Sample records for high gradient structures

  1. Unraveling Deformation Mechanisms in Gradient Structured Metals

    NASA Astrophysics Data System (ADS)

    Moering, Jordan Alexander

    Gradient structures have demonstrated high strength and high ductility, introducing new mechanisms to challenge conventional mechanics. This work develops a method for characterizing the shear strain in gradient structured steel and presents evidence of a texture gradient that develops in Surface Mechanical Attrition Treatment (SMAT). Mechanics underlying some theories of the strengthening mechanisms in gradient structured metals are introduced, followed by the fabrication and testing of gradient structured aluminum rod. The round geometry is intrinsically different from its flat counterparts, which leads to a multiaxial stress state evolving in tension. The aluminum exhibits strengthening beyond rule of mixtures, and texture evolution in the post-mortem sample indicates that out of plane stresses operate within the gradient. Finally, another gradient structured aluminum rod is shown to exhibit higher strength and higher elongation to failure in a variety of sample diameters and processing conditions. The GND density and microstructural evolution showed no significant changes during mechanical testing, and high resolution strain mapping was successfully completed within the core of the material. These discoveries and contributions to the field should help continue unraveling the deformation mechanisms of gradient structured metals.

  2. Ultra-High Gradient S-band Linac for Laboratory and Industrial Applications

    NASA Astrophysics Data System (ADS)

    Faillace, L.; Agustsson, R.; Dolgashev, V.; Frigola, P.; Murokh, A.; Rosenzweig, J.; Yakimenko, V.

    2010-11-01

    A strong demand for high gradient structures arises from the limited real estate available for linear accelerators. RadiaBeam Technologies is developing a Doubled Energy Compact Accelerator (DECA) structure: an S-band standing wave electron linac designed to operate at accelerating gradients of up to 50 MV/m. In this paper, we present the radio-frequency design of the DECA S-band accelerating structure, operating at 2.856 GHz in the π-mode. The structure design is heavily influenced by NLC collaboration experience with ultra high gradient X-band structures; S-band, however, is chosen to take advantage of commonly available high power S-band klystrons.

  3. High gradient RF test results of S-band and C-band cavities for medical linear accelerators

    NASA Astrophysics Data System (ADS)

    Degiovanni, A.; Bonomi, R.; Garlasché, M.; Verdú-Andrés, S.; Wegner, R.; Amaldi, U.

    2018-05-01

    TERA Foundation has proposed and designed hadrontherapy facilities based on novel linacs, i.e. high gradient linacs which accelerate either protons or light ions. The overall length of the linac, and therefore its cost, is almost inversely proportional to the average accelerating gradient. With the scope of studying the limiting factors for high gradient operation and to optimize the linac design, TERA, in collaboration with the CLIC Structure Development Group, has conducted a series of high gradient experiments. The main goals were to study the high gradient behavior and to evaluate the maximum gradient reached in 3 and 5.7 GHz structures to direct the design of medical accelerators based on high gradient linacs. This paper summarizes the results of the high power tests of 3.0 and 5.7 GHz single-cell cavities.

  4. Experimental high gradient testing of a 17.1 GHz photonic band-gap accelerator structure

    DOE PAGES

    Munroe, Brian J.; Zhang, JieXi; Xu, Haoran; ...

    2016-03-29

    In this paper, we report the design, fabrication, and high gradient testing of a 17.1 GHz photonic band-gap (PBG) accelerator structure. Photonic band-gap (PBG) structures are promising candidates for electron accelerators capable of high-gradient operation because they have the inherent damping of high order modes required to avoid beam breakup instabilities. The 17.1 GHz PBG structure tested was a single cell structure composed of a triangular array of round copper rods of radius 1.45 mm spaced by 8.05 mm. The test assembly consisted of the test PBG cell located between conventional (pillbox) input and output cells, with input power ofmore » up to 4 MW from a klystron supplied via a TM 01 mode launcher. Breakdown at high gradient was observed by diagnostics including reflected power, downstream and upstream current monitors and visible light emission. The testing procedure was first benchmarked with a conventional disc-loaded waveguide structure, which reached a gradient of 87 MV=m at a breakdown probability of 1.19 × 10 –1 per pulse per meter. The PBG structure was tested with 100 ns pulses at gradient levels of less than 90 MV=m in order to limit the surface temperature rise to 120 K. The PBG structure reached up to 89 MV=m at a breakdown probability of 1.09 × 10 –1 per pulse per meter. These test results show that a PBG structure can simultaneously operate at high gradients and low breakdown probability, while also providing wakefield damping.« less

  5. Imprinting high-gradient topographical structures onto optical surfaces using magnetorheological finishing: manufacturing corrective optical elements for high-power laser applications.

    PubMed

    Menapace, Joseph A; Ehrmann, Paul E; Bayramian, Andrew J; Bullington, Amber; Di Nicola, Jean-Michel G; Haefner, Constantin; Jarboe, Jeffrey; Marshall, Christopher; Schaffers, Kathleen I; Smith, Cal

    2016-07-01

    Corrective optical elements form an important part of high-precision optical systems. We have developed a method to manufacture high-gradient corrective optical elements for high-power laser systems using deterministic magnetorheological finishing (MRF) imprinting technology. Several process factors need to be considered for polishing ultraprecise topographical structures onto optical surfaces using MRF. They include proper selection of MRF removal function and wheel sizes, detailed MRF tool and interferometry alignment, and optimized MRF polishing schedules. Dependable interferometry also is a key factor in high-gradient component manufacture. A wavefront attenuating cell, which enables reliable measurement of gradients beyond what is attainable using conventional interferometry, is discussed. The results of MRF imprinting a 23 μm deep structure containing gradients over 1.6 μm / mm onto a fused-silica window are presented as an example of the technique's capabilities. This high-gradient element serves as a thermal correction plate in the high-repetition-rate advanced petawatt laser system currently being built at Lawrence Livermore National Laboratory.

  6. Imprinting high-gradient topographical structures onto optical surfaces using magnetorheological finishing: Manufacturing corrective optical elements for high-power laser applications

    DOE PAGES

    Menapace, Joseph A.; Ehrmann, Paul E.; Bayramian, Andrew J.; ...

    2016-03-15

    Corrective optical elements form an important part of high-precision optical systems. We have developed a method to manufacture high-gradient corrective optical elements for high-power laser systems using deterministic magnetorheological finishing (MRF) imprinting technology. Several process factors need to be considered for polishing ultraprecise topographical structures onto optical surfaces using MRF. They include proper selection of MRF removal function and wheel sizes, detailed MRF tool and interferometry alignment, and optimized MRF polishing schedules. Dependable interferometry also is a key factor in high-gradient component manufacture. A wavefront attenuating cell, which enables reliable measurement of gradients beyond what is attainable using conventional interferometry,more » is discussed. The results of MRF imprinting a 23 μm deep structure containing gradients over 1.6 μm / mm onto a fused-silica window are presented as an example of the technique’s capabilities. As a result, this high-gradient element serves as a thermal correction plate in the high-repetition-rate advanced petawatt laser system currently being built at Lawrence Livermore National Laboratory.« less

  7. High Gradient Accelerator Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Temkin, Richard

    The goal of the MIT program of research on high gradient acceleration is the development of advanced acceleration concepts that lead to a practical and affordable next generation linear collider at the TeV energy level. Other applications, which are more near-term, include accelerators for materials processing; medicine; defense; mining; security; and inspection. The specific goals of the MIT program are: • Pioneering theoretical research on advanced structures for high gradient acceleration, including photonic structures and metamaterial structures; evaluation of the wakefields in these advanced structures • Experimental research to demonstrate the properties of advanced structures both in low-power microwave coldmore » test and high-power, high-gradient test at megawatt power levels • Experimental research on microwave breakdown at high gradient including studies of breakdown phenomena induced by RF electric fields and RF magnetic fields; development of new diagnostics of the breakdown process • Theoretical research on the physics and engineering features of RF vacuum breakdown • Maintaining and improving the Haimson / MIT 17 GHz accelerator, the highest frequency operational accelerator in the world, a unique facility for accelerator research • Providing the Haimson / MIT 17 GHz accelerator facility as a facility for outside users • Active participation in the US DOE program of High Gradient Collaboration, including joint work with SLAC and with Los Alamos National Laboratory; participation of MIT students in research at the national laboratories • Training the next generation of Ph. D. students in the field of accelerator physics.« less

  8. High-gradient low-β accelerating structure using the first negative spatial harmonic of the fundamental mode

    NASA Astrophysics Data System (ADS)

    Kutsaev, Sergey V.; Agustsson, Ronald; Boucher, Salime; Fischer, Richard; Murokh, Alex; Mustapha, Brahim; Nassiri, Alireza; Ostroumov, Peter N.; Plastun, Alexander; Savin, Evgeny; Smirnov, Alexander Yu.

    2017-12-01

    The development of high-gradient accelerating structures for low-β particles is the key for compact hadron linear accelerators. A particular example of such a machine is a hadron therapy linac, which is a promising alternative to cyclic machines, traditionally used for cancer treatment. Currently, the practical utilization of linear accelerators in radiation therapy is limited by the requirement to be under 50 m in length. A usable device for cancer therapy should produce 200-250 MeV protons and/or 400 - 450 MeV /u carbon ions, which sets the requirement of having 35 MV /m average "real-estate gradient" or gradient per unit of actual accelerator length, including different accelerating sections, focusing elements and beam transport lines, and at least 50 MV /m accelerating gradients in the high-energy section of the linac. Such high accelerating gradients for ion linacs have recently become feasible for operations at S-band frequencies. However, the reasonable application of traditional S-band structures is practically limited to β =v /c >0.4 . However, the simulations show that for lower phase velocities, these structures have either high surface fields (>200 MV /m ) or low shunt impedances (<35 M Ω /m ). At the same time, a significant (˜10 % ) reduction in the linac length can be achieved by using the 50 MV /m structures starting from β ˜0.3 . To address this issue, we have designed a novel radio frequency structure where the beam is synchronous with the higher spatial harmonic of the electromagnetic field. In this paper, we discuss the principles of this approach, the related beam dynamics and especially the electromagnetic and thermomechanical designs of this novel structure. Besides the application to ion therapy, the technology described in this paper can be applied to future high gradient normal conducting ion linacs and high energy physics machines, such as a compact hadron collider. This approach preserves linac compactness in settings with limited space availability.

  9. Development of High-Gradient Dielectric Laser-Driven Particle Accelerator Structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Byer, Robert L.

    2013-11-07

    The thrust of Stanford's program is to conduct research on high-gradient dielectric accelerator structures driven with high repetition-rate, tabletop infrared lasers. The close collaboration between Stanford and SLAC (Stanford Linear Accelerator Center) is critical to the success of this project, because it provides a unique environment where prototype dielectric accelerator structures can be rapidly fabricated and tested with a relativistic electron beam.

  10. Prototyping high-gradient mm-wave accelerating structures

    DOE PAGES

    Nanni, Emilio A.; Dolgashev, Valery A.; Haase, Andrew; ...

    2017-01-01

    We present single-cell accelerating structures designed for high-gradient testing at 110 GHz. The purpose of this work is to study the basic physics of ultrahigh vacuum RF breakdown in high-gradient RF accelerators. The accelerating structures are π-mode standing-wave cavities fed with a TM 01 circular waveguide. The structures are fabricated using precision milling out of two metal blocks, and the blocks are joined with diffusion bonding and brazing. The impact of fabrication and joining techniques on the cell geometry and RF performance will be discussed. First prototypes had a measured Q 0 of 2800, approaching the theoretical design value ofmore » 3300. The geometry of these accelerating structures are as close as practical to singlecell standing-wave X-band accelerating structures more than 40 of which were tested at SLAC. This wealth of X-band data will serve as a baseline for these 110 GHz tests. Furthermore, the structures will be powered with short pulses from a MW gyrotron oscillator. RF power of 1 MW may allow an accelerating gradient of 400 MeV/m to be reached.« less

  11. High gradient RF test results of S-band and C-band cavities for medical linear accelerators

    DOE PAGES

    Degiovanni, A.; Bonomi, R.; Garlasche, M.; ...

    2018-02-09

    TERA Foundation has proposed and designed hadrontherapy facilities based on novel linacs, i.e. high gradient linacs which accelerate either protons or light ions. The overall length of the linac, and therefore its cost, is almost inversely proportional to the average accelerating gradient. With the scope of studying the limiting factors for high gradient operation and to optimize the linac design, TERA, in collaboration with the CLIC Structure Development Group, has conducted a series of high gradient experiments. The main goals were to study the high gradient behavior and to evaluate the maximum gradient reached in 3 and 5.7 GHz structuresmore » to direct the design of medical accelerators based on high gradient linacs. Lastly, this paper summarizes the results of the high power tests of 3.0 and 5.7 GHz single-cell cavities.« less

  12. High gradient RF test results of S-band and C-band cavities for medical linear accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Degiovanni, A.; Bonomi, R.; Garlasche, M.

    TERA Foundation has proposed and designed hadrontherapy facilities based on novel linacs, i.e. high gradient linacs which accelerate either protons or light ions. The overall length of the linac, and therefore its cost, is almost inversely proportional to the average accelerating gradient. With the scope of studying the limiting factors for high gradient operation and to optimize the linac design, TERA, in collaboration with the CLIC Structure Development Group, has conducted a series of high gradient experiments. The main goals were to study the high gradient behavior and to evaluate the maximum gradient reached in 3 and 5.7 GHz structuresmore » to direct the design of medical accelerators based on high gradient linacs. Lastly, this paper summarizes the results of the high power tests of 3.0 and 5.7 GHz single-cell cavities.« less

  13. Terahertz-driven linear electron acceleration

    PubMed Central

    Nanni, Emilio A.; Huang, Wenqian R.; Hong, Kyung-Han; Ravi, Koustuban; Fallahi, Arya; Moriena, Gustavo; Dwayne Miller, R. J.; Kärtner, Franz X.

    2015-01-01

    The cost, size and availability of electron accelerators are dominated by the achievable accelerating gradient. Conventional high-brightness radio-frequency accelerating structures operate with 30–50 MeV m−1 gradients. Electron accelerators driven with optical or infrared sources have demonstrated accelerating gradients orders of magnitude above that achievable with conventional radio-frequency structures. However, laser-driven wakefield accelerators require intense femtosecond sources and direct laser-driven accelerators suffer from low bunch charge, sub-micron tolerances and sub-femtosecond timing requirements due to the short wavelength of operation. Here we demonstrate linear acceleration of electrons with keV energy gain using optically generated terahertz pulses. Terahertz-driven accelerating structures enable high-gradient electron/proton accelerators with simple accelerating structures, high repetition rates and significant charge per bunch. These ultra-compact terahertz accelerators with extremely short electron bunches hold great potential to have a transformative impact for free electron lasers, linear colliders, ultrafast electron diffraction, X-ray science and medical therapy with X-rays and electron beams. PMID:26439410

  14. Terahertz-driven linear electron acceleration

    DOE PAGES

    Nanni, Emilio A.; Huang, Wenqian R.; Hong, Kyung-Han; ...

    2015-10-06

    The cost, size and availability of electron accelerators are dominated by the achievable accelerating gradient. Conventional high-brightness radio-frequency accelerating structures operate with 30–50 MeVm -1 gradients. Electron accelerators driven with optical or infrared sources have demonstrated accelerating gradients orders of magnitude above that achievable with conventional radio-frequency structures. However, laser-driven wakefield accelerators require intense femtosecond sources and direct laser-driven accelerators suffer from low bunch charge, sub-micron tolerances and sub-femtosecond timing requirements due to the short wavelength of operation. Here we demonstrate linear acceleration of electrons with keV energy gain using optically generated terahertz pulses. Terahertz-driven accelerating structures enable high-gradient electron/protonmore » accelerators with simple accelerating structures, high repetition rates and significant charge per bunch. As a result, these ultra-compact terahertz accelerators with extremely short electron bunches hold great potential to have a transformative impact for free electron lasers, linear colliders, ultrafast electron diffraction, X-ray science and medical therapy with X-rays and electron beams.« less

  15. High power tests of an electroforming cavity operating at 11.424 GHz

    NASA Astrophysics Data System (ADS)

    Dolgashev, V. A.; Gatti, G.; Higashi, Y.; Leonardi, O.; Lewandowski, J. R.; Marcelli, A.; Rosenzweig, J.; Spataro, B.; Tantawi, S. G.; Yeremian, D. A.

    2016-03-01

    The achievement of ultra high accelerating gradients is mandatory in order to fabricate compact accelerators at 11.424 GHz for scientific and industrial applications. An extensive experimental and theoretical program to determine a reliable ultra high gradient operation of the future linear accelerators is under way in many laboratories. In particular, systematic studies on the 11.424 GHz frequency accelerator structures, R&D on new materials and the associated microwave technology are in progress to achieve accelerating gradients well above 120 MeV/m. Among the many, the electroforming procedure is a promising approach to manufacture high performance RF devices in order to avoid the high temperature brazing and to produce precise RF structures. We report here the characterization of a hard high gradient RF accelerating structure at 11.424 GHz fabricated using the electroforming technique. Low-level RF measurements and high power RF tests carried out at the SLAC National Accelerator Laboratory on this prototype are presented and discussed. In addition, we present also a possible layout where the water-cooling of irises based on the electroforming process has been considered for the first time.

  16. Dynamic creation and evolution of gradient nanostructure in single-crystal metallic microcubes

    NASA Astrophysics Data System (ADS)

    Thevamaran, Ramathasan; Lawal, Olawale; Yazdi, Sadegh; Jeon, Seog-Jin; Lee, Jae-Hwang; Thomas, Edwin L.

    2016-10-01

    We demonstrate the dynamic creation and subsequent static evolution of extreme gradient nanograined structures in initially near-defect-free single-crystal silver microcubes. Extreme nanostructural transformations are imposed by high strain rates, strain gradients, and recrystallization in high-velocity impacts of the microcubes against an impenetrable substrate. We synthesized the silver microcubes in a bottom-up seed-growth process and use an advanced laser-induced projectile impact testing apparatus to selectively launch them at supersonic velocities (~400 meters per second). Our study provides new insights into the fundamental deformation mechanisms and the effects of crystal and sample-shape symmetries resulting from high-velocity impacts. The nanostructural transformations produced in our experiments show promising pathways to developing gradient nanograined metals for engineering applications requiring both high strength and high toughness—for example, in structural components of aircraft and spacecraft.

  17. High field gradient particle accelerator

    DOEpatents

    Nation, John A.; Greenwald, Shlomo

    1989-01-01

    A high electric field gradient electron accelerator utilizing short duration, microwave radiation, and capable of operating at high field gradients for high energy physics applications or at reduced electric field gradients for high average current intermediate energy accelerator applications. Particles are accelerated in a smooth bore, periodic undulating waveguide, wherein the period is so selected that the particles slip an integral number of cycles of the r.f. wave every period of the structure. This phase step of the particles produces substantially continuous acceleration in a traveling wave without transverse magnetic or other guide means for the particle.

  18. Strain gradient drives shear banding in metallic glasses

    NASA Astrophysics Data System (ADS)

    Tian, Zhi-Li; Wang, Yun-Jiang; Chen, Yan; Dai, Lan-Hong

    2017-09-01

    Shear banding is a nucleation-controlled process in metallic glasses (MGs) involving multiple temporal-spatial scales, which hinders a concrete understanding of its structural origin down to the atomic scale. Here, inspired by the morphology of composite materials, we propose a different perspective of MGs as a hard particle-reinforced material based on atomic-scale structural heterogeneity. The local stable structures indicated by a high level of local fivefold symmetry (L5FS) act as hard "particles" which are embedded in the relatively soft matrix. We demonstrate this concept by performing atomistic simulations of shear banding in CuZr MG. A shear band is prone to form in a sample with a high degree of L5FS which is slowly quenched from the liquid. An atomic-scale analysis on strain and the structural evolution reveals that it is the strain gradient effect that has originated from structural heterogeneity that facilitates shear transformation zones (STZs) to mature shear bands. An artificial composite model with a high degree of strain gradient, generated by inserting hard MG strips into a soft MG matrix, demonstrates a great propensity for shear banding. It therefore confirms the critical role strain gradient plays in shear banding. The strain gradient effect on shear banding is further quantified with a continuum model and a mechanical instability analysis. These physical insights might highlight the strain gradient as the hidden driving force in transforming STZs into shear bands in MGs.

  19. Method and apparatus for fabrication of high gradient insulators with parallel surface conductors spaced less than one millimeter apart

    DOEpatents

    Sanders, David M.; Decker, Derek E.

    1999-01-01

    Optical patterns and lithographic techniques are used as part of a process to embed parallel and evenly spaced conductors in the non-planar surfaces of an insulator to produce high gradient insulators. The approach extends the size that high gradient insulating structures can be fabricated as well as improves the performance of those insulators by reducing the scale of the alternating parallel lines of insulator and conductor along the surface. This fabrication approach also substantially decreases the cost required to produce high gradient insulators.

  20. Fabrication Technologies of the High Gradient Accelerator Structures at 100MV/M Range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Juwen; /SLAC; Lewandowski, James

    A CERN-SLAC-KEK collaboration on high gradient X-band structure research has been established in order to demonstrate the feasibility of the CLIC baseline design for the main linac stably operating at more than 100 MV/m loaded accelerating gradient. Several prototype CLIC structures were successfully fabricated and high power tested. They operated at 105 MV/m with a breakdown rate that meets the CLIC linear collider specifications of < 5 x 10{sup -7}/pulse/m. This paper summarizes the fabrication technologies including the mechanical design, precision machining, chemical cleaning, diffusion bonding as well as vacuum baking and all related assembly technologies. Also, the tolerances control,more » tuning and RF characterization will be discussed.« less

  1. Dynamic creation and evolution of gradient nanostructure in single-crystal metallic microcubes.

    PubMed

    Thevamaran, Ramathasan; Lawal, Olawale; Yazdi, Sadegh; Jeon, Seog-Jin; Lee, Jae-Hwang; Thomas, Edwin L

    2016-10-21

    We demonstrate the dynamic creation and subsequent static evolution of extreme gradient nanograined structures in initially near-defect-free single-crystal silver microcubes. Extreme nanostructural transformations are imposed by high strain rates, strain gradients, and recrystallization in high-velocity impacts of the microcubes against an impenetrable substrate. We synthesized the silver microcubes in a bottom-up seed-growth process and use an advanced laser-induced projectile impact testing apparatus to selectively launch them at supersonic velocities (~400 meters per second). Our study provides new insights into the fundamental deformation mechanisms and the effects of crystal and sample-shape symmetries resulting from high-velocity impacts. The nanostructural transformations produced in our experiments show promising pathways to developing gradient nanograined metals for engineering applications requiring both high strength and high toughness-for example, in structural components of aircraft and spacecraft. Copyright © 2016, American Association for the Advancement of Science.

  2. Design and Performance of Property Gradient Ternary Nitride Coating Based on Process Control.

    PubMed

    Yan, Pei; Chen, Kaijie; Wang, Yubin; Zhou, Han; Peng, Zeyu; Jiao, Li; Wang, Xibin

    2018-05-09

    Surface coating is an effective approach to improve cutting tool performance, and multiple or gradient coating structures have become a common development strategy. However, composition mutations at the interfaces decrease the performance of multi-layered coatings. The key mitigation technique has been to reduce the interface effect at the boundaries. This study proposes a structure design method for property-component gradient coatings based on process control. The method produces coatings with high internal cohesion and high external hardness, which could reduce the composition and performance mutations at the interface. A ZrTiN property gradient ternary nitride coating was deposited on cemented carbide by multi-arc ion plating with separated Ti and Zr targets. The mechanical properties, friction behaviors, and cutting performances were systematically investigated, compared with a single-layer coating. The results indicated that the gradient coating had better friction and wear performance with lower wear rate and higher resistance to peeling off during sliding friction. The gradient coating had better wear and damage resistance in cutting processes, with lower machined surface roughness Ra. Gradient-structured coatings could effectively inhibit micro crack initiation and growth under alternating force and temperature load. This method could be extended to similar ternary nitride coatings.

  3. High field gradient particle accelerator

    DOEpatents

    Nation, J.A.; Greenwald, S.

    1989-05-30

    A high electric field gradient electron accelerator utilizing short duration, microwave radiation, and capable of operating at high field gradients for high energy physics applications or at reduced electric field gradients for high average current intermediate energy accelerator applications is disclosed. Particles are accelerated in a smooth bore, periodic undulating waveguide, wherein the period is so selected that the particles slip an integral number of cycles of the r.f. wave every period of the structure. This phase step of the particles produces substantially continuous acceleration in a traveling wave without transverse magnetic or other guide means for the particle. 10 figs.

  4. Relativistic klystron driven compact high gradient accelerator as an injector to an X-ray synchrotron radiation ring

    DOEpatents

    Yu, David U. L.

    1990-01-01

    A compact high gradient accelerator driven by a relativistic klystron is utilized to inject high energy electrons into an X-ray synchrotron radiation ring. The high gradients provided by the relativistic klystron enables accelerator structure to be much shorter (typically 3 meters) than conventional injectors. This in turn enables manufacturers which utilize high energy, high intensity X-rays to produce various devices, such as computer chips, to do so on a cost effective basis.

  5. Characterization of the Navy Fan Channel-to-Lobe Transition: Geomorphology, Gradient, and Structure Imaged through High-Resolution AUV Bathymetry

    NASA Astrophysics Data System (ADS)

    Carvajal, C.; Paull, C. K.; Caress, D. W.; Anderson, K.; Lundsten, E. M.; Gwiazda, R.; Fildani, A.; Dykstra, M.; McGann, M.; Maier, K. L.; Herguera, J. C.

    2016-12-01

    Channel to lobe transition zones (CLTZ) are elusive sectors of the seafloor. They record complex interactions between sediment-gravity flows, flow confinement, and gradient that can result in contrasting geomorphologies. If present, structural controls can add additional intricacies. We illustrate such complexities in the Navy Fan CLTZ offshore California/Mexico using AUV-collected high-resolution (1x1x0.25 m) bathymetry and chirp profiles. The AUV bathymetry images the fine scale details of the seafloor, otherwise unresolved in surface-ship-mounted multibeam bathymetry. Three morphological areas standout that in a direction transverse to sediment transport are: 1) An unconfined area with variable but overall steep gradients (0.5o-1.7o), and considerable erosion shown by numerous large scours that truncate underlying strata. These scours are elongate (<500x180 m), deep (<18 m), asymmetric (steeper proximally), and more prominent along steeper gradients; 2) An area of moderate confinement along a smoother, gentler gradient (0.2o-0.5o; 0.9o locally). This area is 8 km long with a channel (WxD: 233x11 m) that transitions basinwards to low confinement (WxD: 1000x4 m); and 3) An area with an escarpment (<25 m high, <19o) and ridge of the San Clemente Fault. We hypothesize that the erosional morphologies of the unconfined areas reflect swifter turbidity currents due to high gradients, which resulted from relief along the San Clemente Fault and probably from differential seafloor aggradation. In the moderate confinement area, the smoother and gentler seafloor may be related to more efficient sediment dispersal able to transfer/deposit sediment to heal structural relief (though not completely) while avoiding significant local aggradation, hence preventing major gradient build up. In the faulted area, the steep and prominent structure reroutes the sediments. The findings of this study have broad application to any seafloor areas with rapid changes of gradient.

  6. Method for computationally efficient design of dielectric laser accelerator structures

    DOE PAGES

    Hughes, Tyler; Veronis, Georgios; Wootton, Kent P.; ...

    2017-06-22

    Here, dielectric microstructures have generated much interest in recent years as a means of accelerating charged particles when powered by solid state lasers. The acceleration gradient (or particle energy gain per unit length) is an important figure of merit. To design structures with high acceleration gradients, we explore the adjoint variable method, a highly efficient technique used to compute the sensitivity of an objective with respect to a large number of parameters. With this formalism, the sensitivity of the acceleration gradient of a dielectric structure with respect to its entire spatial permittivity distribution is calculated by the use of onlymore » two full-field electromagnetic simulations, the original and ‘adjoint’. The adjoint simulation corresponds physically to the reciprocal situation of a point charge moving through the accelerator gap and radiating. Using this formalism, we perform numerical optimizations aimed at maximizing acceleration gradients, which generate fabricable structures of greatly improved performance in comparison to previously examined geometries.« less

  7. Thermal Gradient During Vacuum-Deposition Dramatically Enhances Charge Transport in Organic Semiconductors: Toward High-Performance N-Type Organic Field-Effect Transistors.

    PubMed

    Kim, Joo-Hyun; Han, Singu; Jeong, Heejeong; Jang, Hayeong; Baek, Seolhee; Hu, Junbeom; Lee, Myungkyun; Choi, Byungwoo; Lee, Hwa Sung

    2017-03-22

    A thermal gradient distribution was applied to a substrate during the growth of a vacuum-deposited n-type organic semiconductor (OSC) film prepared from N,N'-bis(2-ethylhexyl)-1,7-dicyanoperylene-3,4:9,10-bis(dicarboxyimide) (PDI-CN2), and the electrical performances of the films deployed in organic field-effect transistors (OFETs) were characterized. The temperature gradient at the surface was controlled by tilting the substrate, which varied the temperature one-dimensionally between the heated bottom substrate and the cooled upper substrate. The vacuum-deposited OSC molecules diffused and rearranged on the surface according to the substrate temperature gradient, producing directional crystalline and grain structures in the PDI-CN2 film. The morphological and crystalline structures of the PDI-CN2 thin films grown under a vertical temperature gradient were dramatically enhanced, comparing with the structures obtained from either uniformly heated films or films prepared under a horizontally applied temperature gradient. The field effect mobilities of the PDI-CN2-FETs prepared using the vertically applied temperature gradient were as high as 0.59 cm 2 V -1 s -1 , more than a factor of 2 higher than the mobility of 0.25 cm 2 V -1 s -1 submitted to conventional thermal annealing and the mobility of 0.29 cm 2 V -1 s -1 from the horizontally applied temperature gradient.

  8. The geothermal gradient map of Central Tunisia: Comparison with structural, gravimetric and petroleum data

    NASA Astrophysics Data System (ADS)

    Dhia, Hamed Ben

    1987-10-01

    Five hundred and fifty temperature values, initially measured as either bottom-hole temperatures (BHT) or drill-stem tests (DST), from 98 selected petroleum exploration wells form the basis of a geothermal gradient map of central Tunisia. A "global-statistical" method was employed to correct the BHT measurements, using the DST as references. The geothermal gradient ranges from 23° to 49°C/km. Comparison of the geothermal gradient with structural, gravimetric and petroleum data indicates that: (1) the general trend of the geothermal gradient curves reflects the main structural directions of the region, (2) zones of low and high geothermal gradient are correlated with zones of negative and positive Bouguer anomalies and (3) the five most important oil fields of central Tunisia are located near the geothermal gradient curve of 40° C/km. Such associations could have practical importance in petroleum exploration, but their significance must first be established through further investigation and additional data.

  9. Strain-Gradient Modulated Exciton Emission in Bent ZnO Wires Probed by Cathodoluminescence.

    PubMed

    Fu, Xue-Wen; Li, Cai-Zhen; Fang, Liang; Liu, Da-Meng; Xu, Jun; Yu, Da-Peng; Liao, Zhi-Min

    2016-12-27

    Photoelectrical properties of semiconductor nanostructures are expected to be improved significantly by strain engineering. Besides the local strain, the strain gradient is promising to tune the luminescence properties by modifying the crystal symmetry. Here, we report the investigation of strain-gradient induced symmetry-breaking effect on excitonic states in pure bending ZnO microwires by high spatial-resolved cathodoluminescence at low temperature of 80 K. In addition to the local-strain induced light emission peak shift, the bound exciton emission photon energy shows an extraordinary jump of ∼16.6 meV at a high strain-gradient of 1.22% μm -1 , which is ascribed to the strain gradient induced symmetry-breaking. Such a symmetry-breaking lifts the energy degeneracy of the electronic band structures, which significantly modifies the electron-hole interactions and the fine structures of the bound exciton states. These results provide a further understanding of the strain gradient effect on the excitonic states and possess a potential for the applications in optoelectronic devices.

  10. Advances in high gradient normal conducting accelerator structures

    DOE PAGES

    Simakov, Evgenya Ivanovna; Dolgashev, Valery A.; Tantawi, Sami G.

    2018-03-09

    Here, this paper reviews the current state-of-the-art in understanding the phenomena of ultra-high vacuum radio-frequency (rf) breakdown in accelerating structures and the efforts to improve stable operation of the structures at accelerating gradients above 100 MV/m. Numerous studies have been conducted recently with the goal of understanding the dependence of the achievable accelerating gradients and breakdown rates on the frequency of operations, the geometry of the structure, material and method of fabrication, and operational temperature. Tests have been conducted with single standing wave accelerator cells as well as with the multi-cell traveling wave structures. Notable theoretical effort was directed atmore » understanding the physical mechanisms of the rf breakdown and its statistical behavior. Finally, the achievements presented in this paper are the result of the large continuous self-sustaining collaboration of multiple research institutions in the United States and worldwide.« less

  11. Advances in high gradient normal conducting accelerator structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simakov, Evgenya Ivanovna; Dolgashev, Valery A.; Tantawi, Sami G.

    Here, this paper reviews the current state-of-the-art in understanding the phenomena of ultra-high vacuum radio-frequency (rf) breakdown in accelerating structures and the efforts to improve stable operation of the structures at accelerating gradients above 100 MV/m. Numerous studies have been conducted recently with the goal of understanding the dependence of the achievable accelerating gradients and breakdown rates on the frequency of operations, the geometry of the structure, material and method of fabrication, and operational temperature. Tests have been conducted with single standing wave accelerator cells as well as with the multi-cell traveling wave structures. Notable theoretical effort was directed atmore » understanding the physical mechanisms of the rf breakdown and its statistical behavior. Finally, the achievements presented in this paper are the result of the large continuous self-sustaining collaboration of multiple research institutions in the United States and worldwide.« less

  12. Biomimetic Gradient Polymers with Enhanced Damping Capacities.

    PubMed

    Wang, Dong; Zhang, Huan; Guo, Jing; Cheng, Beichen; Cao, Yuan; Lu, Shengjun; Zhao, Ning; Xu, Jian

    2016-04-01

    Designing gradient structures, mimicking biological materials, such as pummelo peels and tendon, is a promising strategy for developing advanced materials with superior energy damping capacities. Here a facile and effective approach for fabricating polymers with composition gradients at millimeter length scale is presented. The gradient thiol-ene polymers (TEPs) are created by the use of density difference of ternary thiol-ene-ene precursors and the subsequent photo-crosslinking via thiol-ene reaction. The compositional gradients are analyzed via differential scanning calorimeter (DSC), compressive modulus testing, atomic force microscopy (AFM) indentation, and swelling measurements. In contrast to homogeneous TEPs networks, the resultant gradient polymer shows a broader effective damping temperature range combining with good mechanical properties. The present result provides an effective route toward high damping materials by the fabrication of gradient structures. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Experimental measurements of rf breakdowns and deflecting gradients in mm-wave metallic accelerating structures

    DOE PAGES

    Dal Forno, Massimo; Dolgashev, Valery; Bowden, Gordon; ...

    2016-05-03

    We present an experimental study of a high-gradient metallic accelerating structure at sub-THz frequencies, where we investigated the physics of rf breakdowns. Wakefields in the structure were excited by an ultrarelativistic electron beam. We present the first quantitative measurements of gradients and metal vacuum rf breakdowns in sub-THz accelerating cavities. When the beam travels off axis, a deflecting field is induced in addition to the longitudinal field. We measured the deflecting forces by observing the displacement and changes in the shape of the electron bunch. This behavior can be exploited for subfemtosecond beam diagnostics.

  14. Prediction of the retention of s-triazines in reversed-phase high-performance liquid chromatography under linear gradient-elution conditions.

    PubMed

    D'Archivio, Angelo Antonio; Maggi, Maria Anna; Ruggieri, Fabrizio

    2014-08-01

    In this paper, a multilayer artificial neural network is used to model simultaneously the effect of solute structure and eluent concentration profile on the retention of s-triazines in reversed-phase high-performance liquid chromatography under linear gradient elution. The retention data of 24 triazines, including common herbicides and their metabolites, are collected under 13 different elution modes, covering the following experimental domain: starting acetonitrile volume fraction ranging between 40 and 60% and gradient slope ranging between 0 and 1% acetonitrile/min. The gradient parameters together with five selected molecular descriptors, identified by quantitative structure-retention relationship modelling applied to individual separation conditions, are the network inputs. Predictive performance of this model is evaluated on six external triazines and four unseen separation conditions. For comparison, retention of triazines is modelled by both quantitative structure-retention relationships and response surface methodology, which describe separately the effect of molecular structure and gradient parameters on the retention. Although applied to a wider variable domain, the network provides a performance comparable to that of the above "local" models and retention times of triazines are modelled with accuracy generally better than 7%. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Bauschinger Effect and Back Stress in Gradient Cu-Ge Alloy

    NASA Astrophysics Data System (ADS)

    Hu, Xianzhi; Jin, Shenbao; Zhou, Hao; Yin, Zhe; Yang, Jian; Gong, Yulan; Zhu, Yuntian; Sha, Gang; Zhu, Xinkun

    2017-09-01

    Using surface mechanical attrition treatment (SMAT), a gradient structure composed of two gradient structure (GS) layers and a coarse grain (CG) layer was generated from a Cu-5.7 wt pct Ge alloy, significantly improving the yield strength of the sample. Unloading-reloading tests showed an unusual Bauschinger effect in these GS samples. The back stresses caused by the accumulated geometrically necessary dislocations (GNDs) on the GS/CG border increased with increasing strain. As found by electron backscatter diffraction (EBSD), the GNDs are mainly distributed in the gradient structured layer, and the density of the GNDs increase with increasing SMAT time. The effect of the back stress increased with increasing SMAT processing time due to the increase in the strain gradient. The pronounced Bauschinger effect in a GS sample can improve the resistance to forward plastic flow and finally contributes to the high strength of GS samples.

  16. In vitro reconstruction of branched tubular structures from lung epithelial cells in high cell concentration gradient environment.

    PubMed

    Hagiwara, Masaya; Peng, Fei; Ho, Chih-Ming

    2015-01-27

    We have succeeded in developing hollow branching structure in vitro commonly observed in lung airway using primary lung airway epithelial cells. Cell concentration gradient is the key factor that determines production of the branching cellular structures, as optimization of this component removes the need for heterotypic culture. The higher cell concentration leads to the more production of morphogens and increases the growth rate of cells. However, homogeneous high cell concentration does not make a branching structure. Branching requires sufficient space in which cells can grow from a high concentration toward a low concentration. Simulation performed using a reaction-diffusion model revealed that long-range inhibition prevents cells from branching when they are homogeneously spread in culture environments, while short-range activation from neighboring cells leads to positive feedback. Thus, a high cell concentration gradient is required to make branching structures. Spatial distributions of morphogens, such as BMP-4, play important roles in the pattern formation. This simple yet robust system provides an optimal platform for the further study and understanding of branching mechanisms in the lung airway, and will facilitate chemical and genetic studies of lung morphogenesis programs.

  17. High power experimental studies of hybrid photonic band gap accelerator structures

    DOE PAGES

    Zhang, JieXi; Munroe, Brian J.; Xu, Haoran; ...

    2016-08-31

    This paper reports the first high power tests of hybrid photonic band gap (PBG) accelerator structures. Three hybrid PBG (HPBG) structures were designed, built and tested at 17.14 GHz. Each structure had a triangular lattice array with 60 inner sapphire rods and 24 outer copper rods sandwiched between copper disks. The dielectric PBG band gap map allows the unique feature of overmoded operation in a TM 02 mode, with suppression of both lower order modes, such as the TM 11 mode, as well as higher order modes. The use of sapphire rods, which have negligible dielectric loss, required inclusion ofmore » the dielectric birefringence in the design. The three structures were designed to sequentially reduce the peak surface electric field. Simulations showed relatively high surface fields at the triple point as well as in any gaps between components in the clamped assembly. The third structure used sapphire rods with small pin extensions at each end and obtained the highest gradient of 19 MV/m, corresponding to a surface electric field of 78 MV/m, with a breakdown probability of 5×10 –1 per pulse per meter for a 100-ns input power pulse. Operation at a gradient above 20 MV/m led to runaway breakdowns with extensive light emission and eventual damage. For all three structures, multipactor light emission was observed at gradients well below the breakdown threshold. As a result, this research indicated that multipactor triggered at the triple point limited the operational gradient of the hybrid structure.« less

  18. High gradient tests of metallic mm-wave accelerating structures

    DOE PAGES

    Dal Forno, Massimo; Dolgashev, Valery; Bowden, Gordon; ...

    2017-05-10

    This study explores the physics of vacuum rf breakdowns in high gradient mm-wave accelerating structures. We performed a series of experiments with 100 GHz and 200 GHz metallic accelerating structures, at the Facility for Advanced Accelerator Experimental Tests (FACET) at the SLAC National Accelerator Laboratory. This paper presents the experimental results of rf tests of 100 GHz travelling-wave accelerating structures, made of hard copper-silver alloy. The results are compared with pure hard copper structures. The rf fields were excited by the FACET ultra-relativistic electron beam. The accelerating structures have open geometries, 10 cm long, composed of two halves separated bymore » a variable gap. The rf frequency of the fundamental accelerating mode depends on the gap size and can be changed from 90 GHz to 140 GHz. The measured frequency and pulse length are consistent with our simulations. When the beam travels off-axis, a deflecting field is induced in addition to the decelerating longitudinal field. We measured the deflecting forces by observing the displacement of the electron bunch and used this measurement to verify the expected accelerating gradient. We present the first quantitative measurement of rf breakdown rates in 100 GHz copper-silver accelerating structure, which was 10 –3 per pulse, with peak electric field of 0.42 GV/m, an accelerating gradient of 127 MV/m, at a pulse length of 2.3 ns. The goal of our studies is to understand the physics of gradient limitations in order to increase the energy reach of future accelerators.« less

  19. High gradient tests of metallic mm-wave accelerating structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dal Forno, Massimo; Dolgashev, Valery; Bowden, Gordon

    This study explores the physics of vacuum rf breakdowns in high gradient mm-wave accelerating structures. We performed a series of experiments with 100 GHz and 200 GHz metallic accelerating structures, at the Facility for Advanced Accelerator Experimental Tests (FACET) at the SLAC National Accelerator Laboratory. This paper presents the experimental results of rf tests of 100 GHz travelling-wave accelerating structures, made of hard copper-silver alloy. The results are compared with pure hard copper structures. The rf fields were excited by the FACET ultra-relativistic electron beam. The accelerating structures have open geometries, 10 cm long, composed of two halves separated bymore » a variable gap. The rf frequency of the fundamental accelerating mode depends on the gap size and can be changed from 90 GHz to 140 GHz. The measured frequency and pulse length are consistent with our simulations. When the beam travels off-axis, a deflecting field is induced in addition to the decelerating longitudinal field. We measured the deflecting forces by observing the displacement of the electron bunch and used this measurement to verify the expected accelerating gradient. We present the first quantitative measurement of rf breakdown rates in 100 GHz copper-silver accelerating structure, which was 10 –3 per pulse, with peak electric field of 0.42 GV/m, an accelerating gradient of 127 MV/m, at a pulse length of 2.3 ns. The goal of our studies is to understand the physics of gradient limitations in order to increase the energy reach of future accelerators.« less

  20. Functional response of osteoblasts in functionally gradient titanium alloy mesh arrays processed by 3D additive manufacturing.

    PubMed

    Nune, K C; Kumar, A; Misra, R D K; Li, S J; Hao, Y L; Yang, R

    2017-02-01

    We elucidate here the osteoblasts functions and cellular activity in 3D printed interconnected porous architecture of functionally gradient Ti-6Al-4V alloy mesh structures in terms of cell proliferation and growth, distribution of cell nuclei, synthesis of proteins (actin, vinculin, and fibronectin), and calcium deposition. Cell culture studies with pre-osteoblasts indicated that the interconnected porous architecture of functionally gradient mesh arrays was conducive to osteoblast functions. However, there were statistically significant differences in the cellular response depending on the pore size in the functionally gradient structure. The interconnected porous architecture contributed to the distribution of cells from the large pore size (G1) to the small pore size (G3), with consequent synthesis of extracellular matrix and calcium precipitation. The gradient mesh structure significantly impacted cell adhesion and influenced the proliferation stage, such that there was high distribution of cells on struts of the gradient mesh structure. Actin and vinculin showed a significant difference in normalized expression level of protein per cell, which was absent in the case of fibronectin. Osteoblasts present on mesh struts formed a confluent sheet, bridging the pores through numerous cytoplasmic extensions. The gradient mesh structure fabricated by electron beam melting was explored to obtain fundamental insights on cellular activity with respect to osteoblast functions. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Structure of Mesophotic Reef Fish Assemblages in the Northwestern Hawaiian Islands

    PubMed Central

    Kosaki, Randall K.; Wagner, Daniel; Kane, Corinne

    2016-01-01

    Mesophotic coral ecosystems (MCEs) support diverse communities of marine organisms with changes in community structure occurring along a depth gradient. In recent years, MCEs have gained attention due to their depths that provide protection from natural and anthropogenic stressors and their relative stability over evolutionary time periods, yet ecological structures of fish assemblages in MCEs remain largely un-documented. Here, we investigated composition and trophic structure of reef fish assemblages in the Northwestern Hawaiian Islands (NWHI) along a depth gradient from 1 to 67 m. The structure of reef fish assemblages as a whole showed a clear gradient from shallow to mesophotic depths. Fish assemblages at mesophotic depths had higher total densities than those in shallower waters, and were characterized by relatively high densities of planktivores and invertivores and relatively low densities of herbivores. Fishes that typified assemblages at mesophotic depths included six species that are endemic to the Hawaiian Islands. The present study showed that mesophotic reefs in the NWHI support unique assemblages of fish that are characterized by high endemism and relatively high densities of planktivores. Our findings underscore the ecological importance of these undersurveyed ecosystems and warrant further studies of MCEs. PMID:27383614

  2. Fine-scale features in the far-field of a turbulent jet

    NASA Astrophysics Data System (ADS)

    Buxton, Oliver; Ganapathisubramani, Bharathram

    2008-11-01

    The structure of a fully turbulent axisymmetric jet, at Reynolds number based on jet exit conditions of 5000, is investigated with cinematographic (1 kHz) stereoscopic PIV in a plane normal to the jet axis. Taylor's hypothesis is employed to calculate all three velocity gradients in the axial direction. The technique's resolution allows all terms of the velocity gradient tensor, hence strain rate tensor and kinetic energy dissipation, to be computed at each point within the plane. The data reveals that the vorticity field is dominated by high enstrophy tube-like structures. Conversely, the dissipation field appears to consist of sheet-like structures. Several criteria for isolating these strongly swirling vortical structures from the background turbulence were employed. One such technique involves isolating points in which the velocity gradient tensor has a real and a pair of complex conjugate eigenvectors. Once identified, the alignment of the various structures with relation to the vorticity vector and the real velocity gradient tensor eigenvector is investigated. The effect of the strain field on the geometry of the structures is also examined.

  3. Analysis of the electrolyte convection inside the concentration boundary layer during structured electrodeposition of copper in high magnetic gradient fields.

    PubMed

    König, Jörg; Tschulik, Kristina; Büttner, Lars; Uhlemann, Margitta; Czarske, Jürgen

    2013-03-19

    To experimentally reveal the correlation between electrodeposited structure and electrolyte convection induced inside the concentration boundary layer, a highly inhomogeneous magnetic field, generated by a magnetized Fe-wire, has been applied to an electrochemical system. The influence of Lorentz and magnetic field gradient force to the local transport phenomena of copper ions has been studied using a novel two-component laser Doppler velocity profile sensor. With this sensor, the electrolyte convection within 500 μm of a horizontally aligned cathode is presented. The electrode-normal two-component velocity profiles below the electrodeposited structure show that electrolyte convection is induced and directed toward the rim of the Fe-wire. The measured deposited structure directly correlates to the observed boundary layer flow. As the local concentration of Cu(2+) ions is enhanced due to the induced convection, maximum deposit thicknesses can be found at the rim of the Fe-wire. Furthermore, a complex boundary layer flow structure was determined, indicating that electrolyte convection of second order is induced. Moreover, the Lorentz force-driven convection rapidly vanishes, while the electrolyte convection induced by the magnetic field gradient force is preserved much longer. The progress for research is the first direct experimental proof of the electrolyte convection inside the concentration boundary layer that correlates to the deposited structure and reveals that the magnetic field gradient force is responsible for the observed structuring effect.

  4. A uniplanar three-axis gradient set for in vivo magnetic resonance microscopy.

    PubMed

    Demyanenko, Andrey V; Zhao, Lin; Kee, Yun; Nie, Shuyi; Fraser, Scott E; Tyszka, J Michael

    2009-09-01

    We present an optimized uniplanar magnetic resonance gradient design specifically tailored for MR imaging applications in developmental biology and histology. Uniplanar gradient designs sacrifice gradient uniformity for high gradient efficiency and slew rate, and are attractive for surface imaging applications where open access from one side of the sample is required. However, decreasing the size of the uniplanar gradient set presents several unique engineering challenges, particularly for heat dissipation and thermal insulation of the sample from gradient heating. We demonstrate a new three-axis, target-field optimized uniplanar gradient coil design that combines efficient cooling and insulation to significantly reduce sample heating at sample-gradient distances of less than 5mm. The instrument is designed for microscopy in horizontal bore magnets. Empirical gradient current efficiencies in the prototype coils lie between 3.75G/cm/A and 4.5G/cm/A with current and heating-limited maximum gradient strengths between 235G/cm and 450G/cm at a 2% duty cycle. The uniplanar gradient prototype is demonstrated with non-linearity corrections for both high-resolution structural imaging of tissue slices and for long time-course imaging of live, developing amphibian embryos in a horizontal bore 7T magnet.

  5. Formation of nano-laminated structures in a dry sliding wear-induced layer under different wear mechanisms of 20CrNi2Mo steel

    NASA Astrophysics Data System (ADS)

    Yin, Cun-hong; Liang, Yi-long; Jiang, Yun; Yang, Ming; Long, Shao-lei

    2017-11-01

    The microstructures of 20CrNi2Mo steel underneath the contact surface were examined after dry sliding. Scanning Electronic Microscopy (SEM), Transmission Electron Microscopy (TEM), Electron Backscattered Diffraction (EBSD) and an ultra-micro-hardness tester were used to characterize the worn surface and dry sliding wear-induced layer. Martensite laths were ultra-refined due to cumulative strains and a large strain gradient that occurred during cyclic loading in wear near the surface. The microstructure evolution in dominant abrasive wear differs from that in adhesive wear. In dominant abrasive wear, only bent martensite laths with high-density deformation dislocations were observed. In contrast, in dominant adhesive wear, gradient structures were formed along the depth from the wear surface. Cross-sectional TEM foils were prepared in a focused ion beam (FIB) to observe the gradient structures in a dry sliding wear-induced layer at depths of approximately 1-5 μm and 5-20 μm. The gradient structures contained nano-laminated structures with an average thickness of 30-50 nm and bent martensite laths. We found that the original martensite laths coordinated with the strain energy and provided origin boundaries for the formation of gradient structures. Geometrically necessary boundaries (GNBs) and isolated dislocation boundaries (IDBs) play important roles in forming the nano-laminated structures.

  6. Skin-Inspired Hierarchical Polymer Architectures with Gradient Stiffness for Spacer-Free, Ultrathin, and Highly Sensitive Triboelectric Sensors.

    PubMed

    Ha, Minjeong; Lim, Seongdong; Cho, Soowon; Lee, Youngoh; Na, Sangyun; Baig, Chunggi; Ko, Hyunhyub

    2018-04-24

    The gradient stiffness between stiff epidermis and soft dermis with interlocked microridge structures in human skin induces effective stress transmission to underlying mechanoreceptors for enhanced tactile sensing. Inspired by skin structure and function, we fabricate hierarchical nanoporous and interlocked microridge structured polymers with gradient stiffness for spacer-free, ultrathin, and highly sensitive triboelectric sensors (TESs). The skin-inspired hierarchical polymers with gradient elastic modulus enhance the compressibility and contact areal differences due to effective transmission of the external stress from stiff to soft layers, resulting in highly sensitive TESs capable of detecting human vital signs and voice. In addition, the microridges in the interlocked polymers provide an effective variation of gap distance between interlocked layers without using the bulk spacer and thus facilitate the ultrathin and flexible design of TESs that could be worn on the body and detect a variety of pressing, bending, and twisting motions even in humid and underwater environments. Our TESs exhibit the highest power density (46.7 μW/cm 2 ), pressure (0.55 V/kPa), and bending (∼0.1 V/°) sensitivities ever reported on flexible TESs. The proposed design of hierarchical polymer architectures for the flexible and wearable TESs can find numerous applications in next-generation wearable electronics.

  7. Formation of Gradient Structures in the Zone of Joining a Deformable Nickel Alloy and a Single-Crystal Intermetallic Alloy during Thermodiffusion Pressure Welding and Subsequent Heat Treatment

    NASA Astrophysics Data System (ADS)

    Povarova, K. B.; Valitov, V. A.; Drozdov, A. A.; Bazyleva, O. A.; Galieva, E. V.; Arginbaeva, E. G.

    2018-01-01

    The possibility of formation of a high-quality solid-phase joint of an Ni3Al-based single-crystal intermetallic VKNA-25 blade alloy with a high-temperature deformable EP975 disk alloy by pressure welding is studied to create high-performance one-piece blisk unit for the next-generation aviation gas turbine engines and to decrease the unit mass. The influence of the conditions of thermodiffusion pressure welding under the hightemperature superplasticity of the disk alloy and the influence of heat treatment of welded joints on the gradient structures in the welded joint zone and the structure at the periphery of the welded samples are investigated.

  8. Operational Draft Regional Guidebook for the Functional Assessment of High-Gradient Headwater Streams and Low-Gradient Perennial Streams in Appalachia

    DTIC Science & Technology

    rapid assessments provided in this guidebook utilize structural components of streams and their watershed and can be used in conjunction with assessment of water quality and biotic communities if desired.

  9. High-efficiency polarization conversion phase gradient metasurface for wideband anomalous reflection

    NASA Astrophysics Data System (ADS)

    Zhang, Jiameng; Yang, Lan; Li, Linpeng; Zhang, Tong; Li, Haihong; Wang, Qingmin; Hao, Yanan; Lei, Ming; Bi, Ke

    2017-07-01

    An ultra-wideband polarization conversion metasurface based on S-shaped metallic structure is designed and prepared. The simulation results show that the polarization conversion bandwidth is 14 GHz for linearly polarized normally incident electromagnetic waves and the cross-polarized reflectance is more than 99% in the range of 10.3 GHz-20.5 GHz. On the premise of high reflection efficiency, the reflective phase can be regulated by changing the geometrical parameter of the S-shaped metallic structure. A phase gradient metasurface composed of six periodically arrayed S-shaped unit cells is proposed and further demonstrated both numerically and experimentally. The specular cross-polarization reflection of the phase gradient metasurface is below -10 dB, which shows a good performance on manipulating the direction of the reflected electromagnetic waves.

  10. Design, fabrication, and high-gradient testing of an X -band, traveling-wave accelerating structure milled from copper halves

    NASA Astrophysics Data System (ADS)

    Argyropoulos, Theodoros; Catalan-Lasheras, Nuria; Grudiev, Alexej; Mcmonagle, Gerard; Rodriguez-Castro, Enrique; Syrachev, Igor; Wegner, Rolf; Woolley, Ben; Wuensch, Walter; Zha, Hao; Dolgashev, Valery; Bowden, Gorden; Haase, Andrew; Lucas, Thomas Geoffrey; Volpi, Matteo; Esperante-Pereira, Daniel; Rajamäki, Robin

    2018-06-01

    A prototype 11.994 GHz, traveling-wave accelerating structure for the Compact Linear Collider has been built, using the novel technique of assembling the structure from milled halves. The use of milled halves has many advantages when compared to a structure made from individual disks. These include the potential for a reduction in cost, because there are fewer parts, as well as a greater freedom in choice of joining technology because there are no rf currents across the halves' joint. Here we present the rf design and fabrication of the prototype structure, followed by the results of the high-power test and post-test surface analysis. During high-power testing the structure reached an unloaded gradient of 100 MV /m at a rf breakdown rate of less than 1.5 ×10-5 breakdowns /pulse /m with a 200 ns pulse. This structure has been designed for the CLIC testing program but construction from halves can be advantageous in a wide variety of applications.

  11. Mangrove forests

    Treesearch

    Ariel E. Lugo; Ernesto Medina

    2014-01-01

    The mangrove environment is not globally homogeneous, but involves many environmental gradients to which mangrove species must adapt and overcome to maintain the familiar structure and physiognomy associated with the mangrove ecosystem. The stature of mangroves, measured by tree height, decreases along the following environmental gradients from low to high salinity,...

  12. Single image super-resolution using self-optimizing mask via fractional-order gradient interpolation and reconstruction.

    PubMed

    Yang, Qi; Zhang, Yanzhu; Zhao, Tiebiao; Chen, YangQuan

    2017-04-04

    Image super-resolution using self-optimizing mask via fractional-order gradient interpolation and reconstruction aims to recover detailed information from low-resolution images and reconstruct them into high-resolution images. Due to the limited amount of data and information retrieved from low-resolution images, it is difficult to restore clear, artifact-free images, while still preserving enough structure of the image such as the texture. This paper presents a new single image super-resolution method which is based on adaptive fractional-order gradient interpolation and reconstruction. The interpolated image gradient via optimal fractional-order gradient is first constructed according to the image similarity and afterwards the minimum energy function is employed to reconstruct the final high-resolution image. Fractional-order gradient based interpolation methods provide an additional degree of freedom which helps optimize the implementation quality due to the fact that an extra free parameter α-order is being used. The proposed method is able to produce a rich texture detail while still being able to maintain structural similarity even under large zoom conditions. Experimental results show that the proposed method performs better than current single image super-resolution techniques. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  13. High energy X-ray diffraction study of a dental ceramics–titanium functional gradient material prepared by field assisted sintering technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Witte, K., E-mail: kerstin.witte@uni-rostock.de; Bodnar, W.; Schell, N.

    A functional gradient material with eleven layers composed of a dental ceramics and titanium was successfully consolidated using field assisted sintering technique in a two-step sintering process. High energy X-ray diffraction studies on the gradient were performed at High Energy Material Science beamline at Desy in Hamburg. Phase composition, crystal unit edges and lattice mismatch along the gradient were determined applying Rietveld refinement procedure. Phase analysis revealed that the main crystalline phase present in the gradient is α-Ti. Crystallinity increases stepwisely along the gradient with a decreasing increment between every next layer, following rather the weight fraction of titanium. Themore » crystal unit edge a of titanium remains approximately constant with a value of 2.9686(1) Å, while c is reduced with increasing amount of titanium. In the layer with pure titanium the crystal unit edge c is constant with a value of 4.7174(2) Å. The lattice mismatch leading to an internal stress was calculated over the whole gradient. It was found that the maximal internal stress in titanium embedded in the studied gradient is significantly smaller than its yield strength, which implies that the structure of titanium along the whole gradient is mechanically stable. - Highlights: • High energy XRD studies of dental ceramics–Ti gradient material consolidated by FAST. • Phase composition, crystallinity and lattice parameters are determined. • Crystallinity increases stepwisely along the gradient following weight fraction of Ti. • Lattice mismatch leading to internal stress is calculated over the whole gradient. • Internal stress in α-Ti embedded in the gradient is smaller than its yield strength.« less

  14. Local structure of scalar flux in turbulent passive scalar mixing

    NASA Astrophysics Data System (ADS)

    Konduri, Aditya; Donzis, Diego

    2012-11-01

    Understanding the properties of scalar flux is important in the study of turbulent mixing. Classical theories suggest that it mainly depends on the large scale structures in the flow. Recent studies suggest that the mean scalar flux reaches an asymptotic value at high Peclet numbers, independent of molecular transport properties of the fluid. A large DNS database of isotropic turbulence with passive scalars forced with a mean scalar gradient with resolution up to 40963, is used to explore the structure of scalar flux based on the local topology of the flow. It is found that regions of small velocity gradients, where dissipation and enstrophy are small, constitute the main contribution to scalar flux. On the other hand, regions of very small scalar gradient (and scalar dissipation) become less important to the scalar flux at high Reynolds numbers. The scaling of the scalar flux spectra is also investigated. The k - 7 / 3 scaling proposed by Lumley (1964) is observed at high Reynolds numbers, but collapse is not complete. A spectral bump similar to that in the velocity spectrum is observed close to dissipative scales. A number of features, including the height of the bump, appear to reach an asymptotic value at high Schmidt number.

  15. Interaction of an ultrarelativistic electron bunch train with a W-band accelerating structure: High power and high gradient

    DOE PAGES

    Wang, D.; Antipov, S.; Jing, C.; ...

    2016-02-05

    Electron beam interaction with high frequency structures (beyond microwave regime) has a great impact on future high energy frontier machines. We report on the generation of multimegawatt pulsed rf power at 91 GHz in a planar metallic accelerating structure driven by an ultrarelativistic electron bunch train. This slow-wave wakefield device can also be used for high gradient acceleration of electrons with a stable rf phase and amplitude which are controlled by manipulation of the bunch train. To achieve precise control of the rf pulse properties, a two-beam wakefield interferometry method was developed in which the rf pulse, due to themore » interference of the wakefields from the two bunches, was measured as a function of bunch separation. As a result, measurements of the energy change of a trailing electron bunch as a function of the bunch separation confirmed the interferometry method.« less

  16. Ultra-High Accelerating Gradients in Radio-Frequency Cryogenic Copper Structures

    NASA Astrophysics Data System (ADS)

    Cahill, Alexander David

    Normal conducting radio-frequency (rf) particle accelerators have many applications, including colliders for high energy physics, high-intensity synchrotron light sources, non-destructive testing for security, and medical radiation therapy. In these applications, the accelerating gradient is an important parameter. Specifically for high energy physics, increasing the accelerating gradient extends the potential energy reach and is viewed as a way to mitigate their considerable cost. Furthermore, a gradient increase will enable for more compact and thus accessible free electron lasers (FELs). The major factor limiting larger accelerating gradients is vacuum rf breakdown. Basic physics of this phenomenon has been extensively studied over the last few decades. During which, the occurrence of rf breakdowns was shown to be probabilistic, and can be characterized by a breakdown rate. The current consensus is that vacuum rf breakdowns are caused by movements of crystal defects induced by periodic mechanical stress. The stress may be caused by pulsed surface heating and large electric fields. A compelling piece of evidence that supports this hypothesis is that accelerating structures constructed from harder materials exhibit larger accelerating gradients for similar breakdown rates. One possible method to increase sustained electric fields in copper cavities is to cool them to temperatures below 77 K, where the rf surface resistance and coefficient of thermal expansion decrease, while the yield strength (which correlates with hardness) and thermal conductivity increase. These changes in material properties at low temperature increases metal hardness and decreases the mechanical stress from exposure to rf electromagnetic fields. To test the validity of the improvement in breakdown rate, experiments were conducted with cryogenic accelerating cavities in the Accelerator Structure Test Area (ASTA) at SLAC National Accelerator Laboratory. A short 11.4 GHz standing wave accelerating structure was conditioned to an accelerating gradient of 250 MV/m at 45 K with 108 rf pulses. At gradients greater than 150 MV/m I observed a degradation in the intrinsic quality factor of the cavity, Q0. I developed a model for the change in Q0 using measured field emission currents and rf signals. I found that the Q 0 degradation is consistent with the rf power being absorbed by strong field emission currents accelerated inside the cavity. I measured rf breakdown rates for 45 K and found 2*10-4/pulse/meter when accounting for any change in Q0. These are the largest accelerating gradients for a structure with similar breakdown rates. The final chapter presents the design of an rf photoinjector electron source that uses the cryogenic normal conducting accelerator technology: the TOPGUN. With this cryogenic rf photoinjector, the beam brightness will increase by over an order of a magnitude when compared to the current photoinjector for the Linac Coherent Light Source (LCLS). When using the TOPGUN as the source for an X-ray Free Electron Laser, the higher brightness would allow for a decrease in the required length of the LCLS undulator by more than a factor of two.

  17. Continuous Optical 3D Printing of Green Aliphatic Polyurethanes.

    PubMed

    Pyo, Sang-Hyun; Wang, Pengrui; Hwang, Henry H; Zhu, Wei; Warner, John; Chen, Shaochen

    2017-01-11

    Photosensitive diurethanes were prepared from a green chemistry synthesis pathway based on methacrylate-functionalized six-membered cyclic carbonate and biogenic amines. A continuous optical 3D printing method for the diurethanes was developed to create user-defined gradient stiffness and smooth complex surface microstructures in seconds. The green chemistry-derived polyurethane (gPU) showed high optical transparency, and we demonstrate the ability to tune the material stiffness of the printed structure along a gradient by controlling the exposure time and selecting various amine compounds. High-resolution 3D biomimetic structures with smooth curves and complex contours were printed using our gPU. High cell viability (over 95%) was demonstrated during cytocompatibility testing using C3H 10T1/2 cells seeded directly on the printed structures.

  18. High-content profiling of cell responsiveness to graded substrates based on combinyatorially variant polymers.

    PubMed

    Liu, Er; Treiser, Matthew D; Patel, Hiral; Sung, Hak-Joon; Roskov, Kristen E; Kohn, Joachim; Becker, Matthew L; Moghe, Prabhas V

    2009-08-01

    We have developed a novel approach combining high information and high throughput analysis to characterize cell adhesive responses to biomaterial substrates possessing gradients in surface topography. These gradients were fabricated by subjecting thin film blends of tyrosine-derived polycarbonates, i.e. poly(DTE carbonate) and poly(DTO carbonate) to a gradient temperature annealing protocol. Saos-2 cells engineered with a green fluorescent protein (GFP) reporter for farnesylation (GFP-f) were cultured on the gradient substrates to assess the effects of nanoscale surface topology and roughness that arise during the phase separation process on cell attachment and adhesion strength. The high throughput imaging approach allowed us to rapidly identify the "global" and "high content" structure-property relationships between cell adhesion and biomaterial properties such as polymer chemistry and topography. This study found that cell attachment and spreading increased monotonically with DTE content and were significantly elevated at the position with intermediate regions corresponding to the highest "gradient" of surface roughness, while GFP-f farnesylation intensity descriptors were sensitively altered by surface roughness, even in cells with comparable levels of spreading.

  19. Investigations into dual-grating THz-driven accelerators

    NASA Astrophysics Data System (ADS)

    Wei, Y.; Ischebeck, R.; Dehler, M.; Ferrari, E.; Hiller, N.; Jamison, S.; Xia, G.; Hanahoe, K.; Li, Y.; Smith, J. D. A.; Welsch, C. P.

    2018-01-01

    Advanced acceleration technologies are receiving considerable interest in order to miniaturize future particle accelerators. One such technology is the dual-grating dielectric structures, which can support accelerating fields one to two orders of magnitude higher than the metal RF cavities in conventional accelerators. This opens up the possibility of enabling high accelerating gradients of up to several GV/m. This paper investigates numerically a quartz dual-grating structure which is driven by THz pulses to accelerate electrons. Geometry optimizations are carried out to achieve the trade-offs between accelerating gradient and vacuum channel gap. A realistic electron bunch available from the future Compact Linear Accelerator for Research and Applications (CLARA) is loaded into an optimized 100-period dual-grating structure for a detailed wakefield study. A THz pulse is then employed to interact with this CLARA bunch in the optimized structure. The computed beam quality is analyzed in terms of emittance, energy spread and loaded accelerating gradient. The simulations show that an accelerating gradient of 348 ± 12 MV/m with an emittance growth of 3.0% can be obtained.

  20. Direct Electrospray Printing of Gradient Refractive Index Chalcogenide Glass Films.

    PubMed

    Novak, Spencer; Lin, Pao Tai; Li, Cheng; Lumdee, Chatdanai; Hu, Juejun; Agarwal, Anuradha; Kik, Pieter G; Deng, Weiwei; Richardson, Kathleen

    2017-08-16

    A spatially varying effective refractive index gradient using chalcogenide glass layers is printed on a silicon wafer using an optimized electrospray (ES) deposition process. Using solution-derived glass precursors, IR-transparent Ge 23 Sb 7 S 70 and As 40 S 60 glass films of programmed thickness are fabricated to yield a bilayer structure, resulting in an effective gradient refractive index (GRIN) film. Optical and compositional analysis tools confirm the optical and physical nature of the gradient in the resulting high-optical-quality films, demonstrating the power of direct printing of multimaterial structures compatible with planar photonic fabrication protocols. The potential application of such tailorable materials and structures as they relate to the enhancement of sensitivity in chalcogenide glass based planar chemical sensor device design is presented. This method, applicable to a broad cross section of glass compositions, shows promise in directly depositing GRIN films with tunable refractive index profiles for bulk and planar optical components and devices.

  1. Phylogenetic structure of arbuscular mycorrhizal fungal communities along an elevation gradient.

    PubMed

    Egan, Cameron P; Callaway, Ragan M; Hart, Miranda M; Pither, Jason; Klironomos, John

    2017-04-01

    Despite the importance of arbuscular mycorrhizal (AM) fungi within terrestrial ecosystems, we know little about how natural AM fungal communities are structured. To date, the majority of studies examining AM fungal community diversity have focused on single habitats with similar environmental conditions, with relatively few studies having assessed the diversity of AM fungi over large-scale environmental gradients. In this study, we characterized AM fungal communities in the soil along a high-elevation gradient in the North American Rocky Mountains. We focused on phylogenetic patterns of AM fungal communities to gain insight into how AM fungal communities are naturally assembled. We found that alpine AM fungal communities had lower phylogenetic diversity relative to lower elevation communities, as well as being more heterogeneous in composition than either treeline or subalpine communities. AM fungal communities were phylogenetically clustered at all elevations sampled, suggesting that environmental filtering, either selection by host plants or fungal niches, is the primary ecological process structuring communities along the gradient.

  2. Multiscale structural gradients enhance the biomechanical functionality of the spider fang

    PubMed Central

    Bar-On, Benny; Barth, Friedrich G.; Fratzl, Peter; Politi, Yael

    2014-01-01

    The spider fang is a natural injection needle, hierarchically built from a complex composite material comprising multiscale architectural gradients. Considering its biomechanical function, the spider fang has to sustain significant mechanical loads. Here we apply experiment-based structural modelling of the fang, followed by analytical mechanical description and Finite-Element simulations, the results of which indicate that the naturally evolved fang architecture results in highly adapted effective structural stiffness and damage resilience. The analysis methods and physical insights of this work are potentially important for investigating and understanding the architecture and structural motifs of sharp-edge biological elements such as stingers, teeth, claws and more. PMID:24866935

  3. The influence of gamma prime on the recrystallization of an oxide dispersion strengthened superalloy - MA 6000E

    NASA Technical Reports Server (NTRS)

    Hotzler, R. K.; Glasgow, T. K.

    1982-01-01

    The requirement of large, recrystallized, highly elongated grains is of primary importance to the development of suitable high temperature properties in oxide dispersion strengthened-superalloys. In the present study the recrystallization behavior of MA 6000E, a recently developed Y2O3 strengthened superalloy produced by mechanical alloying, was examined using transmission and replication microscopy. Gradient and isothermal annealing treatments were applied to extruded and hot rolled products. It was found that conversion from a very fine (0.2 micron) grain structure to a coarse (approximately 10 mm) grain structure is controlled by the dissolution of the gamma prime phase, while grain shape was controlled primarily by the thermal gradient. The fine uniform oxide dispersion appeared to have only a secondary influence in determining the grain shape as columnar grains could be grown transverse to the working direction by appropriate application of the thermal gradient.

  4. The gradient index lens of the eye: an opto-biological synchrony.

    PubMed

    Pierscionek, Barbara K; Regini, Justyn W

    2012-07-01

    The refractive power of a lens is determined largely by its surface curvatures and the refractive index of its medium. These properties can also be used to control the sharpness of focus and hence the image quality. One of the most effective ways of doing this is with a gradient index. Eye lenses of all species, thus far, measured, are gradient index (GRIN) structures. The index gradation is one that increases from the periphery of the lens to its centre but the steepness of the gradient and the magnitudes of the refractive index vary so that the optics of the lens accords with visual demands. The structural proteins, the crystallins, which create the index gradient, also vary from species to species, in type and relative distribution across the tissue. The crystallin classes do not contribute equally to the refractive index, and this may be related to their structure and amino acid content. This article compares GRIN forms in eye lenses of varying species, the relevance of these forms to visual requirements, and the relationship between refractive index and the structural proteins. Consideration is given to the dynamics of a living lens, potential variations in the GRIN form with physiological changes and the possible link between discontinuities in the gradient and growth. Finally, the property of birefringence and the characteristic polarisation patterns seen in highly ordered crystals that have also been observed in specially prepared eye lenses are described and discussed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Gradient Mn-La-Pt Catalysts with Three-layered Structure for Li-O2 battery

    PubMed Central

    Cai, Kedi; Yang, Rui; Lang, Xiaoshi; Zhang, Qingguo; Wang, Zhenhua; He, Tieshi

    2016-01-01

    Gradient Mn-La-Pt catalysts with three-layered structure of manganese dioxide (MnO2), lanthanum oxide (La2O3), and Platinum (Pt) for Li-O2 battery are prepared in this study. The mass ratio of the catalysts is respectively 5:2:3, 4:2:4, and 3:2:5 (MnO2: La2O3: Pt) which is start from the side of the electrolyte. The relationship between morphology structure and electrochemical performance of gradient catalyst is investigated by energy dispersive spectrometry and constant current charge/discharge test. The Li-O2 battery based on gradient Mn-La-Pt catalysts shows high discharge specific capacity (2707 mAh g−1), specific energy density (8400 Wh kg−1) and long cycle life (56 cycles). The improvement of the Li-O2 battery discharge capacity is attributed to the gradient distribution of MnO2 and Pt and the involvement of La2O3 that can improve the energy density of the battery. More important, this work will also provide new ideas and methods for the research of other metal-air battery. PMID:27731340

  6. A traveling-wave forward coupler design for a new accelerating mode in a silicon woodpile accelerator

    DOE PAGES

    Wu, Ziran; Lee, Chunghun H.; Wootton, Kent P.; ...

    2016-03-01

    Silicon woodpile photonic crystals provide a base structure that can be used to build a three-dimensional dielectric waveguide system for high-gradient laser driven acceleration. A new woodpile waveguide design that hosts a phase synchronous, centrally confined accelerating mode is proposed. Comparing with previously discovered silicon woodpile accelerating modes, this mode shows advantages in terms of better electron beam loading and higher achievable acceleration gradient. Several traveling-wave coupler design schemes developed for multi-cell RF cavity accelerators are adapted to the woodpile power coupler design for this new accelerating mode. Design of a forward coupled, highly efficient silicon woodpile accelerator is achieved.more » Simulation shows high efficiency of over 75% of the drive laser power coupled to this fundamental accelerating mode, with less than 15% backward wave scattering. The estimated acceleration gradient, when the coupler structure is driven at the damage threshold fluence of silicon at its operating 1.506 μm wavelength, can reach 185 MV/m. Lastly, a 17-layer woodpile waveguide structure was successfully fabricated, and the measured bandgap is in excellent agreement with simulation.« less

  7. A traveling-wave forward coupler design for a new accelerating mode in a silicon woodpile accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Ziran; Lee, Chunghun H.; Wootton, Kent P.

    Silicon woodpile photonic crystals provide a base structure that can be used to build a three-dimensional dielectric waveguide system for high-gradient laser driven acceleration. A new woodpile waveguide design that hosts a phase synchronous, centrally confined accelerating mode is proposed. Comparing with previously discovered silicon woodpile accelerating modes, this mode shows advantages in terms of better electron beam loading and higher achievable acceleration gradient. Several traveling-wave coupler design schemes developed for multi-cell RF cavity accelerators are adapted to the woodpile power coupler design for this new accelerating mode. Design of a forward coupled, highly efficient silicon woodpile accelerator is achieved.more » Simulation shows high efficiency of over 75% of the drive laser power coupled to this fundamental accelerating mode, with less than 15% backward wave scattering. The estimated acceleration gradient, when the coupler structure is driven at the damage threshold fluence of silicon at its operating 1.506 μm wavelength, can reach 185 MV/m. Lastly, a 17-layer woodpile waveguide structure was successfully fabricated, and the measured bandgap is in excellent agreement with simulation.« less

  8. Investigating the capability to resolve complex white matter structures with high b-value diffusion magnetic resonance imaging on the MGH-USC Connectom scanner.

    PubMed

    Fan, Qiuyun; Nummenmaa, Aapo; Witzel, Thomas; Zanzonico, Roberta; Keil, Boris; Cauley, Stephen; Polimeni, Jonathan R; Tisdall, Dylan; Van Dijk, Koene R A; Buckner, Randy L; Wedeen, Van J; Rosen, Bruce R; Wald, Lawrence L

    2014-11-01

    One of the major goals of the NIH Blueprint Human Connectome Project was to map and quantify the white matter connections in the brain using diffusion tractography. Given the prevalence of complex white matter structures, the capability of resolving local white matter geometries with multiple crossings in the diffusion magnetic resonance imaging (dMRI) data is critical. Increasing b-value has been suggested for delineation of the finer details of the orientation distribution function (ODF). Although increased gradient strength and duration increase sensitivity to highly restricted intra-axonal water, gradient strength limitations require longer echo times (TE) to accommodate the increased diffusion encoding times needed to achieve a higher b-value, exponentially lowering the signal-to-noise ratio of the acquisition. To mitigate this effect, the MGH-USC Connectom scanner was built with 300 mT/m gradients, which can significantly reduce the TE of high b-value diffusion imaging. Here we report comparisons performed across b-values based on q-ball ODF metrics to investigate whether high b-value diffusion imaging on the Connectom scanner can improve resolving complex white matter structures. The q-ball ODF features became sharper as the b-value increased, with increased power fraction in higher order spherical harmonic series of the ODF and increased peak heights relative to the overall size of the ODF. Crossing structures were detected in an increasingly larger fraction of white matter voxels and the spatial distribution of two-way and three-way crossing structures was largely consistent with known anatomy. Results indicate that dMRI with high diffusion encoding on the Connectom system is a promising tool to better characterize, and ultimately understand, the underlying structural organization and motifs in the human brain.

  9. Gradient Magnitude Similarity Deviation: A Highly Efficient Perceptual Image Quality Index.

    PubMed

    Xue, Wufeng; Zhang, Lei; Mou, Xuanqin; Bovik, Alan C

    2014-02-01

    It is an important task to faithfully evaluate the perceptual quality of output images in many applications, such as image compression, image restoration, and multimedia streaming. A good image quality assessment (IQA) model should not only deliver high quality prediction accuracy, but also be computationally efficient. The efficiency of IQA metrics is becoming particularly important due to the increasing proliferation of high-volume visual data in high-speed networks. We present a new effective and efficient IQA model, called gradient magnitude similarity deviation (GMSD). The image gradients are sensitive to image distortions, while different local structures in a distorted image suffer different degrees of degradations. This motivates us to explore the use of global variation of gradient based local quality map for overall image quality prediction. We find that the pixel-wise gradient magnitude similarity (GMS) between the reference and distorted images combined with a novel pooling strategy-the standard deviation of the GMS map-can predict accurately perceptual image quality. The resulting GMSD algorithm is much faster than most state-of-the-art IQA methods, and delivers highly competitive prediction accuracy. MATLAB source code of GMSD can be downloaded at http://www4.comp.polyu.edu.hk/~cslzhang/IQA/GMSD/GMSD.htm.

  10. Heat transfer, thermal stress analysis and the dynamic behaviour of high power RF structures. [MARC and SUPERFISH codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McKeown, J.; Labrie, J.P.

    1983-08-01

    A general purpose finite element computer code called MARC is used to calculate the temperature distribution and dimensional changes in linear accelerator rf structures. Both steady state and transient behaviour are examined with the computer model. Combining results from MARC with the cavity evaluation computer code SUPERFISH, the static and dynamic behaviour of a structure under power is investigated. Structure cooling is studied to minimize loss in shunt impedance and frequency shifts during high power operation. Results are compared with an experimental test carried out on a cw 805 MHz on-axis coupled structure at an energy gradient of 1.8 MeV/m.more » The model has also been used to compare the performance of on-axis and coaxial structures and has guided the mechanical design of structures suitable for average gradients in excess of 2.0 MeV/m at 2.45 GHz.« less

  11. Multi-Mode Cavity Accelerator Structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Yong; Hirshfield, Jay Leonard

    2016-11-10

    This project aimed to develop a prototype for a novel accelerator structure comprising coupled cavities that are tuned to support modes with harmonically-related eigenfrequencies, with the goal of reaching an acceleration gradient >200 MeV/m and a breakdown rate <10 -7/pulse/meter. Phase I involved computations, design, and preliminary engineering of a prototype multi-harmonic cavity accelerator structure; plus tests of a bimodal cavity. A computational procedure was used to design an optimized profile for a bimodal cavity with high shunt impedance and low surface fields to maximize the reduction in temperature rise ΔT. This cavity supports the TM010 mode and its 2ndmore » harmonic TM011 mode. Its fundamental frequency is at 12 GHz, to benchmark against the empirical criteria proposed within the worldwide High Gradient collaboration for X-band copper structures; namely, a surface electric field E sur max< 260 MV/m and pulsed surface heating ΔT max< 56 °K. With optimized geometry, amplitude and relative phase of the two modes, reductions are found in surface pulsed heating, modified Poynting vector, and total RF power—as compared with operation at the same acceleration gradient using only the fundamental mode.« less

  12. Anomalous sea surface structures as an object of statistical topography

    NASA Astrophysics Data System (ADS)

    Klyatskin, V. I.; Koshel, K. V.

    2015-06-01

    By exploiting ideas of statistical topography, we analyze the stochastic boundary problem of emergence of anomalous high structures on the sea surface. The kinematic boundary condition on the sea surface is assumed to be a closed stochastic quasilinear equation. Applying the stochastic Liouville equation, and presuming the stochastic nature of a given hydrodynamic velocity field within the diffusion approximation, we derive an equation for a spatially single-point, simultaneous joint probability density of the surface elevation field and its gradient. An important feature of the model is that it accounts for stochastic bottom irregularities as one, but not a single, perturbation. Hence, we address the assumption of the infinitely deep ocean to obtain statistic features of the surface elevation field and the squared elevation gradient field. According to the calculations, we show that clustering in the absolute surface elevation gradient field happens with the unit probability. It results in the emergence of rare events such as anomalous high structures and deep gaps on the sea surface almost in every realization of a stochastic velocity field.

  13. Cryptogamic community structure as a bioindicator of soil condition along a pollution gradient.

    PubMed

    Rola, Kaja; Osyczka, Piotr

    2014-09-01

    This study aims to determine changes in the structure of cryptogamic vegetation of poor psammophilous grassland along a pollution gradient near a zinc smelter to evaluate the potential of species assemblages as bioindicators of soil condition. Lichens and bryophytes were examined in study plots along six transects in four distance zones, and the physicochemical properties of corresponding soil samples were analysed. Four different responses of species to substrate contamination were identified, with a distinct group of species resistant to and favoured by metal contamination. Although species richness decreases as one approaches the smelter, the gradual replacement of certain sensitive species by resistant ones was observed along the pollution gradient. The results enabled us to develop a useful tool to diagnose strongly polluted sites. Two different cryptogamic assemblages of well-recognised key species characteristic for strongly polluted and lightly polluted sites were distinguished. We conclude that cryptogamic community structure clearly corresponds to the degree of soil contamination, thus demonstrating high bioindicative value. The study confirmed the high relevance of the community approach in metal pollution biomonitoring.

  14. Design of a high power TM01 mode launcher optimized for manufacturing by milling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dal Forno, Massimo

    2016-12-15

    Recent research on high-gradient rf acceleration found that hard metals, such as hard copper and hard copper-silver, have lower breakdown rate than soft metals. Traditional high-gradient accelerating structures are manufactured with parts joined by high-temperature brazing. The high temperature used in brazing makes the metal soft; therefore, this process cannot be used to manufacture structures out of hard metal alloys. In order to build the structure with hard metals, the components must be designed for joining without high-temperature brazing. One method is to build the accelerating structures out of two halves, and join them by using a low-temperature technique, atmore » the symmetry plane along the beam axis. The structure has input and output rf power couplers. We use a TM01 mode launcher as a rf power coupler, which was introduced during the Next Linear Collider (NLC) work. The part of the mode launcher will be built in each half of the structure. This paper presents a novel geometry of a mode launcher, optimized for manufacturing by milling. The coupler was designed for the CERN CLIC working frequency f = 11.9942 GHz; the same geometry can be scaled to any other frequency.« less

  15. Superheating Suppresses Structural Disorder in Layered BiI3 Semiconductors Grown by the Bridgman Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johns, Paul M.; Sulekar, Soumitra; Yeo, Shinyoung

    2016-01-01

    The susceptibility of layered structures to stacking faults is a problem in some of the more attractive semiconductor materials for ambient-temperature radiation detectors. In the work presented here, Bridgman-grown BiI3 layered single crystals are investigated to understand and eliminate this structural disorder, which reduces radiation detector performance. The use of superheating gradients has been shown to improve crystal quality in non-layered semiconductor crystals; thus the technique was here explored to improve the growth of BiI3. When investigating the homogeneity of non-superheated crystals, highly geometric void defects were found to populate the bulk of the crystals. Applying a superheating gradient tomore » the melt prior to crystal growth improved structural quality and decreased defect density from the order of 4600 voids per cm3 to 300 voids per cm3. Corresponding moderate improvements to electronic properties also resulted from the superheat gradient method of crystal growth. Comparative measurements through infrared microscopy, etch-pit density, x-ray rocking curves, and sheet resistivity readings show that superheat gradients in BiI3 growth led to higher quality crystals.« less

  16. Associations among fish assemblage structure and environmental variables in Willamette Basin streams, Oregon

    USGS Publications Warehouse

    Waite, I.R.; Carpenter, K.D.

    2000-01-01

    As part of the U.S. Geological Survey's National Water-Quality Assessment Program, fish were collected from 24 selected stream sites in the Willamette Basin during 1993-1995 to determine the composition of the fish assemblages and their relation to the chemical and physical environment. Variance in fish relative abundance was greater among all sites than among spatially distinct reaches within a site (spatial variation) or among multiple sampled years at a site (temporal variation). Therefore, data from a single reach in an individual year was considered to be a reliable estimator of the fish assemblage structure at a site when the data were normalized by percent relative abundance. Multivariate classification and ordination were used to examine patterns in environmental variables and fish relative abundance over differing spatial scales (among versus within ecoregions). Across all ecoregions (all sites), fish assemblages were primarily structured along environmental gradients of water temperature and stream gradient (coldwater, high-gradient forested sites versus warmwater, low-gradient Willamette Valley sites); this pattern superseded patterns that were ecoregion specific. Water temperature, dissolved oxygen, and physical habitat (e.g., riparian canopy and percent riffles) were associated with patterns of fish assemblages across all ecoregions; however, pesticide and total phosphorus concentrations were more important than physical habitat within the Willamette Valley ecoregion. Consideration of stream site stratification (e.g., stream size, ecoregion, and stream gradient), identification of fish to species level (particularly the sculpin family), and detailed measurement of habitat, diurnal dissolved oxygen, and water temperature were critical in evaluating the composition of fish assemblages in relation to land use. In general, these low-gradient valley streams typical of other agricultural regions had poor riparian systems and showed increases in water temperature, nutrients, and fine grain sediments that were associated with degradation in the native fish assemblages. There was an association of high abundances of introduced species and high percent external abnormalities in medium-sized river sites of mixed land use and high abundances of tolerant species in small streams of predominantly agricultural land use.

  17. Post-mortem inference of the human hippocampal connectivity and microstructure using ultra-high field diffusion MRI at 11.7 T.

    PubMed

    Beaujoin, Justine; Palomero-Gallagher, Nicola; Boumezbeur, Fawzi; Axer, Markus; Bernard, Jeremy; Poupon, Fabrice; Schmitz, Daniel; Mangin, Jean-François; Poupon, Cyril

    2018-06-01

    The human hippocampus plays a key role in memory management and is one of the first structures affected by Alzheimer's disease. Ultra-high magnetic resonance imaging provides access to its inner structure in vivo. However, gradient limitations on clinical systems hinder access to its inner connectivity and microstructure. A major target of this paper is the demonstration of diffusion MRI potential, using ultra-high field (11.7 T) and strong gradients (750 mT/m), to reveal the extra- and intra-hippocampal connectivity in addition to its microstructure. To this purpose, a multiple-shell diffusion-weighted acquisition protocol was developed to reach an ultra-high spatio-angular resolution with a good signal-to-noise ratio. The MRI data set was analyzed using analytical Q-Ball Imaging, Diffusion Tensor Imaging (DTI), and Neurite Orientation Dispersion and Density Imaging models. High Angular Resolution Diffusion Imaging estimates allowed us to obtain an accurate tractography resolving more complex fiber architecture than DTI models, and subsequently provided a map of the cross-regional connectivity. The neurite density was akin to that found in the histological literature, revealing the three hippocampal layers. Moreover, a gradient of connectivity and neurite density was observed between the anterior and the posterior part of the hippocampus. These results demonstrate that ex vivo ultra-high field/ultra-high gradients diffusion-weighted MRI allows the mapping of the inner connectivity of the human hippocampus, its microstructure, and to accurately reconstruct elements of the polysynaptic intra-hippocampal pathway using fiber tractography techniques at very high spatial/angular resolutions.

  18. Improved DC Gun and Insulator Assembly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neubauer, Michael

    Many user facilities such as synchrotron radiation light sources and free electron lasers rely on DC high voltage photoguns with internal field gradients as high as 10 to 15 MV/m. These high gradients often lead to field emission which poses serious problems for the photocathode used to generate the electron beam and the ceramic insulators used to bias the photocathode at high voltage. Ceramic insulators are difficult to manufacture, require long commissioning times, and have poor reliability, in part because energetic electrons bury themselves in the ceramic causing a buildup of charge and eventual puncture, and also because large diametermore » ceramics are difficult to braze reliably. The lifetimes of photo cathodes inside high current DC guns exhibiting field emission are limited to less than a hundred hours. Reducing the surface gradients on the metals reduces the field emission, which serves to maintain the required ultrahigh vacuum condition. A novel gun design with gradients around 5 MV/m and operating at 350 kV, a major improvement over existing designs, was proposed that allows for the in-situ replacement of photo cathodes in axially symmetric designs using inverted ceramics. In this project, the existing JLAB CEBAF asymmetric gun design with an inverted ceramic support was modeled and the beam dynamics characterized. An improved structure was designed that reduces the surface gradients and improves the beam optics. To minimize the surface gradients, a number of electrostatic gun designs were studied to determine the optimum configuration of the critical electrodes within the gun structure. Coating experiments were carried out to create a charge dissipative coating for cylindrical ceramics. The phase II proposal, which was not granted, included the design and fabrication of an axially symmetric DC Gun with an inverted ceramic that would operate with less than 5 MV/m at 350 kV and would be designed with an in-situ replaceable photo-cathode.« less

  19. High-Thermal- and Air-Stability Cathode Material with Concentration-Gradient Buffer for Li-Ion Batteries.

    PubMed

    Shi, Ji-Lei; Qi, Ran; Zhang, Xu-Dong; Wang, Peng-Fei; Fu, Wei-Gui; Yin, Ya-Xia; Xu, Jian; Wan, Li-Jun; Guo, Yu-Guo

    2017-12-13

    Delivery of high capacity with high thermal and air stability is a great challenge in the development of Ni-rich layered cathodes for commercialized Li-ion batteries (LIBs). Herein we present a surface concentration-gradient spherical particle with varying elemental composition from the outer end LiNi 1/3 Co 1/3 Mn 1/3 O 2 (NCM) to the inner end LiNi 0.8 Co 0.15 Al 0.05 O 2 (NCA). This cathode material with the merit of NCM concentration-gradient protective buffer and the inner NCA core shows high capacity retention of 99.8% after 200 cycles at 0.5 C. Furthermore, this cathode material exhibits much improved thermal and air stability compared with bare NCA. These results provide new insights into the structural design of high-performance cathodes with high energy density, long life span, and storage stability materials for LIBs in the future.

  20. Preliminary Structural Design Using Topology Optimization with a Comparison of Results from Gradient and Genetic Algorithm Methods

    NASA Technical Reports Server (NTRS)

    Burt, Adam O.; Tinker, Michael L.

    2014-01-01

    In this paper, genetic algorithm based and gradient-based topology optimization is presented in application to a real hardware design problem. Preliminary design of a planetary lander mockup structure is accomplished using these methods that prove to provide major weight savings by addressing the structural efficiency during the design cycle. This paper presents two alternative formulations of the topology optimization problem. The first is the widely-used gradient-based implementation using commercially available algorithms. The second is formulated using genetic algorithms and internally developed capabilities. These two approaches are applied to a practical design problem for hardware that has been built, tested and proven to be functional. Both formulations converged on similar solutions and therefore were proven to be equally valid implementations of the process. This paper discusses both of these formulations at a high level.

  1. Fabrication of high gradient insulators by stack compression

    DOEpatents

    Harris, John Richardson; Sanders, Dave; Hawkins, Steven Anthony; Norona, Marcelo

    2014-04-29

    Individual layers of a high gradient insulator (HGI) are first pre-cut to their final dimensions. The pre-cut layers are then stacked to form an assembly that is subsequently pressed into an HGI unit with the desired dimension. The individual layers are stacked, and alignment is maintained, using a sacrificial alignment tube that is removed after the stack is hot pressed. The HGI's are used as high voltage vacuum insulators in energy storage and transmission structures or devices, e.g. in particle accelerators and pulsed power systems.

  2. GOCE gravity gradient data for lithospheric modeling and geophysical exploration research

    NASA Astrophysics Data System (ADS)

    Bouman, Johannes; Ebbing, Jörg; Meekes, Sjef; Lieb, Verena; Fuchs, Martin; Schmidt, Michael; Fattah, Rader Abdul; Gradmann, Sofie; Haagmans, Roger

    2013-04-01

    GOCE gravity gradient data can improve modeling of the Earth's lithosphere and upper mantle, contributing to a better understanding of the Earth's dynamic processes. We present a method to compute user-friendly GOCE gravity gradient grids at mean satellite altitude, which are easier to use than the original GOCE gradients that are given in a rotating instrument frame. In addition, the GOCE gradients are combined with terrestrial gravity data to obtain high resolution grids of gravity field information close to the Earth's surface. We also present a case study for the North-East Atlantic margin, where we analyze the use of satellite gravity gradients by comparison with a well-constrained 3D density model that provides a detailed picture from the upper mantle to the top basement (base of sediments). We demonstrate how gravity gradients can increase confidence in the modeled structures by calculating the sensitvity of model geometry and applied densities at different observation heights; e.g. satellite height and near surface. Finally, this sensitivity analysis is used as input to study the Rub' al Khali desert in Saudi Arabia. In terms of modeling and data availability this is a frontier area. Here gravity gradient data help especially to set up the regional crustal structure, which in turn allows to refine sedimentary thickness estimates and the regional heat-flow pattern. This can have implications for hydrocarbon exploration in the region.

  3. Conceptual design of a high real-estate gradient cavity for a SRF ERL

    NASA Astrophysics Data System (ADS)

    Xu, Chen; Ben-Zvi, Ilan; Hao, Yue; Xin, Tianmu; Wang, Haipeng

    2017-10-01

    The term "real-estate gradient" is used to describe the energy gain provided by an accelerating structure per actual length it takes in the accelerator. given that the length of the tunnel available for the accelerator is constrained, the real-estate gradient is an important measure of the efficiency of a given accelerator structure. When designing an accelerating cavity to be efficient in this sense, the unwanted Higher Order Mode (HOM) fields should be reduced by suitable HOM dampers. This is a particularly important consideration for high current operation. The additional RF components might take longitude space and reduce the total accelerating efficiency. We describe a new high efficiency 5-cell cavity with the dampers included. The total length of the cavity is reduced by 13% as compared to a more conventional design without compromising the cavity fundamental-mode performance. In addition, the HOM impedance is reduced for a higher Beam-Break-Up (BBU) threshold of operating current. In this paper, we consider an example, a possible application at the eRHIC Energy Recovery Linac (ERL).

  4. Mapping forest structure, species gradients and growth in an urban area using lidar and hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Gu, Huan

    Urban forests play an important role in the urban ecosystem by providing a range of ecosystem services. Characterization of forest structure, species variation and growth in urban forests is critical for understanding the status, function and process of urban ecosystems, and helping maximize the benefits of urban ecosystems through management. The development of methods and applications to quantify urban forests using remote sensing data has lagged the study of natural forests due to the heterogeneity and complexity of urban ecosystems. In this dissertation, I quantify and map forest structure, species gradients and forest growth in an urban area using discrete-return lidar, airborne imaging spectroscopy and thermal infrared data. Specific objectives are: (1) to demonstrate the utility of leaf-off lidar originally collected for topographic mapping to characterize and map forest structure and associated uncertainties, including aboveground biomass, basal area, diameter, height and crown size; (2) to map species gradients using forest structural variables estimated from lidar and foliar functional traits, vegetation indices derived from AVIRIS hyperspectral imagery in conjunction with field-measured species data; and (3) to identify factors related to relative growth rates in aboveground biomass in the urban forests, and assess forest growth patterns across areas with varying degree of human interactions. The findings from this dissertation are: (1) leaf-off lidar originally acquired for topographic mapping provides a robust, potentially low-cost approach to quantify spatial patterns of forest structure and carbon stock in urban areas; (2) foliar functional traits and vegetation indices from hyperspectral data capture gradients of species distributions in the heterogeneous urban landscape; (3) species gradients, stand structure, foliar functional traits and temperature are strongly related to forest growth in the urban forests; and (4) high uncertainties in our ability to map forest structure, species gradient and growth rate occur in residential neighborhoods and along forest edges. Maps generated from this dissertation provide estimates of broad-scale spatial variations in forest structure, species distributions and growth to the city forest managers. The associated maps of uncertainty help managers understand the limitations of the maps and identify locations where the maps are more reliable and where more data are needed.

  5. Design and testing of a coil-unit barrel for helical coil electromagnetic launcher

    NASA Astrophysics Data System (ADS)

    Yang, Dong; Liu, Zhenxiang; Shu, Ting; Yang, Lijia; Ouyang, Jianming

    2018-01-01

    A coil-unit barrel for a helical coil electromagnetic launcher is described. It provides better features of high structural strength and flexible adjustability. It is convenient to replace the damaged coil units and easy to adjust the number of turns in the stator coils due to the modular design. In our experiments, the highest velocity measured for a 4.5-kg projectile is 47.3 m/s and the mechanical reinforcement of the launcher could bear 35 kA peak current. The relationship between the energy conversion efficiency and the inductance gradient of the launcher is also studied. In the region of low inductance gradient, the efficiency is positively correlated with the inductance gradient. However, in the region of high inductance gradient, the inter-turn arc erosion becomes a major problem of limiting the efficiency and velocity of the launcher. This modular barrel allows further studies in the inter-turn arc and the variable inductance gradient helical coil launcher.

  6. Design and testing of a coil-unit barrel for helical coil electromagnetic launcher.

    PubMed

    Yang, Dong; Liu, Zhenxiang; Shu, Ting; Yang, Lijia; Ouyang, Jianming

    2018-01-01

    A coil-unit barrel for a helical coil electromagnetic launcher is described. It provides better features of high structural strength and flexible adjustability. It is convenient to replace the damaged coil units and easy to adjust the number of turns in the stator coils due to the modular design. In our experiments, the highest velocity measured for a 4.5-kg projectile is 47.3 m/s and the mechanical reinforcement of the launcher could bear 35 kA peak current. The relationship between the energy conversion efficiency and the inductance gradient of the launcher is also studied. In the region of low inductance gradient, the efficiency is positively correlated with the inductance gradient. However, in the region of high inductance gradient, the inter-turn arc erosion becomes a major problem of limiting the efficiency and velocity of the launcher. This modular barrel allows further studies in the inter-turn arc and the variable inductance gradient helical coil launcher.

  7. Experimental study of a fine structure of 2D wakes and mixing past an obstacle in a continuously stratified fluid

    NASA Astrophysics Data System (ADS)

    Chashechkin, Yuli. D.; Mitkin, Vladimir V.

    2001-10-01

    Experimental investigations of fine and macroscopic structures of density and velocity disturbances generated by a towing cylinder or a vertical strip in a linearly stratified liquid are carried out in a rectangular tank. A density gradient field is visualised by different Schlieren methods (direct shadow, 'slit-knife', 'slit-thread', 'natural rainbow') characterised by a high spatial resolution. Profiles of fluid velocity are visualised by density markers — wakes past a vertically descending sugar crystal or an ascending gas bubble. In a fluid at rest, the density marker acts as a vertical linear source of internal oscillations which allows us to measure buoyancy frequency over all depth by the Schlieren instrument directly or by a conductivity probe in a particular point. Sensitive methods reveal a set of high gradient interfaces inside and outside the downstream wake besides well-known large scale elements: upstream disturbances, attached internal waves and vortices. Solitary interfaces located inside the attached internal waves field have no features on their leading and trailing edges. A thickness of interfaces is defined by an appropriate diffusion coefficient and a buoyancy frequency. High gradient interfaces bound compact vortices. Vortices moving with respect to environment emit their own systems of internal waves randomising a regular pattern of attached antisymmetric internal waves. But after a rather long time a wave recurrence occurs and a regular but symmetric structure of the longest waves (similar to the pattern of initial attached internal waves) is observed again. High gradient interfaces and lines of their intersections act as collectors of a dye coming from a compact source or from a coloured liquid volume inside the tank and separate coloured and clear areas.

  8. Analysis of vortical structures in turbulent natural convection

    NASA Astrophysics Data System (ADS)

    Park, Sangro; Lee, Changhoon

    2014-11-01

    Natural convection of fluid within two parallel walls, Rayleigh-Bénard convection, is studied by direct numerical simulation using a spectral method. The flow is in soft turbulence regime with Rayleigh number 106, 107, 108, Prandtl number 0 . 7 and aspect ratio 4. We investigate the relations between thermal plumes and vortical structures through manipulating the evolution equations of vorticity and velocity gradient tensor. According to simulation results, horizontal vorticity occurs near the wall and changes into vertical vorticity by vertical stretching of fluid element which is caused by vertical movement of the thermal plume. Additionally, eigenvalues, eigenvectors and invariants of velocity gradient tensor show the topologies of vortical structures, including how vortical structures are tilted or stretched. Difference of velocity gradient tensor between inside thermal plumes and background region is also investigated, and the result indicates that thermal plumes play an important role in changing the distribution of vortical structures. The results of this study are consistent with other researches which suggest that vertical vorticity is stronger in high Rayleigh number flows. Details will be presented in the meeting.

  9. Statistics of vacuum breakdown in the high-gradient and low-rate regime

    NASA Astrophysics Data System (ADS)

    Wuensch, Walter; Degiovanni, Alberto; Calatroni, Sergio; Korsbäck, Anders; Djurabekova, Flyura; Rajamäki, Robin; Giner-Navarro, Jorge

    2017-01-01

    In an increasing number of high-gradient linear accelerator applications, accelerating structures must operate with both high surface electric fields and low breakdown rates. Understanding the statistical properties of breakdown occurrence in such a regime is of practical importance for optimizing accelerator conditioning and operation algorithms, as well as of interest for efforts to understand the physical processes which underlie the breakdown phenomenon. Experimental data of breakdown has been collected in two distinct high-gradient experimental set-ups: A prototype linear accelerating structure operated in the Compact Linear Collider Xbox 12 GHz test stands, and a parallel plate electrode system operated with pulsed DC in the kV range. Collected data is presented, analyzed and compared. The two systems show similar, distinctive, two-part distributions of number of pulses between breakdowns, with each part corresponding to a specific, constant event rate. The correlation between distance and number of pulses between breakdown indicates that the two parts of the distribution, and their corresponding event rates, represent independent primary and induced follow-up breakdowns. The similarity of results from pulsed DC to 12 GHz rf indicates a similar vacuum arc triggering mechanism over the range of conditions covered by the experiments.

  10. Toward an integrated view of ionospheric plasma instabilities: Altitudinal transitions and strong gradient case

    NASA Astrophysics Data System (ADS)

    Makarevich, Roman A.

    2016-04-01

    A general dispersion relation is derived that integrates the Farley-Buneman, gradient-drift, and current-convective plasma instabilities (FBI, GDI, and CCI) within the same formalism for an arbitrary altitude, wave propagation vector, and background density gradient. The limiting cases of the FBI/GDI in the E region for nearly field-aligned irregularities, GDI/CCI in the main F region at long wavelengths, and GDI at high altitudes are successfully recovered using analytic analysis. Numerical solutions are found for more general representative cases spanning the entire ionosphere. It is demonstrated that the results are consistent with those obtained using a general FBI/GDI/CCI theory developed previously at and near E region altitudes under most conditions. The most significant differences are obtained for strong gradients (scale lengths of 100 m) at high altitudes such as those that may occur during highly structured soft particle precipitation events. It is shown that the strong gradient case is dominated by inertial effects and, for some scales, surprisingly strong additional damping due to higher-order gradient terms. The growth rate behavior is examined with a particular focus on the range of wave propagations with positive growth (instability cone) and its transitions between altitudinal regions. It is shown that these transitions are largely controlled by the plasma density gradients even when FBI is operational.

  11. Structural optimization with approximate sensitivities

    NASA Technical Reports Server (NTRS)

    Patnaik, S. N.; Hopkins, D. A.; Coroneos, R.

    1994-01-01

    Computational efficiency in structural optimization can be enhanced if the intensive computations associated with the calculation of the sensitivities, that is, gradients of the behavior constraints, are reduced. Approximation to gradients of the behavior constraints that can be generated with small amount of numerical calculations is proposed. Structural optimization with these approximate sensitivities produced correct optimum solution. Approximate gradients performed well for different nonlinear programming methods, such as the sequence of unconstrained minimization technique, method of feasible directions, sequence of quadratic programming, and sequence of linear programming. Structural optimization with approximate gradients can reduce by one third the CPU time that would otherwise be required to solve the problem with explicit closed-form gradients. The proposed gradient approximation shows potential to reduce intensive computation that has been associated with traditional structural optimization.

  12. Changes in the structures of motile sperm subpopulations in dog spermatozoa after both cryopreservation and centrifugation on PureSperm(®) gradient.

    PubMed

    Dorado, J; Alcaráz, L; Duarte, N; Portero, J M; Acha, D; Hidalgo, M

    2011-05-01

    The aims of the present study were to: (1) determine if discrete motile sperm subpopulations exist and their incidence in fresh dog ejaculates, (2) evaluate the effects of cryopreservation on the distribution of spermatozoa within the different subpopulations, and (3) determine the effect of the discontinuous PureSperm(®) gradient on the sperm subpopulation structure of frozen-thawed dog spermatozoa. Semen from 5 dogs were collected and cryopreserved following a standard protocol. After thawing, semen samples were selected by centrifugation on PureSperm(®). Sperm motility (assessed by computerized-assisted semen analysis, CASA) was assessed before freezing, just after thawing and after preparation on the PureSperm(®) gradients. Cryopreservation had a significant (P<0.001) effect on CASA-derived parameters. PureSperm(®) centrifugation yielded sperm suspensions with improved motility (P<0.01). A multivariate clustering procedure separated 19414 motile spermatozoa into four subpopulations: Subpopulation 1 consisting of poorly active and non-progressive spermatozoa (20.97%), Subpopulation 2 consisting of slow and low-linear spermatozoa (18.24%), Subpopulation 3 consisting of highly active but non-progressive spermatozoa (20.75%), and Subpopulation 4 consisting of high speed and progressive spermatozoa (40.03%). Although, cryopreservation had a significant (P<0.001) effect on both the frequency distribution of spermatozoa within subpopulations and the motion characteristics of each subpopulation, the sperm subpopulation structure was perfectly maintained after freezing and thawing. The selected sperm samples was enrich in Subpopulation 4, reaching a proportion of 31.9% of the present spermatozoa, in contrast with the unselected sperm samples, where this sperm subpopulation accounted for 24.9% of the total. From these results, we concluded that four well-defined motile sperm subpopulations were present either in fresh semen, in unselected sperm samples or in selected preparations from dogs. The discontinuous PureSperm(®) gradient is a simple method to improve the quality of canine frozen-thawed semen samples, since Subpopulation 4 (high-speed and progressive spermatozoa) was more frequently observed after preparation on the gradient. Finally, this study also demonstrated that the general motile sperm structure present in dog remains constant despite the effect caused by either cryopreservation or separation on PureSperm(®) gradient. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Amplitude of Sdiff across Asia: effects of velocity gradient and Qs in the D'' region and the asphericity of the mantle

    NASA Astrophysics Data System (ADS)

    Kuo, Ban-Yuan

    1999-11-01

    The amplitudes of diffracted SH (S diff) normalized to SKS, together with the S diff-SKS times, were analyzed to constrain the structure of the D" region beneath Asia and the northernmost Indian Ocean. While the S diff-SKS residuals (δt; relative to the Preliminary Reference Earth model, or PREM) are consistently negative from 95° to 120°, the amplitude residuals of S diff/SKS (δ A) show two trends of distance dependence, corresponding to distinct seismic structures in two adjacent zones in D". In zone A, δ A increases significantly with distance, suggesting the presence of a negative velocity gradient in the base of the mantle. The travel time residuals independently require that the average velocity of zone A be faster than that of PREM. One-dimensional structures that reconcile both sets of constraints were sought through systematic forwarding modeling. Models with negative gradients that satisfy δt's match δ A's to an acceptable degree only if a high-quality factor ( Qs) is assumed. The preferred model for zone A has a 400-500 km thick negative gradient layer, with a ~4% velocity discontinuity at the top and Qs = 1000, an about three-fold increase from the PREM value. In zone B, the amplitude-distance curve is virtually flat, and a 200-300 km thick high-velocity layer with PREM-like gradient and Qs explains both observations well. To assess the role of mantle asphericity in δ A, we estimate the strength of focusing of the S waves into the Fresnel zone at the onset of diffraction in vertical cross-sections of 3-D tomographic models SAW12D and SKS12WM13. Both models predict stronger focusing in zone A than in zone B. The focusing effect is translated to a positive base-line shift in δ A, which, if applied to the model predictions, alleviates the need for an extremely high Qs in zone A. The simple 2-D experiment suggests that velocity gradient and the anelastic attenuation of the D" layer as well as the mantle heterogeneity all probably contribute to the decay characteristics and the level of amplitude of S diff. The slab subducted in the Mesozoic may be responsible for the structure depicted in this study.

  14. High Power RF Testing of A 3-Cell Superconducting Traveling Wave Accelerating Structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kanareykin, Alex; Kostin, Romna; Avrakhov, Pavel

    Euclid Techlabs has completed the Phase II SBIR project, entitled “High Power RF Testing of a 3-Cell Superconducting Traveling Wave Accelerating Structure” under Grant #DE-SC0006300. In this final technical report, we summarize the major achievements of Phase I of the project and review the details of Phase II of the project. The accelerating gradient in a superconducting structure is limited mainly by quenching, i.e., by the maximum surface RF magnetic field. Various techniques have been developed to increase the gradient. A traveling wave accelerating SC structure with a feedback waveguide was suggested to allow an increased transit time factor andmore » ultimately, a maximum gradient that is 22%-24% higher than in the best of the time standing wave SRF cavity solution. The proposed structure has an additional benefit in that it can be fabricated much longer than the standing wave ones that are limited by the field flatness factor. Taken together, all of these factors will result in a significant overall length and, correspondingly cost reduction of the SRF based linear collider ILC or SRF technology based FELs. In Phase I of this project, a 3-cell L-band SC traveling wave cavity was designed. Cavity shape, surface field ratios, inter-cell coupling coefficients, accelerating field flatness have been reviewed with the analysis of tuning issues. Moreover, the technological aspects of SC traveling wave accelerating structure fabrication have been studied. As the next step in the project, the Phase II experimental program included engineering design, manufacturing, surface processing and high gradient testing. Euclid Techlabs, LLC contracted AES, Inc. to manufacture two niobium cavities. Euclid Techlabs cold tested traveling wave regime in the cavity, and the results showed very good agreement with mathematical model specially developed for superconducting traveling wave cavity performance analysis. Traveling wave regime was adjusted by amplitude and phase variation of input signals due to application of developed power feeding scheme. Traveling wave excitation, adjustment and detection were successfully tested. Auxiliary equipment required for high power test such as the tuner, power and measure couplers, holding plates for VTS at Fermilab were developed and successfully tested. Both TW SRF cavities were fabricated by AES, Inc. without stiffening ribs before this company closed their production facility. Currently Roark EB welding company is finishing now welding process of the cavity for the high power testing at Fermilab VTS. Successful demonstration of high gradients in the 3-cell cavity along with studies of traveling wave excitation and tuning issues is leading to successful development of superconducting traveling wave technology for ILC applications and other future high energy SC accelerators.« less

  15. African Easterly Jet: Structure and Maintenance

    NASA Technical Reports Server (NTRS)

    Wu, Man-Li C.; Reale, Oreste; Schubert, Siegfried D.; Suarez, Max J.; Koster, Randy D.; Pegion, Philip J.

    2009-01-01

    This article investigates the African Easterly Jet (AEJ), its structure and the forcings contributing to its maintenance, critically revisiting previous work which attributed the maintenance of the jet to soil moisture gradients over tropical Africa. A state-of-the-art global model in a high-end computer framework is used to produce a 3-member 73-year ensemble run forced by observed SST to represent the Control run. The AEJ as produced by the Control is compared with the representation of the AEJ in the European Center for Medium Range Forecast Reanalyses (ERA-40) and other observational data sets and found very realistic. Five Experiments are then performed, each represented by sets of 3-member 22 year long (1980-2001) ensemble runs. The goal of the Experiments is to investigate the role of meridional soil moisture gradients, different land surface properties and orography. Unlike previous studies, which have suppressed soil moisture gradients within a highly idealized framework (i.e., the so-called bucket model), terrestrial evaporation control is here achieved with a highly sophisticated landsurface treatment and with an extensively tested and complex methodology. The results show that the AEJ is suppressed by a combination of absence of meridional evaporation gradients over Africa and constant vegetation, even if the individual forcings taken separately do not lead to the AEJ disappearance, but only its modification. Moreover, the suppression of orography also leads to a different circulation in which there is no AEJ. This work suggests that it is not just soil moisture gradients, but a unique combination of geographical features present only in northern tropical Africa, which causes and maintains the jet.

  16. Parallel structure among environmental gradients and three trophic levels in a subarctic estuary

    USGS Publications Warehouse

    Speckman, Suzann G.; Piatt, John F.; Minte-Vera, C. V.; Parrish, Julia K.

    2005-01-01

    We assessed spatial and temporal variability in the physical environment of a subarctic estuary, and examined concurrent patterns of chlorophyll α abundance (fluorescence), and zooplankton and forage fish community structure. Surveys were conducted in lower Cook Inlet, Alaska, during late July and early August from 1997 through 1999. Principle components analysis (PCA) revealed that spatial heterogeneity in the physical oceanographic environment of lower Cook Inlet could be modeled as three marine-estuarine gradients characterized by temperature, salinity, bottom depth, and turbidity. The gradients persisted from 1997 through 1999, and PCA explained 68% to 92% of the variance in physical oceanography for each gradient-year combination. Correlations between chlorophyll α abundance and distribution and the PCA axes were weak. Chlorophyll was reduced by turbidity, and low levels occurred in areas with high levels of suspended sediments. Detrended correspondence analysis (DCA) was used to order the sample sites based on species composition and to order the zooplankton and forage fish taxa based on similarities among sample sites for each gradient-year. Correlations between the structure of the physical environment (PCA axis 1) and zooplankton community structure (DCA axis 1) were strong (r = 0.43-0.86) in all years for the three marine-estuarine gradients, suggesting that zooplankton community composition was structured by the physical environment. The physical environment (PCA) and forage fish community structure (DCA) were weakly correlated in all years along Gradient 2, defined by halocline intensity and surface temperature and salinity, even though these physical variables were more important for defining zooplankton habitats. However, the physical environment (PCA) and forage fish community structure (DCA) were strongly correlated along the primary marine-estuarine gradient (#1) in 1997 (r = 0.87) and 1998 (r = 0.82). The correlation was poor (r = 0.32) in 1999, when fish community structure changed markedly in lower Cook Inlet. Capelin (Mallotus villosus), walleye pollock (Theragra chalcogramma), and arrowtooth flounder (Atheresthes stomias) were caught farther north than in previous years. Waters were significantly colder and more saline in 1999, a La Nina year, than in other years of the study. Interannual fluctuations in environmental conditions in lower Cook Inlet did not have substantial effects on zooplankton community structure, although abundance of individual taxa varied significantly. The abundance and distribution of chlorophyll α, zooplankton and forage fish were affected much more by spatial variability in physical oceanography than by interannual variability. Our examination of physical-biological linkages in lower Cook Inlet supports the concept of "bottom-up control," i.e., that variability in the physical environment structures higher trophic-level communities by influencing their distribution and abundance across space.

  17. Parallel structure among environmental gradients and three trophic levels in a subarctic estuary

    NASA Astrophysics Data System (ADS)

    Speckman, Suzann G.; Piatt, John F.; Minte-Vera, Carolina V.; Parrish, Julia K.

    2005-07-01

    We assessed spatial and temporal variability in the physical environment of a subarctic estuary, and examined concurrent patterns of chlorophyll α abundance (fluorescence), and zooplankton and forage fish community structure. Surveys were conducted in lower Cook Inlet, Alaska, during late July and early August from 1997 through 1999. Principle components analysis (PCA) revealed that spatial heterogeneity in the physical oceanographic environment of lower Cook Inlet could be modeled as three marine-estuarine gradients characterized by temperature, salinity, bottom depth, and turbidity. The gradients persisted from 1997 through 1999, and PCA explained 68% to 92% of the variance in physical oceanography for each gradient-year combination. Correlations between chlorophyll α abundance and distribution and the PCA axes were weak. Chlorophyll was reduced by turbidity, and low levels occurred in areas with high levels of suspended sediments. Detrended correspondence analysis (DCA) was used to order the sample sites based on species composition and to order the zooplankton and forage fish taxa based on similarities among sample sites for each gradient-year. Correlations between the structure of the physical environment (PCA axis 1) and zooplankton community structure (DCA axis 1) were strong ( r = 0.43-0.86) in all years for the three marine-estuarine gradients, suggesting that zooplankton community composition was structured by the physical environment. The physical environment (PCA) and forage fish community structure (DCA) were weakly correlated in all years along Gradient 2, defined by halocline intensity and surface temperature and salinity, even though these physical variables were more important for defining zooplankton habitats. However, the physical environment (PCA) and forage fish community structure (DCA) were strongly correlated along the primary marine-estuarine gradient (#1) in 1997 ( r = 0.87) and 1998 ( r = 0.82). The correlation was poor ( r = 0.32) in 1999, when fish community structure changed markedly in lower Cook Inlet. Capelin ( Mallotus villosus), walleye pollock ( Theragra chalcogramma), and arrowtooth flounder ( Atheresthes stomias) were caught farther north than in previous years. Waters were significantly colder and more saline in 1999, a La Niña year, than in other years of the study. Interannual fluctuations in environmental conditions in lower Cook Inlet did not have substantial effects on zooplankton community structure, although abundance of individual taxa varied significantly. The abundance and distribution of chlorophyll α, zooplankton and forage fish were affected much more by spatial variability in physical oceanography than by interannual variability. Our examination of physical-biological linkages in lower Cook Inlet supports the concept of “bottom-up control,” i.e., that variability in the physical environment structures higher trophic-level communities by influencing their distribution and abundance across space.

  18. Texturing of high T(sub c) superconducting polycrystalline fibers/wires by laser-driven directional solidification in an thermal gradient

    NASA Technical Reports Server (NTRS)

    Varshney, Usha; Eichelberger, B. Davis, III

    1995-01-01

    This paper summarizes the technique of laser-driven directional solidification in a controlled thermal gradient of yttria stabilized zirconia core coated Y-Ba-Cu-O materials to produce textured high T(sub c) superconducting polycrystalline fibers/wires with improved critical current densities in the extended range of magnetic fields at temperatures greater than 77 K. The approach involves laser heating to minimize phase segregation by heating very rapidly through the two-phase incongruent melt region to the single phase melt region and directionally solidifying in a controlled thermal gradient to achieve highly textured grains in the fiber axis direction. The technique offers a higher grain growth rate and a lower thermal budget compared with a conventional thermal gradient and is amenable as a continuous process for improving the J(sub c) of high T(sub c) superconducting polycrystalline fibers/wires. The technique has the advantage of suppressing weak-link behavior by orientation of crystals, formation of dense structures with enhanced connectivity, formation of fewer and cleaner grain boundaries, and minimization of phase segregation in the incongruent melt region.

  19. Imaging the Buried Chicxulub Crater with Gravity Gradients and Cenotes

    NASA Astrophysics Data System (ADS)

    Hildebrand, A. R.; Pilkington, M.; Halpenny, J. F.; Ortiz-Aleman, C.; Chavez, R. E.; Urrutia-Fucugauchi, J.; Connors, M.; Graniel-Castro, E.; Camara-Zi, A.; Vasquez, J.

    1995-09-01

    Differing interpretations of the Bouguer gravity anomaly over the Chicxulub crater, Yucatan Peninsula, Mexico, have yielded diameter estimates of 170 to 320 km. Knowing the crater's size is necessary to quantify the lethal perturbations to the Cretaceous environment associated with its formation. The crater's size (and internal structure) is revealed by the horizontal gradient of the Bouguer gravity anomaly over the structure, and by mapping the karst features of the Yucatan region. To improve our resolution of the crater's gravity signature we collected additional gravity measurements primarily along radial profiles, but also to fill in previously unsurveyed areas. Horizontal gradient analysis of Bouguer gravity data objectively highlights the lateral density contrasts of the impact lithologies and suppresses regional anomalies which may obscure the gravity signature of the Chicxulub crater lithologies. This gradient technique yields a striking circular structure with at least 6 concentric gradient features between 25 and 85 km radius. These features are most distinct in the southwest probably because of denser sampling of the gravity field. Our detailed profiles detected an additional feature and steeper gradients (up to 5 mGal/km) than the original survey. We interpret the outer four gradient maxima to represent concentric faults in the crater's zone of slumping as is also revealed by seismic reflection data. The inner two probably represent the margin of the central uplift and the peak ring and or collapsed transient cavity. Radial gradients in the SW quadrant over the inferred ~40 km-diameter central uplift (4) may represent structural "puckering" as revealed at eroded terrestrial craters. Gradient features related to regional gravity highs and lows are visible outside the crater, but no concentric gradient features are apparent at distances > 90 km radius. The marginal gradient features may be modelled by slump faults as observed in large complex craters on the other terrestrial planets. A modeled fault of 1.5 km displacement (slightly slumped block exterior and impact breccia interior) reproduces the steepest gradient feature. This model is incompatible with models that place these gradient features inside the collapsed transient cavity. Locations of the karst features of the northern Yucatan region were digitized from 1:50,000 topographic maps, which show most but not all the water-filled sinkholes (locally known as cenotes). A prominent ring of cenotes is visible over the crater that is spatially correlated to the outer steep gravity gradient feature. The mapped cenotes constitute an unbiased sampling of the region's karst surface features of >50 m diameter. The gradient maximum and the cenote ring both meander with amplitudes of up to 2 km. The wiggles in the gradient feature and the cenote distribution probably correspond to the "scalloping" observed at the headwall of terraces in large complex craters. A second partial cenote ring exterior to the southwest side of the main ring corresponds to a less-prominent gravity gradient feature. No concentric structure is observable in the distribution of karst features at radii >90 km. The cenote ring is bounded by the outer peripheral steep gradient feature and must be related to it; the slump faults must have been reactivated sufficiently to create fracturing in the overlying and much younger sediment. Long term subsidence, as found at other terrestrial craters is a possible mechanism for the reactivation. Such long term subsidence may be caused by differential compaction or thermal relaxation. Elevations acquired during gravity surveys show that the cenote ring also corresponds to a topographic low along some of its length that probably reflects preferential erosion.

  20. Performance analysis of structured gradient algorithm. [for adaptive beamforming linear arrays

    NASA Technical Reports Server (NTRS)

    Godara, Lal C.

    1990-01-01

    The structured gradient algorithm uses a structured estimate of the array correlation matrix (ACM) to estimate the gradient required for the constrained least-mean-square (LMS) algorithm. This structure reflects the structure of the exact array correlation matrix for an equispaced linear array and is obtained by spatial averaging of the elements of the noisy correlation matrix. In its standard form the LMS algorithm does not exploit the structure of the array correlation matrix. The gradient is estimated by multiplying the array output with the receiver outputs. An analysis of the two algorithms is presented to show that the covariance of the gradient estimated by the structured method is less sensitive to the look direction signal than that estimated by the standard method. The effect of the number of elements on the signal sensitivity of the two algorithms is studied.

  1. Formation of large-scale structures with sharp density gradient through Rayleigh-Taylor growth in a two-dimensional slab under the two-fluid and finite Larmor radius effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goto, R.; Hatori, T.; Miura, H., E-mail: miura.hideaki@nifs.ac.jp

    Two-fluid and the finite Larmor effects on linear and nonlinear growth of the Rayleigh-Taylor instability in a two-dimensional slab are studied numerically with special attention to high-wave-number dynamics and nonlinear structure formation at a low β-value. The two effects stabilize the unstable high wave number modes for a certain range of the β-value. In nonlinear simulations, the absence of the high wave number modes in the linear stage leads to the formation of the density field structure much larger than that in the single-fluid magnetohydrodynamic simulation, together with a sharp density gradient as well as a large velocity difference. Themore » formation of the sharp velocity difference leads to a subsequent Kelvin-Helmholtz-type instability only when both the two-fluid and finite Larmor radius terms are incorporated, whereas it is not observed otherwise. It is shown that the emergence of the secondary instability can modify the outline of the turbulent structures associated with the primary Rayleigh-Taylor instability.« less

  2. Identifying Time Periods of Minimal Thermal Gradient for Temperature-Driven Structural Health Monitoring

    PubMed Central

    Reilly, John; Glisic, Branko

    2018-01-01

    Temperature changes play a large role in the day to day structural behavior of structures, but a smaller direct role in most contemporary Structural Health Monitoring (SHM) analyses. Temperature-Driven SHM will consider temperature as the principal driving force in SHM, relating a measurable input temperature to measurable output generalized strain (strain, curvature, etc.) and generalized displacement (deflection, rotation, etc.) to create three-dimensional signatures descriptive of the structural behavior. Identifying time periods of minimal thermal gradient provides the foundation for the formulation of the temperature–deformation–displacement model. Thermal gradients in a structure can cause curvature in multiple directions, as well as non-linear strain and stress distributions within the cross-sections, which significantly complicates data analysis and interpretation, distorts the signatures, and may lead to unreliable conclusions regarding structural behavior and condition. These adverse effects can be minimized if the signatures are evaluated at times when thermal gradients in the structure are minimal. This paper proposes two classes of methods based on the following two metrics: (i) the range of raw temperatures on the structure, and (ii) the distribution of the local thermal gradients, for identifying time periods of minimal thermal gradient on a structure with the ability to vary the tolerance of acceptable thermal gradients. The methods are tested and validated with data collected from the Streicker Bridge on campus at Princeton University. PMID:29494496

  3. Identifying Time Periods of Minimal Thermal Gradient for Temperature-Driven Structural Health Monitoring.

    PubMed

    Reilly, John; Glisic, Branko

    2018-03-01

    Temperature changes play a large role in the day to day structural behavior of structures, but a smaller direct role in most contemporary Structural Health Monitoring (SHM) analyses. Temperature-Driven SHM will consider temperature as the principal driving force in SHM, relating a measurable input temperature to measurable output generalized strain (strain, curvature, etc.) and generalized displacement (deflection, rotation, etc.) to create three-dimensional signatures descriptive of the structural behavior. Identifying time periods of minimal thermal gradient provides the foundation for the formulation of the temperature-deformation-displacement model. Thermal gradients in a structure can cause curvature in multiple directions, as well as non-linear strain and stress distributions within the cross-sections, which significantly complicates data analysis and interpretation, distorts the signatures, and may lead to unreliable conclusions regarding structural behavior and condition. These adverse effects can be minimized if the signatures are evaluated at times when thermal gradients in the structure are minimal. This paper proposes two classes of methods based on the following two metrics: (i) the range of raw temperatures on the structure, and (ii) the distribution of the local thermal gradients, for identifying time periods of minimal thermal gradient on a structure with the ability to vary the tolerance of acceptable thermal gradients. The methods are tested and validated with data collected from the Streicker Bridge on campus at Princeton University.

  4. X-Band RF Gun Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vlieks, Arnold; Dolgashev, Valery; Tantawi, Sami

    In support of the MEGa-ray program at LLNL and the High Gradient research program at SLAC, a new X-band multi-cell RF gun is being developed. This gun, similar to earlier guns developed at SLAC for Compton X-ray source program, will be a standing wave structure made of 5.5 cells operating in the pi mode with copper cathode. This gun was designed following criteria used to build SLAC X-band high gradient accelerating structures. It is anticipated that this gun will operate with surface electric fields on the cathode of 200 MeV/m with low breakdown rate. RF will be coupled into themore » structure through a final cell with symmetric duel feeds and with a shape optimized to minimize quadrupole field components. In addition, geometry changes to the original gun, operated with Compton X-ray source, will include a wider RF mode separation, reduced surface electric and magnetic fields.« less

  5. Turnover of plant lineages shapes herbivore phylogenetic beta diversity along ecological gradients.

    PubMed

    Pellissier, Loïc; Ndiribe, Charlotte; Dubuis, Anne; Pradervand, Jean-Nicolas; Salamin, Nicolas; Guisan, Antoine; Rasmann, Sergio

    2013-05-01

    Understanding drivers of biodiversity patterns is of prime importance in this era of severe environmental crisis. More diverse plant communities have been postulated to represent a larger functional trait-space, more likely to sustain a diverse assembly of herbivore species. Here, we expand this hypothesis to integrate environmental, functional and phylogenetic variation of plant communities as factors explaining the diversity of lepidopteran assemblages along elevation gradients in the Swiss Western Alps. According to expectations, we found that the association between butterflies and their host plants is highly phylogenetically structured. Multiple regression analyses showed the combined effect of climate, functional traits and phylogenetic diversity in structuring butterfly communities. Furthermore, we provide the first evidence that plant phylogenetic beta diversity is the major driver explaining butterfly phylogenetic beta diversity. Along ecological gradients, the bottom up control of herbivore diversity is thus driven by phylogenetically structured turnover of plant traits as well as environmental variables. © 2013 Blackwell Publishing Ltd/CNRS.

  6. Generating gradient germanium nanostructures by shock-induced amorphization and crystallization

    PubMed Central

    Zhao, Shiteng; Kad, Bimal; Wehrenberg, Christopher E.; Remington, Bruce A.; Hahn, Eric N.; More, Karren L.; Meyers, Marc A.

    2017-01-01

    Gradient nanostructures are attracting considerable interest due to their potential to obtain superior structural and functional properties of materials. Applying powerful laser-driven shocks (stresses of up to one-third million atmospheres, or 33 gigapascals) to germanium, we report here a complex gradient nanostructure consisting of, near the surface, nanocrystals with high density of nanotwins. Beyond there, the structure exhibits arrays of amorphous bands which are preceded by planar defects such as stacking faults generated by partial dislocations. At a lower shock stress, the surface region of the recovered target is completely amorphous. We propose that germanium undergoes amorphization above a threshold stress and that the deformation-generated heat leads to nanocrystallization. These experiments are corroborated by molecular dynamics simulations which show that supersonic partial dislocation bursts play a role in triggering the crystalline-to-amorphous transition. PMID:28847926

  7. Generating gradient germanium nanostructures by shock-induced amorphization and crystallization.

    PubMed

    Zhao, Shiteng; Kad, Bimal; Wehrenberg, Christopher E; Remington, Bruce A; Hahn, Eric N; More, Karren L; Meyers, Marc A

    2017-09-12

    Gradient nanostructures are attracting considerable interest due to their potential to obtain superior structural and functional properties of materials. Applying powerful laser-driven shocks (stresses of up to one-third million atmospheres, or 33 gigapascals) to germanium, we report here a complex gradient nanostructure consisting of, near the surface, nanocrystals with high density of nanotwins. Beyond there, the structure exhibits arrays of amorphous bands which are preceded by planar defects such as stacking faults generated by partial dislocations. At a lower shock stress, the surface region of the recovered target is completely amorphous. We propose that germanium undergoes amorphization above a threshold stress and that the deformation-generated heat leads to nanocrystallization. These experiments are corroborated by molecular dynamics simulations which show that supersonic partial dislocation bursts play a role in triggering the crystalline-to-amorphous transition.

  8. Distinguishing discrete and gradient category structure in language: Insights from verb-particle constructions.

    PubMed

    Brehm, Laurel; Goldrick, Matthew

    2017-10-01

    The current work uses memory errors to examine the mental representation of verb-particle constructions (VPCs; e.g., make up the story, cut up the meat). Some evidence suggests that VPCs are represented by a cline in which the relationship between the VPC and its component elements ranges from highly transparent (cut up) to highly idiosyncratic (make up). Other evidence supports a multiple class representation, characterizing VPCs as belonging to discretely separated classes differing in semantic and syntactic structure. We outline a novel paradigm to investigate the representation of VPCs in which we elicit illusory conjunctions, or memory errors sensitive to syntactic structure. We then use a novel application of piecewise regression to demonstrate that the resulting error pattern follows a cline rather than discrete classes. A preregistered replication verifies these findings, and a final preregistered study verifies that these errors reflect syntactic structure. This provides evidence for gradient rather than discrete representations across levels of representation in language processing. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  9. Relationships between heat flow, thermal and pressure fields in the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Husson, L.; Henry, P.; Le Pichon, X.

    2004-12-01

    The thermal field of the Gulf of Mexico (GoM) is restored from a comprehensive temperature-depth database. A striking feature is the systematic sharp gradient increase between 2500 and 4000 m. The analysis of the pressure (fracturation tests and mud weights) indicates a systematic correlation between the pressure and temperature fields, as well as with the thickness of Plio-Pleistocene sedimentary layer, and is interpreted as the fact of cooling from fluid flow in the upper, almost hydrostatically pressured layer. The Nusselt number, that we characterize by the ratio between the near high-P gradient over low-P gradient varies spatially and is correlated to the structural pattern of the GoM; this observation outlines the complex relationships between heat and fluid flows, structure and sedimentation. The deep thermal signal is restored in terms of gradient and heat flow density from a statistical analysis of the thermal data combined to the thermal modelling of about 175 wells. At a regional scale, although the sedimentary cover is warmer in Texas than in Louisiana in terms of temperature, the steady state basal heat flow is higher in Louisiana. In addition, beneath the Corsair Fault, which lay offshore parallel to the Texan coast, the high heat flow suggests a zone of Tertiary lithospheric thinning.

  10. Fish as indicators of disturbance in streams used for snorkeling activities in a tourist region.

    PubMed

    Teresa, Fabricio Barreto; Romero, Renato de Mei; Casatti, Lilian; Sabino, José

    2011-05-01

    A set of metrics that reflect various aspects of population and fish community structure in streams used for snorkeling was evaluated in the tourist region of Bodoquena Plateau, Brazil, with the purpose of biomonitoring the impacts of such activities. Observations were made while snorkeling in two sites (active = with tourism; inactive = without tourism) and along the gradient of daily tourist activity (before, during and after the passage of tourists) in two streams. Five metrics discriminated active from inactive sites: (i) the abundance of Crenicichla lepidota and (ii) the incidence of reproductive activity in Crenicichla lepidota which were greater in inactive sites, regardless the gradient of daily tourist activity; (iii) the feeding pattern of Prochilodus lineatus, which differed among sites and along the gradient of daily tourist activity; (iv) the abundance of Moenkhausia bonita, which was higher in the active sites and significantly increased along the gradient of daily tourist activity in one stream but decrease along the gradient in other stream; (v) the abundance of Hyphessobrycon eques, which was greater in inactive sites, regardless the gradient of daily tourist activity. With the exception of metric "iv", the metrics were mediated by the reduction in habitat structural complexity due to snorkeling disturbance. The definition of these metrics is relevant because the degradation of ecosystem structural elements is one of the main impacts of recreational activities on aquatic environments. The easy recognition of target species and high water transparency throughout the year ensures the feasibility of these metrics in monitoring programs and may be applied by technicians after quick guides and training.

  11. Fish as Indicators of Disturbance in Streams Used for Snorkeling Activities in a Tourist Region

    NASA Astrophysics Data System (ADS)

    Teresa, Fabricio Barreto; Romero, Renato De Mei; Casatti, Lilian; Sabino, José

    2011-05-01

    A set of metrics that reflect various aspects of population and fish community structure in streams used for snorkeling was evaluated in the tourist region of Bodoquena Plateau, Brazil, with the purpose of biomonitoring the impacts of such activities. Observations were made while snorkeling in two sites (active = with tourism; inactive = without tourism) and along the gradient of daily tourist activity (before, during and after the passage of tourists) in two streams. Five metrics discriminated active from inactive sites: (i) the abundance of Crenicichla lepidota and (ii) the incidence of reproductive activity in Crenicichla lepidota which were greater in inactive sites, regardless the gradient of daily tourist activity; (iii) the feeding pattern of Prochilodus lineatus, which differed among sites and along the gradient of daily tourist activity; (iv) the abundance of Moenkhausia bonita, which was higher in the active sites and significantly increased along the gradient of daily tourist activity in one stream but decrease along the gradient in other stream; (v) the abundance of Hyphessobrycon eques, which was greater in inactive sites, regardless the gradient of daily tourist activity. With the exception of metric "iv", the metrics were mediated by the reduction in habitat structural complexity due to snorkeling disturbance. The definition of these metrics is relevant because the degradation of ecosystem structural elements is one of the main impacts of recreational activities on aquatic environments. The easy recognition of target species and high water transparency throughout the year ensures the feasibility of these metrics in monitoring programs and may be applied by technicians after quick guides and training.

  12. Ecosystem variability along the estuarine salinity gradient: Examples from long-term study of San Francisco Bay

    USGS Publications Warehouse

    Cloern, James E.; Jassby, Alan D.; Schraga, Tara; Kress, Erica S.; Martin, Charles A.

    2017-01-01

    The salinity gradient of estuaries plays a unique and fundamental role in structuring spatial patterns of physical properties, biota, and biogeochemical processes. We use variability along the salinity gradient of San Francisco Bay to illustrate some lessons about the diversity of spatial structures in estuaries and their variability over time. Spatial patterns of dissolved constituents (e.g., silicate) can be linear or nonlinear, depending on the relative importance of river-ocean mixing and internal sinks (diatom uptake). Particles have different spatial patterns because they accumulate in estuarine turbidity maxima formed by the combination of sinking and estuarine circulation. Some constituents have weak or no mean spatial structure along the salinity gradient, reflecting spatially distributed sources along the estuary (nitrate) or atmospheric exchanges that buffer spatial variability of ecosystem metabolism (dissolved oxygen). The density difference between freshwater and seawater establishes stratification in estuaries stronger than the thermal stratification of lakes and oceans. Stratification is strongest around the center of the salinity gradient and when river discharge is high. Spatial distributions of motile organisms are shaped by species-specific adaptations to different salinity ranges (shrimp) and by behavioral responses to environmental variability (northern anchovy). Estuarine spatial patterns change over time scales of events (intrusions of upwelled ocean water), seasons (river inflow), years (annual weather anomalies), and between eras separated by ecosystem disturbances (a species introduction). Each of these lessons is a piece in the puzzle of how estuarine ecosystems are structured and how they differ from the river and ocean ecosystems they bridge.

  13. Development work for a superconducting linear collider

    NASA Technical Reports Server (NTRS)

    Matheisen, Axel

    1995-01-01

    For future linear e(+)e(-) colliders in the TeV range several alternatives are under discussion. The TESLA approach is based on the advantages of superconductivity. High Q values of the accelerator structures give high efficiency for converting RF power into beam power. A low resonance frequency for the RF structures can be chosen to obtain a large number of electrons (positrons) per bunch. For a given luminosity the beam dimensions can be chosen conservatively which leads to relaxed beam emittance and tolerances at the final focus. Each individual superconducting accelerator component (resonator cavity) of this linear collider has to deliver an energy gain of 25 MeV/m to the beam. Today s.c. resonators are in use at CEBAF/USA, at DESY/Germany, Darmstadt/Germany KEK/Japan and CERN/Geneva. They show acceleration gradients between 5 MV/m and 10 MV/m. Encouraging experiments at CEA Saclay and Cornell University showed acceleration gradients of 20 MV/m and 25 MV/m in single and multicell structures. In an activity centered at DESY in Hamburg/Germany the TESLA collaboration is constructing a 500 MeV superconducting accelerator test facility (TTF) to demonstrate that a linear collider based on this technique can be built in a cost effective manner and that the necessary acceleration gradients of more than 15 MeV/m can be reached reproducibly. The test facility built at DESY covers an area of 3.000 m2 and is divided into 3 major activity areas: (1) The testlinac, where the performance ofthe modular components with an electron beam passing the 40 m long acceleration section can be demonstrated. (2) The test area, where all individual resonators are tested before installation into a module. (3) The preparation and assembly area, where assembly of cavities and modules take place. We report here on the design work to reach a reduction of costs compared to actual existing superconducting accelerator structures and on the facility set up to reach high acceleration gradients in a reproducible way.

  14. Along-axis hydrothermal flow at the axis of slow spreading Mid-Ocean Ridges: Insights from numerical models of the Lucky Strike vent field (MAR)

    NASA Astrophysics Data System (ADS)

    Fontaine, Fabrice J.; Cannat, Mathilde; Escartin, Javier; Crawford, Wayne C.

    2014-07-01

    processes and efficiency of hydrothermal heat extraction along the axis of mid-ocean ridges are controlled by lithospheric thermal and permeability structures. Hydrothermal circulation models based on the structure of fast and intermediate spreading ridges predict that hydrothermal cell organization and vent site distribution are primarily controlled by the thermodynamics of high-temperature mid-ocean ridge hydrothermal fluids. Using recent constraints on shallow structure at the slow spreading Lucky Strike segment along the Mid-Atlantic Ridge, we present a physical model of hydrothermal cooling that incorporates the specificities of a magma-rich slow spreading environment. Using three-dimensional numerical models, we show that, in contrast to the aforementioned models, the subsurface flow at Lucky Strike is primarily controlled by across-axis permeability variations. Models with across-axis permeability gradients produce along-axis oriented hydrothermal cells and an alternating pattern of heat extraction highs and lows that match the distribution of microseismic clusters recorded at the Lucky Strike axial volcano. The flow is also influenced by temperature gradients at the base of the permeable hydrothermal domain. Although our models are based on the structure and seismicity of the Lucky Strike segment, across-axis permeability gradients are also likely to occur at faster spreading ridges and these results may also have important implications for the cooling of young crust at fast and intermediate spreading centers.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowring, Daniel; Freemire, Ben; Kochemirovskiy, Alexey

    Ionization cooling of intense muon beams requires the operation of high-gradient, normal-conducting RF structures within multi-Tesla magnetic fields. The application of strong magnetic fields has been shown to lead to an increase in vacuum RF breakdown. This phenomenon imposes operational (i.e. gradient) limitations on cavities in ionization cooling channels, and has a bearing on the design and operation of other RF structures as well, such as photocathodes and klystrons. We present recent results from Fermilab's MuCool Test Area (MTA), in which 201 and 805 MHz cavities were operated at high power both with and without the presence of multi-Tesla magneticmore » fields. We present an analysis of damage due to breakdown in these cavities, as well as measurements related to dark current and their relation to a conceptual model describing breakdown phenomena.« less

  16. High-Performance Protonic Ceramic Fuel Cells with Thin-Film Yttrium-Doped Barium Cerate-Zirconate Electrolytes on Compositionally Gradient Anodes.

    PubMed

    Bae, Kiho; Lee, Sewook; Jang, Dong Young; Kim, Hyun Joong; Lee, Hunhyeong; Shin, Dongwook; Son, Ji-Won; Shim, Joon Hyung

    2016-04-13

    In this study, we used a compositionally gradient anode functional layer (AFL) consisting of Ni-BaCe(0.5)Zr(0.35)Y(0.15)O(3-δ) (BCZY) with increasing BCZY contents toward the electrolyte-anode interface for high-performance protonic ceramic fuel cells. It is identified that conventional homogeneous AFLs fail to stably accommodate a thin film of BCZY electrolyte. In contrast, a dense 2 μm thick BCZY electrolyte was successfully deposited onto the proposed gradient AFL with improved adhesion. A fuel cell containing this thin electrolyte showed a promising maximum peak power density of 635 mW cm(-2) at 600 °C, with an open-circuit voltage of over 1 V. Impedance analysis confirmed that minimizing the electrolyte thickness is essential for achieving a high power output, suggesting that the anode structure is important in stably accommodating thin electrolytes.

  17. High-performance ionic diode membrane for salinity gradient power generation.

    PubMed

    Gao, Jun; Guo, Wei; Feng, Dan; Wang, Huanting; Zhao, Dongyuan; Jiang, Lei

    2014-09-03

    Salinity difference between seawater and river water is a sustainable energy resource that catches eyes of the public and the investors in the background of energy crisis. To capture this energy, interdisciplinary efforts from chemistry, materials science, environmental science, and nanotechnology have been made to create efficient and economically viable energy conversion methods and materials. Beyond conventional membrane-based processes, technological breakthroughs in harvesting salinity gradient power from natural waters are expected to emerge from the novel fluidic transport phenomena on the nanoscale. A major challenge toward real-world applications is to extrapolate existing single-channel devices to macroscopic materials. Here, we report a membrane-scale nanofluidic device with asymmetric structure, chemical composition, and surface charge polarity, termed ionic diode membrane (IDM), for harvesting electric power from salinity gradient. The IDM comprises heterojunctions between mesoporous carbon (pore size ∼7 nm, negatively charged) and macroporous alumina (pore size ∼80 nm, positively charged). The meso-/macroporous membrane rectifies the ionic current with distinctly high ratio of ca. 450 and keeps on rectifying in high-concentration electrolytes, even in saturated solution. The selective and rectified ion transport furthermore sheds light on salinity-gradient power generation. By mixing artificial seawater and river water through the IDM, substantially high power density of up to 3.46 W/m(2) is discovered, which largely outperforms some commercial ion-exchange membranes. A theoretical model based on coupled Poisson and Nernst-Planck equations is established to quantitatively explain the experimental observations and get insights into the underlying mechanism. The macroscopic and asymmetric nanofluidic structure anticipates wide potentials for sustainable power generation, water purification, and desalination.

  18. X-ray driven channeling acceleration in crystals and carbon nanotubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shin, Young-Min; Still, Dean A.; Shiltsev, Vladimir

    2013-12-01

    Acceleration of particles channeling in a crystal by means of diffracted x-rays via Bormann anomalous transmission was conceived for heavy ions and muons by Tajima and Cavenago [Phys. Rev. Lett. 59, 1440 (1987)], which potentially offers an appreciably high field gradient on the order of GV/cm. The theoretical model of the high gradient acceleration has been studied in two kinds of atomic structure, crystals and carbon nanotubes (CNTs), with analytic calculations and electromagnetic eigenmode simulations. A range of acceleration gradients and cutoffs of the x-ray power (the lowest power limit to overcome the Bremsstrahlung radiation losses) are characterized in termsmore » of the lattice constants, unit cell sizes, and photon energies. The parametric analysis indicates that the required x-ray power can be reduced to an order of megawatt by replacing crystals with CNTs. Eventually, the equivalent dielectric approximation of a multi-wall nanotube shows that 250–810 MeV muons can be synchronously coupled with x-rays of 0.65–1.32 keV in the accelerating structure.« less

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dal Forno, Massimo; Dolgashev, Valery; Bowden, Gordon

    This study explores the physics of vacuum rf breakdowns in subterahertz high-gradient traveling-wave accelerating structures. We present the experimental results of rf tests of 200 GHz metallic accelerating structures, made of copper and copper-silver. These experiments were carried out at the Facility for Advanced Accelerator Experimental Tests (FACET) at the SLAC National Accelerator Laboratory. The rf fields were excited by the FACET ultrarelativistic electron beam. The traveling-wave structure is an open geometry, 10 cm long, composed of two halves separated by a gap. The rf frequency of the fundamental accelerating mode depends on the gap size and can be changedmore » from 160 to 235 GHz. When the beam travels off axis, a deflecting field is induced in addition to the longitudinal field. We measure the deflecting forces by observing the displacement of the electron bunch and use this measurement to verify the expected accelerating gradient. Furthermore, we present the first quantitative measurement of rf breakdown rates in 200 GHz metallic accelerating structures. The breakdown rate of the copper structure is 10 –2 per pulse, with a peak surface electric field of 500 MV/m and a rf pulse length of 0.3 ns, which at a relatively large gap of 1.5 mm, or one wavelength, corresponds to an accelerating gradient of 56 MV/m. For the same breakdown rate, the copper-silver structure has a peak electric field of 320 MV/m at a pulse length of 0.5 ns. For a gap of 1.1 mm, or 0.74 wavelengths, this corresponds to an accelerating gradient of 50 MV/m.« less

  20. An Initial Investigation of Ionospheric Gradients for Detection of Ionospheric Disturbances over Turkey

    NASA Astrophysics Data System (ADS)

    Koroglu, Meltem; Arikan, Feza; Koroglu, Ozan

    2015-04-01

    Ionosphere is an ionized layer of earth's atmosphere which affect the propagation of radio signals due to highly varying electron density structure. Total Electron Content (TEC) and Slant Total Electron Content (STEC) are convenient measures of total electron density along a ray path. STEC model is given by the line integral of the electron density between the receiver and GPS satellite. TEC and STEC can be estimated by observing the difference between the two GPS signal time delays that have different frequencies L1 (1575 MHz) and L2 (1227 MHz). During extreme ionospheric storms ionospheric gradients becomes larger than those of quiet days since time delays of the radio signals becomes anomalous. Ionosphere gradients can be modeled as a linear semi-infinite wave front with constant propagation speed. One way of computing the ionospheric gradients is to compare the STEC values estimated between two neighbouring GPS stations. In this so-called station-pair method, ionospheric gradients are defined by dividing the difference of the time delays of two receivers, that see the same satellite at the same time period. In this study, ionospheric gradients over Turkey are computed using the Turkish National Permanent GPS Network (TNPGN-Active) between May 2009 and September 2012. The GPS receivers are paired in east-west and north-south directions with distances less than 150 km. GPS-STEC for each station are calculated using IONOLAB-TEC and IONOLAB-BIAS softwares (www.ionolab.org). Ionospheric delays are calculated for each paired station for both L1 and L2 frequencies and for each satellite in view with 30 s time resolution. During the investigation period, different types of geomagnetic storms, Travelling Ionospheric Disturbances (TID), Sudden Ionospheric Disturbances (SID) and various earthquakes with magnitudes between 3 to 7.4 have occured. Significant variations in the structure of station-pair gradients have been observed depending on location of station-pairs, the path of the satellites, strength of the geomagnetic storms and type, depth and magnitude of the earthquakes. For a typical geomagnetic storm the gradients can get as high as 30 mm/km. For the earthquakes, both the magnitude and the structure of the ionospheric delay gradients exhibit strong variability. This study forms a basis for a comprehensive understanding of ionospheric variability for midlatitude GBAS and SBAS systems. This study is supported by a joint grant of TUBITAK 112E568 and RFBR 13-02-91370-CT_a.

  1. Numerical Study on Density Gradient Carbon-Carbon Composite for Vertical Launching System

    NASA Astrophysics Data System (ADS)

    Yoon, Jin-Young; Kim, Chun-Gon; Lim, Juhwan

    2018-04-01

    This study presents new carbon-carbon (C/C) composite that has a density gradient within single material, and estimates its heat conduction performance by a numerical method. To address the high heat conduction of a high-density C/C, which can cause adhesion separation in the steel structures of vertical launching systems, density gradient carbon-carbon (DGCC) composite is proposed due to its exhibiting low thermal conductivity as well as excellent ablative resistance. DGCC is manufactured by hybridizing two different carbonization processes into a single carbon preform. One part exhibits a low density using phenolic resin carbonization to reduce heat conduction, and the other exhibits a high density using thermal gradient-chemical vapor infiltration for excellent ablative resistance. Numerical analysis for DGCC is performed with a heat conduction problem, and internal temperature distributions are estimated by the forward finite difference method. Material properties of the transition density layer, which is inevitably formed during DGCC manufacturing, are assumed to a combination of two density layers for numerical analysis. By comparing numerical results with experimental data, we validate that DGCC exhibits a low thermal conductivity, and it can serve as highly effective ablative material for vertical launching systems.

  2. Effect of the temperature-rate parameters of directional solidification on the structure formation in high-temperature materials

    NASA Astrophysics Data System (ADS)

    Svetlov, I. L.; Neiman, A. V.

    2017-03-01

    The effect of the temperature gradient and the crystal growth rate on the structure formation in nickel and niobium superalloys is studied under the conditions of the flat, cellular, dendritic, or dendritic-cellular configuration of a solidification front during directional solidification.

  3. Mini-batch optimized full waveform inversion with geological constrained gradient filtering

    NASA Astrophysics Data System (ADS)

    Yang, Hui; Jia, Junxiong; Wu, Bangyu; Gao, Jinghuai

    2018-05-01

    High computation cost and generating solutions without geological sense have hindered the wide application of Full Waveform Inversion (FWI). Source encoding technique is a way to dramatically reduce the cost of FWI but subject to fix-spread acquisition setup requirement and slow convergence for the suppression of cross-talk. Traditionally, gradient regularization or preconditioning is applied to mitigate the ill-posedness. An isotropic smoothing filter applied on gradients generally gives non-geological inversion results, and could also introduce artifacts. In this work, we propose to address both the efficiency and ill-posedness of FWI by a geological constrained mini-batch gradient optimization method. The mini-batch gradient descent optimization is adopted to reduce the computation time by choosing a subset of entire shots for each iteration. By jointly applying the structure-oriented smoothing to the mini-batch gradient, the inversion converges faster and gives results with more geological meaning. Stylized Marmousi model is used to show the performance of the proposed method on realistic synthetic model.

  4. Generating gradient germanium nanostructures by shock-induced amorphization and crystallization

    DOE PAGES

    Zhao, Shiteng; Kad, Bimal; Wehrenberg, Christopher E.; ...

    2017-08-28

    Gradient nanostructures are attracting considerable interest due to their potential to obtain superior structural and functional properties of materials. Applying powerful laser-driven shocks (stresses of up to one-third million atmospheres, or 33 gigapascals) to germanium, we report a complex gradient nanostructure consisting of, near the surface, nanocrystals with high density of nanotwins. Beyond there, the structure exhibits arrays of amorphous bands which are preceded by planar defects such as stacking faults generated by partial dislocations. At a lower shock stress, the surface region of the recovered target is completely amorphous. Here, we propose that germanium undergoes amorphization above a thresholdmore » stress and that the deformation-generated heat leads to nanocrystallization. These experiments are corroborated by molecular dynamics simulations which show that supersonic partial dislocation bursts play a role in triggering the crystalline-to-amorphous transition.« less

  5. Generating gradient germanium nanostructures by shock-induced amorphization and crystallization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Shiteng; Kad, Bimal; Wehrenberg, Christopher E.

    Gradient nanostructures are attracting considerable interest due to their potential to obtain superior structural and functional properties of materials. Applying powerful laser-driven shocks (stresses of up to one-third million atmospheres, or 33 gigapascals) to germanium, we report a complex gradient nanostructure consisting of, near the surface, nanocrystals with high density of nanotwins. Beyond there, the structure exhibits arrays of amorphous bands which are preceded by planar defects such as stacking faults generated by partial dislocations. At a lower shock stress, the surface region of the recovered target is completely amorphous. Here, we propose that germanium undergoes amorphization above a thresholdmore » stress and that the deformation-generated heat leads to nanocrystallization. These experiments are corroborated by molecular dynamics simulations which show that supersonic partial dislocation bursts play a role in triggering the crystalline-to-amorphous transition.« less

  6. Microstructures and Mechanical Properties of Commercially Pure Ti Processed by Rotationally Accelerated Shot Peening

    PubMed Central

    Huang, Zhaowen; Cao, Yang; Nie, Jinfeng; Zhou, Hao; Li, Yusheng

    2018-01-01

    Gradient structured materials possess good combinations of strength and ductility, rendering the materials attractive in industrial applications. In this research, a surface nanocrystallization (SNC) technique, rotationally accelerated shot peening (RASP), was employed to produce a gradient nanostructured pure Ti with a deformation layer that had a thickness of 2000 μm, which is thicker than those processed by conventional SNC techniques. It is possible to fabricate a gradient structured Ti workpiece without delamination. Moreover, based on the microstructural features, the microstructure of the processed sample can be classified into three regions, from the center to the surface of the RASP-processed sample: (1) a twinning-dominated core region; (2) a “twin intersection”-dominated twin transition region; and (3) the nanostructured region, featuring nanograins. A microhardness gradient was detected from the RASP-processed Ti. The surface hardness was more than twice that of the annealed Ti sample. The RASP-processed Ti sample exhibited a good combination of yield strength and uniform elongation, which may be attributed to the high density of deformation twins and a strong back stress effect. PMID:29498631

  7. Stellar occultation spikes as probes of atmospheric structure and composition. [for Jupiter

    NASA Technical Reports Server (NTRS)

    Elliot, J. L.; Veverka, J.

    1976-01-01

    The characteristics of spikes observed in occultation light curves of Beta Scorpii by Jupiter are discussed in terms of the gravity-gradient model. The occultation of Beta Sco by Jupiter on May 13, 1971, is reviewed, and the gravity-gradient model is defined as an isothermal atmosphere of constant composition in which the refractivity is a function only of the radial coordinate from the center of refraction, which is assumed to lie parallel to the local gravity gradient. The derivation of the occultation light curve in terms of the atmosphere, the angular diameter of the occulted star, and the occultation geometry is outlined. It is shown that analysis of the light-curve spikes can yield the He/H2 concentration ratio in a well-mixed atmosphere, information on fine-scale atmospheric structure, high-resolution images of the occulted star, and information on ray crossing. Observational limits are placed on the magnitude of horizontal refractivity gradients, and it is concluded that the spikes are the result of local atmospheric density variations: atmospheric layers, density waves, or turbulence.

  8. Calculation and Analysis of Magnetic Gradient Tensor Components of Global Magnetic Models

    NASA Astrophysics Data System (ADS)

    Schiffler, M.; Queitsch, M.; Schneider, M.; Goepel, A.; Stolz, R.; Krech, W.; Meyer, H. G.; Kukowski, N.

    2014-12-01

    Global Earth's magnetic field models like the International Geomagnetic Reference Field (IGRF), the World Magnetic Model (WMM) or the High Definition Geomagnetic Model (HDGM) are harmonic analysis regressions to available magnetic observations stored as spherical harmonic coefficients. Input data combine recordings from magnetic observatories, airborne magnetic surveys and satellite data. The advance of recent magnetic satellite missions like SWARM and its predecessors like CHAMP offer high resolution measurements while providing a full global coverage. This deserves expansion of the theoretical framework of harmonic synthesis to magnetic gradient tensor components. Measurement setups for Full Tensor Magnetic Gradiometry equipped with high sensitive gradiometers like the JeSSY STAR system can directly measure the gradient tensor components, which requires precise knowledge about the background regional gradients which can be calculated with this extension. In this study we develop the theoretical framework for calculation of the magnetic gradient tensor components from the harmonic series expansion and apply our approach to the IGRF and HDGM. The gradient tensor component maps for entire Earth's surface produced for the IGRF show low gradients reflecting the variation from the dipolar character, whereas maps for the HDGM (up to degree N=729) reveal new information about crustal structure, especially across the oceans, and deeply situated ore bodies. From the gradient tensor components, the rotational invariants, the Eigenvalues, and the normalized source strength (NSS) are calculated. The NSS focuses on shallower and stronger anomalies. Euler deconvolution using either the tensor components or the NSS applied to the HDGM reveals an estimate of the average source depth for the entire magnetic crust as well as individual plutons and ore bodies. The NSS reveals the boundaries between the anomalies of major continental provinces like southern Africa or the Eastern European Craton.

  9. rf breakdown measurements in electron beam driven 200 GHz copper and copper-silver accelerating structures

    DOE PAGES

    Dal Forno, Massimo; Dolgashev, Valery; Bowden, Gordon; ...

    2016-11-30

    This study explores the physics of vacuum rf breakdowns in subterahertz high-gradient traveling-wave accelerating structures. We present the experimental results of rf tests of 200 GHz metallic accelerating structures, made of copper and copper-silver. These experiments were carried out at the Facility for Advanced Accelerator Experimental Tests (FACET) at the SLAC National Accelerator Laboratory. The rf fields were excited by the FACET ultrarelativistic electron beam. The traveling-wave structure is an open geometry, 10 cm long, composed of two halves separated by a gap. The rf frequency of the fundamental accelerating mode depends on the gap size and can be changedmore » from 160 to 235 GHz. When the beam travels off axis, a deflecting field is induced in addition to the longitudinal field. We measure the deflecting forces by observing the displacement of the electron bunch and use this measurement to verify the expected accelerating gradient. Furthermore, we present the first quantitative measurement of rf breakdown rates in 200 GHz metallic accelerating structures. The breakdown rate of the copper structure is 10 –2 per pulse, with a peak surface electric field of 500 MV/m and a rf pulse length of 0.3 ns, which at a relatively large gap of 1.5 mm, or one wavelength, corresponds to an accelerating gradient of 56 MV/m. For the same breakdown rate, the copper-silver structure has a peak electric field of 320 MV/m at a pulse length of 0.5 ns. For a gap of 1.1 mm, or 0.74 wavelengths, this corresponds to an accelerating gradient of 50 MV/m.« less

  10. Comparision between Ga- and N-polarity InGaN solar cells with gradient-In-composition intrinsic layers

    NASA Astrophysics Data System (ADS)

    Lu, Lin; Li, Ming-Chao; Lv, Chen; Gao, Wen-Gen; Jiang, Ming; Xu, Fu-Jun; Chen, Qi-Gong

    2016-10-01

    Performances of Ga- and N-polarity solar cells (SCs) adopting gradient-In-composition intrinsic layer (IL) are compared. It is found the gradient ILs can greatly weaken the negative influence from the polarization effects for the Ga- polarity case, and the highest conversion efficiency (η) of 2.18% can be obtained in the structure with a linear increase of In composition in the IL from bottom to top. This is mainly attributed to the adsorptions of more photons caused by the higher In composition in the IL closer to the p-GaN window layer. In contrast, for the N-polarity case, the SC structure with an InGaN IL adopting fixed In composition prevails over the ones adopting the gradient-In-composition IL, where the highest η of 9.28% can be obtained at x of 0.62. N-polarity SC structures are proven to have greater potential preparations in high-efficient InGaN SCs. Project supported by the National Natural Science Foundation of China (Grant Nos. 61306108, 61172131, and 61271377), the Scientific Research Foundation for the Returned Overseas Chinese Scholars, Ministry of Education of China (Grant No. 2013693), and the Anhui Polytechnic University Funds for Excellent Young Scientists, China (Grant No. 2014YQQ005).

  11. Evolution of the Specific Surface Area of Snow in a High Temperature Gradient Metamorphism

    NASA Astrophysics Data System (ADS)

    Wang, X.; Baker, I.

    2014-12-01

    The structural evolution of low-density snow under a high temperature gradient over a short period usually takes place in the surface layers during diurnal recrystallization or on a clear, cold night. To relate snow microstructures with their thermal properties, we combined X-ray computed microtomography (micro-CT) observations with numerical simulations. Different types of snow were tested over a large range of TGs (100 K m-1- 500 K m-1). The Specific Surface Area (SSA) was used to characterize the temperature gradient metamorphism (TGM). The magnitude of the temperature gradient and the initial snow type both influence the evolution of SSA. The SSA evolution under TGM was dominated by grain growth and the formation of complex surfaces. Fresh snow experienced a logarithmic decrease of SSA with time, a feature been observed previously by others [Calonne et al., 2014; Schneebeli and Sokratov, 2004; Taillandier et al., 2007]. However, for initial rounded and connected snow structures, the SSA will increase during TGM. Understanding the SSA increase is important in order to predict the enhanced uptake of chemical species by snow or increase in snow albedo. Calonne, N., F. Flin, C. Geindreau, B. Lesaffre, and S. Rolland du Roscoat (2014), Study of a temperature gradient metamorphism of snow from 3-D images: time evolution of microstructures, physical properties and their associated anisotropy, The Cryosphere Discussions, 8, 1407-1451, doi:10.5194/tcd-8-1407-2014. Schneebeli, M., and S. A. Sokratov (2004), Tomography of temperature gradient metamorphism of snow and associated changes in heat conductivity, Hydrological Processes, 18(18), 3655-3665, doi:10.1002/hyp.5800. Taillandier, A. S., F. Domine, W. R. Simpson, M. Sturm, and T. A. Douglas (2007), Rate of decrease of the specific surface area of dry snow: Isothermal and temperature gradient conditions, Journal of Geophysical Research: Earth Surface (2003-2012), 112(F3), doi: 10.1029/2006JF000514.

  12. A review of gradient stiffness hydrogels used in tissue engineering and regenerative medicine.

    PubMed

    Xia, Tingting; Liu, Wanqian; Yang, Li

    2017-06-01

    Substrate stiffness is known to impact characteristics including cell differentiation, proliferation, migration and apoptosis. Hydrogels are polymeric materials distinguished by high water content and diverse physical properties. Gradient stiffness hydrogels are designed by the need to develop biologically friendly materials as extracellular matrix (ECM) alternatives to replace the separated and narrow-ranged hydrogel substrates. Important new discoveries in cell behaviors have been realized with model gradient stiffness hydrogel systems from the two-dimensional (2D) to three-dimensional (3D) scale. Basic and clinical applications for gradient stiffness hydrogels in tissue engineering and regenerative medicine continue to drive the development of stiffness and structure varied hydrogels. Given the importance of gradient stiffness hydrogels in basic research and biomedical applications, there is a clear need for systems for gradient stiffness hydrogel design strategies and their applications. This review will highlight past work in the field of gradient stiffness hydrogels fabrication methods, mechanical property test, applications as well as areas for future study. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1799-1812, 2017. © 2017 Wiley Periodicals, Inc.

  13. Different in the dark: The effect of habitat characteristics on community composition and beta diversity in bromeliad microfauna.

    PubMed

    Busse, Annika; Antiqueira, Pablo A P; Neutzling, Alexandre S; Wolf, Anna M; Romero, Gustavo Q; Petermann, Jana S

    2018-01-01

    The mechanisms which structure communities have been the focus of a large body of research. Here, we address the question if habitat characteristics describing habitat quality may drive changes in community composition and beta diversity of bromeliad-inhabiting microfauna. In our system, changes in canopy cover along an environmental gradient may affect resource availability, disturbance in form of daily water temperature fluctuations and predation, and thus may lead to changes in community structure of bromeliad microfauna through differences in habitat quality along this gradient. Indeed, we observed distinct changes in microfauna community composition along the environmental gradient explained by changes in the extent of daily water temperature fluctuations. We found beta diversity to be higher under low habitat quality (low canopy cover) than under high habitat quality (high canopy cover), which could potentially be explained by a higher relative importance of stochastic processes under low habitat quality. We also partitioned beta diversity into turnover and nestedness components and we found a nested pattern of beta diversity along the environmental gradient, with communities from the lower-quality habitat being nested subsets of communities from the higher-quality habitat. However, this pattern resulted from an increase in microfauna alpha diversity with an increase in habitat quality. By providing insights into microfauna-environment relationships our results contribute to the mechanistic understanding of community dynamics in small freshwater bodies. Here, we highlight the importance of habitat characteristics representing habitat quality in structuring communities, and suggest that this information may help to improve conservation practices of small freshwater ecosystems.

  14. Different in the dark: The effect of habitat characteristics on community composition and beta diversity in bromeliad microfauna

    PubMed Central

    Antiqueira, Pablo A. P.; Neutzling, Alexandre S.; Wolf, Anna M.; Romero, Gustavo Q.; Petermann, Jana S.

    2018-01-01

    The mechanisms which structure communities have been the focus of a large body of research. Here, we address the question if habitat characteristics describing habitat quality may drive changes in community composition and beta diversity of bromeliad-inhabiting microfauna. In our system, changes in canopy cover along an environmental gradient may affect resource availability, disturbance in form of daily water temperature fluctuations and predation, and thus may lead to changes in community structure of bromeliad microfauna through differences in habitat quality along this gradient. Indeed, we observed distinct changes in microfauna community composition along the environmental gradient explained by changes in the extent of daily water temperature fluctuations. We found beta diversity to be higher under low habitat quality (low canopy cover) than under high habitat quality (high canopy cover), which could potentially be explained by a higher relative importance of stochastic processes under low habitat quality. We also partitioned beta diversity into turnover and nestedness components and we found a nested pattern of beta diversity along the environmental gradient, with communities from the lower-quality habitat being nested subsets of communities from the higher-quality habitat. However, this pattern resulted from an increase in microfauna alpha diversity with an increase in habitat quality. By providing insights into microfauna-environment relationships our results contribute to the mechanistic understanding of community dynamics in small freshwater bodies. Here, we highlight the importance of habitat characteristics representing habitat quality in structuring communities, and suggest that this information may help to improve conservation practices of small freshwater ecosystems. PMID:29401522

  15. Effect of the laser heat treatment on the formation of the gradient structures in alloys based on Fe - Cr - Ni system

    NASA Astrophysics Data System (ADS)

    Andreev, A. O.; Bykovskiy, D. P.; Osintsev, A. V.; Petrovskiy, V. N.; Ryashko, I. I.; Blinova, E. N.; Libman, M. A.; Glezer, A. M.

    2017-12-01

    The possibility of producing gradient materials, i.e. materials with pre-set distribution of areas having fundamentally different physical and mechanical characteristics, with the help of laser heat treatment was investigated. Using as an example austenitic-martensitic alloys of iron-chromium-nickel, subjected to cold plastic deformation led to formation of martensite, we show that using laser at the temperature higher than the temperature of reverse martensite transformation leads to the formation of areas of high-strength austenite having predetermined form inside the martensite matrix. Influence of austenite areas geometry on mechanical properties of gradient material was studied.

  16. Using phylogeny and functional traits for assessing community assembly along environmental gradients: A deterministic process driven by elevation.

    PubMed

    Xu, Jinshi; Chen, Yu; Zhang, Lixia; Chai, Yongfu; Wang, Mao; Guo, Yaoxin; Li, Ting; Yue, Ming

    2017-07-01

    Community assembly processes is the primary focus of community ecology. Using phylogenetic-based and functional trait-based methods jointly to explore these processes along environmental gradients are useful ways to explain the change of assembly mechanisms under changing world. Our study combined these methods to test assembly processes in wide range gradients of elevation and other habitat environmental factors. We collected our data at 40 plots in Taibai Mountain, China, with more than 2,300 m altitude difference in study area and then measured traits and environmental factors. Variance partitioning was used to distinguish the main environment factors leading to phylogeny and traits change among 40 plots. Principal component analysis (PCA) was applied to colligate other environment factors. Community assembly patterns along environmental gradients based on phylogenetic and functional methods were studied for exploring assembly mechanisms. Phylogenetic signal was calculated for each community along environmental gradients in order to detect the variation of trait performance on phylogeny. Elevation showed a better explanatory power than other environment factors for phylogenetic and most traits' variance. Phylogenetic and several functional structure clustered at high elevation while some conserved traits overdispersed. Convergent tendency which might be caused by filtering or competition along elevation was detected based on functional traits. Leaf dry matter content (LDMC) and leaf nitrogen content along PCA 1 axis showed conflicting patterns comparing to patterns showed on elevation. LDMC exhibited the strongest phylogenetic signal. Only the phylogenetic signal of maximum plant height showed explicable change along environmental gradients. Synthesis . Elevation is the best environment factors for predicting phylogeny and traits change. Plant's phylogenetic and some functional structures show environmental filtering in alpine region while it shows different assembly processes in middle- and low-altitude region by different trait/phylogeny. The results highlight deterministic processes dominate community assembly in large-scale environmental gradients. Performance of phylogeny and traits along gradients may be independent with each other. The novel method for calculating functional structure which we used in this study and the focus of phylogenetic signal change along gradients may provide more useful ways to detect community assembly mechanisms.

  17. Pupil-segmentation-based adaptive optical correction of a high-numerical-aperture gradient refractive index lens for two-photon fluorescence endoscopy.

    PubMed

    Wang, Chen; Ji, Na

    2012-06-01

    The intrinsic aberrations of high-NA gradient refractive index (GRIN) lenses limit their image quality as well as field of view. Here we used a pupil-segmentation-based adaptive optical approach to correct the inherent aberrations in a two-photon fluorescence endoscope utilizing a 0.8 NA GRIN lens. By correcting the field-dependent aberrations, we recovered diffraction-limited performance across a large imaging field. The consequent improvements in imaging signal and resolution allowed us to detect fine structures that were otherwise invisible inside mouse brain slices.

  18. Roto-flexoelectric coupling impact on the phase diagrams and pyroelectricity of thin SrTiO 3 films

    DOE PAGES

    Morozovska, Anna N.; Eliseev, Eugene A.; Bravina, Svetlana L.; ...

    2012-09-20

    The influence of the flexoelectric and rotostriction coupling on the phase diagrams of ferroelastic-quantum paraelectric SrTiO 3 films was studied using Landau-Ginzburg-Devonshire (LGD) theory. We calculated the phase diagrams in coordinates temperature - film thickness for different epitaxial misfit strains. Tensile misfit strains stimulate appearance of the spontaneous out-of-plane structural order parameter (displacement vector of an appropriate oxygen atom from its cubic position) in the structural phase. For compressive misfit strains are stimulated because of the spontaneous in-plane structural order parameter. Furthermore, gradients of the structural order parameter components, which inevitably exist in the vicinity of film surfaces due tomore » the termination and symmetry breaking, induce improper polarization and pyroelectric response via the flexoelectric and rotostriction coupling mechanism. Flexoelectric and rotostriction coupling results in the roto-flexoelectric field that is antisymmetric inside the film, small in the central part of the film, where the gradients of the structural parameter are small, and maximal near the surfaces, where the gradients of the structural parameter are highest. The field induces improper polarization and pyroelectric response. Penetration depths of the improper phases (both polar and structural) can reach several nm from the film surfaces. An improper pyroelectric response of thin films is high enough to be registered with planar-type electrode configurations by conventional pyroelectric methods.« less

  19. Scalar gradient trajectory measurements using high-frequency cinematographic planar Rayleigh scattering

    NASA Astrophysics Data System (ADS)

    Gampert, Markus; Narayanaswamy, Venkat; Peters, Norbert

    2013-12-01

    In this work, we perform an experimental investigation into statistics based on scalar gradient trajectories in a turbulent jet flow, which have been suggested as an alternative means to analyze turbulent flow fields by Wang and Peters (J Fluid Mech 554:457-475, 2006, 608:113-138, 2008). Although there are several numerical simulations and theoretical works that investigate the statistics along gradient trajectories, only few experiments in this area have been reported. To this end, high-frequency cinematographic planar Rayleigh scattering imaging is performed at different axial locations of a turbulent propane jet issuing into a CO2 coflow at nozzle-based Reynolds numbers Re 0 = 3,000-8,600. Taylor's hypothesis is invoked to obtain a three-dimensional reconstruction of the scalar field in which then the corresponding scalar gradient trajectories can be computed. These are then used to examine the local structure of the mixture fraction with a focus on the scalar turbulent/non-turbulent interface. The latter is a layer that is located between the fully turbulent part of the jet and the outer flow. Using scalar gradient trajectories, we partition the turbulent scalar field into these three regions according to an approach developed by Mellado et al. (J Fluid Mech 626:333-365, 2009). Based on the latter, we investigate the probability to find the respective regions as a function of the radial distance to the centerline, which turns out to reveal the meandering nature of the scalar T/NT interface layer as well as its impact on the local structure of the turbulent scalar field.

  20. Quantitative structure-retention relationship models for the prediction of the reversed-phase HPLC gradient retention based on the heuristic method and support vector machine.

    PubMed

    Du, Hongying; Wang, Jie; Yao, Xiaojun; Hu, Zhide

    2009-01-01

    The heuristic method (HM) and support vector machine (SVM) were used to construct quantitative structure-retention relationship models by a series of compounds to predict the gradient retention times of reversed-phase high-performance liquid chromatography (HPLC) in three different columns. The aims of this investigation were to predict the retention times of multifarious compounds, to find the main properties of the three columns, and to indicate the theory of separation procedures. In our method, we correlated the retention times of many diverse structural analytes in three columns (Symmetry C18, Chromolith, and SG-MIX) with their representative molecular descriptors, calculated from the molecular structures alone. HM was used to select the most important molecular descriptors and build linear regression models. Furthermore, non-linear regression models were built using the SVM method; the performance of the SVM models were better than that of the HM models, and the prediction results were in good agreement with the experimental values. This paper could give some insights into the factors that were likely to govern the gradient retention process of the three investigated HPLC columns, which could theoretically supervise the practical experiment.

  1. Slab Geometry and Segmentation on Seismogenic Subduction Zone; Insight from gravity gradients

    NASA Astrophysics Data System (ADS)

    Saraswati, A. T.; Mazzotti, S.; Cattin, R.; Cadio, C.

    2017-12-01

    Slab geometry is a key parameter to improve seismic hazard assessment in subduction zones. In many cases, information about structures beneath subduction are obtained from geophysical dedicated studies, including geodetic and seismic measurements. However, due to the lack of global information, both geometry and segmentation in seismogenic zone of many subductions remain badly-constrained. Here we propose an alternative approach based on satellite gravity observations. The GOCE (Gravity field and steady-state Ocean Circulation Explorer) mission enables to probe Earth deep mass structures from gravity gradients, which are more sensitive to spatial structure geometry and directional properties than classical gravitational data. Gravity gradients forward modeling of modeled slab is performed by using horizontal and vertical gravity gradient components to better determine slab geophysical model rather than vertical gradient only. Using polyhedron method, topography correction on gravity gradient signal is undertaken to enhance the anomaly signal of lithospheric structures. Afterward, we compare residual gravity gradients with the calculated signals associated with slab geometry. In this preliminary study, straightforward models are used to better understand the characteristic of gravity gradient signals due to deep mass sources. We pay a special attention to the delineation of slab borders and dip angle variations.

  2. Mechanical Properties of Porous, High Temperature Structural Materials: Sources of Toughness in Reaction Bonded Silicon Nitride.

    DTIC Science & Technology

    1995-10-15

    tensile extension. At each level of externally imposed displacements, internal equilibrium was achieved by a conjugate gradient method of energy...indentation cracks viewed by TEM. This could be due to either weaker grain boundaries or due to grain level internal stresses of misfit. The fact... internally using the conjugate gradient method until the overall elastic strain energy function 4 was minimized for a unit level of border displacement which

  3. Highly improved passivation of c-Si surfaces using a gradient i a-Si:H layer

    NASA Astrophysics Data System (ADS)

    Lee, Soonil; Ahn, Jaehyun; Mathew, Leo; Rao, Rajesh; Zhang, Zhongjian; Kim, Jae Hyun; Banerjee, Sanjay K.; Yu, Edward T.

    2018-04-01

    Surface passivation using intrinsic a-Si:H (i a-Si:H) films plays a key role in high efficiency c-Si heterojunction solar cells. In this study, we demonstrate improved passivation quality using i a-Si:H films with a gradient-layered structure consisting of interfacial, transition, and capping layers deposited on c-Si surfaces. The H2 dilution ratio (R) during deposition was optimized individually for the interfacial and capping layers, which were separated by a transition layer for which R changed gradually between its values for the interfacial and capping layers. This approach yielded a significant reduction in surface carrier recombination, resulting in improvement of the minority carrier lifetime from 1480 μs for mono-layered i a-Si:H passivation to 2550 μs for the gradient-layered passivation approach.

  4. Micro-structured heat exchanger for cryogenic mixed refrigerant cycles

    NASA Astrophysics Data System (ADS)

    Gomse, D.; Reiner, A.; Rabsch, G.; Gietzelt, T.; Brandner, J. J.; Grohmann, S.

    2017-12-01

    Mixed refrigerant cycles (MRCs) offer a cost- and energy-efficient cooling method for the temperature range between 80 and 200 K. The performance of MRCs is strongly influenced by entropy production in the main heat exchanger. High efficiencies thus require small temperature gradients among the fluid streams, as well as limited pressure drop and axial conduction. As temperature gradients scale with heat flux, large heat transfer areas are necessary. This is best achieved with micro-structured heat exchangers, where high volumetric heat transfer areas can be realized. The reliable design of MRC heat exchangers is challenging, since two-phase heat transfer and pressure drop in both fluid streams have to be considered simultaneously. Furthermore, only few data on the convective boiling and condensation kinetics of zeotropic mixtures is available in literature. This paper presents a micro-structured heat exchanger designed with a newly developed numerical model, followed by experimental results on the single-phase pressure drop and their implications on the hydraulic diameter.

  5. Relative and combined effects of habitat and fishing on reef fish communities across a limited fishing gradient at Ningaloo.

    PubMed

    Wilson, Shaun K; Babcock, Russ C; Fisher, Rebecca; Holmes, Thomas H; Moore, James A Y; Thomson, Damian P

    2012-10-01

    Habitat degradation and fishing are major drivers of temporal and spatial changes in fish communities. The independent effects of these drivers are well documented, but the relative importance and interaction between fishing and habitat shifts is poorly understood, particularly in complex systems such as coral reefs. To assess the combined and relative effects of fishing and habitat we examined the composition of fish communities on patch reefs across a gradient of high to low structural complexity in fished and unfished areas of the Ningaloo Marine Park, Western Australia. Biomass and species richness of fish were positively correlated with structural complexity of reefs and negatively related to macroalgal cover. Total abundance of fish was also positively related to structural complexity, however this relationship was stronger on fished reefs than those where fishing is prohibited. The interaction between habitat condition and fishing pressure is primarily due to the high abundance of small bodied planktivorous fish on fished reefs. However, the influence of management zones on the abundance and biomass of predators and target species is small, implying spatial differences in fishing pressure are low and unlikely to be driving this interaction. Our results emphasise the importance of habitat in structuring reef fish communities on coral reefs especially when gradients in fishing pressure are low. The influence of fishing effort on this relationship may however become more important as fishing pressure increases. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Low Functional β-Diversity Despite High Taxonomic β-Diversity among Tropical Estuarine Fish Communities

    PubMed Central

    Villéger, Sébastien; Miranda, Julia Ramos; Hernandez, Domingo Flores; Mouillot, David

    2012-01-01

    The concept of β-diversity, defined as dissimilarity among communities, has been widely used to investigate biodiversity patterns and community assembly rules. However, in ecosystems with high taxonomic β-diversity, due to marked environmental gradients, the level of functional β-diversity among communities is largely overlooked while it may reveal processes shaping community structure. Here, decomposing biodiversity indices into α (local) and γ (regional) components, we estimated taxonomic and functional β-diversity among tropical estuarine fish communities, through space and time. We found extremely low functional β-diversity values among fish communities (<1.5%) despite high dissimilarity in species composition and species dominance. Additionally, in contrast to the high α and γ taxonomic diversities, α and γ functional diversities were very close to the minimal value. These patterns were caused by two dominant functional groups which maintained a similar functional structure over space and time, despite the strong dissimilarity in taxonomic structure along environmental gradients. Our findings suggest that taxonomic and functional β-diversity deserve to be quantified simultaneously since these two facets can show contrasting patterns and the differences can in turn shed light on community assembly rules. PMID:22792395

  7. Exploring the complexity of quantum control optimization trajectories.

    PubMed

    Nanduri, Arun; Shir, Ofer M; Donovan, Ashley; Ho, Tak-San; Rabitz, Herschel

    2015-01-07

    The control of quantum system dynamics is generally performed by seeking a suitable applied field. The physical objective as a functional of the field forms the quantum control landscape, whose topology, under certain conditions, has been shown to contain no critical point suboptimal traps, thereby enabling effective searches for fields that give the global maximum of the objective. This paper addresses the structure of the landscape as a complement to topological critical point features. Recent work showed that landscape structure is highly favorable for optimization of state-to-state transition probabilities, in that gradient-based control trajectories to the global maximum value are nearly straight paths. The landscape structure is codified in the metric R ≥ 1.0, defined as the ratio of the length of the control trajectory to the Euclidean distance between the initial and optimal controls. A value of R = 1 would indicate an exactly straight trajectory to the optimal observable value. This paper extends the state-to-state transition probability results to the quantum ensemble and unitary transformation control landscapes. Again, nearly straight trajectories predominate, and we demonstrate that R can take values approaching 1.0 with high precision. However, the interplay of optimization trajectories with critical saddle submanifolds is found to influence landscape structure. A fundamental relationship necessary for perfectly straight gradient-based control trajectories is derived, wherein the gradient on the quantum control landscape must be an eigenfunction of the Hessian. This relation is an indicator of landscape structure and may provide a means to identify physical conditions when control trajectories can achieve perfect linearity. The collective favorable landscape topology and structure provide a foundation to understand why optimal quantum control can be readily achieved.

  8. Superior Tensile Ductility in Bulk Metallic Glass with Gradient Amorphous Structure

    PubMed Central

    Wang, Q.; Yang, Y.; Jiang, H.; Liu, C. T.; Ruan, H. H.; Lu, J.

    2014-01-01

    Over centuries, structural glasses have been deemed as a strong yet inherently ‘brittle’ material due to their lack of tensile ductility. However, here we report bulk metallic glasses exhibiting both a high strength of ~2 GPa and an unprecedented tensile elongation of 2–4% at room temperature. Our experiments have demonstrated that intense structural evolution can be triggered in theses glasses by the carefully controlled surface mechanical attrition treatment, leading to the formation of gradient amorphous microstructures across the sample thickness. As a result, the engineered amorphous microstructures effectively promote multiple shear banding while delay cavitation in the bulk metallic glass, thus resulting in superior tensile ductility. The outcome of our research uncovers an unusual work-hardening mechanism in monolithic bulk metallic glasses and demonstrates a promising yet low-cost strategy suitable for producing large-sized, ultra-strong and stretchable structural glasses. PMID:24755683

  9. Assessment of a model of forest dynamics under contrasting climate and disturbance regimes in the Pacific Northwest [FORCLIM

    USGS Publications Warehouse

    Busing, Richard T.; Solomon, Allen M.

    2005-01-01

    An individual-based model of forest dynamics (FORCLIM) was tested for its ability to simulate forest composition and structure in the Pacific Northwest region of North America. Simulation results across gradients of climate and disturbance were compared to forest survey data from several vegetation zones in western Oregon. Modelled patterns of tree species composition, total basal area and stand height across climate gradients matched those in the forest survey data. However, the density of small stems (<50 cm DBH) was underestimated by the model. Thus actual size-class structure and other density-based parameters of stand structure were not simulated with high accuracy. The addition of partial-stand disturbances at moderate frequencies (<0.01 yr-1) often improved agreement between simulated and actual results. Strengths and weaknesses of the FORCLIM model in simulating forest dynamics and structure in the Pacific Northwest are discussed.

  10. Sensitivity Analysis for Coupled Aero-structural Systems

    NASA Technical Reports Server (NTRS)

    Giunta, Anthony A.

    1999-01-01

    A novel method has been developed for calculating gradients of aerodynamic force and moment coefficients for an aeroelastic aircraft model. This method uses the Global Sensitivity Equations (GSE) to account for the aero-structural coupling, and a reduced-order modal analysis approach to condense the coupling bandwidth between the aerodynamic and structural models. Parallel computing is applied to reduce the computational expense of the numerous high fidelity aerodynamic analyses needed for the coupled aero-structural system. Good agreement is obtained between aerodynamic force and moment gradients computed with the GSE/modal analysis approach and the same quantities computed using brute-force, computationally expensive, finite difference approximations. A comparison between the computational expense of the GSE/modal analysis method and a pure finite difference approach is presented. These results show that the GSE/modal analysis approach is the more computationally efficient technique if sensitivity analysis is to be performed for two or more aircraft design parameters.

  11. A multi-structural and multi-functional integrated fog collection system in cactus.

    PubMed

    Ju, Jie; Bai, Hao; Zheng, Yongmei; Zhao, Tianyi; Fang, Ruochen; Jiang, Lei

    2012-01-01

    Multiple biological structures have demonstrated fog collection abilities, such as beetle backs with bumps and spider silks with periodic spindle-knots and joints. Many Cactaceae species live in arid environments and are extremely drought-tolerant. Here we report that one of the survival systems of the cactus Opuntia microdasys lies in its efficient fog collection system. This unique system is composed of well-distributed clusters of conical spines and trichomes on the cactus stem; each spine contains three integrated parts that have different roles in the fog collection process according to their surface structural features. The gradient of the Laplace pressure, the gradient of the surface-free energy and multi-function integration endow the cactus with an efficient fog collection system. Investigations of the structure-function relationship in this system may help us to design novel materials and devices to collect water from fog with high efficiencies.

  12. Gradient structure-induced temperature responsiveness in styrene/methyl methacrylate gradient copolymers micelles.

    PubMed

    Zheng, Chao; Huang, Haiying; He, Tianbai

    2014-02-01

    In this work, micelles are formed by gradient copolymer of styrene and methyl methacrylate in acetone-water mixture and their temperature responsiveness is investigated in a narrow range near room temperature. Three different kinds of structural transitions could be induced by temperature: unimers to micelle transition, shrinkage/stretching of micelles, and morphological transition from spherical micelles to vesicles. In addition, a model analysis on the interface of gradient copolymer micelle is made to better understand these phenomena. It is found that both position and composition of the interface could alter in response to the change in temperature. According to the experiments and model analysis, it is proposed that temperature responsiveness might be an intrinsic and universal property of gradient copolymer micelles, which only originates from the gradient structure. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Structural Investigations of Afghanistan Deduced from Remote Sensing and Potential Field Data

    NASA Astrophysics Data System (ADS)

    Saibi, Hakim; Azizi, Masood; Mogren, Saad

    2016-08-01

    This study integrates potential gravity and magnetic field data with remotely sensed images and geological data in an effort to understand the subsurface major geological structures in Afghanistan. Integrated analysis of Landsat SRTM data was applied for extraction of geological lineaments. The potential field data were analyzed using gradient interpretation techniques, such as analytic signal (AS), tilt derivative (TDR), horizontal gradient of the tilt derivative (HG-TDR), Euler Deconvolution (ED) and power spectrum methods, and results were correlated with known geological structures. The analysis of remote sensing data and potential field data reveals the regional geological structural characteristics of Afghanistan. The power spectrum analysis of magnetic and gravity data suggests shallow basement rocks at around 1 to 1.5 km depth. The results of TDR of potential field data are in agreement with the location of the major regional fault structures and also the location of the basins and swells, except in the Helmand region (SW Afghanistan) where many high potential field anomalies are observed and attributed to batholiths and near-surface volcanic rocks intrusions. A high-resolution airborne geophysical survey in the data sparse region of eastern Afghanistan is recommended in order to have a complete image of the potential field anomalies.

  14. Tracer Lamination in the Stratosphere: A Global Climatology

    NASA Technical Reports Server (NTRS)

    Appenzeller, Christof; Holton, James R.

    1997-01-01

    Vertical soundings of stratospheric ozone often exhibit laminated tracer structures characterized by strong vertical tracer gradients. The change in time of these gradients is used to define a tracer lamination rate. It is shown that this quantity can be calculated by the cross product of the horizontal temperature and horizontal tracer gradients. A climatology based on UARS satellite-borne ozone data and on ozone-like pseudotracer data is presented. Three stratospheric regions with high lamination rates were found: the part of the stratospheric overworld which is influenced by the polar vortex, the part of the lowermost stratosphere which is influenced by the tropopause and a third region in the subtropical lower stratosphere mainly characterized with strong vertical shear. High lamination rates in the stratospheric overworld were absent during summer, whereas in the lowermost stratosphere high lamination rates were found year-round. This is consistent with the occurrence and seasonal variation of the horizontal tracer gradient and vertical shear necessary for tilting the tracer surfaces. During winter, high lamination rates associated with the stratospheric polar vortex are present down to approximately 100 hPa. Several features of the derived climatology are roughly consistent with earlier balloon-borne studies. The patterns in the southern and northern hemisphere are comparable, but details differ as anticipated from a less disturbed and more symmetric southern polar vortex.

  15. Mitochondrial DNA markers reveal high genetic diversity but low genetic differentiation in the black fly Simulium tani Takaoka & Davies along an elevational gradient in Malaysia.

    PubMed

    Low, Van Lun; Adler, Peter H; Takaoka, Hiroyuki; Ya'cob, Zubaidah; Lim, Phaik Eem; Tan, Tiong Kai; Lim, Yvonne A L; Chen, Chee Dhang; Norma-Rashid, Yusoff; Sofian-Azirun, Mohd

    2014-01-01

    The population genetic structure of Simulium tani was inferred from mitochondria-encoded sequences of cytochrome c oxidase subunits I (COI) and II (COII) along an elevational gradient in Cameron Highlands, Malaysia. A statistical parsimony network of 71 individuals revealed 71 haplotypes in the COI gene and 43 haplotypes in the COII gene; the concatenated sequences of the COI and COII genes revealed 71 haplotypes. High levels of genetic diversity but low levels of genetic differentiation were observed among populations of S. tani at five elevations. The degree of genetic diversity, however, was not in accordance with an altitudinal gradient, and a Mantel test indicated that elevation did not have a limiting effect on gene flow. No ancestral haplotype of S. tani was found among the populations. Pupae with unique structural characters at the highest elevation showed a tendency to form their own haplotype cluster, as revealed by the COII gene. Tajima's D, Fu's Fs, and mismatch distribution tests revealed population expansion of S. tani in Cameron Highlands. A strong correlation was found between nucleotide diversity and the levels of dissolved oxygen in the streams where S. tani was collected.

  16. ptchg: A FORTRAN program for point-charge calculations of electric field gradients (EFGs)

    NASA Astrophysics Data System (ADS)

    Spearing, Dane R.

    1994-05-01

    ptchg, a FORTRAN program, has been developed to calculate electric field gradients (EFG) around an atomic site in crystalline solids using the point-charge direct-lattice summation method. It uses output from the crystal structure generation program Atoms as its input. As an application of ptchg, a point-charge calculation of the EFG quadrupolar parameters around the oxygen site in SiO 2 cristobalite is demonstrated. Although point-charge calculations of electric field gradients generally are limited to ionic compounds, the computed quadrupolar parameters around the oxygen site in SiO 2 cristobalite, a highly covalent material, are in good agreement with the experimentally determined values from nuclear magnetic resonance (NMR) spectroscopy.

  17. Experimental evidence of temperature gradients in cavitating microflows seeded with thermosensitive nanoprobes

    NASA Astrophysics Data System (ADS)

    Ayela, Frédéric; Medrano-Muñoz, Manuel; Amans, David; Dujardin, Christophe; Brichart, Thomas; Martini, Matteo; Tillement, Olivier; Ledoux, Gilles

    2013-10-01

    Thermosensitive fluorescent nanoparticles seeded in deionized water combined with confocal microscopy enables thermal mapping over three dimensions of the liquid phase flowing through a microchannel interrupted by a microdiaphragm. This experiment reveals the presence of a strong thermal gradient up to ˜105 K/m only when hydrodynamic cavitation is present. Here hydrodynamic cavitation is the consequence of high shear rates downstream in the diaphragm. This temperature gradient is located in vortical structures associated with eddies in the shear layers. We attribute such overheating to the dissipation involved by the cavitating flow regime. Accordingly, we demonstrate that the microsizes of the device enhance the intensity of the thermal gap.

  18. Calculation and Analysis of magnetic gradient tensor components of global magnetic models

    NASA Astrophysics Data System (ADS)

    Schiffler, Markus; Queitsch, Matthias; Schneider, Michael; Stolz, Ronny; Krech, Wolfram; Meyer, Hans-Georg; Kukowski, Nina

    2014-05-01

    Magnetic mapping missions like SWARM and its predecessors, e.g. the CHAMP and MAGSAT programs, offer high resolution Earth's magnetic field data. These datasets are usually combined with magnetic observatory and survey data, and subject to harmonic analysis. The derived spherical harmonic coefficients enable magnetic field modelling using a potential series expansion. Recently, new instruments like the JeSSY STAR Full Tensor Magnetic Gradiometry system equipped with very high sensitive sensors can directly measure the magnetic field gradient tensor components. The full understanding of the quality of the measured data requires the extension of magnetic field models to gradient tensor components. In this study, we focus on the extension of the derivation of the magnetic field out of the potential series magnetic field gradient tensor components and apply the new theoretical framework to the International Geomagnetic Reference Field (IGRF) and the High Definition Magnetic Model (HDGM). The gradient tensor component maps for entire Earth's surface produced for the IGRF show low values and smooth variations reflecting the core and mantle contributions whereas those for the HDGM gives a novel tool to unravel crustal structure and deep-situated ore bodies. For example, the Thor Suture and the Sorgenfrei-Thornquist Zone in Europe are delineated by a strong northward gradient. Derived from Eigenvalue decomposition of the magnetic gradient tensor, the scaled magnetic moment, normalized source strength (NSS) and the bearing of the lithospheric sources are presented. The NSS serves as a tool for estimating the lithosphere-asthenosphere boundary as well as the depth of plutons and ore bodies. Furthermore changes in magnetization direction parallel to the mid-ocean ridges can be obtained from the scaled magnetic moment and the normalized source strength discriminates the boundaries between the anomalies of major continental provinces like southern Africa or the Eastern European Craton.

  19. Corotating solar wind structures and recurrent trains of enhanced diurnal variation in galactic cosmic rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yeeram, T.; Ruffolo, D.; Sáiz, A.

    Data from the Princess Sirindhorn Neutron Monitor at Doi Inthanon, Thailand, with a vertical cutoff rigidity of 16.8 GV, were utilized to determine the diurnal anisotropy (DA) of Galactic cosmic rays (GCRs) near Earth during solar minimum conditions between 2007 November and 2010 November. We identified trains of enhanced DA over several days, which often recur after a solar rotation period (∼27 days). By investigating solar coronal holes as identified from synoptic maps and solar wind parameters, we found that the intensity and anisotropy of cosmic rays are associated with the high-speed streams (HSSs) in the solar wind, which aremore » in turn related to the structure and evolution of coronal holes. An enhanced DA was observed after the onset of some, but not all, HSSs. During time periods of recurrent trains, the DA was often enhanced or suppressed according to the sign of the interplanetary magnetic field B, which suggests a contribution from a mechanism involving a southward gradient in the GCR density, n, and a gradient anisotropy along B × ∇n. In one non-recurrent and one recurrent sequence, an HSS from an equatorial coronal hole was merged with that from a trailing mid-latitude extension of a polar coronal hole, and the slanted HSS structure in space with suppressed GCR density can account for the southward GCR gradient. We conclude that the gradient anisotropy is a source of temporary changes in the GCR DA under solar minimum conditions, and that the latitudinal GCR gradient can sometimes be explained by the coronal hole morphology.« less

  20. Subsurface geologic features of the 2011 central Virginia earthquakes revealed by airborne geophysics

    USGS Publications Warehouse

    Shah, Anjana K.; Horton, J. Wright; Burton, William C.; Spears, David B; Gilmer, Amy K

    2014-01-01

    Characterizing geologic features associated with major earthquakes provides insights into mechanisms contributing to fault slip and assists evaluation of seismic hazard. We use high-resolution airborne geophysical data combined with ground sample measurements to image subsurface geologic features associated with the 2011 moment magnitude (Mw) 5.8 central Virginia (USA) intraplate earthquake and its aftershocks. Geologic mapping and magnetic data analyses suggest that the earthquake occurred near a complex juncture of geologic contacts. These contacts also intersect a >60-km-long linear gravity gradient. Distal aftershocks occurred in tight, ~1-km-wide clusters near other obliquely oriented contacts that intersect gravity gradients, in contrast to more linearly distributed seismicity observed at other seismic zones. These data and corresponding models suggest that local density contrasts (manifested as gravity gradients) modified the nearby stress regime in a manner favoring failure. However, along those gradients seismic activity is localized near structural complexities, suggesting a significant contribution from variations in associated rock characteristics such as rheological weakness and/or rock permeability, which may be enhanced in those areas. Regional magnetic data show a broader bend in geologic structures within the Central Virginia seismic zone, suggesting that seismic activity may also be enhanced in other nearby areas with locally increased rheological weaknesses and/or rock permeability. In contrast, away from the Mw5.8 epicenter, geophysical lineaments are nearly continuous for tens of kilometers, especially toward the northeast. Continuity of associated geologic structures probably contributed to efficient propagation of seismic energy in that direction, consistent with moderate to high levels of damage from Louisa County to Washington, D.C., and neighboring communities.

  1. Altitudinal Patterns of Species Diversity and Phylogenetic Diversity across Temperate Mountain Forests of Northern China.

    PubMed

    Zhang, Wenxin; Huang, Dizhou; Wang, Renqing; Liu, Jian; Du, Ning

    2016-01-01

    The spatial patterns of biodiversity and their underlying mechanisms have been an active area of research for a long time. In this study, a total of 63 samples (20m × 30m) were systematically established along elevation gradients on Mount Tai and Mount Lao, China. We explored altitudinal patterns of plant diversity in the two mountain systems. In order to understand the mechanisms driving current diversity patterns, we used phylogenetic approaches to detect the spatial patterns of phylogenetic diversity and phylogenetic structure along two elevation gradients. We found that total species richness had a monotonically decreasing pattern and tree richness had a unimodal pattern along the elevation gradients in the two study areas. However, altitudinal patterns in shrub richness and herbs richness were not consistent on the two mountains. At low elevation, anthropogenic disturbances contributed to the increase of plant diversity, especially for shrubs and herbs in understory layers, which are more sensitive to changes in microenvironment. The phylogenetic structure of plant communities exhibited an inverted hump-shaped pattern along the elevation gradient on Mount Tai, which demonstrates that environmental filtering is the main driver of plant community assembly at high and low elevations and inter-specific competition may be the main driver of plant community assembly in the middle elevations. However, the phylogenetic structure of plant communities did not display a clear pattern on Mount Lao where the climate is milder. Phylogenetic beta diversity and species beta diversity consistently increased with increasing altitudinal divergence in the two study areas. However, the altitudinal patterns of species richness did not completely mirror phylogenetic diversity patterns. Conservation areas should be selected taking into consideration the preservation of high species richness, while maximizing phylogenetic diversity to improve the potential for diversification in the future.

  2. Horizontal gravity gradient - An aid to the definition of crustal structure in North America

    NASA Technical Reports Server (NTRS)

    Sharpton, V. L.; Grieve, R. A. F.; Thomas, M. D.; Halpenny, J. F.

    1987-01-01

    A map of the magnitude of the horizontal Bouguer gravity gradient over the North American continent is used to delineate lateral discontinuities in upper crustal density and/or thickness associated with such processes as suturing and rifting. The usefulness of gradient trends in mapping major structural boundaries, which are sometimes poorly exposed or completely buried, is demonstrated by examples such as the buried southward extension of the Grenville Front and buried boundaries of the Superior Province. Gradient trends also draw attention to poorly known structures, which may have major tectonic significance, and to a continent-wide structural fabric, which may provide a record of the tectonic growth of the North American continent.

  3. A low-cost, mechanically simple apparatus for measuring eddy current-induced magnetic fields in MRI.

    PubMed

    Gilbert, Kyle M; Martyn Klassen, L; Menon, Ravi S

    2013-10-01

    The fidelity of gradient waveforms in MRI pulse sequences is essential to the acquisition of images and spectra with minimal distortion artefacts. Gradient waveforms can become nonideal when eddy currents are created in nearby conducting structures; however, the resultant magnetic fields can be characterised and compensated for by measuring the spatial and temporal field response following a gradient impulse. This can be accomplished using a grid of radiofrequency (RF) coils. The RF coils must adhere to strict performance requirements: they must achieve a high sensitivity and signal-to-noise ratio (SNR), have minimal susceptibility field gradients between the sample and surrounding material interfaces and be highly decoupled from each other. In this study, an apparatus is presented that accomplishes these tasks with a low-cost, mechanically simple solution. The coil system consists of six transmit/receive RF coils immersed in a high-molarity saline solution. The sensitivity and SNR following an excitation pulse are sufficiently high to allow accurate phase measurements during free-induction decays; the intrinsic susceptibility matching of the materials, because of the unique design of the coil system, results in sufficiently narrow spectral line widths (mean of 19 Hz), and adjacent RF coils are highly decoupled (mean S12 of -47 dB). The temporal and spatial distributions of eddy currents following a gradient pulse are measured to validate the efficacy of the design, and the resultant amplitudes and time constants required for zeroth- and first-order compensation are provided. Copyright © 2013 John Wiley & Sons, Ltd.

  4. Design and fabrication of a metamaterial gradient index diffraction grating at infrared wavelengths.

    PubMed

    Tsai, Yu-Ju; Larouche, Stéphane; Tyler, Talmage; Lipworth, Guy; Jokerst, Nan M; Smith, David R

    2011-11-21

    We demonstrate the design, fabrication and characterization of an artificially structured, gradient index metamaterial with a linear index variation of Δn ~ 3.0. The linear gradient profile is repeated periodically to form the equivalent of a blazed grating, with the gradient occurring across a spatial distance of 61 μm. The grating, which operates at a wavelength of 10.6 μm, is composed of non-resonant, progressively modified "I-beam" metamaterial elements and approximates a linear phase shift gradient using 61 distinguishable phase levels. The grating structure consists of four layers of lithographically patterned metallic I-beam elements separated by dielectric layers of SiO(2). The index gradient is confirmed by comparing the measured magnitudes of the -1, 0 and +1 diffracted orders to those obtained from full wave simulations incorporating all material properties of the metals and dielectrics of the structures. The large index gradient has the potential to enable compact infrared diffractive and gradient index optics, as well as more exotic transformation optical media. © 2011 Optical Society of America

  5. In situ synthesis of bilayered gradient poly(vinyl alcohol)/hydroxyapatite composite hydrogel by directional freezing-thawing and electrophoresis method.

    PubMed

    Su, Cui; Su, Yunlan; Li, Zhiyong; Haq, Muhammad Abdul; Zhou, Yong; Wang, Dujin

    2017-08-01

    Bilayered poly(vinyl alcohol) (PVA)/hydroxyapatite (HA) composite hydrogels with anisotropic and gradient mechanical properties were prepared by the combination of directional freezing-thawing (DFT) and electrophoresis method. Firstly, PVA hydrogels with aligned channel structure were prepared by the DFT method. Then, HA nanoparticles were in situ synthesized within the PVA hydrogels via electrophoresis. By controlling the time of the electrophoresis process, a bilayered gradient hydrogel containing HA particles in only half of the gel region was obtained. The PVA/HA composite hydrogel exhibited gradient mechanical strength depending on the distance to the cathode. The gradient initial tensile modulus ranging from 0.18MPa to 0.27MPa and the gradient initial compressive modulus from 0.33MPa to 0.51MPa were achieved. The binding strength of the two regions was relatively high and no apparent internal stress or defect was observed at the boundary. The two regions of the bilayered hydrogel also showed different osteoblast cell adhesion properties. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Connections between density, wall-normal velocity, and coherent structure in a heated turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    Saxton-Fox, Theresa; Gordeyev, Stanislav; Smith, Adam; McKeon, Beverley

    2015-11-01

    Strong density gradients associated with turbulent structure were measured in a mildly heated turbulent boundary layer using an optical sensor (Malley probe). The Malley probe measured index of refraction gradients integrated along the wall-normal direction, which, due to the proportionality of index of refraction and density in air, was equivalently an integral measure of density gradients. The integral output was observed to be dominated by strong, localized density gradients. Conditional averaging and Pearson correlations identified connections between the streamwise gradient of density and the streamwise gradient of wall-normal velocity. The trends were suggestive of a process of pick-up and transport of heat away from the wall. Additionally, by considering the density field as a passive marker of structure, the role of the wall-normal velocity in shaping turbulent structure in a sheared flow was examined. Connections were developed between sharp gradients in the density and flow fields and strong vertical velocity fluctuations. This research is made possible by the Department of Defense through the National Defense & Engineering Graduate Fellowship (NDSEG) Program and by the Air Force Office of Scientific Research Grant # FA9550-12-1-0060.

  7. Solitary plasma rings and magnetic field generation involving gravity and differential rotation

    NASA Astrophysics Data System (ADS)

    Coppi, B.

    2012-12-01

    A new theoretical framework for describing how magnetic fields are generated and amplified is provided by finding magneto-gravitational modes that involve gravity, density gradients, and differential rotation in an essential way. Other factors, such as the presence of a high temperature particle population or of a temperature gradient, can contribute to their excitation. These modes identified by a linearized analysis are shown to be important for the evolution of plasma disks surrounding black holes toward different configurations. Since the nonlinear development of these modes can lead to radially localized regions with a relatively small differential rotation, new stationary structures have been identified, in the (fully) nonlinear limit, which are localized radially over regions with negligible gradients of the rotation frequency. These structures, characterized by solitary plasma rings, do not involve a pre-existing "seed" magnetic field, unlike other configurations found previously. The relevant magnetic energy density is comparable to the gravitationally confined plasma pressure. The "source" of these configurations is the combination of the gravitational force and of the plasma density gradient orthogonal to it that is an important factor in the theory of magneto-gravitational modes, another important factor being an anisotropy of the plasma pressure.

  8. Observation of acceleration and deceleration in gigaelectron-volt-per-metre gradient dielectric wakefield accelerators

    DOE PAGES

    O’Shea, B. D.; Andonian, G.; Barber, S. K.; ...

    2016-09-14

    There is urgent need to develop new acceleration techniques capable of exceeding gigaelectron-volt-per-metre (GeV m –1) gradients in order to enable future generations of both light sources and high-energy physics experiments. To address this need, short wavelength accelerators based on wakefields, where an intense relativistic electron beam radiates the demanded fields directly into the accelerator structure or medium, are currently under intense investigation. One such wakefield based accelerator, the dielectric wakefield accelerator, uses a dielectric lined-waveguide to support a wakefield used for acceleration. Here we show gradients of 1.347±0.020 GeV m –1 using a dielectric wakefield accelerator of 15 cmmore » length, with sub-millimetre transverse aperture, by measuring changes of the kinetic state of relativistic electron beams. We follow this measurement by demonstrating accelerating gradients of 320±17 MeV m –1. As a result, both measurements improve on previous measurements by and order of magnitude and show promise for dielectric wakefield accelerators as sources of high-energy electrons.« less

  9. Microstructure and high temperature oxidation resistance of Ti-Ni gradient coating on TA2 titanium alloy fabricated by laser cladding

    NASA Astrophysics Data System (ADS)

    Liu, Fencheng; Mao, Yuqing; Lin, Xin; Zhou, Baosheng; Qian, Tao

    2016-09-01

    To improve the high temperature oxidation resistance of TA2 titanium alloy, a gradient Ni-Ti coating was laser cladded on the surface of the TA2 titanium alloy substrate, and the microstructure and oxidation behavior of the laser cladded coating were investigated experimentally. The gradient coating with a thickness of about 420-490 μm contains two different layers, e.g. a bright layer with coarse equiaxed grain and a dark layer with fine and columnar dendrites, and a transition layer with a thickness of about 10 μm exists between the substrate and the cladded coating. NiTi, NiTi2 and Ni3Ti intermetallic compounds are the main constructive phases of the laser cladded coating. The appearance of these phases enhances the microhardness, and the dense structure of the coating improves its oxidation resistance. The solidification procedure of the gradient coating is analyzed and different kinds of solidification processes occur due to the heat dissipation during the laser cladding process.

  10. Observation of acceleration and deceleration in gigaelectron-volt-per-metre gradient dielectric wakefield accelerators

    PubMed Central

    O'Shea, B. D.; Andonian, G.; Barber, S. K.; Fitzmorris, K. L.; Hakimi, S.; Harrison, J.; Hoang, P. D.; Hogan, M. J.; Naranjo, B.; Williams, O. B.; Yakimenko, V.; Rosenzweig, J. B.

    2016-01-01

    There is urgent need to develop new acceleration techniques capable of exceeding gigaelectron-volt-per-metre (GeV m−1) gradients in order to enable future generations of both light sources and high-energy physics experiments. To address this need, short wavelength accelerators based on wakefields, where an intense relativistic electron beam radiates the demanded fields directly into the accelerator structure or medium, are currently under intense investigation. One such wakefield based accelerator, the dielectric wakefield accelerator, uses a dielectric lined-waveguide to support a wakefield used for acceleration. Here we show gradients of 1.347±0.020 GeV m−1 using a dielectric wakefield accelerator of 15 cm length, with sub-millimetre transverse aperture, by measuring changes of the kinetic state of relativistic electron beams. We follow this measurement by demonstrating accelerating gradients of 320±17 MeV m−1. Both measurements improve on previous measurements by and order of magnitude and show promise for dielectric wakefield accelerators as sources of high-energy electrons. PMID:27624348

  11. Formation of highly preferred orientation of β-Sn grains in solidified Cu/SnAgCu/Cu micro interconnects under temperature gradient effect

    NASA Astrophysics Data System (ADS)

    Zhao, N.; Zhong, Y.; Dong, W.; Huang, M. L.; Ma, H. T.; Wong, C. P.

    2017-02-01

    β-Sn grain orientation and configuration are becoming crucial factors to dominate the lifetime of solder interconnects in three-dimensional integrated circuit packaging. In this paper, we found that a temperature gradient during solidification significantly dominated the orientation and configuration of the final β-Sn grains in Cu/SnAgCu/Cu micro interconnects. Being different from the random orientations and growth fronts meeting or cyclic twin boundary forming near the center after homogeneous temperature bonding, the β-Sn grains solidified under a certain temperature gradient were observed to follow a highly preferred orientation with their c-axis departing from the direction of temperature gradient by about 45°-88°. Meanwhile, these preferred oriented β-Sn grains consisted of low angle grain boundary structures with misorientation in the range of 0°-15°. The mechanism was explained in terms of the anisotropy and directional growth of β-Sn grains. The results pave the way for grain orientation control in 3D packaging technology.

  12. Correlation of Aerogravity and BHT Data to Develop a Geothermal Gradient Map of the Northern Western Desert of Egypt using an Artificial Neural Network

    NASA Astrophysics Data System (ADS)

    Mohamed, Haby S.; Abdel Zaher, Mohamed; Senosy, Mahmoud M.; Saibi, Hakim; El Nouby, Mohamed; Fairhead, J. Derek

    2015-06-01

    The northern part of the Western Desert of Egypt represents the second most promising area of hydrocarbon potential after the Gulf of Suez province. An artificial neural network (ANN) approach was used to develop a new predictive model for calculation of the geothermal gradients in this region based on gravity and corrected bottom-hole temperature (BHT) data. The best training data set was obtained with an ANN architecture composed of seven neurons in the hidden layer, which made it possible to predict the geothermal gradient with satisfactory efficiency. The BHT records of 116 deep oil wells (2,000-4,500 m) were used to evaluate the geothermal resources in the northern Western Desert. Corrections were applied to the BHT data to obtain the true formation equilibrium temperatures, which can provide useful constraints on the subsurface thermal regime. On the basis of these corrected data, the thermal gradient was computed for the linear sections of the temperature-versus-depth data at each well. The calculated geothermal gradient using temperature log data was generally 30 °C/km, with a few local high geothermal gradients in the northwestern parts of the study area explained by potential local geothermal fields. The Bouguer gravity values from the study area ranged from -60 mGal in the southern parts to 120 mGal in the northern areas, and exhibited NE-SW and E-W trends associated with geological structures. Although the northern Western Desert of Egypt has low regional temperature gradients (30 °C/km), several potential local geothermal fields were found (>40 °C/km). The heat flow at each well was also computed by combining sets of temperature gradients and thermal conductivity data. Aerogravity data were used to delineate the subsurface structures and tectonic framework of the region. The result of this study is a new geothermal gradient map of the northern Western Desert developed from gravity and BHT log data.

  13. MEMS cantilever based magnetic field gradient sensor

    NASA Astrophysics Data System (ADS)

    Dabsch, Alexander; Rosenberg, Christoph; Stifter, Michael; Keplinger, Franz

    2017-05-01

    This paper describes major contributions to a MEMS magnetic field gradient sensor. An H-shaped structure supported by four arms with two circuit paths on the surface is designed for measuring two components of the magnetic flux density and one component of the gradient. The structure is produced from silicon wafers by a dry etching process. The gold leads on the surface carry the alternating current which interacts with the magnetic field component perpendicular to the direction of the current. If the excitation frequency is near to a mechanical resonance, vibrations with an amplitude within the range of 1-103 nm are expected. Both theoretical (simulations and analytic calculations) and experimental analysis have been carried out to optimize the structures for different strength of the magnetic gradient. In the same way the impact of the coupling structure on the resonance frequency and of different operating modes to simultaneously measure two components of the flux density were tested. For measuring the local gradient of the flux density the structure was operated at the first symmetrical and the first anti-symmetrical mode. Depending on the design, flux densities of approximately 2.5 µT and gradients starting from 1 µT mm-1 can be measured.

  14. Dimensional stability performance of a CFRP sandwich optical bench for microsatellite payload

    NASA Astrophysics Data System (ADS)

    Desnoyers, N.; Goyette, P.; Leduc, B.; Boucher, M.-A.

    2017-09-01

    Microsatellite market requires high performance while minimizing mass, volume and cost. Telescopes are specifically targeted by these trade-offs. One of these is to use the optomechanical structure of the telescope to mount electronic devices that may dissipate heat. However, such approach may be problematic in terms of distortions due to the presence of high thermal gradients throughout the telescope structure. To prevent thermal distortions, Carbon Fiber Reinforced Polymer (CFRP) technology can be used for the optomechanical telescope material structure. CFRP is typically about 100 times less sensitive to thermal gradients and its coefficient of thermal expansion (CTE) is about 200 to 600 times lower than standard aluminum alloys according to inhouse measurements. Unfortunately, designing with CFRP material is not as straightforward as with metallic materials. There are many parameters to consider in order to reach the desired dimensional stability under thermal, moisture and vibration exposures. Designing optomechanical structures using CFRP involves many challenges such as interfacing with optics and sometimes dealing with high CTE mounting interface structures like aluminum spacecraft buses. INO has designed a CFRP sandwich telescope structure to demonstrate the achievable performances of such technology. Critical parameters have been optimized to maximize the dimensional stability while meeting the stringent environmental requirements that microsatellite payloads have to comply with. The telescope structure has been tested in vacuum from -40°C to +50°C and has shown a good fit with finite element analysis predictions.

  15. Precision Measurement of Phonon-Polaritonic Near-Field Energy Transfer between Macroscale Planar Structures Under Large Thermal Gradients

    NASA Astrophysics Data System (ADS)

    Ghashami, Mohammad; Geng, Hongyao; Kim, Taehoon; Iacopino, Nicholas; Cho, Sung Kwon; Park, Keunhan

    2018-04-01

    Despite its strong potentials in emerging energy applications, near-field thermal radiation between large planar structures has not been fully explored in experiments. Particularly, it is extremely challenging to control a subwavelength gap distance with good parallelism under large thermal gradients. This article reports the precision measurement of near-field radiative energy transfer between two macroscale single-crystalline quartz plates that support surface phonon polaritons. Our measurement scheme allows the precise control of a gap distance down to 200 nm in a highly reproducible manner for a surface area of 5 × 5 mm2 . We have measured near-field thermal radiation as a function of the gap distance for a broad range of thermal gradients up to ˜156 K , observing more than 40 times enhancement of thermal radiation compared to the blackbody limit. By comparing with theoretical prediction based on fluctuational electrodynamics, we demonstrate that such remarkable enhancement is owing to phonon-polaritonic energy transfer across a nanoscale vacuum gap.

  16. Gradient-based reliability maps for ACM-based segmentation of hippocampus.

    PubMed

    Zarpalas, Dimitrios; Gkontra, Polyxeni; Daras, Petros; Maglaveras, Nicos

    2014-04-01

    Automatic segmentation of deep brain structures, such as the hippocampus (HC), in MR images has attracted considerable scientific attention due to the widespread use of MRI and to the principal role of some structures in various mental disorders. In this literature, there exists a substantial amount of work relying on deformable models incorporating prior knowledge about structures' anatomy and shape information. However, shape priors capture global shape characteristics and thus fail to model boundaries of varying properties; HC boundaries present rich, poor, and missing gradient regions. On top of that, shape prior knowledge is blended with image information in the evolution process, through global weighting of the two terms, again neglecting the spatially varying boundary properties, causing segmentation faults. An innovative method is hereby presented that aims to achieve highly accurate HC segmentation in MR images, based on the modeling of boundary properties at each anatomical location and the inclusion of appropriate image information for each of those, within an active contour model framework. Hence, blending of image information and prior knowledge is based on a local weighting map, which mixes gradient information, regional and whole brain statistical information with a multi-atlas-based spatial distribution map of the structure's labels. Experimental results on three different datasets demonstrate the efficacy and accuracy of the proposed method.

  17. Development of multiple source data processing for structural analysis at a regional scale. [digital remote sensing in geology

    NASA Technical Reports Server (NTRS)

    Carrere, Veronique

    1990-01-01

    Various image processing techniques developed for enhancement and extraction of linear features, of interest to the structural geologist, from digital remote sensing, geologic, and gravity data, are presented. These techniques include: (1) automatic detection of linear features and construction of rose diagrams from Landsat MSS data; (2) enhancement of principal structural directions using selective filters on Landsat MSS, Spacelab panchromatic, and HCMM NIR data; (3) directional filtering of Spacelab panchromatic data using Fast Fourier Transform; (4) detection of linear/elongated zones of high thermal gradient from thermal infrared data; and (5) extraction of strong gravimetric gradients from digitized Bouguer anomaly maps. Processing results can be compared to each other through the use of a geocoded database to evaluate the structural importance of each lineament according to its depth: superficial structures in the sedimentary cover, or deeper ones affecting the basement. These image processing techniques were successfully applied to achieve a better understanding of the transition between Provence and the Pyrenees structural blocks, in southeastern France, for an improved structural interpretation of the Mediterranean region.

  18. Delta-configurations - Flare activity and magnetic-field structure

    NASA Technical Reports Server (NTRS)

    Patty, S. R.; Hagyard, M. J.

    1986-01-01

    Complex sunspots in four active regions of April and May 1980, all exhibiting regions of magnetic classification delta, were studied using data from the NASA Marshall Space Flight Center vector magnetograph. The vector magnetic field structure in the vicinity of each delta was determined, and the location of the deltas in each active region was correlated with the locations and types of flare activity for the regions. Two types of delta-configuration were found to exist, active and inactive, as defined by the relationships between magnetic field structure and activity. The active delta exhibited high flare activity, strong horizontal gradients of the longitudinal (line-of-sight) magnetic field component, a strong transverse (perpendicular to line-of-sight) component, and a highly nonpotential orientation of the photospheric magnetic field, all indications of a highly sheared magnetic field. The inactive delta, on the other hand, exhibited little or no flare production, weaker horizontal gradients of the longitudinal component, weaker transverse components, and a nearly potential, nonsheared orientation of the magnetic field. It is concluded that the presence of such sheared fields is the primary signature by which the active delta may be distinguished, and that it is this shear which produces the flare activity of the active delta.

  19. Gradient Structure Design of Flexible Waterborne Polyurethane Conductive Films for Ultraefficient Electromagnetic Shielding with Low Reflection Characteristic.

    PubMed

    Xu, Yadong; Yang, Yaqi; Yan, Ding-Xiang; Duan, Hongji; Zhao, Guizhe; Liu, Yaqing

    2018-06-06

    Highly efficient electromagnetic shielding materials entailing strong electromagnetic wave absorption and low reflection have become an increasing requirement for next-generation communication technologies and high-power electronic instruments. In this study, a new strategy is employed to provide flexible waterborne polyurethane composite films with an ultra-efficient electromagnetic shielding effectiveness (EMI SE) and low reflection by constructing gradient shielding layers with a magnetic ferro/ferric oxide deposited on reduced graphene oxide (rGO@Fe 3 O 4 ) and silver-coated tetraneedle-like ZnO whisker (T-ZnO/Ag) functional nanoparticles. Because of the differences in density between rGO@Fe 3 O 4 and T-ZnO/Ag, a gradient structure is automatically formed during the film formation process. The gradient distribution of rGO@Fe 3 O 4 over the whole thickness range forms an efficient electromagnetic wave absorption network that endows the film with a strong absorption ability on the top side, while a thin layer of high-density T-ZnO/Ag at the bottom constructs a highly conductive network that provides an excellent electromagnetic reflection ability for the film. This specific structure results in an "absorb-reflect-reabsorb" process when electromagnetic waves penetrate into the composite film, leading to an excellent EMI shielding performance with an extremely low reflection characteristic at a very low nanofiller content (0.8 vol % Fe 3 O 4 @rGO and 5.7 vol % T-ZnO/Ag): the EMI SE reaches 87.2 dB against the X band with a thickness of only 0.5 mm, while the shielding effectiveness of reflection (SE R ) is only 2.4 dB and the power coefficient of reflectivity ( R) is as low as 0.39. This result means that only 39% of the microwaves are reflected in the propagation process when 99.9999998% are attenuated, which is the lowest value among the reported references. This composite film with remarkable performance is suitable for application in portable and wearable smart electronics, and this method offers an effective strategy for absorption-dominated EMI shielding.

  20. Seismic velocity and attenuation structures in the Earth's inner core

    NASA Astrophysics Data System (ADS)

    Yu, Wen-Che

    2007-12-01

    I study seismic velocity and attenuation structures in the top 400 km of the Earth's inner core along equatorial paths, velocity-attenuation relationship, and seismic anisotropy in the top of the inner core beneath Africa. Seismic observations exhibit "east-west" hemispheric differences in seismic velocity, attenuation, and anisotropy. Joint modeling of the PKiKP-PKIKP and PKPbc-PKIKP phases is used to constrain seismic velocity and attenuation structures in the top 400 km of the inner core for the eastern and western hemispheres. The velocity and attenuation models for the western hemisphere are simple, having a constant velocity gradient and a Q value of 600 in the top 400 km of the inner core. The velocity and attenuation models for the eastern hemisphere appear complex. The velocity model for the eastern hemisphere has a small velocity gradient in the top 235 km, a steeper velocity gradient at the depth range of 235 - 375 km, and a gradient similar to PREM in the deeper portion of the inner core. The attenuation model for the eastern hemisphere has a Q value of 300 in the top 300 km and a Q value of 600 in the deeper portion of the inner core. The study of velocity-attenuation relationship reveals that inner core is anisotropic in both velocity and attenuation, and the direction of high attenuation corresponding to that of high velocity. I hypothesize that the hexagonal close packed (hcp) iron crystal is anisotropic in attenuation, with the axis of high attenuation corresponding to that of high velocity. Anisotropy in the top of the inner core beneath Africa is complex. Beneath eastern Africa, the thickness of the isotropic upper inner core is about 0 km. Beneath central and western Africa, the thickness of the isotropic upper inner core increases from 20 to 50 km. The velocity increase across the isotropic upper inner core and anisotropic lower inner core boundary is sharp, laterally varying from 1.6% - 2.2%. The attenuation model has a Q value of 600 for the isotropic upper inner core and 150 to 400 for the anisotropic lower inner core.

  1. Great Lakes Region Morphology and Impacts of March 17, 2015 SED Geomagnetic Storm

    NASA Astrophysics Data System (ADS)

    Heine, T.; Moldwin, M.; Zou, S.

    2015-12-01

    Under quiet geomagnetic conditions, the mid-latitude ionosphere is relatively uniform with little spatial variation in electron density. However, during intense geomagnetic storms, density gradients associated with Storm Enhanced Density (SED) plumes and Sub-auroral Polarization Streams (SAPS) can move across the dayside mid-latitude ionosphere producing small spatial scale density structure that may be connected to ionospheric scintillation. The evolution of the SED plume during the March 17, 2015 "St. Patrick's Day Storm" is investigated using aggregated data from high resolution GPS receivers at the University of Michigan and throughout the Great Lakes region. Structural density features in the SED gradient can be observed and compared to GPS scintillation measurements—providing insight into the physical mechanisms behind ionospheric scintillation.

  2. Gradient Self-Doped CuBi2O4 with Highly Improved Charge Separation Efficiency.

    PubMed

    Wang, Fuxian; Septina, Wilman; Chemseddine, Abdelkrim; Abdi, Fatwa F; Friedrich, Dennis; Bogdanoff, Peter; van de Krol, Roel; Tilley, S David; Berglund, Sean P

    2017-10-25

    A new strategy of using forward gradient self-doping to improve the charge separation efficiency in metal oxide photoelectrodes is proposed. Gradient self-doped CuBi 2 O 4 photocathodes are prepared with forward and reverse gradients in copper vacancies using a two-step, diffusion-assisted spray pyrolysis process. Decreasing the Cu/Bi ratio of the CuBi 2 O 4 photocathodes introduces Cu vacancies that increase the carrier (hole) concentration and lowers the Fermi level, as evidenced by a shift in the flat band toward more positive potentials. Thus, a gradient in Cu vacancies leads to an internal electric field within CuBi 2 O 4 , which can facilitate charge separation. Compared to homogeneous CuBi 2 O 4 photocathodes, CuBi 2 O 4 photocathodes with a forward gradient show highly improved charge separation efficiency and enhanced photoelectrochemical performance for reduction reactions, while CuBi 2 O 4 photocathodes with a reverse gradient show significantly reduced charge separation efficiency and photoelectrochemical performance. The CuBi 2 O 4 photocathodes with a forward gradient produce record AM 1.5 photocurrent densities for CuBi 2 O 4 up to -2.5 mA/cm 2 at 0.6 V vs RHE with H 2 O 2 as an electron scavenger, and they show a charge separation efficiency of 34% for 550 nm light. The gradient self-doping accomplishes this without the introduction of external dopants, and therefore the tetragonal crystal structure and carrier mobility of CuBi 2 O 4 are maintained. Lastly, forward gradient self-doped CuBi 2 O 4 photocathodes are protected with a CdS/TiO 2 heterojunction and coated with Pt as an electrocatalyst. These photocathodes demonstrate photocurrent densities on the order of -1.0 mA/cm 2 at 0.0 V vs RHE and evolve hydrogen with a faradaic efficiency of ∼91%.

  3. 3D printing for the design and fabrication of polymer-based gradient scaffolds.

    PubMed

    Bracaglia, Laura G; Smith, Brandon T; Watson, Emma; Arumugasaamy, Navein; Mikos, Antonios G; Fisher, John P

    2017-07-01

    To accurately mimic the native tissue environment, tissue engineered scaffolds often need to have a highly controlled and varied display of three-dimensional (3D) architecture and geometrical cues. Additive manufacturing in tissue engineering has made possible the development of complex scaffolds that mimic the native tissue architectures. As such, architectural details that were previously unattainable or irreproducible can now be incorporated in an ordered and organized approach, further advancing the structural and chemical cues delivered to cells interacting with the scaffold. This control over the environment has given engineers the ability to unlock cellular machinery that is highly dependent upon the intricate heterogeneous environment of native tissue. Recent research into the incorporation of physical and chemical gradients within scaffolds indicates that integrating these features improves the function of a tissue engineered construct. This review covers recent advances on techniques to incorporate gradients into polymer scaffolds through additive manufacturing and evaluate the success of these techniques. As covered here, to best replicate different tissue types, one must be cognizant of the vastly different types of manufacturing techniques available to create these gradient scaffolds. We review the various types of additive manufacturing techniques that can be leveraged to fabricate scaffolds with heterogeneous properties and discuss methods to successfully characterize them. Additive manufacturing techniques have given tissue engineers the ability to precisely recapitulate the native architecture present within tissue. In addition, these techniques can be leveraged to create scaffolds with both physical and chemical gradients. This work offers insight into several techniques that can be used to generate graded scaffolds, depending on the desired gradient. Furthermore, it outlines methods to determine if the designed gradient was achieved. This review will help to condense the abundance of information that has been published on the creation and characterization of gradient scaffolds and to provide a single review discussing both methods for manufacturing gradient scaffolds and evaluating the establishment of a gradient. Copyright © 2017. Published by Elsevier Ltd.

  4. Gravitational force and torque on a solar power satellite considering the structural flexibility

    NASA Astrophysics Data System (ADS)

    Zhao, Yi; Zhang, Jingrui; Zhang, Yao; Zhang, Jun; Hu, Quan

    2017-11-01

    The solar power satellites (SPS) are designed to collect the constant solar energy and beam it to Earth. They are traditionally large in scale and flexible in structure. In order to obtain an accurate model of such system, the analytical expressions of the gravitational force, gravity gradient torque and modal force are investigated. They are expanded to the fourth order in a Taylor series with the elastic displacements considered. It is assumed that the deformation of the structure is relatively small compared with its characteristic length, so that the assumed mode method is applicable. The high-order moments of inertia and flexibility coefficients are presented. The comprehensive dynamics of a large flexible SPS and its orbital, attitude and vibration evolutions with different order gravitational forces, gravity gradient torques and modal forces in geosynchronous Earth orbit are performed. Numerical simulations show that an accurate representation of the SPS‧ dynamic characteristics requires the retention of the higher moments of inertia and flexibility. Perturbations of orbit, attitude and vibration can be retained to the 1-2nd order gravitational forces, the 1-2nd order gravity gradient torques and the 1-2nd order modal forces for a large flexible SPS in geosynchronous Earth orbit.

  5. Gradients in pore size enhance the osteogenic differentiation of human mesenchymal stromal cells in three-dimensional scaffolds

    NASA Astrophysics Data System (ADS)

    di Luca, Andrea; Ostrowska, Barbara; Lorenzo-Moldero, Ivan; Lepedda, Antonio; Swieszkowski, Wojcech; van Blitterswijk, Clemens; Moroni, Lorenzo

    2016-03-01

    Small fractures in bone tissue can heal by themselves, but in case of larger defects current therapies are not completely successful due to several drawbacks. A possible strategy relies on the combination of additive manufactured polymeric scaffolds and human mesenchymal stromal cells (hMSCs). The architecture of bone tissue is characterized by a structural gradient. Long bones display a structural gradient in the radial direction, while flat bones in the axial direction. Such gradient presents a variation in bone density from the cancellous bone to the cortical bone. Therefore, scaffolds presenting a gradient in porosity could be ideal candidates to improve bone tissue regeneration. In this study, we present a construct with a discrete gradient in pore size and characterize its ability to further support the osteogenic differentiation of hMSCs. Furthermore, we studied the behaviour of hMSCs within the different compartments of the gradient scaffolds, showing a correlation between osteogenic differentiation and ECM mineralization, and pore dimensions. Alkaline phosphatase activity and calcium content increased with increasing pore dimensions. Our results indicate that designing structural porosity gradients may be an appealing strategy to support gradual osteogenic differentiation of adult stem cells.

  6. Evaluation of gravitational gradients generated by Earth's crustal structures

    NASA Astrophysics Data System (ADS)

    Novák, Pavel; Tenzer, Robert; Eshagh, Mehdi; Bagherbandi, Mohammad

    2013-02-01

    Spectral formulas for the evaluation of gravitational gradients generated by upper Earth's mass components are presented in the manuscript. The spectral approach allows for numerical evaluation of global gravitational gradient fields that can be used to constrain gravitational gradients either synthesised from global gravitational models or directly measured by the spaceborne gradiometer on board of the GOCE satellite mission. Gravitational gradients generated by static atmospheric, topographic and continental ice masses are evaluated numerically based on available global models of Earth's topography, bathymetry and continental ice sheets. CRUST2.0 data are then applied for the numerical evaluation of gravitational gradients generated by mass density contrasts within soft and hard sediments, upper, middle and lower crust layers. Combined gravitational gradients are compared to disturbing gravitational gradients derived from a global gravitational model and an idealised Earth's model represented by the geocentric homogeneous biaxial ellipsoid GRS80. The methodology could be used for improved modelling of the Earth's inner structure.

  7. Response of Soft Continuous Structures and Topological Defects to a Temperature Gradient.

    PubMed

    Kurita, Rei; Mitsui, Shun; Tanaka, Hajime

    2017-09-08

    Thermophoresis, which is mass transport induced by a temperature gradient, has recently attracted considerable attention as a new way to transport materials. So far the study has been focused on the transport of discrete structures such as colloidal particles, proteins, and polymers in solutions. However, the response of soft continuous structures such as membranes and gels to a temperature gradient has been largely unexplored. Here we study the behavior of a lamellar phase made of stacked surfactant bilayer membranes under a temperature gradient. We find the migration of membranes towards a low-temperature region, causing the increase in the degree of membrane undulation fluctuations towards that direction. This is contrary to our intuition that the fluctuations are weaker at a lower temperature. We show that this can be explained by temperature-gradient-induced migration of membranes under the topological constraint coming from the connectivity of each membrane. We also reveal that the pattern of an edge dislocation array formed in a wedge-shaped cell can be controlled by a temperature gradient. These findings suggest that application of a temperature gradient provides a novel way to control the organization of soft continuous structures such as membranes, gels, and foams, in a manner essentially different from the other types of fields, and to manipulate topological defects.

  8. Brain vascular image enhancement based on gradient adjust with split Bregman

    NASA Astrophysics Data System (ADS)

    Liang, Xiao; Dong, Di; Hui, Hui; Zhang, Liwen; Fang, Mengjie; Tian, Jie

    2016-04-01

    Light Sheet Microscopy is a high-resolution fluorescence microscopic technique which enables to observe the mouse brain vascular network clearly with immunostaining. However, micro-vessels are stained with few fluorescence antibodies and their signals are much weaker than large vessels, which make micro-vessels unclear in LSM images. In this work, we developed a vascular image enhancement method to enhance micro-vessel details which should be useful for vessel statistics analysis. Since gradient describes the edge information of the vessel, the main idea of our method is to increase the gradient values of the enhanced image to improve the micro-vessels contrast. Our method contained two steps: 1) calculate the gradient image of LSM image, and then amplify high gradient values of the original image to enhance the vessel edge and suppress low gradient values to remove noises. Then we formulated a new L1-norm regularization optimization problem to find an image with the expected gradient while keeping the main structure information of the original image. 2) The split Bregman iteration method was used to deal with the L1-norm regularization problem and generate the final enhanced image. The main advantage of the split Bregman method is that it has both fast convergence and low memory cost. In order to verify the effectiveness of our method, we applied our method to a series of mouse brain vascular images acquired from a commercial LSM system in our lab. The experimental results showed that our method could greatly enhance micro-vessel edges which were unclear in the original images.

  9. Flow turbulence topology in regular porous media: From macroscopic to microscopic scale with direct numerical simulation

    NASA Astrophysics Data System (ADS)

    Chu, Xu; Weigand, Bernhard; Vaikuntanathan, Visakh

    2018-06-01

    Microscopic analysis of turbulence topology in a regular porous medium is presented with a series of direct numerical simulation. The regular porous media are comprised of square cylinders in a staggered array. Triply periodic boundary conditions enable efficient investigations in a representative elementary volume. Three flow patterns—channel with sudden contraction, impinging surface, and wake—are observed and studied quantitatively in contrast to the qualitative experimental studies reported in the literature. Among these, shear layers in the channel show the highest turbulence intensity due to a favorable pressure gradient and shed due to an adverse pressure gradient downstream. The turbulent energy budget indicates a strong production rate after the flow contraction and a strong dissipation on both shear and impinging walls. Energy spectra and pre-multiplied spectra detect large scale energetic structures in the shear layer and a breakup of scales in the impinging layer. However, these large scale structures break into less energetic small structures at high Reynolds number conditions. This suggests an absence of coherent structures in densely packed porous media at high Reynolds numbers. Anisotropy analysis with a barycentric map shows that the turbulence in porous media is highly isotropic in the macro-scale, which is not the case in the micro-scale. In the end, proper orthogonal decomposition is employed to distinguish the energy-conserving structures. The results support the pore scale prevalence hypothesis. However, energetic coherent structures are observed in the case with sparsely packed porous media.

  10. Investigations of greenhouse gas variability across frontal structures in the lower troposphere during winter: Findings from the ACT - America Winter 2017 Campaign

    NASA Astrophysics Data System (ADS)

    Davis, K. J.; Pal, S.; Baier, B.; Browell, E. V.; Choi, Y.; DiGangi, J. P.; Dobler, J. T.; Erxleben, W. H.; Feng, S.; Gaudet, B. J.; Kooi, S. A.; Lauvaux, T.; Lin, B.; McGill, M. J.; Hoffman, K.; Obland, M. D.; Pauly, R.; Sweeney, C.

    2017-12-01

    Synoptic scale weather events like cold front passages play an important role in distributing greenhouse gases (GHG, e.g., CO2, CH4) in the atmosphere. However, our knowledge and observational evidence on the GHG structures across frontal boundaries are limited. The second airborne field campaign of the Atmospheric Carbon and Transport - America (ACT-America) project in winter (January 30 - March 10 2017) documented gradients in GHGs across 9 frontal systems in three regions of the US, namely, Mid-Atlantic, Upper Mid-West, and South. High-resolution remote and in-situ airborne observations were collected with two aircraft: NASA C-130 and B-200. Using both active remote sensing and in-situ observations, we will discuss the magnitude of GHG frontal gradients in the atmospheric boundary layer (ABL) and free troposphere (FT) and how they vary among cases during winter. Three mechanisms for creating these gradients will be investigated: 1) local ecosystem or anthropogenic GHG sources; 2) horizontal transport of planetary scale, seasonal gradients; and 3) vertical mixing, especially associated with clouds and boundary layer depth depths. Preliminary analyses indicate higher front-related CO2 gradients in the boundary layer compared to the upper and lower FT as well as larger case-to-case variability in front-related CO2 gradients in the ABL compared to the FT. GHG gradients across fronts were smaller than in the summer, but still present. Tentatively, the signs of the CO2 gradients (vertical and frontal) in winter appear to have switched compared to the summer with higher CO2 concentrations in the cold sector of the frontal region than in the warm sector during the wintertime, but the CH4 gradients were similar in the two seasons. Using observations and simulations for both summer and winter, we will build toward a conceptual framework of the CO2 and CH4 gradients across frontal boundaries and provide insights into how boundary layer-regimes and synoptic-scale transport redistributes CO2 and CH4 across the midlatitudes.

  11. An environmental stress model correctly predicts unimodal trends in overall species richness and diversity along intertidal elevation gradients

    NASA Astrophysics Data System (ADS)

    Zwerschke, Nadescha; Bollen, Merle; Molis, Markus; Scrosati, Ricardo A.

    2013-12-01

    Environmental stress is a major factor structuring communities. An environmental stress model (ESM) predicts that overall species richness and diversity should follow a unimodal trend along the full stress gradient along which assemblages from a regional biota can occur (not to be confused with the intermediate disturbance hypothesis, which makes predictions only for basal species along an intermediate-to-high stress range). Past studies could only provide partial support for ESM predictions because of the limited stress range surveyed or a low sampling resolution. In this study, we measured overall species richness and diversity (considering all seaweeds and invertebrates) along the intertidal elevation gradient on two wave-sheltered rocky shores from Helgoland Island, on the NE Atlantic coast. In intertidal habitats, tides cause a pronounced gradient of increasing stress from low to high elevations. We surveyed up to nine contiguous elevation zones between the lowest intertidal elevation (low stress) and the high intertidal boundary (high stress). Nonlinear regression analyses revealed that overall species richness and diversity followed unimodal trends across elevations on the two studied shores. Therefore, our study suggests that the ESM might constitute a useful tool to predict local richness and diversity as a function of environmental stress. Performing tests on other systems (marine as well as terrestrial) should help to refine the model.

  12. The snake geothermal drilling project. Innovative approaches to geothermal exploration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shervais, John W.; Evans, James P.; Liberty, Lee M.

    2014-02-21

    The goal of our project was to test innovative technologies using existing and new data, and to ground-truth these technologies using slim-hole core technology. The slim-hole core allowed us to understand subsurface stratigraphy and alteration in detail, and to correlate lithologies observed in core with surface based geophysical studies. Compiled data included geologic maps, volcanic vent distribution, structural maps, existing well logs and temperature gradient logs, groundwater temperatures, and geophysical surveys (resistivity, magnetics, gravity). New data included high-resolution gravity and magnetic surveys, high-resolution seismic surveys, three slimhole test wells, borehole wireline logs, lithology logs, water chemistry, alteration mineralogy, fracture distribution,more » and new thermal gradient measurements.« less

  13. A novel high-temperature furnace for combined in situ synchrotron X-ray diffraction and infrared thermal imaging to investigate the effects of thermal gradients upon the structure of ceramic materials

    PubMed Central

    Robinson, James B.; Brown, Leon D.; Jervis, Rhodri; Taiwo, Oluwadamilola O.; Millichamp, Jason; Mason, Thomas J.; Neville, Tobias P.; Eastwood, David S.; Reinhard, Christina; Lee, Peter D.; Brett, Daniel J. L.; Shearing, Paul R.

    2014-01-01

    A new technique combining in situ X-ray diffraction using synchrotron radiation and infrared thermal imaging is reported. The technique enables the application, generation and measurement of significant thermal gradients, and furthermore allows the direct spatial correlation of thermal and crystallographic measurements. The design and implementation of a novel furnace enabling the simultaneous thermal and X-ray measurements is described. The technique is expected to have wide applicability in material science and engineering; here it has been applied to the study of solid oxide fuel cells at high temperature. PMID:25178003

  14. Repeated burning of eastern tallgrass prairie increases richness and diversity, stabilizing late successional vegetation.

    PubMed

    Bowles, Marlin L; Jones, Michael D

    2013-03-01

    Understanding temporal effects of fire frequency on plant species diversity and vegetation structure is critical for managing tallgrass prairie (TGP), which occupies a mid-continental longitudinal precipitation and productivity gradient. Eastern TGP has contributed little information toward understanding whether vegetation-fire interactions are uniform or change across this biome. We resampled 34 fire-managed mid- and late-successional ungrazed TGP remnants occurring across a dry to wet-mesic moisture gradient in the Chicago region of Illinois, USA. We compared hypotheses that burning acts either as a stabilizing force or causes change in diversity and structure, depending upon fire frequency and successional stage. Based on western TGP, we expected a unimodal species richness distribution across a cover-productivity gradient, variable functional group responses to fire frequency, and a negative relationship between fire frequency and species richness. Species diversity was unimodal across the cover gradient and was more strongly humpbacked in stands with greater fire frequency. In support of a stabilizing hypothesis, temporal similarity of late-successional vegetation had a logarithmic relationship with increasing fire frequency, while richness and evenness remained stable. Temporal similarity within mid-successional stands was not correlated with fire frequency, while richness increased and evenness decreased over time. Functional group responses to fire frequency were variable. Summer forb richness increased under high fire frequency, while C4 grasses, spring forbs, and nitrogen-fixing species decreased with fire exclusion. On mesic and wet-mesic sites, vegetation structure measured by the ratio of woody to graminoid species was negatively correlated with abundance of forbs and with fire frequency. Our findings that species richness responds unimodally to an environmental-productivity gradient, and that fire exclusion increases woody vegetation and leads to loss of C4 and N-fixing species, suggest that these processes are uniform across the TGP biome and not affected by its rainfall-productivity gradient. However, increasing fire frequency in eastern TGP appears to increase richness of summer forbs and stabilize late-successional vegetation in the absence of grazing, and these processes may differ across the longitudinal axis of TGP. Managing species diversity in ungrazed eastern TGP may be dependent upon high fire frequency that removes woody vegetation and prevents biomass accumulation.

  15. Synthesis of ceramic-based porous gradient structures for applications in energy conversion and related fields

    NASA Astrophysics Data System (ADS)

    Graule, Thomas; Ozog, Paulina; Durif, Caroline; Wilkens-Heinecke, Judit; Kata, Dariusz

    2016-06-01

    Porous, graded ceramic structures are of high relevance in the field of energy conversion as well as in catalysis, and additionally in filtration technology and in biomedical applications. Among different technologies for the tailored design for such structures we demonstrate here a new environmental friendly UV curing-based concept to prepare laminated structures with pore sizes ranging from a few microns up to 50 microns in diameter and with porosities ranging from 10% up to 75 vol.% porosity.

  16. A multi-structural and multi-functional integrated fog collection system in cactus

    PubMed Central

    Ju, Jie; Bai, Hao; Zheng, Yongmei; Zhao, Tianyi; Fang, Ruochen; Jiang, Lei

    2012-01-01

    Multiple biological structures have demonstrated fog collection abilities, such as beetle backs with bumps and spider silks with periodic spindle-knots and joints. Many Cactaceae species live in arid environments and are extremely drought-tolerant. Here we report that one of the survival systems of the cactus Opuntia microdasys lies in its efficient fog collection system. This unique system is composed of well-distributed clusters of conical spines and trichomes on the cactus stem; each spine contains three integrated parts that have different roles in the fog collection process according to their surface structural features. The gradient of the Laplace pressure, the gradient of the surface-free energy and multi-function integration endow the cactus with an efficient fog collection system. Investigations of the structure–function relationship in this system may help us to design novel materials and devices to collect water from fog with high efficiencies. PMID:23212376

  17. Design and fabrication of a chitosan hydrogel with gradient structures via a step-by-step cross-linking process.

    PubMed

    Xu, Yongxiang; Yuan, Shenpo; Han, Jianmin; Lin, Hong; Zhang, Xuehui

    2017-11-15

    The development of scaffolds to mimic the gradient structure of natural tissue is an important consideration for effective tissue engineering. In the present study, a physical cross-linking chitosan hydrogel with gradient structures was fabricated via a step-by-step cross-linking process using sodium tripolyphosphate and sodium hydroxide as sequential cross-linkers. Chitosan hydrogels with different structures (single, double, and triple layers) were prepared by modifying the gelling process. The properties of the hydrogels were further adjusted by varying the gelling conditions, such as gelling time, pH, and composition of the crosslinking solution. Slight cytotoxicity was showed in MTT assay for hydrogels with uncross-linking chitosan solution and non-cytotoxicity was showed for other hydrogels. The results suggest that step-by-step cross-linking represents a practicable method to fabricate scaffolds with gradient structures. Copyright © 2017. Published by Elsevier Ltd.

  18. Jupiter's evolution with primordial composition gradients

    NASA Astrophysics Data System (ADS)

    Vazan, Allona; Helled, Ravit; Guillot, Tristan

    2018-02-01

    Recent formation and structure models of Jupiter suggest that the planet can have composition gradients and not be fully convective (adiabatic). This possibility directly affects our understanding of Jupiter's bulk composition and origin. In this Letter we present Jupiter's evolution with a primordial structure consisting of a relatively steep heavy-element gradient of 40 M⊕. We show that for a primordial structure with composition gradients, most of the mixing occurs in the outer part of the gradient during the early evolution (several 107 yr), leading to an adiabatic outer envelope (60% of Jupiter's mass). We find that the composition gradient in the deep interior persists, suggesting that 40% of Jupiter's mass can be non-adiabatic with a higher temperature than the one derived from Jupiter's atmospheric properties. The region that can potentially develop layered convection in Jupiter today is estimated to be limited to 10% of the mass. Movies associated to Figs. 1-3 are available at http://https://www.aanda.org

  19. The effect of gradient boracic polyanion-doping on structure, morphology, and cycling performance of Ni-rich LiNi0.8Co0.15Al0.05O2 cathode material

    NASA Astrophysics Data System (ADS)

    Chen, Tao; Li, Xiang; Wang, Hao; Yan, Xinxiu; Wang, Lei; Deng, Bangwei; Ge, Wujie; Qu, Meizhen

    2018-01-01

    A gradient boracic polyanion-doping method is applied to Ni-rich LiNi0.8Co0.15Al0.05O2 (NCA) cathode material in this study to suppress the capacity/potential fade during charge-discharge cycling. Scanning electron microscope (SEM) results show that all samples present spherical morphology and the secondary particle size increases with increasing boron content. X-ray diffraction (XRD), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) results demonstrate that boracic polyanions are successfully introduced into the bulk material and more enriched in the outer layer. XPS analysis further reveals that the valence state of Ni3+ is partly reduced to Ni2+ at the surface due to the incorporation of boracic polyanions. From the electrochemical measurements, B0.015-NCA electrode exhibits excellent cycling performance, even at high potential and elevated temperature. Moreover, the SEM images illustrate the presence of cracks and a thick SEI layer on pristine particles after 100 cycles at high temperature, while the B0.015-NCA particles show an intact structure and thin SEI layer. Electrochemical impedance spectroscopy confirms that the boracic polyanion doping could hinder the impedance increase during cycling at elevated temperature. These results clearly indicate that the gradient boracic polyanion-doping contributes to the remarkable enhancement of structure stability and cycling performance of NCA.

  20. Design of cryogenic tanks for space vehicles shell structures analytical modeling

    NASA Technical Reports Server (NTRS)

    Copper, Charles; Mccarthy, K.; Pilkey, W. D.; Haviland, J. K.

    1991-01-01

    The initial objective was to study the use of superplastically formed corrugated hat section stringers and frames in place of integrally machined stringers over separate frames for the tanks of large launch vehicles subjected to high buckling loads. The ALS was used as an example. The objective of the follow-on project was to study methods of designing shell structures subjected to severe combinations of structural loads and thermal gradients, with emphasis on new combinations of structural arrangements and materials. Typical applications would be to fuselage sections of high speed civil transports and to cryogenic tanks on the National Aerospace Plane.

  1. A spatiotemporally controllable chemical gradient generator via acoustically oscillating sharp-edge structures.

    PubMed

    Huang, Po-Hsun; Chan, Chung Yu; Li, Peng; Nama, Nitesh; Xie, Yuliang; Wei, Cheng-Hsin; Chen, Yuchao; Ahmed, Daniel; Huang, Tony Jun

    2015-11-07

    The ability to generate stable, spatiotemporally controllable concentration gradients is critical for resolving the dynamics of cellular response to a chemical microenvironment. Here we demonstrate an acoustofluidic gradient generator based on acoustically oscillating sharp-edge structures, which facilitates in a step-wise fashion the rapid mixing of fluids to generate tunable, dynamic chemical gradients. By controlling the driving voltage of a piezoelectric transducer, we demonstrated that the chemical gradient profiles can be conveniently altered (spatially controllable). By adjusting the actuation time of the piezoelectric transducer, moreover, we generated pulsatile chemical gradients (temporally controllable). With these two characteristics combined, we have developed a spatiotemporally controllable gradient generator. The applicability and biocompatibility of our acoustofluidic gradient generator are validated by demonstrating the migration of human dermal microvascular endothelial cells (HMVEC-d) in response to a generated vascular endothelial growth factor (VEGF) gradient, and by preserving the viability of HMVEC-d cells after long-term exposure to an acoustic field. Our device features advantages such as simple fabrication and operation, compact and biocompatible device, and generation of spatiotemporally tunable gradients.

  2. Gradients in Wall Mechanics and Polysaccharides along Growing Inflorescence Stems.

    PubMed

    Phyo, Pyae; Wang, Tuo; Kiemle, Sarah N; O'Neill, Hugh; Pingali, Sai Venkatesh; Hong, Mei; Cosgrove, Daniel J

    2017-12-01

    At early stages of Arabidopsis ( Arabidopsis thaliana ) flowering, the inflorescence stem undergoes rapid growth, with elongation occurring predominantly in the apical ∼4 cm of the stem. We measured the spatial gradients for elongation rate, osmotic pressure, cell wall thickness, and wall mechanical compliances and coupled these macroscopic measurements with molecular-level characterization of the polysaccharide composition, mobility, hydration, and intermolecular interactions of the inflorescence cell wall using solid-state nuclear magnetic resonance spectroscopy and small-angle neutron scattering. Force-extension curves revealed a gradient, from high to low, in the plastic and elastic compliances of cell walls along the elongation zone, but plots of growth rate versus wall compliances were strikingly nonlinear. Neutron-scattering curves showed only subtle changes in wall structure, including a slight increase in cellulose microfibril alignment along the growing stem. In contrast, solid-state nuclear magnetic resonance spectra showed substantial decreases in pectin amount, esterification, branching, hydration, and mobility in an apical-to-basal pattern, while the cellulose content increased modestly. These results suggest that pectin structural changes are connected with increases in pectin-cellulose interaction and reductions in wall compliances along the apical-to-basal gradient in growth rate. These pectin structural changes may lessen the ability of the cell wall to undergo stress relaxation and irreversible expansion (e.g. induced by expansins), thus contributing to the growth kinematics of the growing stem. © 2017 American Society of Plant Biologists. All Rights Reserved.

  3. [Altitudinal distribution, richness and composition of bird assemblages in a mountainous region in Southern Nayarit, Mexico].

    PubMed

    Jaime-Escalante, Nidia Gissell; Figueroa-Esquivel, Elsa Margarita; Villaseñor Gómez, José Fernando; Jacobo-Sapien, Edwin Alberto; Puebla-Olivares, Fernando

    2016-12-01

    Elevation gradient studies have strengthened the evaluation of changes in richness and composition of bird assemblages. They also provide information on environmental variables that determine bird distribution, and the variables that define their population structure. Our aim was to describe their variation through an elevational cline in Southern Nayarit, Mexico. To analyze the behavior of richness across the gradient, we gathered information through point counts in nine elevational intervals (300 m from each other) from sea level to 2 700 m of elevation. With a standardized sampling effort, we produced rarefaction curves and analyzed changes in species composition by hierarchical classification using the TWINSPAN technique. In order to identify variables associated with richness changes, we examined the effect of precipitation and habitat structure via regression trees. An analysis of nonmetric multidimensional scaling (NMDS) was implemented with the purpose to determine if the changes in composition correspond to changes in vegetation types. Species richness varied significantly across the gradient: high in the lower parts of the gradient, reached its peak in the middle, and decreased monotonically with elevation. Species responded to changes in the cline and were grouped in three elevational zones. Analyses suggest that changes in richness and species composition are influenced by vegetation, its structure and precipitation regime, as well as various aspects related to habitat features and disturbance. These aspects should be taken into account in order to design appropriate strategies for the conservation of the birds of Nayarit.

  4. Mitochondrial DNA Markers Reveal High Genetic Diversity but Low Genetic Differentiation in the Black Fly Simulium tani Takaoka & Davies along an Elevational Gradient in Malaysia

    PubMed Central

    Low, Van Lun; Adler, Peter H.; Takaoka, Hiroyuki; Ya’cob, Zubaidah; Lim, Phaik Eem; Tan, Tiong Kai; Lim, Yvonne A. L.; Chen, Chee Dhang; Norma-Rashid, Yusoff; Sofian-Azirun, Mohd

    2014-01-01

    The population genetic structure of Simulium tani was inferred from mitochondria-encoded sequences of cytochrome c oxidase subunits I (COI) and II (COII) along an elevational gradient in Cameron Highlands, Malaysia. A statistical parsimony network of 71 individuals revealed 71 haplotypes in the COI gene and 43 haplotypes in the COII gene; the concatenated sequences of the COI and COII genes revealed 71 haplotypes. High levels of genetic diversity but low levels of genetic differentiation were observed among populations of S. tani at five elevations. The degree of genetic diversity, however, was not in accordance with an altitudinal gradient, and a Mantel test indicated that elevation did not have a limiting effect on gene flow. No ancestral haplotype of S. tani was found among the populations. Pupae with unique structural characters at the highest elevation showed a tendency to form their own haplotype cluster, as revealed by the COII gene. Tajima’s D, Fu’s Fs, and mismatch distribution tests revealed population expansion of S. tani in Cameron Highlands. A strong correlation was found between nucleotide diversity and the levels of dissolved oxygen in the streams where S. tani was collected. PMID:24941043

  5. Texture analysis of radiometric signatures of new sea ice forming in Arctic leads

    NASA Technical Reports Server (NTRS)

    Eppler, Duane T.; Farmer, L. Dennis

    1991-01-01

    Analysis of 33.6-GHz, high-resolution, passive microwave images suggests that new sea ice accumulating in open leads is characterized by a unique textural signature which can be used to discriminate new ice forming in this environment from adjacent surfaces of similar radiometric temperature. Ten training areas were selected from the data set, three of which consisted entirely of first-year ice, four entirely of multilayer ice, and three of new ice in open leads in the process of freezing. A simple gradient operator was used to characterize the radiometric texture in each training region in terms of the degree to which radiometric gradients are oriented. New ice in leads has a sufficiently high proportion of well-oriented features to distinguish it uniquely from first-year ice and multiyear ice. The predominance of well-oriented features probably reflects physical processes by which new ice accumulates in open leads. Banded structures, which are evident in aerial photographs of new ice, apparently give rise to the radiometric signature observed, in which the trend of brightness temperature gradients is aligned parallel to lead trends. First-year ice and multiyear ice, which have been subjected to a more random growth and process history, lack this banded structure and therefore are characterized by signatures in which well-aligned elements are less dominant.

  6. Linking rainforest ecophysiology and microclimate through fusion of airborne LiDAR and hyperspectral imagery

    Treesearch

    Eben N. Broadbent; Angélica M. Almeyda Zambrano; Gregory P. Asner; Christopher B. Field; Brad E. Rosenheim; Ty Kennedy-Bowdoin; David E. Knapp; David Burke; Christian Giardina; Susan Cordell

    2014-01-01

    We develop and validate a high-resolution three-dimensional model of light and air temperature for a tropical forest interior in Hawaii along an elevation gradient varying greatly in structure but maintaining a consistent species composition. Our microclimate models integrate high-resolution airborne waveform light detection and ranging data (LiDAR) and hyperspectral...

  7. Interactions between Canopy Structure and Herbaceous Biomass along Environmental Gradients in Moist Forest and Dry Miombo Woodland of Tanzania.

    PubMed

    Shirima, Deo D; Pfeifer, Marion; Platts, Philip J; Totland, Ørjan; Moe, Stein R

    2015-01-01

    We have limited understanding of how tropical canopy foliage varies along environmental gradients, and how this may in turn affect forest processes and functions. Here, we analyse the relationships between canopy leaf area index (LAI) and above ground herbaceous biomass (AGBH) along environmental gradients in a moist forest and miombo woodland in Tanzania. We recorded canopy structure and herbaceous biomass in 100 permanent vegetation plots (20 m × 40 m), stratified by elevation. We quantified tree species richness, evenness, Shannon diversity and predominant height as measures of structural variability, and disturbance (tree stumps), soil nutrients and elevation as indicators of environmental variability. Moist forest and miombo woodland differed substantially with respect to nearly all variables tested. Both structural and environmental variables were found to affect LAI and AGBH, the latter being additionally dependent on LAI in moist forest but not in miombo, where other factors are limiting. Combining structural and environmental predictors yielded the most powerful models. In moist forest, they explained 76% and 25% of deviance in LAI and AGBH, respectively. In miombo woodland, they explained 82% and 45% of deviance in LAI and AGBH. In moist forest, LAI increased non-linearly with predominant height and linearly with tree richness, and decreased with soil nitrogen except under high disturbance. Miombo woodland LAI increased linearly with stem density, soil phosphorous and nitrogen, and decreased linearly with tree species evenness. AGBH in moist forest decreased with LAI at lower elevations whilst increasing slightly at higher elevations. AGBH in miombo woodland increased linearly with soil nitrogen and soil pH. Overall, moist forest plots had denser canopies and lower AGBH compared with miombo plots. Further field studies are encouraged, to disentangle the direct influence of LAI on AGBH from complex interrelationships between stand structure, environmental gradients and disturbance in African forests and woodlands.

  8. Identifying socio-ecological networks in rural-urban gradients: Diagnosis of a changing cultural landscape.

    PubMed

    Arnaiz-Schmitz, C; Schmitz, M F; Herrero-Jáuregui, C; Gutiérrez-Angonese, J; Pineda, F D; Montes, C

    2018-01-15

    Socio-ecological systems maintain reciprocal interactions between biophysical and socioeconomic structures. As a result of these interactions key essential services for society emerge. Urban expansion is a direct driver of land change and cause serious shifts in socio-ecological relationships and the associated lifestyles. The framework of rural-urban gradients has proved to be a powerful tool for ecological research about urban influences on ecosystems and on sociological issues related to social welfare. However, to date there has not been an attempt to achieve a classification of municipalities in rural-urban gradients based on socio-ecological interactions. In this paper, we developed a methodological approach that allows identifying and classifying a set of socio-ecological network configurations in the Region of Madrid, a highly dynamic cultural landscape considered one of the European hotspots in urban development. According to their socio-ecological links, the integrated model detects four groups of municipalities, ordered along a rural-urban gradient, characterized by their degree of biophysical and socioeconomic coupling and different indicators of landscape structure and social welfare. We propose the developed model as a useful tool to improve environmental management schemes and land planning from a socio-ecological perspective, especially in territories subject to intense urban transformations and loss of rurality. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Physical Factors Correlate to Microbial Community Structure and Nitrogen Cycling Gene Abundance in a Nitrate Fed Eutrophic Lagoon.

    PubMed

    Highton, Matthew P; Roosa, Stéphanie; Crawshaw, Josie; Schallenberg, Marc; Morales, Sergio E

    2016-01-01

    Nitrogenous run-off from farmed pastures contributes to the eutrophication of Lake Ellesmere, a large shallow lagoon/lake on the east coast of New Zealand. Tributaries periodically deliver high loads of nitrate to the lake which likely affect microbial communities therein. We hypothesized that a nutrient gradient would form from the potential sources (tributaries) creating a disturbance resulting in changes in microbial community structure. To test this we first determined the existence of such a gradient but found only a weak nitrogen (TN) and phosphorous gradient (DRP). Changes in microbial communities were determined by measuring functional potential (quantification of nitrogen cycling genes via nifH , nirS , nosZI , and nosZII using qPCR), potential activity (via denitrification enzyme activity), as well as using changes in total community (via 16S rRNA gene amplicon sequencing). Our results demonstrated that changes in microbial communities at a phylogenetic (relative abundance) and functional level (proportion of the microbial community carrying nifH and nosZI genes) were most strongly associated with physical gradients (e.g., lake depth, sediment grain size, sediment porosity) and not nutrient concentrations. Low nitrate influx at the time of sampling is proposed as a factor contributing to the observed patterns.

  10. Predicting Changes in Macrophyte Community Structure from Functional Traits in a Freshwater Lake: A Test of Maximum Entropy Model

    PubMed Central

    Fu, Hui; Zhong, Jiayou; Yuan, Guixiang; Guo, Chunjing; Lou, Qian; Zhang, Wei; Xu, Jun; Ni, Leyi; Xie, Ping; Cao, Te

    2015-01-01

    Trait-based approaches have been widely applied to investigate how community dynamics respond to environmental gradients. In this study, we applied a series of maximum entropy (maxent) models incorporating functional traits to unravel the processes governing macrophyte community structure along water depth gradient in a freshwater lake. We sampled 42 plots and 1513 individual plants, and measured 16 functional traits and abundance of 17 macrophyte species. Study results showed that maxent model can be highly robust (99.8%) in predicting the species relative abundance of macrophytes with observed community-weighted mean (CWM) traits as the constraints, while relative low (about 30%) with CWM traits fitted from water depth gradient as the constraints. The measured traits showed notably distinct importance in predicting species abundances, with lowest for perennial growth form and highest for leaf dry mass content. For tuber and leaf nitrogen content, there were significant shifts in their effects on species relative abundance from positive in shallow water to negative in deep water. This result suggests that macrophyte species with tuber organ and greater leaf nitrogen content would become more abundant in shallow water, but would become less abundant in deep water. Our study highlights how functional traits distributed across gradients provide a robust path towards predictive community ecology. PMID:26167856

  11. δ 13C evidence that high primary productivity delayed recovery from end-Permian mass extinction

    NASA Astrophysics Data System (ADS)

    Meyer, K. M.; Yu, M.; Jost, A. B.; Kelley, B. M.; Payne, J. L.

    2011-02-01

    Euxinia was widespread during and after the end-Permian mass extinction and is commonly cited as an explanation for delayed biotic recovery during Early Triassic time. This anoxic, sulfidic episode has been ascribed to both low- and high-productivity states in the marine water column, leaving the causes of euxinia and the mechanisms underlying delayed recovery poorly understood. Here we use isotopic analysis to examine the changing chemical structure of the water column through the recovery interval and thereby better constrain paleoproductivity. The δ 13C of limestones from 5 stratigraphic sections in south China displays a negative gradient of approximately 4‰ from shallow-to-deep water facies within the Lower Triassic. This intense gradient declines within Spathian and lowermost Middle Triassic strata, coincident with accelerated biotic recovery and carbon cycle stabilization. Model simulations show that high nutrient levels and a vigorous biological pump are required to sustain such a large gradient in δ 13C, indicating that Early Triassic ocean anoxia and delayed recovery of benthic animal ecosystems resulted from too much productivity rather than too little.

  12. SDSS-IV MaNGA: environmental dependence of stellar age and metallicity gradients in nearby galaxies

    NASA Astrophysics Data System (ADS)

    Zheng, Zheng; Wang, Huiyuan; Ge, Junqiang; Mao, Shude; Li, Cheng; Li, Ran; Mo, Houjun; Goddard, Daniel; Bundy, Kevin; Li, Hongyu; Nair, Preethi; Lin, Lihwai; Long, R. J.; Riffel, Rogério; Thomas, Daniel; Masters, Karen; Bizyaev, Dmitry; Brownstein, Joel R.; Zhang, Kai; Law, David R.; Drory, Niv; Roman Lopes, Alexandre; Malanushenko, Olena

    2017-03-01

    We present a study on the stellar age and metallicity distributions for 1105 galaxies using the STARLIGHT software on MaNGA (Mapping Nearby Galaxies at APO) integral field spectra. We derive age and metallicity gradients by fitting straight lines to the radial profiles, and explore their correlations with total stellar mass M*, NUV - r colour and environments, as identified by both the large-scale structure (LSS) type and the local density. We find that the mean age and metallicity gradients are close to zero but slightly negative, which is consistent with the inside-out formation scenario. Within our sample, we find that both the age and metallicity gradients show weak or no correlation with either the LSS type or local density environment. In addition, we also study the environmental dependence of age and metallicity values at the effective radii. The age and metallicity values are highly correlated with M* and NUV - r and are also dependent on LSS type as well as local density. Low-mass galaxies tend to be younger and have lower metallicity in low-density environments while high-mass galaxies are less affected by environment.

  13. An alternative means of retaining ocular structure and improving immunoreactivity for light microscopy studies

    PubMed Central

    Sun, Ning; Shibata, Brad; Hess, John F.

    2015-01-01

    Purpose Several properties of ocular tissue make fixation for light microscopy problematic. Because the eye is spherical, immersion fixation necessarily results in a temporal gradient of fixation, with surfaces fixing more rapidly and thoroughly than interior structures. The problem is compounded by the fact that the layers of the eye wall are compositionally quite different, resulting in different degrees of fixation-induced shrinkage and distortion. Collectively, these result in non-uniform preservation, as well as buckling and/or retinal detachment. This gradient problem is most acute for the lens, where the density of proteins can delay fixation of the central lens for days, and where the fixation gradient parallels the age gradient of lens cells, which complicates data interpretation. Our goal was to identify a simple method for minimizing some of the problems arising from immersion fixation, which avoided covalent modification of antigens, retained high quality structure, and maintained tissue in a state that is amenable to common cytochemical techniques. Methods A simple and inexpensive derivative of the freeze-substitution approach was developed and compared to fixation by immersion in formalin. Preservation of structure, immunoreactivity, GFP and tdTomato fluorescence, lectin reactivity, outer segment auto fluorescence, Click-iT chemistry, compatibility with in situ hybdrdization, and the ability to rehydrate eyes after fixation by freeze substitution for subsequent cryo sectioning were assessed. Results An inexpensive and simple variant of the freeze substitution approach provides excellent structural preservation for light microscopy, and essentially eliminates ocular buckling, retinal detachment, and outer segment auto-fluorescence, without covalent modification of tissue antigens. The approach shows a notable improvement in preservation of immunoreactivity. TdTomato intrinsic fluorescence is also preserved, as is compatibility with in situ hybridization, lectin labeling, and the Click-iT chemistry approach to labeling the thymidine analog EdU. On the negative side, this approach dramatically reduced intrinsic GFP fluorescence. Conclusions A simple, cost-effective derivative of the freeze substitution process is described that is of particular value in the study of rodent or other small eyes, where fixation gradients, globe buckling, retinal detachment, differential shrinkage, autofluorescence, and tissue immunoreactivity have been problematic. PMID:25991907

  14. Altered structural development and accelerated succession from intermediate-scale wind disturbance in Quercus stands on the Cumberland Plateau, USA

    Treesearch

    Stephen D White; Justin L. Hart; Callie J. Schweitzer; Daniel C. Dey

    2015-01-01

    Natural disturbances play important roles in shaping the structure and composition of all forest ecosystems and can be used to inform silvicultural practices. Canopy disturbances are often classified along a gradient ranging from highly localized, gap-scale events to stand-replacing events. Wind storms such as downbursts, derechos, and low intensity tornadoes typically...

  15. Exploring geothermal structures in the Ilan Plain, Taiwan

    NASA Astrophysics Data System (ADS)

    Wang, Chien-Ying; Shih, Ruey-Chan; Chung, Chen-Tung; Huang, Ming-Zi; Kuo, Hsuan-Yu

    2017-04-01

    The Ilan Plain in northeast Taiwan is located at the southwestern tip of the Okinawa Trough, which extends westward into the Taiwan orogeny. The Ilan Plain covered by thick sediments is clipped by the Hsuehshan Range in the northern side and the Central Range in the southern side. High geothermal gradients with plenteous hot springs of this area may result from igneous intrusion associated with the back-arc spreading of the Okinawa Trough. In this study, we use reflection seismic survey to explore underground structures in the whole Ilan Plain, especially in SanShin, Wujie, and Lize area. We aim to find the relationship between underground structures and geothermal forming mechanism. The research uses reflection seismic survey to investigate the high geothermal gradient area with two mini-vibrators and 240-channel system. The total length of seismic lines is more than 30 kilometers. The results show that alluvial sediments covering the area about 400 600 meters thick and then thin out to the west in SanShin area. In SanShin , the Taiyaqiao anticline in Hsuehshan Range has entered the plain area and is bounded by the Zhuoshui fault (south) and the Zailian fault (north). In Wujie and Lize , Zhuoshui fault cut through a strong reflector which is the top of the gravel layer near the bottom of the alluvial layer, while the SanShin fault seems to cut near very shallow strata. These two faults are a strike-slip fault with a bit of normal fault component distributing over a range of 600 meters. In Ilan Plain, the geothermal forming mechanism is controlled by anticlines and faults. The hydrothermal solution which migrates upward along these anticline or fault zones to the shallow part causing high geothermal gradients in these areas.

  16. A priori evaluation of the Pantano and Sarkar model in compressible homogeneous shear flows

    NASA Astrophysics Data System (ADS)

    Khlifi, Hechmi; Abdallah, J.; Aïcha, H.; Taïeb, L.

    2011-01-01

    In this study, a Reynolds stress closure, including the Pantano and Sarkar model of the mean part of the pressure-strain correlation is used for the computation of compressible homogeneous at high-speed shear flow. Several studies concerning the compressible homogeneous shear flow show that the changes of the turbulence structures are principally due to the structural compressibility effects which significantly affect the pressure field and then the pressure-strain correlation. Eventually, this term appears as the main term responsible for the changes in the magnitude of the Reynolds stress anisotropies. The structure of the gradient Mach number is similar to that of turbulence, therefore this parameter may be appropriate to study the changes in turbulence structures that arise from structural compressibility effects. Thus, the incompressible model of the pressure strain correlation and its corrected form by using the turbulent Mach turbulent only, fail to correctly evaluate the compressibility effects at high shear flow. An extension of the widely used incompressible Launder, Reece and Rodi model on compressible homogeneous shear flow is the major aim of the present work. From this extension, the standard coefficients C become a function of the extra compressibility parameters (the turbulent Mach number M and the gradient Mach number M) through the Pantano and Sarkar model. Application of the model on compressible homogeneous shear flow by considering various initial conditions shows reasonable agreement with the DNS results of Simone et al. and Sarkar. The observed trend of the dramatic increase in the normal Reynolds stress anisotropies, the significant decrease in the Reynolds shear stress anisotropy and the increase of the turbulent kinetic energy amplification rate with increasing the gradient Mach number are well predicted by the model. The ability of the model to predict the equilibrium states for the flow in cases A to A from DNS results of Sarkar is examined, the results appear to be very encouraging. Thus, both parameters M and M should be used to model significant structural compressibility effects at high-speed shear flow.

  17. Enhanced protective role in materials with gradient structural orientations: Lessons from Nature.

    PubMed

    Liu, Zengqian; Zhu, Yankun; Jiao, Da; Weng, Zhaoyong; Zhang, Zhefeng; Ritchie, Robert O

    2016-10-15

    Living organisms are adept at resisting contact deformation and damage by assembling protective surfaces with spatially varied mechanical properties, i.e., by creating functionally graded materials. Such gradients, together with multiple length-scale hierarchical structures, represent the two prime characteristics of many biological materials to be translated into engineering design. Here, we examine one design motif from a variety of biological tissues and materials where site-specific mechanical properties are generated for enhanced protection by adopting gradients in structural orientation over multiple length-scales, without manipulation of composition or microstructural dimension. Quantitative correlations are established between the structural orientations and local mechanical properties, such as stiffness, strength and fracture resistance; based on such gradients, the underlying mechanisms for the enhanced protective role of these materials are clarified. Theoretical analysis is presented and corroborated through numerical simulations of the indentation behavior of composites with distinct orientations. The design strategy of such bioinspired gradients is outlined in terms of the geometry of constituents. This study may offer a feasible approach towards generating functionally graded mechanical properties in synthetic materials for improved contact damage resistance. Living organisms are adept at resisting contact damage by assembling protective surfaces with spatially varied mechanical properties, i.e., by creating functionally-graded materials. Such gradients, together with multiple length-scale hierarchical structures, represent the prime characteristics of many biological materials. Here, we examine one design motif from a variety of biological tissues where site-specific mechanical properties are generated for enhanced protection by adopting gradients in structural orientation at multiple length-scales, without changes in composition or microstructural dimension. The design strategy of such bioinspired gradients is outlined in terms of the geometry of constituents. This study may offer a feasible approach towards generating functionally-graded mechanical properties in synthetic materials for improved damage resistance. Published by Elsevier Ltd.

  18. An overview of NSPCG: A nonsymmetric preconditioned conjugate gradient package

    NASA Astrophysics Data System (ADS)

    Oppe, Thomas C.; Joubert, Wayne D.; Kincaid, David R.

    1989-05-01

    The most recent research-oriented software package developed as part of the ITPACK Project is called "NSPCG" since it contains many nonsymmetric preconditioned conjugate gradient procedures. It is designed to solve large sparse systems of linear algebraic equations by a variety of different iterative methods. One of the main purposes for the development of the package is to provide a common modular structure for research on iterative methods for nonsymmetric matrices. Another purpose for the development of the package is to investigate the suitability of several iterative methods for vector computers. Since the vectorizability of an iterative method depends greatly on the matrix structure, NSPCG allows great flexibility in the operator representation. The coefficient matrix can be passed in one of several different matrix data storage schemes. These sparse data formats allow matrices with a wide range of structures from highly structured ones such as those with all nonzeros along a relatively small number of diagonals to completely unstructured sparse matrices. Alternatively, the package allows the user to call the accelerators directly with user-supplied routines for performing certain matrix operations. In this case, one can use the data format from an application program and not be required to copy the matrix into one of the package formats. This is particularly advantageous when memory space is limited. Some of the basic preconditioners that are available are point methods such as Jacobi, Incomplete LU Decomposition and Symmetric Successive Overrelaxation as well as block and multicolor preconditioners. The user can select from a large collection of accelerators such as Conjugate Gradient (CG), Chebyshev (SI, for semi-iterative), Generalized Minimal Residual (GMRES), Biconjugate Gradient Squared (BCGS) and many others. The package is modular so that almost any accelerator can be used with almost any preconditioner.

  19. Gradient-based multiconfiguration Shepard interpolation for generating potential energy surfaces for polyatomic reactions.

    PubMed

    Tishchenko, Oksana; Truhlar, Donald G

    2010-02-28

    This paper describes and illustrates a way to construct multidimensional representations of reactive potential energy surfaces (PESs) by a multiconfiguration Shepard interpolation (MCSI) method based only on gradient information, that is, without using any Hessian information from electronic structure calculations. MCSI, which is called multiconfiguration molecular mechanics (MCMM) in previous articles, is a semiautomated method designed for constructing full-dimensional PESs for subsequent dynamics calculations (classical trajectories, full quantum dynamics, or variational transition state theory with multidimensional tunneling). The MCSI method is based on Shepard interpolation of Taylor series expansions of the coupling term of a 2 x 2 electronically diabatic Hamiltonian matrix with the diagonal elements representing nonreactive analytical PESs for reactants and products. In contrast to the previously developed method, these expansions are truncated in the present version at the first order, and, therefore, no input of electronic structure Hessians is required. The accuracy of the interpolated energies is evaluated for two test reactions, namely, the reaction OH+H(2)-->H(2)O+H and the hydrogen atom abstraction from a model of alpha-tocopherol by methyl radical. The latter reaction involves 38 atoms and a 108-dimensional PES. The mean unsigned errors averaged over a wide range of representative nuclear configurations (corresponding to an energy range of 19.5 kcal/mol in the former case and 32 kcal/mol in the latter) are found to be within 1 kcal/mol for both reactions, based on 13 gradients in one case and 11 in the other. The gradient-based MCMM method can be applied for efficient representations of multidimensional PESs in cases where analytical electronic structure Hessians are too expensive or unavailable, and it provides new opportunities to employ high-level electronic structure calculations for dynamics at an affordable cost.

  20. Bifurcation of potential vorticity gradients across the Southern Hemisphere stratospheric polar vortex

    NASA Astrophysics Data System (ADS)

    Conway, Jonathan; Bodeker, Greg; Cameron, Chris

    2018-06-01

    The wintertime stratospheric westerly winds circling the Antarctic continent, also known as the Southern Hemisphere polar vortex, create a barrier to mixing of air between middle and high latitudes. This dynamical isolation has important consequences for export of ozone-depleted air from the Antarctic stratosphere to lower latitudes. The prevailing view of this dynamical barrier has been an annulus compromising steep gradients of potential vorticity (PV) that create a single semi-permeable barrier to mixing. Analyses presented here show that this barrier often displays a bifurcated structure where a double-walled barrier exists. The bifurcated structure manifests as enhanced gradients of PV at two distinct latitudes - usually on the inside and outside flanks of the region of highest wind speed. Metrics that quantify the bifurcated nature of the vortex have been developed and their variation in space and time has been analysed. At most isentropic levels between 395 and 850 K, bifurcation is strongest in mid-winter and decreases dramatically during spring. From August onwards a distinct structure emerges, where elevated bifurcation remains between 475 and 600 K, and a mostly single-walled barrier occurs at other levels. While bifurcation at a given level evolves from month to month, and does not always persist through a season, interannual variations in the strength of bifurcation display coherence across multiple levels in any given month. Accounting for bifurcation allows the region of reduced mixing to be better characterised. These results suggest that improved understanding of cross-vortex mixing requires consideration of the polar vortex not as a single mixing barrier but as a barrier with internal structure that is likely to manifest as more complex gradients in trace gas concentrations across the vortex barrier region.

  1. Transport characteristics of nanoparticle-based ferrofluids in a gel model of the brain

    PubMed Central

    Basak, Soubir; Brogan, David; Dietrich, Hans; Ritter, Rogers; Dacey, Ralph G; Biswas, Pratim

    2009-01-01

    A current advance in nanotechnology is the selective targeting of therapeutics by external magnetic field-guided delivery. This is an important area of research in medicine. The use of magnetic forces results in the formation of agglomerated structures in the field region. The transport characteristics of these agglomerated structures are explored. A nonintrusive method based on in situ light-scattering techniques is used to characterize the velocity of such particles in a magnetic field gradient. A transport model for the chain-like agglomerates is developed based on these experimental observations. The transport characteristics of magnetic nanoparticle drug carriers are then explored in gel-based simulated models of the brain. Results of such measurements demonstrate decreased diffusion of magnetic nanoparticles when placed in a high magnetic field gradient. PMID:19421367

  2. Conceptual design of a high real-estate gradient cavity for a SRF ERL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Chen; Ben-Zvi, Ilan; Hao, Yue

    The term “real-estate gradient” is used to describe the energy gain provided by an accelerating structure per actual length it takes in the accelerator. given that the length of the tunnel available for the accelerator is constrained, the real-estate gradient is an important measure of the efficiency of a given accelerator structure. When designing an accelerating cavity to be efficient in this sense, the unwanted Higher Order Mode (HOM) fields should be reduced by suitable HOM dampers. This is a particularly important consideration for high current operation. The additional RF components might take longitude space and reduce the total acceleratingmore » efficiency. We describe a new high efficiency 5-cell cavity with the dampers included. The total length of the cavity is reduced by 13% as compared to a more conventional design without compromising the cavity fundamental-mode performance. In addition, the HOM impedance is reduced for a higher Beam-Break-Up (BBU) threshold of operating current. In this article, we consider an example, a possible application at the eRHIC Energy Recovery Linac (ERL).« less

  3. Conceptual design of a high real-estate gradient cavity for a SRF ERL

    DOE PAGES

    Xu, Chen; Ben-Zvi, Ilan; Hao, Yue; ...

    2017-07-19

    The term “real-estate gradient” is used to describe the energy gain provided by an accelerating structure per actual length it takes in the accelerator. given that the length of the tunnel available for the accelerator is constrained, the real-estate gradient is an important measure of the efficiency of a given accelerator structure. When designing an accelerating cavity to be efficient in this sense, the unwanted Higher Order Mode (HOM) fields should be reduced by suitable HOM dampers. This is a particularly important consideration for high current operation. The additional RF components might take longitude space and reduce the total acceleratingmore » efficiency. We describe a new high efficiency 5-cell cavity with the dampers included. The total length of the cavity is reduced by 13% as compared to a more conventional design without compromising the cavity fundamental-mode performance. In addition, the HOM impedance is reduced for a higher Beam-Break-Up (BBU) threshold of operating current. In this article, we consider an example, a possible application at the eRHIC Energy Recovery Linac (ERL).« less

  4. Focusing of relativistic electrons in dense plasma using a resistivity-gradient-generated magnetic switchyard.

    PubMed

    Robinson, A P L; Key, M H; Tabak, M

    2012-03-23

    A method for producing a self-generated magnetic focussing structure for a beam of laser-generated relativistic electrons using a complex array of resistivity gradients is proposed and demonstrated using numerical simulations. The array of resistivity gradients is created by using a target consisting of alternating layers of different Z material. This new scheme is capable of effectively focussing the fast electrons even when the source is highly divergent. The application of this technique to cone-guided fast ignition inertial confinement fusion is considered, and it is shown that it may be possible to deposit over 25% of the fast electron energy into a hot spot even when the fast electron divergence angle is very large (e.g., 70° half-angle).

  5. Segmentation of knee MRI using structure enhanced local phase filtering

    NASA Astrophysics Data System (ADS)

    Lim, Mikhiel; Hacihaliloglu, Ilker

    2016-03-01

    The segmentation of bone surfaces from magnetic resonance imaging (MRI) data has applications in the quanti- tative measurement of knee osteoarthritis, surgery planning for patient specific total knee arthroplasty and its subsequent fabrication of artificial implants. However, due to the problems associated with MRI imaging such as low contrast between bone and surrounding tissues, noise, bias fields, and the partial volume effect, segmentation of bone surfaces continues to be a challenging operation. In this paper, a new framework is presented for the enhancement of knee MRI scans prior to segmentation in order to obtain high contrast bone images. During the first stage, a new contrast enhanced relative total variation (RTV) regularization method is used in order to remove textural noise from the bone structures and surrounding soft tissue interface. This salient bone edge information is further enhanced using a sparse gradient counting method based on L0 gradient minimization, which globally controls how many non-zero gradients are resulted in order to approximate prominent bone structures in a structure-sparsity-management manner. The last stage of the framework involves incorporation of local phase bone boundary information in order to provide an intensity invariant enhancement of contrast between the bone and surrounding soft tissue. The enhanced images are segmented using a fast random walker algorithm. Validation against expert segmentation was performed on 10 clinical knee MRI images, and achieved a mean dice similarity coefficient (DSC) of 0.975.

  6. An efficient sequential strategy for realizing cross-gradient joint inversion: method and its application to 2-D cross borehole seismic traveltime and DC resistivity tomography

    NASA Astrophysics Data System (ADS)

    Gao, Ji; Zhang, Haijiang

    2018-05-01

    Cross-gradient joint inversion that enforces structural similarity between different models has been widely utilized in jointly inverting different geophysical data types. However, it is a challenge to combine different geophysical inversion systems with the cross-gradient structural constraint into one joint inversion system because they may differ greatly in the model representation, forward modelling and inversion algorithm. Here we propose a new joint inversion strategy that can avoid this issue. Different models are separately inverted using the existing inversion packages and model structure similarity is only enforced through cross-gradient minimization between two models after each iteration. Although the data fitting and structural similarity enforcing processes are decoupled, our proposed strategy is still able to choose appropriate models to balance the trade-off between geophysical data fitting and structural similarity. This is realized by using model perturbations from separate data inversions to constrain the cross-gradient minimization process. We have tested this new strategy on 2-D cross borehole synthetic seismic traveltime and DC resistivity data sets. Compared to separate geophysical inversions, our proposed joint inversion strategy fits the separate data sets at comparable levels while at the same time resulting in a higher structural similarity between the velocity and resistivity models.

  7. NASA-UVA Light Aerospace Alloy and Structures Technology Program (LA2ST). Research on Materials for the High Speed Civil Transport

    NASA Technical Reports Server (NTRS)

    Gangloff, Richard P.; Starke, Edgar A., Jr.; Kelly, Robert G.; Scully, John R.; Stoner, Glenn E.; Wert, John A.

    1997-01-01

    Since 1986, the NASA-Langley Research Center has sponsored the NASA-UVa Light Alloy and Structures Technology (LA2ST) Program at the University of Virginia (UVa). The fundamental objective of the LA2ST program is to conduct interdisciplinary graduate student research on the performance of next generation, light-weight aerospace alloys, composites and thermal gradient structures. The LA2ST program has aimed to product relevant data and basic understanding of material mechanical response, environmental/corrosion behavior, and microstructure; new monolithic and composite alloys; advanced processing methods; measurement and modeling advances; and a pool of educated graduate students for aerospace technologies. The scope of the LA2ST Program is broad. Research areas include: (1) Mechanical and Environmental Degradation Mechanisms in Advanced Light Metals and Composites, (2) Aerospace Materials Science, (3) Mechanics of materials for Aerospace Structures, and (4) Thermal Gradient Structures. A substantial series of semi-annual progress reports issued since 1987 documents the technical objectives, experimental or analytical procedures, and detailed results of graduate student research in these topical areas.

  8. Memory-efficient RNA energy landscape exploration

    PubMed Central

    Mann, Martin; Kucharík, Marcel; Flamm, Christoph; Wolfinger, Michael T.

    2014-01-01

    Motivation: Energy landscapes provide a valuable means for studying the folding dynamics of short RNA molecules in detail by modeling all possible structures and their transitions. Higher abstraction levels based on a macro-state decomposition of the landscape enable the study of larger systems; however, they are still restricted by huge memory requirements of exact approaches. Results: We present a highly parallelizable local enumeration scheme that enables the computation of exact macro-state transition models with highly reduced memory requirements. The approach is evaluated on RNA secondary structure landscapes using a gradient basin definition for macro-states. Furthermore, we demonstrate the need for exact transition models by comparing two barrier-based approaches, and perform a detailed investigation of gradient basins in RNA energy landscapes. Availability and implementation: Source code is part of the C++ Energy Landscape Library available at http://www.bioinf.uni-freiburg.de/Software/. Contact: mmann@informatik.uni-freiburg.de Supplementary information: Supplementary data are available at Bioinformatics online. PMID:24833804

  9. High-energy x-ray scattering quantification of in-situ-loading-related strain gradients spanning the dentinoenamel junction (DEJ) in bovine tooth specimens.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Almer, J. D.; Stock, S. R.; Northeastern Univ.

    2010-08-26

    High energy X-ray scattering (80.7keV photons) at station 1-ID of the Advanced Photon Source quantified internal strains as a function of applied stress in mature bovine tooth. These strains were mapped from dentin through the dentinoenamel junction (DEJ) into enamel as a function of applied compressive stress in two small parallelepiped specimens. One specimen was loaded perpendicular to the DEJ and the second parallel to the DEJ. Internal strains in enamel and dentin increased and, as expected from the relative values of the Young's modulus, the observed strains were much higher in dentin than in enamel. Large strain gradients weremore » observed across the DEJ, and the data suggest that the mantle dentin-DEJ-aprismatic enamel structure may shield the near-surface volume of the enamel from large strains. In the enamel, drops in internal strain for applied stresses above 40MPa also suggest that this structure had cracked.« less

  10. Shifts in the community structure and activity of anaerobic ammonium oxidation bacteria along an estuarine salinity gradient

    NASA Astrophysics Data System (ADS)

    Zheng, Yanling; Jiang, Xiaofen; Hou, Lijun; Liu, Min; Lin, Xianbiao; Gao, Juan; Li, Xiaofei; Yin, Guoyu; Yu, Chendi; Wang, Rong

    2016-06-01

    Anaerobic ammonium oxidation (anammox) is a major microbial pathway for nitrogen (N) removal in estuarine and coastal environments. However, understanding of anammox bacterial dynamics and associations with anammox activity remains scarce along estuarine salinity gradient. In this study, the diversity, abundance, and activity of anammox bacteria, and their potential contributions to total N2 production in the sediments along the salinity gradient (0.1-33.8) of the Yangtze estuarine and coastal zone, were studied using 16S rRNA gene clone library, quantitative polymerase chain reaction assay, and isotope-tracing technique. Phylogenetic analysis showed a significant change in anammox bacterial community structure along the salinity gradient (P < 0.01), with the dominant genus shifting from Brocadia in the freshwater region to Scalindua in the open ocean. Anammox bacterial abundance ranged from 3.67 × 105 to 8.22 × 107 copies 16S rRNA gene g-1 and related significantly with salinity (P < 0.05). The anammox activity varied between 0.08 and 6.46 nmol N g-1 h-1 and related closely with anammox bacterial abundance (P < 0.01). Contributions of anammox activity to total N loss were highly variable along the salinity gradient, ranging from 5 to 77% and were significantly negatively correlated with salinity (P < 0.01). Sediment organic matter was also recognized as an important factor in controlling the relative role of anammox to total N2 production in the Yangtze estuarine and coastal zone. Overall, our data demonstrated a biogeographical distribution of anammox bacterial diversity, abundance, and activity along the estuarine salinity gradient and suggested that salinity is a major environmental control on anammox process in the estuarine and coastal ecosystems.

  11. Species Sorting of Benthic Invertebrates in a Salinity Gradient - Importance of Dispersal Limitation.

    PubMed

    Josefson, Alf B

    2016-01-01

    The relative importance of environment and dispersal related processes for community assembly has attracted great interest over recent decades, but few empirical studies from the marine/estuarine realm have examined the possible effects of these two types of factors in the same system. Importance of these processes was investigated in a hypothetical metacommunity of benthic invertebrates in 16 micro-tidal estuaries connected to the same open sea area. The estuaries differed in size and connectivity to the open sea and represented a salinity gradient across the estuaries. The Elements of Metacommunity Structure (EMS) approach on estuary scale was complemented with a mechanistic variance partitioning approach on sample scale to disentangle effects of factors affecting assembly of three trait groups of species with different dispersivity. A quasi-Clementsian pattern was observed for all three traits, a likely response to some latent gradient. The primary axis in the pattern was most strongly related to gradients in estuary salinity and estuary entrance width and correlation with richness indicated nestedness only in the matrix of the most dispersive trait group. In the variance partitioning approach measures of turnover and nestedness between paired samples each from different estuaries were related to environmental distance in different gradients. Distance between estuaries was unimportant suggesting importance of factors characterizing the estuaries. While the high dispersive species mainly were sorted in the salinity gradient, apparently according to their tolerance ranges towards salinity, the two less dispersive traits were additionally affected by estuary entrance width and possibly also area. The results exemplify a mechanism of community assembly in the marine realm where the niche factor salinity in conjunction with differential dispersal structure invertebrates in a metacommunity of connected estuaries, and support the idea that dispersive species are more controlled by the environment than less dispersive species.

  12. Precision Measurement of Phonon-Polaritonic Near-Field Energy Transfer between Macroscale Planar Structures Under Large Thermal Gradients.

    PubMed

    Ghashami, Mohammad; Geng, Hongyao; Kim, Taehoon; Iacopino, Nicholas; Cho, Sung Kwon; Park, Keunhan

    2018-04-27

    Despite its strong potentials in emerging energy applications, near-field thermal radiation between large planar structures has not been fully explored in experiments. Particularly, it is extremely challenging to control a subwavelength gap distance with good parallelism under large thermal gradients. This article reports the precision measurement of near-field radiative energy transfer between two macroscale single-crystalline quartz plates that support surface phonon polaritons. Our measurement scheme allows the precise control of a gap distance down to 200 nm in a highly reproducible manner for a surface area of 5×5  mm^{2}. We have measured near-field thermal radiation as a function of the gap distance for a broad range of thermal gradients up to ∼156  K, observing more than 40 times enhancement of thermal radiation compared to the blackbody limit. By comparing with theoretical prediction based on fluctuational electrodynamics, we demonstrate that such remarkable enhancement is owing to phonon-polaritonic energy transfer across a nanoscale vacuum gap.

  13. A projected preconditioned conjugate gradient algorithm for computing many extreme eigenpairs of a Hermitian matrix [A projected preconditioned conjugate gradient algorithm for computing a large eigenspace of a Hermitian matrix

    DOE PAGES

    Vecharynski, Eugene; Yang, Chao; Pask, John E.

    2015-02-25

    Here, we present an iterative algorithm for computing an invariant subspace associated with the algebraically smallest eigenvalues of a large sparse or structured Hermitian matrix A. We are interested in the case in which the dimension of the invariant subspace is large (e.g., over several hundreds or thousands) even though it may still be small relative to the dimension of A. These problems arise from, for example, density functional theory (DFT) based electronic structure calculations for complex materials. The key feature of our algorithm is that it performs fewer Rayleigh–Ritz calculations compared to existing algorithms such as the locally optimalmore » block preconditioned conjugate gradient or the Davidson algorithm. It is a block algorithm, and hence can take advantage of efficient BLAS3 operations and be implemented with multiple levels of concurrency. We discuss a number of practical issues that must be addressed in order to implement the algorithm efficiently on a high performance computer.« less

  14. Bending efficiency through property gradients in bamboo, palm, and wood-based composites.

    PubMed

    Wegst, Ulrike G K

    2011-07-01

    Nature, to a greater extent than engineering, takes advantage of hierarchical structures. These allow for optimization at each structural level to achieve mechanical efficiency, meaning mechanical performance per unit mass. Palms and bamboos do this exceptionally well; both are fibre-reinforced cellular materials in which the fibres are aligned parallel to the stem or culm, respectively. The distribution of these fibres is, however, not uniform: there is a density and modulus gradient across the section. This property gradient increases the flexural rigidity of the plants per unit mass, mass being a measure of metabolic investment made into an organism's construction. An analytical model is presented with which a 'gradient shape factor' can be calculated that describes by how much a plant's bending efficiency is increased through gradient structures. Combining the 'gradient shape factor' with a 'microstructural shape factor' that captures the efficiency gained through the cellular nature of the fibre composite's matrix, and a 'macroscopical shape factor' with which the tubular shape of bamboo can be described, for example, it is possible to explore how much each of these three structural levels of the hierarchy contributes to the overall bending performance of the stem or culm. In analogy, the bending efficiency of the commonly used wood-based composite medium-density fibreboard can be analysed; its property gradient is due to its manufacture by hot pressing. A few other engineered materials exist that emulate property gradients; new manufacturing routes to prepare them are currently being explored. It appears worthwhile to pursue these further. Copyright © 2011. Published by Elsevier Ltd.

  15. Experimental Study of Internal Waves and Vortices Past 2d Obstacles In A Continuously Stratified Fluid

    NASA Astrophysics Data System (ADS)

    Mitkin, V.

    Experimental investigations of fine and macroscopic structures of density and veloc- ity disturbances generated by a towing cylinder or a vertical strip in a linearly strati- fied liquid are carried out in a rectangular tank. A density gradient field is visualised by different Schlieren methods (direct shadow, 'slit-knife', 'slit-thread', 'natural rain- bow') characterised by a high spatial resolution. Profiles of fluid velocity are visu- alised by density markers U wakes past a vertically descending sugar crystal or an ascending gas bubble. In a fluid at rest the density marker acts as a vertical linear source of internal oscillations, which allows us to measure buoyancy frequency over all depth by the Schlieren instrument directly or by a conductivity probe in a particular point. Sensitive methods reveal a set of high gradient interfaces inside and outside the downstream wake besides well-known large-scale elements: upstream disturbances, attached internal waves and vortices. High gradient interfaces bound compact vor- tices. Vortices moving with respect to environment emit their own systems of internal waves randomising a regular pattern of attached antisymmetric internal waves. But after a rather long time a wave recurrence occurs and a regular but symmetric struc- ture of the longest waves (similar to the pattern of initial attached internal waves) is observed again. Results of studying of the influence of obstacles shape on phase struc- ture and amplitudes of attached internal waves field, vortex formation, their structure and characteristics are presented.

  16. Manufacture of gradient micro-structures of magnesium alloys using two stage extrusion dies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hwang, Yeong-Maw; Huang, Tze-Hui; Alexandrov, Sergei

    2013-12-16

    This paper aims to manufacture magnesium alloy metals with gradient micro-structures using hot extrusion process. The extrusion die was designed to have a straight channel part combined with a conical part. Materials pushed through this specially-designed die generate a non-uniform velocity distribution at cross sections inside the die and result in different strain and strain rate distributions. Accordingly, a gradient microstructure product can be obtained. Using the finite element analysis, the forming temperature, effective strain, and effective strain rate distributions at the die exit were firstly discussed for various inclination angles in the conical die. Then, hot extrusion experiments withmore » a two stage die were conducted to obtain magnesium alloy products with gradient micro-structures. The effects of the inclination angle on the grain size distribution at cross sections of the products were also discussed. Using a die of an inclination angle of 15°, gradient micro-structures of the grain size decreasing gradually from 17 μm at the center to 4 μm at the edge of product were achieved.« less

  17. River Flow Impacts Bacterial and Archaeal Community Structure in Surface Sediments in the Northern Gulf of Mexico.

    PubMed

    Ortmann, Alice C; Brannock, Pamela M; Wang, Lei; Halanych, Kenneth M

    2018-04-17

    Meiobenthic community structure in the northern Gulf of Mexico has been shown to be driven by geographical differences due to inshore-offshore gradients and location relative to river discharge. Samples collected along three transects spanning Mobile Bay, Alabama, showed significant differences in meiobenthic communities east of the bay compared to those sampled from the west. In contrast, analysis of bacterial and archaeal communities from the same sediment samples shows that the inshore-offshore gradient has minimal impact on their community structure. Significant differences in community structure were observed for Bacteria and Archaea between the east and west samples, but there was no difference in richness or diversity. Grouped by sediment type, higher richness was observed in silty samples compared to sandy samples. Significant differences were also observed among sediment types for community structure with bacteria communities in silty samples having more anaerobic sulfate reducers compared to aerobic heterotrophs, which had higher abundances in sandy sediments. This is likely due to increased organic matter in the silty sediments from the overlying river leading to low oxygen habitats. Most archaeal sequences represented poorly characterized high-level taxa, limiting interpretation of their distributions. Overlap between groups based on transect and sediment characteristics made determining which factor is more important in structuring bacterial and archaeal communities difficult. However, both factors are driven by discharge from the Mobile River. Although inshore-offshore gradients do not affect Bacteria or Archaea to the same extent as the meiobenthic communities, all three groups are strongly affected by sediment characteristics.

  18. In vivo quantification of T2* anisotropy in white matter fibers in marmoset monkeys

    PubMed Central

    Sati, P.; Silva, A. C.; van Gelderen, P.; Gaitan, M. I.; Wohler, J. E.; Jacobson, S.; Duyn, J. H.; Reich, D. S.

    2011-01-01

    T2*-weighted MRI at high field is a promising approach for studying noninvasively the tissue structure and composition of the brain. However, the biophysical origin of T2* contrast, especially in white matter, remains poorly understood. Recent work has shown that R2* (=1/T2*) may depend on the tissue’s orientation relative to the static magnetic field (B0) and suggested that this dependence could be attributed to local anisotropy in the magnetic properties of brain tissue. In the present work, we analyzed high-resolution, multi-gradient-echo images of in vivo marmoset brains at 7T, and compared them with ex vivo diffusion tensor images, to show that R2* relaxation in white matter is highly sensitive to the fiber orientation relative to the main field. We directly demonstrate this orientation dependence by performing in vivo multi-gradient-echo acquisitions in two orthogonal brain positions, uncovering a nearly 50% change in the R2*relaxation rate constant of the optic radiations. We attribute this substantial R2* anisotropy to local subvoxel susceptibility effects arising from the highly ordered and anisotropic structure of the myelin sheath. PMID:21906687

  19. Dimensionless numbers in additive manufacturing

    NASA Astrophysics Data System (ADS)

    Mukherjee, T.; Manvatkar, V.; De, A.; DebRoy, T.

    2017-02-01

    The effects of many process variables and alloy properties on the structure and properties of additively manufactured parts are examined using four dimensionless numbers. The structure and properties of components made from 316 Stainless steel, Ti-6Al-4V, and Inconel 718 powders for various dimensionless heat inputs, Peclet numbers, Marangoni numbers, and Fourier numbers are studied. Temperature fields, cooling rates, solidification parameters, lack of fusion defects, and thermal strains are examined using a well-tested three-dimensional transient heat transfer and fluid flow model. The results show that lack of fusion defects in the fabricated parts can be minimized by strengthening interlayer bonding using high values of dimensionless heat input. The formation of harmful intermetallics such as laves phases in Inconel 718 can be suppressed using low heat input that results in a small molten pool, a steep temperature gradient, and a fast cooling rate. Improved interlayer bonding can be achieved at high Marangoni numbers, which results in vigorous circulation of liquid metal, larger pool dimensions, and greater depth of penetration. A high Fourier number ensures rapid cooling, low thermal distortion, and a high ratio of temperature gradient to the solidification growth rate with a greater tendency of plane front solidification.

  20. PFISR GPS tracking mode for researching high-latitude ionospheric electron density gradients associated with GPS scintillation

    NASA Astrophysics Data System (ADS)

    Loucks, D. C.; Palo, S. E.; Pilinski, M.; Crowley, G.; Azeem, S. I.; Hampton, D. L.

    2016-12-01

    Ionospheric behavior in the high-latitudes can significantly impact Ultra High Frequency (UHF) signals in the 300 MHz to 3 GHz band, resulting in degradation of Global Positioning System (GPS) position solutions and satellite communications interruptions. To address these operational concerns, a need arises to identify and understand the ionospheric structure that leads to disturbed conditions in the Arctic. Structures in the high-latitude ionosphere are known to change on the order of seconds or less, can be decameters to kilometers in scale, and elongate across magnetic field lines at auroral latitudes. Nominal operations at Poker Flat Incoherent Scatter Radar (PFISR) give temporal resolution on the order of minutes, and range resolution on the order of tens of kilometers, while specialized GPS receivers available for ionospheric sensing have a 100Hz observation sampling rate. One of these, ASTRA's Connected Autonomous Space Environment Sensor (CASES) is used for this study. We have developed a new GPS scintillation tracking mode for PFISR to address open scientific questions regarding temporal and spatial electron density gradients. The mode will be described, a number of experimental campaigns will be analyzed, and results and lessons learned will be presented.

  1. Evading the strength–ductility trade-off dilemma in steel through gradient hierarchical nanotwins

    PubMed Central

    Wei, Yujie; Li, Yongqiang; Zhu, Lianchun; Liu, Yao; Lei, Xianqi; Wang, Gang; Wu, Yanxin; Mi, Zhenli; Liu, Jiabin; Wang, Hongtao; Gao, Huajian

    2014-01-01

    The strength–ductility trade-off has been a long-standing dilemma in materials science. This has limited the potential of many structural materials, steels in particular. Here we report a way of enhancing the strength of twinning-induced plasticity steel at no ductility trade-off. After applying torsion to cylindrical twinning-induced plasticity steel samples to generate a gradient nanotwinned structure along the radial direction, we find that the yielding strength of the material can be doubled at no reduction in ductility. It is shown that this evasion of strength–ductility trade-off is due to the formation of a gradient hierarchical nanotwinned structure during pre-torsion and subsequent tensile deformation. A series of finite element simulations based on crystal plasticity are performed to understand why the gradient twin structure can cause strengthening and ductility retention, and how sequential torsion and tension lead to the observed hierarchical nanotwinned structure through activation of different twinning systems. PMID:24686581

  2. Namib Desert Soil Microbial Community Diversity, Assembly, and Function Along a Natural Xeric Gradient.

    PubMed

    Scola, Vincent; Ramond, Jean-Baptiste; Frossard, Aline; Zablocki, Olivier; Adriaenssens, Evelien M; Johnson, Riegardt M; Seely, Mary; Cowan, Don A

    2018-01-01

    The hyperarid Namib desert is a coastal desert in southwestern Africa and one of the oldest and driest deserts on the planet. It is characterized by a west/east increasing precipitation gradient and by regular coastal fog events (extending up to 75 km inland) that can also provide soil moisture. In this study, we evaluated the role of this natural aridity and xeric gradient on edaphic microbial community structure and function in the Namib desert. A total of 80 individual soil samples were collected at 10-km intervals along a 190-km transect from the fog-dominated western coastal region to the eastern desert boundary. Seventeen physicochemical parameters were measured for each soil sample. Soil parameters reflected the three a priori defined climatic/xeric zones along the transect ("fog," "low rain," and "high rain"). Microbial community structures were characterized by terminal restriction fragment length polymorphism fingerprinting and shotgun metaviromics, and their functional capacities were determined by extracellular enzyme activity assays. Both microbial community structures and activities differed significantly between the three xeric zones. The deep sequencing of surface soil metavirome libraries also showed shifts in viral composition along the xeric transect. While bacterial community assembly was influenced by soil chemistry and stochasticity along the transect, variations in community "function" were apparently tuned by xeric stress.

  3. The effect of climate on acoustic signals: does atmospheric sound absorption matter for bird song and bat echolocation?

    PubMed

    Snell-Rood, Emilie C

    2012-02-01

    The divergence of signals along ecological gradients may lead to speciation. The current research tests the hypothesis that variation in sound absorption selects for divergence in acoustic signals along climatic gradients, which has implications for understanding not only diversification, but also how organisms may respond to climate change. Because sound absorption varies with temperature, humidity, and the frequency of sound, individuals or species may vary signal structure with changes in climate over space or time. In particular, signals of lower frequency, narrower bandwidth, and longer duration should be more detectable in environments with high sound absorption. Using both North American wood warblers (Parulidae) and bats of the American Southwest, this work found evidence of associations between signal structure and sound absorption. Warbler species with higher mean absorption across their range were more likely to have narrow bandwidth songs. Bat species found in higher absorption habitats were more likely to have lower frequency echolocation calls. In addition, bat species changed echolocation call structure across seasons, using longer duration, lower frequency calls in the higher absorption rainy season. These results suggest that signals may diverge along climatic gradients due to variation in sound absorption, although the effects of absorption are modest. © 2012 Acoustical Society of America

  4. Paleothermal structure of the Nankai inner accretionary wedge estimated from vitrinite reflectance of cuttings

    NASA Astrophysics Data System (ADS)

    Fukuchi, Rina; Yamaguchi, Asuka; Yamamoto, Yuzuru; Ashi, Juichiro

    2017-08-01

    The paleothermal structure and tectonic evolution of an accretionary prism is basic information for understanding subduction zone seismogenesis. To evaluate the entire paleotemperature profile of the Integrated Ocean Drilling Program (IODP) Site C0002 located in the off-Kumano region of the Nankai Trough and penetrate the inner accretionary wedge down to 3058.5 m below the seafloor (mbsf), we performed a vitrinite reflectance analysis for cuttings and core samples during IODP expeditions 338 and 348: Nankai Trough seismogenic zone experiment. Although vitrinite reflectance values (Ro) tend to increase with depth, two reversals of these values suggested the existence of thrust fault zones with sufficient displacements to offset the paleothermal structure. The estimated maximum paleotemperatures are 42-70°C at 1200-1300 mbsf, 44-100°C at 1600-2400 mbsf, and 56-115°C at 2600-3000 mbsf, respectively. These temperatures roughly coincide with estimated modern temperatures; however, at a smaller scale, the reconstructed partial paleogeothermal gradient (˜60-150°C/km) recorded at the hanging- and footwall of the presumed thrust fault zone is higher than the modern geothermal gradient (˜30-40°C/km). This high paleogeothermal gradient was possibly obtained prior to subduction, reflecting the large heat flow of the young Philippine Sea Plate.

  5. A compendium of multi-omic sequence information from the Saanich Inlet water column

    DOE PAGES

    Hawley, Alyse K.; Torres-Beltran, Monica; Zaikova, Elena; ...

    2017-10-31

    Microbial communities play vital roles in earth’s geochemical cycles. Within marine oxygen minimum zones (OMZs) gradients of oxygen, nitrate and sulfide create redox gradients that drive biogeochemical cycling of carbon, nitrogen and sulphur. Climate-change induced expansion and intensification of OMZs and associated biogeochemical activities has significant implications for green house gas production i.e. nitrous oxide and methane. Next generation sequencing technologies have enabled observations of changes in microbial community structure and expression of RNA and protein along these redox gradients within OMZs. Here, we present a multi-omic time series dataset from Saanich Inlet spanning six years, including high spatial resolutionmore » small subunit ribosomal RNA tags, metagenomes, metatranscriptomes, and metaproteomes. As a result, this compendium provides paired multi-omic datasets over multiple time points providing a basis for exploring shifts in microbial community interactions and regulation of metabolic activities both along redox gradients and over time with implications for global climate models.« less

  6. A compendium of multi-omic sequence information from the Saanich Inlet water column

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hawley, Alyse K.; Torres-Beltran, Monica; Zaikova, Elena

    Microbial communities play vital roles in earth’s geochemical cycles. Within marine oxygen minimum zones (OMZs) gradients of oxygen, nitrate and sulfide create redox gradients that drive biogeochemical cycling of carbon, nitrogen and sulphur. Climate-change induced expansion and intensification of OMZs and associated biogeochemical activities has significant implications for green house gas production i.e. nitrous oxide and methane. Next generation sequencing technologies have enabled observations of changes in microbial community structure and expression of RNA and protein along these redox gradients within OMZs. Here, we present a multi-omic time series dataset from Saanich Inlet spanning six years, including high spatial resolutionmore » small subunit ribosomal RNA tags, metagenomes, metatranscriptomes, and metaproteomes. As a result, this compendium provides paired multi-omic datasets over multiple time points providing a basis for exploring shifts in microbial community interactions and regulation of metabolic activities both along redox gradients and over time with implications for global climate models.« less

  7. Dimensional Representation and Gradient Boosting for Seismic Event Classification

    NASA Astrophysics Data System (ADS)

    Semmelmayer, F. C.; Kappedal, R. D.; Magana-Zook, S. A.

    2017-12-01

    In this research, we conducted experiments of representational structures on 5009 seismic signals with the intent of finding a method to classify signals as either an explosion or an earthquake in an automated fashion. We also applied a gradient boosted classifier. While perfect classification was not attained (approximately 88% was our best model), some cases demonstrate that many events can be filtered out as very high probability being explosions or earthquakes, diminishing subject-matter experts'(SME) workload for first stage analysis. It is our hope that these methods can be refined, further increasing the classification probability.

  8. Reynolds Stress and Sheared Poloidal Flow in the Edge Plasma Region of the HT-6M Tokamak

    NASA Astrophysics Data System (ADS)

    Wang, Wen-Hao; Yu, Chang-Xuan; Xu, Yu-Hong; Ling, Bi-Li; Gong, Xian-Zu; Liu, Bao-Hua; Wan, Bao-Nian

    2001-02-01

    High spatial resolution measurements of the electrostatic Reynolds stress, radial electric field and poloidal phase velocity of fluctuations in the edge region of the HT-6M tokamak are carried out. The Reynolds stress shows a radial gradient in proximity to the poloidal velocity shear. A comparison of the profiles between the Reynolds stress gradient and the poloidal velocity damping reveals some similarity in their magnitude and radial structure. These facts suggest that the turbulence-induced Reynolds stress may play a significant role in generating the poloidal flow in the plasma edge region.

  9. Volcano-tectonic structures, gravity and helium in geothermal areas of Tuscany and Latium (Vulsini volcanic district), Italy

    USGS Publications Warehouse

    Di, Filippo M.; Lombardi, S.; Nappi, G.; Reimer, G.M.; Renzulli, A.; Toro, B.

    1999-01-01

    Since the early 1980s, geological and structural mapping, gravity, and helium soil-gas studies have been performed in the eastern sector of the Vulsini Volcanic District (Roman Magmatic Province) in an attempt to locate potential geothermal reservoirs. This area is characterised by an anomalous geothermal gradient of > 100??C/km, and by widespread hydrothermal mineralization, thermal springs, high gas fluxes, and fossil and current travertine deposits. The results of these surveys indicate the existence of a number of fault systems, with N-S and E-W structures that appear to be superimposed on older NW-SE and NE-SW features. Comparison of the results of the various studies also reveals differences in permeability and potential reservoir structures at depth.Since the early 1980s, geological and structural mapping, gravity, and helium soil-gas studies have been performed in the eastern sector of the Vulsini Volcanic District (Roman Magmatic Province) in an attempt to locate potential geothermal reservoirs. This area is characterised by an anomalous geothermal gradient of > 100??C/km, and by widespread hydrothermal mineralization, thermal springs, high gas fluxes, and fossil and current travertine deposits. The results of these surveys indicate the existence of a number of fault systems, with N-S and E-W structures that appear to be superimposed on older NW-SE and NE-SW features. Comparison of the results of the various studies also reveals differences in permeability and potential reservoir structures at depth.

  10. Current and historical composition and size structure of upland forests across a soil gradient in north Mississippi

    Treesearch

    Sherry B. Surrette; Steven M. Aquilani; J. Stephen Brewer

    2008-01-01

    Comparisons of current and historical tree species composition and size structure along natural productivity gradients are useful for inferring effects of disturbance regimes and productivity on patterns of succession.

  11. Study of the velocity gradient tensor in turbulent flow

    NASA Technical Reports Server (NTRS)

    Cheng, Wei-Ping; Cantwell, Brian

    1996-01-01

    The behavior of the velocity gradient tensor, A(ij)=delta u(i)/delta x(j), was studied using three turbulent flows obtained from direct numerical simulation The flows studies were: an inviscid calculation of the interaction between two vortex tubes, a homogeneous isotropic flow, and a temporally evolving planar wake. Self-similar behavior for each flow was obtained when A(ij) was normalized with the mean strain rate. The case of the interaction between two vortex tubes revealed a finite sized coherent structure with topological characteristics predictable by a restricted Euler model. This structure was found to evolve with the peak vorticity as the flow approached singularity. Invariants of A(ij) within this structure followed a straight line relationship of the form: gamma(sup 3)+gammaQ+R=0, where Q and R are the second and third invariants of A(ij), and the eigenvalue gamma is nearly constant over the volume of this structure. Data within this structure have local strain topology of unstable-node/saddle/saddle. The characteristics of the velocity gradient tensor and the anisotropic part of a related acceleration gradient tensor H(ij) were also studied for a homogeneous isotropic flow and a temporally evolving planar wake. It was found that the intermediate principal eigenvalue of the rate-of-strain tensor of H(ij) tended to be negative, with local strain topology of the type stable-node/saddle/saddle. There was also a preferential eigenvalue direction. The magnitude of H(ij) in the wake flow was found to be very small when data were conditioned at high local dissipation regions. This result was not observed in the relatively low Reynolds number simulation of homogeneous isotropic flow. A restricted Euler model of the evolution of A(ij) was found to reproduce many of the topological features identified in the simulations.

  12. A continuum deformation theory for metal-matrix composites at high temperature

    NASA Technical Reports Server (NTRS)

    Robinson, D. N.

    1987-01-01

    A continuum theory is presented for representing the high temperature, time dependent, hereditary deformation behavior of metallic composites that can be idealized as pseudohomogeneous continua with locally definable directional characteristics. Homogenization of textured materials (molecular, granular, fibrous) and applicability of continuum mechanics in structural applications depends on characteristic body dimensions, the severity of gradients (stress, temperature, etc.) in the structure and the relative size of the internal structure (cell size) of the material. The point of view taken here is that the composite is a material in its own right, with its own properties that can be measured and specified for the composite as a whole.

  13. Spectral edge: gradient-preserving spectral mapping for image fusion.

    PubMed

    Connah, David; Drew, Mark S; Finlayson, Graham D

    2015-12-01

    This paper describes a novel approach to image fusion for color display. Our goal is to generate an output image whose gradient matches that of the input as closely as possible. We achieve this using a constrained contrast mapping paradigm in the gradient domain, where the structure tensor of a high-dimensional gradient representation is mapped exactly to that of a low-dimensional gradient field which is then reintegrated to form an output. Constraints on output colors are provided by an initial RGB rendering. Initially, we motivate our solution with a simple "ansatz" (educated guess) for projecting higher-D contrast onto color gradients, which we expand to a more rigorous theorem to incorporate color constraints. The solution to these constrained optimizations is closed-form, allowing for simple and hence fast and efficient algorithms. The approach can map any N-D image data to any M-D output and can be used in a variety of applications using the same basic algorithm. In this paper, we focus on the problem of mapping N-D inputs to 3D color outputs. We present results in five applications: hyperspectral remote sensing, fusion of color and near-infrared or clear-filter images, multilighting imaging, dark flash, and color visualization of magnetic resonance imaging diffusion-tensor imaging.

  14. Efficient Online Learning Algorithms Based on LSTM Neural Networks.

    PubMed

    Ergen, Tolga; Kozat, Suleyman Serdar

    2017-09-13

    We investigate online nonlinear regression and introduce novel regression structures based on the long short term memory (LSTM) networks. For the introduced structures, we also provide highly efficient and effective online training methods. To train these novel LSTM-based structures, we put the underlying architecture in a state space form and introduce highly efficient and effective particle filtering (PF)-based updates. We also provide stochastic gradient descent and extended Kalman filter-based updates. Our PF-based training method guarantees convergence to the optimal parameter estimation in the mean square error sense provided that we have a sufficient number of particles and satisfy certain technical conditions. More importantly, we achieve this performance with a computational complexity in the order of the first-order gradient-based methods by controlling the number of particles. Since our approach is generic, we also introduce a gated recurrent unit (GRU)-based approach by directly replacing the LSTM architecture with the GRU architecture, where we demonstrate the superiority of our LSTM-based approach in the sequential prediction task via different real life data sets. In addition, the experimental results illustrate significant performance improvements achieved by the introduced algorithms with respect to the conventional methods over several different benchmark real life data sets.

  15. The Evolution of Metallicity and Metallicity Gradients from z = 2.7 to 0.6 with KMOS3D

    NASA Astrophysics Data System (ADS)

    Wuyts, Eva; Wisnioski, Emily; Fossati, Matteo; Förster Schreiber, Natascha M.; Genzel, Reinhard; Davies, Ric; Mendel, J. Trevor; Naab, Thorsten; Röttgers, Bernhard; Wilman, David J.; Wuyts, Stijn; Bandara, Kaushala; Beifiori, Alessandra; Belli, Sirio; Bender, Ralf; Brammer, Gabriel B.; Burkert, Andreas; Chan, Jeffrey; Galametz, Audrey; Kulkarni, Sandesh K.; Lang, Philipp; Lutz, Dieter; Momcheva, Ivelina G.; Nelson, Erica J.; Rosario, David; Saglia, Roberto P.; Seitz, Stella; Tacconi, Linda J.; Tadaki, Ken-ichi; Übler, Hannah; van Dokkum, Pieter

    2016-08-01

    We present measurements of the [N II]/Hα ratio as a probe of gas-phase oxygen abundance for a sample of 419 star-forming galaxies at z = 0.6-2.7 from the KMOS3D near-IR multi-integral field unit (IFU) survey. The mass-metallicity relation (MZR) is determined consistently with the same sample selection, metallicity tracer, and methodology over the wide redshift range probed by the survey. We find good agreement with long-slit surveys in the literature, except for the low-mass slope of the relation at z˜ 2.3, where this sample is less biased than previous samples based on optical spectroscopic redshifts. In this regime we measure a steeper slope than some literature results. Excluding the contribution from active galactic nuclei from the MZR reduces sensitivity at the high-mass end, but produces otherwise consistent results. There is no significant dependence of the [N II]/Hα ratio on star formation rate at fixed redshift and stellar mass. The IFU data allow spatially resolved measurements of [N II]/Hα, from which we can infer abundance gradients for 180 galaxies, thus tripling the current sample in the literature. The observed gradients are on average flat, with only 15 gradients statistically offset from zero at \\gt 3σ . We have modeled the effect of beam smearing, assuming a smooth intrinsic radial gradient and known seeing, inclination, and effective radius for each galaxy. Our seeing-limited observations can recover up to 70% of the intrinsic gradient for the largest, face-on disks, but only 30% for the smaller, more inclined galaxies. We do not find significant trends between observed or corrected gradients and any stellar population, dynamical, or structural galaxy parameters, mostly in agreement with existing studies with much smaller sample sizes. In cosmological simulations, strong feedback is generally required to produce flat gradients at high redshift.

  16. Stronger tests of mechanisms underlying geographic gradients of biodiversity: insights from the dimensionality of biodiversity.

    PubMed

    Stevens, Richard D; Tello, J Sebastián; Gavilanez, María Mercedes

    2013-01-01

    Inference involving diversity gradients typically is gathered by mechanistic tests involving single dimensions of biodiversity such as species richness. Nonetheless, because traits such as geographic range size, trophic status or phenotypic characteristics are tied to a particular species, mechanistic effects driving broad diversity patterns should manifest across numerous dimensions of biodiversity. We develop an approach of stronger inference based on numerous dimensions of biodiversity and apply it to evaluate one such putative mechanism: the mid-domain effect (MDE). Species composition of 10,000-km(2) grid cells was determined by overlaying geographic range maps of 133 noctilionoid bat taxa. We determined empirical diversity gradients in the Neotropics by calculating species richness and three indices each of phylogenetic, functional and phenetic diversity for each grid cell. We also created 1,000 simulated gradients of each examined metric of biodiversity based on a MDE model to estimate patterns expected if species distributions were randomly placed within the Neotropics. For each simulation run, we regressed the observed gradient onto the MDE-expected gradient. If a MDE drives empirical gradients, then coefficients of determination from such an analysis should be high, the intercept no different from zero and the slope no different than unity. Species richness gradients predicted by the MDE fit empirical patterns. The MDE produced strong spatially structured gradients of taxonomic, phylogenetic, functional and phenetic diversity. Nonetheless, expected values generated from the MDE for most dimensions of biodiversity exhibited poor fit to most empirical patterns. The MDE cannot account for most empirical patterns of biodiversity. Fuller understanding of latitudinal gradients will come from simultaneous examination of relative effects of random, environmental and historical mechanisms to better understand distribution and abundance of the current biota.

  17. Stronger Tests of Mechanisms Underlying Geographic Gradients of Biodiversity: Insights from the Dimensionality of Biodiversity

    PubMed Central

    Stevens, Richard D.; Tello, J. Sebastián; Gavilanez, María Mercedes

    2013-01-01

    Inference involving diversity gradients typically is gathered by mechanistic tests involving single dimensions of biodiversity such as species richness. Nonetheless, because traits such as geographic range size, trophic status or phenotypic characteristics are tied to a particular species, mechanistic effects driving broad diversity patterns should manifest across numerous dimensions of biodiversity. We develop an approach of stronger inference based on numerous dimensions of biodiversity and apply it to evaluate one such putative mechanism: the mid-domain effect (MDE). Species composition of 10,000-km2 grid cells was determined by overlaying geographic range maps of 133 noctilionoid bat taxa. We determined empirical diversity gradients in the Neotropics by calculating species richness and three indices each of phylogenetic, functional and phenetic diversity for each grid cell. We also created 1,000 simulated gradients of each examined metric of biodiversity based on a MDE model to estimate patterns expected if species distributions were randomly placed within the Neotropics. For each simulation run, we regressed the observed gradient onto the MDE-expected gradient. If a MDE drives empirical gradients, then coefficients of determination from such an analysis should be high, the intercept no different from zero and the slope no different than unity. Species richness gradients predicted by the MDE fit empirical patterns. The MDE produced strong spatially structured gradients of taxonomic, phylogenetic, functional and phenetic diversity. Nonetheless, expected values generated from the MDE for most dimensions of biodiversity exhibited poor fit to most empirical patterns. The MDE cannot account for most empirical patterns of biodiversity. Fuller understanding of latitudinal gradients will come from simultaneous examination of relative effects of random, environmental and historical mechanisms to better understand distribution and abundance of the current biota. PMID:23451099

  18. Morphology dependent near-field response in atomistic plasmonic nanocavities.

    PubMed

    Chen, Xing; Jensen, Lasse

    2018-06-21

    In this work we examine how the atomistic morphologies of plasmonic dimers control the near-field response by using an atomistic electrodynamics model. At large separations, the field enhancement in the junction follows a simple inverse power law as a function of the gap separation, which agrees with classical antenna theory. However, when the separations are smaller than 0.8 nm, the so-called quantum size regime, the field enhancement is screened and thus deviates from the simple power law. Our results show that the threshold distance for the deviation depends on the specific morphology of the junction. The near field in the junction can be localized to an area of less than 1 nm2 in the presence of an atomically sharp tip, but the separation distances leading to a large confinement of near field depend strongly on the specific atomistic configuration. More importantly, the highly confined fields lead to large field gradients particularly in a tip-to-surface junction, which indicates that such a plasmonic structure favors observing strong field gradient effects in near-field spectroscopy. We find that for atomically sharp tips the field gradient becomes significant and depends strongly on the local morphology of a tip. We expect our findings to be crucial for understanding the origin of high-resolution near-field spectroscopy and for manipulating optical cavities through atomic structures in the strongly coupled plasmonic systems.

  19. Comparing direct and iterative equation solvers in a large structural analysis software system

    NASA Technical Reports Server (NTRS)

    Poole, E. L.

    1991-01-01

    Two direct Choleski equation solvers and two iterative preconditioned conjugate gradient (PCG) equation solvers used in a large structural analysis software system are described. The two direct solvers are implementations of the Choleski method for variable-band matrix storage and sparse matrix storage. The two iterative PCG solvers include the Jacobi conjugate gradient method and an incomplete Choleski conjugate gradient method. The performance of the direct and iterative solvers is compared by solving several representative structural analysis problems. Some key factors affecting the performance of the iterative solvers relative to the direct solvers are identified.

  20. NASA-UVa light aerospace alloy and structures technology program

    NASA Technical Reports Server (NTRS)

    Gangloff, Richard P.; Haviland, John K.; Herakovich, Carl T.; Pilkey, Walter D.; Pindera, Marek-Jerzy; Scully, John R.; Stoner, Glenn E.; Swanson, Robert E.; Thornton, Earl A.; Wawner, Franklin E., Jr.

    1991-01-01

    The general objective of the NASA-UVa Light Aerospace Alloy and Structures Technology Program was to conduct research on the performance of next generation, light weight aerospace alloys, composites, and associated thermal gradient structures. The following research areas were actively investigated: (1) mechanical and environmental degradation mechanisms in advanced light metals and composites; (2) aerospace materials science; (3) mechanics of materials and composites for aerospace structures; and (4) thermal gradient structures.

  1. Excitonic enhancement of nonradiative energy transfer to bulk silicon with the hybridization of cascaded quantum dots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yeltik, Aydan; Guzelturk, Burak; Akhavan, Shahab

    2013-12-23

    We report enhanced sensitization of silicon through nonradiative energy transfer (NRET) of the excitons in an energy-gradient structure composed of a cascaded bilayer of green- and red-emitting CdTe quantum dots (QDs) on bulk silicon. Here NRET dynamics were systematically investigated comparatively for the cascaded energy-gradient and mono-dispersed QD structures at room temperature. We show experimentally that NRET from the QD layer into silicon is enhanced by 40% in the case of an energy-gradient cascaded structure as compared to the mono-dispersed structures, which is in agreement with the theoretical analysis based on the excited state population-depopulation dynamics of the QDs.

  2. Efficient flat metasurface lens for terahertz imaging.

    PubMed

    Yang, Quanlong; Gu, Jianqiang; Wang, Dongyang; Zhang, Xueqian; Tian, Zhen; Ouyang, Chunmei; Singh, Ranjan; Han, Jiaguang; Zhang, Weili

    2014-10-20

    Metamaterials offer exciting opportunities that enable precise control of amplitude, polarization and phase of the light beam at a subwavelength scale. A gradient metasurface consists of a class of anisotropic subwavelength metamaterial resonators that offer abrupt amplitude and phase changes, thus enabling new applications in optical device design such as ultrathin flat lenses. We propose a highly efficient gradient metasurface lens based on a metal-dielectric-metal structure that operates in the terahertz regime. The proposed structure consists of slotted metallic resonator arrays on two sides of a thin dielectric spacer. By varying the geometrical parameters, the metasurface lens efficiently manipulates the spatial distribution of the terahertz field and focuses the beam to a spot size on the order of a wavelength. The proposed flat metasurface lens design is polarization insensitive and works efficiently even at wide angles of incidence.

  3. Scaling laws and bulk-boundary decoupling in heat flow.

    PubMed

    del Pozo, Jesús J; Garrido, Pedro L; Hurtado, Pablo I

    2015-03-01

    When driven out of equilibrium by a temperature gradient, fluids respond by developing a nontrivial, inhomogeneous structure according to the governing macroscopic laws. Here we show that such structure obeys strikingly simple scaling laws arbitrarily far from equilibrium, provided that both macroscopic local equilibrium and Fourier's law hold. Extensive simulations of hard disk fluids confirm the scaling laws even under strong temperature gradients, implying that Fourier's law remains valid in this highly nonlinear regime, with putative corrections absorbed into a nonlinear conductivity functional. In addition, our results show that the scaling laws are robust in the presence of strong finite-size effects, hinting at a subtle bulk-boundary decoupling mechanism which enforces the macroscopic laws on the bulk of the finite-sized fluid. This allows one to measure the marginal anomaly of the heat conductivity predicted for hard disks.

  4. Manipulation of acoustic wavefront by gradient metasurface based on Helmholtz Resonators.

    PubMed

    Lan, Jun; Li, Yifeng; Xu, Yue; Liu, Xiaozhou

    2017-09-06

    We designed a gradient acoustic metasurface to manipulate acoustic wavefront freely. The broad bandwidth and high efficiency transmission are achieved by the acoustic metasurface which is constructed with a series of unit cells to provide desired discrete acoustic velocity distribution. Each unit cell is composed of a decorated metal plate with four periodically arrayed Helmholtz resonators (HRs) and a single slit. The design employs a gradient velocity to redirect refracted wave and the impedance matching between the metasurface and the background medium can be realized by adjusting the slit width of unit cell. The theoretical and numerical results show that some excellent wavefront manipulations are demonstrated by anomalous refraction, non-diffracting Bessel beam, sub-wavelength flat focusing, and effective tunable acoustic negative refraction. Our designed structure may offer potential applications for the imaging system, beam steering and acoustic lens.

  5. Morphology and kinematics of filaments in Serpens and Perseus molecular clouds: a high resolution study

    NASA Astrophysics Data System (ADS)

    Dhabal, Arnab; Mundy, Lee; Rizzo, Maxime; Storm, Shaye; Teuben, Peter; CLASSy Collaboration

    2018-01-01

    Filamentary structures are prevalent in molecular clouds over a wide range of scales, and are often associated with active star formation. The study of filament morphology and kinematics provide insights into the physical processes leading to core formation in clustered environments. As part of the CARMA Large Area Star Formation Survey (CLASSy) follow-up, we observed five Herschel filaments in the Serpens Main, Serpens South and NGC1333 molecular clouds using the J=1-0 transitions of dense gas tracers H13CO+, HNC and H13CN. Of these, H13CO+ and H13CN are optically thin and serve as a test of the kinematics previously seen by the CLASSy in N2H+. The observations have an angular resolution of 7'' and a spectral resolution of 0.16 km/s. Although the large scale structure compares well with the CARMA N2H+ (J=1-0) maps and Herschel dust continuum maps, we resolve finer structure within the filaments identified by Herschel. Most regions are found to have multiple structures and filaments partially overlapping in the line-of-sight. In two regions overlapping structures have velocity differences as high as 1.4 km/s. We identify 8 individual filaments with typical widths of 0.03-0.06 pc in these tracers, which is significantly less than widths observed in the Herschel dust column density maps. At least 50% of the filaments have distinct velocity gradients perpendicular to their major axis with average values in the range 4-10 km s-1 pc-1. These findings are in support of the theoretical models of filament formation by 2-D inflow in the shock layer created by colliding turbulent cells. We also find evidence of velocity gradients along the length of two filaments; the gradients suggest that these filaments are inflowing towards the cloud core.

  6. Analysis of Thermal Structure of Arctic Lakes at Local and Regional Scales Using in Situ and Multidate Landsat-8 Data

    NASA Astrophysics Data System (ADS)

    Huang, Yan; Liu, Hongxing; Hinkel, Kenneth; Yu, Bailang; Beck, Richard; Wu, Jianping

    2017-11-01

    The Arctic coastal plain is covered with numerous thermokarst lakes. These lakes are closely linked to climate and environmental change through their heat and water budgets. We examined the intralake thermal structure at the local scale and investigated the water temperature pattern of lakes at the regional scale by utilizing extensive in situ measurements and multidate Landsat-8 remote sensing data. Our analysis indicates that the lake skin temperatures derived from satellite thermal sensors during most of the ice-free summer period effectively represent the lake bulk temperature because the lakes are typically well-mixed and without significant vertical stratification. With the relatively high-resolution Landsat-8 thermal data, we were able to quantitatively examine intralake lateral temperature differences and gradients in relation to geographical location, topography, meteorological factors, and lake morphometry for the first time. Our results suggest that wind speed and direction not only control the vertical stratification but also influences lateral differences and gradients of lake surface temperature. Wind can considerably reduce the intralake temperature gradient. Interestingly, we found that geographical location (latitude, longitude, distance to the ocean) and lake morphometry (surface size, depth, volume) not only control lake temperature regionally but also affect the lateral temperature gradient and homogeneity level within each individual lake. For the Arctic coastal plain, at regional scales, inland and southern lakes tend to have larger horizontal temperature differences and gradients compared to coastal and northern lakes. At local scales, large and shallow lakes tend to have large lateral temperature differences relative to small and deep lakes.

  7. Usage of Nest Materials by House Sparrow (Passer domesticus) Along an Urban to Rural Gradient in Coimbatore, India.

    PubMed

    Radhamany, Dhanya; Das, Karumampoyil Sakthidas Anoop; Azeez, Parappurath Abdul; Wen, Longying; Sreekala, Leelambika Krishnan

    2016-08-01

    The house sparrow (Passer domesticus) is a widely distributed bird species found throughout the world. Being a species which has close association with humans, they chiefly nest on man-made structures. Here we describe the materials used by the house sparrow for making nests along an urban to rural gradient. For the current study, we selected the Coimbatore to Anaikatty road (State Highway-164), a 27 km inter-state highway, which traverses along an urban core to rural outstretch of Coimbatore. Of the 30 nests observed, 15 nests were from the rural, 8 were from the suburban, and 7 were from the urban areas. The nests had two distinct layers, specifically the structural layer and the inner lining. In the current study, we identified 11 plant species, 2 types of animal matter, and 6 types of anthropogenic matter, including plastic pieces and fine rope. The amount of anthropogenic materials in the nest formation varied along the gradients. The usage of anthropogenic materials was high in urban areas (p<0.05) whereas it did not differ at the sub-urban regions (p>0.05). A gradual decrease in the usage of plant matter towards the urban area was noticed (p<0.05). This study explicitly documents the links between nest material usage along an urban to rural gradient, in a human associated bird.

  8. Sea surface salinity fronts in the Tropical Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Ruiz-Etcheverry, L.; Maximenko, N. A.; Melnichenko, O.

    2016-12-01

    Marine fronts are narrow boundaries that separate water masses of different properties. These fronts are caused by various forcing and believed to be an important component of the coupled ocean-atmosphere system, particularly in the tropical oceans. In this study, we use sea surface salinity (SSS) observations from Aquarius satellite to investigate the spatial structure and temporal variability of SSS fronts in the tropical Atlantic. A number of frontal features have been identified. The mean magnitude of the SSS gradient is maximum near the mouth of the Congo River (0.3-0.4 psu/100km). Relative maxima are also observed in the Inter Tropical Convergence Zone (ITCZ), the Gulf of Guinea, and the mouth of the Amazon River. The pattern of the magnitude of the SSS anomaly gradient revealed that the interaction between river plumes and saltier interior water is complex and highly variable during the three-year observation period. The variability of the magnitude of the density anomaly gradient computed from Aquarius SSS and Reynolds SST is also discussed. Images of the ocean color are utilized to trace the movement of the Congo and Amazon River plumes and compare them with the magnitude of the SSS gradient. Additionally, we analyze de circulation associated with the Amazon plume with altimetry data, and the vertical structure and its changes in time through Argo profiles.

  9. Plasmonic optical nanotweezers

    NASA Astrophysics Data System (ADS)

    Kotb, Rehab; El Maklizi, Mahmoud; Ismail, Yehea; Swillam, Mohamed A.

    2017-02-01

    Plasmonic grating structures can be used in many applications such as nanolithography and optical trapping. In this paper, we used plasmonic grating as optical tweezers to trap and manipulate dielectric nano-particles. Different plasmonic grating structures with single, double, and triple slits have been investigated and analyzed. The three configurations are optimized and compared to find the best candidate to trap and manipulate nanoparticles. The three optimized structures results in capability to super focusing and beaming the light effectively beyond the diffraction limit. A high transverse gradient optical force is obtained using the triple slit configuration that managed to significantly enhance the field and its gradient. Therefore, it has been chosen as an efficient optical tweezers. This structure managed to trap sub10nm particles efficiently. The resultant 50KT potential well traps the nano particles stably. The proposed structure is used also to manipulate the nano-particles by simply changing the angle of the incident light. We managed to control the movement of nano particle over an area of (5μm x 5μm) precisely. The proposed structure has the advantage of trapping and manipulating the particles outside the structure (not inside the structure such as the most proposed optical tweezers). As a result, it can be used in many applications such as drug delivery and biomedical analysis.

  10. Response of soil microbial communities to roxarsone pollution along a concentration gradient.

    PubMed

    Liu, Yaci; Zhang, Zhaoji; Li, Yasong; Wen, Yi; Fei, Yuhong

    2017-07-29

    The extensive use of roxarsone (3-nitro-4-hydroxyphenylarsonic acid) as a feed additive in the broiler poultry industry can lead to environmental arsenic contamination. This study was conducted to reveal the response of soil microbial communities to roxarsone pollution along a concentration gradient. To explore the degradation process and degradation kinetics of roxarsone concentration gradients in soil, the concentration shift of roxarsone at initial concentrations of 0, 50, 100, and 200 mg/kg, as well as that of the arsenic derivatives, was detected. The soil microbial community composition and structure accompanying roxarsone degradation were investigated by high-throughput sequencing. The results showed that roxarsone degradation was inhibited by a biological inhibitor, confirming that soil microbes were absolutely essential to its degradation. Moreover, soil microbes had considerable potential to degrade roxarsone, as a high initial concentration of roxarsone resulted in a substantially increased degradation rate. The concentrations of the degradation products HAPA (3-amino-4-hydroxyphenylarsonic acid), AS(III), and AS(V) in soils were significantly positively correlated. The soil microbial community composition and structure changed significantly across the roxarsone contamination gradient, and the addition of roxarsone decreased the microbial diversity. Some bacteria tended to be inhibited by roxarsone, while Bacillus, Paenibacillus, Arthrobacter, Lysobacter, and Alkaliphilus played important roles in roxarsone degradation. Moreover, HAPA, AS(III), and AS(V) were significantly positively correlated with Symbiobacterium, which dominated soils containing roxarsone, and their abundance increased with increasing initial roxarsone concentration. Accordingly, Symbiobacterium could serve as indicator of arsenic derivatives released by roxarsone as well as the initial roxarsone concentration. This is the first investigation of microbes closely related to roxarsone degradation.

  11. Functional Sites Induce Long-Range Evolutionary Constraints in Enzymes

    PubMed Central

    Jack, Benjamin R.; Meyer, Austin G.; Echave, Julian; Wilke, Claus O.

    2016-01-01

    Functional residues in proteins tend to be highly conserved over evolutionary time. However, to what extent functional sites impose evolutionary constraints on nearby or even more distant residues is not known. Here, we report pervasive conservation gradients toward catalytic residues in a dataset of 524 distinct enzymes: evolutionary conservation decreases approximately linearly with increasing distance to the nearest catalytic residue in the protein structure. This trend encompasses, on average, 80% of the residues in any enzyme, and it is independent of known structural constraints on protein evolution such as residue packing or solvent accessibility. Further, the trend exists in both monomeric and multimeric enzymes and irrespective of enzyme size and/or location of the active site in the enzyme structure. By contrast, sites in protein–protein interfaces, unlike catalytic residues, are only weakly conserved and induce only minor rate gradients. In aggregate, these observations show that functional sites, and in particular catalytic residues, induce long-range evolutionary constraints in enzymes. PMID:27138088

  12. Characterization of iron-phosphate-silicate chemical garden structures.

    PubMed

    Barge, Laura M; Doloboff, Ivria J; White, Lauren M; Stucky, Galen D; Russell, Michael J; Kanik, Isik

    2012-02-28

    Chemical gardens form when ferrous chloride hydrate seed crystals are added or concentrated solutions are injected into solutions of sodium silicate and potassium phosphate. Various precipitation morphologies are observed depending on silicate and phosphate concentrations, including hollow plumes, bulbs, and tubes. The growth of precipitates is controlled by the internal osmotic pressure, fluid buoyancy, and membrane strength. Additionally, rapid bubble-led growth is observed when silicate concentrations are high. ESEM/EDX analysis confirms compositional gradients within the membranes, and voltage measurements across the membranes during growth show a final potential of around 150-200 mV, indicating that electrochemical gradients are maintained across the membranes as growth proceeds. The characterization of chemical gardens formed with iron, silicate, and phosphate, three important components of an early earth prebiotic hydrothermal system, can help us understand the properties of analogous structures that likely formed at submarine alkaline hydrothermal vents in the Hadean-structures offering themselves as the hatchery of life. © 2011 American Chemical Society

  13. Glaciations, gradients, and geography: multiple drivers of diversification of bush frogs in the Western Ghats Escarpment

    PubMed Central

    Menezes, Riya C.; Jayarajan, Aditi; Shanker, Kartik

    2016-01-01

    The historical processes underlying high diversity in tropical biodiversity hotspots like the Western Ghats of Peninsular India remain poorly understood. We sampled bush frogs on 13 massifs across the Western Ghats Escarpment and examined the relative influence of Quaternary glaciations, ecological gradients and geological processes on the spatial patterns of lineage and clade diversification. The results reveal a large in situ radiation (more than 60 lineages), exhibiting geographical structure and clade-level endemism, with two deeply divergent sister clades, North and South, highlighting the biogeographic significance of an ancient valley, the Palghat Gap. A majority of the bush frog sister lineages were isolated on adjacent massifs, and signatures of range stasis provide support for the dominance of geological processes in allopatric speciation. In situ diversification events within the montane zones (more than 1800 m) of the two highest massifs suggest a role for climate-mediated forest-grassland persistence. Independent transitions along elevational gradients among sub-clades during the Miocene point to diversification along the elevational gradient. The study highlights the evolutionary significance of massifs in the Western Ghats with the high elevations acting as centres of lineage diversification and the low- and mid-elevations of the southern regions, with deeply divergent lineages, serving as museums. PMID:27534957

  14. Glaciations, gradients, and geography: multiple drivers of diversification of bush frogs in the Western Ghats Escarpment.

    PubMed

    Vijayakumar, S P; Menezes, Riya C; Jayarajan, Aditi; Shanker, Kartik

    2016-08-17

    The historical processes underlying high diversity in tropical biodiversity hotspots like the Western Ghats of Peninsular India remain poorly understood. We sampled bush frogs on 13 massifs across the Western Ghats Escarpment and examined the relative influence of Quaternary glaciations, ecological gradients and geological processes on the spatial patterns of lineage and clade diversification. The results reveal a large in situ radiation (more than 60 lineages), exhibiting geographical structure and clade-level endemism, with two deeply divergent sister clades, North and South, highlighting the biogeographic significance of an ancient valley, the Palghat Gap. A majority of the bush frog sister lineages were isolated on adjacent massifs, and signatures of range stasis provide support for the dominance of geological processes in allopatric speciation. In situ diversification events within the montane zones (more than 1800 m) of the two highest massifs suggest a role for climate-mediated forest-grassland persistence. Independent transitions along elevational gradients among sub-clades during the Miocene point to diversification along the elevational gradient. The study highlights the evolutionary significance of massifs in the Western Ghats with the high elevations acting as centres of lineage diversification and the low- and mid-elevations of the southern regions, with deeply divergent lineages, serving as museums. © 2016 The Author(s).

  15. Cholesteric liquid crystal gels with a graded mechanical stress

    NASA Astrophysics Data System (ADS)

    Agez, Gonzague; Relaix, Sabrina; Mitov, Michel

    2014-02-01

    In cholesteric liquid-crystalline gels, the mechanical role of the polymer network over the structure of the whole gel has been ignored. We show that it is the stress gradient exerted by the network over the helical structure that drives the broadening of the optical band gap, as evidenced by the absence of a gradient in chiral species. Model calculations and finite-difference time-domain simulations show that the network acts as a spring with a stiffness gradient. The present results indicate a revision to the common understanding of the physical properties of liquid-crystalline gels is necessary when a concentration gradient in a polymer network is present.

  16. Cholesteric liquid crystal gels with a graded mechanical stress.

    PubMed

    Agez, Gonzague; Relaix, Sabrina; Mitov, Michel

    2014-02-01

    In cholesteric liquid-crystalline gels, the mechanical role of the polymer network over the structure of the whole gel has been ignored. We show that it is the stress gradient exerted by the network over the helical structure that drives the broadening of the optical band gap, as evidenced by the absence of a gradient in chiral species. Model calculations and finite-difference time-domain simulations show that the network acts as a spring with a stiffness gradient. The present results indicate a revision to the common understanding of the physical properties of liquid-crystalline gels is necessary when a concentration gradient in a polymer network is present.

  17. Edge of polar cap patches

    NASA Astrophysics Data System (ADS)

    Hosokawa, K.; Taguchi, S.; Ogawa, Y.

    2016-04-01

    On the night of 4 December 2013, a sequence of polar cap patches was captured by an all-sky airglow imager (ASI) in Longyearbyen, Norway (78.1°N, 15.5°E). The 630.0 nm airglow images from the ASI of 4 second exposure time, oversampled the emission of natural lifetime (with quenching) of at least ˜30 sec, introduce no observational blurring effects. By using such high-quality ASI images, we succeeded in visualizing an asymmetry in the gradients between the leading/trailing edges of the patches in a 2-D fashion. The gradient in the leading edge was found to be 2-3 times steeper than that in the trailing edge. We also identified fingerlike structures, appearing only along the trailing edge of the patches, whose horizontal scale size ranged from 55 to 210 km. These fingers are considered to be manifestations of plasma structuring through the gradient-drift instability (GDI), which is known to occur only along the trailing edge of patches. That is, the current 2-D observations visualized, for the first time, how GDI stirs the patch plasma and such a mixing process makes the trailing edge more gradual. This result strongly implies a close connection between the GDI-driven plasma stirring and the asymmetry in the large-scale shape of patches and then suggests that the fingerlike structures can be used as markers to estimate the fine-scale structure in the plasma flow within patches.

  18. Predictability of littoral-zone fish communities through ontogeny in Lake Texoma, Oklahoma-Texas, USA

    USGS Publications Warehouse

    Eggleton, M.A.; Ramirez, R.; Hargrave, C.W.; Gido, K.B.; Masoner, J.R.; Schnell, G.D.; Matthews, W.J.

    2005-01-01

    We sampled larval, juvenile and adult fishes from littoral-zone areas of a large reservoir (Lake Texoma, Oklahoma-Texas) (1) to characterize environmental factors that influenced fish community structure, (2) to examine how consistent fish-environment relationships were through ontogeny (i.e., larval vs. juvenile and adult), and (3) to measure the concordance of larval communities sampled during spring to juvenile and adult communities sampled at the same sites later in the year. Larval, juvenile and adult fish communities were dominated by Atherinidae (mainly inland silverside, Menidia beryllina) and Moronidae (mainly juvenile striped bass, Morone saxatilis) and were consistently structured along a gradient of site exposure to prevailing winds and waves. Larval, juvenile and adult communities along this gradient varied from atherinids and moronids at highly exposed sites to mostly centrarchids (primarily Lepomis and Micropterus spp.) at protected sites. Secondarily, zooplankton densities, water clarity, and land-use characteristics were related to fish community structure. Rank correlation analyses and Mantel tests indicated that the spatial consistency and predictability of fish communities was high as larval fishes sampled during spring were concordant with juvenile and adult fishes sampled at the same sites during summer and fall in terms of abundance, richness, and community structure. We propose that the high predictability and spatial consistency of littoral-zone fishes in Lake Texoma was a function of relatively simple communities (dominated by 1-2 species) that were structured by factors, such as site exposure to winds and waves, that varied little through time. ?? Springer 2005.

  19. Bubbles are responsive materials interesting for nonequilibrium physics

    NASA Astrophysics Data System (ADS)

    Andreeva, Daria; Granick, Steve

    Understanding of nature and conditions of non-equilibrium transformations of bubbles, droplets, polysomes and vesicles in a gradient filed is a breath-taking question that dissipative systems raise. We ask: how to establish a dynamic control of useful characteristics, for example dynamic control of morphology and composition modulation in soft matter. A possible answer is to develop a new generation of dynamic impactors that can trigger spatiotemporal oscillations of structures and functions. We aim to apply acoustic filed for development of temperature and pressure oscillations at a microscale area. We demonstrate amazing dynamic behavior of gas-filled bubbles in pressure gradient field using a unique technique combining optical imaging, high intensity ultrasound and high speed camera. We find that pressure oscillations trigger continuous phase transformations that are considered to be impossible in physical systems.

  20. SAGE: The Self-Adaptive Grid Code. 3

    NASA Technical Reports Server (NTRS)

    Davies, Carol B.; Venkatapathy, Ethiraj

    1999-01-01

    The multi-dimensional self-adaptive grid code, SAGE, is an important tool in the field of computational fluid dynamics (CFD). It provides an efficient method to improve the accuracy of flow solutions while simultaneously reducing computer processing time. Briefly, SAGE enhances an initial computational grid by redistributing the mesh points into more appropriate locations. The movement of these points is driven by an equal-error-distribution algorithm that utilizes the relationship between high flow gradients and excessive solution errors. The method also provides a balance between clustering points in the high gradient regions and maintaining the smoothness and continuity of the adapted grid, The latest version, Version 3, includes the ability to change the boundaries of a given grid to more efficiently enclose flow structures and provides alternative redistribution algorithms.

  1. The NTF Inlet Guide Vanes Thermal Gradient Problem and Its Mitigation

    NASA Technical Reports Server (NTRS)

    Venkat, Venki S.; Paryz, Roman W.; Bissett, Owen W.; Kilgore, W.

    2013-01-01

    The National Transonic Facility (NTF) utilizes Inlet Guide Vanes (IGV) to provide precise, quick response Mach number control for the tunnel. During cryogenic operations, the massive IGV structure can experience large thermal gradients, measured as "Delta T or (Delta)T", between the IGV ring and its support structure called the transfer case. If these temperature gradients are too large, the IGV structure can be stressed beyond its safety limit and cease operation. In recent years, (Delta)T readings exceeding the prescribed safety limits were observed frequently during cryogenic operations, particularly during model access. The tactical operation methods of the tunnel to minimize (Delta)T did not always succeed. One obvious option to remedy this condition is to warm up the IGV structure by disabling the main drive operation, but this "natural" warm up method can takes days in some cases, resulting in productivity loss. This paper documents the thermal gradient problem associated with the IGV structure during cryogenic operation and how the facility has recently achieved an acceptable mitigation which has resulted in improved efficiency of operations.

  2. Morphology and Kinematics of Filaments in the Serpens and Perseus Molecular Clouds

    NASA Astrophysics Data System (ADS)

    Dhabal, Arnab; Mundy, Lee G.; Rizzo, Maxime J.; Storm, Shaye; Teuben, Peter

    2018-02-01

    We present H13CO+ (J = 1–0) and HNC (J = 1–0) maps of regions in Serpens South, Serpens Main, and NGC 1333 containing filaments. We also observe the Serpens regions using H13CN (J = 1–0). These dense gas tracer molecular line observations carried out with CARMA have an angular resolution of ∼7″, a spectral resolution of ∼0.16 km s‑1, and a sensitivity of 50–100 mJy beam‑1. Although the large-scale structure compares well with the Herschel dust continuum maps, we resolve finer structure within the filaments identified by Herschel. The H13CO+ emission distribution agrees with the existing CARMA N2H+ (J = 1–0) maps, so they trace the same morphology and kinematics of the filaments. The H13CO+ maps additionally reveal that many regions have multiple structures partially overlapping in the line of sight. In two regions, the velocity differences are as high as 1.4 km s‑1. We identify eight filamentary structures having typical widths of 0.03–0.08 pc in these tracers. At least 50% of the filamentary structures have distinct velocity gradients perpendicular to their major axis, with average values in the range of 4–10 km s‑1 pc‑1. These findings are in support of the theoretical models of filament formation by 2D inflow in the shock layer created by colliding turbulent cells. We also find evidence of velocity gradients along the length of two filamentary structures; the gradients suggest that these filaments are inflowing toward the cloud core.

  3. Terahertz Frequency Electron Driven Dielectric Wakefield in Cartesian Symmetric and Photonic Structures

    NASA Astrophysics Data System (ADS)

    Hoang, Phuc Dinh

    Recent works have established that electron beam driven wakefield not only can serve as a viable source for coherent narrow band terahertz radiation but also as a future candidate for high gradient compact linear accelerators. It has also been pointed out that concentric cylindrical dielectric structures, while being very efficient in extracting the energy of the drive beam, which leads to GeV/m gradient level, are susceptible to excitation of transverse modes which give unwanted trajectory kicks and cause beam breakup instabilities. At the same time, temporary high field induced dielectric conductivity was observed in the same system where in response to high field, charge carriers were injected to the conduction band of the dielectric resulting in anomalous dissipation of the wake. Evidence of this point shall be presented in this thesis. First, in order to address the issue of deflection modes, a solution was proposed to use slab structures. Exploiting the Cartesian symmetry, and the wakefield response thereof, a dielectric wakefield system, where both the structure and the beam are flat, may achieve zero net transverse deflection forces. Second, in order to confine high field to the vacuum region away from the dielectric, thus avoiding all high field related problems, photonic band gap materials may be used. Also known as photonic crystals, these structures give rise to defect modes which are confined only to the defect (vacuum) region. Further shaping of the vacuum/dielectric interface, for example by periodic corrugation, not only reduces the field across the interface on the dielectric side by 1/epsilon as consequence of boundary condition, but also brings about further options of tailoring the field. Motivated by these issues, in this thesis, through a series of relevant analytic calculations, simulations, and experiments, the possibility of using Cartesian symmetric, photonic structures for dielectric wakefield will be assessed.

  4. Temperature Regimes Impact Coral Assemblages along Environmental Gradients on Lagoonal Reefs in Belize

    PubMed Central

    Townsend, Joseph E.; Courtney, Travis A.; Aichelman, Hannah E.; Davies, Sarah W.; Lima, Fernando P.; Castillo, Karl D.

    2016-01-01

    Coral reefs are increasingly threatened by global and local anthropogenic stressors such as rising seawater temperature, nutrient enrichment, sedimentation, and overfishing. Although many studies have investigated the impacts of local and global stressors on coral reefs, we still do not fully understand how these stressors influence coral community structure, particularly across environmental gradients on a reef system. Here, we investigate coral community composition across three different temperature and productivity regimes along a nearshore-offshore gradient on lagoonal reefs of the Belize Mesoamerican Barrier Reef System (MBRS). A novel metric was developed using ultra-high-resolution satellite-derived estimates of sea surface temperatures (SST) to classify reefs as exposed to low (lowTP), moderate (modTP), or high (highTP) temperature parameters over 10 years (2003 to 2012). Coral species richness, abundance, diversity, density, and percent cover were lower at highTP sites relative to lowTP and modTP sites, but these coral community traits did not differ significantly between lowTP and modTP sites. Analysis of coral life history strategies revealed that highTP sites were dominated by hardy stress-tolerant and fast-growing weedy coral species, while lowTP and modTP sites consisted of competitive, generalist, weedy, and stress-tolerant coral species. Satellite-derived estimates of Chlorophyll-a (chl-a) were obtained for 13-years (2003–2015) as a proxy for primary production. Chl-a concentrations were highest at highTP sites, medial at modTP sites, and lowest at lowTP sites. Notably, thermal parameters correlated better with coral community traits between site types than productivity, suggesting that temperature (specifically number of days above the thermal bleaching threshold) played a greater role in defining coral community structure than productivity on the MBRS. Dominance of weedy and stress-tolerant genera at highTP sites suggests that corals utilizing these two life history strategies may be better suited to cope with warmer oceans and thus may warrant protective status under climate change. PMID:27606598

  5. Temperature Regimes Impact Coral Assemblages along Environmental Gradients on Lagoonal Reefs in Belize.

    PubMed

    Baumann, Justin H; Townsend, Joseph E; Courtney, Travis A; Aichelman, Hannah E; Davies, Sarah W; Lima, Fernando P; Castillo, Karl D

    2016-01-01

    Coral reefs are increasingly threatened by global and local anthropogenic stressors such as rising seawater temperature, nutrient enrichment, sedimentation, and overfishing. Although many studies have investigated the impacts of local and global stressors on coral reefs, we still do not fully understand how these stressors influence coral community structure, particularly across environmental gradients on a reef system. Here, we investigate coral community composition across three different temperature and productivity regimes along a nearshore-offshore gradient on lagoonal reefs of the Belize Mesoamerican Barrier Reef System (MBRS). A novel metric was developed using ultra-high-resolution satellite-derived estimates of sea surface temperatures (SST) to classify reefs as exposed to low (lowTP), moderate (modTP), or high (highTP) temperature parameters over 10 years (2003 to 2012). Coral species richness, abundance, diversity, density, and percent cover were lower at highTP sites relative to lowTP and modTP sites, but these coral community traits did not differ significantly between lowTP and modTP sites. Analysis of coral life history strategies revealed that highTP sites were dominated by hardy stress-tolerant and fast-growing weedy coral species, while lowTP and modTP sites consisted of competitive, generalist, weedy, and stress-tolerant coral species. Satellite-derived estimates of Chlorophyll-a (chl-a) were obtained for 13-years (2003-2015) as a proxy for primary production. Chl-a concentrations were highest at highTP sites, medial at modTP sites, and lowest at lowTP sites. Notably, thermal parameters correlated better with coral community traits between site types than productivity, suggesting that temperature (specifically number of days above the thermal bleaching threshold) played a greater role in defining coral community structure than productivity on the MBRS. Dominance of weedy and stress-tolerant genera at highTP sites suggests that corals utilizing these two life history strategies may be better suited to cope with warmer oceans and thus may warrant protective status under climate change.

  6. Stomatal Conductance, Plant Hydraulics, and Multilayer Canopies: A New Paradigm for Earth System Models or Unnecessary Uncertainty

    NASA Astrophysics Data System (ADS)

    Bonan, G. B.

    2016-12-01

    Soil moisture stress is a key regulator of canopy transpiration, the surface energy budget, and land-atmosphere coupling. Many land surface models used in Earth system models have an ad-hoc parameterization of soil moisture stress that decreases stomatal conductance with soil drying. Parameterization of soil moisture stress from more fundamental principles of plant hydrodynamics is a key research frontier for land surface models. While the biophysical and physiological foundations of such parameterizations are well-known, their best implementation in land surface models is less clear. Land surface models utilize a big-leaf canopy parameterization (or two big-leaves to represent the sunlit and shaded canopy) without vertical gradients in the canopy. However, there are strong biometeorological and physiological gradients in plant canopies. Are these gradients necessary to resolve? Here, I describe a vertically-resolved, multilayer canopy model that calculates leaf temperature and energy fluxes, photosynthesis, stomatal conductance, and leaf water potential at each level in the canopy. In this model, midday leaf water stress manifests in the upper canopy layers, which receive high amounts of solar radiation, have high leaf nitrogen and photosynthetic capacity, and have high stomatal conductance and transpiration rates (in the absence of leaf water stress). Lower levels in the canopy become water stressed in response to longer-term soil moisture drying. I examine the role of vertical gradients in the canopy microclimate (solar radiation, air temperature, vapor pressure, wind speed), structure (leaf area density), and physiology (leaf nitrogen, photosynthetic capacity, stomatal conductance) in determining above canopy fluxes and gradients of transpiration and leaf water potential within the canopy.

  7. Local adaptations in bryophytes revisited: the genetic structure of the calcium-tolerant peatmoss Sphagnum warnstorfii along geographic and pH gradients

    PubMed Central

    Mikulášková, Eva; Hájek, Michal; Veleba, Adam; Johnson, Matthew G; Hájek, Tomáš; Shaw, Jonathan A

    2015-01-01

    Bryophytes dominate some ecosystems despite their extraordinary sensitivity to habitat quality. Nevertheless, some species behave differently across various regions. The existence of local adaptations is questioned by a high dispersal ability, which is thought to redistribute genetic variability among populations. Although Sphagnum warnstorfii is an important ecosystem engineer in fen peatlands, the causes of its rather wide niche along the pH/calcium gradient are poorly understood. Here, we studied the genetic variability of its global populations, with a detailed focus on the wide pH/calcium gradient in Central Europe. Principal coordinates analysis of 12 polymorphic microsatellite loci revealed a significant gradient coinciding with water pH, but independent of geography; even samples from the same fens were clearly separated along this gradient. However, most of the genetic variations remained unexplained, possibly because of the introgression from phylogenetically allied species. This explanation is supported by the small heterogeneous cluster of samples that appeared when populations morphologically transitional to S. subnites, S. rubellum, or S. russowii were included into the analysis. Alternatively, this unexplained variation might be attributed to a legacy of glacial refugia with recently dissolved ecological and biogeographic consequences. Isolation by distance appeared at the smallest scale only (up to 43 km). Negative spatial correlations occurred more frequently, mainly at long distances (up to 950 km), implying a genetic similarity among samples which are very distant geographically. Our results confirm the high dispersal ability of peatmosses, but simultaneously suggested that their ability to cope with a high pH/calcium level is at least partially determined genetically, perhaps via specific physiological mechanisms or a hummock-forming ability. PMID:25628880

  8. Variation in freshwater fish assemblages along a regional elevation gradient in the northern Andes, Colombia

    PubMed Central

    Carvajal-Quintero, Juan D; Escobar, Federico; Alvarado, Fredy; Villa-Navarro, Francisco A; Jaramillo-Villa, Úrsula; Maldonado-Ocampo, Javier A

    2015-01-01

    Studies on elevation diversity gradients have covered a large number of taxa and regions throughout the world; however, studies of freshwater fish are scarce and restricted to examining their changes along a specific gradient. These studies have reported a monotonic decrease in species richness with increasing elevation, but ignore the high taxonomic differentiation of each headwater assemblage that may generate high β-diversity among them. Here, we analyzed how fish assemblages vary with elevation among regional elevation bands, and how these changes are related to four environmental clines and to changes in the distribution, habitat use, and the morphology of fish species. Using a standardized field sampling technique, we assessed three different diversity and two structural assemblage measures across six regional elevation bands located in the northern Andes (Colombia). Each species was assigned to a functional group based on its body shape, habitat use, morphological, and/or behavioral adaptations. Additionally, at each sampling site, we measured four environmental variables. Our analyses showed: (1) After a monotonic decrease in species richness, we detected an increase in richness in the upper part of the gradient; (2) diversity patterns vary depending on the diversity measure used; (3) diversity patterns can be attributed to changes in species distribution and in the richness and proportions of functional groups along the regional elevation gradient; and (4) diversity patterns and changes in functional groups are highly correlated with variations in environmental variables, which also vary with elevation. These results suggest a novel pattern of variation in species richness with elevation: Species richness increases at the headwaters of the northern Andes owing to the cumulative number of endemic species there. This highlights the need for large-scale studies and has important implications for the aquatic conservation of the region. PMID:26257874

  9. Behavior of magnesium at high pressures and high temperatures

    NASA Astrophysics Data System (ADS)

    Cynn, H.; Evans, W.; Yoo, C. S.; Ohishi, Y.; Sata, N.; Shimomura, O.

    2004-03-01

    Structural stability relationship manifested by 3-, 4-, 5d-electron transition metals also appears in so-called nearly free electron metal, magnesium as exampled by HCP to BCC structure change at high pressures. This transition has been examined by theory and confirmed by experiment. Recently, HCP to DHCP crystal structure change has been reported at high temperatures below 20 GPa. However, this type of structure change is rather common in 4f-electron lanthanides. In this study, we used synchrotron x-ray diffraction to find out the relationship between BCC and DHCP employing a diamond anvil cell technique coupled with external and laser heating methods. We also examined pressure gradient effects in relation with the existence of DHCP. This work has been supported by PDRP program at the Lawrence Livermore National Laboratory, University of California under the auspices of the U.S. Department of Energy under Contract No. W-7405-ENG-48

  10. Jackpot Structural Features: Rollover Effect and Goal-Gradient Effect in EGM Gambling.

    PubMed

    Li, En; Rockloff, Matthew J; Browne, Matthew; Donaldson, Phillip

    2016-06-01

    Relatively little research has been undertaken on the influence of jackpot structural features on electronic gaming machine (EGM) gambling behavior. This study considered two common features of EGM jackpots: progressive (i.e., the jackpot incrementally growing in value as players make additional bets), and deterministic (i.e., a guaranteed jackpot after a fixed number of bets, which is determined in advance and at random). Their joint influences on player betting behavior and the moderating role of jackpot size were investigated in a crossed-design experiment. Using real money, players gambled on a computer simulated EGM with real jackpot prizes of either $500 (i.e., small jackpot) or $25,000 (i.e., large jackpot). The results revealed three important findings. Firstly, players placed the largest bets (20.3 % higher than the average) on large jackpot EGMs that were represented to be deterministic and non-progressive. This finding was supportive of a hypothesized 'goal-gradient effect', whereby players might have felt subjectively close to an inevitable payoff for a high-value prize. Secondly, large jackpots that were non-deterministic and progressive also promoted high bet sizes (17.8 % higher than the average), resembling the 'rollover effect' demonstrated in lottery betting, whereby players might imagine that their large bets could be later recouped through a big win. Lastly, neither the hypothesized goal-gradient effect nor the rollover effect was evident among players betting on small jackpot machines. These findings suggest that certain high-value jackpot configurations may have intensifying effects on player behavior.

  11. Assessment of variations in taxonomic diversity, forest structure, and aboveground biomass using remote sensing along an altitudinal gradient in tropical montane forest of Costa Rica

    NASA Astrophysics Data System (ADS)

    Robinson, C. M.; Saatchi, S. S.; Clark, D.; Fricker, G. A.; Wolf, J.; Gillespie, T. W.; Rovzar, C. M.; Andelman, S.

    2012-12-01

    This research sought to understand how alpha and beta diversity of plants vary and relate to the three-dimensional vegetation structure and aboveground biomass along environmental gradients in the tropical montane forests of Braulio Carrillo National Park in Costa Rica. There is growing evidence that ecosystem structure plays an important role in defining patterns of species diversity and along with abiotic factors (climate and edaphic) control the phenotypic and functional variations across landscapes. It is well documented that strong subdivisions at local and regional scales are found mainly on geologic or climate gradients. These general determinants of biodiversity are best demonstrated in regions with natural gradients such as tropical montane forests. Altitudinal gradients provide a landscape scale changes through variations in topography, climate, and edaphic conditions on which we tested several theoretical and biological hypotheses regarding drivers of biodiversity. The study was performed by using forest inventory and botanical data from nine 1-ha plots ranging from 100 m to 2800 m above sea level and remote sensing data from airborne lidar and radar sensors to quantify variations in forest structure. In this study we report on the effectiveness of relating patterns of tree taxonomic alpha diversity to three-dimensional structure of a tropical montane forest using lidar and radar observations of forest structure and biomass. We assessed alpha and beta diversity at the species, genus, and family levels utilizing datasets provided by the Terrestrial Ecology Assessment and Monitoring (TEAM) Network. Through the comparison to active remote sensing imagery, our results show that there is a strong relationship between forest 3D-structure, and alpha and beta diversity controlled by variations in abiotic factors along the altitudinal gradient. Using spatial analysis with the aid of remote sensing data, we find distinct patterns along the environmental gradients defining species turnover and changes in functional diversity. The study will provide novel approaches to use detailed spatial information from remote sensing data to study relations between functional and taxonomic dimensions of diversity.

  12. Multi-MW K-Band Harmonic Multiplier: RF Source For High-Gradient Accelerator R & D

    NASA Astrophysics Data System (ADS)

    Solyak, N. A.; Yakovlev, V. P.; Kazakov, S. Yu.; Hirshfield, J. L.

    2009-01-01

    A preliminary design is presented for a two-cavity harmonic multiplier, intended as a high-power RF source for use in experiments aimed at developing high-gradient structures for a future collider. The harmonic multiplier is to produce power at selected frequencies in K-band (18-26.5 GHz) using as an RF driver an XK-5 S-band klystron (2.856 GHz). The device is to be built with a TE111 rotating mode input cavity and interchangeable output cavities running in the TEn11 rotating mode, with n = 7,8,9 at 19.992, 22.848, and 25.704 GHz. An example for a 7th harmonic multiplier is described, using a 250 kV, 20 A injected laminar electron beam; with 10 MW of S-band drive power, 4.7 MW of 20-GHz output power is predicted. Details are described of the magnetic circuit, cavities, and output coupler.

  13. BLIPPED (BLIpped Pure Phase EncoDing) high resolution MRI with low amplitude gradients

    NASA Astrophysics Data System (ADS)

    Xiao, Dan; Balcom, Bruce J.

    2017-12-01

    MRI image resolution is proportional to the maximum k-space value, i.e. the temporal integral of the magnetic field gradient. High resolution imaging usually requires high gradient amplitudes and/or long spatial encoding times. Special gradient hardware is often required for high amplitudes and fast switching. We propose a high resolution imaging sequence that employs low amplitude gradients. This method was inspired by the previously proposed PEPI (π Echo Planar Imaging) sequence, which replaced EPI gradient reversals with multiple RF refocusing pulses. It has been shown that when the refocusing RF pulse is of high quality, i.e. sufficiently close to 180°, the magnetization phase introduced by the spatial encoding magnetic field gradient can be preserved and transferred to the following echo signal without phase rewinding. This phase encoding scheme requires blipped gradients that are identical for each echo, with low and constant amplitude, providing opportunities for high resolution imaging. We now extend the sequence to 3D pure phase encoding with low amplitude gradients. The method is compared with the Hybrid-SESPI (Spin Echo Single Point Imaging) technique to demonstrate the advantages in terms of low gradient duty cycle, compensation of concomitant magnetic field effects and minimal echo spacing, which lead to superior image quality and high resolution. The 3D imaging method was then applied with a parallel plate resonator RF probe, achieving a nominal spatial resolution of 17 μm in one dimension in the 3D image, requiring a maximum gradient amplitude of only 5.8 Gauss/cm.

  14. Design principles for high efficiency small-grain polysilicon solar cells, with supporting experimental studies

    NASA Technical Reports Server (NTRS)

    Lindholm, F. A.; Neugroschel, A.; Sah, C. T.

    1982-01-01

    Design principles suggested here aim toward high conversion efficiency (greater than 15 percent) in polysilicon cells. The principles seek to decrease the liabilities of both intragranular and grain-boundary-surface defects. The advantages of a phosphorus atom concentration gradient in a thin (less than 50 microns) base of a p(+)/n(x)/n(+) drift-field solar cell, which produces favorable gradients in chemical potential, minority-carrier mobility and diffusivity, and recombination lifetime (via phosphorus gettering) are suggested. The degrading effects of grain boundaries are reduced by these three gradients and by substituting atoms (P, H, F or Li) for vacancies on the grain-boundary surface. From recent experiments comes support for the benefits of P diffusion down grain boundaries and, for quasi-grain-boundary-free and related structures. New analytic solutions for the n(x)-base include the effect of a power-law dependence between P concentration and lifetime. These provide an upper-bound estimate on the open circuit voltage. Finite-difference numerical solutions of the six Shockley equations furnish complete information about all solar-cell parameters and add insight concerning design.

  15. Pore-scale study of effects of macroscopic pores and their distributions on reactive transport in hierarchical porous media

    DOE PAGES

    Chen, Li; Zhang, Ruiyuan; Min, Ting; ...

    2018-05-19

    For applications of reactive transport in porous media, optimal porous structures should possess both high surface area for reactive sites loading and low mass transport resistance. Hierarchical porous media with a combination of pores at different scales are designed for this purpose. In this paper, using the lattice Boltzmann method, pore-scale numerical studies are conducted to investigate diffusion-reaction processes in 2D hierarchical porous media generated by self-developed reconstruction scheme. Complex interactions between porous structures and reactive transport are revealed under different conditions. Simulation results show that adding macropores can greatly enhance the mass transport, but at the same time reducemore » the reactive surface, leading to complex change trend of the total reaction rate. Effects of gradient distribution of macropores within the porous medium are also investigated. It is found that a front-loose, back-tight (FLBT) hierarchical structure is desirable for enhancing mass transport, increasing total reaction rate, and improving catalyst utilization. Finally, on the whole, from the viewpoint of reducing cost and improving material performance, hierarchical porous structures, especially gradient structures with the size of macropores gradually decreasing along the transport direction, are desirable for catalyst application.« less

  16. Pore-scale study of effects of macroscopic pores and their distributions on reactive transport in hierarchical porous media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Li; Zhang, Ruiyuan; Min, Ting

    For applications of reactive transport in porous media, optimal porous structures should possess both high surface area for reactive sites loading and low mass transport resistance. Hierarchical porous media with a combination of pores at different scales are designed for this purpose. In this paper, using the lattice Boltzmann method, pore-scale numerical studies are conducted to investigate diffusion-reaction processes in 2D hierarchical porous media generated by self-developed reconstruction scheme. Complex interactions between porous structures and reactive transport are revealed under different conditions. Simulation results show that adding macropores can greatly enhance the mass transport, but at the same time reducemore » the reactive surface, leading to complex change trend of the total reaction rate. Effects of gradient distribution of macropores within the porous medium are also investigated. It is found that a front-loose, back-tight (FLBT) hierarchical structure is desirable for enhancing mass transport, increasing total reaction rate, and improving catalyst utilization. Finally, on the whole, from the viewpoint of reducing cost and improving material performance, hierarchical porous structures, especially gradient structures with the size of macropores gradually decreasing along the transport direction, are desirable for catalyst application.« less

  17. Studies of vorticity imbalance and stability, moisture budget, atmospheric energetics, and gradients of meteorological parameters during AVE 3

    NASA Technical Reports Server (NTRS)

    Scoggins, J. R. (Editor)

    1978-01-01

    Four diagnostic studies of AVE 3. are presented. AVE 3 represents a high wind speed wintertime situation, while most AVE's analyzed previously represented springtime conditions with rather low wind speeds. The general areas of analysis include the examination of budgets of vorticity, moisture, kinetic energy, and potential energy and a synoptic and statistical study of the horizontal gradients of meteorological parameters. Conclusions are integrated with and compared to those obtained in previously analyzed experiments (mostly springtime weather situations) so as to establish a more definitive understanding of the structure and dynamics of the atmosphere under a wide range of synoptic conditions.

  18. Thermally tailored gradient topography surface on elastomeric thin films.

    PubMed

    Roy, Sudeshna; Bhandaru, Nandini; Das, Ritopa; Harikrishnan, G; Mukherjee, Rabibrata

    2014-05-14

    We report a simple method for creating a nanopatterned surface with continuous variation in feature height on an elastomeric thin film. The technique is based on imprinting the surface of a film of thermo-curable elastomer (Sylgard 184), which has continuous variation in cross-linking density introduced by means of differential heating. This results in variation of viscoelasticity across the length of the surface and the film exhibits differential partial relaxation after imprinting with a flexible stamp and subjecting it to an externally applied stress for a transient duration. An intrinsic perfect negative replica of the stamp pattern is initially created over the entire film surface as long as the external force remains active. After the external force is withdrawn, there is partial relaxation of the applied stresses, which is manifested as reduction in amplitude of the imprinted features. Due to the spatial viscoelasticity gradient, the extent of stress relaxation induced feature height reduction varies across the length of the film (L), resulting in a surface with a gradient topography with progressively varying feature heights (hF). The steepness of the gradient can be controlled by varying the temperature gradient as well as the duration of precuring of the film prior to imprinting. The method has also been utilized for fabricating wettability gradient surfaces using a high aspect ratio biomimetic stamp. The use of a flexible stamp allows the technique to be extended for creating a gradient topography on nonplanar surfaces as well. We also show that the gradient surfaces with regular structures can be used in combinatorial studies related to pattern directed dewetting.

  19. Oscillating and pulsed gradient diffusion magnetic resonance microscopy over an extended b-value range: implications for the characterization of tissue microstructure.

    PubMed

    Portnoy, S; Flint, J J; Blackband, S J; Stanisz, G J

    2013-04-01

    Oscillating gradient spin-echo (OGSE) pulse sequences have been proposed for acquiring diffusion data with very short diffusion times, which probe tissue structure at the subcellular scale. OGSE sequences are an alternative to pulsed gradient spin echo measurements, which typically probe longer diffusion times due to gradient limitations. In this investigation, a high-strength (6600 G/cm) gradient designed for small-sample microscopy was used to acquire OGSE and pulsed gradient spin echo data in a rat hippocampal specimen at microscopic resolution. Measurements covered a broad range of diffusion times (TDeff = 1.2-15.0 ms), frequencies (ω = 67-1000 Hz), and b-values (b = 0-3.2 ms/μm2). Variations in apparent diffusion coefficient with frequency and diffusion time provided microstructural information at a scale much smaller than the imaging resolution. For a more direct comparison of the techniques, OGSE and pulsed gradient spin echo data were acquired with similar effective diffusion times. Measurements with similar TDeff were consistent at low b-value (b < 1 ms/μm(2) ), but diverged at higher b-values. Experimental observations suggest that the effective diffusion time can be helpful in the interpretation of low b-value OGSE data. However, caution is required at higher b, where enhanced sensitivity to restriction and exchange render the effective diffusion time an unsuitable representation. Oscillating and pulsed gradient diffusion techniques offer unique, complementary information. In combination, the two methods provide a powerful tool for characterizing complex diffusion within biological tissues. Copyright © 2012 Wiley Periodicals, Inc.

  20. On the Use of Nonlinear Regularization in Inverse Methods for the Solar Tachocline Profile Determination

    NASA Astrophysics Data System (ADS)

    Corbard, T.; Berthomieu, G.; Provost, J.; Blanc-Feraud, L.

    Inferring the solar rotation from observed frequency splittings represents an ill-posed problem in the sense of Hadamard and the traditional approach used to override this difficulty consists in regularizing the problem by adding some a priori information on the global smoothness of the solution defined as the norm of its first or second derivative. Nevertheless, inversions of rotational splittings (e.g. Corbard et al., 1998; Schou et al., 1998) have shown that the surface layers and the so-called solar tachocline (Spiegel & Zahn 1992) at the base of the convection zone are regions in which high radial gradients of the rotation rate occur. %there exist high gradients in the solar rotation profile near %the surface and at the base of the convection zone (e.g. Corbard et al. 1998) %in the so-called solar tachocline (Spiegel & Zahn 1992). Therefore, the global smoothness a-priori which tends to smooth out every high gradient in the solution may not be appropriate for the study of a zone like the tachocline which is of particular interest for the study of solar dynamics (e.g. Elliot 1997). In order to infer the fine structure of such regions with high gradients by inverting helioseismic data, we have to find a way to preserve these zones in the inversion process. Setting a more adapted constraint on the solution leads to non-linear regularization methods that are in current use for edge-preserving regularization in computed imaging (e.g. Blanc-Feraud et al. 1995). In this work, we investigate their use in the helioseismic context of rotational inversions.

  1. Strategies and Applications for Incorporating Physical and Chemical Signal Gradients in Tissue Engineering

    PubMed Central

    Singh, Milind; Berkland, Cory

    2008-01-01

    From embryonic development to wound repair, concentration gradients of bioactive signaling molecules guide tissue formation and regeneration. Moreover, gradients in cellular and extracellular architecture as well as in mechanical properties are readily apparent in native tissues. Perhaps tissue engineers can take a cue from nature in attempting to regenerate tissues by incorporating gradients into engineering design strategies. Indeed, gradient-based approaches are an emerging trend in tissue engineering, standing in contrast to traditional approaches of homogeneous delivery of cells and/or growth factors using isotropic scaffolds. Gradients in tissue engineering lie at the intersection of three major paradigms in the field—biomimetic, interfacial, and functional tissue engineering—by combining physical (via biomaterial design) and chemical (with growth/differentiation factors and cell adhesion molecules) signal delivery to achieve a continuous transition in both structure and function. This review consolidates several key methodologies to generate gradients, some of which have never been employed in a tissue engineering application, and discusses strategies for incorporating these methods into tissue engineering and implant design. A key finding of this review was that two-dimensional physicochemical gradient substrates, which serve as excellent high-throughput screening tools for optimizing desired biomaterial properties, can be enhanced in the future by transitioning from two dimensions to three dimensions, which would enable studies of cell–protein–biomaterial interactions in a more native tissue–like environment. In addition, biomimetic tissue regeneration via combined delivery of graded physical and chemical signals appears to be a promising strategy for the regeneration of heterogeneous tissues and tissue interfaces. In the future, in vivo applications will shed more light on the performance of gradient-based mechanical integrity and signal delivery strategies compared to traditional tissue engineering approaches. PMID:18803499

  2. Strategies and applications for incorporating physical and chemical signal gradients in tissue engineering.

    PubMed

    Singh, Milind; Berkland, Cory; Detamore, Michael S

    2008-12-01

    From embryonic development to wound repair, concentration gradients of bioactive signaling molecules guide tissue formation and regeneration. Moreover, gradients in cellular and extracellular architecture as well as in mechanical properties are readily apparent in native tissues. Perhaps tissue engineers can take a cue from nature in attempting to regenerate tissues by incorporating gradients into engineering design strategies. Indeed, gradient-based approaches are an emerging trend in tissue engineering, standing in contrast to traditional approaches of homogeneous delivery of cells and/or growth factors using isotropic scaffolds. Gradients in tissue engineering lie at the intersection of three major paradigms in the field-biomimetic, interfacial, and functional tissue engineering-by combining physical (via biomaterial design) and chemical (with growth/differentiation factors and cell adhesion molecules) signal delivery to achieve a continuous transition in both structure and function. This review consolidates several key methodologies to generate gradients, some of which have never been employed in a tissue engineering application, and discusses strategies for incorporating these methods into tissue engineering and implant design. A key finding of this review was that two-dimensional physicochemical gradient substrates, which serve as excellent high-throughput screening tools for optimizing desired biomaterial properties, can be enhanced in the future by transitioning from two dimensions to three dimensions, which would enable studies of cell-protein-biomaterial interactions in a more native tissue-like environment. In addition, biomimetic tissue regeneration via combined delivery of graded physical and chemical signals appears to be a promising strategy for the regeneration of heterogeneous tissues and tissue interfaces. In the future, in vivo applications will shed more light on the performance of gradient-based mechanical integrity and signal delivery strategies compared to traditional tissue engineering approaches.

  3. Conjugate gradient and cross-correlation based least-square reverse time migration and its application

    NASA Astrophysics Data System (ADS)

    Sun, Xiao-Dong; Ge, Zhong-Hui; Li, Zhen-Chun

    2017-09-01

    Although conventional reverse time migration can be perfectly applied to structural imaging it lacks the capability of enabling detailed delineation of a lithological reservoir due to irregular illumination. To obtain reliable reflectivity of the subsurface it is necessary to solve the imaging problem using inversion. The least-square reverse time migration (LSRTM) (also known as linearized reflectivity inversion) aims to obtain relatively high-resolution amplitude preserving imaging by including the inverse of the Hessian matrix. In practice, the conjugate gradient algorithm is proven to be an efficient iterative method for enabling use of LSRTM. The velocity gradient can be derived from a cross-correlation between observed data and simulated data, making LSRTM independent of wavelet signature and thus more robust in practice. Tests on synthetic and marine data show that LSRTM has good potential for use in reservoir description and four-dimensional (4D) seismic images compared to traditional RTM and Fourier finite difference (FFD) migration. This paper investigates the first order approximation of LSRTM, which is also known as the linear Born approximation. However, for more complex geological structures a higher order approximation should be considered to improve imaging quality.

  4. Luminance gradient at object borders communicates object location to the human oculomotor system.

    PubMed

    Kilpeläinen, Markku; Georgeson, Mark A

    2018-01-25

    The locations of objects in our environment constitute arguably the most important piece of information our visual system must convey to facilitate successful visually guided behaviour. However, the relevant objects are usually not point-like and do not have one unique location attribute. Relatively little is known about how the visual system represents the location of such large objects as visual processing is, both on neural and perceptual level, highly edge dominated. In this study, human observers made saccades to the centres of luminance defined squares (width 4 deg), which appeared at random locations (8 deg eccentricity). The phase structure of the square was manipulated such that the points of maximum luminance gradient at the square's edges shifted from trial to trial. The average saccade endpoints of all subjects followed those shifts in remarkable quantitative agreement. Further experiments showed that the shifts were caused by the edge manipulations, not by changes in luminance structure near the centre of the square or outside the square. We conclude that the human visual system programs saccades to large luminance defined square objects based on edge locations derived from the points of maximum luminance gradients at the square's edges.

  5. Segmentation of white rat sperm image

    NASA Astrophysics Data System (ADS)

    Bai, Weiguo; Liu, Jianguo; Chen, Guoyuan

    2011-11-01

    The segmentation of sperm image exerts a profound influence in the analysis of sperm morphology, which plays a significant role in the research of animals' infertility and reproduction. To overcome the microscope image's properties of low contrast and highly polluted noise, and to get better segmentation results of sperm image, this paper presents a multi-scale gradient operator combined with a multi-structuring element for the micro-spermatozoa image of white rat, as the multi-scale gradient operator can smooth the noise of an image, while the multi-structuring element can retain more shape details of the sperms. Then, we use the Otsu method to segment the modified gradient image whose gray scale processed is strong in sperms and weak in the background, converting it into a binary sperm image. As the obtained binary image owns impurities that are not similar with sperms in the shape, we choose a form factor to filter those objects whose form factor value is larger than the select critical value, and retain those objects whose not. And then, we can get the final binary image of the segmented sperms. The experiment shows this method's great advantage in the segmentation of the micro-spermatozoa image.

  6. Controlled droplet transport to target on a high adhesion surface with multi-gradients

    PubMed Central

    Deng, Siyan; Shang, Weifeng; Feng, Shile; Zhu, Shiping; Xing, Yan; Li, Dan; Hou, Yongping; Zheng, Yongmei

    2017-01-01

    We introduce multi-gradients including Laplace pressure gradient, wettable gradient and wettable different gradient on a high adhesion surface via special wedge-pattern and improved anodic oxidation method. As a result of the cooperative effect mentioned above, controlled directional motion of a droplet on a high adhesion surface is realized, even when the surface is turned upside down. The droplet motion can be predicted and the movement distances can be controlled by simply adjusting the wedge angle and droplet volume. More interestingly, when Laplace pressure gradient is introduced on a V-shaped wettable gradient surface, two droplets can move toward one another as designed. PMID:28368020

  7. Mechanisms of hydrocarbon migration in Mahakam delta, Kalimantan, Indonesia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Durand, B.; Bessereau, G.; Ungerer, P.H.

    1986-05-01

    In the Mahakam delta, hydrocarbons formed from landplant debris, either dispersed in clays or concentrated in coal levels. The hydrocarbon zone is located partly or entirely in overpressured zones. Hydrocarbon migration is primarily a polyphasic mechanism, i.e., water and hydrocarbons move in separate phases. When hydrocarbon generation occurs in normally pressured zones, hydrocarbons are easily expelled to close carrier beds. Then they migrate toward the top of structures through a network of abundant interconnected sand bodies. However, most hydrocarbons are generated in overpressured zones, in which they move preferentially toward the structural highs. Simultaneously, excess pressure is transmitted to themore » top of the structures because of the sedimentary load in the synclines, which results in a high pressure gradient at the top. This pressure gradient facilitates hydrocarbon filtration from overpressured zones to normally pressured zones, or it may cause hydraulic fracturing, which provides avenues for migration. Gas-rich hydrocarbons formed in deep overpressured zones, probably in a single phase owing to high temperature and pressures. The passage from overpressured zones to normally pressured zones resulted in decreased temperature and pressure, which produced several hydrocarbon phases by retrograde condensation. Finally, lighter hydrocarbons pooled above the heaviest ones. These mechanisms have been simulated by a numerical model of basin evolution, including a two-phase migration modulus, and by a numerical model of retrograde condensation.« less

  8. Microbial community structure across fluid gradients in the Juan de Fuca Ridge hydrothermal system.

    PubMed

    Anderson, Rika E; Beltrán, Mónica Torres; Hallam, Steven J; Baross, John A

    2013-02-01

    Physical and chemical gradients are dominant factors in shaping hydrothermal vent microbial ecology, where archaeal and bacterial habitats encompass a range between hot, reduced hydrothermal fluid and cold, oxidized seawater. To determine the impact of these fluid gradients on microbial communities inhabiting these systems, we surveyed bacterial and archaeal community structure among and between hydrothermal plumes, diffuse flow fluids, and background seawater in several hydrothermal vent sites on the Juan de Fuca Ridge using 16S rRNA gene diversity screening (clone libraries and terminal restriction length polymorphisms) and quantitative polymerase chain reaction methods. Community structure was similar between hydrothermal plumes and background seawater, where a number of taxa usually associated with low-oxygen zones were observed, whereas high-temperature diffuse fluids exhibited a distinct phylogenetic profile. SUP05 and Arctic96BD-19 sulfur-oxidizing bacteria were prevalent in all three mixing regimes where they exhibited overlapping but not identical abundance patterns. Taken together, these results indicate conserved patterns of redox-driven niche partitioning between hydrothermal mixing regimes and microbial communities associated with sinking particles and oxygen-deficient waters. Moreover, the prevalence of SUP05 and Arctic96BD-19 in plume and diffuse flow fluids indicates a more cosmopolitan role for these groups in the ecology and biogeochemistry of the dark ocean. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  9. Electronic and Magnetic Structures, Magnetic Hyperfine Fields and Electric Field Gradients in UX3 (X = In, Tl, Pb) Intermetallic Compounds

    NASA Astrophysics Data System (ADS)

    Khan, Sajid; Yazdani-Kachoei, Majid; Jalali-Asadabadi, Saeid; Farooq, Muhammad Bilal; Ahmad, Iftikhar

    2018-02-01

    Cubic uranium compounds such as UX3 (X is a non-transition element of groups IIIA or IVA) exhibit highly diverse magnetic properties, including Pauli paramagnetism, spin fluctuation and anti-ferromagnetism. In the present paper, we explore the structural, electronic and magnetic properties as well as the hyperfine fields (HFFs) and electric field gradients (EFGs) with quadrupole coupling constant of UX3 (X = In, Tl, Pb) compounds using local density approximation, Perdew-Burke-Ernzerhof parametrization of generalized gradient approximation (PBE-GGA) including the Hubbard U parameter (GGA + U), a revised version of PBE-GGA that improves equilibrium properties of densely packed solids and their surfaces (PBEsol-GGA), and a hybrid functional (HF-PBEsol). The spin orbit-coupling calculations have been added to investigate the relativistic effect of electrons in these materials. The comparison between the experimental parameters and our calculated structural parameters we confirm the consistency and effectiveness of our theoretical tools. The computed magnetic moments show that magnetic moment increases from indium to lead in the UX3 family, and all these compounds are antiferromagnetic in nature. The EFGs and HFFs, as well as the quadrupole coupling constant of UX3 (X = In, Tl, Pb), are discussed in detail. These properties primarily originate from f and p states of uranium and post-transition sites.

  10. Effect of a microstructure and surface hydrogen alloying of a VT6 alloy on diffusion welding

    NASA Astrophysics Data System (ADS)

    Senkevich, K. S.; Skvortsova, S. V.; Kudelina, I. M.; Knyazev, M. I.; Zasypkin, V. V.

    2014-01-01

    The effect of a structural type (lamellar, fine, gradient) and additional surface alloying with hydrogen on the diffusion bonding of titanium alloy VT6 samples is studied. It is shown that the surface alloying of VT6 alloy parts with hydrogen allows one to decrease the diffusion welding temperature by 50-100°C, to obtain high-quality pore-free bonding, and to remove the "structural" boundary between materials to be welded that usually forms during welding of titanium alloys with a lamellar structure.

  11. Quantitative structure-retention relationships applied to development of liquid chromatography gradient-elution method for the separation of sartans.

    PubMed

    Golubović, Jelena; Protić, Ana; Otašević, Biljana; Zečević, Mira

    2016-04-01

    QSRR are mathematically derived relationships between the chromatographic parameters determined for a representative series of analytes in given separation systems and the molecular descriptors accounting for the structural differences among the investigated analytes. Artificial neural network is a technique of data analysis, which sets out to emulate the human brain's way of working. The aim of the present work was to optimize separation of six angiotensin receptor antagonists, so-called sartans: losartan, valsartan, irbesartan, telmisartan, candesartan cilexetil and eprosartan in a gradient-elution HPLC method. For this purpose, ANN as a mathematical tool was used for establishing a QSRR model based on molecular descriptors of sartans and varied instrumental conditions. The optimized model can be further used for prediction of an external congener of sartans and analysis of the influence of the analyte structure, represented through molecular descriptors, on retention behaviour. Molecular descriptors included in modelling were electrostatic, geometrical and quantum-chemical descriptors: connolly solvent excluded volume non-1,4 van der Waals energy, octanol/water distribution coefficient, polarizability, number of proton-donor sites and number of proton-acceptor sites. Varied instrumental conditions were gradient time, buffer pH and buffer molarity. High prediction ability of the optimized network enabled complete separation of the analytes within the run time of 15.5 min under following conditions: gradient time of 12.5 min, buffer pH of 3.95 and buffer molarity of 25 mM. Applied methodology showed the potential to predict retention behaviour of an external analyte with the properties within the training space. Connolly solvent excluded volume, polarizability and number of proton-acceptor sites appeared to be most influential paramateres on retention behaviour of the sartans. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Galaxy structure from multiple tracers - III. Radial variations in M87's IMF

    NASA Astrophysics Data System (ADS)

    Oldham, Lindsay; Auger, Matthew

    2018-03-01

    We present the first constraints on stellar mass-to-light ratio gradients in an early-type galaxy (ETG) using multiple dynamical tracer populations to model the dark and luminous mass structure simultaneously. We combine the kinematics of the central starlight, two globular cluster populations and satellite galaxies in a Jeans analysis to obtain new constraints on M87's mass structure, employing a flexible mass model which allows for radial gradients in the stellar-mass-to-light ratio. We find that, in the context of our model, a radially declining stellar-mass-to-light ratio is strongly favoured. Modelling the stellar-mass-to-light ratio as following a power law, ϒ⋆ ˜ R-μ, we infer a power-law slope μ = -0.54 ± 0.05; equally, parametrizing the stellar-mass-to-light ratio via a central mismatch parameter relative to a Salpeter initial mass function (IMF), α, and scale radius RM, we find α > 1.48 at 95% confidence and RM = 0.35 ± 0.04 kpc. We use stellar population modelling of high-resolution 11-band HST photometry to show that such a steep gradient cannot be achieved by variations in only the metallicity, age, dust extinction and star formation history if the stellar IMF remains spatially constant. On the other hand, the stellar-mass-to-light ratio gradient that we find is consistent with an IMF whose inner slope changes such that it is Salpeter-like in the central ˜0.5 kpc and becomes Chabrier-like within the stellar effective radius. This adds to recent evidence that the non-universality of the IMF in ETGs may be confined to their core regions, and points towards a picture in which the stars in these central regions may have formed in fundamentally different physical conditions.

  13. Stair-Step Pattern of Soil Bacterial Diversity Mainly Driven by pH and Vegetation Types Along the Elevational Gradients of Gongga Mountain, China

    PubMed Central

    Li, Jiabao; Shen, Zehao; Li, Chaonan; Kou, Yongping; Wang, Yansu; Tu, Bo; Zhang, Shiheng; Li, Xiangzhen

    2018-01-01

    Ecological understandings of soil bacterial community succession and assembly mechanism along elevational gradients in mountains remain not well understood. Here, by employing the high-throughput sequencing technique, we systematically examined soil bacterial diversity patterns, the driving factors, and community assembly mechanisms along the elevational gradients of 1800–4100 m on Gongga Mountain in China. Soil bacterial diversity showed an extraordinary stair-step pattern along the elevational gradients. There was an abrupt decrease of bacterial diversity between 2600 and 2800 m, while no significant change at either lower (1800–2600 m) or higher (2800–4100 m) elevations, which coincided with the variation in soil pH. In addition, the community structure differed significantly between the lower and higher elevations, which could be primarily attributed to shifts in soil pH and vegetation types. Although there was no direct effect of MAP and MAT on bacterial community structure, our partial least squares path modeling analysis indicated that bacterial communities were indirectly influenced by climate via the effect on vegetation and the derived effect on soil properties. As for bacterial community assembly mechanisms, the null model analysis suggested that environmental filtering played an overwhelming role in the assembly of bacterial communities in this region. In addition, variation partition analysis indicated that, at lower elevations, environmental attributes explained much larger fraction of the β-deviation than spatial attributes, while spatial attributes increased their contributions at higher elevations. Our results highlight the importance of environmental filtering, as well as elevation-related spatial attributes in structuring soil bacterial communities in mountain ecosystems. PMID:29636740

  14. Folds on Europa: implications for crustal cycling and accommodation of extension.

    PubMed

    Prockter, L M; Pappalardo, R T

    2000-08-11

    Regional-scale undulations with associated small-scale secondary structures are inferred to be folds on Jupiter's moon Europa. Formation is consistent with stresses from tidal deformation, potentially triggering compressional instability of a region of locally high thermal gradient. Folds may compensate for extension elsewhere on Europa and then relax away over time.

  15. Adjustable internal structure for reconstructing gradient index profile of crystalline lens.

    PubMed

    Bahrami, Mehdi; Goncharov, Alexander V; Pierscionek, Barbara K

    2014-03-01

    Employing advanced technologies in studying the crystalline lens of the eye has improved our understanding of the refractive index gradient of the lens. Reconstructing and studying such a complex structure requires models with adaptable internal geometry that can be altered to simulate geometrical and optical changes of the lens with aging. In this Letter, we introduce an optically well-defined, geometrical structure for modeling the gradient refractive index profile of the crystalline lens with the advantage of an adjustable internal structure that is not available with existing models. The refractive index profile assigned to this rotationally symmetric geometry is calculated numerically, yet it is shown that this does not limit the model. The study provides a basis for developing lens models with sophisticated external and internal structures without the need for analytical solutions to calculate refractive index profiles.

  16. Microorganisms in small patterned ground features and adjacent vegetated soils along topographic and climatic gradients in the High Arctic, Canada

    Treesearch

    G. Gonzalez; F.J. Rivera-Figueroa; W. Gould; S.A. Cantrell; J.R. Pérez-Jiménez

    2014-01-01

    In this study, we determine differences in total biomass of soil microorganisms and community structure (using the most probable number of bacteria (MPN) and the number of fungal genera) in patterned ground features (PGF) and adjacent vegetated soils (AVS) in mesic sites from three High Arctic islands in order to characterize microbial dynamics as affected by...

  17. Semiconductor apparatus utilizing gradient freeze and liquid-solid techniques

    NASA Technical Reports Server (NTRS)

    Fleurial, Jean-Pierre (Inventor); Caillat, Thierry F. (Inventor); Borshchevsky, Alexander (Inventor)

    1998-01-01

    Transition metals of Group VIII (Co, Rh and Ir) have been prepared as semiconductor compounds with the general formula TSb.sub.3. The skutterudite-type crystal lattice structure of these semiconductor compounds and their enhanced thermoelectric properties results in semiconductor materials which may be used in the fabrication of thermoelectric elements to substantially improve the efficiency of the resulting thermoelectric device. Semiconductor materials having the desired skutterudite-type crystal lattice structure may be prepared in accordance with the present invention by using vertical gradient freezing techniques and/or liquid phase sintering techniques. Measurements of electrical and thermal transport properties of selected semiconductor materials prepared in accordance with the present invention, demonstrated high Hall mobilities (up to 1200 cm.sup.2.V.sup.-1.s.sup.-1) and good Seebeck coefficients (up to 150 .mu.VK.sup.-1 between 300.degree. C. and 700.degree. C.). Optimizing the transport properties of semiconductor materials prepared from elemental mixtures Co, Rh, Ir and Sb resulted in a substantial increase in the thermoelectric figure of merit (ZT) at temperatures as high as 400.degree. C. for thermoelectric elements fabricated from such semiconductor materials.

  18. Nonlinear Reduced-Order Analysis with Time-Varying Spatial Loading Distributions

    NASA Technical Reports Server (NTRS)

    Prezekop, Adam

    2008-01-01

    Oscillating shocks acting in combination with high-intensity acoustic loadings present a challenge to the design of resilient hypersonic flight vehicle structures. This paper addresses some features of this loading condition and certain aspects of a nonlinear reduced-order analysis with emphasis on system identification leading to formation of a robust modal basis. The nonlinear dynamic response of a composite structure subject to the simultaneous action of locally strong oscillating pressure gradients and high-intensity acoustic loadings is considered. The reduced-order analysis used in this work has been previously demonstrated to be both computationally efficient and accurate for time-invariant spatial loading distributions, provided that an appropriate modal basis is used. The challenge of the present study is to identify a suitable basis for loadings with time-varying spatial distributions. Using a proper orthogonal decomposition and modal expansion, it is shown that such a basis can be developed. The basis is made more robust by incrementally expanding it to account for changes in the location, frequency and span of the oscillating pressure gradient.

  19. Optimum concentration gradient of the electrocatalyst, Nafion® and poly(tetrafluoroethylene) in a membrane-electrode-assembly for enhanced performance of direct methanol fuel cells.

    PubMed

    Liu, Jing Hua; Jeon, Min Ku; Lee, Ki Rak; Woo, Seong Ihl

    2010-12-14

    A combinatorial library of membrane-electrode-assemblies (MEAs) which consisted of 27 different compositions was fabricated to optimize the multilayer structure of direct methanol fuel cells. Each spot consisted of three layers of ink and a gradient was generated by employing different concentrations of the three components (Pt catalyst, Nafion® and polytetrafluoroethylene (PTFE)) of each layer. For quick evaluation of the library, a high-throughput optical screening technique was employed for methanol electro-oxidation reaction (MOR) activity. The screening results revealed that gradient layers could lead to higher MOR activity than uniform layers. It was found that the MOR activity was higher when the concentrations of Pt catalyst and Nafion ionomer decreased downward from the top layer to the bottom layer. On the other hand, higher MOR activity was observed when PTFE concentration increased downward from the top to the bottom layer.

  20. Beam-driven acceleration in ultra-dense plasma media

    DOE PAGES

    Shin, Young-Min

    2014-09-15

    Accelerating parameters of beam-driven wakefield acceleration in an extremely dense plasma column has been analyzed with the dynamic framed particle-in-cell plasma simulator, and compared with analytic calculations. In the model, a witness beam undergoes a TeV/m scale alternating potential gradient excited by a micro-bunched drive beam in a 10 25 m -3 and 1.6 x 10 28 m -3 plasma column. The acceleration gradient, energy gain, and transformer ratio have been extensively studied in quasi-linear, linear-, and blowout-regimes. The simulation analysis indicated that in the beam-driven acceleration system a hollow plasma channel offers 20 % higher acceleration gradient by enlargingmore » the channel radius (r) from 0.2 Ap to 0.6 .Ap in a blowout regime. This paper suggests a feasibility of TeV/m scale acceleration with a hollow crystalline structure (e.g. nanotubes) of high electron plasma density.« less

  1. Use of sinkhole and specific capacity distributions to assess vertical gradients in a karst aquifer

    USGS Publications Warehouse

    McCoy, K.J.; Kozar, M.D.

    2008-01-01

    The carbonate-rock aquifer in the Great Valley, West Virginia, USA, was evaluated using a database of 687 sinkholes and 350 specific capacity tests to assess structural, lithologic, and topographic influences on the groundwater flow system. The enhanced permeability of the aquifer is characterized in part by the many sinkholes, springs, and solutionally enlarged fractures throughout the valley. Yet, vertical components of subsurface flow in this highly heterogeneous aquifer are currently not well understood. To address this problem, this study examines the apparent relation between geologic features of the aquifer and two spatial indices of enhanced permeability attributed to aquifer karstification: (1) the distribution of sinkholes and (2) the occurrence of wells with relatively high specific capacity. Statistical results indicate that sinkholes (funnel and collapse) occur primarily along cleavage and bedding planes parallel to subparallel to strike where lateral or downward vertical gradients are highest. Conversely, high specific capacity values are common along prominent joints perpendicular or oblique to strike. The similarity of the latter distribution to that of springs suggests these fractures are areas of upward-convergent flow. These differences between sinkhole and high specific capacity distributions suggest vertical flow components are primarily controlled by the orientation of geologic structure and associated subsurface fracturing. ?? 2007 Springer-Verlag.

  2. Subtle Ecological Gradient in the Tropics Triggers High Species-Turnover in a Local Geographical Scale

    PubMed Central

    Nguyen, Dinh T.

    2016-01-01

    Our perception of diversity, including both alpha- and beta-diversity components, depends on spatial scale. Studies of spatial variation of the latter are just starting, with a paucity of research on beta-diversity patterns at smaller scales. Understanding these patterns and the processes shaping the distribution of diversity is critical to describe this diversity, but it is paramount in conservation too. Here, we investigate the diversity and structure of a tropical community of herbivorous beetles at a reduced local scale of some 10 km2, evaluating the effect of a small, gradual ecological change on this structure. We sampled leaf beetles in the Núi Chúa National Park (S Vietnam), studying changes in alpha- and beta-diversity across an elevation gradient up to 500 m, encompassing the ecotone between critically endangered lowland dry deciduous forest and mixed evergreen forest at higher elevations. Leaf beetle diversity was assessed using several molecular tree-based species delimitation approaches (with mtDNA cox1 data), species richness using rarefaction and incidence-based diversity indexes, and beta-diversity was investigated decomposing the contribution of species turnover and nestedness. We documented 155 species in the area explored and species-richness estimates 1.5–2.0x higher. Species diversity was similar in both forest types and changes in alpha-diversity along the elevation gradient showed an expected local increase of diversity in the ecotone. Beta-diversity was high among forest paths (average Sørensen's dissimilarity = 0.694) and, tentatively fixing at 300 m the boundary between otherwise continuous biomes, demonstrated similarly high beta-diversity (Sørensen's dissimilarity = 0.581), with samples clustering according to biome/elevation. Highly relevant considering the local scale of the study, beta-diversity had a high contribution of species replacement among locales (54.8%) and between biomes (79.6%), suggesting environmental heterogeneity as the dominant force shaping diversity at such small scale, directly and indirectly on the plant communities. Protection actions in the Park, especially these addressed at the imperative conservation of dry forest, must ponder the small scale at which processes shape species diversity and community structure for inconspicuous, yet extraordinarily diverse organisms such as the leaf beetles. PMID:27276228

  3. Fish assemblages in coastal lagoons in land-uplift succession: The relative importance of local and regional environmental gradients

    NASA Astrophysics Data System (ADS)

    Snickars, Martin; Sandström, Alfred; Lappalainen, Antti; Mattila, Johanna; Rosqvist, Kajsa; Urho, Lauri

    2009-01-01

    The assemblages of young-of-the-year fish were studied in coastal lagoons in an archipelago with post-glacial land-uplift, which affects environmental gradients at local and regional scale, i.e. lagoon habitat isolation and archipelago position, respectively. The categorisation of 40 undisturbed lagoons into nine habitat types based on habitat isolation and archipelago position was supported by clear relationships with spring temperature and total fish abundance. Rutilus rutilus, breams ( Abramis/Blicca sp.) and Perca fluviatilis were the most abundant and frequently occurring species. The fish assemblage differed among the nine habitat types. Rutilus rutilus, P. fluviatilis and breams were discriminating species in the majority of habitat types with low physical harshness, whereas Alburnus alburnus and Gasterosteus aculeatus increased their contributions in habitat types with high physical harshness. Rutilus rutilus and breams were thus common in lagoons with high habitat isolation situated in the inner archipelago. These lagoons were characterised by warm water and high vegetation coverage. Gasterosteus aculeatus was restricted to lagoons with low habitat isolation and exposure and low vegetation coverage, situated in the outer archipelago. Perca fluviatilis had the widest distribution of all species. The coverage of two macrophytes, Potamogeton perfoliatus and Zannichellia palustris, and salinity matched best the distance among habitat types. These habitat characteristics, as well as the fish abundances and assemblages differed most across the habitat types in the outer and mid archipelago zones and in the lowest habitat isolation. These patterns suggest that the structuring effect of habitat isolation increases along the archipelago gradient as differences between local and regional conditions increase. In the inner archipelago, overall low physical harshness induces homogeneous conditions and the habitat isolation is less important here than in the other zones. We suggest that this difference in the relative importance of the two gradients depending on the level of respective gradient ultimately forms these heterogeneous coastal habitats in a successional landscape. Rutilus rutilus and P. fluviatilis were responsible for large parts of the assemblage patterns. Although sympatric due to similar habitat requirements, differences in dispersal capability, competitive ability and predation vulnerability may add explanation to detected differences in distribution and abundance in these two species in an open system. Our results also stress the structuring role of vegetation in terms of total coverage and species composition, as these two aspects of macrophyte diversity may act as complementary habitat modifiers across gradients of physical harshness.

  4. Functional Attachment of Soft Tissues to Bone: Development, Healing, and Tissue Engineering

    PubMed Central

    Lu, Helen H.; Thomopoulos, Stavros

    2014-01-01

    Connective tissues such as tendons or ligaments attach to bone across a multitissue interface with spatial gradients in composition, structure, and mechanical properties. These gradients minimize stress concentrations and mediate load transfer between the soft and hard tissues. Given the high incidence of tendon and ligament injuries and the lack of integrative solutions for their repair, interface regeneration remains a significant clinical challenge. This review begins with a description of the developmental processes and the resultant structure-function relationships that translate into the functional grading necessary for stress transfer between soft tissue and bone. It then discusses the interface healing response, with a focus on the influence of mechanical loading and the role of cell-cell interactions. The review continues with a description of current efforts in interface tissue engineering, highlighting key strategies for the regeneration of the soft tissue–to-bone interface, and concludes with a summary of challenges and future directions. PMID:23642244

  5. Interaction of a vortex and a premixed flame

    NASA Technical Reports Server (NTRS)

    Ferziger, Joel H.; Rutland, Christopher J.

    1989-01-01

    The interaction of a vortex structure and a premixed flame is studied. The presence of pressure gradients in the vortex and density gradients in the flame result in a complicated interaction. This interaction has been examined when the flame and vortex are fully coupled and in two special cases where they are decoupled: a frozen flame case and a frozen vortex case. In the frozen flame case the main effect of the flame on the vortex is through the barocline torque term. This has been modeled for high Damkoehler numbers. In the frozen vortex case the main effect, at moderate Damkoehler numbers, is to convect the flame around the vortex. At low Damkoehler numbers, depending on the length scales, pockets of unburned gas can form or the flame structure can be significantly changed. The two frozen cases provide a basis for understanding the full interaction.

  6. Optimization and quantization in gradient symbol systems: a framework for integrating the continuous and the discrete in cognition.

    PubMed

    Smolensky, Paul; Goldrick, Matthew; Mathis, Donald

    2014-08-01

    Mental representations have continuous as well as discrete, combinatorial properties. For example, while predominantly discrete, phonological representations also vary continuously; this is reflected by gradient effects in instrumental studies of speech production. Can an integrated theoretical framework address both aspects of structure? The framework we introduce here, Gradient Symbol Processing, characterizes the emergence of grammatical macrostructure from the Parallel Distributed Processing microstructure (McClelland, Rumelhart, & The PDP Research Group, 1986) of language processing. The mental representations that emerge, Distributed Symbol Systems, have both combinatorial and gradient structure. They are processed through Subsymbolic Optimization-Quantization, in which an optimization process favoring representations that satisfy well-formedness constraints operates in parallel with a distributed quantization process favoring discrete symbolic structures. We apply a particular instantiation of this framework, λ-Diffusion Theory, to phonological production. Simulations of the resulting model suggest that Gradient Symbol Processing offers a way to unify accounts of grammatical competence with both discrete and continuous patterns in language performance. Copyright © 2013 Cognitive Science Society, Inc.

  7. Structure and composition of vegetation along an elevational gradient in Puerto Rico.

    Treesearch

    W.A. Gould; G. Gonzalez; G. Carrero Rivera

    2006-01-01

    Question: What are the composition, conservation status, and structural and environmental characteristics of eight mature tropical forest plant communities that occur along an elevational gradient. Location: Northeastern Puerto Rico. Methods: We quantified the species composition, diversity, conservation status, and ecological attributes of eight mature tropical forest...

  8. Why do high-redshift galaxies show diverse gas-phase metallicity gradients?

    NASA Astrophysics Data System (ADS)

    Ma, Xiangcheng; Hopkins, Philip F.; Feldmann, Robert; Torrey, Paul; Faucher-Giguère, Claude-André; Kereš, Dušan

    2017-04-01

    Recent spatially resolved observations of galaxies at z ˜ 0.6-3 reveal that high-redshift galaxies show complex kinematics and a broad distribution of gas-phase metallicity gradients. To understand these results, we use a suite of high-resolution cosmological zoom-in simulations from the Feedback in Realistic Environments project, which include physically motivated models of the multiphase interstellar medium, star formation and stellar feedback. Our simulations reproduce the observed diversity of kinematic properties and metallicity gradients, broadly consistent with observations at z ˜ 0-3. Strong negative metallicity gradients only appear in galaxies with a rotating disc, but not all rotationally supported galaxies have significant gradients. Strongly perturbed galaxies with little rotation always have flat gradients. The kinematic properties and metallicity gradient of a high-redshift galaxy can vary significantly on short time-scales, associated with starburst episodes. Feedback from a starburst can destroy the gas disc, drive strong outflows and flatten a pre-existing negative metallicity gradient. The time variability of a single galaxy is statistically similar to the entire simulated sample, indicating that the observed metallicity gradients in high-redshift galaxies reflect the instantaneous state of the galaxy rather than the accretion and growth history on cosmological time-scales. We find weak dependence of metallicity gradient on stellar mass and specific star formation rate (sSFR). Low-mass galaxies and galaxies with high sSFR tend to have flat gradients, likely due to the fact that feedback is more efficient in these galaxies. We argue that it is important to resolve feedback on small scales in order to produce the diverse metallicity gradients observed.

  9. Ordering pathway of block copolymers under dynamic thermal gradients studied by in situ GISAXS

    DOE PAGES

    Samant, Saumil; Strzalka, Joseph; Yager, Kevin G.; ...

    2016-10-31

    Dynamic thermal gradient-based processes for directed self-assembly of block copolymer (BCP) thin films such as cold zone annealing (CZA) have demonstrated much potential for rapidly fabricating highly ordered patterns of BCP domains with facile orientation control. As a demonstration, hexagonally packed predominantly vertical cylindrical morphology, technologically relevant for applications such as membranes and lithography, was achieved in 1 μm thick cylinder-forming PS-b-PMMA (cBCP) films by applying sharp thermal gradients (CZA-Sharp) at optimum sample sweep rates. A thorough understanding of the molecular level mechanisms and pathways of the BCP ordering that occur during this CZA-S process is presented, useful to fullymore » exploit the potential of CZA-S for large-scale BCP-based device fabrication. To that end, we developed a customized CZA-S assembly to probe the dynamic structure evolution and ordering of the PS-b-PMMA cBCP film in situ as it undergoes the CZA-S process using the grazing incidence small-angle X-ray scattering (GISAXS) technique. Four distinct regimes of BCP ordering were observed within the gradient that include microphase separation from an “as cast” unordered state (Regime I), evolution of vertical cylinders under a thermally imposed strain gradient (Regime II), reorientation of a fraction of cylinders due to preferential substrate interactions (Regime III), and finally grain-coarsening on the cooling edge (Regime IV). The ordering pathway in the different regimes is further described within the framework of an energy landscape. A novel aspect of this study is the identification of a grain-coarsening regime on the cooling edge of the gradient, previously obscure in zone annealing studies of BCPs. Furthermore, such insights into the development of highly ordered BCP nanostructures under template-free thermal gradient fields can potentially have important ramifications in the field of BCP-directed self-assembly and self-assembling polymer systems more broadly.« less

  10. Species Sorting of Benthic Invertebrates in a Salinity Gradient – Importance of Dispersal Limitation

    PubMed Central

    Josefson, Alf B.

    2016-01-01

    The relative importance of environment and dispersal related processes for community assembly has attracted great interest over recent decades, but few empirical studies from the marine/estuarine realm have examined the possible effects of these two types of factors in the same system. Importance of these processes was investigated in a hypothetical metacommunity of benthic invertebrates in 16 micro-tidal estuaries connected to the same open sea area. The estuaries differed in size and connectivity to the open sea and represented a salinity gradient across the estuaries. The Elements of Metacommunity Structure (EMS) approach on estuary scale was complemented with a mechanistic variance partitioning approach on sample scale to disentangle effects of factors affecting assembly of three trait groups of species with different dispersivity. A quasi-Clementsian pattern was observed for all three traits, a likely response to some latent gradient. The primary axis in the pattern was most strongly related to gradients in estuary salinity and estuary entrance width and correlation with richness indicated nestedness only in the matrix of the most dispersive trait group. In the variance partitioning approach measures of turnover and nestedness between paired samples each from different estuaries were related to environmental distance in different gradients. Distance between estuaries was unimportant suggesting importance of factors characterizing the estuaries. While the high dispersive species mainly were sorted in the salinity gradient, apparently according to their tolerance ranges towards salinity, the two less dispersive traits were additionally affected by estuary entrance width and possibly also area. The results exemplify a mechanism of community assembly in the marine realm where the niche factor salinity in conjunction with differential dispersal structure invertebrates in a metacommunity of connected estuaries, and support the idea that dispersive species are more controlled by the environment than less dispersive species. PMID:28006014

  11. Buckling of Thermoviscoelastic Structures Under Temporal and Spatial Temperature Variations

    NASA Technical Reports Server (NTRS)

    Tsuyuki, Richard; Knauss, Wolfgang G.

    1992-01-01

    The problem of lateral instability of a viscoelastic in-plane loaded structure is considered in terms of thermorheolgically simple materials. As an example of a generally in-plane loaded structure, we examine the simple column under axial load: Both cyclic loading is considered (with constant or in-phase variable temperature excursions) as well as the case of constant load in the presence of thermal gradients through the thickness of the structure. The latter case involves a continuous movement of the neutral axis from the center to the colder side and then back to the center. In both cases, temperature has a very strong effect on the instability evolution, and under in-phase thermal cycling the critical loads are reduced compared to those at constant temperatures. The primary effect of thermal gradients beyond that of thermally-induced rate accelerations is occasioned by the generation of an "initial imperfection" or "structural bowing." Because the coefficient of thermal expansion tends to be large for many polymeric materials, it it may be necessary to take special care in lay-up design of composite structures intended for use under compressive loads in high-temperature applications. Finally, the implications for the temperature sensitivities of composites to micro-instability (fiber crimping) are also apparent from the results delineated here.

  12. Hydrodynamic fabrication of structurally gradient ZnO nanorods.

    PubMed

    Kim, Hyung Min; Youn, Jae Ryoun; Song, Young Seok

    2016-02-26

    We studied a new approach where structurally gradient nanostructures were fabricated by means of hydrodynamics. Zinc oxide (ZnO) nanorods were synthesized in a drag-driven rotational flow in a controlled manner. The structural characteristics of nanorods such as orientation and diameter were determined by momentum and mass transfer at the substrate surface. The nucleation of ZnO was induced by shear stress which plays a key role in determining the orientation of ZnO nanorods. The nucleation and growth of such nanostructures were modeled theoretically and analyzed numerically to understand the underlying physics of the fabrication of nanostructures controlled by hydrodynamics. The findings demonstrated that the precise control of momentum and mass transfer enabled the formation of ZnO nanorods with a structural gradient in diameter and orientation.

  13. Gradient Well-Formedness across the Morpheme Boundary

    ERIC Educational Resources Information Center

    Goldberg, Ariel M.

    2010-01-01

    Recent theories of phonology hold that phonotactic well-formedness may be gradient, with some legal structures being more well-formed than others. Linguistic and psycholinguistic research has demonstrated that "within" morphemes, speakers encode both categorical (*n/Onset) and gradient (st/Onset greater than sin/Onset) phonotactic restrictions.…

  14. Separation of five compounds from leaves of Andrographis paniculata (Burm. f.) Nees by off-line two-dimensional high-speed counter-current chromatography combined with gradient and recycling elution.

    PubMed

    Zhang, Li; Liu, Qi; Yu, Jingang; Zeng, Hualiang; Jiang, Shujing; Chen, Xiaoqing

    2015-05-01

    An off-line two-dimensional high-speed counter-current chromatography method combined with gradient and recycling elution mode was established to isolate terpenoids and flavones from the leaves of Andrographis paniculata (Burm. f.) Nees. By using the solvent systems composed of n-hexane/ethyl acetate/methanol/water with different volume ratios, five compounds including roseooside, 5,4'-dihydroxyflavonoid-7-O-β-d-pyranglucuronatebutylester, 7,8-dimethoxy-2'-hydroxy-5-O-β-d-glucopyranosyloxyflavon, 14-deoxyandrographiside, and andrographolide were successfully isolated. Purities of these isolated compounds were all over 95% as determined by high-performance liquid chromatography. Their structures were identified by UV, mass spectrometry, and (1) H NMR spectroscopy. It has been demonstrated that the combination of off-line two-dimensional high-speed counter-current chromatography with different elution modes is an efficient technique to isolate compounds from complex natural product extracts. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Effects of internal structure on equilibrium of field-reversed configuration plasma sustained by rotating magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yambe, Kiyoyuki; Inomoto, Michiaki; Okada, Shigefumi

    The effects of an internal structure on the equilibrium of a field-reversed configuration (FRC) plasma sustained by rotating magnetic field is investigated by using detailed electrostatic probe measurements in the FRC Injection Experiment apparatus [S. Okada, et al., Nucl. Fusion. 45, 1094 (2005)]. An internal structure installed axially on the geometrical axis, which simulates Ohmic transformer or external toroidal field coils on the FRC device, brings about substantial changes in plasma density profile. The internal structure generates steep density-gradients not only on the inner side but on the outer side of the torus. The radial electric field is observed tomore » sustain the ion thermal pressure-gradient in the FRC without the internal structure; however, the radial electric field is not sufficient to sustain the increased ion thermal pressure-gradient in the FRC with the internal structure. Spontaneously driven azimuthal ion flow will be accountable for the imbalance of the radial pressure which is modified by the internal structure.« less

  16. The effect of a metal wall on confinement in JET and ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Beurskens, M. N. A.; Schweinzer, J.; Angioni, C.; Burckhart, A.; Challis, C. D.; Chapman, I.; Fischer, R.; Flanagan, J.; Frassinetti, L.; Giroud, C.; Hobirk, J.; Joffrin, E.; Kallenbach, A.; Kempenaars, M.; Leyland, M.; Lomas, P.; Maddison, G.; Maslov, M.; McDermott, R.; Neu, R.; Nunes, I.; Osborne, T.; Ryter, F.; Saarelma, S.; Schneider, P. A.; Snyder, P.; Tardini, G.; Viezzer, E.; Wolfrum, E.; the ASDEX Upgrade Team; Contributors, JET-EFDA

    2013-12-01

    In both JET and ASDEX Upgrade (AUG) the plasma energy confinement has been affected by the presence of a metal wall by the requirement of increased gas fuelling to avoid tungsten pollution of the plasma. In JET with a beryllium/tungsten wall the high triangularity baseline H-mode scenario (i.e. similar to the ITER reference scenario) has been the strongest affected and the benefit of high shaping to give good normalized confinement of H98 ˜ 1 at high Greenwald density fraction of fGW ˜ 0.8 has not been recovered to date. In AUG with a full tungsten wall, a good normalized confinement H98 ˜ 1 could be achieved in the high triangularity baseline plasmas, albeit at elevated normalized pressure βN > 2. The confinement lost with respect to the carbon devices can be largely recovered by the seeding of nitrogen in both JET and AUG. This suggests that the absence of carbon in JET and AUG with a metal wall may have affected the achievable confinement. Three mechanisms have been tested that could explain the effect of carbon or nitrogen (and the absence thereof) on the plasma confinement. First it has been seen in experiments and by means of nonlinear gyrokinetic simulations (with the GENE code), that nitrogen seeding does not significantly change the core temperature profile peaking and does not affect the critical ion temperature gradient. Secondly, the dilution of the edge ion density by the injection of nitrogen is not sufficient to explain the plasma temperature and pressure rise. For this latter mechanism to explain the confinement improvement with nitrogen seeding, strongly hollow Zeff profiles would be required which is not supported by experimental observations. The confinement improvement with nitrogen seeding cannot be explained with these two mechanisms. Thirdly, detailed pedestal structure analysis in JET high triangularity baseline plasmas have shown that the fuelling of either deuterium or nitrogen widens the pressure pedestal. However, in JET-ILW this only leads to a confinement benefit in the case of nitrogen seeding where, as the pedestal widens, the obtained pedestal pressure gradient is conserved. In the case of deuterium fuelling in JET-ILW the pressure gradient is strongly degraded in the fuelling scan leading to no net confinement gain due to the pedestal widening. The pedestal code EPED correctly predicts the pedestal pressure of the unseeded plasmas in JET-ILW within ±5%, however it does not capture the complex variation of pedestal width and gradient with fuelling and impurity seeding. Also it does not predict the observed increase of pedestal pressure by nitrogen seeding in JET-ILW. Ideal peeling ballooning MHD stability analysis shows that the widening of the pedestal leads to a down shift of the marginal stability boundary by only 10-20%. However, the variations in the pressure gradient observed in the JET-ILW fuelling experiment is much larger and spans a factor of more than two. As a result the experimental points move from deeply unstable to deeply stable on the stability diagram in a deuterium fuelling scan. In AUG-W nitrogen seeded plasmas, a widening of the pedestal has also been observed, consistent with the JET observations. The absence of carbon can thus affect the pedestal structure, and mainly the achieved pedestal gradient, which can be recovered by seeding nitrogen. The underlying physics mechanism is still under investigation and requires further understanding of the role of impurities on the pedestal stability and pedestal structure formation.

  17. A worldwide analysis of within-canopy variations in leaf structural, chemical and physiological traits across plant functional types

    PubMed Central

    Niinemets, Ülo; Keenan, Trevor F.; Hallik, Lea

    2018-01-01

    Summary Extensive within-canopy light gradients importantly affect photosynthetic productivity of leaves in different canopy positions and lead to light-dependent increases in foliage photosynthetic capacity per area (AA). However, the controls on AA variations by changes in underlying traits are poorly known. We constructed an unprecedented worldwide database including 831 within-canopy gradients with standardized light estimates for 304 species belonging to major vascular plant functional types, and analyzed within-canopy variations in 12 key foliage structural, chemical and physiological traits by quantitatively separating the contributions of different traits to photosynthetic acclimation. Although the light-dependent increase in AA is surprisingly similar in different plant functional types, they fundamentally differ in the share of the controls on AA by constituent traits. Species with high rates of canopy development and leaf turnover exhibiting highly dynamic light environments, actively change AA by nitrogen reallocation among and partitioning within leaves. In contrast, species with slow leaf turnover exhibit a passive AA acclimation response primarily determined by acclimation of leaf structure to growth light. This review emphasizes that different combinations of traits are responsible for within-canopy photosynthetic acclimation in different plant functional types and solves an old enigma of the role of mass- vs. area-based traits in vegetation acclimation. PMID:25318596

  18. Variations in the structural and functional diversity of zooplankton over vertical and horizontal environmental gradients en route to the Arctic Ocean through the Fram Strait.

    PubMed

    Gluchowska, Marta; Trudnowska, Emilia; Goszczko, Ilona; Kubiszyn, Anna Maria; Blachowiak-Samolyk, Katarzyna; Walczowski, Waldemar; Kwasniewski, Slawomir

    2017-01-01

    A multi-scale approach was used to evaluate which spatial gradient of environmental variability is the most important in structuring zooplankton diversity in the West Spitsbergen Current (WSC). The WSC is the main conveyor of warm and biologically rich Atlantic water to the Arctic Ocean through the Fram Strait. The data set included 85 stratified vertical zooplankton samples (obtained from depths up to 1000 metres) covering two latitudinal sections (76°30'N and 79°N) located across the multi-path WSC system. The results indicate that the most important environmental variables shaping the zooplankton structural and functional diversity and standing stock variability are those associated with depth, whereas variables acting in the horizontal dimension are of lesser importance. Multivariate analysis of the zooplankton assemblages, together with different univariate descriptors of zooplankton diversity, clearly illustrated the segregation of zooplankton taxa in the vertical plane. The epipelagic zone (upper 200 m) hosted plentiful, Oithona similis-dominated assemblages with a high proportion of filter-feeding zooplankton. Although total zooplankton abundance declined in the mesopelagic zone (200-1000 m), zooplankton assemblages in that zone were more diverse and more evenly distributed, with high contributions from both herbivorous and carnivorous taxa. The vertical distribution of integrated biomass (mg DW m-2) indicated that the total zooplankton biomass in the epipelagic and mesopelagic zones was comparable. Environmental gradients acting in the horizontal plane, such as the ones associated with different ice cover and timing of the spring bloom, were reflected in the latitudinal variability in protist community structure and probably caused differences in succession in the zooplankton community. High abundances of Calanus finmarchicus in the WSC core branch suggest the existence of mechanisms advantageous for higher productivity or/and responsible for physical concentration of zooplankton. Our results indicate that regional hydrography plays a primary role in shaping zooplankton variability in the WSC on the way to the Arctic Ocean, with additional effects caused by biological factors related to seasonality in pelagic ecosystem development, resulting in regional differences in food availability or biological production between the continental slope and the deep ocean regions.

  19. Subsidence Induced Faulting Hazard Zonation Using Persistent Scatterer Interferometry and Horizontal Gradient Mapping in Mexican Urban Areas

    NASA Astrophysics Data System (ADS)

    Cabral-Cano, E.; Cigna, F.; Osmanoglu, B.; Dixon, T.; Wdowinski, S.

    2011-12-01

    Subsidence and faulting have affected Mexico city for more than a century and the process is becoming widespread throughout larger urban areas in central Mexico. This process causes substantial damages to the urban infrastructure and housing structures and will certainly become a major factor to be considered when planning urban development, land use zoning and hazard mitigation strategies in the next decades. Subsidence is usually associated with aggressive groundwater extraction rates and a general decrease of aquifer static level that promotes soil consolidation, deformation and ultimately, surface faulting. However, local stratigraphic and structural conditions also play an important role in the development and extension of faults. In all studied cases stratigraphy of the uppermost sediment strata and the structure of the underlying volcanic rocks impose a much different subsidence pattern which is most suitable for imaging through satellite geodetic techniques. We present examples from several cities in central Mexico: a) Mexico-Chalco. Very high rates of subsidence, up to 370 mm/yr are observed within this lacustrine environment surrounded by Pliocene-Quaternary volcanic structures. b) Aguascalientes where rates up to 90 mm/yr in the past decade are observed, is controlled by a stair stepped N-S trending graben that induces nucleation of faults along the edges of contrasting sediment package thicknesses. c) Morelia presents subsidence rates as high as 80 mm/yr. Differential deformation is observed across major basin-bounding E-W trending faults and with higher subsidence rates on their hanging walls, where the thickest sequences of compressible Quaternary sediments crop out. Our subsidence and faulting study in urban areas of central Mexico is based on a horizontal gradient analysis using displacement maps from Persistent Scatterer InSAR that allows definition of areas with high vulnerability to surface faulting. Correlation of the surface subsidence pattern through satellite geodesy and surface faults show that the principal factor for defining these hazardous areas is best determined not by solely using the subsidence magnitude rates but rather by using a combined magnitude and horizontal subsidence gradient analysis. This approach is used as the basis for the generation of subsidence-induced surface faulting hazard maps for the studied urban areas.

  20. Streamlined structure elucidation of an unknown compound in a pigment formulation.

    PubMed

    Yüce, Imanuel; Morlock, Gertrud E

    2016-10-21

    A fast and reliable quality control is important for ink manufacturers to ensure a constant production grade of mixtures and chemical formulations, and unknown components attract their attention. Structure elucidating techniques seem time-consuming in combination with column-based methods, but especially the low solubility of pigment formulations is challenging the analysis. In contrast, layer chromatography is more tolerant with regard to pigment particles. One PLC plate for NMR and FTIR analyses and one HPTLC plate for recording of high resolution mass spectra, MS/MS spectra and for gathering information on polarity and spectral properties were needed to characterize a structure, exemplarily shown for an unknown component in pigment Red 57:1 to be 3-hydroxy-2-naphtoic acid. A preparative layer chromatography (PLC) workflow was developed that used an Automated Multiple Development 2 (AMD 2) system. The 0.5-mm PLC plate could still be operated in the AMD 2 system and allowed a smooth switch from the analytical to the preparative gradient separation. Through automated gradient development and the resulting focusing of bands, the sharpness of the PLC bands was improved. For NMR, the necessary high load of the target compound on the PLC plate was achieved via a selective solvent extraction that discriminated the polar sample matrix and thus increased the application volume of the extract that could maximally be applied without overloading. By doing so, the yield for NMR analysis was improved by a factor of 9. The effectivity gain through a simple, but thoroughly chosen extraction solvent is often overlooked, and for educational purpose, it was clearly illustrated and demonstrated by an extended solvent screening. Thus, PLC using an automated gradient development after a selective extraction was proven to be a new powerful combination for structural elucidation by NMR. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Inherent losses induced absorptive acoustic rainbow trapping with a gradient metasurface

    NASA Astrophysics Data System (ADS)

    Liu, Tuo; Liang, Shanjun; Chen, Fei; Zhu, Jie

    2018-03-01

    Acoustic rainbow trapping represents the phenomenon of strong acoustic dispersion similar to the optical "trapped rainbow," which allows spatial-spectral modulation and broadband trapping of sound. It can be realized with metamaterials that provide the required strong dispersion absent in natural materials. However, as the group velocity cannot be reduced to exactly zero before the forward mode being coupled to the backward mode, such trapping is temporary and the local sound oscillation ultimately radiates backward. Here, we propose a gradient metasurface, a rigid surface structured with gradient perforation along the wave propagation direction, in which the inherent thermal and viscous losses inside the holes are considered. We show that the gradually diminished group velocity of the structure-induced surface acoustic waves (SSAWs) supported by the metasurface becomes anomalous at the trapping position, induced by the existence of the inherent losses, which implies that the system's absorption reaches its maximum. Together with the progressively increased attenuation of the SSAWs along the gradient direction, reflectionless spatial-spectral modulation and sound enhancement are achieved in simulation. Such phenomenon, which we call as absorptive trapped rainbow, results from the balanced interplay among the local resonance inside individual holes, the mutual coupling of adjacent unit cells, and the inherent losses due to thermal conductivity and viscosity. This study deepens the understanding of the SSAWs propagation at a lossy metasurface and may contribute to the practical design of acoustic devices for high performance sensing and filtering.

  2. Effect of gradient dielectric coefficient in a functionally graded material (FGM) substrate on the propagation behavior of love waves in an FGM-piezoelectric layered structure.

    PubMed

    Cao, Xiaoshan; Shi, Junping; Jin, Feng

    2012-06-01

    The propagation behavior of Love waves in a layered structure that includes a functionally graded material (FGM) substrate carrying a piezoelectric thin film is investigated. Analytical solutions are obtained for both constant and gradient dielectric coefficients in the FGM substrate. Numerical results show that the gradient dielectric coefficient decreases phase velocity in any mode, and the electromechanical coupling factor significantly increases in the first- and secondorder modes. In some modes, the difference in Love waves' phase velocity between these two types of structure might be more than 1%, resulting in significant differences in frequency of the surface acoustic wave devices.

  3. Ciliate diversity and distribution patterns in the sediments of a seamount and adjacent abyssal plains in the tropical Western Pacific Ocean.

    PubMed

    Zhao, Feng; Filker, Sabine; Stoeck, Thorsten; Xu, Kuidong

    2017-09-12

    Benthic ciliates and the environmental factors shaping their distribution are far from being completely understood. Likewise, deep-sea systems are amongst the least understood ecosystems on Earth. In this study, using high-throughput DNA sequencing, we investigated the diversity and community composition of benthic ciliates in different sediment layers of a seamount and an adjacent abyssal plain in the tropical Western Pacific Ocean with water depths ranging between 813 m and 4566 m. Statistical analyses were used to assess shifts in ciliate communities across vertical sediment gradients and water depth. Nine out of 12 ciliate classes were detected in the different sediment samples, with Litostomatea accounting for the most diverse group, followed by Plagiopylea and Oligohymenophorea. The novelty of ciliate genetic diversity was extremely high, with a mean similarity of 93.25% to previously described sequences. On a sediment depth gradient, ciliate community structure was more similar within the upper sediment layers (0-1 and 9-10 cm) compared to the lower sediment layers (19-20 and 29-30 cm) at each site. Some unknown ciliate taxa which were absent from the surface sediments were found in deeper sediments layers. On a water depth gradient, the proportion of unique OTUs was between 42.2% and 54.3%, and that of OTUs shared by all sites around 14%. However, alpha diversity of the different ciliate communities was relatively stable in the surface layers along the water depth gradient, and about 78% of the ciliate OTUs retrieved from the surface layer of the shallowest site were shared with the surface layers of sites deeper than 3800 m. Correlation analyses did not reveal any significant effects of measured environmental factors on ciliate community composition and structure. We revealed an obvious variation in ciliate community along a sediment depth gradient in the seamount and the adjacent abyssal plain and showed that water depth is a less important factor shaping ciliate distribution in deep-sea sediments unlike observed for benthic ciliates in shallow seafloors. Additionally, an extremely high genetic novelty of ciliate diversity was found in these habitats, which points to a hot spot for the discovery of new ciliate species.

  4. Elevation Gradients and Climatic Consequences

    NASA Astrophysics Data System (ADS)

    Redmond, K. T.

    2006-12-01

    Steep topography usually results in gradients in surface meteorological elements. Sometimes these gradients are extremely sharp. Frequent or persistent gradients are expressed in climatic statistics as well. Most commonly, higher elevations are wetter and cooler than lower elevations. The magnitude of these climate gradients vary both spatially and temporally, generally on smaller scales for the former and on a greater variety of scales for the latter. Orographic contributions to precipitation vary on hourly to annual scales, and temperature inversions of different durations can alter or reverse the vertical temperature lapse rate normally found in the atmosphere. The presence of these factors affects the probability distributions of climate elements as a function of elevation. This leads in turn to consequences for ecology, resource management, and data. Orographic enhancement of Sierra precipitation varies by a factor of about three on seasonal time scales, and more on shorter scales. Particularly strong gradients in temperature climate are observed along the California coast, resulting in large changes in long-term climatological probability distributions over quite short distances in elevation. These have significant implications for plant life. For specific noteworthy events, such as the California heat wave of July 2006, striking differences were seen over a horizontal distance of merely 2-3 km along the Big Sur Coast, related entirely to elevation. There is evidence of differential warming with elevation between California's Central Valley and the Sierra Nevada. As a practical matter, the three-dimensional correlation fields of weather and climate elements in topographically diverse regions, on differing time scales, have complex structure, but also have certain regularities. This makes quality control of weather and climate data sets in highly diverse topography much more challenging. Quality control decisions that do not properly take this correlation structure (which varies in time) into account can result in degraded data sets, a variety of Type I and Type II errors, and paradoxically, hinder or prevent the discovery and description of the effects of climate gradients by incorrectly altering the data sets needed to uncover and quantify the relationships.

  5. Magmatic structures in the Krkonoše Jizera Plutonic Complex, Bohemian Massif: evidence for localized multiphase flow and small-scale thermal mechanical instabilities in a granitic magma chamber

    NASA Astrophysics Data System (ADS)

    Žák, Jiří; Klomínský, Josef

    2007-08-01

    The present paper examines magmatic structures in the Jizera and Liberec granites of the Krkonoše-Jizera Plutonic Complex, Bohemian Massif. The magmatic structures are here interpreted to preserve direct field evidence for highly localized magma flow and other processes in crystal-rich mushes, and to capture the evolution of physical processes in an ancient granitic magma chamber. We propose that after chamber-wide mixing and hybridization, as suggested by recent petrological studies, laminar magma flow became highly localized to weaker channel-like domains within the higher-strength crystal framework. Mafic schlieren formed at flow rims, and their formation presumably involved gravitational settling and velocity gradient flow sorting coupled with interstitial melt escape. Local thermal or compositional convection may have resulted in the formation of vertical schlieren tubes and ladder dikes whereas subhorizontal tubes or channels formed during flow driven by lateral gradients in magma pressure. After the cessation or deceleration of channel flow, gravity-driven processes (settling of crystals and enclaves, gravitational differentiation, development of downward dripping instabilities), accompanied by compaction, filter pressing and melt segregation, dominated in the crystal mush within the flow channels. Subsequently, magmatic folds developed in schlieren layers and the magma chamber recorded complex, late magmatic strains at high magma crystallinities. Late-stage magma pulsing into localized submagmatic cracks represents the latest events of magmatic history of the chamber prior to its final crystallization. We emphasize that the most favorable environments for the formation and preservation of magmatic structures, such as those hosted in the Jizera and Liberec granites, are slowly cooling crystal-rich mushes. Therefore, where preserved in plutons, these structures may lend strong support for a "mush model" of magmatic systems.

  6. Flow perfusion culture of MC3T3-E1 osteogenic cells on gradient calcium polyphosphate scaffolds with different pore sizes.

    PubMed

    Chen, Liang; Song, Wei; Markel, David C; Shi, Tong; Muzik, Otto; Matthew, Howard; Ren, Weiping

    2016-02-01

    Calcium polyphosphate is a biodegradable bone substitute. It remains a challenge to prepare porous calcium polyphosphate with desired gradient porous structures. In this study, a modified one-step gravity sintering method was used to prepare calcium polyphosphate scaffolds with desired-gradient-pore-size distribution. The differences of porous structure, mechanical strength, and degradation rate between gradient and homogenous calcium polyphosphate scaffolds were evaluated by micro-computed tomography, scanning electron microscopy, and mechanical testing. Preosteoblastic MC3T3-E1 cells were seeded onto gradient and homogenous calcium polyphosphate scaffolds and cultured in a flow perfusion bioreactor. The distribution, proliferation, and differentiation of the MC3T3-E1 cells were compared to that of homogenous calcium polyphosphate scaffolds. Though no significant difference of cell proliferation was found between the gradient and the homogenous calcium polyphosphate scaffolds, a much higher cell differentiation and mineralization were observed in the gradient calcium polyphosphate scaffolds than that of the homogenous calcium polyphosphate scaffolds, as manifested by increased alkaline phosphatase activity (p < 0.05). The improved distribution and differentiation of cultured cells within gradient scaffolds were further supported by both (18)F-fluorine micro-positron emission tomography scanning and in vitro tetracycline labeling. We conclude that the calcium polyphosphate scaffold with gradient pore sizes enhances osteogenic cell differentiation as well as mineralization. The in vivo performance of gradient calcium polyphosphate scaffolds warrants further investigation in animal bone defect models. © The Author(s) 2015.

  7. Development of a composite geodetic structure for space construction, phase 1A

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The development of a geodetic beam and beam builder for on orbit construction of large truss type space structures is discussed. The geodetic beam is a lightweight, open lattice structure composed of an equilateral gridwork of crisscrossing rods. The beam provides a high degree of stiffness and minimizes structural distortion, due to temperature gradients, through the incorporation of a new graphite and glass reinforced thermoplastic composite material with a low coefficient of thermal expansion. A low power consuming, high production rate, beam builder automatically fabricates the geodetic beams in space using rods preprocessed on Earth. Three areas of the development are focused upon; (1) geodetic beam designs for local attachment of equipment or beam to beam joining in a parallel or crossing configurations, (2) evaluation of long life pultruded rods capable of service temperatures higher than possible with the HMS/P1700 rod material, and (3) evalaution of high temperature joint encapsulant materials.

  8. Microbes on mountainsides: Contrasting elevational patterns of bacterial and plant diversity

    PubMed Central

    Bryant, Jessica A.; Lamanna, Christine; Morlon, Hélène; Kerkhoff, Andrew J.; Enquist, Brian J.; Green, Jessica L.

    2008-01-01

    The study of elevational diversity gradients dates back to the foundation of biogeography. Although elevational patterns of plant and animal diversity have been studied for centuries, such patterns have not been reported for microorganisms and remain poorly understood. Here, in an effort to assess the generality of elevational diversity patterns, we examined soil bacterial and plant diversity along an elevation gradient. To gain insight into the forces that structure these patterns, we adopted a multifaceted approach to incorporate information about the structure, diversity, and spatial turnover of montane communities in a phylogenetic context. We found that observed patterns of plant and bacterial diversity were fundamentally different. While bacterial taxon richness and phylogenetic diversity decreased monotonically from the lowest to highest elevations, plants followed a unimodal pattern, with a peak in richness and phylogenetic diversity at mid-elevations. At all elevations bacterial communities had a tendency to be phylogenetically clustered, containing closely related taxa. In contrast, plant communities did not exhibit a uniform phylogenetic structure across the gradient: they became more overdispersed with increasing elevation, containing distantly related taxa. Finally, a metric of phylogenetic beta-diversity showed that bacterial lineages were not randomly distributed, but rather exhibited significant spatial structure across the gradient, whereas plant lineages did not exhibit a significant phylogenetic signal. Quantifying the influence of sample scale in intertaxonomic comparisons remains a challenge. Nevertheless, our findings suggest that the forces structuring microorganism and macroorganism communities along elevational gradients differ. PMID:18695215

  9. Stable Computation of the Vertical Gradient of Potential Field Data Based on Incorporating the Smoothing Filters

    NASA Astrophysics Data System (ADS)

    Baniamerian, Jamaledin; Liu, Shuang; Abbas, Mahmoud Ahmed

    2018-04-01

    The vertical gradient is an essential tool in interpretation algorithms. It is also the primary enhancement technique to improve the resolution of measured gravity and magnetic field data, since it has higher sensitivity to changes in physical properties (density or susceptibility) of the subsurface structures than the measured field. If the field derivatives are not directly measured with the gradiometers, they can be calculated from the collected gravity or magnetic data using numerical methods such as those based on fast Fourier transform technique. The gradients behave similar to high-pass filters and enhance the short-wavelength anomalies which may be associated with either small-shallow sources or high-frequency noise content in data, and their numerical computation is susceptible to suffer from amplification of noise. This behaviour can adversely affect the stability of the derivatives in the presence of even a small level of the noise and consequently limit their application to interpretation methods. Adding a smoothing term to the conventional formulation of calculating the vertical gradient in Fourier domain can improve the stability of numerical differentiation of the field. In this paper, we propose a strategy in which the overall efficiency of the classical algorithm in Fourier domain is improved by incorporating two different smoothing filters. For smoothing term, a simple qualitative procedure based on the upward continuation of the field to a higher altitude is introduced to estimate the related parameters which are called regularization parameter and cut-off wavenumber in the corresponding filters. The efficiency of these new approaches is validated by computing the first- and second-order derivatives of noise-corrupted synthetic data sets and then comparing the results with the true ones. The filtered and unfiltered vertical gradients are incorporated into the extended Euler deconvolution to estimate the depth and structural index of a magnetic sphere, hence, quantitatively evaluating the methods. In the real case, the described algorithms are used to enhance a portion of aeromagnetic data acquired in Mackenzie Corridor, Northern Mainland, Canada.

  10. Shocks and metallicity gradients in normal star-forming galaxies

    NASA Astrophysics Data System (ADS)

    Ho, I.-Ting

    Gas flow is one of the most fundamental processes driving galaxy evolution. This thesis explores gas flows in local galaxies by studying metallicity gradients and galactic-scale outflows in normal star-forming galaxies. This is made possible by new integral field spectroscopy data that provide simultaneously spatial and spectral information of galaxies. First, I measure metallicity gradients in isolated disk galaxies and show that their metallicity gradients are remarkably simple and universal. When the metallicity gradients are normalized to galaxy sizes, all the 49 galaxies studied have virtually the same metallicity gradient. I model the common metallicity gradient using a simple chemical evolution model to understand its origin. The common metallicity gradient is a direct result of the coevolution of gas and stellar disk while galactic disks build up their masses from inside-out. Tight constraints on the mass outflow rates and inflow rates can be placed by the chemical evolution model. Second, I investigate galactic winds in normal star-forming galaxies using data from an integral field spectroscopy survey. I demonstrate how to search for galactic winds by probing emission line ratios, shocks, and gas kinematics. Galactic winds are found to be common even in normal star-forming galaxies that were not expected to host winds. By comparing galaxies with and without hosting winds, I show that galaxies with high star formation rate surface densities and bursty star formation histories are more likely to drive large-scale galactic winds. Finally, lzifu, a toolkit for fitting multiple emission lines simultaneously in integral field spectroscopy data, is developed in this thesis. I describe in detail the structure of the toolkit and demonstrate the capabilities of lzifu.

  11. A Study of Wake Development and Structure in Constant Pressure Gradients

    NASA Technical Reports Server (NTRS)

    Thomas, Flint O.; Nelson, R. C.; Liu, Xiaofeng

    2000-01-01

    Motivated by the application to high-lift aerodynamics for commercial transport aircraft, a systematic investigation into the response of symmetric/asymmetric planar turbulent wake development to constant adverse, zero, and favorable pressure gradients has been conducted. The experiments are performed at a Reynolds number of 2.4 million based on the chord of the wake generator. A unique feature of this wake study is that the pressure gradients imposed on the wake flow field are held constant. The experimental measurements involve both conventional LDV and hot wire flow field surveys of mean and turbulent quantities including the turbulent kinetic energy budget. In addition, similarity analysis and numerical simulation have also been conducted for this wake study. A focus of the research has been to isolate the effects of both pressure gradient and initial wake asymmetry on the wake development. Experimental results reveal that the pressure gradient has a tremendous influence on the wake development, despite the relatively modest pressure gradients imposed. For a given pressure gradient, the development of an initially asymmetric wake is different from the initially symmetric wake. An explicit similarity solution for the shape parameters of the symmetric wake is obtained and agrees with the experimental results. The turbulent kinetic energy budget measurements of the symmetric wake demonstrate that except for the convection term, the imposed pressure gradient does not change the fundamental flow physics of turbulent kinetic energy transport. Based on the turbulent kinetic energy budget measurements, an approach to correct the bias error associated with the notoriously difficult dissipation estimate is proposed and validated through the comparison of the experimental estimate with a direct numerical simulation result.

  12. Experimental investigation of localized disturbances in the straight wing boundary layer, generated by finite surface vibrations

    NASA Astrophysics Data System (ADS)

    Kozlov, V. V.; Katasonov, M. M.; Pavlenko, A. M.

    2017-10-01

    Downstream development of artificial disturbances were investigated experimentally using hot-wire constant temperature anemometry. It is shown that vibrations with high-amplitude of a three-dimensional surface lead to formation of two types of perturbations in the straight wing boundary layer: streamwise oriented localized structures and wave packets. The amplitude of streamwise structure is decay downstream. The wave packets amplitude grows in adverse pressure gradient area. The flow separation is exponentially intensified of the wave packet amplitude.

  13. Nonlinear Distribution Pattern of Hibernating Bats in Caves along an Elevational Gradient in Mountain (Carpathians, Southern Poland)

    PubMed Central

    Piksa, Krzysztof; Nowak, Jakub; Żmihorski, Michał; Bogdanowicz, Wiesław

    2013-01-01

    Background Thermal gradients along changes in elevation in mountainous environments are reflected by different biotas. Although there have been studies of elevation variation in bat assemblages in summer, winter changes in the same gradients remain unknown. Methodology/Principal Findings The objective of this study was to document changes in the species composition of bats hibernating in caves along a temperate elevational gradient. We studied 70 caves between from 300 m to 1,930 m altitude along a slope of the Carpathian Mountains in southern Poland. We recorded changes in bats, including species richness, abundance, altitudinal distribution and dominance during consecutive winters between 2003 and 2009. Similarity of dominance of faunal structure was assessed by using the Bray-Curtis similarity index. We used the generalised additive model and rarefaction to study the variation in species richness, and generalized additive mixed models to examine the effect of abiotic factors on the qualitative and quantitative structure of bat assemblages. During 351 surveys we recorded 13,856 hibernating bats from 15 species. Species richness peaked around mid-elevation (1,100–1,400 m a.s.l.) with richness declining at both higher and lower elevations. Based on the results of a cluster analysis, we could distinguish among four altitudinal zones that differed in species richness and dominance structure. Conclusions/Significance This is the first study documenting changes in species richness and variation of structure of bats hibernating in caves along an elevational gradient. The most surprising and key finding is the fact that changes in the structure of assemblages of hibernating bats along the altitudinal gradient occurred in jumps, forming zones similar to those observed in the vegetation zones. Moreover, species richness and dominance structure of assemblages of hibernating bats in the mountains depended not only on location above sea level, but also on local geomorphologic conditions which strongly affected the microclimate of the caves. PMID:23861850

  14. Distinguishing Discrete and Gradient Category Structure in Language: Insights from Verb-Particle Constructions

    ERIC Educational Resources Information Center

    Brehm, Laurel; Goldrick, Matthew

    2017-01-01

    The current work uses memory errors to examine the mental representation of verb-particle constructions (VPCs; e.g., "make up" the story, "cut up the meat"). Some evidence suggests that VPCs are represented by a cline in which the relationship between the VPC and its component elements ranges from highly transparent ("cut…

  15. Structure of the Helminth Assemblage of and Endemic Madtom Catfish (Noturus Lachneri)

    Treesearch

    Riccardo A. Fiorillo; R. Brent Thomas; Melvin L. Warren; Christopher M. Taylor

    1999-01-01

    The Ouachita madtom, Noturus lachneri, is a small, uniformly-colored catfish endemic to the upper Saline and Ouachita river drainages in central Arkansas (Robison and Buchanan, 1988), where it is often found in shallow pools associated with clear, high gradient, rock-bottomed streams (Robison and Harp, 1985). Distribution, habitat, diet, and conservation status of...

  16. A multi-instrument case study of high-latitude ionospheric GNSS scintillation due to drifting plasma irregularities

    NASA Astrophysics Data System (ADS)

    van der Meeren, C.; Oksavik, K.; Moen, J. I.; Romano, V.

    2013-12-01

    For this study, GPS receiver scintillation and Total Electron Content (TEC) data from high-latitude locations on Svalbard have been combined with several other data sets, including the EISCAT Svalbard Radar (ESR) and allsky cameras, to perform a multi-instrument case study of high-latitude GPS ionospheric scintillations in relation to drifting plasma irregularities at night over Svalbard on 31 October 2011. Scintillations are rapid amplitude and phase fluctuations of electromagnetic signals. GNSS-based systems may be disturbed by ionospheric plasma irregularities and structures such as plasma patches (areas of enhanced electron density in the polar cap) and plasma gradients. When the GNSS radio signals propagate through such areas, in particular gradients, the signals experience scintillations that at best increases positioning errors and at worst may break the receiver's signal lock, potentially resulting in the GNSS receiver losing track of its position. Due to the importance of many GNSS applications, it is desirable to study the scintillation environment to understand the limitations of the GNSS systems. We find scintillation mainly localised to plasma gradients, with predominantly phase scintillation at the leading edge of patches and both phase and amplitude scintillation at the trailing edge. A single edge may also contain different scintillation types at different locations.

  17. First-principles study of high-pressure structural phase transitions of magnesium

    NASA Astrophysics Data System (ADS)

    Liu, Qiuxiang; Fan, Changzeng; Zhang, Ruijun

    2009-06-01

    The structural phase transitions for the hcp, bcc, dhcp, and fcc of magnesium at hydrostatic pressures larger than about 200 GPa at zero temperature are studied by first-principles total energy calculations. The plane-wave basis pseudopotential method has been adopted, in which the generalized gradient approximation implanted in the CASTEP code is employed. By comparing the enthalpy differences of the hcp structure with other three structures under different pressures, it can be seen that when the pressure becomes higher than about 65, 130, and 190 GPa, the bcc, dhcp, and fcc structures become more stable relative to the hcp structure, respectively. Due to the lowest enthalpy value of the bcc structure above 65 GPa, it can be deduced that magnesium may transform to the bcc structure from the ground state hcp structure around 65 GPa, but no further phase transitions occur without additionally applying high temperature. In addition, the equation of state of magnesium is calculated, indicating that bcc structure is the softest phase.

  18. Linking bacterial community structure to advection and environmental impact along a coast-fjord gradient of the Sognefjord, western Norway

    NASA Astrophysics Data System (ADS)

    Storesund, Julia E.; Sandaa, Ruth-Anne; Thingstad, T. Frede; Asplin, Lars; Albretsen, Jon; Erga, Svein Rune

    2017-12-01

    Here we present novel data on bacterial assemblages along a coast-fjord gradient in the Sognefjord, the deepest (1308 m) and longest (205 km) ice-free fjord in the world. Data were collected on two cruises, one in November 2012, and one in May 2013. Special focus was on the impact of advective processes and how these are reflected in the autochthonous and allochthonous fractions of the bacterial communities. Both in November and May bacterial community composition, determined by Automated Ribosomal Intergenic Spacer Analyses (ARISA), in the surface and intermediate water appeared to be highly related to bacterial communities originating from freshwater runoff and coastal water, whereas the sources in the basin water were mostly unknown. Additionally, the inner part of the Sognefjord was more influenced by side-fjords than the outer part, and changes in bacterial community structure along the coast-fjord gradient generally showed higher correlation with environmental variables than with geographic distances. High resolution model simulations indicated a surprisingly high degree of temporal and spatial variation in both current speed and direction. This led to a more episodic/discontinuous horizontal current pattern, with several vortices (10-20 km wide) being formed from time to time along the fjord. We conclude that during periods of strong wind forcing, advection led to allochthonous species being introduced to the surface and intermediate layers of the fjord, and also appeared to homogenize community composition in the basin water. We also expect vortices to be active mixing zones where inflowing bacterial populations on the southern side of the fjord are mixed with the outflowing populations on the northern side. On average, retention time of the fjord water was sufficient for bacterial communities to be established.

  19. Anomalous thermoelectricity in strained Bi2Te3 films.

    PubMed

    Liu, Yucong; Chen, Jiadong; Deng, Huiyong; Hu, Gujin; Zhu, Daming; Dai, Ning

    2016-09-07

    Bi2Te3-based alloys have been intensively used for thermoelectric coolers and generators due to their high Seebeck coefficient S. So far, efforts to improve the S have been made mostly on changing the structures and components. Herein, we demonstrate an anomalous thermoelectricity in strained Bi2Te3 films, i.e., the value of S is obviously changed after reversing the direction of temperature gradient. Further theoretical and experimental analysis shows that it originates from the coupling of thermoelectric and flexoelectric effects caused by a stress gradient. Our finding provides a new avenue to adjust the S of Bi2Te3-based thermoelectric materials through flexoelectric polarization.

  20. Anomalous thermoelectricity in strained Bi2Te3 films

    PubMed Central

    Liu, Yucong; Chen, Jiadong; Deng, Huiyong; Hu, Gujin; Zhu, Daming; Dai, Ning

    2016-01-01

    Bi2Te3-based alloys have been intensively used for thermoelectric coolers and generators due to their high Seebeck coefficient S. So far, efforts to improve the S have been made mostly on changing the structures and components. Herein, we demonstrate an anomalous thermoelectricity in strained Bi2Te3 films, i.e., the value of S is obviously changed after reversing the direction of temperature gradient. Further theoretical and experimental analysis shows that it originates from the coupling of thermoelectric and flexoelectric effects caused by a stress gradient. Our finding provides a new avenue to adjust the S of Bi2Te3-based thermoelectric materials through flexoelectric polarization. PMID:27600406

  1. Development of Simultaneous Corrosion Barrier and Optimized Microstructure in FeCrAl Heat-Resistant Alloy for Energy Applications. Part II: The Optimized Creep-Resistant Microstructure

    NASA Astrophysics Data System (ADS)

    Pimentel, G.; Aranda, M. M.; Chao, J.; González-Carrasco, J. L.; Capdevila, C.

    2015-09-01

    The first part of this two-part study reported the possibility of simultaneously generating a dense, self-healing α-alumina layer by thermal oxidation and a coarse-grained microstructure with a potential goodness for high-temperature creep resistance in a FeCrAl oxide dispersion-strengthened ferritic alloy that was cold deformed after hot rolling and extrusion. In this second part, the factors affecting the formation of the coarse-grained microstructure such as strain gradients induced during the rolling process are analyzed. It is concluded that larger strain gradients lead to more refined and more isotropic grain structures.

  2. Changes in community structure of active protistan assemblages from the lower Pearl River to coastal Waters of the South China Sea.

    PubMed

    Li, Ran; Jiao, Nianzhi; Warren, Alan; Xu, Dapeng

    2018-04-01

    Protists make up an important component of aquatic ecosystems, playing crucial roles in biogeochemical processes on local and global scales. To reveal the changes of diversity and community structure of protists along the salinity gradients, community compositions of active protistan assemblages were characterized along a transect from the lower Pearl River estuary to the open waters of the South China Sea (SCS), using high-throughput sequencing of the hyper-variable V9 regions of 18S rRNA. This study showed that the alpha diversity of protists, both in the freshwater and in the coastal SCS stations was higher than that in the estuary. The protist community structure also changed along the salinity gradient. The relative sequence abundance of Stramenopiles was highest at stations with lower salinity and decreased with the increasing of salinity. By contrast, the contributions of Alveolata, Hacrobia and Rhizaria to the protistan communities generally increased with the increasing of salinity. The composition of the active protistan community was strongly correlated with salinity, indicating that salinity was the dominant factor among measured environmental parameters affecting protistan community composition and structure. Copyright © 2018 Elsevier GmbH. All rights reserved.

  3. Environmental Drivers of the Canadian Arctic Megabenthic Communities

    PubMed Central

    Roy, Virginie; Iken, Katrin; Archambault, Philippe

    2014-01-01

    Environmental gradients and their influence on benthic community structure vary over different spatial scales; yet, few studies in the Arctic have attempted to study the influence of environmental gradients of differing spatial scales on megabenthic communities across continental-scales. The current project studied for the first time how megabenthic community structure is related to several environmental factors over 2000 km of the Canadian Arctic, from the Beaufort Sea to northern Baffin Bay. Faunal trawl samples were collected between 2007 and 2011 at 78 stations from 30 to 1000 m depth and patterns in biomass, density, richness, diversity, and taxonomic composition were examined in relation to indirect/spatial gradients (e.g., depth), direct gradients (e.g., bottom oceanographic variables), and resource gradients (e.g., food supply proxies). Six benthic community types were defined based on their biomass-based taxonomic composition. Their distribution was significantly, but moderately, associated with large-scale (100–1000 km) environmental gradients defined by depth, physical water properties (e.g., bottom salinity), and meso-scale (10–100 km) environmental gradients defined by substrate type (hard vs. soft) and sediment organic carbon content. We did not observe a strong decline of bulk biomass, density and richness with depth or a strong increase of those community characteristics with food supply proxies, contrary to our hypothesis. We discuss how local- to meso-scale environmental conditions, such as bottom current regimes and polynyas, sustain biomass-rich communities at specific locations in oligotrophic and in deep regions of the Canadian Arctic. This study demonstrates the value of considering the scales of variability of environmental gradients when interpreting their relevance in structuring of communities. PMID:25019385

  4. Efficient gradient calibration based on diffusion MRI.

    PubMed

    Teh, Irvin; Maguire, Mahon L; Schneider, Jürgen E

    2017-01-01

    To propose a method for calibrating gradient systems and correcting gradient nonlinearities based on diffusion MRI measurements. The gradient scaling in x, y, and z were first offset by up to 5% from precalibrated values to simulate a poorly calibrated system. Diffusion MRI data were acquired in a phantom filled with cyclooctane, and corrections for gradient scaling errors and nonlinearity were determined. The calibration was assessed with diffusion tensor imaging and independently validated with high resolution anatomical MRI of a second structured phantom. The errors in apparent diffusion coefficients along orthogonal axes ranged from -9.2% ± 0.4% to + 8.8% ± 0.7% before calibration and -0.5% ± 0.4% to + 0.8% ± 0.3% after calibration. Concurrently, fractional anisotropy decreased from 0.14 ± 0.03 to 0.03 ± 0.01. Errors in geometric measurements in x, y and z ranged from -5.5% to + 4.5% precalibration and were likewise reduced to -0.97% to + 0.23% postcalibration. Image distortions from gradient nonlinearity were markedly reduced. Periodic gradient calibration is an integral part of quality assurance in MRI. The proposed approach is both accurate and efficient, can be setup with readily available materials, and improves accuracy in both anatomical and diffusion MRI to within ±1%. Magn Reson Med 77:170-179, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. © 2016 Wiley Periodicals, Inc.

  5. Efficient gradient calibration based on diffusion MRI

    PubMed Central

    Teh, Irvin; Maguire, Mahon L.

    2016-01-01

    Purpose To propose a method for calibrating gradient systems and correcting gradient nonlinearities based on diffusion MRI measurements. Methods The gradient scaling in x, y, and z were first offset by up to 5% from precalibrated values to simulate a poorly calibrated system. Diffusion MRI data were acquired in a phantom filled with cyclooctane, and corrections for gradient scaling errors and nonlinearity were determined. The calibration was assessed with diffusion tensor imaging and independently validated with high resolution anatomical MRI of a second structured phantom. Results The errors in apparent diffusion coefficients along orthogonal axes ranged from −9.2% ± 0.4% to + 8.8% ± 0.7% before calibration and −0.5% ± 0.4% to + 0.8% ± 0.3% after calibration. Concurrently, fractional anisotropy decreased from 0.14 ± 0.03 to 0.03 ± 0.01. Errors in geometric measurements in x, y and z ranged from −5.5% to + 4.5% precalibration and were likewise reduced to −0.97% to + 0.23% postcalibration. Image distortions from gradient nonlinearity were markedly reduced. Conclusion Periodic gradient calibration is an integral part of quality assurance in MRI. The proposed approach is both accurate and efficient, can be setup with readily available materials, and improves accuracy in both anatomical and diffusion MRI to within ±1%. Magn Reson Med 77:170–179, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. PMID:26749277

  6. Nature-Inspired 2D-Mosaic 3D-Gradient Mesoporous Framework: Bimetal Oxide Dual-Composite Strategy toward Ultrastable and High-Capacity Lithium Storage.

    PubMed

    Yu, Jia; Wang, Yanlei; Mou, Lihui; Fang, Daliang; Chen, Shimou; Zhang, Suojiang

    2018-02-27

    In allusion to traditional transition-metal oxide (TMO) anodes for lithium-ion batteries, which face severe volume variation and poor conductivity, herein a bimetal oxide dual-composite strategy based on two-dimensional (2D)-mosaic three-dimensional (3D)-gradient design is proposed. Inspired by natural mosaic dominance phenomena, Zn 1-x Co x O/ZnCo 2 O 4 2D-mosaic-hybrid mesoporous ultrathin nanosheets serve as building blocks to assemble into a 3D Zn-Co hierarchical framework. Moreover, a series of derivative frameworks with high evolution are controllably synthesized, based on which a facile one-pot synthesis process can be developed. From a component-composite perspective, both Zn 1-x Co x O and ZnCo 2 O 4 provide superior conductivity due to bimetal doping effect, which is verified by density functional theory calculations. From a structure-composite perspective, 2D-mosaic-hybrid mode gives rise to ladder-type buffering and electrochemical synergistic effect, thus realizing mutual stabilization and activation between the mosaic pair, especially for Zn 1-x Co x O with higher capacity yet higher expansion. Moreover, the inside-out Zn-Co concentration gradient in 3D framework and rich oxygen vacancies further greatly enhance Li storage capability and stability. As a result, a high reversible capacity (1010 mA h g -1 ) and areal capacity (1.48 mA h cm -2 ) are attained, while ultrastable cyclability is obtained during high-rate and long-term cycles, rending great potential of our 2D-mosaic 3D-gradient design together with facile synthesis.

  7. Fungal endophyte communities reflect environmental structuring across a Hawaiian landscape

    PubMed Central

    Zimmerman, Naupaka B.; Vitousek, Peter M.

    2012-01-01

    We surveyed endophytic fungal communities in leaves of a single tree species (Metrosideros polymorpha) across wide environmental gradients (500–5,500 mm of rain/y; 10–22 °C mean annual temperature) spanning short geographic distances on Mauna Loa Volcano, Hawai’i. Using barcoded amplicon pyrosequencing at 13 sites (10 trees/site; 10 leaves/tree), we found very high levels of diversity within sites (a mean of 551 ± 134 taxonomic units per site). However, among-site diversity contributed even more than did within-site diversity to the overall richness of more than 4,200 taxonomic units observed in M. polymorpha, and this among-site variation in endophyte community composition correlated strongly with temperature and rainfall. These results are consistent with suggestions that foliar endophytic fungi are hyperdiverse. They further suggest that microbial diversity may be even greater than has been assumed and that broad-scale environmental controls such as temperature and rainfall can structure eukaryotic microbial diversity. Appropriately constrained study systems across strong environmental gradients present a useful means to understand the environmental factors that structure the diversity of microbial communities. PMID:22837398

  8. Dimerization in honeycomb Na2RuO3 under pressure: a DFT study

    NASA Astrophysics Data System (ADS)

    Gazizova, D. D.; Ushakov, A. V.; Streltsov, S. V.

    2018-04-01

    The structural properties of Na2RuO3 under pressure are studied using density functional theory within the nonmagnetic generalized gradient approximation (GGA). We found that one may expect a structural transition at ˜3 GPa. This structure at the high-pressure phase is exactly the same as the low-temperature structure of Li2RuO3 (at ambient pressure) and is characterized by the P21/m space group. Ru ions form dimers in this phase and one may expect strong modification of the electronic and magnetic properties in Na2RuO3 at pressure higher than 3 GPa.

  9. Charge order-superfluidity transition in a two-dimensional system of hard-core bosons and emerging domain structures

    NASA Astrophysics Data System (ADS)

    Moskvin, A. S.; Panov, Yu. D.; Rybakov, F. N.; Borisov, A. B.

    2017-11-01

    We have used high-performance parallel computations by NVIDIA graphics cards applying the method of nonlinear conjugate gradients and Monte Carlo method to observe directly the developing ground state configuration of a two-dimensional hard-core boson system with decrease in temperature, and its evolution with deviation from a half-filling. This has allowed us to explore unconventional features of a charge order—superfluidity phase transition, specifically, formation of an irregular domain structure, emergence of a filamentary superfluid structure that condenses within of the charge-ordered phase domain antiphase boundaries, and formation and evolution of various topological structures.

  10. Merging high resolution geophysical and geochemical surveys to reduce exploration risk at glass buttes, Oregon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walsh, Patrick; Fercho, Steven; Perkin, Doug

    2015-06-01

    The engineering and studies phase of the Glass Buttes project was aimed at reducing risk during the early stages of geothermal project development. The project’s inclusion of high resolution geophysical and geochemical surveys allowed Ormat to evaluate the value of these surveys both independently and in combination to quantify the most valuable course of action for exploration in an area where structure, permeability, and temperature are the most pressing questions. The sizes of the thermal anomalies at Glass Buttes are unusually large. Over the course of Phase I Ormat acquired high resolution LIDAR data to accurately map fault manifestations atmore » the surface and collected detailed gravity and aeromagnetic surveys to map subsurface structural features. In addition, Ormat collected airborne hyperspectral data to assist with mapping the rock petrology and mineral alteration assemblages along Glass Buttes faults and magnetotelluric (MT) survey to try to better constrain the structures at depth. Direct and indirect identification of alteration assemblages reveal not only the geochemical character and temperature of the causative hydrothermal fluids but can also constrain areas of upflow along specific fault segments. All five datasets were merged along with subsurface lithologies and temperatures to predict the most likely locations for high permeability and hot fluids. The Glass Buttes temperature anomalies include 2 areas, totaling 60 km2 (23 mi2) of measured temperature gradients over 165° C/km (10° F/100ft). The Midnight Point temperature anomaly includes the Strat-1 well with 90°C (194 °F) at 603 m (1981 ft) with a 164 °C/km (10°F/100ft) temperature gradient at bottom hole and the GB-18 well with 71°C (160 °F) at 396 m (1300 ft) with a 182°C/km (11°F/100ft) gradient. The primary area of alteration and elevated temperature occurs near major fault intersections associated with Brothers Fault Zone and Basin and Range systems. Evidence for faulting is observed in each data set as follows. Field observations include fault plane orientations, complicated fault intersections, and hydrothermal alteration apparently pre-dating basalt flows. Geophysical anomalies include large, linear gradients in gravity and aeromagnetic data with magnetic lows possibly associated with alteration. Resistivity low anomalies also appear to have offsets associated with faulting. Hyperspectral and XRF identified alteration and individual volcanic flow units, respectively. When incorporated into a 3D geologic model, the fault intersections near the highest proven temperature and geophysical anomalies provide the first priority targets at Midnight Point. Ormat geologists selected the Midnight Point 52-33 drilling target based on a combination of pre-existing drilling data, geologic field work, geophysical interpretation, and geochemical analysis. Deep temperatures of well 52-33 was lower than anticipated. Temperature gradients in the well mirrored those found in historical drilling, but they decreased below 1500 ft and were isothermal below 2000 ft.« less

  11. Hybrid magnet devices for molecule manipulation and small scale high gradient-field applications

    DOEpatents

    Humphries, David E [El Cerrito, CA; Hong, Seok-Cheol [Seoul, KR; Cozzarelli, legal representative, Linda A.; Pollard, Martin J [El Cerrito, CA; Cozzarelli, Nicholas R [Berkeley, CA

    2009-01-06

    The present disclosure provides a high performance hybrid magnetic structure made from a combination of permanent magnets and ferromagnetic pole materials which are assembled in a predetermined array. The hybrid magnetic structure provides means for separation and other biotechnology applications involving holding, manipulation, or separation of magnetizable molecular structures and targets. Also disclosed are hybrid magnetic tweezers able to exert approximately 1 nN of force to 4.5 .mu.m magnetic bead. The maximum force was experimentally measured to be .about.900 pN which is in good agreement with theoretical estimations and other measurements. In addition, a new analysis scheme that permits fast real-time position measurement in typical geometry of magnetic tweezers has been developed and described in detail.

  12. Phytoplankton Diversity and Community Composition along the Estuarine Gradient of a Temperate Macrotidal Ecosystem: Combined Morphological and Molecular Approaches

    PubMed Central

    Bazin, Pauline; Jouenne, Fabien; Friedl, Thomas; Deton-Cabanillas, Anne-Flore; Le Roy, Bertrand; Véron, Benoît

    2014-01-01

    Microscopical and molecular analyses were used to investigate the diversity and spatial community structure of spring phytoplankton all along the estuarine gradient in a macrotidal ecosystem, the Baie des Veys (eastern English Channel). Taxa distribution at high tide in the water column appeared to be mainly driven by the tidal force which superimposed on the natural salinity gradient, resulting in a two-layer flow within the channel. Lowest taxa richness and abundance were found in the bay where Teleaulax-like cryptophytes dominated. A shift in species composition occurred towards the mouth of the river, with the diatom Asterionellopsis glacialis dramatically accumulating in the bottom waters of the upstream brackish reach. Small thalassiosiroid diatoms dominated the upper layer river community, where taxa richness was higher. Through the construction of partial 18S rDNA clone libraries, the microeukaryotic diversity was further explored for three samples selected along the surface salinity gradient (freshwater - brackish - marine). Clone libraries revealed a high diversity among heterotrophic and/or small-sized protists which were undetected by microscopy. Among them, a rich variety of Chrysophyceae and other lineages (e.g. novel marine stramenopiles) are reported here for the first time in this transition area. However, conventional microscopy remains more efficient in revealing the high diversity of phototrophic taxa, low in abundances but morphologically distinct, that is overlooked by the molecular approach. The differences between microscopical and molecular analyses and their limitations are discussed here, pointing out the complementarities of both approaches, for a thorough phytoplankton community description. PMID:24718653

  13. Thermal control requirements for large space structures

    NASA Technical Reports Server (NTRS)

    Manoff, M.

    1978-01-01

    Performance capabilities and weight requirements of large space structure systems will be significantly influenced by thermal response characteristics. Analyses have been performed to determine temperature levels and gradients for structural configurations and elemental concepts proposed for advanced system applications ranging from relatively small, low-power communication antennas to extremely large, high-power Satellite Power Systems (SPS). Results are presented for selected platform configurations, candidate strut elements, and potential mission environments. The analyses also incorporate material and surface optical property variation. The results illustrate many of the thermal problems which may be encountered in the development of three systems.

  14. A biomimetic projector with high subwavelength directivity based on dolphin biosonar

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Gao, Xiaowei; Zhang, Sai; Cao, Wenwu; Tang, Liguo; Wang, Ding; Li, Yan

    2014-09-01

    Based on computed tomography of a Yangtze finless porpoise's biosonar system, a biomimetic structure was designed to include air cavity, gradient-index material, and steel outer-structure mimicking air sacs, melon, and skull, respectively. The mainlobe pressure was about three times higher, the angular resolution was one order of magnitude higher, and the effective source size was orders of magnitude larger than those of the subwavelength source without the biomimetic structure. The superior subwavelength directivity over a broad bandwidth suggests potential applications of this biomimetic projector in underwater sonar, medical ultrasonography, and other related applications.

  15. High-performance equation solvers and their impact on finite element analysis

    NASA Technical Reports Server (NTRS)

    Poole, Eugene L.; Knight, Norman F., Jr.; Davis, D. Dale, Jr.

    1990-01-01

    The role of equation solvers in modern structural analysis software is described. Direct and iterative equation solvers which exploit vectorization on modern high-performance computer systems are described and compared. The direct solvers are two Cholesky factorization methods. The first method utilizes a novel variable-band data storage format to achieve very high computation rates and the second method uses a sparse data storage format designed to reduce the number of operations. The iterative solvers are preconditioned conjugate gradient methods. Two different preconditioners are included; the first uses a diagonal matrix storage scheme to achieve high computation rates and the second requires a sparse data storage scheme and converges to the solution in fewer iterations that the first. The impact of using all of the equation solvers in a common structural analysis software system is demonstrated by solving several representative structural analysis problems.

  16. High-performance equation solvers and their impact on finite element analysis

    NASA Technical Reports Server (NTRS)

    Poole, Eugene L.; Knight, Norman F., Jr.; Davis, D. D., Jr.

    1992-01-01

    The role of equation solvers in modern structural analysis software is described. Direct and iterative equation solvers which exploit vectorization on modern high-performance computer systems are described and compared. The direct solvers are two Cholesky factorization methods. The first method utilizes a novel variable-band data storage format to achieve very high computation rates and the second method uses a sparse data storage format designed to reduce the number od operations. The iterative solvers are preconditioned conjugate gradient methods. Two different preconditioners are included; the first uses a diagonal matrix storage scheme to achieve high computation rates and the second requires a sparse data storage scheme and converges to the solution in fewer iterations that the first. The impact of using all of the equation solvers in a common structural analysis software system is demonstrated by solving several representative structural analysis problems.

  17. Minimum mass design of large-scale space trusses subjected to thermal gradients

    NASA Technical Reports Server (NTRS)

    Williams, R. Brett; Agnes, Gregory S.

    2006-01-01

    Lightweight, deployable trusses are commonly used to support space-borne instruments including RF reflectors, radar panels, and telescope optics. While in orbit, these support structures are subjected to thermal gradients that vary with altitude, location in orbit, and self-shadowing. Since these instruments have tight dimensional-stability requirements, their truss members are often covered with multi-layer insulation (MLI) blankets to minimize thermal distortions. This paper develops a radiation heat transfer model to predict the thermal gradient experienced by a triangular truss supporting a long, linear radar panel in Medium Earth Orbit (MEO). The influence of self-shadowing effects of the radar panel are included in the analysis, and the influence of both MLI thickness and outer covers/coatings on the magnitude of the thermal gradient are formed into a simple, two-dimensional analysis. This thermal model is then used to size and estimate the structural mass of a triangular truss that meets a given set of structural requirements.

  18. Observation of multipactor suppression in a dielectric-loaded accelerating structure using an applied axial magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jing, C.; Konecny, R.; Antipov, S.

    2013-11-18

    Efforts by a number of institutions to develop a Dielectric-Loaded Accelerating (DLA) structure capable of supporting high gradient acceleration when driven by an external radio frequency source have been ongoing over the past decade. Single surface resonant multipactor has been previously identified as one of the major limitations on the practical application of DLA structures in electron accelerators. In this paper, we report the results of an experiment that demonstrated suppression of multipactor growth in an X-band DLA structure through the use of an applied axial magnetic field. This represents an advance toward the practical use of DLA structures inmore » many accelerator applications.« less

  19. High T c superconductivity in YBa2Cu3O7- x studied by PAC and PAS

    NASA Astrophysics Data System (ADS)

    Zhu, Shengyun; Li, Anli; Zheng, Shengnan; Huang, Hanchen; Li, Donghong; Din, Honglin; Du, Hongshan; Sun, Hancheng

    1993-03-01

    High T c superconductivity has been investigated in YBaCuO by both perturbed angular correlation and positron annihilation spectroscopy techniques as a function of temperature from 77 to 300 K. An abrupt change has been observed in the positron lifetime and Doppler broadening and the electric field gradient and its asymmetry parameter across T c, indicating a transition of two- to one-dimensional Cu-O-Cu chain structure and a charge transfer from CuO layers to CuO chains. An anomaly of the normal state has been demonstrated around 125 K, which is attributed to the structural instability.

  20. NASA-UVA light aerospace alloy and structures technology program (LA2ST)

    NASA Technical Reports Server (NTRS)

    Gangloff, Richard P.

    1992-01-01

    The NASA-UVa Light Aerospace Alloy and Structure Technology (LAST) Program continues to maintain a high level of activity, with projects being conducted by graduate students and faculty advisors in the Departments of Materials Science and Engineering, Civil Engineering and Applied Mechanics, and Mechanical and Aerospace Engineering at the University of Virginia. This work is funded by the NASA-Langley Research Center under Grant NAG-1-745. Here, we report on progress achieved between January 1 and June 30, 1992. The objectives of the LA2ST Program is to conduct interdisciplinary graduate student research on the performance of the next generation, light weight aerospace alloys, composites and thermal gradient structures in collaboration with Langley researchers. Technical objectives are established for each research project. We aim to produce relevant data and basic understanding of material mechanical response, corrosion behavior, and microstructure; new monolithic and composite alloys; advanced processing methods; new solid and fluid mechanics analyses; measurement advances; and critically, a pool of educated graduate students for aerospace technologies. The accomplishments presented in this report cover topics including: (1) Mechanical and Environmental Degradation Mechanisms in Advance Light Metals and Composites; (2) Aerospace Materials Science; (3) Mechanics of Materials and Composites for Aerospace Structures; and (4) Thermal Gradient Structures.

  1. Focal high cell density generates a gradient of patterns in self-organizing vascular mesenchymal cells.

    PubMed

    Cheng, Henry; Reddy, Aneela; Sage, Andrew; Lu, Jinxiu; Garfinkel, Alan; Tintut, Yin; Demer, Linda L

    2012-01-01

    In embryogenesis, structural patterns, such as vascular branching, may form via a reaction-diffusion mechanism in which activator and inhibitor morphogens guide cells into periodic aggregates. We previously found that vascular mesenchymal cells (VMCs) spontaneously aggregate into nodular structures and that morphogen pairs regulate the aggregation into patterns of spots and stripes. To test the effect of a focal change in activator morphogen on VMC pattern formation, we created a focal zone of high cell density by plating a second VMC layer within a cloning ring over a confluent monolayer. After 24 h, the ring was removed and pattern formation monitored by phase-contrast microscopy. At days 2-8, the patterns progressed from uniform distributions to swirl, labyrinthine and spot patterns. Within the focal high-density zone (HDZ) and a narrow halo zone, cells aggregated into spot patterns, whilst in the outermost zone of the plate, cells formed a labyrinthine pattern. The area occupied by aggregates was significantly greater in the outermost zone than in the HDZ or halo. The rate of pattern progression within the HDZ increased as a function of its plating density. Thus, focal differences in cell density may drive pattern formation gradients in tissue architecture, such as vascular branching. Copyright © 2012 S. Karger AG, Basel.

  2. Localized Temperature Variations in Laser-Irradiated Composites with Embedded Fiber Bragg Grating Sensors.

    PubMed

    Jenkins, R Brian; Joyce, Peter; Mechtel, Deborah

    2017-01-27

    Fiber Bragg grating (FBG) temperature sensors are embedded in composites to detect localized temperature gradients resulting from high energy infrared laser radiation. The goal is to detect the presence of radiation on a composite structure as rapidly as possible and to identify its location, much the same way human skin senses heat. A secondary goal is to determine how a network of sensors can be optimized to detect thermal damage in laser-irradiated composite materials or structures. Initial tests are conducted on polymer matrix composites reinforced with either carbon or glass fiber with a single optical fiber embedded into each specimen. As many as three sensors in each optical fiber measure the temporal and spatial thermal response of the composite to high energy radiation incident on the surface. Additional tests use a 2 × 2 × 3 array of 12 sensors embedded in a carbon fiber/epoxy composite to simultaneously measure temperature variations at locations on the composite surface and through the thickness. Results indicate that FBGs can be used to rapidly detect temperature gradients in a composite and their location, even for a direct strike of laser radiation on a sensor, when high temperatures can cause a non-uniform thermal response and FBG decay.

  3. Localized Temperature Variations in Laser-Irradiated Composites with Embedded Fiber Bragg Grating Sensors

    PubMed Central

    Jenkins, R. Brian; Joyce, Peter; Mechtel, Deborah

    2017-01-01

    Fiber Bragg grating (FBG) temperature sensors are embedded in composites to detect localized temperature gradients resulting from high energy infrared laser radiation. The goal is to detect the presence of radiation on a composite structure as rapidly as possible and to identify its location, much the same way human skin senses heat. A secondary goal is to determine how a network of sensors can be optimized to detect thermal damage in laser-irradiated composite materials or structures. Initial tests are conducted on polymer matrix composites reinforced with either carbon or glass fiber with a single optical fiber embedded into each specimen. As many as three sensors in each optical fiber measure the temporal and spatial thermal response of the composite to high energy radiation incident on the surface. Additional tests use a 2 × 2 × 3 array of 12 sensors embedded in a carbon fiber/epoxy composite to simultaneously measure temperature variations at locations on the composite surface and through the thickness. Results indicate that FBGs can be used to rapidly detect temperature gradients in a composite and their location, even for a direct strike of laser radiation on a sensor, when high temperatures can cause a non-uniform thermal response and FBG decay. PMID:28134815

  4. Light availability affects stream biofilm bacterial community composition and function, but not diversity

    PubMed Central

    Wagner, Karoline; Besemer, Katharina; Burns, Nancy R.; Battin, Tom J.

    2015-01-01

    Summary Changes in riparian vegetation or water turbidity and browning in streams alter the local light regime with potential implications for stream biofilms and ecosystem functioning. We experimented with biofilms in microcosms grown under a gradient of light intensities (range: 5–152 μmole photons s−1 m−2) and combined 454‐pyrosequencing and enzymatic activity assays to evaluate the effects of light on biofilm structure and function. We observed a shift in bacterial community composition along the light gradient, whereas there was no apparent change in alpha diversity. Multifunctionality, based on extracellular enzymes, was highest under high light conditions and decoupled from bacterial diversity. Phenol oxidase activity, involved in the degradation of polyphenolic compounds, was twice as high on average under the lowest compared with the highest light condition. This suggests a shift in reliance of microbial heterotrophs on biofilm phototroph‐derived organic matter under high light availability to more complex organic matter under low light. Furthermore, extracellular enzyme activities correlated with nutrient cycling and community respiration, supporting the link between biofilm structure–function and biogeochemical fluxes in streams. Our findings demonstrate that changes in light availability are likely to have significant impacts on biofilm structure and function, potentially affecting stream ecosystem processes. PMID:26013911

  5. Genetic structure along an altitudinal gradient in Lippia origanoides, a promising aromatic plant species restricted to semiarid areas in northern South America.

    PubMed

    Vega-Vela, Nelson Enrique; Sánchez, María Isabel Chacón

    2012-11-01

    The genetic diversity and population structure of Lippia origanoides, a species of the Verbenaceae family that shows promise as a crop plant, was investigated along an altitudinal gradient in the basin of the Chicamocha River in northeastern Colombia. The economic importance of the species, quality of its essential oils, and the fact that it is restricted to some few semiarid areas in northern South America may put the species at risk in a scenario of uncontrolled harvest of natural populations. Lippia origanoides was sampled along an altitudinal gradient from 365 to 2595 m.a.s.l. throughout Chicamocha River Canyon, a semiarid area in northeastern Colombia. Genetic diversity was assessed by means of AFLP markers. The number of AFLP loci (355) and the number of individuals sampled (173) were sufficient to reliably identify four populations at contrasting altitudes (F(ST) = 0.18, P-value < 0.0000), two populations in the lower basin, one population in the medium basin, and one population in the upper basin, with a low level of admixture between them. In average, genetic diversity within populations was relatively high (Ht = 0.32; I = 0.48); nevertheless, diversity was significantly reduced at higher altitude, a pattern that may be consistent with a scenario of range expansion toward higher elevations in an environment with more extreme conditions. The differences in altitude among the basins in the Chicamocha River seem to be relevant in determining the genetic structure of this species.

  6. Directional solidification at ultra-high thermal gradient

    NASA Technical Reports Server (NTRS)

    Flemings, M. C.; Lee, D. S.; Neff, M. A.

    1980-01-01

    A high gradient controlled solidification (HGC) furnace was designed and operated at gradients up to 1800 C/cm to continuously produce aluminum alloys. Rubber '0' rings for the water cooling chamber were eliminated, while still maintaining water cooling directly onto the solidified metal. An HGC unit for high temperature ferrous alloys was also designed. Successful runs were made with cast iron, at thermal gradients up to 500 C/cm.

  7. Environmental gradients structure gorgonian assemblages on coral reefs in SE Sulawesi, Indonesia

    NASA Astrophysics Data System (ADS)

    Rowley, Sonia J.

    2018-06-01

    Indonesian coral reefs are the epicenter of marine biodiversity, yet are under rapid anthropogenically induced decline. Therefore, ecological monitoring of high diversity taxa is paramount to facilitate effective management and conservation. This study presents an initial report from a comprehensive survey of shallow-water (0-15 m) gorgonian assemblage composition and structure across sites with varying habitat quality within the Wakatobi Marine National Park (WMNP), SE Sulawesi, Indonesia. Current estimates of over 90 morphospecies from 38 genera and 12 families within the calcaxonian, holaxonian and scleraxonian groups are reported. This extensive survey confirms high local gorgonian abundance, diversity and species richness in the absence of anthropogenic influence and increasing with depth. Notably, morphological variants of the zooxanthellate species Isis hippuris Linnaeus, 1758, and Briareum Blainville, 1830, drive site and habitat assemblage differences across environmental gradients. Azooxanthellate taxa, particularly within the Plexauridae, drive species richness and diversity with depth. Of the 14 predictor variables measured, benthic characteristics, water flow and natural light explained just 30% of gorgonian assemblage structure. Furthermore, zooxanthellate and azooxanthellate taxa partitioned distinct gorgonian communities into two trophic groups—autotrophs and heterotrophs, respectively—with contrasting diversity and abundance patterns within and between study sites. This study strongly supports the WMNP as an area of high regional gorgonian abundance and diversity. Varying ecological patterns across environmental clines can provide the foundation for future research and conservation management strategies in some of the most biodiverse marine ecosystems in the world.

  8. Gint2D-T2 correlation NMR of porous media

    NASA Astrophysics Data System (ADS)

    Zhang, Yan; Blümich, Bernhard

    2015-03-01

    The internal magnetic field gradient induced in porous media by magnetic susceptibility differences at material interfaces impacts diffusion measurements in particular at high magnetic field and can be used to probe the pore structure. Insight about the relationship between pore space and internal gradient Gint can be obtained from 2D Laplace NMR experiments. When measuring distributions of transverse relaxation times T2 in fluid filled porous media, relaxation and diffusion in internal gradients arise simultaneously and data are often interpreted with the assumption that one or the other parameter be constant throughout the sample. To examine this assumption we measure correlations of the distributions of Gint2D and T2 by 2D Laplace NMR for three different kinds of samples, glass beads with different bead diameters saturated with water, glass beads filled with oil and water, and a wet mortar sample. For the first two samples the cases where either the internal gradient or diffusion dominates were examined separately in order to better understand the relationship between Gint and D. These results are useful for assessing the impact of internal gradients and diffusion in unknown samples, such as the mortar sample. The experiments were performed at different magnetic field strengths corresponding to 300 MHz and 700 MHz 1H Larmor frequency to identify the impact of the magnetic field on the internal gradient. Subsequently, spatially resolved Gint2D-T2 maps were obtained to study the sample heterogeneity.

  9. Superelliptical insert gradient coil with a field-modifying layer for breast imaging.

    PubMed

    Moon, Sung M; Goodrich, K Craig; Hadley, J Rock; Kim, Seong-Eun; Zeng, Gengsheng L; Morrell, Glen R; McAlpine, Matthew A; Chronik, Blaine A; Parker, Dennis L

    2011-03-01

    Many MRI applications such as dynamic contrast-enhanced MRI of the breast require high spatial and temporal resolution and can benefit from improved gradient performance, e.g., increased gradient strength and reduced gradient rise time. The improved gradient performance required to achieve high spatial and temporal resolution for this application may be achieved by using local insert gradients specifically designed for a target anatomy. Current flat gradient systems cannot create an imaging volume large enough to accommodate both breasts; further, their gradient fields are not homogeneous, dropping off rapidly with distance from the gradient coil surface. To attain an imaging volume adequate for bilateral breast MRI, a planar local gradient system design has been modified into a superellipse shape, creating homogeneous gradient volumes that are 182% (Gx), 57% (Gy), and 75% (Gz) wider (left/right direction) than those of the corresponding standard planar gradient. Adding an additional field-modifying gradient winding results in an additional improvement of the homogeneous gradient field near the gradient coil surface over the already enlarged homogeneous gradient volumes of the superelliptical gradients (67%, 89%, and 214% for Gx, Gy, and Gz respectively). A prototype y-gradient insert has been built to demonstrate imaging and implementation characteristics of the superellipse gradient in a 3 T MRI system. Copyright © 2010 Wiley-Liss, Inc.

  10. Structural and optical properties of MgxAl1-xHy gradient thin films: a combinatorial approach

    NASA Astrophysics Data System (ADS)

    Gremaud, R.; Borgschulte, A.; Chacon, C.; van Mechelen, J. L. M.; Schreuders, H.; Züttel, A.; Hjörvarsson, B.; Dam, B.; Griessen, R.

    2006-07-01

    The structural, optical and dc electrical properties of MgxAl1-x (0.2≤x≤0.9) gradient thin films covered with Pd/Mg are investigated before and after exposure to hydrogen. We use hydrogenography, a novel high-throughput optical technique, to map simultaneously all the hydride forming compositions and the kinetics thereof in the gradient thin film. Metallic Mg in the MgxAl1-x layer undergoes a metal-to-semiconductor transition and MgH2 is formed for all Mg fractions x investigated. The presence of an amorphous Mg-Al phase in the thin film phase diagram enhances strongly the kinetics of hydrogenation. In the Al-rich part of the film, a complex H-induced segregation of MgH2 and Al occurs. This uncommon large-scale segregation is evidenced by metal and hydrogen profiling using Rutherford backscattering spectrometry and resonant nuclear analysis based on the reaction 1H(15N,αγ)12C. Besides MgH2, an additional semiconducting phase is found by electrical conductivity measurements around an atomic [Al]/[Mg] ratio of 2 (x=0.33). This suggests that the film is partially transformed into Mg(AlH4)2 at around this composition.

  11. Reduced density gradient as a novel approach for estimating QSAR descriptors, and its application to 1, 4-dihydropyridine derivatives with potential antihypertensive effects.

    PubMed

    Jardínez, Christiaan; Vela, Alberto; Cruz-Borbolla, Julián; Alvarez-Mendez, Rodrigo J; Alvarado-Rodríguez, José G

    2016-12-01

    The relationship between the chemical structure and biological activity (log IC 50 ) of 40 derivatives of 1,4-dihydropyridines (DHPs) was studied using density functional theory (DFT) and multiple linear regression analysis methods. With the aim of improving the quantitative structure-activity relationship (QSAR) model, the reduced density gradient s( r) of the optimized equilibrium geometries was used as a descriptor to include weak non-covalent interactions. The QSAR model highlights the correlation between the log IC 50 with highest molecular orbital energy (E HOMO ), molecular volume (V), partition coefficient (log P), non-covalent interactions NCI(H4-G) and the dual descriptor [Δf(r)]. The model yielded values of R 2 =79.57 and Q 2 =69.67 that were validated with the next four internal analytical validations DK=0.076, DQ=-0.006, R P =0.056, and R N =0.000, and the external validation Q 2 boot =64.26. The QSAR model found can be used to estimate biological activity with high reliability in new compounds based on a DHP series. Graphical abstract The good correlation between the log IC 50 with the NCI (H4-G) estimated by the reduced density gradient approach of the DHP derivatives.

  12. Reflectance analysis of porosity gradient in nanostructured silicon layers

    NASA Astrophysics Data System (ADS)

    Jurečka, Stanislav; Imamura, Kentaro; Matsumoto, Taketoshi; Kobayashi, Hikaru

    2017-12-01

    In this work we study optical properties of nanostructured layers formed on silicon surface. Nanostructured layers on Si are formed in order to reach high suppression of the light reflectance. Low spectral reflectance is important for improvement of the conversion efficiency of solar cells and for other optoelectronic applications. Effective method of forming nanostructured layers with ultralow reflectance in a broad interval of wavelengths is in our approach based on metal assisted etching of Si. Si surface immersed in HF and H2O2 solution is etched in contact with the Pt mesh roller and the structure of the mesh is transferred on the etched surface. During this etching procedure the layer density evolves gradually and the spectral reflectance decreases exponentially with the depth in porous layer. We analyzed properties of the layer porosity by incorporating the porosity gradient into construction of the layer spectral reflectance theoretical model. Analyzed layer is splitted into 20 sublayers in our approach. Complex dielectric function in each sublayer is computed by using Bruggeman effective media theory and the theoretical spectral reflectance of modelled multilayer system is computed by using Abeles matrix formalism. Porosity gradient is extracted from the theoretical reflectance model optimized in comparison to the experimental values. Resulting values of the structure porosity development provide important information for optimization of the technological treatment operations.

  13. Microbial community composition and functions are resilient to metal pollution along two forest soil gradients.

    PubMed

    Azarbad, Hamed; Niklińska, Maria; Laskowski, Ryszard; van Straalen, Nico M; van Gestel, Cornelis A M; Zhou, Jizhong; He, Zhili; Wen, Chongqing; Röling, Wilfred F M

    2015-01-01

    Despite the global importance of forests, it is virtually unknown how their soil microbial communities adapt at the phylogenetic and functional level to long-term metal pollution. Studying 12 sites located along two distinct gradients of metal pollution in Southern Poland revealed that functional potential and diversity (assessed using GeoChip 4.2) were highly similar across the gradients despite drastically diverging metal contamination levels. Metal pollution level did, however, significantly impact bacterial community structure (as shown by MiSeq Illumina sequencing of 16S rRNA genes), but not bacterial taxon richness and community composition. Metal pollution caused changes in the relative abundance of specific bacterial taxa, including Acidobacteria, Actinobacteria, Bacteroidetes, Chloroflexi, Firmicutes, Planctomycetes and Proteobacteria. Also, a group of metal-resistance genes showed significant correlations with metal concentrations in soil. Our study showed that microbial communities are resilient to metal pollution; despite differences in community structure, no clear impact of metal pollution levels on overall functional diversity was observed. While screens of phylogenetic marker genes, such as 16S rRNA genes, provide only limited insight into resilience mechanisms, analysis of specific functional genes, e.g. involved in metal resistance, appears to be a more promising strategy. © FEMS 2014. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. The influence of natural and anthropic environmental variables on the structure and spatial distribution along longitudinal gradient of macroinvertebrate communities in southern Brazilian streams

    PubMed Central

    Batalla Salvarrey, Andrea Vanessa; Kotzian, Carla Bender; Spies, Márcia Regina; Braun, Bruna

    2014-01-01

    Abstract Southern Brazilian rivers and streams have been intensively affected by human activities, especially agriculture and the release of untreated domestic sewage. However, data about the aquatic macroinvertebrates in these streams are scarce and limited to only certain groups. In addition, studies focusing on the structure and spatial distribution of these communities are lacking. This study analyzed the effects of natural and anthropic variables on the community structure of macroinvertebrates along a longitudinal gradient in three microbasins located in a region of landscape transition in the state of Rio Grande do Sul, Brazil. Sampling was conducted in the Vacacaí-Mirim River (August 2008) and in the Ibicuí-Mirim and Tororaipí rivers (August 2009) following an environmental gradient including 1 st , 2 nd , 3 rd , and 4 th order segments. Local natural factors that were analyzed include water temperature, pH, electrical conductivity, dissolved oxygen, substrate granulometry, and the presence of aquatic vegetation. Anthropic variables that were analyzed include including bank erosion, land use, urbanization, riparian deforestation, and fine sediments input. A total of 42 families and 129 taxa were found, with predominance of environmentally tolerant taxa. Geological context (landscape transition and large hydrographic basins) tended to influence natural environmental factors along the rivers’ longitudinal gradients. However, changes in anthropic variables were not affected by these geological differences and therefore did not correlate with patterns of spatial distribution in macroinvertebrate communities. Only 1 st order stream segments showed a community composition with high richness of taxa intolerant to anthropic disturbance. Richness as a whole tended to be higher in 3 rd to 4 th order set of segments, but this trend was a result of local anthropic environmental disturbances. Future inventories conducted in similar landscape transition regions of Brazil, for conservation purposes, must consider stream segments of different orders, microbasins, and major basins in order to obtain data that faithfully reflect the regional diversity. Additionally, it is necessary to consider environmental gradients of land use and anthropic impacts in order to suggest appropriate strategies for conserving the environmental integrity of streams. PMID:25373160

  15. Strength gradient enhances fatigue resistance of steels

    NASA Astrophysics Data System (ADS)

    Ma, Zhiwei; Liu, Jiabin; Wang, Gang; Wang, Hongtao; Wei, Yujie; Gao, Huajian

    2016-02-01

    Steels are heavily used in infrastructure and the transportation industry, and enhancing their fatigue resistance is a major challenge in materials engineering. In this study, by introducing a gradient microstructure into 304 austenitic steel, which is one of the most widely used types of stainless steel, we show that a strength gradient substantially enhances the fatigue life of the material. Pre-notched samples with negative strength gradients in front of the notch’s tip endure many more fatigue cycles than do samples with positive strength gradients during the crack initiation stage, and samples with either type of gradient perform better than do gradient-free samples with the same average yield strength. However, as a crack grows, samples with positive strength gradients exhibit better resistance to fatigue crack propagation than do samples with negative gradients or no gradient. This study demonstrates a simple and promising strategy for using gradient structures to enhance the fatigue resistance of materials and complements related studies of strength and ductility.

  16. Strength gradient enhances fatigue resistance of steels

    PubMed Central

    Ma, Zhiwei; Liu, Jiabin; Wang, Gang; Wang, Hongtao; Wei, Yujie; Gao, Huajian

    2016-01-01

    Steels are heavily used in infrastructure and the transportation industry, and enhancing their fatigue resistance is a major challenge in materials engineering. In this study, by introducing a gradient microstructure into 304 austenitic steel, which is one of the most widely used types of stainless steel, we show that a strength gradient substantially enhances the fatigue life of the material. Pre-notched samples with negative strength gradients in front of the notch’s tip endure many more fatigue cycles than do samples with positive strength gradients during the crack initiation stage, and samples with either type of gradient perform better than do gradient-free samples with the same average yield strength. However, as a crack grows, samples with positive strength gradients exhibit better resistance to fatigue crack propagation than do samples with negative gradients or no gradient. This study demonstrates a simple and promising strategy for using gradient structures to enhance the fatigue resistance of materials and complements related studies of strength and ductility. PMID:26907708

  17. Announcing Workshop on High Gradient RF

    Science.gov Websites

    Cavities at Argonne National Laboratory Workshop on High Gradient RF October 7-9, 2003 Agenda Accommodation Argonne Guest House SLAC Workshop August 2000 Attendees ANL Map High energy physics and other the gradient limits of these devices. Although the limits on high fields in rf cavities have been

  18. A study of self organized criticality in ion temperature gradient mode driven gyrokinetic turbulence

    NASA Astrophysics Data System (ADS)

    Mavridis, M.; Isliker, H.; Vlahos, L.; Görler, T.; Jenko, F.; Told, D.

    2014-10-01

    An investigation on the characteristics of self organized criticality (Soc) in ITG mode driven turbulence is made, with the use of various statistical tools (histograms, power spectra, Hurst exponents estimated with the rescaled range analysis, and the structure function method). For this purpose, local non-linear gyrokinetic simulations of the cyclone base case scenario are performed with the GENE software package. Although most authors concentrate on global simulations, which seem to be a better choice for such an investigation, we use local simulations in an attempt to study the locally underlying mechanisms of Soc. We also study the structural properties of radially extended structures, with several tools (fractal dimension estimate, cluster analysis, and two dimensional autocorrelation function), in order to explore whether they can be characterized as avalanches. We find that, for large enough driving temperature gradients, the local simulations exhibit most of the features of Soc, with the exception of the probability distribution of observables, which show a tail, yet they are not of power-law form. The radial structures have the same radial extent at all temperature gradients examined; radial motion (transport) though appears only at large temperature gradients, in which case the radial structures can be interpreted as avalanches.

  19. A study of self organized criticality in ion temperature gradient mode driven gyrokinetic turbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mavridis, M.; Isliker, H.; Vlahos, L.

    2014-10-15

    An investigation on the characteristics of self organized criticality (Soc) in ITG mode driven turbulence is made, with the use of various statistical tools (histograms, power spectra, Hurst exponents estimated with the rescaled range analysis, and the structure function method). For this purpose, local non-linear gyrokinetic simulations of the cyclone base case scenario are performed with the GENE software package. Although most authors concentrate on global simulations, which seem to be a better choice for such an investigation, we use local simulations in an attempt to study the locally underlying mechanisms of Soc. We also study the structural properties ofmore » radially extended structures, with several tools (fractal dimension estimate, cluster analysis, and two dimensional autocorrelation function), in order to explore whether they can be characterized as avalanches. We find that, for large enough driving temperature gradients, the local simulations exhibit most of the features of Soc, with the exception of the probability distribution of observables, which show a tail, yet they are not of power-law form. The radial structures have the same radial extent at all temperature gradients examined; radial motion (transport) though appears only at large temperature gradients, in which case the radial structures can be interpreted as avalanches.« less

  20. Structure and State of Stress of the Chilean Subduction Zone from Terrestrial and Satellite-Derived Gravity and Gravity Gradient Data

    NASA Astrophysics Data System (ADS)

    Gutknecht, B. D.; Götze, H.-J.; Jahr, T.; Jentzsch, G.; Mahatsente, R.; Zeumann, St.

    2014-11-01

    It is well known that the quality of gravity modelling of the Earth's lithosphere is heavily dependent on the limited number of available terrestrial gravity data. More recently, however, interest has grown within the geoscientific community to utilise the homogeneously measured satellite gravity and gravity gradient data for lithospheric scale modelling. Here, we present an interdisciplinary approach to determine the state of stress and rate of deformation in the Central Andean subduction system. We employed gravity data from terrestrial, satellite-based and combined sources using multiple methods to constrain stress, strain and gravitational potential energy (GPE). Well-constrained 3D density models, which were partly optimised using the combined regional gravity model IMOSAGA01C (Hosse et al. in Surv Geophys, 2014, this issue), were used as bases for the computation of stress anomalies on the top of the subducting oceanic Nazca plate and GPE relative to the base of the lithosphere. The geometries and physical parameters of the 3D density models were used for the computation of stresses and uplift rates in the dynamic modelling. The stress distributions, as derived from the static and dynamic modelling, reveal distinct positive anomalies of up to 80 MPa along the coastal Jurassic batholith belt. The anomalies correlate well with major seismicity in the shallow parts of the subduction system. Moreover, the pattern of stress distributions in the Andean convergent zone varies both along the north-south and west-east directions, suggesting that the continental fore-arc is highly segmented. Estimates of GPE show that the high Central Andes might be in a state of horizontal deviatoric tension. Models of gravity gradients from the Gravity field and steady-state Ocean Circulation Explorer (GOCE) satellite mission were used to compute Bouguer-like gradient anomalies at 8 km above sea level. The analysis suggests that data from GOCE add significant value to the interpretation of lithospheric structures, given that the appropriate topographic correction is applied.

  1. Structural and metabolic transitions of C4 leaf development and differentiation defined by microscopy and quantitative proteomics in maize.

    PubMed

    Majeran, Wojciech; Friso, Giulia; Ponnala, Lalit; Connolly, Brian; Huang, Mingshu; Reidel, Edwin; Zhang, Cankui; Asakura, Yukari; Bhuiyan, Nazmul H; Sun, Qi; Turgeon, Robert; van Wijk, Klaas J

    2010-11-01

    C(4) grasses, such as maize (Zea mays), have high photosynthetic efficiency through combined biochemical and structural adaptations. C(4) photosynthesis is established along the developmental axis of the leaf blade, leading from an undifferentiated leaf base just above the ligule into highly specialized mesophyll cells (MCs) and bundle sheath cells (BSCs) at the tip. To resolve the kinetics of maize leaf development and C(4) differentiation and to obtain a systems-level understanding of maize leaf formation, the accumulation profiles of proteomes of the leaf and the isolated BSCs with their vascular bundle along the developmental gradient were determined using large-scale mass spectrometry. This was complemented by extensive qualitative and quantitative microscopy analysis of structural features (e.g., Kranz anatomy, plasmodesmata, cell wall, and organelles). More than 4300 proteins were identified and functionally annotated. Developmental protein accumulation profiles and hierarchical cluster analysis then determined the kinetics of organelle biogenesis, formation of cellular structures, metabolism, and coexpression patterns. Two main expression clusters were observed, each divided in subclusters, suggesting that a limited number of developmental regulatory networks organize concerted protein accumulation along the leaf gradient. The coexpression with BSC and MC markers provided strong candidates for further analysis of C(4) specialization, in particular transporters and biogenesis factors. Based on the integrated information, we describe five developmental transitions that provide a conceptual and practical template for further analysis. An online protein expression viewer is provided through the Plant Proteome Database.

  2. Digital data from the Great Sand Dunes airborne gravity gradient survey, south-central Colorado

    USGS Publications Warehouse

    Drenth, B.J.; Abraham, J.D.; Grauch, V.J.S.; Labson, V.F.; Hodges, G.

    2013-01-01

    This report contains digital data and supporting explanatory files describing data types, data formats, and survey procedures for a high-resolution airborne gravity gradient (AGG) survey at Great Sand Dunes National Park, Alamosa and Saguache Counties, south-central Colorado. In the San Luis Valley, the Great Sand Dunes survey covers a large part of Great Sand Dunes National Park and Preserve. The data described were collected from a high-resolution AGG survey flown in February 2012, by Fugro Airborne Surveys Corp., on contract to the U.S. Geological Survey. Scientific objectives of the AGG survey are to investigate the subsurface structural framework that may influence groundwater hydrology and seismic hazards, and to investigate AGG methods and resolution using different flight specifications. Funding was provided by an airborne geophysics training program of the U.S. Department of Defense's Task Force for Business & Stability Operations.

  3. Frequency and temperature dependence of electrical breakdown at 21, 30, and 39 GHz.

    PubMed

    Braun, H H; Döbert, S; Wilson, I; Wuensch, W

    2003-06-06

    A TeV-range e(+)e(-) linear collider has emerged as one of the most promising candidates to extend the high energy frontier of experimental elementary particle physics. A high accelerating gradient for such a collider is desirable to limit its overall length. Accelerating gradient is mainly limited by electrical breakdown, and it has been generally assumed that this limit increases with increasing frequency for normal-conducting accelerating structures. Since the choice of frequency has a profound influence on the design of a linear collider, the frequency dependence of breakdown has been measured using six exactly scaled single-cell cavities at 21, 30, and 39 GHz. The influence of temperature on breakdown behavior was also investigated. The maximum obtainable surface fields were found to be in the range of 300 to 400 MV/m for copper, with no significant dependence on either frequency or temperature.

  4. Frequency and Temperature Dependence of Electrical Breakdown at 21, 30, and 39GHz

    NASA Astrophysics Data System (ADS)

    Braun, H. H.; Döbert, S.; Wilson, I.; Wuensch, W.

    2003-06-01

    A TeV-range e+e- linear collider has emerged as one of the most promising candidates to extend the high energy frontier of experimental elementary particle physics. A high accelerating gradient for such a collider is desirable to limit its overall length. Accelerating gradient is mainly limited by electrical breakdown, and it has been generally assumed that this limit increases with increasing frequency for normal-conducting accelerating structures. Since the choice of frequency has a profound influence on the design of a linear collider, the frequency dependence of breakdown has been measured using six exactly scaled single-cell cavities at 21, 30, and 39GHz. The influence of temperature on breakdown behavior was also investigated. The maximum obtainable surface fields were found to be in the range of 300 to 400 MV/m for copper, with no significant dependence on either frequency or temperature.

  5. "V-junction": a novel structure for high-speed generation of bespoke droplet flows.

    PubMed

    Ding, Yun; Casadevall i Solvas, Xavier; deMello, Andrew

    2015-01-21

    We present the use of microfluidic "V-junctions" as a droplet generation strategy that incorporates enhanced performance characteristics when compared to more traditional "T-junction" formats. This includes the ability to generate target-sized droplets from the very first one, efficient switching between multiple input samples, the production of a wide range of droplet sizes (and size gradients) and the facile generation of droplets with residence time gradients. Additionally, the use of V-junction droplet generators enables the suspension and subsequent resumption of droplet flows at times defined by the user. The high degree of operational flexibility allows a wide range of droplet sizes, payloads, spacings and generation frequencies to be obtained, which in turn provides for an enhanced design space for droplet-based experimentation. We show that the V-junction retains the simplicity of operation associated with T-junction formats, whilst offering functionalities normally associated with droplet-on-demand technologies.

  6. Altitude acts as an environmental filter on phylogenetic composition, traits and diversity in bee communities.

    PubMed

    Hoiss, Bernhard; Krauss, Jochen; Potts, Simon G; Roberts, Stuart; Steffan-Dewenter, Ingolf

    2012-11-07

    Knowledge about the phylogeny and ecology of communities along environmental gradients helps to disentangle the role of competition-driven processes and environmental filtering for community assembly. In this study, we evaluated patterns in species richness, phylogenetic structure and life-history traits of bee communities along altitudinal gradients in the Alps, Germany. We found a linear decline in species richness and abundance but increasing phylogenetic clustering in communities with increasing altitude. The proportion of social- and ground-nesting species, as well as mean body size and altitudinal range of bee communities, increased with increasing altitude, whereas the mean geographical distribution decreased. Our results suggest that community assembly at high altitudes is dominated by environmental filtering effects, whereas the relative importance of competition increases at low altitudes. We conclude that inherent phylogenetic and ecological species attributes at high altitudes pose a threat for less competitive alpine specialists with ongoing climate change.

  7. Altitude acts as an environmental filter on phylogenetic composition, traits and diversity in bee communities

    PubMed Central

    Hoiss, Bernhard; Krauss, Jochen; Potts, Simon G.; Roberts, Stuart; Steffan-Dewenter, Ingolf

    2012-01-01

    Knowledge about the phylogeny and ecology of communities along environmental gradients helps to disentangle the role of competition-driven processes and environmental filtering for community assembly. In this study, we evaluated patterns in species richness, phylogenetic structure and life-history traits of bee communities along altitudinal gradients in the Alps, Germany. We found a linear decline in species richness and abundance but increasing phylogenetic clustering in communities with increasing altitude. The proportion of social- and ground-nesting species, as well as mean body size and altitudinal range of bee communities, increased with increasing altitude, whereas the mean geographical distribution decreased. Our results suggest that community assembly at high altitudes is dominated by environmental filtering effects, whereas the relative importance of competition increases at low altitudes. We conclude that inherent phylogenetic and ecological species attributes at high altitudes pose a threat for less competitive alpine specialists with ongoing climate change. PMID:22933374

  8. Tripolar vortex formation in dense quantum plasma with ion-temperature-gradients

    NASA Astrophysics Data System (ADS)

    Qamar, Anisa; Ata-ur-Rahman, Mirza, Arshad M.

    2012-05-01

    We have derived system of nonlinear equations governing the dynamics of low-frequency electrostatic toroidal ion-temperature-gradient mode for dense quantum magnetoplasma. For some specific profiles of the equilibrium density, temperature, and ion velocity gradients, the nonlinear equations admit a stationary solution in the form of a tripolar vortex. These results are relevant to understand nonlinear structure formation in dense quantum plasmas in the presence of equilibrium ion-temperature and density gradients.

  9. Automated Proton Track Identification in MicroBooNE Using Gradient Boosted Decision Trees

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woodruff, Katherine

    MicroBooNE is a liquid argon time projection chamber (LArTPC) neutrino experiment that is currently running in the Booster Neutrino Beam at Fermilab. LArTPC technology allows for high-resolution, three-dimensional representations of neutrino interactions. A wide variety of software tools for automated reconstruction and selection of particle tracks in LArTPCs are actively being developed. Short, isolated proton tracks, the signal for low- momentum-transfer neutral current (NC) elastic events, are easily hidden in a large cosmic background. Detecting these low-energy tracks will allow us to probe interesting regions of the proton's spin structure. An effective method for selecting NC elastic events is tomore » combine a highly efficient track reconstruction algorithm to find all candidate tracks with highly accurate particle identification using a machine learning algorithm. We present our work on particle track classification using gradient tree boosting software (XGBoost) and the performance on simulated neutrino data.« less

  10. Unravelling Galaxy Components

    NASA Astrophysics Data System (ADS)

    Kennedy, Rebecca

    2017-06-01

    This thesis aims to understand more about the developmental histories of galaxies and their internal components by studying the wavelength dependence of their spatial structure. I use a large sample of low-redshift galaxies with optical–near-IR imaging from the GAMA survey, which have been fitted with Sérsic and Sérsic + exponential functions in nine wavebands simultaneously, using software developed by the MegaMorph project. The first section of this thesis examines how the sizes and radial profiles of galaxies vary with wavelength. To quantify the wavelength dependence of effective radius I use the ratio, R, of measurements in two restframe bands. The dependence of Sérsic index on wavelength, N, is computed correspondingly. I show that accounting for different redshift and luminosity selections partly reconciles variations between several recent studies. Dividing galaxies by visual morphology confirms the behaviour inferred using morphological proxies, although our quantitative measurements allow me to study larger and fainter samples. I then demonstrate that varying dust opacity and disc inclination can account for features of the joint distribution of R and N for late-type galaxies. However, dust does not appear to explain the highest values of R and N. The bulge-disc nature of galaxies must also contribute to the wavelength-dependence of their structure. The second section of this thesis studies radial colour gradients across the galaxy population. I use the multi-wavelength information provided by MegaMorph analysis of galaxy light profiles to calculate intrinsic colour gradients, and divide into six subsamples split by overall Sérsic index (n) and galaxy colour. I find a bimodality in the colour gradients of high- and low-n galaxies in all wavebands which varies with overall galaxy luminosity. Global trends in colour gradients therefore result from combining the contrasting behaviour of a number of different galaxy populations. The ubiquity of strong negative colour gradients supports the picture of inside-out growth through gas accretion for blue, low-n galaxies, and through dry minor mergers for red, high-n galaxies. An exception is the blue high-n population which has properties indicative of dissipative major mergers. In the third section of this thesis I apply bulge-disc decompositions to my sample of galaxies, in order to discover the structural origin of the wavelength dependences found in the previous two chapters. I find that most galaxies with a substantial disc, even those with no discernible bulge, display a high value of N. The increase in Sérsic index to longer wavelengths is therefore intrinsic to discs, apparently resulting from radial variations in stellar population and/or dust reddening. Similarly, low values of R (< 1) are found to be ubiquitous, implying an element of universality in galaxy colour gradients. I also study how bulge and disc colour distributions vary with galaxy type. I find that, rather than all bulges being red and all discs being blue in absolute terms, both components become redder for galaxies with redder total colours. I even observe that bulges in bluer galaxies are typically bluer than discs in red galaxies, and that bulges and discs are closer in colour for fainter galaxies. Trends in total colour are therefore not solely due to the colour or flux dominance of the bulge or disc.

  11. How mesoscopic staircases condense to macroscopic barriers in confined plasma turbulence

    NASA Astrophysics Data System (ADS)

    Ashourvan, Arash; Diamond, P. H.

    2016-11-01

    This Rapid Communication sets forth the mechanism by which mesoscale staircase structures condense to form macroscopic states of enhanced confinement. Density, vorticity, and turbulent potential enstrophy are the variables for this model. Formation of the staircase structures is due to inhomogeneous mixing of (generalized) potential vorticity (PV). Such mixing results in the local sharpening of density and vorticity gradients. When PV gradients steepen, the density staircase structure develops into a lattice of mesoscale "jumps" and "steps," which are, respectively, regions of local gradient steepening and flattening. The jumps then merge and migrate in radius, leading to the emergence of a new macroscale profile structure, so indicating that profile self-organization is a global process, which may be described by a local, but nonlinear model. This work predicts and demonstrates how mesoscale condensation of staircases leads to global states of enhanced confinement.

  12. Untangling human development and natural gradients: implications of underlying correlation structure for linking landscapes and riverine ecosystems

    Treesearch

    Yasmin Lucero; E. Ashley Steel; Kelly M. Burnett; Kelly Christiansen

    2011-01-01

    Increasingly, ecologists seek to identify and quantify relationships between landscape gradients and aquatic ecosystems. Considerable statistical challenges emerge in this effort, some of which are attributable to multicollinearity between human development and landscape gradients. In this paper, we measure the covariation between human development—such as agriculture...

  13. Performance optimization of dye-sensitized solar cells by multilayer gradient scattering architecture of TiO2 microspheres.

    PubMed

    Li, Mingyue; Li, Meiya; Liu, Xiaolian; Bai, Lihua; Luoshan, Mengdai; Lei, Wen; Wang, Zhen; Zhu, Yongdan; Zhao, Xingzhong

    2017-01-20

    TiO 2 microspheres (TMSs) with unique hierarchical structure and unusual high specific surface area are synthesized and incorporated into a photoanode in various TMS multilayer gradient architectures to form novel photoanodes and dye-sensitized solar cells (DSSCs). Significant influences of these architectures on the photoelectric properties of DSSCs are obtained. The DSSC with the optimal TMS gradient-ascent architecture of M036 has the largest amounts of dye absorption, strongest light absorption, longest electron lifetime and lowest electron recombination, and thus exhibits the maximum short circuit current density (J sc ) of 16.49 mA cm -2 and photoelectric conversion efficiency (η) of 7.01%, notably higher than those of conventional DSSCs by 21% and 22%, respectively. These notable improvements in the properties of DSSCs can be attributed to the TMS gradient-ascent architecture of M036 which can most effectively increase dye absorption and localize incident light within the photoanode by the light scattering of TMSs, and thus utilize the incident light thoroughly. This study provides an optimized and universal configuration for the scattering microspheres incorporated in the hybrid photoanode, which can significantly improve the performance of DSSCs.

  14. [The effect of technological parameters of wide-band laser cladding on microstructure and sinterability of gradient bioceramics composite coating].

    PubMed

    Liu, Qibin; Zhu, Weidong; Zou, Longjiang; Zheng, Min; Dong, Chuang

    2005-12-01

    The gradient bioceramics coating was prepared on the surface of Ti-6Al-4V alloy by using wide-band laser cladding. And the effect of technological parameters of wide-band laser cladding on microstructure and sinterability of gradient bioceramics composite coating was studied. The experimental results indicated that in the circumstances of size of laser doze D and scanning velocity V being fixed, with the increasement of power P, the density of microstructure in bioceramics coating gradually degraded; with the increasement of power P, the pore rate of bioceramics gradually became high. While P = 2.3 KW, the bioceramics coating with dense structure and lower pore rate (5.11%) was obtained; while P = 2.9 KW, the bioceramics coating with disappointing density was formed and its pore rate was up to 21.32%. The microhardness of bioceramics coating demonstrated that while P = 2.3 KW, the largest value of microhardness of bioceramics coating was 1100 HV. Under the condition of our research work, the optimum technological parameters for preparing gradient bioceramics coating by wide-band laser cladding are: P = 2.3 KW, V = 145 mm/min, D = 16 mm x 2 mm.

  15. Method to create gradient index in a polymer

    DOEpatents

    Dirk, Shawn M; Johnson, Ross Stefan; Boye, Robert; Descour, Michael R; Sweatt, William C; Wheeler, David R; Kaehr, Bryan James

    2014-10-14

    Novel photo-writable and thermally switchable polymeric materials exhibit a refractive index change of .DELTA.n.gtoreq.1.0 when exposed to UV light or heat. For example, lithography can be used to convert a non-conjugated precursor polymer to a conjugated polymer having a higher index-of-refraction. Further, two-photon lithography can be used to pattern high-spatial frequency structures.

  16. Highly transparent, stable, and superhydrophobic coatings based on gradient structure design and fast regeneration from physical damage

    NASA Astrophysics Data System (ADS)

    Chen, Zao; Liu, Xiaojiang; Wang, Yan; Li, Jun; Guan, Zisheng

    2015-12-01

    Optical transparency, mechanical flexibility, and fast regeneration are important factors to expand the application of superhydrophobic surfaces. Herein, we fabricated highly transparent, stable, and superhydrophobic coatings through a novel gradient structure design by versatile dip-coating of silica colloid particles (SCPs) and diethoxydimethysiliane cross-linked silica nanoparticles (DDS-SNPs) on polyethylene terephthalate (PET) film and glass, followed by the modification of octadecyltrichlorosiliane (OTCS). When the DDS concentration reached 5 wt%, the modified SCPs/DDS-SNPs coating exhibited a water contact angle (WCA) of 153° and a sliding angle (SA) <5°. Besides, the average transmittance of this superhydrophobic coating on PET film and glass was increased by 2.7% and 1% in the visible wavelength, respectively. This superhydrophobic coating also showed good robustness and stability against water dropping impact, ultrasonic damage, and acid solution. Moreover, the superhydrophobic PET film after physical damage can quickly regain the superhydrophobicity by one-step spray regenerative solution of dodecyltrichlorosilane (DTCS) modified silica nanoparticles at room temperature. The demonstrated method for the preparation and regeneration of superhydrophobic coating is available for different substrates and large-scale production at room temperature.

  17. Microstructure Development in Electron Beam-Melted Inconel 718 and Associated Tensile Properties

    DOE PAGES

    Kirka, M. M.; Unocic, K. A.; Raghavan, N.; ...

    2016-02-12

    During the electron beam melting (EBM) process, builds occur at temperatures in excess of 800°C for nickel-base superalloys such as Inconel 718. When coupled with the temporal differences between the start and end of a build, a top-to-bottom microstructure gradient forms. Characterized in this study is the microstructure gradient and associated tensile property gradient that are common to all EBM Inconel 718 builds. From the characteristic microstructure elements observed in EBM Inconel 718 material, the microstructure gradient can be classified into three distinct regions. Region 1 (top of a build) and is comprised of a cored dendritic structure that includesmore » carbides and Laves phase within the interdendritic regions. Region 2 is an intermediate transition zone characterized by a diffuse dendritic structure, dissolution of the Laves phase, and precipitation of δ needle networks within the interdendritic regions. The bulk structure (Region 3) is comprised of a columnar grain structure lacking dendritic characteristics with δ networks having precipitated within the grain interiors. Mechanically at both 20°C and 650° C, the yield strength, ultimate tensile strength, and elongation at failure exhibit the general trend of increasing with increasing build height.« less

  18. Finite element analysis of gradient z-coil induced eddy currents in a permanent MRI magnet.

    PubMed

    Li, Xia; Xia, Ling; Chen, Wufan; Liu, Feng; Crozier, Stuart; Xie, Dexin

    2011-01-01

    In permanent magnetic resonance imaging (MRI) systems, pulsed gradient fields induce strong eddy currents in the conducting structures of the magnet body. The gradient field for image encoding is perturbed by these eddy currents leading to MR image distortions. This paper presents a comprehensive finite element (FE) analysis of the eddy current generation in the magnet conductors. In the proposed FE model, the hysteretic characteristics of ferromagnetic materials are considered and a scalar Preisach hysteresis model is employed. The developed FE model was applied to study gradient z-coil induced eddy currents in a 0.5 T permanent MRI device. The simulation results demonstrate that the approach could be effectively used to investigate eddy current problems involving ferromagnetic materials. With the knowledge gained from this eddy current model, our next step is to design a passive magnet structure and active gradient coils to reduce the eddy current effects. Copyright © 2010 Elsevier Inc. All rights reserved.

  19. Response of bird species densities to habitat structure and fire history along a Midwestern open-forest gradient

    USGS Publications Warehouse

    Grundel, R.; Pavlovic, N.B.

    2007-01-01

    Oak savannas were historically common but are currently rare in the Midwestern United States. We assessed possible associations of bird species with savannas and other threatened habitats in the region by relating fire frequency and vegetation characteristics to seasonal densities of 72 bird species distributed across an open-forest gradient in northwestern Indiana. About one-third of the species did not exhibit statistically significant relationships with any combination of seven vegetation characteristics that included vegetation cover in five vertical strata, dead tree density, and tree height. For 40% of the remaining species, models best predicting species density incorporated tree density. Therefore, management based solely on manipulating tree density may not be an adequate strategy for managing bird populations along this open-forest gradient. Few species exhibited sharp peaks in predicted density under habitat conditions expected in restored savannas, suggesting that few savanna specialists occur among Midwestern bird species. When fire frequency, measured over fifteen years, was added to vegetation characteristics as a predictor of species density, it was incorporated into models for about one-quarter of species, suggesting that fire may modify habitat characteristics in ways that are important for birds but not captured by the structural habitat variables measured. Among those species, similar numbers had peaks in predicted density at low, intermediate, or high fire frequency. For species suggested by previous studies to have a preference for oak savannas along the open-forest gradient, estimated density was maximized at an average fire return interval of about one fire every three years. ?? The Cooper Ornithological Society 2007.

  20. Effects of tidal inundation on benthic macrofauna associated with the eelgrass Zostera muelleri

    NASA Astrophysics Data System (ADS)

    Nicastro, Andrea; Bishop, Melanie J.

    2013-01-01

    Processes, such as sea level rise, that alter tidal inundation regimes have the potential to modify the structure of seagrasses and their dense and diverse faunal communities. This study tested the hypothesis that seagrass-dwelling invertebrate communities would vary across a tidal inundation gradient as a result of direct effects of tidal inundation and indirect effects, arising from changes in seagrass morphology across this gradient. First, we conducted mensurative sampling across tidal inundation gradients to assess how above- and below-ground seagrass biomass, and epi- and infaunal invertebrate communities co-varied with depth. Second, we ran a manipulative field experiment, utilising artificial seagrass rhizomes of varying morphologies, to separate out direct effects of tidal inundation on infaunal communities from indirect effects arising from changes in seagrass root morphology. Mensurative sampling revealed that the abundance and taxon richness of seagrass epi- and infauna, and the above- and below-ground biomass of seagrass each increased with depth across a tidal elevation gradient extending from the high intertidal to the shallow subtidal. The manipulative experiment revealed that the relative importance of direct and indirect effects of tidal inundation in determining the distribution and abundance of infauna were taxon-specific. In general, however, the facilitative effects of rhizome structure were more evident at the intertidal compared to the subtidal elevation. Our results indicate that changes to tidal inundation regime will affect seagrass-dwelling macroinvertebrates through a combination of direct and indirect effects. Therefore, future changes in tidal inundation should be taken into account in developing conservation plans for protecting seagrasses and the biodiversity they sustain.

  1. Characterization of Tissue Structure at Varying Length Scales Using Temporal Diffusion Spectroscopy

    PubMed Central

    Gore, John C.; Xu, Junzhong; Colvin, Daniel C.; Yankeelov, Thomas E.; Parsons, Edward C.; Does, Mark D.

    2011-01-01

    The concepts, theoretical behavior and experimental applications of temporal diffusion spectroscopy are reviewed and illustrated. Temporal diffusion spectra are obtained by using oscillating gradient waveforms in diffusion-weighted measurements, and represent the manner in which various spectral components of molecular velocity correlations vary in different geometrical structures that restrict or hinder free movements. Measurements made at different gradient frequencies reveal information on the scale of restrictions or hindrances to free diffusion, and the shape of a spectrum reveals the relative contributions of spatial restrictions at different distance scales. Such spectra differ from other so-called diffusion spectra which depict spatial frequencies and are defined at a fixed diffusion time. Experimentally, oscillating gradients at moderate frequency are more feasible for exploring restrictions at very short distances, which in tissues correspond to structures smaller than cells. We describe the underlying concepts of temporal diffusion spectra and provide analytical expressions for the behavior of the diffusion coefficient as a function of gradient frequency in simple geometries with different dimensions. Diffusion in more complex model media that mimic tissues has been simulated using numerical methods. Experimental measurements of diffusion spectra have been obtained in suspensions of particles and cells, as well as in vivo in intact animals. An observation of particular interest is the increased contrast and heterogeneity observed in tumors using oscillating gradients at moderate frequency compared to conventional pulse gradient methods, and the potential for detecting changes in tumors early in their response to treatment. Computer simulations suggest that diffusion spectral measurements may be sensitive to intracellular structures such as nuclear size, and that changes in tissue diffusion properties may be measured before there are changes in cell density. PMID:20677208

  2. Numerical simulation of surface wave dynamics of liquid metal MHD flow on an inclined plane in a magnetic field with spatial variation

    NASA Astrophysics Data System (ADS)

    Gao, Donghong

    Interest in utilizing liquid metal film flows to protect the plasma-facing solid structures places increasing demand on understanding the magnetohydrodynamics (MHD) of such flows in a magnetic field with spatial variation. The field gradient effect is studied by a two-dimensional (2D) model in Cartesian coordinates. The thin film flow down an inclined plane in spanwise (z-direction) magnetic field with constant streamwise gradient and applied current is analyzed. The solution to the equilibrium flow shows forcefully the M-shaped velocity profile and dependence of side layer thickness on Ha-1/2 whose definition is based on field gradient. The major part of the dissertation is the numerical simulation of free surface film flows and understanding the results. The VOF method is employed to track the free surface, and the CSF model is combined with VOF method to account for surface dynamics condition. The code is validated with respect to Navier-Stokes solver and MHD implementation by computations of ordinary wavy films, MHD flat films and a colleague proposed film flow. The comparisons are performed against respective experimental, theoretical or numerical solutions, and the results are well matched with them. It is found for the ordinary water falling films, at low frequency and high flowrate, the small forcing disturbance at inlet flowrate develops into big roll waves preceded by small capillary bow waves; at high frequency and low Re, it develops into nearly sinusoidal waves with small amplitude and without fore-running capillary waves. The MHD surface instability is investigated for two kinds of film flows in constant streamwise field gradient: one with spatial disturbance and without surface tension, the other with inlet forcing disturbance and with surface tension. At no surface tension condition, the finite amplitude disturbance is rapidly amplified and degrades to irregular shape. With surface tension to maintain smooth interface, finite amplitude regular waves can be established only on near inlet region and they decay to nearly zero amplitude ripple on the far downstream region. At both film conditions, the wave traveling velocity is reduced by the MHD drag from field gradient. The code is also used to explore the exit-pipe and first wall conceptual designs for fusion reactor being proposed in the APEX program. It is seen that the field gradient restrains and lifts up the flow to the whole channel in the exit-pipe high field gradient condition, but an applied streamwise current can propel the flow through the gradient region. The Sn jet flow with high inertia is able to overcome the inverted gravity and MHD induction to form the desired protection liquid layer on top of the first wall.

  3. Improvement of determinating seafloor benchmark position with large-scale horizontal heterogeneity in the ocean area

    NASA Astrophysics Data System (ADS)

    Uemura, Y.; Tadokoro, K.; Matsuhiro, K.; Ikuta, R.

    2015-12-01

    The most critical issue in reducing the accuracy of seafloor positioning system, GPS/Acoustic technique, is large-scale thermal gradient of sound-speed structure [Muto et al., 2008] due to the ocean current. For example, Kuroshio Current, near our observation station, forms this structure. To improve the accuracy of seafloor benchmark position (SBP), we need to directly measure the structure frequently, or estimate it from travel time residual. The former, we repeatedly measure the sound-speed at Kuroshio axis using Underway CTD and try to apply analysis method of seafloor positioning [Yasuda et al., 2015 AGU meeting]. The latter, however, we cannot estimate the structure using travel time residual until now. Accordingly, in this study, we focus on azimuthal dependence of Estimated Mean Sound-Speed (EMSS). EMSS is defined as distance between vessel position and estimated SBP divided by travel time. If thermal gradient exists and SBP is true, EMSS should have azimuthal dependence with the assumption of horizontal layered sound-speed structure in our previous analysis method. We use the data at KMC located on the central part of Nankai Trough, Japan on Jan. 28, 2015, because on that day KMC was on the north edge of Kuroshio, where we expect that thermal gradient exists. In our analysis method, the hyper parameter (μ value) weights travel time residual and rate of change of sound speed structure. However, EMSS derived from μ value determined by Ikuta et al. [2008] does not have azimuthal dependence, that is, we cannot estimate thermal gradient. Thus, we expect SBP has a large bias. Therefore, in this study, we use another μ value and examine whether EMSS has azimuthal dependence or not. With the μ value of this study, which is 1 order of magnitude smaller than the previous value, EMSS has azimuthal dependence that is consistent with observation day's thermal gradient. This result shows that we can estimate the thermal gradient adequately. This SBP displaces 25.6 cm to the north and 11.8 cm to the east compared to previous SBP. This displacement reduces the bias of SBP and RMS of horizontal component in time series to 1/3. Therefore, determination of SBP is suitable when the thermal gradient exists on observation day and EMSS has azimuthal dependence for redetermination of μ value.

  4. Adaptation and diversity along an altitudinal gradient in Ethiopian barley (Hordeum vulgare L.) landraces revealed by molecular analysis

    PubMed Central

    2010-01-01

    Background Among the cereal crops, barley is the species with the greatest adaptability to a wide range of environments. To determine the level and structure of genetic diversity in barley (Hordeum vulgare L.) landraces from the central highlands of Ethiopia, we have examined the molecular variation at seven nuclear microsatellite loci. Results A total of 106 landrace populations were sampled in the two growing seasons (Meher and Belg; the long and short rainy seasons, respectively), across three districts (Ankober, Mojanawadera and Tarmaber), and within each district along an altitudinal gradient (from 1,798 to 3,324 m a.s.l). Overall, although significant, the divergence (e.g. FST) is very low between seasons and geographical districts, while it is high between different classes of altitude. Selection for adaptation to different altitudes appears to be the main factor that has determined the observed clinal variation, along with population-size effects. Conclusions Our data show that barley landraces from Ethiopia are constituted by highly variable local populations (farmer's fields) that have large within-population diversity. These landraces are also shown to be locally adapted, with the major driving force that has shaped their population structure being consistent with selection for adaptation along an altitudinal gradient. Overall, our study highlights the potential of such landraces as a source of useful alleles. Furthermore, these landraces also represent an ideal system to study the processes of adaptation and for the identification of genes and genomic regions that have adaptive roles in crop species. PMID:20565982

  5. Microbial Gene Abundance and Expression Patterns across a River to Ocean Salinity Gradient

    PubMed Central

    Fortunato, Caroline S.; Crump, Byron C.

    2015-01-01

    Microbial communities mediate the biogeochemical cycles that drive ecosystems, and it is important to understand how these communities are affected by changing environmental conditions, especially in complex coastal zones. As fresh and marine waters mix in estuaries and river plumes, the salinity, temperature, and nutrient gradients that are generated strongly influence bacterioplankton community structure, yet, a parallel change in functional diversity has not been described. Metagenomic and metatranscriptomic analyses were conducted on five water samples spanning the salinity gradient of the Columbia River coastal margin, including river, estuary, plume, and ocean, in August 2010. Samples were pre-filtered through 3 μm filters and collected on 0.2 μm filters, thus results were focused on changes among free-living microbial communities. Results from metagenomic 16S rRNA sequences showed taxonomically distinct bacterial communities in river, estuary, and coastal ocean. Despite the strong salinity gradient observed over sampling locations (0 to 33), the functional gene profiles in the metagenomes were very similar from river to ocean with an average similarity of 82%. The metatranscriptomes, however, had an average similarity of 31%. Although differences were few among the metagenomes, we observed a change from river to ocean in the abundance of genes encoding for catabolic pathways, osmoregulators, and metal transporters. Additionally, genes specifying both bacterial oxygenic and anoxygenic photosynthesis were abundant and expressed in the estuary and plume. Denitrification genes were found throughout the Columbia River coastal margin, and most highly expressed in the estuary. Across a river to ocean gradient, the free-living microbial community followed three different patterns of diversity: 1) the taxonomy of the community changed strongly with salinity, 2) metabolic potential was highly similar across samples, with few differences in functional gene abundance from river to ocean, and 3) gene expression was highly variable and generally was independent of changes in salinity. PMID:26536246

  6. Microbial Gene Abundance and Expression Patterns across a River to Ocean Salinity Gradient.

    PubMed

    Fortunato, Caroline S; Crump, Byron C

    2015-01-01

    Microbial communities mediate the biogeochemical cycles that drive ecosystems, and it is important to understand how these communities are affected by changing environmental conditions, especially in complex coastal zones. As fresh and marine waters mix in estuaries and river plumes, the salinity, temperature, and nutrient gradients that are generated strongly influence bacterioplankton community structure, yet, a parallel change in functional diversity has not been described. Metagenomic and metatranscriptomic analyses were conducted on five water samples spanning the salinity gradient of the Columbia River coastal margin, including river, estuary, plume, and ocean, in August 2010. Samples were pre-filtered through 3 μm filters and collected on 0.2 μm filters, thus results were focused on changes among free-living microbial communities. Results from metagenomic 16S rRNA sequences showed taxonomically distinct bacterial communities in river, estuary, and coastal ocean. Despite the strong salinity gradient observed over sampling locations (0 to 33), the functional gene profiles in the metagenomes were very similar from river to ocean with an average similarity of 82%. The metatranscriptomes, however, had an average similarity of 31%. Although differences were few among the metagenomes, we observed a change from river to ocean in the abundance of genes encoding for catabolic pathways, osmoregulators, and metal transporters. Additionally, genes specifying both bacterial oxygenic and anoxygenic photosynthesis were abundant and expressed in the estuary and plume. Denitrification genes were found throughout the Columbia River coastal margin, and most highly expressed in the estuary. Across a river to ocean gradient, the free-living microbial community followed three different patterns of diversity: 1) the taxonomy of the community changed strongly with salinity, 2) metabolic potential was highly similar across samples, with few differences in functional gene abundance from river to ocean, and 3) gene expression was highly variable and generally was independent of changes in salinity.

  7. Peripheral Nerve Stimulation Characteristics of an Asymmetric Head-Only Gradient Coil Compatible with a High-Channel-Count Receiver Array

    PubMed Central

    Lee, Seung-Kyun; Mathieu, Jean-Baptiste; Graziani, Dominic; Piel, Joseph; Budesheim, Eric; Fiveland, Eric; Hardy, Christopher J.; Tan, Ek Tsoon; Amm, Bruce; Foo, Thomas K.-F; Bernstein, Matt A.; Huston, John; Shu, Yunhong; Schenck, John F.

    2015-01-01

    Purpose To characterize peripheral nerve stimulation (PNS) of an asymmetric head-only gradient coil that is compatible with a commercial high-channel-count receive-only array. Methods Two prototypes of an asymmetric head-only gradient coil set, with 42-cm inner diameter, were constructed for brain imaging at 3T with maximum performance specifications of up to 85 mT/m and 708 T/m/s. 24 volunteer tests were performed to measure PNS thresholds with the transverse (X, left/right; Y, anterior/posterior) gradient coils of both prototypes. 14 volunteers were also tested for the Z-gradient PNS in the second prototype, and were additionally scanned with high-slew-rate EPI immediately after the PNS tests. Results For both prototypes, the Y-gradient PNS threshold was markedly higher than the X-gradient. The Z-gradient threshold was intermediate between those for the X- and Y-coils. Out of the 24 volunteer subjects, only two experienced Y-gradient PNS at 80 mT/m, 500 T/m/s. All volunteers underwent the EPI scan without PNS when the readout direction was set to A/P. Conclusion Measured PNS characteristics of asymmetric head-only gradient coil prototypes indicate that such coils, especially in the A/P direction, can be used for fast EPI readout in high-performance neuroimaging scans with substantially reduced PNS concerns compared to conventional whole-body gradient coils. PMID:26628078

  8. Gradient induced liquid motion on laser structured black Si surfaces

    NASA Astrophysics Data System (ADS)

    Paradisanos, I.; Fotakis, C.; Anastasiadis, S. H.; Stratakis, E.

    2015-09-01

    This letter reports on the femtosecond laser fabrication of gradient-wettability micro/nano-patterns on Si surfaces. The dynamics of directional droplet spreading on the surface tension gradients developed is systematically investigated and discussed. It is shown that microdroplets on the patterned surfaces spread at a maximum speed of 505 mm/s, which is the highest velocity demonstrated so far for liquid spreading on a surface tension gradient in ambient conditions. The application of the proposed laser patterning technique for the precise fabrication of surface tension gradients for open microfluidic systems, liquid management in fuel cells, and drug delivery is envisaged.

  9. Global Existence Results for Viscoplasticity at Finite Strain

    NASA Astrophysics Data System (ADS)

    Mielke, Alexander; Rossi, Riccarda; Savaré, Giuseppe

    2018-01-01

    We study a model for rate-dependent gradient plasticity at finite strain based on the multiplicative decomposition of the strain tensor, and investigate the existence of global-in-time solutions to the related PDE system. We reveal its underlying structure as a generalized gradient system, where the driving energy functional is highly nonconvex and features the geometric nonlinearities related to finite-strain elasticity as well as the multiplicative decomposition of finite-strain plasticity. Moreover, the dissipation potential depends on the left-invariant plastic rate, and thus depends on the plastic state variable. The existence theory is developed for a class of abstract, nonsmooth, and nonconvex gradient systems, for which we introduce suitable notions of solutions, namely energy-dissipation-balance and energy-dissipation-inequality solutions. Hence, we resort to the toolbox of the direct method of the calculus of variations to check that the specific energy and dissipation functionals for our viscoplastic models comply with the conditions of the general theory.

  10. Novel linear and step-gradient counter-current chromatography for bio-guided isolation and purification of cytotoxic podophyllotoxins from Dysosma versipellis (Hance).

    PubMed

    Yang, Zhi; Liu, Xiaoman; Wang, Kuiwu; Cao, Xiaoji; Wu, Shihua

    2013-03-01

    Dysosma versipellis (Hance) is a famous traditional Chinese medicine for the treatment of snakebite, weakness, condyloma accuminata, lymphadenopathy, and tumors for thousands of years. In this work, four podophyllotoxin-like lignans including 4'-demethylpodophyllotoxin (1), α-peltatin (2), podophyllotoxin (3), β-peltatin (4) as major cytotoxic principles of D. versipellis were successfully isolated and purified by several novel linear and step gradient counter-current chromatography methods using the systems of hexane/ethyl acetate/methanol/water (4:6:3:7 and 4:6:4:6, v/v/v/v). Compared with isocratic elution, linear and step-gradient elution can provide better resolution and save more time for the separation of photophyllotoxin and its congeners. Their cytotoxicities were further evaluated and their structures were validated by high-resolution electrospray TOF MS and nuclear magnetic resonance spectra. All components showed potent anticancer activity against human hepatoma cells HepG2. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. High-throughput growth temperature optimization of ferroelectric SrxBa1-xNb2O6 epitaxial thin films using a temperature gradient method

    NASA Astrophysics Data System (ADS)

    Ohkubo, I.; Christen, H. M.; Kalinin, Sergei V.; Jellison, G. E.; Rouleau, C. M.; Lowndes, D. H.

    2004-02-01

    We have developed a multisample film growth method on a temperature-gradient substrate holder to quickly optimize the film growth temperature in pulsed-laser deposition. A smooth temperature gradient is achieved, covering a range of temperatures from 200 to 830 °C. In a single growth run, the optimal growth temperature for SrxBa1-xNb2O6 thin films on MgO(001) substrates was determined to be 750 °C, based on results from ellipsometry and piezoresponse force microscopy. Variations in optical properties and ferroelectric domains structures were clearly observed as function of growth temperature, and these physical properties can be related to their different crystalline quality. Piezoresponse force microscopy indicated the formation of uniform ferroelectric film for deposition temperatures above 750 °C. At 660 °C, isolated micron-sized ferroelectric islands were observed, while samples deposited below 550 °C did not exhibit clear piezoelectric contrast.

  12. Optimization of ceramic strength using elastic gradients

    PubMed Central

    Zhang, Yu; Ma, Li

    2009-01-01

    We present a new concept for strengthening ceamics by utilizing a graded structure with a low elastic modulus at both top and bottom surfaces sandwiching a high-modulus interior. Closed-form equations have been developed for stress analysis of simply supported graded sandwich beams subject to transverse center loads. Theory predicts that suitable modulus gradients at the ceramic surface can effectively reduce and spread the maximum bending stress from the surface into the interior. The magnitude of such stress dissipation is governed by the thickness ratio of the beam to the graded layers. We test our concept by infiltrating both top and bottom surfaces of a strong class of zirconia ceramic with an in-house prepared glass of similar coefficient of thermal expansion and Poisson’s ratio to zirconia, producing a controlled modulus gradient at the surface without significant long-range residual stresses. The resultant graded glass/zirconia/glass composite exhibits significantly higher load-bearing capacity than homogeneous zirconia. PMID:20161019

  13. Investigation on the growth and characterization of 4-aminobenzophenone single crystal by the vertical dynamic gradient freeze technique

    NASA Astrophysics Data System (ADS)

    Prabhakaran, SP.; Ramesh Babu, R.; Sukumar, M.; Bhagavannarayana, G.; Ramamurthi, K.

    2014-03-01

    Growth of bulk single crystal of 4-Aminobenzophenone (4-ABP) from the vertical dynamic gradient freeze (VDGF) setup designed with eight zone furnace was investigated. The experimental parameters for the growth of 4-ABP single crystal with respect to the design of VDGF setup are discussed. The eight zones were used to generate multiple temperature gradients over the furnace, and video imaging system helped to capture the real time growth and solid-liquid interface. 4-ABP single crystal with the size of 18 mm diameter and 40 mm length was grown from this investigation. Structural and optical quality of grown crystal was examined by high resolution X-ray diffraction and UV-visible spectral analysis, respectively and the blue emission was also confirmed from the photoluminescence spectrum. Microhardness number of the crystal was estimated at different loads using Vicker's microhardness tester. The size and quality of single crystal grown from the present investigation are compared with the vertical Bridgman grown 4-ABP.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samant, Saumil; Strzalka, Joseph; Yager, Kevin G.

    Dynamic thermal gradient-based processes for directed self-assembly of block copolymer (BCP) thin films such as cold zone annealing (CZA) have demonstrated much potential for rapidly fabricating highly ordered patterns of BCP domains with facile orientation control. As a demonstration, hexagonally packed predominantly vertical cylindrical morphology, technologically relevant for applications such as membranes and lithography, was achieved in 1 μm thick cylinder-forming PS-b-PMMA (cBCP) films by applying sharp thermal gradients (CZA-Sharp) at optimum sample sweep rates. A thorough understanding of the molecular level mechanisms and pathways of the BCP ordering that occur during this CZA-S process is presented, useful to fullymore » exploit the potential of CZA-S for large-scale BCP-based device fabrication. To that end, we developed a customized CZA-S assembly to probe the dynamic structure evolution and ordering of the PS-b-PMMA cBCP film in situ as it undergoes the CZA-S process using the grazing incidence small-angle X-ray scattering (GISAXS) technique. Four distinct regimes of BCP ordering were observed within the gradient that include microphase separation from an “as cast” unordered state (Regime I), evolution of vertical cylinders under a thermally imposed strain gradient (Regime II), reorientation of a fraction of cylinders due to preferential substrate interactions (Regime III), and finally grain-coarsening on the cooling edge (Regime IV). The ordering pathway in the different regimes is further described within the framework of an energy landscape. A novel aspect of this study is the identification of a grain-coarsening regime on the cooling edge of the gradient, previously obscure in zone annealing studies of BCPs. Furthermore, such insights into the development of highly ordered BCP nanostructures under template-free thermal gradient fields can potentially have important ramifications in the field of BCP-directed self-assembly and self-assembling polymer systems more broadly.« less

  15. Limited-memory fast gradient descent method for graph regularized nonnegative matrix factorization.

    PubMed

    Guan, Naiyang; Wei, Lei; Luo, Zhigang; Tao, Dacheng

    2013-01-01

    Graph regularized nonnegative matrix factorization (GNMF) decomposes a nonnegative data matrix X[Symbol:see text]R(m x n) to the product of two lower-rank nonnegative factor matrices, i.e.,W[Symbol:see text]R(m x r) and H[Symbol:see text]R(r x n) (r < min {m,n}) and aims to preserve the local geometric structure of the dataset by minimizing squared Euclidean distance or Kullback-Leibler (KL) divergence between X and WH. The multiplicative update rule (MUR) is usually applied to optimize GNMF, but it suffers from the drawback of slow-convergence because it intrinsically advances one step along the rescaled negative gradient direction with a non-optimal step size. Recently, a multiple step-sizes fast gradient descent (MFGD) method has been proposed for optimizing NMF which accelerates MUR by searching the optimal step-size along the rescaled negative gradient direction with Newton's method. However, the computational cost of MFGD is high because 1) the high-dimensional Hessian matrix is dense and costs too much memory; and 2) the Hessian inverse operator and its multiplication with gradient cost too much time. To overcome these deficiencies of MFGD, we propose an efficient limited-memory FGD (L-FGD) method for optimizing GNMF. In particular, we apply the limited-memory BFGS (L-BFGS) method to directly approximate the multiplication of the inverse Hessian and the gradient for searching the optimal step size in MFGD. The preliminary results on real-world datasets show that L-FGD is more efficient than both MFGD and MUR. To evaluate the effectiveness of L-FGD, we validate its clustering performance for optimizing KL-divergence based GNMF on two popular face image datasets including ORL and PIE and two text corpora including Reuters and TDT2. The experimental results confirm the effectiveness of L-FGD by comparing it with the representative GNMF solvers.

  16. Microstructure and mechanical characteristics of gradient structured Cu and Cu alloys processed by surface mechanical attrition treatment

    NASA Astrophysics Data System (ADS)

    Hu, XZ; Cheng, LP; Chen, HL; Yin, Z.; Zhang, Z.; Shu, BP; Gong, YL; Zhu, XK

    2017-05-01

    Cu-Al-Zn alloys with different stacking fault energy (SFE) were processed by surface mechanical attrition treatment (SMAT) at cryogenic temperature (CT), mechanical properties of gradient structured Cu-Al-Zn alloys were investigated in this study. Al and Zn content in alloys, which result in the decrease of SFE, can contribute to the increase in strength. Cu-4.5wt%Al-14.3wt%Zn alloy with the lower SFE shows that the strength increased, the ductility did not decrease significantly with increasing processing time, and the strength can be improved by a thicker gradient structure (GS) layer. The better combination of strength and ductility was achieved in Cu-4.5wt%Al-14.3wt%Zn alloy with lower SFE.

  17. Study of coherent structures of turbulence with large wall-normal gradients in thermophysical properties using direct numerical simulation

    NASA Astrophysics Data System (ADS)

    Reinink, Shawn K.; Yaras, Metin I.

    2015-06-01

    Forced-convection heat transfer in a heated working fluid at a thermodynamic state near its pseudocritical point is poorly predicted by correlations calibrated with data at subcritical temperatures and pressures. This is suggested to be primarily due to the influence of large wall-normal thermophysical property gradients that develop in proximity of the pseudocritical point on the concentration of coherent turbulence structures near the wall. The physical mechanisms dominating this influence remain poorly understood. In the present study, direct numerical simulation is used to study the development of coherent vortical structures within a turbulent spot under the influence of large wall-normal property gradients. A turbulent spot rather than a fully turbulent boundary layer is used for the study, for the coherent structures of turbulence in a spot tend to be in a more organized state which may allow for more effective identification of cause-and-effect relationships. Large wall-normal gradients in thermophysical properties are created by heating the working fluid which is near the pseudocritical thermodynamic state. It is found that during improved heat transfer, wall-normal gradients in density accelerate the growth of the Kelvin-Helmholtz instability mechanism in the shear layer enveloping low-speed streaks, causing it to roll up into hairpin vortices at a faster rate. It is suggested that this occurs by the baroclinic vorticity generation mechanism which accelerates the streamwise grouping of vorticity during shear layer roll-up. The increased roll-up frequency leads to reduced streamwise spacing between hairpin vortices in wave packets. The density gradients also promote the sinuous instability mode in low-speed streaks. The resulting oscillations in the streaks in the streamwise-spanwise plane lead to locally reduced spanwise spacing between hairpin vortices forming over adjacent low-speed streaks. The reduction in streamwise and spanwise spacing between hairpin vortices causes them to interact more frequently by merging together and by breaking apart into smaller turbulence structures.

  18. Study of coherent structures of turbulence with large wall-normal gradients in thermophysical properties using direct numerical simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reinink, Shawn K.; Yaras, Metin I., E-mail: Metin.Yaras@carleton.ca

    2015-06-15

    Forced-convection heat transfer in a heated working fluid at a thermodynamic state near its pseudocritical point is poorly predicted by correlations calibrated with data at subcritical temperatures and pressures. This is suggested to be primarily due to the influence of large wall-normal thermophysical property gradients that develop in proximity of the pseudocritical point on the concentration of coherent turbulence structures near the wall. The physical mechanisms dominating this influence remain poorly understood. In the present study, direct numerical simulation is used to study the development of coherent vortical structures within a turbulent spot under the influence of large wall-normal propertymore » gradients. A turbulent spot rather than a fully turbulent boundary layer is used for the study, for the coherent structures of turbulence in a spot tend to be in a more organized state which may allow for more effective identification of cause-and-effect relationships. Large wall-normal gradients in thermophysical properties are created by heating the working fluid which is near the pseudocritical thermodynamic state. It is found that during improved heat transfer, wall-normal gradients in density accelerate the growth of the Kelvin-Helmholtz instability mechanism in the shear layer enveloping low-speed streaks, causing it to roll up into hairpin vortices at a faster rate. It is suggested that this occurs by the baroclinic vorticity generation mechanism which accelerates the streamwise grouping of vorticity during shear layer roll-up. The increased roll-up frequency leads to reduced streamwise spacing between hairpin vortices in wave packets. The density gradients also promote the sinuous instability mode in low-speed streaks. The resulting oscillations in the streaks in the streamwise-spanwise plane lead to locally reduced spanwise spacing between hairpin vortices forming over adjacent low-speed streaks. The reduction in streamwise and spanwise spacing between hairpin vortices causes them to interact more frequently by merging together and by breaking apart into smaller turbulence structures.« less

  19. Controllable growth of porous structures from co-continuous polymer blend

    NASA Astrophysics Data System (ADS)

    Zhang, Wei

    To enable controllable generation of porous structures, a set of new fabrication techniques utilizing the annealing kinetics of co-continuous polymer blends were proposed and investigated. As the first step towards the creation of an organized porous material, a new technique based on regulating the thermal boundary conditions to controllably grow gradient porous structures was developed. In this technique, specially designed thermal boundaries were used to generate a well-defined temperature field inside a co-continuous polymer blend with fine phase structure. Because of the temperature dependency of zero-shear viscosity and its influence on phase coarsening rate, a graded phase size distribution was generated by this temperature field. After one component was selectively dissolved, a gradient porous structure was produced. To demonstrate the versatility of this technique, three different gradient porous structures were created. After the effectiveness of thermal boundary condition in developing organized porous materials was verified, the possibility of utilizing kinematic and dynamic boundary conditions to obtain extra controllability was investigated. Two types of kinematic boundary conditions, no-slip wall and 1D hard wall confinement were tested separately. It was found that no-slip wall could greatly slow down the phase coarsening rate of the nearby polymer blend. When a no-slip wall and a fully slip wall were applied at each side of a molten co-continuous blend, a pore size gradient was generated in the direction perpendicular to the wall surface with smaller pores near the no-slip wall. One directional hard wall confinement formed by a pair of fully slip parallel walls led to the formation of an aligned phase structure oriented in the vertical direction to the walls. Experiments regarding the effect of dynamic boundary condition were conducted by imposing different chemical potentials at the surface of molten blend. Fully dense surface and completely open surface were generated when high energy metallic surface and low energy PTFE (polytetrafluoroethylene) were applied respectively. In addition to the creation of polymeric porous materials, the generation of organized porous nanocomposite with high nanoparticle loading was also explored to incorporate unique properties seldom appearing in polymeric materials. The influence of blending procedure was first studied to secure the required co-continuous phase morphology for making porous nanocomposite. It was found that one had to simultaneously introduce all ingredients for mixing to minimize the change in viscosity ratio and produce the initial co-continuous structures. Because of the high nanoparticle loading, most of the formed pores were crowded with aggregates from particles originally located in the dissolved phase. To obtain the desired high permeability, a technique based on small strain oscillation was developed to facilitate rapid migration of these nanoparticles out of the sacrificial component. The effectiveness of this method was confirmed by a parametric experimental study. In addition, it was found that the migration rate of the nanoparticle could be predicted by combining the Einstein-Stokes diffusion model with the Cox-Merz rule. To create porous material with desired geometries for different application needs, a new molding technique capable of creating precise micropatterned porous structures was developed and examined. In this new technique, hot embossing and in-mold quiescent annealing were applied successively to a co-continuous polymer blend to pattern the blend into expected geometries and in the same time produce the desired bulk microstructures. The effectiveness of this molding protocol was confirmed by experimental results in which devices with different micropatterns, average pore sizes, pore size distributions, and pore alignments were created. For cases where fully open surface is required, a criterion for choosing a proper molding condition was provided. Other than these experimental efforts, a new numerical simulation approach was developed to obtain better control for growing complex gradient porous structures. First, rheological characterization was combined with CFD (computational fluid dynamics) to simulate the quiescent annealing process. According to experimental results from other researchers, there is a simple relation between 2D and 3D coarsening rates for a co-continuous polymer blend. If a similar relation could be obtained between 2D and 3D simulation, the computational cost could be greatly reduced. To verify the existence of the aforementioned relation, the 2D and 3D coarsening rates were calculated through simulation on a simplified 3D model. With 2D simulation, both the initiation linear growth region and the later stage plateau were predicted, and these findings agreed with experimental results from literature. Non-isothermal temperature field was also incorporated in the model to predict the phase size distribution. Finally, the experimental conditions used in the creations of 1D and 2D gradient porous structures were applied in numerical simulations. The simulation results closely matched the experimental results. (Abstract shortened by UMI.)

  20. Determination of boundaries between ranges of high and low gradient of beam profile.

    PubMed

    Wendykier, Jacek; Bieniasiewicz, Marcin; Grządziel, Aleksandra; Jedynak, Tadeusz; Kośniewski, Wiktor; Reudelsdorf, Marta; Wendykier, Piotr

    2016-01-01

    This work addresses the problem of treatment planning system commissioning by introducing a new method of determination of boundaries between high and low gradient in beam profile. The commissioning of a treatment planning system is a very important task in the radiation therapy. One of the main goals of this task is to compare two field profiles: measured and calculated. Applying points of 80% and 120% of nominal field size can lead to the incorrect determination of boundaries, especially for small field sizes. The method that is based on the beam profile gradient allows for proper assignment of boundaries between high and low gradient regions even for small fields. TRS 430 recommendations for commissioning were used. The described method allows a separation between high and low gradient, because it directly uses the value of the gradient of a profile. For small fields, the boundaries determined by the new method allow a commissioning of a treatment planning system according to the TRS 430, while the point of 80% of nominal field size is already in the high gradient region. The method of determining the boundaries by using the beam profile gradient can be extremely helpful during the commissioning of the treatment planning system for Intensity Modulated Radiation Therapy or for other techniques which require very small field sizes.

  1. A New View of the Dynamics of Reynolds Stress Generation in Turbulent Boundary Layers

    NASA Technical Reports Server (NTRS)

    Cantwell, Brian J.; Chacin, Juan M.

    1998-01-01

    The structure of a numerically simulated turbulent boundary layer over a flat plate at Re(theta) = 670 was studied using the invariants of the velocity gradient tensor (Q and R) and a related scalar quantity, the cubic discriminant (D = 27R(exp 2)/4 + Q(exp 3)). These invariants have previously been used to study the properties of the small-scale motions responsible for the dissipation of turbulent kinetic energy. In addition, these scalar quantities allow the local flow patterns to be unambiguously classified according to the terminology proposed by Chong et al. The use of the discriminant as a marker of coherent motions reveals complex, large-scale flow structures that are shown to be associated with the generation of Reynolds shear stress -u'v'(bar). These motions are characterized by high spatial gradients of the discriminant and are believed to be an important part of the mechanism that sustains turbulence in the near-wall region.

  2. Using woven carbon fiber fabric to construct gradient porous structure for passive direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Yuan, Wei; Hu, Jinyi; Zhou, Bo; Deng, Jun; Zhang, Zhaochun; Tang, Yong

    2015-09-01

    The passive direct methanol fuel cell (DMFC) is a promising candidate power source for portable applications but has to deal with many technical challenges before practical use. This study presents a preliminary investigation on the use of a woven carbon fiber fabric (WCFF) for constructing a gradient porous structure based on the traditional design. The WCFF, carbon paper and carbon-black micro porous layer (MPL) combine into a carbon-based assembly which acts as a mass-transfer-controlling medium at the anode of a passive DMFC. Results show that this novel setup is able to significantly improve the cell performance and facilitate high-concentration operation. A maximum power density of 16.4 mWcm-2 is obtained when two layers of the WCFF are used at a methanol concentration of 8M. This work provides an effective method for using concentrated methanol with no need for major change of the fuel cell configuration.

  3. Prediction of heart disease using apache spark analysing decision trees and gradient boosting algorithm

    NASA Astrophysics Data System (ADS)

    Chugh, Saryu; Arivu Selvan, K.; Nadesh, RK

    2017-11-01

    Numerous destructive things influence the working arrangement of human body as hypertension, smoking, obesity, inappropriate medication taking which causes many contrasting diseases as diabetes, thyroid, strokes and coronary diseases. The impermanence and horribleness of the environment situation is also the reason for the coronary disease. The structure of Apache start relies on the evolution which requires gathering of the data. To break down the significance of use programming focused on data structure the Apache stop ought to be utilized and it gives various central focuses as it is fast in light as it uses memory worked in preparing. Apache Spark continues running on dispersed environment and chops down the data in bunches giving a high profitability rate. Utilizing mining procedure as a part of the determination of coronary disease has been exhaustively examined indicating worthy levels of precision. Decision trees, Neural Network, Gradient Boosting Algorithm are the various apache spark proficiencies which help in collecting the information.

  4. Porous polycarbene-bearing membrane actuator for ultrasensitive weak-acid detection and real-time chemical reaction monitoring.

    PubMed

    Sun, Jian-Ke; Zhang, Weiyi; Guterman, Ryan; Lin, Hui-Juan; Yuan, Jiayin

    2018-04-30

    Soft actuators with integration of ultrasensitivity and capability of simultaneous interaction with multiple stimuli through an entire event ask for a high level of structure complexity, adaptability, and/or multi-responsiveness, which is a great challenge. Here, we develop a porous polycarbene-bearing membrane actuator built up from ionic complexation between a poly(ionic liquid) and trimesic acid (TA). The actuator features two concurrent structure gradients, i.e., an electrostatic complexation (EC) degree and a density distribution of a carbene-NH 3 adduct (CNA) along the membrane cross-section. The membrane actuator performs the highest sensitivity among the state-of-the-art soft proton actuators toward acetic acid at 10 -6  mol L -1 (M) level in aqueous media. Through competing actuation of the two gradients, it is capable of monitoring an entire process of proton-involved chemical reactions that comprise multiple stimuli and operational steps. The present achievement constitutes a significant step toward real-life application of soft actuators in chemical sensing and reaction technology.

  5. Genetic structure along an elevational gradient in Hawaiian honeycreepers reveals contrasting evolutionary responses to avian malaria.

    PubMed

    Eggert, Lori S; Terwilliger, Lauren A; Woodworth, Bethany L; Hart, Patrick J; Palmer, Danielle; Fleischer, Robert C

    2008-11-14

    The Hawaiian honeycreepers (Drepanidinae) are one of the best-known examples of an adaptive radiation, but their persistence today is threatened by the introduction of exotic pathogens and their vector, the mosquito Culex quinquefasciatus. Historically, species such as the amakihi (Hemignathus virens), the apapane (Himatione sanguinea), and the iiwi (Vestiaria coccinea) were found from the coastal lowlands to the high elevation forests, but by the late 1800's they had become extremely rare in habitats below 900 m. Recently, however, populations of amakihi and apapane have been observed in low elevation habitats. We used twelve polymorphic microsatellite loci to investigate patterns of genetic structure, and to infer responses of these species to introduced avian malaria along an elevational gradient on the eastern flanks of Mauna Loa and Kilauea volcanoes on the island of Hawaii. Our results indicate that amakihi have genetically distinct, spatially structured populations that correspond with altitude. We detected very few apapane and no iiwi in low-elevation habitats, and genetic results reveal only minimal differentiation between populations at different altitudes in either of these species. Our results suggest that amakihi populations in low elevation habitats have not been recolonized by individuals from mid or high elevation refuges. After generations of strong selection for pathogen resistance, these populations have rebounded and amakihi have become common in regions in which they were previously rare or absent.

  6. A worldwide analysis of within-canopy variations in leaf structural, chemical and physiological traits across plant functional types.

    PubMed

    Niinemets, Ülo; Keenan, Trevor F; Hallik, Lea

    2015-02-01

    Extensive within-canopy light gradients importantly affect the photosynthetic productivity of leaves in different canopy positions and lead to light-dependent increases in foliage photosynthetic capacity per area (AA). However, the controls on AA variations by changes in underlying traits are poorly known. We constructed an unprecedented worldwide database including 831 within-canopy gradients with standardized light estimates for 304 species belonging to major vascular plant functional types, and analyzed within-canopy variations in 12 key foliage structural, chemical and physiological traits by quantitative separation of the contributions of different traits to photosynthetic acclimation. Although the light-dependent increase in AA is surprisingly similar in different plant functional types, they differ fundamentally in the share of the controls on AA by constituent traits. Species with high rates of canopy development and leaf turnover, exhibiting highly dynamic light environments, actively change AA by nitrogen reallocation among and partitioning within leaves. By contrast, species with slow leaf turnover exhibit a passive AA acclimation response, primarily determined by the acclimation of leaf structure to growth light. This review emphasizes that different combinations of traits are responsible for within-canopy photosynthetic acclimation in different plant functional types, and solves an old enigma of the role of mass- vs area-based traits in vegetation acclimation. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  7. A latitudinal phylogeographic diversity gradient in birds

    PubMed Central

    Seeholzer, Glenn F.; Harvey, Michael G.; Cuervo, Andrés M.; Brumfield, Robb T.

    2017-01-01

    High tropical species diversity is often attributed to evolutionary dynamics over long timescales. It is possible, however, that latitudinal variation in diversification begins when divergence occurs within species. Phylogeographic data capture this initial stage of diversification in which populations become geographically isolated and begin to differentiate genetically. There is limited understanding of the broader implications of intraspecific diversification because comparative analyses have focused on species inhabiting and evolving in restricted regions and environments. Here, we scale comparative phylogeography up to the hemisphere level and examine whether the processes driving latitudinal differences in species diversity are also evident within species. We collected genetic data for 210 New World bird species distributed across a broad latitudinal gradient and estimated a suite of metrics characterizing phylogeographic history. We found that lower latitude species had, on average, greater phylogeographic diversity than higher latitude species and that intraspecific diversity showed evidence of greater persistence in the tropics. Factors associated with species ecologies, life histories, and habitats explained little of the variation in phylogeographic structure across the latitudinal gradient. Our results suggest that the latitudinal gradient in species richness originates, at least partly, from population-level processes within species and are consistent with hypotheses implicating age and environmental stability in the formation of diversity gradients. Comparative phylogeographic analyses scaled up to large geographic regions and hundreds of species can show connections between population-level processes and broad-scale species-richness patterns. PMID:28406905

  8. Water Splitting Using Porous Silicon Photo-electrodes for Hydrogen Production

    NASA Astrophysics Data System (ADS)

    Ali, M.; Starkov, V. V.; Gosteva, E. A.; Druzhinin, A. V.; Sattar, S.

    2017-11-01

    This paper presents the efficiency study results of using gradient-porous silicon structures with different morphology, as photo-anodes for photo-electrochemical dissociation of water. The results of a study of the physicochemical properties of gradient-porous silicon structures show the relatively low cost and simplicity of the technological process, as well as the possibility of forming structures with predefined properties, allow the creation of effective devices for artificial photosynthesis based on porous silicon for subsequent use in hydrogen energy.

  9. [The role of the floodplain gradient in structuring of testate amoebae communities in the Ilych River].

    PubMed

    Mazeĭ, Iu A; Malysheva, E A; Lapteva, E M; Komarov, A A; Taskaeva, A A

    2012-01-01

    Forty-two testate amoebae taxa were identified in alluvial soils of floodplain islands in the Ilych River. Among the pedo- and eurybionts, there were aquatic rhizopods. Along the floodplain transect (willow --> meadow --> deciduous forest --> coniferous forest), the testate amoebae community changed directly. There are spatially homogeneous (low beta-diversity) testacean communities but species rich on the local level (high alpha-diversity) within forests. Within willows and meadows, communities are characterized by low alpha-diversity and high heterogeneity that leads to high gamma-diversity.

  10. The dynamical properties of dense filaments in the infrared dark cloud G035.39-00.33

    NASA Astrophysics Data System (ADS)

    Henshaw, J. D.; Caselli, P.; Fontani, F.; Jiménez-Serra, I.; Tan, J. C.

    2014-05-01

    Infrared dark clouds (IRDCs) are unique laboratories to study the initial conditions of high-mass star and star cluster formation. We present high-sensitivity and high-angular-resolution Institut de Radioastronomie Millimétrique (IRAM) Plateau de Bure Interferometer observations of N2H+ (1-0) towards IRDC G035.39-00.33. It is found that G035.39-00.33 is a highly complex environment, consisting of several mildly supersonic filaments (σ _NT/cs ˜ 1.5), separated in velocity by <1 km s-1. Where multiple spectral components are evident, moment analysis overestimates the non-thermal contribution to the line-width by a factor of ˜2. Large-scale velocity gradients evident in previous single-dish maps may be explained by the presence of substructure now evident in the interferometric maps. Whilst global velocity gradients are small (<0.7 km s-1 pc-1), there is evidence for dynamic processes on local scales (˜1.5-2.5 km s-1 pc-1). Systematic trends in velocity gradient are observed towards several continuum peaks. This suggests that the kinematics are influenced by dense (and in some cases, starless) cores. These trends are interpreted as either infalling material, with accretion rates ˜(7 ± 4) × 10-5 M⊙ yr-1, or expanding shells with momentum ˜24 ± 12 M⊙ km s-1. These observations highlight the importance of high-sensitivity and high-spectral-resolution data in disentangling the complex kinematic and physical structure of massive star-forming regions.

  11. Design of a High Thermal Gradient Bridgman Furnace

    NASA Technical Reports Server (NTRS)

    LeCroy, J. E.; Popok, D. P.

    1994-01-01

    The Advanced Automated Directional Solidification Furnace (AADSF) is a Bridgman-Stockbarger microgravity processing facility, designed and manifested to first fly aboard the second United States Microgravity Payload (USMP-2) Space Shuttle mission. The AADSF was principally designed to produce high axial thermal gradients, and is particularly suitable for metals solidification experiments, including non-dilute alloys. To accommodate a wider range of experimental conditions, the AADSF is equipped with a reconfigurable gradient zone. The overall design of the AADSF and the relationship between gradient zone design and furnace performance are described. Parametric thermal analysis was performed and used to select gradient zone design features that fulfill the high thermal gradient requirements of the USMP-2 experiment. The thermal model and analytical procedure, and parametric results leading to the first flight gradient zone configuration, are presented. Performance for the USMP-2 flight experiment is also predicted, and analysis results are compared to test data.

  12. Transfer-printing of active layers to achieve high quality interfaces in sequentially deposited multilayer inverted polymer solar cells fabricated in air

    PubMed Central

    Vohra, Varun; Anzai, Takuya; Inaba, Shusei; Porzio, William; Barba, Luisa

    2016-01-01

    Abstract Polymer solar cells (PSCs) are greatly influenced by both the vertical concentration gradient in the active layer and the quality of the various interfaces. To achieve vertical concentration gradients in inverted PSCs, a sequential deposition approach is necessary. However, a direct approach to sequential deposition by spin-coating results in partial dissolution of the underlying layers which decreases the control over the process and results in not well-defined interfaces. Here, we demonstrate that by using a transfer-printing process based on polydimethylsiloxane (PDMS) stamps we can obtain increased control over the thickness of the various layers while at the same time increasing the quality of the interfaces and the overall concentration gradient within the active layer of PSCs prepared in air. To optimize the process and understand the influence of various interlayers, our approach is based on surface free energy, spreading parameters and work of adhesion calculations. The key parameter presented here is the insertion of high quality hole transporting and electron transporting layers, respectively above and underneath the active layer of the inverted structure PSC which not only facilitates the transfer process but also induces the adequate vertical concentration gradient in the device to facilitate charge extraction. The resulting non-encapsulated devices (active layer prepared in air) demonstrate over 40% increase in power conversion efficiency with respect to the reference spin-coated inverted PSCs. PMID:27877901

  13. Gravity Gradients Frame Oceanus Procellarum

    NASA Image and Video Library

    2014-10-01

    Topography of Earth moon generated from data NASA LRO, with the gravity anomalies bordering the Procellarum region superimposed in blue. The border structures are shown using gravity gradients calculated with data from NASA GRAIL mission.

  14. Characterization of radiation-induced damage in high performance polymers by electron paramagnetic resonance imaging spectroscopy

    NASA Technical Reports Server (NTRS)

    Suleman, Naushadalli K.

    1992-01-01

    The potential for long-term human activity beyond the Earth's protective magnetosphere is limited in part by the lack of detailed information on the effectiveness and performance of existing structural materials to shield the crew and spacecraft from highly penetrating space radiations. The two radiations of greatest concern are high energy protons emitted during solar flares and galactic cosmic rays which are energetic ions ranging from protons to highly oxidized iron. Although the interactions of such high-energy radiations with matter are not completely understood at this time, the effects of the incident radiation are clearly expected to include the formation of paramagnetic spin centers via ionization and bond-scission reactions in the molecular matrices of structural materials. Since this type of radiation damage is readily characterized by Electron Paramagnetic Resonance (EPR) spectroscopy, the NASA Langley Research Center EPR system was repaired and brought on-line during the 1991 ASEE term. A major goal of the 1992 ASEE term was to adapt the existing core of the LaRC EPR system to meet the requirements for EPR Imaging--a powerful new technique which provides detailed information on the internal structure of materials by mapping the spatial distribution of unpaired spin density in bulk media. Major impetus for this adaptation arises from the fact that information derived from EPRI complements other methods such as scanning electron microscopy which primarily characterize surface phenomena. The modification of the EPR system has been initiated by the construction of specially designed, counterwound Helmholtz coils which will be mounted on the main EPR electromagnet. The specifications of the coils have been set to achieve a static linear magnetic field gradient of 10 gauss/mm/amp along the principal (Z) axis of the Zeeman field. Construction is also in progress of a paramagnetic standard in which the spin distribution is known in all three dimensions. This sample will be used to assess the linearity of the magnetic field gradient and to ensure authentic image reconstruction. A second major task was to secure the computer capability to enable image reconstruction from projection data generated by the magnetic field gradients. To this end, commercially available and public domain software packages which perform inverse Fourier Transform and convoluted (filtered) back projection functions are being integrated into the existing EPR data processing system.

  15. Flow Visualization in Supersonic Turbulent Boundary Layers.

    NASA Astrophysics Data System (ADS)

    Smith, Michael Wayne

    This thesis is a collection of novel flow visualizations of two different flat-plate, zero pressure gradient, supersonic, turbulent boundary layers (M = 2.8, Re _theta ~ 82,000, and M = 2.5, Re_ theta ~ 25,000, respectively). The physics of supersonic shear flows has recently drawn increasing attention with the renewed interest in flight at super and hypersonic speeds. This work was driven by the belief that the study of organized, Reynolds -stress producing turbulence structures will lead to improved techniques for the modelling and control of high-speed boundary layers. Although flow-visualization is often thought of as a tool for providing qualitative information about complex flow fields, in this thesis an emphasis is placed on deriving quantitative results from image data whenever possible. Three visualization techniques were applied--'selective cut-off' schlieren, droplet seeding, and Rayleigh scattering. Two experiments employed 'selective cut-off' schlieren. In the first, high-speed movies (40,000 fps) were made of strong density gradient fronts leaning downstream at between 30^circ and 60^ circ and travelling at about 0.9U _infty. In the second experiment, the same fronts were detected with hot-wires and imaged in real time, thus allowing the examination of the density gradient fronts and their associated single-point mass -flux signals. Two experiments employed droplet seeding. In both experiments, the boundary layer was seeded by injecting a stream of acetone through a single point in the wall. The acetone is atomized by the high shear at the wall into a 'fog' of tiny (~3.5mu m) droplets. In the first droplet experiment, the fog was illuminated with copper-vapor laser sheets of various orientations. The copper vapor laser pulses 'froze' the fog motion, revealing a variety of organized turbulence structures, some with characteristic downstream inclinations, others with large-scale roll-up on the scale of delta. In the second droplet experiment, high-speed movies were made of the fog under general illumination, thus providing information about the streamwise evolution of the structures seen in the planar stills. Rayleigh scattering from a laser sheet was used to create instantaneous density cross-sections in the M = 2.5 boundary layer. The Rayleigh scattering experiment represents the first measurement of the instantaneous 2-D field of an intrinsic fluid property in any boundary layer. Imaged by an intensified UV camera, scattering from the Argon-Fluoride laser (193 nm) revealed density structures with sharp interfaces between high and low-density fluid. These pictures were also used to generated quantitative turbulence information. Density pdf profiles, intermittency values, density correlations, and structure shape data were derived with standard digital image-processing techniques.

  16. Tools for Designing and Analyzing Structures

    NASA Technical Reports Server (NTRS)

    Luz, Paul L.

    2005-01-01

    Structural Design and Analysis Toolset is a collection of approximately 26 Microsoft Excel spreadsheet programs, each of which performs calculations within a different subdiscipline of structural design and analysis. These programs present input and output data in user-friendly, menu-driven formats. Although these programs cannot solve complex cases like those treated by larger finite element codes, these programs do yield quick solutions to numerous common problems more rapidly than the finite element codes, thereby making it possible to quickly perform multiple preliminary analyses - e.g., to establish approximate limits prior to detailed analyses by the larger finite element codes. These programs perform different types of calculations, as follows: 1. determination of geometric properties for a variety of standard structural components; 2. analysis of static, vibrational, and thermal- gradient loads and deflections in certain structures (mostly beams and, in the case of thermal-gradients, mirrors); 3. kinetic energies of fans; 4. detailed analysis of stress and buckling in beams, plates, columns, and a variety of shell structures; and 5. temperature dependent properties of materials, including figures of merit that characterize strength, stiffness, and deformation response to thermal gradients

  17. High Altitude Bird Migration at Temperate Latitudes: A Synoptic Perspective on Wind Assistance

    PubMed Central

    Dokter, Adriaan M.; Shamoun-Baranes, Judy; Kemp, Michael U.; Tijm, Sander; Holleman, Iwan

    2013-01-01

    At temperate latitudes the synoptic patterns of bird migration are strongly structured by the presence of cyclones and anticyclones, both in the horizontal and altitudinal dimensions. In certain synoptic conditions, birds may efficiently cross regions with opposing surface wind by choosing a higher flight altitude with more favourable wind. We observed migratory passerines at mid-latitudes that selected high altitude wind optima on particular nights, leading to the formation of structured migration layers at varying altitude up to 3 km. Using long-term vertical profiling of bird migration by C-band Doppler radar in the Netherlands, we find that such migration layers occur nearly exclusively during spring migration in the presence of a high-pressure system. A conceptual analytic framework providing insight into the synoptic patterns of wind assistance for migrants that includes the altitudinal dimension has so far been lacking. We present a simple model for a baroclinic atmosphere that relates vertical profiles of wind assistance to the pressure and temperature patterns occurring at temperate latitudes. We show how the magnitude and direction of the large scale horizontal temperature gradient affects the relative gain in wind assistance that migrants obtain through ascending. Temperature gradients typical for northerly high-pressure systems in spring are shown to cause high altitude wind optima in the easterly sectors of anticyclones, thereby explaining the frequent observations of high altitude migration in these synoptic conditions. Given the recurring synoptic arrangements of pressure systems across temperate continents, the opportunities for exploiting high altitude wind will differ between flyways, for example between easterly and westerly oceanic coasts. PMID:23300969

  18. High altitude bird migration at temperate latitudes: a synoptic perspective on wind assistance.

    PubMed

    Dokter, Adriaan M; Shamoun-Baranes, Judy; Kemp, Michael U; Tijm, Sander; Holleman, Iwan

    2013-01-01

    At temperate latitudes the synoptic patterns of bird migration are strongly structured by the presence of cyclones and anticyclones, both in the horizontal and altitudinal dimensions. In certain synoptic conditions, birds may efficiently cross regions with opposing surface wind by choosing a higher flight altitude with more favourable wind. We observed migratory passerines at mid-latitudes that selected high altitude wind optima on particular nights, leading to the formation of structured migration layers at varying altitude up to 3 km. Using long-term vertical profiling of bird migration by C-band Doppler radar in the Netherlands, we find that such migration layers occur nearly exclusively during spring migration in the presence of a high-pressure system. A conceptual analytic framework providing insight into the synoptic patterns of wind assistance for migrants that includes the altitudinal dimension has so far been lacking. We present a simple model for a baroclinic atmosphere that relates vertical profiles of wind assistance to the pressure and temperature patterns occurring at temperate latitudes. We show how the magnitude and direction of the large scale horizontal temperature gradient affects the relative gain in wind assistance that migrants obtain through ascending. Temperature gradients typical for northerly high-pressure systems in spring are shown to cause high altitude wind optima in the easterly sectors of anticyclones, thereby explaining the frequent observations of high altitude migration in these synoptic conditions. Given the recurring synoptic arrangements of pressure systems across temperate continents, the opportunities for exploiting high altitude wind will differ between flyways, for example between easterly and westerly oceanic coasts.

  19. Acoustic characteristics of the medium with gradient change of impedance

    NASA Astrophysics Data System (ADS)

    Hu, Bo; Yang, Desen; Sun, Yu; Shi, Jie; Shi, Shengguo; Zhang, Haoyang

    2015-10-01

    The medium with gradient change of acoustic impedance is a new acoustic structure which developed from multiple layer structures. In this paper, the inclusion is introduced and a new set of equations is developed. It can obtain better acoustic properties based on the medium with gradient change of acoustic impedance. Theoretical formulation has been systematically addressed which demonstrates how the idea of utilizing this method. The sound reflection and absorption coefficients were obtained. At last, the validity and the correctness of this method are assessed by simulations. The results show that appropriate design of parameters of the medium can improve underwater acoustic properties.

  20. Refined gradient theory of scale-dependent superthin rods

    NASA Astrophysics Data System (ADS)

    Lurie, S. A.; Kuznetsova, E. L.; Rabinskii, L. N.; Popova, E. I.

    2015-03-01

    A version of the refined nonclassical theory of thin beams whose thickness is comparable with the scale characteristic of the material structure is constructed on the basis of the gradient theory of elasticity which, in contrast to the classical theory, contains some additional physical characteristics depending on the structure scale parameters and is therefore most appropriate for modeling the strains of scale-dependent systems. The fundamental conditions for the well-posedness of the gradient theories are obtained for the first time, and it is shown that some of the known applied gradient theories do not generally satisfy the well-posedness criterion. A version of the well-posed gradient strain theory which satisfies the symmetry condition is proposed. The well-posed gradient theory is then used to implement the method of kinematic hypotheses for constructing a refined theory of scale-dependent beams. The equilibrium equations of the refined theory of scale-dependent Timoshenko and Bernoulli beams are obtained. It is shown that the scale effects are localized near the beam ends, and therefore, taking the scale effects into account does not give any correction to the bending rigidity of long beams as noted in the previously published papers dealing with the scale-dependent beams.

  1. Humic Acid Composition and Characteristics of Soil Organic Matter in Relation to the Elevation Gradient of Moso Bamboo Plantations.

    PubMed

    Wang, Hsueh-Ching; Chou, Chiao-Ying; Chiou, Chyi-Rong; Tian, Guanglong; Chiu, Chih-Yu

    2016-01-01

    Studying the influence of climatic and/or site-specific factors on soil organic matter (SOM) along an elevation gradient is important for understanding the response of SOM to global warming. We evaluated the composition of SOM and structure of humic acids along an altitudinal gradient from 600 to 1400 m in moso bamboo (Phyllostachys edulis) plantations in central Taiwan using NMR spectroscopy and photometric analysis. Total organic C and total nitrogen (N) content increased with increasing elevation. Aromaticity decreased and ΔlogK (the logarithm of the absorbance ratio of humic acids at 400 and 600 nm) increased with increasing elevation, which suggests that SOM humification decreased with increasing elevation. High temperature at low elevations seemed to enhance the decomposition (less accumulation of total organic C and N) and humification (high aromaticity and low ΔlogK). The alkyl-C/O-alkyl-C (A/O-A) ratio of humic acids increased with increasing elevation, which suggests that SOM humification increased with increasing elevation; this finding was contrary to the trend observed for ΔlogK and aromaticity. Such a discrepancy might be due to the relatively greater remaining of SOM derived from high alkyl-C broadleaf litter of previous forest at high elevations. The ratio of recalcitrant C to total organic C was low at low elevations, possibly because of enhanced decomposition of recalcitrant SOM from the previous broadleaf forest during long-term intensive cultivation and high temperature. Overall, the change in SOM pools and in the rate of humification with elevation was primarily affected by changes in climatic conditions along the elevation gradient in these bamboo plantations. However, when the composition of SOM, as assessed by NMR spectroscopy and photometric analysis was considered, site-specific factors such as residual SOM from previous forest and intensive cultivation history could also have an important effect on the humic acid composition and humification of SOM.

  2. Humic Acid Composition and Characteristics of Soil Organic Matter in Relation to the Elevation Gradient of Moso Bamboo Plantations

    PubMed Central

    Wang, Hsueh-Ching; Chou, Chiao-Ying; Chiou, Chyi-Rong; Tian, Guanglong

    2016-01-01

    Studying the influence of climatic and/or site-specific factors on soil organic matter (SOM) along an elevation gradient is important for understanding the response of SOM to global warming. We evaluated the composition of SOM and structure of humic acids along an altitudinal gradient from 600 to 1400 m in moso bamboo (Phyllostachys edulis) plantations in central Taiwan using NMR spectroscopy and photometric analysis. Total organic C and total nitrogen (N) content increased with increasing elevation. Aromaticity decreased and ΔlogK (the logarithm of the absorbance ratio of humic acids at 400 and 600 nm) increased with increasing elevation, which suggests that SOM humification decreased with increasing elevation. High temperature at low elevations seemed to enhance the decomposition (less accumulation of total organic C and N) and humification (high aromaticity and low ΔlogK). The alkyl-C/O-alkyl-C (A/O-A) ratio of humic acids increased with increasing elevation, which suggests that SOM humification increased with increasing elevation; this finding was contrary to the trend observed for ΔlogK and aromaticity. Such a discrepancy might be due to the relatively greater remaining of SOM derived from high alkyl-C broadleaf litter of previous forest at high elevations. The ratio of recalcitrant C to total organic C was low at low elevations, possibly because of enhanced decomposition of recalcitrant SOM from the previous broadleaf forest during long-term intensive cultivation and high temperature. Overall, the change in SOM pools and in the rate of humification with elevation was primarily affected by changes in climatic conditions along the elevation gradient in these bamboo plantations. However, when the composition of SOM, as assessed by NMR spectroscopy and photometric analysis was considered, site-specific factors such as residual SOM from previous forest and intensive cultivation history could also have an important effect on the humic acid composition and humification of SOM. PMID:27583451

  3. Progress in modeling hypersonic turbulent boundary layers

    NASA Technical Reports Server (NTRS)

    Zeman, Otto

    1993-01-01

    A good knowledge of the turbulence structure, wall heat transfer, and friction in turbulent boundary layers (TBL) at high speeds is required for the design of hypersonic air breathing airplanes and reentry space vehicles. This work reports on recent progress in the modeling of high speed TBL flows. The specific research goal described here is the development of a second order closure model for zero pressure gradient TBL's for the range of Mach numbers up to hypersonic speeds with arbitrary wall cooling requirements.

  4. Clarifying the Conceptualization, Dimensionality, and Structure of Emotion: Response to Barrett and Colleagues.

    PubMed

    Cowen, Alan S; Keltner, Dacher

    2018-04-01

    We present a mathematically based framework distinguishing the dimensionality, structure, and conceptualization of emotion-related responses. Our recent findings indicate that reported emotional experience is high-dimensional, involves gradients between categories traditionally thought of as discrete (e.g., 'fear', 'disgust'), and cannot be reduced to widely used domain-general scales (valence, arousal, etc.). In light of our conceptual framework and findings, we address potential methodological and conceptual confusions in Barrett and colleagues' commentary on our work. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Predictive mapping of forest composition and structure with direct gradient analysis and nearest neighbor imputation in coastal Oregon, U.S.A.

    Treesearch

    Janet L. Ohmann; Matthew J. Gregory

    2002-01-01

    Spatially explicit information on the species composition and structure of forest vegetation is needed at broad spatial scales for natural resource policy analysis and ecological research. We present a method for predictive vegetation mapping that applies direct gradient analysis and nearest-neighbor imputation to ascribe detailed ground attributes of vegetation to...

  6. Test of Monin-Obukhov similarity theory using distributed temperature sensing

    NASA Astrophysics Data System (ADS)

    Cheng, Y.; Sayde, C.; Li, Q.; Gentine, P.

    2017-12-01

    Monin-Obukhov similarity theory [Monin and Obukhov, 1954] (MOST) has been widely used to calculate atmospheric surface fluxes applying the structure correction functions [Stull, 1988]. The exact forms of the structure correction functions for momentum and heat, which depend on the vertical gradient velocity and temperature, have been determined empirically mostly from the Kansas experiment [Kaimal et al., 1972]. However, due to the limitation of point measurement, the vertical gradient of temperature and horizontal wind speed are not well captured. Here we propose a way to measure the vertical gradient of temperature and horizontal wind speed with high resolution in space (every 12.7 cm) and time (every second) using the Distributed Temperature Sensing [Selker et al., 2006] (DTS), thus determining the exact form of the structure correction functions of MOST under various stability conditions. Two parallel vertical fiber optics will be placed on a tower at the central facility of ARM SGP site. Vertical air temperature will be measured every 12.7 cm by the fiber optics and horizontal wind speed along fiber will be measured. Then vertical gradient of temperature and horizontal wind speed will be calculated and stability correction functions for momentum and heat will be determined. ReferencesKaimal, J. C., Wyngaard, J. C., Izumi, Y., and Cote, O. R. (1972), Spectral characteristics of surface-layer turbulence, Quarterly Journal of the Royal Meteorological Society, 98(417), 563-589, doi: 10.1002/qj.49709841707. Monin, A., and Obukhov, A. (1954), Basic laws of turbulent mixing in the surface layer of the atmosphere, Contrib. Geophys. Inst. Acad. Sci. USSR, 24(151), 163-187. Selker, J., Thévenaz, L., Huwald, H., Mallet, A., Luxemburg, W., van de Giesen, N., Stejskal, M., Zeman, J., Westhoff, M., and Parlange, M. B. (2006), Distributed fiber-optic temperature sensing for hydrologic systems, Water Resources Research, 42, W12202, doi: 10.1029/2006wr005326. Stull, R. (1988), An Introduction to Boundary Layer Meteorology, pp. 666, Kluwer Academic Publishers, Dordrecht.

  7. Gradient and shim technologies for ultra high field MRI

    PubMed Central

    Winkler, Simone A.; Schmitt, Franz; Landes, Hermann; DeBever, Josh; Wade, Trevor; Alejski, Andrew

    2017-01-01

    Ultra High Field (UHF) MRI requires improved gradient and shim performance to fully realize the promised gains (SNR as well as spatial, spectral, diffusion resolution) that higher main magnetic fields offer. Both the more challenging UHF environment by itself, as well as the higher currents used in high performance coils, require a deeper understanding combined with sophisticated engineering modeling and construction, to optimize gradient and shim hardware for safe operation and for highest image quality. This review summarizes the basics of gradient and shim technologies, and outlines a number of UHF-related challenges and solutions. In particular, Lorentz forces, vibroacoustics, eddy currents, and peripheral nerve stimulation are discussed. Several promising UHF-relevant gradient concepts are described, including insertable gradient coils aimed at higher performance neuroimaging. PMID:27915120

  8. Environmental and spatial drivers of taxonomic, functional, and phylogenetic characteristics of bat communities in human-modified landscapes.

    PubMed

    Cisneros, Laura M; Fagan, Matthew E; Willig, Michael R

    2016-01-01

    Assembly of species into communities following human disturbance (e.g., deforestation, fragmentation) may be governed by spatial (e.g., dispersal) or environmental (e.g., niche partitioning) mechanisms. Variation partitioning has been used to broadly disentangle spatial and environmental mechanisms, and approaches utilizing functional and phylogenetic characteristics of communities have been implemented to determine the relative importance of particular environmental (or niche-based) mechanisms. Nonetheless, few studies have integrated these quantitative approaches to comprehensively assess the relative importance of particular structuring processes. We employed a novel variation partitioning approach to evaluate the relative importance of particular spatial and environmental drivers of taxonomic, functional, and phylogenetic aspects of bat communities in a human-modified landscape in Costa Rica. Specifically, we estimated the amount of variation in species composition (taxonomic structure) and in two aspects of functional and phylogenetic structure (i.e., composition and dispersion) along a forest loss and fragmentation gradient that are uniquely explained by landscape characteristics (i.e., environment) or space to assess the importance of competing mechanisms. The unique effects of space on taxonomic, functional and phylogenetic structure were consistently small. In contrast, landscape characteristics (i.e., environment) played an appreciable role in structuring bat communities. Spatially-structured landscape characteristics explained 84% of the variation in functional or phylogenetic dispersion, and the unique effects of landscape characteristics significantly explained 14% of the variation in species composition. Furthermore, variation in bat community structure was primarily due to differences in dispersion of species within functional or phylogenetic space along the gradient, rather than due to differences in functional or phylogenetic composition. Variation among bat communities was related to environmental mechanisms, especially niche-based (i.e., environmental) processes, rather than spatial mechanisms. High variation in functional or phylogenetic dispersion, as opposed to functional or phylogenetic composition, suggests that loss or gain of niche space is driving the progressive loss or gain of species with particular traits from communities along the human-modified gradient. Thus, environmental characteristics associated with landscape structure influence functional or phylogenetic aspects of bat communities by effectively altering the ways in which species partition niche space.

  9. Environmental and spatial drivers of taxonomic, functional, and phylogenetic characteristics of bat communities in human-modified landscapes

    PubMed Central

    Fagan, Matthew E.; Willig, Michael R.

    2016-01-01

    Background Assembly of species into communities following human disturbance (e.g., deforestation, fragmentation) may be governed by spatial (e.g., dispersal) or environmental (e.g., niche partitioning) mechanisms. Variation partitioning has been used to broadly disentangle spatial and environmental mechanisms, and approaches utilizing functional and phylogenetic characteristics of communities have been implemented to determine the relative importance of particular environmental (or niche-based) mechanisms. Nonetheless, few studies have integrated these quantitative approaches to comprehensively assess the relative importance of particular structuring processes. Methods We employed a novel variation partitioning approach to evaluate the relative importance of particular spatial and environmental drivers of taxonomic, functional, and phylogenetic aspects of bat communities in a human-modified landscape in Costa Rica. Specifically, we estimated the amount of variation in species composition (taxonomic structure) and in two aspects of functional and phylogenetic structure (i.e., composition and dispersion) along a forest loss and fragmentation gradient that are uniquely explained by landscape characteristics (i.e., environment) or space to assess the importance of competing mechanisms. Results The unique effects of space on taxonomic, functional and phylogenetic structure were consistently small. In contrast, landscape characteristics (i.e., environment) played an appreciable role in structuring bat communities. Spatially-structured landscape characteristics explained 84% of the variation in functional or phylogenetic dispersion, and the unique effects of landscape characteristics significantly explained 14% of the variation in species composition. Furthermore, variation in bat community structure was primarily due to differences in dispersion of species within functional or phylogenetic space along the gradient, rather than due to differences in functional or phylogenetic composition. Discussion Variation among bat communities was related to environmental mechanisms, especially niche-based (i.e., environmental) processes, rather than spatial mechanisms. High variation in functional or phylogenetic dispersion, as opposed to functional or phylogenetic composition, suggests that loss or gain of niche space is driving the progressive loss or gain of species with particular traits from communities along the human-modified gradient. Thus, environmental characteristics associated with landscape structure influence functional or phylogenetic aspects of bat communities by effectively altering the ways in which species partition niche space. PMID:27761338

  10. Open forum

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Some experiments on turbulent free shear layers in pressure gradients are discussed. Topics covered in the discussion include: (1) two dimensional vortex structures, (2) the effect of channel walls, and (3) the case of a mixing layer in pressure gradient.

  11. Mortality gradients within and among dominant plant populations as barometers of ecosystem change during extreme drought.

    PubMed

    Gitlin, Alicyn R; Sthultz, Christopher M; Bowker, Matthew A; Stumpf, Stacy; Paxton, Kristina L; Kennedy, Karla; Muñoz, Axhel; Bailey, Joseph K; Whitham, Thomas G

    2006-10-01

    Understanding patterns of plant population mortality during extreme weather events is important to conservation planners because the frequency of such events is expected to increase, creating the need to integrate climatic uncertainty into management. Dominant plants provide habitat and ecosystem structure, so changes in their distribution can be expected to have cascading effects on entire communities. Observing areas that respond quickly to climate fluctuations provides foresight into future ecological changes and will help prioritize conservation efforts. We investigated patterns of mortality in six dominant plant species during a drought in the southwestern United States. We quantified population mortality for each species across its regional distribution and tested hypotheses to identify ecological stress gradients for each species. Our results revealed three major patterns: (1) dominant species from diverse habitat types (i.e., riparian, chaparral, and low- to high-elevation forests) exhibited significant mortality, indicating that the effects of drought were widespread; (2) average mortality differed among dominant species (one-seed juniper[Juniperus monosperma (Engelm.) Sarg.] 3.3%; manzanita[Arctostaphylos pungens Kunth], 14.6%; quaking aspen[Populus tremuloides Michx.], 15.4%; ponderosa pine[Pinus ponderosa P. & C. Lawson], 15.9%; Fremont cottonwood[Populus fremontii S. Wats.], 20.7%; and pinyon pine[Pinus edulis Engelm.], 41.4%); (3) all dominant species showed localized patterns of very high mortality (24-100%) consistent with water stress gradients. Land managers should plan for climatic uncertainty by promoting tree recruitment in rare habitat types, alleviating unnatural levels of competition on dominant plants, and conserving sites across water stress gradients. High-stress sites, such as those we examined, have conservation value as barometers of change and because they may harbor genotypes that are adapted to climatic extremes.

  12. Block and Gradient Copoly(2-oxazoline) Micelles: Strikingly Different on the Inside.

    PubMed

    Filippov, Sergey K; Verbraeken, Bart; Konarev, Petr V; Svergun, Dmitri I; Angelov, Borislav; Vishnevetskaya, Natalya S; Papadakis, Christine M; Rogers, Sarah; Radulescu, Aurel; Courtin, Tim; Martins, José C; Starovoytova, Larisa; Hruby, Martin; Stepanek, Petr; Kravchenko, Vitaly S; Potemkin, Igor I; Hoogenboom, Richard

    2017-08-17

    Herein, we provide a direct proof for differences in the micellar structure of amphiphilic diblock and gradient copolymers, thereby unambiguously demonstrating the influence of monomer distribution along the polymer chains on the micellization behavior. The internal structure of amphiphilic block and gradient co poly(2-oxazolines) based on the hydrophilic poly(2-methyl-2-oxazoline) (PMeOx) and the hydrophobic poly(2-phenyl-2-oxazoline) (PPhOx) was studied in water and water-ethanol mixtures by small-angle X-ray scattering (SAXS), small-angle neutron scattering (SANS), static and dynamic light scattering (SLS/DLS), and 1 H NMR spectroscopy. Contrast matching SANS experiments revealed that block copolymers form micelles with a uniform density profile of the core. In contrast to popular assumption, the outer part of the core of the gradient copolymer micelles has a distinctly higher density than the middle of the core. We attribute the latter finding to back-folding of chains resulting from hydrophilic-hydrophobic interactions, leading to a new type of micelles that we refer to as micelles with a "bitterball-core" structure.

  13. Frame prediction using recurrent convolutional encoder with residual learning

    NASA Astrophysics Data System (ADS)

    Yue, Boxuan; Liang, Jun

    2018-05-01

    The prediction for the frame of a video is difficult but in urgent need in auto-driving. Conventional methods can only predict some abstract trends of the region of interest. The boom of deep learning makes the prediction for frames possible. In this paper, we propose a novel recurrent convolutional encoder and DE convolutional decoder structure to predict frames. We introduce the residual learning in the convolution encoder structure to solve the gradient issues. The residual learning can transform the gradient back propagation to an identity mapping. It can reserve the whole gradient information and overcome the gradient issues in Recurrent Neural Networks (RNN) and Convolutional Neural Networks (CNN). Besides, compared with the branches in CNNs and the gated structures in RNNs, the residual learning can save the training time significantly. In the experiments, we use UCF101 dataset to train our networks, the predictions are compared with some state-of-the-art methods. The results show that our networks can predict frames fast and efficiently. Furthermore, our networks are used for the driving video to verify the practicability.

  14. Incorporating high-pressure electroosmotic pump and a nano-flow gradient generator into a miniaturized liquid chromatographic system for peptide analysis.

    PubMed

    Chen, Apeng; Lynch, Kyle B; Wang, Xiaochun; Lu, Joann J; Gu, Congying; Liu, Shaorong

    2014-09-24

    We integrate a high-pressure electroosmotic pump (EOP), a nanoflow gradient generator, and a capillary column into a miniaturized liquid chromatographic system that can be directly coupled with a mass spectrometer for proteomic analysis. We have recently developed a low-cost high-pressure EOP capable of generating pressure of tens of thousands psi, ideal for uses in miniaturized HPLC. The pump worked smoothly when it was used for isocratic elutions. When it was used for gradient elutions, generating reproducible gradient profiles was challenging; because the pump rate fluctuated when the pump was used to pump high-content organic solvents. This presents an issue for separating proteins/peptides since high-content organic solvents are often utilized. In this work, we solve this problem by incorporating our high-pressure EOP with a nano-flow gradient generator so that the EOP needs only to pump an aqueous solution. With this combination, we develop a capillary-based nano-HPLC system capable of performing nano-flow gradient elution; the pump rate is stable, and the gradient profiles are reproducible and can be conveniently tuned. To demonstrate its utility, we couple it with either a UV absorbance detector or a mass spectrometer for peptide separations. Copyright © 2014. Published by Elsevier B.V.

  15. Small swimmers and sinkers structure the microenvironment by deforming ambient chemical gradients

    NASA Astrophysics Data System (ADS)

    Inman, B.; Franks, P. J. S.; Torres, C.

    2016-02-01

    Chemical gradients in the microscale environment determine the rates of fundamental planktonic processes such as signaling and sensing, grazing, predation, mating, infection, nutrient uptake, and primary production. We show that bodies swimming or sinking at low Reynolds number can deform and intensify ambient scalar gradients on the order of 10-1000 times. Over time, this restructuring of the microenvironment in the wake of a moving particle results in elevated diffusive fluxes of ecologically relevant tracers. We use diffusive Stokes flow to model the time evolution of planes of tracer particles that represent a gradient being deformed by a sinking sphere. Ultimately, the degree of gradient intensification and the corresponding diffusive flux enhancement depend on how far a moving body deforms a plane of tracer before it punches through. We derive a scaling for this distance, Ldef, as a function of the Péclet number and describe its importance in the microscale planktonic environment. We then test the modeled gradient deformation, diffusive flux enhancement, and Ldef using an experimental tank apparatus in which the marine copepod, Calanus pacificus, is induced to swim through a layer of tracer dye. We show that the gradient deformation due to the copepod swimming can enhance the apparent tracer diffusivity by 500% over 10 minutes, drawing the tracer out into centimeters-long tendrils. These swimming-induced gradient deformations may be an important source of structure in the microscale environment of the plankton.

  16. GOCE gravity gradient data for lithospheric modeling - From well surveyed to frontier areas

    NASA Astrophysics Data System (ADS)

    Bouman, J.; Ebbing, J.; Gradmann, S.; Fuchs, M.; Fattah, R. Abdul; Meekes, S.; Schmidt, M.; Lieb, V.; Haagmans, R.

    2012-04-01

    We explore how GOCE gravity gradient data can improve modeling of the Earth's lithosphere and thereby contribute to a better understanding of the Earth's dynamic processes. The idea is to invert satellite gravity gradients and terrestrial gravity data in the well explored and understood North-East Atlantic Margin and to compare the results of this inversion, providing improved information about the lithosphere and upper mantle, with results obtained by means of models based upon other sources like seismics and magnetic field information. Transfer of the obtained knowledge to the less explored Rub' al Khali desert is foreseen. We present a case study for the North-East Atlantic margin, where we analyze the use of satellite gravity gradients by comparison with a well-constrained 3D density model that provides a detailed picture from the upper mantle to the top basement (base of sediments). The latter horizon is well resolved from gravity and especially magnetic data, whereas sedimentary layers are mainly constrained from seismic studies, but do in general not show a prominent effect in the gravity and magnetic field. We analyze how gravity gradients can increase confidence in the modeled structures by calculating a sensitivity matrix for the existing 3D model. This sensitivity matrix describes the relation between calculated gravity gradient data and geological structures with respect to their depth, extent and relative density contrast. As the sensitivity of the modeled bodies varies for different tensor components, we can use this matrix for a weighted inversion of gradient data to optimize the model. This sensitivity analysis will be used as input to study the Rub' al Khali desert in Saudi Arabia. In terms of modeling and data availability this is a frontier area. Here gravity gradient data will be used to better identify the extent of anomalous structures within the basin, with the goal to improve the modeling for hydrocarbon exploration purposes.

  17. Micro-mechanical properties of the tendon-to-bone attachment.

    PubMed

    Deymier, Alix C; An, Yiran; Boyle, John J; Schwartz, Andrea G; Birman, Victor; Genin, Guy M; Thomopoulos, Stavros; Barber, Asa H

    2017-07-01

    The tendon-to-bone attachment (enthesis) is a complex hierarchical tissue that connects stiff bone to compliant tendon. The attachment site at the micrometer scale exhibits gradients in mineral content and collagen orientation, which likely act to minimize stress concentrations. The physiological micromechanics of the attachment thus define resultant performance, but difficulties in sample preparation and mechanical testing at this scale have restricted understanding of structure-mechanical function. Here, microscale beams from entheses of wild type mice and mice with mineral defects were prepared using cryo-focused ion beam milling and pulled to failure using a modified atomic force microscopy system. Micromechanical behavior of tendon-to-bone structures, including elastic modulus, strength, resilience, and toughness, were obtained. Results demonstrated considerably higher mechanical performance at the micrometer length scale compared to the millimeter tissue length scale, describing enthesis material properties without the influence of higher order structural effects such as defects. Micromechanical investigation revealed a decrease in strength in entheses with mineral defects. To further examine structure-mechanical function relationships, local deformation behavior along the tendon-to-bone attachment was determined using local image correlation. A high compliance zone near the mineralized gradient of the attachment was clearly identified and highlighted the lack of correlation between mineral distribution and strain on the low-mineral end of the attachment. This compliant region is proposed to act as an energy absorbing component, limiting catastrophic failure within the tendon-to-bone attachment through higher local deformation. This understanding of tendon-to-bone micromechanics demonstrates the critical role of micrometer scale features in the mechanics of the tissue. The tendon-to-bone attachment (enthesis) is a complex hierarchical tissue with features at a numerous scales that dissipate stress concentrations between compliant tendon and stiff bone. At the micrometer scale, the enthesis exhibits gradients in collagen and mineral composition and organization. However, the physiological mechanics of the enthesis at this scale remained unknown due to difficulty in preparing and testing micrometer scale samples. This study is the first to measure the tensile mechanical properties of the enthesis at the micrometer scale. Results demonstrated considerably enhanced mechanical performance at the micrometer length scale compared to the millimeter tissue length scale and identified a high-compliance zone near the mineralized gradient of the attachment. This understanding of tendon-to-bone micromechanics demonstrates the critical role of micrometer scale features in the mechanics of the tissue. Copyright © 2017. Published by Elsevier Ltd.

  18. Implications for seismic hazard from new gravity data in Napa and vicinity, California

    NASA Astrophysics Data System (ADS)

    Morgan, K.; Langenheim, V. E.; Ritzinger, B. T.

    2015-12-01

    New gravity data refine the basin structure beneath the city of Napa, California and suggest continuity of the West Napa fault to the SE, near the city of Vallejo. Previous regional gravity data defined a basin 2-3 km deep beneath Napa where the 2014 M6.0 South Napa and the 2000 M4.9 Yountville earthquakes caused considerable damage. Higher ground motions were also recorded within the area of the gravity low. About 100 new gravity measurements sharpen gravity gradients along the eastern margin of the gravity low, where there was a concentration of red-tagged buildings from the 2014 earthquake. The new data also confirm the presence of an intrabasinal, arch, defined by slightly higher gravity values (~ 1 mGal) in the center of the basin and marked by the edge of a significant magnetic high (~150 nT). This arch coincides with the highest concentration of red-tagged buildings from the 2014 earthquake. Comparison of the potential-field anomalies with rock types encountered in water wells suggests that the arch is underlain by sediments which thin to the south where they are underlain by thick Sonoma Volcanics.. We speculate that the concentration of damage may be caused by shallowing of the basement or by a thicker sequence of basin sediments in the arch or both. Red-tagged buildings from the Yountville earthquake are near the western edge of the basin defined by significant potential-field gradients of the West Napa fault. A sharp basin boundary or guided waves along the fault may have contributed to concentration of damage in this area. Although the potential-field gradients decrease south of Napa, our new gravity data define a gradient aligned to the SE beneath the town of Vallejo. The gradient resides within Mesozoic basement rocks because it traverses outcrops of Great Valley Sequence. Although these data cannot prove Quaternary slip on this structure, its trend and location may indicate continuation of the West Napa fault to the SE.

  19. Bathymetric patterns in standing stock and diversity of deep-sea nematodes at the long-term ecological research observatory HAUSGARTEN (Fram Strait)

    NASA Astrophysics Data System (ADS)

    Grzelak, Katarzyna; Kotwicki, Lech; Hasemann, Christiane; Soltwedel, Thomas

    2017-08-01

    Bathymetric patterns in standing stocks and diversity are a major topic of investigation in deep-sea biology. From the literature, responses of metazoan meiofauna and nematodes to bathymetric gradients are well studied, with a general decrease in biomass and abundance with increasing water depth, while bathymetric diversity gradients often, although it is not a rule, show a unimodal pattern. Spatial distribution patterns of nematode communities along bathymetric gradients are coupled with surface-water processes and interacting physical and biological factors within the benthic system. We studied the nematode communities at the Long-Term Ecological Research (LTER) observatory HAUSGARTEN, located in the Fram Strait at the Marginal Ice Zone, with respect to their standing stocks as well as structural and functional diversity. We evaluated whether nematode density, biomass and diversity indices, such as H0, Hinf, EG(50), Θ- 1, are linked with environmental conditions along a bathymetric transect spanning from 1200 m to 5500 m water depth. Nematode abundance, biomass and diversity, as well as food availability from phytodetritus sedimentation (indicated by chloroplastic pigments in the sediments), were higher at the stations located at upper bathyal depths (1200-2000 m) and tended to decrease with increasing water depth. A faunal shift was found below 3500 m water depth, where genus composition and trophic structure changed significantly and structural diversity indices markedly decreased. A strong dominance of very few genera and its high turnover particularly at the abyssal stations (4000-5500 m) suggests that environmental conditions were rather unfavorable for most genera. Despite the high concentrations of sediment-bound chloroplastic pigments and elevated standing stocks found at the deepest station (5500 m), nematode genus diversity remained the lowest compared to all other stations. This study provides a further insight into the knowledge of deep-sea nematodes, their diversity patterns and a deeper understanding of the environmental factors shaping nematodes communities at bathyal and abyssal depths.

  20. Physiological community ecology: variation in metabolic activity of ecologically important rocky intertidal invertebrates along environmental gradients.

    PubMed

    Dahlhoff, Elizabeth P; Stillman, Jonathon H; Menge, Bruce A

    2002-08-01

    Rocky intertidal invertebrates live in heterogeneous habitats characterized by steep gradients in wave activity, tidal flux, temperature, food quality and food availability. These environmental factors impact metabolic activity via changes in energy input and stress-induced alteration of energetic demands. For keystone species, small environmentally induced shifts in metabolic activity may lead to disproportionately large impacts on community structure via changes in growth or survival of these key species. Here we use biochemical indicators to assess how natural differences in wave exposure, temperature and food availability may affect metabolic activity of mussels, barnacles, whelks and sea stars living at rocky intertidal sites with different physical and oceanographic characteristics. We show that oxygen consumption rate is correlated with the activity of key metabolic enzymes (e.g., citrate synthase and malate dehydrogenase) for some intertidal species, and concentrations of these enzymes in certain tissues are lower for starved individuals than for those that are well fed. We also show that the ratio of RNA to DNA (an index of protein synthetic capacity) is highly variable in nature and correlates with short-term changes in food availability. We also observed striking patterns in enzyme activity and RNA/DNA in nature, which are related to differences in rocky intertidal community structure. Differences among species and habitats are most pronounced in summer and are linked to high nearshore productivity at sites favored by suspension feeders and to exposure to stressful low-tide air temperatures in areas of low wave splash. These studies illustrate the great promise of using biochemical indicators to test ecological models, which predict changes in community structure along environmental gradients. Our results also suggest that biochemical indices must be carefully validated with laboratory studies, so that the indicator selected is likely to respond to the environmental variables of interest.

  1. A Gradient-Field Pulsed Eddy Current Probe for Evaluation of Hidden Material Degradation in Conductive Structures Based on Lift-Off Invariance

    PubMed Central

    Li, Yong; Jing, Haoqing; Zainal Abidin, Ilham Mukriz; Yan, Bei

    2017-01-01

    Coated conductive structures are widely adopted in such engineering fields as aerospace, nuclear energy, etc. The hostile and corrosive environment leaves in-service coated conductive structures vulnerable to Hidden Material Degradation (HMD) occurring under the protection coating. It is highly demanded that HMD can be non-intrusively assessed using non-destructive evaluation techniques. In light of the advantages of Gradient-field Pulsed Eddy Current technique (GPEC) over other non-destructive evaluation methods in corrosion evaluation, in this paper the GPEC probe for quantitative evaluation of HMD is intensively investigated. Closed-form expressions of GPEC responses to HMD are formulated via analytical modeling. The Lift-off Invariance (LOI) in GPEC signals, which makes the HMD evaluation immune to the variation in thickness of the protection coating, is introduced and analyzed through simulations involving HMD with variable depths and conductivities. A fast inverse method employing magnitude and time of the LOI point in GPEC signals for simultaneously evaluating the conductivity and thickness of HMD region is proposed, and subsequently verified by finite element modeling and experiments. It has been found from the results that along with the proposed inverse method the GPEC probe is applicable to evaluation of HMD in coated conductive structures without much loss in accuracy. PMID:28441328

  2. Size-confined fixed-composition and composition-dependent engineered band gap alloying induces different internal structures in L-cysteine-capped alloyed quaternary CdZnTeS quantum dots

    NASA Astrophysics Data System (ADS)

    Adegoke, Oluwasesan; Park, Enoch Y.

    2016-06-01

    The development of alloyed quantum dot (QD) nanocrystals with attractive optical properties for a wide array of chemical and biological applications is a growing research field. In this work, size-tunable engineered band gap composition-dependent alloying and fixed-composition alloying were employed to fabricate new L-cysteine-capped alloyed quaternary CdZnTeS QDs exhibiting different internal structures. Lattice parameters simulated based on powder X-ray diffraction (PXRD) revealed the internal structure of the composition-dependent alloyed CdxZnyTeS QDs to have a gradient nature, whereas the fixed-composition alloyed QDs exhibited a homogenous internal structure. Transmission electron microscopy (TEM) and dynamic light scattering (DLS) analysis confirmed the size-confined nature and monodispersity of the alloyed nanocrystals. The zeta potential values were within the accepted range of colloidal stability. Circular dichroism (CD) analysis showed that the surface-capped L-cysteine ligand induced electronic and conformational chiroptical changes in the alloyed nanocrystals. The photoluminescence (PL) quantum yield (QY) values of the gradient alloyed QDs were 27-61%, whereas for the homogenous alloyed QDs, the PL QY values were spectacularly high (72-93%). Our work demonstrates that engineered fixed alloying produces homogenous QD nanocrystals with higher PL QY than composition-dependent alloying.

  3. Sub-wavelength grating mode transformers in silicon slab waveguides.

    PubMed

    Bock, Przemek J; Cheben, Pavel; Schmid, Jens H; Delâge, André; Xu, Dan-Xia; Janz, Siegfried; Hall, Trevor J

    2009-10-12

    We report on several new types of sub-wavelength grating (SWG) gradient index structures for efficient mode coupling in high index contrast slab waveguides. Using a SWG, an adiabatic transition is achieved at the interface between silicon-on-insulator waveguides of different geometries. The SWG transition region minimizes both fundamental mode mismatch loss and coupling to higher order modes. By creating the gradient effective index region in the direction of propagation, we demonstrate that efficient vertical mode transformation can be achieved between slab waveguides of different core thickness. The structures which we propose can be fabricated by a single etch step. Using 3D finite-difference time-domain simulations we study the loss, polarization dependence and the higher order mode excitation for two types (triangular and triangular-transverse) of SWG transition regions between silicon-on-insulator slab waveguides of different core thicknesses. We demonstrate two solutions to reduce the polarization dependent loss of these structures. Finally, we propose an implementation of SWG structures to reduce loss and higher order mode excitation between a slab waveguide and a phase array of an array waveguide grating (AWG). Compared to a conventional AWG, the loss is reduced from -1.4 dB to < -0.2 dB at the slab-array interface.

  4. Design study of high gradient, low impedance accelerating structures for the FERMI free electron laser linac upgrade

    NASA Astrophysics Data System (ADS)

    Shafqat, N.; Di Mitri, S.; Serpico, C.; Nicastro, S.

    2017-09-01

    The FERMI free-electron laser (FEL) of Elettra Sincrotrone Trieste, Italy, is a user facility driven by a 1.5 GeV 10-50 Hz S-band radiofrequency linear accelerator (linac), and it is based on an external laser seeding scheme that allows lasing at the shortest fundamental wavelength of 4 nm. An increase of the beam energy to 1.8 GeV at a tolerable breakdown rate, and an improvement of the final beam quality is desired in order to allow either lasing at 4 nm with a higher flux, or lasing at shorter wavelengths. This article presents the impedance analysis of newly designed S-band accelerating structures, for replacement of the existing backward travelling wave structures (BTWS) in the last portion of the FERMI linac. The new structure design promises higher accelerating gradient and lower impedance than those of the existing BTWS. Particle tracking simulations show that, with the linac upgrade, the beam relative energy spread, its linear and nonlinear z-correlation internal to the bunch, and the beam transverse emittances can be made smaller than the ones in the present configuration, with expected advantage to the FEL performance. The repercussion of the upgrade on the linac quadrupole magnets setting, for a pre-determined electron beam optics, is also considered.

  5. Impact of Environmental and Disturbance Variables on Avian Community Structure along a Gradient of Urbanization in Jamshedpur, India

    PubMed Central

    Verma, Sushant Kumar; Murmu, Thakur Das

    2015-01-01

    Gradient pattern analysis was used to investigate the impact of environmental and disturbance variables on species richness, species diversity, abundance and seasonal variation of birds in and around Jamshedpur, which is one of the fastest growing cities of India. It was observed that avian community structure is highly influenced by the vegetation habitat variables, food availability and human-related disturbance variables. A total of 61 species belonging to 33 families were recorded from the suburban area. 55 species belonging to 32 families were observed in nearby wildland habitat consisting of natural vegetation whereas only 26 species belonging to 18 families were observed in urban area. Results indicated that the suburban habitat had more complex bird community structure in terms of higher species richness, higher species diversity and higher evenness in comparison to urban and wildland habitat. Bird species richness and diversity varied across seasons. Maximum species richness and diversity was observed during spring season in all type of habitat. Most of the birds observed in urban areas were found to belong to either rare or irregular category on the basis of their abundance. The observed pattern of avian community structure is due to combined effect of both environmental and human related disturbance variables. PMID:26218583

  6. A Gradient-Field Pulsed Eddy Current Probe for Evaluation of Hidden Material Degradation in Conductive Structures Based on Lift-Off Invariance.

    PubMed

    Li, Yong; Jing, Haoqing; Zainal Abidin, Ilham Mukriz; Yan, Bei

    2017-04-25

    Coated conductive structures are widely adopted in such engineering fields as aerospace, nuclear energy, etc. The hostile and corrosive environment leaves in-service coated conductive structures vulnerable to Hidden Material Degradation (HMD) occurring under the protection coating. It is highly demanded that HMD can be non-intrusively assessed using non-destructive evaluation techniques. In light of the advantages of Gradient-field Pulsed Eddy Current technique (GPEC) over other non-destructive evaluation methods in corrosion evaluation, in this paper the GPEC probe for quantitative evaluation of HMD is intensively investigated. Closed-form expressions of GPEC responses to HMD are formulated via analytical modeling. The Lift-off Invariance (LOI) in GPEC signals, which makes the HMD evaluation immune to the variation in thickness of the protection coating, is introduced and analyzed through simulations involving HMD with variable depths and conductivities. A fast inverse method employing magnitude and time of the LOI point in GPEC signals for simultaneously evaluating the conductivity and thickness of HMD region is proposed, and subsequently verified by finite element modeling and experiments. It has been found from the results that along with the proposed inverse method the GPEC probe is applicable to evaluation of HMD in coated conductive structures without much loss in accuracy.

  7. Forest structure, composition, and tree diversity response to a gradient of regeneration harvests in the mid-Cumberland Plateau escarpment region, USA

    Treesearch

    Callie Schweitzer; Daniel C. Dey

    2011-01-01

    Upland hardwood stands on mesic, escarpment-oriented sites on the Cumberland Plateau region of northeastern Alabama provide a myriad management opportunities. Stands are primarily managed for Quercus, but the high species diversity allows for management that targets multiple species. Stand composition is unique in that dominant species include shade tolerant species...

  8. Methods of Enhancing the Operating Characteristics of Gas-Turbine Blades

    NASA Astrophysics Data System (ADS)

    Ospennikova, O. G.; Visik, E. M.; Gerasimov, V. V.; Kolyadov, E. V.

    2017-12-01

    This paper considers the main tendencies of development and ways of introduction of new technological solutions and alloys in the production of industrial gas-turbine unit (GTU) blades and presents a review of modern corrosion-resistant alloys, casting units for high-gradient directional solidification, and the techniques providing the preparation of a single-crystal structure in the blades of stationary turbine plants.

  9. Vegetation composition and structure of forest patches along urban-rural gradients

    Treesearch

    W.C. Zipperer; G.R. Guntenspergen

    2009-01-01

    The urban landscape is highly altered by human activities and is a mosaic of different land covers and land uses. Imbedded in this are forest patches of different origins (Zipperer et al .• 1997). How these patches influence and are influenced by the urban landscape is of ecological importance when managing the urban forest for ecosystem goods and services.

  10. Benthic cyanobacterial mats in the high arctic: multi-layer structure and fluorescence responses to osmotic stress.

    PubMed

    Lionard, Marie; Péquin, Bérangère; Lovejoy, Connie; Vincent, Warwick F

    2012-01-01

    Cyanobacterial mats are often a major biological component of extreme aquatic ecosystems, and in polar lakes and streams they may account for the dominant fraction of total ecosystem biomass and productivity. In this study we examined the vertical structure and physiology of Arctic microbial mats relative to the question of how these communities may respond to ongoing environmental change. The mats were sampled from Ward Hunt Lake (83°5.297'N, 74°9.985'W) at the northern coast of Arctic Canada, and were composed of three visibly distinct layers. Microsensor profiling showed that there were strong gradients in oxygen within each layer, with an overall decrease from 100% saturation at the mat surface to 0%, at the bottom, accompanied by an increase of 0.6 pH units down the profile. Gene clone libraries (16S rRNA) revealed the presence of Oscillatorian sequences throughout the mat, while Nostoc related species dominated the two upper layers, and Nostocales and Synechococcales sequences were common in the bottom layer. High performance liquid chromatography analyses showed a parallel gradient in pigments, from high concentrations of UV-screening scytonemin in the upper layer to increasing zeaxanthin and myxoxanthin in the bottom layer, and an overall shift from photoprotective to photosynthetic carotenoids down the profile. Climate change is likely to be accompanied by lake level fluctuations and evaporative concentration of salts, and thus increased osmotic stress of the littoral mat communities. To assess the cellular capacity to tolerate increasing osmolarity on physiology and cell membrane integrity, mat sections were exposed to a gradient of increasing salinities, and PAM measurements of in vivo chlorophyll fluorescence were made to assess changes in maximum quantum yield. The results showed that the mats were tolerant of up to a 46-fold increase in salinity. These features imply that cyanobacterial mats are resilient to ongoing climate change, and that in the absence of major biological perturbations, these vertically structured communities will continue to be a prominent feature of polar aquatic ecosystems.

  11. Tectonic History and Deep Structure of the Demerara Plateau from Combined Wide-Angle and Reflection Seismic Data and Plate Kinematic Reconstructions

    NASA Astrophysics Data System (ADS)

    Klingelhoefer, F.; Museur, T.; Roest, W. R.; Graindorge, D.; Chauvet, F.; Loncke, L.; Basile, C.; Poetisi, E.; Deverchere, J.; Lebrun, J. F.; Perrot, J.; Heuret, A.

    2017-12-01

    Many transform margins have associated intermediate depth marginal plateaus, which are commonly located between two oceanic basins. The Demerara plateau is located offshore Surinam and French Guiana. Plate kinematic reconstructions show that the plateau is located between the central and equatorial Atlantic in a position conjugate to the Guinean Plateau. In the fall of 2016, the MARGATS cruise acquired geophysical data along the 400 km wide Demerara plateau. The main objective of the cruise was to image the deep structure of the Demerara plateau and to study its tectonic history. A set of 4 combined wide-angle and reflection seismic profiles was acquired along the plateau, using 80 ocean-bottom seismometers, a 3 km long seismic streamer and a 8000 cu inch tuned airgun array. Forward modelling of the wide-angle seismic data on a profile, located in the eastern part of the plateau and oriented in a NE-SW direction, images the crustal structure of the plateau, the transition zone and the neighbouring crust of oceanic origin, up to a depth of 40 km. The plateau itself is characterised by a crust of 30 km thickness, subdivided into three distinct layers. However, the velocities and velocity gradients do not fit typical continental crust, with a lower crustal layer showing untypically high velocities and an upper layer having a steep velocity gradient. From this model we propose that the lowermost layer is probably formed from volcanic underplated material and that the upper crustal layer likely consists of the corresponding extrusive volcanic material, forming thick seaward-dipping reflector sequences on the plateau. A basement high is imaged at the foot of the slope and forms the ocean-continent transition zone. Further oceanward, a 5-6 km thick crust is imaged with velocities and velocity gradients corresponding to a thin oceanic crust. A compilation of magnetic data from the MARGATS and 3 previous cruises shows a high amplitude magnetic anomaly along the northern edge of the plateau thereby strengthening the hypothesis of an volcanic origin of at least part of the structure. We propose, that the plateau was formed by large-scale volcanism, possibly intruding into a thinner existing continental crust.

  12. Bacterial diversity, community structure and potential growth rates along an estuarine salinity gradient

    PubMed Central

    Campbell, Barbara J; Kirchman, David L

    2013-01-01

    Very little is known about growth rates of individual bacterial taxa and how they respond to environmental flux. Here, we characterized bacterial community diversity, structure and the relative abundance of 16S rRNA and 16S rRNA genes (rDNA) using pyrosequencing along the salinity gradient in the Delaware Bay. Indices of diversity, evenness, structure and growth rates of the surface bacterial community significantly varied along the transect, reflecting active mixing between the freshwater and marine ends of the estuary. There was no positive correlation between relative abundances of 16S rRNA and rDNA for the entire bacterial community, suggesting that abundance of bacteria does not necessarily reflect potential growth rate or activity. However, for almost half of the individual taxa, 16S rRNA positively correlated with rDNA, suggesting that activity did follow abundance in these cases. The positive relationship between 16S rRNA and rDNA was less in the whole water community than for free-living taxa, indicating that the two communities differed in activity. The 16S rRNA:rDNA ratios of some typically marine taxa reflected differences in light, nutrient concentrations and other environmental factors along the estuarine gradient. The ratios of individual freshwater taxa declined as salinity increased, whereas the 16S rRNA:rDNA ratios of only some typical marine bacteria increased as salinity increased. These data suggest that physical and other bottom-up factors differentially affect growth rates, but not necessarily abundance of individual taxa in this highly variable environment. PMID:22895159

  13. Genetic structure along an altitudinal gradient in Lippia origanoides, a promising aromatic plant species restricted to semiarid areas in northern South America

    PubMed Central

    Vega-Vela, Nelson Enrique; Sánchez, María Isabel Chacón

    2012-01-01

    The genetic diversity and population structure of Lippia origanoides, a species of the Verbenaceae family that shows promise as a crop plant, was investigated along an altitudinal gradient in the basin of the Chicamocha River in northeastern Colombia. The economic importance of the species, quality of its essential oils, and the fact that it is restricted to some few semiarid areas in northern South America may put the species at risk in a scenario of uncontrolled harvest of natural populations. Lippia origanoides was sampled along an altitudinal gradient from 365 to 2595 m.a.s.l. throughout Chicamocha River Canyon, a semiarid area in northeastern Colombia. Genetic diversity was assessed by means of AFLP markers. The number of AFLP loci (355) and the number of individuals sampled (173) were sufficient to reliably identify four populations at contrasting altitudes (FST = 0.18, P-value < 0.0000), two populations in the lower basin, one population in the medium basin, and one population in the upper basin, with a low level of admixture between them. In average, genetic diversity within populations was relatively high (Ht = 0.32; I = 0.48); nevertheless, diversity was significantly reduced at higher altitude, a pattern that may be consistent with a scenario of range expansion toward higher elevations in an environment with more extreme conditions. The differences in altitude among the basins in the Chicamocha River seem to be relevant in determining the genetic structure of this species. PMID:23170204

  14. Modulation of monocytic leukemia cell function and survival by high gradient magnetic fields and mathematical modeling studies.

    PubMed

    Zablotskii, Vitalii; Syrovets, Tatiana; Schmidt, Zoe W; Dejneka, Alexandr; Simmet, Thomas

    2014-03-01

    The influence of spatially modulated high gradient magnetic fields on cellular functions of human THP-1 leukemia cells is studied. We demonstrate that arrays of high-gradient micrometer-sized magnets induce i) cell swelling, ii) prolonged increased ROS production, and iii) inhibit cell proliferation, and iv) elicit apoptosis of THP-1 monocytic leukemia cells in the absence of chemical or biological agents. Mathematical modeling indicates that mechanical stress exerted on the cells by high magnetic gradient forces is responsible for triggering cell swelling and formation of reactive oxygen species followed by apoptosis. We discuss physical aspects of controlling cell functions by focused magnetic gradient forces, i.e. by a noninvasive and nondestructive physical approach. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Ternary gradient metal-organic frameworks.

    PubMed

    Liu, Chong; Rosi, Nathaniel L

    2017-09-08

    Gradient MOFs contain directional gradients of either structure or functionality. We have successfully prepared two ternary gradient MOFs based on bMOF-100 analogues, namely bMOF-100/102/106 and bMOF-110/100/102, via cascade ligand exchange reactions. The cubic unit cell parameter discrepancy within an individual ternary gradient MOF crystal is as large as ∼1 nm, demonstrating the impressive compatibility and flexibility of the component MOF materials. Because of the presence of a continuum of unit cells, the pore diameters within individual crystals also change in a gradient fashion from ∼2.5 nm to ∼3.0 nm for bMOF-100/102/106, and from ∼2.2 nm to ∼2.7 nm for bMOF-110/100/102, indicating significant porosity gradients. Like previously reported binary gradient MOFs, the composition of the ternary gradient MOFs can be easily controlled by adjusting the reaction conditions. Finally, X-ray diffraction and microspectrophotometry were used to analyse fractured gradient MOF crystals by comparing unit cell parameters and absorbance spectra at different locations, thus revealing the profile of heterogeneity (i.e. gradient distribution of properties) and further confirming the formation of ternary gradient MOFs.

  16. Responses of turtle assemblage to environmental gradients in the St. Croix River in Minnesota and Wisconsin, U.S.A.

    Treesearch

    Deahn DonnerWright; Michael A. Bozek; John R. Probst; Eric M. Anderson

    1999-01-01

    We investigated how environmental gradients measured along the St. Croix River in Minnesota and Wisconsin, U.S.A., influenced the turtle assemblage. Among seven species, the five most common species were generalists and had wide distributions throughout the study area. However, patterns in assemblage structure were related to environmental gradients along the river....

  17. Gradient microstructure and microhardness in a nitrided 18CrNiMo7-6 gear steel

    NASA Astrophysics Data System (ADS)

    Yang, R.; Wu, G. L.; Zhang, X.; Fu, W. T.; Huang, X.

    2017-07-01

    A commercial gear steel (18CrNiMo7-6) containing a tempered martensite structure was nitrided using a pressurized gas nitriding process under a pressure of 5 atm at 530 °C for 5 hours. The mechanical properties and microstructure of the nitrided sample were characterized by Vickers hardness measurements, X-ray diffraction, and backscatter electron imaging in a scanning electron microscope. A micro-hardness gradient was identified over a distance of 500 μm with hardness values of 900 HV at the top surface and 300 HV in the core. This micro-hardness gradient corresponds to a gradient in the microstructure that changes from a nitride compound layer at the top surface (∼ 20 μm thick) to a diffusion zone with a decreasing nitrogen concentration and precipitate density with distance from the surface, finally reaching the core matrix layer with a recovered martensite structure.

  18. DFTB Parameters for the Periodic Table, Part 2: Energies and Energy Gradients from Hydrogen to Calcium.

    PubMed

    Oliveira, Augusto F; Philipsen, Pier; Heine, Thomas

    2015-11-10

    In the first part of this series, we presented a parametrization strategy to obtain high-quality electronic band structures on the basis of density-functional-based tight-binding (DFTB) calculations and published a parameter set called QUASINANO2013.1. Here, we extend our parametrization effort to include the remaining terms that are needed to compute the total energy and its gradient, commonly referred to as repulsive potential. Instead of parametrizing these terms as a two-body potential, we calculate them explicitly from the DFTB analogues of the Kohn-Sham total energy expression. This strategy requires only two further numerical parameters per element. Thus, the atomic configuration and four real numbers per element are sufficient to define the DFTB model at this level of parametrization. The QUASINANO2015 parameter set allows the calculation of energy, structure, and electronic structure of all systems composed of elements ranging from H to Ca. Extensive benchmarks show that the overall accuracy of QUASINANO2015 is comparable to that of well-established methods, including PM7 and hand-tuned DFTB parameter sets, while coverage of a much larger range of chemical systems is available.

  19. 3-D phononic crystals with ultra-wide band gaps

    PubMed Central

    Lu, Yan; Yang, Yang; Guest, James K.; Srivastava, Ankit

    2017-01-01

    In this paper gradient based topology optimization (TO) is used to discover 3-D phononic structures that exhibit ultra-wide normalized all-angle all-mode band gaps. The challenging computational task of repeated 3-D phononic band-structure evaluations is accomplished by a combination of a fast mixed variational eigenvalue solver and distributed Graphic Processing Unit (GPU) parallel computations. The TO algorithm utilizes the material distribution-based approach and a gradient-based optimizer. The design sensitivity for the mixed variational eigenvalue problem is derived using the adjoint method and is implemented through highly efficient vectorization techniques. We present optimized results for two-material simple cubic (SC), body centered cubic (BCC), and face centered cubic (FCC) crystal structures and show that in each of these cases different initial designs converge to single inclusion network topologies within their corresponding primitive cells. The optimized results show that large phononic stop bands for bulk wave propagation can be achieved at lower than close packed spherical configurations leading to lighter unit cells. For tungsten carbide - epoxy crystals we identify all angle all mode normalized stop bands exceeding 100%, which is larger than what is possible with only spherical inclusions. PMID:28233812

  20. Changes in microbial communities along redox gradients in polygonized Arctic wet tundra soils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lipson, David A.; Raab, Theodore K.; Parker, Melanie

    2015-08-01

    Summary This study investigated how microbial community structure and diversity varied with depth and topography in ice wedge polygons of wet tundra of the Arctic Coastal Plain in northern Alaska and what soil variables explain these patterns. We observed strong changes in community structure and diversity with depth, and more subtle changes between areas of high and low topography, with the largest differences apparent near the soil surface. These patterns are most strongly correlated with redox gradients (measured using the ratio of reduced Fe to total Fe in acid extracts as a proxy): conditions grew more reducing with depth andmore » were most oxidized in shallow regions of polygon rims. Organic matter and pH also changed with depth and topography but were less effective predictors of the microbial community structure and relative abundance of specific taxa. Of all other measured variables, lactic acid concentration was the best, in combination with redox, for describing the microbial community. We conclude that redox conditions are the dominant force in shaping microbial communities in this landscape. Oxygen and other electron acceptors allowed for the greatest diversity of microbes: at depth the community was reduced to a simpler core of anaerobes,« less

Top