Science.gov

Sample records for high gain fel

  1. Review of High Gain FELs

    SciTech Connect

    Shintake, Tsumoru

    2007-01-19

    For understanding on basic radiation mechanism of the high-gain FEL based on SASE, the author presents electron-crystal interpretation of FEL radiation. In the electron-crystal, electrons are localized at regularly spaced multi-layers, which represents micro-bunching, whose spacing is equal to the radiation wavelength, and the multi-layers are perpendicular to beam axis, thus, diffracted wave creates Bragg's spots in forward and backward directions. Due to the Doppler's effect, frequency of the back-scattered wave is up-converted, generates forwardly focused X-ray. The Bragg's effect contributes focusing the X-ray beam into a spot, thus peak power becomes extremely higher by factor of typically 107. This is the FEL radiation. As well known, the total numbers of scattered photons in Bragg's spots is equal to the total elastic scattering photons from the atoms contained in the crystal. Therefore, total power in the FEL laser is same as the spontaneous radiation power from the undulator for the same beam parameter. The FEL radiation phenomenon is simple interference effect. In today's presentations, we use the laser pointer, and we frequently experience difficulty in pointing precisely or steadily in one place on the screen, since the laser spot is very small and does not spread. Exactly same to this, X-ray FEL is a highly focused beam, and pointing stability dominates productivity of experiment, thus we need special care on beam stability from linear accelerator.

  2. Recent Progress in High-Gain FEL Theory

    SciTech Connect

    Huang, Z.; /SLAC

    2005-09-30

    High-gain free electron lasers (FEL) are being developed as extremely bright x-ray sources of a next-generation radiation facility. In this paper, we review the basic theory and the recent progress in understanding the startup, the exponential growth and the saturation of the high-gain process, emphasizing the self-amplified spontaneous emission (SASE). We will also discuss how the FEL performance may be affected by various errors and wakefield effects in the undulator.

  3. STARS A Two Stage High Gain Harmonic Generation FEL Demonstrator

    SciTech Connect

    M. Abo-Bakr; W. Anders; J. Bahrdt; P. Budz; K.B. Buerkmann-Gehrlein; O. Dressler; H.A. Duerr; V. Duerr; W. Eberhardt; S. Eisebitt; J. Feikes; R. Follath; A. Gaupp; R. Goergen; K. Goldammer; S.C. Hessler; K. Holldack; E. Jaeschke; Thorsten Kamps; S. Klauke; J. Knobloch; O. Kugeler; B.C. Kuske; P. Kuske; A. Meseck; R. Mitzner; R. Mueller; M. Neeb; A. Neumann; K. Ott; D. Pfluckhahn; T. Quast; M. Scheer; Th. Schroeter; M. Schuster; F. Senf; G. Wuestefeld; D. Kramer; Frank Marhauser

    2007-08-01

    BESSY is proposing a demonstration facility, called STARS, for a two-stage high-gain harmonic generation free electron laser (HGHG FEL). STARS is planned for lasing in the wavelength range 40 to 70 nm, requiring a beam energy of 325 MeV. The facility consists of a normal conducting gun, three superconducting TESLA-type acceleration modules modified for CW operation, a single stage bunch compressor and finally a two-stage HGHG cascaded FEL. This paper describes the faciliy layout and the rationale behind the operation parameters.

  4. Steady State Analysis of Short-wavelength, High-gainFELs in a Large Storage Ring

    SciTech Connect

    Huang, Z.; Bane, K.; Cai, Y.; Chao, A.; Hettel, R.; Pellegrini, C.; /UCLA

    2007-10-15

    Storage ring FELs have operated successfully in the low-gain regime using optical cavities. Discussions of a high-gain FEL in a storage ring typically involve a special bypass to decouple the FEL interaction from the storage ring dynamics. In this paper, we investigate the coupled dynamics of a high-gain FEL in a large storage ring such as PEP and analyze the equilibrium solution. We show that an FEL in the EUV and soft x-ray regimes can be integrated into a very bright storage ring and potentially provides three orders of magnitude improvement in the average brightness at these radiation wavelengths. We also discuss possibilities of seeding with HHG sources to obtain ultra-short, high-peak power EUV and soft x-ray pulses.

  5. Strong focusing influence on high gain FEL characteristics

    SciTech Connect

    Smirnov, A.; Varfolomeev, A.

    1995-12-31

    The use of intrinsic alternating focusing in a linac-driven FEL with planar undulator is considered numerically. The analysis is done on the basis of TDA code for soft X-ray FEL with FD lattice implementing focusing of quadrupole and periodic sextupole type. The influence of the focusing (type and phase advance) on FEL performance and the reasons of difference in FEL performance for focusing of two kinds are analyzed. A possibility of some kind of beam conditioning for intrinsic focusing is discussed.

  6. Analysis of FEL-based CeC amplification at high gain limit

    SciTech Connect

    Wang, G.; Litvinenko, V.; Jing, Y.

    2015-05-03

    An analysis of Coherent electron Cooling (CeC) amplifier based on 1D Free Electron Laser (FEL) theory was previously performed with exact solution of the dispersion relation, assuming electrons having Lorentzian energy distribution. At high gain limit, the asymptotic behavior of the FEL amplifier can be better understood by Taylor expanding the exact solution of the dispersion relation with respect to the detuning parameter. In this work, we make quadratic expansion of the dispersion relation for Lorentzian energy distribution and investigate how longitudinal space charge and electrons’ energy spread affect the FEL amplification process.

  7. Optimization of single-step tapering amplitude and energy detuning for high-gain FELs

    NASA Astrophysics Data System (ADS)

    Li, He-Ting; Jia, Qi-Ka

    2015-01-01

    We put forward a method to optimize the single-step tapering amplitude of undulator strength and initial energy tuning of electron beam to maximize the saturation power of high gain free-electron lasers (FELs), based on the physics of longitudinal electron beam phase space. Using the FEL simulation code GENESIS, we numerically demonstrate the accuracy of the estimations for parameters corresponding to the linac coherent light source and the Tesla test facility.

  8. Critical review of high gain x-ray FEL experiments

    SciTech Connect

    Kim, Kwang-Je

    1996-08-01

    There is a renewed interest at the present time to develop x-ray free electron lasers (FELs). The interest is driven by the scientific opportunities with coherent x-rays glimpsed at the third generation light sources. With the recent development in linac technology in producing high-energy, high-brightness electron beams, it is now possible to design intense coherent x-ray source for wavelengths as short as one Angstrom based on the self- amplified spontaneous emission (SASE) principle. Major linac laboratories such as SLAC and DESY are therefore actively pursuing detailed design studies for the x-ray SASE facilities. The x-rays from these facilities will provide a peak brightness more than ten orders of magnitude higher than that of the current synchrotron radiation sources. Short wavelength coherent radiation could also be generated with harmonic generation techniques in linacs or storage rings. However, these schemes are not expected to be effective for 1 {Angstrom} wavelengths. This review will therefore concentrate on the linac based SASE scheme. The critical components of the SASE are: an electron source consisting of an RF photocathode gun with the emittance corrector producing high brightness electron beam; the beam bunching and acceleration; and a long undulator in which the radiation develops from initially incoherent radiation to intense, coherent radiation. We discuss the critical experimental issues in these components highlighting some relevant recent experiments. We also discuss issues related to the SASE experiment which are distinct from the usual free electron lasers. We give a brief survey of the world-wide SASE experiments. We conclude with a summary and outlook.

  9. High gain FEL amplification of charge modulation caused by a hadron

    SciTech Connect

    Litvinenko,V.; Ben-Zvi, I.; Hao, Y.; Kayran, D.; Pozdeyev, E.; Wang, G.; Reiche, S.; Shevchenko, O.; Vinokurov, N. A.

    2008-08-24

    In scheme of coherent electron cooling (CeC) [1,2], a modulation of electron beam density induced by a copropagation hadron is amplified in high gain FEL. The resulting amplified modulation of electron beam, its shape, form and its lethargy determine number of important properties of the coherent electron cooling. In this talk we present both analytical and numerical (using codes RON [3] and Genesis [4]) evaluations of the corresponding Green functions. We also discuss influence of electron beam parameters on the FEL response.

  10. Oscillator Seeding of a High Gain Harmonic Generation FEL in a Radiator-First Configuration

    SciTech Connect

    Gandhi, P.; Wurtele, J.; Penn, G.; Reinsch, M.

    2012-05-20

    A longitudinally coherent X-ray pulse from a high repetition rate free electron laser (FEL) is desired for a wide variety of experimental applications. However, generating such a pulse with a repetition rate greater than 1 MHz is a significant challenge. The desired high repetition rate sources, primarily high harmonic generation with intense lasers in gases or plasmas, do not exist now, and, for the multi-MHz bunch trains that superconducting accelerators can potentially produce, are likely not feasible with current technology. In this paper, we propose to place an oscillator downstream of a radiator. The oscillator generates radiation that is used as a seed for a high gain harmonic generation (HGHG) FEL which is upstream of the oscillator. For the first few pulses the oscillator builds up power and, until power is built up, the radiator has no HGHG seed. As power in the oscillator saturates, the HGHG is seeded and power is produced. The dynamics and stability of this radiator-first scheme is explored analytically and numerically. A single-pass map is derived using a semi-analytic model for FEL gain and saturation. Iteration of the map is shown to be in good agreement with simulations. A numerical example is presented for a soft X-ray FEL.

  11. Effects of undulator interruptions on the performance of high-gain FEL amplifiers

    SciTech Connect

    Kim, K.J.; Xie, M.; Pelligrini, C.

    1995-12-31

    The high-gain amplifiers for short wavelength free electron lasers (FELs) such as the LCLS project require a long undulator. The construction of the undulator as well as the FEL operation would become easier if the undulator could be interrupted with drift sections every few gain lengths. We have investigated the influence of such interruption on the FEL performances. Three effects are considered: (i) the diffraction loss, (ii) the phase mismatch and, (iii) the phase smearing due to velocity spread and to dispersion errors. The effect (i) is the loss during the process in which the optical mode in a section of the undulator leaves the undulator, propagates through the free space and then re-enters and re-adjusts in the next section. The effect (ii) is the fact that the phase of the optical beam is displaced with respect to the electrons density modulation for optical FEL interaction due to the slippage of the electron beam in the interruption region. The effect (iii) is the fact that electrons velocity spread, emittance, and dispersion due to misalignment of the quadrupoles used for additional focusing lead to a reduction of the bunching factor. We present an approximate analysis of these effects. When applied to the LCLS parameters, we find that the effect (i) is negligible, the effect (ii) gives a condition on the length of the drift section, and the effects (iii) are small, but could be non-negligible if there are sufficient number of interruptions.

  12. Circular polarization with crossed-planar undulators in high gain FELs.

    SciTech Connect

    Kim, K.-J.

    1999-08-31

    We propose a crossed undulator configuration for a high-gain free-electron laser to allow versatile polarization control. This configuration consists of a long (saturation length) planar undulator, a dispersive section, and a short (a few gain lengths) planar undulator oriented perpendicular to the first one. In the first undulator, a radiation component linearly polarized in the x-direction is amplified to saturation. In the second undulator, the x-polarized component propagates freely, while a new component, polarized in the y-direction, is generated and reaches saturation in a few gain lengths. By adjusting the strength of the dispersive section, the relative phase of two radiation components can be adjusted to obtain a suitable polarization for the total radiation field, including the circular polarization. The operating principle of the high-gain crossed undulator, which is quite different from that of the crossed undulator for spontaneous radiation, is illustrated in terms of 1-D FEL theory.

  13. DEMONSTRATION OF 3D EFFECTS WITH HIGH GAIN AND EFFICIENCY IN A UV FEL OSCILLATOR

    SciTech Connect

    Stephen Benson; George Biallas; Keith Blackburn; James Boyce; Donald Bullard; James Coleman; Cody Dickover; David Douglas; Forrest Ellingsworth; Pavel Evtushenko; Carlos Hernandez-Garcia; Christopher Gould; Joseph Gubeli; David Hardy; Kevin Jordan; John Klopf; James Kortze; Robert Legg; Matthew Marchlik; Steven Moore; George Neil; Thomas Powers; Daniel Sexton; Michelle D. Shinn; Christopher Tennant; Richard Walker; Anne Watson; Gwyn Williams; Frederick Wilson; Shukui Zhang

    2011-03-01

    We report on the performance of a high gain UV FEL oscillator operating on an energy recovery linac at Jefferson Lab. The high brightness of the electron beam leads to both gain and efficiency that cannot be reconciled with a one-dimensional model. Three-dimensional simulations do predict the performance with reasonable precision. Gain in excess of 100% per pass and an efficiency close to 1/2NW, where NW is the number of wiggler periods, is seen. The laser mirror tuning curves currently permit operation in the wavelength range of 438 to 362 nm. Another mirror set allows operation at longer wavelengths in the red with even higher gain and efficiency.

  14. Theoretical study of the design and performance of a high-gain, high-extraction-efficiency FEL oscillator

    SciTech Connect

    Goldstein, J.; Nguyen, D.C.; Sheffield, R.L.

    1996-10-01

    We present the results of theoretical and simulation studies of the design and performance of a new F type of FEL oscillator. This device, known by the acronym RAFEL for Regenerative Amplifier Free-Electron Laser, will be constructed in the space presently occupied by the AFEL (Advanced FEL) at Los Alamos, and will be driven by an upgraded (to higher average power) version of the present AFEL linac. In order to achieve a long-time-averaged optical output power of {approximately} 1 kW using an electron beam with an average power of {approximately} 20 kW, a rather high extraction efficiency {eta} {approximately} 5% is required. We have designed a 2-m-long undulator to attain this goal: the first meter is untapered and provides high gain while the second meter is linearly-tapered in magnetic field amplitude to provide high extraction efficiency in the standard K-M-R manner. Two-plane focusing and linear polarization of the undulator are assumed. Electron-beam properties from PARMEIA simulations of the AFEL accelerator were used in the design. A large saturated gain, {approximately} 500, requires a very small optical feedback to keep the device operating at steady-state. However, the large gain leads to distorted optical modes which require two- and three-dimensional simulations to adequately treat diffraction effects. This FEL will be driven by 17 MeV electrons and will operate in the 16 {mu}m spectral region.

  15. HIGH AVERAGE POWER OPTICAL FEL AMPLIFIERS.

    SciTech Connect

    BEN-ZVI, ILAN, DAYRAN, D.; LITVINENKO, V.

    2005-08-21

    Historically, the first demonstration of the optical FEL was in an amplifier configuration at Stanford University [l]. There were other notable instances of amplifying a seed laser, such as the LLNL PALADIN amplifier [2] and the BNL ATF High-Gain Harmonic Generation FEL [3]. However, for the most part FELs are operated as oscillators or self amplified spontaneous emission devices. Yet, in wavelength regimes where a conventional laser seed can be used, the FEL can be used as an amplifier. One promising application is for very high average power generation, for instance FEL's with average power of 100 kW or more. The high electron beam power, high brightness and high efficiency that can be achieved with photoinjectors and superconducting Energy Recovery Linacs (ERL) combine well with the high-gain FEL amplifier to produce unprecedented average power FELs. This combination has a number of advantages. In particular, we show that for a given FEL power, an FEL amplifier can introduce lower energy spread in the beam as compared to a traditional oscillator. This properly gives the ERL based FEL amplifier a great wall-plug to optical power efficiency advantage. The optics for an amplifier is simple and compact. In addition to the general features of the high average power FEL amplifier, we will look at a 100 kW class FEL amplifier is being designed to operate on the 0.5 ampere Energy Recovery Linac which is under construction at Brookhaven National Laboratory's Collider-Accelerator Department.

  16. Parameter analysis for a high-gain harmonic generation FEL using a recently developed 3D polychromatic code.

    SciTech Connect

    Biedron, S. G.; Freund, H. P.; Yu, L.-H.

    1999-09-10

    One possible design for a fourth-generation light source is the high-gain harmonic generation (HGHG) free-electron laser (FEL). Here, a coherent seed with a wavelength at a subharmonic of the desired output radiation interacts with the electron beam in an energy-modulating section. This energy modulation is then converted into spatial bunching while traversing a dispersive section (a three-dipole chicane). The final step is passage through a radiative section, an undulator tuned to the desired higher harmonic output wavelength. The coherent seed serves to remove noise and can be at a much lower subharmonic of the output radiation, thus eliminating the concerns found in self-amplified spontaneous emission (SASE) and seeded FELs, respectively. Recently, a 3D code that includes multiple frequencies, multiple undulatory (both in quantity and/or type), quadruple magnets, and dipole magnets was developed to easily simulate HGHG. Here, a brief review of the HGHG theory, the code development, the Accelerator Test Facility's (ATF) HGHG FEL experimental parameters, and the parameter analysis from simulations of this specific experiment will be discussed.

  17. Development of a 3D FEL code for the simulation of a high-gain harmonic generation experiment.

    SciTech Connect

    Biedron, S. G.

    1999-02-26

    Over the last few years, there has been a growing interest in self-amplified spontaneous emission (SASE) free-electron lasers (FELs) as a means for achieving a fourth-generation light source. In order to correctly and easily simulate the many configurations that have been suggested, such as multi-segmented wigglers and the method of high-gain harmonic generation, we have developed a robust three-dimensional code. The specifics of the code, the comparison to the linear theory as well as future plans will be presented.

  18. Simulation of the short pulse effects in the start-up from noise in high-gain FELS

    SciTech Connect

    Hahn, S.J.; Kim, K.J.

    1995-12-31

    The spatio-temporal evolution of high-gain free electron lasers from noise is investigated by 1-D simulation calculation. To understand the discrepancy between the experimental result and theoretical prediction of the self-amplified spontaneous emission (SASE), the strong slippage effect in the short pulse electron beam and the coherent bunched beam effect are considered. When the length over which the electron density varies significantly is comparable or smaller than the FEL wavelength, the initial noise level would be increased due to the enhanced coherence between electrons. With a proper computer modeling of the start-up from noise including the energy spread, the overall performance and characteristics of SASE are studied. This work will be helpful to increase the credibility of the simulation calculation to predict the SASE performance in all wave-length regions.

  19. FEL gain optimisation and spontaneous radiation

    SciTech Connect

    Bali, L.M.; Srivastava, A.; Pandya, T.P.

    1995-12-31

    Colson have evaluated FEL gains for small deviations from perfect electron beam injection, with radiation of the same polarisation as that of the wiggler fields. We find that for optimum gain the polarisation of the optical field should be the same as that of the spontaneous emission under these conditions. With a helical wiggler the axial oscillations resulting from small departures from perfect electron beam injection lead to injection dependent unequal amplitudes and phases of the spontaneous radiation in the two transverse directions. Viewed along the axis therefore the spontaneous emission is elliptically polarised. The azimuth of the ellipse varies with the difference of phase of the two transverse components of spontaneous emission but the eccentricity remains the same. With planar wigglers the spontaneous emission viewed in the axial direction is linearly polarised, again with an injection dependent azimuth. For optimum coherent gain of a radiation field its polarisation characteristics must be the same as those of the spontaneous radiation with both types of wiggler. Thus, with a helical wiggler and the data reported earlier, an increase of 10% in the FEL gain at the fundamental frequency and of 11% at the fifth harmonic has been calculated in the small gain per pass limit. Larger enhancements in gain may result from more favourable values of input parameters.

  20. Gain results for low voltage FEL

    SciTech Connect

    Shaw, A.; Stuart, R.A.; Al-Shamma`a, A.

    1995-12-31

    We have designed and constructed a low voltage (130 kV) FEL system capable of operating in the microwave frequency range for which the electron beam current is cw (rather than pulsed) in time at a level of {approximately} 12 mA. The gain of this system has been measured as a function of the electron beam accelerating voltage and current level, and the input microwave frequency (8-10 GHz). The results are compared with the predictions of a simple theoretical model.

  1. A high-power compact regenerative amplifier FEL

    SciTech Connect

    Nguyen, D.C.; Sheffield, R.L.; Fortgang, C.M.; Kinross-Wright, J.M.; Ebrahim, N.A.; Goldstein, J.C.

    1997-08-01

    The Regenerative Amplifier FEL (RAFEL) is a new FEL approach aimed at achieving the highest optical power from a compact rf-linac FEL. The key idea is to feed back a small fraction (< 10%) of the optical power into a high-gain ({approximately}10{sup 5} in single pass) wiggler to enable the FEL to reach saturation in a few passes. This paper summarizes the design of a high-power compact regenerative amplifier FEL and describes the first experimental demonstration of the RAFEL concept.

  2. Small-signal gain in a gas-loaded FEL

    SciTech Connect

    Goloviznin, V.V.; Amersfoort, P.W. van

    1995-12-31

    At present, existing FEL facilities operate in the infrared and visible ranges of wavelengths. Generation of shorter waves (in the VUV and X-ray region) is of great scientific interest, but this would require a very expensive accelerator which could provide a high-current electron beam in the GeV-range of energies. A promising way to relax requirements on electron energy by introduction of a gas into the optical cavity was proposed nearly ten years ago. For small deviations from the vacuum wavelength, the idea was confirmed in experiments performed in Stanford; however, a detailed theory of such a device is still not developed. We present an analysis of the small-signal gain in a gas-loaded free-electron laser. Multiple scattering of electrons by the atoms of the gas inside the optical cavity is shown to lead to two additional effects, as compared to the case of a vacuum FEL: a loss of coherence between different parts of the electron trajectory and an enhancement of the phase {open_quotes}jitter{close_quotes}. Both effects become increasingly important at short wavelengths and significantly reduce the small-signal gain per pass. In 1D approximation analytical expressions are obtained and numerical calculations are made to estimate beam and undulator parameters necessary for lasing in the vacuum ultraviolet. Hydrogen-filled FELs are shown to have good prospects for this at today`s technological level. To operate in the range of wavelengths 125-140 nm, an electron beam should have an energy above 50 MeV and a good quality: a normalised emittance of the order of 5{pi} mm-mrad and an energy spread below 10{sup -3}. All these parameters are achieveable with modern linacs and photoinjectors.

  3. FEL Gain Length and Taper Measurements at LCLS

    SciTech Connect

    Ratner, Daniel; Brachmann, A.; Decker, F.J.; Ding, Y.; Dowell, D.; Emma, P.; Frisch, J.; Gilevich, S.; Hays, G.; Hering, P.; Huang, Z.; Iverson, R.; Loos, H.; Miahnahri, A.; Nuhn, H.D.; Turner, J.; Welch, J.; White, W.; Wu, J.; Xiang, D.; Yocky, G.; /SLAC /LBL, Berkeley

    2010-07-30

    We present experimental studies of the gain length and saturation power level from 1.5 nm to 1.5 {angstrom} at the Linac Coherent Light Source (LCLS). By disrupting the FEL process with an orbit kick, we are able to measure the X-ray intensity as a function of undulator length. This kick method is cross-checked with the method of removing undulator sections. We also study the FEL-induced electron energy loss after saturation to determine the optimal taper of the undulator K values. The experimental results are compared to theory and simulations.

  4. High-power, high-efficiency FELs

    SciTech Connect

    Sessler, A.M.

    1989-04-01

    High power, high efficiency FELs require tapering, as the particles loose energy, so as to maintain resonance between the electromagnetic wave and the particles. They also require focusing of the particles (usually done with curved pole faces) and focusing of the electromagnetic wave (i.e. optical guiding). In addition, one must avoid transverse beam instabilities (primarily resistive wall) and longitudinal instabilities (i.e sidebands). 18 refs., 7 figs., 3 tabs.

  5. Performance of hole coupling resonator in the presence of asymmetric modes and FEL gain

    SciTech Connect

    Xie, Ming; Kim, Kwang-Je.

    1991-08-01

    We continue the study of the hole coupling resonator for free electron laser (FEL) application. The previous resonator code is further developed to include the effects of the azimutally asymmetric modes and the FEL gain. The implication of the additional higher order modes is that there are more degeneracies to be avoided in tuning the FEL wavelengths. The FEL interaction is modeled by constructing a transfer map in the small signal regime and incorporating it into the resonator code. The FEL gain is found to be very effective in selecting a dominant mode from the azimuthally symmetric class of modes. Schemes for broad wavelength tuning based on passive mode control via adjustable apertures are discussed. 12 refs., 7 figs., 1 tab.

  6. Gain enhancement plasma-loaded FEL in the presence of beat waves

    SciTech Connect

    Shamamian, A.H.; Gevorgian, L.A.

    1995-12-31

    An expression for the dielectric permittivity of underdense plasma interacting with laser beat waves is derived. It is shown that the presence of beat waves in plasma results in an effective growth of the plasma frequency. The FEL Gain is investigated in the case when the frequency of soft photons weakly depending on the electron beam energy and the synchronism condition is maintained. It is shown that the plasma beat waves lead to the essential increase in FEL gain.

  7. Scaling of gain with energy spread and energy in the PEP FEL

    SciTech Connect

    Fisher, A.S.

    1992-07-13

    The Sag Harbor paper on the PEP FEL discusses the scaling of various FEL parameters with energy spread {sigma}{sub {var epsilon}}. I will repeat some of this material here and then examine the benefit of increasing the energy spread. How much energy spread can be achieved with damping wigglers is the next topic. Finally, I consider the dependence of gain and saturation length on beam energy and undulator field.

  8. Scaling of gain with energy spread and energy in the PEP FEL

    SciTech Connect

    Fisher, A.S.

    1992-07-13

    The Sag Harbor paper on the PEP FEL discusses the scaling of various FEL parameters with energy spread {sigma}{sub {var_epsilon}}. I will repeat some of this material here and then examine the benefit of increasing the energy spread. How much energy spread can be achieved with damping wigglers is the next topic. Finally, I consider the dependence of gain and saturation length on beam energy and undulator field.

  9. Powerful electrostatic FEL: Regime of operation, recovery of the spent electron beam and high voltage generator

    SciTech Connect

    Boscolo, I.; Gong, J.

    1995-02-01

    FEL, driven by a Cockcroft-Walton electrostatic accelerator with the recovery of the spent electron beam, is proposed as powerful radiation source for plasma heating. The low gain and high gain regimes are compared in view of the recovery problem and the high gain regime is shown to be much more favourable. A new design of the onion Cockcroft-Walton is presented.

  10. FEL gain as a function of phace displacements induced by undulator intersection gaps

    SciTech Connect

    Varfolomeev, A.A.

    1995-12-31

    Gain characteristics are analytically considered for FEL based on a multisection undulator with short intersection gaps. It is shown that small phase displacements between laser beam and electron beam respectively caused by the above intersection gaps can seriously change the gain resonance frequency as well as gain curve shape. This effect is different from that of OK and can be used for fast undulator tuning or for its tapering. Gain characteristics are analitically considered for FEL based on a multisection undulator with short intersection gaps. It is shown that small phase displacements between laser beam and electron beam respectively caused by the above intersection gaps can seriously change the gain resonance frequency as well as gain curve shape. This effect is different from that of OK and can be used for fast undulator tuning or for its tapering.

  11. Gain length dependence on phase shake in the VUV-FEL at the TESLA Test Facility

    SciTech Connect

    Pflueger, J.; Pierini, P.

    1995-12-31

    The TTF VUV FEL, which is in its design stage at DESY, consists of a 30 m long SASE FEL which will radiate around 6 nm, driven by a superconducting linac with final energy of 1 GeV. One of the important issues in its design is the undulator performance, which is studied in this paper. The present setup, including FODO lattice, is discussed in this paper. Results of simulations, including the realistic wiggler field errors and beam stearing, are presented. Dependence of the performance, in particular the gain and saturation length as well as the saturation peak power, on the wiggler field errors is discussed.

  12. Coherence and linewidth studies of a 4-nm high power FEL

    SciTech Connect

    Fawley, W.M.; Sessler, A.M.; Scharlemann, E.T.

    1993-05-01

    Recently the SSRL/SLAC and its collaborators elsewhere have considered the merits of a 2 to 4-nm high power FEL utilizing the SLAC linac electron beam. The FEL would be a single pass amplifier excited by spontaneous emission rather than an oscillator, in order to eliminate the need for a soft X-ray resonant cavity. We have used GINGER, a multifrequency 2D FEL simulation code, to study the expected linewidth and coherence properties of the FEL, in both the exponential and saturated gain regimes. We present results concerning the effective shot noise input power and mode shape, the expected subpercent output line widths, photon flux, and the field temporal and spatial correlation functions. We also discuss the effects of tapering the wiggler upon the output power and line width.

  13. Gain measurements on a waveguide FEL amplifier with pre-bunched electron beam

    SciTech Connect

    Dearden, G.; Mayhew, S.E.; Lucas, J.

    1995-12-31

    A theory proposed by Doria et al. suggests that a synchronous pre-bunched electron beam should amplify radiation with a power gain which is inversely proportional to the square root of the input power. We have measured the power gain experimentally for a waveguide FEL system using a low-voltage (55kV) pre-bunched electron beam produced by a waveguide cavity buncher. The gain has been observed as a function of the electron beam current and energy; the results are compared with theory.

  14. High-power FEL design issues - a critical review

    SciTech Connect

    Litvinenko, V.N.; Madey, J.M.J.; O`Shea, P.G.

    1995-12-31

    The high-average power capability of FELs has been much advertised but little realized. In this paper we provide a critical analysis of the technological and economic issues associated with high-average power FEL operation from the UV to near IR. The project of IR FEL for the Siberian Center of photochemical researches is described. The distinguished features of this project are the use of the race-track microtron-recuperator and the {open_quotes}electron output of radiation{close_quotes}. The building for the machine is under reconstruction now. About half of hardware has been manufactured. The assembly of installation began.

  15. Gain narrowing of temporal and spectral widths in the UVSOR-FEL

    SciTech Connect

    Kimura, K.; Yamazaki, J.; Kinoshita, T.

    1995-12-31

    Storage ring free electron laser (SR-FEL) dynamics on the UVSOR-FEL in the visible region has been studied with measurements of the temporal and the spectral widths of the laser micropulse. The micro- and the macro-temporal structures were measured using a dual sweep streak camera. We have also investigated spectral evolution of the laser with a Fabry-Perot etalon. Only a slow sweep function of the streak camera has been used for a fringe pattern formed by the air gap etalon to derive time-dependent variations of the spectral shape. We have measured the time-averaged pulsewidths and linewidths as a function of the ring current. We observed that every macropulse contains internal substructures in both the temporal and the spectral distributions. The internal substructure, however, disappeared when the spectra of more than fifty macropulses were superimposed, and the envelope of the distribution became close to a Gaussian. We have found that the pulsewidth and the linewidth become narrower as the ring current decays. In the gain-switching mode, the micropulse duration and the linewidth at the maximum ring current were 80 ps(FWHM) and 0.3 nm(FWHM), respectively, and decreased down to 20 ps and 0.1 nm just above the threshold current. The temporal and the spectral widths seem to follow the gain behavior. Assuming that the pulsewidth and the linewidth depend on the laser gain, the bandwidth in weakly saturated situation such as SR-FEL is determined by the gain narrowing of the laser amplifier. Because the gain evolution is able to be deduced from the macropulse shape, we can obtain the relation between the bandwidth and an effective gain above the mirror loss. The temporal and the spectral evolutions of the UVSOR-FEL were well explained by the gain narrowing related to a gain integrated from the oscillation build-up to the gain saturation. Detail of the experiment and the analysis will be presented.

  16. Summary of the working group on FEL theory

    SciTech Connect

    Pellegrini, C.

    1984-01-01

    The working group on FEL theory dedicated most of its discussions to topics relevant to the high gain regime in a free electron laser. In addition the area of interest was mainly restricted to FELs for the production of XUV radiation (<1000 A). A list of the topics that were felt to be relevant is: (1) characterization of the FEL high gain regime; (2) the amplified spontaneous emission mode of operation (ASE); (3) superradiance in FELs; (4) diffraction effects for high gain FELs; (5) noise and start-up; (6) coherence properties of the radiation for the ASE and superradiant FELS. 9 references.

  17. Status report on the development of a high-power UV/IR FEL at CEBAF

    SciTech Connect

    Benson, S.; Bohn, C.; Dylla, H.F.

    1995-12-31

    Last year we presented a design for a kilowatt industrial UV FEL based on a superconducting RF accelerator delivering 5 mA of electron-beam current at 200 MeV with energy recovery to enhance efficiency. Since then, we have progressed toward resolving several issues associated with that design. More exact simulations of the injector have resulted in a more accurate estimate of the injector performance. A new injection method has reduced the longitudinal and transverse emittance at the linac entrance. A more compact lattice has been designed for the UV FEL, and a new recirculation scheme has been identified which greatly increases the threshold for longitudinal instabilities. We decided to use a wiggler from the Advanced Photon Source which leads to a robust high-gain FEL. Analysis of the stability of an RF control system based on CEBAF control modules indicates that only minor modifications will be needed to apply them to this FEL. Detailed magnet specifications, vacuum-chamber beam apertures, and diagnostic specifications have been developed for the recirculation arcs. The design of the optical cavity has been conceptualized, and control systems have been devised to regulate mirror distortion. A half-scale model of one of the end-corner cubes has been built and tested. Finally, three-dimensional simulations have been carried out which indicate that the FEL should exceed its minimum design goals with adequate performance margin.

  18. Energy stability in a high average power FEL

    SciTech Connect

    Merminga, L.; Bisognano, J.J.

    1995-12-31

    Recirculating, energy-recovering linacs can be used as driver accelerators for high power FELs. Instabilities which arise from fluctuations of the cavity fields are investigated. Energy changes can cause beam loss on apertures, or, when coupled to M{sub 56}, phase oscillations. Both effects change the beam induced voltage in the cavities and can lead to unstable variations of the accelerating field. Stability analysis for small perturbations from equilibrium is performed and threshold currents determined. Design strategies to increase the instability threshold are discussed and the high average power FEL proposed for construction at CEBAF is used as an example.

  19. SUPERSTRUCTURES FOR HIGH CURRENT FEL APPLICATION

    SciTech Connect

    Jacek Sekutowicz; Kevin Beard; Peter Kneisel; Genfa Wu; Catherine Thomas; Zheng

    2003-05-01

    The next generations of FELs at TJNAF will produce coherent light at power levels of 10 kW and 100 kW, respectively [1]. To achieve these power levels, 200 MeV electron beams of 10 mA and 100 mA have to be accelerated in the linear accelerators of the devices. The accelerators will be based on superconducting technology. Stable operation of these machines is only possible if the cavity Higher Order Modes (HOM) excited by the beams can sufficiently be damped. One of the possible accelerating structures which can fulfill this requirement, is a superstructure (SST) made of two weakly coupled subunits and equipped with appropriate HOM couplers. Based on the positive experience at DESY with 1.3 GHz superstructures, we are investigating for possible use similar structures in the linacs for the FEL upgrades. We have built a copper model of the proposed superstructure, based on two copper models of the 5-cell CEBAF cavities. This contribution presents measured results on this model. We are now in the process of fabrication a Nb prototype and hope to perform its cold test by the end of this year.

  20. A high-average power tapered FEL amplifier at submillimeter frequencies using sheet electron beams and short-period wigglers

    SciTech Connect

    Bidwell, S.W.; Radack, D.J.; Antonsen, T.M. Jr.; Booske, J.H.; Carmel, Y.; Destler, W.W.; Granatstein, V.L.; Levush, B.; Latham, P.E.; Zhang, Z.X.

    1990-01-01

    A high-average-power FEL amplifier operating at submillimeter frequencies is under development at the University of Maryland. Program goals are to produce a CW, {approximately}1 MW, FEL amplifier source at frequencies between 280 GHz and 560 GHz. To this end, a high-gain, high-efficiency, tapered FEL amplifier using a sheet electron beam and a short-period (superconducting) wiggler has been chosen. Development of this amplifier is progressing in three stages: (1) beam propagation through a long length ({approximately}1 m) of short period ({lambda}{sub {omega}} = 1 cm) wiggler, (2) demonstration of a proof-of-principle amplifier experiment at 98 GHz, and (3) designs of a superconducting tapered FEL amplifier meeting the ultimate design goal specifications. 17 refs., 1 fig., 1 tab.

  1. Application of the green function formalism to nonlinear evolution of the low gain FEL oscillator

    SciTech Connect

    Shvets, G.; Wurtele, J.S.; Gardent, D.

    1995-12-31

    A matrix formalism for the optical pulse evolution in the frequency domain, is applied to the nonlinear regime of operation. The formalism was previously developed for studies of the linear evolution of the low-gain FEL oscillator with an arbitrary shape of the electron beam. By varying experimentally controllable parameters, such as cavity detunning and cavity losses, different regimes of operation of the FEL oscillator, such as a steady state saturation and limit cycle saturation, are studied numerically. It is demonstrated that the linear supermodes, numerically obtained from the matrix formalism, provide an appropriate framework for analyzing the periodic change in the output power in the limit cycle regime. The frequency of this oscillation is related to the frequencies of the lowest-order linear supermodes. The response of the output radiation to periodic variation of the electron energy is studied. It is found that the response is enhanced when the frequency of the energy variation corresponds to the difference of per-pass phase advances of the lowest linear supermodes. Finally, various nonlinear models are tested to capture the steady state saturation and limit cycle variation of the EM field in the oscillator cavity.

  2. Lightning control system using high power microwave FEL

    SciTech Connect

    Shiho, M.; Watanbe, A.; Kawasaki, S.

    1995-12-31

    A research project for developing a thunder lightning control system using an induction linac based high power microwave free electron laser (FEL) started at JAERI The system will produce weakly ionized plasma rod in the atmosphere by high power microwaves and control a lightning path, away from , e. g., nuclear power stations and rocket launchers. It has been known that about MW/cm{sup 2} power density is enough for the atmospheric breakdown in the microwave region, and which means high power microwave FEL with GW level output power is feasible for atmospheric breakdown, and accordingly is feasible for thunder lightning control tool with making a conductive plasma channel in the atmosphere. From the microwave attenuation consideration in the atmosphere, FEL of 35GHz(0.13dB/km), 90GHz(0.35dB/km), 140GHz(1.7dB/km), and of 270 GHz(4.5dB/km) are the best candidates for the system. Comparing with other proposed lightning control system using visible or ultraviolet laser, the system using microwave has an advantage that microwave suffers smaller attenuation by rain or snow which always exist in the real atmospheric circumstances when lightning occurs.

  3. Energy stability in a high average power FEL

    SciTech Connect

    Mermings, L.; Bisognano, J.; Delayen, J.

    1995-12-31

    Recirculating, energy-recovering linacs can be used as driver accelerators for high power FELs. Instabilities which arise from fluctuations of the cavity fields or beam current are investigated. Energy changes can cause beam loss on apertures, or, when coupled to M, phase oscillations. Both effects change the beam induced voltage in the cavities and can lead to unstable variations of the accelerating field. Stability analysis for small perturbations from equilibrium is performed and threshold currents are determined. Furthermore, the analytical model is extended to include feedback. Comparison with simulation results derived from direct integration of the equations of motion is presented. Design strategies to increase the instability threshold are discussed and the UV Demo FEL, proposed for construction at CEBAF, and the INP Recuperatron at Novosibirsk are used as examples.

  4. Design of High Power FELS and the Effects of Diffraction on Detuning in an FEL Oscillator

    DTIC Science & Technology

    2015-12-01

    also show the effects of emittance versus electron beam energy and mirror shift versus mirror tilt on extraction. Analysis of these results examine the...robustness of FEL designs. 14. SUBJECT TERMS FEL, emittance, energy spread, mirror tilt, mirror shift 15. NUMBER OF PAGES 63 16. PRICE CODE 17...results that agree better with experiments. The results of new 4D simulations also show the effects of emittance versus electron beam energy and mirror

  5. A cost estimation model for high power FELs

    SciTech Connect

    Neil, G.R.

    1995-12-31

    A cost estimation model for scaling high-power free-electron lasers has been developed for estimating the impact of system-level design choices in scaling high-average-power superconducting-accelerator-based FELs. The model consists of a number of modules which develop subsystem costs and derive as an economic criterion the cost per kilojoule of light produced. The model does not include design engineering or development costs, but represents the 2nd through nth device. Presented in the paper is the relative sensitivity of designs to power and linac frequency while allowing the operating temperature of the superconducting cavities to optimize.

  6. Design Principles for a Compact High Average Power IR FEL

    SciTech Connect

    Lia Merminga; Steve Benson

    2001-08-01

    Progress in superconducting rf (srf) technology has led to dramatic changes in cryogenic losses, cavity gradients, and microphonic levels. Design principles for a compact high average power Energy Recovery FEL at IR wavelengths, consistent with the state of the art in srf, are outlined, High accelerating gradients, of order 20 MV/m at Q{sub 0}{approx}1x10{sup 10} possible at rf frequencies of 1300 MHz and 1500 MHz, allow for a single-cryomodule linac, with minimum cryogenic losses. Filling every rf bucket, at these high frequencies, results in high average current at relatively low charge per bunch, thereby greatly ameliorating all single bunch phenomena, such as wakefields and coherent synchrotron radiation. These principles are applied to derive self-consistent sets of parameters for 100 kW and 1 MW average power IR FELs and are compared with low frequency solutions. This work supported by U.S. DOE Contract No. DE-AC05-84ER40150, the Commonwealth of Virginia and the Laser Processing Consortium.

  7. Water-cooled, in-cavity apertures for high power operation of FEL oscillators

    NASA Astrophysics Data System (ADS)

    Huang, S.; Li, J.; Wu, Y. K.

    2009-07-01

    In an oscillator FEL, higher-order harmonic radiation from wigglers can cause serious damage to the downstream FEL resonator mirror and limit the maximum electron beam current for FEL operation due to thermal overload. These problems can be effectively dealt with for FELs driven by helical wigglers using a system to block off-axis wiggler harmonic radiation. In this paper, we report a new scheme to block the off-axis radiation from helical wigglers using a set of motorized, water-cooled, in-cavity apertures. These apertures can reduce the wiggler harmonic radiation power load on the downstream FEL resonator mirror by two orders of magnitude or more. With these apertures, we were able to operate the Duke FEL with record high intracavity power in infrared and visible wavelengths and extend FEL operation into ultraviolet wavelengths with a large electron beam current. The technique for limiting wiggler harmonic radiation using in-cavity apertures is expected to be useful for other types of FEL oscillators including high average power FEL oscillators driven by superconducting linacs.

  8. Development of a high average power, CW, MM-wave FEL

    SciTech Connect

    Ramian, G.

    1995-12-31

    Important operational attributes of FELs remain to be demonstrated including high average power and single-frequency, extremely narrow-linewidth lasing. An FEL specifically designed to achieve these goals for scientific research applications is currently under construction. Its most salient feature is operation in a continuous-wave (CW) mode with an electrostatically generated, high-current, recirculating, DC electron beam.

  9. High Power Operation of the JLab IR FEL Driver Accelerator

    SciTech Connect

    Kevin Beard; Stephen Benson; George Biallas; James Boyce; Donald Bullard; James Coleman; David Douglas; H. Dylla; Richard Evans; Pavel Evtushenko; Christopher Gould; Albert Grippo; Joseph Gubeli; David Hardy; Carlos Hernandez-Garcia; J. Hovater; Kevin Jordan; John Klopf; Rui Li; Steven Moore; George Neil; Benard Poelker; Thomas Powers; Joseph Preble; Robert Rimmer; Daniel Sexton; Michelle D. Shinn; Christopher Tennant; Richard Walker; Gwyn Williams; Shukui Zhang

    2007-08-01

    Operation of the JLab IR Upgrade FEL at CW powers in excess of 10 kW requires sustained production of high electron beam powers by the driver ERL. This in turn demands attention to numerous issues and effects, including: cathode lifetime; control of beamline and RF system vacuum during high current operation; longitudinal space charge; longitudinal and transverse matching of irregular/large volume phase space distributions; halo management; management of remnant dispersive effects; resistive wall, wake-field, and RF heating of beam vacuum chambers; the beam break up instability; the impact of coherent synchrotron radiation (both on beam quality and the performance of laser optics); magnetic component stability and reproducibility; and RF stability and reproducibility. We discuss our experience with these issues and describe the modus vivendi that has evolved during prolonged high current, high power beam and laser operation.

  10. High power induction linac for FEL applications at CESTA

    NASA Astrophysics Data System (ADS)

    Launspach, J.; Angles, J. M.; Angles, M.; Anthouard, P.; Bardy, J.; Bonnafond, C.; Bottollier-Curtet, H.; Devin, A.; Eyharts, P.; Eyl, P.; Gardelle, J.; Germain, G.; Grua, P.; Labrouche, J.; de Mascureau, J.; Le Taillandier, P.; Stadnikoff, W.; Thevenot, M.

    1991-07-01

    The purpose of the LELIA program developed at CESTA is to acquire the knowledge on induction accelerator technology for high peak power FEL applications. In a first step we study basic technology: (1) A high voltage pulse generator (150 kV, 60 ns, 2 ω) has been designed to drive the induction injector and the accelerating cells. It is able to work at high repetition rate (typically 1 kHz) by the use of magnetic switches. A flat top of 130 kV with {ΔV}/{V} = ±0.8% has been obtained for about 50 ns. (2) An induction cell prototype has been built in order to check technological choices (vacuum, mechanics, magnetic guiding, voltage supply, etc.) for injector and accelerating modules. (3) The injector geometry is being studied using Euphrosyne (a classical intense relativistic electron beam device) which consists of a concave thermo-ionic oxide cathode, an intermediate electrode and a hollow anode with a magnetic guiding channel. This diode delivers an electron beam between 1 and 3 MV, about 1 kA and a flat top pulse during 20 ns. We will carry on the injector studies with our induction injector LELIA I (1.5 MV, 1.5 kA, 1 kHz) which will be available at the end of 1990. An accelerating module is also being designed, taking into account guiding and stability problems. All these points are described in more detail in a poster paper [J. Bardy et al., these Proceedings (12th Int. FEL Conf., Paris, France, 1990) Nucl. Instr. and Meth. A304 (1991) 311]. The main goal is to build a 10 MV, 1-3 kA, 1 kHz induction accelerator and to have it running at CESTA in 1993. On the other hand, we want to use the electron beam provided by Euphrosyne then in LELIA I to perform FEL experiments at 35 GHz using a bifilar helical wiggler [H. Bottollier-Curtet et al., these Proceedings, p. 197].

  11. Helicopter high gain control

    NASA Technical Reports Server (NTRS)

    Cunningham, T. B.; Nunn, E. C.

    1979-01-01

    High gain control is explored through a design study of the CH-47B helicopter. The plans are designed to obtain the maximum bandwidth possible given the hardware constraints. Controls are designed with modal control theory to specific bandwidths and closed loop mode shapes. Comparisons are made to an earlier complementary filter approach. Bandwidth improvement by removal of limitations is explored in order to establish hardware and mechanization options. Improvements in the pitch axis control system and in the rate gyro sensor noise characteristics in all axes are discussed. The use of rotor state feedback is assessed.

  12. RF coupler for high-power CW FEL photoinjector

    SciTech Connect

    Kurennoy, S.; Young, L. M.

    2003-01-01

    A high-current emittance-compensated RF photoinjector is a key enabling technology for a high-power CW FEL. The design presently under way is a 100-mA 2.5-cell {pi}-mode, 700-MHz, normal conducting demonstration CW RF photoinjector. This photoinjector will be capable of accelerating 3 nC per bunch with an emittance at the wiggler less than 10 mm-mrad. The paper presents results for the RF coupling from ridged wave guides to hte photoinjector RF cavity. The LEDA and SNS couplers inspired this 'dog-bone' design. Electromagnetic modeling of the coupler-cavity system has been performed using both 2-D and 3-D frequency-domain calculations, and a novel time-domain approach with MicroWave Studio. These simulations were used to adjust the coupling coefficient and calculate the power-loss distribution on the coupling slot. The cooling of this slot is a rather challenging thermal management project.

  13. Status of the project of Novosibirsk high power FEL

    SciTech Connect

    Pinayev, I.V.; Erg, G.I.; Gavrilov, N.G.

    1995-12-31

    The project of IR FEL for the Siberian Center of photochemical researches is described. The distinguished features of this project are the use of the race-track microtron-recuperator and the {open_quotes}electron output of radiation{close_quotes}. The building for the machine is under reconstruction now. About half of hardware has been manufactured. The assembly of installation began.

  14. Prospects for a soft x-ray FEL powered by a relativistic-klystron high-gradient accelerator (RK-HGA)

    SciTech Connect

    Shay, H.D.; Barletta, W.A.; Yu, S.S.; Schlueter, R.; Deis, G.A.

    1989-09-28

    We present here the concept of x-ray FELs using high gain, single-pass amplifiers with electron beams accelerated in high gradient structures powered by relativistic klystrons. Other authors have also considered x-ray FELs; the unique aspect of this paper is the use of high gradient acceleration. One of the authors has previously presented preliminary studies on this concept. The intent in this paper is to display the results of a top level design study on a high gain FEL, to present its sensitivity to a variety of fabrication and tuning errors, to discuss several mechanisms for increasing gain yet more, and to present explicitly the output characteristics of such an FEL. The philosophy of the design study is to find a plausible operating point which employs existing or nearly existing state-of-the-art technologies while minimizing the accelerator and wiggler lengths. The notion is to distribute the technical risk as evenly as possible over the several technologies so that each must advance only slightly in order to make this design feasible. This study entailed no systematic investigation of possible costs so that, for example, the sole criterion for balancing the trade-off between beam energy and wiggler length is that the two components have comparable lengths. 20 refs., 10 figs., 1 tab.

  15. Strategies for minimizing emittance growth in high charge CW FEL injectors

    SciTech Connect

    Liu, H.

    1995-12-31

    This paper is concerned with the best strategies for designing low emittance, high charge CW FEL injectors. This issue has become more and more critical as today`s interest in FELs is toward UV wavelength high average power operation. The challenge of obtaining the smallest possible emittance is discussed from both the practical point of view and the beam physics point of view. Various mechanisms responsible for beam emittance growth are addressed in detail. Finally, the design of a high charge injector test stand at CEBAF is chosen to help illustrate the design strategies and emittance growth mechanisms discussed in this paper.

  16. A Dynamic Feedback Model for High Repetition Rate LINAC-Driven FELS

    SciTech Connect

    Mellado Munoz, M.; Doolittle, L.; Emma, P.; Huang, G.; Ratti, A.; Serrano, C.; Byrd, J. M.

    2012-05-20

    One of the concepts for the next generation of linacdriven FELs is a CW superconducting linac driving an electron beam with MHz repetition rates. One of the challenges for next generation FELs is improve the stability of the xray pulses by improving the shot-to-shot stability of the energy, charge, peak current, and timing jitter of the electron beam. A high repetition rate FEL with a CW linac presents an opportunity to use a variety of broadband feedbacks to stabilize the beam parameters. To understand the performance of such a feedback system, we are developing a dynamic model of the machine with a focus on the longitudinal beam properties. The model is being developed as an extension of the LITrack code and includes the dynamics of the beam-cavity interaction, RF feedback, beam-based feedback, and multibunch effects. In this paper, we present a detailed description of this model.

  17. FEL-based coherent electron cooling for high-energy hadron colliders

    SciTech Connect

    Litvinenko,V.N.; Derbenev, Y.S.

    2008-06-23

    Cooling intense high-energy hadron beams is a major challenge in modern accelerator physics. Synchrotron radiation is too feeble and two common methods--stochastic and electron cooling--are not efficient in providing significant cooling for high energy, high intensity proton colliders. In this paper they discuss a practical scheme of Coherent Electron Cooling (CeC), which promises short cooling times (below one hour) for intense proton beams in RHIC at 250 GeV or in LHC at 7 TeV. A possibility of CeC using various microwave instabilities was discussed since 1980s. In this paper, they present first evaluation of specific CeC scheme based on capabilities of present-day accelerator technology, ERLs, and high-gain Free-Electron lasers (FELs). They discuss the principles, the main limitations of this scheme and present some predictions for Coherent Electron Cooling in RHIC and the LHC operating with ions or protons, summarized in Table 1.

  18. High Average Current Electron Guns for High-Power FELs

    DTIC Science & Technology

    2009-12-09

    20 A/cm2, while more advanced cathodes (with controlled porosity) can generate up to ~ 100 A/cm2. Single crystal cathodes such as lanthanum ...polycrystalline form of carbon that will operate at high temperatures and has improved strength and uniformity compared to grids made of tungsten or

  19. FEL Oscillators

    SciTech Connect

    George Neil

    2003-05-12

    FEL Oscillators have been around since 1977 providing not only a test bed for the physics of Free Electron Lasers and electron/photon interactions but as a workhorse of scientific research. More than 30 FEL oscillators are presently operating around the world spanning a wavelength range from the mm region to the ultraviolet using DC and rf linear accelerators and storage rings as electron sources. The characteristics that have driven the development of these sources are the desire for high peak and average power, high micropulse energies, wavelength tunability, timing flexibility, and wavelengths that are unavailable from more conventional laser sources. Substantial user programs have been performed using such sources encompassing medicine, biology, solid state research, atomic and molecular physics, effects of non-linear fields, surface science, polymer science, pulsed laser vapor deposition, to name just a few.

  20. Los Alamos High-Brightness Accelerator FEL (HIBAF) facility

    SciTech Connect

    Cornelius, W.D.; Bender, S.; Meier, K.; Thode, L.E.; Watson, J.M.

    1989-01-01

    The 10-/mu/m Los Alamos free-electron laser (FEL) facility is being upgraded. The conventional electron gun and bunchers have been replaced with a much more compact 6-MeV photoinjector accelerator. By adding existing parts from previous experiments, the primary beam energy will be doubled to 40 MeV. With the existing 1-m wiggler (/lambda//sub w/ = 2.7 cm) and resonator, the facility can produce photons with wavelengths from 3 to 100 /mu/m when lasing on the fundamental mode and produce photons in the visible spectrum with short-period wigglers or harmonic operation. After installation of a 150/degree/ bend, a second wiggler will be added as an amplifier. The installation of laser transport tubes between the accelerator vault and an upstairs laboratory will provide experimenters with a radiation-free environment for experiments. Although the initial experimental program of the upgraded facility will be to test the single accelerator-master oscillator/power amplifier configuration, some portion of the operational time of the facility can be dedicated to user experiments. 13 refs., 5 figs., 6 tabs.

  1. Seeded FEL Microbunching Experiments at the UCLA Neptune Laboratory

    SciTech Connect

    Tochitsky, S. Ya.; Musumeci, P.; Rosenzweig, J. B.; Joshi, C.; Gottschalk, S. C.

    2010-11-04

    Seeded high-gain FELs, which can generate very powerful radiation pulses in a relatively compact undulator and simultaneously modulate the electron beam longitudinally at the seed wavelength, are important tools for advanced accelerator development. A single-pass 0.5-9 THz FEL amplifier-buncher driven by a regular photoinjector is being built at the UCLA Neptune Laboratory. FEL interactions at 340 {mu}m (1 THz) are considered for the first experiment, since time-resolved measurements of longitudinal current distribution of the bunched beam using the RF deflecting cavity are possible. A design of a 0.2-2.0 {mu}m FEL using the same undulators is presented. In this case the FEL is driven by a high-peak current beam from the laser-plasma accelerator tunable in the 100-300 MeV range.

  2. Saturation and pulsed FEL dynamics

    SciTech Connect

    Giannessi, L.; Mezi, L.

    1995-12-31

    The behavior of a FEL operating in the saturated pulsed regime, may be reproduced by the linear FEL integral equation, suitably modified to include saturation effects through a gain depression coefficient depending on the laser intensity. This simple method allows to evaluate several FEL parameters like gain, efficiency, band-width and optical pulse duration as functions of the optical cavity length, only with a numerical integration. The predictions have been compared with available experimental and numerical data, and the method has been applied to estimate the operating characteristics of some planned FEL experiments.

  3. Studies of a Linac Driver for a High Repetition Rate X-Ray FEL

    SciTech Connect

    Venturini, M.; Corlett, J.; Doolittle, L.; Filippetto, D.; Papadopoulos, C.; Penn, G.; Prosnitz, D.; Qiang, J.; Reinsch, M.; Ryne, R.; Sannibale, F.; Staples, J.; Wells, R.; Wurtele, J.; Zolotorev, M.; Zholents, A.

    2011-06-01

    We report on on-going studies of a superconducting CW linac driver intended to support a high repetition rate FEL operating in the soft x-rays spectrum. We present a pointdesign for a 1.8 GeV machine tuned for 300 pC bunches and delivering low-emittance, low-energy spread beams as needed for the SASE and seeded beamlines.

  4. High-efficiency FEL-oscillator with Bragg resonator operated in reversed guide field regime

    SciTech Connect

    Kaminsky, A.K.; Sedykh, S.N.; Sergeyev, A.P.

    1995-12-31

    The aim of the present work was to develop a narrow-band FEL-oscillator working in millimeter wavelength with, high efficiency. It looked promising to combine the high selective property of Bragg resonator with high efficiency and other advantages of FEL operation in the reversed guide-field regime. An experimental study of the FEL was performed using lilac LIU-3000 (JINR, Dubna) with the electron energy of 1 MeV, beam current up to 200 A and pulse duration of 200 ns. The beam was injected into the internction region with guide magnetic field of 2.9 kGs. Transverse oscillations of electrons were pumped by the helical wiggler with the period length of 6 cm and the field slowly up-tapering over the initial 6 periods. The FEI electrodynamic system consisted of a circular waveguide with diameter 20 mm and two Bragg reflectors. The H wave of the circular waveguide was shown for operation. Two effective feedback waves were observed in {open_quotes}cold{close_quotes} electrodynamic measurement in correspondence with calculations; the E wave near the frequency of 31. 5 GHz and the E wave - 37.5 GHz. The width of the both reflection resonances was about 2%. In {open_quotes}hot{close_quotes} experiments the radiation on the designed H wave and frequencies corresponding to the both feedback waves was registered separately. Selection of the frequency was realized by varying of the wiggler field strength. The spectrum was measured with a set of the cut--off waveguide filters with inaccuracy less than 2%. Calibrated Semiconductor detectors wire used to measure the radiation power. The radiation with the frequencies of 37.5 and 31.5 GHz was observed in vicinity of the wiggler field amplitude of 2.5 kGs. The measured spectrum width of the output FEL-oscillator radiation did not exceed the width of the Bragg reflector resonances for the both feedback waves.

  5. Thermal Acoustic Sensor for High Pulse Energy X-ray FEL Beams

    SciTech Connect

    Smith, T.J.; Frisch, J.C.; Kraft, E.M.; Loos, J.; Bentsen, G.S.; /Rochester U.

    2011-12-13

    The pulse energy density of X-ray FELs will saturate or destroy conventional X-ray diagnostics, and the use of large beam attenuation will result in a beam that is dominated by harmonics. We present preliminary results at the LCLS from a pulse energy detector based on the thermal acoustic effect. In this type of detector an X-ray resistant material (boron carbide in this system) intercepts the beam. The pulse heating of the target material produces an acoustic pulse that can be detected with high frequency microphones to produce a signal that is linear in the absorbed energy. The thermal acoustic detector is designed to provide first- and second-order calorimetric measurement of X-ray FEL pulse energy. The first-order calorimetry is a direct temperature measurement of a target designed to absorb all or most of the FEL pulse power with minimal heat leak. The second-order measurement detects the vibration caused by the rapid thermoelastic expansion of the target material each time it absorbs a photon pulse. Both the temperature change and the amplitude of the acoustic signal are directly related to the photon pulse energy.

  6. Possible enhancement of SASE FEL output field intensity induced by local phase jump

    NASA Astrophysics Data System (ADS)

    Varfolomeev, A. A.; Yarovoi, T. V.; Bousine, P. V.

    1998-02-01

    A possible influence on the FEL dynamics of a locally induced phase jump between the FEL radiation and electron beam is considered. A numerical study has been made for the SASE mode FEL supposing that the phase jumps are introduced at different depths inside the undulator. The FEL evolution starting from a small input signal was studied in 1D high gain approach. It was shown that the FEL radiation output is sensitive to the phase jump value if it is introduced at the depth where saturation of output power takes places. In the steady state regime, the phase displacement of order ˜π provides enhancement of the peak output power up to 50%. Some kind of optical tapering is also possible giving further FEL efficiency enhancement.

  7. AN EXPERIMENTAL TEST OF SUPERRADIANCE IN A SINGLE PASS SEEDED FEL.

    SciTech Connect

    WATANABE, T.; LIU, D.; MURPHY, J.B.; ROSE, J.; SHAFTAN, T.; TSANG, T.; WANG, X.J.; YU, L.H.

    2005-08-21

    Superradiance and nonlinear evolution of a FEL pulse in a single-pass FEL were experimentally demonstrated at the National Synchrotron Light Source (NSLS) Source Development Laboratory (SDL). The experiment was performed using a 1.5 ps high-brightness electron beam and a 100fs Ti:Sapphire seed laser. The seed laser and electron beam interact in the 10 meter long NISUS undulator with a period of 3.89 cm. The FEL spectrum, energy and pulse length along the undulator were measured. FEL saturation was observed, and gain of more the 200 (relative to seed laser) was measured. Both FEL spectrum widening and pulse length shortening were observed; FEL pulses as short as 65 fs FWHM were measured. The superradiance and nonlinear evolution were also simulated using the numerical code GENESIS1.3 yielding good agreement with the experimental results.

  8. Experimental results of a sheet-beam, high power, FEL amplifier with application to magnetic fusion research

    SciTech Connect

    Cheng, S.; Destler, W.W.; Granatstein, V.L.

    1995-12-31

    The experimental study of sheet-beam FELs as candidate millimeter-wave sources for heating magnetic fusion plasmas has achieved a major milestone. In a proof-of-principle, pulsed experiment, saturated FEL amplifier operation was achieved with 250 kW of output power at 86 GHz. Input microwave power was 1 kW, beam voltage was 450 kV and beam current was 17 A. The planar wiggler had a peak value of 3.8 kG, a period of 0.96 cm and was 71 cm long. The linear gain of 30 dB, saturated gain of 24 dB and saturated efficiency of 3% all are in good agreement with theoretical prediction. Follow-on work would include development of a thermionic sheet-beam electron-gun compatible with CW FEL operation, adding a section of tapered wiggler to increase the output power to levels in excess of 1 megawatt, and increasing the FEL frequency.

  9. Optics-free x-ray FEL oscillator

    SciTech Connect

    Litvinenko, V.N.; Hao, Y.; Kayran, D.; Trbojevic, D.

    2011-03-28

    There is a need for an Optics-Free FEL Oscillators (OFFELO) to further the advantages of free-electron lasers and turning them in fully coherent light sources. While SASE (Self-Amplified Spontaneous Emission) FELs demonstrated the capability of providing very high gain and short pulses of radiation and scalability to the X-ray range, the spectra of SASE FELs remains rather wide ({approx}0.5%-1%) compared with typical short wavelengths FEL-oscillators (0.01%-0.0003% in OK-4 FEL). Absence of good optics in VUV and X-ray ranges makes traditional oscillator schemes with very high average and peak spectral brightness either very complex or, strictly speaking, impossible. In this paper, we discuss lattice of the X-ray optics-free FEL oscillator and present results of initial computer simulations of the feedback process and the evolution of FEL spectrum in X-ray OFFELO. We also discuss main limiting factors and feasibility of X-ray OFFELO.

  10. Study of waveguide resonators for FEL operating at submillimeter wavelengths

    SciTech Connect

    Yakover, I.M.; Pinhasi, Y.; Gover, A.

    1995-12-31

    This paper presents theoretical results of waveguide resonator study for FEL operating at the submillimeter wavelength region. Because of increased ohmic losses it is harder to obtain high Q waveguide cavities at these wavelengths. The following unconventional multimode waveguides: metal-dielectric, corrugated and curved parallel plates, were considered. The type and structure of the operating modes were determined and their attenuation constant, effective mode area and wave impedance were calculated. On the basis of this analysis small-signal gain simulations were made. We have performed a parametric study of the various FEL oscillator cavity designs based on the parameters of the Israeli Tandem FEL experiment. It was found that an FEL utilizing unconventional waveguides has much better performance in comparison to an FEL based on conventional multimode rectangular and circular waveguides. In particular, promising design parameters for a sub-mm wavelength FEL utilizing a metal-dielectric waveguide were identified: gain of 45%/Amp and ohmic losses of 2% at frequency 300 GHz, and gain of 20%/Amp and ohmic losses 1% at frequency 675 GHz.

  11. The ETA-II induction linac as a high-average-power FEL driver

    NASA Astrophysics Data System (ADS)

    Nexsen, W. E.; Atkinson, D. P.; Barrett, D. M.; Chen, Y.-J.; Clark, J. C.; Griffith, L. V.; Kirbie, H. C.; Newton, M. A.; Paul, A. C.; Sampayan, S.; Throop, A. L.; Turner, W. C.

    1990-10-01

    The Experimental Test Accelerator II (ETA-II) is the first induction linac designed specifically to FEL requirements. It is primarily intended to demonstrate induction accelerator technology for high-average-power, high-brightness electron beams, and will be used to drive a 140 and 250 GHz microwave FEL for plasma heating experiments in the Microwave Tokamak Experiment (MTX) at LLNL. Its features include high-vacuum design which allows the use of an intrinsically bright dispenser cathode, induction cells designed to minimize BBU growth rate, and careful attention to magnetic alignment to minimize radial sweep due to beam corkscrew. The use of magnetic switches allows high-average-power operation. At present ETA-II is being used to drive 140 GHz plasma heating experiments. These experiments require nominal beam parameters of 6 MeV energy, 2 kA current, 20 ns pulse width and a brightness of 1 × 108 A/(m rad)2 at the wiggler with a pulse repetition frequency (prf) of 0.5 Hz. Future 250 GHz experiments require beam parameters of 10 MeV energy, 3 kA current, 50 ns pulse width and a brightness of 1 × 108 A/(m rad)2 with a 5 kHz prf for 0.5 s. In this paper we discuss the present status of ETA-II parameters and the phased development program necessary to satisfy these future requirements.

  12. Sensitivity and alternative operating point studies on a high charge CW FEL injector test stand at CEBAF

    SciTech Connect

    Liu, H.; Kehne, D.; Benson, S.

    1995-12-31

    A high charge CW FEL injector test stand is being built at CEBAF based on a 500 kV DC laser gun, a 1500 MHz room-temperature buncher, and a high-gradient ({approx}10 MV/m) CEBAF cryounit containing two 1500 MHz CEBAF SRF cavities. Space-charge-dominated beam dynamics simulations show that this injector should be an excellent high-brightness electron beam source for CW UV FELs if the nominal parameters assigned to each component of the system are experimentally achieved. Extensive sensitivity and alternative operating point studies have been conducted numerically to establish tolerances on the parameters of various injector system components. The consequences of degraded injector performance, due to failure to establish and/or maintain the nominal system design parameters, on the performance of the main accelerator and the FEL itself are discussed.

  13. Spontaneous emission effects in optically pumped x-ray FEL

    SciTech Connect

    Smetanin, I.V.; Grigor`ev, S.V.

    1995-12-31

    An effect of spontaneous emission in both quantum and classical regimes of the optically pumped X-ray free electron laser (FEL) in investigated. The quantum properties of an FEL are determined by the ratio of the separation {h_bar} between the absorption and emission lines (i.e. the quanta emitted) and their effective width {Delta}{epsilon} {eta}={h_bar}/{Delta}{epsilon}. In the conventional classical regime {eta} {much_lt} 1 an electron emits and absorbes a great number of shortwavelength photons over the interaction region, the gain in FEL being the result of these competitive processes. In the quantum limit {eta} {much_gt} 1 the emission and absorption lines are completely separated and thus the FEL becomes a two-level quantum oscillator with a completely inverted active medium. Spontaneous emission causes the electron to leave the range of energies where resonant interaction with the laser field occurs, thus effectively reducing the number of particles that take part in generating the induced X-ray signal. This effect is found to be crucial for lasing in optically pumped X-ray FEL. The characteristic relaxation times are calculated for both classical and quantum FEL regimes. It is shown that spontaneous emission results in FEL electron beam threshold current, which is of rather high value. An optimal range of pumping laser intensities is determined.

  14. Laser-plasma interactions from thin tapes for high-energy electron accelerators and seeding compact FELs

    NASA Astrophysics Data System (ADS)

    Shaw, Brian Henry

    This thesis comprises a detailed investigation of the physics of using a plasma mirror (PM) from a tape by reflecting ultrashort pulses from a laser-triggered surface plasma. The tapes used in the characterization of the PM are VHS and computer data storage tape. The tapes are 6.6 m (computer storage tape) and 15 m (VHS) thick. Each tape is 0.5 inches wide, and 10s of meters of tape are spooled using a tape drive; providing thousands of shots on a single reel of tape. The amount of reflected energy of the PM was studied for different input intensities. The fluence was varied by translating the focus of the laser upstream and downstream of the tape, which changed the spot size on the tape surface and hence changed the fluence. This study measured reflectances from both sides of the two tapes, and for input light of both s and p-polarizations. Lastly, an analytic model was developed to understand the reflectance as a function of fluence for each tape material and polarization. Another application that benefits from the advancements of LPA technology is an LPAbased FEL. By sending a high quality electron bunch through an undulator (a periodic structure of positive and negative magnetic poles), the electrons oscillate transversely to the propagation axis and produce radiation. The 1.5 m THUNDER undulator at the BELLA Center has been commissioned using electron beams of 400MeV beams with broad energy spread (35%). To produce a coherent LPA-based FEL, the beam quality would need to improve to sub-percent level energy spread. A seed source could be used to help induce bunching of the electron beam within the undulator. This thesis described the experimental investigation of the physics of using solid-based surface high-harmonic generation (SHHG) from a thin tape as a possible seed source for an FEL. A thin tape placed within centimeters of the undulator's entrance could act as a harmonic generating source, while simultaneously transmitting an electron beam. This removes

  15. A compact FEL upconverter of coherent radiation

    SciTech Connect

    Liu, Y.; Marshall, T.C.

    1995-12-31

    The objective is to generate a powerful millimeter-wave FEL signal in a single pass, using a coherent microwave source (24GHz) to prebunch the electron beam for a harmonically-related wave (72GHz). We use the Columbia FEL facility, operating the electron beam at 600kV, 100A; undulator period = 1.85cm and 250G (K = 0.25); electron beam diameter = 3mm inside a 8.5 mm ID drift tube; guiding field of 8800G. Under these conditions, both the microwave signal (5kW input) and the millimeter signal will show travelling-wave gain in the TE11 mode. We report initial experimental results for the millimeter wave spectrum and find an overall power gain of {approximately}20 for the 24GHz input wave. Also presented will be numerical solutions of the wave growth using the FEL equations with slippage. This device has the advantage of producing a high-power FEL output in a single-pass travelling-wave configuration, obtaining a millimeter wave which is phase-referenced to a coherent laboratory source.

  16. High current gain transistor laser

    PubMed Central

    Liang, Song; Qiao, Lijun; Zhu, Hongliang; Wang, Wei

    2016-01-01

    A transistor laser (TL), having the structure of a transistor with multi-quantum wells near its base region, bridges the functionality gap between lasers and transistors. However, light emission is produced at the expense of current gain for all the TLs reported up to now, leading to a very low current gain. We propose a novel design of TLs, which have an n-doped InP layer inserted in the emitter ridge. Numerical studies show that a current flow aperture for only holes can be formed in the center of the emitter ridge. As a result, the common emitter current gain can be as large as 143.3, which is over 15 times larger than that of a TL without the aperture. Besides, the effects of nonradiative recombination defects can be reduced greatly because the flow of holes is confined in the center region of the emitter ridge. PMID:27282466

  17. Transverse-to-Longitudinal Emittance Exchange to Improve Performance of High-Gain Free-Electron Lasers

    SciTech Connect

    Emma, P.; Huang, Z.; Kim, K.-J.; Piot, P.; /Northern Illinois U. /Fermilab

    2006-09-21

    The ability to generate small transverse emittance is perhaps the main limiting factor for the performance of high-gain x-rays free-electron lasers (FELs). Noting that beams from an rf photocathode gun can have energy spread much smaller than required for efficient FEL interaction, we present a method to produce normalized transverse emittance at or below about 0.1 {micro}m, which will lead to a significantly shorter length undulator as well as a lower electron beam energy for an x-ray FEL project. The beam manipulation consists of producing an unequal partition of the initially equal emittances into two dissimilar emittances by a flat beam technique and exchanging the larger transverse emittance with a small longitudinal emittance. We study various issues involved in the manipulation. In particular, a new emittance exchange optics we found enables an exact emittance exchange necessary for this scheme.

  18. Design of a high average-power FEL driven by an existing 20 MV electrostatic-accelerator

    SciTech Connect

    Kimel, I.; Elias, L.R.

    1995-12-31

    There are some important applications where high average-power radiation is required. Two examples are industrial machining and space power-beaming. Unfortunately, up to date no FEL has been able to show more than 10 Watts of average power. To remedy this situation we started a program geared towards the development of high average-power FELs. As a first step we are building in our CREOL laboratory, a compact FEL which will generate close to 1 kW in CW operation. As the next step we are also engaged in the design of a much higher average-power system based on a 20 MV electrostatic accelerator. This FEL will be capable of operating CW with a power output of 60 kW. The idea is to perform a high power demonstration using the existing 20 MV electrostatic accelerator at the Tandar facility in Buenos Aires. This machine has been dedicated to accelerate heavy ions for experiments and applications in nuclear and atomic physics. The necessary adaptations required to utilize the machine to accelerate electrons will be described. An important aspect of the design of the 20 MV system, is the electron beam optics through almost 30 meters of accelerating and decelerating tubes as well as the undulator. Of equal importance is a careful design of the long resonator with mirrors able to withstand high power loading with proper heat dissipation features.

  19. Photon Source Capabilities of the Jefferson Lab FEL

    SciTech Connect

    Benson, S. V.; Douglas, D. R.; Evtushenko, P.; Hannon, F. E.; Hernandez-Garcia, C.; Klopf, J. M.; Legg, R. A.; Neil, G. R.; Shinn, M. D.; Tennant, C. D.; Zhang, S.; Williams, G. P.

    2013-03-22

    Jefferson Lab operates a superconducting energy recovered linac which is operated with CW RF and which powers oscillator-based IR and UV Free Electron Lasers (FELs) with diffraction limited sub-picosecond pulses with >10{sup 13} photons per pulse (1.0%BW) at pulse repetition frequencies up to 75 MHz. Useful harmonics extend into the vacuum ultraviolet (VUV). Based on FEL model calculations validated using this facility, we have designed both an oscillator-based VUV-FEL that would produce 6 10{sup12} coherent (0.5% BW) 100 eV photons per pulse at multi-MHz repetition rates in the fundamental, and a dual FEL configuration that would allow simultaneous lasing lasing at THz and UV wavelengths. The VUV-FEL would utilize a novel high gain, low Q cavity, while the THz source would be an FEL oscillator with a short wiggler providing diffraction limited pulses with pulse energy exceeding 50 microJoules. The THz source would use the exhaust beam from a UVFEL. Such multiphoton capabilities would provide unique opportunities for out of equilibrium dynamical studies at time-scales down to 50 fs. The fully coherent nature of all these sources results in peak and average brightness values that are many orders of magnitude higher than storage rings. We acknowledge support from the Commonwealth of Virginia. Jefferson Lab is supported by the U.S. DOE under Contract No. DE-AC05-84-ER40150.

  20. High temperature electronic gain device

    DOEpatents

    McCormick, J. Byron; Depp, Steven W.; Hamilton, Douglas J.; Kerwin, William J.

    1979-01-01

    An integrated thermionic device suitable for use in high temperature, high radiation environments. Cathode and control electrodes are deposited on a first substrate facing an anode on a second substrate. The substrates are sealed to a refractory wall and evacuated to form an integrated triode vacuum tube.

  1. FEL on slow cyclotron wave

    SciTech Connect

    Silivra, A.

    1995-12-31

    A physical mechanism of interaction of fast electromagnetic wave with slow cyclotron wave of relativistic electron beam in a FEL with helical wiggler field is described. It is shown that: (1) interaction is possible for both group of steady state electron trajectories (2) positive gain is achieved within certain interval of guide field strength (3) operation wavelength for group 1 trajectories ({Omega}{sub 0}/{gamma} < k{omega}{upsilon}{parallel}) is shorter than for the conventional FEL synchronism. A nonlinear analysis shows that efficiency of slow cyclotron FEL is restricted mainly by a breakdown of a single electron synchronism due to dependence of (modified) electron cyclotron frequency on an energy of electron. Nevertheless, as numerical simulation shows, typical efficiency of 15 % order is achieved in millimeter wavelength band for the midrelativistic ({gamma}= 3 {divided_by} 4) slow cyclotron wave FEL. Tapering of magnetic field results in a substantial increase of efficiency.

  2. High-gain harmonic generation of soft X-rays with the `fresh bunch` technique

    SciTech Connect

    Yu, Li-Hua; Ben-Zvi, I.

    1996-10-01

    We report numerical simulations (using the TDA code) and analytic verification of the generation of 64 {Angstrom} high power soft X- rays from an exponential regime single pass seeded FEL. The seed is generated in the FEL using the High Gain Harmonic Generation (HGHG) technique combined with the `Fresh bunch` technique. A seed pulse at 2944 {Angstrom} is generated by conventional laser techniques. The seed pulse produces an intense energy modulation of the rear part of a I GeV, 1245 {Angstrom} electron beam in a `modulator` wiggler. In the `radiator` wiggler, (resonant to 64 {Angstrom}), the energy modulation creates beam density modulation followed by radiation of the 46{sup th} harmonic of the seed. We use a magnetic delay to position the 64 A{Angstrom} radiation at the undisturbed front of the bunch to serve as a seed for a single pass, exponential growth FEL. After a 9 m long exponential section followed by a 7 m long tapered section the radiation power reaches 3.3 GW.

  3. Resonance hard radiation in a gas-loaded FEL

    SciTech Connect

    Gevorgian, L.A.

    1995-12-31

    The process of induced radiation under the condition when the relativistic beam oscillation frequency coincides with the plasma frequency of the FEL filling gas, is investigated. Such a resonance results in a giant enhancement of interaction between electrons and photons providing high gain in the hard FEL frequency region. Meanwhile the spectralwidth of the spontaneous radiation is broadened significantly. A method is proposed for maintaining the synchronism between the electron oscillation frequency and the medium plasma frequency, enabling to transform the electron energy into hard radiation with high efficiency.

  4. RF couplers for normal-conducting photoinjector of high-power CW FEL

    SciTech Connect

    Kurennoy, S.

    2004-01-01

    A high-current emittance-compensated RF photoinjector is a key enabling technology for a high-power CW FEL. A preliminary design of a normal-conducting, 2.5-cell pi-mode, 700-MHz CW RF photoinjector that will be built for demonstration purposes, is completed. This photoinjector will be capable of accelerating a 100-mA electron beam (3 nC per bunch at 35 MHz bunch repetition rate) to 2.7 MeV while providing an emittance below 7 mm-mrad at the wiggler. More than 1 MW of RF power will be fed into the photoinjector cavity through two ridge-loaded tapered waveguides. The waveguides are coupled to the cavity by 'dog-bone' irises cut in a thick wall. Due to CW operation of the photoinjector, the cooling of the coupler irises is a rather challenging thermal management project. This paper presents results of a detailed electromagnetic modeling of the coupler-cavity system, which has been performed to select the coupler design that minimizes the iris heating due to RF power loss in its walls.

  5. Development of a pump-probe facility with sub-picosecond time resolution combining a high-power ultraviolet regenerative FEL amplifier and a soft X-ray SASE FEL

    NASA Astrophysics Data System (ADS)

    Faatz, B.; Fateev, A. A.; Feldhaus, J.; Krzywinski, J.; Pflueger, J.; Rossbach, J.; Saldin, E. L.; Schneidmiller, E. A.; Yurkov, M. V.

    2001-12-01

    This paper presents the conceptual design of a high power radiation source with laser-like characteristics in the ultraviolet spectral range at the TESLA Test Facility (TTF). The concept is based on the generation of radiation in a regenerative FEL amplifier (RAFEL). The RAFEL described in this paper covers a wavelength range of 200-400 nm and provides 200 fs pulses with 2 mJ of optical energy per pulse. The linac operates at 1% duty factor and the average output radiation power exceeds 100 W. The RAFEL will be driven by the spent electron beam leaving the soft X-ray FEL, thus providing minimal interference between these two devices. The RAFEL output radiation has the same time structure as the X-ray FEL and the UV pulses are naturally synchronized with the soft X-ray pulses from the TTF FEL. Therefore, it should be possible to achieve synchronization close to the duration of the radiation pulses (200 fs) for pump-probe techniques using either an UV pulse as a pump and soft X-ray pulse as a probe, or vice versa.

  6. Design study of a longer wavelength FEL for FELIX

    SciTech Connect

    Lin, L.; Oepts, D.; Meer, A.F.G. van der

    1995-12-31

    We present a design study of FEL3, which will extend the FELIX spectral range towards a few hundred microns. A rectangular waveguide will be used to reduce diffraction losses. Calculations show that with a waveguide gap of 1 cm, only one sinusoidal mode along the guided direction can exist within the FEL gain bandwidth, thus excluding group velocity dispersion and lengthening of short radiation pulses. To incorporate FEL3 in the existing FELIX facility, two options are being considered: to combine FEL3 with FEL1 by insertion of a waveguide into FEL1, and to build a dedicated third beam line for FEL3 after the two linacs. Expected FEL performance: gain, spectrum, power, pulse shape, etc., will be presented based on numerical simulations.

  7. Compact FEL`s based on slow wave wigglers

    SciTech Connect

    Riyopoulos, S.

    1995-12-31

    Slow waves excited in magnetron-type cavities are attractive canditates as wigglers for compact Free Electron Lasers. Because of group velocities much below the speed of light, slow waves offer an order of magnitude increase in FEL gain under given circulating power in the wiggler resonator, compared to fast wave wigglers of similar period. In addition, they offer the versatility of operation either at modest beam energy via upshifing of the fundamental wavelength, or at low beam energy benefiting from the submillimeter wiggler harmonics. Because the main electron undulation is in the transverse direction for all spatial harmonics, the radiated power is increased by a factor {gamma}{sup 2} relative to the Smith-Purcell approach that relies on axial electron undulation. Technical advantages offered by magnetron-type wiggles are: the generation of the wiggler microwaves and the FEL interaction take place inside the same cavity, avoiding the issue of high power coupling between cavities; the excitation of wiggler microwaves relies on distributed electron emission from the cavity wall and does not require separate beam injection.

  8. Operation of FERMI FELs for users

    NASA Astrophysics Data System (ADS)

    Svandrlik, M.

    2015-05-01

    The FERMI seeded free electron laser facility, located at the Elettra laboratory in Trieste (Italy), has been operated for user experiments in the past years using the first FEL line, FEL-1, covering the VUV - EVU spectral range (100 - 20 nm). After the conclusion of the commissioning for the soft-X ray FEL line, FEL-2, the facility is now ready to provide the scientific community with intense FEL pulses (<10 μJ) characterized by a high degree of coherence and spectral stability in the whole range from 100 nm down to 4 nm. We report about the recent achievement of FERMI FELs and our experience with operations for user requiring specific FEL configurations.

  9. FEL development at the Budker Institute of Nuclear Physics

    NASA Astrophysics Data System (ADS)

    Vinokurov, N. A.

    1993-07-01

    There are three different FEL projects at the Budker Institute of Nuclear Physics: 1) the FEL on the VEPP-3 storage ring which operates in the visible and ultraviolet region; 2) the high power FEL using a racetrack microtron recuperator (this machine will provide an average power of about tens of kilowatt in the infrared region); and 3) the compact infrared FEL project, using a microton, and a powerful FEL on a dedicated superconducting storage ring, which is under consideration now.

  10. Sideband elimination and high efficiencies in a strongly tapered FEL amplifier

    SciTech Connect

    Bhattacharjee, A.; Chen, J.

    1995-12-31

    Recently, an analytical theory has shown that sideband instabilities can be eliminated in a strongly tapered FEL amplifier, leading to high efficiencies. It is found that a drastic suppression of the sideband spectrum occurs due to a continuous detuning effect which causes the real frequency of the most unstable sideband mode to vary continuously along the wiggler axis in the presence of a strong taper, with the consequence that no sideband can grow significantly before it is tuned away. Assuming extremely strongly pre-bunched beams with zero thermal spread, ideal efficiencies exceeding 60% were predicted by the theory with sideband intensities suppressed by nearly eight orders of magnitude with respect to the intensity of the primary signal. The theoretical predictions have been tested and verified by a one-dimensional numerical simulation. The numerical simulations permit us to go beyond the scope of the analytical model and allow us to examine (i) if optimization of strongly tapered wiggler configurations can allow us to achieve the desired high efficiencies within acceptable length constraints, and (ii) whether the high ideal efficiencies predicted by theory survive in the presence of partial pre-bunching and finite thermal spread of electron beams. By experimenting with different tapering schemes, we have found interesting strongly tapered configurations in which the accessible electron phase-space area remains nearly constant, with realistic assumptions on pre-bunching and thermal spread of the electron beam. In particular, for parameters representative of the Livermore experiments we obtain efficiencies in the rage 40-50% with thermal spreads in the range 0.5-1 % and pre-bunched electron phases in the range 2 {pi}/ 3 using a wiggler 5 meters long. The optical quality of the radiation produced is free of parasitic sideband instabilities which do not grow beyond noise levels.

  11. Beam Line Commissioning of a UV/VUV FEL at Jefferson Lab

    SciTech Connect

    Benson, Stephen; Blackburn, Keith; Bullard, Daniel; Clavero Perez, Cesar; Coleman, James; Dickover, Cody; Douglas, David; Ellingsworth, Forrest; Evtushenko, Pavel; Hernandez-Garcia, Carlos; Gould, Christopher; Gubeli, Joseph; Hardy, David; Jordan, Kevin; Klopf, John; James, Kortze; Legg, Robert; Marchlik, Matthew; Moore, Steven; Neil, George; Powers, Thomas; Sexton, Daniel; Shinn, Michelle D; Tennant, Christopher; Walker, Richard; Williams, Gwyn; Wilson, Frederick; Zhang, Shukui

    2011-08-01

    Many novel applications in photon sciences require very high brightness and/or short pulses in the vacuum ultra-violet (VUV). Jefferson Lab has commissioned a UV oscillator with high gain and has transported the third harmonic of the UV to a user lab. The experimental performance of the UV FEL is much better than simulated performance in both gain and efficiency. This success is important for efforts to push towards higher gain FELs at short wavelengths where mirrors absorb strongly. We will report on efforts to characterize the UV laser and the VUV coherent harmonics as well as designs to lase directly in the VUV wavelength range.

  12. Scaling formulae for FEL operating in linear and non linear regime

    SciTech Connect

    Dattoli, G.; Mezi, L.; Segreto, A.

    1995-12-31

    Scaling relations for the FEL gain, including the e-beam quality effects, have been usefully exploited to design FEL devices. We propose further extension of the above formulae including high gain, inhomogeneous broadening and saturation effects. A crucial role to get these relations is the use of approximant methods generalizing the Pade procedure. We derive gain equations containing the corrections due to energy spread, emittances and field intensity. It is shown that these equations can be exploited to {open_quotes}simulate{close_quotes} the FEL evolution with an almost negligible computational effort. Comments on the role of the saturation intensity and its dependence on the e-beam quality, high gain corrections etc. are also presented.

  13. A Comparison of Short Rayleigh Range FEL Performance with Simulations

    SciTech Connect

    Benson, Stephen; Evtushenko, Pavel; Michelle D. Shinn; Neil, George; Blau, Joe; Burggraff, D.; Colson, William; Crooker, P.P.; Sans Aguilar, J.

    2007-08-01

    One approach to attaining very high power in a free-electron laser (FEL) is to operate with a Rayleigh range much smaller than the wiggler length. Previously, 3D simulations of Free-electron laser (FEL) oscillators showed that FEL gain doesn't fall off with Rayleigh range as predicted by one-dimensional simulations*. They also predict that the angular tolerance for the mirrors is much large than simplistic theory predicts. Using the IR Upgrade laser at Jefferson Lab lasing at 935 nm we have studied the performance of an FEL with very short Rayleigh range. We also looked at the angular sensitivity for several different Rayleigh ranges. We find very good agreement between simulations and measured gain and angular sensitivities. Surprisingly the gain continues to rise as the Rayleigh range is shortened and continues to grow even when the resonator becomes geometrically unstable. The same behavior is seen in both the experiment and simulations. We also find that, even for large Rayleigh r

  14. X-band prebunched FEL amplifier

    SciTech Connect

    Saito, Kazuyoshi; Takayama, Ken; Ozaki, Toshiyuki

    1995-12-31

    Following the successful results of the ion-channel-guiding FEL experiments, we began a new experiment {open_quotes}prebunched FEL{close_quotes}. It is an FEL driven by prebunched beams, whose configuration is a normal FEL system with a prebuncher like the bunching section of a klystron. There are two purposes in this prebunched FEL system; (1) Demonstration of a compact/efficient FEL. Attaining the saturation power level with a short wiggler length (compact wiggler) and enhancing the power through the remaining wiggler length by wiggler tapering (high efficiency FEL). (2) Experimental simulation of multi-stage FELs in the FEL-TBA. Examination of FEL interactions with prebunched injection beams, especially, about the controllability of the output RF phase by changing the RF phase of the input seed power to the wiggler. Recent experimental results show: (1) The saturation power of 120MW has been attained at the wiggler length of 1.1m by 1.5MeV prebunched beams with a 45%-modulated 750A current. However, enhanced power has not been observed yet by wiggler tapering. (2) The current modulation of the injection beam (1.5MeV-500A) becoming higher than 30%, the adjustable range of the output RF phase was limitted less than 40 degrees by the input power of 60kW only. Detail explanations of design concept, theoretical and experimental results will be presented at the conference.

  15. A high average current DC GaAs photocathode gun for ERLs and FELs

    SciTech Connect

    C. Hernandez-Garcia; T. Siggins; S. Benson; D. Bullard; H. F. Dylla; K. Jordan; C. Murray; G. R. Neil; Michelle D. Shinn; R. Walker

    2005-05-01

    The Jefferson Lab (JLab) 10 kW IR Upgrade FEL DC GaAs photocathode gun is presently the highest average current electron source operational in the U.S., delivering a record 9.1 mA CW, 350 kV electron beam with 122 pC/bunch at 75 MHz rep rate. Pulsed operation has also been demonstrated with 8 mA per pulse (110 pC/bunch) in 16 ms-long pulses at 2 Hz rep rate. Routinely the gun delivers 5 mA CW and pulse current at 135 pC/bunch for FEL operations. The Upgrade DC photocathode gun is a direct evolution of the DC photocathode gun used in the previous JLab 1 kW IR Demo FEL. Improvements in the vacuum conditions, incorporation of two UHV motion mechanisms (a retractable cathode and a photocathode shield door) and a new way to add cesium to the GaAs photocathode surface have extended its lifetime to over 450 Coulombs delivered between re-cesiations (quantum efficiency replenishment). With each photocathode activation quantum efficiencies above 6% are routinely achieved. The photocathode activation and performance will be described in detail.

  16. Some novel features of an FEL oscillator with tapered undulator

    SciTech Connect

    Saldin, E.L.; Schneidmiller, E.A.; Yurkov, M.V.

    1995-12-31

    A one-dimensional analysis of an FEL oscillator with a linear undulator tapering is presented. Some principally novel results have been obtained. The origin of these results is in principal difference between the FEL oscillator and an FEL amplifier. In the case of the FEL amplifier the frequency of the amplified wave and all the other parameters are defined by an experimenter. Contrary to this, the case of the FEL oscillator with tapered undulator is more complicated. The lasing frequency is defined by the maximum of the small-signal gain and depends on the tapering depth in some complex way.

  17. Self-seeded injection-locked FEL amplifer

    DOEpatents

    Sheffield, Richard L.

    1999-01-01

    A self-seeded free electron laser (FEL) provides a high gain and extraction efficiency for the emitted light. An accelerator outputs a beam of electron pulses to a permanent magnet wiggler having an input end for receiving the electron pulses and an output end for outputting light and the electron pulses. An optical feedback loop collects low power light in a small signal gain regime at the output end of said wiggler and returns the low power light to the input end of the wiggler while outputting high power light in a high signal gain regime.

  18. High gain free electron laser at ETA

    NASA Astrophysics Data System (ADS)

    Orzechowski, T. J.; Prosnitz, D.; Halbach, K.; Kuenning, R.; Paul, A.; Hopkins, D.; Sessler, A.; Stover, G.; Tanabe, J.; Wurtele, J.

    1983-02-01

    A single pass, tapered electron wiggler and associated beam transport was constructed. The system is designed to transport 1 kA of 4.5 MeV electrons ith an emittance of 30 millirad cm. The planar wiggler is provided by a pulsed electromagnet. The interaction region is an oversized rectangular waveguide. Quadrupole fields stabilize the beam in the plane parallel to the wiggler field. The 3 meter long wiggler has a 9.8 cm period. The Free Electron Laser (FEL) serves as an amplifier for input frequencies of 35 GHz and 140 GZz. The facility is designed to produce better than 500 Megawatts peak power.

  19. Tests of photocathodes for high repetition rate x-ray FELs at the APEX facility at LBNL

    NASA Astrophysics Data System (ADS)

    Sannibale, Fernando; Filippetto, Daniele; Qian, Houjun; Papadopoulos, Christos F.; Wells, Russell; Kramasz, Toby; Padmore, Howard; Feng, Jun; Nasiatka, James; Huang, Ruixuan; Zolotorev, Max; Staples, John W.

    2015-05-01

    After the formidable results of X-ray 4th generation light sources based on free electron lasers around the world, a new revolutionary step is undergoing to extend the FEL performance from the present few hundred Hz to MHz-class repetition rates. In such facilities, temporally equi-spaced pulses will allow for a wide range of previously non-accessible experiments. The Advanced Photo-injector EXperiment (APEX) at the Lawrence Berkeley National Laboratory (LBNL), is devoted to test the capability of a novel scheme electron source, the VHF-Gun, to generate the required electron beam brightness at MHz repetition rates. In linac-based FELs, the ultimate performance in terms of brightness is defined at the injector, and in particular, cathodes play a major role in the game. Part of the APEX program consists in testing high quantum efficiency photocathodes capable to operate at the conditions required by such challenging machines. Results and status of these tests at LBNL are presented.

  20. The Physics and Applications of High Brightness Beams: Working Group C Summary on Applications to FELS

    SciTech Connect

    Nuhn, Heinz-Dieter

    2003-03-19

    This is the summary of the activities in working group C, ''Application to FELs,'' which was based in the Bithia room at the Joint ICFA Advanced Accelerator and Beam Dynamics Workshop on July 1-6, 2002 in Chia Laguna, Sardinia, Italy. Working group C was small in relation to the other working groups at that workshop. Attendees include Enrica Chiadroni, University of Rome ape with an identical pulse length. ''La Sapienza'', Luca Giannessi, ENEA, Steve Lidia, LBNL, Vladimir Litvinenko, Duke University, Patrick Muggli, UCLA, Alex Murokh, UCLA, Heinz-Dieter Nuhn, SLAC, Sven Reiche, UCLA, Jamie Rosenzweig, UCLA, Claudio Pellegrini, UCLA, Susan Smith, Daresbury Laboratory, Matthew Thompson, UCLA, Alexander Varfolomeev, Russian Research Center, plus a small number of occasional visitors. The working group addressed a total of nine topics. Each topic was introduced by a presentation, which initiated a discussion of the topic during and after the presentation. The speaker of the introductory presentation facilitated the discussion. There were six topics that were treated in stand-alone sessions of working group C. In addition, there were two joint sessions, one with working group B, which included one topic, and one with working group C, which included two topics. The presentations that were given in the joint sessions are summarized in the working group summary reports for groups B and D, respectively. This summary will only discuss the topics that were addressed in the stand-alone sessions, including Start-To-End Simulations, SASE Experiment, PERSEO, ''Optics Free'' FEL Oscillators, and VISA II.

  1. Experimental characteristics of a high-gain free-electron laser amplifier operating at 8-mm and 2-mm wavelengths

    SciTech Connect

    Throop, A.L.; Orzechowski, T.J.; Anderson, B.R.; Chambers, F.W.; Clark, J.C.; Fawley, W.M.; Jong, R.A.; Halbach, K.; Hopkins, D.B.; Sessler, A.M.

    1987-06-08

    The Electron Laser Facility (ELF) at the Lawrence Livermore National Laboratory (LLNL) uses a high-current induction linac (3.5 MeV, 1000 A), in conjunction with a pulsed electromagnetic wiggler (4.0 M, 4000 G), to operate a free electron laser (FEL) that produces intense radiation in the microwave regime (2 to 8 mm). ELF is a high-gain, single-pass amplifier, using a commercial microwave source as an oscillator input (200 W-50 kW). Previous experiments at 35 GHz produced exponential gains of 40 dB/m, peak powers exceeding 1 GW, and beam-to-rf conversion efficiencies of 34%. Recent experiments at 140 GHz have demonstrated exponential gains of 22 dB/m, peak powers exceeding 50 MW, and total gains of 65 dB. In this paper, we describe the experimental results at these two frequencies and compare then with the predictions of simulation codes.

  2. Simulations of the LANL regenerative amplifier FEL

    SciTech Connect

    Kesselring, M.; Colson, W.B.; Wong, R.K.; Sheffield, R.L.

    1997-08-01

    The LANL regenerative amplifier FEL is designed to produce an average output power of 1 kW. Simulations study the transverse effects due to guiding by the intense electron beam and feedback. These simulations coupled with experimental measurements can be used to improve future high-power FEL designs.

  3. Hybrid optical antenna with high directivity gain.

    PubMed

    Bonakdar, Alireza; Mohseni, Hooman

    2013-08-01

    Coupling of a far-field optical mode to electronic states of a quantum absorber or emitter is a crucial process in many applications, including infrared sensors, single molecule spectroscopy, and quantum metrology. In particular, achieving high quantum efficiency for a system with a deep subwavelength quantum absorber/emitter has remained desirable. In this Letter, a hybrid optical antenna based on coupling of a photonic nanojet to a metallo-dielectric antenna is proposed, which allows such efficient coupling. A quantum efficiency of about 50% is predicted for a semiconductor with volume of ~λ³/170. Despite the weak optical absorption coefficient of 2000 cm(-1) in the long infrared wavelength of ~8 μm, very strong far-field coupling has been achieved, as evidenced by an axial directivity gain of 16 dB, which is only 3 dB below of theoretical limit. Unlike the common phased array antenna, this structure does not require coherent sources to achieve a high directivity. The quantum efficiency and directivity gain are more than an order of magnitude higher than existing metallic, dielectric, or metallo-dielectric optical antenna.

  4. SASE FEL Polarization Control Using Crossed Undulator

    SciTech Connect

    Ding, Yuantao; Huang, Zhirong; /SLAC

    2008-09-30

    There is a growing interest in producing intense, coherent x-ray radiation with an adjustable and arbitrary polarization state. In this paper, we study the crossed undulator scheme for rapid polarization control in a self-amplified spontaneous emission (SASE) free electron laser (FEL). Because a SASE source is a temporally chaotic light, we perform a statistical analysis on the state of polarization using FEL theory and simulations. We show that by adding a small phase shifter and a short (about 1.3 times the FEL power gain length), 90{sup o} rotated planar undulator after the main SASE planar undulator, one can obtain circularly polarized light--with over 80% polarization--near the FEL saturation.

  5. On a theory of an FEL oscillator with multicomponent undulator

    SciTech Connect

    Saldin, E.L.; Schneidmiller, E.A.; Yurkov, M.V.

    1995-12-31

    Some novel results of a theory of an FEL oscillator with multicomponent undulator are presented. Two popular FEL oscillator configuration are under consideration: optical klystron and FEL oscillator with a prebuncher and tapered main undulator. Using similarity techniques, universal formulae and plots are obtained which allow one to calculate the FEL oscillator lasing conditions an output parameters at saturation. A one-dimensional analysis of an FEL oscillator with a linear undulator tapering is presented. Some principally novel results have been obtained. The origin of these results is in principal difference between the FEL oscillator and an FEL amplifier. In the case of the FEL amplifier the frequency of the amplified wave and all the other parameters are defined by an experimenter. Contrary to this, the case of the FEL oscillator with tapered undulator is more complicated. The lasing frequency is defined by the maximum of the small-signal gain and depends on the tapering depth in some complex way. In particular, at smooth increasing of the tapering depth, the lasing frequency may change by a leap and lasing occurs at another local maximum of the gain curve. This effect influences significantly on the FEL oscillator operation at saturation. As a result, generally accepted method of undulator tapering (for instance, by decreasing undulator field at fixed period) provides an efficiency increase only in a narrow range of the parameters of tapering. We show that in some cases, so called {open_quotes}negative tapering{close_quotes} (for instance, by increasing undulator field at fixed period) has a benefit against traditional tapering method. Ignoring of these basic features of the FEL oscillator with the tapered undulator have led many FEL research groups to nonoptimal design of the FEL experiments and incorrect interpretation of the obtained results.

  6. Optical Klystron Enhancement to SASE X-ray FELs

    SciTech Connect

    Ding, Yuantao; Emma, Paul; Huang, Zhirong; Kumar, Vinit

    2006-04-07

    The optical klystron enhancement to self-amplified spontaneous emission (SASE) free electron lasers (FELs) is studied in theory and in simulations. In contrast to a seeded FEL, the optical klystron gain in a SASE FEL is not sensitive to any phase mismatch between the radiation and the microbunched electron beam. The FEL performance with the addition of four optical klystrons located at the undulator long breaks in the Linac Coherent Light Source (LCLS) shows significant improvement if the uncorrelated energy spread at the undulator entrance can be controlled to a very small level. In addition, FEL saturation at shorter x-ray wavelengths (around 1.0 A) within the LCLS undulator length becomes possible. We also discuss the application of the optical klystron in a compact x-ray FEL design that employs relatively low electron beam energy together with a shorter-period undulator.

  7. Progress at the Jefferson Laboratory FEL

    SciTech Connect

    Tennant, Christopher

    2009-01-01

    As the only currently operating free electron laser (FEL) based on a CW superconducting energy recovering linac (ERL), the Jefferson Laboratory FEL Upgrade remains unique as an FEL driver. The present system represents the culmination of years of effort in the areas of SRF technology, ERL operation, lattice design, high power optics and DC photocathode gun technology. In 2001 the FEL Demo generated 2.1 kW of laser power. Following extensive upgrades, in 2006 the FEL Upgrade generated 14.3 kW of laser power breaking the previous world record. The FEL Upgrade remains a valuable testbed for studying a variety of collective effects, such as the beam breakup instability, longitudinal space charge and coherent synchrotron radiation. Additionally, there has been exploration of operation with lower injection energy and higher bunch charge. Recent progress and achievements in these areas will be presented, and two recent milestones â installation of a UV FEL and establishment of a DC gun test s

  8. FULL ELECTROMAGNETIC FEL SIMULATION VIA THE LORENTZ-BOOSTED FRAME TRANSFORMATION

    SciTech Connect

    Fawley, William; Vay, Jean-Luc

    2010-08-16

    Numerical electromagnetic simulation of some systems containing charged particles with highly relativistic directed motion can by speeded up by orders of magnitude by choice of the proper Lorentz-boosted frame. A particularly good application for calculation in a boosted frame isthat of short wavelength free-electron lasers (FELs) where a high energy electron beam with small fractional energy spread interacts with a static magnetic undulator. In the optimal boost frame (i.e., the ponderomotive rest frame), the red-shifted FEL radiation and blue-shifted undulator field have identical wavelengths and the number of required longitudinal grid cells and time-steps for fully electromagnetic simulation (relative to the laboratory frame) decrease by factors of gamma^2 each. In theory, boosted frame EM codes permit direct study of FEL problems for which the eikonal approximation for propagation of the radiation field and wiggler-period-averaging for the particle-field interaction may be suspect. We have adapted the WARP code to apply this method to several electromagnetic FEL problems including spontaneous emission, strong exponential gain in a seeded, single pass amplifier configuration, and emission from e-beams in undulators with multiple harmonic components. WARP has a standard relativistic macroparticle mover and a fully 3-D electromagnetic field solver. We discuss our boosted frame results and compare with those obtained using the ?standard? eikonal FEL simulation approach.

  9. Enhancing the performance of a high-gain free electron laser operating at millimeter wavelengths

    SciTech Connect

    Barletta, W.A.; Anderson, B.; Fawley, W.M.; Neil, V.K.; Orzechowski, T.J.; Prosnitz, D.; Scharlemann, E.T.; Yarema, S.M.; Paul, A.C.; Hopkins, D.

    1984-10-25

    A high-gain, high extraction efficiency, free electron laser (FEL) amplifier operating at the Experimental Test Accelerator (ETA) at 34.6 GHz has demonstrated a small signal gain of 13.4 dB/m. With a 30 kW input signal, the amplifier has produced a saturated output of 80 MW and a 5% extraction efficiency. Comparison of these results with a linear model at small signal levels indicates that the amplifier can deliver saturated output starting from noise, if the brightness of the electron beam is sufficiently high. The brightness of the ETA is far below that possible with optimized choice of practical design characteristics such as peak voltage, cathode type, gun electrode geometry, and focusing field topology. In particular, the measured brightness of the ETA injector is limited by plasma effects from the present cold, plasma cathode. As part of a coordinated theoretical and experimental effort to improve injector performance, we are using the EBQ gun design code to explore the current limits of gridless, relativistic, Pierce columns with moderate current density (>50 A/cm/sup 2/) at the cathode. The chief component in our experimental effort is a readily modified electron gun that will allow us to test many candidate cathode materials, types, and electrode geometries at field stresses up to 1 MV/cm. 8 references, 5 figures.

  10. Structure of the spontaneous emission spectra of high-{gamma} free electron lasers as measured at the Darmstadt (S-Dalinac) FEL

    SciTech Connect

    Renz, G.; Spindler, G.; Schlott, V.

    1995-12-31

    Recent spontaneous emission measurements at the Darmstadt infrared FEL indicate a relatively broad (down-shifted) spectrum with several intensity maxima. The typical features of the measured spectrum can be well reproduced by a numerical simulation comprising the 3-d electron dynamics in a realizable planar wiggler field, the spontaneous radiation according to the well-known Jackson formula, as well as the detection of the radiation with a finite aperture detector. An analytical consideration attributes the observed down-shift to the reduced Doppler up-shift of the radiation as observed under a finite angle with respect to the axis. The intensity peaks appear as a consequence of a modulation of the transverse velocity amplitudes of the electrons due to the betatron oscillation. The spectral spacing of these {open_quote}sidebands{close_quote} are roughly given by the Doppler up-shifted betatron frequency. Consequences for very high energy FELs will be discussed.

  11. High gain feedback and telerobotic tracking

    NASA Technical Reports Server (NTRS)

    Koditschek, D. E.

    1987-01-01

    Asymptotically stable linear time invariant systems are capable of tracking arbitrary reference signals with a bounded error proportional to the magnitude of the reference signal (and its derivatives). It is shown that a similar property holds for a general class of nonlinear dynamical systems which includes all robots. As in the linear case, the error bound may be made arbitrarily small by increasing the magnitude of the feedback gains which stabilize the system.

  12. High Efficiency Targets for High Gain Inertial Confinement Fusion.

    DTIC Science & Technology

    1986-09-19

    Inertial Confinement Fusion JOHN H. GARDNER AND STEPHEN E. BODNER Laboratory for Computational Physics DTIC CD ELECTEf OCT 241986 j NU Aproedfr...81425 " 11 TITLE (include Security Classification) High Efficiency Targets for High Gain Inertial Confinement Fusion 12. PERSONAL AUTHOR(S) Gardner, John ...ArearCod) 22c OFFICE SYMBOL % John H. Gardner (202) 767-3055 Code 4040 DO FORM 1473. 84 MAR 83 APR edtion may be used until exhausted SECURITY

  13. Two FEL`s in one

    SciTech Connect

    Epp, V.; Nikitin, M.

    1995-12-31

    A new scheme for a FEL operation is proposed. The conventional principle of FEL operation is means that the electron bunch passes through the interaction area of FEL only in one direction. We suggest another possible layout which implies that the electron bunch makes a turn after leaving the wiggler and entries the wiggler at the same end. Actually the wiggler is a kind of a bridge between two storage rings. The electron bunches on the orbit are expected to be adjusted in the way that after one of them leaves the wiggler, another one enters in the opposite direction and in the proper phase with the wave pulse emitted by the previous bunch. So the electron bunch comes in interaction with the amplified electromagnetic wave in both directions i.e. twice per period. It is especially important for the short wavelength FELs, because each reflection from the mirror causes a significant losses of the wave magnitude. The proposed design gives one interaction per each reflection instead of one interaction per two reflections in the traditional scheme. Another way to realize the suggested principle of operating is to insert the wiggler in the electron-positron storage ring. But this layout can be less efficient because of low intensity of the positron beam. The comparison study of radiation from different types of described double wigglers is fulfilled. The synchronization problems are discussed in this paper.

  14. LCLS X-Ray FEL Output Performance in the Presence of HighlyTime-Dependent Undulator Wakefields

    SciTech Connect

    Bane, Karl L.F.; Emma, Paul; Huang, Heinz-Dieter Nuhn; Stupakov,Gennady; Fawley, William M.; Reiche, Sven

    2005-08-25

    Energy loss due to wakefields within a long undulator, if not compensated by an appropriate tapering of the magnetic field strength, can degrade the FEL process by detuning the resonant FEL frequency. The wakefields arise from the vacuum chamber wall resistivity, its surface roughness, and abrupt changes in its aperture. For LCLS parameters, the resistive-wall component is the most critical and depends upon the chamber material (e.g., Cu) and its radius. Of recent interest[1] is the so-called ''AC'' component of the resistive-wall wake which can lead to strong variations on very short timescales (e.g., {approx} 20 0fs). To study the expected performance of the LCLS in the presence of these wakefields, we have made an extensive series of start-to-end SASE simulations with tracking codes PARMELA and ELEGANT, and time-dependent FEL simulation codes GENESIS1.3 and GINGER. We discuss the impact of the wakefield losses upon output energy, spectral bandwidth, and temporal envelope of the output FEL pulse, as well as the benefits of a partial compensation of the time-dependent wake losses obtained with a slight z-dependent taper in the undulator field. We compare the taper results to those predicted analytically[2].

  15. LCLS X-Ray FEL Output Performance in the Presence of Highly Time-Dependent Undulator Wakefields

    SciTech Connect

    Fawley, W.M.; Bane, K.L.F.; Emma, P.; Huang, Z.; Nuhn, H.-D.; Stupakov, G.; Reiche, S.; /UCLA

    2005-09-30

    Energy loss due to wakefields within a long undulator, if not compensated by an appropriate tapering of the magnetic field strength, can degrade the FEL process by detuning the resonant FEL frequency. The wakefields arise from the vacuum chamber wall resistivity, its surface roughness, and abrupt changes in its aperture. For LCLS parameters, the resistive-wall component is the most critical and depends upon the chamber material (e.g., Cu) and its radius. Of recent interest[1] is the so-called ''AC'' component of the resistive-wall wake which can lead to strong variations on very short timescales (e.g., {approx} 20 fs). To study the expected performance of the LCLS in the presence of these wakefields, we have made an extensive series of start-to-end SASE simulations with tracking codes PARMELA and ELEGANT, and time-dependent FEL simulation codes GENESIS1.3 and GINGER. We discuss the impact of the wakefield losses upon output energy, spectral bandwidth, and temporal envelope of the output FEL pulse, as well as the benefits of a partial compensation of the time-dependent wake losses obtained with a slight z-dependent taper in the undulator field. We compare the taper results to those predicted analytically[2].

  16. Mid-infrared FEL absorption spectra

    NASA Astrophysics Data System (ADS)

    Kozub, John A.; Feng, Bibo; Gabella, William E.

    2002-04-01

    The Vanderbilt Mark III FEL is a tunable source of high- intensity coherent mid-infrared radiation occurring as a train of picosecond pulses spaced 350ps apart. The laser beam is transported to each laboratory under vacuum, but is typically transmitted through some distance of atmosphere before reaching the target. Losses due to absorption by water vapor and CO2 can be large, and since the bandwidth of the FEL is several percent of the wavelength, the spectrum can be altered by atmospheric absorptions. In order to provide an accurate representation of the laser spectrum delivered to the target, and to investigate any non-linear effects associated with transport of the FEL beam, we have recorded the spectrum of the FEL output using a vacuum spectrometer positioned after measured lengths of atmosphere. The spectrometer is equipped with a linear pyroelectric array which provides the laser spectrum for each pulse. Absorption coefficients are being measured for laboratory air, averaged over the bandwidth of the FEL. The high peak powers of this Fel have induced damage in common infrared-transparent materials; we are also measuring damage thresholds for several materials at various wavelengths.

  17. High-Gain High-Field Fusion Plasma

    PubMed Central

    Li, Ge

    2015-01-01

    A Faraday wheel (FW)—an electric generator of constant electrical polarity that produces huge currents—could be implemented in an existing tokamak to study high-gain high-field (HGHF) fusion plasma, such as the Experimental Advanced Superconducting Tokamak (EAST). HGHF plasma can be realized in EAST by updating its pulsed-power system to compress plasma in two steps by induction fields; high gains of the Lawson trinity parameter and fusion power are both predicted by formulating the HGHF plasma. Both gain rates are faster than the decrease rate of the plasma volume. The formulation is checked by earlier ATC tests. Good agreement between theory and tests indicates that scaling to over 10 T at EAST may be possible by two-step compressions with a compression ratio of the minor radius of up to 3. These results point to a quick new path of fusion plasma study, i.e., simulating the Sun by EAST. PMID:26507314

  18. Simulation of the fundamental and nonlinear harmonic output from an FEL amplifier with a soft x-ray seed laser

    SciTech Connect

    Biedron, S. G.; Freund, H. P.; Li, Y.; Milton, S. V.

    2000-07-05

    A single-pass, high-gain free-electron laser (FEL) x-ray amplifier was simulated using the 3D, polychromatic simulation code MEDUSA. The seed for the system is a table-top, soft x-ray laser. The simulated fundamental and nonlinear harmonic x-ray output wavelengths are discussed.

  19. A helical optical for circular polarized UV-FEL project at the UVSOR

    SciTech Connect

    Hama, Hiroyuki

    1995-12-31

    Most of existing storage ring free electron lasers (SRFEL) are restricted those performances by degradation of mirrors in optical cavities. In general, the SRFEL gain at the short wavelength region with high energy electrons is quite low, and the high reflectivity mirrors such as dielectric multilayer mirrors are therefore required. The mirror degradation is considered as a result of irradiation of higher harmonic photons that are simultaneously emitted from planar optical klystron (OK) type undulators, which are commonly used in SRFEL. This problem is getting severer as the lasing wavelength becomes shorter. The UVSOR-FEL had been originally scheduled to be shutdown by 1996 because another undulator project for spectroscopic studies with circular polarized photon would take the FEL`s place. According to suggestion of the insertion device group of the SPring-8, we have designed a helical undulator that is able to vary degree and direction of the polarization easily. In addition, the undulator can be converted into a helical OK by replacing magnets at the center part of undulator in order to coexist with further FEL experiments. Using a calculated magnetic field for magnet configurations of the OK mode, the radiation spectrum at wide wavelength range was simulated by a Fourier transform of Lienard-Wiechert potentials. As a matter of course, some higher harmonics are radiated on the off-axis angle. However it was found out that the higher harmonics is almost negligible as far as inside a solid angle of the Gaussian laser mode. Moreover the gain at the UV region of 250 nm is expected to be much higher than our present FEL because of high brilliant fundamental radiation. The calculated spatial distribution of higher harmonics and the estimated instantaneous gain is presented. Advantages of the helical OK for SRFEL will be discussed in view of our experience, and a possibility of application two-color experiment with SR will be also mentioned.

  20. Ther FERMI FEL project at TRIESTE

    SciTech Connect

    Walker, R.P.; Bulfone, D.; Cargnello, F.

    1995-12-31

    The goal of the FERMI project - Free Electron Radiation and Matching Instrumentation - is to construct a new user facility for FEL radiation beams covering a broad spectral range (2-250 {mu}m) to complement the high brightness VUV/Soft-Xray radiation available from the ELETTRA synchrotron radiation facility at Trieste. A unique feature of the project will be the possibility of carrying out {open_quote}pump-probe{close_quote} experiments using synchronized radiation beams from FERMI and ELETTRA on the same sample. The project was launched at a meeting with Italian FEL experts held in Trieste on the 18th November 1994, chaired by C. Rubbia, as a collaboration between Sincrotrone Trieste, ENEA (Frascati), INFN (Frascati) and the University of Naples (Department of Electronic Engineering). The facility will make use of an existing linac, that forms part of the ELETTRA injection system, and a hall into which the beam can be extracted. In addition, for the first phase of the project equipment will be used from the suspended INFN/ENEA {open_quote}SURF{close_quote} FEL experiment, including the undulator, beam transport magnets and optical cavity. In this first International FEL Conference report on the project, we summarize the main features of the project, concentrating in particular on the most recent activities, including: results of measurements of the linac beam in the FEL mode of operation, further studies of the electron beam transport system including possibilities for bunch length manipulations, and further numerical calculations of the FEL performance.

  1. A modular and compact portable mini-endstation for high-precision, high-speed fixed target serial crystallography at FEL and synchrotron sources

    SciTech Connect

    Sherrell, Darren A.; Foster, Andrew J.; Hudson, Lee; Nutter, Brian; O'Hea, James; Nelson, Silke; Pare-Labrosse, Olivier; Oghbaey, Saeed; Miller, R. J. Dwayne; Owen, Robin L.

    2015-01-01

    The design and implementation of a compact and portable sample alignment system suitable for use at both synchrotron and free-electron laser (FEL) sources and its performance are described. The system provides the ability to quickly and reliably deliver large numbers of samples using the minimum amount of sample possible, through positioning of fixed target arrays into the X-ray beam. The combination of high-precision stages, high-quality sample viewing, a fast controller and a software layer overcome many of the challenges associated with sample alignment. A straightforward interface that minimizes setup and sample changeover time as well as simplifying communication with the stages during the experiment is also described, together with an intuitive naming convention for defining, tracking and locating sample positions. Lastly, the setup allows the precise delivery of samples in predefined locations to a specific position in space and time, reliably and simply.

  2. A modular and compact portable mini-endstation for high-precision, high-speed fixed target serial crystallography at FEL and synchrotron sources

    DOE PAGES

    Sherrell, Darren A.; Foster, Andrew J.; Hudson, Lee; ...

    2015-01-01

    The design and implementation of a compact and portable sample alignment system suitable for use at both synchrotron and free-electron laser (FEL) sources and its performance are described. The system provides the ability to quickly and reliably deliver large numbers of samples using the minimum amount of sample possible, through positioning of fixed target arrays into the X-ray beam. The combination of high-precision stages, high-quality sample viewing, a fast controller and a software layer overcome many of the challenges associated with sample alignment. A straightforward interface that minimizes setup and sample changeover time as well as simplifying communication with themore » stages during the experiment is also described, together with an intuitive naming convention for defining, tracking and locating sample positions. Lastly, the setup allows the precise delivery of samples in predefined locations to a specific position in space and time, reliably and simply.« less

  3. High gain durable anti-reflective coating

    DOEpatents

    Maghsoodi, Sina; Brophy, Brenor L.; Colson, Thomas E.; Gonsalves, Peter R.; Abrams, Ze'ev R.

    2016-07-26

    Disclosed herein are polysilsesquioxane-based anti-reflective coating (ARC) compositions, methods of preparation, and methods of deposition on a substrate. In one embodiment, the polysilsesquioxane of this disclosure is prepared in a two-step process of acid catalyzed hydrolysis of organoalkoxysilane followed by addition of tetralkoxysilane that generates silicone polymers with >40 mol % silanol based on Si-NMR. These high silanol siloxane polymers are stable and have a long shelf-life in polar organic solvents at room temperature. Also disclosed are low refractive index ARC made from these compositions with and without additives such as porogens, templates, thermal radical initiator, photo radical initiators, crosslinkers, Si--OH condensation catalyst and nano-fillers. Also disclosed are methods and apparatus for applying coatings to flat substrates including substrate pre-treatment processes, coating processes and coating curing processes including skin-curing using hot-air knives. Also disclosed are coating compositions and formulations for highly tunable, durable, highly abrasion-resistant functionalized anti-reflective coatings.

  4. Femtosecond laser-generated high-energy-density states studied by x-ray FELs

    NASA Astrophysics Data System (ADS)

    Nakatsutsumi, M.; Appel, K.; Baehtz, C.; Chen, B.; Cowan, T. E.; Göde, S.; Konopkova, Z.; Pelka, A.; Priebe, G.; Schmidt, A.; Sukharnikov, K.; Thorpe, I.; Tschentscher, Th; Zastrau, U.

    2017-01-01

    The combination of powerful optical lasers and an x-ray free-electron laser (XFEL) provides unique capabilities to study the transient behaviour of matter in extreme conditions. The high energy density science instrument (HED instrument) at the European XFEL will provide the experimental platform on which an unique x-ray source can be combined with various types of high-power optical lasers. In this paper, we highlight selected scientific examples together with the associated x-ray techniques, with particular emphasis on femtosecond (fs)-timescale pump-probe experiments. Subsequently, we present the current design status of the HED instrument, outlining how the experiments could be performed. First user experiments will start at the beginning of 2018, after which various optical lasers will be commissioned and made available to the international scientific community.

  5. THE SECOND STAGE OF FERMI@ELETTRA: A SEEDED FEL IN THE SOFT X-RAY SPECTRAL RANGE

    SciTech Connect

    Allaria, E.; DeNinno, G.; Fawley, W. M.

    2009-08-14

    The second stage of the FERMI FEL, named FEL-2, is based on the principle of high-gain harmonic generation and relies on a double-seeded cascade. Recent developments stimulated a revision of the original setup, which was designed to cover the spectral range between 40 and 10 nm. The numerical simulations we present here show that the nominal (expected) electron-beam performance allows extension of the FEL spectral range down to 4 nm. A significant amount of third harmonic power can be also expected. We also show that the proposed setup is flexible enough for exploiting future developments of new seed sources, e.g., high harmonic generation in gases.

  6. Theory of noise in high-gain surface plasmon-polariton amplifiers incorporating dipolar gain media.

    PubMed

    De Leon, Israel; Berini, Pierre

    2011-10-10

    A theoretical analysis of noise in high-gain surface plasmon-polariton amplifiers incorporating dipolar gain media is presented. An expression for the noise figure is obtained in terms of the spontaneous emission rate into the amplified surface plasmon-polariton taking into account the different energy decay channels experienced by dipoles in close proximity to the metallic surface. Two amplifier structures are examined: a single-interface between a metal and a gain medium and a thin metal film bounded by identical gain media on both sides. A realistic configuration is considered where the surface plasmon-polariton undergoing amplification has a Gaussian field profile in the plane of the metal and paraxial propagation along the amplifier's length. The noise figure of these plasmonic amplifiers is studied considering three prototypical gain media with different permittivities. It is shown that the noise figure exhibits a strong dependance on the real part of the permittivities of the metal and gain medium, and that its minimum value is 4/π(∼3.53 dB). The origin of this minimum value is discussed. It is also shown that amplifier configurations supporting strongly confined surface plasmon-polaritons suffer from a large noise figure, which follows from an enhanced spontaneous emission rate due to the Purcell effect.

  7. Filamentation effect in a gas attenuator for high-repetition-rate X-ray FELs.

    PubMed

    Feng, Yiping; Krzywinski, Jacek; Schafer, Donald W; Ortiz, Eliazar; Rowen, Michael; Raubenheimer, Tor O

    2016-01-01

    A sustained filamentation or density depression phenomenon in an argon gas attenuator servicing a high-repetition femtosecond X-ray free-electron laser has been studied using a finite-difference method applied to the thermal diffusion equation for an ideal gas. A steady-state solution was obtained by assuming continuous-wave input of an equivalent time-averaged beam power and that the pressure of the entire gas volume has reached equilibrium. Both radial and axial temperature/density gradients were found and describable as filamentation or density depression previously reported for a femtosecond optical laser of similar attributes. The effect exhibits complex dependence on the input power, the desired attenuation, and the geometries of the beam and the attenuator. Time-dependent simulations were carried out to further elucidate the evolution of the temperature/density gradients in between pulses, from which the actual attenuation received by any given pulse can be properly calculated.

  8. Filamentation effect in a gas attenuator for high-repetition-rate X-ray FELs

    SciTech Connect

    Feng, Yiping; Krzywinski, Jacek; Schafer, Donald W.; Ortiz, Eliazar; Rowen, Michael; Raubenheimer, Tor O.

    2016-01-01

    A sustained filamentation or density depression phenomenon in an argon gas attenuator servicing a high-repetition femtosecond X-ray free-electron laser has been studied using a finite-difference method applied to the thermal diffusion equation for an ideal gas. A steady-state solution was obtained by assuming continuous-wave input of an equivalent time-averaged beam power and that the pressure of the entire gas volume has reached equilibrium. Both radial and axial temperature/density gradients were found and describable as filamentation or density depression previously reported for a femtosecond optical laser of similar attributes. The effect exhibits complex dependence on the input power, the desired attenuation, and the geometries of the beam and the attenuator. Time-dependent simulations were carried out to further elucidate the evolution of the temperature/density gradients in between pulses, from which the actual attenuation received by any given pulse can be properly calculated.

  9. Transverse effects in UV FELs

    SciTech Connect

    Small, D.W.; Wong, R.K.; Colson, W.B.

    1995-12-31

    In an ultraviolet Free Electron Laser (UV FEL), the electron beam size can be approximately the same as the optical mode size. The performance of a UV FEL is studied including the effect of emittance, betatron focusing, and external focusing of the electron beam on the transverse optical mode. The results are applied to the Industrial Laser Consortium`s UV FEL.

  10. Dynamical aspects on FEL interaction in single passage and storage ring devices

    SciTech Connect

    Dattoli, G.; Renieri, A.

    1995-12-31

    The dynamical behaviour of the free-electron lasers is investigated using appropriate scaling relations valid for devices operating in the low and high gain regimes, including saturation. The analysis is applied to both single passage and storage ring configurations. In the latter case the interplay between the interaction of the electron bean with the laser field and with the accelerator environment is investigated. In particular we discuss the effect of FEL interaction on the microwave instability.

  11. Optical tailoring of xFEL beams

    SciTech Connect

    West, Gavin; Coffee, R.

    2015-08-20

    There is an inherent exibility unique to free electron lasers (FELs) that lends well to experimental approaches normally too difficult for other light sources to accomplish. This includes the ability to optically shape the electron bunch prior to final its acceleration for the final FEL process. Optical pulse shaping of the electron bunch can enable both femtosecond and attosecond level FEL pulse control. Pulse shaping is currently implemented, not optically but mechanically, in LCLS-I with an adjustable foil slit that physically spoils the momentum phase of the electron bunch. This selectively suppresses the downstream FEL process ofspoiled electrons. Such a mechanical spoiling method fails for both the soft x-ray regime as well as the high repetition rates that are planned in LCLS-II. Our proposed optical spoiling method circumvents this limitation by making use of the existing ultrafast laser beam that is typically used for adjusting the energy spread for the initial electron bunch. Using Fourier domain shaping we can nearly arbitrarily shape the laser pulses to affect the electron bunch. This can selectively spoil electrons within each bunch. Here we demonstrate the viability of this approach with a programmable acousto-optic dispersive filter. This method is not only well suited for LCLS-II but also has several advantages over mechanical spoiling, including lack of radiation concerns, experiment specific FEL pulse shapes, and real-time adjustment for applications that require high duty-cycle variation such as lock-in amplification of small signals.

  12. Users program for storage-ring based FEL and synchrotron sources of the Duke FEL Laboratory

    SciTech Connect

    Straub, K.D.; Barnett, G.; Burnham, B.

    1995-12-31

    The storage ring at the Duke FEL Laboratory was first operated with a stored e-beam in November, 1994. It has now achieved operation energies in excess 1 GeV with more than 100 mA current at 280 MeV. The ring has several ports for FEL and synchrotron light source research. The circulating ring current can be synchronized with the seperate Mark III FEL operating in the 2-9.5 {mu}m IR region. This allows low optical jitter (10-20 ps) between the two sources and thus pump-probe operation. The ring has been configured to drive a number of light sources including the OK-4 FEL system capable of FEL operation between 400 and 65 nm, an inverse Compton scattering source using this undulator which will yield 4-200 MeV gammas, an undulator source at approximately 40 {angstrom} (not an FEL), a mm FEL with inverse compton scattering providing 1-100 keV x-rays and two synchrotron ports from the bend magnets for which the {lambda}{sub c} = 11-12 {angstrom} for 1 GeV. The broadly tunable FEL sources and their associated inverse compton scattering are extremely bright. The initial research proposals, submitted to the Laboratory emphasizes photoelectron spectroscopy, PEEM, high resolution vacuum UV of gases, solid spectroscopy and photochemistry in the UV, X-ray microprobe studies, X-ray microscopy, X-ray holography, X-ray crystallography, Mossbauer spectroscopy, nuclear spectroscopy, neutron production, photon activation therapy and broadband synchrotron as a probe of fast reaction in the IR and near IR.

  13. Computer simulation of space station computer steered high gain antenna

    NASA Technical Reports Server (NTRS)

    Beach, S. W.

    1973-01-01

    The mathematical modeling and programming of a complete simulation program for a space station computer-steered high gain antenna are described. The program provides for reading input data cards, numerically integrating up to 50 first order differential equations, and monitoring up to 48 variables on printed output and on plots. The program system consists of a high gain antenna, an antenna gimbal control system, an on board computer, and the environment in which all are to operate.

  14. Bunch Length Measurements at the JLab FEL Using Coherent Transition and Synchrotron Radiation

    SciTech Connect

    Pavel Evtushenko; James Coleman; Kevin Jordan; J. Michael Klopf; George Neil; Gwyn Williams

    2006-05-01

    The JLab FEL is routinely operated with sub-picosecond bunches. The short bunch length is important for high gain of the FEL. Coherent transition radiation has been used for the bunch length measurements for many years [1]. This diagnostic can be used only in the pulsed beam mode. It is our goal to run the FEL with CW beam and a 74.85 MHz micropulse repetition rate, which, with the 135 pC nominal bunch charge corresponds to the beam average current of 10 mA. Hence it is very desirable to have the possibility of making bunch length measurements when running CW beam with any micropulse frequency. We use a Fourier transform infrared (FTIR) interferometer, which is essentially a Michelson interferometer, to measure the spectrum of the coherent synchrotron radiation generated in the last dipole of the magnetic bunch compressor upstream of the FEL wiggler. This noninvasive diagnostic provides bunch length measurements for CW beam operation at any micropulse frequency. We also compare the measurements made with the help of the FTIR interferometer with data obtained using the Martin-Puplett interferometer [1]. Results of the two diagnostics agree within 15 %. Here we present a description of the experimental setup, data evaluation procedure and results of the beam measurements.

  15. Two-gigawatt burst-mode operation of the intense microwave prototype (IMP) free-electron laser (FEL) for the microwave tokamak experiment (MTX)

    SciTech Connect

    Felker, B.; Allen, S.; Bell, H.

    1993-10-06

    The MTX explored the plasma heating effects of 140 GHz microwaves from both Gyrotrons and from the IMP FEL wiggler. The Gyrotron was long pulse length (0.5 seconds maximum) and the FEL produced short-pulse length, high-peak power, single and burst modes of 140 GHZ microwaves. Full-power operations of the IMP FEL wiggler were commenced in April of 1992 and continued into October of 1992. The Experimental Test Accelerator H (ETA-II) provided a 50-nanosecond, 6-MeV, 2--3 kAmp electron beam that was introduced co-linear into the IMP FEL with a 140 GHz Gyrotron master oscillator (MO). The FEL was able to amplify the MO signal from approximately 7 kW to peaks consistently in the range of 1--2 GW. This microwave pulse was transmitted into the MTX and allowed the exploration of the linear and non-linear effects of short pulse, intense power in the MTX plasma. Single pulses were used to explore and gain operating experience in the parameter space of the IMP FEL, and finally evaluate transmission and absorption in the MTX. Single-pulse operations were repeatable. After the MTX was shut down burst-mode operations were successful at 2 kHz. This paper will describe the IMP FEL, Microwave Transmission System to MTX, the diagnostics used for calorimetric measurements, and the operations of the entire Microwave system. A discussion of correlated and uncorrelated errors that affect FEL performance will be made Linear and non-linear absorption data of the microwaves in the MTX plasma will be presented.

  16. High gain amplifiers: Power oscillations and harmonic generation

    SciTech Connect

    Dattoli, G.; Ottaviani, P. L.; Pagnutti, S.

    2007-08-01

    We discuss the power oscillations in saturated high gain free electron laser amplifiers and show that the relevant period can be written in terms of the gain length. We use simple arguments following from the solution of the pendulum equation in terms of Jacobi elliptic functions. Nontrivial effects due to nonlinear harmonic generation and inhomogeneous broadening are discussed too, as well as the saturated dynamics of short pulses.

  17. ZnO nanowire UV photodetectors with high internal gain.

    PubMed

    Soci, C; Zhang, A; Xiang, B; Dayeh, S A; Aplin, D P R; Park, J; Bao, X Y; Lo, Y H; Wang, D

    2007-04-01

    ZnO nanowire (NW) visible-blind UV photodetectors with internal photoconductive gain as high as G approximately 108 have been fabricated and characterized. The photoconduction mechanism in these devices has been elucidated by means of time-resolved measurements spanning a wide temporal domain, from 10-9 to 102 s, revealing the coexistence of fast (tau approximately 20 ns) and slow (tau approximately 10 s) components of the carrier relaxation dynamics. The extremely high photoconductive gain is attributed to the presence of oxygen-related hole-trap states at the NW surface, which prevents charge-carrier recombination and prolongs the photocarrier lifetime, as evidenced by the sensitivity of the photocurrrent to ambient conditions. Surprisingly, this mechanism appears to be effective even at the shortest time scale investigated of t < 1 ns. Despite the slow relaxation time, the extremely high internal gain of ZnO NW photodetectors results in gain-bandwidth products (GB) higher than approximately 10 GHz. The high gain and low power consumption of NW photodetectors promise a new generation of phototransistors for applications such as sensing, imaging, and intrachip optical interconnects.

  18. Characteristics of current filamentation in high gain photoconductive semiconductor switching

    SciTech Connect

    Zutavern, F J; Loubriel, G M; O'Malley, M W; Helgeson, W D; McLaughlin, D L; Denison, G J

    1992-01-01

    Characteristics of current filamentation are reported for high gain photoconductive semiconductor switches (PCSS). Infrared photoluminescence is used to monitor carrier recombination radiation during fast initiation of high gain switching in large (1.5 cm gap) lateral GaAs PCSS. Spatial modulation of the optical trigger, a 200--300 ps pulse width laser, is examined. Effects on the location and number of current filaments, rise time, and delay to high gain switching, minimum trigger energy, and degradation of switch contacts are presented. Implications of these measurements for the theoretical understanding and practical development of these switches are discussed. Efforts to increase current density and reduce switch size and optical trigger energy requirements are described. Results from contact development and device lifetime testing are presented and the impact of these results on practical device applications is discussed.

  19. FEL-accelerator related diagnostics

    SciTech Connect

    Kevin Jordan; David Douglas; Stephen V. Benson; Pavel Evtuschenko

    2007-08-02

    Free Electron Lasers (FEL) present a unique set of beam parameters to the diagnostics suite. The FEL requires characterization of the full six dimensional phase space of the electron beam at the wiggler and accurate alignment of the electron beam to the optical mode of the laser. In addition to the FEL requirements on the diagnostics suite, the Jefferson Lab FEL is operated as an Energy Recovered Linac (ERL) which imposes additional requirements on the diagnostics. The ERL aspect of the Jefferson Lab FEL requires that diagnostics operate over a unique dynamic range and operate with simultaneous transport of the accelerated and energy recovered beams. This talk will present how these challenges are addressed at the Jefferson Lab FEL.

  20. Caustic Singularities Of High-Gain, Dual-Shaped Reflectors

    NASA Technical Reports Server (NTRS)

    Galindo, Victor; Veruttipong, Thavath W.; Imbriale, William A.; Rengarajan, Sambiam

    1991-01-01

    Report presents study of some sources of error in analysis, by geometric theory of diffraction (GTD), of performance of high-gain, dual-shaped antenna reflector. Study probes into underlying analytic causes of singularity, with view toward devising and testing practical methods to avoid problems caused by singularity. Hybrid physical optics (PO) approach used to study near-field spillover or noise-temperature characteristics of high-gain relector antenna efficiently and accurately. Report illustrates this approach and underlying principles by presenting numerical results, for both offset and symmetrical reflector systems, computed by GTD, PO, and PO/GO methods.

  1. Tapered undulators for SASE FELs

    NASA Astrophysics Data System (ADS)

    Fawley, William M.; Huang, Zhirong; Kim, Kwang-Je; Vinokurov, Nikolai A.

    2002-05-01

    We discuss the use of tapered undulators to enhance the performance of free-electron lasers (FELs) based upon self-amplified spontaneous emission, where the radiation tends to have a relatively broad bandwidth and limited temporal coherence. Using the polychromatic FEL simulation code GINGER, we numerically demonstrate the effectiveness of tapered undulators for parameters corresponding to the Argonne low-energy undulator test line FEL and the proposed linac coherent light source.

  2. Tapered undulator for SASE FELs

    SciTech Connect

    Fawley, William M.; Huang, Zhirong; Kim, Kwang-Je; Vinokurov, Nikolai A.

    2001-09-14

    We discuss the use of tapered undulators to enhance the performance of free-electron lasers (FELs) based upon self-amplified spontaneous emission (SASE), where the radiation tends to have a relatively broad bandwidth, limited temporal phase coherence, and large amplitude fluctuations. Using the polychromatic FEL simulation code GINGER, we numerically demonstrate the effectiveness of a tapered undulator for parameters corresponding to the existing Argonne low-energy undulator test line (LEUTL) FEL. We also study possible tapering options for proposed x-ray FELs such as the Linac Coherent Light Source (LCLS).

  3. Power beaming with FEL lasers

    NASA Astrophysics Data System (ADS)

    Lampel, Michael C.; Curtin, Mark S.; Burke, Robert J.; Cover, Ralph A.; Rakowsky, George; Bennett, Glenn T.

    1993-06-01

    FEL power beaming has broad application to space operations. The Rocketdyne Division of Rockwell International Corporation has examined the commercial applications of beamed power from Earth to space using the Radio Frequency LINAC Free Electron Laser (RF FEL) and has determined that there is a substantial addressable market. Rocketdyne's experience in developing and demonstrating FEL technologies, optics and atmospheric compensation and advanced power and power distribution systems ideally positions the Division to conduct the initial demonstration to prove the feasibility of using a FEL to beam power to space platforms.

  4. CEBAF UV/IR FEL subsystem testing and validation program

    SciTech Connect

    G.R. Neil; S.V. Benson; H.F. Dylla; H. Liu

    1995-01-01

    A design has been established for IR and UV FELs within the Laser Processing Consortium's (LPC) program for development and application of high-average-power FELs for materials processing. Hardware prototyping and testing for the IR portion of the system are underway. The driver portion has been designed based on the superconducting radio-frequency (SRF) technology now seeing large-scale application in the commissioning of CEBAF, the Continuous Electron Beam Accelerator Facility, where LPC activities are centered. As of July 1994, measurements of beam performance confirm SRF's benefits in beam quality and stability, which are applicable to high-average-power FELs.

  5. On Point Designs for High Gain Fast Ignition

    SciTech Connect

    Key, M; Akli, K; Beg, F; Betti, R; Clark, D S; Chen, S N; Freeman, R R; Hansen, S; Hatchett, S P; Hey, D; King, J A; Kemp, A J; Lasinski, B F; Langdon, B; Ma, T; MacKinnon, A J; Meyerhofer, D; Patel, P K; Pasley, J; Phillips, T; Stephens, R B; Stoeckl, C; Foord, M; Tabak, M; Theobald, W; Storm, M; Town, R J; Wilks, S C; VanWoerkom, L; Wei, M S; Weber, R; Zhang, B

    2007-09-27

    Fast ignition research has reached the stage where point designs are becoming crucial to the identification of key issues and the development of projects to demonstrate high gain fast ignition. The status of point designs for cone coupled electron fast ignition and some of the issues they highlight are discussed.

  6. Radiation Response of Emerging High Gain, Low Noise Detectors

    NASA Technical Reports Server (NTRS)

    Becker, Heidi N.; Farr, William H; Zhu, David Q.

    2007-01-01

    Data illustrating the radiation response of emerging high gain, low noise detectors are presented. Ionizing dose testing of silicon internal discrete avalanche photodiodes, and 51-MeV proton testing of InGaAs/InAlAs avalanche photodiodes operated in Geiger mode are discussed.

  7. Scientific Applications of a Hard-X-Ray FEL

    NASA Astrophysics Data System (ADS)

    Arthur, John

    1998-04-01

    Free electron lasers are now being designed which will operate at wavelengths down to about 1 angstrom. Due to the physics of the high-gain, single pass FEL process that these sources will exploit, the radiation produced will have unique properties. In particular: -- The FEL peak intensity and peak brightness will be many orders of magnitude higher than can be produced by any other source. -- The pulse length will be less than 1 picosecond, orders of magnitude shorter than can be achieved with any other bright source such as a synchrotron. -- The FEL radiation will have full transverse coherence and a degeneracy parameter (photons/coherence volume) equal to 10^9 or more. No other source can produce hard x-radiation with a degeneracy parameter significantly greater than 1. These properties offer the chance to study chemical, biological, and condensed matter dynamical processes with sub-picosecond time resolution and angstrom spatial resolution. X-ray crystallography could be used to determine the structures of very-short-lived states of photosynthetic reaction centers. X-ray photon correlation spectroscopy could be used to study fluctuations in materials such as gels and glass-forming liquids, on a time scale complementary to that probed by neutron spin echo and dynamic light scattering techniques, but with better spatial resolution. Snap-shot x-ray scattering experiments could be performed on samples in extreme conditions such as ultra-high pulsed magnetic fields. Furthermore, the high peak power of the FEL radiation could be used to create precisely-controlled chemical and structural modifications inside samples. There is also the possibility that nonlinear x-ray interactions could be used to give increased resolution for spectroscopic studies, to greatly expand the parameter space for atomic physics studies, and to permit new fundamental tests of quantum mechanics. For example, the study of nonlinear photon interactions with core atomic electrons would test and

  8. Silicon photodiodes with high photoconductive gain at room temperature.

    PubMed

    Li, X; Carey, J E; Sickler, J W; Pralle, M U; Palsule, C; Vineis, C J

    2012-02-27

    Silicon photodiodes with high photoconductive gain are demonstrated. The photodiodes are fabricated in a complementary metal-oxide-semiconductor (CMOS)-compatible process. The typical room temperature responsivity at 940 nm is >20 A/W and the dark current density is ≈ 100 nA/cm2 at 5 V reverse bias, yielding a detectivity of ≈ 10(14) Jones. These photodiodes are good candidates for applications that require high detection sensitivity and low bias operation.

  9. Design and simulations of CAEP THz FEL resonator

    NASA Astrophysics Data System (ADS)

    Dou, Yuhuan; Shu, Xiaojian; Deng, Derong; Yang, Xingfan; Li, Ming

    2015-02-01

    A high power China Academy of Engineering Physics(CAEP) THz free electron laser (FEL) is designed and optimized in a radiation frequency range of 1~3 THz and average output power of about 10 W. The main work focuses on the optimization of different schemes through physical analysis. The wiggler peak field strength and electron beam energy have been selected with eleven frequencies ranging from 1 THz to 3 THz. It is found that the values of the gain and output power of the cavity are largest at 2.6 THz. So we can test the facility at this frequency. While the value of the output power is less than the design goal at the lower frequency region of about 1.0 THz due to the serious slippage between the electron bunch and radiation pulse. To increase the output power at the lower frequency region, the scheme of elliptical hole-coupling optical resonator is proposed to solve this problem. The simulation results show that the elliptical hole-coupling output is effective and applicable for the THz FEL and the output power can be increased by more than 30%.

  10. Short wavelength FELS

    SciTech Connect

    Sheffield, R.L.

    1991-01-01

    The generation of coherent ultraviolet and shorter wavelength light is presently limited to synchrotron sources. The recent progress in the development of brighter electron beams enables the use of much lower energy electron rf linacs to reach short-wavelengths than previously considered possible. This paper will summarize the present results obtained with synchrotron sources, review proposed short- wavelength FEL designs and then present a new design which is capable of over an order of magnitude higher power to the extreme ultraviolet. 17 refs., 10 figs.

  11. Harmonic cascade FEL designs for LUX

    SciTech Connect

    Penn, G.; Reinsch, M.; Wurtele, J.; Corlett, J.N.; Fawley, W.M.; Zholents, A.; Wan, W.

    2004-07-16

    LUX is a design concept for an ultrafast X-ray science facility, based on an electron beam accelerated to GeV energies in are circulating linac. Included in the design are short duration (200 fs or shorter FWHM) light sources using multiple stages of higher harmonic generation, seeded by a 200-250 nm laser of similar duration. This laser modulates the energy of a group of electrons within the electron bunch; this section of the electron bunch then produces radiation at a higher harmonic after entering a second, differently tuned undulator. Repeated stages in a cascade yield increasing photon energies up to 1 keV. Most of the undulators in the cascade operate in the low-gain FEL regime. Harmonic cascades have been designed for each pass of the recirculating linac up to a final electron beam energy of 3.1 GeV. For a given cascade, the photon energy can be selected over a wide range by varying the seed laser frequency and the field strength in the undulators. We present simulation results using the codes GENESIS and GINGER, as well as the results of analytical models which predict FEL performance. We discuss lattice considerations pertinent for harmonic cascade FELs, as well as sensitivity studies and requirements on the electron beam.

  12. High-Frequency Power Gain in the Mammalian Cochlea

    NASA Astrophysics Data System (ADS)

    Maoiléidigh, Dáibhid Ó.; Hudspeth, A. J.

    2011-11-01

    Amplification in the mammalian inner ear is thought to result from a nonlinear active process known as the cochlear amplifier. Although there is much evidence that outer hair cells (OHCs) play a central role in the cochlear amplifier, the mechanism of amplification remains uncertain. In non-mammalian ears hair bundles can perform mechanical work and account for the active process in vitro, yet in the mammalian cochlea membrane-based electromotility is required for amplification in vivo. A key issue is how OHCs conduct mechanical power amplification at high frequencies. We present a physical model of a segment of the mammalian cochlea that can amplify the power of external signals. In this representation both electromotility and active hair-bundle motility are required for mechanical power gain at high frequencies. We demonstrate how the endocochlear potential, the OHC resting potential, Ca2+ gradients, and ATP-fueled myosin motors serve as the energy sources underlying mechanical power gain in the cochlear amplifier.

  13. Cathode driven high gain crossed-field amplifier

    NASA Astrophysics Data System (ADS)

    1983-07-01

    The objective of this three-phase program is to achieve the design of a cathode driven high gain re-entrant Crossed Field Amplifier capable of meeting the parameters of Raytheon Company specification No. 968838 dated 10 May 1978. The effort includes the fabrication and test of three developmental and four final configuration tubes. One final configuration tube will be life tested and two will be delivered to the Navy. The tasks discussed during this report period relate to the cold tests performed on various subassemblies of model no. 4 and on the sealed-in model no. 4 of the S-band high gain cathode driven crossed field amplifier. Based on the performance of model no. 3 certain remedial measures have been implemented in model no. 4 that have resulted in the elimination of key resonances within the tube and an improvement in the isolation between the cathode and anode circuits.

  14. Remote Robot Control With High Force-Feedback Gain

    NASA Technical Reports Server (NTRS)

    Kim, Won S.

    1993-01-01

    Improved scheme for force-reflecting hand control of remote robotic manipulator provides unprecedently high force-reflection gain, even when dissimilar master and slave arms used. Three feedback loops contained in remote robot control system exerting position-error-based force feedback and compliance control. Outputs of force and torque sensors on robot not used directly for force reflection, but for compliance control, while errors in position used to generate reflected forces.

  15. Design issues for a laboratory high gain fusion facility

    SciTech Connect

    Hogan, W.J.

    1987-11-02

    In an inertial fusion laboratory high gain facility, experiments will be carried out with up to 1000 MJ of thermonuclear yield. The experiment area of such a facility will include many systems and structures that will have to operate successfully in the difficult environment created by the sudden large energy release. This paper estimates many of the nuclear effects that will occur, discusses the implied design issues and suggests possible solutions so that a useful experimental facility can be built. 4 figs.

  16. High gain preamplifier based on optical parametric amplification

    DOEpatents

    Jovanovic, Igor; Bonner, Randal A.

    2004-08-10

    A high-gain preamplifier based on optical parametric amplification. A first nonlinear crystal is operatively connected to a second nonlinear crystal. A first beam relay telescope is operatively connected to a second beam relay telescope, to the first nonlinear crystal, and to the second nonlinear crystal. A first harmonic beamsplitter is operatively connected to a second harmonic beamsplitter, to the first nonlinear crystal, to the second nonlinear crystal, to the first beam relay telescope, and to the second beam relay telescope.

  17. Intrabeam Scattering in an X-ray FEL Driver

    SciTech Connect

    Huang, Z.

    2005-01-31

    Intrabeam scattering (IBS) of a high-brightness electron beam in an x-ray free-electron laser (FEL) driver is studied. Such a beam is much ''colder'' in the longitudinal direction than in transverse ones. As a result, the beam energy spread is increased with negligible change of transverse emittances. We estimate the IBS induced energy spread in the Linac Coherent Light Source and evaluate its effects on FEL and CSR microbunching instabilities.

  18. High-gain phototransistors on high-resistivity silicon substrate

    NASA Astrophysics Data System (ADS)

    Batignani, G.; Bisogni, M. G.; Boscardin, M.; Bosisio, L.; Dalla Betta, G. F.; Del Guerra, A.; Dittongo, S.; Forti, F.; Giorgi, M.; Han, D. J.; Linsalata, S.; Marchiori, G.; Piemonte, C.; Rachevskaia, I.; Ronchin, S.

    2004-02-01

    NPN phototransistors have been fabricated on high-purity silicon substrate. The devices have been produced by ITC-IRST in the framework of a National Research Project funded by the Italian Education, University and Research Ministry (MIUR). The phototransistor emitter is composed of a phosphorus n + implant, the base is a diffused high-energy boron implant, and the collector is the 300 μm thick silicon bulk. Several devices have been investigated. Results with 22 keV X-ray from a 109Cd-radioactive source and visible light irradiation are presented.

  19. Numerical simulations of x-ray generation in miltisectional FELs

    SciTech Connect

    Pitatelev, M.M.

    1995-12-31

    The process of x-ray generation in milticomponent FELs with alternate undulator and dispersion sections is investigate. The coptuter simulation was fulfilled for the ultrarelativistic electron beams. It was shown that the use of much number of dispersion sections allows to increase the gain considerably and to use more short magnetic systems.

  20. The Stanford Picosecond FEL Center

    SciTech Connect

    Schwettman, H.A.; Smith, T.I.; Swent, R.L.

    1995-12-31

    In the past two years, FELs have decisively passed the threshold of scientific productivity. There are now six FEL facilities in the United States and Europe, each delivering more than 2000 hours of FEL beam time per year. at the present time approximately 100 papers are published each in referred journals describing optics experiments performed with FELs. Despite the recent success there are important challenges the FEL facilities must address. At Stanford these challenges include: (1) Providing sufficient experimental time at reasonable cost: At Stanford we provide 2000 hours of experimental time per year at a cost of approximately $500 per hour: We are now studying options for markedly increasing experimental time and decreasing cost per hour. (2) Competing effectively with conventional lasers in the mid-IR: Despite the NRC report we do not intend to concede the mid-IR to conventional lasers. FELs are capable of providing optical beams of exceptional quality and stability, and they can also be remarkable flexible devices. Improvements in our superconducting linac driver and our optical beam conditioning systems will dramatically enhance our FEL experimental capabilities. (3) making the transition from first generation to second generation experiments: Important pump-probe and photon echo experiments have been performed at Stanford and others are feasible using present capabilities. None-the-less we are now investing substantial experimental time to improving signal-to-noise and developing other optical cababilities. (4) Extending operation to the far-infrared where the FEL is unique inits capabilities: {open_quotes}FIREFLY{close_quotes} will extend our FEL capabilities to 100 microns. We are now seeking funds for optical instrumentation. (5) Creating and maintaining a good environment for graduate students.

  1. A high gain antenna system for airborne satellite communication applications

    NASA Technical Reports Server (NTRS)

    Maritan, M.; Borgford, M.

    1990-01-01

    A high gain antenna for commercial aviation satellites communication is discussed. Electromagnetic and practical design considerations as well as candidate systems implementation are presented. An evaluation of these implementation schemes is given, resulting in the selection of a simple top mounted aerodynamic phased array antenna with a remotely located beam steering unit. This concept has been developed into a popular product known as the Canadian Marconi Company CMA-2100. A description of the technical details is followed by a summary of results from the first production antennas.

  2. Dielectric Wakefield Accelerator to drive the future FEL Light Source.

    SciTech Connect

    Jing, C.; Power, J.; Zholents, A. )

    2011-04-20

    X-ray free-electron lasers (FELs) are expensive instruments and a large part of the cost of the entire facility is driven by the accelerator. Using a high-energy gain dielectric wake-field accelerator (DWA) instead of the conventional accelerator may provide a significant cost saving and reduction of the facility size. In this article, we investigate using a collinear dielectric wakefield accelerator to provide a high repetition rate, high current, high energy beam to drive a future FEL x-ray light source. As an initial case study, a {approx}100 MV/m loaded gradient, 850 GHz quartz dielectric based 2-stage, wakefield accelerator is proposed to generate a main electron beam of 8 GeV, 50 pC/bunch, {approx}1.2 kA of peak current, 10 x 10 kHz (10 beamlines) in just 100 meters with the fill factor and beam loading considered. This scheme provides 10 parallel main beams with one 100 kHz drive beam. A drive-to-main beam efficiency {approx}38.5% can be achieved with an advanced transformer ratio enhancement technique. rf power dissipation in the structure is only 5 W/cm{sup 2} in the high repetition rate, high gradient operation mode, which is in the range of advanced water cooling capability. Details of study presented in the article include the overall layout, the transform ratio enhancement scheme used to increase the drive to main beam efficiency, main wakefield linac design, cooling of the structure, etc.

  3. New RF gun for Novosibirsk ERL FEL

    NASA Astrophysics Data System (ADS)

    Volkov, Vladimir N.; Arbusov, Vladimir S.; Kenzhebulatov, Ermek K.; Kolobanov, Evgeniy I.; Kondakov, Aleksey A.; Kozyrev, Evgeniy V.; Krutikhin, Sergey A.; Kurkin, Grigoriy Ya.; Kuptsov, Igor V.; Motygin, Sergey V.; Ovchar, Vladimir K.; Petrov, Victor M.; Pilan, Andrey M.; Rotov, Evgeniy A.; Sedlyarov, Igor K.; Serednykov, Stanislav S.; Shevchenko, Oleg A.; Scheglov, Mikhail A.; Tribendis, Aleksey G.; Vinokurov, Nikolay A.

    The new radiofrequency (RF) gun making an intensive high-quality electron beam for injecting in Novosibirsk microtron recuperator (ERL) and driving Free Electron Laser (FEL) is made in Budker INP SB RAS. Bench tests of RF gun demonstrated good results in strict accordance with the calculations predicting average current of a bunch of 100 iA, energy of particles of 400 keV and normalized emittance less than 15 microns. The RF gun stand testing showed reliable work, unpretentious for vacuum conditions and stable in long-term operation. The additional injection beamline built-in to the existing system of the NovoFEL injector with the static gun is developed and designed.

  4. High-precision x-ray FEL pulse arrival time measurements at SACLA by a THz streak camera with Xe clusters.

    PubMed

    Juranić, P N; Stepanov, A; Ischebeck, R; Schlott, V; Pradervand, C; Patthey, L; Radović, M; Gorgisyan, I; Rivkin, L; Hauri, C P; Monoszlai, B; Ivanov, R; Peier, P; Liu, J; Togashi, T; Owada, S; Ogawa, K; Katayama, T; Yabashi, M; Abela, R

    2014-12-01

    The accurate measurement of the arrival time of a hard X-ray free electron laser (FEL) pulse with respect to a laser is of utmost importance for pump-probe experiments proposed or carried out at FEL facilities around the world. This manuscript presents the latest device to meet this challenge, a THz streak camera using Xe gas clusters, capable of pulse arrival time measurements with an estimated accuracy of several femtoseconds. An experiment performed at SACLA demonstrates the performance of the device at photon energies between 5 and 10 keV with variable photon beam parameters.

  5. High gain GaAs photoconductive semiconductor switches: Switch longevity

    SciTech Connect

    Loubriel, G.M.; Zutavern, F.J.; Mar, A.

    1998-07-01

    Optically activated, high gain GaAs switches are being tested for many different pulsed power applications that require long lifetime (longevity). The switches have p and n contact metallization (with intentional or unintentional dopants) configured in such a way as to produce p-i-n or n-i-n switches. The longevity of the switches is determined by circuit parameters and by the ability of the contacts to resist erosion. This paper will describe how the switches performed in test-beds designed to measure switch longevity. The best longevity was achieved with switches made with diffused contacts, achieving over 50 million pulses at 10 A and over 2 million pulses at 80 A.

  6. Staged energy cascades for the LUX FEL

    SciTech Connect

    Penn, G.

    2004-07-27

    Designs and simulation studies for harmonic cascades, consisting of multiple stages of harmonic generation in free electron lasers (FELs), are presented as part of the LUX R&D project to design ultrafast, high photon energy light sources for basic science. Beam energies of 1.1, 2.1, and 3.1 GeV, corresponding to each pass through a recirculating linac, have independent designs for the harmonic cascade. Simulations were performed using the GENESIS FEL code, to obtain predictions for the performance of these cascades over a wide range of photon energies in terms of the peak power and laser profile. The output laser beam consists of photon energies of up to 1 keV, with durations of the order of 200 fs or shorter. The contribution of shot noise to the laser output is minimal, however fluctuations in the laser and electron beam properties can lead to variations in the FEL output. The sensitivity of the cascade to electron beam properties and misalignments is studied, taking advantage of the fact that GENESIS is a fully 3-dimensional code.

  7. FEL for the polymer processing industries

    NASA Astrophysics Data System (ADS)

    Kelley, Michael J.

    1997-05-01

    Polymers are everywhere in modern life because of their unique combination of end-use functionalities, ease of processing, recycling potential and modest cost. The physical and economic scope of the infrastructure committed to present polymers makes the introduction of entirely new chemistry unlikely. Rather, the breadth of commercial offerings more likely to shrink in the face of the widening mandate for recycling, especially of packaging. Improved performance and new functionality must therefore come by routes such as surface modification. However they must come with little environmental impact and at painfully low cost. Processing with strongly absorbed light offers unique advantages. The journal and patent literatures disclose a number of examples of benefits that can be achieved, principally by use of excimer lasers or special UV lamps. Examples of commercialization are few, however, because of the unit cost and maximum scale of existing light sources. A FEL, however, offers unique advantages: tunability to the optimum wavelength, potential for scale up to high average power, and a path to attractively low unit cost of light. A business analysis of prospective applications defines the technical and economic requirements a FEL for polymer surface processing must meet. These are compared to FEL technology as it now stands and as it is envisioned.

  8. Generation of doublet spectral lines at self-seeded X-ray FELs

    NASA Astrophysics Data System (ADS)

    Geloni, Gianluca; Kocharyan, Vitali; Saldin, Evgeni

    2011-06-01

    Self-seeding schemes, consisting of two undulators with a monochromator in between, aim to reduce the bandwidth of SASE X-ray FELs. We recently proposed to use a new method of monochromatization exploiting a single crystal in Bragg transmission geometry for self-seeding in the hard X-ray range. The obvious and technically possible extension is to use such kind of monochromator setup with two (or more) crystals arranged in a series to spectrally filter the SASE radiation at two (or more) closely-spaced wavelengths within the FEL gain band. This allows for the production of doublet (or multiplet) spectral lines. Exploitations of such mode of operation involve any situation where there is a large change in cross-section over a narrow wavelength range. In this paper we consider the simultaneous operation of the LCLS hard X-ray FEL at two closely spaced wavelengths. We present simulation results for the LCLS baseline, and we show that this method can produce fully coherent radiation shared between two longitudinal modes. Mode spacing can be easily tuned within the FEL gain band, i.e. within 10 eV. An interesting aspect of the proposed scheme is a way of modulating the electron bunch at optical frequencies without a seed quantum laser. In fact, the XFEL output intensity contains an oscillating "mode-beat" component whose frequency is related to the frequency difference between the pair of longitudinal modes considered. Thus, at saturation one obtains FEL-induced modulations of energy loss and energy spread in the electron bunch at optical frequency. These modulations can be converted into density modulation at the same optical frequency with the help of a weak chicane installed behind the baseline undulator. Powerful coherent radiation can then be generated with the help of an optical transition radiation (OTR) station, which have important applications. In this paper we briefly consider how the doublet structure of the XFEL generation spectra can be monitored by an

  9. High-Gain Avalanche Rushing amorphous Photoconductor (HARP) detector

    NASA Astrophysics Data System (ADS)

    Tanioka, K.

    2009-09-01

    We have been studying a very sensitive image sensor since the early 1980s. In 1985, the author found for the first time that an experimental pickup tube with an amorphous selenium photoconductive target exhibits high sensitivity with excellent picture quality because of a continuous and stable avalanche multiplication phenomenon. We named the pickup tube with an amorphous photoconductive layer operating in the avalanche-mode "HARP": High-gain Avalanche Rushing amorphous Photoconductor. A color camera equipped with the HARP pickup tubes has a maximum sensitivity of 11 lx at F8. This means that the HARP camera is about 100 times as sensitive as that of CCD camera for broadcasting. This ultrahigh-sensitivity HARP pickup tube is a powerful tool for reporting breaking news at night and other low-light conditions, the production of scientific programs, and numerous other applications, including medical diagnoses, biotech research, and nighttime surveillance. In addition, since the HARP target can convert X-rays into electrons directly, it should be possible to exploit this capability to produce X-ray imaging devices with unparalleled levels of resolution and sensitivity.

  10. The ``TEU-FEL'' project

    NASA Astrophysics Data System (ADS)

    Ernst, G. J.; Witteman, W. J.; Verschuur, J. W. J.; Mols, R. F. X. A. M.; van Oerle, B. M.; Bouman, A. F. M.; Botman, J. I. M.; Hagedoorn, H. L.; Delhez, J. L.; Kleeven, W. J. G. M.

    1995-01-01

    The free-electron laser of the TEU-FEL project will be based on a 6 MeV photo-cathode linac as injector, a 25 MeV race-track microtron as main accelerator and a hybrid, 25 mm period undulator. The project will be carried out in two phases. In phase one only the 6 MeV linac will be used, The FEL will then produce tunable radiation around 200 μm. In phase two the linac will be used as an injector for the microtron. The FEL will then produce tunable radiation around 10 μm. Technical information will be presented on the different subsystems.

  11. High-gain nonlinear observer for simple genetic regulation process

    NASA Astrophysics Data System (ADS)

    Torres, L. A.; Ibarra-Junquera, V.; Escalante-Minakata, P.; Rosu, H. C.

    2007-07-01

    High-gain nonlinear observers occur in the nonlinear automatic control theory and are in standard usage in chemical engineering processes. We apply such a type of analysis in the context of a very simple one-gene regulation circuit. In general, an observer combines an analytical differential-equation-based model with partial measurement of the system in order to estimate the non-measured state variables. We use one of the simplest observers, that of Gauthier et al., which is a copy of the original system plus a correction term which is easy to calculate. For the illustration of this procedure, we employ a biological model, recently adapted from Goodwin's old book by De Jong, in which one plays with the dynamics of the concentrations of the messenger RNA coding for a given protein, the protein itself, and a single metabolite. Using the observer instead of the metabolite, it is possible to rebuild the non-measured concentrations of the mRNA and the protein.

  12. High gain pre-amplifier laser beam quality evaluating system

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Yu, Jin; Zhao, Tianzhuo; Zhang, Xue; Fan, Zhongwei

    2011-06-01

    Designed a system for the high gain laser pre-amplifier to evaluate the image quality. The system uses 4f imaging principle and Kepler type telescope was choiced, it has two advantages: avert optical distortion and eliminate aberration in the measurement system. Combined with the location of the lens inside of pre-amplifier such as the spatial filter , the near field imaging structure was designed. The structure can be reduced to 11.9 times the beam image, and clearly passed the image to the CCD target surface. The location of first positive lens focus is the location of far field image. In this article, one laser pre-amplifier was measured. The average measured near field modulation M=1.34, the average measured far field diffraction limit is 2.94. Experiments show that the stability of measuring system is less than+/-5%, it can meet the measurement requirements of ICF laser pre-amplifier parameters. Use this system we can discover the problem during the design and installation. There is great meaning for develop of laser pre-amplifier in ICF for further.

  13. Fast ignition integrated experiments and high-gain point design

    SciTech Connect

    Shiraga, H.; Nagatomo, H.; Theobald, W.; Solodov, A. A.; Tabak, M.

    2014-04-17

    Here, integrated fast ignition experiments were performed at ILE, Osaka, and LLE, Rochester, in which a nanosecond driver laser implodes a deuterated plastic shell in front of the tip of a hollow metal cone and an intense ultrashort-pulse laser is injected through the cone to heat the compressed plasma. Based on the initial successful results of fast electron heating of cone-in-shell targets, large-energy short-pulse laser beam lines were constructed and became operational: OMEGA-EP at Rochester and LFEX at Osaka. Neutron enhancement due to heating with a ~kJ short-pulse laser has been demonstrated in the integrated experiments at Osaka and Rochester. The neutron yields are being analyzed by comparing the experimental results with simulations. Details of the fast electron beam transport and the electron energy deposition in the imploded fuel plasma are complicated and further studies are imperative. The hydrodynamics of the implosion was studied including the interaction of the imploded core plasma with the cone tip. Theory and simulation studies are presented on the hydrodynamics of a high-gain target for a fast ignition point design.

  14. Electron beam effects in a UV FEL

    SciTech Connect

    Wong, R.K.; Blau, J.; Colson, W.B.

    1995-12-31

    At the Continuous Electron Beam Accelerator Facility (CEBAF), a free electron laser (FEL) is designed to produce ultraviolet (UV) light. A four-dimensional FEL simulation studies the effects of betatron oscillations, external focusing, and longitudinal pulse compression of the electron beam on the FEL performance.

  15. Coherent harmonic production using a two-section undulator FEL

    SciTech Connect

    Jaroszynski, D.A.; Prazeres, R.; Glotin, F.

    1995-12-31

    We present measurements and a theoretical analysis of a new method of generating harmonic radiation in a free-electron laser oscillator with a two section undulator in a single optical cavity. To produce coherent harmonic radiation the undulator is arranged so that the downstream undulator section resonance frequency matches a harmonic of the upstream undulator. Both the fundamental and the harmonic optical fields evolve in the same optical cavity and are coupled out with different extraction fractions using a hole in one of the cavity mirrors. We present measurements that show that the optical power at the second and third harmonic can be enhanced by more than an order of magnitude in this fundamental/harmonic configuration. We compare the production of harmonic radiation of a two sectioned fundamental/harmonic undulator with that produced from a FEL operating at its highest efficiency with a step-tapered undulator, where the bunching at the end of the first section is very large. We examine, the dependence of the harmonic power on the intracavity power by adjusting the optical cavity desynchronism, {delta}L. We also examine the evolution of the fundamental and harmonic powers as a function of cavity roundtrip number to evaluate the importance of the small signal gain at the harmonic. We compare our measurements with predictions of a multi-electron numerical model that follows the evolution of fundamental and harmonic power to saturation. This fundamental/harmonic mode, of operation of the FEL may have useful applications in the production of coherent X-ray and VUV radiation, a spectral range where high reflectivity optical cavity mirrors are difficult or impossible to manufacture.

  16. Calibration status and plans for the charge integrating JUNGFRAU pixel detector for SwissFEL

    NASA Astrophysics Data System (ADS)

    Redford, S.; Bergamaschi, A.; Brückner, M.; Cartier, S.; Dinapoli, R.; Ekinci, Y.; Fröjdh, E.; Greiffenberg, D.; Mayilyan, D.; Mezza, D.; Mozzanica, A.; Rajeev, R.; Ramilli, M.; Ruder, C.; Schädler, L.; Schmitt, B.; Shi, X.; Thattil, D.; Tinti, G.; Zhang, J.

    2016-11-01

    JUNGFRAU (adJUstiNg Gain detector FoR the Aramis User station) is a two-dimensional hybrid pixel detector under development for photon science applications at free electron laser and synchrotron facilities. In particular, JUNGFRAU detectors will equip the Aramis end stations of SwissFEL, an X-ray free electron laser currently under construction at the Paul Scherrer Institut in Villigen, Switzerland. JUNGFRAU has been designed specifically to meet the challenges of photon science at XFELs, including high frame rates, single photon sensitivity in combination with a high dynamic range, vacuum compatibility and tilable modules. This has resulted in a charge integrating detector with three dynamically adjusting gains, a low noise of 55 ENC RMS, readout speeds in excess of 2 kHz, single photon sensitivity down to 2 keV (with a signal to noise ratio of 10) and a dynamic range covering four orders of magnitude at 12 keV. Each JUNGFRAU module consists of eight chips of 256 × 256 pixels, each 75 × 75 μm2 in size. The chips are arranged in 2 × 4 formation and bump-bonded to a single silicon sensor 320 μm thick, resulting in an active area of approximately 4 × 8 cm2 per module. Multi-module vacuum compatible systems comprising up to 16 Mpixels (32 modules) will be used at SwissFEL. The design of SwissFEL and the JUNGFRAU system for the Aramis end station A will be introduced, together with results from early prototypes and a characterisation using the first batch of final JUNGFRAU modules. Plans and first results of the pixel-by-pixel calibration will also be shown. The vacuum compatibility of the JUNGFRAU module is demonstrated for the first time.

  17. Seeded quantum FEL at 478 keV

    SciTech Connect

    Guenther, M. M.; Jentschel, M.; Thirolf, P. G.; Seggebrock, T.; Habs, D.

    2012-07-09

    We present for the first time the concept of a seeded {gamma} quantum Free-Electron-Laser (QFEL) at 478 keV, which has very different properties compared to a classical. The basic concept is to produce a highly brilliant {gamma} beam via SASE. To produce highly intense and coherent {gamma} beam, we intend to use a seeded FEL scheme. Important for the production of such a {gamma} beam are novel refractive {gamma}-lenses for focusing and an efficient monochromator, allowing to generate a very intense and coherent seed beam. The energy of the {gamma} beam is 478 keV, corresponding to a wavelength in the sub-Angstrom regime (1/38 A). To realize a coherent {gamma} beam at 478 keV, it is necessary to use a quantum FEL design. At such high radiation energies a classical description of the {gamma}-FEL becomes wrong.

  18. On use of time-dependent microwave fields to increase an FEL oscillator efficiency

    SciTech Connect

    Saldin, E.L.; Schneidmiller, E.A.; Yurkov, M.V.

    1995-12-31

    Various schemes of a high efficiency FEL oscillator with time-dependent accelerating (or decelerating) microwave field in interaction region are proposed. All the, schemes are based on standard accelerating structure and undulator technology. Feasibility of the proposed schemes is confirmed by results of numerical simulations. Realistic examples of FEL oscillators of infrared and visible wavelength ranges with efficiency about 20 % are presented.

  19. Design of a high linearity and high gain accuracy analog baseband circuit for DAB receiver

    NASA Astrophysics Data System (ADS)

    Li, Ma; Zhigong, Wang; Jian, Xu; Yiqiang, Wu; Junliang, Wang; Mi, Tian; Jianping, Chen

    2015-02-01

    An analog baseband circuit of high linearity and high gain accuracy for a digital audio broadcasting receiver is implemented in a 0.18-μm RFCMOS process. The circuit comprises a 3rd-order active-RC complex filter (CF) and a programmable gain amplifier (PGA). An automatic tuning circuit is also designed to tune the CF's pass band. Instead of the class-A fully differential operational amplifier (FDOPA) adopted in the conventional CF and PGA design, a class-AB FDOPA is specially employed in this circuit to achieve a higher linearity and gain accuracy for its large current swing capability with lower static current consumption. In the PGA circuit, a novel DC offset cancellation technique based on the MOS resistor is introduced to reduce the settling time significantly. A reformative switching network is proposed, which can eliminate the switch resistor's influence on the gain accuracy of the PGA. The measurement result shows the gain range of the circuit is 10-50 dB with a 1-dB step size, and the gain accuracy is less than ±0.3 dB. The OIP3 is 23.3 dBm at the gain of 10 dB. Simulation results show that the settling time is reduced from 100 to 1 ms. The image band rejection is about 40 dB. It only draws 4.5 mA current from a 1.8 V supply voltage.

  20. High gain multigap avalanche detectors for Cerenkov ring imaging

    SciTech Connect

    Gilmore, R.S.; Lavender, W.M.; Leith, D.W.G.S.; Williams, S.H.

    1980-10-01

    We report on a continuing study of multigap parallel plate avalanche chambers, primarily as photoelectron detectors for use with Cerenkov ring imaging counters. By suitable control of the fields in successive gaps and by introducing screens to reduce photon feedback to the cathode the gain many be increased considerably. We have obtained gains in excess of 6 x 10/sup 7/ for photoelectrons with a good pulse height spectrum and expect to increase this further. We discuss the use of resistive anodes to give avalanche positions in two dimensions by charge division.

  1. A large area, high gain Micro Gap Chamber

    NASA Astrophysics Data System (ADS)

    Angelini, F.; Bellazzini, R.; Bozzo, M.; Brez, A.; Massai, M. M.; Raffo, R.; Spandre, G.; Spezziga, M.; Toropin, A.

    1995-02-01

    A new approach to the construction of the Micro Gap Chamber is presented. A 10 × 10 cm 2 MGC has been built using a 8 μm thick polyimide layer as anode-cathode insulator. Studies on gas gain, uniformity of response along the strip and charging-up have been carried out in laboratory by using X-ray sources. Very large proportional gains, up to ˜ 210 4, have been reached working with gas mixtures based on Ne-DME. The simplified technology for the detector fabrication opens the possibility to produce very large area MGCs.

  2. Start-effect measurement of high FEL (Free-Electron Laser) electric fields in MTX (Microwave Tokamak Experiment) by laser-aided particle-probe spectroscopy

    NASA Astrophysics Data System (ADS)

    Oda, T.; Takiyama, K.; Odajima, K.; Ohasa, K.; Shiho, M.; Mizuno, K.; Foote, J. H.

    1990-05-01

    We are constructing a diagnostic system to measure the electric field (greater than 100 kV/cm) of a free-electron laser (FEL) beam when injected into the plasma of the Microwave Tokamak Experiment (MTX). The apparatus allows a crossed-beam measurement, with 2-cm spatial resolution in the plasma, involving the FEL beam (with 140-GHz, approximately 1-GW ECH pulses), a neutral-helium beam, and a dye-laser beam. After the laser beam pumps metastable helium atoms to higher excited states, their decay light is detected by an efficient optical system. Because of the Stark effect arising from the FEL electric field (E), a forbidden transition can be strongly induced. The intensity of emitted light resulting from the forbidden transition is proportional to E(exp 2). Because photon counting rates are estimated to be low, extra effort is made to minimize background and noise levels. It is possible that the lower E of an MTX gyrotron-produced ECH beam with its longer-duration pulses can also be measured using this method. Other applications of the apparatus described here may include measurements of ion temperature (using charge-exchange recombination), edge-density fluctuations, and core impurity concentrations.

  3. High-Stakes Testing Hasn't Brought Education Gains

    ERIC Educational Resources Information Center

    Dianis, Judith Browne; Jackson, John H.; Noguera, Pedro

    2015-01-01

    The only thing that more testing will tell us is what we already know: The schools that disadvantaged children attend are not being given the supports necessary to produce achievement gains. Students cannot be tested out of poverty, and while NCLB did take us a step forward by requiring schools to produce evidence that students were learning, it…

  4. Evolution of longitudinal modes in low voltage FEL

    SciTech Connect

    Stuart, R.A.; Al-Shamma`a, A.; Shaw, A.

    1995-12-31

    A low voltage FEL operating at 130 kV which can be run cw with a continuous electron beam current level up to 12 mA has been constructed for the X-Band microwave range (8-12 GHz). In this poster, we will report on the dependence on time, after the electron beam is switched on, of the growth and competition of those longitudinal modes in the cavity having nett gain.

  5. Application of FEL technique for constructing high-intensity, monochromatic, polarized gamma-sources at storage rings

    SciTech Connect

    Saldin, E.L.; Schneidmiller, E.A.; Ulyanov, Yu.N.

    1995-12-31

    A possibility to construct high-intensity tunable monochromatic{gamma}-source at high energy storage rings is discussed. It is proposed to produce {gamma}-quanta by means of Compton backscattering of laser photons on electrons circulating in the storage. The laser light wavelength is chosen in such a way that after the scattering, the electron does not leave the separatrix. So as the probability of the scattering is rather small, energy oscillations are damped prior the next scattering. As a result, the proposed source can operate in {open_quotes}parasitic{close_quote} mode not interfering with the main mode of the storage ring operation. Analysis of parameters of existent storage rings (PETRA, ESRF, Spring-8, etc) shows that the laser light wavelength should be in infrared, {lambda}{approximately} 10 - 400 {mu}m, wavelength band. Installation at storage rings of tunable free-electron lasers with the peak and average output power {approximately} 10 MW and {approximately} 1 kW, respectively, will result in the intensity of the {gamma}-source up to {approximately} 10{sup 14}s{sup -1} with tunable {gamma}-quanta energy from several MeV up to several hundreds MeV. Such a {gamma}-source will reveal unique possibilities for precision investigations in nuclear physics.

  6. Feedback Requirements for SASE-FELs

    SciTech Connect

    Loos, Henrik; /SLAC

    2012-07-06

    The operation of a Self Amplified Spontaneous Emission (SASE) Free Electron Lasers (FEL) at soft and hard X-ray wavelengths driven by a high brightness electron beam imposes strong requirements on the stability of the accelerator and feedback systems are necessary to both guarantee saturation of the SASE process as well as a stable photon beam for user experiments. Diagnostics for the relevant transverse and longitudinal beam parameters are presented and various examples of feedback systems for bunches with low repetition rate as well as systems for intra bunch train feedbacks are discussed.

  7. Plasma switch as a temporal overlap tool for pump-probe experiments at FEL facilities

    NASA Astrophysics Data System (ADS)

    Harmand, M.; Murphy, C. D.; Brown, C. R. D.; Cammarata, M.; Döppner, T.; Düsterer, S.; Fritz, D.; Förster, E.; Galtier, E.; Gaudin, J.; Glenzer, S. H.; Göde, S.; Gregori, G.; Hilbert, V.; Hochhaus, D.; Laarmann, T.; Lee, H. J.; Lemke, H.; Meiwes-Broer, K.-H.; Moinard, A.; Neumayer, P.; Przystawik, A.; Redlin, H.; Schulz, M.; Skruszewicz, S.; Tavella, F.; Tschentscher, T.; White, T.; Zastrau, U.; Toleikis, S.

    2012-08-01

    We have developed an easy-to-use and reliable timing tool to determine the arrival time of an optical laser and a free electron laser (FEL) pulses within the jitter limitation. This timing tool can be used from XUV to X-rays and exploits high FELs intensities. It uses a shadowgraph technique where we optically (at 800 nm) image a plasma created by an intense XUV or X-ray FEL pulse on a transparent sample (glass slide) directly placed at the pump - probe sample position. It is based on the physical principle that the optical properties of the material are drastically changed when its free electron density reaches the critical density. At this point the excited glass sample becomes opaque to the optical laser pulse. The ultra-short and intense XUV or X-ray FEL pulse ensures that a critical electron density can be reached via photoionization and subsequent collisional ionization within the XUV or X-ray FEL pulse duration or even faster. This technique allows to determine the relative arrival time between the optical laser and the FEL pulses in only few single shots with an accuracy mainly limited by the optical laser pulse duration and the jitter between the FEL and the optical laser. Considering the major interest in pump-probe experiments at FEL facilities in general, such a femtosecond resolution timing tool is of utmost importance.

  8. Stability in high gain plasmas in DIII-D

    SciTech Connect

    Lazarus, E.A.; Houlberg, W.A.; Murakami, M.; Wade, M.R.

    1996-10-01

    Fusion power gain has been increased by a factor of 3 in DIII-D plasmas through the use of strong discharge shaping and tailoring of the pressure and current density profiles. H-mode plasmas with weak or negative central magnetic shear are found to have neoclassical ion confinement throughout most of the plasma volume. Improved MHD stability is achieved by controlling the plasma pressure profile width. The highest fusion power gain Q (ratio of fusion power to input power) in deuterium plasmas was 0.0015, which extrapolates to an equivalent Q of 0.32 in a deuterium-tritium plasma and is similar to values achieved in tokamaks of larger size and magnetic fields.

  9. Stability in High Gain Plasmas in DIII-D

    SciTech Connect

    Lazarus, E. A.; Hong, R. M.; Navratil, G. A.; Sabbagh, S.; Strait, E. J.; Rice, B. W.; Ferron, J. R.; Greenfield, C. M.; Austin, M. E.; Chan, V. S.; DeBoo, J. C.; Doyle, E. J.; Forest, C. B.; Leonard, A. W.; Schissel, D. P.; Whyte, D. G.

    1997-01-01

    Fusion power gain has been increased by a factor of 3 in DIII-D plasmas through the use of strong discharge shaping and tailoring of the pressure and current density profiles. H-mode plasmas with weak or negative central magnetic shear are found to have neoclassical ion confinement throughout most of the plasma volume. Improved MHD stability is achieved by controlling the plasma pressure profile width. The highest fusion power gain Q (ratio of fusion power to input power) in deuterium plasmas was 0.0015. which extrapolates to an equivalent Q of 0.32 in a deuterium-tritium plasma and is similar to values achieved in tokamaks of larger size and magnetic fields.

  10. Development of a 233 GHz High Gain Traveling Wave Amplifier

    DTIC Science & Technology

    2014-04-22

    USA 2Beam Wave Research, Inc., Bethesda, MD 20814 USA Abstract: We present development plans for a 233 GHz, serpentine waveguide vacuum electron...NRL G-band serpentine waveguide amplifier [2, 3] was the first demonstrated amplifier to use a UV-LIGA fabricated circuit. The small- signal gain...using the same techniques for 231.5 GHz to 235 GHz, an FCC Radiolocation band. Amplifier Design The compound, hybrid serpentine waveguide (SWG

  11. The PixFEL project: Progress towards a fine pitch X-ray imaging camera for next generation FEL facilities

    NASA Astrophysics Data System (ADS)

    Rizzo, G.; Batignani, G.; Benkechkache, M. A.; Bettarini, S.; Casarosa, G.; Comotti, D.; Dalla Betta, G.-F.; Fabris, L.; Forti, F.; Grassi, M.; Lodola, L.; Malcovati, P.; Manghisoni, M.; Mendicino, R.; Morsani, F.; Paladino, A.; Pancheri, L.; Paoloni, E.; Ratti, L.; Re, V.; Traversi, G.; Vacchi, C.; Verzellesi, G.; Xu, H.

    2016-07-01

    The INFN PixFEL project is developing the fundamental building blocks for a large area X-ray imaging camera to be deployed at next generation free electron laser (FEL) facilities with unprecedented intensity. Improvement in performance beyond the state of art in imaging instrumentation will be explored adopting advanced technologies like active edge sensors, a 65 nm node CMOS process and vertical integration. These are the key ingredients of the PixFEL project to realize a seamless large area focal plane instrument composed by a matrix of multilayer four-side buttable tiles. In order to minimize the dead area and reduce ambiguities in image reconstruction, a fine pitch active edge thick sensor is being optimized to cope with very high intensity photon flux, up to 104 photons per pixel, in the range from 1 to 10 keV. A low noise analog front-end channel with this wide dynamic range and a novel dynamic compression feature, together with a low power 10 bit analog to digital conversion up to 5 MHz, has been realized in a 110 μm pitch with a 65 nm CMOS process. Vertical interconnection of two CMOS tiers will be also explored in the future to build a four-side buttable readout chip with high density memories. In the long run the objective of the PixFEL project is to build a flexible X-ray imaging camera for operation both in burst mode, like at the European X-FEL, or in continuous mode with the high frame rates anticipated for future FEL facilities.

  12. Statistical Analysis of Crossed Undulator for Polarization Control in a SASE FEL

    SciTech Connect

    Ding, Yuantao; Huang, Zhirong; /SLAC

    2008-02-01

    There is a growing interest in producing intense, coherent x-ray radiation with an adjustable and arbitrary polarization state. In this paper, we study the crossed undulator scheme (K.-J. Kim, Nucl. Instrum. Methods A 445, 329 (2000)) for rapid polarization control in a self-amplified spontaneous emission (SASE) free electron laser (FEL). Because a SASE source is a temporally chaotic light, we perform a statistical analysis on the state of polarization using FEL theory and simulations. We show that by adding a small phase shifter and a short (about 1.3 times the FEL power gain length), 90{sup o} rotated planar undulator after the main SASE planar undulator, one can obtain circularly polarized light--with over 80% polarization--near the FEL saturation.

  13. A high gain microstrip array adopting EMC dipoles

    NASA Astrophysics Data System (ADS)

    Russo, P.; Ruggieri, M.

    1988-10-01

    The design and operation of microstrip antenna arrays based on commercial feed boards and electromagnetically coupled (EMC) dipoles are described and illustrated with extensive drawings, graphs, and diagrams. The analysis of the radiating element and feeder network is outlined, and a 4 x 1 H-plane array and a 4 x 4 array operating at 11.7-12.5 GHz in linear or circular polarization are characterized in detail. With uniform illumination the latter array had directivity 21.75-22.08 db, gain 20.85-21.27 dB, voltage/standing-wave ratio 1.35-1.55:1, and efficiency 79-85 percent.

  14. Non equilibrium studies on FEL facilities

    NASA Astrophysics Data System (ADS)

    Harmand, Marion

    2013-06-01

    The recent development of Free Electron Lasers (FEL), giving ultrafast, high intensity pulses in the X-ray and XUV energy range is opening new opportunities for WDM studies. Development of X-ray diagnostics such as X-ray absorption spectroscopy and X-ray scattering, has received much attention for the in situ measurement of the structure and physical properties of matter at extreme conditions. Coupled to ultrafast pump - probe schemas, such diagnostics are giving new insights into out-of-equilibrium processes and thus validate current models. We report recent developments to perform few fs time resolved pump - probe experiments, giving access to ultrafast transient WDM states. We also present collective Thomson Scattering with soft x-ray Free Electron Laser radiation (at FLASH) as a method to track the evolution of highly transient warm dense hydrogen with around 100 fs time resolution. In addition, recent experiments at LCLS are suggesting the possibility to perform X-ray absorption spectroscopy (XANES) on FEL facilities to provide simultaneously information on the valence electrons and on the atomic local arrangement within sub-ps time scales.

  15. The GALAXIE all-optical FEL project

    SciTech Connect

    Rosenzweig, J. B.; Arab, E.; Andonian, G.; Cahill, A.; Fitzmorris, K.; Fukusawa, A.; Hoang, P.; Jovanovic, I.; Marcus, G.; Marinelli, A.; Murokh, A.; Musumeci, P.; Naranjo, B.; O'Shea, B.; O'Shea, F.; Ovodenko, A.; Pogorelsky, I.; Putterman, S.; Roberts, K.; Shumail, M.; and others

    2012-12-21

    We describe a comprehensive project, funded under the DARPA AXiS program, to develop an all-optical table-top X-ray FEL based on dielectric acceleration and electromagnetic undulators, yielding a compact source of coherent X-rays for medical and related applications. The compactness of this source demands that high field (>GV/m) acceleration and undulation-inducing fields be employed, thus giving rise to the project's acronym: GV/m AcceLerator And X-ray Integrated Experiment (GALAXIE). There are numerous physics and technical hurdles to surmount in this ambitious scenario, and the integrated solutions include: a biharmonic photonic TW structure, 200 micron wavelength electromagnetic undulators, 5 {mu}m laser development, ultra-high brightness magnetized/asymmetric emittance electron beam generation, and SASE FEL operation. We describe the overall design philosophy of the project, the innovative approaches to addressing the challenges presented by the design, and the significant progress towards realization of these approaches in the nine months since project initialization.

  16. RF FEL for power beaming

    NASA Astrophysics Data System (ADS)

    Burke, Robert

    The laser device components associated with operating a radio frequency-free electron laser (RF-FEL) for beaming power from Earth were designed and tested. Analysis of the power beaming system requirements reveals that the FEL, identified by NASA as the laser of choice, is the major subsystem requiring demonstration before proceeding further in proving the efficacy of laser power beaming. Rocketdyne has identified a series of low cost, low risk demonstrations which proceed sequentially, as follows: (1) a 1 kW proof-of-principle demonstration; (2) a 150 kW demonstration of beaming power to a satellite; and (3) a MW class demonstration of Earth to lunar surface power transmission. This sequence of events can be completed in 5.5 years at a cost of $188M, with key milestones each year.

  17. A novel design of ultra-broadband, high-gain and high-linearity variable gain distributed amplifier in 0.13 μm CMOS technology

    NASA Astrophysics Data System (ADS)

    Baharvand, Zainab; Hakimi, Ahmad; Rashedi, Esmat

    2016-12-01

    A high-gain, high-linearity and ultra-broadband variable gain distributed amplifier (VGDA) based on employing multiple techniques is presented to substantially increase the gain. The complete design is composed of two major parts including a VGDA part followed by a single stage distributed amplifier (SSDA) part. The VGDA part makes it possible to achieve different gain settings. For high gain considerations, the SSDA part cascades with the VGDA part that takes the benefits of the multiplicative gain mechanism. A theory is presented to enhance the linearity without imposing further DC power consumption. This idea has been validated by simulation results as expected. The design is analysed and simulated in the standard 0.13 μm CMOS technology. It presents the large gain tuning range of 35 dB, from -5 dB attenuation gain up to +30 dB maximum amplification gain, in relation to the control voltage (Vctr) that varies between 0.42 and 1.1 V. At the maximum amplification gain setting, it presents a DC up to 16 GHz 3 dB bandwidth, an average noise figure of 3.2 dB and an IIP3 of -2 dB m. Furthermore, it dissipates 46.42 mW from 0.7 and 0.9 V power supplies of the drain lines of VGDA and SSDA parts, respectively. Additionally, the Monte Carlo (MC) simulation has been performed to predict an estimate of the accuracy of performance of the proposed design under various conditions.

  18. Software reconfigurable highly flexible gain switched optical frequency comb source.

    PubMed

    Pascual, M Deseada Gutierrez; Zhou, Rui; Smyth, Frank; Anandarajah, Prince M; Barry, Liam P

    2015-09-07

    The authors present the performance and noise properties of a software reconfigurable, FSR and wavelength tunable gain switched optical frequency comb source. This source, based on the external injection of a temperature tuned Fabry-Pérot laser diode, offers quasi-continuous wavelength tunability over the C-band (30nm) and FSR tunability ranging from 6 to 14GHz. The results achieved demonstrate the excellent spectral quality of the comb tones (RIN ~-130dB/Hz and low phase noise of 300kHz) and its outstanding stability (with fluctuations of the individual comb tones of less than 0.5dB in power and 5pm in wavelength, characterized over 24hours) highlighting its suitability for employment in next generation flexible optical transmission networks.

  19. A beam trajectory monitor for the TTF-FEL

    SciTech Connect

    Ng, Johnny S. T.

    1997-06-01

    A method to determine the electron beam trajectory inside a long undulator module is described. Three-dimensional information is obtained by imaging the spontaneous radiation off-axis using pinholes and high resolution position sensors. The proposal for such a monitor for the SASE-FEL at the TESLA Test Facility is discussed.

  20. Performance study of a soft X-ray harmonic generation FEL seededwith an EUV laser pulse

    SciTech Connect

    Gullans, M.; Wurtele, J.S.; Penn, G.; Zholents, A.A.

    2007-02-01

    The performance of a free electron laser (FEL) using alow-power extreme ultraviolet (EUV) pulse as an input seed isinvestigated. The parameters are appropriate for 30 nm seeds producedfrom high-power Ti:Sa pulses using high harmonic generation schemes. Itis found that, for reasonable beam parameters, robust FEL performance canbe obtained. Both time-independent and time-dependent simulations areperformed for varying system parameters using the GENESIS simulationcode. A comparison is made with a two-stage harmonic FEL that is seededby a high-power Ti:Sa pulse.

  1. Dielectric wakefield accelerator to drive to the future FEL light sourcei.

    SciTech Connect

    Power, J.G.; Zholents, A.; Jing, C.; Kanareykin, A. )

    2011-01-01

    X-ray free-electron lasers (FELs) are expensive instruments and the accelerator holds the largest portion of the cost of the entire facility. Using a high-energy gain dielectric wake-field accelerator (DWA) instead of the conventional accelerator may facilitate reduction of the facility size and significant cost saving. We show that a collinear dielectric wake-field accelerator can, in principle, accelerate low charge and high peak current electron bunches to a few GeV energy with up to 100 kHz bunch repetition rate. Several such accelerators can share the same tunnel and same CW superconducting linac (operating with a few MHz bunch repetition rate) whose sole purpose is feeding the DWAs with wake producing low energy, high charge electron bunches with a desirable periodicity. Then, ten or more x-ray FELs can operate independently, each using its own linac. In this paper, we present an initial case study of a single stage 850 GHz DWA based on a quartz tube with a {approx}100MV/m loaded gradient sufficient to accelerate a 50 pC main electron beam to 2.4 GeV at a 100 kHz bunch repetition rate in just under 30 meters.

  2. An S-band high gain relativistic klystron amplifier with high phase stability

    SciTech Connect

    Wu, Y.; Li, Z. H.; Xu, Z.; Ma, Q. S.; Xie, H. Q.

    2014-11-15

    For the purpose of coherent high power microwave combining, an S-band high gain relativistic klystron amplifier with high phase stability is presented and studied. By the aid of 3D particle-in-cell code and circuit simulation software, the mechanism of parasitic oscillation in the device is investigated. And the RF lossy material is adopted in the simulation and experiment to suppress the oscillation. The experimental results show that with an input RF power of 10 kW, a microwave pulse with power of 1.8 GW is generated with a gain of 52.6 dB. And the relative phase difference fluctuation between output microwave and input RF signal is less than ±10° in 90 ns.

  3. Efficiency optimization in a FEL with fields` nonadiabatic tapering

    SciTech Connect

    Goncharov, I.A.; Belyavskiy, E.D.; Silivra, A.A.

    1995-12-31

    Amplification of an electromagnetic wave in free electron lasers with a reversed guide field and right-hand polarized wiggler field is investigated both analytically and numerically. An effect of electron bunch trapping by the high frequency electromagnetic field is used for efficiency optimization. On the basis of motion stability criteria a possibility of bunches trapping by FEL parameters nonadiabatic (experimentally realizable) tapering is shown. The stability analysis of electron motion is based on Lyapunov theory for autonomy systems. A particle simulation is carried out for FEL parameters close to the experimental ones (relativistic factor {gamma}=4.75, wiggler field strength B{sub w}= 2.8 kG, guide field strength B{sub o}= -1.4 kG, operation wavelength {lambda}=6.2 mm) for the case of wiggler field tapering. Theoretically predicted rule of wiggler field tapering corresponding to FEL efficiency of 55% is approximated by stepped functions. For the experimentally realizable tapering it is found that FEL efficiency can be over 40%.

  4. High gain durable anti-reflective coating with oblate voids

    DOEpatents

    Maghsoodi, Sina; Brophy, Brenor L.; Colson, Thomas E.; Gonsalves, Peter R.; Abrams, Ze'ev

    2016-06-28

    Disclosed herein are single layer transparent coatings with an anti-reflective property, a hydrophobic property, and that are highly abrasion resistant. The single layer transparent coatings contain a plurality of oblate voids. At least 1% of the oblate voids are open to a surface of the single layer transparent coatings.

  5. Recent developments in CrystFEL 1

    PubMed Central

    White, Thomas A.; Mariani, Valerio; Brehm, Wolfgang; Yefanov, Oleksandr; Barty, Anton; Beyerlein, Kenneth R.; Chervinskii, Fedor; Galli, Lorenzo; Gati, Cornelius; Nakane, Takanori; Tolstikova, Alexandra; Yamashita, Keitaro; Yoon, Chun Hong; Diederichs, Kay; Chapman, Henry N.

    2016-01-01

    CrystFEL is a suite of programs for processing data from ‘serial crystallography’ experiments, which are usually performed using X-ray free-electron lasers (FELs) but also increasingly with other X-ray sources. The CrystFEL software suite has been under development since 2009, just before the first hard FEL experiments were performed, and has been significantly updated and improved since then. This article describes the most important improvements which have been made to CrystFEL since the first release version. These changes include the addition of new programs to the suite, the ability to resolve ‘indexing ambiguities’ and several ways to improve the quality of the integrated data by more accurately modelling the underlying diffraction physics. PMID:27047311

  6. Output characteristics of SASE-driven short wavelength FEL`s

    SciTech Connect

    Fawley, W.M.

    1997-02-01

    This paper investigates various properties of the ``microspikes`` associated with self-amplified spontaneous emission (SASE) in a short wavelength free-electron laser (FEL). Using results from the 2-D numerical simulation code GINGER, we confirm theoretical predictions such as the convective group velocity in the exponential gain regime. In the saturated gain regime beyond the initial saturation, we find that the average radiation power continues to grow with an approximately linearly dependence upon undulator length. Moreover, the spectrum significantly broadens and shifts in wavelength to the redward direction, with{ital P(w)} approaching a constant, asymptotic value. This is in marked contrast to the exponential gain regime where the spectrum steadily narrows, {ital P(w)} grows, and the central wavelength remains constant with {ital z}. Via use of a spectrogram diagnostic {ital S(w,t)}, it appears that the radiation pattern in the saturated gain regime is composed of an ensemble of distinct ``sinews`` whose widths AA remain approximately constant but whose central wavelengths can ``chirp`` by varying a small extent with {ital t}.

  7. Parameter design considerations for an oscillator IR-FEL

    NASA Astrophysics Data System (ADS)

    Jia, Qi-Ka

    2017-01-01

    An infrared oscillator FEL user facility will be built at the National Synchrotron Radiation Laboratory at in Hefei, China. In this paper, the parameter design of the oscillator FEL is discussed, and some original relevant approaches and expressions are presented. Analytic formulae are used to estimate the optical field gain and saturation power for the preliminary design. By considering both physical and technical constraints, the relation of the deflection parameter K to the undulator period is analyzed. This helps us to determine the ranges of the magnetic pole gap, the electron energy and the radiation wavelength. The relations and design of the optical resonator parameters are analyzed. Using dimensionless quantities, the interdependences between the radii of curvature of the resonator mirror and the various parameters of the optical resonator are clearly demonstrated. The effect of the parallel-plate waveguide is analyzed for the far-infrared oscillator FEL. The condition of the necessity of using a waveguide and the modified filling factor in the case of the waveguide are given, respectively. Supported by National Nature Science Foundation of China (21327901, 11375199)

  8. Electron bunch length measurement at the Vanderbilt FEL

    SciTech Connect

    Amirmadhi, F.; Brau, C.A.; Mendenhall, M.

    1995-12-31

    During the past few years, a number of experiments have been performed to demonstrate the possibility to extract the longitudinal charge distribution from spectroscopic measurements of the coherent far-infrared radiation emitted as transition radiation or synchrotron radiation. Coherent emission occurs in a spectral region where the wavelength is comparable to or longer than the bunch length, leading to an enhancement of the radiation intensity that is on the order of the number of particles per bunch, as compared to incoherent radiation. This technique is particularly useful in the region of mm and sub-mm bunch lengths, a range where streak-cameras cannot be used for beam diagnostics due to their limited time resolution. Here we report on experiments that go beyond the proof of principle of this technique by applying it to the study and optimization of FEL performance. We investigated the longitudinal bunch length of the Vanderbilt FEL by analyzing the spectrum of coherent transition radiation emitted by the electron bunches. By monitoring the bunch length while applying a bunch-compression technique, the amount of the compression could be easily observed. This enabled us to perform a systematic study of the FEL performance, especially gain and optical pulse width, as a function of the longitudinal electron distribution in the bunch. The results of this study will be presented and discussed.

  9. High gain photoconductive semiconductor switch having tailored doping profile zones

    DOEpatents

    Baca, Albert G.; Loubriel, Guillermo M.; Mar, Alan; Zutavern, Fred J; Hjalmarson, Harold P.; Allerman, Andrew A.; Zipperian, Thomas E.; O'Malley, Martin W.; Helgeson, Wesley D.; Denison, Gary J.; Brown, Darwin J.; Sullivan, Charles T.; Hou, Hong Q.

    2001-01-01

    A photoconductive semiconductor switch with tailored doping profile zones beneath and extending laterally from the electrical contacts to the device. The zones are of sufficient depth and lateral extent to isolate the contacts from damage caused by the high current filaments that are created in the device when it is turned on. The zones may be formed by etching depressions into the substrate, then conducting epitaxial regrowth in the depressions with material of the desired doping profile. They may be formed by surface epitaxy. They may also be formed by deep diffusion processes. The zones act to reduce the energy density at the contacts by suppressing collective impact ionization and formation of filaments near the contact and by reducing current intensity at the contact through enhanced current spreading within the zones.

  10. Integrated computer simulation on FIR FEL dynamics

    SciTech Connect

    Furukawa, H.; Kuruma, S.; Imasaki, K.

    1995-12-31

    An integrated computer simulation code has been developed to analyze the RF-Linac FEL dynamics. First, the simulation code on the electron beam acceleration and transport processes in RF-Linac: (LUNA) has been developed to analyze the characteristics of the electron beam in RF-Linac and to optimize the parameters of RF-Linac. Second, a space-time dependent 3D FEL simulation code (Shipout) has been developed. The RF-Linac FEL total simulations have been performed by using the electron beam data from LUNA in Shipout. The number of particles using in a RF-Linac FEL total simulation is approximately 1000. The CPU time for the simulation of 1 round trip is about 1.5 minutes. At ILT/ILE, Osaka, a 8.5MeV RF-Linac with a photo-cathode RF-gun is used for FEL oscillation experiments. By using 2 cm wiggler, the FEL oscillation in the wavelength approximately 46 {mu}m are investigated. By the simulations using LUNA with the parameters of an ILT/ILE experiment, the pulse shape and the energy spectra of the electron beam at the end of the linac are estimated. The pulse shape of the electron beam at the end of the linac has sharp rise-up and it slowly decays as a function of time. By the RF-linac FEL total simulations with the parameters of an ILT/ILE experiment, the dependencies of the start up of the FEL oscillations on the pulse shape of the electron beam at the end of the linac are estimated. The coherent spontaneous emission effects and the quick start up of FEL oscillations have been observed by the RF-Linac FEL total simulations.

  11. High Gain Antenna Gimbal for the 2003-2004 Mars Exploration Rover Program

    NASA Technical Reports Server (NTRS)

    Sokol, Jeff; Krishnan, Satish; Ayari, Laoucet

    2004-01-01

    The High Gain Antenna Assemblies built for the 2003-2004 Mars Exploration Rover (MER) missions provide the primary communication link for the Rovers once they arrive on Mars. The High Gain Antenna Gimbal (HGAG) portion of the assembly is a two-axis gimbal that provides the structural support, pointing, and tracking for the High Gain Antenna (HGA). The MER mission requirements provided some unique design challenges for the HGAG. This paper describes all the major subsystems of the HGAG that were developed to meet these challenges, and the requirements that drove their design.

  12. Design, development and testing of the x-ray timing explorer High Gain Antenna System

    NASA Technical Reports Server (NTRS)

    Lecha, Javier; Woods, Claudia; Phan, Minh

    1995-01-01

    The High Gain Antenna System (HGAS), consisting of two High Gain Antenna Deployment Systems (HGADS) and two Antenna Pointing Systems (APS), is used to position two High Gain Antennas (HGA) on the X-Ray Timing Explorer (XTE). A similar APS will be used on the upcoming Tropical Rainfall Measuring Mission (TRMM). Both XTE and TRMM are NASA in-house satellites. The salient features of the system include the two-axis gimbal and control electronics of the APS and the spring deployment and latch/release mechanisms of the HGADS. This paper describes some of the challenges faced in the design and testing of this system and their resolutions.

  13. To kill a kangaroo: understanding the decision to pursue high-risk/high-gain resources.

    PubMed

    Jones, James Holland; Bird, Rebecca Bliege; Bird, Douglas W

    2013-09-22

    In this paper, we attempt to understand hunter-gatherer foraging decisions about prey that vary in both the mean and variance of energy return using an expected utility framework. We show that for skewed distributions of energetic returns, the standard linear variance discounting (LVD) model for risk-sensitive foraging can produce quite misleading results. In addition to creating difficulties for the LVD model, the skewed distributions characteristic of hunting returns create challenges for estimating probability distribution functions required for expected utility. We present a solution using a two-component finite mixture model for foraging returns. We then use detailed foraging returns data based on focal follows of individual hunters in Western Australia hunting for high-risk/high-gain (hill kangaroo) and relatively low-risk/low-gain (sand monitor) prey. Using probability densities for the two resources estimated from the mixture models, combined with theoretically sensible utility curves characterized by diminishing marginal utility for the highest returns, we find that the expected utility of the sand monitors greatly exceeds that of kangaroos despite the fact that the mean energy return for kangaroos is nearly twice as large as that for sand monitors. We conclude that the decision to hunt hill kangaroos does not arise simply as part of an energetic utility-maximization strategy and that additional social, political or symbolic benefits must accrue to hunters of this highly variable prey.

  14. To kill a kangaroo: understanding the decision to pursue high-risk/high-gain resources

    PubMed Central

    Jones, James Holland; Bird, Rebecca Bliege; Bird, Douglas W.

    2013-01-01

    In this paper, we attempt to understand hunter–gatherer foraging decisions about prey that vary in both the mean and variance of energy return using an expected utility framework. We show that for skewed distributions of energetic returns, the standard linear variance discounting (LVD) model for risk-sensitive foraging can produce quite misleading results. In addition to creating difficulties for the LVD model, the skewed distributions characteristic of hunting returns create challenges for estimating probability distribution functions required for expected utility. We present a solution using a two-component finite mixture model for foraging returns. We then use detailed foraging returns data based on focal follows of individual hunters in Western Australia hunting for high-risk/high-gain (hill kangaroo) and relatively low-risk/low-gain (sand monitor) prey. Using probability densities for the two resources estimated from the mixture models, combined with theoretically sensible utility curves characterized by diminishing marginal utility for the highest returns, we find that the expected utility of the sand monitors greatly exceeds that of kangaroos despite the fact that the mean energy return for kangaroos is nearly twice as large as that for sand monitors. We conclude that the decision to hunt hill kangaroos does not arise simply as part of an energetic utility-maximization strategy and that additional social, political or symbolic benefits must accrue to hunters of this highly variable prey. PMID:23884091

  15. Picosecond pump-probe using an FEL and a synchrotron source

    SciTech Connect

    Denbeaux, G.; Straub, K.D.; Madey, J.M.J.

    1995-12-31

    Two color pump-probe experiments using both the Duke Storage Ring as a synchrotron light source for visible light the Mark III FEL as a tunable, high peak power IR source are possible. The visible synchrotron source can be used as a probe of vibrational excitation from the FEL in an experiment using vibrationally-assisted fluorescence as an indicator of overlap of the IR and the visible pulses. An optical delay line in the FEL beam will allow adjustment of the arrival time of the IR pulse relative to the visible probe. The storage ring RF booster and the Mark III FEL RF sources will be both driven by the same master oscillator with a timing jitter between sources of less than 20 psec. Exploration of coupling between electronic excitation and lifetimes of vibrational excitation of fluorescent compounds in solution can be carried out with this configuration.

  16. Laser-Pumped Coherent X-Ray FEL

    DTIC Science & Technology

    2008-11-14

    laser field replaces the magnetic wiggler field of a conventional FEL. Depending on the intensity and quality of both the electron beam and pump laser...and Line Width 16 IV. Comparison of Theory with Simulations 17 a) Wiggler based X-Ray FEL 17 b) Laser Pumped X-Ray FEL 18 V. Conclusions 19...FEL) an intense laser field replaces the magnetic wiggler field of a conventional FEL. Depending on the intensity and quality of both the electron

  17. High But Not Low Probability of Gain Elicits a Positive Feeling Leading to the Framing Effect.

    PubMed

    Gosling, Corentin J; Moutier, Sylvain

    2017-01-01

    Human risky decision-making is known to be highly susceptible to profit-motivated responses elicited by the way in which options are framed. In fact, studies investigating the framing effect have shown that the choice between sure and risky options depends on how these options are presented. Interestingly, the probability of gain of the risky option has been highlighted as one of the main factors causing variations in susceptibility to the framing effect. However, while it has been shown that high probabilities of gain of the risky option systematically lead to framing bias, questions remain about the influence of low probabilities of gain. Therefore, the first aim of this paper was to clarify the respective roles of high and low probabilities of gain in the framing effect. Due to the difference between studies using a within- or between-subjects design, we conducted a first study investigating the respective roles of these designs. For both designs, we showed that trials with a high probability of gain led to the framing effect whereas those with a low probability did not. Second, as emotions are known to play a key role in the framing effect, we sought to determine whether they are responsible for such a debiasing effect of the low probability of gain. Our second study thus investigated the relationship between emotion and the framing effect depending on high and low probabilities. Our results revealed that positive emotion was related to risk-seeking in the loss frame, but only for trials with a high probability of gain. Taken together, these results support the interpretation that low probabilities of gain suppress the framing effect because they prevent the positive emotion of gain anticipation.

  18. High But Not Low Probability of Gain Elicits a Positive Feeling Leading to the Framing Effect

    PubMed Central

    Gosling, Corentin J.; Moutier, Sylvain

    2017-01-01

    Human risky decision-making is known to be highly susceptible to profit-motivated responses elicited by the way in which options are framed. In fact, studies investigating the framing effect have shown that the choice between sure and risky options depends on how these options are presented. Interestingly, the probability of gain of the risky option has been highlighted as one of the main factors causing variations in susceptibility to the framing effect. However, while it has been shown that high probabilities of gain of the risky option systematically lead to framing bias, questions remain about the influence of low probabilities of gain. Therefore, the first aim of this paper was to clarify the respective roles of high and low probabilities of gain in the framing effect. Due to the difference between studies using a within- or between-subjects design, we conducted a first study investigating the respective roles of these designs. For both designs, we showed that trials with a high probability of gain led to the framing effect whereas those with a low probability did not. Second, as emotions are known to play a key role in the framing effect, we sought to determine whether they are responsible for such a debiasing effect of the low probability of gain. Our second study thus investigated the relationship between emotion and the framing effect depending on high and low probabilities. Our results revealed that positive emotion was related to risk-seeking in the loss frame, but only for trials with a high probability of gain. Taken together, these results support the interpretation that low probabilities of gain suppress the framing effect because they prevent the positive emotion of gain anticipation. PMID:28232808

  19. An Analysis of Shot Noise Propagation and Amplificationin Harmonic Cascade FELs

    SciTech Connect

    Huang, Z.; /SLAC

    2006-12-11

    The harmonic generation process in a harmonic cascade (HC) FEL is subject to noise degradation which is proportional to the square of the total harmonic order. In this paper, we study the shot noise evolution in the first-stage modulator and radiator of a HC FEL that produces the dominant noise contributions. We derive the effective input noise for a modulator operating in the low-gain regime, and analyze the radiator noise for a density-modulated beam. The significance of these noise sources in different harmonic cascade designs is also discussed.

  20. An optical parametric chirped-pulse amplifier for seeding high repetition rate free-electron lasers

    SciTech Connect

    Höppner, H.; Tanikawa, T.; Schulz, M.; Riedel, R.; Teubner, U.; Faatz, B.; Tavella, F.

    2015-05-15

    High repetition rate free-electron lasers (FEL), producing highly intense extreme ultraviolet and x-ray pulses, require new high power tunable femtosecond lasers for FEL seeding and FEL pump-probe experiments. A tunable, 112 W (burst mode) optical parametric chirped-pulse amplifier (OPCPA) is demonstrated with center frequencies ranging from 720–900 nm, pulse energies up to 1.12 mJ and a pulse duration of 30 fs at a repetition rate of 100 kHz. Since the power scalability of this OPCPA is limited by the OPCPA-pump amplifier, we also demonstrate a 6.7–13.7 kW (burst mode) thin-disk OPCPA-pump amplifier, increasing the possible OPCPA output power to many hundreds of watts. Furthermore, third and fourth harmonic generation experiments are performed and the results are used to simulate a seeded FEL with high-gain harmonic generation.

  1. High-Gain AlxGa1-xAs/GaAs Transistors For Neural Networks

    NASA Technical Reports Server (NTRS)

    Kim, Jae-Hoon; Lin, Steven H.

    1991-01-01

    High-gain AlxGa1-xAs/GaAs npn double heterojunction bipolar transistors developed for use as phototransistors in optoelectronic integrated circuits, especially in artificial neural networks. Transistors perform both photodetection and saturating-amplification functions of neurons. Good candidates for such application because structurally compatible with laser diodes and light-emitting diodes, detect light, and provide high current gain needed to compensate for losses in holographic optical elements.

  2. Gain media edge treatment to suppress amplified spontaneous emission in a high power laser

    DOEpatents

    Hackel, Lloyd A.; Soules, Thomas F.; Fochs, Scott N.; Rotter, Mark D.; Letts, Stephan A.

    2008-12-09

    A novel method and apparatus for suppressing ASE and parasitic oscillation modes in a high average power laser is introduced. By roughening one or more peripheral edges of a solid-state crystal or ceramic laser gain media and by bonding such edges using a substantially high index bonding elastomer or epoxy to a predetermined electromagnetic absorbing arranged adjacent to the entire outer surface of the peripheral edges of the roughened laser gain media, ASE and parasitic oscillation modes can be effectively suppressed.

  3. High-gain weakly nonlinear flux-modulated Josephson parametric amplifier using a SQUID array

    NASA Astrophysics Data System (ADS)

    Zhou, X.; Schmitt, V.; Bertet, P.; Vion, D.; Wustmann, W.; Shumeiko, V.; Esteve, D.

    2014-06-01

    We have developed and measured a high-gain quantum-limited microwave parametric amplifier based on a superconducting lumped LC resonator with the inductor L including an array of eight superconducting quantum interference devices (SQUIDs). This amplifier is parametrically pumped by modulating the flux threading the SQUIDs at twice the resonator frequency. Around 5 GHz, a maximum gain of 31 dB, a product amplitude gain × bandwidth above 60 MHz, and a 1 dB compression point of -123 dBm at 20 dB gain are obtained in the nondegenerate mode of operation. Phase-sensitive amplification-deamplification is also measured in the degenerate mode and yields a maximum gain of 37 dB. The compression point obtained is 18 dB above what would be obtained with a single SQUID of the same inductance, due to the smaller nonlinearity of the SQUID array.

  4. Simulation of waveguide FEL oscillator using RF linac

    SciTech Connect

    Kuruma, S.; Asakawa, M.; Imasaki, K.

    1995-12-31

    One dimensional multifrequency simulation code for waveguide mode FEL has been developed. Using this simulation code, we analyzed the spontaneous emission from electron micropulse from RF Linac. It is found that some parameters both high and low frequency waveguide modes are growing simultaneously, so the two radiation pulses are generated and amplified. And the experimental data for cavity length detuning of the radiation power are analyzed.

  5. Status of the "TEU-FEL" project

    NASA Astrophysics Data System (ADS)

    Ernst, G. J.; Witteman, W. J.; Verschuur, J. W. J.; Haselhoff, E. H.; Mols, R. F. X. A. M.; Bouman, A. F. M.; Botman, J. I. M.; Hagedoorn, H. L.; Delhez, J. L.; Kleeven, W. J. G. M.

    1992-07-01

    The free-electron laser of the TEU-FEL project will be realized in two phases. In phase I the FEL will be driven by a 6 MeV photoelectric linac. In phase II the linac will be used as an injector for a 25 MeV race-track microtron. Information is presented on some technical details and the status of the different subsystems.

  6. Temporal characteristics of a SASE FEL.

    SciTech Connect

    Li, Y,; Huang, Z.; Kim, K.-J.; Lewellen, J.; Milton, S. V.; Sajaev, V.

    2003-01-01

    We have performed a single-shot, time-resolved measurement of the output field of a SASE FEL using the frequency-resolved optical gating (FROG) technique. The measurement reveals the phase and the amplitude of the SASE output as functions of time and frequency, hence enables us to perform a full characterization of the SASE FEL output. We examined both the single-shot field evolution as well as the statistics over multiple shots on the phase and intensity evolution.

  7. Polarization-insensitive optical gain characteristics of highly stacked InAs/GaAs quantum dots

    SciTech Connect

    Kita, Takashi; Suwa, Masaya; Kaizu, Toshiyuki; Harada, Yukihiro

    2014-06-21

    The polarized optical gain characteristics of highly stacked InAs/GaAs quantum dots (QDs) with a thin spacer layer fabricated on an n{sup +}-GaAs (001) substrate were studied in the sub-threshold gain region. Using a 4.0-nm-thick spacer layer, we realized an electronically coupled QD superlattice structure along the stacking direction, which enabled the enhancement of the optical gain of the [001] transverse-magnetic (TM) polarization component. We systematically studied the polarized electroluminescence properties of laser devices containing 30 and 40 stacked InAs/GaAs QDs. The net modal gain was analyzed using the Hakki-Paoli method. Owing to the in-plane shape anisotropy of QDs, the polarization sensitivity of the gain depends on the waveguide direction. The gain showing polarization isotropy between the TM and transverse-electric polarization components is high for the [110] waveguide structure, which occurs for higher amounts of stacked QDs. Conversely, the isotropy of the [−110] waveguide is easily achieved even if the stacking is relatively low, although the gain is small.

  8. Loop gain stabilizing with an all-digital automatic-gain-control method for high-precision fiber-optic gyroscope.

    PubMed

    Zheng, Yue; Zhang, Chunxi; Li, Lijing; Song, Lailiang; Chen, Wen

    2016-06-10

    For a fiber-optic gyroscope (FOG) using electronic dithers to suppress the dead zone, without a fixed loop gain, the deterministic compensation for the dither signals in the control loop of the FOG cannot remain accurate, resulting in the dither residuals in the FOG rotation rate output and the navigation errors in the inertial navigation system. An all-digital automatic-gain-control method for stabilizing the loop gain of the FOG is proposed. By using a perturbation square wave to measure the loop gain of the FOG and adding an automatic gain control loop in the conventional control loop of the FOG, we successfully obtain the actual loop gain and make the loop gain converge to the reference value. The experimental results show that in the case of 20% variation in the loop gain, the dither residuals are successfully eliminated and the standard deviation of the FOG sampling outputs is decreased from 2.00  deg/h to 0.62  deg/h (sampling period 2.5 ms, 10 points smoothing). With this method, the loop gain of the FOG can be stabilized over the operation temperature range and in the long-time application, which provides a solid foundation for the engineering applications of the high-precision FOG.

  9. Locking Lasers to RF in an Ultra Fast FEL

    SciTech Connect

    Wilcox, R.; Huang, G.; Doolittle, L.; White, W.; Frisch, J.; Coffee, R.

    2010-01-02

    Using a novel, phase-stabilized RF-over-fiber scheme, they transmit 3GHz over 300m with 27fs RMS error in 250kHz bandwidth over 12 hours, and phase lock a laser to enable ultrafast pump-probe experiments. Free-electron lasers (FELs) are capable of producing short-duration (< 10fs), high-energy X-ray pulses for a range of scientific applications. The recently activated Linac Coherent Light Source (LCLS) FEL facility at SLAC will support experiments which require synchronized light pulses for pump-probe schemes. They developed and operated a fiber optic RF transmission system to synchronize lasers to the emitted X-ray pulses, which was used to enable the first pump-probe experiments at the LCLS.

  10. A wiggler magnet for FEL low voltage operation

    SciTech Connect

    Al-Shamma`a, A.; Stuart, R.A.; Lucas, J.

    1995-12-31

    In low voltage FELs (ie, 200kV), operation is necessarily in the microwave frequency range for wiggler periods of the order of cms., so that a waveguide system is mandatory. Also, because of the relatively low velocity of the electron beam, the wiggle amplitude of the electron beam can be much larger than is normal for highly relativistic FELs. Both these factors mean that the electron trajectory must be carefully controlled to avoid beam collision with the waveguide walls. A wiggler system with half poles at entrance and exit is not an acceptable solution because of the offset is gives rise to the electron trajectory. Consequently, we have designed and constructed a wiggler magnet with exponential entrance and exit tapers for a minimal deflection and displacement of the electron beam. Simulations and experimental measurements showed that an on axis trajectory is easily obtainable.

  11. Performance studies of high gain photomultiplier having Z-configuration of microchannel plates

    NASA Astrophysics Data System (ADS)

    Lo, C. C.; Leskovar, B.

    1980-11-01

    The characteristics of a high gain type ITT F4129 photomultiplier having three microchannel plates in cascade for electron multiplications were investigated. These plates are in the Z-configuration. Measurements are given of the gain dark current, cathode quantum efficiency, anode pulse linearity, electron transit time, single and multiphoton time spreads, fatigue, and pulse height resolution. The gain as a function of transverse magnetic field was measured and discussed. Photomultiplier characteristics as a function of the input pulse repetition frequency were also investigated and discussed.

  12. Optical beam transport system at FEL-SUT

    NASA Astrophysics Data System (ADS)

    Nomaru, K.; Kawai, M.; Yokoyama, M.; Oda, F.; Nakayama, A.; Koike, H.; Kuroda, H.

    2000-05-01

    Kawasaki Heavy Industries Ltd. has installed an FEL beam transport system at the IR FEL Research Center of the Science University of Tokyo (FEL-SUT). This system transports the FEL output beam from the FEL machine room to the optical diagnostic room through a vacuum tube. The in-vacuum multi-mirror synchronized system operated from the FEL control room enables the operator to control the multiple mirrors simultaneously on or off axis of the FEL beam and to distribute the FEL output to one of the laboratories. The essential component of the transport system is the passive control optics that is composed of an elliptical and parabolic mirror couple. Once the control optics is aligned, a parallel FEL beam with a good pointing stability is obtained without any active operation to tune the optical system for different wavelengths.

  13. Fundamental gain in high-contrast imaging with the large binocular telescope interferometer

    NASA Astrophysics Data System (ADS)

    Patru, Fabien; Esposito, Simone; Puglisi, Alfio; Riccardi, Armando; Pinna, Enrico; Arcidiacono, Carmelo; Hill, John; Hinz, Philip

    2016-08-01

    Numerical simulations for the Large Binocular Telescope Interferometer have shown a fundamental gain in contrast when using two 8m adaptive optics telescopes instead of one, assuming a high Strehl and a cophasing mode. The global gain is improved by a factor 2 in contrast by using the long exposures and by a factor of 10 in contrast by using the short exposures. Indeed, fringes are still present in the short exposure, contrary to the long exposure where the fringes are blurred. Thus, there is some gain in grouping some short exposures with high gain G. This makes the LBTI well suitable for the Angular Differential Imaging technique. A planet will be alternatively located in the dark fringes (G ≈ 10 to 100) and/or in the dark rings (G ≈ 4 to 20). A rotation of 15° is sufficient to pass through at least one gain zone. The LBTI can provide in the visible wavelengths not only high angular resolution (≈ 6:5mas at 750nm) and high sensitivity (by a factor 4), but also a gain in contrast (by a factor 10 to 100) compared to the stand-alone adaptive optics used on each LBT aperture.

  14. Azimuthally unstable resonators for high-power CO[sub 2] lasers with annular gain media

    SciTech Connect

    Ehrlichmann, D.; Habich, U.; Plum, H.D.; Loosen, P.; Herziger, G. )

    1994-06-01

    Stable-unstable resonators have proved suitable for the extraction of a high-quality beam from a gain area that consists of a rectangular slab. Such gain areas have two substantially different transverse dimensions, and the resonators are stable in the small dimension while unstable in the larger one. Using off-axis unstable resonators avoids a central beam obscuration and improves beam quality. The adaptation of stable-unstable resonators to annular gain areas is described in this paper. The resulting resonators are stable in the radial direction and unstable in the azimuthal direction. Different unstable resonators, wound to match the annular geometry, are presented. The resonator modes are calculated numerically using a 3D-diffraction code that considers gain and misalignment. Resonator design parameters are obtained from a geometrical description of the resonator. Experimental results from a diffusion-cooled CO[sub 2] laser confirm theoretical predictions and show that the resonators are capable of extracting beams that are nearly diffraction-limited with high efficiency from an annular gain medium. Output powers of 2 kW have been obtained from a gain length of 1.8 m.

  15. High Gain Submicrometer Optical Amplifier at Near-Infrared Communication Band.

    PubMed

    Wang, Xiaoxia; Zhuang, Xiujuan; Yang, Sen; Chen, Yu; Zhang, Qinglin; Zhu, Xiaoli; Zhou, Hong; Guo, Pengfei; Liang, Junwu; Huang, Yu; Pan, Anlian; Duan, Xiangfeng

    2015-07-10

    Nanoscale near-infrared optical amplification is important but remains a challenge to achieve. Here we report a unique design of silicon and erbium silicate core-shell nanowires for high gain submicrometer optical amplification in the near-infrared communication band. The high refraction index silicon core is used to tightly confine the optical field within the submicron structures, and the single crystalline erbium-ytterbium silicates shell is used as the highly efficient gain medium. Both theoretical and experimental results show that, by systematically tuning the core diameter and shell thickness, a large portion of the optical power can be selectively confined to the erbium silicate shell gain medium to enable a low loss waveguide and high gain optical amplifier. Experimental results further demonstrate that an optimized core-shell nanowire can exhibit an excellent net gain up to 31  dB mm(-1), which is more than 20 times larger than the previously reported best results on the micron-scale optical amplifiers.

  16. Alumni Networks--"An Untapped Potential to Gain and Retain Highly-Skilled Workers?"

    ERIC Educational Resources Information Center

    David, Alexandra; Coenen, Frans

    2014-01-01

    In times of increasing skills shortage, regions and particularly non-core regions, need to attract highly-skilled workers. It is better for these regions to (re)attract highly-skilled workers that gained knowledge and contacts elsewhere and because they once lived in the region for study have already ties to the university region than trying to…

  17. Control of the polarization of a vacuum-ultraviolet, high-gain, free-electron laser

    DOE PAGES

    Allaria, Enrico; Diviacco, Bruno; Callegari, Carlo; ...

    2014-12-02

    The two single-pass, externally seeded free-electron lasers (FELs) of the FERMI user facility are designed around Apple-II-type undulators that can operate at arbitrary polarization in the vacuum ultraviolet-to-soft x-ray spectral range. Furthermore, within each FEL tuning range, any output wavelength and polarization can be set in less than a minute of routine operations. We report the first demonstration of the full output polarization capabilities of FERMI FEL-1 in a campaign of experiments where the wavelength and nominal polarization are set to a series of representative values, and the polarization of the emitted intense pulses is thoroughly characterized by three independentmore » instruments and methods, expressly developed for the task. The measured radiation polarization is consistently >90% and is not significantly spoiled by the transport optics; differing, relative transport losses for horizontal and vertical polarization become more prominent at longer wavelengths and lead to a non-negligible ellipticity for an originally circularly polarized state. The results from the different polarimeter setups validate each other, allow a cross-calibration of the instruments, and constitute a benchmark for user experiments.« less

  18. Control of the polarization of a vacuum-ultraviolet, high-gain, free-electron laser

    SciTech Connect

    Allaria, Enrico; Diviacco, Bruno; Callegari, Carlo; Finetti, Paola; Mahieu, Benoît; Viefhaus, Jens; Zangrando, Marco; De Ninno, Giovanni; Lambert, Guillaume; Ferrari, Eugenio; Buck, Jens; Ilchen, Markus; Vodungbo, Boris; Mahne, Nicola; Svetina, Cristian; Spezzani, Carlo; Di Mitri, Simone; Penco, Giuseppe; Trovó, Mauro; Fawley, William M.; Rebernik, Primoz R.; Gauthier, David; Grazioli, Cesare; Coreno, Marcello; Ressel, Barbara; Kivimäki, Antti; Mazza, Tommaso; Glaser, Leif; Scholz, Frank; Seltmann, Joern; Gessler, Patrick; Grünert, Jan; De Fanis, Alberto; Meyer, Michael; Knie, André; Moeller, Stefan P.; Raimondi, Lorenzo; Capotondi, Flavio; Pedersoli, Emanuele; Plekan, Oksana; Danailov, Miltcho B.; Demidovich, Alexander; Nikolov, Ivaylo; Abrami, Alessandro; Gautier, Julien; Lüning, Jan; Zeitoun, Philippe; Giannessi, Luca

    2014-12-02

    The two single-pass, externally seeded free-electron lasers (FELs) of the FERMI user facility are designed around Apple-II-type undulators that can operate at arbitrary polarization in the vacuum ultraviolet-to-soft x-ray spectral range. Furthermore, within each FEL tuning range, any output wavelength and polarization can be set in less than a minute of routine operations. We report the first demonstration of the full output polarization capabilities of FERMI FEL-1 in a campaign of experiments where the wavelength and nominal polarization are set to a series of representative values, and the polarization of the emitted intense pulses is thoroughly characterized by three independent instruments and methods, expressly developed for the task. The measured radiation polarization is consistently >90% and is not significantly spoiled by the transport optics; differing, relative transport losses for horizontal and vertical polarization become more prominent at longer wavelengths and lead to a non-negligible ellipticity for an originally circularly polarized state. The results from the different polarimeter setups validate each other, allow a cross-calibration of the instruments, and constitute a benchmark for user experiments.

  19. Orbital angular momentum modes of high-gain parametric down-conversion

    NASA Astrophysics Data System (ADS)

    Beltran, Lina; Frascella, Gaetano; Perez, Angela M.; Fickler, Robert; Sharapova, Polina R.; Manceau, Mathieu; Tikhonova, Olga V.; Boyd, Robert W.; Leuchs, Gerd; Chekhova, Maria V.

    2017-04-01

    Light beams with orbital angular momentum (OAM) are convenient carriers of quantum information. They can also be used for imparting rotational motion to particles and providing high resolution in imaging. Due to the conservation of OAM in parametric down-conversion (PDC), signal and idler photons generated at low gain have perfectly anti-correlated OAM values. It is interesting to study the OAM properties of high-gain PDC, where the same OAM modes can be populated with large, but correlated, numbers of photons. Here we investigate the OAM spectrum of high-gain PDC and show that the OAM mode content can be controlled by varying the pump power and the configuration of the source. In our experiment, we use a source consisting of two nonlinear crystals separated by an air gap. We discuss the OAM properties of PDC radiation emitted by this source and suggest possible modifications.

  20. Balancing high gain and bandwidth in multilayer organic photodetectors with tailored carrier blocking layers

    NASA Astrophysics Data System (ADS)

    Hammond, William T.; Mudrick, John P.; Xue, Jiangeng

    2014-12-01

    We present detailed studies of the high photocurrent gain behavior in multilayer organic photodiodes containing tailored carrier blocking layers we reported earlier in a Letter [W. T. Hammond and J. Xue, Appl. Phys. Lett. 97, 073302 (2010)], in which a high photocurrent gain of up to 500 was attributed to the accumulation of photogenerated holes at the anode/organic active layer interface and the subsequent drastic increase in secondary electron injection from the anode. Here, we show that both the hole-blocking layer structure and layer thickness strongly influence the magnitude of the photocurrent gain. Temporal studies revealed that the frequency response of such devices is limited by three different processes with lifetimes of 10 μs, 202 μs, and 2.72 ms for the removal of confined holes, which limit the 3 dB bandwidth of these devices to 1.4 kHz. Furthermore, the composition in the mixed organic donor-acceptor photoactive layer affects both gain and bandwidth, which is attributed to the varying charge transport characteristics, and the optimal gain-bandwidth product is achieved with approximately 30% donor content. Finally, these devices show a high dynamic range of more than seven orders of magnitude, although the photocurrent shows a sublinear dependence on the incident optical power.

  1. Balancing high gain and bandwidth in multilayer organic photodetectors with tailored carrier blocking layers

    SciTech Connect

    Hammond, William T.; Mudrick, John P.; Xue, Jiangeng

    2014-12-07

    We present detailed studies of the high photocurrent gain behavior in multilayer organic photodiodes containing tailored carrier blocking layers we reported earlier in a Letter [W. T. Hammond and J. Xue, Appl. Phys. Lett. 97, 073302 (2010)], in which a high photocurrent gain of up to 500 was attributed to the accumulation of photogenerated holes at the anode/organic active layer interface and the subsequent drastic increase in secondary electron injection from the anode. Here, we show that both the hole-blocking layer structure and layer thickness strongly influence the magnitude of the photocurrent gain. Temporal studies revealed that the frequency response of such devices is limited by three different processes with lifetimes of 10 μs, 202 μs, and 2.72 ms for the removal of confined holes, which limit the 3 dB bandwidth of these devices to 1.4 kHz. Furthermore, the composition in the mixed organic donor-acceptor photoactive layer affects both gain and bandwidth, which is attributed to the varying charge transport characteristics, and the optimal gain-bandwidth product is achieved with approximately 30% donor content. Finally, these devices show a high dynamic range of more than seven orders of magnitude, although the photocurrent shows a sublinear dependence on the incident optical power.

  2. Space charge field in a FEL with axially symmetric electron beam

    SciTech Connect

    Goncharov, I.A.; Belyavskiy, E.D.

    1995-12-31

    Nonlinear two-dimensional theory of the space charge of an axially symmetric electron beam propagating in combined right-hand polarized wiggler and uniform axial guide fields in a presence of high-frequency electromagnetic wave is presented. The well-known TE{sub 01} mode in a cylindrical waveguide for the model of radiation fields and paraxial approximation for the wiggler field are used. Space charge field components are written in the Lagrange coordinates by the twice averaged Green`s functions of two equally charged infinitely thin discs. For that {open_quotes}compensating charges{close_quotes} method is applied in which an electron ring model is substituted by one with two different radii and signs discs. On this approach the initial Green`s functions peculiarities are eliminated and all calculations are considerably simplified. Coefficients of a twice averaged Green`s function expansion into a Fourier series are obtained by use of corresponding expansion coefficients of longitudinal Green`s functions of equal radii discs and identical rings known from the one-dimensional theory of super HF devices taking into account electron bunches periodicity. This approach permit the space charge field components for an arbitrary stratified stream to be expressed in a simple and strict enough form. The expressions obtained can be employed in a nonlinear two-dimensional FEL theory in order to investigate beam dynamical defocusing and electrons failing on the waveguide walls in the high gain regime. This is especially important for FEL operation in mm and submm.

  3. A few hundred femtosecond FEL with a few kW average and one GW peak power for academic and industrial applications

    NASA Astrophysics Data System (ADS)

    Minehara, Eisuke J.; Hajima, Ryoichi; Sawamura, Masaru; Nagai, Ryoji; Nishimori, Nobuyuki; Kikuzawa, Nobuhiro; Sugimoto, Masayoshi; Yamauchi, Toshihiko; Hayakawa, Taketo; Shizuma, Toshiyuki

    2003-02-01

    The JAERI FEL group has successfully discovered, and realized the brand-new FEL lasing of 255fs ultrafast pulse, 6-9% high-efficiency, one gigawatt high peak power, a few kilowatts average power, and wide tenability of medium and far infrared wavelength regions at the same time. The new lasing was named to be "high-degeneracy superradianct lasing of FEL". Using the new lasing, we could realize a powerful and efficient free-electron laser(FEL) for industrial uses, for examples, pharmacy, medical, defense, shipbuilding, semiconductor industry, chemical industries, environmental sciences, space-debris, power beaming and so on. In order to realize such a tunable, highly-efficient, high average power, high peak power and ultra-short pulse FEL, we need the efficient and powerful FEL driven by JAERI compact, stand-alone and zero-boil-off super-conducting rf linac with an energy-recovery geometry. Our discussions on the FEL will cover market-requirements and roadmap for the industrial FELs, some answers from the JAERI compact, stand-alone and zero-boil-off cryostat concept and operational experience over these 10 years, our discovery of the new highly-efficient, high-power, and ultra-short pulse lasing mode, and the energy-recovery geometry.

  4. Doped Contacts for High-Longevity Optically Activated, High Gain GaAs Photoconductive Semiconductor Switches

    SciTech Connect

    Baca, A.G.; Brown, D.J.; Donaldson, R.D.; Helgeson, W.D.; Hjalmarson, H.P.; Loubriel, G.M.; Mar, A.; O'Malley, M.W.; Thornton, R.L.; Zutavern, F.J.

    1999-08-05

    The longevity of high gain GaAs photoconductive semiconductor switches (PCSS) has been extended to over 50 million pulses. This was achieved by improving the ohmic contacts through the incorporation of a doped layer beneath the PCSS contacts which is very effective in the suppression of filament formation and alleviating current crowding to improve the longevity of PCSS. Virtually indefinite, damage-free operation is now possible at much higher current levels than before. The inherent damage-free current capacity of the switch depends on the thickness of the doped layers and is at least 100A for a dopant diffusion depth of 4pm. The contact metal has a different damage mechanism and the threshold for damage ({approximately}40A) is not further improved beyond a dopant diffusion depth of about 2{micro}m. In a diffusion-doped contact switch, the switching performance is not degraded when contact metal erosion occurs. This paper will compare thermal diffusion and epitaxial growth as approaches to doping the contacts. These techniques will be contrasted in terms of the fabrication issues and device characteristics.

  5. Doped Contacts for High-Longevity Optically Activated, High Gain GaAs Photoconductive Semiconductor Switches

    SciTech Connect

    MAR,ALAN; LOUBRIEL,GUILLERMO M.; ZUTAVERN,FRED J.; O'MALLEY,MARTIN W.; HELGESON,WESLEY D.; BROWN,DARWIN JAMES; HJALMARSON,HAROLD P.; BACA,ALBERT G.; THORNTON,R.L.; DONALDSON,R.D.

    1999-12-17

    The longevity of high gain GaAs photoconductive semiconductor switches (PCSS) has been extended to over 100 million pulses. This was achieved by improving the ohmic contacts through the incorporation of a doped layer that is very effective in the suppression of filament formation, alleviating current crowding. Damage-free operation is now possible with virtually infinite expected lifetime at much higher current levels than before. The inherent damage-free current capacity of the bulk GaAs itself depends on the thickness of the doped layers and is at least 100A for a dopant diffusion depth of 4pm. The contact metal has a different damage mechanism and the threshold for damage ({approx}40A) is not further improved beyond a dopant diffusion depth of about 2{micro}m. In a diffusion-doped contact switch, the switching performance is not degraded when contact metal erosion occurs, unlike a switch with conventional contacts. This paper will compare thermal diffusion and epitaxial growth as approaches to doping the contacts. These techniques will be contrasted in terms of the fabrication issues and device characteristics.

  6. Application of variable-gain output feedback for high-alpha control

    NASA Technical Reports Server (NTRS)

    Ostroff, Aaron J.

    1990-01-01

    A variable-gain, optimal, discrete, output feedback design approach that is applied to a nonlinear flight regime is described. The flight regime covers a wide angle-of-attack range that includes stall and post stall. The paper includes brief descriptions of the variable-gain formulation, the discrete-control structure and flight equations used to apply the design approach, and the high performance airplane model used in the application. Both linear and nonlinear analysis are shown for a longitudinal four-model design case with angles of attack of 5, 15, 35, and 60 deg. Linear and nonlinear simulations are compared for a single-point longitudinal design at 60 deg angle of attack. Nonlinear simulations for the four-model, multi-mode, variable-gain design include a longitudinal pitch-up and pitch-down maneuver and high angle-of-attack regulation during a lateral maneuver.

  7. Recent progress in high gain InAs avalanche photodiodes (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Bank, Seth; Maddox, Scott J.; Sun, Wenlu; Nair, Hari P.; Campbell, Joe C.

    2015-08-01

    InAs possesses nearly ideal material properties for the fabrication of near- and mid-infrared avalanche photodiodes (APDs), which result in strong electron-initiated impact ionization and negligible hole-initiated impact ionization [1]. Consequently, InAs multiplication regions exhibit several appealing characteristics, including extremely low excess noise factors and bandwidth independent of gain [2], [3]. These properties make InAs APDs attractive for a number of near- and mid-infrared sensing applications including remote gas sensing, light detection and ranging (LIDAR), and both active and passive imaging. Here, we discuss our recent advances in the growth and fabrication of high gain, low noise InAs APDs. Devices yielded room temperature multiplication gains >300, with much reduced (~10x) lower dark current densities. We will also discuss a likely key contributor to our current performance limitations: silicon diffusion into the intrinsic (multiplication) region from the underlying n-type layer during growth. Future work will focus on increasing the intrinsic region thickness, targeting gains >1000. This work was supported by the Army Research Office (W911NF-10-1-0391). [1] A. R. J. Marshall, C. H. Tan, M. J. Steer, and J. P. R. David, "Electron dominated impact ionization and avalanche gain characteristics in InAs photodiodes," Applied Physics Letters, vol. 93, p. 111107, 2008. [2] A. R. J. Marshall, A. Krysa, S. Zhang, A. S. Idris, S. Xie, J. P. R. David, and C. H. Tan, "High gain InAs avalanche photodiodes," in 6th EMRS DTC Technical Conference, Edinburgh, Scotland, UK, 2009. [3] S. J. Maddox, W. Sun, Z. Lu, H. P. Nair, J. C. Campbell, and S. R. Bank, "Enhanced low-noise gain from InAs avalanche photodiodes with reduced dark current and background doping," Applied Physics Letters, vol. 101, no. 15, pp. 151124-151124-3, Oct. 2012.

  8. The cat lipocalin Fel d 7 and its cross-reactivity with the dog lipocalin Can f 1.

    PubMed

    Apostolovic, D; Sánchez-Vidaurre, S; Waden, K; Curin, M; Grundström, J; Gafvelin, G; Cirkovic Velickovic, T; Grönlund, H; Thomas, W R; Valenta, R; Hamsten, C; van Hage, M

    2016-10-01

    We investigated the prevalence of sensitization to the cat lipocalin Fel d 7 among 140 cat-sensitized Swedish patients and elucidated its allergenic activity and cross-reactivity with the dog lipocalin Can f 1. Sixty-five of 140 patients had IgE to rFel d 7 whereof 60 also had IgE to rCan f 1. A moderate correlation between IgE levels to rFel d 7 and rCan f 1 was found. rFel d 7 activated basophils in vitro and inhibited IgE binding to rCan f 1 in 4 of 13 patients, whereas rCan f 1 inhibited IgE binding to rFel d 7 in 7 of 13 patients. Fel d 7 and Can f 1 showed high similarities in protein structure and epitopes in common were found using cross-reactive antisera. Fel d 7 is a common allergen in a Swedish cat-sensitized population that cross-reacts with Can f 1, and may contribute to symptoms in cat- but also in dog-allergic patients.

  9. Comparative analysis of the intrinsic voltage gain and unit gain frequency between SOI and bulk FinFETs up to high temperatures

    NASA Astrophysics Data System (ADS)

    Oliveira, Alberto Vinicius de; Agopian, Paula Ghedini Der; Martino, Joao Antonio; Simoen, Eddy; Claeys, Cor; Collaert, Nadine; Thean, Aaron

    2016-09-01

    This paper presents an experimental analysis of the analog application figures of merit: the intrinsic voltage gain (AV) and unit gain frequency, focusing on the performance comparison between silicon triple gate pFinFET devices, which were processed on both Si and Silicon-On-Insulator (SOI) substrates. The high temperature (from 25 °C to 150 °C) influence and different channel lengths and fin widths were also taken into account. While the temperature impact on the intrinsic voltage gain (AV) is limited, the unit gain frequency was strongly affected due to the carrier mobility degradation at higher temperatures, for both p- and n-type FinFET structures. In addition, the pFinFETs showed slightly larger AV values compared to the n-type counterparts, whereby the bulk FinFETs presented a higher dispersion than the SOI FinFETs.

  10. An induction linac developed for FEL application

    NASA Astrophysics Data System (ADS)

    de Mascureau, J.; Anthouard, Ph.; Bardy, J.; Eyharts, Ph.; Eyl, P.; Launspach, J.; Thevenot, M.; Villate, D.

    1992-07-01

    An induction linac is being studied and built at CESTA for FEL application. At first we studied the induction technology and namely the high-voltage (HV) generators and the induction cells. A HV generator designed to feed the cells with calibrated pulses (150 kV, 50 ns, δV/V < 1%) has been built using a resonant charging system and magnetic switches. This generator is planned for kHz repetition-rate operation. A prototype induction cell has also been built and tested with a cable generator. An electron injector (1.5 MeV, 1.5kA) has been designed and is now under test: it uses ten induction cells and a thermionic dispenser cathode. Numerical codes have been developed and simulations have been compared with experimental results for HV generators, induction cells, and the injector. An induction accelerating module has been studied and we plan to have the accelerator working at 3 MeV in 1992.

  11. Teachers' Responses to High-Stakes Testing and the Validity of Gains: A Pilot Study. CSE Report.

    ERIC Educational Resources Information Center

    Koretz, Daniel M.; Hamilton, Laura S.

    Previous studies of the validity of gains on high-stakes tests have compared trends in scores on a high-stakes test to trends on a lower-stakes test, such as NAEP. However, generalizability of gains is likely to be incomplete even when gains are meaningful because of differences in the inferences the two tests are designed to support. Therefore,…

  12. Photon Beam Diagnostics for VISA FEL

    SciTech Connect

    Murokh, A.; Pellegrini, C.; Rosenzweig, J.; Frigola, P.; Musumeci, P.; Tremaine, A.; Babzien, M.; Ben-Zvi, I.; Doyuran, A.; Johnson, E.; Skaritka, J.; Wang, X.J.; Van Bibber, K.; Hill, J.M.; LeSage, G.P.; Nguyen, D.; Cornacchia, M.

    1999-11-05

    The VISA (Visible to Infrared SASE Amplifier) project is designed to be a SASE-FEL driven to saturation in the sub-micron wavelength region. Its goal is to test various aspects of the existing theory of Self-Amplified Spontaneous Emission, as well as numerical codes. Measurements include: angular and spectral distribution of the FEL light at the exit and inside of the undulator; electron beam micro-bunching using CTR; single-shot time resolved measurements of the pulse profile, using auto-correlation technique and FROG algorithm. The diagnostics are designed to provide maximum information on the physics of the SASE-FEL process, to ensure a close comparison of the experimental results with theory and simulations.

  13. High-Current Gain Two-Dimensional MoS₂-Base Hot-Electron Transistors.

    PubMed

    Torres, Carlos M; Lan, Yann-Wen; Zeng, Caifu; Chen, Jyun-Hong; Kou, Xufeng; Navabi, Aryan; Tang, Jianshi; Montazeri, Mohammad; Adleman, James R; Lerner, Mitchell B; Zhong, Yuan-Liang; Li, Lain-Jong; Chen, Chii-Dong; Wang, Kang L

    2015-12-09

    The vertical transport of nonequilibrium charge carriers through semiconductor heterostructures has led to milestones in electronics with the development of the hot-electron transistor. Recently, significant advances have been made with atomically sharp heterostructures implementing various two-dimensional materials. Although graphene-base hot-electron transistors show great promise for electronic switching at high frequencies, they are limited by their low current gain. Here we show that, by choosing MoS2 and HfO2 for the filter barrier interface and using a noncrystalline semiconductor such as ITO for the collector, we can achieve an unprecedentedly high-current gain (α ∼ 0.95) in our hot-electron transistors operating at room temperature. Furthermore, the current gain can be tuned over 2 orders of magnitude with the collector-base voltage albeit this feature currently presents a drawback in the transistor performance metrics such as poor output resistance and poor intrinsic voltage gain. We anticipate our transistors will pave the way toward the realization of novel flexible 2D material-based high-density, low-energy, and high-frequency hot-carrier electronic applications.

  14. 75 FR 61228 - Board Meeting: Technical Lessons Gained From High-Level Nuclear Waste Disposal Efforts

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-04

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR WASTE TECHNICAL REVIEW BOARD Board Meeting: Technical Lessons Gained From High-Level Nuclear Waste Disposal Efforts Pursuant to its authority under section 5051 of Public Law 100-203, Nuclear Waste Policy Amendments Act...

  15. The APS SASE FEL : modeling and code comparison.

    SciTech Connect

    Biedron, S. G.

    1999-04-20

    A self-amplified spontaneous emission (SASE) free-electron laser (FEL) is under construction at the Advanced Photon Source (APS). Five FEL simulation codes were used in the design phase: GENESIS, GINGER, MEDUSA, RON, and TDA3D. Initial comparisons between each of these independent formulations show good agreement for the parameters of the APS SASE FEL.

  16. High Average Power Laser Gain Medium With Low Optical Distortion Using A Transverse Flowing Liquid Host

    DOEpatents

    Comaskey, Brian J.; Ault, Earl R.; Kuklo, Thomas C.

    2005-07-05

    A high average power, low optical distortion laser gain media is based on a flowing liquid media. A diode laser pumping device with tailored irradiance excites the laser active atom, ion or molecule within the liquid media. A laser active component of the liquid media exhibits energy storage times longer than or comparable to the thermal optical response time of the liquid. A circulation system that provides a closed loop for mixing and circulating the lasing liquid into and out of the optical cavity includes a pump, a diffuser, and a heat exchanger. A liquid flow gain cell includes flow straighteners and flow channel compression.

  17. Long wavelength, high gain InAsSb strained-layer superlattice photoconductive detectors

    DOEpatents

    Biefeld, Robert M.; Dawson, L. Ralph; Fritz, Ian J.; Kurtz, Steven R.; Zipperian, Thomas E.

    1991-01-01

    A high gain photoconductive device for 8 to 12 .mu.m wavelength radiation including an active semiconductor region extending from a substrate to an exposed face, the region comprising a strained-layer superlattice of alternating layers of two different InAs.sub.1-x Sb.sub.x compounds having x>0.75. A pair of spaced electrodes are provided on the exposed face, and changes in 8 to 12 .mu.m radiation on the exposed face cause a large photoconductive gain between the spaced electrodes.

  18. High current gain 4H-SiC bipolar junction transistor

    NASA Astrophysics Data System (ADS)

    Yourun, Zhang; Jinfei, Shi; Ying, Liu; Chengchun, Sun; Fei, Guo; Bo, Zhang

    2016-04-01

    A novel 4H-SiC BJT of high current gain with a suppressing surface traps effect has been proposed. It is effective to improve the current gain due to the lower electrons density in the surface region by extending the emitter metal to overlap the passivation layer on the extrinsic base surface. The electrons trapped in the extrinsic base surface induce the degeneration of SiC BJTs device performance. By modulating the electron recombination rate, the novel structure can increase the current gain to 63.2% compared with conventional ones with the compatible process technology. Optimized sizes are an overlapped metal length of 4 μm, as well as an oxide layer thickness of 50 nm. Project supported by the National Natural Science Foundation of China (Nos. 61306093, 61401075).

  19. Design of anisotropic focusing metasurface and its application for high-gain lens antenna

    NASA Astrophysics Data System (ADS)

    Guo, Wenlong; Wang, Guangming; Li, Haipeng; Li, Tangjing; Ge, Qichao; Zhuang, Yaqiang

    2017-03-01

    In this paper, we propose an anisotropic focusing metasurface with function of focusing orthogonally polarized waves in refraction and reflection modes respectively. By employing four layered metallic patches spaced by triple layered dielectric spacers, an anisotropic phase element is designed with capability of transmitting x-polarized waves but reflecting y-polarized beams efficiently. Composed of 21 × 21 cells and with size of 105 × 105 mm2, a focusing metasurface operating at 15 GHz is designed with the same focal length of 30 mm for x- and y-polarized waves. By setting a patch antenna at the focal point, the metasurface sample is employed to enhance gain of the radiation source. For verification, the metasurface sample is fabricated and measured. The antenna performance, in terms of realized boresight gain and operating bandwidth under x- and y-polarized waves illumination, is presented. Results show that the 1 dB gain bandwidths are respectively from 14.7 to 15.3 GHz and 14.7 to 15.2 GHz, and the gain are enhanced by 14.1 dB, 15.1 dB in refraction and reflection modes when the metasurface is impinged by x- and y-polarized spherical waves. The proposed anisotropic metasurface may afford an alternative for designing anisotropic planar lens or high-gain antenna.

  20. Microcavity Laser Based on a Single Molecule Thick High Gain Layer.

    PubMed

    Palatnik, Alexander; Aviv, Hagit; Tischler, Yaakov R

    2017-04-05

    The ability to confine excitons within monolayers has led to fundamental investigations of non-radiative energy transfer, super-radiance, strong light-matter coupling, high-efficiency LEDs, and recently lasers in lateral resonator architectures. Vertical Cavity Surface Emitting Lasers (VCSELs), in which lasing occurs perpendicular to the device plane, are critical for telecommunications and large-scale photonics integration, however strong optical self-absorption and low fluorescence quantum yields have thus far prevented coherent emission from a monolayer microcavity device. Here we show lasing from a monolayer VCSEL using a single molecule thick film of amphiphilic fluorescent dye, assembled via Langmuir-Blodgett deposition, as the gain layer. Threshold was observed when 5% of the molecules were excited (4.4 μJ/cm(2)). At this level of excitation, the optical gain in the monolayer exceeds 1056 cm(-1). High localization of the excitons in the VCSEL gain layer can enhance their collective emission properties with Langmuir-Blodgett deposition presenting a paradigm for engineering the high gain layers on the molecular level.

  1. High gain GaAs photoconductive semiconductor switches for ground penetrating radar

    SciTech Connect

    Loubriel, G.M.; Aurand, J.F.; Buttram, M.T.; Zutavern, F.J.; Helgeson, W.D.; O`Malley, M.W.; Brown, D.J.

    1996-07-01

    The ability of high gain GaAs Photoconductive Semiconductor switches (PCSS) to deliver high peak power, fast risetime pulses when triggered with small laser diode arrays makes them suitable for their use in radars that rely on fast impulses. This type of direct time domain radar is uniquely suited for observation of large structures under ground because it can operate at low frequencies and at high average power. This paper will summarize the state-of-the-art in high gain GaAs switches and discuss their use in a radar transmitter. We will also present a summary of an analysis of the effectiveness of different pulser geometries that result in transmitted pulses with varying frequency content. To this end we developed a simple model that includes transmit and receive antenna response, attenuation and dispersion of the electromagnetic impulses by the soil, and target cross sections.

  2. Physical design of FEL injector based on the performance-enhanced EC-ITC RF gun

    NASA Astrophysics Data System (ADS)

    Hu, Tong-Ning; Chen, Qu-Shan; Pei, Yuan-Ji; Li, Ji; Qin, Bin

    2014-01-01

    To meet the requirements of high performance THz-FEL (Free Electron Laser), a compact scheme of FEL injector was proposed. A thermionic cathode was chosen to emit electrons instead of a photo-cathode with its complex structure and high cost. The effective bunch charge was improved to ~200 pC by adopting an enhanced EC-ITC (External Cathode Independently Tunable Cells) RF gun to extract micro-bunches; back bombardment effects were almost eliminated as well. Constant gradient accelerator structures were designed to improve energy to ~14 MeV, while the focusing system was applied for emittance suppressing and bunch state maintenance. The physical design and beam dynamics of the key components for the FEL injector were analyzed. Furthermore, start-to-end simulations with multi-pulses were performed using homemade MATLAB and Parmela. The results show that continual high brightness electron bunches with a low energy spread and emittance could be obtained stably.

  3. EXPERIENCE AND PLANS OF THE JLAB FEL FACILITY AS A USER FACILITY

    SciTech Connect

    Michelle D. Shinn

    2007-08-26

    Jefferson Lab's IR Upgrade FEL building was planned from the beginning to be a user facility, and includes an associated 600 m2 area containing seven laboratories. The high average power capability (multikilowatt-level) in the near-infrared (1-3 microns), and many hundreds of watts at longer wavelengths, along with an ultrafast (~ 1 ps) high PRF (10's MHz) temporal structure makes this laser a unique source for both applied and basic research. In addition to the FEL, we have a dedicated laboratory capable of delivering high power (many tens of watts) of broadband THz light. After commissioning the IR Upgrade, we once again began delivering beam to users in 2005. In this presentation, I will give an overview of the FEL facility and its current performance, lessons learned over the last two years, and a synopsis of current and future experiments.

  4. High-gain visual feedback exacerbates ankle movement variability in children.

    PubMed

    Moon, Hwasil; Kim, Changki; Kwon, MinHyuk; Chen, Yen-Ting; Fox, Emily; Christou, Evangelos A

    2015-05-01

    The purpose was to compare the effect of low- and high-gain visual feedback on ankle movement variability and muscle activation in children and young adults. Six young adults (19.8 ± 0.6 years) and nine children (9.4 ± 1.6 years) traced a sinusoidal target by performing ankle plantar/dorsiflexion movements. The targeted range of motion was 10°, and the frequency of the sinusoidal target was 0.4 Hz for 35 s. Low-gain visual feedback was 0.66°, and high-gain visual feedback was 4.68°. Surface EMG was recorded from the tibialis anterior (TA) muscle. Movement variability amplitude was quantified as the standard deviation of the position fluctuations after the task frequency was removed with a notch filter (second-order; 0.3-0.5 Hz). We quantified the oscillations in movement variability and TA EMG burst using the following frequency bands: 0-0.3, 0.3-0.6, 0.6-0.9, 0.9-1.2, and 1.2-1.5 Hz. Children exhibited greater movement variability than young adults, which was exacerbated during the high-gain visual feedback condition (P < 0.05). The greater ankle movement variability in children at the high-gain visual feedback condition was predicted by greater power within the 0-0.3 Hz of their movement variability (R (2) = 0.51, P < 0.001). The greater power in movement variability from 0 to 0.3 Hz in children was predicted by greater power within the 0-0.3 Hz in their TA EMG burst activity (R (2) = 0.6, P < 0.001). The observed deficiency in movement control with amplified visual feedback in children may be related to an ineffective use of visual feedback and the immaturity of the cortico-motor systems.

  5. High gain, Fast Scan, Broad Spectrum Parallel Beam Wavelength Dispersive X-ray Spectrometer for SEM

    SciTech Connect

    OHara, David

    2009-05-08

    During contract # DE-FG02-ER83545, Parallax Research, Inc. developed a High gain, Fast Scan Broad Spectrum Parallel beam Wavelength Dispersive X-ray Spectrometer for use on Scanning Electron Microscopes (SEM). This new spectrometer allows very fast high resolution elemental analysis of samples in an electron microscope. By comparison to previous WDS spectrometers, it can change from one energy position to another very quickly and has an extended range compared to some similar products.

  6. Multidimensional simulation studies of the SELENE FEL oscillator/buncher followed by a radiator/amplifier output scheme

    SciTech Connect

    Hahn, S.J.; Fawley, W.M.

    1995-02-01

    We analyze and present numerical simulations of the so-called electron output scheme [G. I. Erg et al., 15th Int. FEL Conf., The Hague, The Netherlands, 1993, Book of Abstracts p. 50; Preprint Budker INP 93-75] applied to the SELENE proposal of using a high power FEL to illuminate satellite solar cells. In this scheme, a first stage FEL oscillator bunches the electron beam while a second stage ``radiator`` extracts high power radiation. Our analysis suggests only in the case where the radiator employs a long, tapered undulator will the electron output scheme produce a significant increase in extraction efficiency over what is obtainable from a simple, single-stage oscillator. 1- and 2-D numerical simulations of a 1.7{mu}m FEL employing the electron output scheme show reasonably large bunching fractions ({approximately} 0.3--0.4) at the output of the oscillator stage but only {le}2% extraction efficiency from the radiator stage.

  7. Gain and noise characteristics of high-bit-rate silicon parametric amplifiers.

    PubMed

    Sang, Xinzhu; Boyraz, Ozdal

    2008-08-18

    We report a numerical investigation on parametric amplification of high-bit-rate signals and related noise figure inside silicon waveguides in the presence of two-photon absorption (TPA), TPA-induced free-carrier absorption, free-carrier-induced dispersion and linear loss. Different pump parameters are considered to achieve net gain and low noise figure. We show that the net gain can only be achieved in the anomalous dispersion regime at the high-repetition-rate, if short pulses are used. An evaluation of noise properties of parametric amplification in silicon waveguides is presented. By choosing pulsed pump in suitably designed silicon waveguides, parametric amplification can be a chip-scale solution in the high-speed optical communication and optical signal processing systems.

  8. PFM2: a 32 × 32 processor for X-ray diffraction imaging at FELs

    NASA Astrophysics Data System (ADS)

    Manghisoni, M.; Fabris, L.; Re, V.; Traversi, G.; Ratti, L.; Grassi, M.; Lodola, L.; Malcovati, P.; Vacchi, C.; Pancheri, L.; Benkechcache, M. E. A.; Dalla Betta, G.-F.; Xu, H.; Verzellesi, G.; Ronchin, S.; Boscardin, M.; Batignani, G.; Bettarini, S.; Casarosa, G.; Forti, F.; Giorgi, M.; Paladino, A.; Paoloni, E.; Rizzo, G.; Morsani, F.

    2016-11-01

    This work is concerned with the design of a readout chip for application to experiments at the next generation X-ray Free Electron Lasers (FEL). The ASIC, named PixFEL Matrix (PFM2), has been designed in a 65 nm CMOS technology and consists of 32 × 32 pixels. Each cell covers an area of 110 × 110 μm2 and includes a low-noise charge sensitive amplifier (CSA) with dynamic signal compression, a time-variant shaper used to process the preamplifier output signal, a 10-bit successive approximation register (SAR) analog-to-digital converter (ADC) and digital circuitry for channel control and data readout. Two different solutions for the readout channel, based on different versions of the time-variant filter, have been integrated in the chip. Both solutions can be operated in such a way to cope with the high frame rate (exceeding 1 MHz) foreseen for future X-ray FEL machines. The ASIC will be bump bonded to a slim/active edge pixel sensor to form the first demonstrator for the PixFEL X-ray imager. This work has been carried out in the frame of the PixFEL project funded by Istituto Nazionale di Fisica Nucleare (INFN), Italy.

  9. Polarization control in X-ray FELs by reverse undulator tapering

    NASA Astrophysics Data System (ADS)

    Schneidmiller, E. A.; Yurkov, M. V.

    2015-05-01

    Baseline design of a typical X-ray FEL undulator assumes a planar configuration which results in a linear polarization of the FEL radiation. However, many experiments at X-ray FEL user facilities would profit from using a circularly polarized radiation. As a cheap upgrade one can consider an installation of a short helical (or cross-planar) afterburner, but then one should have an efficient method to suppress powerful linearly polarized background from the main undulator. In this paper we propose a new method for such a suppression: an application of the reverse taper in the main undulator. We discover that in a certain range of the taper strength, the density modulation (bunching) at saturation is practically the same as in the case of non-tapered undulator while the power of linearly polarized radiation is suppressed by orders of magnitude. Then strongly modulated electron beam radiates at full power in the afterburner. Considering SASE3 undulator of the European XFEL as a practical example, we demonstrate that soft X-ray radiation pulses with peak power in excess of 100 GW and an ultimately high degree of circular polarization can be produced. The proposed method is rather universal, i.e. it can be used at SASE FELs and seeded (self-seeded) FELs, with any wavelength of interest, in a wide range of electron beam parameters, and with any repetition rate.

  10. GINGER simulations of short-pulse effects in the LEUTL FEL

    SciTech Connect

    Huang, Z.; Fawley, W.M.

    2001-07-01

    While the long-pulse, coasting beam model is often used in analysis and simulation of self-amplified spontaneous emission (SASE) free-electron lasers (FELs), many current SASE demonstration experiments employ relatively short electron bunches whose pulse length is on the order of the radiation slippage length. In particular, the low-energy undulator test line (LEUTL) FEL at the Advanced Photon Source has recently lased and nominally saturated in both visible and near-ultraviolet wavelength regions with a sub-ps pulse length that is somewhat shorter than the total slippage length in the 22-m undulator system. In this paper we explore several characteristics of the short pulse regime for SASE FELs with the multidimensional, time-dependent simulation code GINGER, concentrating on making a direct comparison with the experimental results from LEUTL. Items of interest include the radiation gain length, pulse energy, saturation position, and spectral bandwidth. We address the importance of short-pulse effects when scaling the LEUTL results to proposed x-ray FELs and also briefly discuss the possible importance of coherent spontaneous emission at startup.

  11. Comparing an optical parametric oscillator (OPO) as a viable alternative for mid-infrared tissue ablation with a free electron laser (FEL).

    PubMed

    Mackanos, Mark A; Simanovskii, Dmitrii M; Contag, Christopher H; Kozub, John A; Jansen, E Duco

    2012-11-01

    Beneficial medical laser ablation removes material efficiently with minimal collateral damage. A Mark-III free electron laser (FEL), at a wavelength of 6.45 μm has demonstrated minimal damage and high ablation yield in ocular and neural tissues. While this wavelength has shown promise for surgical applications, further advances are limited by the high overhead for FEL use. Alternative mid-infrared sources are needed for further development. We compared the FEL with a 5-μs pulse duration with a Q-switched ZGP-OPO with a 100-ns pulse duration at mid-infrared wavelengths. There were no differences in the ablation threshold of water and mouse dermis with these two sources in spite of the difference in their pulse structures. There was a significant difference in crater depth between the ZGP:OPO and the FEL. At 6.1 μm, the OPO craters are eight times the depth of the FEL craters. The OPO craters at 6.45 and 6.73 μm were six and five times the depth of the FEL craters, respectively. Bright-field (pump-probe) images showed the classic ablation mechanism from formation of a plume through collapse and recoil. The crater formation, ejection, and collapse phases occurred on a faster time-scale with the OPO than with the FEL. This research showed that a ZGP-OPO laser could be a viable alternative to FEL for clinical applications.

  12. CMOS highly linear direct-conversion transmitter for WCDMA with fine gain accuracy

    NASA Astrophysics Data System (ADS)

    Xin, Li; Jian, Fu; Yumei, Huang; Zhiliang, Hong

    2011-08-01

    A highly linear, high output power, 0.13 μm CMOS direct conversion transmitter for wideband code division multiple access (WCDMA) is described. The transmitter delivers 6.8 dBm output power with 38 mA current consumption. With careful design on the resistor bank in the IQ-modulator, the gain step accuracy is within 0.1 dB, hence the image rejection ratio can be kept below -47 dBc for the entire output range. The adjacent channel leakage ratio and the LO leakage at 6.8 dBm output power are -44 dBc @ 5 MHz and -37 dBc, respectively, and the corresponding EVM is 3.6%. The overall gain can be programmed in 6 dB steps in a 66-dB range.

  13. High power double-scale pulses from a gain-guided double-clad fiber laser

    NASA Astrophysics Data System (ADS)

    Zhang, Haitao; Gao, Gan; Li, Qinghua; Gong, Mali

    2017-03-01

    Generation of high power double-scale pulses from a gain-guided double-clad fiber laser is experimentally demonstrated. By employing the Yb-doped 10/130 double-clad fiber as the gain medium, the laser realizes an output power of 5.1 W and pulse energy of 0.175 µJ at repetition rate of 29.14 MHz. To the best of our knowledge, this average output power is the highest among the reported double-scale pulse oscillators. The autocorrelation trace of pulses contains the short (98 fs) and long (29.5 ps) components, and the spectral bandwidth of the pulse is 27.3 nm. Such double-scale pulses are well suited for seeding the high power MOPA (master oscillator power amplifier) systems, nonlinear frequency conversion and optical coherence tomography.

  14. Mode control in a high gain relativistic klystron amplifier with 3 GW output power

    NASA Astrophysics Data System (ADS)

    Wu, Yang; Xie, Hong-Quan; Xu, Zhou

    2014-01-01

    Higher mode excitation is very serious in the relativistic klystron amplifier, especially for the high gain relativistic amplifier working at tens of kilo-amperes. The mechanism of higher mode excitation is explored in the PIC simulation and it is shown that insufficient separation of adjacent cavities is the main cause of higher mode excitation. So RF lossy material mounted on the drift tube wall is adopted to suppress higher mode excitation. A high gain S-band relativistic klystron amplifier is designed for the beam current of 13 kA and the voltage of 1 MV. PIC simulation shows that the output power is 3.2 GW when the input power is only 2.8 kW.

  15. Study of CSR Effects in the Jefferson Laboratory FEL Driver

    SciTech Connect

    Hall, C. C.; Biedron, S.; Burleson, Theodore A.; Milton, Stephen V.; Morin, Auralee L.; Benson, Stephen V.; Douglas, David R.; Evtushenko, Pavel E.; Hannon, Fay E.; Li, Rui; Tennant, Christopher D.; Zhang, Shukui; Carlsten, Bruce E.; Lewellen, John W.

    2013-08-01

    In a recent experiment conducted on the Jefferson Laboratory IR FEL driver the effects of Coherent Synchrotron Radiation (CSR) on beam quality were studied. The primary goal of this work was to explore CSR output and effect on the beam with variation of the bunch compression in the IR chicane. This experiment also provides a valuable opportunity to benchmark existing CSR models in a system that may not be fully represented by a 1-D CSR model. Here we present results from this experiment and compare to initial simulations of CSR in the magnetic compression chicane of the machine. Finally, we touch upon the possibility for CSR induced microbunching gain in the magnetic compression chicane, and show that parameters in the machine are such that it should be thoroughly damped.

  16. Nonlinear harmonic generation in high-gain free-electron lasers

    SciTech Connect

    Dattoli, G.; Ottaviani, P.L.; Pagnutti, S.

    2005-06-01

    We reconsider the derivation of semianalytical expressions providing the most significant aspects of the high-gain free-electron laser dynamics. We obtain new expressions for the growth of the laser power, of the e-beam-induced energy spread, and of the higher-order nonlinearly generated harmonics. The procedure we employ, based on theoretical ansatz and fitting methods, allows the determination of crucial quantities like the expected harmonic output power and its dependences on the e-beam parameters.

  17. Cat (Fel d 1) and dog (Can f 1) allergen levels in cars, dwellings and schools.

    PubMed

    Niesler, A; Ścigała, G; Łudzeń-Izbińska, B

    Pets are an important source of indoor allergens. The aim of the study was to compare cat and dog allergen levels in cars, schools and homes. The study was carried out in 17 cars, 14 classrooms and 19 dwellings located in the highly industrialized and urbanized region of Poland. Dust and air samples were analyzed for Fel d 1 and Can f 1 using a double monoclonal ELISA assay. The highest amounts of cat and dog allergens (Fel d 1: 1169 μg/g; Can f 1: 277 μg/g) were found in dwellings with pets. Allergen concentrations were correlated with the number of animals kept at home. Although concentrations on automobile seats were lower, Fel d 1 levels exceeded 8 μg/g in 23.5 % of cars and high levels of Can f 1 (>10 μg/g) were found in 17.6 % of cars. The study revealed that cars of pet owners may be reservoirs of cat and dog allergens even when animals are not transported in them. In schools, concentrations of pet allergens did not reach high levels, but the moderate levels of Fel d 1 (≥1-8 μg/g) and Can f 1 (≥2-10 μg/g) were detected in 42.9 and 7.1 % of the investigated classrooms. Concentrations of cat and dog allergen in schools were higher than in homes without pets. While airborne Fel d 1 and Can f 1 levels were found low, residential allergen concentrations in settled dust and air were correlated. The study results suggest that classrooms and cars of pet owners may be important sites of exposure to cat and dog allergens, though the highest concentrations of Fel d 1 and Can f 1 are found in homes of pet owners.

  18. IR-FEL-induced green fluorescence protein (GFP) gene transfer into plant cell

    NASA Astrophysics Data System (ADS)

    Awazu, Kunio; Kinpara, Takeshi; Tamiya, Eiichi

    2002-05-01

    A Free Electron Laser (FEL) holds potential for various biotechnological applications due to its characteristics such as flexible wavelength tunability, short pulse and high peak power. We could successfully introduce the Green Fluorescent Protein (GFP) gene into tobacco BY2 cells by IR-FEL laser irradiation. The irradiated area of the solution containing BY2 cells and plasmid was about 0.1 mm 2. FEL irradiation at a wavelength of 5.75 and 6.1 μm, targeting absorption by the ester bond of the lipid and the amide I bond of the protein, respectively, was shown to cause the introduction of the fluorescent dye into the cell. On the other hand, transient expression of the GFP fluorescence was only observed after irradiation at 5.75 μm. The maximum transfer efficiency was about 0.5%.

  19. The research facilities of the Duke FEL Laboratory - uniqueness and challenges

    SciTech Connect

    Madey, J.M.J.; Barnett, G.; Burnham, B.

    1995-12-31

    FEL light sources offer unique promise as broadly tuneable, high brightness sources of radiation throughout the electromagnetic spectrum. But the effective utilization of these new light sources also raises a series of unprecedented issues and challenges arising, in general, from the limited number of beamlines which can be supported by a single source. The cost effective utilization of this technology therefore requires emphasis on (1) the realization of one or more truly unique research capabilities, (2) the optimization of access to the research beamlines which are available, and (3) the management and support services required by users to maximize their productivity. The experience we have acquired in the development and operation of the facilities of the Duke FEL Lab provide a point of reference which may prove useful to other research-oriented FEL facilities.

  20. Quasi-real-time photon pulse duration measurement by analysis of FEL radiation spectra

    PubMed Central

    Engel, Robin; Düsterer, Stefan; Brenner, Günter; Teubner, Ulrich

    2016-01-01

    For photon diagnostics at free-electron lasers (FELs), the determination of the photon pulse duration is an important challenge and a complex task. This is especially true for SASE FELs with strongly fluctuating pulse parameters. However, most techniques require an extensive experimental setup, data acquisition and evaluation time, limiting the usability in all-day operation. In contrast, the presented work uses an existing approach based on the analysis of statistical properties of measured SASE FEL spectra and implements it as a software tool, integrated in FLASH’s data acquisition system. This allows the calculation of the average pulse durations from a set of measured spectral distributions with only seconds of delay, whenever high-resolution spectra are recorded. PMID:26698053

  1. Output characteristics of SASE-driven short-wavelength FELs

    NASA Astrophysics Data System (ADS)

    Fawley, William M.

    1997-05-01

    This paper investigates various properties of the 'microspikes' associated with self-amplified spontaneous emission (SASE) in a short wavelength free-electron laser (FEL). Using results from the 2-D numerical simulation code GINGER, we confirm theoretical predictions such as the convective group velocity in the exponential gain regime. In the saturated gain regime beyond the initial saturation, we find that the average radiation power continues to grow with an approximately linearly dependence upon undulator length. Moreover, the spectrum significantly broadens and shifts in wavelength to the redward direction, with P(omega) approaching a constant, asymptotic value. This is in marked contrast to the exponential gain regime where the spectrum steadily narrows, P(omega) grows, and the central wavelength remains constant with z. Via use of a spectrogram diagnostic S(omega, t), it appears that the radiation pattern in the saturated gain regime is composed of an ensemble of distinct 'sinews' whose widths (Delta) (lambda) remain approximately constant but whose central wavelengths can 'chirp' by varying a small extent with t.

  2. Enhancing speed of pinning synchronizability: low-degree nodes with high feedback gains

    NASA Astrophysics Data System (ADS)

    Zhou, Ming-Yang; Zhuo, Zhao; Liao, Hao; Fu, Zhong-Qian; Cai, Shi-Min

    2015-12-01

    Controlling complex networks is of paramount importance in science and engineering. Despite recent efforts to improve controllability and synchronous strength, little attention has been paid to the speed of pinning synchronizability (rate of convergence in pinning control) and the corresponding pinning node selection. To address this issue, we propose a hypothesis to restrict the control cost, then build a linear matrix inequality related to the speed of pinning controllability. By solving the inequality, we obtain both the speed of pinning controllability and optimal control strength (feedback gains in pinning control) for all nodes. Interestingly, some low-degree nodes are able to achieve large feedback gains, which suggests that they have high influence on controlling system. In addition, when choosing nodes with high feedback gains as pinning nodes, the controlling speed of real systems is remarkably enhanced compared to that of traditional large-degree and large-betweenness selections. Thus, the proposed approach provides a novel way to investigate the speed of pinning controllability and can evoke other effective heuristic pinning node selections for large-scale systems.

  3. High Adherence Is Necessary to Realize Health Gains from Water Quality Interventions

    PubMed Central

    Brown, Joe; Clasen, Thomas

    2012-01-01

    Background Safe drinking water is critical for health. Household water treatment (HWT) has been recommended for improving access to potable water where existing sources are unsafe. Reports of low adherence to HWT may limit the usefulness of this approach, however. Methods and Findings We constructed a quantitative microbial risk model to predict gains in health attributable to water quality interventions based on a range of assumptions about pre-treatment water quality; treatment effectiveness in reducing bacteria, viruses, and protozoan parasites; adherence to treatment interventions; volume of water consumed per person per day; and other variables. According to mean estimates, greater than 500 DALYs may be averted per 100,000 person-years with increased access to safe water, assuming moderately poor pre-treatment water quality that is a source of risk and high treatment adherence (>90% of water consumed is treated). A decline in adherence from 100% to 90% reduces predicted health gains by up to 96%, with sharpest declines when pre-treatment water quality is of higher risk. Conclusions Results suggest that high adherence is essential in order to realize potential health gains from HWT. PMID:22586491

  4. Enhancing speed of pinning synchronizability: low-degree nodes with high feedback gains

    PubMed Central

    Zhou, Ming-Yang; Zhuo, Zhao; Liao, Hao; Fu, Zhong-Qian; Cai, Shi-Min

    2015-01-01

    Controlling complex networks is of paramount importance in science and engineering. Despite recent efforts to improve controllability and synchronous strength, little attention has been paid to the speed of pinning synchronizability (rate of convergence in pinning control) and the corresponding pinning node selection. To address this issue, we propose a hypothesis to restrict the control cost, then build a linear matrix inequality related to the speed of pinning controllability. By solving the inequality, we obtain both the speed of pinning controllability and optimal control strength (feedback gains in pinning control) for all nodes. Interestingly, some low-degree nodes are able to achieve large feedback gains, which suggests that they have high influence on controlling system. In addition, when choosing nodes with high feedback gains as pinning nodes, the controlling speed of real systems is remarkably enhanced compared to that of traditional large-degree and large-betweenness selections. Thus, the proposed approach provides a novel way to investigate the speed of pinning controllability and can evoke other effective heuristic pinning node selections for large-scale systems. PMID:26626045

  5. High gain low noise L-band preamplifier with cascade double-pass structure

    NASA Astrophysics Data System (ADS)

    Jia, Dongfang; Wang, Yanyong; Bao, Huanmin; Yang, Tianxin; Li, Shichen

    2005-06-01

    An optimized two-stage-cascade double-pass structure L-band preamplifier was proposed and experimentally studied to overcome the shortcomings of low gain coefficient and high noise figure of L-band erbium-doped fiber amplifier (EDFA). The fiber lengthes of 6.5 and 32.5 m, pump powers of 130 and 119 mW for the first and second stages respectively are used in the experiment. When input signal power is -30 dBm, the amplifier can provide gain above 38.84 dB in a wavelength range of 34 nm (1568---1602 nm), gain ripple less than 2.04 dB (40.88---38.84 dB), and noise figures lower than 5.29 dB with the lowest value of 3.95 dB at 1590 nm. Experimental and simulation results show that this low cost and high pump efficiency amplifier is suitable for the application as an L-band preamplifier in the broadband fiber communication system.

  6. Precision motion control with a high gain disturbance compensator for linear motors.

    PubMed

    Tan, Kok Kiong; Zhao, Shao

    2004-07-01

    In this paper, we address the problem relating to the precision control of permanent magnet linear motors to track repeated motion trajectories. A high gain disturbance compensator is developed to improve the control performance degraded due to the presence of significant disturbances. An inverse gain of the overall system model is used to set up a disturbance observer. The observed disturbance is then used to generate a "knocker" signal, to be augmented to the control signal, which can provide the additional energy necessary to overcome the effects of the disturbances. A learning scheme is used to adjust the knocker signal iteratively over the repeated cycles. Simulation and experimental results are furnished to demonstrate the effectiveness of the proposed control scheme.

  7. A bootstrapped, low-noise, and high-gain photodetector for shot noise measurement

    SciTech Connect

    Zhou, Haijun; Yang, Wenhai; Li, Zhixiu; Li, Xuefeng; Zheng, Yaohui

    2014-01-15

    We presented a low-noise, high-gain photodetector based on the bootstrap structure and the L-C (inductance and capacitance) combination. Electronic characteristics of the photodetector, including electronic noise, gain and frequency response, and dynamic range, were verified through a single-frequency Nd:YVO{sub 4} laser at 1064 nm with coherent output. The measured shot noise of 50 μW laser was 13 dB above the electronic noise at the analysis frequency of 2 MHz, and 10 dB at 3 MHz. And a maximum clearance of 28 dB at 2 MHz was achieved when 1.52 mW laser was illuminated. In addition, the photodetector showed excellent linearities for both DC and AC amplifications in the laser power range between 12.5 μW and 1.52 mW.

  8. Parametric x-ray FEL operating with external Bragg reflectors

    SciTech Connect

    Baryshevsky, V.G.; Batrakov, K.G.; Dubovskaya, I.Ya.

    1995-12-31

    In the crystal X-ray FELs using channeling and parametric quasi-Cherenkov mechanisms of spontaneous radiation were considered as versions of FEL allowing, in principle, to obtain coherent X-ray source. In this case a crystal is both radiator and resonator for X-rays emitted by a particle beam passing through crystal. However, it is well-known that a beam current density required for lasing is extremely high in X-ray spectral range for any radiation mechanisms and it is very important to find a way to lower its magnitude. The application of three-dimensional distributed feedback formed by dynamical diffraction of emitted photons permitted to reduce starting beam current density 10{sup 2}-10{sup 4} times up to 10{sup 9}. One of ways to lower the starting current is the formation of multi-wave distributed feedback the another one is the application of external reflectors. The thing is that lasing regime was shown to be produced at frequencies in the vicinity of degeneration point for roots of dispersion equation describing radiation modes excited in an active medium (crystal plus particle beam). Unfortunately, in case of parametric quasi-Cherenkov FEL this region coincides with the region of strong self-absorption of radiation inside a crystal. That fact, obviously, increases the starting beam current. In this report we have shown that the application of external Bragg reflectors gives the possibility to lower radiation self-absorption inside a crystal by modifying radiation modes excited in the active medium under consideration. The corresponding dispersion equation and the expression for excited modes are derived. The generation equation determining starting conditions for lasing is obtained. Using these expressions we have shown that the application of external Bragg reflectors permits to reduce starting beam current density more than 10 times.

  9. Percentage of Body Fat and Weight Gain in Participants in the Tehran High School Wrestling Championship

    PubMed Central

    Kordi, Ramin; Nourian, Ruhollah; Rostami, Mohsen; Wallace, W. Angus

    2012-01-01

    Purpose Weight loss in wrestling has been found to be an interesting issue for researchers. In this regard, complications of weight loss in wrestlers before the competitions and their weight gain in course of competitions have been debated in previous studies. The objective of this study was to investigate the extent of weight gain and to estimate the percentage of body fat in participants in the Tehran high school male wrestling championship. Methods This study was a cross sectional survey. Subjects were participants of the Tehran high school male wrestling championship (n = 365). Weight gain in course of competitions and body fat levels (based on skin fold measurements) of subjects were measured. Results Between the first weigh-in of the wrestlers which was done one day before the competitions and the second weigh-in which was conducted immediately before the first round of their first competition (20 hours), 69% of subjects gained on average 1.3±0.9 kg (range: 0.1 to 6.10 kg) or 2.2±1.7% of the wrestler’s weight (range: 0.1 to 9.3). Among the subjects, the mean of fat body percentage was found to be 15.2%. Conclusions Rapid weight loss for matches was prevalent among subjects. It was also found that Iranian wrestlers have a relatively higher body fat percentage in comparison to American wrestlers. Therefore, it can be concluded that weight loss behavior of these wrestlers should be changed from using dehydration methods to using gradual methods of weight loss such as fat reduction methods. PMID:22942998

  10. Effects of bandwidth, compression speed, and gain at high frequencies on preferences for amplified music.

    PubMed

    Moore, Brian C J

    2012-09-01

    This article reviews a series of studies on the factors influencing sound quality preferences, mostly for jazz and classical music stimuli. The data were obtained using ratings of individual stimuli or using the method of paired comparisons. For normal-hearing participants, the highest ratings of sound quality were obtained when the reproduction bandwidth was wide (55 to 16000 Hz) and ripples in the frequency response were small (less than ± 5 dB). For hearing-impaired participants listening via a simulated five-channel compression hearing aid with gains set using the CAM2 fitting method, preferences for upper cutoff frequency varied across participants: Some preferred a 7.5- or 10-kHz upper cutoff frequency over a 5-kHz cutoff frequency, and some showed the opposite preference. Preferences for a higher upper cutoff frequency were associated with a shallow high-frequency slope of the audiogram. A subsequent study comparing the CAM2 and NAL-NL2 fitting methods, with gains slightly reduced for participants who were not experienced hearing aid users, showed a consistent preference for CAM2. Since the two methods differ mainly in the gain applied for frequencies above 4 kHz (CAM2 recommending higher gain than NAL-NL2), these results suggest that extending the upper cutoff frequency is beneficial. A system for reducing "overshoot" effects produced by compression gave small but significant benefits for sound quality of a percussion instrument (xylophone). For a high-input level (80 dB SPL), slow compression was preferred over fast compression.

  11. Developing high-power hybrid resonant gain-switched thulium fiber lasers.

    PubMed

    Yan, Shuo; Wang, Yao; Zhou, Yan; Yang, Nan; Li, Yue; Tang, Yulong; Xu, Jianqiu

    2015-10-05

    In this paper, we propose hybrid-pumped resonant gain-switched thulium fiber lasers to realize high-average-power and high-pulse-energy 2-μm laser emissions. Based on numerical simulation, laser dynamics (pulse peak power, pulse energy, pulse duration, etc.) of this kind of laser system are investigated in detail. By taking advantages of the 793 nm continuous wave pump and the 1900 nm pulsed pump, performance of the laser emission can be significantly improved, with the highest average power of 28 W, peak power of 3.5 kW, pulse energy of 281 μJ, and narrowest pulse duration of 92 ns, all of which can be further optimized through designing the cavity parameters and the pumping circumstance. Compared with the pump pulses, two times improvement in pulse energy and average power has been achieved. This hybrid resonant gain-switched system has an all-fiber configuration and high efficiency (low heat load), and can be steadily extended into the cladding pump scheme, thus paving a new way to realize high power (>100 W average power) and high pulse energy (>1 mJ) 2 μm thulium fiber lasers.

  12. Fat substitutes promote weight gain in rats consuming high-fat diets

    PubMed Central

    Swithers, Susan E.; Ogden, Sean B.; Davidson, Terry L.

    2011-01-01

    The use of food products designed to mimic the sensory properties of sweet and fat while providing fewer calories has been promoted as a method for reducing food intake and body weight. However, such products may interfere with one mechanism that animals use to regulate energy balance, a learned relationship between the sensory properites of food and the caloric consequences of consuming those foods. Consistent with this hypothesis, previous data have shown that providing rats with sweet tastes that are not associated with the delivery of calories using high-intensity sweeteners results in increased food intake, body weight and adiposity, but only if the diet on which they are maintained also tastes sweet. In the present experiment, we examined whether use of the fat substitute, olestra, would have similar consequences by comparing the effects of consuming high-fat, high-calorie potato chips to the effects of consuming potato chips that sometimes signalled high calories (using high-fat potato chips) and that sometimes signalled lower calories (using non-fat potato chips manufactured with the fat substitute olestra). The results demonstrated that food intake, body weight gain and adiposity were greater for rats that consumed both the high-calorie chips and the low-calorie chips with olestra compared to rats that consumed consuming only the high-calorie chips, but only if animals were also consuming a chow diet that was high in fat and calories. When animals were maintained on a low-fat chow diet, intake, weight gain, and adiposity did not differ significantly based on chip type. However, rats previously exposed to both the low-calorie chips with olestra and the high-calorie chips exhibited increased body weight gain, food intake and adiposity when they were provided with a high fat, high calorie chow diet, even though the potato chips were no longer available. This suggests that the experience with the chips containing olestra affected the ability to predict high

  13. Effects of high CO2 levels on dynamic photosynthesis: carbon gain, mechanisms, and environmental interactions.

    PubMed

    Tomimatsu, Hajime; Tang, Yanhong

    2016-05-01

    Understanding the photosynthetic responses of terrestrial plants to environments with high levels of CO2 is essential to address the ecological effects of elevated atmospheric CO2. Most photosynthetic models used for global carbon issues are based on steady-state photosynthesis, whereby photosynthesis is measured under constant environmental conditions; however, terrestrial plant photosynthesis under natural conditions is highly dynamic, and photosynthetic rates change in response to rapid changes in environmental factors. To predict future contributions of photosynthesis to the global carbon cycle, it is necessary to understand the dynamic nature of photosynthesis in relation to high CO2 levels. In this review, we summarize the current body of knowledge on the photosynthetic response to changes in light intensity under experimentally elevated CO2 conditions. We found that short-term exposure to high CO2 enhances photosynthetic rate, reduces photosynthetic induction time, and reduces post-illumination CO2 burst, resulting in increased leaf carbon gain during dynamic photosynthesis. However, long-term exposure to high CO2 during plant growth has varying effects on dynamic photosynthesis. High levels of CO2 increase the carbon gain in photosynthetic induction in some species, but have no significant effects in other species. Some studies have shown that high CO2 levels reduce the biochemical limitation on RuBP regeneration and Rubisco activation during photosynthetic induction, whereas the effects of high levels of CO2 on stomatal conductance differ among species. Few studies have examined the influence of environmental factors on effects of high levels of CO2 on dynamic photosynthesis. We identified several knowledge gaps that should be addressed to aid future predictions of photosynthesis in high-CO2 environments.

  14. High-cut characteristics of the baroreflex neural arc preserve baroreflex gain against pulsatile pressure.

    PubMed

    Kawada, Toru; Zheng, Can; Yanagiya, Yusuke; Uemura, Kazunori; Miyamoto, Tadayoshi; Inagaki, Masashi; Shishido, Toshiaki; Sugimachi, Masaru; Sunagawa, Kenji

    2002-03-01

    A transfer function from baroreceptor pressure input to sympathetic nerve activity (SNA) shows derivative characteristics in the frequency range below 0.8 Hz in rabbits. These derivative characteristics contribute to a quick and stable arterial pressure (AP) regulation. However, if the derivative characteristics hold up to heart rate frequency, the pulsatile pressure input will yield a markedly augmented SNA signal. Such a signal would saturate the baroreflex signal transduction, thereby disabling the baroreflex regulation of AP. We hypothesized that the transfer gain at heart rate frequency would be much smaller than that predicted from extrapolating the derivative characteristics. In anesthetized rabbits (n = 6), we estimated the neural arc transfer function in the frequency range up to 10 Hz. The transfer gain was lost at a rate of -20 dB/decade when the input frequency exceeded 0.8 Hz. A numerical simulation indicated that the high-cut characteristics above 0.8 Hz were effective to attenuate the pulsatile signal and preserve the open-loop gain when the baroreflex dynamic range was finite.

  15. High-Protein Diet Improves Postoperative Weight Gain After Massive Small-Bowel Resection

    PubMed Central

    Sun, Raphael C.; Choi, Pamela M.; Diaz-Miron, Jose; Sommovilla, Joshua; Guo, Jun; Erwin, Christopher R.

    2016-01-01

    Introduction Short bowel syndrome (SBS) is a morbid clinical condition that results from massive small-bowel resection (SBR). After SBR, there is a dramatic weight loss in the acute postoperative period. Our aim was to determine the impact of a high-protein diet (HPD) on weight gain and body composition in mice after SBR. Methods C57BL/6 mice underwent 50 % proximal SBR. Postoperatively, mice were randomly selected to receive standard rodent liquid diet (LD) (n=6) or an isocaloric HPD (n=9) for 28 days. Mice weights were recorded daily. Body composition analyses were obtained weekly. Student's t test was used for statistical comparisons with p<0.05 considered significant. Results Mice that were fed HPD after SBR returned to baseline weight on average at postoperative day (POD) 8 versus mice that were fed LD that returned to baseline weight on average at POD 22. Total fat mass and lean mass were significantly greater by POD 14 within the HPD group. Both groups of mice demonstrated normal structural adaptation. Conclusion HPD results in greater weight gain and improved body composition in mice after SBR. This finding may be clinically important for patients with SBS since improved weight gain may reduce the time needed for parenteral nutrition. PMID:25519080

  16. High-gain optical Cherenkov oscillator driven by low-voltage electron beam

    SciTech Connect

    Smetanin, I.V.; Oraevsky, A.N.

    1995-12-31

    A novel scheme of high-gain optical (from IR up to UV) Cherenkov-type oscillator driven by low-voltage high-current electron beam is proposed in the present report. In the scheme discussed the magnetized electron beam propagates above the surface of absorbing medium of complex dielectric susceptibility {epsilon}{omega} = {epsilon}{sub 1}({omega}) + i{epsilon}{sub 2}({omega}), {epsilon}{sub 2}>0. We have found that at frequencies {omega} that {beta}{sup 2}> 2{epsilon}{sub 1}/{vert_bar}{epsilon}{vert_bar}{sup 2} ({beta} = v/c, v is the electron velocity), an amplification of co-propagating slow surface electromagnetic wave is possible. In contrast to the conventional Cherenkov oscillators, the absorption condition {epsilon}2>0 is crucial for the gain, which is absent for transparent medium. The physics of this amplification effect is analogous to that of electron beam dissipative instability. The wavelength generated is determined here by dielectric properties of the surface, and does not depend strongly on electron energy. Thus it is possible to use rather compact low voltage ({le} 1MeV) high-current accelerators as drivers. Optimum oscillation conditions are found to be at frequencies near the resonance absorption lines of surface material (i.e. from IR up to UV). The gain up to {approximately}0.5cm{sup -1} in the near IR ({approximately}10THz, SrF{sub 2} absorption line) is possible for 250keV high current (density {approximately}10{sup 12}cm{sup -3}) electron beam.

  17. Nanoparticle-assisted high photoconductive gain in composites of polymer and fullerene.

    PubMed

    Chen, Hsiang-Yu; Lo, Michael K F; Yang, Guanwen; Monbouquette, Harold G; Yang, Yang

    2008-09-01

    Polymer-inorganic nanocrystal composites offer an attractive means to combine the merits of organic and inorganic materials into novel electronic and photonic systems. However, many applications of these composites are limited by the solubility and distribution of the nanocrystals in the polymer matrices. Here we show that blending CdTe nanoparticles into a polymer-fullerene matrix followed by solvent annealing can achieve high photoconductive gain under low applied voltages. The surface capping ligand renders the nanoparticles highly soluble in the polymer blend, thereby enabling high CdTe loadings. An external quantum efficiency as high as approximately 8,000% at 350 nm was achieved at -4.5 V. Hole-dominant devices coupled with atomic force microscopy images show a higher concentration of nanoparticles near the cathode-polymer interface. The nanoparticles and trapped electrons assist hole injection into the polymer under reverse bias, contributing to efficiency values in excess of 100%.

  18. Method and system for modulation of gain suppression in high average power laser systems

    DOEpatents

    Bayramian, Andrew James [Manteca, CA

    2012-07-31

    A high average power laser system with modulated gain suppression includes an input aperture associated with a first laser beam extraction path and an output aperture associated with the first laser beam extraction path. The system also includes a pinhole creation laser having an optical output directed along a pinhole creation path and an absorbing material positioned along both the first laser beam extraction path and the pinhole creation path. The system further includes a mechanism operable to translate the absorbing material in a direction crossing the first laser beam extraction laser path and a controller operable to modulate the second laser beam.

  19. Sub-Poissonian shot noise of a high internal gain injection photon detector.

    PubMed

    Memis, Omer Gokalp; Katsnelson, Alex; Kong, Soon-Cheol; Mohseni, Hooman; Yan, Minjun; Zhang, Shuang; Hossain, Tim; Jin, Niu; Adesida, Ilesanmi

    2008-08-18

    The noise performance of an infrared injection photon detector with very high internal gain was investigated at a wavelength of 1.55 mum. The devices showed sub-Poissonian shot noise with Fano factors around 0.55 at 0.7 V at room temperature. Optical to electrical conversion factors of 3000 electrons per absorbed photon were recorded at 0.7 V. The change in noise-equivalent power with respect to bias voltage was evaluated. The optical to electrical conversion factor and Fano factor were measured under increasing illumination and compared to theoretical expectations.

  20. High-accuracy picosecond characterization of gain-switched laser diodes

    SciTech Connect

    Cova, S.; Lacaita, A.; Ghioni, M.; Ripamonti, G. )

    1989-12-15

    A unique combination of the time-correlated photon-counting technique and single-photon avalanche diode detectors gives an accurate characterization of gain-switched semiconductor lasers with picosecond resolution. The high sensitivity and the clean shape of the time response reveal even small features (reflections and relaxation oscillations), making a true optimization of the laser-diode operation possible. The technique outperforms the standard characterization with ultrafast p-i-n photodiodes and a sampling oscilloscope. In addition, compared with other methods, it has favorable features that greatly simplify the measurement.

  1. ONT High Gain Initiative WRAP (Wide Area Rapid Acoustic Prediction) computational performance section

    SciTech Connect

    McGraw, J.R.; Hedstrom, G.; De Groot, T.

    1990-10-02

    LLNL received a contract during March 1990 to perform three tasks for ONT. This letter report covers Task I which concerned a supercomputing effort in a program termed the High Gain Initiative, which is an anti-submarine (ASW) project that requires substantial computational and signal processing expertise. The core of the computational aspects at the present time is a code called WRAP (Wide Area Rapid Acoustic Prediction). LLNL's objective was to study the WRAP model and determine the feasibility and limits of its optimization. At the present time, the WRAP code runs on a single processor VAX computer.

  2. High Gain Antenna System Deployment Mechanism Integration, Characterization, and Lessons Learned

    NASA Technical Reports Server (NTRS)

    Parong, Fil; Russell, Blair; Garcen, Walter; Rose, Chris; Johnson, Chris; Huber, Craig

    2014-01-01

    The integration and deployment testing of the High Gain Antenna System (HGAS) for the Global Precipitation Measurement mission is summarized. The HGAS deployment mechanism is described. The gravity negation system configuration and its influence on vertical, ground-based deployment tests are presented with test data and model predictions. A focus is made on the late discovery and resolution of a potentially mission-degrading deployment interference condition. The interaction of the flight deployment mechanism, gravity-negation mechanism, and use of dynamic modeling is described and lessons learned presented

  3. High Gain Antenna System Deployment Mechanism Integration, Characterization, and Lessons Learned

    NASA Technical Reports Server (NTRS)

    Parong, Fil; Russell, Blair; Garcen, Walter; Rose, Chris; Johnson, Chris; Huber, Craig

    2014-01-01

    The integration and deployment testing of the High Gain Antenna System for the Global Precipitation Measurement mission is summarized. The HGAS deployment mechanism is described. The gravity negation system configuration and its influence on vertical, ground-based, deployment tests are presented with test data and model predictions. A focus is made on the late discovery and resolution of a potentially mission degrading deployment interference condition. The interaction of the flight deployment mechanism, gravity negation mechanism, and use of dynamic modeling is described and lessons learned presented.

  4. Duke storage rink UV/VUV FEL: Status and prospects

    SciTech Connect

    Litvinenko, V.N.; Burnham, B.; Madey, J.M.J.

    1995-12-31

    The 1 GeV Duke storage ring was successfully commissioned with parameters exceeding initial specification. The OK-4 FEL has arrived at the Duke FEL laboratory from the Novosibirsk Institute of Nuclear Physics. The OK-4 installation and commissioning is in progress. In this paper we describe the up-to-date status of the Duke storage ring and the OK-4 FEL. The projected performance of the OK-4 UV/VUV FEL is presented based on the electron beam parameters achieved. Initial plans to operate the OK-4 UV/VUV FEL at the Duke 1 GeV storage ring are outlined. Future plans and prospects of both the OK-4 FEL and the Duke storage ring are discussed.

  5. Ground penetrating radar enabled by high gain GaAs photoconductive semiconductor switches

    SciTech Connect

    Loubriel, G.M.; Buttram, M.T.; Aurand, J.F.; Zutavern, F.J.

    1996-06-01

    The ability of high gain GaAs Photoconductive Semiconductor switches (PCSS) to deliver fast risetime, low jitter pulses when triggered with small laser diode arrays makes them suitable for their use in ultrawide bandwidth (UWB), impulse transmitters. This paper will summarize the state-of-the-art in high gain GaAs switches and discuss how GaAs switches are being implemented in a transmitter for detection of underground structures. The advantage of this type of semiconductor switch is demonstrated operation at high voltages (100 kV) and repetition rates (1 kHz) with the potential for much higher repetition rates. The latter would increase the demonstrated average powers of 100 W to 1 kW and higher. We will also present an analysis of the effectiveness of different pulser geometries that result in transmitted pulses with varying frequency content. To this end, we have developed a simple model that includes transmit and receive antenna response, attenuation and dispersion of the electromagnetic impulses by the soil, and target cross sections.

  6. Energy recovery transport design for PKU FEL

    SciTech Connect

    Guimei Wang; Yu-Chiu Chao; KUI Zhao; Xiangyang Lu; Jiejia Zhuang; Chuyu Liu; Zhenchao Liu; Jiaer Chen

    2007-06-25

    A free-electron laser based on superconducting linac is under construction in Peking University(PKU). To increase FEL output power, energy recovery is chosen as one of the most potential and popular way. The design of beam transport system for energy recovery is presented, which is suitable for Peking University construction area. Especially, a chicane structure is chosen to change path length at +/-18 degree and R56 in the arc is adjusted for fully bunch compression.

  7. A proposed visible FEL Facility at Boeing

    SciTech Connect

    Dowell, D.H.; Adamski, J.L.; Hayward, T.D.

    1995-12-31

    A 1-kW average power, visible wavelength FEL is described, based on a 120-MeV, 0.1. A macropulse average current linac operating at a duty factor of 0. 6% and having average beam power of 70 kW. The accelerator will employ a demonstrated photoinjector, 18-MeV, 433-MHz linac as an injector, followed by a 1300-MHz longitudinal phase space {open_quotes} linearizer,{close_quotes} a magnetic buncher chicane, and seven 1300-MHz, pulsed traveling wave linac sections. The magnets used to transport the beam from the linac to the FEL centerline, the 5-m THUNDER wiggler, and the optical resonator will be reclaimed from previous FEL demonstration experiments. We expect to attain pulse lengths of 7 ps for 3.5 nC, with minimal distortion of the pulse profile and normalized rms emittance of 7.5 {+-} 2.5 {pi} mm-mr. FELEX projects a laser conversion efficiency of 4.3 %, yielding average output of 3 kW.

  8. High perceptual load leads to both reduced gain and broader orientation tuning

    PubMed Central

    Stolte, Moritz; Bahrami, Bahador; Lavie, Nilli

    2014-01-01

    Due to its limited capacity, visual perception depends on the allocation of attention. The resultant phenomena of inattentional blindness, accompanied by reduced sensory visual cortex response to unattended stimuli in conditions of high perceptual load in the attended task, are now well established (Lavie, 2005; Lavie, 2010, for reviews). However, the underlying mechanisms for these effects remain to be elucidated. Specifically, is reduced perceptual processing under high perceptual load a result of reduced sensory signal gain, broader tuning, or both? We examined this question with psychophysical measures of orientation tuning under different levels of perceptual load in the task performed. Our results show that increased perceptual load leads to both reduced sensory signal and broadening of tuning. These results clarify the effects of attention on elementary visual perception and suggest that high perceptual load is critical for attentional effects on sensory tuning. PMID:24610952

  9. Subthreshold Schottky-barrier thin-film transistors with ultralow power and high intrinsic gain

    NASA Astrophysics Data System (ADS)

    Lee, Sungsik; Nathan, Arokia

    2016-10-01

    The quest for low power becomes highly compelling in newly emerging application areas related to wearable devices in the Internet of Things. Here, we report on a Schottky-barrier indium-gallium-zinc-oxide thin-film transistor operating in the deep subthreshold regime (i.e., near the OFF state) at low supply voltages (<1 volt) and ultralow power (<1 nanowatt). By using a Schottky-barrier at the source and drain contacts, the current-voltage characteristics of the transistor were virtually channel-length independent with an infinite output resistance. It exhibited high intrinsic gain (>400) that was both bias and geometry independent. The transistor reported here is useful for sensor interface circuits in wearable devices where high current sensitivity and ultralow power are vital for battery-less operation.

  10. Polarization beam combination technique for gain saturation effect compensation in high-energy systems

    NASA Astrophysics Data System (ADS)

    Chen, Junchi; Peng, Yujie; Su, Hongpeng; Leng, Yuxin

    2016-06-01

    To compensate for the gain saturation effect in the high-energy laser amplifier, a modified polarization beam combination (PBC) method is introduced to reshape temporal waveform of the injected laser pulse to obtain a controlled high-energy laser pulse shape after amplification. One linearly polarized beam is divided into two orthogonal polarized beams, which spatially recombine together collinearly after propagating different optical paths with relative time delay in PBC structure. The obtained beam with polarization direction being rotated by the following half wave plate is divided and combined again to reform a new beam in another modified polarization beam structure. The reformed beam is injected into three cascaded laser amplifiers. The amplified pulse shape can be controlled by the incident pulse shape and amplifier gain, which is agreeable to the simulation by the Frank-Nodvik equations. Based on the simple method, the various temporal waveform of output pulse with tunable 7 to 20 ns pulse duration can be obtained without interferometric fringes.

  11. Longevity improvement of optically activated, high gain GaAs photoconductive semiconductor switches

    SciTech Connect

    MAR,ALAN; LOUBRIEL,GUILLERMO M.; ZUTAVERN,FRED J.; O'MALLEY,MARTIN W.; HELGESON,WESLEY D.; BROWN,DARWIN JAMES; HJALMARSON,HAROLD P.; BACA,ALBERT G.

    2000-03-02

    The longevity of high gain GaAs photoconductive semiconductor switches (PCSS) has been extended to over 100 million pulses at 23A, and over 100 pulses at 1kA. This is achieved by improving the ohmic contacts by doping the semi-insulating GaAs underneath the metal, and by achieving a more uniform distribution of contact wear across the entire switch by distributing the trigger light to form multiple filaments. This paper will compare various approaches to doping the contacts, including ion implantation, thermal diffusion, and epitaxial growth. The device characterization also includes examination of the filament behavior using open-shutter, infra-red imaging during high gain switching. These techniques provide information on the filament carrier densities as well as the influence that the different contact structures and trigger light distributions have on the distribution of the current in the devices. This information is guiding the continuing refinement of contact structures and geometries for further improvements in switch longevity.

  12. Start-Up of FEL Oscillator from Shot Noise

    SciTech Connect

    Kumar, V.; Krishnagopal, S.; Fawley, W.M.

    2007-01-25

    In free-electron laser (FEL) oscillators, as inself-amplified spontaneous emission (SASE) FELs, the buildup of cavitypower starts from shot noise resulting from the discreteness ofelectronic charge. It is important to do the start-up analysis for thebuild-up of cavity power in order to fix the macropulse width from theelectron accelerator such that the system reaches saturation. In thispaper, we use the time-dependent simulation code GINGER [1]toperformthis analysis. We present results of this analysis for theparameters of the Compact Ultrafast TErahertz FEL (CUTE-FEL) [2]beingbuilt atRRCAT.

  13. Nonlinear harmonic generation and proposed experimental verification in SASE FELs.

    SciTech Connect

    Biedron, S. G.; Freund, H. P.; Milton, S. V.

    1999-08-24

    Recently, a 3D, polychromatic, nonlinear simulation code was developed to study the growth of nonlinear harmonics in self-amplified spontaneous emission (SASE) free-electron lasers (FELs). The simulation was applied to the parameters for each stage of the Advanced Photon Source (APS) SASE FEL, intended for operation in the visible, UV, and short UV wavelength regimes, respectively, to study the presence of nonlinear harmonic generation. Significant nonlinear harmonic growth is seen. Here, a discussion of the code development, the APS SASE FEL, the simulations and results, and, finally, the proposed experimental procedure for verification of such nonlinear harmonic generation at the APS SASE FEL will be given.

  14. High gain 1.3-μm GaInNAs SOA with fast gain dynamics and enhanced temperature stability

    NASA Astrophysics Data System (ADS)

    Fitsios, D.; Giannoulis, G.; Iliadis, N.; Korpijärvi, V.-M.; Viheriälä, J.; Laakso, A.; Dris, S.; Spyropoulou, M.; Avramopoulos, H.; Kanellos, G. T.; Pleros, N.; Guina, M.

    2014-03-01

    Semiconductor optical amplifiers (SOAs) are a well-established solution of optical access networks. They could prove an enabling technology for DataCom by offering extended range of active optical functionalities. However, in such costand energy-critical applications, high-integration densities increase the operational temperatures and require powerhungry external cooling. Taking a step further towards improving the cost and energy effectiveness of active optical components, we report on the development of a GaInNAs/GaAs (dilute nitride) SOA operating at 1.3μm that exhibits a gain value of 28 dB and combined with excellent temperature stability owing to the large conduction band offset between GaInNAs quantum well and GaAs barrier. Moreover, the characterization results reveal almost no gain variation around the 1320 nm region for a temperature range from 20° to 50° C. The gain recovery time attained values as short as 100 ps, allowing implementation of various signal processing functionalities at 10 Gb/s. The combined parameters are very attractive for application in photonic integrated circuits requiring uncooled operation and thus minimizing power consumption. Moreover, as a result of the insensitivity to heating issues, a higher number of active elements can be integrated on chip-scale circuitry, allowing for higher integration densities and more complex optical on-chip functions. Such component could prove essential for next generation DataCom networks.

  15. Redesign of a Variable-Gain Output Feedback Longitudinal Controller Flown on the High-Alpha Research Vehicle (HARV)

    NASA Technical Reports Server (NTRS)

    Ostroff, Aaron J.

    1998-01-01

    This paper describes a redesigned longitudinal controller that flew on the High-Alpha Research Vehicle (HARV) during calendar years (CY) 1995 and 1996. Linear models are developed for both the modified controller and a baseline controller that was flown in CY 1994. The modified controller was developed with three gain sets for flight evaluation, and several linear analysis results are shown comparing the gain sets. A Neal-Smith flying qualities analysis shows that performance for the low- and medium-gain sets is near the level 1 boundary, depending upon the bandwidth assumed, whereas the high-gain set indicates a sensitivity problem. A newly developed high-alpha Bode envelope criterion indicates that the control system gains may be slightly high, even for the low-gain set. A large motion-base simulator in the United Kingdom was used to evaluate the various controllers. Desired performance, which appeared to be satisfactory for flight, was generally met with both the low- and medium-gain sets. Both the high-gain set and the baseline controller were very sensitive, and it was easy to generate pilot-induced oscillation (PIO) in some of the target-tracking maneuvers. Flight target-tracking results varied from level 1 to level 3 and from no sensitivity to PIO. These results were related to pilot technique and whether actuator rate saturation was encountered.

  16. A Jitter-Mitigating High Gain Antenna Pointing Algorithm for the Solar Dynamics Observatory

    NASA Technical Reports Server (NTRS)

    Bourkland, Kristin L.; Liu, Kuo-Chia; Blaurock, Carl

    2007-01-01

    This paper details a High Gain Antenna (HGA) pointing algorithm which mitigates jitter during the motion of the antennas on the Solar Dynamics Observatory (SDO) spacecraft. SDO has two HGAs which point towards the Earth and send data to a ground station at a high rate. These antennas are required to track the ground station during the spacecraft Inertial and Science modes, which include periods of inertial Sunpointing as well as calibration slews. The HGAs also experience handoff seasons, where the antennas trade off between pointing at the ground station and pointing away from the Earth. The science instruments on SDO require fine Sun pointing and have a very low jitter tolerance. Analysis showed that the nominal tracking and slewing motions of the antennas cause enough jitter to exceed the HGA portion of the jitter budget. The HGA pointing control algorithm was expanded from its original form as a means to mitigate the jitter.

  17. Millimeter-wave double-dipole antennas for high-gain integrated reflector illumination

    NASA Astrophysics Data System (ADS)

    Filipovic, Daniel F.; Ali-Ahmad, Walid Y.; Rebeiz, Gabriel M.

    1992-05-01

    A double-dipole antenna backed by a ground plane has been fabricated for submillimeter wavelengths. The double-dipole antenna is integrated on a thin dielectric membrane with a planar detector at its center. Measured feed patterns at 246 GHz agree well with theory and demonstrate a rotationally symmetric pattern with high coupling efficiency to Gaussian beams. The input impedance is around 50 ohms, and will match well to a Schottky diode or SIS detector. The double-dipole antenna served as the feed for a small machined parabolic reflector. The integrated reflector had a measured gain of 37 dB at 119 microns. This makes the double-dipole antenna ideally suited as a feed for high resolution tracking or for long focal length Cassegrain antenna systems.

  18. Numerical modeling of thermal loading of diamond crystal in X-ray FEL oscillators

    NASA Astrophysics Data System (ADS)

    Song, Mei-Qi; Zhang, Qing-Min; Guo, Yu-Hang; Li, Kai; Deng, Hai-Xiao

    2016-04-01

    Due to high reflectivity and high resolution of X-ray pulses, diamond is one of the most popular Bragg crystals serving as the reflecting mirror and mono-chromator in the next generation of free electron lasers (FELs). The energy deposition of X-rays will result in thermal heating, and thus lattice expansion of the diamond crystal, which may degrade the performance of X-ray FELs. In this paper, the thermal loading effect of diamond crystal for X-ray FEL oscillators has been systematically studied by combined simulation with Geant4 and ANSYS, and its dependence on the environmental temperature, crystal size, X-ray pulse repetition rate and pulse energy are presented. Our results show that taking the thermal loading effects into account, X-ray FEL oscillators are still robust and promising with an optimized design. Supported by National Natural Science Foundation of China (11175240, 11205234, 11322550) and Program for Changjiang Scholars and Innovative Research Team in University (IRT1280)

  19. Progress in laboratory high gain ICF (inertial confinement fusion): Prospects for the future

    SciTech Connect

    Storm, E.; Lindl, J.D.; Campbell, E.M.; Bernat, T.P.; Coleman, L.W.; Emmett, J.L.; Hogan, W.J.; Hunt, J.T.; Krupke, W.F.; Lowdermilk, W.H.

    1988-01-01

    Inertial confinement fusion (ICF), a thermonuclear reaction in a small (/approximately/5 mm diameter) fuel capsule filled with a few milligrams of deuterium and tritium, has been the subject of very fruitful experimentation since the early 1970's. High gain ICF is now on the threshold of practical applications. With a Laboratory Microfusion Facility (LMF), these applications will have major implications for national defense, basic and applied science, and power production. With a driver capable of delivering about 10 MJ in a 10-ns pulse at an intensity of /approximately/3 /times/ 10/sup 14/ W/cm/sup 2/, an appropriately configured cryogenic capsule could be compressed to a density of about 200 g/cm/sup 3/ and a temperature of 3--5 keV. Under these conditions, up to 10 mg of DT could be ignited, and with a burn efficiency of about 30%, release up to 1000 MJ of fusion energy, an energy gain of about 100. A thousand megajoules is equivalent to about one quarter ton of TNT, or about 7 gallons of oil--an amount of energy tractable under laboratory conditions and potentially very useful for a variety of applications. 61 refs., 33 figs.

  20. Design of a high-power, high-gain, 2nd harmonic, 22.848 GHz gyroklystron

    SciTech Connect

    Veale, M.; Purohit, P.; Lawson, W.

    2013-08-15

    In this paper we consider the design of a four-cavity, high-gain K-band gyroklystron experiment for high gradient structure testing. The frequency doubling gyroklystron utilizes a beam voltage of 500 kV and a beam current of 200 A from a magnetron injection gun (MIG) originally designed for a lower-frequency device. The microwave circuit features input and gain cavities in the circular TE{sub 011} mode and penultimate and output cavities that operate at the second harmonic in the TE{sub 021} mode. We investigate the MIG performance and study the behavior of the circuit for different values of perpendicular to parallel velocity ratio (α= V{sub ⊥}/ V{sub z}). This microwave tube is expected to be able to produce at least 20 MW of power in 1μs pulses at a repetition rate of at least 120 Hz. A maximum efficiency of 26% and a large signal gain of 58 dB under zero-drive stable conditions were simulated for a velocity ratio equal to 1.35.

  1. High performance quantum cascade lasers: Loss, beam stability, and gain engineering

    NASA Astrophysics Data System (ADS)

    Bouzi, Pierre Michel

    Quantum Cascade (QC) lasers are semiconductor devices emitting in the mid-infrared (3-30 micron) and terahertz (30-300 micron) regions of the electromagnetic spectrum. Since their first demonstration by Jerome Faist et. al. in 1994, they have evolved very quickly into high performance devices and given rise to many applications such as trace-gas sensing, medical diagnosis, free-space communication, and light detection and ranging (LIDAR). In this thesis, we investigate a further increase of the performance of QC devices and, through meticulous device modeling and characterizations, gain a deeper understanding of several of their unique characteristics, especially their carrier transport and lifetime, their characteristic temperature, their waveguide loss and modal gain, their leakage current, and their transverse mode profile. First, in our quest to achieve higher performance, we investigate the effect of growth asymmetries on device transport characteristics. This investigation stems from recent studies on the role of interface roughness on intersubband scattering and device performance. Through a symmetric active core design, we find that interface roughness and ionized impurity scattering induced by dopant migration play a significant role in carrier transport through the device. Understanding how interface roughness affects intersubband scattering, in turn, we engineer the gain in QC devices by placing monolayer barriers at specific locations within the device band structure. These strategically placed additional thin barrier layers introduce roughness scattering into the device active region, thereby selectively decreasing the lower laser state lifetime and increasing population inversion necessary for laser action. Preliminary measurement results from modified devices reveal a 50% decrease in the emission broadening compared to the control structures, which should lead to a two-fold increase in gain. A special class of so-called "strong coupling" QC lasers

  2. Single bunch injection system for storage ring FEL using an rf photoinjector

    NASA Astrophysics Data System (ADS)

    O'Shea, P. G.; Lancaster, J. A.; Madey, J. M. J.; Sachtschale, R.; Jones, R.

    1997-05-01

    RF photoinjectors have gained acceptance as the source of choice for high-brightness electron accelerators, but have been quite expensive to build and difficult to operate. In this paper we describe the successful operation of an inexpensive, simple and reliable rf photoinjector suitable for single bunch injection into storage rings. For optimum storage ring FEL and Compton Backscatter performance, we require that the electrons be injected to specified ring rf buckets and no others. The injector-linac electron gun is a single-cell s-band rf gun with a LaB6 cathode. The gun is followed by an a-magnet momentum filter and buncher. The LaB6 cathode can be operated in a pure thermionic mode, a laser switched photoemission mode, or in a combined mode. The laser is a near-UV TEA nitrogen laser with a 600 ps pulse, and 0-50 Hz repetition rate. We routinely inject 0.1 nC bunches at 270 MeV. The ratio of charge in the primary ring bucket to that in the other buckets is better than 1000.

  3. Use of Multipass Recirculation and Energy Recovery In CW SRF X-FEL Driver Accelerators

    SciTech Connect

    Douglas, David; Akers, Walt; Benson, Stephen V.; Biallas, George; Blackburn, Keith; Boyce, James; Bullard, Donald; Coleman, James; Dickover, Cody; Ellingsworth, Forrest; Evtushenko, Pavel; Fisk, Sally; Gould, Christopher; Gubeli, Joseph; Hannon, Fay; Hardy, David; Hernandez-Garcia, Carlos; Jordan, Kevin; Klopf, John; Kortze, J.; Legg, Robert; Li, Rui; Marchlik, Matthew; Moore, Steven W.; Neil, George; Powers, Thomas; Sexton, Daniel; Shin, Ilkyoung; Shinn, Michelle D.; Tennant, Christopher; Terzic, Balsa; Walker, Richard; Williams, Gwyn P.; Wilson, G.; Zhang, Shukui

    2010-08-01

    We discuss the use of multipass recirculation and energy recovery in CW SRF drivers for short wavelength FELs. Benefits include cost management (through reduced system footprint, required RF and SRF hardware, and associated infrastructure - including high power beam dumps and cryogenic systems), ease in radiation control (low drive beam exhaust energy), ability to accelerate and deliver multiple beams of differing energy to multiple FELs, and opportunity for seamless integration of multistage bunch length compression into the longitudinal matching scenario. Issues include all those associated with ERLs compounded by the challenge of generating and preserving the CW electron drive beam brightness required by short wavelength FELs. We thus consider the impact of space charge, BBU and other environmental wakes and impedances, ISR and CSR, potential for microbunching, intra-beam and beam-residual gas scattering, ion effects, RF transients, and halo, as well as the effect of traditional design, fabrication, installation and operational errors (lattice aberrations, alignment, powering, field quality). Context for the discussion is provided by JLAMP, the proposed VUV/X-ray upgrade to the existing Jefferson Lab FEL.

  4. Calibration of Gimbaled Platforms: The Solar Dynamics Observatory High Gain Antennas

    NASA Technical Reports Server (NTRS)

    Hashmall, Joseph A.

    2006-01-01

    Simple parameterization of gimbaled platform pointing produces a complete set of 13 calibration parameters-9 misalignment angles, 2 scale factors and 2 biases. By modifying the parameter representation, redundancy can be eliminated and a minimum set of 9 independent parameters defined. These consist of 5 misalignment angles, 2 scale factors, and 2 biases. Of these, only 4 misalignment angles and 2 biases are significant for the Solar Dynamics Observatory (SDO) High Gain Antennas (HGAs). An algorithm to determine these parameters after launch has been developed and tested with simulated SDO data. The algorithm consists of a direct minimization of the root-sum-square of the differences between expected power and measured power. The results show that sufficient parameter accuracy can be attained even when time-dependent thermal distortions are present, if measurements from a pattern of intentional offset pointing positions is included.

  5. NASA/Cousteau ocean bathymetry experiment. Remote bathymetry using high gain LANDSAT data

    NASA Technical Reports Server (NTRS)

    Polcyn, F. C.

    1976-01-01

    Satellite remote bathymetry was varified to 22 m depths where water clarity was defined by alpha = .058 1/m and bottom reflection, r(b), was 26%. High gain band 4 and band 5 CCT data from LANDSAT 1 was used for a test site in the Bahama Islands and near Florida. Near Florida where alpha = .11 1/m and r(b) = 20%, depths to 10 m were verified. Depth accuracies within 10% rms were achieved. Position accuracies within one LANDSAT pixel were obtained by reference to the Transit navigation satellites. The Calypso and the Beayondan, two ships, were at anchor on each of the seven days during LANDSAT 1 and 2 overpasses: LORAN C position information was used when the ships were underway making depth transects. Results are expected to be useful for updating charts showing shoals hazardous to navigation or in monitoring changes in nearshore topography.

  6. A high gain patch fed horn antenna for millimeter wave imaging receiver

    NASA Astrophysics Data System (ADS)

    Shireen, Rownak; Hwang, Timothy; Shi, Shouyuan; Prather, D. W.

    2005-11-01

    In this paper, antennas that combine transitions from microstrip line / coplanar waveguide (CPW) to horn antenna in a single unit are presented. Conventional single layer microstrip patch antennas inherently suffer narrow operation bandwidth; to widen the frequency bandwidth, stacked patch antennas are used and high gain is achieved from the horn antenna. Here, microstrip line / CPW directly feeds the bottom patch while the top patch couples parasitically to the bottom patch. For -10 dB return loss, 25% bandwidth is achieved for both microstrip line to horn antenna (MSLTHA) at center frequency f0=17.5 GHz and for CPW to horn antenna (CPWTHA) at f0=97 GHz. The designs were optimized using 3D Finite Element Method (FEM) software HFSS by Ansoft Corporation. The optimal design of MSLTHA has been fabricated and characterized. The return loss and far field radiation pattern are measured and has been found in very good agreement with the simulation results.

  7. Suppression of higher mode excitation in a high gain relativistic klystron amplifier

    NASA Astrophysics Data System (ADS)

    Wu, Y.; Xu, Z.; Jin, X.; Li, Z. H.; Tang, C. X.

    2012-02-01

    Suppressing higher mode excitation is very important in the high gain relativistic klystron amplifier because higher mode can seriously degrade klystron performance and cause pulse shortening. The mechanism of higher mode self-excitation is explored in the PIC simulation, and it is shown the coupling between cavities is the main cause of higher mode self-excitation. The coupling forms the positive feedback loop for higher mode to be excited just like that in the oscillator circuit. The formula for startup current of higher mode self-excitation is developed based on the coupling between cavities. And the corresponding methods are taken to avoid higher mode self-excitation. Finally, mode control is realized in the RKA with output power up to 1.02 GW when driven power is only few kilowatts.

  8. Convergent Evolution towards High Net Carbon Gain Efficiency Contributes to the Shade Tolerance of Palms (Arecaceae).

    PubMed

    Ma, Ren-Yi; Zhang, Jiao-Lin; Cavaleri, Molly A; Sterck, Frank; Strijk, Joeri S; Cao, Kun-Fang

    2015-01-01

    Most palm species occur in the shaded lower strata of tropical rain forests, but how their traits relate to shade adaptation is poorly understood. We hypothesized that palms are adapted to the shade of their native habitats by convergent evolution towards high net carbon gain efficiency (CGEn), which is given by the maximum photosynthetic rate to dark respiration rate ratio. Leaf mass per area, maximum photosynthetic rate, dark respiration and N and P concentrations were measured in 80 palm species grown in a common garden, and combined with data of 30 palm species growing in their native habitats. Compared to other species from the global leaf economics data, dicotyledonous broad-leaved trees in tropical rainforest or other monocots in the global leaf economics data, palms possessed consistently higher CGEn, achieved by lowered dark respiration and fairly high foliar P concentration. Combined phylogenetic analyses of evolutionary signal and trait evolution revealed convergent evolution towards high CGEn in palms. We conclude that high CGEn is an evolutionary strategy that enables palms to better adapt to shady environments than coexisting dicot tree species, and may convey advantages in competing with them in the tropical forest understory. These findings provide important insights for understanding the evolution and ecology of palms, and for understanding plant shade adaptations of lower rainforest strata. Moreover, given the dominant role of palms in tropical forests, these findings are important for modelling carbon and nutrient cycling in tropical forest ecosystems.

  9. Convergent Evolution towards High Net Carbon Gain Efficiency Contributes to the Shade Tolerance of Palms (Arecaceae)

    PubMed Central

    Ma, Ren-Yi; Zhang, Jiao-Lin; Cavaleri, Molly A.; Sterck, Frank; Strijk, Joeri S.; Cao, Kun-Fang

    2015-01-01

    Most palm species occur in the shaded lower strata of tropical rain forests, but how their traits relate to shade adaptation is poorly understood. We hypothesized that palms are adapted to the shade of their native habitats by convergent evolution towards high net carbon gain efficiency (CGEn), which is given by the maximum photosynthetic rate to dark respiration rate ratio. Leaf mass per area, maximum photosynthetic rate, dark respiration and N and P concentrations were measured in 80 palm species grown in a common garden, and combined with data of 30 palm species growing in their native habitats. Compared to other species from the global leaf economics data, dicotyledonous broad-leaved trees in tropical rainforest or other monocots in the global leaf economics data, palms possessed consistently higher CGEn, achieved by lowered dark respiration and fairly high foliar P concentration. Combined phylogenetic analyses of evolutionary signal and trait evolution revealed convergent evolution towards high CGEn in palms. We conclude that high CGEn is an evolutionary strategy that enables palms to better adapt to shady environments than coexisting dicot tree species, and may convey advantages in competing with them in the tropical forest understory. These findings provide important insights for understanding the evolution and ecology of palms, and for understanding plant shade adaptations of lower rainforest strata. Moreover, given the dominant role of palms in tropical forests, these findings are important for modelling carbon and nutrient cycling in tropical forest ecosystems. PMID:26461108

  10. Proposed uv-FEL user facility at BNL

    SciTech Connect

    Ben-Zvi, I.; Di Mauro, L.F.; Krinsky, S.; White, M.G.; Yu, L.H.; Batchelor, K.; Friedman, A.; Fisher, A.S.; Halama, H.; Ingold, G.; Johnson, E.D.; Kramer, S.; Rogers, J.T.; Solomon, L.; Wachtel, J.; Zhang, X.

    1991-01-01

    The NSLS at Brookhaven National Laboratory is proposing the construction of a UV-FEL operating in the wavelength range from visible to 750{Angstrom}. Nano-Coulomb electron pulses will be generated at a laser photo-cathode RF gun at a repetition rate of 10 KHz. The 6 ps pulses will be accelerated to 250 MeV in a superconducting linac. The FEL output will serve four stations with independent wavelength tuning, using two wigglers and two rotating mirror beam switches. Seed radiation for the FEL amplifiers will be provided by conventional tunable lasers, and the final frequency multiplication from the visible or near UV to the VUV will be carried out in the FEL itself. Each FEL will comprise of an initial wiggler resonant to the seed wavelength, a dispersion section, and a second wiggler resonant to the output wavelength. The facility will provide pump probe capability, FEL or FEL, and FEL on synchrotron light from an insersion device on the NSLS X-Ray ring. 15 refs., 2 figs., 3 tabs.

  11. Where Would Economics Education Be without Rendigs Fels?

    ERIC Educational Resources Information Center

    Siegfried, John J.; And Others

    1994-01-01

    Discusses the career of Rendigs Fels from his first academic appointment in 1948 until the present. Concludes that Fels is one of a small number of respected economists who have made interest, involvement, and research in the teaching of economics an important and respectable part of the profession. (CFR)

  12. ECH by FEL and gyrotron sources on the Microwave Tokamak Experiment (MTX) tokamak

    SciTech Connect

    Stallard, B.W.; Turner, W.C.; Allen, S.L.; Byers, J.A.; Felker, B.; Fenstermacher, M.E.; Ferguson, S.W.; Hooper, E.G.; Thomassen, K.I.; Throop, A.L. ); Makowski, M.A. )

    1990-08-09

    The Microwave Tokamak Experiment (MTX) at LLNL is studying the physics of intense pulse ECH is a high-density tokamak plasma using a microwave FEL. Related technology development includes the FEL, a windowless quasi-optical transmission system, and other microwave components. Initial plasma experiments have been carried out at 140 GHz with single rf pulses generated using the ETA-II accelerator and the ELF wiggler. Peak power levels up to 0.2 GW and pulse durations up to 10 ns were achieved for injection into the plasma using as untapered wiggler. FEL pulses were transmitted over 33 m from the FEL to MTX using six mirrors mounted in a 50-cm-diam evacuated pipe. Measurements of the microwave beam and transmission through the plasma were carried out. For future rapid pulse experiments at high average power (4 GW peak power, 5kHz pulse rate, and {bar P} > 0.5 MW) using the IMP wiggler with tapered magnetic field, a gyrotron (140 GHz, 400 kW cw or up to 1 MW short pulse) is being installed to drive the FEL input or to directly heat the tokamak plasma at full gyrotron power. Quasi-optic techniques will be used to couple the gyrotron power. For direct plasma heating, the gyrotron will couple into the existing mirror transport system. Using both sources of rf generation, experiments are planned to investigate intense pulse absorption and tokamak physics, such as the ECH of a pellet-fueled plasma and plasma control using localized heating. 12 refs., 9 figs.

  13. Inverse Compton gamma-ray source for nuclear physics and related applications at the Duke FEL

    SciTech Connect

    O`Shea, P.G.; Litvinenko, V.N.; Madey, J.M.J.

    1995-12-31

    In recent years the development of intense, short-wavelength FEL light sources has opened opportunities for the development new applications of high-energy Compton-backscattered photons. These applications range from medical imaging with X-ray photons to high-energy physics with {gamma}{gamma} colliders. In this paper we discuss the possibilities for nuclear physics studies using polarized Compton backscattered {gamma}-rays from the Duke storage-ring-driven UV-FEL. There are currently a number of projects that produce polarized {gamma}-rays for nuclear physics studies. All of these facilities operate by scattering conventional laser-light against electrons circulating in a storage ring. In our scheme, intra-cavity scattering of the UV-FEL light will produce a {gamma}-flux enhancement of approximately 10{sup 3} over existing sources. The Duke ring can operate at energies up to 1.2 GeV and can produce FEL photons up to 12.5 eV. We plan to generate {gamma}-rays up to 200 MeV in energy with an average flux in excess of 10{sup 7} /s/MeV, using a modest scattering beam of 10-mA average stored current. The {gamma}-ray energy may be tuned by varying the FEL wavelength or by adjusting the stored electron beam energy. Because of the intense flux, we can eliminate the need for photon energy tagging by collimating of the {gamma}-ray beam. We will discuss the characteristics of the device and its research opportunities.

  14. ECH by FEL and gyrotron sources on the Microwave Tokamak Experiment (MTX) tokamak

    NASA Astrophysics Data System (ADS)

    Stallard, B. W.; Turner, W. C.; Allen, S. L.; Byers, J. A.; Felker, B.; Fenstermacher, M. E.; Ferguson, S. W.; Hooper, E. G.; Thomassen, K. I.; Throop, A. L.

    1990-08-01

    The Microwave Tokamak Experiment (MTX) at LLNL is studying the physics of intense pulse ECH is a high-density tokamak plasma using a microwave FEL. Related technology development includes the FEL, a windowless quasi-optical transmission system, and other microwave components. Initial plasma experiments have been carried out at 140 GHz with single RF pulses generated using the ETA-2 accelerator and the ELF wiggler. Peak power levels up to 0.2 GW and pulse durations up to 10 ns were achieved for injection into the plasma using as untapered wiggler. FEL pulses were transmitted over 33 m from the FEL to MTX using six mirrors mounted in a 50 cm diam evacuated pipe. Measurements of the microwave beam and transmission through the plasma were carried out. For future rapid pulse experiments at high average power (4 GW peak power, 5 kHz pulse rate, and bar P is greater than 0.5 MW) using the IMP wiggler with tapered magnetic field, a gyrotron (140 GHz, 400 kW CW or up to 1 MW short pulse) is being installed to drive the FEL input or to directly heat the tokamak plasma at full gyrotron power. Quasi-optic techniques will be used to couple the gyrotron power. For direct plasma heating, the gyrotron will couple into the existing mirror transport system. Using both sources of RF generation, experiments are planned to investigate intense pulse absorption and tokamak physics, such as the ECH of a pellet-fueled plasma and plasma control using localized heating.

  15. A High Efficiency Variable Gain Amplifier Circuit with Controllable Transconductance Amp

    NASA Astrophysics Data System (ADS)

    Okura, Tetsuro; Okura, Shunsuke; Ido, Toru; Taniguchi, Kenji

    A novel power reduction technique for a variable gain amplifier (VGA) with a two-stage operational amplifier is proposed. The technique improves the power consumption of a VGA by optimizing the bandwidth and the phase margin dynamically on all gain range of the VGA through controlling the input transconductance of opamp. A VGA utilizing the proposed technique shows 40% reduction of power consumption against a conventional VGA at the best condition of VGA gain range.

  16. Diagnostic technique applied for FEL electron bunches

    NASA Astrophysics Data System (ADS)

    Brovko, O.; Grebentsov, A.; Morozov, N.; Syresin, E.; Yurkov, M.

    2016-05-01

    Diagnostic technique applied for FEL ultrashort electron bunches is developed at JINR-DESY collaboration within the framework of the FLASH and XFEL projects. Photon diagnostics are based on calorimetric measurements and detection of undulator radiation. The infrared undulator constructed at JINR and installed at FLASH is used for longitudinal bunch shape measurements and for two-color lasing provided by the FIR and VUV undulators. The pump probe experiments with VUV and FIR undulators provide the bunch profile measurements with resolution of several femtosecond. The new three microchannel plates (MCP) detectors operated in X-ray range are under development now in JINR for SASE1-SASE 3 European XFEL.

  17. Fluorene- and benzofluorene-cored oligomers as low threshold and high gain amplifying media

    SciTech Connect

    Kazlauskas, Karolis Kreiza, Gediminas; Bobrovas, Olegas; Adomėnienė, Ona; Adomėnas, Povilas; Juršėnas, Saulius; Jankauskas, Vygintas

    2015-07-27

    Deliberate control of intermolecular interactions in fluorene- and benzofluorene-cored oligomers was attempted via introduction of different-length alkyl moieties to attain high emission amplification and low amplified spontaneous emission (ASE) threshold at high oligomer concentrations. Containing fluorenyl peripheral groups decorated with different-length alkyl moieties, the oligomers were found to express weak concentration quenching of emission, yet excellent carrier drift mobilities (close to 10{sup −2} cm{sup 2}/V/s) in the amorphous films. Owing to the larger radiative decay rates (>1.0 × 10{sup 9 }s{sup −1}) and smaller concentration quenching, fluorene-cored oligomers exhibited down to one order of magnitude lower ASE thresholds at higher concentrations as compared to those of benzofluorene counterparts. The lowest threshold (300 W/cm{sup 2}) obtained for the fluorene-cored oligomers at the concentration of 50 wt % in polymer matrix is among the lowest reported for solution-processed amorphous films in ambient conditions, what makes the oligomers promising for lasing application. Great potential in emission amplification was confirmed by high maximum net gain (77 cm{sup −1}) revealed for these compounds. Although the photostability of the oligomers was affected by photo-oxidation, it was found to be comparable to that of various organic lasing materials including some commercial laser dyes evaluated under similar excitation conditions.

  18. Method for separating FEL output beams from long wavelength radiation

    SciTech Connect

    Neil, George; Shinn, Michelle D.; Gubeli, Joseph

    2016-04-26

    A method for improving the output beam quality of a free electron laser (FEL) by reducing the amount of emission at wavelengths longer than the electron pulse length and reducing the amount of edge radiation. A mirror constructed of thermally conductive material and having an aperture therein is placed at an oblique angle with respect to the beam downstream of the bending magnet but before any sensitive use of the FEL beam. The aperture in the mirror is sized to deflect emission longer than the wavelength of the FEL output while having a minor impact on the FEL output beam. A properly sized aperture will enable the FEL radiation, which is coherent and generally at a much shorter wavelength than the bending radiations, to pass through the aperture mirror. The much higher divergence bending radiations will subsequently strike the aperture mirror and be reflected safely out of the way.

  19. Ultrahigh harmonics generation in a FEL with a seed laser

    SciTech Connect

    Goloviznin, V.V.; Amersfoort, P.W. van

    1995-12-31

    One of the most challenging problems in modern FEL technology is to operate in the X-ray region, especially in the {open_quotes}water window{close_quotes}. Because of the absence of optical resonators in this range of wavelengths, only a single-pass device may be suitable for this task. The Self-Amplified Spontaneous Emission (SASE) mechanism is now under active discussion as a realistic way to provide high-power coherent emission in the X-ray range. Both the undulator parameters and the electron beam parameters required for the lasing are achieveable at today`s technological level. On the other hand, the SASE approach implies a very long and expensive periodic magnetic structure, typically several tens of meters long. This is mainly because of the rather long build-up time necessary to establish a coherent mode from incoherent noise. A mechanism of shortening this time would be therefore highly desirable. In the present paper we consider a scheme using two undulators and a seed-laser to produce coherent X-ray emission. The first undulator and the seed-laser provide a pre-modulation of the beam while the second undulator serves as a source of coherent spontaneous radiation at a very high harmonic of the seed-laser frequency; the whole scheme may then be considered to be an FEL-based frequency upconvertor. The total length of the periodic magnetic structure is shown to be of the order of several meters, nearly an order of magnitude shorter than in the SASE case. For the same beam quality as in the SASE scheme and with realistic seed-laser parameters, the efficiency of the beam pre-modulation at the 50-th (!) harmonic is shown to be as high as 15%. The output radiation is tunable between discrete harmonics of the seed-frequency.

  20. Harmonic cascade FEL designs for LUX, a facility for ultrafast x-ray science

    SciTech Connect

    Corlett, John; Fawley, William; Penn, Gregory; Wan, Weishi; Zholents, A.; Reinsch, M.; Wurtele, Jonathan

    2004-08-25

    LUX is a design study to develop concepts for future ultrafast x-ray facilities. Presently, LUX is based on an electron beam accelerated to {approx}3-GeV energy in a superconducting, recirculating linac. Included in the design are multiple free-electron laser (FEL) beamlines which use the harmonic cascade approach to produce coherent XUV and soft X-ray emission beginning with a strong input seed at {approx}200-nm wavelength obtained from a ''conventional'' laser. Each cascade module generally operates in the low-gain regime and is composed of a radiator together with a modulator section, separated by a magnetic chicane. The chicane temporally delays the electron beam pulse in order that a ''virgin'' pulse region (with undegraded energy spread) be brought into synchronism with the radiation pulse. For a given cascade, the output photon energy can be selected over a wide range by varying the seed laser wavelength and the field strength in the undulators. We present numerical simulation results, as well as those from analytical models, to examine certain aspects of the predicted FEL performance. We also discuss lattice considerations pertinent to harmonic cascade FELs, some sensitivity studies and requirements on the undulator alignment, and temporal pulse evolution initiated by short input radiation seeds.

  1. Transverse-coherence properties of the FEL at the LCLS

    SciTech Connect

    Ding, Yuantao; Huang, Zhirong; Ocko, Samuel A.; /MIT, Cambridge, Dept. Phys.

    2010-09-02

    The recently commissioned Linac Coherent Light Source is an x-ray free-electron laser at the SLAC National Accelerator Laboratory, which is now operating at x-ray wavelengths of 20-1.2 Angstrom with peak brightness nearly ten orders of magnitude beyond conventional synchrotron sources. Understanding of coherence properties of the radiation from SASE FELs at LCLS is of great practical importance for some user experiments. We present the numerical analysis of the coherence properties at different wavelengths based on a fast algorithmusing ideal and start-end simulated FEL fields. The sucessful commissioning and operation of the linac coherent light source (LCLS) [1] has demonstrated that the x-ray free-electron laser (FEL) has come of age; these types of x-ray sources are poised to revolutionize the ultra-fast x-ray sciences. The LCLS and other hard x-ray FELs under construction are based on the principle of self-amplified spontaneous emission (SASE) [2, 3], where the amplification process starts from the shot noise in the electron beam. A large number of transverse radiation modes are also excited when the electron beam enters the undulator. The FEL collective instability in the electron beam causes the modulation of the electron density to increase exponentially, and after sufficient undulator distances, a single transverse mode starts to dominate. As a result, SASE FEL is almost fully coherent in the transverse dimension. Understanding of transverse coherence properties of the radiation from SASE FELs is of great practical importance. The longitudinal coherence properties of SASE FELs have been studied before [4]. Some studies on the transverse coherence can be found in previous papers, for example, in ref. [5, 6, 7, 8, 9]. In this paper, we first discuss a new numerical algorithm based on Markov chain Monte Carlo techniques to calculate the FEL transverse coherence. Then we focus on the numerical analysis of the LCLS FEL transverse coherence.

  2. Transportation-cyber-physical-systems-oriented engine cylinder pressure estimation using high gain observer

    NASA Astrophysics Data System (ADS)

    Li, Yong-Fu; Xiao-Pei, Kou; Zheng, Tai-Xiong; Li, Yin-Guo

    2015-05-01

    In transportation cyber-physical-systems (T-CPS), vehicle-to-vehicle (V2V) communications play an important role in the coordination between individual vehicles as well as between vehicles and the roadside infrastructures, and engine cylinder pressure is significant for engine diagnosis on-line and torque control within the information exchange process under V2V communications. However, the parametric uncertainties caused from measurement noise in T-CPS lead to the dynamic performance deterioration of the engine cylinder pressure estimation. Considering the high accuracy requirement under V2V communications, a high gain observer based on the engine dynamic model is designed to improve the accuracy of pressure estimation. Then, the analyses about convergence, converge speed and stability of the corresponding error model are conducted using the Laplace and Lyapunov method. Finally, results from combination of Simulink with GT-Power based numerical experiments and comparisons demonstrate the effectiveness of the proposed approach with respect to robustness and accuracy. Project supported by the National Natural Science Foundation of China (Grant No. 61304197), the Scientific and Technological Talents of Chongqing, China (Grant No. cstc2014kjrc-qnrc30002), the Key Project of Application and Development of Chongqing, China (Grant No. cstc2014yykfB40001), the Natural Science Funds of Chongqing, China (Grant No. cstc2014jcyjA60003), and the Doctoral Start-up Funds of Chongqing University of Posts and Telecommunications, China (Grant No. A2012-26).

  3. Characterization of a high-gain Ne-like Fe transient x-ray laser

    SciTech Connect

    Dunn, J; Facnov, A; Fournier, K B; Moon, S J; Osterheld, A; Pikuz, T; Shlyaptsev, V N

    1999-09-13

    The authors present experimental results of a high efficiency Ne-like Fe transient collisional excitation x-ray laser using the COMET 15 TW table-top laser system at LLNL. The plasma formation, ionization and collision excitation of the x-ray laser have been optimized using two sequential laser pulses: a plasma formation beam with 5 J energy of 600 ps duration and a pump beam with 5 J energy of 1.2 ps duration. Since the observation of strong lasing on the 255 {angstrom} 3p-3s J = 0-1 transition of Ne-like Fe, they have achieved high gains of 35 cm{sup {minus}1} and saturation of the x-ray laser. A five-stage traveling wave excitation enhances the strongest Fe 3p-3s 255 {angstrom} lasing line as well as additional x-ray lines. A careful characterization of the plasma column conditions using L-shell spectroscopy indicates the degree of ionization along the line focus.

  4. Normal Visual Acuity and Electrophysiological Contrast Gain in Adults with High-Functioning Autism Spectrum Disorder

    PubMed Central

    Tebartz van Elst, Ludger; Bach, Michael; Blessing, Julia; Riedel, Andreas; Bubl, Emanuel

    2015-01-01

    A common neurodevelopmental disorder, autism spectrum disorder (ASD), is defined by specific patterns in social perception, social competence, communication, highly circumscribed interests, and a strong subjective need for behavioral routines. Furthermore, distinctive features of visual perception, such as markedly reduced eye contact and a tendency to focus more on small, visual items than on holistic perception, have long been recognized as typical ASD characteristics. Recent debate in the scientific community discusses whether the physiology of low-level visual perception might explain such higher visual abnormalities. While reports of this enhanced, “eagle-like” visual acuity contained methodological errors and could not be substantiated, several authors have reported alterations in even earlier stages of visual processing, such as contrast perception and motion perception at the occipital cortex level. Therefore, in this project, we have investigated the electrophysiology of very early visual processing by analyzing the pattern electroretinogram-based contrast gain, the background noise amplitude, and the psychophysical visual acuities of participants with high-functioning ASD and controls with equal education. Based on earlier findings, we hypothesized that alterations in early vision would be present in ASD participants. This study included 33 individuals with ASD (11 female) and 33 control individuals (12 female). The groups were matched in terms of age, gender, and education level. We found no evidence of altered electrophysiological retinal contrast processing or psychophysical measured visual acuities. There appears to be no evidence for abnormalities in retinal visual processing in ASD patients, at least with respect to contrast detection. PMID:26379525

  5. Limiting high-frequency hearing aid gain in listeners with and without suspected cochlear dead regions.

    PubMed

    Mackersie, Carol L; Crocker, Tracy L; Davis, Rebecca A

    2004-01-01

    The purpose of this study was to compare threshold-matched ears with and without suspected cochlear dead regions in terms of the speech perception benefit from high-frequency amplification. The Threshold Equalizing Noise Test (TEN) was used to assess the presence of dead regions. Speech perception was measured while participants were wearing a hearing aid fit to approximate DSL[i/o] targets. Consonant identification of nonsense vowel-consonant-vowel combinations was measured in quiet using a forced-choice procedure. Phoneme recognition was measured at signal-to-noise ratios ranging from 0 to +15 dB using the Computer-Assisted Speech Perception Assessment test (CASPA). Recognition scores were obtained for unfiltered stimuli and stimuli that were low-pass filtered at the estimated boundary of the suspected dead regions, 1/2 octave above and 1 octave above the boundary. Filter settings for the ears without suspected dead regions were the same as settings of the threshold-matched counterpart. In quiet and in low levels of noise, speech perception scores were significantly higher for the wide-band (unfiltered) condition than for the filtered conditions, and performance was similar for the ears with and without suspected dead regions. In high levels of noise, mean scores were highest in the wide-band condition for the ears without suspected dead regions, but performance reached an asymptote for the ears with suspected dead regions. These results suggest that patients with cochlear dead regions may experience speech perception benefit from wide-band high-frequency gain in quiet and low levels of noise, but not in high levels of noise.

  6. Undulators to FELs: Nanometers, Femtoseconds, Coherence and Applications

    SciTech Connect

    Attwood, David

    2011-11-30

    For scientists in many fields, from material science to the life sciences and archeology, synchrotron radiation, and in particular undulator radiation, has provide an intense source of x-rays which are tunable to the absorption edges of particular elements of interest, often permitting studies at high spatial and spectral resolution. Now a close cousin to the undulator, the x-ray free electron laser (XFEL) has emerged with improved spatial coherence and, perhaps more importantly, femtosecond pulse durations which permit dynamical studies. In the future attosecond x-ray capabilities are anticipated. In this colloqium we will describe some state of the art undulator studies, how undulators work, the evolution to FELs, their pulse and coherence properties, and the types of experiments envisioned.

  7. Studies of relative gain and timing response of fine-mesh photomultiplier tubes in high magnetic fields

    SciTech Connect

    Sulkosky, V.; Allison, L.; Barber, C.; Cao, T.; Ilieva, Y.; Jin, K.; Kalicy, G.; Park, K.; Ton, N.; Zheng, X.

    2016-08-01

    We investigated the use of Hamamatsu fine-mesh photomultiplier tube assemblies H6152-70 and H6614-70 with regards to their gain and timing resolution in magnetic fields up to 1.9 T. Our results show that the H6614-70 assembly can operate reliably in magnetic fields exceeding 1.5 T, while preserving a reasonable timing resolution even with a gain reduction of a factor of ~100. The reduction of the relative gain of the H6152-70 is similar to the H6614-70's near 1.5 T, but its timing resolution worsens considerably at this high field.

  8. Studies of relative gain and timing response of fine-mesh photomultiplier tubes in high magnetic fields

    NASA Astrophysics Data System (ADS)

    Sulkosky, V.; Allison, L.; Barber, C.; Cao, T.; Ilieva, Y.; Jin, K.; Kalicy, G.; Park, K.; Ton, N.; Zheng, X.

    2016-08-01

    We investigated the use of Hamamatsu fine-mesh photomultiplier tube assemblies H6152-70 and H6614-70 with regard to their gain and timing resolution in magnetic fields up to 1.9 T. Our results show that the H6614-70 assembly can operate reliably in magnetic fields exceeding 1.5 T, while preserving a reasonable timing resolution even with a gain reduction of a factor of ≈100. The reduction of the relative gain of the H6152-70 is similar to the H6614-70's near 1.5 T, but its timing resolution worsens considerably at this high field.

  9. High dietary fat exacerbates weight gain and obesity in female liver fatty acid binding protein gene-ablated mice.

    PubMed

    Atshaves, Barbara P; McIntosh, Avery L; Storey, Stephen M; Landrock, Kerstin K; Kier, Ann B; Schroeder, Friedhelm

    2010-02-01

    Since liver fatty acid binding protein (L-FABP) facilitates uptake/oxidation of long-chain fatty acids in cultured transfected cells and primary hepatocytes, loss of L-FABP was expected to exacerbate weight gain and/or obesity in response to high dietary fat. Male and female wild-type (WT) and L-FABP gene-ablated mice, pair-fed a defined isocaloric control or high fat diet for 12 weeks, consumed equal amounts of food by weight and kcal. Male WT mice gained weight faster than their female WT counterparts regardless of diet. L-FABP gene ablation enhanced weight gain more in female than male mice-an effect exacerbated by high fat diet. Dual emission X-ray absorptiometry revealed high-fat fed male and female WT mice gained mostly fat tissue mass (FTM). L-FABP gene ablation increased FTM in female, but not male, mice-an effect also exacerbated by high fat diet. Concomitantly, L-FABP gene ablation decreased serum beta-hydroxybutyrate in male and female mice fed the control diet and, even more so, on the high-fat diet. Thus, L-FABP gene ablation decreased fat oxidation and sensitized all mice to weight gain as whole body FTM and LTM-with the most gain observed in FTM of control vs high-fat fed female L-FABP null mice. Taken together, these results indicate loss of L-FABP exacerbates weight gain and/or obesity in response to high dietary fat.

  10. High-intensity resistance training amplifies muscle hypertrophy and functional gains in persons with Parkinson's disease.

    PubMed

    Dibble, Leland E; Hale, Tessa F; Marcus, Robin L; Droge, John; Gerber, J Parry; LaStayo, Paul C

    2006-09-01

    Strength deficits in persons with Parkinson's disease (PD) have been identified as a contributor to bradykinesia. However, there is little research that examines the effect of resistance training on muscle size, muscle force production, and mobility in persons with PD. The purpose of this exploratory study was to examine, in persons with PD, the changes in quadriceps muscle volume, muscle force production, and mobility as a result of a 12-week high-force eccentric resistance training program and to compare the effects to a standard-care control. Nineteen individuals with idiopathic PD were recruited and consented to participate. Matched assignment for age and disease severity resulted in 10 participants in the eccentric group and 9 participants in the control group. All participants were tested prior to and following a 12-week intervention period with testing and training conducted at standardized times in their medication cycle. The eccentric group performed high-force quadriceps contractions on an eccentric ergometer 3 days a week for 12 weeks. The standard-care group exercise program encompassed standard exercise management of PD. The outcome variables were quadriceps muscle volume, muscle force, and mobility measures (6-minute walk, stair ascent/descent time). Each outcome variable was tested using separate one-way analyses of covariance on the difference scores. Muscle volume, muscle force, and functional status improvements occurred in persons with PD as a result of high-force eccentric resistance training. The eccentric group demonstrated significantly greater difference scores for muscle structure, stair descent, and 6-minute walk (P < 0.05). Magnitude of effect size estimators for the eccentric group consistently exceeded those in the standard-care group for all variables. To our knowledge, this is the first clinical trial to investigate and demonstrate the effects of eccentric resistance training on muscle hypertrophy, strength, and mobility in persons

  11. Prospects for high-gain, high yield National Ignition Facility targets driven by 2(omega) (green) light

    SciTech Connect

    Suter, L J; Glenzer, S; Haan, S; Hammel, B; Manes, K; Meezan, N; Moody, J; Spaeth, M; Divol, L; Oades, K; Stevenson, M

    2003-12-16

    The National Ignition Facility (NIF), operating at green (2{omega}) light, has the potential to drive ignition targets with significantly more energy than the 1.8 MJ it will produce with its baseline, blue (3{omega}) operations. This results in a greatly increased 'target design space', providing a number of exciting opportunities for fusion research. These include the prospect of ignition experiments with capsules absorbing energies in the vicinity of 1 MJ. This significant increase in capsule absorbed energy over the original designs at {approx}150 kJ could allow high-gain, high yield experiments on NIF. This paper reports the progress made exploring 2{omega} for NIF ignition, including potential 2{omega} laser performance, 2{omega} ignition target designs and 2{omega} Laser Plasma Interaction (LPI) studies.

  12. High-gain test facility driven by a multimegajoule solid-state laser

    SciTech Connect

    Powell, H.T.; Manes, K.R.; Hogan, W.J.

    1986-01-01

    An ICF high-gain test facility (HGTF) will most certainly be in demand for other applications than ICF target physics. These will include advanced weapon physics, vulnerability and nuclear effects, and x-ray laser studies. These other applications will place additional demands on driver flexibility and will extend the desirable range of some of the driver variables (e.g., the desirable pulse length range would be 0.1 to 100 ns and the wavelength range would be 0.25 to 1.0 ..mu..m). It is also likely that to utilize the driver efficiently for the variety of applications foreseen will require multiple target chambers and experiment areas. Thus, it is important that the driver beams be efficiently transported to these different experimental areas. At the present time, the only driver capable of meeting this broad set of requirements is the Nd:glass laser. It has long been believed that an Nd:glass laser with the above requirements could be built but that it would be unreasonably expensive. There is still much work to be done. However, the progress to date and the track record for lowering system cost in past solid-state facilities, leads us to be optimistic that we can achieve our goal of building an affordable HGTF that will meet all the requirements.

  13. A Modified Lunar Reconnaissance Orbiter (LRO) High Gain Antenna (HGA) Controller Based on Flight Performance

    NASA Technical Reports Server (NTRS)

    Shah, Neerav

    2010-01-01

    The National Aeronautics and Space Administration's (NASA) Lunar Reconnaissance Orbiter (LRO) was launched on June 18, 2009 and is currently in a 50 km mean altitude polar orbit around the Moon. LRO was designed and built by the NASA Goddard Space Flight Center in Greenbelt, MD. The spacecraft is three-axis stabilized via the attitude control system (ACS), which is composed of various control modes using different sets of sensors and actuators. In addition to pointing the spacecraft, the ACS is responsible for pointing LRO s two appendages, the Solar Array (SA) and the High Gain Antenna (HGA). This study reviews LRO s HGA control system. Starting with an overview of the HGA system, the paper delves into the single input single output (SISO) linear analysis followed by the controller design. Based on flight results, an alternate control scheme is devised to address inherent features in the flight control system. The modified control scheme couples the HGA loop with the spacecraft pointing control loop, and through analysis is shown to be stable and improve transient performance. Although proposed, the LRO project decided against implementing this modification.

  14. Spacecraft Angular Rates Estimation with Gyrowheel Based on Extended High Gain Observer

    PubMed Central

    Liu, Xiaokun; Yao, Yu; Ma, Kemao; Zhao, Hui; He, Fenghua

    2016-01-01

    A gyrowheel (GW) is a kind of electronic electric-mechanical servo system, which can be applied to a spacecraft attitude control system (ACS) as both an actuator and a sensor simultaneously. In order to solve the problem of two-dimensional spacecraft angular rate sensing as a GW outputting three-dimensional control torque, this paper proposed a method of an extended high gain observer (EHGO) with the derived GW mathematical model to implement the spacecraft angular rate estimation when the GW rotor is working at large angles. For this purpose, the GW dynamic equation is firstly derived with the second kind Lagrange method, and the relationship between the measurable and unmeasurable variables is built. Then, the EHGO is designed to estimate and calculate spacecraft angular rates with the GW, and the stability of the designed EHGO is proven by the Lyapunov function. Moreover, considering the engineering application, the effect of measurement noise in the tilt angle sensors on the estimation accuracy of the EHGO is analyzed. Finally, the numerical simulation is performed to illustrate the validity of the method proposed in this paper. PMID:27089347

  15. Microsecond gain-switched master oscillator power amplifier (1958 nm) with high pulse energy

    SciTech Connect

    Ke Yin; Weiqiang Yang; Bin Zhang; Ying Li; Jing Hou

    2014-02-28

    An all-fibre master oscillator power amplifier (MOPA) emitting high-energy pulses at 1958 nm is presented. The seed laser is a microsecond gain-switched thulium-doped fibre laser (TDFL) pumped with a commercial 1550-nm pulsed fibre laser. The TDFL operates at a repetition rate f in the range of 10 to 100 kHz. The two-stage thulium-doped fibre amplifier is built to scale the energy of the pulses generated by the seed laser. The maximum output pulse energy higher than 0.5 mJ at 10 kHz is achieved which is comparable with the theoretical maximum extractable pulse energy. The slope efficiency of the second stage amplifier with respect to the pump power is 30.4% at f = 10 kHz. The wavelength of the output pulse laser is centred near 1958 nm at a spectral width of 0.25 nm after amplification. Neither nonlinear effects nor significant amplified spontaneous emission (ASE) is observed in the amplification experiments. (lasers)

  16. BiCMOS operational amplifier with precise and stable dc gain for high-frequency switched capacitor circuits

    NASA Astrophysics Data System (ADS)

    Baschirotto, A.; Alini, R.; Castello, R.

    1991-07-01

    A novel approach in the design of high-frequency switched capacitor (SC) circuits is presented. It is based on the use of simple and fast amplifiers with low but precisely controlled gain value. The effect of the precisely known and stable opamp gain is compensated for by changing the capacitor values during the synthesis of the SC cell. An example of an opamp with these features and the synthesis of a biquadratic filter based on this approach are given.

  17. High spatial resolution BOTDA using simultaneously launched gain and loss pump pulses

    NASA Astrophysics Data System (ADS)

    Motil, A.; Danon, O.; Peled, Y.; Tur, M.

    2013-05-01

    We report a 10cm spatial resolution in a Brillouin-based distributed sensing system using two simultaneously launched gain and loss pump pulses, having slightly different durations. Post-recording subtraction of the probe signal, excited by the shorter pulse, from the corresponding one, obtained from the longer pump pulse, is no longer required, since it is done automatically by the overlapping parts of the gain and loss pump pulses. Using a 30ns gain pump pulse and a 29ns loss pump pulse we were able to improve upon previously published results, achieving a distributed strain measurement along a standard single mode optical fiber with a spatial resolution of ~10cm. This technique does not broaden the involved Brillouin gain spectra so that the strain/temperature sensitivity is not compromised.

  18. Gain media edge treatment to suppress amplified spontaneous emission in a high power laser

    DOEpatents

    Hackel, Lloyd A [Livermore, CA; Soules, Thomas F [Livermore, CA; Fochs, Scott N [Livermore, CA; Rotter, Mark D [San Ramon, CA; Letts, Stephan A [San Ramon, CA

    2011-02-22

    A novel method and apparatus for suppressing ASE and/or parasitic oscillation modes in a laser is introduced. By roughening one or more peripheral edges of a solid-state crystal or ceramic laser gain media and by bonding such edges to a predetermined electromagnetic absorbing material arranged adjacent to the entire outer surface of the peripheral edges of the roughened laser gain media, ASE, parasitic oscillation modes and/or residual pump energy can be effectively suppressed.

  19. Extension of the spectral range of the CLIO FEL

    SciTech Connect

    Marcouille, O.; Boyer, J.C.; Corlier, M.

    1995-12-31

    The CLIO FEL has been designed to lase between 2 and 20 {mu}m. The electrons are produced by a 32/50 MeV RF linear accelerator. The injector is a 100 keV thermoionic gun, followed by a subharmonic prebuncher at 0.5 GHz and a buncher at 3 GHz. The electron beam is then accelerated in a 4.5 m long travelling wave accelerating section, to the nominal energy. The undulator consisted of 48 periods of 40 mm and the optical cavity is 4.8 m long which corresponds to a 1.2 m Rayleigh length. The peak power extracted by a ZnSe Brewster plate is 10 MW at 10 {mu}. But, beyond 11{mu}m, the laser power decreases rapidely and no laser oscillation appears above 17 {mu}m. In order to lase at farther wavelengths, few changes have been made: First of all, the power limit is due to the diffraction losses of the undulator vaccuum chamber (7 mm height and 2 m long). Numerical calculations have been made and show that cavity losses reach 55 % at 15 {mu}m whereas the measured gain is 60 %. Consequently, the undulator vaccuum chamber have been replaced by a approximately twice bigger one. Then, the minimum gap is increased and the maximum deflection parameter K is reduced by a factor 2: laser tunability is greatly reduced. This why a new undulator has been built. The main characteristics are summarized.

  20. JLAMP: AN AMPLIFIER-BASED FEL IN THE JLAB SRF ERL DRIVER

    SciTech Connect

    Kevin Jordan; Stephen V. Benson; David Douglas; Pavel Evtushenko; Carlos Hernandez-Garcia; George R. Neil

    2007-06-13

    Notional designs for energy-recovering linac (“ERL”) -driven high average power free electron lasers (“FEL”s) often invoke amplifier-based architectures. To date, however, amplifier FELs have been limited in average power output to values several orders of magnitude lower than those demonstrated in optical-resonator based systems; this is due at least in part to the limited electron beam powers available from their driver accelerators. In order to directly contrast the performance available from amplifiers to that provided by high-power cavity-based resonators, we have developed a scheme to test an amplifier FEL in the JLab SRF ERL driver. We describe an accelerator system design that can seamlessly and non-invasively integrate a 10 m wiggler into the existing system and which provides, at least in principle, performance that would support high-efficiency lasing in an amplifier configuration. Details of the design and an accelerator performance analysis will be presented

  1. High-gain AlGaAs/GaAs double heterojunction Darlington phototransistors for optical neural networks

    NASA Technical Reports Server (NTRS)

    Kim, Jae H. (Inventor); Lin, Steven H. (Inventor)

    1991-01-01

    High-gain MOCVD-grown (metal-organic chemical vapor deposition) AlGaAs/GaAs/AlGaAs n-p-n double heterojunction bipolar transistors (DHBTs) and Darlington phototransistor pairs are provided for use in optical neural networks and other optoelectronic integrated circuit applications. The reduced base doping level used results in effective blockage of Zn out-diffusion, enabling a current gain of 500, higher than most previously reported values for Zn-diffused-base DHBTs. Darlington phototransitor pairs of this material can achieve a current gain of over 6000, which satisfies the gain requirement for optical neural network designs, which advantageously may employ neurons comprising the Darlington phototransistor pairs in series with a light source.

  2. Generation of a few femtoseconds pulses in seeded FELs using a seed laser with small transverse size

    NASA Astrophysics Data System (ADS)

    Li, Heting; Jia, Qika

    2016-09-01

    We propose a simple method to generate a few femtosecond pulses in seeded FELs. We use a longitudinal energy-chirped electron beam passing through a dogleg where transverse dispersion will generate a horizontal energy chirp, then in the modulator, a seed laser with narrow beam radius will only modulate the center portion of the electron beam and then short pulses at high harmonics will be generated in the radiator. Using a representative realistic set of parameters, we show that 30 nm XUV pulse based on the HGHG scheme and 9 nm soft x-ray pulse based on the EEHG scheme with duration of about 8 fs (FWHM) and peak power of GW level can be generated from a 180 nm UV seed laser with beam waist of 75 μm. This new scheme can provide an optional operation mode for the existing seeded FEL facilities to meet the requirement of short-pulse FEL.

  3. Analysis of the eigenvalue equation of the FEL amplifier with axisymmetric electron beam and diaphragm focusing line

    SciTech Connect

    Saldin, E.L.; Schneidmiller, E.A.; Ulyanov, Yu.N.

    1995-12-31

    The paper presents analysis of the eigenvalue problem of the FEL amplifier with axisymmetric electron beam and diaphragm focusing line. An FEL model is discussed wherein diffraction effects, space charge fields and energy spread of electrons in the beam are taken into account. To take into account diffraction effects at the diaphragms we apply the rigorous impedance boundary conditions proposed by Veinstein. The rigorous solutions of the eigenvalue problem leave been found for the stepped and bounded parabolic electron beam profiles. Analytical expressions for eigenfunctions of active open waveguide and formulae of their expansion in eigenfunctions of passive open waveguide, are derived, too. Asymptotic behaviour of the obtained solutions is studied in details. The multilayer approximation method has been used to solve the eigenvalue problem for the beams with an arbitrary gradient profile of current density. This novel type of an FEL amplifier has perspective to be used for applications where high average and peak radiation power is required.

  4. Verification of the Solar Dynamics Observatory High Gain Antenna Pointing Algorithm Using Flight Data

    NASA Technical Reports Server (NTRS)

    Bourkland, Kristin L.; Liu, Kuo-Chia

    2011-01-01

    The Solar Dynamics Observatory (SDO), launched in 2010, is a NASA-designed spacecraft built to study the Sun. SDO has tight pointing requirements and instruments that are sensitive to spacecraft jitter. Two High Gain Antennas (HGAs) are used to continuously send science data to a dedicated ground station. Preflight analysis showed that jitter resulting from motion of the HGAs was a cause for concern. Three jitter mitigation techniques were developed and implemented to overcome effects of jitter from different sources. These mitigation techniques include: the random step delay, stagger stepping, and the No Step Request (NSR). During the commissioning phase of the mission, a jitter test was performed onboard the spacecraft, in which various sources of jitter were examined to determine their level of effect on the instruments. During the HGA portion of the test, the jitter amplitudes from the single step of a gimbal were examined, as well as the amplitudes due to the execution of various gimbal rates. The jitter levels were compared with the gimbal jitter allocations for each instrument. The decision was made to consider implementing two of the jitter mitigating techniques on board the spacecraft: stagger stepping and the NSR. Flight data with and without jitter mitigation enabled was examined, and it is shown in this paper that HGA tracking is not negatively impacted with the addition of the jitter mitigation techniques. Additionally, the individual gimbal steps were examined, and it was confirmed that the stagger stepping and NSRs worked as designed. An Image Quality Test was performed to determine the amount of cumulative jitter from the reaction wheels, HGAs, and instruments during various combinations of typical operations. The HGA-induced jitter on the instruments is well within the jitter requirement when the stagger step and NSR mitigation options are enabled.

  5. High gain GaAs Photoconductive Semiconductor Switches (PCSS): Device lifetime, high current testing, optical pulse generators

    SciTech Connect

    Zutavern, F.J.; Loubriel, G.M.; Helgeson, W.D.; O`Malley, M.W.; Gallegos, R.R.; Hjalmarson, H.P.; Baca, A.G.; Plut, T.A.

    1995-12-31

    This paper presents results from three areas of GaAs PCSS research and development: device lifetime, high current switching, and PCSS-driven laser diode arrays (LDA). The authors have performed device lifetime tests on both lateral and vertical switches as a function of current amplitude, pulse width, and charging time. At present, their longest-lived switch reached 4 {times} 10{sup 6} pulses. Scanning electron microscope (SEM) images show damage near the contacts even after only 5 pulses. They are presently searching for the threshold at which no damage is evident after a single shot. In high current tests, they have reached 5.2 kA at 4.2 kV. This was achieved using twenty fiber-optic coupled lasers to distribute current filaments over a 5 mm wide PCSS. Current waveforms and images of the current filaments as a function of current amplitude will be presented. The lasers used to trigger the high current PCSS were driven with a miniature PCSS. Low inductance, high speed GaAs PCSS are very effective as short pulse laser diode array drivers. Some types of arrays gain switch, producing a compressed optical pulse which is only 75 ps wide. Results from tests with a variety of laser diode arrays will be presented.

  6. Performance Achievements and Challenges for FELs based on Energy Recovered Linacs

    SciTech Connect

    Geoffrey Krafft

    2006-08-27

    During the past decade several groups have assembled free electron lasers based on energy recovered linacs (ERLs). Such arrangements have been built to obtain high average power electron and photon beams, by using high repetition rate beam pulses driving FEL oscillators. In this paper the performance of many existing and several proposed facilities from around the world are reviewed. Going forward, many questions must be addressed to achieve still better performance including: higher average current injectors, better optimized accelerating cavities, higher energy acceptance and lower loss beam recirculation systems, and better optical cavity designs for dealing with the optical beam power circulating in the ERL FELs. This paper presents some of the current thinking on each of these issues.

  7. Liver fatty acid binding protein gene-ablation exacerbates weight gain in high-fat fed female mice.

    PubMed

    McIntosh, Avery L; Atshaves, Barbara P; Landrock, Danilo; Landrock, Kerstin K; Martin, Gregory G; Storey, Stephen M; Kier, Ann B; Schroeder, Friedhelm

    2013-05-01

    Loss of liver fatty acid binding protein (L-FABP) decreases long chain fatty acid uptake and oxidation in primary hepatocytes and in vivo. On this basis, L-FABP gene ablation would potentiate high-fat diet-induced weight gain and weight gain/energy intake. While this was indeed the case when L-FABP null (-/-) mice on the C57BL/6NCr background were pair-fed a high-fat diet, whether this would also be observed under high-fat diet fed ad libitum was not known. Therefore, this possibility was examined in female L-FABP (-/-) mice on the same background. L-FABP (-/-) mice consumed equal amounts of defined high-fat or isocaloric control diets fed ad libitum. However, on the ad libitum-fed high-fat diet the L-FABP (-/-) mice exhibited: (1) decreased hepatic long chain fatty acid (LCFA) β-oxidation as indicated by lower serum β-hydroxybutyrate level; (2) decreased hepatic protein levels of key enzymes mitochondrial (rate limiting carnitine palmitoyl acyltransferase A1, CPT1A; HMG-CoA synthase) and peroxisomal (acyl CoA oxidase 1, ACOX1) LCFA β-oxidation; (3) increased fat tissue mass (FTM) and FTM/energy intake to the greatest extent; and (4) exacerbated body weight gain, weight gain/energy intake, liver weight, and liver weight/body weight to the greatest extent. Taken together, these findings showed that L-FABP gene-ablation exacerbated diet-induced weight gain and fat tissue mass gain in mice fed high-fat diet ad libitum--consistent with the known biochemistry and cell biology of L-FABP.

  8. High energy gain in three-dimensional simulations of light sail acceleration

    SciTech Connect

    Sgattoni, A.; Sinigardi, S.; Macchi, A.

    2014-08-25

    The dynamics of radiation pressure acceleration in the relativistic light sail regime are analysed by means of large scale, three-dimensional (3D) particle-in-cell simulations. Differently to other mechanisms, the 3D dynamics leads to faster and higher energy gain than in 1D or 2D geometry. This effect is caused by the local decrease of the target density due to transverse expansion leading to a “lighter sail.” However, the rarefaction of the target leads to an earlier transition to transparency limiting the energy gain. A transverse instability leads to a structured and inhomogeneous ion distribution.

  9. UV x-ray free electron lasers through high-gain single pass amplifier: Basic principles and issues

    SciTech Connect

    Kim, K.J.

    1994-09-01

    The author reviews the basic principles of high gain free electron laser amplifier in single pass configuration for generation of intense, tunable radiation for wavelength shorter than 1,000 {angstrom}. Two schemes are discussed: for wavelength region between 1,000--100 {angstrom}, the high gain harmonic generation of a coherent input radiation can be used. For x-ray wavelength as short as a few {angstrom}, the self-amplified spontaneous emission is currently the only known free electron laser scheme. The author also presents a brief introduction of various key issues in realizing these schemes, which will be discussed in detail in other papers in these proceedings.

  10. Modelling Plant and Soil Nitrogen Feedbacks Affecting Forest Carbon Gain at High CO2

    NASA Astrophysics Data System (ADS)

    McMurtrie, R. E.; Norby, R. J.; Franklin, O.; Pepper, D. A.

    2007-12-01

    Short-term, direct effects of elevated atmospheric CO2 concentrations on plant carbon gain are relatively well understood. There is considerable uncertainty, however, about longer-term effects, which are influenced by various plant and ecosystem feedbacks. A key feedback in terrestrial ecosystems occurs through changes in plant carbon (C) allocation patterns. For instance, if high CO2 were to increase C allocation to roots, then plants may experience positive feedback through improved plant nutrition. A second type of feedback, associated with decomposition of soil-organic matter, may reduce soil-nutrient availability at high CO2. This paper will consider mechanistic models of both feedbacks. Effects of high CO2 on plant C allocation will be investigated using a simple model of forest net primary production (NPP) that incorporates the primary mechanisms of plant carbon and nitrogen (N) balance. The model called MATE (Model Any Terrestrial Ecosystem) includes an equation for annual C balance that depends on light- saturated photosynthetic rate and therefore on [CO2], and an equation for N balance incorporating an expression for N uptake as a function of root mass. The C-N model is applied to a Free Air CO2 Exchange (FACE) experiment at Oak Ridge National Laboratory (ORNL) in Tennessee, USA, where closed-canopy, monoculture stands of the deciduous hardwood sweetgum ( Liquidambar styraciflua) have been growing at [CO2] of 375 and 550 ppm for ten years. Features of this experiment are that the annual NPP response to elevated CO2 has averaged approximately 25% over seven years, but that annual fine-root production has almost doubled on average, with especially large increases in later years of the experiment (Norby et al. 2006). The model provides a simple graphical approach for analysing effects of elevated CO2 and N supply on leaf/root/wood C allocation and productivity. It simulates increases in NPP and fine-root production at the ORNL FACE site that are consistent

  11. Laser Phase Errors in Seeded FELs

    SciTech Connect

    Ratner, D.; Fry, A.; Stupakov, G.; White, W.; /SLAC

    2012-03-28

    Harmonic seeding of free electron lasers has attracted significant attention from the promise of transform-limited pulses in the soft X-ray region. Harmonic multiplication schemes extend seeding to shorter wavelengths, but also amplify the spectral phase errors of the initial seed laser, and may degrade the pulse quality. In this paper we consider the effect of seed laser phase errors in high gain harmonic generation and echo-enabled harmonic generation. We use simulations to confirm analytical results for the case of linearly chirped seed lasers, and extend the results for arbitrary seed laser envelope and phase.

  12. Optical properties of infrared FELs from the FELI Facility II

    SciTech Connect

    Saeki, K.; Okuma, S.; Oshita, E.

    1995-12-31

    The FELI Facility II has succeeded in infrared FEL oscillation at 1.91 {mu} m using a 68-MeV, 40-A electron beam from the FELI S-band linac in February 27, 1995. The FELI Facility II is composed of a 3-m vertical type undulator ({lambda}u=3.8cm, N=78, Km a x=1.4, gap length {ge}20mm) and a 6.72-m optical cavity. It can cover the wavelength range of 1-5{mu}m. The FELs can be delivered from the optical cavity to the diagnostics room through a 40-m evacuated optical pipeline. Wavelength and cavity length dependences of optical properties such as peak power, average power, spectrum width, FEL macropulse, FEL transverse profile are reported.

  13. The Linguistic Gains and Acculturation of American High School Students on Exchange Programs in Germany

    ERIC Educational Resources Information Center

    Lovitt, Ashli

    2013-01-01

    There has been a sharp rise in study abroad participation over the last few decades (Institute for International Education, 2011), which can largely be explained by the rise of short-term study abroad programs. While there is much to be gained from participation in such programs, mid-length and year programs may offer the greatest benefits for…

  14. Light-controlled resistors provide quadrature signal rejection for high-gain servo systems

    NASA Technical Reports Server (NTRS)

    Mc Cauley, D. D.

    1967-01-01

    Servo amplifier feedback system, in which the phase sensitive detection, low pass filtering, and multiplication functions required for quadrature rejection, are preformed by light-controlled photoresistors, eliminates complex circuitry. System increases gain, improves signal-to-noise ratio, and eliminates the necessity for compensation.

  15. Factors influencing individual variability in high fat diet-induced weight gain in out-bred MF1 mice.

    PubMed

    Vaanholt, L M; Sinclair, R E; Mitchell, S E; Speakman, J R

    2015-05-15

    Easy access to high-energy palatable foods has been suggested to have contributed to the world-wide obesity epidemic. However, within these 'obesogenic' environments many people manage to remain lean. Mice also show variability in their weight gain responses to high-fat diet (HFD) feeding and their weight loss responses to calorically restricted (CR) feeding. In this study we investigated which factors contribute to determining susceptibility to HFD-induced obesity in mice, and whether the responses in weight gain on HFD are correlated with the responses to CR. One-hundred twenty four mice were exposed to 30% CR for 28days followed by a 14day recovery period, and subsequent exposure to 60% HFD for 28days. Responses in various metabolic factors were measured before and after each exposure (body mass; BM, body composition, food intake; FI, resting metabolic rate; RMR, physical activity, body temperature and glucose tolerance; GT). Weight changes on HFD ranged from -1 to 26%, equivalent to -0.2g to 10.5g in absolute mass. Multiple regression models showed that fat free mass (FFM) of the mice before exposure to HFD predicted 12% of the variability in weight gain on HFD (p<0.001). Also, FI during the first week of HFD feeding predicted 20% of the variability in BM and fat mass (FM) gain 4weeks later. These data may point to a role for the reward system in driving individual differences in FI and weight gain. Weight gain on the HFD was significantly negatively correlated to weight loss on CR, indicating that animals that are poor at defending against weight gain on HFD, were also poor at defending against CR-induced weight loss. Changes in FM and FFM in response to HFD or CR were not correlated however.

  16. The performance of the Duke FEL storage ring

    SciTech Connect

    Wu, Y.; Burnham, B.; Litvinenko, V.N.

    1995-12-31

    The commissioning of the Duke FEL storage ring has been completed. During commissioning, we have conducted a series of performance measurements on the storage ring lattice and the electron beam parameters. In this paper, we will discuss the techniques used in the measurements, present measurement results, and compare the measured parameters with the design specifications. In addition, we will present the expected OK-4 FEL performance based on the measured beam parameters.

  17. Design Concept for a Compact ERL to Drive a VUV/Soft X-Ray FEL

    SciTech Connect

    Christopher Tennant ,David Douglas

    2011-03-01

    We explore possible upgrades of the existing Jefferson Laboratory IR/UV FEL driver to higher electron beam energy and shorter wavelength through use of multipass recirculation to drive an amplifier FEL. The system would require beam energy at the wiggler of 600 MeV with 1 mA of average current. The system must generate a high brightness beam, configure it appropriately, and preserve beam quality through the acceleration cycle ? including multiple recirculations ? and appropriately manage the phase space during energy recovery. The paper will discuss preliminary design analysis of the longitudinal match, space charge effects in the linac, and recirculator design issues, including the potential for the microbunching instability. A design concept for the low energy recirculator and an emittance preserving lattice solution will be presented.

  18. Verification of the Solar Dynamics Observatory High Gain Antenna Pointing Algorithm Using Flight Data

    NASA Technical Reports Server (NTRS)

    Bourkland, Kristin L.; Liu, Kuo-Chia

    2011-01-01

    The Solar Dynamics Observatory (SDO) is a NASA spacecraft designed to study the Sun. It was launched on February 11, 2010 into a geosynchronous orbit, and uses a suite of attitude sensors and actuators to finely point the spacecraft at the Sun. SDO has three science instruments: the Atmospheric Imaging Assembly (AIA), the Helioseismic and Magnetic Imager (HMI), and the Extreme Ultraviolet Variability Experiment (EVE). SDO uses two High Gain Antennas (HGAs) to send science data to a dedicated ground station in White Sands, New Mexico. In order to meet the science data capture budget, the HGAs must be able to transmit data to the ground for a very large percentage of the time. Each HGA is a dual-axis antenna driven by stepper motors. Both antennas transmit data at all times, but only a single antenna is required in order to meet the transmission rate requirement. For portions of the year, one antenna or the other has an unobstructed view of the White Sands ground station. During other periods, however, the view from both antennas to the Earth is blocked for different portions of the day. During these times of blockage, the two HGAs take turns pointing to White Sands, with the other antenna pointing out to space. The HGAs handover White Sands transmission responsibilities to the unblocked antenna. There are two handover seasons per year, each lasting about 72 days, where the antennas hand off control every twelve hours. The non-tracking antenna slews back to the ground station by following a ground commanded trajectory and arrives approximately 5 minutes before the formerly tracking antenna slews away to point out into space. The SDO Attitude Control System (ACS) runs at 5 Hz, and the HGA Gimbal Control Electronics (GCE) run at 200 Hz. There are 40 opportunities for the gimbals to step each ACS cycle, with a hardware limitation of no more than one step every three GCE cycles. The ACS calculates the desired gimbal motion for tracking the ground station or for slewing

  19. Ultrafast laser inscription of a high-gain Er-doped bismuthate glass waveguide amplifier.

    PubMed

    Thomson, Robert R; Psaila, Nicholas D; Beecher, Stephen J; Kar, Ajoy K

    2010-06-07

    An Er-doped bismuthate glass waveguide amplifier has been fabricated using ultrafast laser inscription. Under zero pump conditions, the 87.0 mm long waveguide exhibited a fiber-to-fiber insertion loss of 4.0 dB at 1618 nm, outside the Er(3+) ion absorption band. We attribute approximately 1.8 dB of the insertion loss to coupling losses, 0.2 dB to Fresnel reflections and approximately 2.0 dB to propagation losses. When pumped using 1050 mW of 980 nm light, the amplifier exhibited a peak internal gain per unit length of 2.3 dB.cm(-1) at 1533 nm and a peak fiber-to-fiber net gain of 16.0 dB at 1533 nm. In this paper we also report the results of output power saturation and noise figure measurements.

  20. A numerical algorithm for optimal feedback gains in high dimensional LQR problems

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Ito, K.

    1986-01-01

    A hybrid method for computing the feedback gains in linear quadratic regulator problems is proposed. The method, which combines the use of a Chandrasekhar type system with an iteration of the Newton-Kleinman form with variable acceleration parameter Smith schemes, is formulated so as to efficiently compute directly the feedback gains rather than solutions of an associated Riccati equation. The hybrid method is particularly appropriate when used with large dimensional systems such as those arising in approximating infinite dimensional (distributed parameter) control systems (e.g., those governed by delay-differential and partial differential equations). Computational advantage of the proposed algorithm over the standard eigenvector (Potter, Laub-Schur) based techniques are discussed and numerical evidence of the efficacy of our ideas presented.

  1. High-power gain-switched Tm(3+)-doped fiber laser.

    PubMed

    Tang, Yulong; Xu, Lin; Yang, Yi; Xu, Jianqiu

    2010-10-25

    Gain-switched by a 1.914-µm Tm:YLF crystal laser, a two-stage Tm(3+) fiber laser has been achieved 100-W level ~2-µm pulsed laser output with a slope efficiency of ~52%. With the 6-m length of Tm fiber, the laser wavelength was centered at 2020 nm with a bandwidth of ~25 nm. Based on an acousto-optic switch, the pulse repetition rate can be modulated from 500 Hz to 50 kHz, and the laser pulse width can be tuned between 75 ns and ~1 µs. The maximum pulse energy was over 10 mJ, and the maximum pulse peak power was 138 kW. By using the fiber-coiling-induced mode-filtering effect, laser beam quality of M2 = 1.01 was obtained. Further scaling the pulse energy and average power from such kind of gain-switched fiber lasers was also discussed.

  2. Burst-mode gain switched technique for high peak and average optical energy extraction.

    PubMed

    Nikumb, S K; Seguin, H J; Seguin, V A; Willis, R J; Cheng, Z; Reshef, H

    1989-05-01

    The optical performance of a cw PIE CO(2) laser has been substantially improved through the adoption of a burst-mode gain switching technique. The approach has provided a doubling of the average beam power extractable from the device. With appropriate optimization, the process could possibly permit the attainment of pulsed energy extraction in the kilohertz range, and with average optical powers within the several tens of kilowatt category.

  3. Investigations of SBS and Laser Gain Competition in High-Power Phase Modulated Fiber Amplifiers (Postprint)

    DTIC Science & Technology

    2014-02-26

    through radio frequency (RF) phase modulation. Generally, linewidth broadening is achieved through a filtered microwave white noise source (WNS). WNS...signals. By seeding with appropriate wavelengths and seed powers, the effective length of the amplifier is shortened as the narrow linewidth signal...line (phase modulated) 1064 nm seed in conjunction with a broadband 1036 nm seed source. 2. PHASE MODULATED LASER GAIN COMPETITION Recently, we have

  4. High Gain, Fast Scan, Broad Spectrum, Parallel Beam Wavelength Dispersive X-ray Spectrometer for SEM

    SciTech Connect

    David OHara; Dr. Eric Lochmer

    2003-09-12

    Parallax Research, Inc. proposes to produce a new type of x-ray spectrometer for use with Scanning Electron Microscopy (SEM) that would have the energy resolution of WDS and the ease of use of EDS with sufficient gain for lower energies that it can be used at low beam currents as is EDS. Parallax proposes to do this by development of new multiple reflection x-ray collimation optics, new diffractor technology, new detector technology and new scan algorithms.

  5. FERMI @ Elettra -- A Seeded Harmonic Cascade FEL for EUV and SoftX-rays

    SciTech Connect

    Bocchetta, C.; Bulfone, D.; Craievich, P.; Danailov, M.B.; D'Auria,G.; DeNinno, G.; Di Mitri, S.; Diviacco, B.; Ferianis, M.; Gomezel, A.; Iazzourene, F.; Karantzoulis, E.; Parmigiani, F.; Penco, G.; Trovo, M.; Corlett, J.; Fawley, W.; Lidia, S.; Penn, G.; Ratti, A.; Staples, J.; Wilcox, R.; Zholents, A.; Graves, W.; Ilday, F.O.; Kaertner,F.; Wang, D.; Zwart, T.; Cornacchia, M.; Emma, P.; Huang, Z.; Wu, J.

    2005-09-01

    We describe the machine layout and major performance parameters for the FERMI FEL project funded for construction at Sincrotrone Trieste, Italy, within the next five years. The project will be the first user facility based on seeded harmonic cascade FELs, providing controlled, high peak-power pulses. With a high-brightness rf photocathode gun, and using the existing 1.2 GeV S-band linac, the facility will provide tunable output over a range from {approx}100 nm to {approx}10nm, with pulse duration from 40 fs to {approx} 1 ps, peak power GW, and with fully variable output polarization. Initially, two FEL cascades are planned; a single-stage harmonic generation to operate >40 nm, and a two stage cascade operating from {approx}40 nm to {approx}10 nm or shorter wavelength. The output is spatially and temporally coherent, with peak power in the GW range. Lasers provide modulation to the electron beam, as well as driving the photocathode and other systems, and the facility will integrate laser systems with the accelerator infrastructure, including a state-of-the-art optical timing system providing synchronization of rf signals, lasers, and x-ray pulses. Major systems and overall facility layout are described, and key performance parameters summarized.

  6. Compact tunable high power picosecond source based on Yb-doped fiber amplification of gain switch laser diode.

    PubMed

    Liu, Hongjun; Gao, Cunxiao; Tao, Jintao; Zhao, Wei; Wang, Yishan

    2008-05-26

    A compact tunable high power picosecond source based on Yb-doped fiber amplification of gain switch laser diode is demonstrated. A multi-stage single mode Yb-doped fiber preamplifier was combined with a single mode double-clad Yb-doped fiber main amplifier to construct the amplification system, which is seeded by a gain switch laser diode. By optimizing preamplifier???s parameters to compensate the seed spectrum gain, a "flat top" broadband spectrum is obtained to realize wavelength tunable output with a self-made tunable filter. The tunable pulses were further amplified to 3.5 W average power 90 ps pulses at 1 MHz repetition rate, and the center wavelength was tunable in the ranges from 1053 nm to 1073 nm with excellent beam quality.

  7. High-gain dipole antenna using polydimethylsiloxane-glass microsphere (PDMS-GM) substrate for 5G applications

    NASA Astrophysics Data System (ADS)

    Muhamad, Wan Asilah Wan; Ngah, Razali; Jamlos, Mohd Faizal; Soh, Ping Jack; Ali, Mohd Tarmizi

    2017-01-01

    A new dipole antenna designed using polydimethylsiloxane-glass microsphere (PDMS-GM) substrate is presented. The PDMS-GM substrate offered a lower permittivity of 1.85 compared to pure PDMS of 2.7. This resulted in a wide operating frequency range from 19 GHz up to more than 45 GHz, indicating a bandwidth of more than 28 GHz. The proposed PDMS-GM antenna featured a gain of up to 13.3 dB compared to pure PDMS which only produced 13 GHz of bandwidth and 5.5 dB gain. Instead of wide bandwidth and high gain, the proposed antenna is capable of becoming water resistant by covering its radiator and SMA connector. Such capabilities of the new PDMS-GM antenna indicated suitability for the fifth-generation (5G) wireless communication systems.

  8. Wideband and flat-gain amplifier based on high concentration erbium-doped fibres in parallel double-pass configuration

    SciTech Connect

    Hamida, B A; Cheng, X S; Harun, S W; Naji, A W; Arof, H; Al-Khateeb, W; Khan, S; Ahmad, H

    2012-03-31

    A wideband and flat gain erbium-doped fibre amplifier (EDFA) is demonstrated using a hybrid gain medium of a zirconiabased erbium-doped fibre (Zr-EDF) and a high concentration erbium-doped fibre (EDF). The amplifier has two stages comprising a 2-m-long ZEDF and 9-m-long EDF optimised for C- and L-band operations, respectively, in a double-pass parallel configuration. A chirp fibre Bragg grating (CFBG) is used in both stages to ensure double propagation of the signal and thus to increase the attainable gain in both C- and L-band regions. At an input signal power of 0 dBm, a flat gain of 15 dB is achieved with a gain variation of less than 0.5 dB within a wide wavelength range from 1530 to 1605 nm. The corresponding noise figure varies from 6.2 to 10.8 dB within this wavelength region.

  9. Amplification of a bi-phase shift-key modulated signal by a mm-wave FEL

    SciTech Connect

    Prosnitz, D.; Scharlemann, E.T.; Sheaffer, M.K.

    1991-10-01

    Bi-phase shift keying (BPSK) is a modulation scheme used in communications and radar in which the phase of a transmitted rf signal is switched in a coded pattern between discrete values differing by {pi} radians. The transmitted information rate (in communications) or resolution (in imaging radar) depends on the rate at which the transmitted signal can be modulated. Modulation rates of greater than 1 GHz are generally desired. Although the instantaneous gain bandwidth of a mm-wave FEL amplifier can be much greater than 10 GHz, slippage may limit the BPSK modulation rate that can be amplified. Qualitative slippage arguments would limit the modulation rate to relatively low values; nevertheless, simulations with a time-dependent FEL code (GINGER) indicate that rates of 2 GHz or more are amplified without much loss in modulation integrity. In this paper we describe the effects of slippage in the simulations and discuss the limits of simple arguments.

  10. Amplification of a bi-phase shift-key modulated signal by a mm-wave FEL

    NASA Astrophysics Data System (ADS)

    Prosnitz, D.; Scharlemann, E. T.; Sheaffer, M. K.

    1991-10-01

    Bi-phase shift keying (BPSK) is a modulation scheme used in communications and radar in which the phase of a transmitted RF signal is switched in a coded pattern between discrete values differing by (pi) radians. The transmitted information rate (in communications) or resolution (in imaging radar) depends on the rate at which the transmitted signal can be modulated. Modulation rates of greater than 1 GHz are generally desired. Although the instantaneous gain bandwidth of a mm-wave FEL amplifier can be much greater than 10 GHz, slippage may limit the BPSK modulation rate that can be amplified. Qualitative slippage arguments would limit the modulation rate to relatively low values; nevertheless, simulations with a time-dependent FEL code (GINGER) indicate that rates of 2 GHz or more are amplified without much loss in modulation integrity. In this paper we describe the effects of slippage in the simulations and discuss the limits of simple arguments.

  11. Amplification of a bi-phase shift-key modulated signal by a mm-wave FEL

    NASA Astrophysics Data System (ADS)

    Prosnitz, D.; Scharlemann, E. T.; Sheaffer, M. K.

    1992-07-01

    Bi-phase shift keying (BPSK) is a modulation scheme used in communications and radar in which the phase of a transmitted rf signal is switched in a coded pattern between discrete values differing by π radians. The transmitted information rate (in communications) or resolution (in imaging radar) depends on the rate at which the transmitted signal can be modulated. Modulation rates of greater than 1 GHz are generally desired. Although the instantaneous gain bandwidth of a mm-wave FEL amplifier can be much greater than 10 GHz, slippage may limit the BPSK modulation rate that can be amplified. Qualitative slippage arguments would limit the modulation rate to relatively low values; nevertheless, simulations with a time-dependent FEL code (GINGER) indicate that rates of 2 GHz or more are amplified without much loss in modulation integrity. In this paper we describe the effects of slippage in the simulations and discuss the limits of simple slippage arguments.

  12. Characterization and Suppression of the Electromagnetic Interference Induced Phase Shift in the JLab FEL Photo - Injector Advanced Drive Laser System

    SciTech Connect

    F. G. Wilson, D. Sexton, S. Zhang

    2011-09-01

    The drive laser for the photo-cathode gun used in the JLab Free Electron Laser (FEL) facility had been experiencing various phase shifts on the order of tens of degrees (>20{sup o} at 1497 MHz or >40ps) when changing the Advanced Drive Laser (ADL) [2][3][4] micro-pulse frequencies. These phase shifts introduced multiple complications when trying to setup the accelerator for operation, ultimately inhibiting the robustness and overall performance of the FEL. Through rigorous phase measurements and systematic characterizations, we determined that the phase shifts could be attributed to electromagnetic interference (EMI) coupling into the ADL phase control loop, and subsequently resolved the issue of phase shift to within tenths of a degree (<0.5{sup o} at 1497 MHz or <1ps). The diagnostic method developed and the knowledge gained through the entire process will prove to be invaluable for future designs of similar systems.

  13. Primary experimental studies on mid-infrared FEL irradiation on dental substances at BFEL

    NASA Astrophysics Data System (ADS)

    Junbiao, Zhu; Yonggui, Li; Nianqing, Liu; Guoqing, Zhang; Minkai, Wang; Gan, Wu; Xuepin, Yan; Yuying, Huang; Wei, He; Yanmei, Dong; Xuejun, Gao

    2001-12-01

    A free electron laser (FEL) with its characteristics of wide wavelength tunability, ultrashort pulse time structure, and high peak power density is predominantly superior to all other conventional lasers in applications. Several experimental studies on mid-infrared FEL irradiation on dental enamel and dentine were performed at the Beijing FEL. Experimental aims were to investigate changes in the hardness, ratios of P to Ca and Cs before and after irradiation on samples with a characteristic absorption wavelength of 9.66 μm, in the colors of these sample surfaces after irradiation with different wavelengths around the peak wavelength. The time dependence of temperature of the dentine sample was measured with its ps pulse effects compared to that with a continuous CO 2 laser. FTIR absorption spectra in the range of 2.5-15.4 μm for samples of these hard dental substances and pure hydroxyapatite were first examined to decide their chemical components and absorption maximums. Primary experimental results will be presented.

  14. Design of the SRF Driver ERL for the Jefferson Lab UV FEL

    SciTech Connect

    Douglas, David R; Benson, Stephen; Biallas, George; Blackburn, Keith; Boyce, James; Bullard, Donald; Coleman, James; Dickover, Cody; Ellingsworth, Forrest; Evtushenko, Pavel; Gould, Christopher; Gubeli, Joseph; Hannon, Fay; Hardy, David; Hernandez-Garcia, Carlos; Jordan, Kevin; Klopf, Michael; Kortze, James; Marchlik, Matthew; Moore, Steven; Neil, George; Powers, Thomas; Sexton, Daniel; Shinn, Michelle D; Tennant, Christopher; Walker, Richard; Wilson, Frederick; Zhang, Shukui

    2011-03-01

    We describe the design of the SRF Energy-Recovering Linac (ERL) providing the CW electron drive beam at the Jefferson Lab UV FEL. Based on the same 135 MeV linear accelerator as and sharing portions of the recirculator with the Jefferson Lab 10 kW IR Upgrade FEL, the UV driver ERL uses a novel bypass geometry to provide transverse phase space control, bunch length compression, and nonlinear aberration compensation (including correction of RF curvature effects) without the use of magnetic chicanes or harmonic RF. Stringent phase space requirements at the wiggler, low beam energy, high beam current, and use of a pre-existing facility and legacy hardware subject the design to numerous constraints. These are imposed not only by the need for both transverse and longitudinal phase space management, but also by the potential impact of collective phenomena (space charge, wakefields, beam break-up (BBU), and coherent synchrotron radiation (CSR)), and by interactions between the FEL and the accelerator RF system. This report addresses these issues and presents the accelerator design solution that is now in operation.

  15. Energy Gain in Collisions of Highly Charged Ions with C_60

    NASA Astrophysics Data System (ADS)

    Thumm, Uwe; Bárány, Anders; Cederquist, Henrik

    1997-04-01

    Within the dynamical classical over--barrier model for charge transfer in soft ion--cluster collisions [1], we have simulated [2] the kinetic energy gain Q of 3.3 q keV Ar^q+ ions in collisions with neutral C_60 targets. Our semi--classical theory allows for the calculation of Q in two different ways, either as difference of electronic binding energies before and after the collision or by integrating the dynamically changing force between the collision partners along the trajectory. A comparison between the two ways provides an intrinsic test of the model calculation. Comparison with recent experimental data [3] shows good agreement in the main features of the energy gain spectra and facilitates their interpretation in terms of the number and final states of transferred electrons. [1] U. Thumm, J. Phys. B27 3515 (1994); Phys. Rev. A55 (Jan.1997). [2] U. Thumm, A. Bárány and H. Cederquist, to be published. [3] N. Selberg et al., Phys. Rev. A 53, 874 (1996). description U.T. is supported by the Division of Chemical Sciences, Basis Energy Sciences, Office of Energy Research, U.S. Department of Energy.

  16. Attentional bias toward high-calorie food-cues and trait motor impulsivity interactively predict weight gain

    PubMed Central

    Meule, Adrian; Platte, Petra

    2016-01-01

    Strong bottom-up impulses and weak top-down control may interactively lead to overeating and, consequently, weight gain. In the present study, female university freshmen were tested at the start of the first semester and again at the start of the second semester. Attentional bias toward high- or low-calorie food-cues was assessed using a dot-probe paradigm and participants completed the Barratt Impulsiveness Scale. Attentional bias and motor impulsivity interactively predicted change in body mass index: motor impulsivity positively predicted weight gain only when participants showed an attentional bias toward high-calorie food-cues. Attentional and non-planning impulsivity were unrelated to weight change. Results support findings showing that weight gain is prospectively predicted by a combination of weak top-down control (i.e. high impulsivity) and strong bottom-up impulses (i.e. high automatic motivational drive toward high-calorie food stimuli). They also highlight the fact that only specific aspects of impulsivity are relevant in eating and weight regulation. PMID:28070402

  17. Attentional bias toward high-calorie food-cues and trait motor impulsivity interactively predict weight gain.

    PubMed

    Meule, Adrian; Platte, Petra

    2016-01-01

    Strong bottom-up impulses and weak top-down control may interactively lead to overeating and, consequently, weight gain. In the present study, female university freshmen were tested at the start of the first semester and again at the start of the second semester. Attentional bias toward high- or low-calorie food-cues was assessed using a dot-probe paradigm and participants completed the Barratt Impulsiveness Scale. Attentional bias and motor impulsivity interactively predicted change in body mass index: motor impulsivity positively predicted weight gain only when participants showed an attentional bias toward high-calorie food-cues. Attentional and non-planning impulsivity were unrelated to weight change. Results support findings showing that weight gain is prospectively predicted by a combination of weak top-down control (i.e. high impulsivity) and strong bottom-up impulses (i.e. high automatic motivational drive toward high-calorie food stimuli). They also highlight the fact that only specific aspects of impulsivity are relevant in eating and weight regulation.

  18. High Efficiency Automatic-Power-Controlled and Gain-Clamped EDFA for Broadband Passive Optical Networking Systems

    NASA Astrophysics Data System (ADS)

    Shen, Jyi-Lai; Wei, Shui-Ken; Lin, Chin-Yuan; Iong Li, Ssu; Huang, Chih-Chuan

    2010-04-01

    The configuration of a simple improved high efficiency automatic-power-controlled and gain-clamped EDFA (APC-GC-EDFA) for broadband passive optical networking systems (BPON) is presented here. In order to compensate the phase and amplitude variation due to the different distance between the optical line terminal (OLT) and optical network units (ONU), the APC-GC-EDFA need to be employed. A single 980 nm laser module is employed as the primary pump. To extend the bandwidth, all C-band ASE is recycled as the secondary pump to enhance the gain efficiency. An electrical feedback circuit is used as a multi-wavelength channel transmitter monitor for the automatic power control to improve the gain-flattened flatness for stable amplification. The experimental results prove that the EDFA system can provide flatter clamped gain in both C-band and L-band configurations. The gain flatness wavelength ranging from 1530 to 1610 nm is within 32.83 ± 0.64 dB, i.e. below 1.95 %. The gains are clamped at 33.85 ± 0.65 dB for the input signal power of -40 dBm to -10 dBm. The range of noise figure is between 6.37 and 6.56, which is slightly lower compared to that of unclamped amplifiers. This will be very useful for measuring the gain flatness of APC-GC-EDFA. Finally, we have also demonstrated the records of the overall simultaneous dynamics measurements for the new system stabilization. The carrier to noise ratio (CNR) is 49.5 to 50.8 dBc which is above the National Television System Committee (NTSC) standard of 43 dBc, and both composite second order (CSO) 69.2 to 71.5 dBc and composite triple beat (CTB) of 69.8 to 72.2 dBc are above 53 dBc. The recorded corresponding rise-time of 1.087 ms indicates that the system does not exhibit any overshoot of gain or ASE variation due to the signal at the beginning of the pulse.

  19. Comparison of self-fields effects in two-stream electromagnetically pumped FEL with ion-channel guiding and axial magnetic field

    NASA Astrophysics Data System (ADS)

    Saviz, S.; Mehdian, H.; Aghamir, Farzin M.; Ghorannevis, M.; Ashkarran, A. A.

    2011-12-01

    A theory of two-stream free-electron laser in a combined electromagnetic wiggler and an ion-channel guiding is developed. In the analysis, the electron trajectories and the small signal gain are derived by considering the effects of self-fields. Numerical calculations show that there are seven group's trajectories rather than nine groups reported in Mehdian and Saviz (2010 Chin. Phys. B 19(1), 014214). The comparison of the normalized gains and their corresponding normalized frequencies by employing the axial magnetic field and ion-channel guiding, with and without self-fields, in FEL has been studied numerically. The results show that the normalized maximum gain in FEL with axial magnetic is larger than that for using ion-channel guiding except in small region, but the results for their corresponding normalized frequencies are opposite.

  20. Vibrational spectroscopy at interfaces by IR-VIS sum-frequency generation using CLIO FEL

    SciTech Connect

    Peremans, A.; Tadjeddine, A.; Wan Quan, Z.

    1995-12-31

    IR-vis sum-frequency generation (SFG) has developed into a versatile technique for probing the vibrational structure of interfaces. To overcome the limited spectral range accessible by benchtop IR lasers, we have developed an SFG spectrometer that makes use of the broad band tuneable infrared beam provided by the CLIO-FEL. We will evaluate the gain in sensitivity of the FEL-SFG spectrometer in comparison to that of benchtop lasers, taking account of the surface damage by laser heating. Thereafter, we review the different research projects undertaken using this facility: (1) The interface selectivity of SFG makes it particularly suitable for probing buried liquid/solid interface. We took advantage of the spectrometer sensitivity to monitor the electrochemical deposition of hydrogen on platinum single crystals at under- and overpotential (2) Because of its sensitivity to the molecular symmetry, SFG allows probing the conformation of self assembled monolayers deposited on metals. We discuss SFG spectra of {omega}(4-nitroanilino)-dodecane adsorbed on polycrystalline gold and silver films; in the 1550 - 900 cm{sup -1} spectral range. (3) We have undertaken a spectroscopic approach for the investigation of polymer films adhesion on glass. Polyurethane/glass interface is investigated in the 2200 - 1600 cin{sup -1} spectral region. (4) The use of the CLIO FEL allows probing of the vibrational dynamics of the prominent IR active vibrations between 1500 and 500 cm{sup -1} of fullerene epitaxial films. These modes are modified upon charge transfer from the substrate to the C{sub 60} molecules. Preliminary SFG spectra of C{sub 60}/Ag interface are presented. (5) Site specific detection of CO adsorption and CO + O coadsorption on Pd(111) are studied.

  1. High-gain step-profiled integrated diagonal horn-antennas

    NASA Astrophysics Data System (ADS)

    Eleftheriades, George V.; Rebeiz, Gabriel M.

    1992-05-01

    A new step-profiled integrated-horn antenna is proposed. The antenna allows gains in the range of 17-20 dB to be achieved using standard (100) silicon wafers. The antenna is diagonally fed and exhibits very good circular symmetry within the 10-dB beamwidth. It has a fundamental Gaussian coupling efficiency of 83 percent. It is demonstrated that the profiled antenna has a radiation pattern similar to that of its smooth envelope horn, provided that the discontinuity between successive wafers does not exceed 0.15 lambda. The integrated stepped-profile horn performs much better than a corresponding smooth 70 deg flare-angle integrated horn of the same aperture size. The integrated step-profile horn is very well-suited for radio-astonomical and remote-sensing millimeter-wave imaging arrays requiring a large number of focal-plane elements.

  2. Overexpression of Jazf1 reduces body weight gain and regulates lipid metabolism in high fat diet.

    PubMed

    Jang, Woo Young; Bae, Ki Beom; Kim, Sung Hyun; Yu, Dong Hun; Kim, Hei Jung; Ji, Young Rae; Park, Seo Jin; Park, Si Jun; Kang, Min-Cheol; Jeong, Ja In; Park, Sang-Joon; Lee, Sang Gyu; Lee, Inkyu; Kim, Myoung Ok; Yoon, Duhak; Ryoo, Zae Young

    2014-02-14

    Jazf1 is a 27 kDa nuclear protein containing three putative zinc finger motifs that is associated with diabetes mellitus and prostate cancer; however, little is known about the role that this gene plays in regulation of metabolism. Recent evidence indicates that Jazf1 transcription factors bind to the nuclear orphan receptor TR4. This receptor regulates PEPCK, the key enzyme involved in gluconeogenesis. To elucidate Jazf1's role in metabolism, we fed a 60% fat diet for up to 15 weeks. In Jazf1 overexpression mice, weight gain was found to be significantly decreased. The expression of Jazf1 in the liver also suppressed lipid accumulation and decreased droplet size. These results suggest that Jazf1 plays a critical role in the regulation of lipid homeostasis. Finally, Jazf1 may provide a new therapeutic target in the management of obesity and diabetes.

  3. Excess Folic Acid Increases Lipid Storage, Weight Gain, and Adipose Tissue Inflammation in High Fat Diet-Fed Rats

    PubMed Central

    Kelly, Karen B.; Kennelly, John P.; Ordonez, Marta; Nelson, Randal; Leonard, Kelly; Stabler, Sally; Gomez-Muñoz, Antonio; Field, Catherine J.; Jacobs, René L.

    2016-01-01

    Folic acid intake has increased to high levels in many countries, raising concerns about possible adverse effects, including disturbances to energy and lipid metabolism. Our aim was to investigate the effects of excess folic acid (EFA) intake compared to adequate folic acid (AFA) intake on metabolic health in a rodent model. We conducted these investigations in the setting of either a 15% energy low fat (LF) diet or 60% energy high fat (HF) diet. There was no difference in weight gain, fat mass, or glucose tolerance in EFA-fed rats compared to AFA-fed rats when they were fed a LF diet. However, rats fed EFA in combination with a HF diet had significantly greater weight gain and fat mass compared to rats fed AFA (p < 0.05). Gene expression analysis showed increased mRNA levels of peroxisome proliferator-activated receptor γ (PPARγ) and some of its target genes in adipose tissue of high fat-excess folic acid (HF-EFA) fed rats. Inflammation was increased in HF-EFA fed rats, associated with impaired glucose tolerance compared to high fat-adequate folic acid (HF-AFA) fed rats (p < 0.05). In addition, folic acid induced PPARγ expression and triglyceride accumulation in 3T3-L1 cells. Our results suggest that excess folic acid may exacerbate weight gain, fat accumulation, and inflammation caused by consumption of a HF diet. PMID:27669293

  4. Excess Folic Acid Increases Lipid Storage, Weight Gain, and Adipose Tissue Inflammation in High Fat Diet-Fed Rats.

    PubMed

    Kelly, Karen B; Kennelly, John P; Ordonez, Marta; Nelson, Randal; Leonard, Kelly; Stabler, Sally; Gomez-Muñoz, Antonio; Field, Catherine J; Jacobs, René L

    2016-09-23

    Folic acid intake has increased to high levels in many countries, raising concerns about possible adverse effects, including disturbances to energy and lipid metabolism. Our aim was to investigate the effects of excess folic acid (EFA) intake compared to adequate folic acid (AFA) intake on metabolic health in a rodent model. We conducted these investigations in the setting of either a 15% energy low fat (LF) diet or 60% energy high fat (HF) diet. There was no difference in weight gain, fat mass, or glucose tolerance in EFA-fed rats compared to AFA-fed rats when they were fed a LF diet. However, rats fed EFA in combination with a HF diet had significantly greater weight gain and fat mass compared to rats fed AFA (p < 0.05). Gene expression analysis showed increased mRNA levels of peroxisome proliferator-activated receptor γ (PPARγ) and some of its target genes in adipose tissue of high fat-excess folic acid (HF-EFA) fed rats. Inflammation was increased in HF-EFA fed rats, associated with impaired glucose tolerance compared to high fat-adequate folic acid (HF-AFA) fed rats (p < 0.05). In addition, folic acid induced PPARγ expression and triglyceride accumulation in 3T3-L1 cells. Our results suggest that excess folic acid may exacerbate weight gain, fat accumulation, and inflammation caused by consumption of a HF diet.

  5. A multifunctional switched-capacitor programmable gain amplifier for high-definition video analog front-ends

    NASA Astrophysics Data System (ADS)

    Hong, Zhang; Jie, Zhang; Mudan, Zhang; Xue, Li; Jun, Cheng

    2015-03-01

    A multifunctional programmable gain amplifier (PGA) that provides gain and offset adjusting abilities for high-definition video analog front-ends (AFE) is presented. With a switched-capacitor structure, the PGA also acts as a sample and holder of the analog-to-digital converter (ADC) in the AFE to reduce the power consumption and chip area of the whole AFE. Furthermore, the PGA converts the single-ended video signal into differential signal for the following ADC to reject common-mode noise and interferences. The 9-bit digital-to-analog converter (DAC) for gain and offset adjusting is embedded into the switched capacitor networks of the PGA. A video AFE integrated circuit based on the proposed PGA is fabricated in a 0.18-μm process. Simulation and measurement results show that the PGA achieves a gain control range of 0.90 to 2.34 and an offset control range of -220 to 220 mV while consuming 10.1 mA from a 1.8 V power supply. Project supported by the National Natural Science Foundation of China (No. 61106027), and the Science and Technology Project of Shanxi Province (No. 2014K05-14).

  6. Orbital motion in generalized static fields of FELs accounting for axial magnetic field, beam forces, undulator and external focusing

    SciTech Connect

    Papadichev, V.A.

    1995-12-31

    Various types of undulators with or without axial magnetic field are used in FELs. Supplementary beam focusing can be applied by wedging, inclining or profiling pole faces of plan undulators or superposing external focusing magnetic fields in addition to undulator own focusing. Space-charge forces influence significantly particle motion in high-current, low-energy electron beams. Finally, one can use simultaneously two or more different undulators for some specific purpose: more efficient and selective higher harmonics generation, changing polarization types and direction, gain enhancement in double-period undulator etc. All these cases can be treated by solving the generalized equations of transverse orbital motion in a linear approximation, which is widely used for orbit calculation, gives sufficient accuracy for practical purposes and allows to consider many variants and optimize the chosen one. The undulator field is described as a field of two plane undulators with mutually orthogonal fields and an arbitrary axial (phase) shift between them. Various values of the phase shift correspond to right- or left-handed helical undulators, plane undulator of different polarization etc. The general formulae are reduced to forms that allow easier examination of particular cases: planar or helical undulator combined with axial magnetic field or without it, gyroresonance, limiting beam current, polarization etc.

  7. Electron Beam Diagnostics Of The JLAB UV FEL

    SciTech Connect

    Evtushenko, Pavel; Benson, Stephen; Biallas, George; Coleman, James; Dickover, Cody; Douglas, David; Marchlik, Matthew; Sexton, Daniel; Tennant, Christopher

    2011-03-01

    In this contribution we describe various systems and aspects of the electron beam diagnostics of the JLab UV FEL. The FEL is installed on a new bypass beam line at the existing 10 kW IR Upgrade FEL. Here, we describe a set of the following systems. A combination of OTR and phosphor viewers is used for measurements of the transverse beam profile, transverse emittance, and Twiss parameters. This system is also used for alignment of the optical cavity of the UV oscillator and to ensure the overlap between the electron beam and optical mode in the FEL wiggler. A system of beam position monitors equipped with log-amp based BPM electronics. Bunch length on the order of 120 fs RMS is measured with the help of a modified Martin-Puplett interferometer. The longitudinal transfer function measurement system is used to set up bunch compression in an optimal way, such that the LINAC RF curvature is compensated using only higher order magnetic elements of the beam transport. This set of diagnostic systems made a significant contribution in achieving first lasing of the FEL after only about 60 hours of beam operation.

  8. Thermal lens shaping in Brewster gain media: A high-power, diode-pumped Nd:GdVO(4) laser.

    PubMed

    Rimington, N; Schieffer, S; Schroeder, W; Brickeen, Brian

    2004-04-05

    A straightforward method is presented for generating a stigmatic spherical thermal lens in laser-diode-pumped, Brewster-cut solid-state gain media by shaping the aspect ratio of the elliptical pumped region. Demonstration of this laser head design with Nd:GdVO(4) as the gain medium yields a stable, efficient, high-power (>20W) diode-pumped laser at 1063nm. Analysis of the spatial mode characteristics of a 67cm-long symmetric resonator both confirms the radially symmetric nature of the pump-induced thermal lens and indicates that laser resonators incorporating this head design can readily generate a high spatial beam quality (M(2) < 2).

  9. High magnetic shear gain in a liquid sodium stable couette flow experiment A prelude to an alpha - omega dynamo

    SciTech Connect

    Colgate, Stirling; Li, Jui; Finn, John; Pariev, Vladimir; Beckley, Howard; Si, Jiahe; Martinic, Joe; Westpfahl, David; Slutz, James; Westrom, Zeb; Klein, Brianna

    2010-11-08

    The {Omega}-phase of the liquid sodium {alpha}-{Omega} dynamo experiment at NMIMT in cooperation with LANL has successfully demonstrated the production of a high toroidal field, B{sub {phi}} {approx_equal} 8 x B{sub r} from the radial component of an applied poloidal magnetic field, B{sub r}. This enhanced toroidal field is produced by rotational shear in stable Couette Row within liquid sodium at Rm {approx_equal} 120. The small turbulence in stable Taylor-Couette Row is caused by Ekman Row where ({delta}v/v){sup 2} {approx} 10{sup -3}. This high {Omega}-gain in low turbulence flow contrasts with a smaller {Omega}-gain in higher turbulence, Helmholtz-unstable shear flows. This result supports the ansatz that large scale astrophysical magnetic fields are created within semi-coherent large scale motions in which turbulence plays a diffusive role that enables magnetic flux linkage.

  10. Optically pumped NH[sub 3] as a high-gain amplifier for CO[sub 2] laser radiation

    SciTech Connect

    White, J.D. . Dept. of Engineering Physics); Reid, J. )

    1993-01-01

    Optically pumped high-pressure mixtures of NH[sub 3] in N[sub 2] are shown to be efficient broad-band amplifiers of pulsed CO[sub 2] radiation. In a dilute NH[sub 3] mixture at 6 atm a single-pass gain of 150 (21.8 dB) was measured for the 10P (34) CO[sub 2] transition. Gain was observed in NH[sub 3] at pressures as high as 10 atm. Experimental measurements were made for a range of wavelengths in the 10.7 [mu]m region, and the results compared with calculations based on a rate-equation model.

  11. Temporal characterization of the Stanford Mid-IR FEL by frequency-resolved optical gating

    SciTech Connect

    Richman, B.A.; DeLong, K.W.; Trebino, R.

    1995-02-01

    We measure the time-dependent intensity and phase of laser pulses from the Stanford Mid-IR FEL. We present the first measurements of near-transform-limited, linearly chirped, and sideband modulated FEL pulses.

  12. Transgenic rescue of adipocyte glucose-dependent insulinotropic polypeptide receptor expression restores high fat diet-induced body weight gain.

    PubMed

    Ugleholdt, Randi; Pedersen, Jens; Bassi, Maria Rosaria; Füchtbauer, Ernst-Martin; Jørgensen, Signe Marie; Kissow, Hanne-Louise; Nytofte, Nikolaj; Poulsen, Steen Seier; Rosenkilde, Mette Marie; Seino, Yutaka; Thams, Peter; Holst, Peter Johannes; Holst, Jens Juul

    2011-12-30

    The glucose-dependent insulinotropic polypeptide receptor (GIPr) has been implicated in high fat diet-induced obesity and is proposed as an anti-obesity target despite an uncertainty regarding the mechanism of action. To independently investigate the contribution of the insulinotropic effects and the direct effects on adipose tissue, we generated transgenic mice with targeted expression of the human GIPr to white adipose tissue or beta-cells, respectively. These mice were then cross-bred with the GIPr knock-out strain. The central findings of the study are that mice with GIPr expression targeted to adipose tissue have a similar high fat diet -induced body weight gain as control mice, significantly greater than the weight gain in mice with a general ablation of the receptor. Surprisingly, this difference was due to an increase in total lean body mass rather than a gain in total fat mass that was similar between the groups. In contrast, glucose-dependent insulinotropic polypeptide-mediated insulin secretion does not seem to be important for regulation of body weight after high fat feeding. The study supports a role of the adipocyte GIPr in nutrient-dependent regulation of body weight and lean mass, but it does not support a direct and independent role for the adipocyte or beta-cell GIPr in promoting adipogenesis.

  13. High-gain and low-excess noise near-infrared single-photon avalanche detector arrays

    NASA Astrophysics Data System (ADS)

    Linga, Krishna; Yevtukhov, Yuriy; Liang, Bing

    2010-04-01

    We have designed and developed a new family of photodetectors and arrays with Internal Discrete Amplification (IDA) mechanism for the realization of very high gain and low excess noise factor in the visible and near infrared spectral regions. These devices surpass many limitations of the Single Photon Avalanche Photodetectors such as ultra low excess noise factor, very high gain, lower reset time (< 200 ns). These devices are very simple to operate in the non-gated mode under a constant dc bias voltage. Because of its unique characteristics of self-quenching and self-recovery, no external quenching circuit is needed. This unique feature of self quenching and self-recovery makes it simple to less complex readout integrated circuit to realize large format detector arrays. In this paper, we present the discrete amplification design approach used for the development of self reset, high gain photodetector arrays in the near infrared wavelength region. The demonstrated device performance far exceeds any available solid state Photodetectors in the near infrared wavelength range. These devices are ideal for researchers in the field of spectroscopy, industrial and scientific instrumentation, Ladar, quantum cryptography, night vision and other military, defense and aerospace applications.

  14. On the Fielding of a High Gain, Shock-Ignited Target on the National Ignitiion Facility in the Near Term

    SciTech Connect

    Perkins, L J; Betti, R; Schurtz, G P; Craxton, R S; Dunne, A M; LaFortune, K N; Schmitt, A J; McKenty, P W; Bailey, D S; Lambert, M A; Ribeyre, X; Theobald, W R; Strozzi, D J; Harding, D R; Casner, A; Atzemi, S; Erbert, G V; Andersen, K S; Murakami, M; Comley, A J; Cook, R C; Stephens, R B

    2010-04-12

    Shock ignition, a new concept for igniting thermonuclear fuel, offers the possibility for a near-term ({approx}3-4 years) test of high gain inertial confinement fusion on the National Ignition Facility at less than 1MJ drive energy and without the need for new laser hardware. In shock ignition, compressed fusion fuel is separately ignited by a strong spherically converging shock and, because capsule implosion velocities are significantly lower than those required for conventional hotpot ignition, fusion energy gains of {approx}60 may be achievable on NIF at laser drive energies around {approx}0.5MJ. Because of the simple all-DT target design, its in-flight robustness, the potential need for only 1D SSD beam smoothing, minimal early time LPI preheat, and use of present (indirect drive) laser hardware, this target may be easier to field on NIF than a conventional (polar) direct drive hotspot ignition target. Like fast ignition, shock ignition has the potential for high fusion yields at low drive energy, but requires only a single laser with less demanding timing and spatial focusing requirements. Of course, conventional symmetry and stability constraints still apply. In this paper we present initial target performance simulations, delineate the critical issues and describe the immediate-term R&D program that must be performed in order to test the potential of a high gain shock ignition target on NIF in the near term.

  15. Dynamic receptor team formation can explain the high signal transduction gain in Escherichia coli.

    PubMed

    Albert, Réka; Chiu, Yu-Wen; Othmer, Hans G

    2004-05-01

    Evolution has provided many organisms with sophisticated sensory systems that enable them to respond to signals in their environment. The response frequently involves alteration in the pattern of movement, either by directed movement, a process called taxis, or by altering the speed or frequency of turning, which is called kinesis. Chemokinesis has been most thoroughly studied in the peritrichous bacterium Escherichia coli, which has four helical flagella distributed over the cell surface, and swims by rotating them. When rotated counterclockwise the flagella coalesce into a propulsive bundle, producing a relatively straight "run," and when rotated clockwise they fly apart, resulting in a "tumble" which reorients the cell with little translocation. A stochastic process generates the runs and tumbles, and in a chemoeffector gradient, runs that carry the cell in a favorable direction are extended. The cell senses spatial gradients as temporal changes in receptor occupancy and changes the probability of counterclockwise rotation (the bias) on a fast timescale, but adaptation returns the bias to baseline on a slow timescale, enabling the cell to detect and respond to further concentration changes. The overall structure of the signal transduction pathways is well characterized in E. coli, but important details are still not understood. Only recently has a source of gain in the signal transduction network been identified experimentally, and here we present a mathematical model based on dynamic assembly of receptor teams that can explain this observation.

  16. Overexpression of Jazf1 reduces body weight gain and regulates lipid metabolism in high fat diet

    SciTech Connect

    Jang, Woo Young; Bae, Ki Beom; Kim, Sung Hyun; Yu, Dong Hun; Kim, Hei Jung; Ji, Young Rae; Park, Seo Jin; Park, Si Jun; Kang, Min-Cheol; Jeong, Ja In; Park, Sang-Joon; Lee, Sang Gyu; Lee, Inkyu; Kim, Myoung Ok; Yoon, Duhak; Ryoo, Zae Young

    2014-02-14

    Highlights: • The expression of Jazf1 in the liver suppressed lipid accumulation. • Jazf1 significantly increases transcription of fatty acid synthase. • Jazf1 plays a critical role in the regulation of energy and lipid homeostasis. • Jazf1 associates the development of metabolic disorder. • Jazf1 may provide a new therapeutic target in the management of metabolic disorder. - Abstract: Jazf1 is a 27 kDa nuclear protein containing three putative zinc finger motifs that is associated with diabetes mellitus and prostate cancer; however, little is known about the role that this gene plays in regulation of metabolism. Recent evidence indicates that Jazf1 transcription factors bind to the nuclear orphan receptor TR4. This receptor regulates PEPCK, the key enzyme involved in gluconeogenesis. To elucidate Jazf1’s role in metabolism, we fed a 60% fat diet for up to 15 weeks. In Jazf1 overexpression mice, weight gain was found to be significantly decreased. The expression of Jazf1 in the liver also suppressed lipid accumulation and decreased droplet size. These results suggest that Jazf1 plays a critical role in the regulation of lipid homeostasis. Finally, Jazf1 may provide a new therapeutic target in the management of obesity and diabetes.

  17. Dynamic Receptor Team Formation Can Explain the High Signal Transduction Gain in Escherichia coli

    PubMed Central

    Albert, Réka; Chiu, Yu-wen; Othmer, Hans G.

    2004-01-01

    Evolution has provided many organisms with sophisticated sensory systems that enable them to respond to signals in their environment. The response frequently involves alteration in the pattern of movement, either by directed movement, a process called taxis, or by altering the speed or frequency of turning, which is called kinesis. Chemokinesis has been most thoroughly studied in the peritrichous bacterium Escherichia coli, which has four helical flagella distributed over the cell surface, and swims by rotating them. When rotated counterclockwise the flagella coalesce into a propulsive bundle, producing a relatively straight “run,” and when rotated clockwise they fly apart, resulting in a “tumble” which reorients the cell with little translocation. A stochastic process generates the runs and tumbles, and in a chemoeffector gradient, runs that carry the cell in a favorable direction are extended. The cell senses spatial gradients as temporal changes in receptor occupancy and changes the probability of counterclockwise rotation (the bias) on a fast timescale, but adaptation returns the bias to baseline on a slow timescale, enabling the cell to detect and respond to further concentration changes. The overall structure of the signal transduction pathways is well characterized in E. coli, but important details are still not understood. Only recently has a source of gain in the signal transduction network been identified experimentally, and here we present a mathematical model based on dynamic assembly of receptor teams that can explain this observation. PMID:15111386

  18. Very High Energy Gain at the Neptune Inverse Free Electron Laser Experiment

    SciTech Connect

    Musumeci, P.; Boucher, S.; Doyuran, A.; England, R. J.; Pellegrini, C.; Rosenzweig, J. B.; Travish, G.; Yoder, R.; Tochitsky, S.Ya.; Joshi, C.; Ralph, J.; Sung, C.; Tolmachev, S.; Varfolomeev, A.; Varfolomeev, A. Jr.; Yarovoi, T.

    2004-12-07

    We report the observation of energy gain in excess of 20 MeV at the Inverse Free Electron Laser Accelerator experiment at the Neptune Laboratory at UCLA. A 14.5 MeV electron beam is injected in an undulator strongly tapered in period and field amplitude. The IFEL driver is a CO2 10.6 {mu}m laser with power larger than 400 GW. The Rayleigh range of the laser, {approx} 1.8 cm, is much shorter than the undulator length so that the interaction is diffraction dominated. A few per cent of the injected particles are trapped in a stable accelerating bucket. Electrons with energies up to 35 MeV are measured by a magnetic spectrometer. Three-dimensional simulations, in good agreement with the measured electron energy spectrum, indicate that most of the acceleration occurs in the first 25 cm of the undulator, corresponding to an energy gradient larger than 70 MeV/m. The measured energy spectrum also indicates that higher harmonic Inverse Free Electron Laser interaction takes place in the second section of the undulator.

  19. High-gain cryogenic amplifier assembly employing a commercial CMOS operational amplifier.

    PubMed

    Proctor, J E; Smith, A W; Jung, T M; Woods, S I

    2015-07-01

    We have developed a cryogenic amplifier for the measurement of small current signals (10 fA-100 nA) from cryogenic optical detectors. Typically operated with gain near 10(7) V/A, the amplifier performs well from DC to greater than 30 kHz and exhibits noise level near the Johnson limit. Care has been taken in the design and materials to control heat flow and temperatures throughout the entire detector-amplifier assembly. A simple one-board version of the amplifier assembly dissipates 8 mW to our detector cryostat cold stage, and a two-board version can dissipate as little as 17 μW to the detector cold stage. With current noise baseline of about 10 fA/(Hz)(1/2), the cryogenic amplifier is generally useful for cooled infrared detectors, and using blocked impurity band detectors operated at 10 K, the amplifier enables noise power levels of 2.5 fW/(Hz)(1/2) for detection of optical wavelengths near 10 μm.

  20. A practical technique for measuring human biofluid conductivity using high gain-frequency characteristics.

    PubMed

    Al-Nabulsi, Jamal I; Aloquili, Osama; Ausheva, Vektoria; Yuldashev, Zafar M

    2011-11-01

    Currently, the study of ion composition and performance in human biofluids plays an important role in biomedical engineering research and technology. This field may become universal for human diagnostics; it allows early detection of different diseases in humans by measuring changes in ion behaviour in human biofluids. Practical experiments were conducted to analyse the liquid composite electrolyte conductivity in an alternating electric current field. These experiments allow the contribution of separate types of ions to the overall conductivity to be estimated. The method of estimating the concentration of active ions contained in biofluids is also introduced; it illustrates the possibility of performing qualitative and quantitative analysis over a wide range of concentrations and compositions. The authors present a procedure to determine the concentration of active liquid ions based on conductivity gain-frequency characteristic curve tracing. The experimental results validate the practical use of the proposed method. The results of this research are promising, and further investigation is required to further improve the method.

  1. Addressing Physics Grand Challenges Using the Jefferson Lab FEL

    NASA Astrophysics Data System (ADS)

    Williams, Gwyn P.

    2006-11-01

    The Jefferson Lab Free Electron Laser[1] is the first of the so-called 4^th generation light sources to go operational. Capable of delivering extraordinarily bright, tunable light in ultrafast pulses from THz[2] through infrared to UV, the facility extends the experimental reach of accelerator-based light-sources by many orders of magnitude. This allows new opportunities to study many of the ``Grand Challenges'' recently defined by the Office of Science, Basic Energy Sciences Division, most of which are concerned with understandings of equilibrium and non-equilibrium behavior of materials in physics, chemistry and biology using precise pump and probe techniques. Specifically, in condensed matter physics, the JLab FEL permits new studies which go beyond earlier studies of reductionist behavior to those which examine emergent behavior. Thus, the understanding of high Tc superconductivity, colossal magneto-resistance, and observations of the breakdown of the Born-Oppenheimer approximation, are examples of collective behavior which is now treated theoretically via the concept of quasiparticles. In this presentation we will describe the dual pathways of light source development and physics challenges, and then show how they are combined in experiments that allow new insights to be developed to understand material function. We will illustrate this with details of the evolution of accelerator-based light sources, and with examples of work performed to date. References: [1] Neil et al. Phys. Rev.Letts 84, 662 (2000). [2] Carr, Martin, McKinney, Neil, Jordan & Williams, Nature 420, 153 (2002).

  2. Optical modeling of the Jefferson Lab IR Demo FEL

    SciTech Connect

    G. Neil; S. Benson; Michelle D. Shinn; P. Davidson; P. Kloppel

    1997-01-01

    The Thomas Jefferson National Accelerator Facility (formerly known as CEBAF) has embarked on the construction of a 1 kW free-electron laser operating initially at 3 microns that is designed for laser-material interaction experiments and to explore the feasibility of scaling the system in power and wavelength for industrial and Navy defense applications. The superconducting radio-frequency linac, and single-pass transport which accelerates the beam from injector to wiggler, followed by energy-recovery deceleration to a dump. The electron and optical beam time structure in the design consists of a train of pecosecond pulses at a 37.425 MHz pulse repetition rate. The initial optical configuration is a conventional near-concentric resonator with transmissive outcoupling. Future upgrades of the system will increase the power and shorten the operating wavelength, and utilize a more advanced resonator system capable of scaling to high powers. The optical system of the laser has been mode led using the GLAD code by using a Beer's-law region to mimic the FEL interaction. Effects such as mirror heating have been calculated and compared with analytical treatments. The magnitude of the distorium for several materials and wavelengths has been estimated. The advantages as well as the limitations of this approach are discussed.

  3. Analysis of FEL optical systems with grazing incidence mirrors

    SciTech Connect

    Knapp, C.E.; Viswanathan, V.K.; Bender, S.C.; Appert, Q.D.; Lawrence, G.; Barnard, C.

    1986-01-01

    The use of grazing incidence optics in resonators alleviates the problem of damage to the optical elements and permits higher powers in cavities of reasonable dimensions for a free electron laser (FEL). The design and manufacture of a grazing incidence beam expander for the Los Alamos FEL mock-up has been completed. In this paper, we describe the analysis of a bare cavity, grazing incidence optical beam expander for an FEL system. Since the existing geometrical and physical optics codes were inadequate for such an analysis, the GLAD code was modified to include global coordinates, exact conic representation, raytracing, and exact aberration features to determine the alignment sensitivities of laser resonators. A resonator cavity has been manufactured and experimentally setup in the Optical Evaluation Laboratory at Los Alamos. Calculated performance is compared with the laboratory measurements obtained so far.

  4. FERMI@Elettra FEL Design Technical Optimization Final Report

    SciTech Connect

    Fawley, William; Penn, Gregory; Allaria, Enrico; De Ninno,Giovanni; Graves, William

    2006-07-31

    This is the final report of the FEL Design Group for the Technical Optimization Study for the FERMI{at}ELETTRA project. The FERMI{at}ELETTRA project is based on the principle of harmonic upshifting of an initial ''seed'' signal in a single pass, FEL amplifier employing multiple undulators. There are a number of FEL physics principles which underlie this approach to obtaining short wavelength output: (1) the energy modulation of the electron beam via the resonant interaction with an external laser seed (2) the use of a chromatic dispersive section to then develop a strong density modulation with large harmonic overtones (3) the production of coherent radiation by the microbunched beam in a downstream radiator. Within the context of the FERMI project, we discuss each of these elements in turn.

  5. Regrowth-free high-gain InGaAsP/InP active-passive platform via ion implantation.

    PubMed

    Parker, John S; Sivananthan, Abirami; Norberg, Erik; Coldren, Larry A

    2012-08-27

    We demonstrate a regrowth-free material platform to create monolithic InGaAsP/InP photonic integrated circuits (PICs) with high-gain active and low-loss passive sections via a PL detuning of >135 nm. We show 2.5 µm wide by 400 µm long semiconductor optical amplifiers with >40 dB/mm gain at 1570 nm, and passive waveguide losses <2.3 dB/mm. The bandgap in the passive section is detuned using low-energy 190 keV channelized phosphorous implantation and subsequent rapid thermal annealing to achieve impurity-induced quantum well intermixing (QWI). The PL wavelengths in the active and passive sections are 1553 and 1417 nm, respectively. Lasing wavelengths for 500 µm Fabry-Perot lasers are 1567 and 1453 nm, respectively.

  6. A Parameter Optimization for a National SASE FEL Facility

    SciTech Connect

    Yavas, O.; Yigit, S.

    2007-04-23

    The parameter optimization for a national SASE FEL facility was studied. Turkish State Planing Organization (DPT) gave financial support as an inter-universities project to begin technical design studies and test facility of National Accelerator Complex starting from 2006. In addition to a particle factory, the complex will contain a linac based free electron laser, positron ring based synchrotron radiation facilities and a proton accelerator. In this paper, we have given some results of main parameters of SASE FEL facility based on 130 MeV linac, application potential in basic and applied research.

  7. A Test of Superradiance in an FEL Experiment

    SciTech Connect

    Boyce, R

    2004-12-14

    We describe the design of an FEL Amplifier Test Experiment (FATE)1 to demonstrate the superradiant short bunch regime of a Free Electron Laser in the 1-3 {micro}m wavelength range starting from noise. The relevance to the LCLS X-ray FEL [1] proposal is discussed and numerical simulations are shown. It is numerically demonstrated for the first time with the 2-D code GINGER, that clean-up of noise in the superradiant regime occurs even at low power levels.

  8. The Mark III IR FEL: Improvements in performance and operation

    SciTech Connect

    Barnett, G.A.; Madey, J.M.J.; Straub, K.D.

    1995-12-31

    The Mark III IR FEL has been upgraded by the installation of a new thermionic microwave gun. The new gun yields a reduced emittance and allows operation at a higher repetition rate and an increased electron macropulse length. The RF system of the Mark III has also been phase-locked to the RF systemof the adjacent storage ring driver for the laboratory`s short-wavelength FEL sources, making possible two-color UV-IR pump probe experiments. In this paper, the design and performance of the new gun are presented and the implications of the improvements investigated.

  9. Rocketdyne FEL for power beaming using a regenerative amplifier

    NASA Astrophysics Data System (ADS)

    Cover, R. A.; Bennett, G. T.; Burke, R. J.; Curtin, M. S.; Lampel, M. C.; Rakowsky, G.; Stone, J. P.

    1993-08-01

    The Rocketdyne free-electron laser (FEL) being presently developed for operation in the visible to one-micron regime is described, with particular attention given to some of the principal optics and atmospheric propagation issues. The paper describes the system assembly and discusses the performance requirements for power beaming, the resonator design, and the basic ideas and calculations involved in the beam propagating through the atmosphere and tilt corrections. This FEL will be capable of an average output of greater than 1 kW in the near infrared. The laser system has an ability of scaling to power levels required for beaming power to space platforms.

  10. Undulators for the BESSY SASE-FEL Project

    NASA Astrophysics Data System (ADS)

    Bahrdt, J.; Frentrup, W.; Gaupp, A.; Kuske, B.; Meseck, A.; Scheer, M.

    2004-05-01

    BESSY plans to build a SASE-FEL facility for the energy range from 20 eV to 1000 eV. The energy range will be covered by three APPLE II type undulators with a magnetic length of about 60 m each. This paper summarizes the basic parameters of the FEL-undulators. The magnetic design will be presented. A modified APPLE II design will be discussed which provides higher fields at the expense of reduced horizontal access. GENESIS simulations give an estimate on the tolerances for the beam wander and for gap errors.

  11. Progress in the injector for FEL at CIAE

    SciTech Connect

    Tianlu Yang; Wenzhen Zhou; Shinian Fu

    1995-12-31

    An intense current RF-linac for the far-infrared FEL is now under construction at CIAE. The normalized brightness of 3.4 x 10{sup 9} A/(m-rad) was obtained from the injector of the linac. An acceleration section with 9 cells will be connected with the injector to provide an electron beam for the 200 {mu}m FEL oscillator. In this paper, the late results from the injector beam test will be reported. The physical design and research progress in the acceleration section, beam transport, undulator as well as optical cavity will be introduced respectively.

  12. Undulators for the BESSY SASE-FEL Project

    SciTech Connect

    Bahrdt, J.; Frentrup, W.; Gaupp, A.; Kuske, B.; Meseck, A.; Scheer, M.

    2004-05-12

    BESSY plans to build a SASE-FEL facility for the energy range from 20 eV to 1000 eV. The energy range will be covered by three APPLE II type undulators with a magnetic length of about 60 m each. This paper summarizes the basic parameters of the FEL-undulators. The magnetic design will be presented. A modified APPLE II design will be discussed which provides higher fields at the expense of reduced horizontal access. GENESIS simulations give an estimate on the tolerances for the beam wander and for gap errors.

  13. Time dependence of FEL-induced surface photovoltage on semiconductor interfaces measured with synchroton radiation photoemission spectroscopy

    SciTech Connect

    Marsi, M.; Delboulbe, A.; Garzella, D.

    1995-12-31

    During the last year, the first surface science experiments simultaneously using a Free Electron Laser (FEL) and Synchrotron Radiation (SR) have been performed on SuperACO at LURE (Orsay, France). These {open_quotes}two color{close_quotes} experiments studied the surface photovoltage (SPV) induced on semiconductor surfaces and interfaces by the SuperACO FEL, a storage ring FEL delivering 350 nm photons which am naturally synchronized with the SR; the SPV was measured by synchrotron radiation core-level photoemission spectroscopy on the high-resolution SU3 undulator beamline. We will describe the experimental setup, which allowed us to convey the FEL light onto the samples sitting in the SU3 experimental station by means of a series of mirrors, and show the results we obtained for prototypical systems such as Ag/GaAs(110) and Si(111) 2 x 1. The dependence of the SPV was studied in function of various parameters, changing sample doping and photon flux; but our efforts were mainly devoted to studying its dependence on the time delay between the FEL pump and the SR probe. On SuperACO, such delay can be varied between 1 and 120 ns, the limits being given by the time duration of a SR pulse and by the interval between two consecutive positron bunches, respectively. The results show a clear temporal dependence of the amount of SPV on cleaved Si surfaces, where as the Ag/GaAs(110) does not show any difference on the ns time scale. We will discuss these results in terms of the role of surface recombination in the dynamics of the photoinduced electron-hole pairs. These studies follow the evolution of the density of electrostatic charge at surfaces and interfaces on a nanosecond time scale, and might pave the way for a new series of experiments: for example, one might explore what are the physical mechanisms limiting the time response of Schottky diodes.

  14. High Adherence to CPAP Treatment Does Not Prevent the Continuation of Weight Gain among Severely Obese OSAS Patients

    PubMed Central

    Myllylä, Minna; Kurki, Samu; Anttalainen, Ulla; Saaresranta, Tarja; Laitinen, Tarja

    2016-01-01

    Study Objectives: Obstructive sleep apnea syndrome (OSAS) patients benefit from continuous positive airway pressure (CPAP) treatment in a dose-response manner. We determined adherence and weight control, as well as their predictors, among long-term CPAP users. Methods: Cohort of 1,023 OSAS patients had used CPAP on average of 6.6 ± 1.2 years. BMI was determined at baseline and at follow-up visits. There were 7.4 ± 1.7 BMI and 6.5 ± 1.8 CPAP usage measurements per patient on average. Using the Bayesian hierarchical model, we determined the patients' individual trends of BMI and adherence development. Patients with significantly increasing or decreasing trends were identified at the posterior probability level of > 90%. Results: The mean age in the cohort was 55.6 ± 9.8 years, BMI 33.5 ± 6.4 kg/m2, apnea-hypopnea index 33.7 ± 23.1, and CPAP usage 6.0 ± 1.8 h/day. The majority of patients had no significant change in BMI (mean annual weight gain 0.04 ± 0.29 kg/m2) or CPAP adherence (mean annual increase 11.4 ± 7.0 min/day). However, at the individual level, 10% of the patients showed significant annual weight gain (0.63 ± 0.35 kg/m2) during the 5-year follow-up period. At baseline these patients were already more severely obese (mean BMI 40.0 ± 5.9 kg/m2) despite being younger (mean 50.9 ± 9.5 years) than the rest of the cohort. Conclusions: In the majority of CPAP-treated OSAS patients, weight did not significantly change but gained slightly slower than in age-matched population in general. However, in 10% of patients, high adherence to CPAP treatment did not prevent the continuation of weight gain. These patients present a high-risk group for OSAS-related multimorbidity later in life. Citation: Myllylä M, Kurki S, Anttalainen U, Saaresranta T, Laitinen T. High adherence to CPAP treatment does not prevent the continuation of weight gain among severely obese OSAS patients. J Clin Sleep Med 2016;12(4):519–528. PMID:26888588

  15. Proceedings of the free-electron generators of coherent radiation

    SciTech Connect

    Brau, C.A.; Jacobs, S.F.; Scully, M.O.

    1984-01-01

    Among the topics discussed are the evolution of long pulses in a tapered wiggler Free Electron Laser (FEL), linear gain, and stable pulse propagation in an FEL oscillator, FEL injection locking by an alexandrite laser, accelerator technology for a high power, short wavelength FEL, an acoustooptic output coupler for FELs, second harmonic generation with high power short pulses from an IR FEL, the Los Alamos FEL project's experimental and developmental results to date, the Lawson-Penner limit and FEL operation by single pass devices, and the radially resolved simulation of a high gain FEL amplifier. Also covered are FEL amplifier performance in the Compton regime, unstable FEL resonators, the operation of a storage ring-free FEL, chaotic optical modes in FELs, bright electron beams for FELs, the three-dimensional theory of the Raman FEL, Cerenkov lasers in the Compton regime, and prospects for an X-ray FEL.

  16. Development of high damage threshold laser-machined apodizers and gain filters for laser applications

    DOE PAGES

    Rambo, Patrick; Schwarz, Jens; Kimmel, Mark; ...

    2016-09-27

    We have developed high damage threshold filters to modify the spatial profile of a high energy laser beam. The filters are formed by laser ablation of a transmissive window. The ablation sites constitute scattering centers which can be filtered in a subsequent spatial filter. Finally, by creating the filters in dielectric materials, we see an increased laser-induced damage threshold from previous filters created using ‘metal on glass’ lithography.

  17. Multifunctional Polymer Nanofibers: UV Emission, Optical Gain, Anisotropic Wetting, and High Hydrophobicity for Next Flexible Excitation Sources.

    PubMed

    Morello, Giovanni; Manco, Rita; Moffa, Maria; Persano, Luana; Camposeo, Andrea; Pisignano, Dario

    2015-10-07

    The use of UV light sources is highly relevant in many fields of science, being directly related to all those detection and diagnosis procedures that are based on fluorescence spectroscopy. Depending on the specific application, UV light-emitting materials are desired to feature a number of opto-mechanical properties, including brightness, optical gain for being used in laser devices, flexibility to conform with different lab-on-chip architectures, and tailorable wettability to control and minimize their interaction with ambient humidity and fluids. In this work, we introduce multifunctional, UV-emitting electrospun fibers with both optical gain and greatly enhanced anisotropic hydrophobicity compared to films. Fibers are described by the onset of a composite wetting state, and their arrangement in uniaxial arrays further favors liquid directional control. The low gain threshold, optical losses, plastic nature, flexibility, and stability of these UV-emitting fibers make them interesting for building light-emitting devices and microlasers. Furthermore, the anisotropic hydrophobicity found is strongly synergic with optical properties, reducing interfacial interactions with liquids and enabling smart functional surfaces for droplet microfluidic and wearable applications.

  18. Multifunctional Polymer Nanofibers: UV Emission, Optical Gain, Anisotropic Wetting, and High Hydrophobicity for Next Flexible Excitation Sources

    PubMed Central

    2015-01-01

    The use of UV light sources is highly relevant in many fields of science, being directly related to all those detection and diagnosis procedures that are based on fluorescence spectroscopy. Depending on the specific application, UV light-emitting materials are desired to feature a number of opto-mechanical properties, including brightness, optical gain for being used in laser devices, flexibility to conform with different lab-on-chip architectures, and tailorable wettability to control and minimize their interaction with ambient humidity and fluids. In this work, we introduce multifunctional, UV-emitting electrospun fibers with both optical gain and greatly enhanced anisotropic hydrophobicity compared to films. Fibers are described by the onset of a composite wetting state, and their arrangement in uniaxial arrays further favors liquid directional control. The low gain threshold, optical losses, plastic nature, flexibility, and stability of these UV-emitting fibers make them interesting for building light-emitting devices and microlasers. Furthermore, the anisotropic hydrophobicity found is strongly synergic with optical properties, reducing interfacial interactions with liquids and enabling smart functional surfaces for droplet microfluidic and wearable applications. PMID:26401889

  19. General and persistent effects of high-intensity sweeteners on body weight gain and caloric compensation in rats.

    PubMed

    Swithers, Susan E; Baker, Chelsea R; Davidson, T L

    2009-08-01

    In an earlier work (S. E. Swithers & T. L. Davidson, 2008), rats provided with a fixed amount of a yogurt diet mixed with saccharin gained more weight and showed impaired caloric compensation relative to rats given the same amount of yogurt mixed with glucose. The present 4 experiments examined the generality of these findings and demonstrated that increased body weight gain was also demonstrated when animals consumed a yogurt diet sweetened with an alternative high-intensity sweetener (acesulfame potassium; AceK) as well as in animals given a saccharin-sweetened base diet (refried beans) that was calorically similar but nutritionally distinct from low-fat yogurt. These studies also extended earlier findings by showing that body weight differences persist after saccharin-sweetened diets are discontinued and following a shift to a diet sweetened with glucose. In addition, rats first exposed to a diet sweetened with glucose still gain additional weight when subsequently exposed to a saccharin-sweetened diet. The results of these experiments add support to the hypothesis that exposure to weak or nonpredictive relationships between sweet tastes and caloric consequences may lead to positive energy balance.

  20. Analog time-reversed ultrasonically encoded (TRUE) optical focusing inside scattering media with high power gain (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Ma, Cheng; Xu, Xiao; Wang, Lihong V.

    2016-03-01

    Focusing light deep inside scattering media plays a key role in such biomedical applications as high resolution optical imaging, control, and therapy. In recent years, wavefront shaping technologies have come a long way in controlling light propagation in complex media. A prominent example is time-reversed ultrasonically encoded (TRUE) focusing, which allows noninvasive introduction of "guide stars" inside biological tissue to guide light focusing. By measuring the optical wavefront emanating from an ultrasound focus created at the target location, TRUE determines the desired wavefront non-iteratively, and achieves focusing at the target position via a subsequent optical time reversal. Compared to digital counterparts that employ slow electronic spatial light modulators and cameras, analog TRUE focusing relies on nonlinear photorefractive crystals that inherently accommodate more spatial modes and eliminate the troublesome alignment and data transfer required by digital approaches. However, analog TRUE focusing suffers from its small gain, defined as the energy or power ratio between the focusing and probing beams in the focal volume. Here, by implementing a modified analog TRUE focusing scheme that squeezes the duration of the time-reversed photon packet below the carrier-recombination-limited hologram decay time of the crystal, we demonstrated a photon flux amplification much greater than unity at a preset focal voxel in between two scattering layers. Although the energy gain was still below unity, the unprecedented power gain will nevertheless benefit new biomedical applications.

  1. Time Is Money: The Decision Making of Smartphone High Users in Gain and Loss Intertemporal Choice

    PubMed Central

    Tang, Zixuan; Zhang, Huijun; Yan, An; Qu, Chen

    2017-01-01

    Nowadays the smartphone plays an important role in our lives. While it brings us convenience and efficiency, its overuse can cause problems. Although a great number of studies have demonstrated that people affected by substance abuse, pathological gambling, and internet addiction disorder have lower self-control than average, scarcely any study has investigated the decision making of smartphone high users by using a behavioral paradigm. The present study employed an intertemporal task, the Smartphone Addiction Inventory (SPAI) and the Barratt Impulsiveness Scale 11th version (BIS-11) to explore the decision control of smartphone high users in a sample of 125 college students. Participants were divided into three groups according to their SPAI scores. The upper third (69 or higher), middle third (from 61 to 68) and lower third (60 or lower) of scores were defined as high smartphone users, medium users and low users, respectively. We compared the percentage of small immediate reward/penalty choices in different conditions between the three groups. Relative to the low users group, high users and medium users were more inclined to request an immediate monetary reward. Moreover, for the two dimensions of time and money in intertemporal choice, high users and medium users showed a bias in intertemporal choice task among most of the time points and value magnitude compared to low users. These findings demonstrated that smartphone overuse was associated with problematic decision-making, a pattern similar to that seen in persons affected by a variety of addictions. PMID:28344568

  2. Time Is Money: The Decision Making of Smartphone High Users in Gain and Loss Intertemporal Choice.

    PubMed

    Tang, Zixuan; Zhang, Huijun; Yan, An; Qu, Chen

    2017-01-01

    Nowadays the smartphone plays an important role in our lives. While it brings us convenience and efficiency, its overuse can cause problems. Although a great number of studies have demonstrated that people affected by substance abuse, pathological gambling, and internet addiction disorder have lower self-control than average, scarcely any study has investigated the decision making of smartphone high users by using a behavioral paradigm. The present study employed an intertemporal task, the Smartphone Addiction Inventory (SPAI) and the Barratt Impulsiveness Scale 11th version (BIS-11) to explore the decision control of smartphone high users in a sample of 125 college students. Participants were divided into three groups according to their SPAI scores. The upper third (69 or higher), middle third (from 61 to 68) and lower third (60 or lower) of scores were defined as high smartphone users, medium users and low users, respectively. We compared the percentage of small immediate reward/penalty choices in different conditions between the three groups. Relative to the low users group, high users and medium users were more inclined to request an immediate monetary reward. Moreover, for the two dimensions of time and money in intertemporal choice, high users and medium users showed a bias in intertemporal choice task among most of the time points and value magnitude compared to low users. These findings demonstrated that smartphone overuse was associated with problematic decision-making, a pattern similar to that seen in persons affected by a variety of addictions.

  3. Toward the realization of erbium-doped GaN bulk crystals as a gain medium for high energy lasers

    NASA Astrophysics Data System (ADS)

    Sun, Z. Y.; Li, J.; Zhao, W. P.; Lin, J. Y.; Jiang, H. X.

    2016-08-01

    Er-doped GaN (Er:GaN) is a promising candidate as a gain medium for solid-state high energy lasers (HELs) at the technologically important and eye-safe 1.54 μm wavelength window, as GaN has superior thermal properties over traditional laser gain materials such as Nd:YAG. However, the attainment of wafer-scale Er:GaN bulk or quasi-bulk crystals is a prerequisite to realize the full potential of Er:GaN as a gain medium for HELs. We report the realization of freestanding Er:GaN wafers of 2-in. in diameter with a thickness on the millimeter scale. These freestanding wafers were obtained via growth by hydride vapor phase epitaxy in conjunction with a laser-lift-off process. An Er doping level of 1.4 × 1020 atoms/cm3 has been confirmed by secondary ion mass spectrometry measurements. The freestanding Er:GaN wafers exhibit strong photoluminescent emission at 1.54 μm with its emission intensity increasing dramatically with wafer thickness under 980 nm resonant excitation. A low thermal quenching of 10% was measured for the 1.54 μm emission intensity between 10 K and 300 K. This work represents a significant step in providing a practical approach for producing Er:GaN materials with sufficient thicknesses and dimensions to enable the design of gain media in various geometries, allowing for the production of HELs with improved lasing efficiency, atmosphere transmission, and eye-safety.

  4. Purple Sweet Potato Attenuate Weight Gain in High Fat Diet Induced Obese Mice.

    PubMed

    Ju, Ronghui; Zheng, Shujuan; Luo, Hongxia; Wang, Changgang; Duan, Lili; Sheng, Yao; Zhao, Changhui; Xu, Wentao; Huang, Kunlun

    2017-03-01

    Purple sweet potato (PSP) is widely grown in Asia and considered as a healthy vegetable. The objective of the current study was to determine the anti-obesity effect of the PSP on high fat diet induced obese C57BL/6J mice. The mice were administrated with high fat diet supplemented with the sweet potato (SP) or PSP at the concentration of 15% and 30% for 12 wk, respectively. The results showed that the supplementation of SP or PSP at 30% significantly ameliorated high fat diet induced obesity and its associated risk factors, including reduction of body weight and fat accumulation, improvement of lipid profile and modulation of energy expenditure. Moreover, PSP also posed beneficial effect on the liver and kidney functions. These results indicate that PSP and SP have anti-obesity effect and are effective to reduce the metabolic risk.

  5. Source challenges resulting of the first applications of a UV storage ring FEL on Super-ACO

    SciTech Connect

    Couprie, M.E.; Bakker, R.; Nahon, L. |

    1995-12-31

    Since 1992, significant progresses were achieved on the Super-ACO (S-ACO) storage ring Free Electron Laser (FEL) in the UV. The operation at the nominal energy 800 MeV has several consequences: higher average power in the UV (25 mW at 60 mA and more recently 100 mW at 100 mA available for the users), 10 hours of lasing for the same injection of positrons, providing enough time for performing an user experiment, compatibility with the users of synchrotron radiation (SR) in the temporal structure mode for 120 mA with the possibility of closing the four insertion devices of S-ACO. The main difficulties to extend the FEL optical performances come from the small gain (2%), limiting a rapid extention of the spectral range (either in the laser mode or by coherent harmonic generation from the FEL itself in the undulator) or linewidth narrowing. The installation of a 500 MHz harmonic cavity for bunch length reduction and gain increase is under consideration{hor_ellipsis} The stability of the FEL temporal and spectral was systematically followed versus time, for various scales (from ns to half an hour) with different detectors. The stability of the laser source has been significantly improved with a longitudinal feedback system allowing the jitter of the 25 ps RMS laser micropulse to be reduced from 150-200 ps down to 10-20 ps. the intensity fluctuations to be damped down 1% and the spectral drift to be smaller than the resolution of the scanning Fabry-Perot (0.01{angstrom}) at perfect synchronism. The laser can work during more than 3 consecutive hours without readjustments. In addition, according to the ring current, the positron beam is submitted to coherent modes of synchrotron oscillations. Right now, a Pedersen type longitudinal feedback damps the dipolar modes of such oscillation. The quadrupolar modes in the 120-60 mA range leading to a rather unstable FEL are on the way to be damped with an additional feedback.

  6. Shuttle orbiter Ku-band radar/communications system design evaluation: High gain antenna/widebeam horn

    NASA Technical Reports Server (NTRS)

    Iwasaki, R.; Dodds, J. G.; Broad, P.

    1979-01-01

    The physical characteristics of the high gain antenna reflector and feed elements are described. Deficiencies in the sum feed are discussed, and lack of atmospheric venting is posed as a potential problem area. The measured RF performance of the high gain antenna is examined and the high sidelobe levels measured are related to the physical characteristics of the antenna. An examination of the attributes of the feed which might be influenced by temperature extremes shows that the antenna should be insensitive to temperature variations. Because the feed support bipod structure is considered a significant contributor to the high sidelobe levels measured in the azimuth plane, pod relocation, material changes, and shaping are suggested as improvements. Alternate feed designs are presented to further improve system performance. The widebeam horn and potential temperature effects due to the polarizer are discussed as well as in the effects of linear polarization on TDRS acquisition, and the effects of circular polarization on radar sidelobe avoidance. The radar detection probability is analyzed as a function of scan overlap and target range.

  7. Energy gain and spectral tailoring of ion beams using ultra-high intensity laser beams

    NASA Astrophysics Data System (ADS)

    Prasad, Rajendra; Swantusch, Marco; Cerchez, Mirela; Spickermann, Sven; Auorand, Bastian; Wowra, Thomas; Boeker, Juergen; Willi, Oswald

    2015-11-01

    The field of laser driven ion acceleration over the past decade has produced a huge amount of research. Nowadays, several multi-beam facilities with high rep rate system, e.g. ELI, are being developed across the world for different kinds of experiments. The study of interaction dynamics of multiple beams possessing ultra-high intensity and ultra-short pulse duration is of vital importance. Here, we present the first experimental results on ion acceleration using two ultra-high intensity beams. Thanks to the unique capability of Arcturus laser at HHU Düsseldorf, two almost identical, independent beams in laser parameters such as intensity (>1020 W/cm2), pulse duration (30 fs) and contrast (>1010), could be accessed. Both beams are focused onto a 5 μm thin Ti target. While ensuring spatial overlap of the two beams, at relative temporal delay of ~ 50 ps (optimum delay), the proton and carbon ion energies were enhanced by factor of 1.5. Moreover, strong modulation in C4+ions near the high energy cut-off is observed later than the optimum delay for the proton enhancement. This offers controlled tailoring of the spectral content of heavy ions.

  8. The Effects of Three Summer School Programs on the Reading Gains of Junior High School Boys.

    ERIC Educational Resources Information Center

    Duncan, Margaret Haynes

    The purpose of this study was to investigate the comparative efficiency of three summer programs in helping junior high school boys increase their reading ability. The study compared the alternatives of methods typically used in remedial reading programs, a content area program, and one which simply provided personal reinforcement. Each sample…

  9. Characteristics of trap-filled gallium arsenide photoconductive switches used in high gain pulsed power applications

    SciTech Connect

    ISLAM,N.E.; SCHAMILOGLU,E.; MAR,ALAN; LOUBRIEL,GUILLERMO M.; ZUTAVERN,FRED J.; JOSHI,R.P.

    2000-05-30

    The electrical properties of semi-insulating (SI) Gallium Arsenide (GaAs) have been investigated for some time, particularly for its application as a substrate in microelectronics. Of late this material has found a variety of applications other than as an isolation region between devices, or the substrate of an active device. High resistivity SI GaAs is increasingly being used in charged particle detectors and photoconductive semiconductor switches (PCSS). PCSS made from these materials operating in both the linear and non-linear modes have applications such as firing sets, as drivers for lasers, and in high impedance, low current Q-switches or Pockels cells. In the non-linear mode, it has also been used in a system to generate Ultra-Wideband (UWB) High Power Microwaves (HPM). The choice of GaAs over silicon offers the advantage that its material properties allow for fast, repetitive switching action. Furthermore photoconductive switches have advantages over conventional switches such as improved jitter, better impedance matching, compact size, and in some cases, lower laser energy requirement for switching action. The rise time of the PCSS is an important parameter that affects the maximum energy transferred to the load and it depends, in addition to other parameters, on the bias or the average field across the switch. High field operation has been an important goal in PCSS research. Due to surface flashover or premature material breakdown at higher voltages, most PCSS, especially those used in high power operation, need to operate well below the inherent breakdown voltage of the material. The lifetime or the total number of switching operations before breakdown, is another important switch parameter that needs to be considered for operation at high bias conditions. A lifetime of {approximately} 10{sup 4} shots has been reported for PCSS's used in UWB-HPM generation [5], while it has exceeded 10{sup 8} shots for electro-optic drivers. Much effort is currently

  10. Transverse and temporal characteristics of a high-gain free-electron laser in the saturation regime

    NASA Astrophysics Data System (ADS)

    Huang, Zhirong; Kim, Kwang-Je

    2002-05-01

    The transverse and the temporal characteristics of a high-gain free-electron laser are governed by refractive guiding and sideband instability, respectively. Using the self-consistent Vlasov-Maxwell equations, we explicitly determine the effective index of refraction and the guided radiation mode for an electron beam with arbitrary transverse size. Electrons trapped by the guided radiation execute synchrotron oscillation and hence are susceptible to the sideband instability. We explain the spectral evolution and determine the sideband growth rate. These theoretical predictions agree well with GINGER simulation results.

  11. Petawatt laser pulses for proton-boron high gain fusion with avalanche reactions excluding problems of nuclear radiation

    NASA Astrophysics Data System (ADS)

    Hora, Heinrich; Lalousis, Paraskevas; Giuffrida, Lorenzo; Margarone, Daniele; Korn, Georg; Eliezer, Shalom; Miley, George H.; Moustaizis, Stavros; Mourou, Gérard

    2015-05-01

    An alternative way may be possible for igniting solid density hydrogen-11B (HB11) fuel. The use of >petawatt-ps laser pulses from the non-thermal ignition based on ultrahigh acceleration of plasma blocks by the nonlinear (ponderomotive) force, has to be combined with the measured ultrahigh magnetic fields in the 10 kilotesla range for cylindrical trapping. The evaluation of measured alpha particles from HB11 reactions arrives at the conclusion that apart from the usual binary nuclear reactions, secondary reactions by an avalanche multiplication may cause the high gains, even much higher than from deuterium tritium fusion. This may be leading to a concept of clean economic power generation.

  12. Antagonism of T-type calcium channels inhibits high-fat diet-induced weight gain in mice.

    PubMed

    Uebele, Victor N; Gotter, Anthony L; Nuss, Cindy E; Kraus, Richard L; Doran, Scott M; Garson, Susan L; Reiss, Duane R; Li, Yuxing; Barrow, James C; Reger, Thomas S; Yang, Zhi-Qiang; Ballard, Jeanine E; Tang, Cuyue; Metzger, Joseph M; Wang, Sheng-Ping; Koblan, Kenneth S; Renger, John J

    2009-06-01

    The epidemics of obesity and metabolic disorders have well-recognized health and economic burdens. Pharmacologic treatments for these diseases remain unsatisfactory with respect to both efficacy and side-effect profiles. Here, we have identified a potential central role for T-type calcium channels in regulating body weight maintenance and sleep. Previously, it was shown that mice lacking CaV3.1 T-type calcium channels have altered sleep/wake activity. We found that these mice were also resistant to high-fat diet-induced weight gain, without changes in food intake or sensitivity to high-fat diet-induced disruptions of diurnal rhythm. Administration of a potent and selective antagonist of T-type calcium channels, TTA-A2, to normal-weight animals prior to the inactive phase acutely increased sleep, decreased body core temperature, and prevented high-fat diet-induced weight gain. Administration of TTA-A2 to obese rodents reduced body weight and fat mass while concurrently increasing lean muscle mass. These effects likely result from better alignment of diurnal feeding patterns with daily changes in circadian physiology and potentially an increased metabolic rate during the active phase. Together, these studies reveal what we believe to be a previously unknown role for T-type calcium channels in the regulation of sleep and weight maintenance and suggest the potential for a novel therapeutic approach to treating obesity.

  13. High gain, low noise, fully complementary logic inverter based on bi-layer WSe{sub 2} field effect transistors

    SciTech Connect

    Das, Saptarshi; Roelofs, Andreas; Dubey, Madan

    2014-08-25

    In this article, first, we show that by contact work function engineering, electrostatic doping and proper scaling of both the oxide thickness and the flake thickness, high performance p- and n-type WSe{sub 2} field effect transistors (FETs) can be realized. We report record high drive current of 98 μA/μm for the electron conduction and 110 μA/μm for the hole conduction in Schottky barrier WSe{sub 2} FETs. Then, we combine high performance WSe{sub 2} PFET with WSe{sub 2} NFET in double gated transistor geometry to demonstrate a fully complementary logic inverter. We also show that by adjusting the threshold voltages for the NFET and the PFET, the gain and the noise margin of the inverter can be significantly enhanced. The maximum gain of our chemical doping free WSe{sub 2} inverter was found to be ∼25 and the noise margin was close to its ideal value of ∼2.5 V for a supply voltage of V{sub DD} = 5.0 V.

  14. An optical parametric chirped-pulse amplifier for seeding high repetition rate free-electron lasers

    DOE PAGES

    Höppner, H.; Hage, A.; Tanikawa, T.; ...

    2015-05-15

    High repetition rate free-electron lasers (FEL), producing highly intense extreme ultraviolet and x-ray pulses, require new high power tunable femtosecond lasers for FEL seeding and FEL pump-probe experiments. A tunable, 112 W (burst mode) optical parametric chirped-pulse amplifier (OPCPA) is demonstrated with center frequencies ranging from 720–900 nm, pulse energies up to 1.12 mJ and a pulse duration of 30 fs at a repetition rate of 100 kHz. Since the power scalability of this OPCPA is limited by the OPCPA-pump amplifier, we also demonstrate a 6.7–13.7 kW (burst mode) thin-disk OPCPA-pump amplifier, increasing the possible OPCPA output power to manymore » hundreds of watts. Furthermore, third and fourth harmonic generation experiments are performed and the results are used to simulate a seeded FEL with high-gain harmonic generation.« less

  15. Improving glucose tolerance by reducing weight gain in a polygenic obese mouse model: use of a high protein diet.

    PubMed

    Blair, A R; Strube, M L; Proietto, J; Andrikopoulos, S

    2015-03-01

    Diets to decrease body weight have limited success in achieving and importantly maintaining this weight loss long-term. It has recently been suggested that energy intake can be regulated by the amount of protein ingested, termed the protein leverage hypothesis. In this study, we determined whether a high protein diet would be effective in achieving and maintaining weight loss in a genetically obese model, the New Zealand Obese (NZO) mouse. NZO and C57BL/6J (C57) control mice were fed a high protein or chow diet for 5 weeks from weaning (3 weeks of age). Body weight and food intake were determined. Mice on the same diet were bred to produce offspring that were fed either a chow or high protein diet. Body weight, food intake, and glucose tolerance were determined. Feeding NZO and C57 mice a high protein diet for 5 weeks resulted in reduced food intake and consequently energy intake and body weight gain compared with mice on a chow diet. NZO mice fed a high protein diet showed a significant improvement in glucose tolerance compared with their chow-fed counterparts, while no difference was seen in C57 mice fed chow or protein diet. The offspring of NZO mice that were fed a high protein diet during gestation and weaning were also lighter and displayed improved glucose tolerance compared with chow fed animals. We conclude that a high protein diet is a reasonable strategy to reduce body weight gain and improve glucose tolerance in the NZO mouse, a polygenic model of obesity.

  16. Ultrafast Coherent Control and Characterization of Surface Reactions using FELs

    SciTech Connect

    Ogasawara, Hirohito; Nordlund, Dennis a Nilsson, Anders; /SLAC, SSRL

    2005-09-30

    The microscopic understanding of reactions at surfaces requires an in-depth knowledge of the dynamics of elementary processes on an ultrafast timescale. This can be accomplished using an ultrafast excitation to initiate a chemical reaction and then probe the progression of the reaction with an ultrashort x-ray pulse from the FEL. There is a great potential to use atom-specific spectroscopy involving core levels to probe the chemical nature, structure and bonding of species on surfaces. The ultrashort electron pulse obtained in the linear accelerator to feed the X-ray FEL can also be used for generation of coherent synchrotron radiation in the low energy THz regime to be used as a pump. This radiation has an energy close to the thermal excitations of low-energy vibrational modes of molecules on surfaces and phonons in substrates. The coherent THz radiation will be an electric field pulse with a certain direction that can collectively manipulate atoms or molecules on surfaces. In this respect a chemical reaction can be initiated by collective atomic motion along a specific reaction coordinate. If the coherent THz radiation is generated from the same source as the X-ray FEL radiation, full-time synchronization for pump-probe experiments will be possible. The combination of THz and X-ray spectroscopy could be a unique opportunity for FEL facilities to conduct ultrafast chemistry studies at surfaces.

  17. Integrating the FEL on an All-Electric Ship

    DTIC Science & Technology

    2007-06-01

    10 1. Undulator Fields and the Resonance Condition .............................10 2. Pendulum Equation and Electron Motion...12 3. The Wave Equation ...........................................................................14 4. FEL...presence of these fields is determined by the relativistic Lorentz force equation [5], ( ) ( )d e E B dt mc γβ β= − + × r rr r , (2.1) 2 1 1 γ β

  18. Optimization Studies of the FERMI at ELETTRA FEL Design

    SciTech Connect

    De Ninno, Giovanni; Fawley, William M.; Penn, Gregory E.; Graves,William

    2005-08-25

    The FERMI at ELETTRA project at Sincotrone Trieste involves two FEL's, each based upon the principle of seeded harmonic generation and using the existing ELETTRA injection linac at 1.2 GeV beam energy. Scheduled to be completed in 2008, FEL-1 will operate in 40-100 nm wavelength range and will involve one stage of harmonic up-conversion. The second undulator line, FEL-2, will begin operation two years later in the 10-40 nm wavelength range and use two harmonic stages operating as a cascade. The FEL design assumes continuous wavelength tunability over the full wavelength range, and polarization tunability of the output radiation including vertical or horizontal linear as well as helical polarization. The design considers focusing properties and segmentation of realizable undulators and available input seed lasers. We review the studies that have led to our current design. We present results of simulations using GENESIS and GINGER simulation codes including studies of various shot-to-shot fluctuations and undulator errors. Findings for the expected output radiation in terms of the power, transverse and longitudinal coherence are reported.

  19. The physics of FEL in an infinite electron beam

    SciTech Connect

    Wang, G.; Litvinenko, V.N.; Webb, S.

    2010-10-07

    We solve linearized Vlasov-Maxwell FEL equations for a 3-D perturbation in the infinite electron beam with Lorentzian energy distributions using paraxial approximation. We present analytical solutions for various initial perturbations and discuss the effect of optical guiding in such system.

  20. Gain Evaluation of Micro-Channel-Plate Photomultipliers in the Upgraded High-B Test Facility at Jefferson Lab

    NASA Astrophysics Data System (ADS)

    Barber, Corinne; DIRC at EIC Collaboration

    2015-10-01

    The High-B test facility at Thomas Jefferson National Accelerator Facility allows researchers to evaluate the gain of compact photon sensors, such as Micro-Channel-Plate Photomultipliers (MCP-PMTs), in magnetic fields up to 5 T. These ongoing studies support the development of a Detector of Internally Reflected Cherenkov light (DIRC) to be used in an Electron Ion Collider (EIC). Here, we present our summer 2015 activities to upgrade and improve the facility, and we show results for MCP-PMT gain changes in high B-fields. To monitor the light stability delivered to the MCP-PMTs being tested, we implemented a Silicon Photomultiplier (SiPM) in the setup and calibrated the ADC reading this sensor. A 405-nm Light-Emitting Diode (LED) housed in an optical tube compatible with neutral density filters was also installed. The filters provide an alternative way of reducing the light output of the LED to operate the MCP-PMTs in a single-photon mode. We calibrated a set of filters by means of a photodiode and measured the photon flux at multiple positions relative to the LED. This information helped us to design 3D-printed holders unique to each MCP-PMT so that the photocathode receives the greatest amount of light. The improvements to the setup allow for more precise PMT gain evaluation. This team includes 7 collaborators/co-authors besides myself: Yordanka Ilieva, Kijun Park, Greg Kalicy, Carl Zorn, Pawel Nadel-Turonski, Tongtong Cao, and Lee.

  1. A High-Gain Passive UHF-RFID Tag with Increased Read Range

    PubMed Central

    Zuffanelli, Simone; Aguila, Pau; Zamora, Gerard; Paredes, Ferran; Martin, Ferran; Bonache, Jordi

    2016-01-01

    In this work, a passive ultra-high frequency radio-frequency identification UHF-RFID tag based on a 1.25 wavelengths thin dipole antenna is presented for the first time. The length of the antenna is properly chosen in order to maximize the tag read range, while maintaining a reasonable tag size and radiation pattern. The antenna is matched to the RFID chip by means of a very simple matching network based on a shunt inductance. A tag prototype, based on the Alien Higgs-3 chip, is designed and fabricated. The overall dimensions are 400 mm × 14.6 mm, but the tag width for most of its length is delimited by the wire diameter (0.8 mm). The measured read range exhibits a maximum value of 17.5 m at the 902–928 MHz frequency band. This represents an important improvement over state-of-the-art passive UHF-RFID tags. PMID:27455274

  2. A High-Gain Passive UHF-RFID Tag with Increased Read Range.

    PubMed

    Zuffanelli, Simone; Aguila, Pau; Zamora, Gerard; Paredes, Ferran; Martin, Ferran; Bonache, Jordi

    2016-07-22

    In this work, a passive ultra-high frequency radio-frequency identification UHF-RFID tag based on a 1.25 wavelengths thin dipole antenna is presented for the first time. The length of the antenna is properly chosen in order to maximize the tag read range, while maintaining a reasonable tag size and radiation pattern. The antenna is matched to the RFID chip by means of a very simple matching network based on a shunt inductance. A tag prototype, based on the Alien Higgs-3 chip, is designed and fabricated. The overall dimensions are 400 mm × 14.6 mm, but the tag width for most of its length is delimited by the wire diameter (0.8 mm). The measured read range exhibits a maximum value of 17.5 m at the 902-928 MHz frequency band. This represents an important improvement over state-of-the-art passive UHF-RFID tags.

  3. On the long-memory filtering gain in optical high-order QAM transmission systems.

    PubMed

    Peng, Wei-Ren; Takahashi, Hidenori; Tsuritani, Takehiro; Morita, Itsuro

    2013-05-06

    In this paper, we verify the effectiveness of the last-stage long memory filter (LMF) in mitigating the long-memory response (LMR) of hardware, i.e. the transmitter and receiver. Based on the experimental results, we draw the following conclusions: 1) LMF can effectively mitigate the LMR impact, such as transmitter reflections, and its efficiency is more significant for high-order QAM signals. 2) Using LMF, a partially-correlated pattern exhibits similar performance to that of an uncorrelated pattern both in back-to-back and after 320-km standard single mode fiber (SSMF) transmission. Moreover, a simple solution to the computational complexity of LMF, effective-tap (ET) LMF, is proposed and demonstrated.

  4. Some issues and subtleties in numerical simulation of X-ray FEL's

    SciTech Connect

    Fawley, William M.

    2002-09-30

    Part of the overall design effort for x-ray FEL's such as the LCLS and TESLA projects has involved extensive use of particle simulation codes to predict their output performance and underlying sensitivity to various input parameters (e.g. electron beam emittance). This paper discusses some of the numerical issues that must be addressed by simulation codes in this regime. We first give a brief overview of the standard approximations and simulation methods adopted by time-dependent(i.e. polychromatic) codes such as GINGER, GENESIS, and FAST3D, including the effects of temporal discretization and the resultant limited spectral bandpass,and then discuss the accuracies and inaccuracies of these codes in predicting incoherent spontaneous emission (i.e. the extremely low gain regime).

  5. Some issues and subtleties in numerical simulation of X-ray FELs

    NASA Astrophysics Data System (ADS)

    Fawley, W. M.

    2003-07-01

    Part of the overall design effort for X-ray FELs such as the LCLS and TESLA projects has involved extensive use of particle simulation codes to predict their output performance and underlying sensitivity to various input parameters (e.g. electron beam emittance). This paper discusses some of the numerical issues that must be addressed by simulation codes in this regime. We first give a brief overview of the standard approximations and simulation methods adopted by time-dependent (i.e. polychromatic) codes such as GINGER (LBNL Report No. LBNL-49625, 2002), GENESIS (Nucl. Instr. and Meth. A 429 (1999) 243), and FAST3D (Nucl. Instr. and Meth. A 429 (1999) 233), including the effects of temporal discretization and the resultant limited spectral bandpass, and then discuss the accuracies and inaccuracies of these codes in predicting incoherent spontaneous emission (i.e. the extremely low gain regime).

  6. X-band photoinjector for a chirped-pulse FEL

    SciTech Connect

    Luhmann, Jr., N. C.; Alvis, R. M.; Baldis, H. A.; Hartemann, F. V; Heritage, J. P.; Ho, C. H.; Landahl, E. C.; Li, K.; Troha,A. L.; White, W. E.

    1998-12-15

    The phase noise and jitter characteristics of the laser and rf systems of a high gradient X-band photoinjector have been measured experimentally. When > 100 coherently phased 5 MeV electron bunches are produced in bursts, the photoinjector should be an ideal electron source for a pulsed, pre-bunched free-electron laser (FEL) operating at 100 GHz. The laser oscillator is a self-modelocked Titanium:Sapphire system operating at the 108th subharmonic of the rf gun. The X-band signal is produced from the laser by a phase-locked dielectric resonance oscillator, and amplified by a pulsed TWT and klystron. A comparison between the klystron and TWT amplifier phase noise and the fields excited in the rf gun demonstrates the filtering effect of the high Q structure, thus indicating that the rf gun can be used as a master oscillator, and could be energized by either a rf oscillator such as a magnetron or a compact source such as a cross-field amplifier. In particular, the rf gun can play the role of a pulsed rf clock to synchronize the photocathode laser system: direct drive of a synchronously mode-locked AlGaAs quantum well laser has been achieved using the X0-band gun rf fields. This novel, GHz repetition rate, sub-picosecond laser system is being developed to replace the more conventional femtosecond Ti: Al2O3 system. Some advantages include pumping this laser with a stabilized current source instead of a costly, low efficiency pump laser. Finally, dark current measurements and initial photoelectron measurements are reported.

  7. A 4 to 0.1 nm FEL Based on the SLAC Linac

    SciTech Connect

    Pellegrini, C.; /UCLA

    2012-06-05

    The author show that using existing electron gun technology and a high energy linac like the one at SLAC, it is possible to build a Free Electron Laser operating around the 4 nm water window. A modest improvement in the gun performance would further allow to extend the FEL to the 0.1 nm region. Such a system would produce radiation with a brightness many order of magnitude above that of any synchrotron radiation source, existing or under construction, with laser power in the multigawatt region and subpicosecond pulse length.

  8. Differential inhibition onto developing and mature granule cells generates high-frequency filters with variable gain

    PubMed Central

    Pardi, María Belén; Ogando, Mora Belén; Schinder, Alejandro F; Marin-Burgin, Antonia

    2015-01-01

    Adult hippocampal neurogenesis provides the dentate gyrus with heterogeneous populations of granule cells (GC) originated at different times. The contribution of these cells to information encoding is under current investigation. Here, we show that incoming spike trains activate different populations of GC determined by the stimulation frequency and GC age. Immature GC respond to a wider range of stimulus frequencies, whereas mature GC are less responsive at high frequencies. This difference is dictated by feedforward inhibition, which restricts mature GC activation. Yet, the stronger inhibition of mature GC results in a higher temporal fidelity compared to that of immature GC. Thus, hippocampal inputs activate two populations of neurons with variable frequency filters: immature cells, with wide‐range responses, that are reliable transmitters of the incoming frequency, and mature neurons, with narrow frequency response, that are precise at informing the beginning of the stimulus, but with a sparse activity. DOI: http://dx.doi.org/10.7554/eLife.08764.001 PMID:26163657

  9. Harmonic millimeter radiation from a microwave FEL amplifier

    NASA Astrophysics Data System (ADS)

    Liu, Y.-H.; Marshall, T. C.

    1997-02-01

    In this project, an electron beam is bunched at a microwave frequency and the harmonics of this bunching drive radiation at millimeter wavelengths, using a FEL, configured as a single-pass travelling wave amplifier. A 10 kW 24 GHz microwave input signal grows to ˜200 kW level using the lower-frequency unstable root of the waveguide FEL dispersion relation. The Columbia FEL facility operates at this frequency in the TE11 mode, using a helical undulator (1.85 cm period) and a 3 mm diameter 600 kV electron beam contained in a 8.7 mm ID cylindrical waveguide. The harmonic currents set up by the microwave are found to cause growth of harmonic power under two conditions. First, we choose the parameters of the device so that the upper frequency root corresponds to the third harmonic, in which case we observe a small amount of third-harmonic emission in the TE11 mode, accompanied by comparable second harmonic. The millimeter harmonic radiation produced is coherent and phase-related to the microwave source. Second, we have found substantial emission at the seventh harmonic, most likely from the TE72 mode — which, in cylindrical waveguide geometry, travels at very nearly the same wave speed as the 24 GHz TE11 power. In order to excite the seventh-harmonic radiation, the electron beam must be displaced from the system axis — ˜2 mm in this device. The seventh-harmonic output is potentially an attractive choice for a CW FEL which must generate appreciable power at ˜2 mm wavelength for plasma electron cyclotron heating since we can produce this radiation for electron beam energy as low as 400 kV. We present a theoretical model of the experiment which predicts that if the microwave signal is strong enough to drive the FEL into saturation, the harmonic emission becomes powerful.

  10. Semi-global robust output regulation of minimum-phase nonlinear systems based on high-gain nonlinear internal model

    NASA Astrophysics Data System (ADS)

    Wei, Xile; Lu, Meili; Wang, Jiang; Tsang, K. M.; Deng, Bin; Che, Yanqiu

    2010-05-01

    We consider the assumption of existence of the general nonlinear internal model that is introduced in the design of robust output regulators for a class of minimum-phase nonlinear systems with rth degree (r ≥ 2). The robust output regulation problem can be converted into a robust stabilisation problem of an augmented system consisting of the given plant and a high-gain nonlinear internal model, perfectly reproducing the bounded including not only periodic but also nonperiodic exogenous signal from a nonlinear system, which satisfies some general immersion assumption. The state feedback controller is designed to guarantee the asymptotic convergence of system errors to zero manifold. Furthermore, the proposed scheme makes use of output feedback dynamic controller that only processes information from the regulated output error by using high-gain observer to robustly estimate the derivatives of the regulated output error. The stabilisation analysis of the resulting closed-loop systems leads to regional as well as semi-global robust output regulation achieved for some appointed initial condition in the state space, for all possible values of the uncertain parameter vector and the exogenous signal, ranging over an arbitrary compact set.

  11. Sensitivity Gains, Linearity, and Spectral Reproducibility in Nonuniformly Sampled Multidimensional MAS NMR Spectra of High Dynamic Range.

    SciTech Connect

    Suiter, Christopher L.; Paramasivam, Sivakumar; Hou, Guangjin; Sun, Shangjin; Rice, David M.; Hoch, Jeffrey C.; Rovnyak, David S.; Polenova, Tatyana E.

    2014-04-22

    Recently, we have demonstrated that considerable inherent sensitivity gains are attained in MAS NMR spectra acquired by nonuniform sampling (NUS) and introduced maximum entropy interpolation (MINT) processing that assures the linearity of transformation between the time and frequency domains. In this report, we examine the utility of the NUS/MINT approach in multidimensional datasets possessing high dynamic range, such as homonuclear 13C–13C correlation spectra. We demonstrate on model compounds and on 1–73-(U-13C,15N)/74–108-(U-15N) E. coli thioredoxin reassembly, that with appropriately constructed 50 % NUS schedules inherent sensitivity gains of 1.7–2.1-fold are readily reached in such datasets. We show that both linearity and line width are retained under these experimental conditions throughout the entire dynamic range of the signals. Furthermore, we demonstrate that the reproducibility of the peak intensities is excellent in the NUS/MINT approach when experiments are repeated multiple times and identical experimental and processing conditions are employed. Finally, we discuss the principles for design and implementation of random exponentially biased NUS sampling schedules for homonuclear 13C–13C MAS correlation experiments that yield high quality artifact-free datasets.

  12. Effects of Dietary Fibers on Weight Gain, Carbohydrate Metabolism and Gastric Ghrelin Gene Expression in High Fat Diet Fed Mice

    PubMed Central

    Wang, Zhong Q.; Zuberi, Aamir; Zhang, Xian H.; Macgowan, Jacalyn; Qin, Jianhua; Ye, Xin; Son, Leslie; Wu, Qinglin; Lian, Kun; Cefalu, William T.

    2009-01-01

    Diets that are high in dietary fiber are reported to have substantial health benefits. We sought to compare the metabolic effects for three types of dietary fibers, i.e. sugar cane fiber (SCF), psyllium (PSY) and cellulose (CEL) on body weight, carbohydrate metabolism and stomach ghrelin gene expression in a high-fat diet fed mouse model. Thirty-six male mice (C57BL/6) were randomly divided into four groups that consumed high fat-diets or high fat diet containing 10% SCF, PSY, and CEL respectively. After baseline measurements were assessed for body weight, plasma insulin, glucose, leptin and glucagon-like peptide-1 (GLP-1), animals were treated for 12 weeks. Parameters were re-evaluated at end of study. Whereas there was no difference at the baseline, body weight gains in the PSY and SCF groups were significantly lower than in CEL group at end of study, No difference in body weight was observed between the PSY and SCF animals. Body composition analysis demonstrated that fat mass in the SCF group was considerably lower than in the CEL and HFD groups. In addition, fasting plasma glucose and insulin and areas under curve of IPGTT were also significantly lower in the SCF and PSY groups than in the CEL and HFD groups. Moreover, fasting plasma concentrations of leptin were significantly lower and GLP-1 level was two-fold higher in the SCF and PSY mice than in the HFD and CEL mice. Ghrelin mRNA levels of stomach in SCF groups were significantly lower than in CEL and HFD groups as well. These results suggest differences in response to dietary fiber intake in this animal model as high fat diets incorporating dietary fibers such as SCF and PSY appeared to attenuate weight gain, enhance insulin sensitivity, and modulate leptin and GLP-1 secretion and gastric ghrelin gene expression. PMID:17998014

  13. Numerical study of the 3-D effect on FEL performance and its application to the APS LEUTL FEL

    SciTech Connect

    Chae, Y.C.

    1998-09-01

    A Low-Energy Undulator Test Line (LEUTL) is under construction at the Advanced Photon Source (APS). In LEUTL periodic focusing is provided by external quadrupoles. This results in an elliptical beam with its betatron oscillation envelope varying along the undulators. The free-electron laser (FEL) interaction with such a beam will exhibit truly 3-D effects. Thus the investigation of 3-D effects is important in optimizing the FEL performance. The programs GINGER and TDA3D, coupled with theoretically known facts, have been used for this purpose. Both programs are fully 3-D in moving the particle, but model the interaction between particles and axially symmetric electromagnetic waves. Even though TDA3D can include a few azimuthal modes in the interaction, it is still not a fully 3-D FEL code. However, they show that these 2-D programs can still be used for an elliptical beam whose aspect ratio is within certain limits. The author presents numerical results of FEL performance for the circular beam, the elliptical beam, and finally for the beam in the realistic LEUTL lattice.

  14. Relationship of FEL physics to accelerator physics

    SciTech Connect

    Morton, P.L.

    1981-08-01

    The beam dynamics and operation of a free electron laser are discussed after a description of accelerator beam dynamics. Various wiggler field schemes are studied including the constant parameter wiggler, the variable parameter wiggler, and the gain-expanded wiggler. (WHK)

  15. Analysis and comparison between electric and magnetic power couplers for accelerators in Free Electron Lasers (FEL)

    NASA Astrophysics Data System (ADS)

    Serpico, C.; Grudiev, A.; Vescovo, R.

    2016-10-01

    Free-electron lasers represent a new and exciting class of coherent optical sources possessing broad wavelength tunability and excellent optical-beam quality. The FERMI seeded free-electron laser (FEL), located at the Elettra laboratory in Trieste, is driven by a 200 m long, S-band linac: the high energy part of the linac is equipped with 6 m long backward traveling wave (BTW) structures. The structures have small iris radius and a nose cone geometry which allows for high gradient operation. Development of new high-gradient, S-band accelerating structures for the replacement of the existing BTWs is under consideration. This paper investigates two possible solutions for the RF power couplers suitable for a linac driven FEL which require reduced wakefields effects, high operating gradient and very high reliability. The first part of the manuscript focuses on the reduction of residual field asymmetries, while in the second analyzes RF performances, the peak surface fields and the expected breakdown rate. In the conclusion, two solutions are compared and pros and cons are highlighted.

  16. Active pulse shaping for end-pumped Nd:YVO4 amplifier with high gain.

    PubMed

    Nie, Mingming; Liu, Qiang; Ji, Encai; Cao, Xuezhe; Fu, Xing; Gong, Mali

    2017-03-15

    We demonstrated the active shaping for a solid-state Nd:YVO4 amplifier with a high average gain of 39.2 dB. The average output power was 8.3 W with respect to the input power of 1 mW. A range of common and useful pulse shapes was generated at the final output. In addition, a very flat square pulse was produced with a root-mean-square less than 3% in amplitude. A numerical method was proposed to realize active shaping without an experimental test for the Nd:YVO4 amplifier, showing great potential for the design of lasers with both high peak power (>100  kW) and a desired pulse shape.

  17. Caffeine prevents weight gain and cognitive impairment caused by a high-fat diet while elevating hippocampal BDNF.

    PubMed

    Moy, Gregory A; McNay, Ewan C

    2013-01-17

    Obesity, high-fat diets, and subsequent type 2 diabetes (T2DM) are associated with cognitive impairment. Moreover, T2DM increases the risk of Alzheimer's disease (AD) and leads to abnormal elevation of brain beta-amyloid levels, one of the hallmarks of AD. The psychoactive alkaloid caffeine has been shown to have therapeutic potential in AD but the central impact of caffeine has not been well-studied in the context of a high-fat diet. Here we investigated the impact of caffeine administration on metabolism and cognitive performance, both in control rats and in rats placed on a high-fat diet. The effects of caffeine were significant: caffeine both (i) prevented the weight-gain associated with the high-fat diet and (ii) prevented cognitive impairment. Caffeine did not alter hippocampal metabolism or insulin signaling, likely because the high-fat-fed animals did not develop full-blown diabetes; however, caffeine did prevent or reverse a decrease in hippocampal brain-derived neurotrophic factor (BDNF) seen in high-fat-fed animals. These data confirm that caffeine may serve as a neuroprotective agent against cognitive impairment caused by obesity and/or a high-fat diet. Increased hippocampal BDNF following caffeine administration could explain, at least in part, the effects of caffeine on cognition and metabolism.

  18. The DarkLight Experiment at the JLab FEL

    NASA Astrophysics Data System (ADS)

    Fisher, Peter

    2013-10-01

    DarkLight will study the production of gauge bosons associated with Dark Forces theories in the scattering of 100 MeV electrons on proton a target. DarkLight is a spectrometer to measure all the final state particles in e- + p -->e- + p +e- +e+ . QED allows this process and the invariant mass distribution of the e+e- pair is a continuum from nearly zero to nearly the electron beam energy. Dark Forces theories, which allow the dark matter mass scale to be over 1 TeV, predict a gauge boson A' in the mass range of 10-1,000 MeV and decays to an electron-positron pair with an invariant mass of mA'. We aim to search for this process using the 100 MeV, 10 mA electron beam at the JLab Free Electron Laser impinging on a hydrogen target with a 1019 cm-2 density. The resulting luminosity of 6 ×1035/cm2-s gives the experiment enough sensitivity to probe A' couplings of 10-9 α . DarkLight is unique in its design to detect all four particles in the final state. The leptons will be measured in a large high-rate TPC and a silicon sensor will measure the protons. A 0.5 T solenoidal magnetic field provides the momentum resolution and focuses the copious Møller scattering background down the beam line, away from the detectors. A first beam test has shown the FEL beam is compatible with the target design and that the hall backgrounds are manageable. The experiment has been approved by Jefferson Lab for first running in 2017.

  19. Laser propagation through full-scale, high-gain MagLIF gas pipes using the NIF

    NASA Astrophysics Data System (ADS)

    Pollock, Bradley; Sefkow, Adam; Goyon, Clement; Strozzi, David; Khan, Shahab; Rosen, Mordy; Campbell, Mike; Logan, Grant; Peterson, Kyle; Moody, John

    2016-10-01

    The first relevant measurements of laser propagation through surrogate high-gain MagLIF gas pipe targets at full scale have been performed at the NIF, using 30 kJ of laser drive from one quad in a 10 ns pulse at an intensity of 2e14 W/cm2. The unmagnetized pipe is filled with 1 atm of 99%/1% neopentane/Ar, and uses an entrance window of 0.75 um polyimide and an exit window of 0.3 um of Ta backed with 5 um of polyimide. Side-on x-ray emission from the plasma is imaged through the 100 um-thick epoxy wall onto a framing camera at four times during the drive, and is in excellent agreement with pre-shot HYDRA radiation-hydrodynamics modeling. X-ray emission from the Ta exit plane is imaged onto a streak camera to determine the timing and intensity of the laser burning through the pipe, and the Ar emission from the center of the pipe is spectrally- and temporally-resolved to determine the plasma electron temperature. Backscatter is measured throughout the laser drive, and is found to be of significance only when the laser reaches the Ta exit plane and produces SBS. These first results in unmagnetized surrogate gas fills are encouraging since they demonstrate sufficient laser energy absorption and low LPI losses within high-density long-scale-length plasmas for proposed high-gain MagLIF target designs. We will discuss plans to magnetize targets filled with high-density DT gas in future experiments. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the National Nuclear Security Administration under Contract No. DE-AC04-94AL85000.

  20. Performance of cesium telluride photocathodes as an electron source for the Los Alamos FEL

    SciTech Connect

    Kong, S.H.; Kinross-Wright, J.; Nuguyen, D.C.; Sheffield, R.L.; Weber, M.E.

    1994-09-01

    The Los Alamos Advanced FEL was successfully operated with a Cs{sub 2}Te photocathode driven by a frequency quadrupled Nd:YLF laser as the electron source. Lasing was achieved at 5-6 microns. Cs{sub 2}Te photocathodes with quantum efficiencies of 12-18% at 254 nm were fabricated in an ultrahigh-vacuum chamber and transferred under high vacuum to the FEL. 263 mn light from the drive laser was focused to an 8 mm spot on the center of the photocathode. The authors estimated the operational life time of Cs{sub 2}Te photocathodes to be at least 20 times that for K{sub 2}CsSb photocathodes. The measured dark current of 0.3 mA in an electric field of 22-24 MV/m is well within the acceptable level. The maximum amount of charge extracted was observed to be limited by space charge to about 3.5 nC per micropulse. The emittance of the beam was estimated by fitting the data from a quadrupole scan. The authors measured an emittance that is comparable with the emittance measured with a K{sub 2}CsSb photocathode in their system. A pulse length of 9.3 {+-} 2 ps for 1.3 {+-} 0.2 nC electron micropulses and a pulse length of 7.1 {+-} 0.7 ps for the laser pulses were measured with a streak camera. Therefore, the response of the Cs{sub 2}Te photocathode to the laser pulse is sufficiently fast for FEL applications.

  1. Arctigenin Inhibits Adipogenesis by Inducing AMPK Activation and Reduces Weight Gain in High-Fat Diet-Induced Obese Mice.

    PubMed

    Han, Yo-Han; Kee, Ji-Ye; Park, Jinbong; Kim, Hye-Lin; Jeong, Mi-Young; Kim, Dae-Seung; Jeon, Yong-Deok; Jung, Yunu; Youn, Dong-Hyun; Kang, JongWook; So, Hong-Seob; Park, Raekil; Lee, Jong-Hyun; Shin, Soyoung; Kim, Su-Jin; Um, Jae-Young; Hong, Seung-Heon

    2016-09-01

    Although arctigenin (ARC) has been reported to have some pharmacological effects such as anti-inflammation, anti-cancer, and antioxidant, there have been no reports on the anti-obesity effect of ARC. The aim of this study is to investigate whether ARC has an anti-obesity effect and mediates the AMP-activated protein kinase (AMPK) pathway. We investigated the anti-adipogenic effect of ARC using 3T3-L1 pre-adipocytes and human adipose tissue-derived mesenchymal stem cells (hAMSCs). In high-fat diet (HFD)-induced obese mice, whether ARC can inhibit weight gain was investigated. We found that ARC reduced weight gain, fat pad weight, and triglycerides in HFD-induced obese mice. ARC also inhibited the expression of peroxisome proliferator-activated receptor gamma (PPARγ) and CCAAT/enhancer-binding protein alpha (C/EBPα) in in vitro and in vivo. Furthermore, ARC induced the AMPK activation resulting in down-modulation of adipogenesis-related factors including PPARγ, C/EBPα, fatty acid synthase, adipocyte fatty acid-binding protein, and lipoprotein lipase. This study demonstrates that ARC can reduce key adipogenic factors by activating the AMPK in vitro and in vivo and suggests a therapeutic implication of ARC for obesity treatment. J. Cell. Biochem. 117: 2067-2077, 2016. © 2016 Wiley Periodicals, Inc.

  2. Criterion of transverse coherence of self-amplified spontaneous emission in high gain free electron laser amplifiers

    SciTech Connect

    Xie, M.; Kim, K.J.

    1995-12-31

    In a high gain free electron laser amplifier based on Self-Amplified Spontaneous Emission (SASE) the spontaneous radiation generated by an electron beam near the undulator entrance is amplified many orders of magnitude along the undulator. The transverse coherence properties of the amplified radiation depends on both the amplification process and the coherence of the seed radiation (the undulator radiation generated in the first gain length or so). The evolution of the transverse coherence in the amplification process is studied based on the solution of the coupled Maxwell-Vlasov equations including higher order transverse modes. The coherence of the seed radiation is determined by the number of coherent modes in the phase space area of the undulator radiation. We discuss the criterion of transverse coherence and identify governing parameters over a broad range of parameters. In particular we re-examine the well known emittance criterion for the undulator radiation, which states that full transverse coherence is guaranteed if the rms emittance is smaller than the wavelength divided by 4{pi}. It is found that this criterion is modified for SASE because of the different optimization conditions required for the electron beam. Our analysis is a generalization of the previous study by Yu and Krinsky for the case of vanishing emittance with parallel electron beam. Understanding the transverse coherence of SASE is important for the X-ray free electron laser projects now under consideration at SLAC and DESY.

  3. A new design methodology of obtaining wide band high gain broadband parametric source for infrared wavelength applications

    NASA Astrophysics Data System (ADS)

    Maji, Partha Sona; Roy Chaudhuri, Partha

    2016-03-01

    In this article, we have presented a new design methodology of obtaining wide band parametric sources based on highly nonlinear chalcogenide material of As2S3. The dispersion profile of the photonic crystal fiber (PCF) has been engineered wisely by reducing the diameter of the second air-hole ring to have a favorable higher order dispersion parameter. The parametric gain dependence upon fiber length, pump power, and different pumping wavelengths has been investigated in detail. Based upon the nonlinear four wave mixing phenomenon, we are able to achieve a wideband parametric amplifier with peak gain of 29 dB with FWHM of ≈2000 nm around the IR wavelength by proper tailoring of the dispersion profile of the PCF with a continuous wave Erbium (Er3+)-doped ZBLAN fiber laser emitting at 2.8 μm as the pump source with an average power of 5 W. The new design methodology will unleash a new dimension to the chalcogenide material based investigation for wavelength translation around IR wavelength band.

  4. Design of an XUV FEL Driven by the Laser-Plasma Accelerator at theLBNL LOASIS Facility

    SciTech Connect

    Schroeder, Carl B.; Fawley, W.M.; Esarey, Eric; Leemans, W.P.

    2006-09-01

    We present a design for a compact FEL source of ultrafast, high-peak flux, soft x-ray pulses employing a high-current, GeV-energy electron beam from the existing laser-plasma accelerator at the LBNL LOASIS laser facility. The proposed ultra-fast source would be intrinsically temporally synchronized to the drive laser pulse, enabling pump-probe studies in ultra-fast science with pulse lengths of tens of fs. Owing both to the high current ({approx} 10 kA) and reasonable charge/pulse ({approx} 0.1-0.5 nC) of the laser-plasma-accelerated electron beams, saturated output fluxes are potentially 10{sup 13}--10{sup 14} photons/pulse. We examine devices based both on SASE and high-harmonic generated input seeds to give improved coherence and reduced undulator length, presenting both analytic scalings and numerical simulation results for expected FEL performance. A successful source would result in a new class of compact laser-driven FELs in which a conventional RF accelerator is replaced by a GeV-class laser-plasma accelerator whose active acceleration region is only a few cm in length.

  5. Electrical vagus nerve stimulation decreases food consumption and weight gain in rats fed a high-fat diet.

    PubMed

    Gil, Krzysztof; Bugajski, A; Thor, P

    2011-12-01

    There is growing evidence that vagus nerve stimulation (VNS) has a suppressive effect on both short- and long-term feeding in animal models. We previously showed that long-term VNS (102 days) with low-frequency electrical impulses (0.05 Hz) decreased food intake and body weight in rats. In the present study, we investigated the effect of high frequency (10 Hz) VNS on feeding behavior and appetite in rats fed a high-fat diet; peptide secretion and other parameters were assessed as well. Adult male Wistar rats were each implanted subcutaneously with a microstimulator (MS) and fed a high-fat diet throughout the entire study period (42 days). The left vagus nerve was stimulated by rectangular electrical pulses (10 ms, 200 mV, 10 Hz, 12 h a day) generated by the MS. Body weight and food intake were measured each morning. At the end of the experimental period, animals were euthanized and blood samples were taken. Serum levels of ghrelin, leptin and nesfatin-1 were assessed using radioimmunoassays. Adipose tissue content was evaluated by weighing epididymal fat pads, which were incised at the time of sacrifice. To determine whether VNS activated the food-related areas of the brain, neuronal c-Fos induction in the nuclei of the solitary tract (NTS) was assessed. Chronic vagus nerve stimulation significantly decreased food intake, body weight gain and epididymal fat pad weight in animals that received VNS compared with control animals. Significant neuronal responses in the NTS were observed following VNS. Finally, serum concentrations of ghrelin were increased, while serum levels of leptin were decreased. Although not significant, serum nesfatin-1 levels were also elevated. These results support the theory that VNS leads to reductions in food intake, body weight gain and adipose tissue by increasing brain satiety signals conducted through the vagal afferents. VNS also evoked a feed-related hormonal response, including elevated blood concentrations of nesfatin-1.

  6. Theory of quantum frequency conversion and type-II parametric down-conversion in the high-gain regime

    NASA Astrophysics Data System (ADS)

    Christ, Andreas; Brecht, Benjamin; Mauerer, Wolfgang; Silberhorn, Christine

    2013-05-01

    Frequency conversion (FC) and type-II parametric down-conversion (PDC) processes serve as basic building blocks for the implementation of quantum optical experiments: type-II PDC enables the efficient creation of quantum states such as photon-number states and Einstein-Podolsky-Rosen (EPR)-states. FC gives rise to technologies enabling efficient atom-photon coupling, ultrafast pulse gates and enhanced detection schemes. However, despite their widespread deployment, their theoretical treatment remains challenging. Especially the multi-photon components in the high-gain regime as well as the explicit time-dependence of the involved Hamiltonians hamper an efficient theoretical description of these nonlinear optical processes. In this paper, we investigate these effects and put forward two models that enable a full description of FC and type-II PDC in the high-gain regime. We present a rigorous numerical model relying on the solution of coupled integro-differential equations that covers the complete dynamics of the process. As an alternative, we develop a simplified model that, at the expense of neglecting time-ordering effects, enables an analytical solution. While the simplified model approximates the correct solution with high fidelity in a broad parameter range, sufficient for many experimental situations, such as FC with low efficiency, entangled photon-pair generation and the heralding of single photons from type-II PDC, our investigations reveal that the rigorous model predicts a decreased performance for FC processes in quantum pulse gate applications and an enhanced EPR-state generation rate during type-II PDC, when EPR squeezing values above 12 dB are considered.

  7. Using the X-FEL to photo-pump X-ray laser transitions in He-like Ne

    SciTech Connect

    Nilsen, J; Rohringer, N

    2011-08-30

    Nearly four decades ago H-like and He-like resonantly photo-pumped laser schemes were proposed for producing X-ray lasers. However, demonstrating these schemes in the laboratory has proved to be elusive because of the difficulty of finding a strong resonant pump line. With the advent of the X-ray free electron laser (X-FEL) at the SLAC Linac Coherent Light Source (LCLS) we now have a tunable X-ray laser source that can be used to replace the pump line in previously proposed laser schemes and allow researchers to study the physics and feasibility of resonantly photo-pumped laser schemes. In this paper we use the X-FEL at 1174 eV to photo-pump the singly excited 1s2p state of He-like Ne to the doubly excited 2p3p state and model gain on the 2p3p-2p2s transition at 175 eV and the 2p3p-1s3p transition at 1017 eV. One motivation for studying this scheme is to explore possible quenching of the gain due to strong non-linear coupling effects from the intense X-FEL beam We compare this scheme with photo-pumping the He-like Ne ground state to the 1s3p singly excited state followed by lasing on the 3p-2s and 3d-2p transitions at 158 and 151 eV. Experiments are being planned at LCLS to study these laser processes and coherent quantum effects.

  8. Field Encapsulation Library The FEL 2.2 User Guide

    NASA Technical Reports Server (NTRS)

    Moran, Patrick J.; Henze, Chris; Ellsworth, David

    1999-01-01

    This document describes version 2.2 of the Field Encapsulation Library (FEL), a library of mesh and field classes. FEL is a library for programmers - it is a "building block" enabling the rapid development of applications by a user. Since FEL is a library intended for code development, it is essential that enough technical detail be provided so that one can make full use of the code. Providing such detail requires some assumptions with respect to the reader's familiarity with the library implementation language, C++, particularly C++ with templates. We have done our best to make the explanations accessible to those who may not be completely C++ literate. Nevertheless, familiarity with the language will certainly help one's understanding of how and why things work the way they do. One consolation is that the level of understanding essential for using the library is significantly less than the level that one should have in order to modify or extend the library. One more remark on C++ templates: Templates have been a source of both joy and frustration for us. The frustration stems from the lack of mature or complete implementations that one has to work with. Template problems rear their ugly head particularly when porting. When porting C code, successfully compiling to a set of object files typically means that one is almost done. With templated C++ and the current state of the compilers and linkers, generating the object files is often only the beginning of the fun. On the other hand, templates are quite powerful. Used judiciously, templates enable more succinct designs and more efficient code. Templates also help with code maintenance. Designers can avoid creating objects that are the same in many respects, but not exactly the same. For example, FEL fields are templated by node type, thus the code for scalar fields and vector fields is shared. Furthermore, node type templating allows the library user to instantiate fields with data types not provided by the FEL

  9. Gimbals Drive and Control Electronics Design, Development and Testing of the LRO High Gain Antenna and Solar Array Systems

    NASA Technical Reports Server (NTRS)

    Chernyakov, Boris; Thakore, Kamal

    2010-01-01

    Launched June 18, 2009 on an Atlas V rocket, NASA's Lunar Reconnaissance Orbiter (LRO) is the first step in NASA's Vision for Space Exploration program and for a human return to the Moon. The spacecraft (SC) carries a wide variety of scientific instruments and provides an extraordinary opportunity to study the lunar landscape at resolutions and over time scales never achieved before. The spacecraft systems are designed to enable achievement of LRO's mission requirements. To that end, LRO's mechanical system employed two two-axis gimbal assemblies used to drive the deployment and articulation of the Solar Array System (SAS) and the High Gain Antenna System (HGAS). This paper describes the design, development, integration, and testing of Gimbal Control Electronics (GCE) and Actuators for both the HGAS and SAS systems, as well as flight testing during the on-orbit commissioning phase and lessons learned.

  10. Highly entangled photons and rapidly responding polarization qubit phase gates in a room-temperature active Raman gain medium

    SciTech Connect

    Hang Chao; Huang Guoxiang

    2010-11-15

    We present a scheme for obtaining entangled photons and quantum phase gates in a room-temperature four-state tripod-type atomic system with two-mode active Raman gain (ARG). We analyze the linear and nonlinear optical responses of this ARG system and show that the scheme is fundamentally different from those based on electromagnetically induced transparency and hence can avoid significant probe-field absorption as well as a temperature-related Doppler effect. We demonstrate that highly entangled photon pairs can be produced and rapidly responding polarization qubit phase gates can be constructed based on the unique features of the enhanced cross-phase-modulation and superluminal probe-field propagation of the system.

  11. Briefing paper for the proposed ultraviolet free-electron laser (UV- FEL) facility at Brookhaven National Laboratory

    SciTech Connect

    Johnson, E.D.

    1992-07-15

    The proposed Brookhaven National Laboratory ultraviolet free-electron laser (UV-FEL) user facility will provide picosecond and sub-picosecond pulses of coherent ultraviolet radiation for wavelengths from 300 to 75 nm. Pulse width will be variable from about 7 ps to {approx} 200 fs, with repetition rates as high as l0{sup 4}Hz, single pulse energies > 1 NJ and hence peak pulse power > 200 MW and average beam power > 10 W. The facility will be capable of ``pump-probe`` experiments utilizing the FEL radiation with: (1) synchronized auxiliary lasers, (2) a second, independently tunable FEL beam, or (3) broad-spectrum, high-intensity x-rays from an insertion device in the x-ray ring of the adjacent National Synchrotron Light Source. The UV-FEL consists of a high repetition rate recirculating superconducting linear accelerator which feeds pulses of electrons to two magnetic wigglers. Within these two devices, photons from tunable ``conventional`` lasers are frequency multiplied and amplified. By synchronously tuning the seed laser and modulating the energy of the electron beam, tuning of as much as 60% in wavelength is possible between alternating pulses supplied to different experimental stations, with Fourier transform limited resolution. Thus, up to four independent experiments may operate at one time, each with independent control of the wavelength and pulse duration. A total of eight experimental stations are planned, with two currently assigned to general users, two each for solid state and chemical physics, and one each for atomic physics and biology. This document provides a few representative examples of experiments in these fields, as well as an introduction to the facility, its limitations, and its potential for future growth.

  12. Briefing paper for the proposed ultraviolet free-electron laser (UV- FEL) facility at Brookhaven National Laboratory

    SciTech Connect

    Johnson, E.D.

    1992-07-15

    The proposed Brookhaven National Laboratory ultraviolet free-electron laser (UV-FEL) user facility will provide picosecond and sub-picosecond pulses of coherent ultraviolet radiation for wavelengths from 300 to 75 nm. Pulse width will be variable from about 7 ps to {approx} 200 fs, with repetition rates as high as l0{sup 4}Hz, single pulse energies > 1 NJ and hence peak pulse power > 200 MW and average beam power > 10 W. The facility will be capable of pump-probe'' experiments utilizing the FEL radiation with: (1) synchronized auxiliary lasers, (2) a second, independently tunable FEL beam, or (3) broad-spectrum, high-intensity x-rays from an insertion device in the x-ray ring of the adjacent National Synchrotron Light Source. The UV-FEL consists of a high repetition rate recirculating superconducting linear accelerator which feeds pulses of electrons to two magnetic wigglers. Within these two devices, photons from tunable conventional'' lasers are frequency multiplied and amplified. By synchronously tuning the seed laser and modulating the energy of the electron beam, tuning of as much as 60% in wavelength is possible between alternating pulses supplied to different experimental stations, with Fourier transform limited resolution. Thus, up to four independent experiments may operate at one time, each with independent control of the wavelength and pulse duration. A total of eight experimental stations are planned, with two currently assigned to general users, two each for solid state and chemical physics, and one each for atomic physics and biology. This document provides a few representative examples of experiments in these fields, as well as an introduction to the facility, its limitations, and its potential for future growth.

  13. Optical alignment and tuning system for the HUST THz-FEL

    NASA Astrophysics Data System (ADS)

    Liu, Xu; Liu, Kaifeng; Qin, Bin; Tan, Ping; Fu, Qiang; Wang, Wei; Pei, Yuanji

    2016-11-01

    A compact FEL oscillator with a radiation wavelength of 30 - 100 μm is proposed by HUST and NSRL. The optical cavity is very sensitive to misalignment errors of the mirror, due to its near-concentric and symmetric structure. The magnetic axis of the undulator, the optical axis of the resonator, and the electron beam propagation axis must all be aligned with high precision for achieving saturated lasing. This paper introduces a high-precision, multi-degree-of-freedom controlled optical alignment system, which has the ability to align in the transverse and longitudinal directions. The alignment tolerances are given by theoretical analysis and numerical simulations with three-dimensional FEL code GENESIS and optical propagation code (OPC). To accomplish optical alignment, two auxiliary HeNe laser systems were introduced. By adjusting the HeNe laser beam spot on the wedge, the optical axis can be aligned to the magnetic axis, and the estimated errors meet the tolerances. Finally, the electron beam will be guided through the hole in the central wedge to complete the transverse alignment. The longitudinal alignment and tuning methods are also described.

  14. State-of-the-art thin film X-ray optics for synchrotrons and FEL sources

    NASA Astrophysics Data System (ADS)

    Hertlein, Frank; Wiesmann, Jörg; Michaelsen, Carsten; Störmer, Michael; Seifert, Andreas

    2007-05-01

    Selected aspects of simulation, preparation and characterization of total reflection and multilayer X-ray optics will be discussed. The best multilayer is found by calculating the optical properties of the coating. Sophisticated improvements in deposition technology allow the precise realization of the specified parameters when manufacturing the X-ray optics. The quality of the shape of the substrate for the optics is measured with the aid of profilometry. X-ray reflectometry measures both film thickness as well as their lateral gradient. Last but not least we will be showing results of the development of carbon coatings as total reflection mirrors for FEL (free electron laser) sources. Over the past years we have developed optimized optics for the XUV range up to 200 eV. First FEL irradiation tests have shown that carbon coatings offer high reflectivity > 95%, high radiation stability, good uniformity in thickness and roughness. An optimized coating of two stripes for different beam energies was produced especially for a tomography beamline, where a Ru/C multilayer was chosen for energies between 10 and 22 keV and a W/Si multilayer for energies between 22 and 45 keV.

  15. First lasing of the IR upgrade FEL at Jefferson lab

    SciTech Connect

    Christopher Behre; Stephen Benson; George Biallas; James Boyce; Christopher Curtis; David Douglas; H. Dylla; L. Dillon-townes; Richard Evans; Albert Grippo; Joseph Gubeli; David Hardy; John Heckman; Carlos Hernandez-Garcia; Tommy Hiatt; Kevin Jordan; Nikolitsa Merminga; George Neil; Joseph Preble; Harvey Rutt; Michelle D. Shinn; Timothy Siggins; Hiroyuki Toyokawa; David W. Waldman; Richard Walker; Neil Wilson; Byung Yunn; Shukui Zhang

    2004-08-01

    We report initial lasing results from the IR Upgrade FEL at Jefferson Lab[1]. The electron accelerator was operated with low average current beam at 80 MeV. The time structure of the beam was 120 pC bunches at 4.678 MHz with up to 750 {micro}sec pulses at 2Hz. Lasing was established over the entire wavelength range of the mirrors (5.5-6.6 {micro}m). The detuning curve length, turn-on time, and power were in agreement with modeling results assuming a 1 psec FWHM micropulse. The same model predicts over 10 kW of power output with 10 mA of beam and 10% output coupling, which is the ultimate design goal of the IR Upgrade FEL. The behavior of the laser while the dispersion section strength was varied was found to qualitatively match predictions. Initial CW lasing results also will be presented.

  16. Cavity-mirror degradation in the deep-UV FEL

    SciTech Connect

    Yamada, K.; Yamazaki, T.; Sei, N.

    1995-12-31

    It is known that the degradation of dielectric multilayer mirrors used in short wavelength free-electron lasers (FELs) is caused by the carbon contamination on the mirror surface and the defects inside the dielectrics. We reported last year that the degraded dielectric multilayer mirrors can be repaired with both surface treatment by RF-induced oxygen plasma and thermal annealing. However, such a mirror degradation is still one of the most critical issues in the deep ultraviolet (UV) FELs, because the fundamental undulator radiation resonating in the laser cavity, the intensity of which is much higher than that of higher harmonics, can be sufficiently energetic to cause the mirror degradation through photochemical reactions. We are investigating the mirror degradation mainly in the deep UV region down to 240 nm. The experimental results will be shown. The mirror degradation mechanism will be discussed.

  17. Beam transport for an SRF recirculating-linac FEL

    SciTech Connect

    Neuffer, D.; Douglas, D.; Li, Z.

    1995-12-31

    The beam transport system for the CEBAF UV Demo FEL includes a two-pan transport of the beam with acceleration from injector to wiggler, followed by energy recovery transport from wiggler to dump. From that contact we discuss the general problem of multi-pass energy-recovery beam transport for FELs. Tuneable, nearly-isochronous, large-momentum-acceptance import systems are required. The entire transport must preserve beam quality, particularly in the acceleration transport to the wiggler, and have low losses throughout the entire system. Issues such as injection and final energies, number of passes, linac focusing effects, beam separation, chronicity management, and stability constraints are critical. Various possible designs are discussed. Particle tracking results exploring the design options are also reported.

  18. Studies of Resistive Wall Heating at JLAB FEL

    SciTech Connect

    Li, Rui; Benson, Stephen V.

    2013-06-01

    When the JLAB FEL is under CW operation, it had been observed that temperature rises over the wiggler vacuum chamber, presumably as the result of the power deposition on the resistive wall of the wiggler chamber. Previous analyses have been done on the resistive wall impedance for various cases, such as DC, AC, and anomalous skin effects*. Here we report an investigation on the beam kinetic energy losses for each of these cases. This study includes the non-ultrarelativistic effect on resistive wall loss, for both round pipe and parallel plates. We will present the comparison of our results with the measured data obtained during CW operation of the JLAB FEL. Other possible factors contributing to the measured heating will also be discussed.

  19. Serial snapshot crystallography for materials science with SwissFEL

    SciTech Connect

    Dejoie, Catherine; Smeets, Stef; Baerlocher, Christian; Tamura, Nobumichi; Pattison, Philip; Abela, Rafael; McCusker, Lynne B.

    2015-04-21

    New opportunities for studying (sub)microcrystalline materials with small unit cells, both organic and inorganic, will open up when the X-ray free electron laser (XFEL) presently being constructed in Switzerland (SwissFEL) comes online in 2017. Our synchrotron-based experiments mimicking the 4%-energy-bandpass mode of the SwissFEL beam show that it will be possible to record a diffraction pattern of up to 10 randomly oriented crystals in a single snapshot, to index the resulting reflections, and to extract their intensities reliably. The crystals are destroyed with each XFEL pulse, but by combining snapshots from several sets of crystals, a complete set of data can be assembled, and crystal structures of materials that are difficult to analyze otherwise will become accessible. Even with a single shot, at least a partial analysis of the crystal structure will be possible, and with 10–50 femtosecond pulses, this offers tantalizing possibilities for time-resolved studies.

  20. Defective TiO2 with high photoconductive gain for efficient and stable planar heterojunction perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Li, Yanbo; Cooper, Jason K.; Liu, Wenjun; Sutter-Fella, Carolin M.; Amani, Matin; Beeman, Jeffrey W.; Javey, Ali; Ager, Joel W.; Liu, Yi; Toma, Francesca M.; Sharp, Ian D.

    2016-08-01

    Formation of planar heterojunction perovskite solar cells exhibiting both high efficiency and stability under continuous operation remains a challenge. Here, we show this can be achieved by using a defective TiO2 thin film as the electron transport layer. TiO2 layers with native defects are deposited by electron beam evaporation in an oxygen-deficient environment. Deep-level hole traps are introduced in the TiO2 layers and contribute to a high photoconductive gain and reduced photocatalytic activity. The high photoconductivity of the TiO2 electron transport layer leads to improved efficiency for the fabricated planar devices. A maximum power conversion efficiency of 19.0% and an average PCE of 17.5% are achieved. In addition, the reduced photocatalytic activity of the TiO2 layer leads to enhanced long-term stability for the planar devices. Under continuous operation near the maximum power point, an efficiency of over 15.4% is demonstrated for 100 h.