai deep ultraviolet free-electron laser source (SDUV-FEL) is an HGHG FEL facility designed for generating coherent output with wavelength down to 88 nm. The design and the relevant R&D of this HGHG FEL source have been under way since 2000. Currently, a 150 MeV S-band electron injector is under construction as the first linac section to produce a high brightness beam. The design study and the present R&D status of the SDUV-FEL have been presented in this paper.

  6. Bunch Length Measurements at JLab FEL

    SciTech Connect

    P. Evtushenko; J. L. Coleman; K. Jordan; J. M. Klopf; G. Neil; G. P. Williams

    2006-09-01

    The JLab FEL is routinely operated with sub-picosecond bunches. The short bunch length is important for high gain of the FEL. Coherent transition radiation has been used for the bunch length measurements for many years. This diagnostic can be used only in the pulsed beam mode. It is our goal to run FEL with CW beam and 74.85 MHz micropulse repetition rate. Hence it is very desirable to have the possibility of doing the bunch length measurements when running CW beam with any micropulse frequency. We use a Fourier transform infrared interferometer, which is essentially a Michelson interferometer, to measure the spectrum of the coherent synchrotron radiation generated in the last dipole of the magnetic bunch compressor upstream of the FEL wiggler. This noninvasive diagnostic provides the bunch length measurements for CW beam operation at any micropulse frequency. We also compare the measurements made with the help of the FTIR interferometer with the data obtained by the Martin-Puplett interferometer. Results of the two diagnostics are usually agree within 15%. Here we present a description of the experimental setup, data evaluation procedure and results of the beam measurements.

  7. Indications of radiation damage in ferredoxin microcrystals using high-intensity X-FEL beams.

    PubMed

    Nass, Karol; Foucar, Lutz; Barends, Thomas R M; Hartmann, Elisabeth; Botha, Sabine; Shoeman, Robert L; Doak, R Bruce; Alonso-Mori, Roberto; Aquila, Andrew; Bajt, Saša; Barty, Anton; Bean, Richard; Beyerlein, Kenneth R; Bublitz, Maike; Drachmann, Nikolaj; Gregersen, Jonas; Jönsson, H Olof; Kabsch, Wolfgang; Kassemeyer, Stephan; Koglin, Jason E; Krumrey, Michael; Mattle, Daniel; Messerschmidt, Marc; Nissen, Poul; Reinhard, Linda; Sitsel, Oleg; Sokaras, Dimosthenis; Williams, Garth J; Hau-Riege, Stefan; Timneanu, Nicusor; Caleman, Carl; Chapman, Henry N; Boutet, Sébastien; Schlichting, Ilme

    2015-03-01

    Proteins that contain metal cofactors are expected to be highly radiation sensitive since the degree of X-ray absorption correlates with the presence of high-atomic-number elements and X-ray energy. To explore the effects of local damage in serial femtosecond crystallography (SFX), Clostridium ferredoxin was used as a model system. The protein contains two [4Fe-4S] clusters that serve as sensitive probes for radiation-induced electronic and structural changes. High-dose room-temperature SFX datasets were collected at the Linac Coherent Light Source of ferredoxin microcrystals. Difference electron density maps calculated from high-dose SFX and synchrotron data show peaks at the iron positions of the clusters, indicative of decrease of atomic scattering factors due to ionization. The electron density of the two [4Fe-4S] clusters differs in the FEL data, but not in the synchrotron data. Since the clusters differ in their detailed architecture, this observation is suggestive of an influence of the molecular bonding and geometry on the atomic displacement dynamics following initial photoionization. The experiments are complemented by plasma code calculations.

  8. Indications of radiation damage in ferredoxin microcrystals using high-intensity X-FEL beams.

    PubMed

    Nass, Karol; Foucar, Lutz; Barends, Thomas R M; Hartmann, Elisabeth; Botha, Sabine; Shoeman, Robert L; Doak, R Bruce; Alonso-Mori, Roberto; Aquila, Andrew; Bajt, Saša; Barty, Anton; Bean, Richard; Beyerlein, Kenneth R; Bublitz, Maike; Drachmann, Nikolaj; Gregersen, Jonas; Jönsson, H Olof; Kabsch, Wolfgang; Kassemeyer, Stephan; Koglin, Jason E; Krumrey, Michael; Mattle, Daniel; Messerschmidt, Marc; Nissen, Poul; Reinhard, Linda; Sitsel, Oleg; Sokaras, Dimosthenis; Williams, Garth J; Hau-Riege, Stefan; Timneanu, Nicusor; Caleman, Carl; Chapman, Henry N; Boutet, Sébastien; Schlichting, Ilme

    2015-03-01

    Proteins that contain metal cofactors are expected to be highly radiation sensitive since the degree of X-ray absorption correlates with the presence of high-atomic-number elements and X-ray energy. To explore the effects of local damage in serial femtosecond crystallography (SFX), Clostridium ferredoxin was used as a model system. The protein contains two [4Fe-4S] clusters that serve as sensitive probes for radiation-induced electronic and structural changes. High-dose room-temperature SFX datasets were collected at the Linac Coherent Light Source of ferredoxin microcrystals. Difference electron density maps calculated from high-dose SFX and synchrotron data show peaks at the iron positions of the clusters, indicative of decrease of atomic scattering factors due to ionization. The electron density of the two [4Fe-4S] clusters differs in the FEL data, but not in the synchrotron data. Since the clusters differ in their detailed architecture, this observation is suggestive of an influence of the molecular bonding and geometry on the atomic displacement dynamics following initial photoionization. The experiments are complemented by plasma code calculations. PMID:25723924

  9. Powerful high-voltage generators for FELTRON, the electrostatic-accelerator FEL amplifier for TeV colliders

    NASA Astrophysics Data System (ADS)

    Boscolo, I.; Giuliani, F.; Roche, M.

    1992-07-01

    One of the crucial issues of the new μ-wave source FELTRON is the high-voltage generator. FELTRON is a powerful electrostatic FEL providing μ-wave radiation at 20 GHz, with peak power of 200 MW, pulse length of 500 ns (derived in ten separate beams of 50 ns each) at a repetition rate of 1 kHz. This radiation power will feed the cavities of a high gradient linac for TeV colliders. The average power of the generator must be around 250 kW, at a voltage of 5 MV. A Cockroft-Walton having the "onion" configuration is presented. The features are compared with those of dynamitron and insulating core transformer generators. The operation principles and technological problems are discussed in view of pulsed FEL utilization.

  10. FEL on slow cyclotron wave

    SciTech Connect

    Silivra, A.

    1995-12-31

    A physical mechanism of interaction of fast electromagnetic wave with slow cyclotron wave of relativistic electron beam in a FEL with helical wiggler field is described. It is shown that: (1) interaction is possible for both group of steady state electron trajectories (2) positive gain is achieved within certain interval of guide field strength (3) operation wavelength for group 1 trajectories ({Omega}{sub 0}/{gamma} < k{omega}{upsilon}{parallel}) is shorter than for the conventional FEL synchronism. A nonlinear analysis shows that efficiency of slow cyclotron FEL is restricted mainly by a breakdown of a single electron synchronism due to dependence of (modified) electron cyclotron frequency on an energy of electron. Nevertheless, as numerical simulation shows, typical efficiency of 15 % order is achieved in millimeter wavelength band for the midrelativistic ({gamma}= 3 {divided_by} 4) slow cyclotron wave FEL. Tapering of magnetic field results in a substantial increase of efficiency.

  11. RF couplers for normal-conducting photoinjector of high-power CW FEL

    SciTech Connect

    Kurennoy, S.

    2004-01-01

    A high-current emittance-compensated RF photoinjector is a key enabling technology for a high-power CW FEL. A preliminary design of a normal-conducting, 2.5-cell pi-mode, 700-MHz CW RF photoinjector that will be built for demonstration purposes, is completed. This photoinjector will be capable of accelerating a 100-mA electron beam (3 nC per bunch at 35 MHz bunch repetition rate) to 2.7 MeV while providing an emittance below 7 mm-mrad at the wiggler. More than 1 MW of RF power will be fed into the photoinjector cavity through two ridge-loaded tapered waveguides. The waveguides are coupled to the cavity by 'dog-bone' irises cut in a thick wall. Due to CW operation of the photoinjector, the cooling of the coupler irises is a rather challenging thermal management project. This paper presents results of a detailed electromagnetic modeling of the coupler-cavity system, which has been performed to select the coupler design that minimizes the iris heating due to RF power loss in its walls.

  12. RF Couplers for Normal-Conducting Photoinjector of High-Power CW FEL

    NASA Astrophysics Data System (ADS)

    Kurennoy, Sergey; Schrage, Dale; Wood, Richard; Schultheiss, Tom; Rathke, John; Young, Lloyd

    2004-05-01

    A high-current emittance-compensated RF photoinjector is a key enabling technology for a high-power CW FEL. A preliminary design of a normal-conducting, 2.5-cell pi-mode, 700-MHz CW RF photoinjector that will be build for demonstration purposes, is completed. This photoinjector will be capable of accelerating a 100-mA electron beam (3 nC per bunch at 35 MHz bunch repetition rate) to 2.7 MeV while providing an emittance below 7 mm-mrad at the wiggler. More than 1 MW of RF power will be fed into the photoinjector cavity through two ridge-loaded tapered waveguides. The waveguides are coupled to the cavity by "dog-bone" irises cut in a thick wall. Due to CW operation of the photoinjector, the cooling of the coupler irises is a rather challenging thermal management project. This paper presents results of a detailed electromagnetic modeling of the coupler-cavity system, which has been performed to select the coupler design that minimizes the iris heating due to RF power loss in its walls.

  13. Resonance hard radiation in a gas-loaded FEL

    SciTech Connect

    Gevorgian, L.A.

    1995-12-31

    The process of induced radiation under the condition when the relativistic beam oscillation frequency coincides with the plasma frequency of the FEL filling gas, is investigated. Such a resonance results in a giant enhancement of interaction between electrons and photons providing high gain in the hard FEL frequency region. Meanwhile the spectralwidth of the spontaneous radiation is broadened significantly. A method is proposed for maintaining the synchronism between the electron oscillation frequency and the medium plasma frequency, enabling to transform the electron energy into hard radiation with high efficiency.

  14. High fat diet causes rebound weight gain.

    PubMed

    McNay, David E G; Speakman, John R

    2012-01-01

    Obesity is at epidemic proportions but treatment options remain limited. Treatment of obesity by calorie restriction (CR) despite having initial success often fails due to rebound weight gain. One possibility is that this reflects an increased body weight (BW) set-point. Indeed, high fat diets (HFD) reduce adult neurogenesis altering hypothalamic neuroarchitecture. However, it is uncertain if these changes are associated with weight rebound or if long-term weight management is associated with reversing this. Here we show that obese mice have an increased BW set-point and lowering this set-point is associated with rescuing hypothalamic remodelling. Treating obesity by CR using HFD causes weight loss, but not rescued remodelling resulting in rebound weight gain. However, treating obesity by CR using non-HFD causes weight loss, rescued remodelling and attenuates rebound weight gain. We propose that these phenomena may explain why successful short-term weight loss improves obesity in some people but not in others.

  15. High-brightness, high-current density cathode for induction linac FELs

    SciTech Connect

    Turner, W.C.; Chen, Y.-J.; Nexsen, W.E.; Green, M.C.; Miram, G.; Nordquist, A.V.

    1988-09-28

    We have recently initiated an investigation to determine the intrinsic operating limits of an osmium coated dispenser cathode for use in free-electron lasers (FELs) driven by an induction linear accelerator. The experimental apparatus consists of a 5.1-cm-diam osmium coated dispenser cathode driven by a 250-kV, 10-..cap omega.., 35-ns Blumlein pulse line. The pepper pot technique is used to measure intrinsic cathode brightness and uniformity. Recent measurements have yielded brightness values exceeding 1 /times/ 10/sup 10/ A/m/sup 2/rad/sup 2/ for current densities up to 140 A/cm/sup 2/. We have also obtained quantitative data on cathode poisoning caused by a number of chemical agents of interest in the induction linac environment. 7 refs., 8 figs., 2 tabs.

  16. Voyager high gain antenna calibration and pointing

    NASA Technical Reports Server (NTRS)

    Jahanshahi, M. H.

    1979-01-01

    A mathematical description of the data reduction technique used in analyzing Voyager calibration data is presented. To achieve the required telecommunication link performance, highly accurate pointing of the Voyager high gain antenna boresight relative to earth is necessary. To provide the optimum pointing, in-flight calibrations of the high gain antenna pointing mechanism are regularly made, and the design of the calibration and the antenna error models is delineated. It is shown that due to the use of wide angle sun sensors for celestial attitude control, the Voyager antenna error model differs from those of previous missions. Results of the in-flight calibrations and their implementation in improving the antenna pointing are also presented.

  17. Design study of a longer wavelength FEL for FELIX

    SciTech Connect

    Lin, L.; Oepts, D.; Meer, A.F.G. van der

    1995-12-31

    We present a design study of FEL3, which will extend the FELIX spectral range towards a few hundred microns. A rectangular waveguide will be used to reduce diffraction losses. Calculations show that with a waveguide gap of 1 cm, only one sinusoidal mode along the guided direction can exist within the FEL gain bandwidth, thus excluding group velocity dispersion and lengthening of short radiation pulses. To incorporate FEL3 in the existing FELIX facility, two options are being considered: to combine FEL3 with FEL1 by insertion of a waveguide into FEL1, and to build a dedicated third beam line for FEL3 after the two linacs. Expected FEL performance: gain, spectrum, power, pulse shape, etc., will be presented based on numerical simulations.

  18. Compact FEL`s based on slow wave wigglers

    SciTech Connect

    Riyopoulos, S.

    1995-12-31

    Slow waves excited in magnetron-type cavities are attractive canditates as wigglers for compact Free Electron Lasers. Because of group velocities much below the speed of light, slow waves offer an order of magnitude increase in FEL gain under given circulating power in the wiggler resonator, compared to fast wave wigglers of similar period. In addition, they offer the versatility of operation either at modest beam energy via upshifing of the fundamental wavelength, or at low beam energy benefiting from the submillimeter wiggler harmonics. Because the main electron undulation is in the transverse direction for all spatial harmonics, the radiated power is increased by a factor {gamma}{sup 2} relative to the Smith-Purcell approach that relies on axial electron undulation. Technical advantages offered by magnetron-type wiggles are: the generation of the wiggler microwaves and the FEL interaction take place inside the same cavity, avoiding the issue of high power coupling between cavities; the excitation of wiggler microwaves relies on distributed electron emission from the cavity wall and does not require separate beam injection.

  19. Sideband elimination and high efficiencies in a strongly tapered FEL amplifier

    SciTech Connect

    Bhattacharjee, A.; Chen, J.

    1995-12-31

    Recently, an analytical theory has shown that sideband instabilities can be eliminated in a strongly tapered FEL amplifier, leading to high efficiencies. It is found that a drastic suppression of the sideband spectrum occurs due to a continuous detuning effect which causes the real frequency of the most unstable sideband mode to vary continuously along the wiggler axis in the presence of a strong taper, with the consequence that no sideband can grow significantly before it is tuned away. Assuming extremely strongly pre-bunched beams with zero thermal spread, ideal efficiencies exceeding 60% were predicted by the theory with sideband intensities suppressed by nearly eight orders of magnitude with respect to the intensity of the primary signal. The theoretical predictions have been tested and verified by a one-dimensional numerical simulation. The numerical simulations permit us to go beyond the scope of the analytical model and allow us to examine (i) if optimization of strongly tapered wiggler configurations can allow us to achieve the desired high efficiencies within acceptable length constraints, and (ii) whether the high ideal efficiencies predicted by theory survive in the presence of partial pre-bunching and finite thermal spread of electron beams. By experimenting with different tapering schemes, we have found interesting strongly tapered configurations in which the accessible electron phase-space area remains nearly constant, with realistic assumptions on pre-bunching and thermal spread of the electron beam. In particular, for parameters representative of the Livermore experiments we obtain efficiencies in the rage 40-50% with thermal spreads in the range 0.5-1 % and pre-bunched electron phases in the range 2 {pi}/ 3 using a wiggler 5 meters long. The optical quality of the radiation produced is free of parasitic sideband instabilities which do not grow beyond noise levels.

  20. Beam Line Commissioning of a UV/VUV FEL at Jefferson Lab

    SciTech Connect

    Benson, Stephen; Blackburn, Keith; Bullard, Daniel; Clavero Perez, Cesar; Coleman, James; Dickover, Cody; Douglas, David; Ellingsworth, Forrest; Evtushenko, Pavel; Hernandez-Garcia, Carlos; Gould, Christopher; Gubeli, Joseph; Hardy, David; Jordan, Kevin; Klopf, John; James, Kortze; Legg, Robert; Marchlik, Matthew; Moore, Steven; Neil, George; Powers, Thomas; Sexton, Daniel; Shinn, Michelle D; Tennant, Christopher; Walker, Richard; Williams, Gwyn; Wilson, Frederick; Zhang, Shukui

    2011-08-01

    Many novel applications in photon sciences require very high brightness and/or short pulses in the vacuum ultra-violet (VUV). Jefferson Lab has commissioned a UV oscillator with high gain and has transported the third harmonic of the UV to a user lab. The experimental performance of the UV FEL is much better than simulated performance in both gain and efficiency. This success is important for efforts to push towards higher gain FELs at short wavelengths where mirrors absorb strongly. We will report on efforts to characterize the UV laser and the VUV coherent harmonics as well as designs to lase directly in the VUV wavelength range.

  1. FEL development at the Budker Institute of Nuclear Physics

    NASA Astrophysics Data System (ADS)

    Vinokurov, N. A.

    1993-07-01

    There are three different FEL projects at the Budker Institute of Nuclear Physics: 1) the FEL on the VEPP-3 storage ring which operates in the visible and ultraviolet region; 2) the high power FEL using a racetrack microtron recuperator (this machine will provide an average power of about tens of kilowatt in the infrared region); and 3) the compact infrared FEL project, using a microton, and a powerful FEL on a dedicated superconducting storage ring, which is under consideration now.

  2. An FEL design code running on Mathcad(trademark)

    NASA Astrophysics Data System (ADS)

    Nguyen, D. C.; Gierman, S. M.; Oshea, P. G.

    We present a simple computer code called FEL-CAD that runs on the Mathcad(trademark) software. FEL-CAD gives estimates of the expected performance of a low-gain Compton FEL oscillator driven by an rf linac. The code provides fast, albeit approximate, answers to basic FEL design questions. Scaling can be done by varying the wiggler, the linac, the electron beam and the optical resonator parameters.

  3. Scaling formulae for FEL operating in linear and non linear regime

    SciTech Connect

    Dattoli, G.; Mezi, L.; Segreto, A.

    1995-12-31

    Scaling relations for the FEL gain, including the e-beam quality effects, have been usefully exploited to design FEL devices. We propose further extension of the above formulae including high gain, inhomogeneous broadening and saturation effects. A crucial role to get these relations is the use of approximant methods generalizing the Pade procedure. We derive gain equations containing the corrections due to energy spread, emittances and field intensity. It is shown that these equations can be exploited to {open_quotes}simulate{close_quotes} the FEL evolution with an almost negligible computational effort. Comments on the role of the saturation intensity and its dependence on the e-beam quality, high gain corrections etc. are also presented.

  4. Echo-Enabled Harmonic Generation for Seeded FELs

    SciTech Connect

    Stupakov, G.; /SLAC

    2011-05-19

    In the x-ray wavelengths, the two leading FEL concepts are the self-amplified spontaneous emission (SASE) configuration and the high-gain harmonic generation (HGHG) scheme. While the radiation from a SASE FEL is coherent transversely, it typically has rather limited temporal coherence. Alternatively, the HGHG scheme allows generation of fully coherent radiation by up-converting the frequency of a high-power seed laser. However, due to the relatively low up-frequency conversion efficiency, multiple stages of HGHG FEL are needed in order to generate x-rays from a UV laser. The up-frequency conversion efficiency can be greatly improved with the recently proposed echo-enabled harmonic generation (EEHG) technique. In this work we will present the concept of EEHG, and address some practically important issues that affect the performance of the seeding. We show how the EEHG can be incorporated in the FEL scheme and what is the expected performance of the EEHG seeded FEL. We will then briefly describe the first proof-of-principle EEHG experiment carried out at the Next Linear Collider Test Accelerator (NLCTA) at SLAC. We will also discuss latest advances in the echo-scheme approach, and refer to subsequent modifications of the original concept.

  5. Galileo spacecraft high gain antenna offset calibration

    NASA Technical Reports Server (NTRS)

    Hayati, S. A.

    1982-01-01

    A mathematical model for the estimation of the dual-spin Galileo spacecraft high gain antenna misalignment is developed. The feasibility of the proposed technique is investigated by means of a simulation study. In-flight parameter estimation requires the development of a stochastic model of the spacecraft rotational biases and the earth-received signal strength measurements. The signal strength measurements for X-band frequency are used as observations to estimate the rotational biases and their corresponding uncertainties. The simulation study shows that the initial ground measured uncertainties of .6 mrad can be reduced by a factor of ten.

  6. A Comparison of Short Rayleigh Range FEL Performance with Simulations

    SciTech Connect

    Benson, Stephen; Evtushenko, Pavel; Michelle D. Shinn; Neil, George; Blau, Joe; Burggraff, D.; Colson, William; Crooker, P.P.; Sans Aguilar, J.

    2007-08-01

    One approach to attaining very high power in a free-electron laser (FEL) is to operate with a Rayleigh range much smaller than the wiggler length. Previously, 3D simulations of Free-electron laser (FEL) oscillators showed that FEL gain doesn't fall off with Rayleigh range as predicted by one-dimensional simulations*. They also predict that the angular tolerance for the mirrors is much large than simplistic theory predicts. Using the IR Upgrade laser at Jefferson Lab lasing at 935 nm we have studied the performance of an FEL with very short Rayleigh range. We also looked at the angular sensitivity for several different Rayleigh ranges. We find very good agreement between simulations and measured gain and angular sensitivities. Surprisingly the gain continues to rise as the Rayleigh range is shortened and continues to grow even when the resonator becomes geometrically unstable. The same behavior is seen in both the experiment and simulations. We also find that, even for large Rayleigh r

  7. A high average current DC GaAs photocathode gun for ERLs and FELs

    SciTech Connect

    C. Hernandez-Garcia; T. Siggins; S. Benson; D. Bullard; H. F. Dylla; K. Jordan; C. Murray; G. R. Neil; Michelle D. Shinn; R. Walker

    2005-05-01

    The Jefferson Lab (JLab) 10 kW IR Upgrade FEL DC GaAs photocathode gun is presently the highest average current electron source operational in the U.S., delivering a record 9.1 mA CW, 350 kV electron beam with 122 pC/bunch at 75 MHz rep rate. Pulsed operation has also been demonstrated with 8 mA per pulse (110 pC/bunch) in 16 ms-long pulses at 2 Hz rep rate. Routinely the gun delivers 5 mA CW and pulse current at 135 pC/bunch for FEL operations. The Upgrade DC photocathode gun is a direct evolution of the DC photocathode gun used in the previous JLab 1 kW IR Demo FEL. Improvements in the vacuum conditions, incorporation of two UHV motion mechanisms (a retractable cathode and a photocathode shield door) and a new way to add cesium to the GaAs photocathode surface have extended its lifetime to over 450 Coulombs delivered between re-cesiations (quantum efficiency replenishment). With each photocathode activation quantum efficiencies above 6% are routinely achieved. The photocathode activation and performance will be described in detail.

  8. Short wavelength FELs using the SLAC linac

    SciTech Connect

    Winick, H.; Bane, K.; Boyce, R.

    1993-08-01

    Recent technological developments have opened the possibility to construct a device which we call a Linac Coherent Light Source (LCLS); a fourth generation light source, with brightness, coherence, and peak power far exceeding other sources. Operating on the principle of the free electron laser (FEL), the LCLS would extend the range of FEL operation to much aborter wavelength than the 240 mn that has so far been reached. We report the results of studies of the use of the SLAC linac to drive an LCLS at wavelengths from about 3-100 nm initially and possibly even shorter wavelengths in the future. Lasing would be achieved in a single pass of a low emittance, high peak current, high energy electron beam through a long undulator. Most present FELs use an optical cavity to build up the intensity of the light to achieve lasing action in a low gain oscillator configuration. By eliminating the optical cavity, which is difficult to make at short wavelengths, laser action can be extended to shorter wavelengths by Self-Amplified-Spontaneous-Emission (SASE), or by harmonic generation from a longer wavelength seed laser. Short wavelength, single pass lasers have been extensively studied at several laboratories and at recent workshops.

  9. Nonlinear harmonic generation in the STARS FEL

    NASA Astrophysics Data System (ADS)

    Abo-Bakr, M.; Goldammer, K.; Kamps, T.; Knobloch, J.; Kuske, B.; Leitner, T.; Meseck, A.

    2008-08-01

    BESSY proposes to build STARS, an FEL to demonstrate cascaded High Gain Harmonic Generation (HGHG). In two HGHG stages, a laser source of 700-900 nm is converted down to a wavelength of 40-70 nm. The STARS facility consists of a normal-conducting RF photoinjector, three superconducting TESLA-type acceleration modules, a magnetic bunch compressor and two stages of HGHG, each consisting of a modulator, dispersive chicane and a radiator. At the entrance of the undulator section, the beam energy is 325 MeV and the peak current is about 500 A. With these parameters, the STARS FEL reaches saturation with a peak power of 100-350 MW. A superradiant mode is also foreseen which boosts the radiation power to the GW-level. Due to nonlinear harmonic generation (NHG), free electron lasers also radiate coherently at higher harmonics of the FEL resonant frequency. STARS can hence extend its output range to even shorter wavelengths. This paper presents studies of the STARS harmonic content in the wavelength range of 6-20 nm. Seeding with high harmonic generation pulses at 32 nm is also discussed.

  10. X-band prebunched FEL amplifier

    SciTech Connect

    Saito, Kazuyoshi; Takayama, Ken; Ozaki, Toshiyuki

    1995-12-31

    Following the successful results of the ion-channel-guiding FEL experiments, we began a new experiment {open_quotes}prebunched FEL{close_quotes}. It is an FEL driven by prebunched beams, whose configuration is a normal FEL system with a prebuncher like the bunching section of a klystron. There are two purposes in this prebunched FEL system; (1) Demonstration of a compact/efficient FEL. Attaining the saturation power level with a short wiggler length (compact wiggler) and enhancing the power through the remaining wiggler length by wiggler tapering (high efficiency FEL). (2) Experimental simulation of multi-stage FELs in the FEL-TBA. Examination of FEL interactions with prebunched injection beams, especially, about the controllability of the output RF phase by changing the RF phase of the input seed power to the wiggler. Recent experimental results show: (1) The saturation power of 120MW has been attained at the wiggler length of 1.1m by 1.5MeV prebunched beams with a 45%-modulated 750A current. However, enhanced power has not been observed yet by wiggler tapering. (2) The current modulation of the injection beam (1.5MeV-500A) becoming higher than 30%, the adjustable range of the output RF phase was limitted less than 40 degrees by the input power of 60kW only. Detail explanations of design concept, theoretical and experimental results will be presented at the conference.

  11. Self-seeded injection-locked FEL amplifer

    DOEpatents

    Sheffield, Richard L.

    1999-01-01

    A self-seeded free electron laser (FEL) provides a high gain and extraction efficiency for the emitted light. An accelerator outputs a beam of electron pulses to a permanent magnet wiggler having an input end for receiving the electron pulses and an output end for outputting light and the electron pulses. An optical feedback loop collects low power light in a small signal gain regime at the output end of said wiggler and returns the low power light to the input end of the wiggler while outputting high power light in a high signal gain regime.

  12. Prospects for the FEL (Free Electron Laser)

    SciTech Connect

    Sessler, A.M.

    1989-04-01

    The future for FELs depends upon the very large number of applications which is envisioned for them. These grow out of the FEL extensive range of wavelengths, tunability, and high power capability. High power requires demonstration of optical guiding. Tunability has already been demonstrated. And the effort to extend the range of wavelengths is ever ongoing. The future will also bring more work on gas-loaded FELs, on electromagnetic wigglers, and on harmonic generation. We can, also, look forward to observation of various new effects, a few of which will be described. Finally, a list of various FEL projects around the world will be given. 12 refs., 5 figs., 8 tabs.

  13. Some novel features of an FEL oscillator with tapered undulator

    SciTech Connect

    Saldin, E.L.; Schneidmiller, E.A.; Yurkov, M.V.

    1995-12-31

    A one-dimensional analysis of an FEL oscillator with a linear undulator tapering is presented. Some principally novel results have been obtained. The origin of these results is in principal difference between the FEL oscillator and an FEL amplifier. In the case of the FEL amplifier the frequency of the amplified wave and all the other parameters are defined by an experimenter. Contrary to this, the case of the FEL oscillator with tapered undulator is more complicated. The lasing frequency is defined by the maximum of the small-signal gain and depends on the tapering depth in some complex way.

  14. Design considerations and analysis of potential applications of a high power ultraviolet FEL at the TESLA test facility at DESY

    NASA Astrophysics Data System (ADS)

    Pagani, C.; Saldin, E. L.; Schneidmiller, E. A.; Yurkov, M. V.

    1999-02-01

    A possibility of constructing a high power ultraviolet free electron laser at the TESLA test facility at DESY is discussed. The proposed facility consists of a tunable master oscillator (P av˜10 mW, P peak˜10 kW, λ≃200-350 nm) and an FEL amplifier with a tapered undulator. The average and peak radiation power at the exit of the FEL amplifier is about 7 kW and 220 GW, respectively. Installation of such a facility can significantly extend scientific potential of the TESLA test facility. The UV free electron laser can be used to construct a polarized, monochromatic gamma-source with the ultimate yield up to 10 12 gamma-quanta per second and the maximal energy of about 100 MeV. An intensive gamma-source can also form the base for constructing the test facility for the TESLA positron generation system. Another accelerator application of the proposed facility is verification of the main technical solutions for the laser and the optical system to be used in the gamma-gamma option of the TESLA collider. A high average power UV laser is also promising for industrial applications.

  15. Progress toward high-gain laser fusion

    SciTech Connect

    Storm, E.

    1988-09-28

    A 1985-1986 Review of the US inertial confinement fusion program by the National Academy of Sciences concluded that five more years might be required to obtain enough data to determine the future course of the program. Since then, data from the Nova laser and from the Halite/Centurion program have resolved most of the outstanding problems identified by the NAS review. In particular, we now believe that we can produce a sufficiently uniform target; that we can keep the energy content in hot electrons and high-energy photons low enough (/approximately/1--10% of drive energy, depending on target design) and achieve enough pulse-shaping accuracy (/approximately/10%, with a dynamic range of 100:1) to keep the fuel on a near-Fermi-degenerate adiabat; that we can produce an /approximately/100-Mbar pressure pulse of sufficient uniformity (/approximately/1%), and can we control hydrodynamic instabilities so that the mix of the pusher into the hot spot is low enough to permit marginal ignition. These results are sufficiently encouraging that the US Department of Energy is planning to complete a 10-MJ laboratory microfusion facility to demonstrate high-gain ICF in the laboratory within a decade. 22 refs., 1 fig.

  16. Tests of photocathodes for high repetition rate x-ray FELs at the APEX facility at LBNL

    NASA Astrophysics Data System (ADS)

    Sannibale, Fernando; Filippetto, Daniele; Qian, Houjun; Papadopoulos, Christos F.; Wells, Russell; Kramasz, Toby; Padmore, Howard; Feng, Jun; Nasiatka, James; Huang, Ruixuan; Zolotorev, Max; Staples, John W.

    2015-05-01

    After the formidable results of X-ray 4th generation light sources based on free electron lasers around the world, a new revolutionary step is undergoing to extend the FEL performance from the present few hundred Hz to MHz-class repetition rates. In such facilities, temporally equi-spaced pulses will allow for a wide range of previously non-accessible experiments. The Advanced Photo-injector EXperiment (APEX) at the Lawrence Berkeley National Laboratory (LBNL), is devoted to test the capability of a novel scheme electron source, the VHF-Gun, to generate the required electron beam brightness at MHz repetition rates. In linac-based FELs, the ultimate performance in terms of brightness is defined at the injector, and in particular, cathodes play a major role in the game. Part of the APEX program consists in testing high quantum efficiency photocathodes capable to operate at the conditions required by such challenging machines. Results and status of these tests at LBNL are presented.

  17. High gain holmium-doped fibre amplifiers.

    PubMed

    Simakov, Nikita; Li, Zhihong; Jung, Yongmin; Daniel, Jae M O; Barua, Pranabesh; Shardlow, Peter C; Liang, Sijing; Sahu, Jayanta K; Hemming, Alexander; Clarkson, W Andrew; Alam, Shaif-Ul; Richardson, David J

    2016-06-27

    We investigate the operation of holmium-doped fibre amplifiers (HDFAs) in the 2.1 µm spectral region. For the first time we demonstrate a diode-pumped HDFA. This amplifier provides a peak gain of 25 dB at 2040 nm with a 15 dB gain window spanning the wavelength range 2030 - 2100 nm with an external noise figure (NF) of 4-6 dB. We also compare the operation of HDFAs when pumped at 1950 nm and 2008 nm. The 1950 nm pumped HDFA provides 41 dB peak gain at 2060 nm with 15 dB of gain spanning the wavelength range 2050 - 2120 nm and an external NF of 7-10 dB. By pumping at the longer wavelength of 2008 nm the gain bandwidth of the amplifier is shifted to longer wavelengths and using this architecture a HDFA was demonstrated with a peak gain of 39 dB at 2090 nm and 15 dB of gain spanning the wavelength range 2050 - 2150 nm. The external NF over this wavelength range was 8-14 dB. PMID:27410557

  18. The Physics and Applications of High Brightness Beams: Working Group C Summary on Applications to FELS

    SciTech Connect

    Nuhn, Heinz-Dieter

    2003-03-19

    This is the summary of the activities in working group C, ''Application to FELs,'' which was based in the Bithia room at the Joint ICFA Advanced Accelerator and Beam Dynamics Workshop on July 1-6, 2002 in Chia Laguna, Sardinia, Italy. Working group C was small in relation to the other working groups at that workshop. Attendees include Enrica Chiadroni, University of Rome ape with an identical pulse length. ''La Sapienza'', Luca Giannessi, ENEA, Steve Lidia, LBNL, Vladimir Litvinenko, Duke University, Patrick Muggli, UCLA, Alex Murokh, UCLA, Heinz-Dieter Nuhn, SLAC, Sven Reiche, UCLA, Jamie Rosenzweig, UCLA, Claudio Pellegrini, UCLA, Susan Smith, Daresbury Laboratory, Matthew Thompson, UCLA, Alexander Varfolomeev, Russian Research Center, plus a small number of occasional visitors. The working group addressed a total of nine topics. Each topic was introduced by a presentation, which initiated a discussion of the topic during and after the presentation. The speaker of the introductory presentation facilitated the discussion. There were six topics that were treated in stand-alone sessions of working group C. In addition, there were two joint sessions, one with working group B, which included one topic, and one with working group C, which included two topics. The presentations that were given in the joint sessions are summarized in the working group summary reports for groups B and D, respectively. This summary will only discuss the topics that were addressed in the stand-alone sessions, including Start-To-End Simulations, SASE Experiment, PERSEO, ''Optics Free'' FEL Oscillators, and VISA II.

  19. High-Gain High-Field Fusion Plasma.

    PubMed

    Li, Ge

    2015-01-01

    A Faraday wheel (FW)-an electric generator of constant electrical polarity that produces huge currents-could be implemented in an existing tokamak to study high-gain high-field (HGHF) fusion plasma, such as the Experimental Advanced Superconducting Tokamak (EAST). HGHF plasma can be realized in EAST by updating its pulsed-power system to compress plasma in two steps by induction fields; high gains of the Lawson trinity parameter and fusion power are both predicted by formulating the HGHF plasma. Both gain rates are faster than the decrease rate of the plasma volume. The formulation is checked by earlier ATC tests. Good agreement between theory and tests indicates that scaling to over 10 T at EAST may be possible by two-step compressions with a compression ratio of the minor radius of up to 3. These results point to a quick new path of fusion plasma study, i.e., simulating the Sun by EAST. PMID:26507314

  20. High-Gain High-Field Fusion Plasma

    NASA Astrophysics Data System (ADS)

    Li, Ge

    2015-10-01

    A Faraday wheel (FW)—an electric generator of constant electrical polarity that produces huge currents—could be implemented in an existing tokamak to study high-gain high-field (HGHF) fusion plasma, such as the Experimental Advanced Superconducting Tokamak (EAST). HGHF plasma can be realized in EAST by updating its pulsed-power system to compress plasma in two steps by induction fields; high gains of the Lawson trinity parameter and fusion power are both predicted by formulating the HGHF plasma. Both gain rates are faster than the decrease rate of the plasma volume. The formulation is checked by earlier ATC tests. Good agreement between theory and tests indicates that scaling to over 10 T at EAST may be possible by two-step compressions with a compression ratio of the minor radius of up to 3. These results point to a quick new path of fusion plasma study, i.e., simulating the Sun by EAST.

  1. Experimental and analytical study of a high gain self amplified spontaneous emission free electron laser operating in a large spectral bandwidth regime

    NASA Astrophysics Data System (ADS)

    Andonian, Gerard Cosmos

    The drive to create and measure ultra-short pulses in the x-ray regime advances the ongoing development of free electron lasers (FEL). Several proposed schemes, to shorten the pulse length of the radiation, involve driving the FEL with a chirped (linear longitudinal phase space correlation) electron beam in the self amplified spontaneous emission (SASE) mode. This dissertation examines the experiments conducted under such conditions, canvassing analytical and numerical studies of beam dynamics and radiation properties, experimental observations, and descriptions of the development of novel diagnostics. The VISA (Visible-Infrared SASE Amplifier) program has achieved saturation at 840 nm within a 4 m long undulator. A novel bunch compression mechanism during transport was discovered and ultimately responsible for the high peak current required to drive the FEL. Start-to-end simulations, detailing the dynamics from electron beam inception at the photocathode to the FEL radiation properties at the undulator, were successfully benchmarked to observable data. The VISA II experiment is an extension of this SASE FEL operating under different experimental conditions. Driving the SASE FEL with a chirped electron beam requires maintaining the chirp throughout transport by the use of sextupole magnets to correct for second-order compression effects. The emitted radiation is frequency chirped, diagnosed via a modified frequency resolved optical gating (FROG) technique. Specific numerical simulations and diagnostic developments are presented. A set of measurements, without sextupole corrections, displays anomalous features, namely large spectral bandwidth of the radiation at stable and sustained high gain lasing. The bandwidth has an rms value of 21 nm (12% full width), previously unobserved in a FEL. In addition, the far-field angular distribution yields a hollow mode structure, similar to earlier results yet more pronounced in angle. Start-to-end simulations reproduced the

  2. Fluctuation-induced linewidth in oscillator FEL

    NASA Astrophysics Data System (ADS)

    Shevchenko, Oleg A.; Vinokurov, Nikolay A.

    2004-08-01

    Due to relatively small number of microscopic radiators, the noise (spontaneous emission contribution to the radiation field) level in free electron lasers (FELs) is much more than in other types of lasers. The influence of this noise on the FEL linewidth is considered. A low gain optical klystron model is used. It is shown that in the most of practically interesting cases the noise-induced linewidth is negligible.

  3. Simulations of the LANL regenerative amplifier FEL

    SciTech Connect

    Kesselring, M.; Colson, W.B.; Wong, R.K.; Sheffield, R.L.

    1997-08-01

    The LANL regenerative amplifier FEL is designed to produce an average output power of 1 kW. Simulations study the transverse effects due to guiding by the intense electron beam and feedback. These simulations coupled with experimental measurements can be used to improve future high-power FEL designs.

  4. High gain feedback and telerobotic tracking

    NASA Technical Reports Server (NTRS)

    Koditschek, D. E.

    1987-01-01

    Asymptotically stable linear time invariant systems are capable of tracking arbitrary reference signals with a bounded error proportional to the magnitude of the reference signal (and its derivatives). It is shown that a similar property holds for a general class of nonlinear dynamical systems which includes all robots. As in the linear case, the error bound may be made arbitrarily small by increasing the magnitude of the feedback gains which stabilize the system.

  5. On the Design Implications of Incorporating an FEL in an ERL

    SciTech Connect

    G. Neil; S. V. Benson; D. Douglas; P. Evtushenko; T. Powers

    2006-09-01

    Encouraged by the successful operation of the JLab Demo in 1998, many high current ERLs are now being designed with not only short pulse synchrotron beamlines but also FELs. Such inclusion has major implications on magnet quality, rf feedback requirements, wiggler design, srf cavity QL, halo, etc. Measurements on the JLab ERL FEL have identified new challenges. The JLab Upgrade was designed with a 160 MeV beam of 10 mA in 75 MHz, 300 fs bunches. FEL designers set transverse emittance and longitudinal bunching, but to accommodate an FEL in our ERL also means setting stringent phase stability requirements of (<6x10-9/fm rms) based on a desired FEL detuning tolerance of 1.2 microns. Recovered beam RF loading on the subsequent accelerated beam complicates satisfying these requirements. Gain in the rf feedback limits the accuracy of energy stability when loaded Qs are ~107 . Energy recovery to <10 MeV sets magnetic field tolerances at 10-4. We present measurements on the JLab ERL showing how to set system requirements to tolerate such FEL lasing.

  6. Milestone experiments for single pass UV/X-ray FELs

    NASA Astrophysics Data System (ADS)

    Ben-Zvi, Ilan

    1995-04-01

    In the past decade, significant advances have been made in the theory and technology of high brightness electron beams and single pass FELs. These developments facilitate the construction of practical UV and X-ray FELs and has prompted proposals to the DOE for the construction of such facilities. There are several important experiments to be performed before committing to the construction of dedicated user facilities. Two experiments are under construction in the IR, the UCLA self-amplified spontaneous emission experiment and the BNL laser seeded harmonic generation experiment. A multi-institution collaboration is being organized about a 210 MeV electron linac available at BNL and the 10 m long NISUS wiggler. This experiment will be done in the UV and will test various experimental aspects of electron beam dynamics, FEL exponential regime with gain guiding, start-up from noise, seeding and harmonic generation. These experiments will advance the state of FEL research and lead towards future dedicated users' facilities.

  7. Enhancing the performance of a high-gain free electron laser operating at millimeter wavelengths

    SciTech Connect

    Barletta, W.A.; Anderson, B.; Fawley, W.M.; Neil, V.K.; Orzechowski, T.J.; Prosnitz, D.; Scharlemann, E.T.; Yarema, S.M.; Paul, A.C.; Hopkins, D.

    1984-10-25

    A high-gain, high extraction efficiency, free electron laser (FEL) amplifier operating at the Experimental Test Accelerator (ETA) at 34.6 GHz has demonstrated a small signal gain of 13.4 dB/m. With a 30 kW input signal, the amplifier has produced a saturated output of 80 MW and a 5% extraction efficiency. Comparison of these results with a linear model at small signal levels indicates that the amplifier can deliver saturated output starting from noise, if the brightness of the electron beam is sufficiently high. The brightness of the ETA is far below that possible with optimized choice of practical design characteristics such as peak voltage, cathode type, gun electrode geometry, and focusing field topology. In particular, the measured brightness of the ETA injector is limited by plasma effects from the present cold, plasma cathode. As part of a coordinated theoretical and experimental effort to improve injector performance, we are using the EBQ gun design code to explore the current limits of gridless, relativistic, Pierce columns with moderate current density (>50 A/cm/sup 2/) at the cathode. The chief component in our experimental effort is a readily modified electron gun that will allow us to test many candidate cathode materials, types, and electrode geometries at field stresses up to 1 MV/cm. 8 references, 5 figures.

  8. High-Gain High-Field Fusion Plasma

    PubMed Central

    Li, Ge

    2015-01-01

    A Faraday wheel (FW)—an electric generator of constant electrical polarity that produces huge currents—could be implemented in an existing tokamak to study high-gain high-field (HGHF) fusion plasma, such as the Experimental Advanced Superconducting Tokamak (EAST). HGHF plasma can be realized in EAST by updating its pulsed-power system to compress plasma in two steps by induction fields; high gains of the Lawson trinity parameter and fusion power are both predicted by formulating the HGHF plasma. Both gain rates are faster than the decrease rate of the plasma volume. The formulation is checked by earlier ATC tests. Good agreement between theory and tests indicates that scaling to over 10 T at EAST may be possible by two-step compressions with a compression ratio of the minor radius of up to 3. These results point to a quick new path of fusion plasma study, i.e., simulating the Sun by EAST. PMID:26507314

  9. SASE FEL Polarization Control Using Crossed Undulator

    SciTech Connect

    Ding, Yuantao; Huang, Zhirong; /SLAC

    2008-09-30

    There is a growing interest in producing intense, coherent x-ray radiation with an adjustable and arbitrary polarization state. In this paper, we study the crossed undulator scheme for rapid polarization control in a self-amplified spontaneous emission (SASE) free electron laser (FEL). Because a SASE source is a temporally chaotic light, we perform a statistical analysis on the state of polarization using FEL theory and simulations. We show that by adding a small phase shifter and a short (about 1.3 times the FEL power gain length), 90{sup o} rotated planar undulator after the main SASE planar undulator, one can obtain circularly polarized light--with over 80% polarization--near the FEL saturation.

  10. On a theory of an FEL oscillator with multicomponent undulator

    SciTech Connect

    Saldin, E.L.; Schneidmiller, E.A.; Yurkov, M.V.

    1995-12-31

    Some novel results of a theory of an FEL oscillator with multicomponent undulator are presented. Two popular FEL oscillator configuration are under consideration: optical klystron and FEL oscillator with a prebuncher and tapered main undulator. Using similarity techniques, universal formulae and plots are obtained which allow one to calculate the FEL oscillator lasing conditions an output parameters at saturation. A one-dimensional analysis of an FEL oscillator with a linear undulator tapering is presented. Some principally novel results have been obtained. The origin of these results is in principal difference between the FEL oscillator and an FEL amplifier. In the case of the FEL amplifier the frequency of the amplified wave and all the other parameters are defined by an experimenter. Contrary to this, the case of the FEL oscillator with tapered undulator is more complicated. The lasing frequency is defined by the maximum of the small-signal gain and depends on the tapering depth in some complex way. In particular, at smooth increasing of the tapering depth, the lasing frequency may change by a leap and lasing occurs at another local maximum of the gain curve. This effect influences significantly on the FEL oscillator operation at saturation. As a result, generally accepted method of undulator tapering (for instance, by decreasing undulator field at fixed period) provides an efficiency increase only in a narrow range of the parameters of tapering. We show that in some cases, so called {open_quotes}negative tapering{close_quotes} (for instance, by increasing undulator field at fixed period) has a benefit against traditional tapering method. Ignoring of these basic features of the FEL oscillator with the tapered undulator have led many FEL research groups to nonoptimal design of the FEL experiments and incorrect interpretation of the obtained results.

  11. Critical issues for high-power FEL based on microtron recuperator/electron out-coupling scheme

    NASA Astrophysics Data System (ADS)

    Vinokurov, Nikolai A.; Zholents, Alexander A.; Fawley, William M.; Kim, Kwang J.

    1997-05-01

    The FELs based on the rf accelerator-recuperator and the electron outcoupling is promising for obtaining average output power of hundreds of kilowatts. We present basic considerations for the system stability and performance optimization for this scheme.

  12. Effects of bunch density gradient in high-gain free-electron lasers.

    SciTech Connect

    Huang, Z.; Kim, K.-J.

    1999-09-01

    The authors investigate effects of the bunch density gradient in self-amplified spontaneous emission (SASE), including the role of coherent spontaneous emission (CSE) in the evolution of the free-electron laser (FEL) process. In the exponential gain regime, the authors solve the coupled Maxwell-Vlasov equations and extend the linear theory to a bunched beam with energy spread. A time-dependent, nonlinear simulation algorithm is used to study the CSE effect and the nonlinear evolution of the radiation pulse.

  13. Optical Klystron Enhancement to SASE X-ray FELs

    SciTech Connect

    Ding, Yuantao; Emma, Paul; Huang, Zhirong; Kumar, Vinit

    2006-04-07

    The optical klystron enhancement to self-amplified spontaneous emission (SASE) free electron lasers (FELs) is studied in theory and in simulations. In contrast to a seeded FEL, the optical klystron gain in a SASE FEL is not sensitive to any phase mismatch between the radiation and the microbunched electron beam. The FEL performance with the addition of four optical klystrons located at the undulator long breaks in the Linac Coherent Light Source (LCLS) shows significant improvement if the uncorrelated energy spread at the undulator entrance can be controlled to a very small level. In addition, FEL saturation at shorter x-ray wavelengths (around 1.0 A) within the LCLS undulator length becomes possible. We also discuss the application of the optical klystron in a compact x-ray FEL design that employs relatively low electron beam energy together with a shorter-period undulator.

  14. High gain durable anti-reflective coating

    DOEpatents

    Maghsoodi, Sina; Brophy, Brenor L.; Colson, Thomas E.; Gonsalves, Peter R.; Abrams, Ze'ev R.

    2016-07-26

    Disclosed herein are polysilsesquioxane-based anti-reflective coating (ARC) compositions, methods of preparation, and methods of deposition on a substrate. In one embodiment, the polysilsesquioxane of this disclosure is prepared in a two-step process of acid catalyzed hydrolysis of organoalkoxysilane followed by addition of tetralkoxysilane that generates silicone polymers with >40 mol % silanol based on Si-NMR. These high silanol siloxane polymers are stable and have a long shelf-life in polar organic solvents at room temperature. Also disclosed are low refractive index ARC made from these compositions with and without additives such as porogens, templates, thermal radical initiator, photo radical initiators, crosslinkers, Si--OH condensation catalyst and nano-fillers. Also disclosed are methods and apparatus for applying coatings to flat substrates including substrate pre-treatment processes, coating processes and coating curing processes including skin-curing using hot-air knives. Also disclosed are coating compositions and formulations for highly tunable, durable, highly abrasion-resistant functionalized anti-reflective coatings.

  15. Description of FEL3D: A three dimensional simulation code for TOK and FEL

    SciTech Connect

    Dutt, S.; Friedman, A.; Gover, A.

    1988-10-20

    FEL3D is a three dimensional simulation code, written for the purpose of calculating the parameters of coherent radiation emitted by electrons in an undulator. The program was written predominantly for simulating the coherent super-radiant harmonic frequency emission of electrons which are being bunched by an external laser beam while propagating in an undulator magnet. This super-radiant emission is to be studied in the TOK (transverse optical klystron) experiment, which is under construction in the NSLS department at Brookhaven National Laboratory. The program can also calculate the stimulated emission radiometric properties of a free electron laser (FEL) taking into account three dimensional effects. While this application is presently limited to the small gain operation regime of FEL's, extension to the high gain regime is expected to be relatively easy. The code is based on a semi-analytical concept. Instead of a full numerical solution of the Maxwell-Lorentz equations, the trajectories of the electron in the wiggler field are calculated analytically, and the radiation fields are expanded in terms of free space eigen-modes. This approach permits efficient computation, with a computation time of about 0.1 sec/electron on the BNL IBM 3090. The code reflects the important three dimensional features of the electron beam, the modulating laser beam, and the emitted radiation field. The statistical approach is based on averaging over the electron initial conditions according to a given distribution function in phase space, rather than via Monte-Carlo simulation. The present version of the program is written for uniform periodic wiggler field, but extension to nonuniform fields is straightforward. 4 figs., 5 tabs.

  16. A wide range and high speed automatic gain control

    SciTech Connect

    Tacconi, E.; Christiansen, C.

    1993-05-01

    Automatic gain control (AGC) techniques have been largely used since the beginning of electronics, but in most of the applications the dynamic response is slow compared with the carrier frequency. The problem of developing an automatic gain control with high dynamic response and wide control range simultaneously is analyzed in this work. An ideal gain control law, with the property that the total loop gain remains constant independent of the carrier amplitude, is obtained. The resulting AGC behavior is compared by computer simulations with a linear multiplier AGC. The ideal gain control law can be approximated using a transconductance amplifier. A practical circuit that has been used at CERN in the radio frequency loops of the Booster Synchrotron is presented. The circuit has high speed and 80-dB gain control range.

  17. Theory of noise in high-gain surface plasmon-polariton amplifiers incorporating dipolar gain media.

    PubMed

    De Leon, Israel; Berini, Pierre

    2011-10-10

    A theoretical analysis of noise in high-gain surface plasmon-polariton amplifiers incorporating dipolar gain media is presented. An expression for the noise figure is obtained in terms of the spontaneous emission rate into the amplified surface plasmon-polariton taking into account the different energy decay channels experienced by dipoles in close proximity to the metallic surface. Two amplifier structures are examined: a single-interface between a metal and a gain medium and a thin metal film bounded by identical gain media on both sides. A realistic configuration is considered where the surface plasmon-polariton undergoing amplification has a Gaussian field profile in the plane of the metal and paraxial propagation along the amplifier's length. The noise figure of these plasmonic amplifiers is studied considering three prototypical gain media with different permittivities. It is shown that the noise figure exhibits a strong dependance on the real part of the permittivities of the metal and gain medium, and that its minimum value is 4/π(∼3.53 dB). The origin of this minimum value is discussed. It is also shown that amplifier configurations supporting strongly confined surface plasmon-polaritons suffer from a large noise figure, which follows from an enhanced spontaneous emission rate due to the Purcell effect.

  18. Stacking nonenzymatic circuits for high signal gain

    PubMed Central

    Chen, Xi; Briggs, Neima; McLain, Jeremy R.; Ellington, Andrew D.

    2013-01-01

    Signal amplification schemes that do not rely on protein enzymes show great potential in areas as abstruse as DNA computation and as applied as point-of-care molecular diagnostics. Toehold-mediated strand displacement, a programmable form of dynamic DNA hybridization, can be used to design powerful amplification cascades that can achieve polynomial or exponential amplification of input signals. However, experimental implementation of such amplification cascades has been severely hindered by circuit leakage due to catalyst-independent side reactions. In this study, we systematically analyzed the origins, characteristics, and outcomes of circuit leakage in amplification cascades and devised unique methods to obtain high-quality DNA circuits that exhibit minimal leakage. We successfully implemented a two-layer cascade that yielded 7,000-fold signal amplification and a two-stage, four-layer cascade that yielded upward of 600,000-fold signal amplification. Implementation of these unique methods and design principles should greatly empower molecular programming in general and DNA-based molecular diagnostics in particular. PMID:23509255

  19. Progress at the Jefferson Laboratory FEL

    SciTech Connect

    Tennant, Christopher

    2009-01-01

    As the only currently operating free electron laser (FEL) based on a CW superconducting energy recovering linac (ERL), the Jefferson Laboratory FEL Upgrade remains unique as an FEL driver. The present system represents the culmination of years of effort in the areas of SRF technology, ERL operation, lattice design, high power optics and DC photocathode gun technology. In 2001 the FEL Demo generated 2.1 kW of laser power. Following extensive upgrades, in 2006 the FEL Upgrade generated 14.3 kW of laser power breaking the previous world record. The FEL Upgrade remains a valuable testbed for studying a variety of collective effects, such as the beam breakup instability, longitudinal space charge and coherent synchrotron radiation. Additionally, there has been exploration of operation with lower injection energy and higher bunch charge. Recent progress and achievements in these areas will be presented, and two recent milestones â installation of a UV FEL and establishment of a DC gun test s

  20. FULL ELECTROMAGNETIC FEL SIMULATION VIA THE LORENTZ-BOOSTED FRAME TRANSFORMATION

    SciTech Connect

    Fawley, William; Vay, Jean-Luc

    2010-08-16

    Numerical electromagnetic simulation of some systems containing charged particles with highly relativistic directed motion can by speeded up by orders of magnitude by choice of the proper Lorentz-boosted frame. A particularly good application for calculation in a boosted frame isthat of short wavelength free-electron lasers (FELs) where a high energy electron beam with small fractional energy spread interacts with a static magnetic undulator. In the optimal boost frame (i.e., the ponderomotive rest frame), the red-shifted FEL radiation and blue-shifted undulator field have identical wavelengths and the number of required longitudinal grid cells and time-steps for fully electromagnetic simulation (relative to the laboratory frame) decrease by factors of gamma^2 each. In theory, boosted frame EM codes permit direct study of FEL problems for which the eikonal approximation for propagation of the radiation field and wiggler-period-averaging for the particle-field interaction may be suspect. We have adapted the WARP code to apply this method to several electromagnetic FEL problems including spontaneous emission, strong exponential gain in a seeded, single pass amplifier configuration, and emission from e-beams in undulators with multiple harmonic components. WARP has a standard relativistic macroparticle mover and a fully 3-D electromagnetic field solver. We discuss our boosted frame results and compare with those obtained using the ?standard? eikonal FEL simulation approach.

  1. Structure of the spontaneous emission spectra of high-{gamma} free electron lasers as measured at the Darmstadt (S-Dalinac) FEL

    SciTech Connect

    Renz, G.; Spindler, G.; Schlott, V.

    1995-12-31

    Recent spontaneous emission measurements at the Darmstadt infrared FEL indicate a relatively broad (down-shifted) spectrum with several intensity maxima. The typical features of the measured spectrum can be well reproduced by a numerical simulation comprising the 3-d electron dynamics in a realizable planar wiggler field, the spontaneous radiation according to the well-known Jackson formula, as well as the detection of the radiation with a finite aperture detector. An analytical consideration attributes the observed down-shift to the reduced Doppler up-shift of the radiation as observed under a finite angle with respect to the axis. The intensity peaks appear as a consequence of a modulation of the transverse velocity amplitudes of the electrons due to the betatron oscillation. The spectral spacing of these {open_quote}sidebands{close_quote} are roughly given by the Doppler up-shifted betatron frequency. Consequences for very high energy FELs will be discussed.

  2. Computer simulation of space station computer steered high gain antenna

    NASA Technical Reports Server (NTRS)

    Beach, S. W.

    1973-01-01

    The mathematical modeling and programming of a complete simulation program for a space station computer-steered high gain antenna are described. The program provides for reading input data cards, numerically integrating up to 50 first order differential equations, and monitoring up to 48 variables on printed output and on plots. The program system consists of a high gain antenna, an antenna gimbal control system, an on board computer, and the environment in which all are to operate.

  3. LCLS X-Ray FEL Output Performance in the Presence of HighlyTime-Dependent Undulator Wakefields

    SciTech Connect

    Bane, Karl L.F.; Emma, Paul; Huang, Heinz-Dieter Nuhn; Stupakov,Gennady; Fawley, William M.; Reiche, Sven

    2005-08-25

    Energy loss due to wakefields within a long undulator, if not compensated by an appropriate tapering of the magnetic field strength, can degrade the FEL process by detuning the resonant FEL frequency. The wakefields arise from the vacuum chamber wall resistivity, its surface roughness, and abrupt changes in its aperture. For LCLS parameters, the resistive-wall component is the most critical and depends upon the chamber material (e.g., Cu) and its radius. Of recent interest[1] is the so-called ''AC'' component of the resistive-wall wake which can lead to strong variations on very short timescales (e.g., {approx} 20 0fs). To study the expected performance of the LCLS in the presence of these wakefields, we have made an extensive series of start-to-end SASE simulations with tracking codes PARMELA and ELEGANT, and time-dependent FEL simulation codes GENESIS1.3 and GINGER. We discuss the impact of the wakefield losses upon output energy, spectral bandwidth, and temporal envelope of the output FEL pulse, as well as the benefits of a partial compensation of the time-dependent wake losses obtained with a slight z-dependent taper in the undulator field. We compare the taper results to those predicted analytically[2].

  4. LCLS X-Ray FEL Output Performance in the Presence of Highly Time-Dependent Undulator Wakefields

    SciTech Connect

    Fawley, W.M.; Bane, K.L.F.; Emma, P.; Huang, Z.; Nuhn, H.-D.; Stupakov, G.; Reiche, S.; /UCLA

    2005-09-30

    Energy loss due to wakefields within a long undulator, if not compensated by an appropriate tapering of the magnetic field strength, can degrade the FEL process by detuning the resonant FEL frequency. The wakefields arise from the vacuum chamber wall resistivity, its surface roughness, and abrupt changes in its aperture. For LCLS parameters, the resistive-wall component is the most critical and depends upon the chamber material (e.g., Cu) and its radius. Of recent interest[1] is the so-called ''AC'' component of the resistive-wall wake which can lead to strong variations on very short timescales (e.g., {approx} 20 fs). To study the expected performance of the LCLS in the presence of these wakefields, we have made an extensive series of start-to-end SASE simulations with tracking codes PARMELA and ELEGANT, and time-dependent FEL simulation codes GENESIS1.3 and GINGER. We discuss the impact of the wakefield losses upon output energy, spectral bandwidth, and temporal envelope of the output FEL pulse, as well as the benefits of a partial compensation of the time-dependent wake losses obtained with a slight z-dependent taper in the undulator field. We compare the taper results to those predicted analytically[2].

  5. Two FEL`s in one

    SciTech Connect

    Epp, V.; Nikitin, M.

    1995-12-31

    A new scheme for a FEL operation is proposed. The conventional principle of FEL operation is means that the electron bunch passes through the interaction area of FEL only in one direction. We suggest another possible layout which implies that the electron bunch makes a turn after leaving the wiggler and entries the wiggler at the same end. Actually the wiggler is a kind of a bridge between two storage rings. The electron bunches on the orbit are expected to be adjusted in the way that after one of them leaves the wiggler, another one enters in the opposite direction and in the proper phase with the wave pulse emitted by the previous bunch. So the electron bunch comes in interaction with the amplified electromagnetic wave in both directions i.e. twice per period. It is especially important for the short wavelength FELs, because each reflection from the mirror causes a significant losses of the wave magnitude. The proposed design gives one interaction per each reflection instead of one interaction per two reflections in the traditional scheme. Another way to realize the suggested principle of operating is to insert the wiggler in the electron-positron storage ring. But this layout can be less efficient because of low intensity of the positron beam. The comparison study of radiation from different types of described double wigglers is fulfilled. The synchronization problems are discussed in this paper.

  6. Study of the output pulse stability of a cascaded high-gain harmonic generation free-electron laser

    NASA Astrophysics Data System (ADS)

    Wang, Zhen; Feng, Chao; Gu, Qiang; Zhao, Zhentang

    2016-06-01

    Cascading stages of high-gain harmonic generation (HGHG) have been demonstrated to be a promising candidate for producing fully coherent soft X-ray radiation directly from UV seed sources. However, the large shot-to-shot output pulse energy fluctuation may still be a serious problem for its user applications. In this paper, we study the effects of various electron beam parameters jitters on the output pulse energy fluctuations of a two-stage HGHG. Theoretical calculations and intensive simulations have been performed and the results demonstrate that the relative timing jitter between the electron bunch and the seed laser pulse is mainly responsible for the large output pulse energy fluctuation. Several methods that may be helpful to improve the FEL stability have also been discussed.

  7. A modular and compact portable mini-endstation for high-precision, high-speed fixed target serial crystallography at FEL and synchrotron sources

    DOE PAGES

    Sherrell, Darren A.; Foster, Andrew J.; Hudson, Lee; Nutter, Brian; O'Hea, James; Nelson, Silke; Pare-Labrosse, Olivier; Oghbaey, Saeed; Miller, R. J. Dwayne; Owen, Robin L.

    2015-01-01

    The design and implementation of a compact and portable sample alignment system suitable for use at both synchrotron and free-electron laser (FEL) sources and its performance are described. The system provides the ability to quickly and reliably deliver large numbers of samples using the minimum amount of sample possible, through positioning of fixed target arrays into the X-ray beam. The combination of high-precision stages, high-quality sample viewing, a fast controller and a software layer overcome many of the challenges associated with sample alignment. A straightforward interface that minimizes setup and sample changeover time as well as simplifying communication with themore » stages during the experiment is also described, together with an intuitive naming convention for defining, tracking and locating sample positions. Lastly, the setup allows the precise delivery of samples in predefined locations to a specific position in space and time, reliably and simply.« less

  8. A modular and compact portable mini-endstation for high-precision, high-speed fixed target serial crystallography at FEL and synchrotron sources

    SciTech Connect

    Sherrell, Darren A.; Foster, Andrew J.; Hudson, Lee; Nutter, Brian; O'Hea, James; Nelson, Silke; Pare-Labrosse, Olivier; Oghbaey, Saeed; Miller, R. J. Dwayne; Owen, Robin L.

    2015-01-01

    The design and implementation of a compact and portable sample alignment system suitable for use at both synchrotron and free-electron laser (FEL) sources and its performance are described. The system provides the ability to quickly and reliably deliver large numbers of samples using the minimum amount of sample possible, through positioning of fixed target arrays into the X-ray beam. The combination of high-precision stages, high-quality sample viewing, a fast controller and a software layer overcome many of the challenges associated with sample alignment. A straightforward interface that minimizes setup and sample changeover time as well as simplifying communication with the stages during the experiment is also described, together with an intuitive naming convention for defining, tracking and locating sample positions. Lastly, the setup allows the precise delivery of samples in predefined locations to a specific position in space and time, reliably and simply.

  9. A modular and compact portable mini-endstation for high-precision, high-speed fixed target serial crystallography at FEL and synchrotron sources.

    PubMed

    Sherrell, Darren A; Foster, Andrew J; Hudson, Lee; Nutter, Brian; O'Hea, James; Nelson, Silke; Paré-Labrosse, Olivier; Oghbaey, Saeed; Miller, R J Dwayne; Owen, Robin L

    2015-11-01

    The design and implementation of a compact and portable sample alignment system suitable for use at both synchrotron and free-electron laser (FEL) sources and its performance are described. The system provides the ability to quickly and reliably deliver large numbers of samples using the minimum amount of sample possible, through positioning of fixed target arrays into the X-ray beam. The combination of high-precision stages, high-quality sample viewing, a fast controller and a software layer overcome many of the challenges associated with sample alignment. A straightforward interface that minimizes setup and sample changeover time as well as simplifying communication with the stages during the experiment is also described, together with an intuitive naming convention for defining, tracking and locating sample positions. The setup allows the precise delivery of samples in predefined locations to a specific position in space and time, reliably and simply. PMID:26524301

  10. A modular and compact portable mini-endstation for high-precision, high-speed fixed target serial crystallography at FEL and synchrotron sources

    PubMed Central

    Sherrell, Darren A.; Foster, Andrew J.; Hudson, Lee; Nutter, Brian; O’Hea, James; Nelson, Silke; Paré-Labrosse, Olivier; Oghbaey, Saeed; Miller, R. J. Dwayne; Owen, Robin L.

    2015-01-01

    The design and implementation of a compact and portable sample alignment system suitable for use at both synchrotron and free-electron laser (FEL) sources and its performance are described. The system provides the ability to quickly and reliably deliver large numbers of samples using the minimum amount of sample possible, through positioning of fixed target arrays into the X-ray beam. The combination of high-precision stages, high-quality sample viewing, a fast controller and a software layer overcome many of the challenges associated with sample alignment. A straightforward interface that minimizes setup and sample changeover time as well as simplifying communication with the stages during the experiment is also described, together with an intuitive naming convention for defining, tracking and locating sample positions. The setup allows the precise delivery of samples in predefined locations to a specific position in space and time, reliably and simply. PMID:26524301

  11. A helical optical for circular polarized UV-FEL project at the UVSOR

    SciTech Connect

    Hama, Hiroyuki

    1995-12-31

    Most of existing storage ring free electron lasers (SRFEL) are restricted those performances by degradation of mirrors in optical cavities. In general, the SRFEL gain at the short wavelength region with high energy electrons is quite low, and the high reflectivity mirrors such as dielectric multilayer mirrors are therefore required. The mirror degradation is considered as a result of irradiation of higher harmonic photons that are simultaneously emitted from planar optical klystron (OK) type undulators, which are commonly used in SRFEL. This problem is getting severer as the lasing wavelength becomes shorter. The UVSOR-FEL had been originally scheduled to be shutdown by 1996 because another undulator project for spectroscopic studies with circular polarized photon would take the FEL`s place. According to suggestion of the insertion device group of the SPring-8, we have designed a helical undulator that is able to vary degree and direction of the polarization easily. In addition, the undulator can be converted into a helical OK by replacing magnets at the center part of undulator in order to coexist with further FEL experiments. Using a calculated magnetic field for magnet configurations of the OK mode, the radiation spectrum at wide wavelength range was simulated by a Fourier transform of Lienard-Wiechert potentials. As a matter of course, some higher harmonics are radiated on the off-axis angle. However it was found out that the higher harmonics is almost negligible as far as inside a solid angle of the Gaussian laser mode. Moreover the gain at the UV region of 250 nm is expected to be much higher than our present FEL because of high brilliant fundamental radiation. The calculated spatial distribution of higher harmonics and the estimated instantaneous gain is presented. Advantages of the helical OK for SRFEL will be discussed in view of our experience, and a possibility of application two-color experiment with SR will be also mentioned.

  12. High gain amplifiers: Power oscillations and harmonic generation

    SciTech Connect

    Dattoli, G.; Ottaviani, P. L.; Pagnutti, S.

    2007-08-01

    We discuss the power oscillations in saturated high gain free electron laser amplifiers and show that the relevant period can be written in terms of the gain length. We use simple arguments following from the solution of the pendulum equation in terms of Jacobi elliptic functions. Nontrivial effects due to nonlinear harmonic generation and inhomogeneous broadening are discussed too, as well as the saturated dynamics of short pulses.

  13. Influence of electron beam halos on the FEL performance

    NASA Astrophysics Data System (ADS)

    Faatz, B.; Reiche, S.

    1999-06-01

    For single-pass free-electron lasers (FEL), such as amplifiers and SASE devices, saturation of the radiation power has to be reached within the length of the undulator. Therefore, detailed knowledge of electron beam parameters is crucial. So far, simulations have been performed with a given rms emittance and energy spread. At short radiation wavelengths, bunch compressors are used to compress the electron beam to achieve the desired high peak currents. In addition, external focusing along the entire undulator is used to maintain a constant small radius. The rotation of phase space due to compression might lead to a significant part of the bunch in tails that could increase the gain length. Furthermore, it is in general not possible to match both the beam core and the tail to the focusing structure. In this contribution, the influence of these tails, both transverse and in energy, on the FEL performance will be investigated. Simulations will be performed for beam parameters that have been assumed for the TESLA Test Facility FEL at DESY.

  14. Ther FERMI FEL project at TRIESTE

    SciTech Connect

    Walker, R.P.; Bulfone, D.; Cargnello, F.

    1995-12-31

    The goal of the FERMI project - Free Electron Radiation and Matching Instrumentation - is to construct a new user facility for FEL radiation beams covering a broad spectral range (2-250 {mu}m) to complement the high brightness VUV/Soft-Xray radiation available from the ELETTRA synchrotron radiation facility at Trieste. A unique feature of the project will be the possibility of carrying out {open_quote}pump-probe{close_quote} experiments using synchronized radiation beams from FERMI and ELETTRA on the same sample. The project was launched at a meeting with Italian FEL experts held in Trieste on the 18th November 1994, chaired by C. Rubbia, as a collaboration between Sincrotrone Trieste, ENEA (Frascati), INFN (Frascati) and the University of Naples (Department of Electronic Engineering). The facility will make use of an existing linac, that forms part of the ELETTRA injection system, and a hall into which the beam can be extracted. In addition, for the first phase of the project equipment will be used from the suspended INFN/ENEA {open_quote}SURF{close_quote} FEL experiment, including the undulator, beam transport magnets and optical cavity. In this first International FEL Conference report on the project, we summarize the main features of the project, concentrating in particular on the most recent activities, including: results of measurements of the linac beam in the FEL mode of operation, further studies of the electron beam transport system including possibilities for bunch length manipulations, and further numerical calculations of the FEL performance.

  15. Characteristics of current filamentation in high gain photoconductive semiconductor switching

    SciTech Connect

    Zutavern, F J; Loubriel, G M; O'Malley, M W; Helgeson, W D; McLaughlin, D L; Denison, G J

    1992-01-01

    Characteristics of current filamentation are reported for high gain photoconductive semiconductor switches (PCSS). Infrared photoluminescence is used to monitor carrier recombination radiation during fast initiation of high gain switching in large (1.5 cm gap) lateral GaAs PCSS. Spatial modulation of the optical trigger, a 200--300 ps pulse width laser, is examined. Effects on the location and number of current filaments, rise time, and delay to high gain switching, minimum trigger energy, and degradation of switch contacts are presented. Implications of these measurements for the theoretical understanding and practical development of these switches are discussed. Efforts to increase current density and reduce switch size and optical trigger energy requirements are described. Results from contact development and device lifetime testing are presented and the impact of these results on practical device applications is discussed.

  16. High Power Lasing in the IR Upgrade FEL at Jefferson Lab

    SciTech Connect

    Stephen Vincent Benson; Kevin Beard; Chris Behre; George Herman Biallas; James Boyce; David Douglas; Fred Dylla; Richard Evans; Al Grippo; Joe Gubeli; David Hardy; Carlos Hernandez-Garcia; Kevin Jordan; Lia Merminga; George Neil; Joe Preble; Michelle D. Shinn; Tim Siggins; Richard Walker; Gwyn Williams; Byung Yunn; Shukui Zhang

    2004-08-01

    We report on progress in commissioning the IR Upgrade facility at Jefferson Lab. Operation at high power has been demonstrated at 5.7 microns with over 8.5 kW of continuous power output, 10 kW for 1 second long pulses, and CW recirculated electron beam power of over 1.1 MW. We report on the features and limitations of the present design and report on the path to getting even higher powers.

  17. Innovative uses of X-ray FEL and the pulsed magnets: High magnetic field X-ray scattering studies on quantum materials

    NASA Astrophysics Data System (ADS)

    Jang, H.; Nojiri, H.; Gerber, S.; Lee, W.-S.; Zhu, D.; Lee, J.-S.; Kao, C.-C.

    X-ray scattering under high magnetic fields provides unique opportunities for solving many scientific puzzles in quantum materials, such as strongly correlated electron systems. Incorporating high magnetic field capability presents serious challenges at an x-ray facility, including the limitation on the maximum magnetic field even with a DC magnet (up to ~20 Tesla), expensive cost in development, radiation damage, and limited flexibility in the experimental configuration. These challenges are especially important when studying the symmetry broken state induced by the high magnetic field are necessary, for example, exploring intertwined orders between charge density wave (CDW) and high Tc superconductivity. Moreover, a gap in magnetic field strengths has led to many discrepancies and puzzling issues for understanding strongly correlated systems - is a CDW competing or more intimately intertwined with high-temperature superconductivity. To bridge this gap and resolve these experimental discrepancies, one needs an innovative experimental approach. Here, we will present a new approach to x-ray scattering under high magnetic field up to 28 Teals by taking advantage of brilliant x-ray free electron laser (FEL). The FEL generates sufficiently high photon flux for single shot x-ray scattering experiment. In this talk, we will also present the first demonstration about the field induced CDW order in YBCO Ortho-VIII with 28 Tesla, which show the totally unexpected three-dimensional behavior.

  18. Digitally gain controlled linear high voltage amplifier for laboratory applications.

    PubMed

    Koçum, C

    2011-08-01

    The design of a digitally gain controlled high-voltage non-inverting bipolar linear amplifier is presented. This cost efficient and relatively simple circuit has stable operation range from dc to 90 kHz under the load of 10 kΩ and 39 pF. The amplifier can swing up to 360 V(pp) under these conditions and it has 2.5 μs rise time. The gain can be changed by the aid of JFETs. The amplifiers have been realized using a combination of operational amplifiers and high-voltage discrete bipolar junction transistors. The circuit details and performance characteristics are discussed.

  19. Filamentation effect in a gas attenuator for high-repetition-rate X-ray FELs.

    PubMed

    Feng, Yiping; Krzywinski, Jacek; Schafer, Donald W; Ortiz, Eliazar; Rowen, Michael; Raubenheimer, Tor O

    2016-01-01

    A sustained filamentation or density depression phenomenon in an argon gas attenuator servicing a high-repetition femtosecond X-ray free-electron laser has been studied using a finite-difference method applied to the thermal diffusion equation for an ideal gas. A steady-state solution was obtained by assuming continuous-wave input of an equivalent time-averaged beam power and that the pressure of the entire gas volume has reached equilibrium. Both radial and axial temperature/density gradients were found and describable as filamentation or density depression previously reported for a femtosecond optical laser of similar attributes. The effect exhibits complex dependence on the input power, the desired attenuation, and the geometries of the beam and the attenuator. Time-dependent simulations were carried out to further elucidate the evolution of the temperature/density gradients in between pulses, from which the actual attenuation received by any given pulse can be properly calculated. PMID:26698041

  20. Filamentation effect in a gas attenuator for high-repetition-rate X-ray FELs

    SciTech Connect

    Feng, Yiping; Krzywinski, Jacek; Schafer, Donald W.; Ortiz, Eliazar; Rowen, Michael; Raubenheimer, Tor O.

    2016-01-01

    A sustained filamentation or density depression phenomenon in an argon gas attenuator servicing a high-repetition femtosecond X-ray free-electron laser has been studied using a finite-difference method applied to the thermal diffusion equation for an ideal gas. A steady-state solution was obtained by assuming continuous-wave input of an equivalent time-averaged beam power and that the pressure of the entire gas volume has reached equilibrium. Both radial and axial temperature/density gradients were found and describable as filamentation or density depression previously reported for a femtosecond optical laser of similar attributes. The effect exhibits complex dependence on the input power, the desired attenuation, and the geometries of the beam and the attenuator. Time-dependent simulations were carried out to further elucidate the evolution of the temperature/density gradients in between pulses, from which the actual attenuation received by any given pulse can be properly calculated.

  1. THE SECOND STAGE OF FERMI@ELETTRA: A SEEDED FEL IN THE SOFT X-RAY SPECTRAL RANGE

    SciTech Connect

    Allaria, E.; DeNinno, G.; Fawley, W. M.

    2009-08-14

    The second stage of the FERMI FEL, named FEL-2, is based on the principle of high-gain harmonic generation and relies on a double-seeded cascade. Recent developments stimulated a revision of the original setup, which was designed to cover the spectral range between 40 and 10 nm. The numerical simulations we present here show that the nominal (expected) electron-beam performance allows extension of the FEL spectral range down to 4 nm. A significant amount of third harmonic power can be also expected. We also show that the proposed setup is flexible enough for exploiting future developments of new seed sources, e.g., high harmonic generation in gases.

  2. On Point Designs for High Gain Fast Ignition

    SciTech Connect

    Key, M; Akli, K; Beg, F; Betti, R; Clark, D S; Chen, S N; Freeman, R R; Hansen, S; Hatchett, S P; Hey, D; King, J A; Kemp, A J; Lasinski, B F; Langdon, B; Ma, T; MacKinnon, A J; Meyerhofer, D; Patel, P K; Pasley, J; Phillips, T; Stephens, R B; Stoeckl, C; Foord, M; Tabak, M; Theobald, W; Storm, M; Town, R J; Wilks, S C; VanWoerkom, L; Wei, M S; Weber, R; Zhang, B

    2007-09-27

    Fast ignition research has reached the stage where point designs are becoming crucial to the identification of key issues and the development of projects to demonstrate high gain fast ignition. The status of point designs for cone coupled electron fast ignition and some of the issues they highlight are discussed.

  3. Radiation Response of Emerging High Gain, Low Noise Detectors

    NASA Technical Reports Server (NTRS)

    Becker, Heidi N.; Farr, William H; Zhu, David Q.

    2007-01-01

    Data illustrating the radiation response of emerging high gain, low noise detectors are presented. Ionizing dose testing of silicon internal discrete avalanche photodiodes, and 51-MeV proton testing of InGaAs/InAlAs avalanche photodiodes operated in Geiger mode are discussed.

  4. Topex high-gain antenna system deployment actuator mechanism

    NASA Technical Reports Server (NTRS)

    Jones, Stephen R.

    1991-01-01

    A deployment actuator mechanism was developed to drive a two-axis gimbal assembly and a high-gain antenna to a deployed and locked position on the Jet Propulsion Laboratory Ocean Topography Experiment (TOPEX) satellite. The Deployment Actuator Mechanism requirements, design, test, and associated problems and their solutions are discussed.

  5. Limited scan dual-band high-gain antenna

    NASA Technical Reports Server (NTRS)

    Cramer, P. W., Jr.; Woo, K. E.

    1979-01-01

    Dual band communication and tracking antenna concept combines S- and X-band high gain performance in near field cassagrainian configuration. Design incorporating subreflector in near field of feed permits limited electronic scanning with phased array feed of approximately subreflector size placed in region between subreflector and main reflector.

  6. Shaped reflector beam waveguide and high gain antenna systems

    NASA Technical Reports Server (NTRS)

    Galindo-Israel, V.; Mittra, R.

    1983-01-01

    In this paper the problem of synthesizing dual reflector antennas for both amplitude and phase control of the final aperture distribution is discussed. An approximate procedure for the offset synthesis problem is presented and applications of the procedure to the shaping of beam waveguides and reflectors for high-gain antenna systems are illustrated.

  7. HST High Gain Antennae photographed by Electronic Still Camera

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This close-up view of one of the two High Gain Antennae (HGA) on the Hubble Space Telescope (HST) was photographed with an Electronic Still Camera (ESC), and downlinked to ground controllers soon afterward. Electronic still photography is a technology which provides the means for a handheld camera to electronically capture and digitize an image with resolution approaching film quality.

  8. Dynamical aspects on FEL interaction in single passage and storage ring devices

    SciTech Connect

    Dattoli, G.; Renieri, A.

    1995-12-31

    The dynamical behaviour of the free-electron lasers is investigated using appropriate scaling relations valid for devices operating in the low and high gain regimes, including saturation. The analysis is applied to both single passage and storage ring configurations. In the latter case the interplay between the interaction of the electron bean with the laser field and with the accelerator environment is investigated. In particular we discuss the effect of FEL interaction on the microwave instability.

  9. Ultra-high gain diffusion-driven organic transistor.

    PubMed

    Torricelli, Fabrizio; Colalongo, Luigi; Raiteri, Daniele; Kovács-Vajna, Zsolt Miklós; Cantatore, Eugenio

    2016-02-01

    Emerging large-area technologies based on organic transistors are enabling the fabrication of low-cost flexible circuits, smart sensors and biomedical devices. High-gain transistors are essential for the development of large-scale circuit integration, high-sensitivity sensors and signal amplification in sensing systems. Unfortunately, organic field-effect transistors show limited gain, usually of the order of tens, because of the large contact resistance and channel-length modulation. Here we show a new organic field-effect transistor architecture with a gain larger than 700. This is the highest gain ever reported for organic field-effect transistors. In the proposed organic field-effect transistor, the charge injection and extraction at the metal-semiconductor contacts are driven by the charge diffusion. The ideal conditions of ohmic contacts with negligible contact resistance and flat current saturation are demonstrated. The approach is general and can be extended to any thin-film technology opening unprecedented opportunities for the development of high-performance flexible electronics.

  10. Ultra-high gain diffusion-driven organic transistor

    NASA Astrophysics Data System (ADS)

    Torricelli, Fabrizio; Colalongo, Luigi; Raiteri, Daniele; Kovács-Vajna, Zsolt Miklós; Cantatore, Eugenio

    2016-02-01

    Emerging large-area technologies based on organic transistors are enabling the fabrication of low-cost flexible circuits, smart sensors and biomedical devices. High-gain transistors are essential for the development of large-scale circuit integration, high-sensitivity sensors and signal amplification in sensing systems. Unfortunately, organic field-effect transistors show limited gain, usually of the order of tens, because of the large contact resistance and channel-length modulation. Here we show a new organic field-effect transistor architecture with a gain larger than 700. This is the highest gain ever reported for organic field-effect transistors. In the proposed organic field-effect transistor, the charge injection and extraction at the metal-semiconductor contacts are driven by the charge diffusion. The ideal conditions of ohmic contacts with negligible contact resistance and flat current saturation are demonstrated. The approach is general and can be extended to any thin-film technology opening unprecedented opportunities for the development of high-performance flexible electronics.

  11. Ultra-high gain diffusion-driven organic transistor.

    PubMed

    Torricelli, Fabrizio; Colalongo, Luigi; Raiteri, Daniele; Kovács-Vajna, Zsolt Miklós; Cantatore, Eugenio

    2016-01-01

    Emerging large-area technologies based on organic transistors are enabling the fabrication of low-cost flexible circuits, smart sensors and biomedical devices. High-gain transistors are essential for the development of large-scale circuit integration, high-sensitivity sensors and signal amplification in sensing systems. Unfortunately, organic field-effect transistors show limited gain, usually of the order of tens, because of the large contact resistance and channel-length modulation. Here we show a new organic field-effect transistor architecture with a gain larger than 700. This is the highest gain ever reported for organic field-effect transistors. In the proposed organic field-effect transistor, the charge injection and extraction at the metal-semiconductor contacts are driven by the charge diffusion. The ideal conditions of ohmic contacts with negligible contact resistance and flat current saturation are demonstrated. The approach is general and can be extended to any thin-film technology opening unprecedented opportunities for the development of high-performance flexible electronics. PMID:26829567

  12. Transverse effects in UV FELs

    SciTech Connect

    Small, D.W.; Wong, R.K.; Colson, W.B.

    1995-12-31

    In an ultraviolet Free Electron Laser (UV FEL), the electron beam size can be approximately the same as the optical mode size. The performance of a UV FEL is studied including the effect of emittance, betatron focusing, and external focusing of the electron beam on the transverse optical mode. The results are applied to the Industrial Laser Consortium`s UV FEL.

  13. Optical tailoring of xFEL beams

    SciTech Connect

    West, Gavin; Coffee, R.

    2015-08-20

    There is an inherent exibility unique to free electron lasers (FELs) that lends well to experimental approaches normally too difficult for other light sources to accomplish. This includes the ability to optically shape the electron bunch prior to final its acceleration for the final FEL process. Optical pulse shaping of the electron bunch can enable both femtosecond and attosecond level FEL pulse control. Pulse shaping is currently implemented, not optically but mechanically, in LCLS-I with an adjustable foil slit that physically spoils the momentum phase of the electron bunch. This selectively suppresses the downstream FEL process ofspoiled electrons. Such a mechanical spoiling method fails for both the soft x-ray regime as well as the high repetition rates that are planned in LCLS-II. Our proposed optical spoiling method circumvents this limitation by making use of the existing ultrafast laser beam that is typically used for adjusting the energy spread for the initial electron bunch. Using Fourier domain shaping we can nearly arbitrarily shape the laser pulses to affect the electron bunch. This can selectively spoil electrons within each bunch. Here we demonstrate the viability of this approach with a programmable acousto-optic dispersive filter. This method is not only well suited for LCLS-II but also has several advantages over mechanical spoiling, including lack of radiation concerns, experiment specific FEL pulse shapes, and real-time adjustment for applications that require high duty-cycle variation such as lock-in amplification of small signals.

  14. High-Frequency Power Gain in the Mammalian Cochlea

    NASA Astrophysics Data System (ADS)

    Maoiléidigh, Dáibhid Ó.; Hudspeth, A. J.

    2011-11-01

    Amplification in the mammalian inner ear is thought to result from a nonlinear active process known as the cochlear amplifier. Although there is much evidence that outer hair cells (OHCs) play a central role in the cochlear amplifier, the mechanism of amplification remains uncertain. In non-mammalian ears hair bundles can perform mechanical work and account for the active process in vitro, yet in the mammalian cochlea membrane-based electromotility is required for amplification in vivo. A key issue is how OHCs conduct mechanical power amplification at high frequencies. We present a physical model of a segment of the mammalian cochlea that can amplify the power of external signals. In this representation both electromotility and active hair-bundle motility are required for mechanical power gain at high frequencies. We demonstrate how the endocochlear potential, the OHC resting potential, Ca2+ gradients, and ATP-fueled myosin motors serve as the energy sources underlying mechanical power gain in the cochlear amplifier.

  15. Design issues for a laboratory high gain fusion facility

    SciTech Connect

    Hogan, W.J.

    1987-11-02

    In an inertial fusion laboratory high gain facility, experiments will be carried out with up to 1000 MJ of thermonuclear yield. The experiment area of such a facility will include many systems and structures that will have to operate successfully in the difficult environment created by the sudden large energy release. This paper estimates many of the nuclear effects that will occur, discusses the implied design issues and suggests possible solutions so that a useful experimental facility can be built. 4 figs.

  16. HST High Gain Antennae photographed by Electronic Still Camera

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This view of one of the two High Gain Antennae (HGA) on the Hubble Space Telescope (HST) was photographed with an Electronic Still Camera (ESC). The scene was downlinked to ground controllers soon after the Shuttle Endeavour caught up to the orbiting telescope. Electronic still photography is a technology which provides the means for a handheld camera to electronically capture and digitize an image with resolution approaching film quality.

  17. High gain preamplifier based on optical parametric amplification

    DOEpatents

    Jovanovic, Igor; Bonner, Randal A.

    2004-08-10

    A high-gain preamplifier based on optical parametric amplification. A first nonlinear crystal is operatively connected to a second nonlinear crystal. A first beam relay telescope is operatively connected to a second beam relay telescope, to the first nonlinear crystal, and to the second nonlinear crystal. A first harmonic beamsplitter is operatively connected to a second harmonic beamsplitter, to the first nonlinear crystal, to the second nonlinear crystal, to the first beam relay telescope, and to the second beam relay telescope.

  18. High resolution BPMS with integrated gain correction system

    SciTech Connect

    Wendt, M.; Briegel, C.; Eddy, N.; Fellenz, B.; Gianfelice, E.; Prieto, P.; Rechenmacher, R.; Voy, D.; Terunuma, N.; Urakawa, J.; /KEK, Tsukuba

    2009-08-01

    High resolution beam position monitors (BPM) are an essential tool to achieve and reproduce a low vertical beam emittance at the KEK Accelerator Test Facility (ATF) damping ring. The ATF damping ring (DR) BPMs are currently upgraded with new high resolution read-out electronics. Based on analog and digital down-conversion techniques, the upgrade includes an automatic gain calibration system to correct for slow drift effects and ensure high reproducible beam position readings. The concept and its technical realization, as well as preliminary results of beam studies are presented.

  19. Users program for storage-ring based FEL and synchrotron sources of the Duke FEL Laboratory

    SciTech Connect

    Straub, K.D.; Barnett, G.; Burnham, B.

    1995-12-31

    The storage ring at the Duke FEL Laboratory was first operated with a stored e-beam in November, 1994. It has now achieved operation energies in excess 1 GeV with more than 100 mA current at 280 MeV. The ring has several ports for FEL and synchrotron light source research. The circulating ring current can be synchronized with the seperate Mark III FEL operating in the 2-9.5 {mu}m IR region. This allows low optical jitter (10-20 ps) between the two sources and thus pump-probe operation. The ring has been configured to drive a number of light sources including the OK-4 FEL system capable of FEL operation between 400 and 65 nm, an inverse Compton scattering source using this undulator which will yield 4-200 MeV gammas, an undulator source at approximately 40 {angstrom} (not an FEL), a mm FEL with inverse compton scattering providing 1-100 keV x-rays and two synchrotron ports from the bend magnets for which the {lambda}{sub c} = 11-12 {angstrom} for 1 GeV. The broadly tunable FEL sources and their associated inverse compton scattering are extremely bright. The initial research proposals, submitted to the Laboratory emphasizes photoelectron spectroscopy, PEEM, high resolution vacuum UV of gases, solid spectroscopy and photochemistry in the UV, X-ray microprobe studies, X-ray microscopy, X-ray holography, X-ray crystallography, Mossbauer spectroscopy, nuclear spectroscopy, neutron production, photon activation therapy and broadband synchrotron as a probe of fast reaction in the IR and near IR.

  20. Bunch Length Measurements at the JLab FEL Using Coherent Transition and Synchrotron Radiation

    SciTech Connect

    Pavel Evtushenko; James Coleman; Kevin Jordan; J. Michael Klopf; George Neil; Gwyn Williams

    2006-05-01

    The JLab FEL is routinely operated with sub-picosecond bunches. The short bunch length is important for high gain of the FEL. Coherent transition radiation has been used for the bunch length measurements for many years [1]. This diagnostic can be used only in the pulsed beam mode. It is our goal to run the FEL with CW beam and a 74.85 MHz micropulse repetition rate, which, with the 135 pC nominal bunch charge corresponds to the beam average current of 10 mA. Hence it is very desirable to have the possibility of making bunch length measurements when running CW beam with any micropulse frequency. We use a Fourier transform infrared (FTIR) interferometer, which is essentially a Michelson interferometer, to measure the spectrum of the coherent synchrotron radiation generated in the last dipole of the magnetic bunch compressor upstream of the FEL wiggler. This noninvasive diagnostic provides bunch length measurements for CW beam operation at any micropulse frequency. We also compare the measurements made with the help of the FTIR interferometer with data obtained using the Martin-Puplett interferometer [1]. Results of the two diagnostics agree within 15 %. Here we present a description of the experimental setup, data evaluation procedure and results of the beam measurements.

  1. Two-gigawatt burst-mode operation of the intense microwave prototype (IMP) free-electron laser (FEL) for the microwave tokamak experiment (MTX)

    SciTech Connect

    Felker, B.; Allen, S.; Bell, H.

    1993-10-06

    The MTX explored the plasma heating effects of 140 GHz microwaves from both Gyrotrons and from the IMP FEL wiggler. The Gyrotron was long pulse length (0.5 seconds maximum) and the FEL produced short-pulse length, high-peak power, single and burst modes of 140 GHZ microwaves. Full-power operations of the IMP FEL wiggler were commenced in April of 1992 and continued into October of 1992. The Experimental Test Accelerator H (ETA-II) provided a 50-nanosecond, 6-MeV, 2--3 kAmp electron beam that was introduced co-linear into the IMP FEL with a 140 GHz Gyrotron master oscillator (MO). The FEL was able to amplify the MO signal from approximately 7 kW to peaks consistently in the range of 1--2 GW. This microwave pulse was transmitted into the MTX and allowed the exploration of the linear and non-linear effects of short pulse, intense power in the MTX plasma. Single pulses were used to explore and gain operating experience in the parameter space of the IMP FEL, and finally evaluate transmission and absorption in the MTX. Single-pulse operations were repeatable. After the MTX was shut down burst-mode operations were successful at 2 kHz. This paper will describe the IMP FEL, Microwave Transmission System to MTX, the diagnostics used for calorimetric measurements, and the operations of the entire Microwave system. A discussion of correlated and uncorrelated errors that affect FEL performance will be made Linear and non-linear absorption data of the microwaves in the MTX plasma will be presented.

  2. A neural amplifier with high programmable gain and tunable bandwidth.

    PubMed

    Perlin, Gayatri E; Sodagar, Amir M; Wise, Kensall D

    2008-01-01

    A neural recording amplifier having programmable gain and bandwidth is presented. The gain can be digitally programmed using 6 bits from 100x to 1100x in steps of 100x. The low-frequency cutoff can be varied from less than 10Hz to above 100Hz to accept or reject field potentials while the high-frequency cutoff is fixed at 9kHz. The input referred noise of this amplifier is 4.8microV(rms) and it consumes 50microW operating from +/-1.5V. Implemented in a 0.5microm technology, the amplifier occupies an area of 0.098mm(2). This amplifier has been successfully demonstrated in-vivo and compared to a commercial amplifier.

  3. The ARC-EN-CIEL FEL proposal

    NASA Astrophysics Data System (ADS)

    Couprie, M. E.; Desmons, M.; Chubar, O.; Gilquin, B.; Garzella, D.; Jablonka, M.; Lambert, G.; Loulergue, A.; Marquès, J. R.; Ortega, J. M.; Méot, F.; Monot, P.; Mosnier, A.; Nahon, L.; Rousse, A.

    2005-08-01

    We propose an accelerator based 4th generation source to provide coherent femtosecond light pulses down to the soft X ray range to the user community. The project is based on a CW 700 MeV to 1 GeV superconducting linear accelerator delivering high charge, subpicosecond, low emittance electron bunches with high repetition rate. This facility allows for providing High Gain Harmonic Generation seeded with high harmonics in gases, covering a spectral range down to 0.8 nm. In addition, two beam loops are foreseen to increase the beam current in using the energy recovery technique. They will accommodate fs synchrotron radiation sources in the IR, VUV and X ray ranges together with a FEL oscillator in the 10 nm range. A particular emphasis is put on the synergy between accelerator and laser communities. In particular, electron plasma acceleration will be tested. Hard X ray femtosecond radiation will be produced by Thomson Scattering. The first phase of the project, ARC-EN-CIEL phase 1, is now under study. A general overview is given.

  4. The ARC-EN-CIEL FEL proposal

    NASA Astrophysics Data System (ADS)

    Lambert, G.; Carre, B.; Couprie, M. E.; Desmons, M.; Chubar, O.; Gilquin, B.; Garzella, D.; Jablonka, M.; Labat, M.; Loulergue, A.; Marques, J. R.; Ortega, J. M.; Meot, F.; Monot, P.; Mosnier, A.; Nahon, L.; Rousse, A.

    2005-08-01

    The French project of a fourth generation light source, ARC-EN-CIEL (Accelerator-Radiation for Enhanced Coherent Intense Extended Light), is a unique facility providing the user community with coherent femtosecond light pulses covering the UV, VUV and soft X ray spectral range. It is based on a CW 1 GeV superconducting linear accelerator delivering high charge, subpicosecond, low emittance electron bunches with high repetition rate (1 kHz), and adjustable polarisation until 1 keV. In addition to the High Gain Harmonic Generation (HGHG) experiment seeded with High Harmonics in Gases (HHG), allowing radiation down to 0.8 nm to be produced, two beam loops are foreseen to increase the beam current in using the energy recovery technique. They will accommodate fs synchrotron radiation sources in the IR, VUV and X ray ranges together with a FEL oscillator in the 10 nm range. Moreover, an important synergy is expected between accelerator and laser communities. Indeed, electron plasma acceleration will be tested and hard X ray femtosecond radiations will be produced by Thomson Scattering. The first phase of the project, ARC-EN-CIEL phase 1, is now under study. A general overview will be given.

  5. An experimental analysis of the waveguide modes in a high-gain free-electron laser amplifier

    SciTech Connect

    Anderson, B.R.

    1989-01-01

    The presence, growth, and interaction of transverse waveguide modes in high-gain free-electron laser (FEL) amplifiers has been observed and studied. Using the Electron Laser Facility at Lawrence Livermore National Laboratory, a 3 MeV, 800 A electron beam generated by the Experimental Test Accelerator was injected into a planar wiggler. Power was then extracted and measured in the fundamental (TE{sub 01}) an higher-order modes (Te{sub 21} and TM{sub 21}) under various sets of operating conditions. Horizontal focusing through the wiggler was provided by external quadrupole magnets. There was no axial guide field. The input microwave signal for amplification was generated by a 100 kW magnetron operating at 34.6 Ghz. Power measurements were taken for both flat and tapered wigglers, for two sizes of waveguide, and for both flat and tapered wigglers, for two sizes of waveguide, and for both fundamental and higher mode injection. Mode content was determined by sampling the radiated signal at specific points in the radiation patter. For the flat wiggler and with the large waveguide (2.9 cm {times} 9.8 cm) the power in the higher modes was comparable to power in the fundamental. both exhibited gains greater than 30 dB/m prior to saturation and both reached powers in excess of 80 MW. Choice of injection mode had little effect on the operation of the system. Operation with the smaller guide (WR-229) provided much better mode selectivity. The fundamental mode continued to show optimum gain in excess of 30 dB/m while the higher-mode gain was of order 20 dB/m. As expected, power output increased significantly with the tapered wigglers. The relative mode content depended on the specific taper used.

  6. A high gain antenna system for airborne satellite communication applications

    NASA Technical Reports Server (NTRS)

    Maritan, M.; Borgford, M.

    1990-01-01

    A high gain antenna for commercial aviation satellites communication is discussed. Electromagnetic and practical design considerations as well as candidate systems implementation are presented. An evaluation of these implementation schemes is given, resulting in the selection of a simple top mounted aerodynamic phased array antenna with a remotely located beam steering unit. This concept has been developed into a popular product known as the Canadian Marconi Company CMA-2100. A description of the technical details is followed by a summary of results from the first production antennas.

  7. An Experimental Study of an FEL Oscillator with a Linear Taper

    SciTech Connect

    Benson, S.; Gubeli, J.; Neil, G.R.

    2001-01-01

    Motivated by the work of Saldin, Schneidmiller and Yurkov, we have measured the detuning curve widths, spectral characteristics, efficiency, and energy spread as a function of the taper for low and high Q resonators in the IR Demo FEL at Jefferson Lab. Both positive and negative tapers were used. Gain and frequency agreed reasonably well with the predictions of a single mode theory. The efficiency agreed reasonably well for a negative taper with a high Q resonator but disagreed for lower Q values due to the large slippage parameter and the non-ideal resonator Q. We saw better efficiency for a negative taper than for the same positive taper. The energy spread induced in the beam, normalized to the efficiency is larger for the positive taper than for the corresponding negative taper. This indicates that a negative taper is preferred over a positive taper in an energy recovery FEL.

  8. Avoiding Obstructions in Aiming a High-Gain Antenna

    NASA Technical Reports Server (NTRS)

    Edmonds, Karina

    2006-01-01

    The High Gain Antenna Pointing and Obstruction Avoidance software performs computations for pointing a Mars Rover high-gain antenna for communication with Earth while (1) avoiding line-of-sight obstructions (the Martian terrain and other parts of the Rover) that would block communication and (2) taking account of limits in ranges of motion of antenna gimbals and of kinematic singularities in gimbal mechanisms. The software uses simplified geometric models of obstructions and of the trajectory of the Earth in the Martian sky(see figure). It treats all obstructions according to a generalized approach, computing and continually updating the time remaining before interception of each obstruction. In cases in which the gimbal-mechanism design allows two aiming solutions, the algorithm chooses the solution that provides the longest obstruction-free Earth-tracking time. If the communication session continues until an obstruction is encountered in the current pointing solution and the other solution is now unobstructed, then the algorithm automatically switches to the other position. This software also notifies communication- managing software to cease transmission during the switch to the unobstructed position, resuming it when the switch is complete.

  9. Evaluation of the FEL+ Program, Final Report.

    ERIC Educational Resources Information Center

    Evaluation and Training Inst., Los Angeles, CA.

    An external evaluation of the Family English Literacy, Plus (FEL+) program of the Sweetwater Union High School District (California) is presented. Program objectives included: (1) development and implementation of curriculum and activities integrating technology-assisted instruction into the existing literacy program; (2) increasing parent/child…

  10. FEL-accelerator related diagnostics

    SciTech Connect

    Kevin Jordan; David Douglas; Stephen V. Benson; Pavel Evtuschenko

    2007-08-02

    Free Electron Lasers (FEL) present a unique set of beam parameters to the diagnostics suite. The FEL requires characterization of the full six dimensional phase space of the electron beam at the wiggler and accurate alignment of the electron beam to the optical mode of the laser. In addition to the FEL requirements on the diagnostics suite, the Jefferson Lab FEL is operated as an Energy Recovered Linac (ERL) which imposes additional requirements on the diagnostics. The ERL aspect of the Jefferson Lab FEL requires that diagnostics operate over a unique dynamic range and operate with simultaneous transport of the accelerated and energy recovered beams. This talk will present how these challenges are addressed at the Jefferson Lab FEL.

  11. Tapered undulators for SASE FELs

    NASA Astrophysics Data System (ADS)

    Fawley, William M.; Huang, Zhirong; Kim, Kwang-Je; Vinokurov, Nikolai A.

    2002-05-01

    We discuss the use of tapered undulators to enhance the performance of free-electron lasers (FELs) based upon self-amplified spontaneous emission, where the radiation tends to have a relatively broad bandwidth and limited temporal coherence. Using the polychromatic FEL simulation code GINGER, we numerically demonstrate the effectiveness of tapered undulators for parameters corresponding to the Argonne low-energy undulator test line FEL and the proposed linac coherent light source.

  12. Intracavity gain shaping in millijoule-level, high gain Ho:YLF regenerative amplifiers.

    PubMed

    Murari, Krishna; Cankaya, Huseyin; Kroetz, Peter; Cirmi, Giovanni; Li, Peng; Ruehl, Axel; Hartl, Ingmar; Kärtner, Franz X

    2016-03-15

    We demonstrate intracavity gain shaping inside a 2 μm Ho:YLF regenerative amplifier with a spectral bandwidth of 2.9 nm broadened to 5.4 nm, corresponding to Fourier-limited pulses of 1 ps duration. The intracavity gain shaping is achieved by using a simple etalon, which acts as a frequency-selective filter. The output of the regenerative amplifier is amplified by a single-pass amplifier, and we achieve total energy of 2.2 mJ and pulse duration of 2.4 ps at 1 kHz with pulse fluctuations <1%. The amplifier chain is seeded by a home-built mode-locked holmium-doped fiber oscillator. PMID:26977647

  13. Tapered undulator for SASE FELs

    SciTech Connect

    Fawley, William M.; Huang, Zhirong; Kim, Kwang-Je; Vinokurov, Nikolai A.

    2001-09-14

    We discuss the use of tapered undulators to enhance the performance of free-electron lasers (FELs) based upon self-amplified spontaneous emission (SASE), where the radiation tends to have a relatively broad bandwidth, limited temporal phase coherence, and large amplitude fluctuations. Using the polychromatic FEL simulation code GINGER, we numerically demonstrate the effectiveness of a tapered undulator for parameters corresponding to the existing Argonne low-energy undulator test line (LEUTL) FEL. We also study possible tapering options for proposed x-ray FELs such as the Linac Coherent Light Source (LCLS).

  14. CEBAF UV/IR FEL subsystem testing and validation program

    SciTech Connect

    G.R. Neil; S.V. Benson; H.F. Dylla; H. Liu

    1995-01-01

    A design has been established for IR and UV FELs within the Laser Processing Consortium's (LPC) program for development and application of high-average-power FELs for materials processing. Hardware prototyping and testing for the IR portion of the system are underway. The driver portion has been designed based on the superconducting radio-frequency (SRF) technology now seeing large-scale application in the commissioning of CEBAF, the Continuous Electron Beam Accelerator Facility, where LPC activities are centered. As of July 1994, measurements of beam performance confirm SRF's benefits in beam quality and stability, which are applicable to high-average-power FELs.

  15. Low-dispersion, high-gain femtosecond optical pulse amplifier.

    PubMed

    Rodenberger, D C; Grossman, C H; Garito, A F

    1990-05-01

    We demonstrate a novel amplifier for femtosecond optical pulses. The output of a colliding-pulse mode-locked laser is amplified to 0.3 microJ per pulse at a repetition rate of 8 kHz by using 1 W of pump power from a copper-vapor laser. Our high-efficiency amplifier focuses the beam for four gain passes through a thin dye stream that uses a Z configuration with matched focusing. Because of low group-velocity dispersion, the output pulses are only slightly broadened, from 63 to 73 fsec, and may be used directly to generate a white-light continuum without pulse compression after amplification. PMID:19767988

  16. High gain antenna pointing on the Mars Exploration Rovers

    NASA Technical Reports Server (NTRS)

    Vanelli, C. Anthony; Ali, Khaled S.

    2005-01-01

    This paper describes the algorithm used to point the high gain antennae on NASA/JPL's Mars Exploration Rovers. The gimballed antennae must track the Earth as it moves across the Martian sky during communication sessions. The algorithm accounts for (1) gimbal range limitations, (2) obstructions both on the rover and in the surrounding environment, (3) kinematic singularities in the gimbal design, and (4) up to two joint-space solutions for a given pointing direction. The algorithm computes the intercept-times for each of the occlusions and chooses the jointspace solution that provides the longest track time before encountering an occlusion. Upon encountering an occlusion, the pointing algorithm automatically switches to the other joint-space solution if it is not also occluded. The algorithm has successfully provided flop-free pointing for both rovers throughout the mission.

  17. High Gain Antenna Pointing on the Mars Exploration Rovers

    NASA Technical Reports Server (NTRS)

    Vanelli, C. Anthony; Ali, Khaled

    2005-01-01

    This paper describes the algorithm used to point the high gain antennae on NASA/JPL's Mars exploration rovers. Each rover's gimballed antenna must track the Earth as it moves across the Martian sky during communication sessions. The pointing algorithm accounts for obstacles to the line-of-sight posed by (1) features on the rover and in the surrounding environment (2) gimbal range limitations, and (3) kinematic singularities in the gimbal mechanism. The algorithm treats all obstacles with a generalized approach that computes the intercept-times to each obstacle. Where possible, the algorithm takes advantage of pairs of joint-space solutions arising from the mechanism design. The algorithm chooses the solution that provides the longest obstruction-free tracking time. Upon encountering an obstacle, the algorithm automatically switches to the other solution if it is not also obstructed. This algorithm has successfully provided obstruction-free pointing for both rovers throughout the mission.

  18. High gain GaAs photoconductive semiconductor switches: Switch longevity

    SciTech Connect

    Loubriel, G.M.; Zutavern, F.J.; Mar, A.

    1998-07-01

    Optically activated, high gain GaAs switches are being tested for many different pulsed power applications that require long lifetime (longevity). The switches have p and n contact metallization (with intentional or unintentional dopants) configured in such a way as to produce p-i-n or n-i-n switches. The longevity of the switches is determined by circuit parameters and by the ability of the contacts to resist erosion. This paper will describe how the switches performed in test-beds designed to measure switch longevity. The best longevity was achieved with switches made with diffused contacts, achieving over 50 million pulses at 10 A and over 2 million pulses at 80 A.

  19. Black Phosphorus Mid-Infrared Photodetectors with High Gain.

    PubMed

    Guo, Qiushi; Pospischil, Andreas; Bhuiyan, Maruf; Jiang, Hao; Tian, He; Farmer, Damon; Deng, Bingchen; Li, Cheng; Han, Shu-Jen; Wang, Han; Xia, Qiangfei; Ma, Tso-Ping; Mueller, Thomas; Xia, Fengnian

    2016-07-13

    Recently, black phosphorus (BP) has joined the two-dimensional material family as a promising candidate for photonic applications due to its moderate bandgap, high carrier mobility, and compatibility with a diverse range of substrates. Photodetectors are probably the most explored BP photonic devices, however, their unique potential compared with other layered materials in the mid-infrared wavelength range has not been revealed. Here, we demonstrate BP mid-infrared detectors at 3.39 μm with high internal gain, resulting in an external responsivity of 82 A/W. Noise measurements show that such BP photodetectors are capable of sensing mid-infrared light in the picowatt range. Moreover, the high photoresponse remains effective at kilohertz modulation frequencies, because of the fast carrier dynamics arising from BP's moderate bandgap. The high photoresponse at mid-infrared wavelengths and the large dynamic bandwidth, together with its unique polarization dependent response induced by low crystalline symmetry, can be coalesced to promise photonic applications such as chip-scale mid-infrared sensing and imaging at low light levels. PMID:27332146

  20. Black Phosphorus Mid-Infrared Photodetectors with High Gain

    NASA Astrophysics Data System (ADS)

    Guo, Qiushi; Pospischil, Andreas; Bhuiyan, Maruf; Jiang, Hao; Tian, He; Farmer, Damon; Deng, Bingchen; Li, Cheng; Han, Shu-Jen; Wang, Han; Xia, Qiangfei; Ma, Tso-Ping; Mueller, Thomas; Xia, Fengnian

    2016-07-01

    Recently, black phosphorus (BP) has joined the two dimensional material family as a promising candidate for photonic applications, due to its moderate bandgap, high carrier mobility, and compatibility with a diverse range of substrates. Photodetectors are probably the most explored BP photonic devices, however, their unique potential compared with other layered materials in the mid-infrared wavelength range has not been revealed. Here, we demonstrate BP mid infrared detectors at 3.39 um with high internal gain, resulting in an external responsivity of 82 A/W. Noise measurements show that such BP photodetectors are capable of sensing low intensity mid-infrared light in the picowatt range. Moreover, the high photoresponse remains effective at kilohertz modulation frequencies, because of the fast carrier dynamics arising from BPs moderate bandgap. The high photoresponse at mid infrared wavelengths and the large dynamic bandwidth, together with its unique polarization dependent response induced by low crystalline symmetry, can be coalesced to promise photonic applications such as chip-scale mid-infrared sensing and imaging at low light levels.

  1. Black Phosphorus Mid-Infrared Photodetectors with High Gain.

    PubMed

    Guo, Qiushi; Pospischil, Andreas; Bhuiyan, Maruf; Jiang, Hao; Tian, He; Farmer, Damon; Deng, Bingchen; Li, Cheng; Han, Shu-Jen; Wang, Han; Xia, Qiangfei; Ma, Tso-Ping; Mueller, Thomas; Xia, Fengnian

    2016-07-13

    Recently, black phosphorus (BP) has joined the two-dimensional material family as a promising candidate for photonic applications due to its moderate bandgap, high carrier mobility, and compatibility with a diverse range of substrates. Photodetectors are probably the most explored BP photonic devices, however, their unique potential compared with other layered materials in the mid-infrared wavelength range has not been revealed. Here, we demonstrate BP mid-infrared detectors at 3.39 μm with high internal gain, resulting in an external responsivity of 82 A/W. Noise measurements show that such BP photodetectors are capable of sensing mid-infrared light in the picowatt range. Moreover, the high photoresponse remains effective at kilohertz modulation frequencies, because of the fast carrier dynamics arising from BP's moderate bandgap. The high photoresponse at mid-infrared wavelengths and the large dynamic bandwidth, together with its unique polarization dependent response induced by low crystalline symmetry, can be coalesced to promise photonic applications such as chip-scale mid-infrared sensing and imaging at low light levels.

  2. Harmonic cascade FEL designs for LUX

    SciTech Connect

    Penn, G.; Reinsch, M.; Wurtele, J.; Corlett, J.N.; Fawley, W.M.; Zholents, A.; Wan, W.

    2004-07-16

    LUX is a design concept for an ultrafast X-ray science facility, based on an electron beam accelerated to GeV energies in are circulating linac. Included in the design are short duration (200 fs or shorter FWHM) light sources using multiple stages of higher harmonic generation, seeded by a 200-250 nm laser of similar duration. This laser modulates the energy of a group of electrons within the electron bunch; this section of the electron bunch then produces radiation at a higher harmonic after entering a second, differently tuned undulator. Repeated stages in a cascade yield increasing photon energies up to 1 keV. Most of the undulators in the cascade operate in the low-gain FEL regime. Harmonic cascades have been designed for each pass of the recirculating linac up to a final electron beam energy of 3.1 GeV. For a given cascade, the photon energy can be selected over a wide range by varying the seed laser frequency and the field strength in the undulators. We present simulation results using the codes GENESIS and GINGER, as well as the results of analytical models which predict FEL performance. We discuss lattice considerations pertinent for harmonic cascade FELs, as well as sensitivity studies and requirements on the electron beam.

  3. Solar Dynamics Observatory High Gain Antenna Handover Planning

    NASA Technical Reports Server (NTRS)

    Hashmall, Joseph A.; Mann, Laurie

    2007-01-01

    The Solar Dynamics Observatory (SDO) is planned to launch in early 2009 as a mission to study the solar variability and its impact on Earth. To best satisfy its science goal, SDO will fly in a geosynchronous orbit with an inclination of approximately 29 deg. The spacecraft attitude is designed so that the science instruments point directly at the Sun with high accuracy. One of SDO s principal requirements is to obtain long periods of uninterrupted observations. The observations have an extremely high data volume so SDO must be in continuous contact with the ground during the observation periods. To maintain this contact, SDO is equipped with a pair of high gain antennas (HGAs) transmitting to a pair of ground antennas at the SDO ground station (SDOGS) located in White Sands, New Mexico. Either HGA can transmit to either SDOGS antenna. Neither HGA can be powered down. During a portion of each year, each of the HGA beams will intersect with the SDO body for a portion of the orbit. The original SDO antenna contact plan used each HGA for the half of each year during which its beam would not intersect the spacecraft. No data would be lost except, possibly, when switching from one antenna to another. After this plan was adopted, further analysis showed that daily handovers would be necessary for significant periods of the year. This unexpected need for extensive handovers necessitated that a handover design be developed to minimize the impact on the mission. This antenna handover design was developed and successfully tested with simulated data using the slew rate limits from preliminary jitter analysis. Subsequent analysis provided significant revision of allowed rates requiring modification of the handover plans.

  4. Solar Dynamics Observatory High Gain Antenna Handover Planning

    NASA Technical Reports Server (NTRS)

    Hashmall, Joseph A.; Mann, Laurie

    2007-01-01

    The Solar Dynamics Observatory (SDO) is planned to launch in early 2009 as a mission to study the solar variability and its impact on Earth. To best satisfy its science goal, SDO will fly in a geosynchronous orbit with an inclination of approximately 29 deg. The spacecraft attitude is designed so that the science instruments point directly at the Sun with high accuracy. One of SDO's principal requirements is to obtain long periods of uninterrupted observations. The observations have an extremely high data volume so SDO must be in continuous contact with the ground during the observation periods. To maintain this contact, SDO is equipped with a pair of high gain antennas (HGAs) transmitting to a pair of ground antennas at the SDO ground station (SDOGS) located in White Sands, New Mexico. Either HGA can transmit to either SDOGS antenna. Neither HGA can be powered down. During a portion of each year, each of the HGA beams will intersect with the SDO body for a portion of the orbit. The original SDO antenna contact plan used each HGA for the half of each year during which its beam would not intersect the spacecraft. No data would be lost except, possibly, when switching from one antenna to another. After this plan was adopted, further analysis showed that daily handovers would be necessary for significant periods of the year. This unexpected need for extensive handovers necessitated that a handover design be developed to minimize the impact on the mission. This antenna handover design was developed and successfully tested with simulated data using the slew rate limits from preliminary jitter analysis. Subsequent analysis provided significant revision of allowed rates requiring modification of the handover plans.

  5. High gain, wide field of view concentrator for optical communications.

    PubMed

    Collins, Steve; O'Brien, Dominic C; Watt, Andrew

    2014-04-01

    The field of view and gain of optical concentrators used within free space optical communications systems are constrained by conservation of etendue. In this Letter, consideration of the processes in a fluorescent concentrator leads to a simple design strategy for these concentrators for this application. Significantly, because fluorescent concentrators do not conserve etendue, this can lead to concentrators with wider fields of view and higher gains. A model of a fluorescent concentrator containing a quantum dot material suggests that it could have a gain 50 times higher than an etendue conserving concentrator with the same field of view.

  6. High gain single GaAs nanowire photodetector

    NASA Astrophysics Data System (ADS)

    Wang, Hao

    2013-08-01

    An undoped single GaAs nanowire (NW) photodetector based on a metal-semiconductor-metal Schottky diode structure is fabricated by a focused ion beam method. The photoconductive gain of the device reaches 20 000 at low laser excitation. Bias-dependence of gain proves that the surface contributes more to the gain at higher bias because of an increased surface charge region. The spectral response demonstrates not only the band-edge absorption profile of the single GaAs NW, but also the existence of leaky-mode resonance.

  7. Fast ignition integrated experiments and high-gain point design

    SciTech Connect

    Shiraga, H.; Nagatomo, H.; Theobald, W.; Solodov, A. A.; Tabak, M.

    2014-04-17

    Here, integrated fast ignition experiments were performed at ILE, Osaka, and LLE, Rochester, in which a nanosecond driver laser implodes a deuterated plastic shell in front of the tip of a hollow metal cone and an intense ultrashort-pulse laser is injected through the cone to heat the compressed plasma. Based on the initial successful results of fast electron heating of cone-in-shell targets, large-energy short-pulse laser beam lines were constructed and became operational: OMEGA-EP at Rochester and LFEX at Osaka. Neutron enhancement due to heating with a ~kJ short-pulse laser has been demonstrated in the integrated experiments at Osaka and Rochester. The neutron yields are being analyzed by comparing the experimental results with simulations. Details of the fast electron beam transport and the electron energy deposition in the imploded fuel plasma are complicated and further studies are imperative. The hydrodynamics of the implosion was studied including the interaction of the imploded core plasma with the cone tip. Theory and simulation studies are presented on the hydrodynamics of a high-gain target for a fast ignition point design.

  8. High-gain nonlinear observer for simple genetic regulation process

    NASA Astrophysics Data System (ADS)

    Torres, L. A.; Ibarra-Junquera, V.; Escalante-Minakata, P.; Rosu, H. C.

    2007-07-01

    High-gain nonlinear observers occur in the nonlinear automatic control theory and are in standard usage in chemical engineering processes. We apply such a type of analysis in the context of a very simple one-gene regulation circuit. In general, an observer combines an analytical differential-equation-based model with partial measurement of the system in order to estimate the non-measured state variables. We use one of the simplest observers, that of Gauthier et al., which is a copy of the original system plus a correction term which is easy to calculate. For the illustration of this procedure, we employ a biological model, recently adapted from Goodwin's old book by De Jong, in which one plays with the dynamics of the concentrations of the messenger RNA coding for a given protein, the protein itself, and a single metabolite. Using the observer instead of the metabolite, it is possible to rebuild the non-measured concentrations of the mRNA and the protein.

  9. Numerical simulations of x-ray generation in miltisectional FELs

    SciTech Connect

    Pitatelev, M.M.

    1995-12-31

    The process of x-ray generation in milticomponent FELs with alternate undulator and dispersion sections is investigate. The coptuter simulation was fulfilled for the ultrarelativistic electron beams. It was shown that the use of much number of dispersion sections allows to increase the gain considerably and to use more short magnetic systems.

  10. An FEL-based microwave system for fusion

    NASA Astrophysics Data System (ADS)

    Stone, R. R.; Jong, R. A.; Orzechowski, T. J.; Scharlemann, E. T.; Throop, A. L.; Kulke, B.; Thomassen, K. I.; Stallard, B. W.

    1990-03-01

    This paper describes designs for 280-GHz and 560-GHz microwave sources based on free electron lasers (FELs). These 10-MW units are based on technology developed over the last 5 years. A first demonstration of high-average-power microwave production with an FEL system is expected in the Microwave Tokamak Experiment (MTX) facility. This paper gives details on the design and construction of that 250-GHz, 2-MW system and discusses specific applications for the Compact Ignition Tokamak (CIT).

  11. Simulation of a regenerative MW FEL amplifier

    SciTech Connect

    Nguyen, R.T.; Colson, W.B.; Wong, R.K.; Sheffield, R.L.

    1997-08-01

    Both oscillator and regenerative amplifier configurations are being studied to optimize the design of a MW class FEL. The regenerative amplifier uses a longer undulator and relies on higher extraction efficiency to achieve high average power, whereas the oscillator is a more compact overall design requiring the transport of the high energy electron beam around bends for energy recovery. Using parameters extrapolated from the 1 kW LANL regenerative amplifier, simulations study the feasibility of achieving 1 MW average power.

  12. The Stanford Picosecond FEL Center

    SciTech Connect

    Schwettman, H.A.; Smith, T.I.; Swent, R.L.

    1995-12-31

    In the past two years, FELs have decisively passed the threshold of scientific productivity. There are now six FEL facilities in the United States and Europe, each delivering more than 2000 hours of FEL beam time per year. at the present time approximately 100 papers are published each in referred journals describing optics experiments performed with FELs. Despite the recent success there are important challenges the FEL facilities must address. At Stanford these challenges include: (1) Providing sufficient experimental time at reasonable cost: At Stanford we provide 2000 hours of experimental time per year at a cost of approximately $500 per hour: We are now studying options for markedly increasing experimental time and decreasing cost per hour. (2) Competing effectively with conventional lasers in the mid-IR: Despite the NRC report we do not intend to concede the mid-IR to conventional lasers. FELs are capable of providing optical beams of exceptional quality and stability, and they can also be remarkable flexible devices. Improvements in our superconducting linac driver and our optical beam conditioning systems will dramatically enhance our FEL experimental capabilities. (3) making the transition from first generation to second generation experiments: Important pump-probe and photon echo experiments have been performed at Stanford and others are feasible using present capabilities. None-the-less we are now investing substantial experimental time to improving signal-to-noise and developing other optical cababilities. (4) Extending operation to the far-infrared where the FEL is unique inits capabilities: {open_quotes}FIREFLY{close_quotes} will extend our FEL capabilities to 100 microns. We are now seeking funds for optical instrumentation. (5) Creating and maintaining a good environment for graduate students.

  13. Design of a high linearity and high gain accuracy analog baseband circuit for DAB receiver

    NASA Astrophysics Data System (ADS)

    Li, Ma; Zhigong, Wang; Jian, Xu; Yiqiang, Wu; Junliang, Wang; Mi, Tian; Jianping, Chen

    2015-02-01

    An analog baseband circuit of high linearity and high gain accuracy for a digital audio broadcasting receiver is implemented in a 0.18-μm RFCMOS process. The circuit comprises a 3rd-order active-RC complex filter (CF) and a programmable gain amplifier (PGA). An automatic tuning circuit is also designed to tune the CF's pass band. Instead of the class-A fully differential operational amplifier (FDOPA) adopted in the conventional CF and PGA design, a class-AB FDOPA is specially employed in this circuit to achieve a higher linearity and gain accuracy for its large current swing capability with lower static current consumption. In the PGA circuit, a novel DC offset cancellation technique based on the MOS resistor is introduced to reduce the settling time significantly. A reformative switching network is proposed, which can eliminate the switch resistor's influence on the gain accuracy of the PGA. The measurement result shows the gain range of the circuit is 10-50 dB with a 1-dB step size, and the gain accuracy is less than ±0.3 dB. The OIP3 is 23.3 dBm at the gain of 10 dB. Simulation results show that the settling time is reduced from 100 to 1 ms. The image band rejection is about 40 dB. It only draws 4.5 mA current from a 1.8 V supply voltage.

  14. An FEL project at IAE

    NASA Astrophysics Data System (ADS)

    Liu, Weiren; Wu, Tielong; Yang, Tianlu; Weng, Zhenshan; Ma, Youwu

    1988-10-01

    The FEL project of the Institute of Atomic Energy is aimed at developing an FEL in the medium-infrared region and related accelerator technology. The s-band RF linac LINAC-14 will be modified to improve the electron beam qualities for FEL experiments. The injector system consists of an electron gun, two subharmonic prebunchers, a prebuncher and a buncher. An electron beam of 12-25 MeV, 15 ps, 50 A enters into the interaction region through a transport system. Some simulation calculation results for the physical design of the system are given.

  15. High gain multigap avalanche detectors for Cerenkov ring imaging

    SciTech Connect

    Gilmore, R.S.; Lavender, W.M.; Leith, D.W.G.S.; Williams, S.H.

    1980-10-01

    We report on a continuing study of multigap parallel plate avalanche chambers, primarily as photoelectron detectors for use with Cerenkov ring imaging counters. By suitable control of the fields in successive gaps and by introducing screens to reduce photon feedback to the cathode the gain many be increased considerably. We have obtained gains in excess of 6 x 10/sup 7/ for photoelectrons with a good pulse height spectrum and expect to increase this further. We discuss the use of resistive anodes to give avalanche positions in two dimensions by charge division.

  16. Dielectric Wakefield Accelerator to drive the future FEL Light Source.

    SciTech Connect

    Jing, C.; Power, J.; Zholents, A. )

    2011-04-20

    X-ray free-electron lasers (FELs) are expensive instruments and a large part of the cost of the entire facility is driven by the accelerator. Using a high-energy gain dielectric wake-field accelerator (DWA) instead of the conventional accelerator may provide a significant cost saving and reduction of the facility size. In this article, we investigate using a collinear dielectric wakefield accelerator to provide a high repetition rate, high current, high energy beam to drive a future FEL x-ray light source. As an initial case study, a {approx}100 MV/m loaded gradient, 850 GHz quartz dielectric based 2-stage, wakefield accelerator is proposed to generate a main electron beam of 8 GeV, 50 pC/bunch, {approx}1.2 kA of peak current, 10 x 10 kHz (10 beamlines) in just 100 meters with the fill factor and beam loading considered. This scheme provides 10 parallel main beams with one 100 kHz drive beam. A drive-to-main beam efficiency {approx}38.5% can be achieved with an advanced transformer ratio enhancement technique. rf power dissipation in the structure is only 5 W/cm{sup 2} in the high repetition rate, high gradient operation mode, which is in the range of advanced water cooling capability. Details of study presented in the article include the overall layout, the transform ratio enhancement scheme used to increase the drive to main beam efficiency, main wakefield linac design, cooling of the structure, etc.

  17. High-Stakes Testing Hasn't Brought Education Gains

    ERIC Educational Resources Information Center

    Dianis, Judith Browne; Jackson, John H.; Noguera, Pedro

    2015-01-01

    The only thing that more testing will tell us is what we already know: The schools that disadvantaged children attend are not being given the supports necessary to produce achievement gains. Students cannot be tested out of poverty, and while NCLB did take us a step forward by requiring schools to produce evidence that students were learning, it…

  18. Rectangular-bore, high-gain laser plasma tube

    NASA Technical Reports Server (NTRS)

    Mollo, R. A.

    1969-01-01

    Rectangular-bore tube improves population inversion obtained from upper and terminal laser states, resulting in a significant increase in unsaturated gain factor. Radial field produces efficient pumping of upper laser state. Narrow tube dimensions cause increased diffusion flow of neon is metastable states to tube walls.

  19. High Peak Power Gain Switched Flared Waveguide Lasers

    SciTech Connect

    Chow, W.W.; Indik, R.; Koch, S.W.; Mar, Alan, Vawter, G. Allen; Moloney, J.

    1999-08-05

    We gain-switch flared waveguide lasers to obtain 14.5 W peak powers and 0.5 nJ pulse energies with laser structures compatible with the generation of diffraction-limited beams. The results are in excellent agreement with a microscopic laser model.

  20. FEL Design Studies at LBNL: Activities and Plans

    SciTech Connect

    Corlett, John N.; Fawley, W.; Lidia, S.; Padmore, H.; Penn, G.; Pogorelov, I.; Qiang, J.; Sannibale, F.; Staples, J.; Steier, C.; Venturini, M.; Wan, W.; Wilcox, R.; Zholents, A.

    2007-03-01

    LBNL staff are currently pursuing R&D for future x-ray FELs, and participate in two FEL construction projects. Our strategy is to address the most fundamental challenges, which are the cost-drivers and performance limitations of FEL facilities. An internally funded R&D program is aimed at investigating accelerator physics and technologies in three key areas: (1) Theoretical study, modeling, and experimental development of low emittance, high quantum efficiency cathodes; (2) Design studies of electron beam delivery systems, including emittance manipulations, high-resolution modeling of 6-D phase space, and low-emittance beam transport; and (3) Design studies of optical manipulations of electron beams for seeded and SASE FELs, providing short x-ray pulses of variable duration, synchronous with the seed and pump laser sources, and also long transform-limited pulses with a narrow bandwidth. Design studies of means for production of attosecond x-ray pulses at various wavelengths. We are collaborators in the FERMI{at}Elettra seeded FEL facility under construction at Sincrotrone Trieste, Italy, participating in accelerator design and FEL physics studies, and mechanical and electrical engineering. We are participating in the LCLS project at SLAC, implementing our design of stabilized timing and synchronization systems. Here we outline our long-term objectives, and current activities.

  1. Stability in High Gain Plasmas in DIII-D

    SciTech Connect

    Lazarus, E. A.; Hong, R. M.; Navratil, G. A.; Sabbagh, S.; Strait, E. J.; Rice, B. W.; Ferron, J. R.; Greenfield, C. M.; Austin, M. E.; Chan, V. S.; DeBoo, J. C.; Doyle, E. J.; Forest, C. B.; Leonard, A. W.; Schissel, D. P.; Whyte, D. G.

    1997-01-01

    Fusion power gain has been increased by a factor of 3 in DIII-D plasmas through the use of strong discharge shaping and tailoring of the pressure and current density profiles. H-mode plasmas with weak or negative central magnetic shear are found to have neoclassical ion confinement throughout most of the plasma volume. Improved MHD stability is achieved by controlling the plasma pressure profile width. The highest fusion power gain Q (ratio of fusion power to input power) in deuterium plasmas was 0.0015. which extrapolates to an equivalent Q of 0.32 in a deuterium-tritium plasma and is similar to values achieved in tokamaks of larger size and magnetic fields.

  2. Stability in high gain plasmas in DIII-D

    SciTech Connect

    Lazarus, E.A.; Houlberg, W.A.; Murakami, M.; Wade, M.R.

    1996-10-01

    Fusion power gain has been increased by a factor of 3 in DIII-D plasmas through the use of strong discharge shaping and tailoring of the pressure and current density profiles. H-mode plasmas with weak or negative central magnetic shear are found to have neoclassical ion confinement throughout most of the plasma volume. Improved MHD stability is achieved by controlling the plasma pressure profile width. The highest fusion power gain Q (ratio of fusion power to input power) in deuterium plasmas was 0.0015, which extrapolates to an equivalent Q of 0.32 in a deuterium-tritium plasma and is similar to values achieved in tokamaks of larger size and magnetic fields.

  3. Telescope considered as a very high gain antenna

    NASA Astrophysics Data System (ADS)

    Detaille, Michel; Houmault, Patrice

    1990-07-01

    A design concept for an optical-antenna telescope to be used in intersatellite communication (in the framework of the ESA SILEX project) is presented. The main technical requirements for a SILEX transmit-receive antennna telescope are reviewed, and a Cassegrain configuration based on a parabolic primary mirror, a hyperbolic secondary mirror, and a five-lense collimator (with baffles to limit stray light) is shown in diagrams and discussed in detail, with particular attention to local angular distortion and transmission-antenna gain. Results from tests on a breadboard version are presented in tables and graphs, including transmission of 92.6 percent at 820 nm, rms wavefront error less than lambda/28, optical gain 114.47 dB, backscattered energy 1.7 x 10 to the -6th at 838 nm, and stray-light intensity slightly above specification at sun aspect angles less than 4.5 deg.

  4. High-gain amplifier has excellent stability and low power consumption

    NASA Technical Reports Server (NTRS)

    Kleinberg, L. L.

    1965-01-01

    Transistorized amplifier, in which an external reference voltage controls gain, combines high gain with stability and low power consumption. This circuit is useful in electronic servo and portable audio equipment.

  5. A superconducting short period undulator for a harmonic generation FEL experiment

    SciTech Connect

    Ingold, G.; Solomon, L.; Ben-Zvi, I.; Krinsky, S.; Li, D.; Lynch, D.; Sheehan, J.; Woodle, M.; Qiu, X.Z.; Yu, L.H.; Zhang, X.; Sampson, W.; Gardner, M.; Robins, K.; Lehrman, I.; Heuer, R.; Sheehan, J.; Weissenburger, D.

    1993-07-01

    A three stage superconducting (SC) undulator for a high gain harmonic generation (HGE) FEL experiment in the infrared is under construction at the NSLS in collaboration with Grumman Corporation. A novel undulator technology suitable for short period (6--40mm) undulators will be employed for all three stages, the modulator, the dispersive section and the radiator. The undulator triples the frequency of a 10.4{mu}m CO{sub 2} seed laser. So far a 27 period (one third of the final radiator) prototype radiator has been designed, built and tested.

  6. A superconducting short period undulator for a harmonic generation FEL experiment

    SciTech Connect

    Ingold, G.; Solomon, L.; Ben-Zvi, I.; Krinsky, S.; Li, D.; Lynch, D.; Sheehan, J.; Woodle, M.; Qiu, X.Z.; Yu, L.H.; Zhang, X.; Sampson, W.; Gardner, M.; Robins, K. ); Lehrman, I.; Heuer, R.; Sheehan, J.; Weissenburger, D. )

    1993-01-01

    A three stage superconducting (SC) undulator for a high gain harmonic generation (HGE) FEL experiment in the infrared is under construction at the NSLS in collaboration with Grumman Corporation. A novel undulator technology suitable for short period (6--40mm) undulators will be employed for all three stages, the modulator, the dispersive section and the radiator. The undulator triples the frequency of a 10.4[mu]m CO[sub 2] seed laser. So far a 27 period (one third of the final radiator) prototype radiator has been designed, built and tested.

  7. The SwissFEL Experimental Laser facility.

    PubMed

    Erny, Christian; Hauri, Christoph Peter

    2016-09-01

    The hard X-ray laser SwissFEL at the Paul Scherrer Institute is currently being commissioned and will soon become available for users. In the current article the laser facility is presented, an integral part of the user facility, as most time-resolved experiments will require a versatile optical laser infrastructure and precise information about the relative delay between the X-ray and optical pulse. The important key parameters are a high availability and long-term stability while providing advanced laser performance in the wavelength range from ultraviolet to terahertz. The concept of integrating a Ti:sapphire laser amplifier system with subsequent frequency conversion stages and drift compensation into the SwissFEL facility environment for successful 24 h/7 d user operation is described. PMID:27577769

  8. The universal method for optimization of undulator tapering in FEL amplifiers

    NASA Astrophysics Data System (ADS)

    Schneidmiller, E. A.; Yurkov, M. V.

    2015-05-01

    Technique of undulator tapering in the post-saturation regime is used at the existing x-ray FELs for increasing the radiation power. There are also discussions on the future of high peak and average power FELs for scientific and industrial applications. Diffraction effects essentially influence on the choice of the tapering strategy. Recent studies resulted in an general law of the undulator tapering for a seeded FEL amplifier. In this paper we extend these results for the case of the Self Amplified Spontaneous Emission (SASE) FEL.

  9. Hypoallergenic derivatives of Fel d 1 obtained by rational reassembly for allergy vaccination and tolerance induction

    PubMed Central

    Curin, M.; Weber, M.; Thalhamer, T.; Swoboda, I.; Focke-Tejkl, M.; Blatt, K.; Valent, P.; Marth, K.; Garmatiuk, T.; Grönlund, H.; Thalhamer, J.; Spitzauer, S.; Valenta, R.

    2015-01-01

    Summary Background and objective The major cat allergen Fel d 1 represents one of the most important respiratory allergens. Aim of this study was to engineer recombinant Fel d 1 derivatives with reduced IgE reactivity and preserved T cell epitopes for vaccination and tolerance induction. Methods Seven recombinant mosaic proteins were generated by reassembly of non-IgE-reactive peptides of Fel d 1 which contained the sequence elements for induction of allergen-specific blocking IgG antibodies and T cell epitopes. Mosaic proteins were expressed in Escherichia coli using codon-optimized synthetic genes and compared with Fel d 1 regarding structural fold by circular dichroism, IgE-binding capacity, activation of allergic patients’ basophils and ability to induce allergen-specific blocking IgG antibodies upon immunization. Results Although each of the mosaic proteins had lost the alpha-helical fold typical for Fel d 1, a strong reduction in IgE reactivity as well as allergenic activity in basophil activation assays was only obtained for three constructs, two reassembled fragments (Fel d 1 MB, Fel d 1 MC) and a fusion of the latter two (Fel d 1 MF) in which the cysteines of Fel d 1 MC were replaced by serines. Immunization of rabbits with Fel d 1 MB, MC and MF induced high levels of IgG antibodies that inhibited IgE reactivity of cat-allergic patients to Fel d 1 in a comparable manner as IgG induced with the wild-type allergen. Conclusions We report the development of hypoallergenic reassembled Fel d 1 proteins suitable for vaccination and tolerance induction in cat-allergic patients. PMID:24552249

  10. Large-Scale High-Resolution Simulations of High Gain Direct-Drive ICF targets

    NASA Astrophysics Data System (ADS)

    Schmitt, Andrew J.

    2003-10-01

    High gain directly-driven targets have been designed using new concepts that mitigate the Richtmyer-Meshkov (RM) and Rayleigh-Taylor (RT) instabilities. Two-dimensional simulations of pellets using these techniques (e.g., "picket" laser pulses) show that high (>100) gain can survive in the face of the hydro instabilities seeded by laser and pellet imperfections. These new designs appear to be substantially more robust than earlier designs. We are using the highly-parallelized sliding-zone Eulerian FAST radiation hydrocode to study yield degradation in these designs. The special challenge in performing these simulations for direct-drive laser ICF is that both high resolution and large dynamic range are needed. High resolution of the whole target is needed to represent all of the scales important during the implosion. A large dynamic range is required to resolve the initially tiny surface and imprint perturbations that grow exponentially during acceleration. We find that the rapid growth of the shell perturbations during the acceleration phase is in good agreement with simple RT modeling before significant nonlinearity occurs. However, the Richtmyer-Meshkov growth during the early pellet compression phase poses a challenge particularly for multimode simulations because of the extremely small initial amplitude for each mode. We will present the results from large-scale pellet implosion simulations, and discuss the challenges and progress achieved in the numerical modeling of these high gain designs.

  11. Coherent harmonic production using a two-section undulator FEL

    SciTech Connect

    Jaroszynski, D.A.; Prazeres, R.; Glotin, F.

    1995-12-31

    We present measurements and a theoretical analysis of a new method of generating harmonic radiation in a free-electron laser oscillator with a two section undulator in a single optical cavity. To produce coherent harmonic radiation the undulator is arranged so that the downstream undulator section resonance frequency matches a harmonic of the upstream undulator. Both the fundamental and the harmonic optical fields evolve in the same optical cavity and are coupled out with different extraction fractions using a hole in one of the cavity mirrors. We present measurements that show that the optical power at the second and third harmonic can be enhanced by more than an order of magnitude in this fundamental/harmonic configuration. We compare the production of harmonic radiation of a two sectioned fundamental/harmonic undulator with that produced from a FEL operating at its highest efficiency with a step-tapered undulator, where the bunching at the end of the first section is very large. We examine, the dependence of the harmonic power on the intracavity power by adjusting the optical cavity desynchronism, {delta}L. We also examine the evolution of the fundamental and harmonic powers as a function of cavity roundtrip number to evaluate the importance of the small signal gain at the harmonic. We compare our measurements with predictions of a multi-electron numerical model that follows the evolution of fundamental and harmonic power to saturation. This fundamental/harmonic mode, of operation of the FEL may have useful applications in the production of coherent X-ray and VUV radiation, a spectral range where high reflectivity optical cavity mirrors are difficult or impossible to manufacture.

  12. An S-band high gain relativistic klystron amplifier with high phase stability

    SciTech Connect

    Wu, Y.; Li, Z. H.; Xu, Z.; Ma, Q. S.; Xie, H. Q.

    2014-11-15

    For the purpose of coherent high power microwave combining, an S-band high gain relativistic klystron amplifier with high phase stability is presented and studied. By the aid of 3D particle-in-cell code and circuit simulation software, the mechanism of parasitic oscillation in the device is investigated. And the RF lossy material is adopted in the simulation and experiment to suppress the oscillation. The experimental results show that with an input RF power of 10 kW, a microwave pulse with power of 1.8 GW is generated with a gain of 52.6 dB. And the relative phase difference fluctuation between output microwave and input RF signal is less than ±10° in 90 ns.

  13. Electron beam effects in a UV FEL

    SciTech Connect

    Wong, R.K.; Blau, J.; Colson, W.B.

    1995-12-31

    At the Continuous Electron Beam Accelerator Facility (CEBAF), a free electron laser (FEL) is designed to produce ultraviolet (UV) light. A four-dimensional FEL simulation studies the effects of betatron oscillations, external focusing, and longitudinal pulse compression of the electron beam on the FEL performance.

  14. Simultaneous Equations Models of the Educational Process for High and Low Achievers. Fels Center of Government Discussion Paper No. 89.

    ERIC Educational Resources Information Center

    Boardman, Anthony E.; Phillips, Barbara R.

    Separate simultaneous equations models for the educational process for high and low achievers are estimated with two stage least squares for a sample of the 12th grade Coleman data. The nine observed endogenous variables concern cognitive, non-cognitive, and attitudinal factors. The 48 exogenous variables concern demographic, home, peer, teacher,…

  15. Seeded quantum FEL at 478 keV

    SciTech Connect

    Guenther, M. M.; Jentschel, M.; Thirolf, P. G.; Seggebrock, T.; Habs, D.

    2012-07-09

    We present for the first time the concept of a seeded {gamma} quantum Free-Electron-Laser (QFEL) at 478 keV, which has very different properties compared to a classical. The basic concept is to produce a highly brilliant {gamma} beam via SASE. To produce highly intense and coherent {gamma} beam, we intend to use a seeded FEL scheme. Important for the production of such a {gamma} beam are novel refractive {gamma}-lenses for focusing and an efficient monochromator, allowing to generate a very intense and coherent seed beam. The energy of the {gamma} beam is 478 keV, corresponding to a wavelength in the sub-Angstrom regime (1/38 A). To realize a coherent {gamma} beam at 478 keV, it is necessary to use a quantum FEL design. At such high radiation energies a classical description of the {gamma}-FEL becomes wrong.

  16. On use of time-dependent microwave fields to increase an FEL oscillator efficiency

    SciTech Connect

    Saldin, E.L.; Schneidmiller, E.A.; Yurkov, M.V.

    1995-12-31

    Various schemes of a high efficiency FEL oscillator with time-dependent accelerating (or decelerating) microwave field in interaction region are proposed. All the, schemes are based on standard accelerating structure and undulator technology. Feasibility of the proposed schemes is confirmed by results of numerical simulations. Realistic examples of FEL oscillators of infrared and visible wavelength ranges with efficiency about 20 % are presented.

  17. Application of FEL technique for constructing high-intensity, monochromatic, polarized gamma-sources at storage rings

    SciTech Connect

    Saldin, E.L.; Schneidmiller, E.A.; Ulyanov, Yu.N.

    1995-12-31

    A possibility to construct high-intensity tunable monochromatic{gamma}-source at high energy storage rings is discussed. It is proposed to produce {gamma}-quanta by means of Compton backscattering of laser photons on electrons circulating in the storage. The laser light wavelength is chosen in such a way that after the scattering, the electron does not leave the separatrix. So as the probability of the scattering is rather small, energy oscillations are damped prior the next scattering. As a result, the proposed source can operate in {open_quotes}parasitic{close_quote} mode not interfering with the main mode of the storage ring operation. Analysis of parameters of existent storage rings (PETRA, ESRF, Spring-8, etc) shows that the laser light wavelength should be in infrared, {lambda}{approximately} 10 - 400 {mu}m, wavelength band. Installation at storage rings of tunable free-electron lasers with the peak and average output power {approximately} 10 MW and {approximately} 1 kW, respectively, will result in the intensity of the {gamma}-source up to {approximately} 10{sup 14}s{sup -1} with tunable {gamma}-quanta energy from several MeV up to several hundreds MeV. Such a {gamma}-source will reveal unique possibilities for precision investigations in nuclear physics.

  18. High gain durable anti-reflective coating with oblate voids

    DOEpatents

    Maghsoodi, Sina; Brophy, Brenor L.; Colson, Thomas E.; Gonsalves, Peter R.; Abrams, Ze'ev

    2016-06-28

    Disclosed herein are single layer transparent coatings with an anti-reflective property, a hydrophobic property, and that are highly abrasion resistant. The single layer transparent coatings contain a plurality of oblate voids. At least 1% of the oblate voids are open to a surface of the single layer transparent coatings.

  19. Results from the Liverpool prototype Industrial FEL (IFEL)

    NASA Astrophysics Data System (ADS)

    Dearden, G.; Quirk, E. G.; Al-Shamma'a, A. I.; Stuart, R. A.; Lucas, J.

    1994-03-01

    The prototype Industrial FEL (IFEL) now operating at Liverpool is a low current demonstrator and represents the UK's first working FEL. This compact, X-band waveguide design employs a 55 keV, 1 mA electron beam and a permanent magnet wiggler of period 1.9 cm. The concept, construction details and results obtained so far are all presented here. A pre-bunching technique allows gain to be achieved with currents between 10 μA and 1 mA in both oscillator and amplifier configurations. Below 0.25 mA the power varies with current squared. In the amplifier mode, the gain curve resembles that of an optical klystron. For future operation above 1 mA, if the device is saturated, results indicate the maximum energy removed from the beam will be ˜ 8-9 keV per electron and the power should be directly proportional to the current.

  20. New high-gain detectors for active imaging

    NASA Astrophysics Data System (ADS)

    Pistone, Frederic; Tribolet, P.; Lefoul, X.; Zecri, M.; Courtas, S.; Jenouvrier, P.; Rothman, Johan

    2009-05-01

    New applications require high sensitivity infrared (IR) sensors in order to detect very low incident fluxes. Laser gated imaging has, in particular, additional specific needs. IR sensors for this type of application are synchronized with eye-safe lasers, and have to detect a weak signal backscattered from the target on the order of 10 photons per pulse. They also have to be able to operate with a very short integration time, typically one hundred nanoseconds, to gate the backscattered signal around the target. In partnership with Sofradir, CEA/LETI, France) has developed high quality HgCdTe avalanche photodiodes satisfying these requirements. In parallel, specific studies have been carried out at the Read-Out Circuit level to develop optimized architectures. Thanks to these advances, a new Integrated Dewar Detector Cooler Assembly has been developed. This new product is the first step in a road-map to address low flux infrared sensors in the next few years.

  1. Transverse Gradient Undulators and FEL operating with large energy spread

    NASA Astrophysics Data System (ADS)

    Ciocci, F.; Dattoli, G.; Sabia, E.

    2015-12-01

    Undulators exhibiting a gradient of the field in the transverse direction have been proposed to mitigate the effects of the gain dilution in Free Electron Laser devices operating with large energy spread. The actual use of the device depends on the realization of a field distribution with quasi-vanishing quadrupolar terms in the tapering directions. We analyze the effect of a Transverse Gradient Undulator on the FEL operation and critically review the possibility of an appropriate field implementation.

  2. Evolution of longitudinal modes in low voltage FEL

    SciTech Connect

    Stuart, R.A.; Al-Shamma`a, A.; Shaw, A.

    1995-12-31

    A low voltage FEL operating at 130 kV which can be run cw with a continuous electron beam current level up to 12 mA has been constructed for the X-Band microwave range (8-12 GHz). In this poster, we will report on the dependence on time, after the electron beam is switched on, of the growth and competition of those longitudinal modes in the cavity having nett gain.

  3. High gain photoconductive semiconductor switch having tailored doping profile zones

    SciTech Connect

    Baca, Albert G.; Loubriel, Guillermo M.; Mar, Alan; Zutavern, Fred J; Hjalmarson, Harold P.; Allerman, Andrew A.; Zipperian, Thomas E.; O'Malley, Martin W.; Helgeson, Wesley D.; Denison, Gary J.; Brown, Darwin J.; Sullivan, Charles T.; Hou, Hong Q.

    2001-01-01

    A photoconductive semiconductor switch with tailored doping profile zones beneath and extending laterally from the electrical contacts to the device. The zones are of sufficient depth and lateral extent to isolate the contacts from damage caused by the high current filaments that are created in the device when it is turned on. The zones may be formed by etching depressions into the substrate, then conducting epitaxial regrowth in the depressions with material of the desired doping profile. They may be formed by surface epitaxy. They may also be formed by deep diffusion processes. The zones act to reduce the energy density at the contacts by suppressing collective impact ionization and formation of filaments near the contact and by reducing current intensity at the contact through enhanced current spreading within the zones.

  4. Feedback Requirements for SASE-FELs

    SciTech Connect

    Loos, Henrik; /SLAC

    2012-07-06

    The operation of a Self Amplified Spontaneous Emission (SASE) Free Electron Lasers (FEL) at soft and hard X-ray wavelengths driven by a high brightness electron beam imposes strong requirements on the stability of the accelerator and feedback systems are necessary to both guarantee saturation of the SASE process as well as a stable photon beam for user experiments. Diagnostics for the relevant transverse and longitudinal beam parameters are presented and various examples of feedback systems for bunches with low repetition rate as well as systems for intra bunch train feedbacks are discussed.

  5. Effect of free electron laser (FEL) irradiation on tooth dentine

    NASA Astrophysics Data System (ADS)

    Ogino, Seiji; Awazu, Kunio; Tomimasu, Takio

    1996-12-01

    Free electron laser (FEL) gives high efficiency for the photo-induced effects when the laser is tuned to the absorption maximum of target materials. The effect on dentine was investigated using the FEL tuned to 9.4 micrometers , which is an absorption maximum of phosphoric acid in infrared region. As a result, irradiated dentine surface which was amorphous had changed to the recrystalized structure by the spectroscopic analysis of IR absorption and x-ray diffraction. Furthermore, the atomic ratio of P/Ca had reduced from 0.65 to 0.60. These results indicated that 9.4micrometers -FEL irradiation caused the selective ablation of phosphoric acid ion and the reconstruction of disordered atoms.

  6. A 1 to 18 GHz high gain ultra-broadband amplifier with temperature compensation

    NASA Astrophysics Data System (ADS)

    Ariel, D.; Thibout, T.; Lacombe, J. L.

    1989-05-01

    Design and performance of a high gain ultra-broadband hybrid amplifier with temperature compensation are presented. The amplifier consists of six distributed amplifier stages using GaAs FETs. Design emphasis was on minimizing gain variations with temperature; this was achieved by biasing the gates of the FETs with a temperature varying voltage. The amplifier exhibits a gain of 35 dB with a maximum deviation of + or - 4 dB over the frequency range from 1 to 18 GHz and the temperature range from -55 to +85 C. The gain flatness and temperature stability performance of this amplifier make it useful for EW subsystem applications.

  7. A route to high gain photodetectors through suppressed recombination in disordered films

    NASA Astrophysics Data System (ADS)

    Philippa, Bronson; White, Ron; Pivrikas, Almantas

    2016-10-01

    Secondary photocurrents offer an alternative mechanism to photomultiplier tubes and avalanche diodes for making high gain photodetectors that are able to operate even at extremely low light conditions. While in the past secondary currents were studied mainly in ordered crystalline semiconductors, disordered systems offer some key advantages such as a potentially lower leakage current and typically longer photocarrier lifetimes due to trapping. In this work, we use numerical simulations to identify the critical device and material parameters required to achieve high photocurrent and gain in steady state. We find that imbalanced mobilities and suppressed, non-Langevin-type charge carrier recombination will produce the highest gain. A low light intensity, strong electric field, and a large single carrier space charge limited current are also beneficial for reaching high gains. These results would be useful for practical photodetector fabrication when aiming to maximize the gain.

  8. Application of a wide-band compact FEL on THz imaging

    NASA Astrophysics Data System (ADS)

    Jeong, Young Uk; Kazakevitch, Grigori M.; Cha, Hyuk Jin; Park, Seong Hee; Lee, Byung Cheol

    2005-05-01

    We have developed a laboratory-scale users facility with a compact terahertz (THz) free-electron laser (FEL). The FEL operates in the wavelength range of 100-1200 μm, which corresponds to 0.3-3 THz. THz radiation from the FEL shows well-collimated Gaussian spatial distribution and narrow spectral width of Δ λ/λ˜0.003, which is Fourier transform limited by the estimated pulse duration of 20 ps. The THz FEL beam shows good performance in pulse-energy stability, polarization, spectrum and spatial distribution. The main application of the FEL is in THz imaging for bio-medical researches. We are developing THz imaging techniques by two-dimensional (2D) scanning, single pulse capturing with the electro-optic method, and 3D holography. We could get the 2D imaging of various materials with the THz FEL beam. High power, coherent, and pulsed feature of the FEL radiation is expected to show much better performance in advanced THz imaging of 3D tomography. In this paper, we will show and discuss the main results of THz imaging with the different methods by using the KAERI compact FEL.

  9. The PixFEL project: Progress towards a fine pitch X-ray imaging camera for next generation FEL facilities

    NASA Astrophysics Data System (ADS)

    Rizzo, G.; Batignani, G.; Benkechkache, M. A.; Bettarini, S.; Casarosa, G.; Comotti, D.; Dalla Betta, G.-F.; Fabris, L.; Forti, F.; Grassi, M.; Lodola, L.; Malcovati, P.; Manghisoni, M.; Mendicino, R.; Morsani, F.; Paladino, A.; Pancheri, L.; Paoloni, E.; Ratti, L.; Re, V.; Traversi, G.; Vacchi, C.; Verzellesi, G.; Xu, H.

    2016-07-01

    The INFN PixFEL project is developing the fundamental building blocks for a large area X-ray imaging camera to be deployed at next generation free electron laser (FEL) facilities with unprecedented intensity. Improvement in performance beyond the state of art in imaging instrumentation will be explored adopting advanced technologies like active edge sensors, a 65 nm node CMOS process and vertical integration. These are the key ingredients of the PixFEL project to realize a seamless large area focal plane instrument composed by a matrix of multilayer four-side buttable tiles. In order to minimize the dead area and reduce ambiguities in image reconstruction, a fine pitch active edge thick sensor is being optimized to cope with very high intensity photon flux, up to 104 photons per pixel, in the range from 1 to 10 keV. A low noise analog front-end channel with this wide dynamic range and a novel dynamic compression feature, together with a low power 10 bit analog to digital conversion up to 5 MHz, has been realized in a 110 μm pitch with a 65 nm CMOS process. Vertical interconnection of two CMOS tiers will be also explored in the future to build a four-side buttable readout chip with high density memories. In the long run the objective of the PixFEL project is to build a flexible X-ray imaging camera for operation both in burst mode, like at the European X-FEL, or in continuous mode with the high frame rates anticipated for future FEL facilities.

  10. High Gain Antenna Gimbal for the 2003-2004 Mars Exploration Rover Program

    NASA Technical Reports Server (NTRS)

    Sokol, Jeff; Krishnan, Satish; Ayari, Laoucet

    2004-01-01

    The High Gain Antenna Assemblies built for the 2003-2004 Mars Exploration Rover (MER) missions provide the primary communication link for the Rovers once they arrive on Mars. The High Gain Antenna Gimbal (HGAG) portion of the assembly is a two-axis gimbal that provides the structural support, pointing, and tracking for the High Gain Antenna (HGA). The MER mission requirements provided some unique design challenges for the HGAG. This paper describes all the major subsystems of the HGAG that were developed to meet these challenges, and the requirements that drove their design.

  11. Design, development and testing of the x-ray timing explorer High Gain Antenna System

    NASA Technical Reports Server (NTRS)

    Lecha, Javier; Woods, Claudia; Phan, Minh

    1995-01-01

    The High Gain Antenna System (HGAS), consisting of two High Gain Antenna Deployment Systems (HGADS) and two Antenna Pointing Systems (APS), is used to position two High Gain Antennas (HGA) on the X-Ray Timing Explorer (XTE). A similar APS will be used on the upcoming Tropical Rainfall Measuring Mission (TRMM). Both XTE and TRMM are NASA in-house satellites. The salient features of the system include the two-axis gimbal and control electronics of the APS and the spring deployment and latch/release mechanisms of the HGADS. This paper describes some of the challenges faced in the design and testing of this system and their resolutions.

  12. To kill a kangaroo: understanding the decision to pursue high-risk/high-gain resources.

    PubMed

    Jones, James Holland; Bird, Rebecca Bliege; Bird, Douglas W

    2013-09-22

    In this paper, we attempt to understand hunter-gatherer foraging decisions about prey that vary in both the mean and variance of energy return using an expected utility framework. We show that for skewed distributions of energetic returns, the standard linear variance discounting (LVD) model for risk-sensitive foraging can produce quite misleading results. In addition to creating difficulties for the LVD model, the skewed distributions characteristic of hunting returns create challenges for estimating probability distribution functions required for expected utility. We present a solution using a two-component finite mixture model for foraging returns. We then use detailed foraging returns data based on focal follows of individual hunters in Western Australia hunting for high-risk/high-gain (hill kangaroo) and relatively low-risk/low-gain (sand monitor) prey. Using probability densities for the two resources estimated from the mixture models, combined with theoretically sensible utility curves characterized by diminishing marginal utility for the highest returns, we find that the expected utility of the sand monitors greatly exceeds that of kangaroos despite the fact that the mean energy return for kangaroos is nearly twice as large as that for sand monitors. We conclude that the decision to hunt hill kangaroos does not arise simply as part of an energetic utility-maximization strategy and that additional social, political or symbolic benefits must accrue to hunters of this highly variable prey. PMID:23884091

  13. To kill a kangaroo: understanding the decision to pursue high-risk/high-gain resources.

    PubMed

    Jones, James Holland; Bird, Rebecca Bliege; Bird, Douglas W

    2013-09-22

    In this paper, we attempt to understand hunter-gatherer foraging decisions about prey that vary in both the mean and variance of energy return using an expected utility framework. We show that for skewed distributions of energetic returns, the standard linear variance discounting (LVD) model for risk-sensitive foraging can produce quite misleading results. In addition to creating difficulties for the LVD model, the skewed distributions characteristic of hunting returns create challenges for estimating probability distribution functions required for expected utility. We present a solution using a two-component finite mixture model for foraging returns. We then use detailed foraging returns data based on focal follows of individual hunters in Western Australia hunting for high-risk/high-gain (hill kangaroo) and relatively low-risk/low-gain (sand monitor) prey. Using probability densities for the two resources estimated from the mixture models, combined with theoretically sensible utility curves characterized by diminishing marginal utility for the highest returns, we find that the expected utility of the sand monitors greatly exceeds that of kangaroos despite the fact that the mean energy return for kangaroos is nearly twice as large as that for sand monitors. We conclude that the decision to hunt hill kangaroos does not arise simply as part of an energetic utility-maximization strategy and that additional social, political or symbolic benefits must accrue to hunters of this highly variable prey.

  14. To kill a kangaroo: understanding the decision to pursue high-risk/high-gain resources

    PubMed Central

    Jones, James Holland; Bird, Rebecca Bliege; Bird, Douglas W.

    2013-01-01

    In this paper, we attempt to understand hunter–gatherer foraging decisions about prey that vary in both the mean and variance of energy return using an expected utility framework. We show that for skewed distributions of energetic returns, the standard linear variance discounting (LVD) model for risk-sensitive foraging can produce quite misleading results. In addition to creating difficulties for the LVD model, the skewed distributions characteristic of hunting returns create challenges for estimating probability distribution functions required for expected utility. We present a solution using a two-component finite mixture model for foraging returns. We then use detailed foraging returns data based on focal follows of individual hunters in Western Australia hunting for high-risk/high-gain (hill kangaroo) and relatively low-risk/low-gain (sand monitor) prey. Using probability densities for the two resources estimated from the mixture models, combined with theoretically sensible utility curves characterized by diminishing marginal utility for the highest returns, we find that the expected utility of the sand monitors greatly exceeds that of kangaroos despite the fact that the mean energy return for kangaroos is nearly twice as large as that for sand monitors. We conclude that the decision to hunt hill kangaroos does not arise simply as part of an energetic utility-maximization strategy and that additional social, political or symbolic benefits must accrue to hunters of this highly variable prey. PMID:23884091

  15. Prototype characterization of the JUNGFRAU pixel detector for SwissFEL

    NASA Astrophysics Data System (ADS)

    Mozzanica, A.; Bergamaschi, A.; Cartier, S.; Dinapoli, R.; Greiffenberg, D.; Johnson, I.; Jungmann, J.; Maliakal, D.; Mezza, D.; Ruder, C.; Schaedler, L.; Schmitt, B.; Shi, X.; Tinti, G.

    2014-05-01

    The SwissFEL, a free electron laser (FEL) based next generation X-ray source, is being built at PSI. An XFEL poses several challenges to the detector development: in particular the single photon counting readout, a successful scheme in case of synchrotron sources, can not be used. At the same time the data quality of photon counting systems, i.e. the low noise and the high dynamic range, is essential from an experimental point of view. Detectors with these features are under development for the EU-XFEL in Hamburg, with the PSI SLS Detector group being involved in one of these efforts (AGIPD). The pulse train time structure of the EU-XFEL machine forces the need of in pixel image storage, resulting in pixel pitches in the 200 μm range. Since the SwissFEL is a 100 Hz repetition rate machine, this constrain is relaxed. For this reason, PSI is developing a 75 μm pitch pixel detector that, thanks to its automatic gain switching technique, will achieve single photon resolution and a high dynamic range. The detector is modular, with each module consisting of a 4 × 8 cm2 active sensor bump bonded to 8 readout ASICs (Application Specific Integrated Circuit), connected to a single printed circuit readout board with 10GbE link capabilities for data download. We have designed and tested a 48 × 48 pixel prototype produced in UMC110 nm technology. In this paper we present the general detector and ASIC design as well as the results of the prototype characterization measurements.

  16. Gain in the non-steady-state free-electron laser

    SciTech Connect

    Wu, D.; Min, Y.

    1995-09-01

    The non-steady-state self-consistent equation in the linear regime of the free-electron laser (FEL) and the low gain formulas in the non-steady-state FEL are derived in this paper. It is found that due to slippage the nonuniformity effect in the longitudinal distribution of the electron beam density is dominant in the influence of the electron pulse length on the gain of the FEL. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  17. An efficient high power microwave source at 35 GHz using an induction linac free electron accelerator

    SciTech Connect

    Clark, J.C.; Orzechowski, T.J.; Yarema, S.M.

    1986-11-01

    The Electron Laser Facility (ELF) is a free-electron laser (FEL) amplifier operating in the millimeter-wave regime. ELF uses the electron beam produced by the Experimental Test Accelerator (ETA), which is a linear-induction accelerator. We discuss here (1) the experimental results reflecting the high-peak-power output and high-extraction efficiency obtained from an FEL amplifier operated with a tapered wiggler magnetic field and (2) the results of studies of the exponential gain and saturated power obtained from an FEL amplifier with a flat wiggler while we parametrically varied the input power to the amplifier and the beam current into the wiggler.

  18. Investigation of the avalanche photodiodes for the CMS electromagnetic calorimeter operated at high gain

    NASA Astrophysics Data System (ADS)

    Deiters, K.; Diemoz, M.; Godinovic, N.; Ingram, Q.; Longo, E.; Montecchi, M.; Musienko, Y.; Nicol, S.; Patel, B.; Renker, D.; Reucroft, S.; Rusack, R.; Sakhelashvili, T.; Singovski, A.; Soric, I.; Swain, J.; Vikas, P.

    2001-04-01

    Avalanche Photodiodes (APD) with improved characteristics were developed by Hamamatsu Photonics for the Electromagnetic Calorimeter of the CMS experiment. This report presents measurements of the latest generation of APDs, which are capable to operate at high gains (˜2000).

  19. The GALAXIE all-optical FEL project

    SciTech Connect

    Rosenzweig, J. B.; Arab, E.; Andonian, G.; Cahill, A.; Fitzmorris, K.; Fukusawa, A.; Hoang, P.; Jovanovic, I.; Marcus, G.; Marinelli, A.; Murokh, A.; Musumeci, P.; Naranjo, B.; O'Shea, B.; O'Shea, F.; Ovodenko, A.; Pogorelsky, I.; Putterman, S.; Roberts, K.; Shumail, M.; and others

    2012-12-21

    We describe a comprehensive project, funded under the DARPA AXiS program, to develop an all-optical table-top X-ray FEL based on dielectric acceleration and electromagnetic undulators, yielding a compact source of coherent X-rays for medical and related applications. The compactness of this source demands that high field (>GV/m) acceleration and undulation-inducing fields be employed, thus giving rise to the project's acronym: GV/m AcceLerator And X-ray Integrated Experiment (GALAXIE). There are numerous physics and technical hurdles to surmount in this ambitious scenario, and the integrated solutions include: a biharmonic photonic TW structure, 200 micron wavelength electromagnetic undulators, 5 {mu}m laser development, ultra-high brightness magnetized/asymmetric emittance electron beam generation, and SASE FEL operation. We describe the overall design philosophy of the project, the innovative approaches to addressing the challenges presented by the design, and the significant progress towards realization of these approaches in the nine months since project initialization.

  20. Dielectric wakefield accelerator to drive to the future FEL light sourcei.

    SciTech Connect

    Power, J.G.; Zholents, A.; Jing, C.; Kanareykin, A. )

    2011-01-01

    X-ray free-electron lasers (FELs) are expensive instruments and the accelerator holds the largest portion of the cost of the entire facility. Using a high-energy gain dielectric wake-field accelerator (DWA) instead of the conventional accelerator may facilitate reduction of the facility size and significant cost saving. We show that a collinear dielectric wake-field accelerator can, in principle, accelerate low charge and high peak current electron bunches to a few GeV energy with up to 100 kHz bunch repetition rate. Several such accelerators can share the same tunnel and same CW superconducting linac (operating with a few MHz bunch repetition rate) whose sole purpose is feeding the DWAs with wake producing low energy, high charge electron bunches with a desirable periodicity. Then, ten or more x-ray FELs can operate independently, each using its own linac. In this paper, we present an initial case study of a single stage 850 GHz DWA based on a quartz tube with a {approx}100MV/m loaded gradient sufficient to accelerate a 50 pC main electron beam to 2.4 GeV at a 100 kHz bunch repetition rate in just under 30 meters.

  1. Gain media edge treatment to suppress amplified spontaneous emission in a high power laser

    DOEpatents

    Hackel, Lloyd A.; Soules, Thomas F.; Fochs, Scott N.; Rotter, Mark D.; Letts, Stephan A.

    2008-12-09

    A novel method and apparatus for suppressing ASE and parasitic oscillation modes in a high average power laser is introduced. By roughening one or more peripheral edges of a solid-state crystal or ceramic laser gain media and by bonding such edges using a substantially high index bonding elastomer or epoxy to a predetermined electromagnetic absorbing arranged adjacent to the entire outer surface of the peripheral edges of the roughened laser gain media, ASE and parasitic oscillation modes can be effectively suppressed.

  2. High-Gain AlxGa1-xAs/GaAs Transistors For Neural Networks

    NASA Technical Reports Server (NTRS)

    Kim, Jae-Hoon; Lin, Steven H.

    1991-01-01

    High-gain AlxGa1-xAs/GaAs npn double heterojunction bipolar transistors developed for use as phototransistors in optoelectronic integrated circuits, especially in artificial neural networks. Transistors perform both photodetection and saturating-amplification functions of neurons. Good candidates for such application because structurally compatible with laser diodes and light-emitting diodes, detect light, and provide high current gain needed to compensate for losses in holographic optical elements.

  3. RF FEL for power beaming

    NASA Astrophysics Data System (ADS)

    Burke, Robert

    The laser device components associated with operating a radio frequency-free electron laser (RF-FEL) for beaming power from Earth were designed and tested. Analysis of the power beaming system requirements reveals that the FEL, identified by NASA as the laser of choice, is the major subsystem requiring demonstration before proceeding further in proving the efficacy of laser power beaming. Rocketdyne has identified a series of low cost, low risk demonstrations which proceed sequentially, as follows: (1) a 1 kW proof-of-principle demonstration; (2) a 150 kW demonstration of beaming power to a satellite; and (3) a MW class demonstration of Earth to lunar surface power transmission. This sequence of events can be completed in 5.5 years at a cost of $188M, with key milestones each year.

  4. Enhanced FEL performance from superconducting undulators

    NASA Astrophysics Data System (ADS)

    Gottschalk, S. C.; Pindroh, A. L.; Quimby, D. C.; Robinson, K. E.; Slater, J. M.

    1991-07-01

    Superconducting undulators offer potentially higher field strengths than either pure rare-earth permanent magnet (Pure-REPM) undulators or wedged pole hybrid (WPH) undulators. In FELs, optimum extraction is obtained for values of the rms undulator vector potential, aw, near unity. Superconducting undulators are capable of achieving a unity aw at smaller wavelengths than either Pure-REPM or WPH undulators, leading to improved extraction at the same optical wavelength and E field, while the e-beam energy is reduced slightly. The degree of improvement depends on whether the e-beam energy spread (including equivalent energy spread due to emittance) is much smaller or larger than the FEL bucket height. When the bucket is much larger than the energy spread, the extraction (at fixed gain) improves by up to 70% over that which can be achieved by the WPH design. When the energy spread is larger than the bucket, the extraction improvement is up to 35%. The superferric superconducting undulator design consists of a holmium back plane and poles with racetrack niobium-titanium multifilamentary windings. Magnetic field wavelength scalings have been determined using PANDIRA. Maximum current density vs wavelength was based on quench stability considerations. An important end result is that the forces and stresses present in undulators are much smaller than in dipoles, such as those of the SSC, so complex mechanical designs to constrain windings are not needed. The low stored energy in short wavelength undulators should keep temperatures during a quench under 150 K and voltages below 500 V. Point designs for both superferric and WPH undulators at both energy spread limits are presented.

  5. Development of thin-film total-reflection mirrors for the XUV FEL

    NASA Astrophysics Data System (ADS)

    Jacobi, Sandra; Wiesmann, Joerg; Steeg, Barbara; Feldhaus, Josef; Michaelsen, Carsten

    2001-12-01

    A free electron laser for the XUV spectral range is currently under test at the TESLA Test Facility at DESY. High gain has been demonstrated below 100nm wavelength, and it is expected that the FEL will provide intense, sub-picosecond radiation pulses with photon energies up to 200eV. Thin film optical elements required for this facility are currently being developed by the X-ray optics group of the GKSS research center near Hamburg. Sputter-deposited coatings have been prepared for the use as total reflection X-ray mirrors for FEL beam optics. Coatings of low Z elements with the lowest possible absorption and high reflectivity have been investigated. Silicon substrates have been coated with carbon using different deposition conditions. The films were investigated using the soft X-ray reflectometer at the HASYLAB beamline G1. The measurements show that the reflectivity of the films is typically 90% at energies below 200eV and a grazing incidence angle of 4 degrees. The optical constants of these coatings obtained from the reflectivity measurements and are in agreement with tabulated values. The deposition parameters have been optimized resulting in argon contamination free films with near-theoretical performance. Preliminary investigations concerning the heat resistance of the films were also carried out.

  6. Polarization-insensitive optical gain characteristics of highly stacked InAs/GaAs quantum dots

    SciTech Connect

    Kita, Takashi; Suwa, Masaya; Kaizu, Toshiyuki; Harada, Yukihiro

    2014-06-21

    The polarized optical gain characteristics of highly stacked InAs/GaAs quantum dots (QDs) with a thin spacer layer fabricated on an n{sup +}-GaAs (001) substrate were studied in the sub-threshold gain region. Using a 4.0-nm-thick spacer layer, we realized an electronically coupled QD superlattice structure along the stacking direction, which enabled the enhancement of the optical gain of the [001] transverse-magnetic (TM) polarization component. We systematically studied the polarized electroluminescence properties of laser devices containing 30 and 40 stacked InAs/GaAs QDs. The net modal gain was analyzed using the Hakki-Paoli method. Owing to the in-plane shape anisotropy of QDs, the polarization sensitivity of the gain depends on the waveguide direction. The gain showing polarization isotropy between the TM and transverse-electric polarization components is high for the [110] waveguide structure, which occurs for higher amounts of stacked QDs. Conversely, the isotropy of the [−110] waveguide is easily achieved even if the stacking is relatively low, although the gain is small.

  7. Loop gain stabilizing with an all-digital automatic-gain-control method for high-precision fiber-optic gyroscope.

    PubMed

    Zheng, Yue; Zhang, Chunxi; Li, Lijing; Song, Lailiang; Chen, Wen

    2016-06-10

    For a fiber-optic gyroscope (FOG) using electronic dithers to suppress the dead zone, without a fixed loop gain, the deterministic compensation for the dither signals in the control loop of the FOG cannot remain accurate, resulting in the dither residuals in the FOG rotation rate output and the navigation errors in the inertial navigation system. An all-digital automatic-gain-control method for stabilizing the loop gain of the FOG is proposed. By using a perturbation square wave to measure the loop gain of the FOG and adding an automatic gain control loop in the conventional control loop of the FOG, we successfully obtain the actual loop gain and make the loop gain converge to the reference value. The experimental results show that in the case of 20% variation in the loop gain, the dither residuals are successfully eliminated and the standard deviation of the FOG sampling outputs is decreased from 2.00  deg/h to 0.62  deg/h (sampling period 2.5 ms, 10 points smoothing). With this method, the loop gain of the FOG can be stabilized over the operation temperature range and in the long-time application, which provides a solid foundation for the engineering applications of the high-precision FOG.

  8. Loop gain stabilizing with an all-digital automatic-gain-control method for high-precision fiber-optic gyroscope.

    PubMed

    Zheng, Yue; Zhang, Chunxi; Li, Lijing; Song, Lailiang; Chen, Wen

    2016-06-10

    For a fiber-optic gyroscope (FOG) using electronic dithers to suppress the dead zone, without a fixed loop gain, the deterministic compensation for the dither signals in the control loop of the FOG cannot remain accurate, resulting in the dither residuals in the FOG rotation rate output and the navigation errors in the inertial navigation system. An all-digital automatic-gain-control method for stabilizing the loop gain of the FOG is proposed. By using a perturbation square wave to measure the loop gain of the FOG and adding an automatic gain control loop in the conventional control loop of the FOG, we successfully obtain the actual loop gain and make the loop gain converge to the reference value. The experimental results show that in the case of 20% variation in the loop gain, the dither residuals are successfully eliminated and the standard deviation of the FOG sampling outputs is decreased from 2.00  deg/h to 0.62  deg/h (sampling period 2.5 ms, 10 points smoothing). With this method, the loop gain of the FOG can be stabilized over the operation temperature range and in the long-time application, which provides a solid foundation for the engineering applications of the high-precision FOG. PMID:27409016

  9. Graphene/GaSe-Nanosheet Hybrid: Towards High Gain and Fast Photoresponse

    NASA Astrophysics Data System (ADS)

    Lu, Rongtao; Liu, Jianwei; Luo, Hongfu; Chikan, Viktor; Wu, Judy Z.

    2016-01-01

    While high photoconductive gain has been recently achieved in graphene-based hybrid phototransistors using semiconductor two-dimensional transition/post-transition metal dichalcogenides or quantum dots sensitizers, obtaining fast photoresponse simutaneously remains a challenge that must be addressed for practical applications. In this paper we report a graphene/GaSe nanosheets hybrid photodetector, in which GaSe nanosheets provide a favorable geometric link to graphene conductive layer through van Der Waals force. After a vacuum annealing process, a high gain in exceeding 107 has been obtained simitaneously with a dynamic response time of around 10 ms for both light on and off. We attribute the high performance to the elimination of possible deep charge traps, most probably at the graphene/GaSe nanosheets interface. This result demonstrates high photoconductive gain and fast photoresponse can be achieved simultaneously and a clean interface is the key to the high performance of these hybrid devices.

  10. Graphene/GaSe-Nanosheet Hybrid: Towards High Gain and Fast Photoresponse

    PubMed Central

    Lu, Rongtao; Liu, Jianwei; Luo, Hongfu; Chikan, Viktor; Wu, Judy Z.

    2016-01-01

    While high photoconductive gain has been recently achieved in graphene-based hybrid phototransistors using semiconductor two-dimensional transition/post-transition metal dichalcogenides or quantum dots sensitizers, obtaining fast photoresponse simutaneously remains a challenge that must be addressed for practical applications. In this paper we report a graphene/GaSe nanosheets hybrid photodetector, in which GaSe nanosheets provide a favorable geometric link to graphene conductive layer through van Der Waals force. After a vacuum annealing process, a high gain in exceeding 107 has been obtained simitaneously with a dynamic response time of around 10 ms for both light on and off. We attribute the high performance to the elimination of possible deep charge traps, most probably at the graphene/GaSe nanosheets interface. This result demonstrates high photoconductive gain and fast photoresponse can be achieved simultaneously and a clean interface is the key to the high performance of these hybrid devices. PMID:26776942

  11. Shock-Ignited High Gain/Yield Targets for the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Perkins, L. J.; Lafortune, K. N.; Bedrosiian, P.; Tabak, M.; Miles, A.; Dixit, S.; Betti, R.; Anderson, K.; Zhou, C.

    2006-10-01

    Shock-ignition, a new concept for ICF ignition [C.Zhou, R.Betti Bull APS, v50, 2005], is being studied as a future option for efficiently achieving high gains in large laser facilities such as NIF. Accordingly, this offers the potential for testing: (1)High yield (up to 200MJ), reactor-relevant targets for inertial fusion energy (2)High fusion yield targets for DOE NNSA stockpile application (3)Targets with appreciable gain at low laser drive energies (gains of 10's at 150kJ) (4)Ignition of simple, non-cryo (room temperature) single shell gas targets at (unity gain). By contrast to conventional hotspot ignition, we separate the assembly and ignition phases by initially imploding a massive cryogenic shell on a low adiabat (alpha 0.7) at low velocity (less than 2e7cm/s) using a direct drive pulse of modest total energy. The assembled fuel is then separately ignited by a strong, spherically convergent shock driven by a high intensity spike at the end of the pulse and timed to reach the center as the main fuel is stagnating and starting to rebound. Like fast ignition, shock ignition can achieve high gains with low drive energy, but has the advantages of requiring only a single laser with less demanding timing and spatial focusing requirements.

  12. Efficiency optimization in a FEL with fields` nonadiabatic tapering

    SciTech Connect

    Goncharov, I.A.; Belyavskiy, E.D.; Silivra, A.A.

    1995-12-31

    Amplification of an electromagnetic wave in free electron lasers with a reversed guide field and right-hand polarized wiggler field is investigated both analytically and numerically. An effect of electron bunch trapping by the high frequency electromagnetic field is used for efficiency optimization. On the basis of motion stability criteria a possibility of bunches trapping by FEL parameters nonadiabatic (experimentally realizable) tapering is shown. The stability analysis of electron motion is based on Lyapunov theory for autonomy systems. A particle simulation is carried out for FEL parameters close to the experimental ones (relativistic factor {gamma}=4.75, wiggler field strength B{sub w}= 2.8 kG, guide field strength B{sub o}= -1.4 kG, operation wavelength {lambda}=6.2 mm) for the case of wiggler field tapering. Theoretically predicted rule of wiggler field tapering corresponding to FEL efficiency of 55% is approximated by stepped functions. For the experimentally realizable tapering it is found that FEL efficiency can be over 40%.

  13. Azimuthally unstable resonators for high-power CO[sub 2] lasers with annular gain media

    SciTech Connect

    Ehrlichmann, D.; Habich, U.; Plum, H.D.; Loosen, P.; Herziger, G. )

    1994-06-01

    Stable-unstable resonators have proved suitable for the extraction of a high-quality beam from a gain area that consists of a rectangular slab. Such gain areas have two substantially different transverse dimensions, and the resonators are stable in the small dimension while unstable in the larger one. Using off-axis unstable resonators avoids a central beam obscuration and improves beam quality. The adaptation of stable-unstable resonators to annular gain areas is described in this paper. The resulting resonators are stable in the radial direction and unstable in the azimuthal direction. Different unstable resonators, wound to match the annular geometry, are presented. The resonator modes are calculated numerically using a 3D-diffraction code that considers gain and misalignment. Resonator design parameters are obtained from a geometrical description of the resonator. Experimental results from a diffusion-cooled CO[sub 2] laser confirm theoretical predictions and show that the resonators are capable of extracting beams that are nearly diffraction-limited with high efficiency from an annular gain medium. Output powers of 2 kW have been obtained from a gain length of 1.8 m.

  14. Output characteristics of SASE-driven short wavelength FEL`s

    SciTech Connect

    Fawley, W.M.

    1997-02-01

    This paper investigates various properties of the ``microspikes`` associated with self-amplified spontaneous emission (SASE) in a short wavelength free-electron laser (FEL). Using results from the 2-D numerical simulation code GINGER, we confirm theoretical predictions such as the convective group velocity in the exponential gain regime. In the saturated gain regime beyond the initial saturation, we find that the average radiation power continues to grow with an approximately linearly dependence upon undulator length. Moreover, the spectrum significantly broadens and shifts in wavelength to the redward direction, with{ital P(w)} approaching a constant, asymptotic value. This is in marked contrast to the exponential gain regime where the spectrum steadily narrows, {ital P(w)} grows, and the central wavelength remains constant with {ital z}. Via use of a spectrogram diagnostic {ital S(w,t)}, it appears that the radiation pattern in the saturated gain regime is composed of an ensemble of distinct ``sinews`` whose widths AA remain approximately constant but whose central wavelengths can ``chirp`` by varying a small extent with {ital t}.

  15. Alumni Networks--"An Untapped Potential to Gain and Retain Highly-Skilled Workers?"

    ERIC Educational Resources Information Center

    David, Alexandra; Coenen, Frans

    2014-01-01

    In times of increasing skills shortage, regions and particularly non-core regions, need to attract highly-skilled workers. It is better for these regions to (re)attract highly-skilled workers that gained knowledge and contacts elsewhere and because they once lived in the region for study have already ties to the university region than trying to…

  16. High Gain Submicrometer Optical Amplifier at Near-Infrared Communication Band.

    PubMed

    Wang, Xiaoxia; Zhuang, Xiujuan; Yang, Sen; Chen, Yu; Zhang, Qinglin; Zhu, Xiaoli; Zhou, Hong; Guo, Pengfei; Liang, Junwu; Huang, Yu; Pan, Anlian; Duan, Xiangfeng

    2015-07-10

    Nanoscale near-infrared optical amplification is important but remains a challenge to achieve. Here we report a unique design of silicon and erbium silicate core-shell nanowires for high gain submicrometer optical amplification in the near-infrared communication band. The high refraction index silicon core is used to tightly confine the optical field within the submicron structures, and the single crystalline erbium-ytterbium silicates shell is used as the highly efficient gain medium. Both theoretical and experimental results show that, by systematically tuning the core diameter and shell thickness, a large portion of the optical power can be selectively confined to the erbium silicate shell gain medium to enable a low loss waveguide and high gain optical amplifier. Experimental results further demonstrate that an optimized core-shell nanowire can exhibit an excellent net gain up to 31  dB mm(-1), which is more than 20 times larger than the previously reported best results on the micron-scale optical amplifiers.

  17. The PixFEL project: development of advanced X-ray pixel detectors for application at future FEL facilities

    NASA Astrophysics Data System (ADS)

    Rizzo, G.; Comotti, D.; Fabris, L.; Grassi, M.; Lodola, L.; Malcovati, P.; Manghisoni, M.; Ratti, L.; Re, V.; Traversi, G.; Vacchi, C.; Batignani, G.; Bettarini, S.; Casarosa, G.; Forti, F.; Morsani, F.; Paladino, A.; Paoloni, E.; Dalla Betta, G.-F.; Pancheri, L.; Verzellesi, G.; Xu, H.; Mendicino, R.; Benkechkache, M. A.

    2015-02-01

    The PixFEL project aims to develop an advanced X-ray camera for imaging suited for the demanding requirements of next generation free electron laser (FEL) facilities. New technologies can be deployed to boost the performance of imaging detectors as well as future pixel devices for tracking. In the first phase of the PixFEL project, approved by the INFN, the focus will be on the development of the microelectronic building blocks, carried out with a 65 nm CMOS technology, implementing a low noise analog front-end channel with high dynamic range and compression features, a low power ADC and high density memory. At the same time PixFEL will investigate and implement some of the enabling technologies to assembly a seamless large area X-ray camera composed by a matrix of multilayer four-side buttable tiles. A pixel matrix with active edge will be developed to minimize the dead area of the sensor layer. Vertical interconnection of two CMOS tiers will be explored to build a four-side buttable readout chip with small pixel pitch and all the on-board required functionalities. The ambitious target requirements of the new pixel device are: single photon resolution, 1 to 104 photons @ 1 keV to 10 keV input dynamic range, 10-bit analog to digital conversion up to 5 MHz, 1 kevent in-pixel memory and 100 μm pixel pitch. The long term goal of PixFEL will be the development of a versatile X-ray camera to be operated either in burst mode (European XFEL), or in continuous mode to cope with the high frame rates foreseen for the upgrade phase of the LCLS-II at SLAC.

  18. High-gain X-ray free electron laser by beat-wave terahertz undulator

    SciTech Connect

    Chang, Chao; Hei, DongWei; Pellegrin, Claudio; Tantawi, Sami

    2013-12-15

    The THz undulator has a higher gain to realize a much brighter X-ray at saturation, compared with the optical undulator under the same undulator strength and beam quality. In order to fill the high-power THz gap and realize the THz undulator, two superimposed laser pulses at normal incidence to the electron-beam moving direction form an equivalent high-field THz undulator by the frequency difference to realize the high-gain X-ray Free electron laser. The pulse front tilt of lateral fed lasers is used to realize the electron-laser synchronic interaction. By PIC simulation, a higher gain and a larger X-ray radiation power by the beat wave THz undulator could be realized, compared with the optical undulator for the same electron beam parameters.

  19. Development of low read noise high conversion gain CMOS image sensor for photon counting level imaging

    NASA Astrophysics Data System (ADS)

    Seo, Min-Woong; Kawahito, Shoji; Kagawa, Keiichiro; Yasutomi, Keita

    2016-05-01

    A CMOS image sensor with deep sub-electron read noise and high pixel conversion gain has been developed. Its performance is recognized through image outputs from an area image sensor, confirming the capability of photoelectroncounting- level imaging. To achieve high conversion gain, the proposed pixel has special structures to reduce the parasitic capacitances around FD node. As a result, the pixel conversion gain is increased due to the optimized FD node capacitance, and the noise performance is also improved by removing two noise sources from power supply. For the first time, high contrast images from the reset-gate-less CMOS image sensor, with less than 0.3e- rms noise level, have been generated at an extremely low light level of a few electrons per pixel. In addition, the photon-counting capability of the developed CMOS imager is demonstrated by a measurement, photoelectron-counting histogram (PCH).

  20. Electron bunch length measurement at the Vanderbilt FEL

    SciTech Connect

    Amirmadhi, F.; Brau, C.A.; Mendenhall, M.

    1995-12-31

    During the past few years, a number of experiments have been performed to demonstrate the possibility to extract the longitudinal charge distribution from spectroscopic measurements of the coherent far-infrared radiation emitted as transition radiation or synchrotron radiation. Coherent emission occurs in a spectral region where the wavelength is comparable to or longer than the bunch length, leading to an enhancement of the radiation intensity that is on the order of the number of particles per bunch, as compared to incoherent radiation. This technique is particularly useful in the region of mm and sub-mm bunch lengths, a range where streak-cameras cannot be used for beam diagnostics due to their limited time resolution. Here we report on experiments that go beyond the proof of principle of this technique by applying it to the study and optimization of FEL performance. We investigated the longitudinal bunch length of the Vanderbilt FEL by analyzing the spectrum of coherent transition radiation emitted by the electron bunches. By monitoring the bunch length while applying a bunch-compression technique, the amount of the compression could be easily observed. This enabled us to perform a systematic study of the FEL performance, especially gain and optical pulse width, as a function of the longitudinal electron distribution in the bunch. The results of this study will be presented and discussed.

  1. Recent developments in CrystFEL 1

    PubMed Central

    White, Thomas A.; Mariani, Valerio; Brehm, Wolfgang; Yefanov, Oleksandr; Barty, Anton; Beyerlein, Kenneth R.; Chervinskii, Fedor; Galli, Lorenzo; Gati, Cornelius; Nakane, Takanori; Tolstikova, Alexandra; Yamashita, Keitaro; Yoon, Chun Hong; Diederichs, Kay; Chapman, Henry N.

    2016-01-01

    CrystFEL is a suite of programs for processing data from ‘serial crystallography’ experiments, which are usually performed using X-ray free-electron lasers (FELs) but also increasingly with other X-ray sources. The CrystFEL software suite has been under development since 2009, just before the first hard FEL experiments were performed, and has been significantly updated and improved since then. This article describes the most important improvements which have been made to CrystFEL since the first release version. These changes include the addition of new programs to the suite, the ability to resolve ‘indexing ambiguities’ and several ways to improve the quality of the integrated data by more accurately modelling the underlying diffraction physics. PMID:27047311

  2. Integrated computer simulation on FIR FEL dynamics

    SciTech Connect

    Furukawa, H.; Kuruma, S.; Imasaki, K.

    1995-12-31

    An integrated computer simulation code has been developed to analyze the RF-Linac FEL dynamics. First, the simulation code on the electron beam acceleration and transport processes in RF-Linac: (LUNA) has been developed to analyze the characteristics of the electron beam in RF-Linac and to optimize the parameters of RF-Linac. Second, a space-time dependent 3D FEL simulation code (Shipout) has been developed. The RF-Linac FEL total simulations have been performed by using the electron beam data from LUNA in Shipout. The number of particles using in a RF-Linac FEL total simulation is approximately 1000. The CPU time for the simulation of 1 round trip is about 1.5 minutes. At ILT/ILE, Osaka, a 8.5MeV RF-Linac with a photo-cathode RF-gun is used for FEL oscillation experiments. By using 2 cm wiggler, the FEL oscillation in the wavelength approximately 46 {mu}m are investigated. By the simulations using LUNA with the parameters of an ILT/ILE experiment, the pulse shape and the energy spectra of the electron beam at the end of the linac are estimated. The pulse shape of the electron beam at the end of the linac has sharp rise-up and it slowly decays as a function of time. By the RF-linac FEL total simulations with the parameters of an ILT/ILE experiment, the dependencies of the start up of the FEL oscillations on the pulse shape of the electron beam at the end of the linac are estimated. The coherent spontaneous emission effects and the quick start up of FEL oscillations have been observed by the RF-Linac FEL total simulations.

  3. A clocked high-pass-filter-based offset cancellation technique for high-gain biomedical amplifiers

    NASA Astrophysics Data System (ADS)

    Pal, Dipankar; Goswami, Manish

    2010-05-01

    In this article, a simple offset cancellation technique based on a clocked high-pass filter with extremely low output offset is presented. The configuration uses the on-resistance of a complementary metal oxide semiconductor (CMOS) transmission gate (X-gate) and tunes the lower 3-dB cut-off frequency with a matched pair of floating capacitors. The results compare favourably with the more complex auto-zeroing and chopper stabilisation techniques of offset cancellation in terms of power dissipation, component count and bandwidth, while reporting inferior output noise performance. The design is suitable for use in biomedical amplifier systems for applications such as ENG-recording. The system is simulated in Spectre Cadence 5.1.41 using 0.6 μm CMOS technology and the total block gain is ∼83.0 dB while the phase error is <5°. The power consumption is 10.2 mW and the output offset obtained for an input monotone signal of 5 μVpp is 1.28 μV. The input-referred root mean square noise voltage between 1 and 5 kHz is 26.32 nV/√Hz.

  4. Doped Contacts for High-Longevity Optically Activated, High Gain GaAs Photoconductive Semiconductor Switches

    SciTech Connect

    MAR,ALAN; LOUBRIEL,GUILLERMO M.; ZUTAVERN,FRED J.; O'MALLEY,MARTIN W.; HELGESON,WESLEY D.; BROWN,DARWIN JAMES; HJALMARSON,HAROLD P.; BACA,ALBERT G.; THORNTON,R.L.; DONALDSON,R.D.

    1999-12-17

    The longevity of high gain GaAs photoconductive semiconductor switches (PCSS) has been extended to over 100 million pulses. This was achieved by improving the ohmic contacts through the incorporation of a doped layer that is very effective in the suppression of filament formation, alleviating current crowding. Damage-free operation is now possible with virtually infinite expected lifetime at much higher current levels than before. The inherent damage-free current capacity of the bulk GaAs itself depends on the thickness of the doped layers and is at least 100A for a dopant diffusion depth of 4pm. The contact metal has a different damage mechanism and the threshold for damage ({approx}40A) is not further improved beyond a dopant diffusion depth of about 2{micro}m. In a diffusion-doped contact switch, the switching performance is not degraded when contact metal erosion occurs, unlike a switch with conventional contacts. This paper will compare thermal diffusion and epitaxial growth as approaches to doping the contacts. These techniques will be contrasted in terms of the fabrication issues and device characteristics.

  5. Doped Contacts for High-Longevity Optically Activated, High Gain GaAs Photoconductive Semiconductor Switches

    SciTech Connect

    Baca, A.G.; Brown, D.J.; Donaldson, R.D.; Helgeson, W.D.; Hjalmarson, H.P.; Loubriel, G.M.; Mar, A.; O'Malley, M.W.; Thornton, R.L.; Zutavern, F.J.

    1999-08-05

    The longevity of high gain GaAs photoconductive semiconductor switches (PCSS) has been extended to over 50 million pulses. This was achieved by improving the ohmic contacts through the incorporation of a doped layer beneath the PCSS contacts which is very effective in the suppression of filament formation and alleviating current crowding to improve the longevity of PCSS. Virtually indefinite, damage-free operation is now possible at much higher current levels than before. The inherent damage-free current capacity of the switch depends on the thickness of the doped layers and is at least 100A for a dopant diffusion depth of 4pm. The contact metal has a different damage mechanism and the threshold for damage ({approximately}40A) is not further improved beyond a dopant diffusion depth of about 2{micro}m. In a diffusion-doped contact switch, the switching performance is not degraded when contact metal erosion occurs. This paper will compare thermal diffusion and epitaxial growth as approaches to doping the contacts. These techniques will be contrasted in terms of the fabrication issues and device characteristics.

  6. A novel high-gain wide-band omnidirectional antenna for satellite communication application

    NASA Astrophysics Data System (ADS)

    Wang, Yonggen

    2009-12-01

    A novel antenna is proposed in this article, which has simple structure, high gain, wide-band, omni direction and small physical size characteristics. Through optimized design, the maximum gain in omnidirectional plane is 5.0dB, the 3dB beam width in the normal plane >=40°, the absolute VSWR band width of this antenna is 22.2GHz, and the relative VSWR band width is about 73% (VSWR<2), so the antenna can cover the K/Ka band. Because of the merits of the high gain and wide band, this antenna is not just used in the satellite communication, but also in the other domain such as the mobile communication.

  7. Dynamic properties of a pulse-pumped fiber laser with a short, high-gain cavity

    NASA Astrophysics Data System (ADS)

    Yang, Chaolin; Guo, Junhong; Wei, Pu; Wan, Hongdan; Xu, Ji; Wang, Jin

    2016-09-01

    We demonstrate a pulsed high-gain all-fiber laser without intracavity modulators, where a short and heavily Erbium-doped fiber is used as the gain medium in a ring cavity. By pulsed-pumping this short high gain cavity and tuning an intracavity variable optical coupler, the laser generates optical pulses with a pulse-width of μs at a repetition rate in the order of kHz down to one-shot operation. Furthermore, dynamic properties of this laser are investigated theoretically based on a traveling-wave-model, in which an adaptive-discrete-grid-finite-difference-method is applied. The simulation results validate the experimental results. The demonstrated pulsed laser is compact, flexible and cost-effective, which will have great potential for applications in all-optical sensing and communication systems.

  8. Application of variable-gain output feedback for high-alpha control

    NASA Technical Reports Server (NTRS)

    Ostroff, Aaron J.

    1990-01-01

    A variable-gain, optimal, discrete, output feedback design approach that is applied to a nonlinear flight regime is described. The flight regime covers a wide angle-of-attack range that includes stall and post stall. The paper includes brief descriptions of the variable-gain formulation, the discrete-control structure and flight equations used to apply the design approach, and the high performance airplane model used in the application. Both linear and nonlinear analysis are shown for a longitudinal four-model design case with angles of attack of 5, 15, 35, and 60 deg. Linear and nonlinear simulations are compared for a single-point longitudinal design at 60 deg angle of attack. Nonlinear simulations for the four-model, multi-mode, variable-gain design include a longitudinal pitch-up and pitch-down maneuver and high angle-of-attack regulation during a lateral maneuver.

  9. Recent progress in high gain InAs avalanche photodiodes (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Bank, Seth; Maddox, Scott J.; Sun, Wenlu; Nair, Hari P.; Campbell, Joe C.

    2015-08-01

    InAs possesses nearly ideal material properties for the fabrication of near- and mid-infrared avalanche photodiodes (APDs), which result in strong electron-initiated impact ionization and negligible hole-initiated impact ionization [1]. Consequently, InAs multiplication regions exhibit several appealing characteristics, including extremely low excess noise factors and bandwidth independent of gain [2], [3]. These properties make InAs APDs attractive for a number of near- and mid-infrared sensing applications including remote gas sensing, light detection and ranging (LIDAR), and both active and passive imaging. Here, we discuss our recent advances in the growth and fabrication of high gain, low noise InAs APDs. Devices yielded room temperature multiplication gains >300, with much reduced (~10x) lower dark current densities. We will also discuss a likely key contributor to our current performance limitations: silicon diffusion into the intrinsic (multiplication) region from the underlying n-type layer during growth. Future work will focus on increasing the intrinsic region thickness, targeting gains >1000. This work was supported by the Army Research Office (W911NF-10-1-0391). [1] A. R. J. Marshall, C. H. Tan, M. J. Steer, and J. P. R. David, "Electron dominated impact ionization and avalanche gain characteristics in InAs photodiodes," Applied Physics Letters, vol. 93, p. 111107, 2008. [2] A. R. J. Marshall, A. Krysa, S. Zhang, A. S. Idris, S. Xie, J. P. R. David, and C. H. Tan, "High gain InAs avalanche photodiodes," in 6th EMRS DTC Technical Conference, Edinburgh, Scotland, UK, 2009. [3] S. J. Maddox, W. Sun, Z. Lu, H. P. Nair, J. C. Campbell, and S. R. Bank, "Enhanced low-noise gain from InAs avalanche photodiodes with reduced dark current and background doping," Applied Physics Letters, vol. 101, no. 15, pp. 151124-151124-3, Oct. 2012.

  10. The Jefferson lab FEL driver ERLs

    SciTech Connect

    Douglas, David R.; Tennant, Christopher D.

    2013-11-01

    Jefferson Lab has - for over a decade - been operating high power IR and UV FELs using CW energy recovering linacs based on DC photocathode electron sources and CEBAF SRF technology. These machines have unique combinations of beam quality, power, and operational flexibility, and thus offer significant opportunity for experiments that use low and medium energy (several tens - few hundreds of MeV) electron beams. We will describe the systems and detail their present and near-term (potential) performance. Recent internal-target analysis and validation testing will be discussed, and schemes for single- and two-pass fixed target operation described. An introduction to subsequent discussions of beam quality and upgrade paths to polarized operation/higher energy will be given.

  11. Low-FPN high-gain capacitive transimpedance amplifier for low-noise CMOS image sensors

    NASA Astrophysics Data System (ADS)

    Fowler, Boyd A.; Balicki, Janusz; How, Dana; Godfrey, Michael

    2001-05-01

    In this paper we introduce a low fixed pattern noise (LFPN) capacitive transimpedance amplifier (CTIA) for active pixel CMOS image sensors (APS) with high switchable gain and low read noise. The LFPN CTIA APS uses a switched capacitor voltage divider feedback circuit to achieve high sensitivity, low gain FPN, and low read noise. This paper discusses the operation of the LFPN CTIA APS, and presents a theoretical analysis of its gain FPN and read noise. We do not analyze the effect of 1/f noise, since it is typically much smaller than the thermal and shot noise effects. Monte Carlo simulation of gain FPN and SPICE simulation of read noise are also presented. For a 0.35 micrometers CMOS LFPN CTIA at room temperature and an output data rate of 16Mpixel/sec, we show that the pixel amplifier gain FPN is less than 0.0064, where FPN is defined as the ratio of standard deviation to mean. The read noise and dynamic range are less than 3 electrons RMS and greater than 90dB respectively. We find that theory and simulated results match closely.

  12. Control of the polarization of a vacuum-ultraviolet, high-gain, free-electron laser

    DOE PAGES

    Allaria, Enrico; Diviacco, Bruno; Callegari, Carlo; Finetti, Paola; Mahieu, Benoît; Viefhaus, Jens; Zangrando, Marco; De Ninno, Giovanni; Lambert, Guillaume; Ferrari, Eugenio; et al

    2014-12-02

    The two single-pass, externally seeded free-electron lasers (FELs) of the FERMI user facility are designed around Apple-II-type undulators that can operate at arbitrary polarization in the vacuum ultraviolet-to-soft x-ray spectral range. Furthermore, within each FEL tuning range, any output wavelength and polarization can be set in less than a minute of routine operations. We report the first demonstration of the full output polarization capabilities of FERMI FEL-1 in a campaign of experiments where the wavelength and nominal polarization are set to a series of representative values, and the polarization of the emitted intense pulses is thoroughly characterized by three independentmore » instruments and methods, expressly developed for the task. The measured radiation polarization is consistently >90% and is not significantly spoiled by the transport optics; differing, relative transport losses for horizontal and vertical polarization become more prominent at longer wavelengths and lead to a non-negligible ellipticity for an originally circularly polarized state. The results from the different polarimeter setups validate each other, allow a cross-calibration of the instruments, and constitute a benchmark for user experiments.« less

  13. Control of the Polarization of a Vacuum-Ultraviolet, High-Gain, Free-Electron Laser

    NASA Astrophysics Data System (ADS)

    Allaria, Enrico; Diviacco, Bruno; Callegari, Carlo; Finetti, Paola; Mahieu, Benoît; Viefhaus, Jens; Zangrando, Marco; De Ninno, Giovanni; Lambert, Guillaume; Ferrari, Eugenio; Buck, Jens; Ilchen, Markus; Vodungbo, Boris; Mahne, Nicola; Svetina, Cristian; Spezzani, Carlo; Di Mitri, Simone; Penco, Giuseppe; Trovó, Mauro; Fawley, William M.; Rebernik, Primoz R.; Gauthier, David; Grazioli, Cesare; Coreno, Marcello; Ressel, Barbara; Kivimäki, Antti; Mazza, Tommaso; Glaser, Leif; Scholz, Frank; Seltmann, Joern; Gessler, Patrick; Grünert, Jan; De Fanis, Alberto; Meyer, Michael; Knie, André; Moeller, Stefan P.; Raimondi, Lorenzo; Capotondi, Flavio; Pedersoli, Emanuele; Plekan, Oksana; Danailov, Miltcho B.; Demidovich, Alexander; Nikolov, Ivaylo; Abrami, Alessandro; Gautier, Julien; Lüning, Jan; Zeitoun, Philippe; Giannessi, Luca

    2014-10-01

    The two single-pass, externally seeded free-electron lasers (FELs) of the FERMI user facility are designed around Apple-II-type undulators that can operate at arbitrary polarization in the vacuum ultraviolet-to-soft x-ray spectral range. Furthermore, within each FEL tuning range, any output wavelength and polarization can be set in less than a minute of routine operations. We report the first demonstration of the full output polarization capabilities of FERMI FEL-1 in a campaign of experiments where the wavelength and nominal polarization are set to a series of representative values, and the polarization of the emitted intense pulses is thoroughly characterized by three independent instruments and methods, expressly developed for the task. The measured radiation polarization is consistently >90 % and is not significantly spoiled by the transport optics; differing, relative transport losses for horizontal and vertical polarization become more prominent at longer wavelengths and lead to a non-negligible ellipticity for an originally circularly polarized state. The results from the different polarimeter setups validate each other, allow a cross-calibration of the instruments, and constitute a benchmark for user experiments.

  14. Control of the polarization of a vacuum-ultraviolet, high-gain, free-electron laser

    SciTech Connect

    Allaria, Enrico; Diviacco, Bruno; Callegari, Carlo; Finetti, Paola; Mahieu, Benoît; Viefhaus, Jens; Zangrando, Marco; De Ninno, Giovanni; Lambert, Guillaume; Ferrari, Eugenio; Buck, Jens; Ilchen, Markus; Vodungbo, Boris; Mahne, Nicola; Svetina, Cristian; Spezzani, Carlo; Di Mitri, Simone; Penco, Giuseppe; Trovó, Mauro; Fawley, William M.; Rebernik, Primoz R.; Gauthier, David; Grazioli, Cesare; Coreno, Marcello; Ressel, Barbara; Kivimäki, Antti; Mazza, Tommaso; Glaser, Leif; Scholz, Frank; Seltmann, Joern; Gessler, Patrick; Grünert, Jan; De Fanis, Alberto; Meyer, Michael; Knie, André; Moeller, Stefan P.; Raimondi, Lorenzo; Capotondi, Flavio; Pedersoli, Emanuele; Plekan, Oksana; Danailov, Miltcho B.; Demidovich, Alexander; Nikolov, Ivaylo; Abrami, Alessandro; Gautier, Julien; Lüning, Jan; Zeitoun, Philippe; Giannessi, Luca

    2014-12-02

    The two single-pass, externally seeded free-electron lasers (FELs) of the FERMI user facility are designed around Apple-II-type undulators that can operate at arbitrary polarization in the vacuum ultraviolet-to-soft x-ray spectral range. Furthermore, within each FEL tuning range, any output wavelength and polarization can be set in less than a minute of routine operations. We report the first demonstration of the full output polarization capabilities of FERMI FEL-1 in a campaign of experiments where the wavelength and nominal polarization are set to a series of representative values, and the polarization of the emitted intense pulses is thoroughly characterized by three independent instruments and methods, expressly developed for the task. The measured radiation polarization is consistently >90% and is not significantly spoiled by the transport optics; differing, relative transport losses for horizontal and vertical polarization become more prominent at longer wavelengths and lead to a non-negligible ellipticity for an originally circularly polarized state. The results from the different polarimeter setups validate each other, allow a cross-calibration of the instruments, and constitute a benchmark for user experiments.

  15. Physics design for the ATA tapered wiggler 10. 6. mu. FEL amplifier experiment

    SciTech Connect

    Fawley, W.M.

    1985-10-01

    We are presently designing and constructing a high-gain, tapered wiggler 10.6 ..mu.. FEL amplifier to operate with the 50 MeV ATA e-beam. The initial experiments will be done with a constant period (lambda /SUB w/ =8 cm), 5 m-long linear wiggler. For an input laser power of 800 MW and electron beam brightness of 2.10/sup 5/ A/(rad-cm)/sup 2/, we hope to achieve a trapped particle fraction about0.5 and an energy extraction efficiency of about2% with a about10% taper in the wiggler magnetic field. This taper corresponds to decelerating the trapped particle approximately two full ponderomotive well (i.e. bucket) heights. In this talk, we discuss the physics motivations behind our tapered wiggler design and initial experimental diagnostics.

  16. Comparative analysis of the intrinsic voltage gain and unit gain frequency between SOI and bulk FinFETs up to high temperatures

    NASA Astrophysics Data System (ADS)

    Oliveira, Alberto Vinicius de; Agopian, Paula Ghedini Der; Martino, Joao Antonio; Simoen, Eddy; Claeys, Cor; Collaert, Nadine; Thean, Aaron

    2016-09-01

    This paper presents an experimental analysis of the analog application figures of merit: the intrinsic voltage gain (AV) and unit gain frequency, focusing on the performance comparison between silicon triple gate pFinFET devices, which were processed on both Si and Silicon-On-Insulator (SOI) substrates. The high temperature (from 25 °C to 150 °C) influence and different channel lengths and fin widths were also taken into account. While the temperature impact on the intrinsic voltage gain (AV) is limited, the unit gain frequency was strongly affected due to the carrier mobility degradation at higher temperatures, for both p- and n-type FinFET structures. In addition, the pFinFETs showed slightly larger AV values compared to the n-type counterparts, whereby the bulk FinFETs presented a higher dispersion than the SOI FinFETs.

  17. Maintaining a High Physical Activity Level Over 20 Years and Weight Gain

    PubMed Central

    Hankinson, Arlene L.; Daviglus, Martha L.; Bouchard, Claude; Carnethon, Mercedes; Lewis, Cora E.; Schreiner, Pamela J.; Liu, Kiang; Sidney, Stephen

    2013-01-01

    Context Data supporting physical activity guidelines to prevent long-term weight gain are sparse, particularly during the period when the highest risk of weight gain occurs. Objective To evaluate the relationship between habitual activity levels and changes in body mass index (BMI) and waist circumference over 20 years. Design, Setting, and Participants The Coronary Artery Risk Development in Young Adults (CARDIA) study is a prospective longitudinal study with 20 years of follow-up, 1985-86 to 2005-06. Habitual activity was defined as maintaining high, moderate, and low activity levels based on sex-specific tertiles of activity scores at baseline. Participants comprised a population-based multi-center cohort (Chicago, Illinois; Birmingham, Alabama; Minneapolis, Minnesota; and Oakland, California) of 3554 men and women aged 18 to 30 years at baseline. Main Outcome Measures Average annual changes in BMI and waist circumference Results Over 20 years, maintaining high levels of activity was associated with smaller gains in BMI and waist circumference compared with low activity levels after adjustment for race, baseline BMI, age, education, cigarette smoking status, alcohol use, and energy intake. Men maintaining high activity gained 2.6 fewer kilograms (+ 0.15 BMI units per year; 95 % confidence interval [CI] 0.11-0.18 vs +0.20 in the lower activity group; 95% CI, 0.17-0.23) and women maintaining higher activity gained 6.1 fewer kilograms (+0.17 BMI units per year; 95 % CI, 0.12-0.21 vs. +0.30 in the lower activity group; 95 % CI, 0.25-0.34). Men maintaining high activity gained 3.1 fewer centimeters in waist circumference (+0.52 cm per year; 95 % CI, 0.43-0.61 cm vs 0.67 cm in the lower activity group; 95 % CI, 0.60-0.75) and women maintaining higher activity gained 3.8 fewer centimeters (+0.49 cm per year; 95 % CI, 0.39-0.58 vs 0.67 cm in the lower activity group; 95 % CI, 0.60-0.75). Conclusion Maintaining high activity levels through young adulthood may lessen

  18. An optical parametric chirped-pulse amplifier for seeding high repetition rate free-electron lasers

    SciTech Connect

    Höppner, H.; Tanikawa, T.; Schulz, M.; Riedel, R.; Teubner, U.; Faatz, B.; Tavella, F.

    2015-05-15

    High repetition rate free-electron lasers (FEL), producing highly intense extreme ultraviolet and x-ray pulses, require new high power tunable femtosecond lasers for FEL seeding and FEL pump-probe experiments. A tunable, 112 W (burst mode) optical parametric chirped-pulse amplifier (OPCPA) is demonstrated with center frequencies ranging from 720–900 nm, pulse energies up to 1.12 mJ and a pulse duration of 30 fs at a repetition rate of 100 kHz. Since the power scalability of this OPCPA is limited by the OPCPA-pump amplifier, we also demonstrate a 6.7–13.7 kW (burst mode) thin-disk OPCPA-pump amplifier, increasing the possible OPCPA output power to many hundreds of watts. Furthermore, third and fourth harmonic generation experiments are performed and the results are used to simulate a seeded FEL with high-gain harmonic generation.

  19. 75 FR 61228 - Board Meeting: Technical Lessons Gained From High-Level Nuclear Waste Disposal Efforts

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-04

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR WASTE TECHNICAL REVIEW BOARD Board Meeting: Technical Lessons Gained From High-Level Nuclear Waste Disposal Efforts Pursuant to its authority under section 5051 of Public Law 100-203, Nuclear Waste Policy Amendments Act...

  20. Optical properties of the output of a high gain, self-amplified free-electron laser.

    SciTech Connect

    Krinsky, S.; Lewellen , J.; Sajaev, V.; Accelerator Systems Division; BNL

    2004-01-01

    The temporal structure and phase evolutions of a high-gain, self-amplified free-electron laser are measured, including single-shot analysis and statistics over many shots. Excellent agreement with the theory of free-electron laser and photon statistics is found.

  1. Hubble Space Telescope (HST) high gain antenna (HGA) deployment during STS-31

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Held in appendage deploy position, the Hubble Space Telescope's (HST's) high gain antenna (HGA) has been released from its stowed position along the Support System Module (SSM) forward shell. The STS-31 crew aboard Discovery, Orbiter Vehicle (OV) oversees the automatic HGA deployment prior to releasing HST. HST HGA is backdropped against the blackness of space.

  2. Deployment/retraction mechanism for solar maximum mission high gain antenna system

    NASA Technical Reports Server (NTRS)

    Bennett, N.; Preiswerk, P.

    1979-01-01

    A mechanism called a deployment/retraction assembly (DRA) which provides not only a stable, but a deployable platform for the high gain antenna system (HGAS) aboard the Solar Maximum Mission (SMM) spacecraft is described. The DRA also has the capability to retract the system upon command.

  3. High-Current Gain Two-Dimensional MoS₂-Base Hot-Electron Transistors.

    PubMed

    Torres, Carlos M; Lan, Yann-Wen; Zeng, Caifu; Chen, Jyun-Hong; Kou, Xufeng; Navabi, Aryan; Tang, Jianshi; Montazeri, Mohammad; Adleman, James R; Lerner, Mitchell B; Zhong, Yuan-Liang; Li, Lain-Jong; Chen, Chii-Dong; Wang, Kang L

    2015-12-01

    The vertical transport of nonequilibrium charge carriers through semiconductor heterostructures has led to milestones in electronics with the development of the hot-electron transistor. Recently, significant advances have been made with atomically sharp heterostructures implementing various two-dimensional materials. Although graphene-base hot-electron transistors show great promise for electronic switching at high frequencies, they are limited by their low current gain. Here we show that, by choosing MoS2 and HfO2 for the filter barrier interface and using a noncrystalline semiconductor such as ITO for the collector, we can achieve an unprecedentedly high-current gain (α ∼ 0.95) in our hot-electron transistors operating at room temperature. Furthermore, the current gain can be tuned over 2 orders of magnitude with the collector-base voltage albeit this feature currently presents a drawback in the transistor performance metrics such as poor output resistance and poor intrinsic voltage gain. We anticipate our transistors will pave the way toward the realization of novel flexible 2D material-based high-density, low-energy, and high-frequency hot-carrier electronic applications. PMID:26524388

  4. High hyperdiploid childhood acute lymphoblastic leukemia: Chromosomal gains as the main driver event.

    PubMed

    Paulsson, Kajsa

    2016-01-01

    High hyperdiploid childhood acute lymphoblastic leukemia is characterized by multiple chromosomal gains. Recent results show that this subtype harbors relatively few genetic abnormalities besides the extra chromosomes, which appear to arise early and are likely the main driver event. Secondary hits primarily target genes in the rat sarcoma (RAS) signaling pathway and histone modifiers. PMID:27308574

  5. Prior exercise training blunts short-term high-fat diet-induced weight gain.

    PubMed

    Snook, Laelie A; MacPherson, Rebecca E K; Monaco, Cynthia M F; Frendo-Cumbo, Scott; Castellani, Laura; Peppler, Willem T; Anderson, Zachary G; Buzelle, Samyra L; LeBlanc, Paul J; Holloway, Graham P; Wright, David C

    2016-08-01

    High-fat diets rapidly cause weight gain and glucose intolerance. We sought to determine whether these changes could be mitigated with prior exercise training. Male C57BL/6J mice were exercise-trained by treadmill running (1 h/day, 5 days/wk) for 4 wk. Twenty-four hours after the final bout of exercise, mice were provided with a high-fat diet (HFD; 60% kcal from lard) for 4 days, with no further exercise. In mice fed the HFD prior to exercise training, the results were blunted weight gain, reduced fat mass, and a slight attenuation in glucose intolerance that was mirrored by greater insulin-induced Akt phosphorylation in skeletal muscle compared with sedentary mice fed the HFD. When ad libitum-fed sedentary mice were compared with sedentary high-fat fed mice that were calorie restricted (-30%) to match the weight gain of the previously trained high-fat fed mice, the same attenuated impairments in glucose tolerance were found. Blunted weight gain was associated with a greater capacity to increase energy expenditure in trained compared with sedentary mice when challenged with a HFD. Although mitochondrial enzymes in white adipose tissue and UCP-1 protein content in brown adipose tissue were increased in previously exercised compared with sedentary mice fed a HFD, ex vivo mitochondrial respiration was not increased in either tissue. Our data suggest that prior exercise training attenuates high-fat diet-induced weight gain and glucose intolerance and is associated with a greater ability to increase energy expenditure in response to a high-fat diet.

  6. Long wavelength, high gain InAsSb strained-layer superlattice photoconductive detectors

    DOEpatents

    Biefeld, Robert M.; Dawson, L. Ralph; Fritz, Ian J.; Kurtz, Steven R.; Zipperian, Thomas E.

    1991-01-01

    A high gain photoconductive device for 8 to 12 .mu.m wavelength radiation including an active semiconductor region extending from a substrate to an exposed face, the region comprising a strained-layer superlattice of alternating layers of two different InAs.sub.1-x Sb.sub.x compounds having x>0.75. A pair of spaced electrodes are provided on the exposed face, and changes in 8 to 12 .mu.m radiation on the exposed face cause a large photoconductive gain between the spaced electrodes.

  7. The crucial fiber components and gain fiber for high power ytterbium-doped fiber laser

    NASA Astrophysics Data System (ADS)

    Liao, Lei; Liu, Peng; Xing, Ying-Bin; Wang, Yi-Bo; Dai, Neng-Li; Li, Jin-Yan; He, Bing; Zhou, Jun

    2015-08-01

    We have demonstrated a kW continuous-wave ytterbium-doped all-fiber laser oscillator with 7×1 fused fiber bundle combiner, fiber Bragg grating (FBG) and double-clad gain fiber fabricated by corresponding technologies. The results of experiment that the oscillator had operated at 1079.48nm with 80.94% slope efficiency without the influence of temperature and non-linear effects indicate that fiber components and gain fiber were suitable to high power environment. No evidence of the signal power roll-over showed that this oscillator possess the capacity to highest output with available pump power.

  8. Application of variable-gain output feedback for high-alpha control

    NASA Technical Reports Server (NTRS)

    Ostroff, Aaron J.

    1989-01-01

    This paper describes a variable-gain optimal discrete output-feedback design approach that is applied to a nonlinear flight regime covering a wide angle-of-attack range that includes stall and poststall. The paper includes brief descriptions of the variable-gain formulation, the discrete-control structure and flight equations used to apply the design approach, and the high performance airplane model used in the application. Both linear and nonlinear analyses are shown for a longitudinal four-model design case with angles of attack of 5, 15, 35, and 60 deg.

  9. High Average Power Laser Gain Medium With Low Optical Distortion Using A Transverse Flowing Liquid Host

    DOEpatents

    Comaskey, Brian J.; Ault, Earl R.; Kuklo, Thomas C.

    2005-07-05

    A high average power, low optical distortion laser gain media is based on a flowing liquid media. A diode laser pumping device with tailored irradiance excites the laser active atom, ion or molecule within the liquid media. A laser active component of the liquid media exhibits energy storage times longer than or comparable to the thermal optical response time of the liquid. A circulation system that provides a closed loop for mixing and circulating the lasing liquid into and out of the optical cavity includes a pump, a diffuser, and a heat exchanger. A liquid flow gain cell includes flow straighteners and flow channel compression.

  10. The 'SuperFET' - A monolithic device for high-gain amplifiers

    NASA Astrophysics Data System (ADS)

    Crescenzi, E. J., Jr.; Wilser, W. T.; Oglesbee, R. W.; Algeri, S. J.

    1981-07-01

    The development of minimum area GaAs FET chips which resulted in ICs with two FETs on a single .7 sq mm chip linked with microstrip matching circuitry is described. Cost considerations are given, noting that the figure of merit was high due to matching elements covering over half of the total chip area. The gain for the X- and Ku-bands over discrete transistors were 6 and 5 dB, at 20 and 18 GHz respectively. Design objectives for the X-band IC of 7-12.5 GHz minimum bandwidth, multistage cascadability for amplifier gains in the 25 to 50 dB range, low VSWR gain flatness, and cost competitiveness with thin film discrete FETs were achieved. The Ku-band 'superFET' was designed for small size, application flexibility, and mechanical ruggedness and reliability, with an eye to EW military applications.

  11. Status and achievements at FERMI@Elettra: the first double cascade seeded EUV-SXR FEL facility open to users

    NASA Astrophysics Data System (ADS)

    Svetina, Cristian; Mahne, Nicola; Raimondi, Lorenzo; Rumiz, Luca; Zangrando, Marco; Allaria, Enrico; Bencivenga, Filippo; Callegari, Carlo; Capotondi, Flavio; Castronovo, Davide; Cinquegrana, Paolo; Craievich, Paolo; Cudin, Ivan; Dal Forno, Massimo; Danailov, Miltcho B.; D'Auria, Gerardo; De Monte, Raffaele; De Ninno, Giovanni; Demidovich, Alexander; Di Mitri, Simone; Diviacco, Bruno; Fabris, Alessandro; Fabris, Riccardo; Fawley, William M.; Ferianis, Mario; Ferrari, Eugenio; Froehlich, Lars; Furlan Radivo, Paolo; Gaio, Giulio; Giannessi, Luca; Kiskinova, Maya; Lonza, Marco; Mahieu, Benoit; Masciovecchio, Claudio; Nikolov, Ivaylo P.; Parmigiani, Fulvio; Pedersoli, Emanuele; Penco, Giuseppe; Predonzani, Mauro; Principi, Emiliano; Rossi, Fabio; Scafuri, Claudio; Serpico, Claudio; Sigalotti, Paolo; Spampinati, Simone; Spezzani, Carlo; Svandrlik, Michele; Trovo, Mauro; Vascotto, Alessandro; Veronese, Marco; Visintini, Roberto; Zangrando, Dino

    2013-09-01

    FERMI@Elettra is the first seeded VUV/soft X-ray FEL source. It is composed of two undulatory chains: the low energy branch (FELl) covering the wavelength range from 20 nm up to 100 nm, and the high energy branch (FEL2, employing a double stage cascade), covering the wavelength range from 4 nm up to 20 nm. At the end of 2012 FELl has been opened to external users while FEL2 has been turned on for the first time having demonstrated that a double cascade scheme is suitable for generating high intensity coherent FEL radiation. In this paper we will share our experience and will show our most recent results for both FERMI FELl and FEL2 sources. We will also present a brand new machine scheme that allows to perform two-colour pump and probe experiments as well as the first experimental results.

  12. High-efficiency high-gain monolithic heterostructure FET amplifier at 31 GHz

    NASA Technical Reports Server (NTRS)

    Tserng, H. Q.; Saunier, P.; Kao, Y.-C.

    1993-01-01

    A three-stage heterostructure FET monolithic amplifier has achieved a power-added efficiency of 36 percent with 200 mW output and 18 dB gain at 31 GHz. At a higher drain voltage, the output power increases to 280 mW (with 17.5 dB gain and 31 percent PAE) at a power density of 0.7 W/mm. The MMIC chip measures 2.63 x 1.35 sq mm and requires only a single drain bias and a single gate bias.

  13. Picosecond pump-probe using an FEL and a synchrotron source

    SciTech Connect

    Denbeaux, G.; Straub, K.D.; Madey, J.M.J.

    1995-12-31

    Two color pump-probe experiments using both the Duke Storage Ring as a synchrotron light source for visible light the Mark III FEL as a tunable, high peak power IR source are possible. The visible synchrotron source can be used as a probe of vibrational excitation from the FEL in an experiment using vibrationally-assisted fluorescence as an indicator of overlap of the IR and the visible pulses. An optical delay line in the FEL beam will allow adjustment of the arrival time of the IR pulse relative to the visible probe. The storage ring RF booster and the Mark III FEL RF sources will be both driven by the same master oscillator with a timing jitter between sources of less than 20 psec. Exploration of coupling between electronic excitation and lifetimes of vibrational excitation of fluorescent compounds in solution can be carried out with this configuration.

  14. An Analysis of Shot Noise Propagation and Amplificationin Harmonic Cascade FELs

    SciTech Connect

    Huang, Z.; /SLAC

    2006-12-11

    The harmonic generation process in a harmonic cascade (HC) FEL is subject to noise degradation which is proportional to the square of the total harmonic order. In this paper, we study the shot noise evolution in the first-stage modulator and radiator of a HC FEL that produces the dominant noise contributions. We derive the effective input noise for a modulator operating in the low-gain regime, and analyze the radiator noise for a density-modulated beam. The significance of these noise sources in different harmonic cascade designs is also discussed.

  15. High gain, Fast Scan, Broad Spectrum Parallel Beam Wavelength Dispersive X-ray Spectrometer for SEM

    SciTech Connect

    OHara, David

    2009-05-08

    During contract # DE-FG02-ER83545, Parallax Research, Inc. developed a High gain, Fast Scan Broad Spectrum Parallel beam Wavelength Dispersive X-ray Spectrometer for use on Scanning Electron Microscopes (SEM). This new spectrometer allows very fast high resolution elemental analysis of samples in an electron microscope. By comparison to previous WDS spectrometers, it can change from one energy position to another very quickly and has an extended range compared to some similar products.

  16. Fused rock from Köfels, Tyrol

    USGS Publications Warehouse

    Milton, Daniel J.

    1964-01-01

    The vesicular glass from Köfels, Tyrol, contains grains of quartz that have been partially melted but not dissolved in the matrix glass. This phenomenon has been observed in similar glasses formed by friction along a thrust fault and by meteorite impact, but not in volcanic glasses. The explosion of a small nuclear device buried behind a steep slope produced a geologic structure that is a good small-scale model of that at Köfels. Impact of a large meteorite would have an effect analogous to that of a subsurface nuclear explosion and is the probable cause of the Köfels feature.

  17. Enhancing FEL Power with Phase Shifters

    SciTech Connect

    Ratner, Daniel; Chao, Alex; Huang, Zhirong; /SLAC

    2010-07-30

    Tapering the undulator parameter is a well-known method for maintaining the resonant condition past saturation, and increasing Free Electron Laser (FEL) efficiency. In this paper, we demonstrate that shifting the electron bunch phase relative to the radiation is equivalent to tapering the undulator parameter. Using discrete phase changes derived from optimized undulator tapers for the Linac Coherent Light Source (LCLS) x-ray FEL, we show that appropriate phase shifts between undulator sections can reproduce the power enhancement of undulator tapers. Phase shifters are relatively easy to implement and operate, and could be used to aid or replace undulator tapers in optimizing FEL performance.

  18. FEL system for energy transmission

    SciTech Connect

    Burke, R.J.; Curtin, M.S.; Lampel, M.C.; Cover, R.A.

    1994-12-01

    The use of a Free Electron Laser (FEL) as the power source for transmission from Earth stations to space assets is discussed. Considerations of requirements including net power transmitted, of system reliability, of system availability, of costs, and of technical maturity are addressed to determine a reasonable development path to an optimal system. Various applications of transmitted power are examined such as supplementary power to communications satellites, orbit raising through the use of electric and thermal thrusters, and supplementary power to manned orbiters and space stations. It is seen that each of these applications leads to different stages of infrastructure development, and that a program following a near optimal development path can lead to a system that has justifiable investments for the services delivered at each stage past the initial technology demonstration. 13 refs.

  19. Gain and noise characteristics of high-bit-rate silicon parametric amplifiers.

    PubMed

    Sang, Xinzhu; Boyraz, Ozdal

    2008-08-18

    We report a numerical investigation on parametric amplification of high-bit-rate signals and related noise figure inside silicon waveguides in the presence of two-photon absorption (TPA), TPA-induced free-carrier absorption, free-carrier-induced dispersion and linear loss. Different pump parameters are considered to achieve net gain and low noise figure. We show that the net gain can only be achieved in the anomalous dispersion regime at the high-repetition-rate, if short pulses are used. An evaluation of noise properties of parametric amplification in silicon waveguides is presented. By choosing pulsed pump in suitably designed silicon waveguides, parametric amplification can be a chip-scale solution in the high-speed optical communication and optical signal processing systems.

  20. Design studies of IR-FEL system at IAE, Kyoto University

    NASA Astrophysics Data System (ADS)

    Ohgaki, H.; Tometaka, I.; Yamane, K.; Kii, T.; Masuda, K.; Yoshikawa, K.; Yamazaki, T.

    2003-07-01

    An infrared FEL facility for bio/chemical energy research is under construction at the Institute of Advanced Energy, Kyoto University. The electron beam of 25-40 MeV with macropulse duration up to 3 μs will be generated by an S-band linac with a thermionic RF gun. Numerical studies to estimate the electron beam parameters and expected FEL gain of the present system have been performed to settle the goal for the system commissioning and the first operational condition. The results show that the present system can provide lasing in the wavelength from 4 to 13 μm by using a 180° arc. However, the macropulse duration is too short to deliver stable FEL for a practical usage.

  1. Suppression of mode-beating in a saturated hole-coupled FEL oscillator

    SciTech Connect

    Krishnagopal, S.; Xie, M.; Kim, K.J.

    1992-08-01

    In a hole-coupled resonator, either empty or loaded with a linear FEL gain medium, the phenomenon of mode-degeneracy and mode-beating have been studied. When the magnitudes of the eigenvalues, derived from a linear analysis, are equal for two or more dominant eigenmodes, the system cannot achieve a stable beam-profile. We investigate this phenomenon when a saturated FEL is present within the cavity, thus introducing non-linearity. We use a three-dimensional FEL oscillator code, based on the amplifier code TDA, and show that mode-beating is completely suppressed in the nonlinear saturated regime. We suggest a simple, qualitative model for the mechanism responsible for this suppression.

  2. Simulation of waveguide FEL oscillator using RF linac

    SciTech Connect

    Kuruma, S.; Asakawa, M.; Imasaki, K.

    1995-12-31

    One dimensional multifrequency simulation code for waveguide mode FEL has been developed. Using this simulation code, we analyzed the spontaneous emission from electron micropulse from RF Linac. It is found that some parameters both high and low frequency waveguide modes are growing simultaneously, so the two radiation pulses are generated and amplified. And the experimental data for cavity length detuning of the radiation power are analyzed.

  3. Efficient frequency doubler for the soft X-ray SASE FEL at the TESLA Test Facility

    NASA Astrophysics Data System (ADS)

    Feldhaus, J.; Körfer, M.; Möller, T.; Pflüger, J.; Saldin, E. L.; Schneidmiller, E. A.; Yurkov, M. V.

    2004-08-01

    This paper describes an effective frequency doubler scheme for SASE free electron lasers (FEL). It consists of an undulator tuned to the first harmonic, a dispersion section, and a tapered undulator tuned to the second harmonic. The first stage is a conventional soft X-ray SASE FEL. Its gain is controlled in such a way that the maximum energy modulation of the electron beam at the exit is about equal to the local energy spread, but still far away from saturation. When the electron bunch passes through the dispersion section this energy modulation leads to effective compression of the particles. Then the bunched electron beam enters the tapered undulator and produces strong radiation in the process of coherent deceleration. We demonstrate a frequency doubler scheme that can be integrated into the SASE FEL at the TESLA Test Facility at DESY, and will allow to reach 3 nm wavelength with GW-level of output peak power. This would extend the operating range of the FEL into the so-called water window and significantly expand the capabilities of the TTF FEL user facility.

  4. Viking Orbiter 75 in-flight pointing calibration of the high-gain antenna

    NASA Technical Reports Server (NTRS)

    Assefi, T.; Alexander, J. W.

    1980-01-01

    An in-flight pointing calibration technique developed for the Viking Orbiter high-gain antenna has been validated through actual flight usage. The desired telecommunications performance dictated that the high-gain antenna pointing error be held at 0.7 deg, which would have been exceeded without calibration. The in-flight calibration methodology required the development of a stochastic model of the spacecraft rotational biases and earth-received signal strength measurements. The signal strength measurements, which were performed at X-band frequency, were used as observations to estimate the rotational biases and their corresponding uncertainties. Reducing the uncertainties of these parameters resulted in increased antenna pointing accuracy. The initial pointing offset was estimated to be in excess of 1 deg, and after in-flight calibration it was reduced to about 0.66 deg. About 50% of the original offset could not be calibrated, thus the improvement on the remaining offset is better than 50%.

  5. High-gain backup antenna design for Pioneer Venus Orbiter spacecraft

    NASA Technical Reports Server (NTRS)

    Glaser, J. I.

    1986-01-01

    The development and performance is described of a high-gain antenna designed to serve on the Pioneer Venus Orbiter spacecraft as a backup to the principal high-gain antenna unit in the unlikely event the mechanically despun antenna mechanism malfunctioned. The final design, a center-fed standing wave array of six sleeve dipoles enclosed in a fiber glass radome, performed successfully, as did all the antennas, on the Pioneer Orbiter spacecraft which was launched on May 20, 1978, as part of the Pioneer Venus mission. Photographs of experimental models giving details of design and construction are included, as well as graphs showing measured pattern and impedance matching characteristics of the subject antenna.

  6. Green function analysis of a Raman FEL

    NASA Astrophysics Data System (ADS)

    Shvets, G.; Wurtele, J. S.

    1995-04-01

    This paper derives, in closed form, the Green function of an FEL operating in the strongly Raman regime. This Green function allows for the calculation of the temporal and spacial evolution of an arbitrary input radiation pulse. For the first time superradiance, originally studied in Compton regime by Bonifacio and co-workers [Phys. Rev. Lett. 73 (1994) 70; Nucl. Instr. and Meth. A 239 (1985) 36], has been seen numerically in a strongly Raman FEL.

  7. Temporal characteristics of a SASE FEL.

    SciTech Connect

    Li, Y,; Huang, Z.; Kim, K.-J.; Lewellen, J.; Milton, S. V.; Sajaev, V.

    2003-01-01

    We have performed a single-shot, time-resolved measurement of the output field of a SASE FEL using the frequency-resolved optical gating (FROG) technique. The measurement reveals the phase and the amplitude of the SASE output as functions of time and frequency, hence enables us to perform a full characterization of the SASE FEL output. We examined both the single-shot field evolution as well as the statistics over multiple shots on the phase and intensity evolution.

  8. Nonlinear harmonic generation in high-gain free-electron lasers

    SciTech Connect

    Dattoli, G.; Ottaviani, P.L.; Pagnutti, S.

    2005-06-01

    We reconsider the derivation of semianalytical expressions providing the most significant aspects of the high-gain free-electron laser dynamics. We obtain new expressions for the growth of the laser power, of the e-beam-induced energy spread, and of the higher-order nonlinearly generated harmonics. The procedure we employ, based on theoretical ansatz and fitting methods, allows the determination of crucial quantities like the expected harmonic output power and its dependences on the e-beam parameters.

  9. Two-dimensional simulation of a high-gain, generalized self-filtering, unstable resonator.

    PubMed

    Torre, A; Petrucci, C

    1997-04-20

    The performance of a high-power excimer laser, generalized self-filtering, unstable resonator has been modeled by means of a numerical code. The spectral method and the Rigrod equations are basic to the numerical procedure, which is quite general because it results from an appropriate combination of independent propagation algorithms. The code can be applied to arbitrary resonator geometry and can be used to take account of gain medium inhomogeneities and instability phenomena. PMID:18253235

  10. Development of calorimeters using thin chambers operating in a high gain mode

    NASA Astrophysics Data System (ADS)

    Bella, G.; Cohen, J.; Czyrkowski, H.; Fink, P.; Horwitz, N.; Kalo, J.; Lupu, N.; Majewski, S.; Mikenberg, G.; Mir, R.; Nowak, R.; Revel, D.; Walczak, R.; Walker, J.

    1986-12-01

    A new type of thin multiwire proportional chamber detector operating in a high gain mode has been developed. Its characteristics have been optimized for calorimetric use. Two setups consisting of ten such detectors (electromagnetic calorimeter) interlaced with lead plates of 6 mm thickness and with iron plates of 8 cm thickness (hadron calorimeter) were tested. The characteristics of these detectors operating in calorimetric environments have been investigated and compared with theoretical expectations.

  11. A wiggler magnet for FEL low voltage operation

    SciTech Connect

    Al-Shamma`a, A.; Stuart, R.A.; Lucas, J.

    1995-12-31

    In low voltage FELs (ie, 200kV), operation is necessarily in the microwave frequency range for wiggler periods of the order of cms., so that a waveguide system is mandatory. Also, because of the relatively low velocity of the electron beam, the wiggle amplitude of the electron beam can be much larger than is normal for highly relativistic FELs. Both these factors mean that the electron trajectory must be carefully controlled to avoid beam collision with the waveguide walls. A wiggler system with half poles at entrance and exit is not an acceptable solution because of the offset is gives rise to the electron trajectory. Consequently, we have designed and constructed a wiggler magnet with exponential entrance and exit tapers for a minimal deflection and displacement of the electron beam. Simulations and experimental measurements showed that an on axis trajectory is easily obtainable.

  12. Infrared Photoablation Studies of Arsenic Selenide with the Vanderbilt FEL

    NASA Astrophysics Data System (ADS)

    Adair, Janet; Marka, Zsuzsanna; Albert, Mike; Singh, Shailesh; Tolk, Norman

    2000-03-01

    In recent years arsenic selenide has shown a high potential for application as an infrared fiber material. It transmits in most of the 2-10 micron region, which is available at the Vanderbilt Free Electron Laser (FEL). The ablation threshold was measured for the bulk material at several different wavelengths corresponding to impurity absorption, such as Se-H and C-H vibrational modes. Using a time of flight spectrometer to detect the ablated particles, individual As/Se ions as well as bigger clusters of 6 As/Se atoms were observed. The Vanderbilt FEL delivers 3-5 microsecond long macropulses which consist of 1 ps long micropulses separated by 350 ps. Previous threshold measurements were made with the entire length of the macropulse hitting the sample. In the future a Pockel cell will be used to reduce the length of the macropulse to investigate the pulse length dependence of the ablation process. (Work funded by ONR)

  13. Locking Lasers to RF in an Ultra Fast FEL

    SciTech Connect

    Wilcox, R.; Huang, G.; Doolittle, L.; White, W.; Frisch, J.; Coffee, R.

    2010-01-02

    Using a novel, phase-stabilized RF-over-fiber scheme, they transmit 3GHz over 300m with 27fs RMS error in 250kHz bandwidth over 12 hours, and phase lock a laser to enable ultrafast pump-probe experiments. Free-electron lasers (FELs) are capable of producing short-duration (< 10fs), high-energy X-ray pulses for a range of scientific applications. The recently activated Linac Coherent Light Source (LCLS) FEL facility at SLAC will support experiments which require synchronized light pulses for pump-probe schemes. They developed and operated a fiber optic RF transmission system to synchronize lasers to the emitted X-ray pulses, which was used to enable the first pump-probe experiments at the LCLS.

  14. Are geographic regions with high income inequality associated with risk of abdominal weight gain?

    PubMed

    Kahn, H S; Tatham, L M; Pamuk, E R; Heath, C W

    1998-07-01

    Geographic regions characterized by income inequality are associated with adverse mortality statistics, but the pathophysiologic mechanisms that mediate this ecologic relationship have not been elucidated. This study used a United States mail survey of 34158 male and 42741 female healthy-adult volunteers to test the association between residence in geographic regions with relative income inequality and the likelihood of weight gain at the waist. Respondents came from 21 states that were characterized by the household income inequality (HII) index, a measure reflecting the proportion of total income received by the more well off 50% of households in the state. The main outcome measure was self-reported weight gain mainly at the waist as opposed to weight gain at other anatomic sites. After controlling for age, other individual-level factors, and each state's median household income, men's likelihood of weight gain at the waist was positively associated (p = 0.0008) with the HII index. Men from states with a high HII (households above the median receive 81.6% to 82.6% of the income) described weight gain at the waist more often than men from states with a low HII (households above the median receive 77.0% to 78.5% of the income) (odds ratio = 1.12, 95% confidence interval 1.03 to 1.22). Women's results showed a non-significant trend in the same direction. An association between ecologically defined socio-environmental stress and abdominal obesity may help to clarify the pathophysiologic pathways leading to several major chronic diseases.

  15. Trigeminal high-frequency stimulation produces short- and long-term modification of reflex blink gain

    PubMed Central

    Ryan, Michael; Kaminer, Jaime; Enmore, Patricia

    2013-01-01

    Reflex blinks provide a model system for investigating motor learning in normal and pathological states. We investigated whether high-frequency stimulation (HFS) of the supraorbital branch of the trigeminal nerve before the R2 blink component (HFS-B) decreases reflex blink gain in alert rats. As with humans (Mao JB, Evinger C. J Neurosci 21: RC151, 2001), HFS-B significantly reduced blink size in the first hour after treatment for rats. Repeated days of HFS-B treatment produced long-term depression of blink circuits. Blink gain decreased exponentially across days, indicating a long-term depression of blink circuits. Additionally, the HFS-B protocol became more effective at depressing blink amplitude across days of treatment. This depression was not habituation, because neither long- nor short-term blink changes occurred when HFS was presented after the R2. To investigate whether gain modifications produced by HFS-B involved cerebellar networks, we trained rats in a delay eyelid conditioning paradigm using HFS-B as the unconditioned stimulus and a tone as the conditioned stimulus. As HFS-B depresses blink circuits and delay conditioning enhances blink circuit activity, occlusion should occur if they share neural networks. Rats acquiring robust eyelid conditioning did not exhibit decreases in blink gain, whereas rats developing low levels of eyelid conditioning exhibited weak, short-term reductions in blink gain. These results suggested that delay eyelid conditioning and long-term HFS-B utilize some of the same cerebellar circuits. The ability of repeated HFS-B treatment to depress trigeminal blink circuit activity long term implied that it may be a useful protocol to reduce hyperexcitable blink circuits that underlie diseases like benign essential blepharospasm. PMID:24285868

  16. Feasibility studies of a compact mm-wave linac FEL

    SciTech Connect

    Nassiri, A.; Kustom, R.L.; Kang, Y.W.; Song, J.

    1995-12-31

    Short wavelength FELs impose stringent requirements on the quality of the electron beams. The key factor in obtaining a single-pass UV or x-ray FEL is the generation of small emittance electron beams with ultra-high brightness. The pioneering work at Los Alamos National Laboratory in the last decade has resulted in a dramatic improvement in the production of high electron beam brightness and small beam emittance using rf photocathode gun. The lower bound on the emittance of a 1-nC bunch without any emittance compensation is on the order of 3 {pi} mm-mrad. This is well within the emittance requirement being considered here. Although the original R&D work at Argonne, in collaboration with the University of Illinois at Chicago and University of Wisconsin-Madison, has produced encouraging results in the area of rf structure design, x-ray mask fabrication, and LIGA processing (Lithography, Electroforming, and Molding), the goal to prove feasibility has not yet been achieved. In this paper, we will present feasibility studies for a compact single-pass mm-linac FEL based on LIGA technology. This system will consist of a photocathode rf gun operated at 30 GHz, a 50-MeV superconducting constant gradient structure operated at 60 GHz, and a microundulator with 1-mm period.

  17. High gain low noise L-band preamplifier with cascade double-pass structure

    NASA Astrophysics Data System (ADS)

    Jia, Dongfang; Wang, Yanyong; Bao, Huanmin; Yang, Tianxin; Li, Shichen

    2005-06-01

    An optimized two-stage-cascade double-pass structure L-band preamplifier was proposed and experimentally studied to overcome the shortcomings of low gain coefficient and high noise figure of L-band erbium-doped fiber amplifier (EDFA). The fiber lengthes of 6.5 and 32.5 m, pump powers of 130 and 119 mW for the first and second stages respectively are used in the experiment. When input signal power is -30 dBm, the amplifier can provide gain above 38.84 dB in a wavelength range of 34 nm (1568---1602 nm), gain ripple less than 2.04 dB (40.88---38.84 dB), and noise figures lower than 5.29 dB with the lowest value of 3.95 dB at 1590 nm. Experimental and simulation results show that this low cost and high pump efficiency amplifier is suitable for the application as an L-band preamplifier in the broadband fiber communication system.

  18. Enhancing speed of pinning synchronizability: low-degree nodes with high feedback gains.

    PubMed

    Zhou, Ming-Yang; Zhuo, Zhao; Liao, Hao; Fu, Zhong-Qian; Cai, Shi-Min

    2015-01-01

    Controlling complex networks is of paramount importance in science and engineering. Despite recent efforts to improve controllability and synchronous strength, little attention has been paid to the speed of pinning synchronizability (rate of convergence in pinning control) and the corresponding pinning node selection. To address this issue, we propose a hypothesis to restrict the control cost, then build a linear matrix inequality related to the speed of pinning controllability. By solving the inequality, we obtain both the speed of pinning controllability and optimal control strength (feedback gains in pinning control) for all nodes. Interestingly, some low-degree nodes are able to achieve large feedback gains, which suggests that they have high influence on controlling system. In addition, when choosing nodes with high feedback gains as pinning nodes, the controlling speed of real systems is remarkably enhanced compared to that of traditional large-degree and large-betweenness selections. Thus, the proposed approach provides a novel way to investigate the speed of pinning controllability and can evoke other effective heuristic pinning node selections for large-scale systems. PMID:26626045

  19. Design of high-gain, wideband antenna using microwave hyperbolic metasurface

    NASA Astrophysics Data System (ADS)

    Zhao, Yan

    2016-05-01

    In this work, we apply hyperbolic metasurfaces (HMSs) to design high-gain and wideband antennas. It is shown that HMSs formed by a single layer of split-ring resonators (SRRs) can be excited to generate highly directive beams. In particular, we suggest two types of the SRR-HMS: a capacitively loaded SRR (CLSRR)-HMS and a substrate-backed double SRR (DSRR)-HMS. Both configurations ensure that the periodicity of the structures is sufficiently small for satisfying the effective medium theory. For the antenna design, we propose a two-layer-stacked configuration for the 2.4 GHz frequency band based on the DSRR-HMS excited by a folded monopole. Measurement results confirm numerical simulations and demonstrate that an antenna gain of more than 5 dBi can be obtained for the frequency range of 2.1 - 2.6 GHz, with a maximum gain of 7.8 dBi at 2.4 GHz.

  20. High Adherence Is Necessary to Realize Health Gains from Water Quality Interventions

    PubMed Central

    Brown, Joe; Clasen, Thomas

    2012-01-01

    Background Safe drinking water is critical for health. Household water treatment (HWT) has been recommended for improving access to potable water where existing sources are unsafe. Reports of low adherence to HWT may limit the usefulness of this approach, however. Methods and Findings We constructed a quantitative microbial risk model to predict gains in health attributable to water quality interventions based on a range of assumptions about pre-treatment water quality; treatment effectiveness in reducing bacteria, viruses, and protozoan parasites; adherence to treatment interventions; volume of water consumed per person per day; and other variables. According to mean estimates, greater than 500 DALYs may be averted per 100,000 person-years with increased access to safe water, assuming moderately poor pre-treatment water quality that is a source of risk and high treatment adherence (>90% of water consumed is treated). A decline in adherence from 100% to 90% reduces predicted health gains by up to 96%, with sharpest declines when pre-treatment water quality is of higher risk. Conclusions Results suggest that high adherence is essential in order to realize potential health gains from HWT. PMID:22586491

  1. Enhancing speed of pinning synchronizability: low-degree nodes with high feedback gains

    PubMed Central

    Zhou, Ming-Yang; Zhuo, Zhao; Liao, Hao; Fu, Zhong-Qian; Cai, Shi-Min

    2015-01-01

    Controlling complex networks is of paramount importance in science and engineering. Despite recent efforts to improve controllability and synchronous strength, little attention has been paid to the speed of pinning synchronizability (rate of convergence in pinning control) and the corresponding pinning node selection. To address this issue, we propose a hypothesis to restrict the control cost, then build a linear matrix inequality related to the speed of pinning controllability. By solving the inequality, we obtain both the speed of pinning controllability and optimal control strength (feedback gains in pinning control) for all nodes. Interestingly, some low-degree nodes are able to achieve large feedback gains, which suggests that they have high influence on controlling system. In addition, when choosing nodes with high feedback gains as pinning nodes, the controlling speed of real systems is remarkably enhanced compared to that of traditional large-degree and large-betweenness selections. Thus, the proposed approach provides a novel way to investigate the speed of pinning controllability and can evoke other effective heuristic pinning node selections for large-scale systems. PMID:26626045

  2. High-gain multipassed Yb:YAG amplifier for ultrashort pulse laser

    NASA Astrophysics Data System (ADS)

    Vetrovec, John; Copeland, Drew A.; Litt, Amardeep S.; Du, Detao

    2016-05-01

    We report on a Yb:YAG laser amplifier for ultrashort pulse applications at kW-class average power. The laser uses two large-aperture, disk-type gain elements fabricated from composite ceramic YAG material, and a multi-pass extraction architecture to obtain high gain in a chirped-pulse amplification system. The disks are edge-pumped, thus allowing for reduced doping of the host material with laser ions, which translates to lower lasing threshold and lower heat dissipation in the Yb:YAG material. The latter makes it possible to amplify a near diffraction-limited seed without significant thermo-optical distortions. This work presents results of testing the laser amplifier with relay optics and passive polarization switching configured for energy extraction with up to 40 passes through the disks. Applications for the ultrashort pulse laser amplifier include producing a laser-induced plasma channel, laser material ablation, and laser acceleration of atomic particles.

  3. High gain broadband amplification of ultraviolet pulses in optical parametric chirped pulse amplifier.

    PubMed

    Wnuk, Paweł; Stepanenko, Yuriy; Radzewicz, Czesław

    2010-04-12

    We report on a high gain amplification of broadband ultraviolet femtosecond pulses in an optical parametric chirped pulse amplifier. Broadband ultraviolet seed pulses were obtained by an achromatic frequency doubling of the output from a femtosecond Ti:Sapphire oscillator. Stretched seed pulses were amplified in a multipass parametric amplifier with a single BBO crystal pumped by a ns frequency quadrupled Nd:YAG laser. A noncollinear configuration was used for a broadband amplification. The total (after compression) amplification of 2.510(5) was achieved, with compressed pulse energy of 30 microJ and pulse duration of 24 fs. We found that the measured gain was limited by thermal effects induced by the absorption of the pump laser by color centers created in the BBO crystal.

  4. Interpolating gain-scheduled H∞ loop shaping design for high speed ball screw feed drives.

    PubMed

    Dong, Liang; Tang, WenCheng; Bao, DaFei

    2015-03-01

    This paper presents a method to design servo controllers for flexible ball screw drives with time-varying dynamics, which are mainly due to the time-varying table position and the workpiece mass. A gain-scheduled H∞ loop shaping controller is designed to achieve high tracking performance against the dynamic variations. H∞ loop shaping design procedure incorporates open loop shaping by a set of compensators to obtain performance/robust stability tradeoffs. The interpolating gain-scheduled controller is obtained by interpolating the state space model of the linear time-invariant (LTI) controllers estimated for fixed values of the scheduling parameters and a linear least squares problem can be solved. The proposed controller has been compared with P/PI with velocity and acceleration feedforward and adaptive backstepping sliding mode control experimentally. The experimental results indicate that the tracking performance has been improved and the robustness for time-varying dynamics has been achieved with the proposed scheme.

  5. A bootstrapped, low-noise, and high-gain photodetector for shot noise measurement.

    PubMed

    Zhou, Haijun; Yang, Wenhai; Li, Zhixiu; Li, Xuefeng; Zheng, Yaohui

    2014-01-01

    We presented a low-noise, high-gain photodetector based on the bootstrap structure and the L-C (inductance and capacitance) combination. Electronic characteristics of the photodetector, including electronic noise, gain and frequency response, and dynamic range, were verified through a single-frequency Nd:YVO4 laser at 1064 nm with coherent output. The measured shot noise of 50 μW laser was 13 dB above the electronic noise at the analysis frequency of 2 MHz, and 10 dB at 3 MHz. And a maximum clearance of 28 dB at 2 MHz was achieved when 1.52 mW laser was illuminated. In addition, the photodetector showed excellent linearities for both DC and AC amplifications in the laser power range between 12.5 μW and 1.52 mW.

  6. A bootstrapped, low-noise, and high-gain photodetector for shot noise measurement

    SciTech Connect

    Zhou, Haijun; Yang, Wenhai; Li, Zhixiu; Li, Xuefeng; Zheng, Yaohui

    2014-01-15

    We presented a low-noise, high-gain photodetector based on the bootstrap structure and the L-C (inductance and capacitance) combination. Electronic characteristics of the photodetector, including electronic noise, gain and frequency response, and dynamic range, were verified through a single-frequency Nd:YVO{sub 4} laser at 1064 nm with coherent output. The measured shot noise of 50 μW laser was 13 dB above the electronic noise at the analysis frequency of 2 MHz, and 10 dB at 3 MHz. And a maximum clearance of 28 dB at 2 MHz was achieved when 1.52 mW laser was illuminated. In addition, the photodetector showed excellent linearities for both DC and AC amplifications in the laser power range between 12.5 μW and 1.52 mW.

  7. Lean rats gained more body weight from a high-fructooligosaccharide diet.

    PubMed

    Li, Shaoting; Yingyi, Gu; Chen, Long; Lijuan, Gao; Ou, Shiyi; Peng, Xichun

    2015-07-01

    Fructooligosaccharides (FOS) are believed to be beneficial to the host growth and its gut health. This article is intended to investigate the different influences of a high-fructooligosaccharide (FOS) diet on the growth and gut microbiota of lean and obese rats. Diet-induced lean and obese rats were fed a high-FOS diet for 8 weeks. Rats' body weight (BW) and feed intake were recorded weekly, and their gut microbiota was analyzed by 16S rDNA sequencing. The results showed that the lean rats gained more BW than the obese ones from the high-FOS diet. In the meanwhile, the gut microbiota in both lean and obese rats was altered by this diet. The abundance of Bacteroidetes was increased significantly (P < 0.05) in the lean rats, while no significant alteration in Firmicutes was observed in all rats after the consumption of a high-FOS diet. In conclusion, this study first reported that the lean rats gained more body weight from a high-FOS diet than the obese ones, and the increase of Bacteroidetes might help rats harvest more energy from the high-FOS diet.

  8. Effects of bandwidth, compression speed, and gain at high frequencies on preferences for amplified music.

    PubMed

    Moore, Brian C J

    2012-09-01

    This article reviews a series of studies on the factors influencing sound quality preferences, mostly for jazz and classical music stimuli. The data were obtained using ratings of individual stimuli or using the method of paired comparisons. For normal-hearing participants, the highest ratings of sound quality were obtained when the reproduction bandwidth was wide (55 to 16000 Hz) and ripples in the frequency response were small (less than ± 5 dB). For hearing-impaired participants listening via a simulated five-channel compression hearing aid with gains set using the CAM2 fitting method, preferences for upper cutoff frequency varied across participants: Some preferred a 7.5- or 10-kHz upper cutoff frequency over a 5-kHz cutoff frequency, and some showed the opposite preference. Preferences for a higher upper cutoff frequency were associated with a shallow high-frequency slope of the audiogram. A subsequent study comparing the CAM2 and NAL-NL2 fitting methods, with gains slightly reduced for participants who were not experienced hearing aid users, showed a consistent preference for CAM2. Since the two methods differ mainly in the gain applied for frequencies above 4 kHz (CAM2 recommending higher gain than NAL-NL2), these results suggest that extending the upper cutoff frequency is beneficial. A system for reducing "overshoot" effects produced by compression gave small but significant benefits for sound quality of a percussion instrument (xylophone). For a high-input level (80 dB SPL), slow compression was preferred over fast compression. PMID:23172008

  9. Effects of Bandwidth, Compression Speed, and Gain at High Frequencies on Preferences for Amplified Music

    PubMed Central

    2012-01-01

    This article reviews a series of studies on the factors influencing sound quality preferences, mostly for jazz and classical music stimuli. The data were obtained using ratings of individual stimuli or using the method of paired comparisons. For normal-hearing participants, the highest ratings of sound quality were obtained when the reproduction bandwidth was wide (55 to 16000 Hz) and ripples in the frequency response were small (less than ± 5 dB). For hearing-impaired participants listening via a simulated five-channel compression hearing aid with gains set using the CAM2 fitting method, preferences for upper cutoff frequency varied across participants: Some preferred a 7.5- or 10-kHz upper cutoff frequency over a 5-kHz cutoff frequency, and some showed the opposite preference. Preferences for a higher upper cutoff frequency were associated with a shallow high-frequency slope of the audiogram. A subsequent study comparing the CAM2 and NAL-NL2 fitting methods, with gains slightly reduced for participants who were not experienced hearing aid users, showed a consistent preference for CAM2. Since the two methods differ mainly in the gain applied for frequencies above 4 kHz (CAM2 recommending higher gain than NAL-NL2), these results suggest that extending the upper cutoff frequency is beneficial. A system for reducing “overshoot” effects produced by compression gave small but significant benefits for sound quality of a percussion instrument (xylophone). For a high-input level (80 dB SPL), slow compression was preferred over fast compression. PMID:23172008

  10. Developing high-power hybrid resonant gain-switched thulium fiber lasers.

    PubMed

    Yan, Shuo; Wang, Yao; Zhou, Yan; Yang, Nan; Li, Yue; Tang, Yulong; Xu, Jianqiu

    2015-10-01

    In this paper, we propose hybrid-pumped resonant gain-switched thulium fiber lasers to realize high-average-power and high-pulse-energy 2-μm laser emissions. Based on numerical simulation, laser dynamics (pulse peak power, pulse energy, pulse duration, etc.) of this kind of laser system are investigated in detail. By taking advantages of the 793 nm continuous wave pump and the 1900 nm pulsed pump, performance of the laser emission can be significantly improved, with the highest average power of 28 W, peak power of 3.5 kW, pulse energy of 281 μJ, and narrowest pulse duration of 92 ns, all of which can be further optimized through designing the cavity parameters and the pumping circumstance. Compared with the pump pulses, two times improvement in pulse energy and average power has been achieved. This hybrid resonant gain-switched system has an all-fiber configuration and high efficiency (low heat load), and can be steadily extended into the cladding pump scheme, thus paving a new way to realize high power (>100 W average power) and high pulse energy (>1 mJ) 2 μm thulium fiber lasers. PMID:26480083

  11. Effects of high CO2 levels on dynamic photosynthesis: carbon gain, mechanisms, and environmental interactions.

    PubMed

    Tomimatsu, Hajime; Tang, Yanhong

    2016-05-01

    Understanding the photosynthetic responses of terrestrial plants to environments with high levels of CO2 is essential to address the ecological effects of elevated atmospheric CO2. Most photosynthetic models used for global carbon issues are based on steady-state photosynthesis, whereby photosynthesis is measured under constant environmental conditions; however, terrestrial plant photosynthesis under natural conditions is highly dynamic, and photosynthetic rates change in response to rapid changes in environmental factors. To predict future contributions of photosynthesis to the global carbon cycle, it is necessary to understand the dynamic nature of photosynthesis in relation to high CO2 levels. In this review, we summarize the current body of knowledge on the photosynthetic response to changes in light intensity under experimentally elevated CO2 conditions. We found that short-term exposure to high CO2 enhances photosynthetic rate, reduces photosynthetic induction time, and reduces post-illumination CO2 burst, resulting in increased leaf carbon gain during dynamic photosynthesis. However, long-term exposure to high CO2 during plant growth has varying effects on dynamic photosynthesis. High levels of CO2 increase the carbon gain in photosynthetic induction in some species, but have no significant effects in other species. Some studies have shown that high CO2 levels reduce the biochemical limitation on RuBP regeneration and Rubisco activation during photosynthetic induction, whereas the effects of high levels of CO2 on stomatal conductance differ among species. Few studies have examined the influence of environmental factors on effects of high levels of CO2 on dynamic photosynthesis. We identified several knowledge gaps that should be addressed to aid future predictions of photosynthesis in high-CO2 environments. PMID:27094437

  12. High-gain optical Cherenkov oscillator driven by low-voltage electron beam

    SciTech Connect

    Smetanin, I.V.; Oraevsky, A.N.

    1995-12-31

    A novel scheme of high-gain optical (from IR up to UV) Cherenkov-type oscillator driven by low-voltage high-current electron beam is proposed in the present report. In the scheme discussed the magnetized electron beam propagates above the surface of absorbing medium of complex dielectric susceptibility {epsilon}{omega} = {epsilon}{sub 1}({omega}) + i{epsilon}{sub 2}({omega}), {epsilon}{sub 2}>0. We have found that at frequencies {omega} that {beta}{sup 2}> 2{epsilon}{sub 1}/{vert_bar}{epsilon}{vert_bar}{sup 2} ({beta} = v/c, v is the electron velocity), an amplification of co-propagating slow surface electromagnetic wave is possible. In contrast to the conventional Cherenkov oscillators, the absorption condition {epsilon}2>0 is crucial for the gain, which is absent for transparent medium. The physics of this amplification effect is analogous to that of electron beam dissipative instability. The wavelength generated is determined here by dielectric properties of the surface, and does not depend strongly on electron energy. Thus it is possible to use rather compact low voltage ({le} 1MeV) high-current accelerators as drivers. Optimum oscillation conditions are found to be at frequencies near the resonance absorption lines of surface material (i.e. from IR up to UV). The gain up to {approximately}0.5cm{sup -1} in the near IR ({approximately}10THz, SrF{sub 2} absorption line) is possible for 250keV high current (density {approximately}10{sup 12}cm{sup -3}) electron beam.

  13. Calculation of coherent emissions and gain from a prebunched Free Electron Laser

    SciTech Connect

    Treadwell, E.A. |

    1995-08-01

    This report advances a theoretical model for the single pass growth of coherent radiation in a prebunched FEL system. The FEL system includes a radio frequency linear accelerator (fr linac) as the injector, a resonator cavity with a wiggler magnet, and two highly reflective plano-concave mirrors, typically 99{percent} of the radiation is reflected inside the resonator. The model is based upon the following assumptions: a) the electron beam is cold, b) a super- electron is a particle with {approximately} 10{sup 8} elementary charges inside a bunch; the bunch length is much smaller than the radiation wavelength and the super-electron scatters with the rf wave in a single pass through the resonator, c) a smooth phase space transition must exist between the rf linac and the resonator, d) the energy gain is low per pass and consequently in the linear gain regime, and e) if condition (b) is satisfied and the bunch is resonant with the FEL beat wave, all electrons lose energy to the wave, in the lowest order approximation. A simple scaling technique is used to calculate the output power given the number of particles in a bunch and the efficiency for retrieving coherent radiation from the resonator. 4 refs., 8 figs., 2 tabs.

  14. Space charge field in a FEL with axially symmetric electron beam

    SciTech Connect

    Goncharov, I.A.; Belyavskiy, E.D.

    1995-12-31

    Nonlinear two-dimensional theory of the space charge of an axially symmetric electron beam propagating in combined right-hand polarized wiggler and uniform axial guide fields in a presence of high-frequency electromagnetic wave is presented. The well-known TE{sub 01} mode in a cylindrical waveguide for the model of radiation fields and paraxial approximation for the wiggler field are used. Space charge field components are written in the Lagrange coordinates by the twice averaged Green`s functions of two equally charged infinitely thin discs. For that {open_quotes}compensating charges{close_quotes} method is applied in which an electron ring model is substituted by one with two different radii and signs discs. On this approach the initial Green`s functions peculiarities are eliminated and all calculations are considerably simplified. Coefficients of a twice averaged Green`s function expansion into a Fourier series are obtained by use of corresponding expansion coefficients of longitudinal Green`s functions of equal radii discs and identical rings known from the one-dimensional theory of super HF devices taking into account electron bunches periodicity. This approach permit the space charge field components for an arbitrary stratified stream to be expressed in a simple and strict enough form. The expressions obtained can be employed in a nonlinear two-dimensional FEL theory in order to investigate beam dynamical defocusing and electrons failing on the waveguide walls in the high gain regime. This is especially important for FEL operation in mm and submm.

  15. High-accuracy picosecond characterization of gain-switched laser diodes

    SciTech Connect

    Cova, S.; Lacaita, A.; Ghioni, M.; Ripamonti, G. )

    1989-12-15

    A unique combination of the time-correlated photon-counting technique and single-photon avalanche diode detectors gives an accurate characterization of gain-switched semiconductor lasers with picosecond resolution. The high sensitivity and the clean shape of the time response reveal even small features (reflections and relaxation oscillations), making a true optimization of the laser-diode operation possible. The technique outperforms the standard characterization with ultrafast p-i-n photodiodes and a sampling oscilloscope. In addition, compared with other methods, it has favorable features that greatly simplify the measurement.

  16. High Gain Antenna System Deployment Mechanism Integration, Characterization, and Lessons Learned

    NASA Technical Reports Server (NTRS)

    Parong, Fil; Russell, Blair; Garcen, Walter; Rose, Chris; Johnson, Chris; Huber, Craig

    2014-01-01

    The integration and deployment testing of the High Gain Antenna System for the Global Precipitation Measurement mission is summarized. The HGAS deployment mechanism is described. The gravity negation system configuration and its influence on vertical, ground-based, deployment tests are presented with test data and model predictions. A focus is made on the late discovery and resolution of a potentially mission degrading deployment interference condition. The interaction of the flight deployment mechanism, gravity negation mechanism, and use of dynamic modeling is described and lessons learned presented.

  17. High Gain Antenna System Deployment Mechanism Integration, Characterization, and Lessons Learned

    NASA Technical Reports Server (NTRS)

    Parong, Fil; Russell, Blair; Garcen, Walter; Rose, Chris; Johnson, Chris; Huber, Craig

    2014-01-01

    The integration and deployment testing of the High Gain Antenna System (HGAS) for the Global Precipitation Measurement mission is summarized. The HGAS deployment mechanism is described. The gravity negation system configuration and its influence on vertical, ground-based deployment tests are presented with test data and model predictions. A focus is made on the late discovery and resolution of a potentially mission-degrading deployment interference condition. The interaction of the flight deployment mechanism, gravity-negation mechanism, and use of dynamic modeling is described and lessons learned presented

  18. Multi-modelling as new estimation schema for high-gain observers

    NASA Astrophysics Data System (ADS)

    Bernat, Jakub; Stepien, Slawomir

    2015-06-01

    The presented paper proposes a novel method of observer design. A new two-layer observer structure is introduced. The first layer consists of multiple high-gain observers. The latter is built to connect the first layer observers into single one. As the new contribution, the new mapping is defined between an unknown state and measurable outputs allowing to explore new estimation schema. Hence, the proposed method enhances the estimation process for linear and nonlinear systems. Furthermore, it is shown that the introduced observation scheme improves the transients. Illustrative examples are calculated to show the properties of the new observation method.

  19. A high-gain antenna is prepared for installation on Z1 truss

    NASA Technical Reports Server (NTRS)

    2000-01-01

    In the Space Shuttle Processing Facility, workers confer about the high-gain antenna in front of them that will be attached to the Integrated Truss Structure (ITS) Z1. The Z1, part of the payload on mission STS-92 (flight 3A) to be launched in mid-fall, is an early exterior framework for the International Space Station. It will allow the first U.S. solar arrays, on mission STS-97 (flight 4A), to be temporarily installed on Unity for early power.

  20. A high-gain antenna is prepared for installation on Z1 truss

    NASA Technical Reports Server (NTRS)

    2000-01-01

    In the Space Shuttle Processing Facility, a worker checks a rope attached to a high-gain antenna before it moves to the Integrated Truss Structure (ITS) Z1, to which it will be attached. The Z1, part of the payload on mission STS-92 (flight 3A) to be launched in mid-fall, is an early exterior framework for the International Space Station. It will allow the first U.S. solar arrays, on mission STS-97 (flight 4A), to be temporarily installed on Unity for early power.

  1. A high-gain antenna is prepared for installation on Z1 truss

    NASA Technical Reports Server (NTRS)

    2000-01-01

    An overhead crane in the Space Shuttle Processing Facility lifts a high-gain antenna over a work platform toward the Integrated Truss Structure (ITS) Z1, to which it will be attached. The Z1, part of the payload on mission STS-92 (flight 3A) to be launched in mid-fall, is an early exterior framework for the International Space Station. It will allow the first U.S. solar arrays, on mission STS-97 (flight 4A), to be temporarily installed on Unity for early power.

  2. A high-gain antenna is prepared for installation on Z1 truss

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Workers in the Space Shuttle Processing Facility (SSPF) move a high-gain antenna for installation onto the Integrated Truss Structure (ITS) Z1, already in the SSPF. The Z1 is an early exterior framework for the International Space Station that will allow the first U.S. solar arrays, on mission STS-97, flight 4A, to be temporarily installed on Unity for early power. The Z1 is a payload scheduled on mission STS-92, the fifth flight to the Space Station, in the fall.

  3. A high-gain antenna is prepared for installation on Z1 truss

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Workers in the Space Shuttle Processing Facility (SSPF) are getting ready to prepare the high-gain antenna beside them on the floor for installation on the Integrated Truss Structure (ITS) Z1, just beyond the scaffolding. The Z1 is an early exterior framework for the International Space Station to allow the first U.S. solar arrays, on mission STS-97, flight 4A, to be temporarily installed on Unity for early power. The Z1 is a payload scheduled on mission STS-92, the fifth flight to the Space Station, in the fall.

  4. A high-gain antenna is prepared for installation on Z1 truss

    NASA Technical Reports Server (NTRS)

    2000-01-01

    In the Space Shuttle Processing Facility, an overhead crane begins lifting a high-gain antenna to move it to the Integrated Truss Structure (ITS) Z1, to which it will be attached. The Z1, part of the payload on mission STS-92 (flight 3A) to be launched in mid-fall, is an early exterior framework for the International Space Station. It will allow the first U.S. solar arrays, on mission STS-97 (flight 4A), to be temporarily installed on Unity for early power.

  5. A high-gain antenna is prepared for installation on Z1 truss

    NASA Technical Reports Server (NTRS)

    2000-01-01

    In the Space Shuttle Processing Facility, workers get ready to attach cables to a high-gain antenna that will be lifted and attached to the Integrated Truss Structure (ITS) Z1. The Z1, part of the payload on mission STS-92 (flight 3A) to be launched in mid-fall, is an early exterior framework for the International Space Station. It will allow the first U.S. solar arrays, on mission STS-97 (flight 4A), to be temporarily installed on Unity for early power.

  6. A high-gain antenna is prepared for installation on Z1 truss

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Workers at left stand by while work is done on the Integrated Truss Structure (ITS) Z1 at right. To the left of the Z1 is a high-gain antenna that will be installed on the Z1. An early exterior framework for the International Space Station, the Z1 will allow the first U.S. solar arrays, on mission STS-97, flight 4A, to be temporarily installed on Unity for early power. The Z1 is a payload scheduled on mission STS-92, the fifth flight to the Space Station, in the fall.

  7. A high-gain antenna is prepared for installation on Z1 truss

    NASA Technical Reports Server (NTRS)

    2000-01-01

    In the Space Shuttle Processing Facility, workers make adjustments on a high-gain antenna that will be attached to the Integrated Truss Structure (ITS) Z1. The Z1, part of the payload on mission STS-92 (flight 3A) to be launched in mid-fall, is an early exterior framework for the International Space Station. It will allow the first U.S. solar arrays, on mission STS-97 (flight 4A), to be temporarily installed on Unity for early power.

  8. Method and system for modulation of gain suppression in high average power laser systems

    DOEpatents

    Bayramian, Andrew James

    2012-07-31

    A high average power laser system with modulated gain suppression includes an input aperture associated with a first laser beam extraction path and an output aperture associated with the first laser beam extraction path. The system also includes a pinhole creation laser having an optical output directed along a pinhole creation path and an absorbing material positioned along both the first laser beam extraction path and the pinhole creation path. The system further includes a mechanism operable to translate the absorbing material in a direction crossing the first laser beam extraction laser path and a controller operable to modulate the second laser beam.

  9. Yb3+ doped fluorophosphate laser glasses with high gain coefficient and improved laser property

    NASA Astrophysics Data System (ADS)

    Wang, P. F.; Peng, B.; Li, W. N.; Hou, Ch. Q.; She, J. B.; Guo, H. T.; Lu, M.

    2012-04-01

    Yb3+ doped fluorophosphate glasses with high stimulated emission cross-section, large gain coefficient and low hydroxyl absorption coefficient were prepared by high temperature melting for fiber laser applications, and their spectral, general laser parameters were investigated accordingly by means of fluorescence emission spectrum, decay cure and infrared absorption spectra. Compared with previously reported fluorophosphate glasses, the investigated fluorophosphate glasses have highest grain coefficient and maintain a maximum laser systematical factor over other various types of laser glasses. The introduction of fluorides to fluorophosphate glasses results in the low level of hydroxyl absorption coefficient and concentration. All these advantages might mean that Yb3+ doped fluorophosphate glasses are a good candidate as an active laser media for short pulse, high power laser generation used for next generation nuclear fusion.

  10. The cat lipocalin Fel d 7 and its cross-reactivity with the dog lipocalin Can f 1.

    PubMed

    Apostolovic, D; Sánchez-Vidaurre, S; Waden, K; Curin, M; Grundström, J; Gafvelin, G; Cirkovic Velickovic, T; Grönlund, H; Thomas, W R; Valenta, R; Hamsten, C; van Hage, M

    2016-10-01

    We investigated the prevalence of sensitization to the cat lipocalin Fel d 7 among 140 cat-sensitized Swedish patients and elucidated its allergenic activity and cross-reactivity with the dog lipocalin Can f 1. Sixty-five of 140 patients had IgE to rFel d 7 whereof 60 also had IgE to rCan f 1. A moderate correlation between IgE levels to rFel d 7 and rCan f 1 was found. rFel d 7 activated basophils in vitro and inhibited IgE binding to rCan f 1 in 4 of 13 patients, whereas rCan f 1 inhibited IgE binding to rFel d 7 in 7 of 13 patients. Fel d 7 and Can f 1 showed high similarities in protein structure and epitopes in common were found using cross-reactive antisera. Fel d 7 is a common allergen in a Swedish cat-sensitized population that cross-reacts with Can f 1, and may contribute to symptoms in cat- but also in dog-allergic patients.

  11. Longevity improvement of optically activated, high gain GaAs photoconductive semiconductor switches

    SciTech Connect

    MAR,ALAN; LOUBRIEL,GUILLERMO M.; ZUTAVERN,FRED J.; O'MALLEY,MARTIN W.; HELGESON,WESLEY D.; BROWN,DARWIN JAMES; HJALMARSON,HAROLD P.; BACA,ALBERT G.

    2000-03-02

    The longevity of high gain GaAs photoconductive semiconductor switches (PCSS) has been extended to over 100 million pulses at 23A, and over 100 pulses at 1kA. This is achieved by improving the ohmic contacts by doping the semi-insulating GaAs underneath the metal, and by achieving a more uniform distribution of contact wear across the entire switch by distributing the trigger light to form multiple filaments. This paper will compare various approaches to doping the contacts, including ion implantation, thermal diffusion, and epitaxial growth. The device characterization also includes examination of the filament behavior using open-shutter, infra-red imaging during high gain switching. These techniques provide information on the filament carrier densities as well as the influence that the different contact structures and trigger light distributions have on the distribution of the current in the devices. This information is guiding the continuing refinement of contact structures and geometries for further improvements in switch longevity.

  12. Design of a novel mixer with high gain and linearity improvement for DRM/DAB applications

    NASA Astrophysics Data System (ADS)

    Yiqiang, Wu; Zhigong, Wang; Jian, Xu; Jian, Wang; Ouli, Zhang; Lu, Tang

    2013-01-01

    This paper focuses on a new design of a down-conversion mixer for a low-IF wideband receiver. Based on the folded structure and differential multiple gated transistor (DMGTR) technique, a novel quadrature mixer with a high conversion gain, a moderate linearity, and a moderate NF is proposed. The mixer is designed and implemented in a 0.18-μm CMOS process, and can operate in a frequency range from 150 kHz to 1.5 GHz. The circuit performance is confirmed by both simulation and measurement results. The measurement results exhibit a peak conversion gain of 13.35 dB, a high third order input referred intercept point of 14.85 dBm, and a moderate single side band noise figure of 10.67 dB. Moreover, the whole quadrature mixer core occupies a compact die area of 0.122 mm2. It consumes a current of 3.96 mA (excluding the output buffers) under a single supply voltage of 1.8 V.

  13. Polarization beam combination technique for gain saturation effect compensation in high-energy systems

    NASA Astrophysics Data System (ADS)

    Chen, Junchi; Peng, Yujie; Su, Hongpeng; Leng, Yuxin

    2016-06-01

    To compensate for the gain saturation effect in the high-energy laser amplifier, a modified polarization beam combination (PBC) method is introduced to reshape temporal waveform of the injected laser pulse to obtain a controlled high-energy laser pulse shape after amplification. One linearly polarized beam is divided into two orthogonal polarized beams, which spatially recombine together collinearly after propagating different optical paths with relative time delay in PBC structure. The obtained beam with polarization direction being rotated by the following half wave plate is divided and combined again to reform a new beam in another modified polarization beam structure. The reformed beam is injected into three cascaded laser amplifiers. The amplified pulse shape can be controlled by the incident pulse shape and amplifier gain, which is agreeable to the simulation by the Frank-Nodvik equations. Based on the simple method, the various temporal waveform of output pulse with tunable 7 to 20 ns pulse duration can be obtained without interferometric fringes.

  14. Polarization beam combination technique for gain saturation effect compensation in high-energy systems

    NASA Astrophysics Data System (ADS)

    Chen, Junchi; Peng, Yujie; Su, Hongpeng; Leng, Yuxin

    2016-06-01

    To compensate for the gain saturation effect in the high-energy laser amplifier, a modified polarization beam combination (PBC) method is introduced to reshape temporal waveform of the injected laser pulse to obtain a controlled high-energy laser pulse shape after amplification. One linearly polarized beam is divided into two orthogonal polarized beams, which spatially recombine together collinearly after propagating different optical paths with relative time delay in PBC structure. The obtained beam with polarization direction being rotated by the following half wave plate is divided and combined again to reform a new beam in another modified polarization beam structure. The reformed beam is injected into three cascaded laser amplifiers. The amplified pulse shape can be controlled by the incident pulse shape and amplifier gain, which is agreeable to the simulation by the Frank-Nodvik equations. Based on the simple method, the various temporal waveform of output pulse with tunable 7 to 20 ns pulse duration can be obtained without interferometric fringes.

  15. Photon Beam Diagnostics for VISA FEL

    SciTech Connect

    Murokh, A.; Pellegrini, C.; Rosenzweig, J.; Frigola, P.; Musumeci, P.; Tremaine, A.; Babzien, M.; Ben-Zvi, I.; Doyuran, A.; Johnson, E.; Skaritka, J.; Wang, X.J.; Van Bibber, K.; Hill, J.M.; LeSage, G.P.; Nguyen, D.; Cornacchia, M.

    1999-11-05

    The VISA (Visible to Infrared SASE Amplifier) project is designed to be a SASE-FEL driven to saturation in the sub-micron wavelength region. Its goal is to test various aspects of the existing theory of Self-Amplified Spontaneous Emission, as well as numerical codes. Measurements include: angular and spectral distribution of the FEL light at the exit and inside of the undulator; electron beam micro-bunching using CTR; single-shot time resolved measurements of the pulse profile, using auto-correlation technique and FROG algorithm. The diagnostics are designed to provide maximum information on the physics of the SASE-FEL process, to ensure a close comparison of the experimental results with theory and simulations.

  16. Redesign of a Variable-Gain Output Feedback Longitudinal Controller Flown on the High-Alpha Research Vehicle (HARV)

    NASA Technical Reports Server (NTRS)

    Ostroff, Aaron J.

    1998-01-01

    This paper describes a redesigned longitudinal controller that flew on the High-Alpha Research Vehicle (HARV) during calendar years (CY) 1995 and 1996. Linear models are developed for both the modified controller and a baseline controller that was flown in CY 1994. The modified controller was developed with three gain sets for flight evaluation, and several linear analysis results are shown comparing the gain sets. A Neal-Smith flying qualities analysis shows that performance for the low- and medium-gain sets is near the level 1 boundary, depending upon the bandwidth assumed, whereas the high-gain set indicates a sensitivity problem. A newly developed high-alpha Bode envelope criterion indicates that the control system gains may be slightly high, even for the low-gain set. A large motion-base simulator in the United Kingdom was used to evaluate the various controllers. Desired performance, which appeared to be satisfactory for flight, was generally met with both the low- and medium-gain sets. Both the high-gain set and the baseline controller were very sensitive, and it was easy to generate pilot-induced oscillation (PIO) in some of the target-tracking maneuvers. Flight target-tracking results varied from level 1 to level 3 and from no sensitivity to PIO. These results were related to pilot technique and whether actuator rate saturation was encountered.

  17. High-power picosecond laser diodes based on different methods of fast gain control for high-precision radar applications

    NASA Astrophysics Data System (ADS)

    Vainshtein, Sergey; Kostamovaara, Juha; Lantratov, Vladimir; Kaluzhniy, Nikolay; Mintairov, Sergey

    2007-05-01

    Current-pumped picosecond-range laser diodes with a peak power significantly exceeding that achievable from gainswitched lasers are of major interest for a large variety of commercial applications. A group of phenomena have been explored in which the peak transient gain is efficiently controlled by a fast reduction in the pumping current. Common to all these phenomena is the fact that the peak powers of the emitted picosecond optical pulses (15-100 ps) exceed that obtainable from gain-switched laser diodes by at least an order of magnitude, although the physical reasons for the high gain and the design principles of the semiconductor structures are different. The main problem in the realization of these picosecond modes in low-cost practical systems is the high sensitivity of the operation regime to structural and circuit parameters. A related problem is the questionable reproducibility of the fabrication processes used so far. Proper development of reliable high-power picosecond transmitters will require the use of more advanced fabrication methods and further study of the effect of structural parameters on the properties of the picosecond lasing mode. In this paper we report on a record value for the power density of the picosecond lasing (50W / 30ps) obtained from a laser diode chip of width 20 μm and give a qualitative interpretation of the operating mode. Use of the MOCVD process for diode fabrication should allow reproducible technology for picosecond laser diodes to be developed.

  18. High gain 1.3-μm GaInNAs SOA with fast gain dynamics and enhanced temperature stability

    NASA Astrophysics Data System (ADS)

    Fitsios, D.; Giannoulis, G.; Iliadis, N.; Korpijärvi, V.-M.; Viheriälä, J.; Laakso, A.; Dris, S.; Spyropoulou, M.; Avramopoulos, H.; Kanellos, G. T.; Pleros, N.; Guina, M.

    2014-03-01

    Semiconductor optical amplifiers (SOAs) are a well-established solution of optical access networks. They could prove an enabling technology for DataCom by offering extended range of active optical functionalities. However, in such costand energy-critical applications, high-integration densities increase the operational temperatures and require powerhungry external cooling. Taking a step further towards improving the cost and energy effectiveness of active optical components, we report on the development of a GaInNAs/GaAs (dilute nitride) SOA operating at 1.3μm that exhibits a gain value of 28 dB and combined with excellent temperature stability owing to the large conduction band offset between GaInNAs quantum well and GaAs barrier. Moreover, the characterization results reveal almost no gain variation around the 1320 nm region for a temperature range from 20° to 50° C. The gain recovery time attained values as short as 100 ps, allowing implementation of various signal processing functionalities at 10 Gb/s. The combined parameters are very attractive for application in photonic integrated circuits requiring uncooled operation and thus minimizing power consumption. Moreover, as a result of the insensitivity to heating issues, a higher number of active elements can be integrated on chip-scale circuitry, allowing for higher integration densities and more complex optical on-chip functions. Such component could prove essential for next generation DataCom networks.

  19. The APS SASE FEL : modeling and code comparison.

    SciTech Connect

    Biedron, S. G.

    1999-04-20

    A self-amplified spontaneous emission (SASE) free-electron laser (FEL) is under construction at the Advanced Photon Source (APS). Five FEL simulation codes were used in the design phase: GENESIS, GINGER, MEDUSA, RON, and TDA3D. Initial comparisons between each of these independent formulations show good agreement for the parameters of the APS SASE FEL.

  20. High gain x-ray lasers pumped by transient collisional excitation

    SciTech Connect

    Dunn, J., LLNL

    1998-06-16

    We present recent results of x-ray laser amplification of spontaneous emission in Ne-like and Ni-like transient collisional excitation schemes. The plasma formation, ionization and collisional excitation can be optimized using two laser pulses of 1 ns and 1 ps duration at table-top energies of 5 J in each beam. High gain of 35 cm{sup -1} has been measured on the 147 {Angstrom} 4d{r_arrow}4p J=0{r_arrow}1 transition of Ni-like Pd and is a direct consequence of the nonstationary population inversion produced by the high intensity picosecond pulse. We report the dependence of the x-ray laser line intensity on the laser plasma conditions and compare the experimental measurements with hydrodynamic and atomic kinetics simulations for Ne-like and Ni-like lasing.

  1. Some observations on spin detector response during Galileo high gain antenna deployment

    NASA Technical Reports Server (NTRS)

    Peng, Chia-Yen; Smith, Kenneth S.

    1992-01-01

    This paper summarizes a dynamic analysis conducted in support of the investigation of the anomalous deployment of the Galileo High Gain Antenna on April 11, 1991. The work was focused on modeling the spacecraft spin dynamics to predict and compare the spin detector telemetry during the antenna deployment for possible cause scenarios. The effects of analog and digital low-pass filtering, digitization, and telemetry on the reported spin rate were studied as well. The high frequency phenomena in the spin detector response are masked by the filtering and sampling of the telemetry data. However, the observed spin detector telemetery is consistent with a single rib popping free, and is most likely associated with a rib near the spin detector, or 180 deg opposite.

  2. A Jitter-Mitigating High Gain Antenna Pointing Algorithm for the Solar Dynamics Observatory

    NASA Technical Reports Server (NTRS)

    Bourkland, Kristin L.; Liu, Kuo-Chia; Blaurock, Carl

    2007-01-01

    This paper details a High Gain Antenna (HGA) pointing algorithm which mitigates jitter during the motion of the antennas on the Solar Dynamics Observatory (SDO) spacecraft. SDO has two HGAs which point towards the Earth and send data to a ground station at a high rate. These antennas are required to track the ground station during the spacecraft Inertial and Science modes, which include periods of inertial Sunpointing as well as calibration slews. The HGAs also experience handoff seasons, where the antennas trade off between pointing at the ground station and pointing away from the Earth. The science instruments on SDO require fine Sun pointing and have a very low jitter tolerance. Analysis showed that the nominal tracking and slewing motions of the antennas cause enough jitter to exceed the HGA portion of the jitter budget. The HGA pointing control algorithm was expanded from its original form as a means to mitigate the jitter.

  3. A novel design for high gain lens antennas with homogeneous media

    NASA Astrophysics Data System (ADS)

    Huang, Lujun; Wang, Ziqian; Zhou, Shutong; Li, Guanhai; Ni, Bo; Wang, Xiaofang; Li, Zhifeng; Chen, Xiaoshuang; Lu, Wei

    2012-10-01

    A high gain lens antenna is designed by using a new transformation different from the discrete optical transformation. The antenna is composed of two blocks. Each block is made of homogenous and anisotropic materials, and thus can be easily achieved by metamaterial. The numerical results based on full wave simulation indicate that the antenna can be used to realize highly directive radiation beam, and the direction of radiation beam can be controlled artificially by changing the geometry parameters of the device. The electromagnetic field in the transformation region can be either stretched or compressed along both transverse and longitudinal directions by varying the geometry parameters in the virtual space while the distribution of electromagnetic field outside the antenna is little influenced. Moreover, effective medium theory is applied to realize such an antenna with isotropic materials. Also, the multi-beams antenna is investigated. It is indicated that this antenna can generate multi-collimated beams radiating at the desired angles.

  4. Undulators for short wavelength FEL amplifiers

    SciTech Connect

    Schlueter, R.

    1994-08-01

    Issues critical to the design of undulators for use in short wavelength FEL amplifiers, such as attainable on-axis field strength, device compactness, field quality, required magnetic gap, and strong focusing schemes, are discussed. The relative strength of various undulator technologies, including pure permanent magnet, hybrid, warm electromagnetic, pulsed, and superconducting electromagnetic devices in both helical and planar configurations are reviewed. Favored design options for proposed short wavelength FELs, such as the Linac Coherent Light Source at SLAC and the DUV Free-Electron Laser at BNL, are presented.

  5. EXPERIENCE AND PLANS OF THE JLAB FEL FACILITY AS A USER FACILITY

    SciTech Connect

    Michelle D. Shinn

    2007-08-26

    Jefferson Lab's IR Upgrade FEL building was planned from the beginning to be a user facility, and includes an associated 600 m2 area containing seven laboratories. The high average power capability (multikilowatt-level) in the near-infrared (1-3 microns), and many hundreds of watts at longer wavelengths, along with an ultrafast (~ 1 ps) high PRF (10's MHz) temporal structure makes this laser a unique source for both applied and basic research. In addition to the FEL, we have a dedicated laboratory capable of delivering high power (many tens of watts) of broadband THz light. After commissioning the IR Upgrade, we once again began delivering beam to users in 2005. In this presentation, I will give an overview of the FEL facility and its current performance, lessons learned over the last two years, and a synopsis of current and future experiments.

  6. Progress in laboratory high gain ICF (inertial confinement fusion): Prospects for the future

    SciTech Connect

    Storm, E.; Lindl, J.D.; Campbell, E.M.; Bernat, T.P.; Coleman, L.W.; Emmett, J.L.; Hogan, W.J.; Hunt, J.T.; Krupke, W.F.; Lowdermilk, W.H.

    1988-01-01

    Inertial confinement fusion (ICF), a thermonuclear reaction in a small (/approximately/5 mm diameter) fuel capsule filled with a few milligrams of deuterium and tritium, has been the subject of very fruitful experimentation since the early 1970's. High gain ICF is now on the threshold of practical applications. With a Laboratory Microfusion Facility (LMF), these applications will have major implications for national defense, basic and applied science, and power production. With a driver capable of delivering about 10 MJ in a 10-ns pulse at an intensity of /approximately/3 /times/ 10/sup 14/ W/cm/sup 2/, an appropriately configured cryogenic capsule could be compressed to a density of about 200 g/cm/sup 3/ and a temperature of 3--5 keV. Under these conditions, up to 10 mg of DT could be ignited, and with a burn efficiency of about 30%, release up to 1000 MJ of fusion energy, an energy gain of about 100. A thousand megajoules is equivalent to about one quarter ton of TNT, or about 7 gallons of oil--an amount of energy tractable under laboratory conditions and potentially very useful for a variety of applications. 61 refs., 33 figs.

  7. Design of a high-power, high-gain, 2nd harmonic, 22.848 GHz gyroklystron

    SciTech Connect

    Veale, M.; Purohit, P.; Lawson, W.

    2013-08-15

    In this paper we consider the design of a four-cavity, high-gain K-band gyroklystron experiment for high gradient structure testing. The frequency doubling gyroklystron utilizes a beam voltage of 500 kV and a beam current of 200 A from a magnetron injection gun (MIG) originally designed for a lower-frequency device. The microwave circuit features input and gain cavities in the circular TE{sub 011} mode and penultimate and output cavities that operate at the second harmonic in the TE{sub 021} mode. We investigate the MIG performance and study the behavior of the circuit for different values of perpendicular to parallel velocity ratio (α= V{sub ⊥}/ V{sub z}). This microwave tube is expected to be able to produce at least 20 MW of power in 1μs pulses at a repetition rate of at least 120 Hz. A maximum efficiency of 26% and a large signal gain of 58 dB under zero-drive stable conditions were simulated for a velocity ratio equal to 1.35.

  8. Determination of the meteoroid velocity distribution at the Earth using high-gain radar

    NASA Astrophysics Data System (ADS)

    Hunt, S. M.; Oppenheim, M.; Close, S.; Brown, P. G.; McKeen, F.; Minardi, M.

    2004-03-01

    Plasma formed in the immediate vicinity of a meteoroid as it descends through Earth's atmosphere enables high-gain radars such as those found at Kwajalein, Arecibo, and Jicamarca to detect ablating meteoroids. In the work presented here, we show that these head echo measurements preferentially detect more energetic meteoroids over less energetic ones and present a method of estimating the effects of this bias when measuring the velocity distributions. To do this, we apply ablation and ionization models to estimate a meteoroid's plasma production rate based on its initial kinetic energy and ionization efficiency. This analysis demonstrates that, almost regardless of the assumptions made, high-gain radars will preferentially detect faster and more massive meteoroids. Following the model used by Taylor (1995, Icarus 116, 154-158), we estimate the biases and then apply them to observed meteoroid velocity distributions. We apply this technique to observations of the North Apex meteoroid source made by the Advanced Research Project Agency Long Range Tracking and Instrumentation Radar (ALTAIR) at two frequencies (160 and 422 MHz) and compare results from the Harvard Radio Meteor Project (HRMP) at High Frequency (HF, 40.9 MHz). Both studies observe a peak in the distribution of North Apex meteoroids at approximately 56 km s -1. After correcting for biases using Taylor's method, the results suggest that the mass-weighted peak of the distribution lies near 20 km s -1 for both studies. We attribute these similarities to the fact that both radar systems depend upon similar ablation and ionization processes and thus have a common mass scale.

  9. High performance quantum cascade lasers: Loss, beam stability, and gain engineering

    NASA Astrophysics Data System (ADS)

    Bouzi, Pierre Michel

    Quantum Cascade (QC) lasers are semiconductor devices emitting in the mid-infrared (3-30 micron) and terahertz (30-300 micron) regions of the electromagnetic spectrum. Since their first demonstration by Jerome Faist et. al. in 1994, they have evolved very quickly into high performance devices and given rise to many applications such as trace-gas sensing, medical diagnosis, free-space communication, and light detection and ranging (LIDAR). In this thesis, we investigate a further increase of the performance of QC devices and, through meticulous device modeling and characterizations, gain a deeper understanding of several of their unique characteristics, especially their carrier transport and lifetime, their characteristic temperature, their waveguide loss and modal gain, their leakage current, and their transverse mode profile. First, in our quest to achieve higher performance, we investigate the effect of growth asymmetries on device transport characteristics. This investigation stems from recent studies on the role of interface roughness on intersubband scattering and device performance. Through a symmetric active core design, we find that interface roughness and ionized impurity scattering induced by dopant migration play a significant role in carrier transport through the device. Understanding how interface roughness affects intersubband scattering, in turn, we engineer the gain in QC devices by placing monolayer barriers at specific locations within the device band structure. These strategically placed additional thin barrier layers introduce roughness scattering into the device active region, thereby selectively decreasing the lower laser state lifetime and increasing population inversion necessary for laser action. Preliminary measurement results from modified devices reveal a 50% decrease in the emission broadening compared to the control structures, which should lead to a two-fold increase in gain. A special class of so-called "strong coupling" QC lasers

  10. High pressure effect on optical gain in type-II InGaAs/GaAsSb nano-heterostructure

    NASA Astrophysics Data System (ADS)

    Yadav, Nisha; Nirmal, H. K.; Yadav, Rashmi; Lal, Pyare; Alvi, P. A.

    2016-03-01

    This paper reports the simulation of optical gain in type-II InGaAs/GaAsSb quantum well based nano-scale heterostructure. In order to simulate the optical gain, the heterostructure has been modeled with the help of six band k.p method. The 6 × 6 diagonalized k.p Hamiltonian has been solved to evaluate the valence sub-bands (i.e. light and heavy hole energies); and then optical matrix elements and optical gain within TE (Transverse Electric) mode has been calculated. The results obtained suggest that peak optical gain of the order of ˜ 9000 /cm in the heterostructure can be achieved at the lasing wavelength ˜ 1.95 µm (SWIR region). The application of high pressure (2 and 5 GPa) on the structure shows that the gain as well as lasing wavelength both approach to higher values. Thus, the structure can be tuned externally by the application of high pressure.

  11. Calibration of Gimbaled Platforms: The Solar Dynamics Observatory High Gain Antennas

    NASA Technical Reports Server (NTRS)

    Hashmall, Joseph A.

    2006-01-01

    Simple parameterization of gimbaled platform pointing produces a complete set of 13 calibration parameters-9 misalignment angles, 2 scale factors and 2 biases. By modifying the parameter representation, redundancy can be eliminated and a minimum set of 9 independent parameters defined. These consist of 5 misalignment angles, 2 scale factors, and 2 biases. Of these, only 4 misalignment angles and 2 biases are significant for the Solar Dynamics Observatory (SDO) High Gain Antennas (HGAs). An algorithm to determine these parameters after launch has been developed and tested with simulated SDO data. The algorithm consists of a direct minimization of the root-sum-square of the differences between expected power and measured power. The results show that sufficient parameter accuracy can be attained even when time-dependent thermal distortions are present, if measurements from a pattern of intentional offset pointing positions is included.

  12. Integrated ZVS DC-DC converter with continuous input current and high voltage gain

    NASA Astrophysics Data System (ADS)

    Do, Hyun-Lark

    2011-09-01

    An integrated zero-voltage-switching (ZVS) DC-DC converter with continuous input current and high voltage gain is proposed. The proposed converter can operate with soft switching, a continuous inductor current and fixed switching frequency. The voltage stress of the power switches is relatively low compared to the output voltage. Moreover, soft-switching characteristic of the proposed converter reduces switching loss of active power switches and raise the conversion efficiency. The reverse-recovery problem of output rectifiers is also alleviated by controlling the current changing rates of diodes with the use of the leakage inductance of a coupled inductor. The operation and performance of the proposed DC-DC converter were verified on an 115 W experimental prototype operating at 100 kHz.

  13. NASA/Cousteau ocean bathymetry experiment. Remote bathymetry using high gain LANDSAT data

    NASA Technical Reports Server (NTRS)

    Polcyn, F. C.

    1976-01-01

    Satellite remote bathymetry was varified to 22 m depths where water clarity was defined by alpha = .058 1/m and bottom reflection, r(b), was 26%. High gain band 4 and band 5 CCT data from LANDSAT 1 was used for a test site in the Bahama Islands and near Florida. Near Florida where alpha = .11 1/m and r(b) = 20%, depths to 10 m were verified. Depth accuracies within 10% rms were achieved. Position accuracies within one LANDSAT pixel were obtained by reference to the Transit navigation satellites. The Calypso and the Beayondan, two ships, were at anchor on each of the seven days during LANDSAT 1 and 2 overpasses: LORAN C position information was used when the ships were underway making depth transects. Results are expected to be useful for updating charts showing shoals hazardous to navigation or in monitoring changes in nearshore topography.

  14. High Gain and Frequency Ultra-Stable Integrators for ICC and Long Pulse ITER Applications

    NASA Astrophysics Data System (ADS)

    Miller, Kenneth; Ziemba, Timothy; Prager, James

    2012-10-01

    Eagle Harbor Technologies has developed a high gain and frequency ultra-stable integrator for small scale concept experiments and long pulse ITER applications. The Phase I integrator has a 10 μs RC time with a frequency response greater than 10 MHz. The device has been operated for the 3600 s with a drift error less than 600 μV, which exceeds the ITER specification. Longer period operation is also possible (> 30 hours). Additionally, this integrator has an extremely large dynamic range thereby increasing the effective bit depth of a digitizer. These integrators allow for both the fast and slow magnetic/plasma dynamics to be resolved with a single diagnostic. Data will be presented demonstrating the success of the Phase I program, and the Phase II work plan will be discussed. Work has begun to incorporate the integrators into legacy (CAMAC) and modern (National Instruments) DAQ systems.

  15. Polarization control in X-ray FELs by reverse undulator tapering

    NASA Astrophysics Data System (ADS)

    Schneidmiller, E. A.; Yurkov, M. V.

    2015-05-01

    Baseline design of a typical X-ray FEL undulator assumes a planar configuration which results in a linear polarization of the FEL radiation. However, many experiments at X-ray FEL user facilities would profit from using a circularly polarized radiation. As a cheap upgrade one can consider an installation of a short helical (or cross-planar) afterburner, but then one should have an efficient method to suppress powerful linearly polarized background from the main undulator. In this paper we propose a new method for such a suppression: an application of the reverse taper in the main undulator. We discover that in a certain range of the taper strength, the density modulation (bunching) at saturation is practically the same as in the case of non-tapered undulator while the power of linearly polarized radiation is suppressed by orders of magnitude. Then strongly modulated electron beam radiates at full power in the afterburner. Considering SASE3 undulator of the European XFEL as a practical example, we demonstrate that soft X-ray radiation pulses with peak power in excess of 100 GW and an ultimately high degree of circular polarization can be produced. The proposed method is rather universal, i.e. it can be used at SASE FELs and seeded (self-seeded) FELs, with any wavelength of interest, in a wide range of electron beam parameters, and with any repetition rate.

  16. GINGER simulations of short-pulse effects in the LEUTL FEL

    SciTech Connect

    Huang, Z.; Fawley, W.M.

    2001-07-01

    While the long-pulse, coasting beam model is often used in analysis and simulation of self-amplified spontaneous emission (SASE) free-electron lasers (FELs), many current SASE demonstration experiments employ relatively short electron bunches whose pulse length is on the order of the radiation slippage length. In particular, the low-energy undulator test line (LEUTL) FEL at the Advanced Photon Source has recently lased and nominally saturated in both visible and near-ultraviolet wavelength regions with a sub-ps pulse length that is somewhat shorter than the total slippage length in the 22-m undulator system. In this paper we explore several characteristics of the short pulse regime for SASE FELs with the multidimensional, time-dependent simulation code GINGER, concentrating on making a direct comparison with the experimental results from LEUTL. Items of interest include the radiation gain length, pulse energy, saturation position, and spectral bandwidth. We address the importance of short-pulse effects when scaling the LEUTL results to proposed x-ray FELs and also briefly discuss the possible importance of coherent spontaneous emission at startup.

  17. Convergent Evolution towards High Net Carbon Gain Efficiency Contributes to the Shade Tolerance of Palms (Arecaceae).

    PubMed

    Ma, Ren-Yi; Zhang, Jiao-Lin; Cavaleri, Molly A; Sterck, Frank; Strijk, Joeri S; Cao, Kun-Fang

    2015-01-01

    Most palm species occur in the shaded lower strata of tropical rain forests, but how their traits relate to shade adaptation is poorly understood. We hypothesized that palms are adapted to the shade of their native habitats by convergent evolution towards high net carbon gain efficiency (CGEn), which is given by the maximum photosynthetic rate to dark respiration rate ratio. Leaf mass per area, maximum photosynthetic rate, dark respiration and N and P concentrations were measured in 80 palm species grown in a common garden, and combined with data of 30 palm species growing in their native habitats. Compared to other species from the global leaf economics data, dicotyledonous broad-leaved trees in tropical rainforest or other monocots in the global leaf economics data, palms possessed consistently higher CGEn, achieved by lowered dark respiration and fairly high foliar P concentration. Combined phylogenetic analyses of evolutionary signal and trait evolution revealed convergent evolution towards high CGEn in palms. We conclude that high CGEn is an evolutionary strategy that enables palms to better adapt to shady environments than coexisting dicot tree species, and may convey advantages in competing with them in the tropical forest understory. These findings provide important insights for understanding the evolution and ecology of palms, and for understanding plant shade adaptations of lower rainforest strata. Moreover, given the dominant role of palms in tropical forests, these findings are important for modelling carbon and nutrient cycling in tropical forest ecosystems.

  18. Convergent Evolution towards High Net Carbon Gain Efficiency Contributes to the Shade Tolerance of Palms (Arecaceae)

    PubMed Central

    Ma, Ren-Yi; Zhang, Jiao-Lin; Cavaleri, Molly A.; Sterck, Frank; Strijk, Joeri S.; Cao, Kun-Fang

    2015-01-01

    Most palm species occur in the shaded lower strata of tropical rain forests, but how their traits relate to shade adaptation is poorly understood. We hypothesized that palms are adapted to the shade of their native habitats by convergent evolution towards high net carbon gain efficiency (CGEn), which is given by the maximum photosynthetic rate to dark respiration rate ratio. Leaf mass per area, maximum photosynthetic rate, dark respiration and N and P concentrations were measured in 80 palm species grown in a common garden, and combined with data of 30 palm species growing in their native habitats. Compared to other species from the global leaf economics data, dicotyledonous broad-leaved trees in tropical rainforest or other monocots in the global leaf economics data, palms possessed consistently higher CGEn, achieved by lowered dark respiration and fairly high foliar P concentration. Combined phylogenetic analyses of evolutionary signal and trait evolution revealed convergent evolution towards high CGEn in palms. We conclude that high CGEn is an evolutionary strategy that enables palms to better adapt to shady environments than coexisting dicot tree species, and may convey advantages in competing with them in the tropical forest understory. These findings provide important insights for understanding the evolution and ecology of palms, and for understanding plant shade adaptations of lower rainforest strata. Moreover, given the dominant role of palms in tropical forests, these findings are important for modelling carbon and nutrient cycling in tropical forest ecosystems. PMID:26461108

  19. Convergent Evolution towards High Net Carbon Gain Efficiency Contributes to the Shade Tolerance of Palms (Arecaceae).

    PubMed

    Ma, Ren-Yi; Zhang, Jiao-Lin; Cavaleri, Molly A; Sterck, Frank; Strijk, Joeri S; Cao, Kun-Fang

    2015-01-01

    Most palm species occur in the shaded lower strata of tropical rain forests, but how their traits relate to shade adaptation is poorly understood. We hypothesized that palms are adapted to the shade of their native habitats by convergent evolution towards high net carbon gain efficiency (CGEn), which is given by the maximum photosynthetic rate to dark respiration rate ratio. Leaf mass per area, maximum photosynthetic rate, dark respiration and N and P concentrations were measured in 80 palm species grown in a common garden, and combined with data of 30 palm species growing in their native habitats. Compared to other species from the global leaf economics data, dicotyledonous broad-leaved trees in tropical rainforest or other monocots in the global leaf economics data, palms possessed consistently higher CGEn, achieved by lowered dark respiration and fairly high foliar P concentration. Combined phylogenetic analyses of evolutionary signal and trait evolution revealed convergent evolution towards high CGEn in palms. We conclude that high CGEn is an evolutionary strategy that enables palms to better adapt to shady environments than coexisting dicot tree species, and may convey advantages in competing with them in the tropical forest understory. These findings provide important insights for understanding the evolution and ecology of palms, and for understanding plant shade adaptations of lower rainforest strata. Moreover, given the dominant role of palms in tropical forests, these findings are important for modelling carbon and nutrient cycling in tropical forest ecosystems. PMID:26461108

  20. Study of CSR Effects in the Jefferson Laboratory FEL Driver

    SciTech Connect

    Hall, C. C.; Biedron, S.; Burleson, Theodore A.; Milton, Stephen V.; Morin, Auralee L.; Benson, Stephen V.; Douglas, David R.; Evtushenko, Pavel E.; Hannon, Fay E.; Li, Rui; Tennant, Christopher D.; Zhang, Shukui; Carlsten, Bruce E.; Lewellen, John W.

    2013-08-01

    In a recent experiment conducted on the Jefferson Laboratory IR FEL driver the effects of Coherent Synchrotron Radiation (CSR) on beam quality were studied. The primary goal of this work was to explore CSR output and effect on the beam with variation of the bunch compression in the IR chicane. This experiment also provides a valuable opportunity to benchmark existing CSR models in a system that may not be fully represented by a 1-D CSR model. Here we present results from this experiment and compare to initial simulations of CSR in the magnetic compression chicane of the machine. Finally, we touch upon the possibility for CSR induced microbunching gain in the magnetic compression chicane, and show that parameters in the machine are such that it should be thoroughly damped.

  1. Output characteristics of SASE-driven short-wavelength FELs

    NASA Astrophysics Data System (ADS)

    Fawley, William M.

    1997-05-01

    This paper investigates various properties of the 'microspikes' associated with self-amplified spontaneous emission (SASE) in a short wavelength free-electron laser (FEL). Using results from the 2-D numerical simulation code GINGER, we confirm theoretical predictions such as the convective group velocity in the exponential gain regime. In the saturated gain regime beyond the initial saturation, we find that the average radiation power continues to grow with an approximately linearly dependence upon undulator length. Moreover, the spectrum significantly broadens and shifts in wavelength to the redward direction, with P(omega) approaching a constant, asymptotic value. This is in marked contrast to the exponential gain regime where the spectrum steadily narrows, P(omega) grows, and the central wavelength remains constant with z. Via use of a spectrogram diagnostic S(omega, t), it appears that the radiation pattern in the saturated gain regime is composed of an ensemble of distinct 'sinews' whose widths (Delta) (lambda) remain approximately constant but whose central wavelengths can 'chirp' by varying a small extent with t.

  2. FELS FOUNDATION PROJECT FOR DEVELOPING YOUTH POTENTIAL.

    ERIC Educational Resources Information Center

    BAIR, ROBERT A.; AND OTHERS

    THE OPERATION OF THE FELS FOUNDATION PROJECT FOR DEVELOPING YOUTH POTENTIAL IN HANFORD, CALIFORNIA, IS DESCRIBED. OF GENERAL CONCERN WAS THE PREPARATION OF CULTURALLY DEPRIVED CHILDREN FOR SCHOOL EXPERIENCES AND FOR FUTURE EMPLOYMENT. A MAJOR GOAL WAS TO IMPROVE THE SELF-IMAGE OF THE CHILDREN AND TO ASSIST THE PARENTS AND CHILDREN IN PROVIDING…

  3. Comparing an optical parametric oscillator (OPO) as a viable alternative for mid-infrared tissue ablation with a free electron laser (FEL).

    PubMed

    Mackanos, Mark A; Simanovskii, Dmitrii M; Contag, Christopher H; Kozub, John A; Jansen, E Duco

    2012-11-01

    Beneficial medical laser ablation removes material efficiently with minimal collateral damage. A Mark-III free electron laser (FEL), at a wavelength of 6.45 μm has demonstrated minimal damage and high ablation yield in ocular and neural tissues. While this wavelength has shown promise for surgical applications, further advances are limited by the high overhead for FEL use. Alternative mid-infrared sources are needed for further development. We compared the FEL with a 5-μs pulse duration with a Q-switched ZGP-OPO with a 100-ns pulse duration at mid-infrared wavelengths. There were no differences in the ablation threshold of water and mouse dermis with these two sources in spite of the difference in their pulse structures. There was a significant difference in crater depth between the ZGP:OPO and the FEL. At 6.1 μm, the OPO craters are eight times the depth of the FEL craters. The OPO craters at 6.45 and 6.73 μm were six and five times the depth of the FEL craters, respectively. Bright-field (pump-probe) images showed the classic ablation mechanism from formation of a plume through collapse and recoil. The crater formation, ejection, and collapse phases occurred on a faster time-scale with the OPO than with the FEL. This research showed that a ZGP-OPO laser could be a viable alternative to FEL for clinical applications. PMID:22278348

  4. Fluorene- and benzofluorene-cored oligomers as low threshold and high gain amplifying media

    SciTech Connect

    Kazlauskas, Karolis Kreiza, Gediminas; Bobrovas, Olegas; Adomėnienė, Ona; Adomėnas, Povilas; Juršėnas, Saulius; Jankauskas, Vygintas

    2015-07-27

    Deliberate control of intermolecular interactions in fluorene- and benzofluorene-cored oligomers was attempted via introduction of different-length alkyl moieties to attain high emission amplification and low amplified spontaneous emission (ASE) threshold at high oligomer concentrations. Containing fluorenyl peripheral groups decorated with different-length alkyl moieties, the oligomers were found to express weak concentration quenching of emission, yet excellent carrier drift mobilities (close to 10{sup −2} cm{sup 2}/V/s) in the amorphous films. Owing to the larger radiative decay rates (>1.0 × 10{sup 9 }s{sup −1}) and smaller concentration quenching, fluorene-cored oligomers exhibited down to one order of magnitude lower ASE thresholds at higher concentrations as compared to those of benzofluorene counterparts. The lowest threshold (300 W/cm{sup 2}) obtained for the fluorene-cored oligomers at the concentration of 50 wt % in polymer matrix is among the lowest reported for solution-processed amorphous films in ambient conditions, what makes the oligomers promising for lasing application. Great potential in emission amplification was confirmed by high maximum net gain (77 cm{sup −1}) revealed for these compounds. Although the photostability of the oligomers was affected by photo-oxidation, it was found to be comparable to that of various organic lasing materials including some commercial laser dyes evaluated under similar excitation conditions.

  5. FEL potential of eRHIC

    SciTech Connect

    Litvinenko, V.N.; Ben-Zvi, I.; Hao, Y.; Kao, C-C.; Kayran, D.; Murphy, J.B.; Ptitsyn, V.; Trbojevic, D.; Tsoupas, N.

    2010-08-23

    Brookhaven National Laboratory plans to build a 5-to-30 GeV energy-recovery linac (ERL) for its future electron-ion collider, eRHIC. In past few months, the Laboratory turned its attention to the potential of this unique machine for free electron lasers (FELS), which we initially assessed earlier. In this paper, we present our current vision of a possible FEL farm, and of narrow-band FEL-oscillators driven by this accelerator. eRHIC, the proposed electron-ion collider at BNL, takes advantage of the existing Relativistic Heavy Ion Collider (RHIC) complex. Plans call for adding a six-pass super-conducting (SRF) ERL to this complex to collide polarized- and unpolarized- electron beams with heavy ions (with energies up to 130 GeV per nucleon) and with polarized protons (with energies up to 325 GeV). RHIC, with a circumference of 3.834 km, has three-fold symmetry and six straight sections each {approx} 250 m long. Two of these straight sections will accommodate 703-MHz SRF linacs. The maximum energy of the electron beam in eRHIC will be reached in stages, from 5 GeV to 30 GeV, by increasing the lengths of its SRF linacs. We plan to install at the start the six-pass magnetic system with small gap magnets. The structure of the eRHIC's electron beam will be identical with that of its hadron beam, viz., 166 bunches will be filled, reserving about a one-microsecond gap for the abort kicker. With modest modifications, we can assure that eRHIC's ERL will become an excellent driver for continuous wave (CW) FELs (see Fig.1). The eRHIC's beam structure will support the operation of several such FELs in parasitic mode.

  6. The research facilities of the Duke FEL Laboratory - uniqueness and challenges

    SciTech Connect

    Madey, J.M.J.; Barnett, G.; Burnham, B.

    1995-12-31

    FEL light sources offer unique promise as broadly tuneable, high brightness sources of radiation throughout the electromagnetic spectrum. But the effective utilization of these new light sources also raises a series of unprecedented issues and challenges arising, in general, from the limited number of beamlines which can be supported by a single source. The cost effective utilization of this technology therefore requires emphasis on (1) the realization of one or more truly unique research capabilities, (2) the optimization of access to the research beamlines which are available, and (3) the management and support services required by users to maximize their productivity. The experience we have acquired in the development and operation of the facilities of the Duke FEL Lab provide a point of reference which may prove useful to other research-oriented FEL facilities.

  7. IR-FEL-induced green fluorescence protein (GFP) gene transfer into plant cell

    NASA Astrophysics Data System (ADS)

    Awazu, Kunio; Kinpara, Takeshi; Tamiya, Eiichi

    2002-05-01

    A Free Electron Laser (FEL) holds potential for various biotechnological applications due to its characteristics such as flexible wavelength tunability, short pulse and high peak power. We could successfully introduce the Green Fluorescent Protein (GFP) gene into tobacco BY2 cells by IR-FEL laser irradiation. The irradiated area of the solution containing BY2 cells and plasmid was about 0.1 mm 2. FEL irradiation at a wavelength of 5.75 and 6.1 μm, targeting absorption by the ester bond of the lipid and the amide I bond of the protein, respectively, was shown to cause the introduction of the fluorescent dye into the cell. On the other hand, transient expression of the GFP fluorescence was only observed after irradiation at 5.75 μm. The maximum transfer efficiency was about 0.5%.

  8. Quasi-real-time photon pulse duration measurement by analysis of FEL radiation spectra.

    PubMed

    Engel, Robin; Düsterer, Stefan; Brenner, Günter; Teubner, Ulrich

    2016-01-01

    For photon diagnostics at free-electron lasers (FELs), the determination of the photon pulse duration is an important challenge and a complex task. This is especially true for SASE FELs with strongly fluctuating pulse parameters. However, most techniques require an extensive experimental setup, data acquisition and evaluation time, limiting the usability in all-day operation. In contrast, the presented work uses an existing approach based on the analysis of statistical properties of measured SASE FEL spectra and implements it as a software tool, integrated in FLASH's data acquisition system. This allows the calculation of the average pulse durations from a set of measured spectral distributions with only seconds of delay, whenever high-resolution spectra are recorded. PMID:26698053

  9. Transportation-cyber-physical-systems-oriented engine cylinder pressure estimation using high gain observer

    NASA Astrophysics Data System (ADS)

    Li, Yong-Fu; Xiao-Pei, Kou; Zheng, Tai-Xiong; Li, Yin-Guo

    2015-05-01

    In transportation cyber-physical-systems (T-CPS), vehicle-to-vehicle (V2V) communications play an important role in the coordination between individual vehicles as well as between vehicles and the roadside infrastructures, and engine cylinder pressure is significant for engine diagnosis on-line and torque control within the information exchange process under V2V communications. However, the parametric uncertainties caused from measurement noise in T-CPS lead to the dynamic performance deterioration of the engine cylinder pressure estimation. Considering the high accuracy requirement under V2V communications, a high gain observer based on the engine dynamic model is designed to improve the accuracy of pressure estimation. Then, the analyses about convergence, converge speed and stability of the corresponding error model are conducted using the Laplace and Lyapunov method. Finally, results from combination of Simulink with GT-Power based numerical experiments and comparisons demonstrate the effectiveness of the proposed approach with respect to robustness and accuracy. Project supported by the National Natural Science Foundation of China (Grant No. 61304197), the Scientific and Technological Talents of Chongqing, China (Grant No. cstc2014kjrc-qnrc30002), the Key Project of Application and Development of Chongqing, China (Grant No. cstc2014yykfB40001), the Natural Science Funds of Chongqing, China (Grant No. cstc2014jcyjA60003), and the Doctoral Start-up Funds of Chongqing University of Posts and Telecommunications, China (Grant No. A2012-26).

  10. Characterization of a high-gain Ne-like Fe transient x-ray laser

    SciTech Connect

    Dunn, J; Facnov, A; Fournier, K B; Moon, S J; Osterheld, A; Pikuz, T; Shlyaptsev, V N

    1999-09-13

    The authors present experimental results of a high efficiency Ne-like Fe transient collisional excitation x-ray laser using the COMET 15 TW table-top laser system at LLNL. The plasma formation, ionization and collision excitation of the x-ray laser have been optimized using two sequential laser pulses: a plasma formation beam with 5 J energy of 600 ps duration and a pump beam with 5 J energy of 1.2 ps duration. Since the observation of strong lasing on the 255 {angstrom} 3p-3s J = 0-1 transition of Ne-like Fe, they have achieved high gains of 35 cm{sup {minus}1} and saturation of the x-ray laser. A five-stage traveling wave excitation enhances the strongest Fe 3p-3s 255 {angstrom} lasing line as well as additional x-ray lines. A careful characterization of the plasma column conditions using L-shell spectroscopy indicates the degree of ionization along the line focus.

  11. Normal Visual Acuity and Electrophysiological Contrast Gain in Adults with High-Functioning Autism Spectrum Disorder

    PubMed Central

    Tebartz van Elst, Ludger; Bach, Michael; Blessing, Julia; Riedel, Andreas; Bubl, Emanuel

    2015-01-01

    A common neurodevelopmental disorder, autism spectrum disorder (ASD), is defined by specific patterns in social perception, social competence, communication, highly circumscribed interests, and a strong subjective need for behavioral routines. Furthermore, distinctive features of visual perception, such as markedly reduced eye contact and a tendency to focus more on small, visual items than on holistic perception, have long been recognized as typical ASD characteristics. Recent debate in the scientific community discusses whether the physiology of low-level visual perception might explain such higher visual abnormalities. While reports of this enhanced, “eagle-like” visual acuity contained methodological errors and could not be substantiated, several authors have reported alterations in even earlier stages of visual processing, such as contrast perception and motion perception at the occipital cortex level. Therefore, in this project, we have investigated the electrophysiology of very early visual processing by analyzing the pattern electroretinogram-based contrast gain, the background noise amplitude, and the psychophysical visual acuities of participants with high-functioning ASD and controls with equal education. Based on earlier findings, we hypothesized that alterations in early vision would be present in ASD participants. This study included 33 individuals with ASD (11 female) and 33 control individuals (12 female). The groups were matched in terms of age, gender, and education level. We found no evidence of altered electrophysiological retinal contrast processing or psychophysical measured visual acuities. There appears to be no evidence for abnormalities in retinal visual processing in ASD patients, at least with respect to contrast detection. PMID:26379525

  12. Pulse Length Control in an X-Ray FEL by Using Wakefields

    SciTech Connect

    Reiche, S.; Pellegrini, Claudio; Emma, P.; /UCLA /SLAC

    2008-03-18

    For the users of the high-brightness radiation sources of free-electron lasers it is desirable to reduce the FEL pulse length to 10 fs and below for time-resolved pump and probe experiments. Although it can be achieved by conventional compression methods for the electron beam or the chirped FEL pulse, the technical realization is demanding. In this presentation we study the impact of longitudinal wakefields in the undulator and how their properties can be used to reduced the amplifying part of the bunch to the desired length. Methods of actively controlling the wakefields are presented.

  13. A novel 4H-SiC lateral bipolar junction transistor structure with high voltage and high current gain

    NASA Astrophysics Data System (ADS)

    Deng, Yong-Hui; Xie, Gang; Wang, Tao; Sheng, Kuang

    2013-09-01

    In this paper, a novel structure of a 4H-SiC lateral bipolar junction transistor (LBJT) with a base field plate and double RESURF in the drift region is presented. Collector-base junction depletion extension in the base region is restricted by the base field plate. Thin base as well as low base doping of the LBJT therefore can be achieved under the condition of avalanche breakdown. Simulation results show that thin base of 0.32 μm and base doping of 3 × 1017 cm-3 are obtained, and corresponding current gain is as high as 247 with avalanche breakdown voltage of 3309 V when the drift region length is 30 μm. Besides, an investigation of a 4H-SiC vertical BJT (VBJT) with comparable breakdown voltage (3357 V) shows that the minimum base width of 0.25 μm and base doping as high as 8 × 1017 cm-3 contribute to a maximum current gain of only 128.

  14. Parametric x-ray FEL operating with external Bragg reflectors

    SciTech Connect

    Baryshevsky, V.G.; Batrakov, K.G.; Dubovskaya, I.Ya.

    1995-12-31

    In the crystal X-ray FELs using channeling and parametric quasi-Cherenkov mechanisms of spontaneous radiation were considered as versions of FEL allowing, in principle, to obtain coherent X-ray source. In this case a crystal is both radiator and resonator for X-rays emitted by a particle beam passing through crystal. However, it is well-known that a beam current density required for lasing is extremely high in X-ray spectral range for any radiation mechanisms and it is very important to find a way to lower its magnitude. The application of three-dimensional distributed feedback formed by dynamical diffraction of emitted photons permitted to reduce starting beam current density 10{sup 2}-10{sup 4} times up to 10{sup 9}. One of ways to lower the starting current is the formation of multi-wave distributed feedback the another one is the application of external reflectors. The thing is that lasing regime was shown to be produced at frequencies in the vicinity of degeneration point for roots of dispersion equation describing radiation modes excited in an active medium (crystal plus particle beam). Unfortunately, in case of parametric quasi-Cherenkov FEL this region coincides with the region of strong self-absorption of radiation inside a crystal. That fact, obviously, increases the starting beam current. In this report we have shown that the application of external Bragg reflectors gives the possibility to lower radiation self-absorption inside a crystal by modifying radiation modes excited in the active medium under consideration. The corresponding dispersion equation and the expression for excited modes are derived. The generation equation determining starting conditions for lasing is obtained. Using these expressions we have shown that the application of external Bragg reflectors permits to reduce starting beam current density more than 10 times.

  15. Studies of relative gain and timing response of fine-mesh photomultiplier tubes in high magnetic fields

    NASA Astrophysics Data System (ADS)

    Sulkosky, V.; Allison, L.; Barber, C.; Cao, T.; Ilieva, Y.; Jin, K.; Kalicy, G.; Park, K.; Ton, N.; Zheng, X.

    2016-08-01

    We investigated the use of Hamamatsu fine-mesh photomultiplier tube assemblies H6152-70 and H6614-70 with regard to their gain and timing resolution in magnetic fields up to 1.9 T. Our results show that the H6614-70 assembly can operate reliably in magnetic fields exceeding 1.5 T, while preserving a reasonable timing resolution even with a gain reduction of a factor of ≈100. The reduction of the relative gain of the H6152-70 is similar to the H6614-70's near 1.5 T, but its timing resolution worsens considerably at this high field.

  16. Lean rats gained more body weight than obese ones from a high-fibre diet.

    PubMed

    Li, Shaoting; Zhang, Cheng; Gu, Yingyi; Chen, Long; Ou, Shiyi; Wang, Yong; Peng, Xichun

    2015-10-28

    There is controversy over previous findings that a high ratio of Firmicutes to Bacteriodetes helps obese animals harvest energy from the diet. To further investigate the relationship between microbial composition and energy harvest, microbial adaptation to diet and time should be considered. In this study, lean and obese rats were successfully induced with low-fat and high-fat diets. An 8-week high soyabean fibre (HSF)-containing diet was then fed to investigate the interaction between the diet and the rats' gut microbiota, as well as their influence on rats' growth. Rats' body weight (BW) was recorded weekly; their plasma lipids and their gut microbiota at week 11, 15 and 19 were analysed. After the consumption of the HSF diet, BW of lean rats increased significantly (P<0·05), but no significant alteration in BW was found in obese rats. The average content of plasma cholesterol was lowered and that of TAG was upgraded in both the groups when fed the HSF diet. There was no significant difference observed at each period between lean and obese rats. In the group of lean rats, the diversity of gut microbiota was elevated strongly (P<0·01), and bacteria from phylum Firmicutes and Bacteroidetes were both increased largely (P<0·01); however, the bacterial diversity and composition in obese rats were less altered after the HSF diet control. In conclusion, the increased Firmicutes and Bacteriodetes might relate to lean rats' higher BW gain; 'obese microbiota' could not help the hosts harvest more energy from the HSF diet. PMID:26316354

  17. A Modified Lunar Reconnaissance Orbiter (LRO) High Gain Antenna (HGA) Controller Based on Flight Performance

    NASA Technical Reports Server (NTRS)

    Shah, Neerav

    2010-01-01

    The National Aeronautics and Space Administration's (NASA) Lunar Reconnaissance Orbiter (LRO) was launched on June 18, 2009 and is currently in a 50 km mean altitude polar orbit around the Moon. LRO was designed and built by the NASA Goddard Space Flight Center in Greenbelt, MD. The spacecraft is three-axis stabilized via the attitude control system (ACS), which is composed of various control modes using different sets of sensors and actuators. In addition to pointing the spacecraft, the ACS is responsible for pointing LRO s two appendages, the Solar Array (SA) and the High Gain Antenna (HGA). This study reviews LRO s HGA control system. Starting with an overview of the HGA system, the paper delves into the single input single output (SISO) linear analysis followed by the controller design. Based on flight results, an alternate control scheme is devised to address inherent features in the flight control system. The modified control scheme couples the HGA loop with the spacecraft pointing control loop, and through analysis is shown to be stable and improve transient performance. Although proposed, the LRO project decided against implementing this modification.

  18. Spacecraft Angular Rates Estimation with Gyrowheel Based on Extended High Gain Observer

    PubMed Central

    Liu, Xiaokun; Yao, Yu; Ma, Kemao; Zhao, Hui; He, Fenghua

    2016-01-01

    A gyrowheel (GW) is a kind of electronic electric-mechanical servo system, which can be applied to a spacecraft attitude control system (ACS) as both an actuator and a sensor simultaneously. In order to solve the problem of two-dimensional spacecraft angular rate sensing as a GW outputting three-dimensional control torque, this paper proposed a method of an extended high gain observer (EHGO) with the derived GW mathematical model to implement the spacecraft angular rate estimation when the GW rotor is working at large angles. For this purpose, the GW dynamic equation is firstly derived with the second kind Lagrange method, and the relationship between the measurable and unmeasurable variables is built. Then, the EHGO is designed to estimate and calculate spacecraft angular rates with the GW, and the stability of the designed EHGO is proven by the Lyapunov function. Moreover, considering the engineering application, the effect of measurement noise in the tilt angle sensors on the estimation accuracy of the EHGO is analyzed. Finally, the numerical simulation is performed to illustrate the validity of the method proposed in this paper. PMID:27089347

  19. Microsecond gain-switched master oscillator power amplifier (1958 nm) with high pulse energy

    SciTech Connect

    Ke Yin; Weiqiang Yang; Bin Zhang; Ying Li; Jing Hou

    2014-02-28

    An all-fibre master oscillator power amplifier (MOPA) emitting high-energy pulses at 1958 nm is presented. The seed laser is a microsecond gain-switched thulium-doped fibre laser (TDFL) pumped with a commercial 1550-nm pulsed fibre laser. The TDFL operates at a repetition rate f in the range of 10 to 100 kHz. The two-stage thulium-doped fibre amplifier is built to scale the energy of the pulses generated by the seed laser. The maximum output pulse energy higher than 0.5 mJ at 10 kHz is achieved which is comparable with the theoretical maximum extractable pulse energy. The slope efficiency of the second stage amplifier with respect to the pump power is 30.4% at f = 10 kHz. The wavelength of the output pulse laser is centred near 1958 nm at a spectral width of 0.25 nm after amplification. Neither nonlinear effects nor significant amplified spontaneous emission (ASE) is observed in the amplification experiments. (lasers)

  20. Case study of sample spacing in planar near-field measurement of high gain antennas

    NASA Technical Reports Server (NTRS)

    Acosta, R. J.; Lee, R. Q.

    1984-01-01

    Far field antenna patterns can be reconstructed from planar near field measurements acquired at a sample spacing of lambda/2 or less. For electrically large antennas, sampling at the Nyquist rate may result in errors due to system electronic drift over long acquisition times. The computer capacity may limit the largest size of the near field data set. The requirement to sample at the Nyquist rate is relaxed for high gain antennas which concentrate most of the radiated energy into a small angular region of the far field. The criteria for sample spacing at greater than lambda/e through the use of a priori information of the antenna radiation characteristics are presented. Far field patterns of a 30 GHz dual offset reflector system with a 2.7 m parabolic main reflector are computed from near field data obtained at sample spacings ranging from 0.1 lambda to 10 lambda. The effects of sampling interval and spectrum cutoff on the far field patterns are discussed.

  1. Spacecraft Angular Rates Estimation with Gyrowheel Based on Extended High Gain Observer.

    PubMed

    Liu, Xiaokun; Yao, Yu; Ma, Kemao; Zhao, Hui; He, Fenghua

    2016-01-01

    A gyrowheel (GW) is a kind of electronic electric-mechanical servo system, which can be applied to a spacecraft attitude control system (ACS) as both an actuator and a sensor simultaneously. In order to solve the problem of two-dimensional spacecraft angular rate sensing as a GW outputting three-dimensional control torque, this paper proposed a method of an extended high gain observer (EHGO) with the derived GW mathematical model to implement the spacecraft angular rate estimation when the GW rotor is working at large angles. For this purpose, the GW dynamic equation is firstly derived with the second kind Lagrange method, and the relationship between the measurable and unmeasurable variables is built. Then, the EHGO is designed to estimate and calculate spacecraft angular rates with the GW, and the stability of the designed EHGO is proven by the Lyapunov function. Moreover, considering the engineering application, the effect of measurement noise in the tilt angle sensors on the estimation accuracy of the EHGO is analyzed. Finally, the numerical simulation is performed to illustrate the validity of the method proposed in this paper. PMID:27089347

  2. Glutaraldehyde-Modified Recombinant Fel d 1: A Hypoallergen With Negligible Biological Activity But Retained Immunogenicity

    PubMed Central

    Versteeg, Serge A.; Bulder, Ingrid; Himly, Martin; van Capel, Toni M.; van den Hout, R.; Koppelman, Stef J.; de Jong, Esther C.; Ferreira, Fatima

    2011-01-01

    Background Recombinant allergens are under investigation for replacing allergen extracts in immunotherapy. Site-directed mutagenesis has been suggested as a strategy to develop hypoallergenic molecules that will reduce the risk of side effects. For decades, chemically modified allergen extracts have been used for the same reason. Aim To evaluate whether glutaraldehyde modification is a good strategy to produce hypoallergenic recombinant allergens with retained immunogenicity. Methods Fel d 1 was cloned as a single construct linking both chains of the molecule and expressed in Escherichia coli and Pichia pastoris. After physicochemical purification, recombinant Fel d 1 (rFel d 1) was chemically modified using glutaraldehyde. The effect of modification on immune reactivity was evaluated using radioallergosorbent test, CAP-inhibition, competitive radioimmunoassay, enzyme-linked immunosorbent assay, basophil histamine release, and T-cell proliferation assays. Both natural Fel d 1 and recombinant unmodified Fel d 1 were used as controls. Results rFel d 1 demonstrated similar IgE binding and biological activity as its natural counterpart. Upon modification, IgE-binding potency decreased to >1000-fold, which was translated into a >106-fold reduction in the biological activity assessed by basophil histamine release. In contrast, the modified recombinant did not show a decreased but even a moderately increased capacity (1.5-fold) to stimulate proliferation of T cells (P < 0.01). Finally, it induced specific IgG antibodies in rabbits that recognized the unmodified allergen. Conclusions Chemical modification is a practical and highly effective approach for achieving hypoallergenicity of recombinant allergens with retained immunogenicity. PMID:23268458

  3. Progress towards a high-gain and robust target design for heavy ion fusion

    SciTech Connect

    Henestroza, Enrique; Grant Logan, B.

    2012-07-15

    Recently [E. Henestroza et al., Phys. Plasmas 18, 032702 (2011)], a new inertial-fusion target configuration, the X-target, using one-sided axial illumination has been explored. This class of target uses annular and solid-profile heavy ion beams to compress and ignite deuterium-tritium (DT) fuel that fills the interior of metal cases that have side-view cross sections in the shape of an 'X.' X-targets using all-DT-filled metal cases imploded by three annular ion beams resulted in fuel densities of {approx}50 g/cm{sup 3} at peak compression, and fusion gains of {approx}50, comparable to heavy ion driven hohlraum targets [D. A. Callahan-Miller and M. Tabak, Phys. Plasmas 7, 2083 (2000)]. This paper discusses updated X-target configurations that incorporate inside the case a propellant (plastic) and a pusher (aluminum) surrounding the DT fuel. The updated configurations are capable of assembling higher fuel areal densities {approx}2 g/cm{sup 2} using two annular beams to implode the target to peak DT densities {approx}100 g/cm{sup 3}, followed by a fast-ignition solid ion beam which heats the high-density fuel to thermonuclear temperatures in {approx}200 ps to start the burn propagation, obtaining gains of {approx}300. These targets have been modeled using the radiation-hydrodynamics code HYDRA [M. M. Marinak et al., Phys. Plasmas 8, 2275 (2001)] in two- and three- dimensions to study the properties of the implosion as well as the ignition and burn propagation phases. At typical Eulerian mesh resolutions of a few microns, the aluminum-DT interface shows negligible Rayleigh-Taylor (RT) and Richtmyer-Meshkov instability growth; also, the shear flow of the DT fuel as it slides along the metal X-target walls, which drives the RT and Kelvin Helmholtz instabilities, does not have a major effect on the burning rate. An analytic estimate of the RT instability process at the Al-DT interface shows that the aluminum spikes generated during the pusher deceleration phase would not

  4. A High Gain, Composite Nd:YVO4/SiC Thin Disk Amplifier

    NASA Astrophysics Data System (ADS)

    Newburgh, G. A.; Dubinskii, Mark

    2014-06-01

    We have demonstrated a new form of Nd:YVO4 amplifier operating at 1064 nm based on a 800 µm thick Nd:YVO4 gain layer bonded to a 4H-SiC prism. The amplifier was tested in the `master oscillator - power amplifier' (MOPA) configuration, where both the seed source and the single pass amplifier were operated in a quasi-continuous wave (Q-CW) regime: pulse duration 500 µs, pulse repetition frequency (PRF) - 100 Hz. The Nd:YVO4gain element was pumped by a 808 nm laser diode bar stack to amplify seed inputs in the power range of 1 to 55 W with a gains of 4 to 2.6, respectively, with 25% optical-to-optical extraction efficiency. The temperature distribution of the gain medium was measured under operational conditions using thermography.

  5. Gain media edge treatment to suppress amplified spontaneous emission in a high power laser

    DOEpatents

    Hackel, Lloyd A.; Soules, Thomas F.; Fochs, Scott N.; Rotter, Mark D.; Letts, Stephan A.

    2011-02-22

    A novel method and apparatus for suppressing ASE and/or parasitic oscillation modes in a laser is introduced. By roughening one or more peripheral edges of a solid-state crystal or ceramic laser gain media and by bonding such edges to a predetermined electromagnetic absorbing material arranged adjacent to the entire outer surface of the peripheral edges of the roughened laser gain media, ASE, parasitic oscillation modes and/or residual pump energy can be effectively suppressed.

  6. Time-dependent simulation of the gas attenuator for the LCLS-II X-ray FEL's under high beam power operations

    NASA Astrophysics Data System (ADS)

    Feng, Yiping; Krzywinski, Jacek; Schafer, Donald W.; Ortiz, Eliazar; Rowen, Michael; Raubenheimer, Tor O.

    2015-09-01

    Time-dependent simulation was carried out to study the dynamic response of a gas-based attenuator system designed for the LCLS-II high repetition rate X-ray Free-electron Laser's, and to further elucidate the impact of the fluctuating energies of proceeding pulses on the actual attenuation factor achieved for the trailing pulses. The filamentation effect in the gas density revealed from an earlier steady-state calculation under a constant Continuous-Wave input power was reproduced with additional ramping behavior and oscillations arising from the onset and the pulsed structure of the beam. More importantly, the actual achieved attenuation for a given pulse was found to vary randomly in response to the fluctuations in the input power.

  7. High Average Power Operation of a Scraper-Outcoupled Free-Electron Laser

    SciTech Connect

    Michelle D. Shinn; Chris Behre; Stephen Vincent Benson; Michael Bevins; Don Bullard; James Coleman; L. Dillon-Townes; Tom Elliott; Joe Gubeli; David Hardy; Kevin Jordan; Ronald Lassiter; George Neil; Shukui Zhang

    2004-08-01

    We describe the design, construction, and operation of a high average power free-electron laser using scraper outcoupling. Using the FEL in this all-reflective configuration, we achieved approximately 2 kW of stable output at 10 um. Measurements of gain, loss, and output mode will be compared with our models.

  8. Simulations of the TJNAF FEL with tapered and inversely tapered undulators

    SciTech Connect

    A. Christodoulou; D. Lampiris; W.B. Colson; P.P. Crooker; J. Blau; R.D. McGinnis; Steve Benson; Joseph Gubeli; George Neil

    2001-12-01

    Experiments using the TJNAF FEL have explored the operation with both tapered and inversely tapered undulators. We present here numerical simulations using the TJNAF experimental parameters, including the effects of taper. Single-mode simulations show the effect of taper on gain. Multimode simulations describe the evolution of short optical pulses in the far infrared, and show how taper affects single-pass gain and steady-state power as a function of desynchronism. A short optical pulse presents an ever-changing field strength to each section of the electron pulse so that idealized operation is not possible. Yet, advantages for the recirculation of the electron beam can be explored.

  9. Commissioning of the accelerator-recuperator for the FEL at the Siberian Center for Photochemical Research.

    PubMed

    Antokhin, E I; Akberdin, R R; Bokov, M A; Bolotin, V P; Deichuli, O I; Dementyev, E N; Dubrovin, A N; Dovgenko, B A; Evtushenko, Yu A; Gavrilov, N G; Gorniker, E I; Kairan, D A; Kholopov, M A; Kiselev, O B; Kolmogorov, V V; Kolobanov, E I; Kondakov, A A; Kondakova, N L; Krutikhin, S A; Kubarev, V V; Kulipanov, G N; Kuper, E A; Kuptsov, I V; Kurkin, G Ya; Leontyevskaya, L G; Loskutov, V Yu; Medvedev, L E; Medvedko, A S; Miginsky, S V; Mironenko, L A; Oreshkov, A D; Ovchar, V K; Petrov, S P; Petrov, V M; Popik, V M; Rotov, E A; Salikova, T V; Sedlyarov, I K; Scheglov, M A; Serednyakov, S S; Shevchenko, O A; Shubin, E I; Skrinsky, A N; Tararyshkin, S V; Timoshina, L A; Tribendis, A G; Veremeenko, V F; Vinokurov, N A; Vobly, P D; Zagorodnikov, E I; Zaigrayeva, N S

    2003-09-01

    A 100 MeV eight-turn accelerator-recuperator intended to drive a high-power infrared free-electron laser (FEL) is currently under construction in Novosibirsk. The first stage of the machine includes a one-turn accelerator-recuperator that contains a full-scale RF system. It was commissioned successfully in June 2002.

  10. Duke storage rink UV/VUV FEL: Status and prospects

    SciTech Connect

    Litvinenko, V.N.; Burnham, B.; Madey, J.M.J.

    1995-12-31

    The 1 GeV Duke storage ring was successfully commissioned with parameters exceeding initial specification. The OK-4 FEL has arrived at the Duke FEL laboratory from the Novosibirsk Institute of Nuclear Physics. The OK-4 installation and commissioning is in progress. In this paper we describe the up-to-date status of the Duke storage ring and the OK-4 FEL. The projected performance of the OK-4 UV/VUV FEL is presented based on the electron beam parameters achieved. Initial plans to operate the OK-4 UV/VUV FEL at the Duke 1 GeV storage ring are outlined. Future plans and prospects of both the OK-4 FEL and the Duke storage ring are discussed.

  11. Numerical study of X-ray FELS including quantum fluctuation

    NASA Astrophysics Data System (ADS)

    Reiche, S.; Saldin, E. L.; Schneidmiller, E. A.; Yurkov, M. V.

    1997-06-01

    One of the fundamental limitations towards achieving very short wavelength in a self amplified spontaneous emission free electron laser (SASE FEL) is connected with the energy diffusion in the electron beam due to quantum fluctuations of undulator radiation. Parameters of the LCLS and TESLA X-ray FEL projects are very close to this limit and there exists necessity in upgrading FEL simulation codes for optimization of SASE FEL for operation at a shortest possible wavelength. In this report we describe a one-dimensional FEL simulation code taking into account the effects of incoherent undulator radiation. Using similarity techniques we have calculated universal functions describing degradation of the FEL process due to quantum fluctuations of undulator radiation.

  12. A proposed FEL injector at the IAE

    NASA Astrophysics Data System (ADS)

    Xinglin, Zhai; Wenzhen, Zhou; Zhenshan, Weng; Tielong, Wu; Tianlu, Yang; Chen, Liu; Yuzhu, Lu; Xiuzhen, Shi

    1990-10-01

    For the purpose of scientific research, an L-band FEL injector at the Institute of Atomic Energy (IAE) was proposed years ago. It consists of an electron gun, one subharmonic buncher (SHB), a fundamental buncher (1300 MHz) an, accelerating section and diagnostic devices. We expect that the electron energy is about 20 MeV, the micropulse curent is up to 100 A, and the micropulse length 10-20 ps. Now this project is in progress.

  13. The CSU Accelerator and FEL Facility

    NASA Astrophysics Data System (ADS)

    Biedron, Sandra; Milton, Stephen; D'Audney, Alex; Edelen, Jonathan; Einstein, Josh; Harris, John; Hall, Chris; Horovitz, Kahren; Martinez, Jorge; Morin, Auralee; Sipahi, Nihan; Sipahi, Taylan; Williams, Joel

    2014-03-01

    The Colorado State University (CSU) Accelerator Facility will include a 6-MeV L-Band electron linear accelerator (linac) with a free-electron laser (FEL) system capable of producing Terahertz (THz) radiation, a laser laboratory, a microwave test stand, and a magnetic test stand. The photocathode drive linac will be used in conjunction with a hybrid undulator capable of producing THz radiation. Details of the systems used in CSU Accelerator Facility are discussed.

  14. A proposed visible FEL Facility at Boeing

    SciTech Connect

    Dowell, D.H.; Adamski, J.L.; Hayward, T.D.

    1995-12-31

    A 1-kW average power, visible wavelength FEL is described, based on a 120-MeV, 0.1. A macropulse average current linac operating at a duty factor of 0. 6% and having average beam power of 70 kW. The accelerator will employ a demonstrated photoinjector, 18-MeV, 433-MHz linac as an injector, followed by a 1300-MHz longitudinal phase space {open_quotes} linearizer,{close_quotes} a magnetic buncher chicane, and seven 1300-MHz, pulsed traveling wave linac sections. The magnets used to transport the beam from the linac to the FEL centerline, the 5-m THUNDER wiggler, and the optical resonator will be reclaimed from previous FEL demonstration experiments. We expect to attain pulse lengths of 7 ps for 3.5 nC, with minimal distortion of the pulse profile and normalized rms emittance of 7.5 {+-} 2.5 {pi} mm-mr. FELEX projects a laser conversion efficiency of 4.3 %, yielding average output of 3 kW.

  15. Verification of the Solar Dynamics Observatory High Gain Antenna Pointing Algorithm Using Flight Data

    NASA Technical Reports Server (NTRS)

    Bourkland, Kristin L.; Liu, Kuo-Chia

    2011-01-01

    The Solar Dynamics Observatory (SDO), launched in 2010, is a NASA-designed spacecraft built to study the Sun. SDO has tight pointing requirements and instruments that are sensitive to spacecraft jitter. Two High Gain Antennas (HGAs) are used to continuously send science data to a dedicated ground station. Preflight analysis showed that jitter resulting from motion of the HGAs was a cause for concern. Three jitter mitigation techniques were developed and implemented to overcome effects of jitter from different sources. These mitigation techniques include: the random step delay, stagger stepping, and the No Step Request (NSR). During the commissioning phase of the mission, a jitter test was performed onboard the spacecraft, in which various sources of jitter were examined to determine their level of effect on the instruments. During the HGA portion of the test, the jitter amplitudes from the single step of a gimbal were examined, as well as the amplitudes due to the execution of various gimbal rates. The jitter levels were compared with the gimbal jitter allocations for each instrument. The decision was made to consider implementing two of the jitter mitigating techniques on board the spacecraft: stagger stepping and the NSR. Flight data with and without jitter mitigation enabled was examined, and it is shown in this paper that HGA tracking is not negatively impacted with the addition of the jitter mitigation techniques. Additionally, the individual gimbal steps were examined, and it was confirmed that the stagger stepping and NSRs worked as designed. An Image Quality Test was performed to determine the amount of cumulative jitter from the reaction wheels, HGAs, and instruments during various combinations of typical operations. The HGA-induced jitter on the instruments is well within the jitter requirement when the stagger step and NSR mitigation options are enabled.

  16. Interval Mapping of High Growth (Hg), a Major Locus That Increases Weight Gain in Mice

    PubMed Central

    Horvat, S.; Medrano, J. F.

    1995-01-01

    The high growth locus (hg) causes a major increase in weight gain and body size in mice. As a first step to map-based cloning of hg, we developed a genetic map of the hg-containing region using interval mapping of 403 F(2) from a C57BL/6J-hghg X CAST/EiJ cross. The maximum likelihood position of hg was at the chromosome 10 marker D10Mit41 (LOD = 24.8) in the F(2) females and 1.5 cM distal to D10Mit41 (LOD = 9.56) in the F(2) males with corresponding LOD 2 support intervals of 3.7 and 5.4 cM, respectively. The peak LOD scores were significantly higher than the estimated empirical threshold LOD values. The localization of hg by interval mapping was supported by a test cross of F(2) mice recombinant between the LOD 2 support interval and the flanking marker. The interval mapping and test-cross results indicate that hg is not allelic with candidate genes Igf1 or decorin (Dcn), a gene that was mapped close to hg in this study. The hg inheritance was recessive in females, although we could not reject recessive or additive inheritance in males. Possible causes for sex differences in peak LOD scores and for the distortion of transmission ratios observed in F(2) males are discussed. The genetic map of the hg region will facilitate further fine mapping and cloning of hg, and allow searches for a homologous quantitative trait locus affecting growth in humans and domestic animals. PMID:7789774

  17. Options for the Cryogenic System for the BESSY-FEL

    NASA Astrophysics Data System (ADS)

    Kutzschbach, A.; Quack, H.; Haberstroh, Ch.; Knobloch, J.; Anders, W.; Pflueckhahn, D.

    2004-06-01

    The Berliner Elektronenspeicherring-Gesellschaft für Synchrotronstrahlung (BESSY GmbH), in January 1999, started operation of BESSY II, a third-generation synchrotron light source delivering world-class, high-brilliance photon beams in the VUV to XUV spectral range. Based on this experience, BESSY has recently proposed the construction of a free-electron laser (FEL), covering a photon-energy range from 20 eV to 1 keV. To reduce the development time and cost, BESSY intends to use proven cavity and cryostat technology developed for the TESLA linear collider. However, the cryogenic load per cavity is approximately 15 to 20 times higher than that anticipated for the (pulsed) TESLA operation. This paper describes possible modifications of the cryostat design to accommodate these additional losses. Superconducting RF cavities are the basis of the FEL accelerator providing the driving electron beam with 2.25 GeV. The accelerator consists of five cold sections separated by warm sections reserved for bunch compression and beam extraction. The total refrigeration load will be covered by a single refrigerator. Several possible layouts of the cryogenic system are described and their advantages and disadvantages are discussed.

  18. Nonlinear harmonic generation and proposed experimental verification in SASE FELs.

    SciTech Connect

    Biedron, S. G.; Freund, H. P.; Milton, S. V.

    1999-08-24

    Recently, a 3D, polychromatic, nonlinear simulation code was developed to study the growth of nonlinear harmonics in self-amplified spontaneous emission (SASE) free-electron lasers (FELs). The simulation was applied to the parameters for each stage of the Advanced Photon Source (APS) SASE FEL, intended for operation in the visible, UV, and short UV wavelength regimes, respectively, to study the presence of nonlinear harmonic generation. Significant nonlinear harmonic growth is seen. Here, a discussion of the code development, the APS SASE FEL, the simulations and results, and, finally, the proposed experimental procedure for verification of such nonlinear harmonic generation at the APS SASE FEL will be given.

  19. Computer modelling of statistical properties of SASE FEL radiation

    NASA Astrophysics Data System (ADS)

    Saldin, E. L.; Schneidmiller, E. A.; Yurkov, M. V.

    1997-06-01

    The paper describes an approach to computer modelling of statistical properties of the radiation from self amplified spontaneous emission free electron laser (SASE FEL). The present approach allows one to calculate the following statistical properties of the SASE FEL radiation: time and spectral field correlation functions, distribution of the fluctuations of the instantaneous radiation power, distribution of the energy in the electron bunch, distribution of the radiation energy after monochromator installed at the FEL amplifier exit and the radiation spectrum. All numerical results presented in the paper have been calculated for the 70 nm SASE FEL at the TESLA Test Facility being under construction at DESY.

  20. Start-Up of FEL Oscillator from Shot Noise

    SciTech Connect

    Kumar, V.; Krishnagopal, S.; Fawley, W.M.

    2007-01-25

    In free-electron laser (FEL) oscillators, as inself-amplified spontaneous emission (SASE) FELs, the buildup of cavitypower starts from shot noise resulting from the discreteness ofelectronic charge. It is important to do the start-up analysis for thebuild-up of cavity power in order to fix the macropulse width from theelectron accelerator such that the system reaches saturation. In thispaper, we use the time-dependent simulation code GINGER [1]toperformthis analysis. We present results of this analysis for theparameters of the Compact Ultrafast TErahertz FEL (CUTE-FEL) [2]beingbuilt atRRCAT.

  1. High energy gain in three-dimensional simulations of light sail acceleration

    SciTech Connect

    Sgattoni, A.; Sinigardi, S.; Macchi, A.

    2014-08-25

    The dynamics of radiation pressure acceleration in the relativistic light sail regime are analysed by means of large scale, three-dimensional (3D) particle-in-cell simulations. Differently to other mechanisms, the 3D dynamics leads to faster and higher energy gain than in 1D or 2D geometry. This effect is caused by the local decrease of the target density due to transverse expansion leading to a “lighter sail.” However, the rarefaction of the target leads to an earlier transition to transparency limiting the energy gain. A transverse instability leads to a structured and inhomogeneous ion distribution.

  2. Moderate volume of high relative training intensity produces greater strength gains compared with low and high volumes in competitive weightlifters.

    PubMed

    González-Badillo, Juan José; Izquierdo, Mikel; Gorostiaga, Esteban M

    2006-02-01

    The purpose of this study was to examine the effect of 3 volumes of heavy resistance, average relative training intensity (expressed as a percentage of 1 repetition maximum that represented the absolute kilograms lifted divided by the number of repetitions performed) programs on maximal strength (1RM) in Snatch (Sn), Clean & Jerk (C&J), and Squat (Sq). Twenty-nine experienced (>3 years), trained junior weightlifters were randomly assigned into 1 of 3 groups: low-intensity group (LIG; n = 12), moderate-intensity group (MIG; n = 9), and high-intensity group (HIG; n = 8). All subjects trained for 10 weeks, 4-5 days a week, in a periodized routine using the same exercises and training volume (expressed as total number of repetitions performed at intensities equal to or greater than 60% of 1RM), but different programmed total repetitions at intensities of >90-100% of 1RM for the entire 10-week period: LIG (46 repetitions), MIG (93 repetitions), and HIG (184 repetitions). During the training period, MIG and LIG showed a significant increase (p < 0.01-0.05) for C&J (10.5% and 3% for MIG and LIG, respectively) and Sq (9.5% and 5.3% for MIG and LIG, respectively), whereas in HIG the increase took place only in Sq (6.9%, p < 0.05). A calculation of effect sizes revealed greater strength gains in the MIG than in HIG or LIG. There were no significant differences between LIG and HIG training volume-induced strength gains. All the subjects in HIG were unable to fully accomplish the repetitions programmed at relative intensities greater than 90% of 1RM. The present results indicate that short-term resistance training using moderate volumes of high relative intensity tended to produce higher enhancements in weightlifting performance compared with low and high volumes of high relative training intensities of equal total volume in experienced, trained young weightlifters. Therefore, for the present population of weightlifters, it may be beneficial to use the MIG training protocol to

  3. In-flight calibration of the high-gain antenna pointing for the Mariner Venus-Mercury 1973 spacecraft

    NASA Technical Reports Server (NTRS)

    Hardman, J. M.; Havens, W. F.; Ohtakay, H.

    1975-01-01

    The methods used to in-flight calibrate the pointing direction of the Mariner Venus-Mercury 1973 spacecraft high gain antenna and the achieved antenna pointing accuracy are described. The overall pointing calibration was accomplished by performing calibration sequences at a number of points along the spacecraft trajectory. Each of these consisted of articulating the antenna about the expected spacecraft-earth vector to determine systematic pointing errors. The high gain antenna pointing system, the error model used in the calibration, and the calibration and pointing strategy and results are discussed.

  4. High-temporal contrast using low-gain optical parametric amplification

    SciTech Connect

    Shah, Rahul C; Johnson, Randall P; Shimada, Tsutomu; Flippo, Kirk A; Fernandez, Juan C; Hegelich, Bjorn M

    2008-01-01

    We demonstrate the use of low-gain optical parametric amplification (OPA) as a means of improving temporal contrast to a detection-limited level 10{sup -10}. 250 {mu}J, 500 fs pulses of 1053 nm are frequency doubled and subsequently restored to the original wavelength by OPA with >10% efficiency.

  5. The Linguistic Gains and Acculturation of American High School Students on Exchange Programs in Germany

    ERIC Educational Resources Information Center

    Lovitt, Ashli

    2013-01-01

    There has been a sharp rise in study abroad participation over the last few decades (Institute for International Education, 2011), which can largely be explained by the rise of short-term study abroad programs. While there is much to be gained from participation in such programs, mid-length and year programs may offer the greatest benefits for…

  6. Light-controlled resistors provide quadrature signal rejection for high-gain servo systems

    NASA Technical Reports Server (NTRS)

    Mc Cauley, D. D.

    1967-01-01

    Servo amplifier feedback system, in which the phase sensitive detection, low pass filtering, and multiplication functions required for quadrature rejection, are preformed by light-controlled photoresistors, eliminates complex circuitry. System increases gain, improves signal-to-noise ratio, and eliminates the necessity for compensation.

  7. Numerical modeling of thermal loading of diamond crystal in X-ray FEL oscillators

    NASA Astrophysics Data System (ADS)

    Song, Mei-Qi; Zhang, Qing-Min; Guo, Yu-Hang; Li, Kai; Deng, Hai-Xiao

    2016-04-01

    Due to high reflectivity and high resolution of X-ray pulses, diamond is one of the most popular Bragg crystals serving as the reflecting mirror and mono–chromator in the next generation of free electron lasers (FELs). The energy deposition of X-rays will result in thermal heating, and thus lattice expansion of the diamond crystal, which may degrade the performance of X-ray FELs. In this paper, the thermal loading effect of diamond crystal for X-ray FEL oscillators has been systematically studied by combined simulation with Geant4 and ANSYS, and its dependence on the environmental temperature, crystal size, X-ray pulse repetition rate and pulse energy are presented. Our results show that taking the thermal loading effects into account, X-ray FEL oscillators are still robust and promising with an optimized design. Supported by National Natural Science Foundation of China (11175240, 11205234, 11322550) and Program for Changjiang Scholars and Innovative Research Team in University (IRT1280)

  8. Numerical modeling of thermal loading of diamond crystal in X-ray FEL oscillators

    NASA Astrophysics Data System (ADS)

    Song, Mei-Qi; Zhang, Qing-Min; Guo, Yu-Hang; Li, Kai; Deng, Hai-Xiao

    2016-04-01

    Due to high reflectivity and high resolution of X-ray pulses, diamond is one of the most popular Bragg crystals serving as the reflecting mirror and mono-chromator in the next generation of free electron lasers (FELs). The energy deposition of X-rays will result in thermal heating, and thus lattice expansion of the diamond crystal, which may degrade the performance of X-ray FELs. In this paper, the thermal loading effect of diamond crystal for X-ray FEL oscillators has been systematically studied by combined simulation with Geant4 and ANSYS, and its dependence on the environmental temperature, crystal size, X-ray pulse repetition rate and pulse energy are presented. Our results show that taking the thermal loading effects into account, X-ray FEL oscillators are still robust and promising with an optimized design. Supported by National Natural Science Foundation of China (11175240, 11205234, 11322550) and Program for Changjiang Scholars and Innovative Research Team in University (IRT1280)

  9. Deposition of robust multilayer mirror coatings for storage ring FEL lasing at 176nm

    NASA Astrophysics Data System (ADS)

    Günster, St.; Ristau, D.; Trovó, M.; Danailov, M.; Gatto, A.; Kaiser, N.; Sarto, F.; Piegari, A.

    2005-09-01

    Progress was achieved in the last years in the development of multilayer mirrors used in storage ring Free Electron Lasers (FEL) operating in the vacuum ultraviolet spectral range. Based on dense oxide coatings deposited by Ion Beam Sputtering, a stable lasing at 190 nm was demonstrated. The extension towards shorter wavelengths had to overcome severe problems connected to the radiation resistance and the necessary reflectivity of the resonator mirrors. In this context, radiation resistance can be considered as the ability of the mirror materials to withstand the high power laser radiation and the intense energetic background radiation generated in the synchrotron source. The bombardment with high energetic photons leads to irreversible changes and a coloration on the specimen. Reflectivity requirements can be evaluated from the tolerable losses of FEL systems. At ELETTRA FEL the resonator mirror reflectivity must be above 95 %. Evaporated fluoride multilayer mirrors provide sufficient reflectivity, but they do not exhibit an adequate radiation resistance. Pure oxide multilayers show a sufficient radiation resistance, but they cannot reach the necessary reflectivity below 190 nm. A successful approach combines evaporated fluoride multilayer stack with a dense protection layer of silicon dioxide deposited by Ion Beam Sputtering. Such mirror systems were produced reaching a reflectivity of approximately 99 % at 180 nm. Lasing in the storage ring FEL at ELETTRA was realised in the range between 176 - 179 nm. The mirror reflectivity shows only a slight degradation after lasing, which could be fully restored after the lasing experiment.

  10. Investigation of a versatile pulsed laser source based on a diode seed and ultra-high gain bounce geometry amplifiers.

    PubMed

    Teppitaksak, A; Thomas, G M; Damzen, M J

    2015-05-01

    We present an investigation of a versatile pulsed laser source using a low power, gain-switched diode laser with independently variable repetition rate and pulse duration to seed an ultra-high gain Nd:YVO4 bounce geometry amplifier system at 1064nm. Small-signal gain as high as 50dB was demonstrated in a bounce geometry pre-amplifier from just 24W pumping, with good preservation of TEM00 beam quality. The single amplifier is shown to be limited by amplified spontaneous emission. Study is made of further scaling with a second power amplifier, achieving average output power of ~14W for a pulsed diode seed input of 188μW. This investigation provides some guidelines for using the bounce amplifier to obtain flexible pulse amplification of low-power seed sources to reach scientifically and commercially useful power levels. PMID:25969318

  11. Verification of the Solar Dynamics Observatory High Gain Antenna Pointing Algorithm Using Flight Data

    NASA Technical Reports Server (NTRS)

    Bourkland, Kristin L.; Liu, Kuo-Chia

    2011-01-01

    The Solar Dynamics Observatory (SDO) is a NASA spacecraft designed to study the Sun. It was launched on February 11, 2010 into a geosynchronous orbit, and uses a suite of attitude sensors and actuators to finely point the spacecraft at the Sun. SDO has three science instruments: the Atmospheric Imaging Assembly (AIA), the Helioseismic and Magnetic Imager (HMI), and the Extreme Ultraviolet Variability Experiment (EVE). SDO uses two High Gain Antennas (HGAs) to send science data to a dedicated ground station in White Sands, New Mexico. In order to meet the science data capture budget, the HGAs must be able to transmit data to the ground for a very large percentage of the time. Each HGA is a dual-axis antenna driven by stepper motors. Both antennas transmit data at all times, but only a single antenna is required in order to meet the transmission rate requirement. For portions of the year, one antenna or the other has an unobstructed view of the White Sands ground station. During other periods, however, the view from both antennas to the Earth is blocked for different portions of the day. During these times of blockage, the two HGAs take turns pointing to White Sands, with the other antenna pointing out to space. The HGAs handover White Sands transmission responsibilities to the unblocked antenna. There are two handover seasons per year, each lasting about 72 days, where the antennas hand off control every twelve hours. The non-tracking antenna slews back to the ground station by following a ground commanded trajectory and arrives approximately 5 minutes before the formerly tracking antenna slews away to point out into space. The SDO Attitude Control System (ACS) runs at 5 Hz, and the HGA Gimbal Control Electronics (GCE) run at 200 Hz. There are 40 opportunities for the gimbals to step each ACS cycle, with a hardware limitation of no more than one step every three GCE cycles. The ACS calculates the desired gimbal motion for tracking the ground station or for slewing

  12. Optical properties of the output of a high-gain, self-amplified free-electron laser.

    SciTech Connect

    Li, Y.; Lewellen, J.; Huang, Z.; Krinsky, S.; Accelerator Systems Division; BNL

    2004-01-01

    The temporal structure and phase evolutions of a high-gain, self-amplified free-electron laser are measured, including single-shot analysis and statistics over many shots. Excellent agreement with the theory of free-electron laser and photon statistics is found.

  13. A numerical algorithm for optimal feedback gains in high dimensional LQR problems

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Ito, K.

    1986-01-01

    A hybrid method for computing the feedback gains in linear quadratic regulator problems is proposed. The method, which combines the use of a Chandrasekhar type system with an iteration of the Newton-Kleinman form with variable acceleration parameter Smith schemes, is formulated so as to efficiently compute directly the feedback gains rather than solutions of an associated Riccati equation. The hybrid method is particularly appropriate when used with large dimensional systems such as those arising in approximating infinite dimensional (distributed parameter) control systems (e.g., those governed by delay-differential and partial differential equations). Computational advantage of the proposed algorithm over the standard eigenvector (Potter, Laub-Schur) based techniques are discussed and numerical evidence of the efficacy of our ideas presented.

  14. High Gain, Fast Scan, Broad Spectrum, Parallel Beam Wavelength Dispersive X-ray Spectrometer for SEM

    SciTech Connect

    David OHara; Dr. Eric Lochmer

    2003-09-12

    Parallax Research, Inc. proposes to produce a new type of x-ray spectrometer for use with Scanning Electron Microscopy (SEM) that would have the energy resolution of WDS and the ease of use of EDS with sufficient gain for lower energies that it can be used at low beam currents as is EDS. Parallax proposes to do this by development of new multiple reflection x-ray collimation optics, new diffractor technology, new detector technology and new scan algorithms.

  15. High Risk of Obesity and Weight Gain for HIV-Infected Uninsured Minorities

    PubMed Central

    Taylor, Barbara S.; Liang, Yuanyuan; Garduño, L. Sergio; Walter, Elizabeth A.; Gerardi, Margit; Anstead, Gregory M.; Bullock, Delia; Turner, Barbara J.

    2014-01-01

    Background Obesity and HIV disproportionately affect minorities and have significant health risks, but few studies have examined disparities in weight change in HIV-seropositive (HIV+) cohorts. Objective To determine racial and health insurance disparities in significant weight gain in a predominately Hispanic HIV+ cohort. Methods Our observational cohort study of 1,214 non-underweight HIV+ adults from 2007-2010 had significant weight gain (≥3% annual BMI increase) as primary outcome. The secondary outcome was continuous BMI over time. A four-level race-ethnicity/insurance predictor reflected the interaction between race-ethnicity and insurance: insured white (non-Hispanic), uninsured white, insured minority (Hispanic or black), or uninsured minority. Logistic and mixed effects models adjusted for: baseline BMI; age; gender; household income; HIV transmission category; antiretroviral therapy type; CD4+ count; plasma HIV-1 RNA; observation months; and visit frequency. Results The cohort was 63% Hispanic and 14% black; 13.3% were insured white, 10.0% uninsured white, 40.9% insured minority, and 35.7% uninsured minority. At baseline, 37.5% were overweight, 22.1% obese. Median observation was 3.25 years. 24.0% had significant weight gain, which was more likely for uninsured minority patients than insured whites (adjusted odds ratio=2.85 , 95%CI: 1.66, 4.90). The rate of BMI increase in mixed effects models was greatest for uninsured minorities. Of 455 overweight at baseline, 29% were projected to become obese in 4 years. Conclusions and Relevance In this majority Hispanic HIV+ cohort, 60% were overweight or obese at baseline, and uninsured minority patients gained weight more rapidly. These data should prompt greater attention by HIV providers to prevention of obesity. PMID:24121754

  16. Use of Multipass Recirculation and Energy Recovery In CW SRF X-FEL Driver Accelerators

    SciTech Connect

    Douglas, David; Akers, Walt; Benson, Stephen V.; Biallas, George; Blackburn, Keith; Boyce, James; Bullard, Donald; Coleman, James; Dickover, Cody; Ellingsworth, Forrest; Evtushenko, Pavel; Fisk, Sally; Gould, Christopher; Gubeli, Joseph; Hannon, Fay; Hardy, David; Hernandez-Garcia, Carlos; Jordan, Kevin; Klopf, John; Kortze, J.; Legg, Robert; Li, Rui; Marchlik, Matthew; Moore, Steven W.; Neil, George; Powers, Thomas; Sexton, Daniel; Shin, Ilkyoung; Shinn, Michelle D.; Tennant, Christopher; Terzic, Balsa; Walker, Richard; Williams, Gwyn P.; Wilson, G.; Zhang, Shukui

    2010-08-01

    We discuss the use of multipass recirculation and energy recovery in CW SRF drivers for short wavelength FELs. Benefits include cost management (through reduced system footprint, required RF and SRF hardware, and associated infrastructure - including high power beam dumps and cryogenic systems), ease in radiation control (low drive beam exhaust energy), ability to accelerate and deliver multiple beams of differing energy to multiple FELs, and opportunity for seamless integration of multistage bunch length compression into the longitudinal matching scenario. Issues include all those associated with ERLs compounded by the challenge of generating and preserving the CW electron drive beam brightness required by short wavelength FELs. We thus consider the impact of space charge, BBU and other environmental wakes and impedances, ISR and CSR, potential for microbunching, intra-beam and beam-residual gas scattering, ion effects, RF transients, and halo, as well as the effect of traditional design, fabrication, installation and operational errors (lattice aberrations, alignment, powering, field quality). Context for the discussion is provided by JLAMP, the proposed VUV/X-ray upgrade to the existing Jefferson Lab FEL.

  17. High-gain wavelength-selective amplification and cavity ring down spectroscopy in a fluoride glass erbium-doped microsphere.

    PubMed

    Rasoloniaina, A; Trebaol, S; Huet, V; Le Cren, E; Nunzi Conti, G; Serier-Brault, H; Mortier, M; Dumeige, Y; Féron, P

    2012-11-15

    We experimentally demonstrate a compact optical amplifier consisting of a rare-earth-doped whispering-gallery-mode microsphere coupled via a tapered fiber. A gain up to 20 dB is reported in an erbium-doped fluoride glass microsphere 135 μm in diameter. Below the amplification regime, the optical gain is used to compensate for unavoidable losses due to surface contamination or scattering. Quality factor as high as 2×10(9) has been measured by analyzing the transient response of the microsphere excited by a dynamically shifted frequency input signal. PMID:23164896

  18. Wideband and flat-gain amplifier based on high concentration erbium-doped fibres in parallel double-pass configuration

    SciTech Connect

    Hamida, B A; Cheng, X S; Harun, S W; Naji, A W; Arof, H; Al-Khateeb, W; Khan, S; Ahmad, H

    2012-03-31

    A wideband and flat gain erbium-doped fibre amplifier (EDFA) is demonstrated using a hybrid gain medium of a zirconiabased erbium-doped fibre (Zr-EDF) and a high concentration erbium-doped fibre (EDF). The amplifier has two stages comprising a 2-m-long ZEDF and 9-m-long EDF optimised for C- and L-band operations, respectively, in a double-pass parallel configuration. A chirp fibre Bragg grating (CFBG) is used in both stages to ensure double propagation of the signal and thus to increase the attainable gain in both C- and L-band regions. At an input signal power of 0 dBm, a flat gain of 15 dB is achieved with a gain variation of less than 0.5 dB within a wide wavelength range from 1530 to 1605 nm. The corresponding noise figure varies from 6.2 to 10.8 dB within this wavelength region.

  19. Inverse Compton gamma-ray source for nuclear physics and related applications at the Duke FEL

    SciTech Connect

    O`Shea, P.G.; Litvinenko, V.N.; Madey, J.M.J.

    1995-12-31

    In recent years the development of intense, short-wavelength FEL light sources has opened opportunities for the development new applications of high-energy Compton-backscattered photons. These applications range from medical imaging with X-ray photons to high-energy physics with {gamma}{gamma} colliders. In this paper we discuss the possibilities for nuclear physics studies using polarized Compton backscattered {gamma}-rays from the Duke storage-ring-driven UV-FEL. There are currently a number of projects that produce polarized {gamma}-rays for nuclear physics studies. All of these facilities operate by scattering conventional laser-light against electrons circulating in a storage ring. In our scheme, intra-cavity scattering of the UV-FEL light will produce a {gamma}-flux enhancement of approximately 10{sup 3} over existing sources. The Duke ring can operate at energies up to 1.2 GeV and can produce FEL photons up to 12.5 eV. We plan to generate {gamma}-rays up to 200 MeV in energy with an average flux in excess of 10{sup 7} /s/MeV, using a modest scattering beam of 10-mA average stored current. The {gamma}-ray energy may be tuned by varying the FEL wavelength or by adjusting the stored electron beam energy. Because of the intense flux, we can eliminate the need for photon energy tagging by collimating of the {gamma}-ray beam. We will discuss the characteristics of the device and its research opportunities.

  20. ECH by FEL and gyrotron sources on the Microwave Tokamak Experiment (MTX) tokamak

    SciTech Connect

    Stallard, B.W.; Turner, W.C.; Allen, S.L.; Byers, J.A.; Felker, B.; Fenstermacher, M.E.; Ferguson, S.W.; Hooper, E.G.; Thomassen, K.I.; Throop, A.L. ); Makowski, M.A. )

    1990-08-09

    The Microwave Tokamak Experiment (MTX) at LLNL is studying the physics of intense pulse ECH is a high-density tokamak plasma using a microwave FEL. Related technology development includes the FEL, a windowless quasi-optical transmission system, and other microwave components. Initial plasma experiments have been carried out at 140 GHz with single rf pulses generated using the ETA-II accelerator and the ELF wiggler. Peak power levels up to 0.2 GW and pulse durations up to 10 ns were achieved for injection into the plasma using as untapered wiggler. FEL pulses were transmitted over 33 m from the FEL to MTX using six mirrors mounted in a 50-cm-diam evacuated pipe. Measurements of the microwave beam and transmission through the plasma were carried out. For future rapid pulse experiments at high average power (4 GW peak power, 5kHz pulse rate, and {bar P} > 0.5 MW) using the IMP wiggler with tapered magnetic field, a gyrotron (140 GHz, 400 kW cw or up to 1 MW short pulse) is being installed to drive the FEL input or to directly heat the tokamak plasma at full gyrotron power. Quasi-optic techniques will be used to couple the gyrotron power. For direct plasma heating, the gyrotron will couple into the existing mirror transport system. Using both sources of rf generation, experiments are planned to investigate intense pulse absorption and tokamak physics, such as the ECH of a pellet-fueled plasma and plasma control using localized heating. 12 refs., 9 figs.

  1. Focus on cat allergen (Fel d 1): immunological and aerodynamic characteristics, modality of airway sensitization and avoidance strategies.

    PubMed

    Liccardi, Gennaro; D'Amato, Gennaro; Russo, Maria; Canonica, Giorgio Walter; D'Amato, Luciana; De Martino, Mariano; Passalacqua, Giovanni

    2003-09-01

    The increasing frequency of pet ownership (especially cats) in many industrialized countries has raised the level of exposure to the allergens produced by these animals. Moreover, it is likely that modern energy-saving systems and the wide use of upholstered furniture has resulted in closer contact between cats (and their allergens) and humans. Many different methods have been developed to quantify the main cat allergen (Fel d 1) in settled dust and in ambient air. The threshold levels of cat allergen inducing sensitization or triggering respiratory symptoms in sensitized patients have been calculated in settled dust, but airborne amounts of Fel d 1 probably represent a more reliable index of allergen exposure. Noticeably, the amount of Fel d 1 may be relatively high also in confined environments where cats have never been kept. It has been demonstrated that clothes of cat owners are the main source for dispersal of allergens in cat-free environments. This fact may be of relevance, because recent studies have shown that allergic sensitization to cats is more likely to develop in children exposed to moderate levels of this allergen than in children exposed to high amounts of Fel d 1. The ubiquity of cat allergen may justify the common observation that allergen avoidance is often insufficient to reduce the risk of developing allergic sensitization and/or symptom exacerbation in highly susceptible patients. Further efforts are needed to improve the efficacy of Fel d 1 avoidance strategies to try to reduce the risk of allergic sensitization to this allergen.

  2. Recent Results from the IR Upgrade FEL at Jefferson Lab

    SciTech Connect

    K. Beard; C. Behre; S. Benson; G. Biallas; J. Boyce; D. Douglas; H. F. Dylla; R. Evans; A. Grippo; J. Gubeli; D. Hardy; C. Hernandez-Garcia; K. Jordan; L. Merminga; N. Nishimori; G. Neil; J. Preble; Michelle D. Shinn; T. Siggins; R. Walker; G. Williams; S. Zhang

    2005-08-21

    After demonstrating 10 kW operation with 1 second pulses, the Jefferson Lab program switched to demonstrating high power operation at short wavelengths using a new 8 cm period wiggler and a THz suppression chicane. We report here on the lasing results to date using this new configuration. We have demonstrated a large reduction in THz heating on the mirrors. We have also eliminated heating in the mirror steering assemblies, making operation at high power much more stable. Finally, we have greatly reduced astigmatism in the optical cavity, allowing operation with a very short Rayleigh range. The laser has been tuned from 0.9 to 3.1 microns using the new wiggler. User experiments commenced in April of 2005 with the FEL Upgrade operating over the 1-3 micron range. We are in the process of installing a 5.5 cm permanent magnet wiggler that will give us even larger tuning range and higher power.

  3. Proposed uv-FEL user facility at BNL

    SciTech Connect

    Ben-Zvi, I.; Di Mauro, L.F.; Krinsky, S.; White, M.G.; Yu, L.H.; Batchelor, K.; Friedman, A.; Fisher, A.S.; Halama, H.; Ingold, G.; Johnson, E.D.; Kramer, S.; Rogers, J.T.; Solomon, L.; Wachtel, J.; Zhang, X.

    1991-01-01

    The NSLS at Brookhaven National Laboratory is proposing the construction of a UV-FEL operating in the wavelength range from visible to 750{Angstrom}. Nano-Coulomb electron pulses will be generated at a laser photo-cathode RF gun at a repetition rate of 10 KHz. The 6 ps pulses will be accelerated to 250 MeV in a superconducting linac. The FEL output will serve four stations with independent wavelength tuning, using two wigglers and two rotating mirror beam switches. Seed radiation for the FEL amplifiers will be provided by conventional tunable lasers, and the final frequency multiplication from the visible or near UV to the VUV will be carried out in the FEL itself. Each FEL will comprise of an initial wiggler resonant to the seed wavelength, a dispersion section, and a second wiggler resonant to the output wavelength. The facility will provide pump probe capability, FEL or FEL, and FEL on synchrotron light from an insersion device on the NSLS X-Ray ring. 15 refs., 2 figs., 3 tabs.

  4. Where Would Economics Education Be without Rendigs Fels?

    ERIC Educational Resources Information Center

    Siegfried, John J.; And Others

    1994-01-01

    Discusses the career of Rendigs Fels from his first academic appointment in 1948 until the present. Concludes that Fels is one of a small number of respected economists who have made interest, involvement, and research in the teaching of economics an important and respectable part of the profession. (CFR)

  5. Facts of Environmental Life (FEL): A Projective Counseling Technique.

    ERIC Educational Resources Information Center

    Golden, James R.; Parker, Joseph P.

    This paper presents the Facts of Environmental Life (FEL), a counseling technique which incorporates the action sociogram and the Adlerian concept of purposeful behavior. The use of the FEL materials, i.e., a life space board, standing figures of varying sizes, and blocks and barricades representing emotional blocks, is illustrated. Instructions…

  6. Diagnostic technique applied for FEL electron bunches

    NASA Astrophysics Data System (ADS)

    Brovko, O.; Grebentsov, A.; Morozov, N.; Syresin, E.; Yurkov, M.

    2016-05-01

    Diagnostic technique applied for FEL ultrashort electron bunches is developed at JINR-DESY collaboration within the framework of the FLASH and XFEL projects. Photon diagnostics are based on calorimetric measurements and detection of undulator radiation. The infrared undulator constructed at JINR and installed at FLASH is used for longitudinal bunch shape measurements and for two-color lasing provided by the FIR and VUV undulators. The pump probe experiments with VUV and FIR undulators provide the bunch profile measurements with resolution of several femtosecond. The new three microchannel plates (MCP) detectors operated in X-ray range are under development now in JINR for SASE1-SASE 3 European XFEL.

  7. Inflight calibration technique for onboard high-gain antenna pointing. [of Mariner 10 spacecraft in Venus and Mercury flyby mission

    NASA Technical Reports Server (NTRS)

    Ohtakay, H.; Hardman, J. M.

    1975-01-01

    The X-band radio frequency communication system was used for the first time in deep space planetary exploration by the Mariner 10 Venus and Mercury flyby mission. This paper presents the technique utilized for and the results of inflight calibration of high-gain antenna (HGA) pointing. Also discussed is pointing accuracy to maintain a high data transmission rate throughout the mission, including the performance of HGA pointing during the critical period of Mercury encounter.

  8. Ultrahigh harmonics generation in a FEL with a seed laser

    SciTech Connect

    Goloviznin, V.V.; Amersfoort, P.W. van

    1995-12-31

    One of the most challenging problems in modern FEL technology is to operate in the X-ray region, especially in the {open_quotes}water window{close_quotes}. Because of the absence of optical resonators in this range of wavelengths, only a single-pass device may be suitable for this task. The Self-Amplified Spontaneous Emission (SASE) mechanism is now under active discussion as a realistic way to provide high-power coherent emission in the X-ray range. Both the undulator parameters and the electron beam parameters required for the lasing are achieveable at today`s technological level. On the other hand, the SASE approach implies a very long and expensive periodic magnetic structure, typically several tens of meters long. This is mainly because of the rather long build-up time necessary to establish a coherent mode from incoherent noise. A mechanism of shortening this time would be therefore highly desirable. In the present paper we consider a scheme using two undulators and a seed-laser to produce coherent X-ray emission. The first undulator and the seed-laser provide a pre-modulation of the beam while the second undulator serves as a source of coherent spontaneous radiation at a very high harmonic of the seed-laser frequency; the whole scheme may then be considered to be an FEL-based frequency upconvertor. The total length of the periodic magnetic structure is shown to be of the order of several meters, nearly an order of magnitude shorter than in the SASE case. For the same beam quality as in the SASE scheme and with realistic seed-laser parameters, the efficiency of the beam pre-modulation at the 50-th (!) harmonic is shown to be as high as 15%. The output radiation is tunable between discrete harmonics of the seed-frequency.

  9. Method for separating FEL output beams from long wavelength radiation

    DOEpatents

    Neil, George; Shinn, Michelle D.; Gubeli, Joseph

    2016-04-26

    A method for improving the output beam quality of a free electron laser (FEL) by reducing the amount of emission at wavelengths longer than the electron pulse length and reducing the amount of edge radiation. A mirror constructed of thermally conductive material and having an aperture therein is placed at an oblique angle with respect to the beam downstream of the bending magnet but before any sensitive use of the FEL beam. The aperture in the mirror is sized to deflect emission longer than the wavelength of the FEL output while having a minor impact on the FEL output beam. A properly sized aperture will enable the FEL radiation, which is coherent and generally at a much shorter wavelength than the bending radiations, to pass through the aperture mirror. The much higher divergence bending radiations will subsequently strike the aperture mirror and be reflected safely out of the way.

  10. Current gain of 4H SiC high-voltage BJTs at reduced temperatures

    NASA Astrophysics Data System (ADS)

    Ivanov, P. A.; Levinshtein, M. E.; Palmour, J. W.; Agarwal, A. K.; Krishnaswami, S.

    2007-06-01

    The dependences of the common-emitter current gain β on the collector current IC have been measured at reduced temperatures in 3 kV 4H-SiC epitaxial-emitter npn bipolar junction transistors with implanted p+ base contact and base-emitter distances Lbe ranging from 3 to 15 µm. The collector-emitter voltage was fixed (at 100 V) to provide the active operation mode at any collector current in a wide range from 80 mA to 10 A (current densities of 3.5-445 A cm-2). The maximum current gain steadily grows with Lbe from 8 (Lbe = 3 µm) to 21 (Lbe = 15 µm) at room temperature. For all values of Lbe, β steadily increases as the temperature becomes lower; however, the smaller Lbe is, the weaker the effect produced by temperature lowering. As, for example, the temperature is lowered to -42 °C, β increases from 8 to 9 for structures with Lbe = 3 µm and from 21 to 31 for structures with Lbe = 15 µm. The phenomena observed have been accounted for by recombination at the p+-p base boundary.

  11. Transverse-coherence properties of the FEL at the LCLS

    SciTech Connect

    Ding, Yuantao; Huang, Zhirong; Ocko, Samuel A.; /MIT, Cambridge, Dept. Phys.

    2010-09-02

    The recently commissioned Linac Coherent Light Source is an x-ray free-electron laser at the SLAC National Accelerator Laboratory, which is now operating at x-ray wavelengths of 20-1.2 Angstrom with peak brightness nearly ten orders of magnitude beyond conventional synchrotron sources. Understanding of coherence properties of the radiation from SASE FELs at LCLS is of great practical importance for some user experiments. We present the numerical analysis of the coherence properties at different wavelengths based on a fast algorithmusing ideal and start-end simulated FEL fields. The sucessful commissioning and operation of the linac coherent light source (LCLS) [1] has demonstrated that the x-ray free-electron laser (FEL) has come of age; these types of x-ray sources are poised to revolutionize the ultra-fast x-ray sciences. The LCLS and other hard x-ray FELs under construction are based on the principle of self-amplified spontaneous emission (SASE) [2, 3], where the amplification process starts from the shot noise in the electron beam. A large number of transverse radiation modes are also excited when the electron beam enters the undulator. The FEL collective instability in the electron beam causes the modulation of the electron density to increase exponentially, and after sufficient undulator distances, a single transverse mode starts to dominate. As a result, SASE FEL is almost fully coherent in the transverse dimension. Understanding of transverse coherence properties of the radiation from SASE FELs is of great practical importance. The longitudinal coherence properties of SASE FELs have been studied before [4]. Some studies on the transverse coherence can be found in previous papers, for example, in ref. [5, 6, 7, 8, 9]. In this paper, we first discuss a new numerical algorithm based on Markov chain Monte Carlo techniques to calculate the FEL transverse coherence. Then we focus on the numerical analysis of the LCLS FEL transverse coherence.

  12. Undulators to FELs: Nanometers, Femtoseconds, Coherence and Applications

    SciTech Connect

    Attwood, David

    2011-11-30

    For scientists in many fields, from material science to the life sciences and archeology, synchrotron radiation, and in particular undulator radiation, has provide an intense source of x-rays which are tunable to the absorption edges of particular elements of interest, often permitting studies at high spatial and spectral resolution. Now a close cousin to the undulator, the x-ray free electron laser (XFEL) has emerged with improved spatial coherence and, perhaps more importantly, femtosecond pulse durations which permit dynamical studies. In the future attosecond x-ray capabilities are anticipated. In this colloqium we will describe some state of the art undulator studies, how undulators work, the evolution to FELs, their pulse and coherence properties, and the types of experiments envisioned.

  13. Ethernet Based Embedded IOC for FEL Control Systems

    SciTech Connect

    Yan, Jianxun; Sexton, Daniel; Grippo, Albert; Moore, Steven; Jordan, Kevin

    2008-01-01

    An Ethernet based embedded Input Output Controller (IOC) has been developed as part of an upgrade to the control system for the Free Electron Laser Project at Jefferson Lab. Currently most of the FEL systems are controlled, configured and monitored using a central VME bus-based configuration. These crate based systems are limited in growth and usually interleave multiple systems. In order to accommodate incremental system growth and lower channel costs, we developed a stand-alone system, an Ethernet based embedded controller called the Single Board IOC (SBIOC). The SBIOC is a module which integrates an Altera FPGA and the Arcturus uCdimm Coldfire 5282 Microcontroller daughter card into one module, which can be easily configured for different kinds of I/O devices. The microcontroller is a complete System-on-Module, including three highly integrated functional blocks, the core processor, memory, and Ethernet communication. A real-time operating system, RTEMS is cross compiled with

  14. High Efficiency Automatic-Power-Controlled and Gain-Clamped EDFA for Broadband Passive Optical Networking Systems

    NASA Astrophysics Data System (ADS)

    Shen, Jyi-Lai; Wei, Shui-Ken; Lin, Chin-Yuan; Iong Li, Ssu; Huang, Chih-Chuan

    2010-04-01

    The configuration of a simple improved high efficiency automatic-power-controlled and gain-clamped EDFA (APC-GC-EDFA) for broadband passive optical networking systems (BPON) is presented here. In order to compensate the phase and amplitude variation due to the different distance between the optical line terminal (OLT) and optical network units (ONU), the APC-GC-EDFA need to be employed. A single 980 nm laser module is employed as the primary pump. To extend the bandwidth, all C-band ASE is recycled as the secondary pump to enhance the gain efficiency. An electrical feedback circuit is used as a multi-wavelength channel transmitter monitor for the automatic power control to improve the gain-flattened flatness for stable amplification. The experimental results prove that the EDFA system can provide flatter clamped gain in both C-band and L-band configurations. The gain flatness wavelength ranging from 1530 to 1610 nm is within 32.83 ± 0.64 dB, i.e. below 1.95 %. The gains are clamped at 33.85 ± 0.65 dB for the input signal power of -40 dBm to -10 dBm. The range of noise figure is between 6.37 and 6.56, which is slightly lower compared to that of unclamped amplifiers. This will be very useful for measuring the gain flatness of APC-GC-EDFA. Finally, we have also demonstrated the records of the overall simultaneous dynamics measurements for the new system stabilization. The carrier to noise ratio (CNR) is 49.5 to 50.8 dBc which is above the National Television System Committee (NTSC) standard of 43 dBc, and both composite second order (CSO) 69.2 to 71.5 dBc and composite triple beat (CTB) of 69.8 to 72.2 dBc are above 53 dBc. The recorded corresponding rise-time of 1.087 ms indicates that the system does not exhibit any overshoot of gain or ASE variation due to the signal at the beginning of the pulse.

  15. High gain-production efficiency and large brightness X-UV laser at Palaiseau

    NASA Astrophysics Data System (ADS)

    Jaeglé, P.; Carillon, A.; Dhez, P.; Goedtkindt, P.; Jamelot, G.; Klisnick, A.; Rus, B.; Zeitoun, Ph.; Jacquemot, S.; Mazataud, D.; Mens, A.; Chauvineau, J. P.

    1995-05-01

    A large gain has been measured for the J=0-1 line of neonlike Zn at λ=21.2 nm. The time evolutions and the localization of emission zones of the J=0-1 and J=2-1 lines are compared. It is shown that a train of very small prepulses before the main pulse has an important role in the J=0=1 emission. A half-cavity has been successfully used to attain a nearly saturated intensity with a 2 cm long plasma. The X-UV pulse energy is of 400 μJ, the laser power of 5 MW. The driving laser is the 0.4 KJ, 600 ps laser of LULI.

  16. High power gain-switched diode laser master oscillator and amplifier

    SciTech Connect

    Poelker, M.

    1995-11-06

    A tapered-stripe, traveling-wave semiconductor optical amplifier was seeded with 3.3 mW of gain-switched diode laser light to obtain over 200 mW average power with pulse widths{approx}105 ps full width at half-maximum (FWHM) and a pulse repetition rate of 499 MHz corresponding to a peak power of 3.8 W. Shorter pulse widths were obtained when the amplifier was driven with less current at the expense of reduced output power. Pulse widths as short as 31 ps FWHM and an average power of 98 mW corresponding to a peak power of 6.3 W were obtained when a different, lower power seed laser was used. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  17. High gain selective amplification in whispering gallery mode resonators: analysis by cavity ring down method

    NASA Astrophysics Data System (ADS)

    Féron, P.; Rasoloniaina, A.; Huet, V.; Le Cren, E.; Trebaol, S.; Nunzi Conti, G.; Serier-Brault, H.; Mortier, M.; Dumeige, Y.

    2013-03-01

    We study both theoretically and experimentally the dispersive properties of single whispering gallery mode resonators. We present a simple experimental protocol which allows us to obtain in detail its coupling regime and thus their dispersive properties. We demonstrate a compact optical amplifier with a gain up to 20dB in an Erbium doped fluoride microsphere of 135μm in diameter coupled via a tapered fiber. The model is also applied to analyze the dynamic behavior of the modal coupling between two degenerate resonances of the same cavity. In particular, this can be used to describe the coupling of counterpropagating whispering gallery modes (WGM) by Rayleigh scattering. The theory is successfully compared to experiments carried out in silica microspheres

  18. Gain engineering for all-optical microwave and high speed pulse generation in mode-locked fiber lasers

    NASA Astrophysics Data System (ADS)

    Li, Fangxin; Helmy, Amr S.

    2014-03-01

    Pulsed sources based on approaches that employ only photonic components and no RF components will be discussed in this talk. Several technologies have been explored to generate actively mode-locked sources using electronically driven fiber ring cavities. However, for these sources the pulse repetition rate is usually limited by the bandwidth of the intracavity modulator. Filtering of highly-stable low repetition rate optical combs utilizing cavities such as Fabry-Perot etalons can be used to overcome this limitation. This scheme is not flexible as it requires highly precise control of ultrahigh finesse etalons which limits the repetition rate to the free spectral range of the filter. Pulsed sources based on semiconductor devices offer many advantages, including large gain bandwidth, rapid tunability, long-term stability. In this work we introduce a novel, simple method to generate optical clock with wavelength tunability using two continuous wave (CW) lasers. The lasers are injected into a conventional SOAs-based fiber ring laser. The beating signal generated by these two lasers causes the modulation of the SOA gain saturation inside the cavity. Thus, the SOA provides gain and functions as the modulator as well as the gain medium. When the lasing mode inside the cavity is amplified, it also results in gain-induced four wave mixing. The proposed technique is particularly versatile, overcoming the bandwidth limitation of other techniques, which require RF sources. Moreover, this technique provides the possibility for hybrid integration as it is comprised of semiconductor chips that can be heterogeneously integrated on a Si platform.

  19. Excess Folic Acid Increases Lipid Storage, Weight Gain, and Adipose Tissue Inflammation in High Fat Diet-Fed Rats.

    PubMed

    Kelly, Karen B; Kennelly, John P; Ordonez, Marta; Nelson, Randal; Leonard, Kelly; Stabler, Sally; Gomez-Muñoz, Antonio; Field, Catherine J; Jacobs, René L

    2016-01-01

    Folic acid intake has increased to high levels in many countries, raising concerns about possible adverse effects, including disturbances to energy and lipid metabolism. Our aim was to investigate the effects of excess folic acid (EFA) intake compared to adequate folic acid (AFA) intake on metabolic health in a rodent model. We conducted these investigations in the setting of either a 15% energy low fat (LF) diet or 60% energy high fat (HF) diet. There was no difference in weight gain, fat mass, or glucose tolerance in EFA-fed rats compared to AFA-fed rats when they were fed a LF diet. However, rats fed EFA in combination with a HF diet had significantly greater weight gain and fat mass compared to rats fed AFA (p < 0.05). Gene expression analysis showed increased mRNA levels of peroxisome proliferator-activated receptor γ (PPARγ) and some of its target genes in adipose tissue of high fat-excess folic acid (HF-EFA) fed rats. Inflammation was increased in HF-EFA fed rats, associated with impaired glucose tolerance compared to high fat-adequate folic acid (HF-AFA) fed rats (p < 0.05). In addition, folic acid induced PPARγ expression and triglyceride accumulation in 3T3-L1 cells. Our results suggest that excess folic acid may exacerbate weight gain, fat accumulation, and inflammation caused by consumption of a HF diet. PMID:27669293

  20. Excess Folic Acid Increases Lipid Storage, Weight Gain, and Adipose Tissue Inflammation in High Fat Diet-Fed Rats.

    PubMed

    Kelly, Karen B; Kennelly, John P; Ordonez, Marta; Nelson, Randal; Leonard, Kelly; Stabler, Sally; Gomez-Muñoz, Antonio; Field, Catherine J; Jacobs, René L

    2016-09-23

    Folic acid intake has increased to high levels in many countries, raising concerns about possible adverse effects, including disturbances to energy and lipid metabolism. Our aim was to investigate the effects of excess folic acid (EFA) intake compared to adequate folic acid (AFA) intake on metabolic health in a rodent model. We conducted these investigations in the setting of either a 15% energy low fat (LF) diet or 60% energy high fat (HF) diet. There was no difference in weight gain, fat mass, or glucose tolerance in EFA-fed rats compared to AFA-fed rats when they were fed a LF diet. However, rats fed EFA in combination with a HF diet had significantly greater weight gain and fat mass compared to rats fed AFA (p < 0.05). Gene expression analysis showed increased mRNA levels of peroxisome proliferator-activated receptor γ (PPARγ) and some of its target genes in adipose tissue of high fat-excess folic acid (HF-EFA) fed rats. Inflammation was increased in HF-EFA fed rats, associated with impaired glucose tolerance compared to high fat-adequate folic acid (HF-AFA) fed rats (p < 0.05). In addition, folic acid induced PPARγ expression and triglyceride accumulation in 3T3-L1 cells. Our results suggest that excess folic acid may exacerbate weight gain, fat accumulation, and inflammation caused by consumption of a HF diet.