Sample records for high granularity single

  1. Positron emission particle tracking and its application to granular media

    NASA Astrophysics Data System (ADS)

    Parker, D. J.

    2017-05-01

    Positron emission particle tracking (PEPT) is a technique for tracking a single radioactively labelled particle. Accurate 3D tracking is possible even when the particle is moving at high speed inside a dense opaque system. In many cases, tracking a single particle within a granular system provides sufficient information to determine the time-averaged behaviour of the entire granular system. After a general introduction, this paper describes the detector systems (PET scanners and positron cameras) used to record PEPT data, the techniques used to label particles, and the algorithms used to process the data. This paper concentrates on the use of PEPT for studying granular systems: the focus is mainly on work at Birmingham, but reference is also made to work from other centres, and options for wider diversification are suggested.

  2. Detectors for Linear Colliders: Calorimetry at a Future Electron-Positron Collider (3/4)

    ScienceCinema

    Thomson, Mark

    2018-04-16

    Calorimetry will play a central role in determining the physics reach at a future e+e- collider. The requirements for calorimetry place the emphasis on achieving an excellent jet energy resolution. The currently favoured option for calorimetry at a future e+e- collider is the concept of high granularity particle flow calorimetry. Here granularity and a high pattern recognition capability is more important than the single particle calorimetric response. In this lecture I will describe the recent progress in understanding the reach of high granularity particle flow calorimetry and the related R&D; efforts which concentrate on test beam demonstrations of the technological options for highly granular calorimeters. I will also discuss alternatives to particle flow, for example the technique of dual readout calorimetry.

  3. Ultrafine-grained mineralogy and matrix chemistry of olivine-rich chondritic interplanetary dust particles

    NASA Technical Reports Server (NTRS)

    Rietmeijer, F. J. M.

    1989-01-01

    Olivine-rich chondritic interplanetary dust particles (IDPs) are an important subset of fluffy chondritic IDPs collected in the earth's stratosphere. Particles in this subset are characterized by a matrix of nonporous, ultrafine-grained granular units. Euhedral single crystals, crystals fragments, and platey single crystals occur dispersed in the matrix. Analytical electron microscopy of granular units reveals predominant magnesium-rich olivines and FeNi-sulfides embedded in amorphous carbonaceous matrix material. The variable ratio of ultrafine-grained minerals vs. carbonaceous matrix material in granular units support variable C/Si ratios, and some fraction of sulfur is associated with carbonaceous matrix material. The high Mg/(Mg+Fe) ratios in granular units is similar to this distribution in P/Comet Halley dust. The chondritic composition of fine-grained, polycrystalline IDPs gradually breaks down into nonchondritic, and ultimately, single mineral compositions as a function of decreased particle mass. The relationship between particle mass and composition in the matrix of olivine-rich chondritic IDPs is comparable with the relationship inferred for P/Comet Halley dust.

  4. Adsorptive removal of heavy metals from water using sodium titanate nanofibres loaded onto GAC in fixed-bed columns.

    PubMed

    Sounthararajah, D P; Loganathan, P; Kandasamy, J; Vigneswaran, S

    2015-04-28

    Heavy metals are serious pollutants in aquatic environments. A study was undertaken to remove Cu, Cd, Ni, Pb and Zn individually (single metal system) and together (mixed metals system) from water by adsorption onto a sodium titanate nanofibrous material. Langmuir adsorption capacities (mg/g) at 10(-3)M NaNO3 ionic strength in the single metal system were 60, 83, 115 and 149 for Ni, Zn, Cu, and Cd, respectively, at pH 6.5 and 250 for Pb at pH 4.0. In the mixed metals system they decreased at high metals concentrations. In column experiments with 4% titanate material and 96% granular activated carbon (w/w) mixture at pH 5.0, the metals breakthrough times and adsorption capacities (for both single and mixed metals systems) decreased in the order Pb>Cd, Cu>Zn>Ni within 266 bed volumes. The amounts adsorbed were up to 82 times higher depending on the metal in the granular activated carbon+titanate column than in the granular activated carbon column. The study showed that the titanate material has high potential for removing heavy metals from polluted water when used with granular activated carbon at a very low proportion in fixed-bed columns. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Radiation Re-solution Calculation in Uranium-Silicide Fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matthews, Christopher; Andersson, Anders David Ragnar; Unal, Cetin

    The release of fission gas from nuclear fuels is of primary concern for safe operation of nuclear power plants. Although the production of fission gas atoms can be easily calculated from the fission rate in the fuel and the average yield of fission gas, the actual diffusion, behavior, and ultimate escape of fission gas from nuclear fuel depends on many other variables. As fission gas diffuses through the fuel grain, it tends to collect into intra-granular bubbles, as portrayed in Figure 1.1. These bubbles continue to grow due to absorption of single gas atoms. Simultaneously, passing fission fragments can causemore » collisions in the bubble that result in gas atoms being knocked back into the grain. This so called “re-solution” event results in a transient equilibrium of single gas atoms within the grain. As single gas atoms progress through the grain, they will eventually collect along grain boundaries, creating inter-granular bubbles. As the inter-granular bubbles grow over time, they will interconnect with other grain-face bubbles until a pathway is created to the outside of the fuel surface, at which point the highly pressurized inter-granular bubbles will expel their contents into the fuel plenum. This last process is the primary cause of fission gas release. From the simple description above, it is clear there are several parameters that ultimately affect fission gas release, including the diffusivity of single gas atoms, the absorption and knockout rate of single gas atoms in intra-granular bubbles, and the growth and interlinkage of intergranular bubbles. Of these, the knockout, or re-solution rate has an particularly important role in determining the transient concentration of single gas atoms in the grain. The re-solution rate will be explored in the following sections with regards to uranium-silicide fuels in order to support future models of fission gas bubble behavior.« less

  6. Mechanical models of sandfish locomotion reveal principles of high performance subsurface sand-swimming

    PubMed Central

    Maladen, Ryan D.; Ding, Yang; Umbanhowar, Paul B.; Kamor, Adam; Goldman, Daniel I.

    2011-01-01

    We integrate biological experiment, empirical theory, numerical simulation and a physical model to reveal principles of undulatory locomotion in granular media. High-speed X-ray imaging of the sandfish lizard, Scincus scincus, in 3 mm glass particles shows that it swims within the medium without using its limbs by propagating a single-period travelling sinusoidal wave down its body, resulting in a wave efficiency, η, the ratio of its average forward speed to the wave speed, of approximately 0.5. A resistive force theory (RFT) that balances granular thrust and drag forces along the body predicts η close to the observed value. We test this prediction against two other more detailed modelling approaches: a numerical model of the sandfish coupled to a discrete particle simulation of the granular medium, and an undulatory robot that swims within granular media. Using these models and analytical solutions of the RFT, we vary the ratio of undulation amplitude to wavelength (A/λ) and demonstrate an optimal condition for sand-swimming, which for a given A results from the competition between η and λ. The RFT, in agreement with the simulated and physical models, predicts that for a single-period sinusoidal wave, maximal speed occurs for A/λ ≈ 0.2, the same kinematics used by the sandfish. PMID:21378020

  7. Noise and diffusion of a vibrated self-propelled granular particle

    NASA Astrophysics Data System (ADS)

    Walsh, Lee; Wagner, Caleb G.; Schlossberg, Sarah; Olson, Christopher; Baskaran, Aparna; Menon, Narayanan

    Granular materials are an important physical realization of active matter. In vibration-fluidized granular matter, both diffusion and self-propulsion derive from the same collisional forcing, unlike many other active systems where there is a clean separation between the origin of single-particle mobility and the coupling to noise. Here we present experimental studies of single-particle motion in a vibrated granular monolayer, along with theoretical analysis that compares grain motion at short and long time scales to the assumptions and predictions, respectively, of the active Brownian particle (ABP) model. The results demonstrate that despite the unique relation between noise and propulsion, granular media do show the generic features predicted by the ABP model and indicate that this is a valid framework to predict collective phenomena. Additionally, our scheme of analysis for validating the inputs and outputs of the model can be applied to other granular and non-granular systems.

  8. Rapid granular flows on a rough incline: phase diagram, gas transition, and effects of air drag.

    PubMed

    Börzsönyi, Tamás; Ecke, Robert E

    2006-12-01

    We report experiments on the overall phase diagram of granular flows on an incline with emphasis on high inclination angles where the mean layer velocity approaches the terminal velocity of a single particle free falling in air. The granular flow was characterized by measurements of the surface velocity, the average layer height, and the mean density of the layer as functions of the hopper opening, the plane inclination angle, and the downstream distance x of the flow. At high inclination angles the flow does not reach an x -invariant steady state over the length of the inclined plane. For low volume flow rates, a transition was detected between dense and very dilute (gas) flow regimes. We show using a vacuum flow channel that air did not qualitatively change the phase diagram and did not quantitatively modify mean flow velocities of the granular layer except for small changes in the very dilute gaslike phase.

  9. Scattering of waves by impurities in precompressed granular chains.

    PubMed

    Martínez, Alejandro J; Yasuda, Hiromi; Kim, Eunho; Kevrekidis, P G; Porter, Mason A; Yang, Jinkyu

    2016-05-01

    We study scattering of waves by impurities in strongly precompressed granular chains. We explore the linear scattering of plane waves and identify a closed-form expression for the reflection and transmission coefficients for the scattering of the waves from both a single impurity and a double impurity. For single-impurity chains, we show that, within the transmission band of the host granular chain, high-frequency waves are strongly attenuated (such that the transmission coefficient vanishes as the wavenumber k→±π), whereas low-frequency waves are well-transmitted through the impurity. For double-impurity chains, we identify a resonance-enabling full transmission at a particular frequency-in a manner that is analogous to the Ramsauer-Townsend (RT) resonance from quantum physics. We also demonstrate that one can tune the frequency of the RT resonance to any value in the pass band of the host chain. We corroborate our theoretical predictions both numerically and experimentally, and we directly observe almost complete transmission for frequencies close to the RT resonance frequency. Finally, we show how this RT resonance can lead to the existence of reflectionless modes in granular chains (including disordered ones) with multiple double impurities.

  10. Cultivation of aerobic granular sludge for rubber wastewater treatment.

    PubMed

    Rosman, Noor Hasyimah; Nor Anuar, Aznah; Othman, Inawati; Harun, Hasnida; Sulong Abdul Razak, Muhammad Zuhdi; Elias, Siti Hanna; Mat Hassan, Mohd Arif Hakimi; Chelliapan, Shreesivadass; Ujang, Zaini

    2013-02-01

    Aerobic granular sludge (AGS) was successfully cultivated at 27±1 °C and pH 7.0±1 during the treatment of rubber wastewater using a sequential batch reactor system mode with complete cycle time of 3 h. Results showed aerobic granular sludge had an excellent settling ability and exhibited exceptional performance in the organics and nutrients removal from rubber wastewater. Regular, dense and fast settling granule (average diameter, 1.5 mm; settling velocity, 33 m h(-1); and sludge volume index, 22.3 mL g(-1)) were developed in a single reactor. In addition, 96.5% COD removal efficiency was observed in the system at the end of the granulation period, while its ammonia and total nitrogen removal efficiencies were up to 94.7% and 89.4%, respectively. The study demonstrated the capabilities of AGS development in a single, high and slender column type-bioreactor for the treatment of rubber wastewater. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Finite Element Studies of Solitary Waves in Granular Chains

    NASA Astrophysics Data System (ADS)

    Musson, Ryan W.

    Solitary wave propagation in a monodisperse metallic granular chain was simulated using the finite element method. The model was built to address a discrepancy between numerical and experimental results from Lazaridi and Nesterenko (J. Appl. Mech. Tech. Phys., 26 [3] 405-408 1985). In their work, solitary waves were generated in a chain of particles through impact of a piston, and results were quantified by comparing the chains' reactions to a rigid wall. Their numerical calculations resulted in a solitary wave with a force amplitude of 83 N, while it was measured experimentally to be 71 N. In the present work, the configuration of the granular chain and piston was duplicated from Lazaridi and Nesterenko (J. Appl. Mech. Tech. Phys., 26 [3] 405-408 1985). Qualitatively similar solitary waves were produced, and von Mises stress values indicated that localized plastic deformation is possible, even at low piston impact velocities. These results show that localized plastic deformation was a likely source of dissipation in experiments performed by Lazaridi and Nesterenko. Solitary wave response was investigated in the same metallic granular chain-piston system using LS-DYNA. A power-law hardening material model was used to show that localized plastic deformation is present in the metallic granular chain, even for an impact velocity of 0.5 m/s. This loss due to plastic deformation was quantified via impulse, and it was shown that the loss scales nearly linearly with impact velocity. Therefore, metallic grains may not be suitable for devices that require high amplitude solitary waves. There would be too much energy lost to plastic deformation. The response of an aluminum oxide granular chain was subsequently compared to that of a steel chain because ceramics are inherently elastic. It was shown that solitary waves travel faster and the initial peak is slightly lower when compared to a steel chain. The response of granular chains to impulse loading was investigated as a function of material properties. COMSOL Multiphysics was used to study the effect of density and elastic modulus on a granular chain with fixed Poisson's ratio. Solitary wave velocity and amplitude increased with elastic modulus. Increasing density caused a decrease in wave velocity and an increase in amplitude. In addition, higher density granular chains exhibited a decrease in the number of solitary waves in their respective solitary wave trains. LS-DYNA was then used to explore the response of a variety of ceramic and metallic granular chains. Density, elastic modulus, and Poisson's ratio were all set to representative values for the respective material. It was shown that solitary wave development and decay occur at different rates for different materials. In addition, the kinetic energy decay of the impactor was slower for glass compared with tungsten. Finally, it was shown that a single solitary wave with no train could be produced by impacting a high density, high modulus chain such as tungsten with a glass piston, which has relatively low density and elastic modulus. Increasing impact velocity for this case resulted in a single high-amplitude solitary wave with no train.

  12. Hadronic energy resolution of a highly granular scintillator-steel hadron calorimeter using software compensation techniques

    NASA Astrophysics Data System (ADS)

    Adloff, C.; Blaha, J.; Blaising, J.-J.; Drancourt, C.; Espargilière, A.; Gaglione, R.; Geffroy, N.; Karyotakis, Y.; Prast, J.; Vouters, G.; Francis, K.; Repond, J.; Smith, J.; Xia, L.; Baldolemar, E.; Li, J.; Park, S. T.; Sosebee, M.; White, A. P.; Yu, J.; Buanes, T.; Eigen, G.; Mikami, Y.; Watson, N. K.; Goto, T.; Mavromanolakis, G.; Thomson, M. A.; Ward, D. R.; Yan, W.; Benchekroun, D.; Hoummada, A.; Khoulaki, Y.; Benyamna, M.; Cârloganu, C.; Fehr, F.; Gay, P.; Manen, S.; Royer, L.; Blazey, G. C.; Dyshkant, A.; Lima, J. G. R.; Zutshi, V.; Hostachy, J.-Y.; Morin, L.; Cornett, U.; David, D.; Falley, G.; Gadow, K.; Göttlicher, P.; Günter, C.; Hermberg, B.; Karstensen, S.; Krivan, F.; Lucaci-Timoce, A.-I.; Lu, S.; Lutz, B.; Morozov, S.; Morgunov, V.; Reinecke, M.; Sefkow, F.; Smirnov, P.; Terwort, M.; Vargas-Trevino, A.; Feege, N.; Garutti, E.; Marchesini, I.; Ramilli, M.; Eckert, P.; Harion, T.; Kaplan, A.; Schultz-Coulon, H.-Ch; Shen, W.; Stamen, R.; Tadday, A.; Bilki, B.; Norbeck, E.; Onel, Y.; Wilson, G. W.; Kawagoe, K.; Dauncey, P. D.; Magnan, A.-M.; Wing, M.; Salvatore, F.; Calvo Alamillo, E.; Fouz, M.-C.; Puerta-Pelayo, J.; Balagura, V.; Bobchenko, B.; Chadeeva, M.; Danilov, M.; Epifantsev, A.; Markin, O.; Mizuk, R.; Novikov, E.; Rusinov, V.; Tarkovsky, E.; Kirikova, N.; Kozlov, V.; Smirnov, P.; Soloviev, Y.; Buzhan, P.; Dolgoshein, B.; Ilyin, A.; Kantserov, V.; Kaplin, V.; Karakash, A.; Popova, E.; Smirnov, S.; Kiesling, C.; Pfau, S.; Seidel, K.; Simon, F.; Soldner, C.; Szalay, M.; Tesar, M.; Weuste, L.; Bonis, J.; Bouquet, B.; Callier, S.; Cornebise, P.; Doublet, Ph; Dulucq, F.; Faucci Giannelli, M.; Fleury, J.; Li, H.; Martin-Chassard, G.; Richard, F.; de la Taille, Ch; Pöschl, R.; Raux, L.; Seguin-Moreau, N.; Wicek, F.; Anduze, M.; Boudry, V.; Brient, J.-C.; Jeans, D.; Mora de Freitas, P.; Musat, G.; Reinhard, M.; Ruan, M.; Videau, H.; Bulanek, B.; Zacek, J.; Cvach, J.; Gallus, P.; Havranek, M.; Janata, M.; Kvasnicka, J.; Lednicky, D.; Marcisovsky, M.; Polak, I.; Popule, J.; Tomasek, L.; Tomasek, M.; Ruzicka, P.; Sicho, P.; Smolik, J.; Vrba, V.; Zalesak, J.; Belhorma, B.; Ghazlane, H.; Takeshita, T.; Uozumi, S.; Sauer, J.; Weber, S.; Zeitnitz, C.

    2012-09-01

    The energy resolution of a highly granular 1 m3 analogue scintillator-steel hadronic calorimeter is studied using charged pions with energies from 10 GeV to 80 GeV at the CERN SPS. The energy resolution for single hadrons is determined to be approximately 58%/√E/GeV. This resolution is improved to approximately 45%/√E/GeV with software compensation techniques. These techniques take advantage of the event-by-event information about the substructure of hadronic showers which is provided by the imaging capabilities of the calorimeter. The energy reconstruction is improved either with corrections based on the local energy density or by applying a single correction factor to the event energy sum derived from a global measure of the shower energy density. The application of the compensation algorithms to geant4 simulations yield resolution improvements comparable to those observed for real data.

  13. Stable aerobic granules in continuous-flow bioreactor with self-forming dynamic membrane.

    PubMed

    Liu, Hongbo; Li, Yajie; Yang, Changzhu; Pu, Wenhong; He, Liu; Bo, Fu

    2012-10-01

    A novel continuous-flow bioreactor with aerobic granular sludge and self-forming dynamic membrane (CGSFDMBR) was developed for efficient wastewater treatment. Under continuous-flow operation, aerobic granular sludge was successfully cultivated and characterized with small particle size of about 0.1-1.0mm, low settling velocity of about 15-25 m/h, loose structure and high water content of about 96-98%. To maintain the stability of aerobic granular sludge, strategies based on the differences of settling velocity and particle-size between granular and flocculent sludge were implemented. Moreover, in CGSFDMBR, membrane fouling was greatly relieved. Dynamic membrane was just cleaned once in more than 45 days' operation. CGSFDMBR presented good performance in treating septic tank wastewater, obtaining average COD, NH(4)(+)-N, TN and TP removal rates of 83.3%, 73.3%, 67.3% and 60%, respectively, which was more efficient than conventional bioreactors since that carbon, nitrogen and phosphorus were simultaneously removed in a single aerobic reactor. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Lepton identification at particle flow oriented detector for the future e+e- Higgs factories

    NASA Astrophysics Data System (ADS)

    Yu, Dan; Ruan, Manqi; Boudry, Vincent; Videau, Henri

    2017-09-01

    The lepton identification is essential for the physics programs at high-energy frontier, especially for the precise measurement of the Higgs boson. For this purpose, a toolkit for multivariate data analysis (TMVA) based lepton identification (LICH) has been developed for detectors using high granularity calorimeters. Using the conceptual detector geometry for the Circular Electron-Positron Collider (CEPC) and single charged particle samples with energy larger than 2 GeV, LICH identifies electrons/muons with efficiencies higher than 99.5% and controls the mis-identification rate of hadron to muons/electrons to better than 1/0.5%. Reducing the calorimeter granularity by 1-2 orders of magnitude, the lepton identification performance is stable for particles with E > 2 GeV. Applied to fully simulated eeH/μ μ H events, the lepton identification performance is consistent with the single particle case: the efficiency of identifying all the high energy leptons in an event, is 95.5-98.5%.

  15. Automated grain extraction and classification by combining improved region growing segmentation and shape descriptors in electromagnetic mill classification system

    NASA Astrophysics Data System (ADS)

    Budzan, Sebastian

    2018-04-01

    In this paper, the automatic method of grain detection and classification has been presented. As input, it uses a single digital image obtained from milling process of the copper ore with an high-quality digital camera. The grinding process is an extremely energy and cost consuming process, thus granularity evaluation process should be performed with high efficiency and time consumption. The method proposed in this paper is based on the three-stage image processing. First, using Seeded Region Growing (SRG) segmentation with proposed adaptive thresholding based on the calculation of Relative Standard Deviation (RSD) all grains are detected. In the next step results of the detection are improved using information about the shape of the detected grains using distance map. Finally, each grain in the sample is classified into one of the predefined granularity class. The quality of the proposed method has been obtained by using nominal granularity samples, also with a comparison to the other methods.

  16. Electronics and triggering challenges for the CMS High Granularity Calorimeter

    NASA Astrophysics Data System (ADS)

    Lobanov, A.

    2018-02-01

    The High Granularity Calorimeter (HGCAL), presently being designed by the CMS collaboration to replace the CMS endcap calorimeters for the High Luminosity phase of LHC, will feature six million channels distributed over 52 longitudinal layers. The requirements for the front-end electronics are extremely challenging, including high dynamic range (0.2 fC-10 pC), low noise (~2000 e- to be able to calibrate on single minimum ionising particles throughout the detector lifetime) and low power consumption (~20 mW/channel), as well as the need to select and transmit trigger information with a high granularity. Exploiting the intrinsic precision-timing capabilities of silicon sensors also requires careful design of the front-end electronics as well as the whole system, particularly clock distribution. The harsh radiation environment and requirement to keep the whole detector as dense as possible will require novel solutions to the on-detector electronics layout. Processing the data from the HGCAL imposes equally large challenges on the off-detector electronics, both for the hardware and incorporated algorithms. We present an overview of the complete electronics architecture, as well as the performance of prototype components and algorithms.

  17. Supporting user-defined granularities in a spatiotemporal conceptual model

    USGS Publications Warehouse

    Khatri, V.; Ram, S.; Snodgrass, R.T.; O'Brien, G. M.

    2002-01-01

    Granularities are integral to spatial and temporal data. A large number of applications require storage of facts along with their temporal and spatial context, which needs to be expressed in terms of appropriate granularities. For many real-world applications, a single granularity in the database is insufficient. In order to support any type of spatial or temporal reasoning, the semantics related to granularities needs to be embedded in the database. Specifying granularities related to facts is an important part of conceptual database design because under-specifying the granularity can restrict an application, affect the relative ordering of events and impact the topological relationships. Closely related to granularities is indeterminacy, i.e., an occurrence time or location associated with a fact that is not known exactly. In this paper, we present an ontology for spatial granularities that is a natural analog of temporal granularities. We propose an upward-compatible, annotation-based spatiotemporal conceptual model that can comprehensively capture the semantics related to spatial and temporal granularities, and indeterminacy without requiring new spatiotemporal constructs. We specify the formal semantics of this spatiotemporal conceptual model via translation to a conventional conceptual model. To underscore the practical focus of our approach, we describe an on-going case study. We apply our approach to a hydrogeologic application at the United States Geologic Survey and demonstrate that our proposed granularity-based spatiotemporal conceptual model is straightforward to use and is comprehensive.

  18. Observation of Spectral Signatures of 1/f Dynamics in Avalanches on Granular Piles

    NASA Astrophysics Data System (ADS)

    Kim, Yong W.; Nishino, Thomas K.

    1997-03-01

    Granular piles of monodisperse glass spheres, 0.46+0.03 mm in diameter, have been studied. The base diameter of the pile has been varied from 3/8" to 2" in 1/8" increments. A single-grain dispenser with greater than 95consisting of a stepping motor-actuated reciprocating arm with a single-grain scoop. Each grain is dropped on the apex of the pile with lowest possible landing velocity at intervals at least 30longer than the duration of largest avalanches for each given pile. Each grain being added and being lost in avalanches from the pile is optically detected and recorded. The power spectrum of the net addition of grains to the pile as a function of time is found to be robustly 1/f for all base sizes. A wide variety of dynamical properties of 1/f systems, as obtained from the high precision data, will be presented.

  19. Using granular film to suppress charge leakage in a single-electron latch.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orlov, A. O.; Luo, X.; Yadavalli, K. K.

    2008-01-01

    A single-electron latch is a device that can be used as a building block for quantum-dot cellular automata circuits. It consists of three nanoscale metal 'dots' connected in series by tunnel junctions; charging of the dots is controlled by three electrostatic gates. One very important feature of a single-electron latch is its ability to store ('latch') information represented by the location of a single electron within the three dots. To obtain latching, the undesirable leakage of charge during the retention time must be suppressed. Previously, to achieve this goal, multiple tunnel junctions were used to connect the three dots. However,more » this method of charge leakage suppression requires an additional compensation of the background charges affecting each parasitic dot in the array of junctions. We report a single-electron latch where a granular metal film is used to fabricate the middle dot in the latch which concurrently acts as a charge leakage suppressor. This latch has no parasitic dots, therefore the background charge compensation procedure is greatly simplified. We discuss the origins of charge leakage suppression and possible applications of granular metal dots for various single-electron circuits.« less

  20. Impulsive movements lead to high hops on sand

    NASA Astrophysics Data System (ADS)

    Aguilar, Jeffrey; Goldman, Daniel I.

    2014-03-01

    Various animals exhibit locomotive behaviors (like sprinting and hopping) involving transient bursts of actuation coupled to the ground through internal elastic elements. The performance of such maneuvers is subject to reaction forces on the feet from the environment. On substrates like dry granular media, the laws that govern these forces are not fully understood, and can vary with foot size and shape, material compaction (measured by the volume fraction ϕ) and intrusion kinematics. To gain insight into how such interactions affect jumps on granular media, we study the performance of an actuated spring mass robot. We compare performance between two jump strategies: a single-cycle sine-wave actuation (a ``single jump'') and this actuation preceded by an impulsive preload (a ``preload jump''). We vary ϕ for both strategies, and find that ϕ significantly affects performance: we observe a 200% increase in the single jump height with only a 5% increase in volume fraction using a 7.62 cm diameter flat foot. The preload jump outperforms the single jump height by 150% for all ϕ. We hypothesize that this increase in performance results from higher intrusion velocities and accelerations associated with the preload. NSF POLS CAREER, Burroughs Wellcome Fund, and ARO.

  1. Scaling behavior of immersed granular flows

    NASA Astrophysics Data System (ADS)

    Amarsid, L.; Delenne, J.-Y.; Mutabaruka, P.; Monerie, Y.; Perales, F.; Radjai, F.

    2017-06-01

    The shear behavior of granular materials immersed in a viscous fluid depends on fluid properties (viscosity, density), particle properties (size, density) and boundary conditions (shear rate, confining pressure). Using computational fluid dynamics simulations coupled with molecular dynamics for granular flow, and exploring a broad range of the values of parameters, we show that the parameter space can be reduced to a single parameter that controls the packing fraction and effective friction coefficient. This control parameter is a modified inertial number that incorporates viscous effects.

  2. DEM GPU studies of industrial scale particle simulations for granular flow civil engineering applications

    NASA Astrophysics Data System (ADS)

    Pizette, Patrick; Govender, Nicolin; Wilke, Daniel N.; Abriak, Nor-Edine

    2017-06-01

    The use of the Discrete Element Method (DEM) for industrial civil engineering industrial applications is currently limited due to the computational demands when large numbers of particles are considered. The graphics processing unit (GPU) with its highly parallelized hardware architecture shows potential to enable solution of civil engineering problems using discrete granular approaches. We demonstrate in this study the pratical utility of a validated GPU-enabled DEM modeling environment to simulate industrial scale granular problems. As illustration, the flow discharge of storage silos using 8 and 17 million particles is considered. DEM simulations have been performed to investigate the influence of particle size (equivalent size for the 20/40-mesh gravel) and induced shear stress for two hopper shapes. The preliminary results indicate that the shape of the hopper significantly influences the discharge rates for the same material. Specifically, this work shows that GPU-enabled DEM modeling environments can model industrial scale problems on a single portable computer within a day for 30 seconds of process time.

  3. Granular Contact Forces: Proof of "Self-Ergodicity" by Generalizing Boltzmann's Stosszahlansatz and H Theorem

    NASA Technical Reports Server (NTRS)

    Metzger, Philip T.

    2006-01-01

    Ergodicity is proved for granular contact forces. To obtain this proof from first principles, this paper generalizes Boltzmann's stosszahlansatz (molecular chaos) so that it maintains the necessary correlations and symmetries of granular packing ensembles. Then it formally counts granular contact force states and thereby defines the proper analog of Boltzmann's H functional. This functional is used to prove that (essentially) all static granular packings must exist at maximum entropy with respect to their contact forces. Therefore, the propagation of granular contact forces through a packing is a truly ergodic process in the Boltzmannian sense, or better, it is self-ergodic. Self-ergodicity refers to the non-dynamic, internal relationships that exist between the layer-by-layer and column-by-column subspaces contained within the phase space locus of any particular granular packing microstate. The generalized H Theorem also produces a recursion equation that may be solved numerically to obtain the density of single particle states and hence the distribution of granular contact forces corresponding to the condition of self-ergodicity. The predictions of the theory are overwhelmingly validated by comparison to empirical data from discrete element modeling.

  4. A model describing intra-granular fission gas behaviour in oxide fuel for advanced engineering tools

    NASA Astrophysics Data System (ADS)

    Pizzocri, D.; Pastore, G.; Barani, T.; Magni, A.; Luzzi, L.; Van Uffelen, P.; Pitts, S. A.; Alfonsi, A.; Hales, J. D.

    2018-04-01

    The description of intra-granular fission gas behaviour is a fundamental part of any model for the prediction of fission gas release and swelling in nuclear fuel. In this work we present a model describing the evolution of intra-granular fission gas bubbles in terms of bubble number density and average size, coupled to gas release to grain boundaries. The model considers the fundamental processes of single gas atom diffusion, gas bubble nucleation, re-solution and gas atom trapping at bubbles. The model is derived from a detailed cluster dynamics formulation, yet it consists of only three differential equations in its final form; hence, it can be efficiently applied in engineering fuel performance codes while retaining a physical basis. We discuss improvements relative to previous single-size models for intra-granular bubble evolution. We validate the model against experimental data, both in terms of bubble number density and average bubble radius. Lastly, we perform an uncertainty and sensitivity analysis by propagating the uncertainties in the parameters to model results.

  5. Somatic sensory cortex (SmI) of the prosimian primate Galago crassicaudatus: organization of mechanoreceptive input from the hand in relation to cytoarchitecture.

    PubMed

    Carlson, M; Welt, C

    1980-01-15

    Mechanoreceptive input from the hand to the somatic sensory cortex (SmI) of the prosimian primate Galago crassicaudatus was examined with microelectrode mapping methods. In anesthetized animals, low threshold cutaneous input from the hand projects to SmI cortex in a single, complete, somatotopically organized pattern. Within this single pattern, cells with receptive fields on the glabrous skin of the palm, digits and digit tips are located in the rostral half, and cells with RFs on the hairy skin of the dorsal hand and digits are located in the caudal half of the hand areas. The cutaneous hand area is coextensive with the densely granular architectonic region of SmI. Studies of single cells in this region of awake galagos reveal the same pattern of cutaneous input and, in addition, demonstrate the presence of cells responding to joint movement not detected in anesthetized animals. Cells responsive to joint movement are arranged in vertically oriented columns located adjacent to cutaneous columns with receptive fields on the same part of the hand. In anesthetized animals, cells rostral to the granular region, in an area typified by increasing numbers of pyramidal cells in layer V and decreasing numbers of granular cells in upper layers, respond to high threshold stimulation of large areas of the hand. The few cells isolated in this area in awake animals respond to either active or passive hand movements. In such animals, cells caudal to the granular region, in an area characterized as agranular and alaminar cortex, respond to either passive stimulation of single or multiple joints or to active hand movements. These results, together with similar findings in a related prosimian, Nycticebus coucang, emphasize the generality of a single cutaneous hand area in SmI of prosimian species. The demonstration of multiple hand areas corresponding to multiple cytoarchitectonic subdivisions in SmI of Old and New World simians illustrates the increased degree of SmI differentiation from the prosimian to the simian grade of organization. The present results further suggest that determination of the homologues of multiple areas or subdivisions within and surrounding SmI in primates will require comparisons of somatotopy, submodality, sulcal patterns, cytoarchitecture, and connectivity in representative members of prosimian and simian families.

  6. High pressure adsorption isotherms of nitrogen onto granular activated carbon for a single bed pressure swing adsorption refrigeration system

    NASA Astrophysics Data System (ADS)

    Palodkar, Avinash V.; Anupam, Kumar; Roy, Zunipa; Saha, B. B.; Halder, G. N.

    2017-10-01

    Adsorption characteristics of nitrogen onto granular activated carbon for the wide range of temperature (303-323 K) and pressure (0.2027-2.0265 MPa) have been reported for a single bed pressure swing adsorption refrigeration system. The experimental data were fitted to Langmuir, Dubinin-Astakhov and Dubinin-Radushkevich (D-R) isotherms. The Langmuir and D-R isotherm models were found appropriate in correlating experimental adsorption data with an average relative error of ±2.0541% and ±0.6659% respectively. The isosteric heat of adsorption data were estimated as a function of surface coverage of nitrogen and temperature using D-R isotherm. The heat of adsorption was observed to decrease from 12.65 to 6.98 kJ.mol-1 with an increase in surface concentration at 303 K and it followed the same pattern for other temperatures. It was found that an increase in temperature enhances the magnitude of the heat of adsorption.

  7. The Elegance of Disordered Granular Packings: A Validation of Edwards' Hypothesis

    NASA Technical Reports Server (NTRS)

    Metzger, Philip T.; Donahue, Carly M.

    2004-01-01

    We have found a way to analyze Edwards' density of states for static granular packings in the special case of round, rigid, frictionless grains assuming constant coordination number. It obtains the most entropic density of single grain states, which predicts several observables including the distribution of contact forces. We compare these results against empirical data obtained in dynamic simulations of granular packings. The agreement between theory and the empirics is quite good, helping validate the use of statistical mechanics methods in granular physics. The differences between theory and empirics are mainly due to the variable coordination number, and when the empirical data are sorted by that number we obtain several insights that suggest an underlying elegance in the density of states

  8. The cytology of a thyroid granular cell tumor.

    PubMed

    Chang, Shu-Mei; Wei, Chang-Kuo; Tseng, Chih-En

    2009-01-01

    Granular cell tumor (GCT) of the thyroid is rare. Before this report, only four cases of thyroid GCT have been reported, none of which presented a cytopathological examination. In this paper, we report the fine needle aspiration cytology and pathological analysis of a thyroid GCT from a 12-year-old girl who presented with a painless neck mass. The tumor cells were single, in syncytial clusters, or pseudofollicles, contained small round, oval, or spindle nuclei, indistinct nucleoli, and a large amount of grayish, granular fragile cytoplasm. The background contained granular debris and naked nuclei. A differential diagnosis of thyroid GCT with more frequent thyroid lesions containing cytoplasmic granules, including Hurthle cells, macrophages, follicular cells, and cells of black thyroid syndrome, was also performed.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parab, Niranjan D.; Hudspeth, Matthew; Claus, Ben

    Granular materials are widely used to resist impact and blast. Under these dynamic loadings, the constituent particles in the granular system fracture. To study the fracture mechanisms in brittle particles under dynamic compressive loading, a high speed X-ray phase contrast imaging setup was synchronized with a Kolsky bar apparatus. Controlled compressive loading was applied on two contacting particles using the Kolsky bar apparatus and fracture process was captured using the high speed X-ray imaging setup. Five different particles were investigated: soda-lime glass, polycrystalline silica (silicon dioxide), polycrystalline silicon, barium titanate glass, and yttrium stabilized zirconia. For both soda lime glassmore » and polycrystalline silica particles, one of the particles fragmented explosively, thus breaking into many small pieces. For Silicon and barium titanate glass particles, a finite number of cracks were observed in one of the particles causing it to fracture. For yttrium stabilized zirconia particles, a single meridonial crack developed in one of the particles, breaking it into two parts.« less

  10. Toward a Flexible Variable Stiffness Endoport for Single-Site Partial Nephrectomy.

    PubMed

    Amanov, E; Nguyen, T-D; Markmann, S; Imkamp, F; Burgner-Kahrs, J

    2018-05-31

    Laparoscopic partial nephrectomy for localized renal tumors is an upcoming standard minimally invasive surgical procedure. However, a single-site laparoscopic approach would be even more preferable in terms of invasiveness. While the manual approach offers rigid curved tools, robotic single-site systems provide high degrees of freedom manipulators. However, they either provide only a straight deployment port, lack of instrument integration, or cannot be reconfigured. Therefore, the current main shortcomings of single-site surgery approaches include limited tool dexterity, visualization, and intuitive use by the surgeons. For partial nephrectomy in particular, the accessibility of the tumors remains limited and requires invasive kidney mobilization (separation of the kidney from the surrounding tissue), resulting in patient stress and prolonged surgery. We address these limitations by introducing a flexible, robotic, variable stiffness port with several working channels, which consists of a two-segment tendon-driven continuum robot with integrated granular and layer jamming for stabilizing the pose and shape. We investigate biocompatible granules for granular jamming and demonstrate the stiffening capabilities in terms of pose and shape accuracy with experimental evaluations. Additionally, we conduct in vitro experiments on a phantom and prove that the visualization of tumors at various sites is increased up to 38% in comparison to straight endoscopes.

  11. Quantifying non-ergodic dynamics of force-free granular gases.

    PubMed

    Bodrova, Anna; Chechkin, Aleksei V; Cherstvy, Andrey G; Metzler, Ralf

    2015-09-14

    Brownian motion is ergodic in the Boltzmann-Khinchin sense that long time averages of physical observables such as the mean squared displacement provide the same information as the corresponding ensemble average, even at out-of-equilibrium conditions. This property is the fundamental prerequisite for single particle tracking and its analysis in simple liquids. We study analytically and by event-driven molecular dynamics simulations the dynamics of force-free cooling granular gases and reveal a violation of ergodicity in this Boltzmann-Khinchin sense as well as distinct ageing of the system. Such granular gases comprise materials such as dilute gases of stones, sand, various types of powders, or large molecules, and their mixtures are ubiquitous in Nature and technology, in particular in Space. We treat-depending on the physical-chemical properties of the inter-particle interaction upon their pair collisions-both a constant and a velocity-dependent (viscoelastic) restitution coefficient ε. Moreover we compare the granular gas dynamics with an effective single particle stochastic model based on an underdamped Langevin equation with time dependent diffusivity. We find that both models share the same behaviour of the ensemble mean squared displacement (MSD) and the velocity correlations in the limit of weak dissipation. Qualitatively, the reported non-ergodic behaviour is generic for granular gases with any realistic dependence of ε on the impact velocity of particles.

  12. Numerical investigations on flow dynamics of prismatic granular materials using the discrete element method

    NASA Astrophysics Data System (ADS)

    Hancock, W.; Weatherley, D.; Wruck, B.; Chitombo, G. P.

    2012-04-01

    The flow dynamics of granular materials is of broad interest in both the geosciences (e.g. landslides, fault zone evolution, and brecchia pipe formation) and many engineering disciplines (e.g chemical engineering, food sciences, pharmaceuticals and materials science). At the interface between natural and human-induced granular media flow, current underground mass-mining methods are trending towards the induced failure and subsequent gravitational flow of large volumes of broken rock, a method known as cave mining. Cave mining relies upon the undercutting of a large ore body, inducement of fragmentation of the rock and subsequent extraction of ore from below, via hopper-like outlets. Design of such mines currently relies upon a simplified kinematic theory of granular flow in hoppers, known as the ellipsoid theory of mass movement. This theory assumes that the zone of moving material grows as an ellipsoid above the outlet of the silo. The boundary of the movement zone is a shear band and internal to the movement zone, the granular material is assumed to have a uniformly high bulk porosity compared with surrounding stagnant regions. There is however, increasing anecdotal evidence and field measurements suggesting this theory fails to capture the full complexity of granular material flow within cave mines. Given the practical challenges obstructing direct measurement of movement both in laboratory experiments and in-situ, the Discrete Element Method (DEM [1]) is a popular alternative to investigate granular media flow. Small-scale DEM studies (c.f. [3] and references therein) have confirmed that movement within DEM silo flow models matches that predicted by ellipsoid theory, at least for mono-disperse granular material freely outflowing at a constant rate. A major draw-back of these small-scale DEM studies is that the initial bulk porosity of the simulated granular material is significantly higher than that of broken, prismatic rock. In this investigation, more realistic granular material geometries are simulated using the ESyS-Particle [2] DEM simulation software on cluster supercomputers. Individual grains of the granular material are represented as convex polyhedra. Initially the polyhedra are packed in a low bulk porosity configuration prior to commencing silo flow simulations. The resultant flow dynamics are markedly different to that predicted by ellipsoid theory. Initially shearing occurs around the silo outlet however rapidly shear localization in a particular direction dominates other directions, causing preferential movement in that direction. Within the shear band itself, the granular material becomes hgihly dilated however elsewhere the bulk porosity remains low. The low porosity within these regions promotes entrainment whereby large volumes of granular material interlock and begin to rotate and translate as a single rigid body. In some cases, entrainment may result in complete overturning of a large volume of material. The consequences of preferential shear localization and in particular, entrainment, for granular media flow in cave mines and natural settings (such as brecchia pipes) is a topic of ongoing research to be presented at the meeting.

  13. Efficacy of granular deltamethrin against Ixodes scapularis and Amblyomma americanum (Acari: Ixodidade) nymphs.

    PubMed

    Schulze, T L; Jordan, R A; Hung, R W; Taylor, R C; Markowski, D; Chomsky, M S

    2001-03-01

    A single barrier application of granular deltamethrin to the woodland edges of a forested residential community in late spring significantly reduced the abundance of Ixodes scapularis Say nymphs. The application also suppressed the population of Amblyomma americanum (L.) nymphs, which recently became established in the study area. The efficacy of deltamethrin is compared with other commonly used acaricides.

  14. Impact Compaction of a Granular Material

    NASA Astrophysics Data System (ADS)

    Fenton, Gregg; Asay, Blaine; Todd, Steve; Grady, Dennis

    2017-06-01

    The dynamic behavior of granular materials has importance to a variety of engineering applications. Although, the mechanical behavior of granular materials have been studied extensively for several decades, the dynamic behavior of these materials remains poorly understood. High-quality experimental data are needed to improve our general understanding of granular material compaction physics. This paper describes how an instrumented plunger impact system can be used to measure the compaction process for granular materials at high and controlled strain rates and subsequently used for computational modelling. The experimental technique relies on a gas-gun driven plunger system to generate a compaction wave through a volume of granular material. This volume of material has been redundantly instrumented along the bed length to track the progression of the compaction wave, and the piston displacement is measured with Photon Doppler Velocimetry (PDV). Using the gathered experimental data along with the initial material tap density, a granular material equation of state can be determined.

  15. Granular avalanches on the Moon: Mass-wasting conditions, processes, and features

    NASA Astrophysics Data System (ADS)

    Kokelaar, B. P.; Bahia, R. S.; Joy, K. H.; Viroulet, S.; Gray, J. M. N. T.

    2017-09-01

    Seven lunar crater sites of granular avalanches are studied utilizing high-resolution images (0.42-1.3 m/pixel) from the Lunar Reconnaissance Orbiter Camera; one, in Kepler crater, is examined in detail. All the sites are slopes of debris extensively aggraded by frictional freezing at their dynamic angle of repose, four in craters formed in basaltic mare and three in the anorthositic highlands. Diverse styles of mass wasting occur, and three types of dry-debris flow deposit are recognized: (1) multiple channel-and-lobe type, with coarse-grained levees and lobate terminations that impound finer debris, (2) single-surge polylobate type, with subparallel arrays of lobes and fingers with segregated coarse-grained margins, and (3) multiple-ribbon type, with tracks reflecting reworked substrate, minor levees, and no coarse terminations. The latter type results from propagation of granular erosion-deposition waves down slopes dominantly of fine regolith, and it is the first recognized natural example. Dimensions, architectures, and granular segregation styles of the two coarse-grained deposit types are like those formed in natural and experimental avalanches on Earth, although the timescale of motion differs due to the reduced gravity. Influences of reduced gravity and fine-grained regolith on dynamics of granular flow and deposition appear slight, but we distinguish, for the first time, extensive remobilization of coarse talus by inundation with finer debris. The (few) sites show no clear difference attributable to the contrasting mare basalt and highland megaregolith host rocks and their fragmentation. This lunar study offers a benchmarking of deposit types that can be attributed to formation without influence of liquid or gas.

  16. Granular impact cratering by liquid drops: Understanding raindrop imprints through an analogy to asteroid strikes

    PubMed Central

    Zhao, Runchen; Zhang, Qianyun; Tjugito, Hendro; Cheng, Xiang

    2015-01-01

    When a granular material is impacted by a sphere, its surface deforms like a liquid yet it preserves a circular crater like a solid. Although the mechanism of granular impact cratering by solid spheres is well explored, our knowledge on granular impact cratering by liquid drops is still very limited. Here, by combining high-speed photography with high-precision laser profilometry, we investigate liquid-drop impact dynamics on granular surface and monitor the morphology of resulting impact craters. Surprisingly, we find that despite the enormous energy and length difference, granular impact cratering by liquid drops follows the same energy scaling and reproduces the same crater morphology as that of asteroid impact craters. Inspired by this similarity, we integrate the physical insight from planetary sciences, the liquid marble model from fluid mechanics, and the concept of jamming transition from granular physics into a simple theoretical framework that quantitatively describes all of the main features of liquid-drop imprints in granular media. Our study sheds light on the mechanisms governing raindrop impacts on granular surfaces and reveals a remarkable analogy between familiar phenomena of raining and catastrophic asteroid strikes. PMID:25548187

  17. High temperature helical tubular receiver for concentrating solar power system

    NASA Astrophysics Data System (ADS)

    Hossain, Nazmul

    In the field of conventional cleaner power generation technology, concentrating solar power systems have introduced remarkable opportunity. In a solar power tower, solar energy concentrated by the heliostats at a single point produces very high temperature. Falling solid particles or heat transfer fluid passing through that high temperature region absorbs heat to generate electricity. Increasing the residence time will result in more heat gain and increase efficiency. A novel design of solar receiver for both fluid and solid particle is approached in this paper which can increase residence time resulting in higher temperature gain in one cycle compared to conventional receivers. The helical tubular solar receiver placed at the focused sunlight region meets the higher outlet temperature and efficiency. A vertical tubular receiver is modeled and analyzed for single phase flow with molten salt as heat transfer fluid and alloy625 as heat transfer material. The result is compared to a journal paper of similar numerical and experimental setup for validating our modeling. New types of helical tubular solar receivers are modeled and analyzed with heat transfer fluid turbulent flow in single phase, and granular particle and air plug flow in multiphase to observe the temperature rise in one cyclic operation. The Discrete Ordinate radiation model is used for numerical analysis with simulation software Ansys Fluent 15.0. The Eulerian granular multiphase model is used for multiphase flow. Applying the same modeling parameters and boundary conditions, the results of vertical and helical receivers are compared. With a helical receiver, higher temperature gain of heat transfer fluid is achieved in one cycle for both single phase and multiphase flow compared to the vertical receiver. Performance is also observed by varying dimension of helical receiver.

  18. The runout of granular material: from analogue to numerical modelling

    NASA Astrophysics Data System (ADS)

    Longchamp, Celine; Caspar, Olivier; Gygax, Remo; Podladchikov, Yury; Jaboyedoff, Michel

    2014-05-01

    Rock avalanches are catastrophic events in which important granular rock masses (>106 m3) travel at velocities up to ten meters per second. The mobilized rock mass travel long distances, which in exceptional cases can reach up to tens of kilometers. Those highly destructive and uncontrollable events, give important insight to understand the interactions between the displaced masses and landscape conditions. However, as those events are not frequent, analogue and numerical modelling plays a fundamental role to better understand their behaviour. The objective of the research is to explore the propagation of rock avalanches and to compare a simple numerical model with analogue modelling. The laboratory experiments investigate the fluidlike flow of a granular mass down a slope. The flow is unconfined, following a 45° slope and spreading freely on a horizontal depositional surface. Different grainsize of calibrate material (115, 545 and 2605 μm) and substratum roughness (simulate by aluminium and sandpapers with grainsize from 16 to 425 μm) were used in order to understand their influence on the motion of a granular mass. High speed movies are recorded to analyse the behaviour of the mass during the whole experiment. The numerical model is based on the continuum mechanics approach and solving the shallow water equations. The avalanche is described from an eulerian point of view within a continuum framework as single phase of incompressible granular material following Mohr-Coulomb friction law. The combination of the fluid dynamic equation with the frictional law enables the self-channelization of the mass without any topographic constraints or special border conditions. The results obtained with the numerical model are similar to those observed with the analogue. In both cases, based on similar initial condition (slope, volume, basal friction, height of fall and initial velocity), the runout of the mass is of comparable size and the shape of the deposit matches well. This preliminary version of the code gives encouraging results in agreement with those obtained with laboratory experiments.

  19. Thermal Properties of Consolidated Granular Salt as a Backfill Material

    NASA Astrophysics Data System (ADS)

    Paneru, Laxmi P.; Bauer, Stephen J.; Stormont, John C.

    2018-03-01

    Granular salt has been proposed as backfill material in drifts and shafts of a nuclear waste disposal facility where it will serve to conduct heat away from the waste to the host rock. Creep closure of excavations in rock salt will consolidate (reduce the porosity of) the granular salt. This study involved measuring the thermal conductivity and specific heat of granular salt as a function of porosity and temperature to aid in understanding how thermal properties will change during granular salt consolidation accomplished at pressures and temperatures consistent with a nuclear waste disposal facility. Thermal properties of samples from laboratory-consolidated granular salt and in situ consolidated granular salt were measured using a transient plane source method at temperatures ranging from 50 to 250 °C. Additional measurements were taken on a single crystal of halite and dilated polycrystalline rock salt. Thermal conductivity of granular salt decreased with increases in temperature and porosity. Specific heat of granular salt at lower temperatures decreased with increasing porosity. At higher temperatures, porosity dependence was not apparent. The thermal conductivity and specific heat data were fit to empirical models and compared with results presented in the literature. At comparable densities, the thermal conductivities of granular salt samples consolidated hydrostatically in this study were greater than those measured previously on samples formed by quasi-static pressing. Petrographic studies of the consolidated salt indicate that the consolidation method influenced the nature of the porosity; these observations are used to explain the variation of measured thermal conductivities between the two consolidation methods. Thermal conductivity of dilated polycrystalline salt was lower than consolidated salt at comparable porosities. The pervasive crack network along grain boundaries in dilated salt impedes heat flow and results in a lower thermal conductivity compared to hydrostatically consolidated salt.

  20. Computational domain discretization in numerical analysis of flow within granular materials

    NASA Astrophysics Data System (ADS)

    Sosnowski, Marcin

    2018-06-01

    The discretization of computational domain is a crucial step in Computational Fluid Dynamics (CFD) because it influences not only the numerical stability of the analysed model but also the agreement of obtained results and real data. Modelling flow in packed beds of granular materials is a very challenging task in terms of discretization due to the existence of narrow spaces between spherical granules contacting tangentially in a single point. Standard approach to this issue results in a low quality mesh and unreliable results in consequence. Therefore the common method is to reduce the diameter of the modelled granules in order to eliminate the single-point contact between the individual granules. The drawback of such method is the adulteration of flow and contact heat resistance among others. Therefore an innovative method is proposed in the paper: single-point contact is extended to a cylinder-shaped volume contact. Such approach eliminates the low quality mesh elements and simultaneously introduces only slight distortion to the flow as well as contact heat transfer. The performed analysis of numerous test cases prove the great potential of the proposed method of meshing the packed beds of granular materials.

  1. A dilation-driven vortex flow in sheared granular materials explains a rheometric anomaly.

    PubMed

    Krishnaraj, K P; Nott, Prabhu R

    2016-02-11

    Granular flows occur widely in nature and industry, yet a continuum description that captures their important features is yet not at hand. Recent experiments on granular materials sheared in a cylindrical Couette device revealed a puzzling anomaly, wherein all components of the stress rise nearly exponentially with depth. Here we show, using particle dynamics simulations and imaging experiments, that the stress anomaly arises from a remarkable vortex flow. For the entire range of fill heights explored, we observe a single toroidal vortex that spans the entire Couette cell and whose sense is opposite to the uppermost Taylor vortex in a fluid. We show that the vortex is driven by a combination of shear-induced dilation, a phenomenon that has no analogue in fluids, and gravity flow. Dilatancy is an important feature of granular mechanics, but not adequately incorporated in existing models.

  2. Extraction of sediment-associated polycyclic aromatic hydrocarbons with granular activated carbon.

    PubMed

    Rakowska, M I; Kupryianchyk, D; Grotenhuis, T; Rijnaarts, H H M; Koelmans, A A

    2013-02-01

    Addition of activated carbon (AC) to sediments has been proposed as a method to reduce ecotoxicological risks of sediment-bound contaminants. The present study explores the effectiveness of granular AC (GAC) in extracting polycyclic aromatic hydrocarbon (PAH) from highly contaminated sediments. Four candidate GAC materials were screened in terms of PAH extraction efficiency using single-step 24-h GAC extractions, with traditional 24-h Tenax extraction as a reference. Subsequently, sorption of native PAHs to the best performing GAC 1240W (0.45-1.70 mm) was studied for sediment only and for GAC-sediment mixtures at different GAC-sediment weight ratios, using 76-µm polyoxymethylene (POM) passive samplers. Granular AC sorption parameters for PAHs were determined by subtracting the contribution of PAH sorption to sediment from PAH sorption to the GAC-sediment mixture. It appears that the binding of PAHs and the effectiveness of GAC to reduce sediment porewater concentrations were highly dependent on the GAC-sediment mixing ratio and hydrophobicity of the PAH. Despite the considerable fouling of GAC by organic matter and oil, 50 to 90% of the most available PAH was extracted by the GAC during a 28-d contact time, at a dose as low as 4%, which also is a feasible dose in field-scale applications aimed at cleaning the sediment by GAC addition and removal. Copyright © 2012 SETAC.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Requerey, Iker S.; Iniesta, Jose Carlos Del Toro; Rubio, Luis R. Bellot

    We report on the dynamical interaction of quiet-Sun magnetic fields and granular convection in the solar photosphere as seen by Sunrise. We use high spatial resolution (0.″15–0.″18) and temporal cadence (33 s) spectropolarimetric Imaging Magnetograph eXperiment data, together with simultaneous CN and Ca ii H filtergrams from Sunrise Filter Imager. We apply the SIR inversion code to the polarimetric data in order to infer the line of sight velocity and vector magnetic field in the photosphere. The analysis reveals bundles of individual flux tubes evolving as a single entity during the entire 23 minute data set. The group shares amore » common canopy in the upper photospheric layers, while the individual tubes continually intensify, fragment and merge in the same way that chains of bright points in photometric observations have been reported to do. The evolution of the tube cores are driven by the local granular convection flows. They intensify when they are “compressed” by surrounding granules and split when they are “squeezed” between two moving granules. The resulting fragments are usually later regrouped in intergranular lanes by the granular flows. The continual intensification, fragmentation and coalescence of flux results in magnetic field oscillations of the global entity. From the observations we conclude that the magnetic field oscillations first reported by Martínez González et al. correspond to the forcing by granular motions and not to characteristic oscillatory modes of thin flux tubes.« less

  4. Universal robotic gripper based on the jamming of granular material

    PubMed Central

    Brown, Eric; Rodenberg, Nicholas; Amend, John; Mozeika, Annan; Steltz, Erik; Zakin, Mitchell R.; Lipson, Hod; Jaeger, Heinrich M.

    2010-01-01

    Gripping and holding of objects are key tasks for robotic manipulators. The development of universal grippers able to pick up unfamiliar objects of widely varying shape and surface properties remains, however, challenging. Most current designs are based on the multifingered hand, but this approach introduces hardware and software complexities. These include large numbers of controllable joints, the need for force sensing if objects are to be handled securely without crushing them, and the computational overhead to decide how much stress each finger should apply and where. Here we demonstrate a completely different approach to a universal gripper. Individual fingers are replaced by a single mass of granular material that, when pressed onto a target object, flows around it and conforms to its shape. Upon application of a vacuum the granular material contracts and hardens quickly to pinch and hold the object without requiring sensory feedback. We find that volume changes of less than 0.5% suffice to grip objects reliably and hold them with forces exceeding many times their weight. We show that the operating principle is the ability of granular materials to transition between an unjammed, deformable state and a jammed state with solid-like rigidity. We delineate three separate mechanisms, friction, suction, and interlocking, that contribute to the gripping force. Using a simple model we relate each of them to the mechanical strength of the jammed state. This advance opens up new possibilities for the design of simple, yet highly adaptive systems that excel at fast gripping of complex objects.

  5. Pion and proton showers in the CALICE scintillator-steel analogue hadron calorimeter

    NASA Astrophysics Data System (ADS)

    Bilki, B.; Repond, J.; Xia, L.; Eigen, G.; Thomson, M. A.; Ward, D. R.; Benchekroun, D.; Hoummada, A.; Khoulaki, Y.; Chang, S.; Khan, A.; Kim, D. H.; Kong, D. J.; Oh, Y. D.; Blazey, G. C.; Dyshkant, A.; Francis, K.; Lima, J. G. R.; Salcido, R.; Zutshi, V.; Salvatore, F.; Kawagoe, K.; Miyazaki, Y.; Sudo, Y.; Suehara, T.; Tomita, T.; Ueno, H.; Yoshioka, T.; Apostolakis, J.; Dannheim, D.; Folger, G.; Ivantchenko, V.; Klempt, W.; Lucaci-Timoce, A.-I.; Ribon, A.; Schlatter, D.; Sicking, E.; Uzhinskiy, V.; Giraud, J.; Grondin, D.; Hostachy, J.-Y.; Morin, L.; Brianne, E.; Cornett, U.; David, D.; Ebrahimi, A.; Falley, G.; Gadow, K.; Göttlicher, P.; Günter, C.; Hartbrich, O.; Hermberg, B.; Karstensen, S.; Krivan, F.; Krüger, K.; Lu, S.; Lutz, B.; Morozov, S.; Morgunov, V.; Neubüser, C.; Reinecke, M.; Sefkow, F.; Smirnov, P.; Tran, H. L.; Buhmann, P.; Garutti, E.; Laurien, S.; Matysek, M.; Ramilli, M.; Briggl, K.; Eckert, P.; Harion, T.; Munwes, Y.; Schultz-Coulon, H.-Ch.; Shen, W.; Stamen, R.; Norbeck, E.; Northacker, D.; Onel, Y.; van Doren, B.; Wilson, G. W.; Wing, M.; Combaret, C.; Caponetto, L.; Eté, R.; Grenier, G.; Han, R.; Ianigro, J. C.; Kieffer, R.; Laktineh, I.; Lumb, N.; Mathez, H.; Mirabito, L.; Petrukhin, A.; Steen, A.; Berenguer Antequera, J.; Calvo Alamillo, E.; Fouz, M.-C.; Marin, J.; Puerta-Pelayo, J.; Verdugo, A.; Corriveau, F.; Bobchenko, B.; Chistov, R.; Chadeeva, M.; Danilov, M.; Drutskoy, A.; Epifantsev, A.; Markin, O.; Mironov, D.; Mizuk, R.; Novikov, E.; Rusinov, V.; Tarkovsky, E.; Besson, D.; Buzhan, P.; Ilyin, A.; Popova, E.; Gabriel, M.; Kiesling, C.; van der Kolk, N.; Simon, F.; Soldner, C.; Szalay, M.; Tesar, M.; Weuste, L.; Amjad, M. S.; Bonis, J.; Callier, S.; Conforti di Lorenzo, S.; Cornebise, P.; Dulucq, F.; Fleury, J.; Frisson, T.; Martin-Chassard, G.; Pöschl, R.; Raux, L.; Richard, F.; Rouëné, J.; Seguin-Moreau, N.; de la Taille, Ch.; Anduze, M.; Boudry, V.; Brient, J.-C.; Clerc, C.; Cornat, R.; Frotin, M.; Gastaldi, F.; Matthieu, A.; Mora de Freitas, P.; Musat, G.; Ruan, M.; Videau, H.; Zacek, J.; Cvach, J.; Gallus, P.; Havranek, M.; Janata, M.; Kvasnicka, J.; Lednicky, D.; Marcisovsky, M.; Polak, I.; Popule, J.; Tomasek, L.; Tomasek, M.; Sicho, P.; Smolik, J.; Vrba, V.; Zalesak, J.; Jeans, D.; Weber, S.

    2015-04-01

    Showers produced by positive hadrons in the highly granular CALICE scintillator-steel analogue hadron calorimeter were studied. The experimental data were collected at CERN and FNAL for single particles with initial momenta from 10 to 80 GeV/c. The calorimeter response and resolution and spatial characteristics of shower development for proton- and pion-induced showers for test beam data and simulations using GEANT4 version 9.6 are compared.

  6. THE ANATOMIC SITE OF THE TRANSEPITHELIAL PERMEABILITY BARRIERS OF TOAD BLADDER

    PubMed Central

    DiBona, Donald R.; Civan, Mortimer M.; Leaf, Alexander

    1969-01-01

    An examination of the mucosal epithelium of the urinary bladder of the toad reveals that the two major cell types which abut on the urinary surface, the granular and mitochondria-rich cells, also contact the basement membrane. Thus, the epithelium functions as a single cell layer. Although basal cells are interpolated between the granular cells and the basement membrane over a large portion of the epithelium, they do not constitute an additional continuous cell layer. This finding is consistent with extensive physiological data which had assumed that the major permeability barriers of this epithelium were the apical and basal-lateral plasma membranes of a single layer of cells. PMID:5782445

  7. Self assembly, mobilization, and flotation of crude oil contaminated sand particles as granular shells on gas bubbles in water.

    PubMed

    Tansel, Berrin; Boglaienko, Daria

    2017-01-01

    Contaminant fate and transport studies and models include transport mechanisms for colloidal particles and dissolved ions which can be easily moved with water currents. However, mobilization of much larger contaminated granular particles (i.e., sand) in sediments have not been considered as a possible mechanism due to the relatively larger size of sand particles and their high bulk density. We conducted experiments to demonstrate that oil contaminated granular particles (which exhibit hydrophobic characteristics) can attach on gas bubbles to form granular shells and transfer from the sediment phase to the water column. The interactions and conditions necessary for the oil contaminated granular particles to self assemble as tightly packed granular shells on the gas bubbles which transfer from sediment phase to the water column were evaluated both experimentally and theoretically for South Louisiana crude oil and quartz sand particles. Analyses showed that buoyancy forces can be adequate to move the granular shell forming around the air bubbles if the bubble radius is above 0.001mm for the sand particles with 0.28mm diameter. Relatively high magnitude of the Hamaker constant for the oil film between sand and air (5.81×10 -20 J for air-oil-sand) indicates that air bubbles have high affinity to attach on the oil film that is on the sand particles in comparison to attaching to the sand particles without the oil film in water (1.60×10 -20 J for air-water-sand). The mobilization mechanism of the contaminated granular particles with gas bubbles can occur in natural environments resulting in transfer of granular particles from sediments to the water column. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Querying temporal clinical databases on granular trends.

    PubMed

    Combi, Carlo; Pozzi, Giuseppe; Rossato, Rosalba

    2012-04-01

    This paper focuses on the identification of temporal trends involving different granularities in clinical databases, where data are temporal in nature: for example, while follow-up visit data are usually stored at the granularity of working days, queries on these data could require to consider trends either at the granularity of months ("find patients who had an increase of systolic blood pressure within a single month") or at the granularity of weeks ("find patients who had steady states of diastolic blood pressure for more than 3 weeks"). Representing and reasoning properly on temporal clinical data at different granularities are important both to guarantee the efficacy and the quality of care processes and to detect emergency situations. Temporal sequences of data acquired during a care process provide a significant source of information not only to search for a particular value or an event at a specific time, but also to detect some clinically-relevant patterns for temporal data. We propose a general framework for the description and management of temporal trends by considering specific temporal features with respect to the chosen time granularity. Temporal aspects of data are considered within temporal relational databases, first formally by using a temporal extension of the relational calculus, and then by showing how to map these relational expressions to plain SQL queries. Throughout the paper we consider the clinical domain of hemodialysis, where several parameters are periodically sampled during every session. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Spreading of a granular droplet.

    PubMed

    Sánchez, Iván; Raynaud, Franck; Lanuza, José; Andreotti, Bruno; Clément, Eric; Aranson, Igor S

    2007-12-01

    The influence of controlled vibrations on the granular rheology is investigated in a specifically designed experiment in which a granular film spreads under the action of horizontal vibrations. A nonlinear diffusion equation is derived theoretically that describes the evolution of the deposit shape. A self-similar parabolic shape (the "granular droplet") and a spreading dynamics are predicted that both agree quantitatively with the experimental results. The theoretical analysis is used to extract effective friction coefficients between the base and the granular layer under sustained and controlled vibrations. A shear thickening regime characteristic of dense granular flows is evidenced at low vibration energy, both for glass beads and natural sand. Conversely, shear thinning is observed at high agitation.

  10. Spreading of a granular droplet

    NASA Astrophysics Data System (ADS)

    Clement, Eric; Sanchez, Ivan; Raynaud, Franck; Lanuza, Jose; Andreotti, Bruno; Aranson, Igor

    2008-03-01

    The influence of controlled vibrations on the granular rheology is investigated in a specifically designed experiment in which a granular film spreads under the action of horizontal vibrations. A nonlinear diffusion equation is derived theoretically that describes the evolution of the deposit shape. A self-similar parabolic shape (the``granular droplet'') and a spreading dynamics are predicted that both agree quantitatively with the experimental results. The theoretical analysis is used to extract effective friction coefficients between the base and the granular layer under sustained and controlled vibrations. A shear thickening regime characteristic of dense granular flows is evidenced at low vibration energy, both for glass beads and natural sand. Conversely, shear thinning is observed at high agitation.

  11. Spreading of a granular droplet

    NASA Astrophysics Data System (ADS)

    Sánchez, Iván; Raynaud, Franck; Lanuza, José; Andreotti, Bruno; Clément, Eric; Aranson, Igor S.

    2007-12-01

    The influence of controlled vibrations on the granular rheology is investigated in a specifically designed experiment in which a granular film spreads under the action of horizontal vibrations. A nonlinear diffusion equation is derived theoretically that describes the evolution of the deposit shape. A self-similar parabolic shape (the“granular droplet”) and a spreading dynamics are predicted that both agree quantitatively with the experimental results. The theoretical analysis is used to extract effective friction coefficients between the base and the granular layer under sustained and controlled vibrations. A shear thickening regime characteristic of dense granular flows is evidenced at low vibration energy, both for glass beads and natural sand. Conversely, shear thinning is observed at high agitation.

  12. Statistical properties of gravity-driven granular discharge flow under the influence of an obstacle

    NASA Astrophysics Data System (ADS)

    Endo, Keita; Katsuragi, Hiroaki

    2017-06-01

    Two-dimensional granular discharge flow driven by gravity under the influence of an obstacle is experimentally investigated. A horizontal exit of width W is opened at the bottom of vertical Hele-Shaw cell filled with stainless-steel particles to start the discharge flow. In this experiment, a circular obstacle is placed in front of the exit. Thus, the distance between the exit and obstacle L is also an important parameter. During the discharge, granular-flow state is acquired by a high-speed camera. The bulk discharge-flow rate is also measured by load cell sensors. The obtained high-speed-image data are analyzed to clarify the particle-level granular-flow dynamics. Using the measured data, we find that the obstacle above the exit affects the granular- flow field. Specifically, the existence of obstacle results in large horizontal granular temperature and small packing fraction. This tendency becomes significant when L is smaller than approximately 6Dg when W ≃ 4Dg, where Dg is diameter of particles.

  13. Impact compaction of a granular material

    DOE PAGES

    Fenton, Gregg; Asay, Blaine; Dalton, Devon

    2015-05-19

    The dynamic behavior of granular materials has importance to a variety of engineering applications. Structural seismic coupling, planetary science, and earth penetration mechanics, are just a few of the application areas. Although the mechanical behavior of granular materials of various types have been studied extensively for several decades, the dynamic behavior of such materials remains poorly understood. High-quality experimental data are needed to improve our general understanding of granular material compaction physics. This study will describe how an instrumented plunger impact system can be used to measure pressure-density relationships for model materials at high and controlled strain rates and subsequentlymore » used for computational modeling.« less

  14. Granular activated carbon promoted ozonation of a food-processing secondary effluent.

    PubMed

    Alvarez, Pedro M; Pocostales, J Pablo; Beltrán, Fernando J

    2011-01-30

    This paper reports on the application of a simultaneous combination of ozone and a granular activated carbon (O(3)/GAC) as a tertiary treatment of a wastewater generated from the activity of various food-processing industries. Prior to the O(3)/GAC treatment, the wastewater was subjected to conventional primary and secondary treatments in a full-scale wastewater treatment plant (WWTP). The effluent from the WWTP presented high organic load (COD>500 mg/l and TOC>150 mg/l), which could be much reduced by the O(3)/GAC treatment. Results from the O(3)/GAC experiments were compared with those obtained in single ozonation, single adsorption onto GAC and sequential O(3)-GAC adsorption experiments. While single processes and the sequential one showed limited capacity to remove organic matter for the food-processing effluent (COD removal <40%), the simultaneous O(3)/GAC process led to decreases of COD up to 82% at the conditions here applied. The combined process also improved the ozone consumption, which decreased from about 19 g O(3)/g TOC (single ozonation process) to 8.2-10.7 g O(3)/g TOC (O(3)/GAC process). The reusability of the GAC throughout a series of consecutive O(3)/GAC experiments was studied with no apparent loss of activity for a neutral GAC (PZC = 6.7) but for a basic GAC (PZC = 9.1). Copyright © 2010 Elsevier B.V. All rights reserved.

  15. Revealing the Structure of a Granular Medium through Ballistic Sound Propagation

    NASA Astrophysics Data System (ADS)

    Lherminier, S.; Planet, R.; Simon, G.; Vanel, L.; Ramos, O.

    2014-08-01

    We study the propagation of sound through a bidimensional granular medium consisting of photoelastic disks, which are packed into different crystalline and disordered structures. Acoustic sensors placed at the boundaries of the system capture the acoustic signal produced by a local and well-controlled mechanical excitation. By compressing the system, we find that the speed of the ballistic part of the acoustic wave behaves as a power law of the applied force with both exponent and prefactor sensitive to the internal geometry of the contact network. This information, which we are able to link to the force-deformation relation of single grains under different contact geometries, provides enough information to reveal the structure of the granular medium.

  16. Emotional Granularity Effects on Event-Related Brain Potentials during Affective Picture Processing.

    PubMed

    Lee, Ja Y; Lindquist, Kristen A; Nam, Chang S

    2017-01-01

    There is debate about whether emotional granularity , the tendency to label emotions in a nuanced and specific manner, is merely a product of labeling abilities, or a systematic difference in the experience of emotion during emotionally evocative events. According to the Conceptual Act Theory of Emotion (CAT) (Barrett, 2006), emotional granularity is due to the latter and is a product of on-going temporal differences in how individuals categorize and thus make meaning of their affective states. To address this question, the present study investigated the effects of individual differences in emotional granularity on electroencephalography-based brain activity during the experience of emotion in response to affective images. Event-related potentials (ERP) and event-related desynchronization and synchronization (ERD/ERS) analysis techniques were used. We found that ERP responses during the very early (60-90 ms), middle (270-300 ms), and later (540-570 ms) moments of stimulus presentation were associated with individuals' level of granularity. We also observed that highly granular individuals, compared to lowly granular individuals, exhibited relatively stable desynchronization of alpha power (8-12 Hz) and synchronization of gamma power (30-50 Hz) during the 3 s of stimulus presentation. Overall, our results suggest that emotional granularity is related to differences in neural processing throughout emotional experiences and that high granularity could be associated with access to executive control resources and a more habitual processing of affective stimuli, or a kind of "emotional complexity." Implications for models of emotion are also discussed.

  17. Transient elevation of cytoplasmic calcium ion concentration at a single cell level precedes morphological changes of epidermal keratinocytes during cornification.

    PubMed

    Murata, Teruasa; Honda, Tetsuya; Egawa, Gyohei; Yamamoto, Yasuo; Ichijo, Ryo; Toyoshima, Fumiko; Dainichi, Teruki; Kabashima, Kenji

    2018-04-26

    Epidermal keratinocytes achieve sequential differentiation from basal to granular layers, and undergo a specific programmed cell death, cornification, to form an indispensable barrier of the body. Although elevation of the cytoplasmic calcium ion concentration ([Ca 2+ ] i ) is one of the factors predicted to regulate cornification, the dynamics of [Ca 2+ ] i in epidermal keratinocytes is largely unknown. Here using intravital imaging, we captured the dynamics of [Ca 2+ ] i in mouse skin. [Ca 2+ ] i was elevated in basal cells on the second time scale in three spatiotemporally distinct patterns. The transient elevation of [Ca 2+ ] i also occurred at the most apical granular layer at a single cell level, and lasted for approximately 40 min. The transient elevation of [Ca 2+ ] i at the granular layer was followed by cornification, which was completed within 10 min. This study demonstrates the tightly regulated elevation of [Ca 2+ ] i preceding the cornification of epidermal keratinocytes, providing possible clues to the mechanisms of cornification.

  18. Ferromagnetic resonance studies of granular materials (abstract)

    NASA Astrophysics Data System (ADS)

    Rubinstein, Mark; Das, Badri; Chrisey, D. B.; Horwitz, J.; Koon, N. C.

    1994-05-01

    We have investigated the ferromagnetic resonance (FMR) spectra of several granular alloys displaying giant magnetoresistance (GMR). For this task, we have produced melt-spun ribbons of Fe5Co15Cu80 and Co20Cu80 by rapid quenching and thin films of Co80Cu20 by pulsed laser deposition. The salient feature of the FMR spectra is the increase of the resonance linewidth as a function of increasing annealing temperature. We have deconvoluted the FMR spectra to a single-domain powder pattern and a multidomain powder pattern. As a function of annealing temperature, the GMR of these samples attains a maximum value. Near the peak of the GMR curve, the FMR spectrum reveals that the ferromagnetic particles are half mono- and half multidomain. Since the maximum size of a single-domain particle is known, this enables us to estimate the spin diffusion length of the Cu conduction electrons. We have also demonstrated, theoretically and experimentally, that the appropriate demagnetizing field to apply to the ensemble of spherical magnetic particles that comprise our granular thin film is simply the field corresponding to the average magnetization.

  19. Cooperative dynamics in the penetration of a group of intruders in a granular medium.

    PubMed

    Pacheco-Vázquez, F; Ruiz-Suárez, J C

    2010-11-23

    An object moving in a fluid experiences a drag force that depends on its velocity, shape and the properties of the medium. From this simplest case to the motion of a flock of birds or a school of fish, the drag forces and the hydrodynamic interactions determine the full dynamics of the system. Similar drag forces appear when a single projectile impacts and moves through a granular medium, and this case is well studied in the literature. On the other hand, the case in which a group of intruders impact a granular material has never been considered. Here, we study the simultaneous penetration of several intruders in a very low-density granular medium. We find that the intruders move through it in a collective way, following a cooperative dynamics, whose complexity resembles flocking phenomena in living systems or the movement of reptiles in sand, wherein changes in drag are exploited to efficiently move or propel.

  20. Cooperative dynamics in the penetration of a group of intruders in a granular medium

    PubMed Central

    Pacheco-Vázquez, F.; Ruiz-Suárez, J.C.

    2010-01-01

    An object moving in a fluid experiences a drag force that depends on its velocity, shape and the properties of the medium. From this simplest case to the motion of a flock of birds or a school of fish, the drag forces and the hydrodynamic interactions determine the full dynamics of the system. Similar drag forces appear when a single projectile impacts and moves through a granular medium, and this case is well studied in the literature. On the other hand, the case in which a group of intruders impact a granular material has never been considered. Here, we study the simultaneous penetration of several intruders in a very low-density granular medium. We find that the intruders move through it in a collective way, following a cooperative dynamics, whose complexity resembles flocking phenomena in living systems or the movement of reptiles in sand, wherein changes in drag are exploited to efficiently move or propel. PMID:21119636

  1. Sound-absorbing slabs and structures based on granular materials (bound and unbound). [energy absorbing efficiency of porous material

    NASA Technical Reports Server (NTRS)

    Petre-Lazar, S.; Popeea, G.

    1974-01-01

    Sound absorbing slabs and structures made up of bound or unbound granular materials are considered and how to manufacture these elements at the building site. The raw material is a single grain powder (sand, expanded blast furnace slag, etc.) that imparts to the end products an apparent porosity of 25-45% and an energy dissipation within the structure leading to absorption coefficients that can be compared with those of mineral wool and urethane.

  2. The role of fluid viscosity in an immersed granular collapse

    NASA Astrophysics Data System (ADS)

    Yang, Geng Chao; Kwok, Chung Yee; Sobral, Yuri Dumaresq

    2017-06-01

    Instabilities of immersed slopes and cliffs can lead to catastrophic events that involve a sudden release of huge soil mass. The scaled deposit height and runout distance are found to follow simple power laws when a granular column collapses on a horizontal plane. However, if the granular column is submerged in a fluid, the mobility of the granular collapse due to high inertia effects will be reduced by fluid-particle interactions. In this study, the effects of fluid viscosity on granular collapse is investigated qualitatively by adopting a numerical approach based on the coupled lattice Boltzmann method (LBM) and discrete element method (DEM). It is found that the granular collapse can be dramatically slowed down due to the presence of viscous fluids. For the considered granular configuration, when the fluid viscosity increases. the runout distance decreases and the final deposition shows a larger deposit angle.

  3. Mechanics of a granular skin

    NASA Astrophysics Data System (ADS)

    Karmakar, Somnath; Sane, Anit; Bhattacharya, S.; Ghosh, Shankar

    2017-04-01

    Magic sand, a hydrophobic toy granular material, is widely used in popular science instructions because of its nonintuitive mechanical properties. A detailed study of the failure of an underwater column of magic sand shows that these properties can be traced to a single phenomenon: the system self-generates a cohesive skin that encapsulates the material inside. The skin, consisting of pinned air-water-grain interfaces, shows multiscale mechanical properties: they range from contact-line dynamics in the intragrain roughness scale, to plastic flow at the grain scale, all the way to sample-scale mechanical responses. With decreasing rigidity of the skin, the failure mode transforms from brittle to ductile (both of which are collective in nature) to a complete disintegration at the single-grain scale.

  4. Characteristics of acoustic emissions from shearing of granular media

    NASA Astrophysics Data System (ADS)

    Michlmayr, Gernot; Cohen, Denis; Or, Dani

    2010-05-01

    Deformation and abrupt formation of small failure cracks on hillslopes often precede sudden release of shallow landslides. The associated frictional sliding, breakage of cementing agents and rupture of embedded biological fibers or liquid bonds between grain contacts are associated with measurable acoustic emissions (AE). The aim of this study was to characterize small scale shear induced failure events (as models of precursors prior to a landslide) by capturing elastic body waves emitted from such events. We conducted a series of experiments with a specially-designed shear frame to measure and characterize high frequency (kHz range) acoustic emissions under different conditions using piezoelectric sensors. Tests were performed at different shear rates ranging from 0.01mm/sec to 2mm/sec with different dry and wet granular materials. In addition to acoustic emissions the setup allows to measure forces and deformations in both horizontal and vertical directions. Results provide means to define characteristic AE signature for different failure events. We observed an increase in AE activity during dilation of granular samples. In wet material AE signals were attributed to the snap-off of liquid bridges between single gains. Acoustic emissions clearly provide an experimental tool for exploring micro-mechanical processes in dry and wet material. Moreover, high sampling rates found in most AE systems coupled with waveguides to overcome signal attenuation offer a promise for field applications as an early warning method for observing the progressive development of slip planes prior to the onset of a landslide.

  5. The radiological features, diagnosis and management of screen-detected lobular neoplasia of the breast: Findings from the Sloane Project.

    PubMed

    Maxwell, Anthony J; Clements, Karen; Dodwell, David J; Evans, Andrew J; Francis, Adele; Hussain, Monuwar; Morris, Julie; Pinder, Sarah E; Sawyer, Elinor J; Thomas, Jeremy; Thompson, Alastair

    2016-06-01

    To investigate the radiological features, diagnosis and management of screen-detected lobular neoplasia (LN) of the breast. 392 women with pure LN alone were identified within the prospective UK cohort study of screen-detected non-invasive breast neoplasia (the Sloane Project). Demography, radiological features and diagnostic and therapeutic procedures were analysed. Non-pleomorphic LN (369/392) was most frequently diagnosed among women aged 50-54 and in 53.5% was at the first screen. It occurred most commonly on the left (58.0%; p = 0.003), in the upper outer quadrant and confined to one site (single quadrant or retroareolar region). No bilateral cases were found. The predominant radiological feature was microcalcification (most commonly granular) which increased in frequency with increasing breast density. Casting microcalcification as a predominant feature had a significantly higher lesion size compared to granular and punctate patterns (p = 0.034). 326/369 (88.3%) women underwent surgery, including 17 who underwent >1 operation, six who had mastectomy and six who had axillary surgery. Two patients had radiotherapy and 15 had endocrine treatment. Pleomorphic lobular carcinoma in situ (23/392) presented as granular microcalcification in 12; four women had mastectomy and six had radiotherapy. Screen-detected LN occurs in relatively young women and is predominantly non-pleomorphic and unilateral. It is typically associated with granular or punctate microcalcification in the left upper outer quadrant. Management, including surgical resection, is highly variable and requires evidence-based guideline development. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Electrical transport properties in Co nanocluster-assembled granular film

    NASA Astrophysics Data System (ADS)

    Zhang, Qin-Fu; Wang, Lai-Sen; Wang, Xiong-Zhi; Zheng, Hong-Fei; Liu, Xiang; Xie, Jia; Qiu, Yu-Long; Chen, Yuanzhi; Peng, Dong-Liang

    2017-03-01

    A Co nanocluster-assembled granular film with three-dimensional cross-connection paralleled conductive paths was fabricated by using the plasma-gas-condensation method in a vacuum environment. The temperature-dependent longitudinal resistivity and anomalous Hall effect of this new type granular film were systematically studied. The longitudinal resistivity of the Co nanocluster-assembled granular film first decreased and then increased with increasing measuring temperature, revealing a minimum value at certain temperature, T min . In a low temperature region ( T < T min ), the barrier between adjacent nanoclusters governed the electrical transport process, and the temperature coefficient of resistance (TCR) showed an insulator-type behavior. The thermal fluctuation-induced tunneling conduction progressively increased with increasing temperature, which led to a decrease in the longitudinal resistivity. In a high temperature region, the TCR showed a metallic-type behavior, which was primarily attributed to the temperature-dependent scattering. Different from the longitudinal resistivity behavior, the saturated anomalous Hall resistivity increased monotonically with increasing measuring temperature. The value of the anomalous Hall coefficient ( R S ) reached 2.3 × 10-9 (Ω cm)/G at 300 K, which was about three orders of magnitude larger than previously reported in blocky single-crystal Co [E. N. Kondorskii, Sov. Phys. JETP 38, 977 (1974)]. Interestingly, the scaling relation ( ρx y A ∝ ρx x γ ) between saturated anomalous Hall resistivity ( ρx y A ) and longitudinal resistivity ( ρ x x ) was divided into two regions by T min . However, after excluding the contribution of tunneling, the scaling relation followed the same rule. The corresponding physical mechanism was also proposed to explain these phenomena.

  7. Multiscale Magnetic Underdense Regions on the Solar Surface: Granular and Mesogranular Scales

    NASA Astrophysics Data System (ADS)

    Berrilli, F.; Scardigli, S.; Giordano, S.

    2013-02-01

    The Sun is a non-equilibrium, dissipative system subject to an energy flow that originates in its core. Convective overshooting motions create temperature and velocity structures that show a temporal and spatial multiscale evolution. As a result, photospheric structures are generally considered to be a direct manifestation of convective plasma motions. The plasma flows in the photosphere govern the motion of single magnetic elements. These elements are arranged in typical patterns, which are observed as a variety of multiscale magnetic patterns. High-resolution magnetograms of the quiet solar surface revealed the presence of multiscale magnetic underdense regions in the solar photosphere, commonly called voids, which may be considered to be a signature of the underlying convective structure. The analysis of such patterns paves the way for the investigation of all turbulent convective scales, from granular to global. In order to address the question of magnetic structures driven by turbulent convection at granular and mesogranular scales, we used a voids-detection method. The computed distribution of void length scales shows an exponential behavior at scales between 2 and 10 Mm and the absence of features at mesogranular scales. The absence of preferred scales of organization in the 2 - 10 Mm range supports the multiscale nature of flows on the solar surface and the absence of a mesogranular convective scale.

  8. A High-Granularity Approach to Modeling Energy Consumption and Savings Potential in the U.S. Residential Building Stock

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Building simulations are increasingly used in various applications related to energy efficient buildings. For individual buildings, applications include: design of new buildings, prediction of retrofit savings, ratings, performance path code compliance and qualification for incentives. Beyond individual building applications, larger scale applications (across the stock of buildings at various scales: national, regional and state) include: codes and standards development, utility program design, regional/state planning, and technology assessments. For these sorts of applications, a set of representative buildings are typically simulated to predict performance of the entire population of buildings. Focusing on the U.S. single-family residential building stock, this paper willmore » describe how multiple data sources for building characteristics are combined into a highly-granular database that preserves the important interdependencies of the characteristics. We will present the sampling technique used to generate a representative set of thousands (up to hundreds of thousands) of building models. We will also present results of detailed calibrations against building stock consumption data.« less

  9. Emotional Granularity Effects on Event-Related Brain Potentials during Affective Picture Processing

    PubMed Central

    Lee, Ja Y.; Lindquist, Kristen A.; Nam, Chang S.

    2017-01-01

    There is debate about whether emotional granularity, the tendency to label emotions in a nuanced and specific manner, is merely a product of labeling abilities, or a systematic difference in the experience of emotion during emotionally evocative events. According to the Conceptual Act Theory of Emotion (CAT) (Barrett, 2006), emotional granularity is due to the latter and is a product of on-going temporal differences in how individuals categorize and thus make meaning of their affective states. To address this question, the present study investigated the effects of individual differences in emotional granularity on electroencephalography-based brain activity during the experience of emotion in response to affective images. Event-related potentials (ERP) and event-related desynchronization and synchronization (ERD/ERS) analysis techniques were used. We found that ERP responses during the very early (60–90 ms), middle (270–300 ms), and later (540–570 ms) moments of stimulus presentation were associated with individuals’ level of granularity. We also observed that highly granular individuals, compared to lowly granular individuals, exhibited relatively stable desynchronization of alpha power (8–12 Hz) and synchronization of gamma power (30–50 Hz) during the 3 s of stimulus presentation. Overall, our results suggest that emotional granularity is related to differences in neural processing throughout emotional experiences and that high granularity could be associated with access to executive control resources and a more habitual processing of affective stimuli, or a kind of “emotional complexity.” Implications for models of emotion are also discussed. PMID:28392761

  10. Grain scale observations of stick-slip dynamics in fluid saturated granular fault gouge

    NASA Astrophysics Data System (ADS)

    Johnson, P. A.; Dorostkar, O.; Guyer, R. A.; Marone, C.; Carmeliet, J.

    2017-12-01

    We are studying granular mechanics during slip. In the present work, we conduct coupled computational fluid dynamics (CFD) and discrete element method (DEM) simulations to study grain scale characteristics of slip instabilities in fluid saturated granular fault gouge. The granular sample is confined with constant normal load (10 MPa), and sheared with constant velocity (0.6 mm/s). This loading configuration is chosen to promote stick-slip dynamics, based on a phase-space study. Fluid is introduced in the beginning of stick phase and characteristics of slip events i.e. macroscopic friction coefficient, kinetic energy and layer thickness are monitored. At the grain scale, we monitor particle coordination number, fluid-particle interaction forces as well as particle and fluid kinetic energy. Our observations show that presence of fluids in a drained granular fault gouge stabilizes the layer in the stick phase and increases the recurrence time. In saturated model, we observe that average particle coordination number reaches higher values compared to dry granular gouge. Upon slip, we observe that a larger portion of the granular sample is mobilized in saturated gouge compared to dry system. We also observe that regions with high particle kinetic energy are correlated with zones of high fluid motion. Our observations highlight that spatiotemporal profile of fluid dynamic pressure affects the characteristics of slip instabilities, increasing macroscopic friction coefficient drop, kinetic energy release and granular layer compaction. We show that numerical simulations help characterize the micromechanics of fault mechanics.

  11. Granular flows: fundamentals and applications

    NASA Astrophysics Data System (ADS)

    Cleary, Paul W.

    DEM allows the prediction of complex industrial and geophysical particle flows. The importance of particle shape is demonstrated through a series of simple examples. Shape controls resistance to shear, the magnitude of collision stress, dilation and the angle of repose. We use a periodic flow of a bed of particles to demonstrate the different states of granular matter, the generation of dilute granular flow when granular temperature is high and the flow dependent nature of the granular thermodynamic boundary conditions. A series of industrial case studies examines how DEM can be used to understand and improve processes such as separation, mixing, grinding, excavation, hopper discharge, metering and conveyor interchange. Finally, an example of landslide motion over real topography is presented.

  12. Granular giant magnetoresistive materials and their ferromagnetic resonances

    NASA Astrophysics Data System (ADS)

    Rubinstein, M.; Das, B. N.; Koon, N. C.; Chrisey, D. B.; Horwitz, J.

    1994-11-01

    Ferromagnetic resonance (FMR) can reveal important information on the size and shape of the ferromagnetic particles which are dispersed in granular giant magnetoresistive (GMR) materials. We have investigated the FMR spectra of three different types of granular GMR material, each with different properties: (1) melt-spun ribbons of Fe5Co15Cu80 and Co20Cu80, (2) thin films of Co20Cu80 produced by pulsed laser deposition, and (3) a granular multilayer film of (Cu(50 A)/Fe(10 A)) x 50. We interpret the linewidth of these materials in as simple a manner as possible, as a 'powder pattern' of noninteracting ferromagnetic particles. The linewidth of the melt-spun ribbons is caused by a completely random distribution of crystalline anisotropy axes. The linewidth of these samples is strongly dependent upon the annealing temperature: the linewidth of the as-spun sample is 2.5 kOe (appropriate for single-domain particles) while the linewidth of a melt-spun sample annealed at 900 C for 15 min is 3.8 kOe (appropriate for larger, multidomain particles). The linewidth of the granular multilayer is attributed to a restricted distribution of shape anisotropies, as expected from a discontinuous multilayer, and is only 0.98 kOe with the magnetic field in the plane of the film.

  13. Ferromagnetic-resonance studies of granular giant-magnetoresistive materials

    NASA Astrophysics Data System (ADS)

    Rubinstein, M.; Das, B. N.; Koon, N. C.; Chrisey, D. B.; Horwitz, J.

    1994-07-01

    Ferromagnetic resonance (FMR) can reveal important information on the size and shape of the ferromagnetic particles which are dispersed in granular giant magnetoresistive (GMR) materials. We have investigated the FMR spectra of three different types of granular GMR material, each with different properties: (1) melt-spun ribbons of Fe5Co15Cu80 and Co20Cu80, (2) thin films of Co20Cu80 produced by pulsed laser deposition, and (3) a granular multilayer film of [Cu(50 Å)/Fe(10 Å)]×50. We interpret the linewidth of these materials in as simple a manner as possible, as a ``powder pattern'' of noninteracting ferromagnetic particles. The linewidth of the melt-spun ribbons is caused by a completely random distribution of crystalline anisotropy axes. The linewidth of these samples is strongly dependent upon the annealing temperature: the linewidth of the as-spun sample is 2.5 kOe (appropriate for single-domain particles) while the linewidth of a melt-spun sample annealed at 900 °C for 15 min is 4.5 kOe (appropriate for larger, multidomain particles). The linewidth of the granular multilayer is attributed to a restricted distribution of shape anisotropies, as expected from a discontinuous multilayer, and is only 0.98 kOe when the applied magnetic field is in the plane of the film.

  14. Feasibility of granular bed filtration of an aerosol of ultrafine metallic particles including a pressure drop regeneration system.

    PubMed

    Bémer, D; Wingert, L; Morele, Y; Subra, I

    2015-09-01

    A process for filtering an aerosol of ultrafine metallic particles (UFP) has been designed and tested, based on the principle of a multistage granular bed. The filtration system comprised a succession of granular beds of varying thickness composed of glass beads of different diameters. This system allows the pressure drop to be regenerated during filtration ("on-line" mode) using a vibrating probe. Tests monitoring the pressure drop were conducted on a "10-L/min" low airflow rate device and on a "100-m(3)/hr" prototype. Granular bed unclogging is automated on the latter. The cyclic operation and filtration performances are similar to that of filter medium-based industrial dust collectors. Filtration of ultrafine metallic particles generated by different industrial processes such as arc welding, metal cutting, or spraying constitutes a difficult problem due to the high filter clogging properties of these particles and to the high temperatures generally encountered. Granular beds represent an advantageous means of filtering these aerosols with difficult properties.

  15. A Study of SDT in an Ammonium Nitrate (NH4 NO3) Based Granular Explosive

    NASA Astrophysics Data System (ADS)

    Burns, Malcolm; Taylor, Peter

    2007-06-01

    In order to study the SDT process in a granular non ideal explosive (NIE) an experimental technique has been developed that allows the granular explosive to be shock initiated at a well controlled ``tap density''. The granular NIE was contained in a PMMA cone and a planar shock was delivered to the explosive through buffer plates of varying material. A combination of piezoelectric probes, ionization pins, PVDF stress gauges and a high speed framing camera were used to measure the input shock pressure and shock and detonation wave positions in the explosive. Four trials were performed to characterize the run to detonation distance versus pressure relationship (Pop plot) of the granular NH4 NO3 explosive. Input pressures ranged from close to the 4GPa predicted CJ pressure of the granular explosive down to 1.4 GPa, giving run distances up to 14mm for the lowest pressure. The data indicates a steady acceleration of the input shock to the detonation velocity, implying significant reaction growth at the shock front. This is in contrast to the behaviour of most high density pressed PBXs which show little growth in shock front velocity before transit to detonation. The experimentally observed initiation behaviour is compared to that predicted by a simple JWL++ reactive burn model for the granular NH4 NO3 explosive which has been fitted to other detonics experiments on this material.

  16. Dynamic Deformation and Collapse of Granular Columns

    NASA Astrophysics Data System (ADS)

    Uenishi, K.; Tsuji, K.; Doi, S.

    2009-12-01

    Large dynamic deformation of granular materials may be found in nature not only in the failure of slopes and cliffs — due to earthquakes, rock avalanches, debris flows and landslides — but also in earthquake faulting itself. Granular surface flows often consist of solid grains and intergranular fluid, but the effect of the fluid may be usually negligible because the volumetric concentration of grains is in many cases high enough for interparticle forces to dominate momentum transport. Therefore, the investigation of dry granular flow of a mass might assist in further understanding of the above mentioned geophysical events. Here, utilizing a high-speed digital video camera system, we perform a simple yet fully-controlled series of laboratory experiments related to the collapse of granular columns. We record, at an interval of some microseconds, the dynamic transient granular mass flow initiated by abrupt release of a tube that contains dry granular materials. The acrylic tube is partially filled with glass beads and has a cross-section of either a fully- or semi-cylindrical shape. Upon sudden removal of the tube, the granular solid may fragment under the action of its own weight and the particles spread on a rigid horizontal plane. This study is essentially the extension of the previous ones by Lajeunesse et al. (Phys. Fluids 2004) and Uenishi and Tsuji (JPGU 2008), but the striped layers of particles in a semi-cylindrical tube, newly introduced in this contribution, allow us to observe the precise particle movement inside the granular column: The development of slip lines inside the column and the movement of particles against each other can be clearly identified. The major controlling parameters of the spreading dynamics are the initial aspect ratio of the granular (semi-)cylindrical column, the frictional properties of the horizontal plane (substrate) and the size of beads. We show the influence of each parameter on the average flow velocity and final radius and height of the deposit, i.e., the fraction of granular mass mobilized by the flow, and the final shape of the deposit.

  17. Adsorption of Methyl Tertiary Butyl Ether on Granular Zeolites: Batch and Column Studies

    PubMed Central

    Abu-Lail, Laila; Bergendahl, John A.; Thompson, Robert W.

    2010-01-01

    Methyl tertiary butyl ether (MTBE) has been shown to be readily removed from water with powdered zeolites, but the passage of water through fixed beds of very small powdered zeolites produces high friction losses not encountered in flow through larger sized granular materials. In this study, equilibrium and kinetic adsorption of MTBE onto granular zeolites, a coconut shell granular activated carbon (CS-1240), and a commercial carbon adsorbent (CCA) sample was evaluated. In addition, the effect of natural organic matter (NOM) on MTBE adsorption was evaluated. Batch adsorption experiments determined that ZSM-5 was the most effective granular zeolite for MTBE adsorption. Further equilibrium and kinetic experiments verified that granular ZSM-5 is superior to CS-1240 and CCA in removing MTBE from water. No competitive-adsorption effects between NOM and MTBE were observed for adsorption to granular ZSM-5 or CS-1240, however there was competition between NOM and MTBE for adsorption onto the CCA granules. Fixed-bed adsorption experiments for longer run times were performed using granular ZSM-5. The bed depth service time model (BDST) was used to analyze the breakthrough data. PMID:20153106

  18. Effects of Noise and Vibration on the Solid to Liquid Fluidization Transition in Small Dense Granular Systems Under Shear

    NASA Astrophysics Data System (ADS)

    Melhus, Martin Frederic

    2011-07-01

    Granular materials exhibit bulk properties that are distinct from conventional solids, liq- uids, and gases, due to the dissipative nature of the inter-granular forces. Understanding the fundamentals of granular materials draws upon and gives insight into many fields at the current frontiers of physics, such as plasticity of solids, fracture and friction, com- plex systems such as colloids, foams and suspensions, and a variety of biological systems. Particulate flows are widespread in geophysics, and are also essential to many industries. Despite the importance of these phenomena, we lack a theoretical model that explains most behaviors of granular materials. Since granular assemblies are highly dissipative, they are often far from mechanical equilibrium, making most classical analyses inappli- cable. A theory for dilute granular systems exists, but for dense granular systems (by far the majority of granular systems in the real world) no comparable theory is accepted. We approach this problem by examining the fluidization, or transition from solid to liquid, in dense granular systems. In this study, the separate effects of random noise and vibration on the static to flowing transition of a dense granular assembly under planar shear is studied numerically using soft contact particle dynamics simulations in two dimensions. We focus on small systems in a thin planar Couette cell, examining the bistable region while increasing shear, with varying amounts of random noise or vibration, and determine the statistics of the shear required for the onset of flow. We find that the applied power is the key parameter in determining the magnitude of the effects of the noise or vibration, with vibration frequency also having an influence. Similarities and differences between noise and vibration are determined, and the results compare favorably with a two phase model for dense granular flow.

  19. Single-Trial Analysis of V1 Responses Suggests Two Transmission States

    NASA Technical Reports Server (NTRS)

    Shah, A. S.; Knuth, K. H.; Truccolo, W. A.; Mehta, A. D.; McGinnis, T.; OConnell, N.; Ding, M.; Bressler, S. L.; Schroeder, C. E.

    2002-01-01

    Sensory processing in the visual, auditory, and somatosensory systems is often studied by recording electrical activity in response to a stimulus of interest. Typically, multiple trial responses to the stimulus are averaged to isolate the stereotypic response from noise. However, averaging ignores dynamic variability in the neuronal response, which is potentially critical to understanding stimulus-processing schemes. Thus, we developed the multiple component, Event-Related Potential (mcERP) model. This model asserts that multiple components, defined as stereotypic waveforms, comprise the stimulus-evoked response and that these components may vary in amplitude and latency from trial to trial. Application of this model to data recorded simultaneously from all six laminae of V1 in an awake, behaving monkey performing a visual discrimination yielded three components. The first component localized to granular V1, the second was located in supragranular V1, and the final component displayed a multi-laminar distribution. These modeling results, which take into account single-trial response dynamics, illustrated that the initial activation of VI occurs in the granular layer followed by activation in the supragranular layers. This finding is expected because the average response in those layers demonstrates the same progression and because anatomical evidence suggests that the feedforward input in V1 enters the granular layer and progresses to supragranular layers. In addition to these findings, the granular component of the model displayed several interesting trial-to-trial characteristics including (1) a bimodal latency distribution, (2) a latency-related variation in response amplitude, (3) a latency correlation with the supragranular component, and (4) an amplitude and latency association with the multi-laminar component. Direct analyses of the single-trial data were consistent with these model predictions. These findings suggest that V1 has at least 2 transmission states, which may be modulated by various effects such as attention, dynamics in local EEG rhythm, or variation in sensory inputs.

  20. Shock waves in weakly compressed granular media.

    PubMed

    van den Wildenberg, Siet; van Loo, Rogier; van Hecke, Martin

    2013-11-22

    We experimentally probe nonlinear wave propagation in weakly compressed granular media and observe a crossover from quasilinear sound waves at low impact to shock waves at high impact. We show that this crossover impact grows with the confining pressure P0, whereas the shock wave speed is independent of P0-two hallmarks of granular shocks predicted recently. The shocks exhibit surprising power law attenuation, which we model with a logarithmic law implying that shock dissipation is weak and qualitatively different from other granular dissipation mechanisms. We show that elastic and potential energy balance in the leading part of the shocks.

  1. ngs (notochord granular surface) gene encodes a novel type of intermediate filament family protein essential for notochord maintenance in zebrafish.

    PubMed

    Tong, Xiangjun; Xia, Zhidan; Zu, Yao; Telfer, Helena; Hu, Jing; Yu, Jingyi; Liu, Huan; Zhang, Quan; Sodmergen; Lin, Shuo; Zhang, Bo

    2013-01-25

    The notochord is an important organ involved in embryonic patterning and locomotion. In zebrafish, the mature notochord consists of a single stack of fully differentiated, large vacuolated cells called chordocytes, surrounded by a single layer of less differentiated notochordal epithelial cells called chordoblasts. Through genetic analysis of zebrafish lines carrying pseudo-typed retroviral insertions, a mutant exhibiting a defective notochord with a granular appearance was isolated, and the corresponding gene was identified as ngs (notochord granular surface), which was specifically expressed in the notochord. In the mutants, the notochord started to degenerate from 32 hours post-fertilization, and the chordocytes were then gradually replaced by smaller cells derived from chordoblasts. The granular notochord phenotype was alleviated by anesthetizing the mutant embryos with tricaine to prevent muscle contraction and locomotion. Phylogenetic analysis showed that ngs encodes a new type of intermediate filament (IF) family protein, which we named chordostatin based on its function. Under the transmission electron microcopy, bundles of 10-nm-thick IF-like filaments were enriched in the chordocytes of wild-type zebrafish embryos, whereas the chordocytes in ngs mutants lacked IF-like structures. Furthermore, chordostatin-enhanced GFP (EGFP) fusion protein assembled into a filamentous network specifically in chordocytes. Taken together, our work demonstrates that ngs encodes a novel type of IF protein and functions to maintain notochord integrity for larval development and locomotion. Our work sheds light on the mechanisms of notochord structural maintenance, as well as the evolution and biological function of IF family proteins.

  2. ngs (Notochord Granular Surface) Gene Encodes a Novel Type of Intermediate Filament Family Protein Essential for Notochord Maintenance in Zebrafish*

    PubMed Central

    Tong, Xiangjun; Xia, Zhidan; Zu, Yao; Telfer, Helena; Hu, Jing; Yu, Jingyi; Liu, Huan; Zhang, Quan; Sodmergen; Lin, Shuo; Zhang, Bo

    2013-01-01

    The notochord is an important organ involved in embryonic patterning and locomotion. In zebrafish, the mature notochord consists of a single stack of fully differentiated, large vacuolated cells called chordocytes, surrounded by a single layer of less differentiated notochordal epithelial cells called chordoblasts. Through genetic analysis of zebrafish lines carrying pseudo-typed retroviral insertions, a mutant exhibiting a defective notochord with a granular appearance was isolated, and the corresponding gene was identified as ngs (notochord granular surface), which was specifically expressed in the notochord. In the mutants, the notochord started to degenerate from 32 hours post-fertilization, and the chordocytes were then gradually replaced by smaller cells derived from chordoblasts. The granular notochord phenotype was alleviated by anesthetizing the mutant embryos with tricaine to prevent muscle contraction and locomotion. Phylogenetic analysis showed that ngs encodes a new type of intermediate filament (IF) family protein, which we named chordostatin based on its function. Under the transmission electron microcopy, bundles of 10-nm-thick IF-like filaments were enriched in the chordocytes of wild-type zebrafish embryos, whereas the chordocytes in ngs mutants lacked IF-like structures. Furthermore, chordostatin-enhanced GFP (EGFP) fusion protein assembled into a filamentous network specifically in chordocytes. Taken together, our work demonstrates that ngs encodes a novel type of IF protein and functions to maintain notochord integrity for larval development and locomotion. Our work sheds light on the mechanisms of notochord structural maintenance, as well as the evolution and biological function of IF family proteins. PMID:23132861

  3. The design of free structure granular mappings: the use of the principle of justifiable granularity.

    PubMed

    Pedrycz, Witold; Al-Hmouz, Rami; Morfeq, Ali; Balamash, Abdullah

    2013-12-01

    The study introduces a concept of mappings realized in presence of information granules and offers a design framework supporting the formation of such mappings. Information granules are conceptually meaningful entities formed on a basis of a large number of experimental input–output numeric data available for the construction of the model. We develop a conceptually and algorithmically sound way of forming information granules. Considering the directional nature of the mapping to be formed, this directionality aspect needs to be taken into account when developing information granules. The property of directionality implies that while the information granules in the input space could be constructed with a great deal of flexibility, the information granules formed in the output space have to inherently relate to those built in the input space. The input space is granulated by running a clustering algorithm; for illustrative purposes, the focus here is on fuzzy clustering realized with the aid of the fuzzy C-means algorithm. The information granules in the output space are constructed with the aid of the principle of justifiable granularity (being one of the underlying fundamental conceptual pursuits of Granular Computing). The construct exhibits two important features. First, the constructed information granules are formed in the presence of information granules already constructed in the input space (and this realization is reflective of the direction of the mapping from the input to the output space). Second, the principle of justifiable granularity does not confine the realization of information granules to a single formalism such as fuzzy sets but helps form the granules expressed any required formalism of information granulation. The quality of the granular mapping (viz. the mapping realized for the information granules formed in the input and output spaces) is expressed in terms of the coverage criterion (articulating how well the experimental data are “covered” by information granules produced by the granular mapping for any input experimental data). Some parametric studies are reported by quantifying the performance of the granular mapping (expressed in terms of the coverage and specificity criteria) versus the values of a certain parameters utilized in the construction of output information granules through the principle of justifiable granularity. The plots of coverage–specificity dependency help determine a knee point and reach a sound compromise between these two conflicting requirements imposed on the quality of the granular mapping. Furthermore, quantified is the quality of the mapping with regard to the number of information granules (implying a certain granularity of the mapping). A series of experiments is reported as well.

  4. Two Studies of Complex Nonlinear Systems: Engineered Granular Crystals and Coarse-Graining Optimization Problems

    NASA Astrophysics Data System (ADS)

    Pozharskiy, Dmitry

    In recent years a nonlinear, acoustic metamaterial, named granular crystals, has gained prominence due to its high accessibility, both experimentally and computationally. The observation of a wide range of dynamical phenomena in the system, due to its inherent nonlinearities, has suggested its importance in many engineering applications related to wave propagation. In the first part of this dissertation, we explore the nonlinear dynamics of damped-driven granular crystals. In one case, we consider a highly nonlinear setting, also known as a sonic vacuum, and derive a nonlinear analogue of a linear spectrum, corresponding to resonant periodic propagation and antiresonances. Experimental studies confirm the computational findings and the assimilation of experimental data into a numerical model is demonstrated. In the second case, global bifurcations in a precompressed granular crystal are examined, and their involvement in the appearance of chaotic dynamics is demonstrated. Both results highlight the importance of exploring the nonlinear dynamics, to gain insight into how a granular crystal responds to different external excitations. In the second part, we borrow established ideas from coarse-graining of dynamical systems, and extend them to optimization problems. We combine manifold learning algorithms, such as Diffusion Maps, with stochastic optimization methods, such as Simulated Annealing, and show that we can retrieve an ensemble, of few, important parameters that should be explored in detail. This framework can lead to acceleration of convergence when dealing with complex, high-dimensional optimization, and could potentially be applied to design engineered granular crystals.

  5. Can one ``Hear'' the aggregation state of a granular system?

    NASA Astrophysics Data System (ADS)

    Kruelle, Christof A.; Sánchez, Almudena García

    2013-06-01

    If an ensemble of macroscopic particles is mechanically agitated the constant energy input is dissipated into the system by multiple inelastic collisions. As a result, the granular material can exhibit, depending on the magnitude of agitation, several physical states - like a gaseous phase for high energy input or a condensed state for low agitation. Here we introduce a new method for quantifying the acoustical response of the granular system. Our experimental system consists of a monodisperse packing of glass beads with a free upper surface, which is confined inside a cylindrical container. An electro-mechanical shaker exerts a sinusoidal vertical vibration at normalized accelerations well above the fluidization threshold for a monolayer of particles. By increasing the number of beads the granular gas suddenly collapses if a critical threshold is exceeded. The transition can be detected easily with a microphone connected to the soundcard of a PC. From the recorded audio track a FFT is calculated in real-time. Depending on either the number of particles at a fixed acceleration or the amount of energy input for a given number of particles, the resulting rattling noise exhibits a power spectrum with either the dominating (shaker) frequency plus higher harmonics for a granular crystal or a high-frequency broad-band noise for a granular gas, respectively. Our new method demonstrates that it is possible to quantify analytically the subjective audio impressions of a careful listener and thus to distinguish easily between different aggregation states of an excited granular system.

  6. Partial filling of a honeycomb structure by granular materials for vibration and noise reduction

    NASA Astrophysics Data System (ADS)

    Koch, Sebastian; Duvigneau, Fabian; Orszulik, Ryan; Gabbert, Ulrich; Woschke, Elmar

    2017-04-01

    In this paper, the damping effect of granular materials is explored to reduce the vibration and noise of mechanical structures. To this end, a honeycomb structure with high stiffness is used to contain a granular filling which presents the possiblity for the distribution of the granular material to be designed. As a particular application example, the oil pan bottom of a combustion engine is used to investigate the influence on the vibration behavior and the sound emission. The effect of the honeycomb structure along with the granular mass, distribution, and type on the vibration behaviour of the structure is investigated via laser scanning vibrometry. From this, an optimized filling is determined and then its noise suppression level validated on an engine test bench through measurements with an acoustic array.

  7. Dynamic granularity of imaging systems

    DOE PAGES

    Geissel, Matthias; Smith, Ian C.; Shores, Jonathon E.; ...

    2015-11-04

    Imaging systems that include a specific source, imaging concept, geometry, and detector have unique properties such as signal-to-noise ratio, dynamic range, spatial resolution, distortions, and contrast. Some of these properties are inherently connected, particularly dynamic range and spatial resolution. It must be emphasized that spatial resolution is not a single number but must be seen in the context of dynamic range and consequently is better described by a function or distribution. We introduce the “dynamic granularity” G dyn as a standardized, objective relation between a detector’s spatial resolution (granularity) and dynamic range for complex imaging systems in a given environmentmore » rather than the widely found characterization of detectors such as cameras or films by themselves. We found that this relation can partly be explained through consideration of the signal’s photon statistics, background noise, and detector sensitivity, but a comprehensive description including some unpredictable data such as dust, damages, or an unknown spectral distribution will ultimately have to be based on measurements. Measured dynamic granularities can be objectively used to assess the limits of an imaging system’s performance including all contributing noise sources and to qualify the influence of alternative components within an imaging system. Our article explains the construction criteria to formulate a dynamic granularity and compares measured dynamic granularities for different detectors used in the X-ray backlighting scheme employed at Sandia’s Z-Backlighter facility.« less

  8. Reduction of intergranular exchange coupling and grain size for high Ku CoPt-based granular media: Metal-oxide buffer layer and multiple oxide boundary materials

    NASA Astrophysics Data System (ADS)

    Tham, Kim Kong; Kushibiki, Ryosuke; Kamada, Tomonari; Hinata, Shintaro; Saito, Shin

    2018-05-01

    Investigation of magnetic properties and microstructure of granular media with various multiple oxides as the grain boundary material is reported. Saturation magnetization (Ms), uniaxial magnetocrystalline anisotropy (Ku), and magnetic grain diameter (GD) of the granular media show linear correlation with volume weighted average for melting point (Tm) of each oxides (Tmave). Ku of magnetic grains (Kugrain) shows a trade-off relation with GD that it is a big challenge to satisfy both high Kugrain and small GD by only controlling Tmave. To obtain a granular medium with appropriate Kugrain, GD, and low degree of intergranular exchange coupling, the combination of Tmave control of grain boundary material by mixing oxides and employment of a buffer layer are required. Here the degree of intergranular exchange coupling is estimated from the slope of M-H loop at around coercivity (α). By applying this technique, a typical granular medium with Kugrain of 1.0×107 erg/cm3, GD of 5.1 nm, and α of 1.2 is realized.

  9. Fingerprinting the K/T impact site and determining the time of impact by U-Pb dating of single shocked zircons from distal ejecta

    NASA Technical Reports Server (NTRS)

    Krogh, T. E.; Kamo, S. L.; Bohor, B. F.

    1993-01-01

    U-Pb isotopic dating of single 1 - 3 micrograms zircons from K/T distal ejecta from a site in the Raton Basin, Colorado provides a powerful new tool with which to determine both the time of the impact event and the age of the basement at the impact site. Data for the least shocked zircons are slightly displaced from the 544 +/- 5 Ma primary age for a component of the target site, while those for highly shocked and granular grains are strongly displaced towards the time of impact at 65.5 +/- 3.0 Ma. Such shocked and granular zircons have never been reported from any source, including explosive volcanic rocks. Zircon is refractory and has one of the highest thermal blocking temperatures; hence, it can record both shock features and primary and secondary ages without modification by post-crystallization processes. Unlike shocked quartz, which can come from almost anywhere on the Earth's crust, shocked zircons can be shown to come from a specific site because basement ages vary on the scale of meters to kilometers. With U-Pb zircon dating, it is now possible to correlate ejecta layers derived from the same target site, test the single versus multiple impact hypothesis, and identify the target source of impact ejecta. The ages obtained in this study indicate that the Manson impact site, Iowa, which has basement rocks that are mid-Proterozoic in age, cannot be the source of K/T distal ejecta. The K/T distal ejecta probably originated from a single impact site because most grains have the same primary age.

  10. Integrated fixed-biofilm activated sludge reactor as a powerful tool to enrich anammox biofilm and granular sludge.

    PubMed

    Zhang, Liang; Liu, Miaomiao; Zhang, Shujun; Yang, Yandong; Peng, Yongzhen

    2015-12-01

    A pilot-scale activated sludge bioreactor was filled with immobile carrier to treat high ammonium wastewater. Autotrophic nitrogen elimination occurred rapidly by inoculating nitrifying activated sludge and anammox biofilm. As the ammonium loading rate increased, nitrogen removal rate of 1.2kgNm(-3)d(-1) was obtained with the removal efficiency of 80%. Activated sludge diameter distribution profiles presented two peak values, indicating simultaneous existence of flocculent and granular sludge. Red granular sludge was observed in the reactor. Furthermore, the results of morphological and molecular analysis showed that the characteristics of granular sludge were similar to that of biofilm, while much different from the flocculent sludge. It was assumed granular sludge was formed through the continuous growth and detachment of anammox biofilm. The mechanism of granular sludge formation was discussed and the procedure model was proposed. According to the experimental results, the integrated fixed-biofilm activated sludge reactor provided an alternative to nitrogen removal based on anammox. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Developing a Magnetic Resonance Imaging measurement of the forces within 3D granular materials under external loads

    NASA Astrophysics Data System (ADS)

    Elrington, Stefan; Bertrand, Thibault; Frey, Merideth; Shattuck, Mark; O'Hern, Corey; Barrett, Sean

    2014-03-01

    Granular materials are comprised of an ensemble of discrete macroscopic grains that interact with each other via highly dissipative forces. These materials are ubiquitous in our everyday life ranging in scale from the granular media that forms the Earth's crust to that used in agricultural and pharmaceutical industries. Granular materials exhibit complex behaviors that are poorly understood and cannot be easily described by statistical mechanics. Under external loads individual grains are jammed into place by a network of force chains. These networks have been imaged in quasi two-dimensional and on the outer surface of three-dimensional granular materials. Our goal is to use magnetic resonance imaging (MRI) to detect contact forces deep within three-dimensional granular materials, using hydrogen-1 relaxation times as a reporter for changes in local stress and strain. To this end, we use a novel pulse sequence to narrow the line width of hydrogen-1 in rubber. Here we present our progress to date, and prospects for future improvements.

  12. Biotransformation of RDX and HMX by Anaerobic Granular Sludge with Enriched Sulfate and Nitrate.

    PubMed

    An, Chunjiang; Shi, Yarong; He, Yanling; Huang, Guohe; Liu, Yonghong; Yang, Shucheng

    2017-05-01

      RDX and HMX are widely used energetic materials and they are recognized as environmental contaminants at numerous locations. The present study investigated the biotransformation of RDX and HMX by anaerobic granular sludge under sulfate- and nitrate-enriched conditions. The results showed that RDX and HMX could be transformed by anaerobic granular sludge when nitrate was present. However, the biotransformation of RDX and HMX was negatively influenced, especially with high nitrate concentrations. Sulfate-enriched conditions were more favorable for the removal of ammunition compounds by anaerobic granular sludge than nitrate-enriched conditions. The removal of RDX and HMX under both nitrate- and sulfate-enriched conditions was facilitated by the use of glucose as additional substrate. This knowledge may help identify factors required for rapid removal of RDX and HMX in high-rate bioreactors. These results can also be applied to devise an appropriate and practical biological treatment strategy for explosive contaminated wastewater.

  13. Three layers multi-granularity OCDM switching system based on learning-stateful PCE

    NASA Astrophysics Data System (ADS)

    Wang, Yubao; Liu, Yanfei; Sun, Hao

    2017-10-01

    In the existing three layers multi-granularity OCDM switching system (TLMG-OCDMSS), F-LSP, L-LSP and OC-LSP can be bundled as switching granularity. For CPU-intensive network, the node not only needs to compute the path but also needs to bundle the switching granularity so that the load of single node is heavy. The node will paralyze when the traffic of the node is too heavy, which will impact the performance of the whole network seriously. The introduction of stateful PCE(S-PCE) will effectively solve these problems. PCE is composed of two parts, namely, the path computation element and the database (TED and LSPDB), and returns the result of path computation to PCC (path computation clients) after PCC sends the path computation request to it. In this way, the pressure of the distributed path computation in each node is reduced. In this paper, we propose the concept of Learning PCE (L-PCE), which uses the existing LSPDB as the data source of PCE's learning. By this means, we can simplify the path computation and reduce the network delay, as a result, improving the performance of network.

  14. Motion of deformable drops through granular media and other confined geometries.

    PubMed

    Davis, Robert H; Zinchenko, Alexander Z

    2009-06-15

    This article features recent simulation studies of the flow of emulsions containing deformable drops through pores, constrictions, and granular media. The flow is assumed to be at low Reynolds number, so that viscous forces dominate, and boundary-integral methods are used to determine interfacial velocities and, hence, track the drop motion and shapes. A single drop in a flat channel migrates to the channel centerplane due to deformation-induced drift, which increases its steady-state velocity along the channel. A drop moving towards a smaller interparticle constriction squeezes through the constriction if the capillary number (ratio of viscous deforming forces and interfacial tension forces) is large enough, but it becomes trapped when the capillary number is below a critical value. These concepts then influence the flow of an emulsion through a granular medium, for which the drop phase moves faster than the suspending liquid at large capillary numbers but slower than the suspending liquid at smaller capillary numbers. The permeabilities of the granular medium to both phases increase with increasing capillary number, due to the reduced resistance to squeezing of easily deformed drops, though drop breakup must also be considered at large capillary numbers.

  15. Granularity as a Cognitive Factor in the Effectiveness of Business Process Model Reuse

    NASA Astrophysics Data System (ADS)

    Holschke, Oliver; Rake, Jannis; Levina, Olga

    Reusing design models is an attractive approach in business process modeling as modeling efficiency and quality of design outcomes may be significantly improved. However, reusing conceptual models is not a cost-free effort, but has to be carefully designed. While factors such as psychological anchoring and task-adequacy in reuse-based modeling tasks have been investigated, information granularity as a cognitive concept has not been at the center of empirical research yet. We hypothesize that business process granularity as a factor in design tasks under reuse has a significant impact on the effectiveness of resulting business process models. We test our hypothesis in a comparative study employing high and low granularities. The reusable processes provided were taken from widely accessible reference models for the telecommunication industry (enhanced Telecom Operations Map). First experimental results show that Recall in tasks involving coarser granularity is lower than in cases of finer granularity. These findings suggest that decision makers in business process management should be considerate with regard to the implementation of reuse mechanisms of different granularities. We realize that due to our small sample size results are not statistically significant, but this preliminary run shows that it is ready for running on a larger scale.

  16. Characterization, modeling and application of aerobic granular sludge for wastewater treatment.

    PubMed

    Liu, Xian-Wei; Yu, Han-Qing; Ni, Bing-Jie; Sheng, Guo-Ping

    2009-01-01

    Recently extensive studies have been carried out to cultivate aerobic granular sludge worldwide, including in China. Aerobic granules, compared with conventional activated sludge flocs, are well known for their regular, dense, and strong microbial structure, good settling ability, high biomass retention, and great ability to withstand shock loadings. Studies have shown that the aerobic granules could be applied for the treatment of low- or high-strength wastewaters, simultaneous removal of organic carbon, nitrogen and phosphorus, and decomposition of toxic wastewaters. Thus, this new form of activate sludge, like anaerobic granular sludge, could be employed for the treatment of municipal and industrial wastewaters in near future. This chapter attempts to provide an up-to-date review on the definition, cultivation, characterization, modeling and application of aerobic granular sludge for biological wastewater treatment. This review outlines some important discoveries with regard to the factors affecting the formation of aerobic granular sludge, their physicochemical characteristics, as well as their microbial structure and diversity. It also summarizes the modeling of aerobic granule formation. Finally, this chapter highlights the applications of aerobic granulation technology in the biological wastewater treatment. It is concluded that the knowledge regarding aerobic granular sludge is far from complete. Although previous studies in this field have undoubtedly improved our understanding on aerobic granular sludge, it is clear that much remains to be learned about the process and that many unanswered questions still remain. One of the challenges appears to be the integration of the existing and growing scientific knowledge base with the observations and applications in practice, which this paper hopes to partially achieve.

  17. Nondestructive evaluation of orthopaedic implant stability in THA using highly nonlinear solitary waves

    NASA Astrophysics Data System (ADS)

    Yang, Jinkyu; Silvestro, Claudio; Sangiorgio, Sophia N.; Borkowski, Sean L.; Ebramzadeh, Edward; De Nardo, Luigi; Daraio, Chiara

    2012-01-01

    We propose a new biomedical sensing technique based on highly nonlinear solitary waves to assess orthopaedic implant stability in a nondestructive and efficient manner. We assemble a granular crystal actuator consisting of a one-dimensional tightly packed array of spherical particles, to generate acoustic solitary waves. Via direct contact with the specimen, we inject acoustic solitary waves into a biomedical prosthesis, and we nondestructively evaluate the mechanical integrity of the bone-prosthesis interface, studying the properties of the waves reflected from the contact zone between the granular crystal and the implant. The granular crystal contains a piezoelectric sensor to measure the travelling solitary waves, which allows it to function also as a sensor. We perform a feasibility study using total hip arthroplasty (THA) samples made of metallic stems implanted in artificial composite femurs using polymethylmethacrylate for fixation. We first evaluate the sensitivity of the proposed granular crystal sensor to various levels of prosthesis insertion into the composite femur. Then, we impose a sequence of harsh mechanical loading on the THA samples to degrade the mechanical integrity at the stem-cement interfaces, using a femoral load simulator that simulates aggressive, accelerated physiological loading. We investigate the implant stability via the granular crystal sensor-actuator during testing. Preliminary results suggest that the reflected waves respond sensitively to the degree of implant fixation. In particular, the granular crystal sensor-actuator successfully detects implant loosening at the stem-cement interface following violent cyclic loading. This study suggests that the granular crystal sensor and actuator has the potential to detect metal-cement defects in a nondestructive manner for orthopaedic applications.

  18. Characterization, Modeling and Application of Aerobic Granular Sludge for Wastewater Treatment

    NASA Astrophysics Data System (ADS)

    Liu, Xian-Wei; Yu, Han-Qing; Ni, Bing-Jie; Sheng, Guo-Ping

    Recently extensive studies have been carried out to cultivate aerobic granular sludge worldwide, including in China. Aerobic granules, compared with conventional activated sludge flocs, are well known for their regular, dense, and strong microbial structure, good settling ability, high biomass retention, and great ability to withstand shock loadings. Studies have shown that the aerobic granules could be applied for the treatment of low- or high-strength wastewaters, simultaneous removal of organic carbon, nitrogen and phosphorus, and decomposition of toxic wastewaters. Thus, this new form of activate sludge, like anaerobic granular sludge, could be employed for the treatment of municipal and industrial wastewaters in near future. This chapter attempts to provide an up-to-date review on the definition, cultivation, characterization, modeling and application of aerobic granular sludge for biological wastewater treatment. This review outlines some important discoveries with regard to the factors affecting the formation of aerobic granular sludge, their physicochemical characteristics, as well as their microbial structure and diversity. It also summarizes the modeling of aerobic granule formation. Finally, this chapter highlights the applications of aerobic granulation technology in the biological wastewater treatment. It is concluded that the knowledge regarding aerobic granular sludge is far from complete. Although previous studies in this field have undoubtedly improved our understanding on aerobic granular sludge, it is clear that much remains to be learned about the process and that many unanswered questions still remain. One of the challenges appears to be the integration of the existing and growing scientific knowledge base with the observations and applications in practice, which this paper hopes to partially achieve.

  19. Toward high-efficiency and detailed Monte Carlo simulation study of the granular flow spallation target

    NASA Astrophysics Data System (ADS)

    Cai, Han-Jie; Zhang, Zhi-Lei; Fu, Fen; Li, Jian-Yang; Zhang, Xun-Chao; Zhang, Ya-Ling; Yan, Xue-Song; Lin, Ping; Xv, Jian-Ya; Yang, Lei

    2018-02-01

    The dense granular flow spallation target is a new target concept chosen for the Accelerator-Driven Subcritical (ADS) project in China. For the R&D of this kind of target concept, a dedicated Monte Carlo (MC) program named GMT was developed to perform the simulation study of the beam-target interaction. Owing to the complexities of the target geometry, the computational cost of the MC simulation of particle tracks is highly expensive. Thus, improvement of computational efficiency will be essential for the detailed MC simulation studies of the dense granular target. Here we present the special design of the GMT program and its high efficiency performance. In addition, the speedup potential of the GPU-accelerated spallation models is discussed.

  20. Use of ozone and hydrogen peroxide in the post-treatment of UASB treated alkaline fruit cannery effluent.

    PubMed

    Sigge, G O; Britz, T J; Fouri, P C; Barnardt, C A; Strydom, R

    2001-01-01

    UASB treatment of cannery effluents was shown to be feasible. However, the treated effluent still does not allow direct discharge to a water system and a further form of post-treatment is necessary to reduce the COD to lower than the legal limit of 75 mg/l. The use of ozone, hydrogen peroxide and granular activated carbon were used singly or in combination to assess the effectiveness as post-treatment options for the UASB treated alkaline fruit cannery effluent. Colour reduction in the effluent ranged from 15% to 92% and COD reductions of 26-91% were achieved. Combinations of ozone and hydrogen peroxide gave better results than either oxidant singly. The best results were achieved by combining ozone, hydrogen peroxide and granular activated carbon, and COD levels were reduced to levels sufficiently below the 75 mg/l limit.

  1. Phenols removal using ozonation-adsorption with granular activated carbon (GAC) in rotating packed bed reactor

    NASA Astrophysics Data System (ADS)

    Karamah, E. F.; Leonita, S.; Bismo, S.

    2018-01-01

    Synthetic wastewater containing phenols was treated using combination method of ozonation-adsorption with GAC (Granular Activated Carbon) in a packed bed rotating reactor. Ozone reacts quickly with phenol and activated carbon increases the oxidation process by producing hydroxyl radicals. Performance parameters evaluated are phenol removal percentage, the quantity of hydroxyl radical formed, changes in pH and ozone utilization, dissolved ozone concentration and ozone concentration in off gas. The performance of the combination method was compared with single ozonation and single adsorption. The influence of GAC dose and initial pH of phenols were evaluated in ozonation-adsorption method. The results show that ozonation-adsorption method generates more OH radicals than a single ozonation. Quantity of OH radical formation increases with increasing pH and quantity of the GAC. The combination method prove better performance in removing phenols. At the same operation condition, ozonation-adsorption method is capable of removing of 78.62% phenols as compared with single ozonation (53.15%) and single adsorption (36.67%). The increasing percentage of phenol removal in ozonation-adsorption method is proportional to the addition of GAC dose, solution pH, and packed bed rotator speed. Maximum percentage of phenol removal is obtained under alkaline conditions (pH 10) and 125 g of GAC

  2. Co-adsorption of Trichloroethylene and Arsenate by Iron-Impregnated Granular Activated Carbon.

    PubMed

    Deng, Baolin; Kim, Eun-Sik

    2016-05-01

    Co-adsorption of trichloroethylene (TCE) and arsenate [As(V)] was investigated using modified granular activated carbons (GAC): untreated, sodium hypochlorite-treated (NaClO-GAC), and NaClO with iron-treated GAC (NaClO/Fe-GAC). Batch experiments of single- [TCE or As(V)] and binary- [TCE and As(V)] components solutions are evaluated through Langmuir and Freundlich isotherm models and adsorption kinetic tests. In the single-component system, the adsorption capacity of As(V) was increased by the NaClO-GAC and the NaClO/Fe-GAC. The untreated GAC showed a low adsorption capacity for As(V). Adsorption of TCE by the NaClO/Fe-GAC was maximized, with an increased Freundlich constant. Removal of TCE in the binary-component system was decreased 15% by the untreated GAC, and NaClO- and NaClO/Fe-GAC showed similar efficiency to the single-component system because of the different chemical status of the GAC surfaces. Results of the adsorption isotherms of As(V) in the binary-component system were similar to adsorption isotherms of the single-component system. The adsorption affinities of single- and binary-component systems corresponded with electron transfer, competitive adsorption, and physicochemical properties.

  3. Modeling Tsunami Wave Generation Using a Two-layer Granular Landslide Model

    NASA Astrophysics Data System (ADS)

    Ma, G.; Kirby, J. T., Jr.; Shi, F.; Grilli, S. T.; Hsu, T. J.

    2016-12-01

    Tsunamis can be generated by subaerial or submarine landslides in reservoirs, lakes, fjords, bays and oceans. Compared to seismogenic tsunamis, landslide or submarine mass failure (SMF) tsunamis are normally characterized by relatively shorter wave lengths and stronger wave dispersion, and potentially may generate large wave amplitudes locally and high run-up along adjacent coastlines. Due to a complex interplay between the landslide and tsunami waves, accurate simulation of landslide motion as well as tsunami generation is a challenging task. We develop and test a new two-layer model for granular landslide motion and tsunami wave generation. The landslide is described as a saturated granular flow, accounting for intergranular stresses governed by Coulomb friction. Tsunami wave generation is simulated by the three-dimensional non-hydrostatic wave model NHWAVE, which is capable of capturing wave dispersion efficiently using a small number of discretized vertical levels. Depth-averaged governing equations for the granular landslide are derived in a slope-oriented coordinate system, taking into account the dynamic interaction between the lower-layer granular landslide and upper-layer water motion. The model is tested against laboratory experiments on impulsive wave generation by subaerial granular landslides. Model results illustrate a complex interplay between the granular landslide and tsunami waves, and they reasonably predict not only the tsunami wave generation but also the granular landslide motion from initiation to deposition.

  4. Plastic deformation in a metallic granular chain

    NASA Astrophysics Data System (ADS)

    Musson, Ryan W.; Carlson, William

    2016-03-01

    Solitary wave response was investigated in a metallic granular chain-piston system using LS-DYNA. A power law hardening material model was used to show that localized plastic deformation is present in a metallic granular chain for an impact velocity of 0.5 m/s. This loss due to plastic deformation was quantified via impulse, and it was shown that the loss scales nearly linearly with impact velocity. Therefore, metallic grains may not be suitable for devices that require high-amplitude solitary waves. There would be too much energy lost to plastic deformation. One can assume that ceramics will behave elastically; therefore, the response of an aluminum oxide granular chain was compared to that of a steel chain.

  5. Particle size effect on strength, failure, and shock behavior in polytetrafluoroethylene-Al-W granular composite materials

    NASA Astrophysics Data System (ADS)

    Herbold, E. B.; Nesterenko, V. F.; Benson, D. J.; Cai, J.; Vecchio, K. S.; Jiang, F.; Addiss, J. W.; Walley, S. M.; Proud, W. G.

    2008-11-01

    The variation of metallic particle size and sample porosity significantly alters the dynamic mechanical properties of high density granular composite materials processed using a cold isostatically pressed mixture of polytetrafluoroethylene (PTFE), aluminum (Al), and tungsten (W) powders. Quasistatic and dynamic experiments are performed with identical constituent mass fractions with variations in the size of the W particles and pressing conditions. The relatively weak polymer matrix allows the strength and fracture modes of this material to be governed by the granular type behavior of agglomerated metal particles. A higher ultimate compressive strength was observed in relatively high porosity samples with small W particles compared to those with coarse W particles in all experiments. Mesoscale granular force chains of the metallic particles explain this unusual phenomenon as observed in hydrocode simulations of a drop-weight test. Macrocracks forming below the critical failure strain for the matrix and unusual behavior due to a competition between densification and fracture in dynamic tests of porous samples were also observed. Numerical modeling of shock loading of this granular composite material demonstrated that the internal energy, specifically thermal energy, of the soft PTFE matrix can be tailored by the W particle size distribution.

  6. Linear and nonlinear dynamics of isospectral granular chains

    NASA Astrophysics Data System (ADS)

    Chaunsali, R.; Xu, H.; Yang, J.; Kevrekidis, P. G.

    2017-04-01

    We study the dynamics of isospectral granular chains that are highly tunable due to the nonlinear Hertz contact law interaction between the granular particles. The system dynamics can thus be tuned easily from being linear to strongly nonlinear by adjusting the initial compression applied to the chain. In particular, we introduce both discrete and continuous spectral transformation schemes to generate a family of granular chains that are isospectral in their linear limit. Inspired by the principle of supersymmetry in quantum systems, we also introduce a methodology to add or remove certain eigenfrequencies, and we demonstrate numerically that the corresponding physical system can be constructed in the setting of one-dimensional granular crystals. In the linear regime, we highlight the similarities in the elastic wave transmission characteristics of such isospectral systems, and emphasize that the presented mathematical framework allows one to suitably tailor the wave transmission through a general class of granular chains, both ordered and disordered. Moreover, we show how the dynamic response of these structures deviates from its linear limit as we introduce Hertzian nonlinearity in the chain and how nonlinearity breaks the notion of linear isospectrality.

  7. Change of magnetic domain structure by mechanically induced twin boundary motion in Ni-Mn-Ga single crystal

    NASA Astrophysics Data System (ADS)

    Kopecký, Vít; Heczko, Oleg

    2017-10-01

    The single variant state exhibits usual labyrinth and band magnetic domains depending on orientation of easy magnetization axis. By the passage of single twin boundary induced by mechanical stress the rake and granular domain patterns are formed. These domain patterns are further modified by repeated passage of the twin boundary resulting in similar domain patterns in the sample even though the orientation of the magnetization is different.

  8. Micromagnetic simulation study of a disordered model for one-dimensional granular perovskite manganite oxide nanostructures

    NASA Astrophysics Data System (ADS)

    Longone, P.; Romá, F.

    2018-06-01

    Chemical techniques are an efficient method to synthesize one-dimensional perovskite manganite oxide nanostructures with a granular morphology, that is, formed by arrays of monodomain magnetic nanoparticles. Integrating the stochastic Landau-Lifshitz-Gilbert equation, we simulate the dynamics of a simple disordered model for such materials that only takes into account the morphological characteristics of their nanograins. We show that it is possible to describe reasonably well experimental hysteresis loops reported in the literature for single La0.67Ca0.33MnO3 nanotubes and powders of these nanostructures, simulating small systems consisting of only 100 nanoparticles.

  9. Persulfate Oxidation Regeneration of Granular Activated Carbon: Reversible Impacts on Sorption Behavior

    EPA Science Inventory

    Chemical oxidation regeneration of granular activated carbon (GAC) is a developing technology that can be carried out utilizing thermally-activated persulfate. During chemical regeneration of GAC, aggressive oxidative conditions lead to high acidity (pH < 2) and the accumulation ...

  10. Probing Dynamics of 2-D Granular Media via X-Ray Imaging

    NASA Astrophysics Data System (ADS)

    Crum, Ryan; Akin, Minta; Herbold, Eric; Lind, Jon; Homel, Mike; Hurley, Ryan

    2017-06-01

    Granular systems are ever present in our everyday world and influence many dynamic scientific problems including mine blasting, projectile penetration, astrophysical collisions, and dynamic compaction. Despite its significance, a fundamental understanding of granular media's behavior falls well short of its solid counterpart, limiting predictive capabilities. The kinematics of granular media is complex in part to the intricate interplay between numerous degrees of freedom not present in its solid equivalent. Previous dynamic studies in granular media primarily use VISAR or PDV, macro-scale diagnostics that only focus on the aggregate effect of the many degrees of freedom leaving the principal interactions of these multiple degrees of freedom too entangled to elucidate. To isolate the significance of individualized grain-to-grain interactions, this study uses in-situ X-ray imaging to probe a 2-D array of granular media subjected to high strain rate gas gun loading. Analyses include evaluating displacement fields and grain fracture as a function of both saturation and impactor velocity. X-ray imaging analyses feed directly into our concurrent granular media modeling efforts to enhance our predictive capabilities. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  11. New calibration algorithms for dielectric-based microwave moisture sensors

    USDA-ARS?s Scientific Manuscript database

    New calibration algorithms for determining moisture content in granular and particulate materials from measurement of the dielectric properties at a single microwave frequency are proposed. The algorithms are based on identifying empirically correlations between the dielectric properties and the par...

  12. Early-state damage detection, characterization, and evolution using high-resolution computed tomography

    NASA Astrophysics Data System (ADS)

    Grandin, Robert John

    Safely using materials in high performance applications requires adequately understanding the mechanisms which control the nucleation and evolution of damage. Most of a material's operational life is spent in a state with noncritical damage, and, for example in metals only a small portion of its life falls within the classical Paris Law regime of crack growth. Developing proper structural health and prognosis models requires understanding the behavior of damage in these early stages within the material's life, and this early-stage damage occurs on length scales at which the material may be considered "granular'' in the sense that the discrete regions which comprise the whole are large enough to require special consideration. Material performance depends upon the characteristics of the granules themselves as well as the interfaces between granules. As a result, properly studying early-stage damage in complex, granular materials requires a means to characterize changes in the granules and interfaces. The granular-scale can range from tenths of microns in ceramics, to single microns in fiber-reinforced composites, to tens of millimeters in concrete. The difficulty of direct-study is often overcome by exhaustive testing of macro-scale damage caused by gross material loads and abuse. Such testing, for example optical or electron microscopy, destructive and further, is costly when used to study the evolution of damage within a material and often limits the study to a few snapshots. New developments in high-resolution computed tomography (HRCT) provide the necessary spatial resolution to directly image the granule length-scale of many materials. Successful application of HRCT with fiber-reinforced composites, however, requires extending the HRCT performance beyond current limits. This dissertation will discuss improvements made in the field of CT reconstruction which enable resolutions to be pushed to the point of being able to image the fiber-scale damage structures and the application of this new capability to the study of early-stage damage.

  13. Multi-fingered haptic palpation utilizing granular jamming stiffness feedback actuators

    NASA Astrophysics Data System (ADS)

    Li, Min; Ranzani, Tommaso; Sareh, Sina; Seneviratne, Lakmal D.; Dasgupta, Prokar; Wurdemann, Helge A.; Althoefer, Kaspar

    2014-09-01

    This paper describes a multi-fingered haptic palpation method using stiffness feedback actuators for simulating tissue palpation procedures in traditional and in robot-assisted minimally invasive surgery. Soft tissue stiffness is simulated by changing the stiffness property of the actuator during palpation. For the first time, granular jamming and pneumatic air actuation are combined to realize stiffness modulation. The stiffness feedback actuator is validated by stiffness measurements in indentation tests and through stiffness discrimination based on a user study. According to the indentation test results, the introduction of a pneumatic chamber to granular jamming can amplify the stiffness variation range and reduce hysteresis of the actuator. The advantage of multi-fingered palpation using the proposed actuators is proven by the comparison of the results of the stiffness discrimination performance using two-fingered (sensitivity: 82.2%, specificity: 88.9%, positive predicative value: 80.0%, accuracy: 85.4%, time: 4.84 s) and single-fingered (sensitivity: 76.4%, specificity: 85.7%, positive predicative value: 75.3%, accuracy: 81.8%, time: 7.48 s) stiffness feedback.

  14. Magnetic resonance imaging of granular materials

    NASA Astrophysics Data System (ADS)

    Stannarius, Ralf

    2017-05-01

    Magnetic Resonance Imaging (MRI) has become one of the most important tools to screen humans in medicine; virtually every modern hospital is equipped with a Nuclear Magnetic Resonance (NMR) tomograph. The potential of NMR in 3D imaging tasks is by far greater, but there is only "a handful" of MRI studies of particulate matter. The method is expensive, time-consuming, and requires a deep understanding of pulse sequences, signal acquisition, and processing. We give a short introduction into the physical principles of this imaging technique, describe its advantages and limitations for the screening of granular matter, and present a number of examples of different application purposes, from the exploration of granular packing, via the detection of flow and particle diffusion, to real dynamic measurements. Probably, X-ray computed tomography is preferable in most applications, but fast imaging of single slices with modern MRI techniques is unmatched, and the additional opportunity to retrieve spatially resolved flow and diffusion profiles without particle tracking is a unique feature.

  15. Kinetics and mass-transfer phenomena in anaerobic granular sludge.

    PubMed

    Gonzalez-Gil, G; Seghezzo, L; Lettinga, G; Kleerebezem, R

    2001-04-20

    The kinetic properties of acetate-degrading methanogenic granular sludge of different mean diameters were assessed at different up-flow velocities (V(up)). Using this approach, the influence of internal and external mass transfer could be estimated. First, the apparent Monod constant (K(S)) for each data set was calculated by means of a curve-fitting procedure. The experimental results revealed that variations in the V(up) did not affect the apparent K(S)-value, indicating that external mass-transport resistance normally can be neglected. With regard to the granule size, a clear increase in K(S) was found at increasing granule diameters. The experimental data were further used to validate a dynamic mathematical biofilm model. The biofilm model was able to describe reaction-diffusion kinetics in anaerobic granules, using a single value for the effective diffusion coefficient in the granules. This suggests that biogas formation did not influence the diffusion-rates in the granular biomass. Copyright 2001 John Wiley & Sons, Inc.

  16. Computer enhancement of radiographs

    NASA Technical Reports Server (NTRS)

    Dekaney, A.; Keane, J.; Desautels, J.

    1973-01-01

    Examination of three relevant noise processes and the image degradation associated with Marshall Space Flight Center's (MSFC) X-ray/scanning system was conducted for application to computer enhancement of radiographs using MSFC's digital filtering techniques. Graininess of type M, R single coat and R double coat X-ray films was quantified as a function of density level using root-mean-square (RMS) granularity. Quantum mottle (including film grain) was quantified as a function of the above film types, exposure level, specimen material and thickness, and film density using RMS granularity and power spectral density (PSD). For various neutral-density levels the scanning device used in digital conversion of radiographs was examined for noise characteristics which were quantified by RMS granularity and PSD. Image degradation of the entire pre-enhancement system (MG-150 X-ray device; film; and optronics scanner) was measured using edge targets to generate modulation transfer functions (MTF). The four parameters were examined as a function of scanning aperture sizes of approximately 12.5 25 and 50 microns.

  17. The effect and biological mechanism of granular sludge size on performance of autotrophic nitrogen removal system.

    PubMed

    Ya-Juan, Xing; Jun-Yuan, Ji; Ping, Zheng; Lan, Wang; Abbas, Ghulam; Zhang, Jiqiang; Ru, Wang; Zhan-Fei, He

    2018-05-31

    The autotrophic process for nitrogen removal has attracted worldwide attention in the field of wastewater treatment, and the performance of this process is greatly influenced by the size of granular sludge particles present in the system. In this work, the granular sludge was divided into three groups, i.e. large size (> 1.2 mm), medium size (0.6-1.2 mm) and small size (< 0.6 mm). The medium granular sludge was observed to dominate at high volumetric nitrogen loading rates, while offering strong support for good performance. Its indispensable contribution was found to originate from improved settling velocity (0.84 ± 0.10 cm/s), high SOUR-A (specific oxygen uptake rate for ammonia oxidizing bacteria, 25.93 mg O 2 /g MLVSS/h), low SOUR-N (specific oxygen uptake rate for nitrite oxidizing bacteria, 3.39 mg O 2 /g MLVSS/h), and a reasonable microbial spatial distribution.

  18. An update on blast furnace granular coal injection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hill, D.G.; Strayer, T.J.; Bouman, R.W.

    1997-12-31

    A blast furnace coal injection system has been constructed and is being used on the furnace at the Burns Harbor Division of Bethlehem Steel. The injection system was designed to deliver both granular (coarse) and pulverized (fine) coal. Construction was completed on schedule in early 1995. Coal injection rates on the two Burns Harbor furnaces were increased throughout 1995 and was over 200 lbs/ton on C furnace in September. The injection rate on C furnace reached 270 lbs/ton by mid-1996. A comparison of high volatile and low volatile coals as injectants shows that low volatile coal replaces more coke andmore » results in a better blast furnace operation. The replacement ratio with low volatile coal is 0.96 lbs coke per pound of coal. A major conclusion of the work to date is that granular coal injection performs very well in large blast furnaces. Future testing will include a processed sub-bituminous coal, a high ash coal and a direct comparison of granular versus pulverized coal injection.« less

  19. Collisional model of the drag force of granular impact

    NASA Astrophysics Data System (ADS)

    Stevens Bester, Cacey; Behringer, Robert P.

    2017-06-01

    A dense, dry granular target can cause a free-falling intruding object to come to an abrupt stop as its momentum is lost to the grains. An empirical force law describes this process, characterizing the stopping force as the sum of depth-dependent friction and velocity-dependent inertial drag. However, a complete interpretation of the stopping force, incorporating grain-scale interactions during impact, remains unresolved. Here, the momentum transfer is proposed to occur through sporadic, normal collisions with clusters of high force-carrying grains at the intruder's surface. To test this model in impact experiments, we determine the forces acting on an intruder decelerating through a dense granular medium using high-speed imaging of its trajectory. We vary the geometry of the impacting object to infer intruder-grain interactions. As a result, we connect the inertial drag to the effect of intruder shape based on the proposed collisional model. These impact studies serve as an approach to understand dynamic force transmission in granular media.

  20. Performance and microbial diversity of an expanded granular sludge bed reactor for high sulfate and nitrate waste brine treatment.

    PubMed

    Liao, Runhua; Li, Yan; Yu, Xuemin; Shi, Peng; Wang, Zhu; Shen, Ke; Shi, Qianqian; Miao, Yu; Li, Wentao; Li, Aimin

    2014-04-01

    The disposal of waste brines has become a major challenge that hinders the wide application of ion-exchange resins in the water industry in recent decades. In this study, high sulfate removal efficiency (80%-90%) was achieved at the influent sulfate concentration of 3600 mg/L and 3% NaCl after 145 days in an expanded granular sludge bed (EGSB) reactor. Furthermore, the feasibility of treating synthetic waste brine containing high levels of sulfate and nitrate was investigated in a single EGSB reactor during an operation period of 261 days. The highest nitrate and sulfate loading rate reached 6.38 and 5.78 kg/(m(3)·day) at SO(2-)4-S/NO(-)3-N mass ratio of 4/3, and the corresponding removal efficiency was 99.97% and 82.26% at 3% NaCl, respectively. Meanwhile, 454-pyrosequencing technology was used to analyze the bacterial diversity of the sludge on the 240th day for stable operation of phase X. Results showed that a total of 9194 sequences were obtained, which could be affiliated to 14 phyla, including Proteobacteria, Firmicutes, Chlorobi, Bacteroidetes, Synergistetes and so on. Proteobacteria (77.66%) was the dominant microbial population, followed by Firmicutes (12.23%) and Chlorobi (2.71%). Copyright © 2014 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  1. Preparation of regenerable granular carbon nanotubes by a simple heating-filtration method for efficient removal of typical pharmaceuticals

    NASA Astrophysics Data System (ADS)

    Shan, Danna; Deng, Shubo; Zhao, Tianning; Yu, Gang; Winglee, Judith; Wiesner, Mark R.

    2017-04-01

    A simple and convenient method was used to prepare novel granular carbon nanotubes (CNTs) for enhanced adsorption of pharmaceuticals. By heating CNTs powder at 450 degree centigrade in air, followed by filtration, the obtained granular adsorbent exhibited high surface area and pore volume since the heating process produced some oxygen-containing functional groups on CNT surface, making CNTs more dispersible in the formation of granular cake. The porous granular CNTs not only had more available surfaces for adsorption but also were more easily separated from solution than pristine CNTs (p-CNTs) powder. This adsorbent exhibited relatively fast adsorption for carbamazepine (CBZ), tetracycline (TC) and diclofe- nac sodium (DS), and the maximum adsorption capacity on the granular CNTs was 369.5 μmol/g for CBZ, 284.2 μmol/g for TC and 203.1 μmol/g for DS according to the Langmuir fitting, increasing by 42.4%, 37.8% and 38.0% in comparison with the pristine CNTs powder. Moreover, the spent granular CNTs were successfully regenerated at 400 degree centigrade in air without decreasing the adsorption capacity in five regeneration cycles. The adsorbed CBZ and DS were completely degraded, while the adsorbed TC was partially oxidized and the residual was favorable for the subsequent adsorption. This research develops an easy method to prepare and regenerate granular CNT adsorbent for the enhanced removal of organic pollutants from water or wastewater.

  2. Influence of deformation on dolomite rim growth kinetics

    NASA Astrophysics Data System (ADS)

    Helpa, Vanessa; Rybacki, Erik; Grafulha Morales, Luiz Fernando; Dresen, Georg

    2015-04-01

    Using a gas-deformation apparatus stacks of oriented calcite (CaCO3) and magnesite (MgCO3) single crystals were deformed at T = 750° C and P = 400 MPa to examine the influence of stress and strain on magnesio-calcite and dolomite (CaMg[CO3]2) growth kinetics. Triaxial compression and torsion tests performed at constant stresses between 7 and 38 MPa and test durations between 4 and 171 hours resulted in bulk strains of 0.03-0.2 and maximum shear strains of 0.8-5.6, respectively. The reaction rims consist of fine-grained (2-7 μm) dolomite with palisade-shaped grains growing into magnesite reactants and equiaxed granular dolomite grains next to calcite. In between dolomite and pure calcite, magnesio-calcite grains evolved with an average grain size of 20-40 μm. Grain boundaries tend to be straighter at high bulk strains and equilibrium angles at grain triple junctions are common within the magnesio-calcite layer. Transmission electron microscopy shows almost dislocation free palisades and increasing dislocation density within granular dolomite towards the magnesio-calcite boundary. Within magnesio-calcite grains, dislocations are concentrated at grain boundaries. Variation of time at fixed stress (˜17 MPa) yields a parabolic time dependence of dolomite rim width, indicating diffusion-controlled growth, similar to isostatic rim growth behavior. In contrast, the magnesio-calcite layer growth is enhanced compared to isostatic conditions. Triaxial compression at given time shows no significant change of dolomite rim thickness (11±2 μm) and width of magnesio-calcite layers (33±5 μm) with increasing stress. In torsion experiments, reaction layer thickness and grain size decrease from the center (low stress/strain) to the edge (high strain/stress) of samples. Chemical analysis shows nearly stoichiometric composition of dolomite palisades, but enhanced Ca content within granular grains, indicating local disequilibrium with magnesio-calcite, in particular for twisted samples. The shift from local equilibrium is ˜3 mol% in triaxial compression and ˜7 mol% in torsion. Electron backscatter diffraction analysis reveals a crystallographic preferred orientation (CPO) within the reaction layers with [0001] axes parallel to the compression/rotation axis and poles of {2-1-10} and {10-10} prismatic planes parallel to the reaction interface. Compared to isostatic annealing, the CPO is more pronounced and the amount of low-angle grain boundaries is increased. At the imposed experimental conditions, most of the bulk deformation is accommodated by calcite single, which is stronger than magnesite. Application of flow laws for magnesio-calcite and dolomite suggest that the fine-grained reaction products should deform by grain boundary diffusion creep, resulting in lower flow strength than the single crystal reactants. However, microstructural observations indicate that deformation of granular dolomite and magnesio-calcite is at least partially assisted by dislocation creep, which would result in an almost similar strength to calcite. Therefore, flattening of the reaction layers during triaxial compression may be counterbalanced by enhanced reaction rates, resulting in almost constant layer thickness, independent of the applied stress. For simple shear, the reduced reaction kinetics in the high stress/strain region of twisted samples may be related to increased nucleation rates, resulting in a lower grain size and rim thickness.

  3. Non-Destructive Evaluation of Material System Using Highly Nonlinear Acoustic Waves

    NASA Astrophysics Data System (ADS)

    Khatri, Devvrath

    A chain of granular particles is one of the most studied examples of highly nonlinear systems deriving its response from the nonlinear Hertzian contact interaction between particles. Interest in these systems derives from their tunable dynamic response, encompassing linear, weakly nonlinear, and strongly nonlinear regimes, controlled by varying the static and dynamic load applied. In chains with a very weak (or zero) static precompression, the system supports the formation and propagation of highly nonlinear solitary waves (HNSWs). The dual-nonlinear interaction between particles (i.e., a power-law type contact potential in compression, and zero strength in tension) combined with discreteness of the system, makes the granular system highly tunable. The propagation properties of these waves, such as traveling pulse width, wave speed, number of separated pulses (single or train of pulses), etc., can be controlled by modifying one or many of the parameters, like the particle's dimension, material properties, static and dynamic force amplitude, the type and duration of the initial excitation applied to the system, and/or the periodicity of the chain. The ability to control the wave properties in such chains has been proposed for several different practical engineering applications. The dynamic properties of these granular chains have been conventionally studied using discrete particle models (DPMs) which consider the particles in the chains as point masses connected by nonlinear Hertzian springs with the neighboring particles. Although, this is a good approximation under proper circumstances, it does not capture many features of the three dimensional elastic particles such as the elastic wave propagation within the particles, the local deformation of the particles in the vicinity of the contact point, the corresponding changes in the contact area, and the collective vibrations of the particles among others. This thesis focuses on the development of a finite element model (FEM) using the commercially available software Abaqus, which takes into account many of these characteristic features. The finite element model discretizes particles by considering them as three-dimensional deformable bodies of revolution and describes the nonlinear dynamic response of one-dimensional granular chains composed of particles with various geometries and orientations. We showed that particles' geometries and orientations provide additional design parameters for controlling the dynamic response of the system, compared to chains composed of spherical particles. We also showed that the tunable and compact nature of these waves can be used to tailor the properties of HNSWs for specific application, such as information carriers for actuation and sensing of mechanical properties and boundary effects of adjoining media in Non-Destructive Evaluation (NDE) and Structural Health Monitoring (SHM). Using experiments and numerics, we characterized interface dynamics between granular media and adjoining linear elastic media, and found that the coupling produced temporary localization of the incident waves at the boundaries between the two media and their decomposition into reflected waves. We monitored the formation of reflected solitary waves propagating back from the interface and found that their properties are sensitive to the geometric and material properties of the adjoining media. The work done in this research enhances our understanding of the basic physics and tunability of nonlinear granular media, and further establishes a theoretical and numerical foundation in the applications of HNSWs as information carriers.

  4. Analytical and Computational Modeling of Mechanical Waves in Microscale Granular Crystals: Nonlinearity and Rotational Dynamics

    NASA Astrophysics Data System (ADS)

    Wallen, Samuel P.

    Granular media are one of the most common, yet least understood forms of matter on earth. The difficulties in understanding the physics of granular media stem from the fact that they are typically heterogeneous and highly disordered, and the grains interact via nonlinear contact forces. Historically, one approach to reducing these complexities and gaining new insight has been the study of granular crystals, which are ordered arrays of similarly-shaped particles (typically spheres) in Hertzian contact. Using this setting, past works explored the rich nonlinear dynamics stemming from contact forces, and proposed avenues where such granular crystals could form designer, dynamically responsive materials, which yield beneficial functionality in dynamic regimes. In recent years, the combination of self-assembly fabrication methods and laser ultrasonic experimental characterization have enabled the study of granular crystals at microscale. While our intuition may suggest that these microscale granular crystals are simply scaled-down versions of their macroscale counterparts, in fact, the relevant physics change drastically; for example, short-range adhesive forces between particles, which are negligible at macroscale, are several orders of magnitude stronger than gravity at microscale. In this thesis, we present recent advances in analytical and computational modeling of microscale granular crystals, in particular concerning the interplay of nonlinearity, shear interactions, and particle rotations, which have previously been either absent, or included separately at macroscale. Drawing inspiration from past works on phononic crystals and nonlinear lattices, we explore problems involving locally-resonant metamaterials, nonlinear localized modes, amplitude-dependent energy partition, and other rich dynamical phenomena. This work enhances our understanding of microscale granular media, which may find applicability in fields such as ultrasonic wave tailoring, signal processing, shock and vibration mitigation, and powder processing.

  5. Metagenomic and metaproteomic analyses of Accumulibacter phosphatis-enriched floccular and granular biofilm.

    PubMed

    Barr, Jeremy J; Dutilh, Bas E; Skennerton, Connor T; Fukushima, Toshikazu; Hastie, Marcus L; Gorman, Jeffrey J; Tyson, Gene W; Bond, Philip L

    2016-01-01

    Biofilms are ubiquitous in nature, forming diverse adherent microbial communities that perform a plethora of functions. Here we operated two laboratory-scale sequencing batch reactors enriched with Candidatus Accumulibacter phosphatis (Accumulibacter) performing enhanced biological phosphorus removal. Reactors formed two distinct biofilms, one floccular biofilm, consisting of small, loose, microbial aggregates, and one granular biofilm, forming larger, dense, spherical aggregates. Using metagenomic and metaproteomic methods, we investigated the proteomic differences between these two biofilm communities, identifying a total of 2022 unique proteins. To understand biofilm differences, we compared protein abundances that were statistically enriched in both biofilm states. Floccular biofilms were enriched with pathogenic secretion systems suggesting a highly competitive microbial community. Comparatively, granular biofilms revealed a high-stress environment with evidence of nutrient starvation, phage predation pressure, and increased extracellular polymeric substance and cell lysis. Granular biofilms were enriched in outer membrane transport proteins to scavenge the extracellular milieu for amino acids and other metabolites, likely released through cell lysis, to supplement metabolic pathways. This study provides the first detailed proteomic comparison between Accumulibacter-enriched floccular and granular biofilm communities, proposes a conceptual model for the granule biofilm, and offers novel insights into granule biofilm formation and stability. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  6. Micro-scale investigation on the quasi-static behavior of granular material

    NASA Astrophysics Data System (ADS)

    Li, Xia

    Granular material exhibits complex responses when subjected to various external loading. Fundamental mechanisms have not been well established so far, including that about the critical state, one of the most important concepts in the modern soil mechanics. With the recognition that granular material is discrete in nature, the basic understanding can only be obtained from the particle scale. The complexity in granular material behavior lies in the fact that the macroscopic behavior of granular material is determined by not only the interactions operating at contacts, but also how the particles become arranged in space to form an internal structure. This research is aimed to microscopically investigate the influence of the internal structure and the fundamental mechanism about the critical state. In view of the extensive laboratory test data already available in the literature, a numerical simulation method, DEM, is employed as the tool to conduct particle-scale investigations. The contact model for two in-contact circular disks is derived theoretically from the elasticity theory, and the result is a linear contact model with constant stiffness and lateral sliding. Based on the contact model, a systematic series of numerical tests has been implemented, and the results can successfully reproduce the main characteristics in the behavior of natural granular material, under various loading conditions. The macro-micro relationship is the link between the investigations at the two worlds. The key point is to describe the internal structure with the two dual cell systems, a particle cell system and a void cell system. Based on these two systems, the stress and strain in a uniform field are equivalently expressed in terms of the contact forces/relative displacements, and the micro-geometrical variables. With the microstructural definition of the stress tensor, the stress state of granular material is studied microscopically. The stress-fabric-force relation is derived, based on the variables describing the statistics of the contact forces and the contact vectors. By studying the evolution of the micro-quantities during shearing, how the internal structure affects the macro stress state under different loading condition is revealed. With the assumption that the influence of the local variance in stress is ignorable, the response of granular material can be investigated based on the void cell system. Starting from the behavior of a single void cell, the evolutions of the internal structure and its influence on the response of granular material are explained. The stress ratio and the dilatancy behavior of granular material are investigated. The influences of the void ratio, the mean normal stress and the drainage condition are discussed. The fundamental mechanism of the critical state is studied in the framework of thermodynamics with properly considering the influence of the internal structure. The normalized stress ratio tensor at critical state is associated with the critical void cell anisotropy, corresponding to the maximal energy dissipation. The (e, p) relationship at critical state is associated with the critical combination of the void cell size and the contact interactions, corresponding to the minimal free energy. The investigation on the influence of the internal structure anisotropy on the granular material behavior and the critical state is carried out. The results show that at small strain levels, the behavior of granular material is mainly affected by the initial fabric. As shearing continuous, the internal structure of granular material is gradually changed. The granular material approaches the critical state, which is irrespective with the initial internal structure. The critical state of granular material is not unique. With different loading modes, the critical state of granular material, including both the critical stress ratio and the critical (e, p) relations, are found to be different. A fabric tensor is defined based on the characteristics of the void cells. The laboratory method to quantify the fabric anisotropy is proposed by deviatoric shearing. 3D numerical simulations have been carried out to investigate the influence of the loading mode, which is found to be an important factor in the large strain behavior of granular material. With the obtained microscopic understanding, the influence of contact model on granular material behavior is investigated. A method to quantify the fabric anisotropy is proposed. And a simple discussion on the state variable used in the elasto-plastic constitutive model is given.

  7. Anaerobic hydrogen production with an efficient carrier-induced granular sludge bed bioreactor.

    PubMed

    Lee, Kuo-Shing; Wu, Ji-Fang; Lo, Yung-Sheng; Lo, Yung-Chung; Lin, Ping-Jei; Chang, Jo-Shu

    2004-09-05

    A novel bioreactor containing self-flocculated anaerobic granular sludge was developed for high-performance hydrogen production from sucrose-based synthetic wastewater. The reactor achieved an optimal volumetric hydrogen production rate of approximately 7.3 L/h/L (7,150 mmol/d/L) and a maximal hydrogen yield of 3.03 mol H2/mol sucrose when it was operated at a hydraulic retention time (HRT) of 0.5 h with an influent sucrose concentration of 20 g COD/L. The gas-phase hydrogen content and substrate conversion also exceeded 40 and 90%, respectively, under optimal conditions. Packing of a small quantity of carrier matrices on the bottom of the upflow reactor significantly stimulated sludge granulation that can be accomplished within 100 h. Among the four carriers examined, spherical activated carbon was the most effective inducer for granular sludge formation. The carrier-induced granular sludge bed (CIGSB) bioreactor was started up with a low HRT of 4-8 h (corresponding to an organic loading rate of 2.5-5 g COD/h/L) and enabled stable operations at an extremely low HRT (up to 0.5 h) without washout of biomass. The granular sludge was rapidly formed in CIGSB supported with activated carbon and reached a maximal concentration of 26 g/L at HRT = 0.5 h. The ability to maintain high biomass concentration at low HRT (i.e., high organic loading rate) highlights the key factor for the remarkable hydrogen production efficiency of the CIGSB processes.

  8. Aerobic granular sludge: a promising technology for decentralised wastewater treatment.

    PubMed

    Li, Z H; Kuba, T; Kusuda, T

    2006-01-01

    In order to evaluate the characteristics of aerobic granular sludge, a sequencing batch reactor, feeding with synthetic wastewater at the organic loading rate of 8 kg COD/m3 d, was employed on the laboratory scale. Granules occurred in the reactor within 1 week after the inoculation from conventional flocculent sludge. Aerobic granular sludge was characterised by the outstanding settling properties and considerable contaminates removal efficiencies. The SVI30 values were in the range of 20 to 40 ml g(-1). However, the sludge volume index of short settling time (e.g. SVI10--10 min) is suggested to describe the fast settling properties of aerobic granular sludge. The potential application in the decentralised system is evaluated from the point view of footprint and high bioactivity. The occurrence of sloughing, resulting from the outgrowth of filamentous organisms, would be responsible for the instability of aerobic granules. The starvation phase should therefore be carefully controlled for the maintenance and stability of aerobic granular sludge system.

  9. Scaling laws in granular flow and pedestrian flow

    NASA Astrophysics Data System (ADS)

    Chen, Shumiao; Alonso-Marroquin, Fernando; Busch, Jonathan; Hidalgo, Raúl Cruz; Sathianandan, Charmila; Ramírez-Gómez, Álvaro; Mora, Peter

    2013-06-01

    We use particle-based simulations to examine the flow of particles through an exit. Simulations involve both gravity-driven particles (representing granular material) and velocity-driven particles (mimicking pedestrian dynamics). Contact forces between particles include elastic, viscous, and frictional forces; and simulations use bunker geometry. Power laws are observed in the relation between flow rate and exit width. Simulations of granular flow showed that the power law has little dependence on the coefficient of friction. Polydisperse granular systems produced higher flow rates than those produced by monodisperse ones. We extend the particle model to include the main features of pedestrian dynamics: thoracic shape, shoulder rotation, and desired velocity oriented towards the exit. Higher desired velocity resulted in higher flow rate. Granular simulations always give higher flow rate than pedestrian simulations, despite the values of aspect ratio of the particles. In terms of force distribution, pedestrians and granulates share similar properties with the non-democratic distribution of forces that poses high risks of injuries in a bottleneck situation.

  10. A trans-phase granular continuum relation and its use in simulation

    NASA Astrophysics Data System (ADS)

    Kamrin, Ken; Dunatunga, Sachith; Askari, Hesam

    The ability to model a large granular system as a continuum would offer tremendous benefits in computation time compared to discrete particle methods. However, two infamous problems arise in the pursuit of this vision: (i) the constitutive relation for granular materials is still unclear and hotly debated, and (ii) a model and corresponding numerical method must wear ``many hats'' as, in general circumstances, it must be able to capture and accurately represent the material as it crosses through its collisional, dense-flowing, and solid-like states. Here we present a minimal trans-phase model, merging an elastic response beneath a fictional yield criterion, a mu(I) rheology for liquid-like flow above the static yield criterion, and a disconnection rule to model separation of the grains into a low-temperature gas. We simulate our model with a meshless method (in high strain/mixing cases) and the finite-element method. It is able to match experimental data in many geometries, including collapsing columns, impact on granular beds, draining silos, and granular drag problems.

  11. Thermodynamic limitations on the resolution obtainable with metal replicas.

    PubMed

    Woodward, J T; Zasadzinski, J A

    1996-12-01

    The major factor limiting resolution of metal-shadowed surfaces for electron and scanning tunnelling microscopy is the granularity of the metal film. This granularity had been believed to result from a recrystallization of the evaporated film, and hence could be limited by use of higher melting point materials for replication, or inhibited by adding carbon or other impurities to the film. However, evaporated and sputtered films of amorphous metal alloys that do not crystallize also show a granularity that decreases with increasing alloy melting point. A simple thermodynamic analysis shows that the granularity results from a dewetting of the typically low surface energy sample by the high surface energy metal film, similar to the beading up of drops of spilled mercury. The metal granularity and the resulting resolution of the metal-coated surface is proportional to the mobility of the metal on the surface after evaporation, which is related to the difference in temperature between the melting point of the metal and the sample surface temperature.

  12. Microgravity Experiments to Evaluate Electrostatic Forces in Controlling Cohesion and Adhesion of Granular Materials

    NASA Technical Reports Server (NTRS)

    Marshall, J.; Weislogel, M.; Jacobson, T.

    1999-01-01

    The bulk behavior of dispersed, fluidized, or undispersed stationary granular systems cannot be fully understood in terms of adhesive/cohesive properties without understanding the role of electrostatic forces acting at the level of the grains themselves. When grains adhere to a surface, or come in contact with one another in a stationary bulk mass, it is difficult to measure the forces acting on the grains, and the forces themselves that induced the cohesion and adhesion are changed. Even if a single grain were to be scrutinized in the laboratory, it might be difficult, perhaps impossible, to define the distribution and character of surface charging and the three-dimensional relationship that charges (electrons, holes) have to one another. The hypothesis that we propose to test in microgravity (for dielectric materials) is that adhesion and cohesion of granular matter are mediated primarily by dipole forces that do not require the presence of a net charge; in fact, nominally electrically neutral materials should express adhesive and cohesive behavior when the neutrality results from a balance of positive and negative charge carriers. Moreover, the use of net charge alone as a measure of the electrical nature of grain-to-grain relationships within a granular mass may be misleading. We believe that the dipole forces arise from the presence of randomly-distributed positive and negative fixed charge carriers on grains that give rise to a resultant dipole moment. These dipole forces have long-range attraction. Random charges are created whenever there is triboelectrical activity of a granular mass, that is, whenever the grains experience contact/separation sequences or friction.

  13. A high-speed tracking algorithm for dense granular media

    NASA Astrophysics Data System (ADS)

    Cerda, Mauricio; Navarro, Cristóbal A.; Silva, Juan; Waitukaitis, Scott R.; Mujica, Nicolás; Hitschfeld, Nancy

    2018-06-01

    Many fields of study, including medical imaging, granular physics, colloidal physics, and active matter, require the precise identification and tracking of particle-like objects in images. While many algorithms exist to track particles in diffuse conditions, these often perform poorly when particles are densely packed together-as in, for example, solid-like systems of granular materials. Incorrect particle identification can have significant effects on the calculation of physical quantities, which makes the development of more precise and faster tracking algorithms a worthwhile endeavor. In this work, we present a new tracking algorithm to identify particles in dense systems that is both highly accurate and fast. We demonstrate the efficacy of our approach by analyzing images of dense, solid-state granular media, where we achieve an identification error of 5% in the worst evaluated cases. Going further, we propose a parallelization strategy for our algorithm using a GPU, which results in a speedup of up to 10 × when compared to a sequential CPU implementation in C and up to 40 × when compared to the reference MATLAB library widely used for particle tracking. Our results extend the capabilities of state-of-the-art particle tracking methods by allowing fast, high-fidelity detection in dense media at high resolutions.

  14. Effects of Cooling Conditions on Microstructure, Tensile Properties, and Charpy Impact Toughness of Low-Carbon High-Strength Bainitic Steels

    NASA Astrophysics Data System (ADS)

    Sung, Hyo Kyung; Shin, Sang Yong; Hwang, Byoungchul; Lee, Chang Gil; Lee, Sunghak

    2013-01-01

    In this study, four low-carbon high-strength bainitic steel specimens were fabricated by varying finish cooling temperatures and cooling rates, and their tensile and Charpy impact properties were investigated. All the bainitic steel specimens consisted of acicular ferrite, granular bainite, bainitic ferrite, and martensite-austenite constituents. The specimens fabricated with higher finish cooling temperature had a lower volume fraction of martensite-austenite constituent than the specimens fabricated with lower finish cooling temperature. The fast-cooled specimens had twice the volume fraction of bainitic ferrite and consequently higher yield and tensile strengths than the slow-cooled specimens. The energy transition temperature tended to increase with increasing effective grain size or with increasing volume fraction of granular bainite. The fast-cooled specimen fabricated with high finish cooling temperature and fast cooling rate showed the lowest energy transition temperature among the four specimens because of the lowest content of coarse granular bainite. These findings indicated that Charpy impact properties as well as strength could be improved by suppressing the formation of granular bainite, despite the presence of some hard microstructural constituents such as bainitic ferrite and martensite-austenite.

  15. Calculation of energy recovery and greenhouse gas emission reduction from palm oil mill effluent treatment by an anaerobic granular-sludge process.

    PubMed

    Show, K Y; Ng, C A; Faiza, A R; Wong, L P; Wong, L Y

    2011-01-01

    Conventional aerobic and low-rate anaerobic processes such as pond and open-tank systems have been widely used in wastewater treatment. In order to improve treatment efficacy and to avoid greenhouse gas emissions, conventional treatment can be upgraded to a high performance anaerobic granular-sludge system. The anaerobic granular-sludge systems are designed to capture the biogas produced, rendering a potential for claims of carbon credits under the Kyoto Protocol for reducing emissions of greenhouse gases. Certified Emission Reductions (CERs) would be issued, which can be exchanged between businesses or bought and sold in international markets at the prevailing market prices. As the advanced anaerobic granular systems are capable of handling high organic loadings concomitant with high strength wastewater and short hydraulic retention time, they render more carbon credits than other conventional anaerobic systems. In addition to efficient waste degradation, the carbon credits can be used to generate revenue and to finance the project. This paper presents a scenario on emission avoidance based on a methane recovery and utilization project. An example analysis on emission reduction and an overview of the global emission market are also outlined.

  16. The Granular Blasius Problem: High inertial number granular flows

    NASA Astrophysics Data System (ADS)

    Tsang, Jonathan; Dalziel, Stuart; Vriend, Nathalie

    2017-11-01

    The classical Blasius problem considers the formation of a boundary layer through the change at x = 0 from a free-slip to a no-slip boundary beneath an otherwise steady uniform flow. Discrete particle model (DPM) simulations of granular gravity currents show that a similar phenomenon exists for a steady flow over a uniformly sloped surface that is smooth upstream (allowing slip) but rough downstream (imposing a no-slip condition). The boundary layer is a region of high shear rate and therefore high inertial number I; its dynamics are governed by the asymptotic behaviour of the granular rheology as I -> ∞ . The μ(I) rheology asserts that dμ / dI = O(1 /I2) as I -> ∞ , but current experimental evidence is insufficient to confirm this. We show that `generalised μ(I) rheologies', with different behaviours as I -> ∞ , all permit the formation of a boundary layer. We give approximate solutions for the velocity profile under each rheology. The change in boundary condition considered here mimics more complex topography in which shear stress increases in the streamwise direction (e.g. a curved slope). Such a system would be of interest in avalanche modelling. EPSRC studentship (Tsang) and Royal Society Dorothy Hodgkin Fellowship (Vriend).

  17. Force measurements in stiff, 3D, opaque granular materials

    NASA Astrophysics Data System (ADS)

    Hurley, Ryan C.; Hall, Stephen A.; Andrade, José E.; Wright, Jonathan

    2017-06-01

    We present results from two experiments that provide the first quantification of inter-particle force networks in stiff, 3D, opaque granular materials. Force vectors between all grains were determined using a mathematical optimization technique that seeks to satisfy grain equilibrium and strain measurements. Quantities needed in the optimization - the spatial location of the inter-particle contact network and tensor grain strains - were found using 3D X-ray diffraction and X-ray computed tomography. The statistics of the force networks are consistent with those found in past simulations and 2D experiments. In particular, we observe an exponential decay of normal forces above the mean and a partition of forces into strong and weak networks. In the first experiment, involving 77 single-crystal quartz grains, we also report on the temporal correlation of the force network across two sequential load cycles. In the second experiment, involving 1099 single-crystal ruby grains, we characterize force network statistics at low levels of compression.

  18. Experimental observations of granular debris flows

    NASA Astrophysics Data System (ADS)

    Ghilardi, P.

    2003-04-01

    Various tests are run using two different laboratory flumes with rectangular cross section and transparent walls. The grains used in a single experiment have an almost constant grain sizes; mean diameter ranges from 5 mm to 20 mm. In each test various measurements are taken: hydrograms, velocity distribution near the transparent walls and on the free surface, average flow concentration. Concentration values are measured taking samples. Velocity distributions are obtained from movies recorded by high speed video cameras capable of 350 frames per second; flow rates and depth hydrograms are computed from the same velocity distributions. A gate is installed at the beginning of one of the flumes; this gate slides normally to the bed and opens very quickly, reproducing a dam-break. Several tests are run using this device, varying channel slope, sediment concentration, initial mixture thickness before the gate. Velocity distribution in the flume is almost constant from left to right, except for the flow sections near the front. The observed discharges and velocities are less than those given by a classic dam break formula, and depend on sediment concentration. The other flume is fed by a mixture with constant discharge and concentration, and is mainly used for measuring velocity distributions when the flow is uniform, with both rigid and granular bed, and to study erosion/deposition processes near debris flow dams or other mitigation devices. The equilibrium slope of the granular bed is very close to that given by the classical equilibrium formulas for debris flow. Different deposition processes are observed depending on mixture concentration and channel geometry.

  19. Anaerobic/oxic/anoxic granular sludge process as an effective nutrient removal process utilizing denitrifying polyphosphate-accumulating organisms.

    PubMed

    Kishida, Naohiro; Kim, Juhyun; Tsuneda, Satoshi; Sudo, Ryuichi

    2006-07-01

    In a biological nutrient removal (BNR) process, the utilization of denitrifying polyphosphate-accumulating organisms (DNPAOs) has many advantages such as effective use of organic carbon substrates and low sludge production. As a suitable process for the utilization of DNPAOs in BNR, an anaerobic/oxic/anoxic granular sludge (AOAGS) process was proposed in this study. In spite of performing aeration for nitrifying bacteria, the AOAGS process can create anaerobic/anoxic conditions suitable for the cultivation of DNPAOs because anoxic zones exist inside the granular sludge in the oxic phase. Thus, DNPAOs can coexist with nitrifying bacteria in a single reactor. In addition, the usability of DNPAOs in the reactor can be improved by adding the anoxic phase after the oxic phase. These characteristics enable the AOAGS process to attain effective removal of both nitrogen and phosphorus. When acetate-based synthetic wastewater (COD: 600 mg/L, NH4-N: 60 mg/L, PO(4)-P: 10 mg/L) was supplied to a laboratory-scale sequencing batch reactor under the operation of anaerobic/oxic/anoxic cycles, granular sludge with a diameter of 500 microm was successfully formed within 1 month. Although the removal of both nitrogen and phosphorus was almost complete at the end of the oxic phase, a short anoxic period subsequent to the oxic phase was necessary for further removal of nitrogen and phosphorus. As a result, effluent concentrations of NH(4)-N, NO(x)-N and PO(4)-P were always lower than 1 mg/L. It was found that penetration depth of oxygen inside the granular sludge was approximately 100 microm by microsensor measurements. In addition, from the microbiological analysis by fluorescence in situ hybridization, existence depth of polyphosphate-accumulating organisms was further than the maximum oxygen penetration depth. The water quality data, oxygen profiles and microbial community structure demonstrated that DNPAOs inside the granular sludge may be responsible for denitrification in the oxic phase, which enables effective nutrient removal in the AOAGS process.

  20. Superior bit error rate and jitter due to improved switching field distribution in exchange spring magnetic recording media

    PubMed Central

    Suess, D.; Fuger, M.; Abert, C.; Bruckner, F.; Vogler, C.

    2016-01-01

    We report two effects that lead to a significant reduction of the switching field distribution in exchange spring media. The first effect relies on a subtle mechanism of the interplay between exchange coupling between soft and hard layers and anisotropy that allows significant reduction of the switching field distribution in exchange spring media. This effect reduces the switching field distribution by about 30% compared to single-phase media. A second effect is that due to the improved thermal stability of exchange spring media over single-phase media, the jitter due to thermal fluctuation is significantly smaller for exchange spring media than for single-phase media. The influence of this overall improved switching field distribution on the transition jitter in granular recording and the bit error rate in bit-patterned magnetic recording is discussed. The transition jitter in granular recording for a distribution of Khard values of 3% in the hard layer, taking into account thermal fluctuations during recording, is estimated to be a = 0.78 nm, which is similar to the best reported calculated jitter in optimized heat-assisted recording media. PMID:27245287

  1. Use of modified pine bark for removal of pesticides from stormwater runoff

    Treesearch

    Mandla A. Tshabalala

    2003-01-01

    Pesticide entrainment in stormwater runoff can contribute to non-point source pollution of surface waters. Granular activated carbon has been successfully used for removing pesticides from wastewater. However, implementation of granular activated carbon sorption media in stormwater filtration systems comes with high initial capital investment and operating costs....

  2. Y1Ba2Cu3O(7-delta) thin film dc SQUIDs (superconducting quantum interference device)

    NASA Astrophysics Data System (ADS)

    Racah, Daniel

    1991-03-01

    Direct current superconducting quantum interferometers (SQUIDs) based on HTSC thin films have been measured and characterized. The thin films used were of different quality: (1) Granular films on Sapphire substrates, prepared either by e-gun evaporation, by laser ablation or by MOCVD (metal oxide chemical vapor deposition), (2) Epitaxial films on MgO substrates. Modulations of the voltage on the SQUIDs as a function of the applied flux have been observed in a wide range of temperatures. The nature of the modulation was found to be strongly dependent on the morphology of the film and on its critical current. The SQUIDs based on granular films were relatively noisy, hysteretic and with a complicated V-phi shape. Those devices based on low quality (lowIc) granular films could be measured only at low temperatures (much lower than 77 K). While those of higher quality (granular films with high Ic) could be measured near to the superconductive transition. The SQUID based on high quality epitaxial film was measured near Tc and showed an anomalous, time dependent behavior.

  3. Performance of granular zirconium-iron oxide in the removal of fluoride from drinking water.

    PubMed

    Dou, Xiaomin; Zhang, Yansu; Wang, Hongjie; Wang, Tingjie; Wang, Yili

    2011-06-01

    In this study, a granular zirconium-iron oxide (GZI) was successfully prepared using the extrusion method, and its defluoridation performance was systematically evaluated. The GZI was composed of amorphous and nano-scale oxide particles. The Zr and Fe were evenly distributed on its surface, with a Zr/Fe molar ratio of ∼2.3. The granular adsorbent was porous with high permeability potential. Moreover, it had excellent mechanical stability and high crushing strength, which ensured less material breakage and mass loss in practical use. In batch tests, the GZI showed a high adsorption capacity of 9.80 mg/g under an equilibrium concentration of 10 mg/L at pH 7.0, which outperformed many other reported granular adsorbents. The GZI performed well over a wide pH range, of 3.5-8.0, and especially well at pH 6.0-8.0, which was the preferred range for actual application. Fluoride adsorption on GZI followed pseudo-second-order kinetics and could be well described by the Freundlich equilibrium model. With the exception of HCO(3)(-), other co-existing anions and HA did not evidently inhibit fluoride removal by GZI when considering their real concentrations in natural groundwater, which showed that GZI had a high selectivity for fluoride. In column tests using real groundwater as influent, about 370, 239 and 128 bed volumes (BVs) of groundwater were treated before breakthrough was reached under space velocities (SVs) of 0.5, 1 and 3 h(-1), respectively. Additionally, the toxicity characteristic leaching procedure (TCLP) results suggested that the spent GZI was inert and could be safely disposed of in landfill. In conclusion, this granular adsorbent showed high potential for fluoride removal from real groundwater, due to its high performance and physical-chemical properties. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Effects of high temperature aging in an impure helium environment on low temperature embrittlement of Alloy 617 and Haynes 230

    NASA Astrophysics Data System (ADS)

    Kim, Daejong; Sah, Injin; Jang, Changheui

    2010-10-01

    The effects of high temperature environmental damage on low temperature embrittlement of wrought nickel-base superalloys, Alloy 617 and Haynes 230 were evaluated. They were aged in an impure helium environment at 1000 °C for up to 500 h before tensile tested at room temperature. The tensile test results showed that the loss of ductility was associated with the increase in the inter-granular fracture with aging time. For Alloy 617, inter-granular oxidation and coarsening of grain boundary carbides contributed to the embrittlement. The significant loss of ductility in Haynes 230 was only observed after 500 h of aging when the globular intermetallic precipitates were extensively formed and brittle inter-granular cracking began to occur.

  5. Surface instabilities in shock loaded granular media

    NASA Astrophysics Data System (ADS)

    Kandan, K.; Khaderi, S. N.; Wadley, H. N. G.; Deshpande, V. S.

    2017-12-01

    The initiation and growth of instabilities in granular materials loaded by air shock waves are investigated via shock-tube experiments and numerical calculations. Three types of granular media, dry sand, water-saturated sand and a granular solid comprising PTFE spheres were experimentally investigated by air shock loading slugs of these materials in a transparent shock tube. Under all shock pressures considered here, the free-standing dry sand slugs remained stable while the shock loaded surface of the water-saturated sand slug became unstable resulting in mixing of the shocked air and the granular material. By contrast, the PTFE slugs were stable at low pressures but displayed instabilities similar to the water-saturated sand slugs at higher shock pressures. The distal surfaces of the slugs remained stable under all conditions considered here. Eulerian fluid/solid interaction calculations, with the granular material modelled as a Drucker-Prager solid, reproduced the onset of the instabilities as seen in the experiments to a high level of accuracy. These calculations showed that the shock pressures to initiate instabilities increased with increasing material friction and decreasing yield strain. Moreover, the high Atwood number for this problem implied that fluid/solid interaction effects were small, and the initiation of the instability is adequately captured by directly applying a pressure on the slug surface. Lagrangian calculations with the directly applied pressures demonstrated that the instability was caused by spatial pressure gradients created by initial surface perturbations. Surface instabilities are also shown to exist in shock loaded rear-supported granular slugs: these experiments and calculations are used to infer the velocity that free-standing slugs need to acquire to initiate instabilities on their front surfaces. The results presented here, while in an idealised one-dimensional setting, provide physical understanding of the conditions required to initiate instabilities in a range of situations involving the explosive dispersion of particles.

  6. Treatment of old landfill leachate with high ammonium content using aerobic granular sludge.

    PubMed

    Ren, Yanan; Ferraz, Fernanda; Kang, Abbass Jafari; Yuan, Qiuyan

    2017-01-01

    Aerobic granular sludge has become an attractive alternative to the conventional activated sludge due to its high settling velocity, compact structure, and higher tolerance to toxic substances and adverse conditions. Aerobic granular sludge process has been studied intensively in the treatment of municipal and industrial wastewater. However, information on leachate treatment using aerobic granular sludge is very limited. This study investigated the treatment performance of old landfill leachate with different levels of ammonium using two aerobic sequencing batch reactors (SBR): an activated sludge SBR (ASBR) and a granular sludge SBR (GSBR). Aerobic granules were successfully developed using old leachate with low ammonium concentration (136 mg L -1  NH 4 + -N). The GSBR obtained a stable chemical oxygen demand (COD) removal of 70% after 15 days of operation; while the ASBR required a start-up of at least 30 days and obtained unstable COD removal varying from 38 to 70%. Ammonium concentration was gradually increased in both reactors. Increasing influent ammonium concentration to 225 mg L -1  N, the GSBR removed 73 ± 8% of COD; while COD removal of the ASBR was 59 ± 9%. The GSBR was also more efficient than the ASBR for nitrogen removal. The granular sludge could adapt to the increasing concentrations of ammonium, achieving 95 ± 7% removal efficiency at a maximum influent concentration of 465 mg L -1  N. Ammonium removal of 96 ± 5% was obtained by the ASBR when it was fed with a maximum of 217 mg L -1  NH 4 + -N. However, the ASBR was partially inhibited by free-ammonia and nitrite accumulation rate increased up to 85%. Free-nitrous acid and the low biodegradability of organic carbon were likely the main factors affecting phosphorus removal. The results from this research suggested that aerobic granular sludge have advantage over activated sludge in leachate treatment.

  7. Experimental Study of Lightweight Tracked Vehicle Performance on Dry Granular Materials

    DTIC Science & Technology

    2013-09-12

    agricultural tractor and found that the length of the ground contact area is the most important factor affecting tractive performance, while track...authors are grateful to Ce- cilia Cantu and to Meccanotecnica Riesi SRL for collaborating on designing and manufacturing the single track device

  8. Reaction kinetics of dolomite rim growth

    NASA Astrophysics Data System (ADS)

    Helpa, V.; Rybacki, E.; Abart, R.; Morales, L. F. G.; Rhede, D.; Jeřábek, P.; Dresen, G.

    2014-04-01

    Reaction rims of dolomite (CaMg[CO3]2) were produced by solid-state reactions at the contacts of oriented calcite (CaCO3) and magnesite (MgCO3) single crystals at 400 MPa pressure, 750-850 °C temperature, and 3-146 h annealing time to determine the reaction kinetics. The dolomite reaction rims show two different microstructural domains. Elongated palisades of dolomite grew perpendicular into the MgCO3 interface with length ranging from about 6 to 41 µm. At the same time, a 5-71 µm wide rim of equiaxed granular dolomite grew at the contact with CaCO3. Platinum markers showed that the original interface is located at the boundary between the granular and palisade-forming dolomite. In addition to dolomite, a 12-80 µm thick magnesio-calcite layer formed between the dolomite reaction rims and the calcite single crystals. All reaction products show at least an axiotactic crystallographic relationship with respect to calcite reactant, while full topotaxy to calcite prevails within the granular dolomite and magnesio-calcite. Dolomite grains frequently exhibit growth twins characterized by a rotation of 180° around one of the equivalent axis. From mass balance considerations, it is inferred that the reaction rim of dolomite grew by counter diffusion of MgO and CaO. Assuming an Arrhenius-type temperature dependence, activation energies for diffusion of CaO and MgO are E a (CaO) = 192 ± 54 kJ/mol and E a (MgO) = 198 ± 44 kJ/mol, respectively.

  9. A comprehensive study of MPI parallelism in three-dimensional discrete element method (DEM) simulation of complex-shaped granular particles

    NASA Astrophysics Data System (ADS)

    Yan, Beichuan; Regueiro, Richard A.

    2018-02-01

    A three-dimensional (3D) DEM code for simulating complex-shaped granular particles is parallelized using message-passing interface (MPI). The concepts of link-block, ghost/border layer, and migration layer are put forward for design of the parallel algorithm, and theoretical scalability function of 3-D DEM scalability and memory usage is derived. Many performance-critical implementation details are managed optimally to achieve high performance and scalability, such as: minimizing communication overhead, maintaining dynamic load balance, handling particle migrations across block borders, transmitting C++ dynamic objects of particles between MPI processes efficiently, eliminating redundant contact information between adjacent MPI processes. The code executes on multiple US Department of Defense (DoD) supercomputers and tests up to 2048 compute nodes for simulating 10 million three-axis ellipsoidal particles. Performance analyses of the code including speedup, efficiency, scalability, and granularity across five orders of magnitude of simulation scale (number of particles) are provided, and they demonstrate high speedup and excellent scalability. It is also discovered that communication time is a decreasing function of the number of compute nodes in strong scaling measurements. The code's capability of simulating a large number of complex-shaped particles on modern supercomputers will be of value in both laboratory studies on micromechanical properties of granular materials and many realistic engineering applications involving granular materials.

  10. Universal scaling of permeability through the granular-to-continuum transition

    NASA Astrophysics Data System (ADS)

    Wadsworth, F. B.; Scheu, B.; Heap, M. J.; Kendrick, J. E.; Vasseur, J.; Lavallée, Y.; Dingwell, D. B.

    2015-12-01

    Magmas fragment forming a transiently granular material, which can weld back to a fluid-continuum. This process results in dramatic changes in the gas-volume fraction of the material, which impacts the gas permeability. We collate published data for the gas-volume fraction and permeability of volcanic and synthetic materials which have undergone this process to different amounts and note that in all cases there exists a discontinuity in the relationship between these two properties. By discriminating data for which good microstructural information are provided, we use simple scaling arguments to collapse the data in both the still-granular, high gas-volume fraction regime and the fluid-continuum low gas-volume fraction regime such that a universal description can be achieved. We use this to argue for the microstructural meaning of the well-described discontinuity between gas-permeability and gas-volume fraction and to infer the controls on the position of this transition between dominantly granular and dominantly fluid-continuum material descriptions. As a specific application, we consider the transiently granular magma transported through and deposited in fractures in more-coherent magmas, thought to be a primary degassing pathway in high viscosity systems. We propose that our scaling coupled with constitutive laws for densification can provide insights into the longevity of such degassing channels, informing sub-surface pressure modelling at such volcanoes.

  11. Alternating anoxic feast/aerobic famine condition for improving granular sludge formation in sequencing batch airlift reactor at reduced aeration rate.

    PubMed

    Wan, Junfeng; Bessière, Yolaine; Spérandio, Mathieu

    2009-12-01

    In this study the influence of a pre-anoxic feast period on granular sludge formation in a sequencing batch airlift reactor is evaluated. Whereas a purely aerobic SBR was operated as a reference (reactor R2), another reactor (R1) was run with a reduced aeration rate and an alternating anoxic-aerobic cycle reinforced by nitrate feeding. The presence of pre-anoxic phase clearly improved the densification of aggregates and allowed granular sludge formation at reduced air flow rate (superficial air velocity (SAV)=0.63cms(-1)). A low sludge volume index (SVI(30)=45mLg(-1)) and a high MLSS concentration (9-10gL(-1)) were obtained in the anoxic/aerobic system compared to more conventional results for the aerobic reactor. A granular sludge was observed in the anoxic/aerobic system whilst only flocs were observed in the aerobic reference even when operated at a high aeration rate (SAV=2.83cms(-1)). Nitrification was maintained efficiently in the anoxic/aerobic system even when organic loading rate (OLR) was increased up to 2.8kgCODm(-3)d(-1). In the contrary nitrification was unstable in the aerobic system and dropped at high OLR due to competition between autotrophic and heterotrophic growth. The presence of a pre-anoxic period positively affected granulation process via different mechanisms: enhancing heterotrophic growth/storage deeper in the internal anoxic layer of granule, reducing the competition between autotrophic and heterotrophic growth. These processes help to develop dense granular sludge at a moderate aeration rate. This tends to confirm that oxygen transfer is the most limiting factor for granulation at reduced aeration. Hence the use of an alternative electron acceptor (nitrate or nitrite) should be encouraged during feast period for reducing energy demand of the granular sludge process.

  12. Terminal velocity of liquids and granular materials dispersed by a high explosive

    NASA Astrophysics Data System (ADS)

    Loiseau, J.; Pontalier, Q.; Milne, A. M.; Goroshin, S.; Frost, D. L.

    2018-05-01

    The explosive dispersal of a layer of solid particles or a layer of liquid surrounding a spherical high-explosive charge generates a turbulent, multiphase flow. Shock compression of the material layer during the initial acceleration may partially consolidate the material, leading to the formation of jet-like structures when the layer fragments and sheds particles upon release. Similarly, release of a shock-compressed liquid shell causes the nucleation of cavitation sites, leading to the radial breakup of the shell and the formation of jets upon expansion. In the current study, a wide variety of granular materials and liquids were explosively dispersed. The maximum terminal jet tip or shell velocity was measured using high-speed videography. Charges were constructed using thin-walled glass bulbs of various diameters and contained a central C-4 charge surrounded by the material to be dispersed. This permitted variation of the ratio of material mass to charge mass ( M/ C) from 4 to 300. Results indicated that material velocity broadly correlates with predictions of the Gurney model. For liquids, the terminal velocity was accurately predicted by the Gurney model. For granular materials, Gurney over-predicted the terminal velocity by 25-60%, depending on the M/ C ratio, with larger M/ C values exhibiting larger deficits. These deficits are explained by energy dissipation during the collapse of voids in the granular material bed. Velocity deficits were insensitive to the degree of jetting and granular material properties. Empirical corrections to the Gurney model are presented with improved agreement with the dry powder experimental velocities.

  13. Terminal velocity of liquids and granular materials dispersed by a high explosive

    NASA Astrophysics Data System (ADS)

    Loiseau, J.; Pontalier, Q.; Milne, A. M.; Goroshin, S.; Frost, D. L.

    2018-04-01

    The explosive dispersal of a layer of solid particles or a layer of liquid surrounding a spherical high-explosive charge generates a turbulent, multiphase flow. Shock compression of the material layer during the initial acceleration may partially consolidate the material, leading to the formation of jet-like structures when the layer fragments and sheds particles upon release. Similarly, release of a shock-compressed liquid shell causes the nucleation of cavitation sites, leading to the radial breakup of the shell and the formation of jets upon expansion. In the current study, a wide variety of granular materials and liquids were explosively dispersed. The maximum terminal jet tip or shell velocity was measured using high-speed videography. Charges were constructed using thin-walled glass bulbs of various diameters and contained a central C-4 charge surrounded by the material to be dispersed. This permitted variation of the ratio of material mass to charge mass (M/C) from 4 to 300. Results indicated that material velocity broadly correlates with predictions of the Gurney model. For liquids, the terminal velocity was accurately predicted by the Gurney model. For granular materials, Gurney over-predicted the terminal velocity by 25-60%, depending on the M/C ratio, with larger M/C values exhibiting larger deficits. These deficits are explained by energy dissipation during the collapse of voids in the granular material bed. Velocity deficits were insensitive to the degree of jetting and granular material properties. Empirical corrections to the Gurney model are presented with improved agreement with the dry powder experimental velocities.

  14. Averaging processes in granular flows driven by gravity

    NASA Astrophysics Data System (ADS)

    Rossi, Giulia; Armanini, Aronne

    2016-04-01

    One of the more promising theoretical frames to analyse the two-phase granular flows is offered by the similarity of their rheology with the kinetic theory of gases [1]. Granular flows can be considered a macroscopic equivalent of the molecular case: the collisions among molecules are compared to the collisions among grains at a macroscopic scale [2,3]. However there are important statistical differences in dealing with the two applications. In the two-phase fluid mechanics, there are two main types of average: the phasic average and the mass weighed average [4]. The kinetic theories assume that the size of atoms is so small, that the number of molecules in a control volume is infinite. With this assumption, the concentration (number of particles n) doesn't change during the averaging process and the two definitions of average coincide. This hypothesis is no more true in granular flows: contrary to gases, the dimension of a single particle becomes comparable to that of the control volume. For this reason, in a single realization the number of grain is constant and the two averages coincide; on the contrary, for more than one realization, n is no more constant and the two types of average lead to different results. Therefore, the ensamble average used in the standard kinetic theory (which usually is the phasic average) is suitable for the single realization, but not for several realization, as already pointed out in [5,6]. In the literature, three main length scales have been identified [7]: the smallest is the particles size, the intermediate consists in the local averaging (in order to describe some instability phenomena or secondary circulation) and the largest arises from phenomena such as large eddies in turbulence. Our aim is to solve the intermediate scale, by applying the mass weighted average, when dealing with more than one realizations. This statistical approach leads to additional diffusive terms in the continuity equation: starting from experimental results, we aim to define the scales governing the diffusive phenomenon, introducing the diffusive terms following the Boussinesq model. The diffusive coefficient will be experimentally defined; it will be probably proportional to the square root of the granular temperature θ and the diameter of the particles d or, alternatively, the flow height h. REFERENCES 1 Chapman S., Cowling T.G., 1971. Cambridge University Press, Cambridge, England. 2 Jenkins J.T., Savage S.B., 1983 J. Fluid.Mech., 130: 187-202 3 Savage S.B.,1984. J. Fluid.Mech., 24: 289-366 4 D.A.Drew, 1983. Annu. Rev. Fluid Mech. 15:261-291 5 I. Goldhirsch, 2003. Annu. Rev. Fluid Mech., 35:267-293. 6 I. Goldhirsch, 2008. Powder Technology, 182: 130-136. 7 T.J. Hsu, J.T. Jenkins, P.L. Liu 2004. Proc. Royal Soc.

  15. Spatiotemporal stick-slip phenomena in a coupled continuum-granular system

    NASA Astrophysics Data System (ADS)

    Ecke, Robert

    In sheared granular media, stick-slip behavior is ubiquitous, especially at very small shear rates and weak drive coupling. The resulting slips are characteristic of natural phenomena such as earthquakes and well as being a delicate probe of the collective dynamics of the granular system. In that spirit, we developed a laboratory experiment consisting of sheared elastic plates separated by a narrow gap filled with quasi-two-dimensional granular material (bi-dispersed nylon rods) . We directly determine the spatial and temporal distributions of strain displacements of the elastic continuum over 200 spatial points located adjacent to the gap. Slip events can be divided into large system-spanning events and spatially distributed smaller events. The small events have a probability distribution of event moment consistent with an M - 3 / 2 power law scaling and a Poisson distributed recurrence time distribution. Large events have a broad, log-normal moment distribution and a mean repetition time. As the applied normal force increases, there are fractionally more (less) large (small) events, and the large-event moment distribution broadens. The magnitude of the slip motion of the plates is well correlated with the root-mean-square displacements of the granular matter. Our results are consistent with mean field descriptions of statistical models of earthquakes and avalanches. We further explore the high-speed dynamics of system events and also discuss the effective granular friction of the sheared layer. We find that large events result from stored elastic energy in the plates in this coupled granular-continuum system.

  16. A thermomechanical constitutive model for cemented granular materials with quantifiable internal variables. Part II - Validation and localization analysis

    NASA Astrophysics Data System (ADS)

    Das, Arghya; Tengattini, Alessandro; Nguyen, Giang D.; Viggiani, Gioacchino; Hall, Stephen A.; Einav, Itai

    2014-10-01

    We study the mechanical failure of cemented granular materials (e.g., sandstones) using a constitutive model based on breakage mechanics for grain crushing and damage mechanics for cement fracture. The theoretical aspects of this model are presented in Part I: Tengattini et al. (2014), A thermomechanical constitutive model for cemented granular materials with quantifiable internal variables, Part I - Theory (Journal of the Mechanics and Physics of Solids, 10.1016/j.jmps.2014.05.021). In this Part II we investigate the constitutive and structural responses of cemented granular materials through analyses of Boundary Value Problems (BVPs). The multiple failure mechanisms captured by the proposed model enable the behavior of cemented granular rocks to be well reproduced for a wide range of confining pressures. Furthermore, through comparison of the model predictions and experimental data, the micromechanical basis of the model provides improved understanding of failure mechanisms of cemented granular materials. In particular, we show that grain crushing is the predominant inelastic deformation mechanism under high pressures while cement failure is the relevant mechanism at low pressures. Over an intermediate pressure regime a mixed mode of failure mechanisms is observed. Furthermore, the micromechanical roots of the model allow the effects on localized deformation modes of various initial microstructures to be studied. The results obtained from both the constitutive responses and BVP solutions indicate that the proposed approach and model provide a promising basis for future theoretical studies on cemented granular materials.

  17. Superconductivity in BiPbCaSrCuO thin films

    NASA Astrophysics Data System (ADS)

    Fu, S. M.; Yang, H. C.; Chen, F. C.; Horng, H. E.; Jao, J. C.

    1989-12-01

    Thin films of BiPbCaSrCuO sample were prepared by RF sputtering from sintered ceramic targets. Single crystal of MgO(100) was selected as substrate. The sputtering was held at room temperature. Different annealing conditions were carried out to obtain optimum conditions. High temperature resistivity was measured in air to study the thermodynamic reaction of the sintered films. An resistivity anomaly was found in the first heating cycle which suggests a thermodynamic reaction. A temperature dependence of I c was measured to study the coupling of grains in the granular films in different temperature ranges and the results will be discussed.

  18. Proton beam induced dynamics of tungsten granules

    NASA Astrophysics Data System (ADS)

    Caretta, O.; Loveridge, P.; O'Dell, J.; Davenne, T.; Fitton, M.; Atherton, A.; Densham, C.; Charitonidis, N.; Efthymiopoulos, I.; Fabich, A.; Guinchard, M.; Lacny, L. J.; Lindstrom, B.

    2018-03-01

    This paper reports the results from single-pulse experiments of a 440 GeV /c proton beam interacting with granular tungsten samples in both vacuum and helium environments. Remote high-speed photography and laser Doppler vibrometry were used to observe the effect of the beam on the sample grains. The majority of the results were derived from a trough containing ˜45 μ m diameter spheres (not compacted) reset between experiments to maintain the same initial conditions. Experiments were also carried out on other open and contained samples for the purposes of comparison both with the 45 μ m grain results and with a previous experiment carried out with sub-250 μ m mixed crystalline tungsten powder in helium [Phys. Rev. ST Accel. Beams 17, 101005 (2014), 10.1103/PhysRevSTAB.17.101005]. The experiments demonstrate that a greater dynamic response is produced in a vacuum than in a helium environment and in smaller grains compared with larger grains. The examination of the dynamics of the grains after a beam impact leads to the hypothesis that the grain response is primarily the result of a charge interaction of the proton beam with the granular medium.

  19. Fluid mechanical scaling of impact craters in unconsolidated granular materials

    NASA Astrophysics Data System (ADS)

    Miranda, Colin S.; Dowling, David R.

    2015-11-01

    A single scaling law is proposed for the diameter of simple low- and high-speed impact craters in unconsolidated granular materials where spall is not apparent. The scaling law is based on the assumption that gravity- and shock-wave effects set crater size, and is formulated in terms of a dimensionless crater diameter, and an empirical combination of Froude and Mach numbers. The scaling law involves the kinetic energy and speed of the impactor, the acceleration of gravity, and the density and speed of sound in the target material. The size of the impactor enters the formulation but divides out of the final empirical result. The scaling law achieves a 98% correlation with available measurements from drop tests, ballistic tests, missile impacts, and centrifugally-enhanced gravity impacts for a variety of target materials (sand, alluvium, granulated sugar, and expanded perlite). The available measurements cover more than 10 orders of magnitude in impact energy. For subsonic and supersonic impacts, the crater diameter is found to scale with the 1/4- and 1/6-power, respectively, of the impactor kinetic energy with the exponent crossover occurring near a Mach number of unity. The final empirical formula provides insight into how impact energy partitioning depends on Mach number.

  20. Microstructural observations of reconsolidated granular salt to 250°C

    NASA Astrophysics Data System (ADS)

    Mills, M. M.; Hansen, F.; Bauer, S. J.; Stormont, J.

    2014-12-01

    Very low permeability is a principal reason salt formations are considered viable hosts for disposal of nuclear waste and spent nuclear fuel. Granular salt is likely to be used as back-fill material and as a seal system component. Granular salt is expected to reconsolidate to a low permeability condition because of external pressure from the surrounding salt formation. Understanding the consolidation processes--known to depend on the stress state, moisture availability and temperature--is important for predicting achievement of sealing functions and long-term repository performance. As granular salt consolidates, initial void reduction is accomplished by brittle processes of grain rearrangement and cataclastic flow. At porosities of less than 10%, grain boundary processes and crystal-plastic mechanisms govern further porosity reduction. We investigate the micro-mechanisms operative in granular salt that has been consolidated under high temperatures to relatively low porosity. These conditions would occur proximal to heat-generating canisters. Mine-run salt from the Waste Isolation Pilot Plant was used to create cylindrical samples which were consolidated at 250°C and stresses to 20 MPa. From samples consolidated to fractional densities of 86% and 97% polished thin sections, etched cleavage chips, and fragments were fabricated. Microstructural techniques included scanning electron and optical microscopy. Microstructure of undeformed mine-run salt was compared to the deformed granular salt. Observed deformation mechanisms include glide, cross slip, climb, fluid-assisted creep, pressure-solution redeposition, and annealing. Documentation of operative deformation mechanisms within the consolidating granular salt, particularly at grain boundaries, is essential to establish effects of moisture, stress, and temperature. Future work will include characterization of pore structures. Information gleaned in these studies supports evaluation of a constitutive model for reconsolidating granular salt, which will be used to predict the thermal-mechanical-hydrologic response of salt repository seal structures and backfilled rooms.

  1. Sources and characteristics of acoustic emissions from mechanically stressed geologic granular media — A review

    NASA Astrophysics Data System (ADS)

    Michlmayr, Gernot; Cohen, Denis; Or, Dani

    2012-05-01

    The formation of cracks and emergence of shearing planes and other modes of rapid macroscopic failure in geologic granular media involve numerous grain scale mechanical interactions often generating high frequency (kHz) elastic waves, referred to as acoustic emissions (AE). These acoustic signals have been used primarily for monitoring and characterizing fatigue and progressive failure in engineered systems, with only a few applications concerning geologic granular media reported in the literature. Similar to the monitoring of seismic events preceding an earthquake, AE may offer a means for non-invasive, in-situ, assessment of mechanical precursors associated with imminent landslides or other types of rapid mass movements (debris flows, rock falls, snow avalanches, glacier stick-slip events). Despite diverse applications and potential usefulness, a systematic description of the AE method and its relevance to mechanical processes in Earth sciences is lacking. This review is aimed at providing a sound foundation for linking observed AE with various micro-mechanical failure events in geologic granular materials, not only for monitoring of triggering events preceding mass mobilization, but also as a non-invasive tool in its own right for probing the rich spectrum of mechanical processes at scales ranging from a single grain to a hillslope. We review first studies reporting use of AE for monitoring of failure in various geologic materials, and describe AE generating source mechanisms in mechanically stressed geologic media (e.g., frictional sliding, micro-crackling, particle collisions, rupture of water bridges, etc.) including AE statistical features, such as frequency content and occurrence probabilities. We summarize available AE sensors and measurement principles. The high sampling rates of advanced AE systems enable detection of numerous discrete failure events within a volume and thus provide access to statistical descriptions of progressive collapse of systems with many interacting mechanical elements such as the fiber bundle model (FBM). We highlight intrinsic links between AE characteristics and established statistical models often used in structural engineering and material sciences, and outline potential applications for failure prediction and early-warning using the AE method in combination with the FBM. The biggest challenge to application of the AE method for field applications is strong signal attenuation. We provide an outlook for overcoming such limitations considering emergence of a class of fiber-optic based distributed AE sensors and deployment of acoustic waveguides as part of monitoring networks.

  2. Wave propagation in a strongly nonlinear locally resonant granular crystal

    NASA Astrophysics Data System (ADS)

    Vorotnikov, K.; Starosvetsky, Y.; Theocharis, G.; Kevrekidis, P. G.

    2018-02-01

    In this work, we study the wave propagation in a recently proposed acoustic structure, the locally resonant granular crystal. This structure is composed of a one-dimensional granular crystal of hollow spherical particles in contact, containing linear resonators. The relevant model is presented and examined through a combination of analytical approximations (based on ODE and nonlinear map analysis) and of numerical results. The generic dynamics of the system involves a degradation of the well-known traveling pulse of the standard Hertzian chain of elastic beads. Nevertheless, the present system is richer, in that as the primary pulse decays, secondary ones emerge and eventually interfere with it creating modulated wavetrains. Remarkably, upon suitable choices of parameters, this interference "distills" a weakly nonlocal solitary wave (a "nanopteron"). This motivates the consideration of such nonlinear structures through a separate Fourier space technique, whose results suggest the existence of such entities not only with a single-side tail, but also with periodic tails on both ends. These tails are found to oscillate with the intrinsic oscillation frequency of the out-of-phase motion between the outer hollow bead and its internal linear attachment.

  3. Start-up performance and granular sludge features of an improved external circulating anaerobic reactor for algae-laden water treatment.

    PubMed

    Yu, Yaqin; Lu, Xiwu

    2017-09-01

    The microbial characteristics of granular sludge during the rapid start of an enhanced external circulating anaerobic reactor were studied to improve algae-laden water treatment efficiency. Results showed that algae laden water was effectively removed after about 35 d, and the removal rates of chemical oxygen demand (COD) and algal toxin were around 85% and 92%, respectively. Simultaneously, the gas generation rate was around 380 mL/gCOD. The microbial community structure in the granular sludge of the reactor was complicated, and dominated by coccus and filamentous bacteria. Methanosphaera , Methanolinea , Thermogymnomonas , Methanoregula , Methanomethylovorans , and Methanosaeta were the major microorganisms in the granular sludge. The activities of protease and coenzyme F 420 were high in the granular sludge. The intermittent stirring device and the reverse-flow system were further found to overcome the disadvantage of the floating and crusting of cyanobacteria inside the reactor. Meanwhile, the effect of mass transfer inside the reactor can be accelerated to help give the reactor a rapid start.

  4. Granular Formation during Apoptosis in Blastocystis sp. Exposed to Metronidazole (MTZ)

    PubMed Central

    Suresh, Kumar; Tan, Tian Chye

    2016-01-01

    The role and function of the granular life cycle stage in Blastocystis sp, remains uncertain despite suggestions being made that the granules are metabolic, reproductive and lipid in nature. This present study aims to understand granular formation by triggering apoptosis in Blastocystis sp. by treating them with metronidazole (MTZ). Blastocystis sp.cultures of 4 sub-types namely 1, 2, 3 and 5 when treated with 0.01 and 0.0001 mg/ml of metronidazole (MTZ) respectively showed many of the parasites to be both viable and apoptotic (VA). Treated subtype 3 isolates exhibited the highest number of granular forms i.e. 88% (p<0.001) (0.0001 mg/ml) and 69% (p<0.01) (0.01 mg/ml) respectively at the 72 h in in vitro culture compared to other subtypes. These VA forms showed distinct granules using acridine orange (AO) and 4’,6-diamino-2-phenylindole (DAPI) staining with a mean per cell ranging from 5 in ST 5 to as high as 16 in ST 3. These forms showed intact mitochondria in both viable apoptotic (VA) and viable non-apoptotic (VNA) cells with a pattern of accumulation of lipid droplets corresponding to viable cells. Granular VA forms looked ultra-structurally different with prominent presence of mitochondria-like organelle (MLO) and a changed mitochondrial trans-membrane potential with thicker membrane and a highly convoluted inner membrane than the less dense non-viable apoptotic (NVA) cells. This suggests that granular formation during apoptosis is a self-regulatory mechanism to produce higher number of viable cells in response to treatment. This study directs the need to search novel chemotherapeutic approaches by incorporating these findings when developing drugs against the emerging Blastocystis sp. infections. PMID:27471855

  5. Granular Security in a Graph Database

    DTIC Science & Technology

    2016-03-01

    have a presence in more than one layer. For example, a single social media user may have an account in Twitter, Facebook, and Instagram with... Instagram layers. This restriction re- flects the reality that user A’s Facebook account cannot connect directly to user B’s Twitter account. A security

  6. A Simple Method for Determination of the Density of Granular Materials

    ERIC Educational Resources Information Center

    Tsutsumanova, G. G.; Kirilov, K. M.; Russev, S. C.

    2012-01-01

    A simple experiment using low cost equipment for the determination of the density of granular materials, without immersing them in a liquid, is presented. It is based only on the ideal gas state equation, so it is a good experimental task for undergraduate and high school students. (Contains 2 tables and 5 figures.)

  7. NMRI Measurements of Flow of Granular Mixtures

    NASA Technical Reports Server (NTRS)

    Nakagawa, Masami; Waggoner, R. Allen; Fukushima, Eiichi

    1996-01-01

    We investigate complex 3D behavior of granular mixtures in shaking and shearing devices. NMRI can non-invasively measure concentration, velocity, and velocity fluctuations of flows of suitable particles. We investigate origins of wall-shear induced convection flow of single component particles by measuring the flow and fluctuating motion of particles near rough boundaries. We also investigate if a mixture of different size particles segregate into their own species under the influence of external shaking and shearing disturbances. These non-invasive measurements will reveal true nature of convecting flow properties and wall disturbance. For experiments in a reduced gravity environment, we will design a light weight NMR imager. The proof of principle development will prepare for the construction of a complete spaceborne system to perform experiments in space.

  8. Ultrastructural study of electron dense deposits in renal tubular basement membrane: prevalence and relationship to epithelial atrophy.

    PubMed

    Yong, Jim L C; Killingsworth, Murray C

    2014-08-01

    This study reports the prevalence of immune deposits associated with the proximal and distal tubules in a series of routine renal biopsies received in our department during a single calendar year. From 87 cases, 65 (74%) were found to have glomerular immune deposits by immunofluorescence. Tubular immune deposits were found in 12 cases (18%), 3 of which had no glomerular deposits. By transmission electron microscopy (EM), 58 cases (66%) were found to have deposits of granular or vesicular material associated with the tubular basement membranes (TBM). Finely granular electron dense deposits appeared to correspond to the immune deposits seen by immunofluorescence microscopy (IF) and may be a sensitive marker of immune deposition.

  9. Ultrastructural Study of Electron Dense Deposits in Renal Tubular Basement Membrane: Prevalence and Relationship to Epithelial Atrophy

    PubMed Central

    Killingsworth, Murray C.

    2014-01-01

    This study reports the prevalence of immune deposits associated with the proximal and distal tubules in a series of routine renal biopsies received in our department during a single calendar year. From 87 cases, 65 (74%) were found to have glomerular immune deposits by immunofluorescence. Tubular immune deposits were found in 12 cases (18%), 3 of which had no glomerular deposits. By transmission electron microscopy (EM), 58 cases (66%) were found to have deposits of granular or vesicular material associated with the tubular basement membranes (TBM). Finely granular electron dense deposits appeared to correspond to the immune deposits seen by immunofluorescence microscopy (IF) and may be a sensitive marker of immune deposition. PMID:24933115

  10. Granular support vector machines with association rules mining for protein homology prediction.

    PubMed

    Tang, Yuchun; Jin, Bo; Zhang, Yan-Qing

    2005-01-01

    Protein homology prediction between protein sequences is one of critical problems in computational biology. Such a complex classification problem is common in medical or biological information processing applications. How to build a model with superior generalization capability from training samples is an essential issue for mining knowledge to accurately predict/classify unseen new samples and to effectively support human experts to make correct decisions. A new learning model called granular support vector machines (GSVM) is proposed based on our previous work. GSVM systematically and formally combines the principles from statistical learning theory and granular computing theory and thus provides an interesting new mechanism to address complex classification problems. It works by building a sequence of information granules and then building support vector machines (SVM) in some of these information granules on demand. A good granulation method to find suitable granules is crucial for modeling a GSVM with good performance. In this paper, we also propose an association rules-based granulation method. For the granules induced by association rules with high enough confidence and significant support, we leave them as they are because of their high "purity" and significant effect on simplifying the classification task. For every other granule, a SVM is modeled to discriminate the corresponding data. In this way, a complex classification problem is divided into multiple smaller problems so that the learning task is simplified. The proposed algorithm, here named GSVM-AR, is compared with SVM by KDDCUP04 protein homology prediction data. The experimental results show that finding the splitting hyperplane is not a trivial task (we should be careful to select the association rules to avoid overfitting) and GSVM-AR does show significant improvement compared to building one single SVM in the whole feature space. Another advantage is that the utility of GSVM-AR is very good because it is easy to be implemented. More importantly and more interestingly, GSVM provides a new mechanism to address complex classification problems.

  11. Concepts and design of the CMS high granularity calorimeter Level-1 trigger

    NASA Astrophysics Data System (ADS)

    Sauvan, Jean-Baptiste; CMS Collaboration

    2017-11-01

    The CMS experiment has chosen a novel high granularity calorimeter for the forward region as part of its planned upgrade for the high luminosity LHC. The calorimeter will have a fine segmentation in both the transverse and longitudinal directions and will be the first such calorimeter specifically optimised for particle flow reconstruction to operate at a colliding beam experiment. The high granularity results in around six million readout channels in total and so presents a significant challenge in terms of data manipulation and processing for the trigger; the trigger data volumes will be an order of magnitude above those currently handled at CMS. In addition, the high luminosity will result in an average of 140 to 200 interactions per bunch crossing, giving a huge background rate in the forward region that needs to be efficiently reduced by the trigger algorithms. Efficient data reduction and reconstruction algorithms making use of the fine segmentation of the detector have been simulated and evaluated. They provide an increase of the trigger rates with the luminosity significantly smaller than would be expected with the current trigger system.

  12. Fine-granularity inference and estimations to network traffic for SDN.

    PubMed

    Jiang, Dingde; Huo, Liuwei; Li, Ya

    2018-01-01

    An end-to-end network traffic matrix is significantly helpful for network management and for Software Defined Networks (SDN). However, the end-to-end network traffic matrix's inferences and estimations are a challenging problem. Moreover, attaining the traffic matrix in high-speed networks for SDN is a prohibitive challenge. This paper investigates how to estimate and recover the end-to-end network traffic matrix in fine time granularity from the sampled traffic traces, which is a hard inverse problem. Different from previous methods, the fractal interpolation is used to reconstruct the finer-granularity network traffic. Then, the cubic spline interpolation method is used to obtain the smooth reconstruction values. To attain an accurate the end-to-end network traffic in fine time granularity, we perform a weighted-geometric-average process for two interpolation results that are obtained. The simulation results show that our approaches are feasible and effective.

  13. Fine-granularity inference and estimations to network traffic for SDN

    PubMed Central

    Huo, Liuwei; Li, Ya

    2018-01-01

    An end-to-end network traffic matrix is significantly helpful for network management and for Software Defined Networks (SDN). However, the end-to-end network traffic matrix's inferences and estimations are a challenging problem. Moreover, attaining the traffic matrix in high-speed networks for SDN is a prohibitive challenge. This paper investigates how to estimate and recover the end-to-end network traffic matrix in fine time granularity from the sampled traffic traces, which is a hard inverse problem. Different from previous methods, the fractal interpolation is used to reconstruct the finer-granularity network traffic. Then, the cubic spline interpolation method is used to obtain the smooth reconstruction values. To attain an accurate the end-to-end network traffic in fine time granularity, we perform a weighted-geometric-average process for two interpolation results that are obtained. The simulation results show that our approaches are feasible and effective. PMID:29718913

  14. Magnetic testing for inter-granular crack defect of tubing coupling

    NASA Astrophysics Data System (ADS)

    Hu, Bo; Yu, Runqiao

    2018-04-01

    This study focused on the inter-granular crack defects of tubing coupling wherein a non-destructive magnetic testing technique was proposed to determine the magnetic flux leakage features on coupling surface in the geomagnetic field using a high-precision magnetic sensor. The abnormal magnetic signatures of defects were analysed, and the principle of the magnetic test was explained based on the differences in the relative permeability of defects and coupling materials. Abnormal fluctuations of the magnetic signal were observed at the locations of the inter-granular crack defects. Imaging showed the approximate position of defects. The test results were proven by metallographic phase.

  15. A high efficiency readout architecture for a large matrix of pixels.

    NASA Astrophysics Data System (ADS)

    Gabrielli, A.; Giorgi, F.; Villa, M.

    2010-07-01

    In this work we present a fast readout architecture for silicon pixel matrix sensors that has been designed to sustain very high rates, above 1 MHz/mm2 for matrices greater than 80k pixels. This logic can be implemented within MAPS (Monolithic Active Pixel Sensors), a kind of high resolution sensor that integrates on the same bulk the sensor matrix and the CMOS logic for readout, but it can be exploited also with other technologies. The proposed architecture is based on three main concepts. First of all, the readout of the hits is performed by activating one column at a time; all the fired pixels on the active column are read, sparsified and reset in parallel in one clock cycle. This implies the use of global signals across the sensor matrix. The consequent reduction of metal interconnections improves the active area while maintaining a high granularity (down to a pixel pitch of 40 μm). Secondly, the activation for readout takes place only for those columns overlapping with a certain fired area, thus reducing the sweeping time of the whole matrix and reducing the pixel dead-time. Third, the sparsification (x-y address labeling of the hits) is performed with a lower granularity with respect to single pixels, by addressing vertical zones of 8 pixels each. The fine-grain Y resolution is achieved by appending the zone pattern to the zone address of a hit. We show then the benefits of this technique in presence of clusters. We describe this architecture from a schematic point of view, then presenting the efficiency results obtained by VHDL simulations.

  16. Thin Film CuInS2 Prepared by Spray Pyrolysis with Single-Source Precursors

    NASA Technical Reports Server (NTRS)

    Jin, Michael H.; Banger, Kulinder K.; Harris, Jerry D.; Cowen, Jonathan E.; Hepp, Aloysius F.; Lyons, Valerie (Technical Monitor)

    2002-01-01

    Both horizontal hot-wall and vertical cold-wall atmospheric chemical spray pyrolysis processes deposited near single-phase stoichiometric CuInS2 thin films. Single-source precursors developed for ternary chalcopyrite materials were used for this study, and a new liquid phase single-source precursor was tested with a vertical cold-wall reactor. The depositions were carried out under an argon atmosphere, and the substrate temperature was kept at 400 C. Columnar grain structure was obtained with vapor deposition, and the granular structure was obtained with (liquid) droplet deposition. Conductive films were deposited with planar electrical resistivities ranging from 1 to 30 Omega x cm.

  17. Depth resolved granular transport driven by shearing fluid flow

    NASA Astrophysics Data System (ADS)

    Allen, Benjamin; Kudrolli, Arshad

    2017-02-01

    We investigate granular transport by a fluid flow under steady-state driving conditions, from the bed-load regime to the suspension regime, with an experimental system based on a conical rheometer. The mean granular volume fraction ϕg, the mean granular velocity ug, and the fluid velocity uf are obtained as a function of depth inside the bed using refractive index matching and particle-tracking techniques. A torque sensor is utilized to measure the applied shear stress to complement estimates obtained from measured strain rates high above the bed where ϕg≈0 . The flow is found to be transitional at the onset of transport and the shear stress required to transport grains rises sharply as grains are increasingly entrained by the fluid flow. A significant slip velocity between the fluid and the granular phases is observed at the bed surface before the onset of transport as well as in the bed-load transport regime. We show that ug decays exponentially deep into the bed for ϕg>0.45 with a decay constant which is described by a nonlocal rheology model of granular flow that neglects fluid stress. Further, we show that uf and ug can be described using the applied shear stress and the Krieger-Dougherty model for the effective viscosity in the suspension regime, where 0 <ϕg<0.45 and where ug≈uf .

  18. An Experimental Study of Corner Turning in a Granular Ammonium Nitrate Based Explosive

    NASA Astrophysics Data System (ADS)

    Sorber, S.; Taylor, P.; Burns, M.

    2007-12-01

    A novel experimental geometry has been designed to perform controlled studies of corner turning in a "tap density" granular explosive. It enables the study of corner turning and detonation properties with high speed framing camera, piezo probes and ionisation probes. The basic geometry consists of a large diameter PMMA cylinder filled with the granular explosive and is initiated on axis from below by a smaller diameter cylinder of granular explosive or a booster charge. Four experiments were performed on a granular Ammonium Nitrate based non-ideal explosive (NIE). Two experiments were initiated directly with the PE4 booster and two were initiated from a train including a booster charge and a 1″ diameter copper cylinder containing the same NIE. Experimental data from the four experiments was reproducible and the observed detonation and shock waves showed good 2-D symmetry. Detonation phase velocity on the vertical side of the main container was observed and both shock and detonation velocities were observed in the corner turning region along the base of the main container. Analysis of the data shows that the booster-initiated geometries with a higher input shock pressure into the granular explosive gave earlier detonation arrival at the lowest probes on the container side. The corner turning data is compared to a hydrocode calculation using a simple JWL++ reactive burn model.

  19. Immobilization patterns and dynamics of acetate-utilizing methanogens immobilized in sterile granular sludge in upflow anaerobic sludge blanket reactors.

    PubMed

    Schmidt, J E; Ahring, B K

    1999-03-01

    Sterile granular sludge was inoculated with either Methanosarcina mazeii S-6, Methanosaeta concilii GP-6, or both species in acetate-fed upflow anaerobic sludge blanket (UASB) reactors to investigate the immobilization patterns and dynamics of aceticlastic methanogens in granular sludge. After several months of reactor operation, the methanogens were immobilized, either separately or together. The fastest immobilization was observed in the reactor containing M. mazeii S-6. The highest effluent concentration of acetate was observed in the reactor with only M. mazeii S-6 immobilized, while the lowest effluent concentration of acetate was observed in the reactor where both types of methanogens were immobilized together. No changes were observed in the kinetic parameters (Ks and mumax) of immobilized M. concilii GP-6 or M. mazeii S-6 compared with suspended cultures, indicating that immobilization does not affect the growth kinetics of these methanogens. An enzyme-linked immunosorbent assay using polyclonal antibodies against either M. concilii GP-6 or M. mazeii S-6 showed significant variations in the two methanogenic populations in the different reactors. Polyclonal antibodies were further used to study the spatial distribution of the two methanogens. M. concilii GP-6 was immobilized only on existing support material without any specific pattern. M. mazeii S-6, however, showed a different immobilization pattern: large clumps were formed when the concentration of acetate was high, but where the acetate concentration was low this strain was immobilized on support material as single cells or small clumps. The data clearly show that the two aceticlastic methanogens immobilize differently in UASB systems, depending on the conditions found throughout the UASB reactor.

  20. Immobilization Patterns and Dynamics of Acetate-Utilizing Methanogens Immobilized in Sterile Granular Sludge in Upflow Anaerobic Sludge Blanket Reactors

    PubMed Central

    Schmidt, Jens Ejbye; Ahring, Birgitte Kjær

    1999-01-01

    Sterile granular sludge was inoculated with either Methanosarcina mazeii S-6, Methanosaeta concilii GP-6, or both species in acetate-fed upflow anaerobic sludge blanket (UASB) reactors to investigate the immobilization patterns and dynamics of aceticlastic methanogens in granular sludge. After several months of reactor operation, the methanogens were immobilized, either separately or together. The fastest immobilization was observed in the reactor containing M. mazeii S-6. The highest effluent concentration of acetate was observed in the reactor with only M. mazeii S-6 immobilized, while the lowest effluent concentration of acetate was observed in the reactor where both types of methanogens were immobilized together. No changes were observed in the kinetic parameters (Ks and μmax) of immobilized M. concilii GP-6 or M. mazeii S-6 compared with suspended cultures, indicating that immobilization does not affect the growth kinetics of these methanogens. An enzyme-linked immunosorbent assay using polyclonal antibodies against either M. concilii GP-6 or M. mazeii S-6 showed significant variations in the two methanogenic populations in the different reactors. Polyclonal antibodies were further used to study the spatial distribution of the two methanogens. M. concilii GP-6 was immobilized only on existing support material without any specific pattern. M. mazeii S-6, however, showed a different immobilization pattern: large clumps were formed when the concentration of acetate was high, but where the acetate concentration was low this strain was immobilized on support material as single cells or small clumps. The data clearly show that the two aceticlastic methanogens immobilize differently in UASB systems, depending on the conditions found throughout the UASB reactor. PMID:10049862

  1. The granularity of grasping. Comment on "Grasping synergies: A motor-control approach to the mirror neuron mechanism" by A. D'Ausilio et al.

    NASA Astrophysics Data System (ADS)

    Hamilton, Antonia F. de C.

    2015-03-01

    The idea that mirror neuron systems in the human and the macaque monkey could provide a link between perceiving an action and performing it has spurred intense research [1,2]. Hundreds of papers now examine if this link exists and what it might contribute to human behaviour. The review article from D'Ausilio et al. [3] highlights how relatively few papers have considered the granularity of coding with mirror neuron systems, and even fewer have directly tested different possibilities. Granularity refers to the critical question of what actually is encoded within the mirror system - are neurons selective for low level kinematic features such as joint angle, or for postural synergies, or for action goals? Focusing on studies of single neurons in macaques and on studies measuring the excitability of primary motor cortex with TMS, the review suggests that it is very hard to distinguish low-level kinematic from goal representations. Furthermore, these two levels are often highly correlated in real-life contexts - the kinematics needed to grasp an apple are defined by the shape of the goal (an apple tends to be a large sphere) and these kinematics differ for other possible goals (a pencil which is a narrow cylinder). In some cases, kinematics may be enough to define a goal [4]. The review suggests that it is therefore arbitrary to distinguish these levels, and that a synergy level might be a better way to understand the mirror system. Synergies are a form of coding based on commonly used hand-shapes or hand postures, which take into account the fact that some joint angles are more likely to co-occur than others. Evidence that different grasp shapes are represented separately in premotor cortex has been found [5]. These could provide an intermediate level of representation between muscle activity and goals. The review proposes that a synergy level of granularity provides the best way to consider both the motor system and the role of the mirror system in understanding actions.

  2. QUANTITATIVE STRUCTURE—PROPERTY RELATIONSHIPS FOR ENHANCING PREDICTIONS OF SYNTHETIC ORGANIC CHEMICAL REMOVAL FROM DRINKING WATER BY GRANULAR ACTIVATED CARBON

    EPA Science Inventory


    A number of mathematical models have been developed to predict activated carbon column performance using single-solute isotherm data as inputs. Many assumptions are built into these models to account for kinetics of adsorption and competition for adsorption sites. This work...

  3. Pathological effects of in utero methylmercury exposure on the cerebellum of the golden hamster: early effects upon the neonatal cerebellar cortex-Part I

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reuhl, K.R.; Chang, L.W.; Townsend, J.W.

    1981-12-01

    Pregnant golden hamsters (Mesocricetus auratus) were given either a single dose of 10 mg methylmercury/kg on gestational day 10 or daily doses of 2 mg/kg on gestational days 10-15. Cerebella of experimental and control offspring were examined by light and electron microscopy during the first month of postnatal life. Degenerative changes, characterized by accumulations of lysosomes and areas of floccular cytoplasmic degradation, were frequently observed in neuroblasts of the external granular layer (EGL) as well as in more differentiated neural elements in the molecular and internal granular layers. Pyknotic nuclei were seen singly and in groups throughout the EGL ofmore » treated animals. Developing dendrites appeared particularly sensitive to methylmercury. Affected dendrites were swollen and packed with degenerating cytoplasmic material. Astrocytes and perivascular macrophages also contained large aggregates of irregular electron-opague debris, lysosomes, and large lipid droplets. Pathological alterations in the cerebellum were most pronounced during the first 15 days of postpartum life.« less

  4. The effect of microstructure on the sheared edge quality and hole expansion ratio of hot-rolled 700 MPa steel

    NASA Astrophysics Data System (ADS)

    Kaijalainen, A.; Kesti, V.; Vierelä, R.; Ylitolva, M.; Porter, D.; Kömi, J.

    2017-09-01

    The effects of microstructure on the cutting and hole expansion properties of three thermomechanically rolled steels have been investigated. The yield strength of the studied 3 mm thick strip steels was approximately 700 MPa. Detailed microstructural studies using laser scanning confocal microscopy (LCSM), FESEM and FESEM-EBSD revealed that the three investigated materials consist of 1) single-phase polygonal ferrite, 2) polygonal ferrite with precipitates and 3) granular bainite. The quality of mechanically sheared edges were evaluated using visual inspection and LSCM, while hole expansion properties were characterised according to the methods described in ISO 16630. Roughness values (Ra and Rz) of the sheet edge with different cutting clearances varied between 12 µm to 21 µm and 133 µm to 225 µm, respectively. Mean hole expansion ratios varied from 28.4% to 40.5%. It was shown that granular bainite produced the finest cutting edge, but the hole expansion ratio remained at the same level as in the steel comprising single-phase ferrite. This indicates that a single-phase ferritic matrix enhances hole expansion properties even with low quality edges. A brief discussion of the microstructural features controlling the cutting quality and hole expansion properties is given.

  5. Bending transition in the penetration of a flexible intruder in a two-dimensional dense granular medium.

    PubMed

    Algarra, Nicolas; Karagiannopoulos, Panagiotis G; Lazarus, Arnaud; Vandembroucq, Damien; Kolb, Evelyne

    2018-02-01

    We study the quasistatic penetration of a flexible beam into a two-dimensional dense granular medium lying on a horizontal plate. Rather than a buckling-like behavior we observe a transition between a regime of crack-like penetration in which the fiber only shows small fluctuations around a stable straight geometry and a bending regime in which the fiber fully bends and advances through series of loading and unloading steps. We show that the shape reconfiguration of the fiber is controlled by a single nondimensional parameter L/L_{c}, which is the ratio of the length of the flexible beam L to L_{c}, a bending elastogranular length scale that depends on the rigidity of the fiber and on the departure from the jamming packing fraction of the granular medium. We show, moreover, that the dynamics of the bending transition in the course of the penetration experiment is gradual and is accompanied by a symmetry breaking of the granular packing fraction in the vicinity of the fiber. Together with the progressive bending of the fiber, a cavity grows downstream of the fiber and the accumulation of grains upstream of the fiber leads to the development of a jammed cluster of grains. We discuss our experimental results in the framework of a simple model of bending-induced compaction and we show that the rate of the bending transition only depends on the control parameter L/L_{c}.

  6. Bending transition in the penetration of a flexible intruder in a two-dimensional dense granular medium

    NASA Astrophysics Data System (ADS)

    Algarra, Nicolas; Karagiannopoulos, Panagiotis G.; Lazarus, Arnaud; Vandembroucq, Damien; Kolb, Evelyne

    2018-02-01

    We study the quasistatic penetration of a flexible beam into a two-dimensional dense granular medium lying on a horizontal plate. Rather than a buckling-like behavior we observe a transition between a regime of crack-like penetration in which the fiber only shows small fluctuations around a stable straight geometry and a bending regime in which the fiber fully bends and advances through series of loading and unloading steps. We show that the shape reconfiguration of the fiber is controlled by a single nondimensional parameter L /Lc , which is the ratio of the length of the flexible beam L to Lc, a bending elastogranular length scale that depends on the rigidity of the fiber and on the departure from the jamming packing fraction of the granular medium. We show, moreover, that the dynamics of the bending transition in the course of the penetration experiment is gradual and is accompanied by a symmetry breaking of the granular packing fraction in the vicinity of the fiber. Together with the progressive bending of the fiber, a cavity grows downstream of the fiber and the accumulation of grains upstream of the fiber leads to the development of a jammed cluster of grains. We discuss our experimental results in the framework of a simple model of bending-induced compaction and we show that the rate of the bending transition only depends on the control parameter L /Lc .

  7. Biotin- and Glycoprotein-Coated Microspheres as Surrogates for Studying Filtration Removal of Cryptosporidium parvum in a Granular Limestone Aquifer Medium

    PubMed Central

    Blaschke, A. P.; Toze, S.; Sidhu, J. P. S.; Ahmed, W.; van Driezum, I. H.; Sommer, R.; Kirschner, A. K. T.; Cervero-Aragó, S.; Farnleitner, A. H.; Pang, L.

    2015-01-01

    Members of the genus Cryptosporidium are waterborne protozoa of great health concern. Many studies have attempted to find appropriate surrogates for assessing Cryptosporidium filtration removal in porous media. In this study, we evaluated the filtration of Cryptosporidium parvum in granular limestone medium by the use of biotin- and glycoprotein-coated carboxylated polystyrene microspheres (CPMs) as surrogates. Column experiments were carried out with core material taken from a managed aquifer recharge site in Adelaide, Australia. For the experiments with injection of a single type of particle, we observed the total removal of the oocysts and glycoprotein-coated CPMs, a 4.6- to 6.3-log10 reduction of biotin-coated CPMs, and a 2.6-log10 reduction of unmodified CPMs. When two different types of particles were simultaneously injected, glycoprotein-coated CPMs showed a 5.3-log10 reduction, while the uncoated CPMs displayed a 3.7-log10 reduction, probably due to particle-particle interactions. Our results confirm that glycoprotein-coated CPMs are the most accurate surrogates for C. parvum; biotin-coated CPMs are slightly more conservative, while unmodified CPMs are markedly overly conservative for predicting C. parvum removal in granular limestone medium. The total removal of C. parvum observed in our study suggests that granular limestone medium is very effective for the filtration removal of C. parvum and could potentially be used for the pretreatment of drinking water and aquifer storage recovery of recycled water. PMID:25888174

  8. Biodegradation of phenol in batch and continuous flow microbial fuel cells with rod and granular graphite electrodes.

    PubMed

    Moreno, Lyman; Nemati, Mehdi; Predicala, Bernardo

    2018-01-01

    Phenol biodegradation was evaluated in batch and continuous flow microbial fuel cells (MFCs). In batch-operated MFCs, biodegradation of 100-1000 mg L -1 phenol was four to six times faster when graphite granules were used instead of rods (3.5-4.8 mg L -1  h -1 vs 0.5-0.9 mg L -1  h -1 ). Similarly maximum phenol biodegradation rates in continuous MFCs with granular and single-rod electrodes were 11.5 and 0.8 mg L -1  h -1 , respectively. This superior performance was also evident in terms of electrochemical outputs, whereby continuous flow MFCs with granular graphite electrodes achieved maximum current and power densities (3444.4 mA m -3 and 777.8 mW m -3 ) that were markedly higher than those with single-rod electrodes (37.3 mA m -3 and 0.8 mW m -3 ). Addition of neutral red enhanced the electrochemical outputs to 5714.3 mA m -3 and 1428.6 mW m -3 . Using the data generated in the continuous flow MFC, biokinetic parameters including μ m , K S , Y and K e were determined as 0.03 h -1 , 24.2 mg L -1 , 0.25 mg cell (mg phenol) -1 and 3.7 × 10 -4  h -1 , respectively. Access to detailed kinetic information generated in MFC environmental conditions is critical in the design, operation and control of large-scale treatment systems utilizing MFC technology.

  9. Mixing Study in a Multi-dimensional Motion Mixer

    NASA Astrophysics Data System (ADS)

    Shah, R.; Manickam, S. S.; Tomei, J.; Bergman, T. L.; Chaudhuri, B.

    2009-06-01

    Mixing is an important but poorly understood aspect in petrochemical, food, ceramics, fertilizer and pharmaceutical processing and manufacturing. Deliberate mixing of granular solids is an essential operation in the production of industrial powder products usually constituted from different ingredients. The knowledge of particle flow and mixing in a blender is critical to optimize the design and operation. Since performance of the product depends on blend homogeneity, the consequence of variability can be detrimental. A common approach to powder mixing is to use a tumbling blender, which is essentially a hollow vessel horizontally attached to a rotating shaft. This single axis rotary blender is one of the most common batch mixers among in industry, and also finds use in myriad of application as dryers, kilns, coaters, mills and granulators. In most of the rotary mixers the radial convection is faster than axial dispersion transport. This slow dispersive process hinders mixing performance in many blending, drying and coating applications. A double cone mixer is designed and fabricated which rotates around two axes, causing axial mixing competitive to its radial counterpart. Discrete Element Method (DEM) based numerical model is developed to simulate the granular flow within the mixer. Digitally recorded mixing states from experiments are used to fine tune the numerical model. Discrete pocket samplers are also used in the experiments to quantify the characteristics of mixing. A parametric study of the effect of vessel speeds, relative rotational speed (between two axes of rotation), on the granular mixing is investigated by experiments and numerical simulation. Incorporation of dual axis rotation enhances axial mixing by 60 to 85% in comparison to single axis rotation.

  10. Effects of Sampling and Spatio/Temporal Granularity in Traffic Monitoring on Anomaly Detectability

    NASA Astrophysics Data System (ADS)

    Ishibashi, Keisuke; Kawahara, Ryoichi; Mori, Tatsuya; Kondoh, Tsuyoshi; Asano, Shoichiro

    We quantitatively evaluate how sampling and spatio/temporal granularity in traffic monitoring affect the detectability of anomalous traffic. Those parameters also affect the monitoring burden, so network operators face a trade-off between the monitoring burden and detectability and need to know which are the optimal paramter values. We derive equations to calculate the false positive ratio and false negative ratio for given values of the sampling rate, granularity, statistics of normal traffic, and volume of anomalies to be detected. Specifically, assuming that the normal traffic has a Gaussian distribution, which is parameterized by its mean and standard deviation, we analyze how sampling and monitoring granularity change these distribution parameters. This analysis is based on observation of the backbone traffic, which exhibits spatially uncorrelated and temporally long-range dependence. Then we derive the equations for detectability. With those equations, we can answer the practical questions that arise in actual network operations: what sampling rate to set to find the given volume of anomaly, or, if the sampling is too high for actual operation, what granularity is optimal to find the anomaly for a given lower limit of sampling rate.

  11. Enhanced adsorption of perfluorooctane sulfonate and perfluorooctanoate by bamboo-derived granular activated carbon.

    PubMed

    Deng, Shubo; Nie, Yao; Du, Ziwen; Huang, Qian; Meng, Pingping; Wang, Bin; Huang, Jun; Yu, Gang

    2015-01-23

    A bamboo-derived granular activated carbon with large pores was successfully prepared by KOH activation, and used to remove perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) from aqueous solution. The granular activated carbon prepared at the KOH/C mass ratio of 4 and activation temperature of 900°C had fast and high adsorption for PFOS and PFOA. Their adsorption equilibrium was achieved within 24h, which was attributed to their fast diffusion in the micron-sized pores of activated carbon. This granular activated carbon exhibited the maximum adsorbed amount of 2.32mmol/g for PFOS and 1.15mmol/g for PFOA at pH 5.0, much higher than other granular and powdered activated carbons reported. The activated carbon prepared under the severe activation condition contained many enlarged pores, favorable for the adsorption of PFOS and PFOA. In addition, the spent activated carbon was hardly regenerated in NaOH/NaCl solution, while the regeneration efficiency was significantly enhanced in hot water and methanol/ethanol solution, indicating that hydrophobic interaction was mainly responsible for the adsorption. The regeneration percent was up to 98% using 50% ethanol solution at 45°C. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. On the Accuracy and Parallelism of GPGPU-Powered Incremental Clustering Algorithms.

    PubMed

    Chen, Chunlei; He, Li; Zhang, Huixiang; Zheng, Hao; Wang, Lei

    2017-01-01

    Incremental clustering algorithms play a vital role in various applications such as massive data analysis and real-time data processing. Typical application scenarios of incremental clustering raise high demand on computing power of the hardware platform. Parallel computing is a common solution to meet this demand. Moreover, General Purpose Graphic Processing Unit (GPGPU) is a promising parallel computing device. Nevertheless, the incremental clustering algorithm is facing a dilemma between clustering accuracy and parallelism when they are powered by GPGPU. We formally analyzed the cause of this dilemma. First, we formalized concepts relevant to incremental clustering like evolving granularity. Second, we formally proved two theorems. The first theorem proves the relation between clustering accuracy and evolving granularity. Additionally, this theorem analyzes the upper and lower bounds of different-to-same mis-affiliation. Fewer occurrences of such mis-affiliation mean higher accuracy. The second theorem reveals the relation between parallelism and evolving granularity. Smaller work-depth means superior parallelism. Through the proofs, we conclude that accuracy of an incremental clustering algorithm is negatively related to evolving granularity while parallelism is positively related to the granularity. Thus the contradictory relations cause the dilemma. Finally, we validated the relations through a demo algorithm. Experiment results verified theoretical conclusions.

  13. Textile wastewater treatment: aerobic granular sludge vs activated sludge systems.

    PubMed

    Lotito, Adriana Maria; De Sanctis, Marco; Di Iaconi, Claudio; Bergna, Giovanni

    2014-05-01

    Textile effluents are characterised by high content of recalcitrant compounds and are often discharged (together with municipal wastewater to increase their treatability) into centralized wastewater treatment plants with a complex treatment scheme. This paper reports the results achieved adopting a granular sludge system (sequencing batch biofilter granular reactor - SBBGR) to treat mixed municipal-textile wastewater. Thanks to high average removals in SBBGR (82.1% chemical oxygen demand, 94.7% total suspended solids, 87.5% total Kjeldahl nitrogen, 77.1% surfactants), the Italian limits for discharge into a water receiver can be complied with the biological stage alone. The comparison with the performance of the centralized plant treating the same wastewater has showed that SBBGR system is able to produce an effluent of comparable quality with a simpler treatment scheme, a much lower hydraulic residence time (11 h against 30 h) and a lower sludge production. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Blurring the boundary between rapid granular flow and dense granular flow regimes: Evidence from DEM simulations

    NASA Astrophysics Data System (ADS)

    Tripathi, Anurag; Prasad, Mahesh; Kumar, Puneet

    2017-11-01

    The saturation of the effective friction coefficient for granular flows at high inertial numbers has been assumed widely by researchers, despite little simulation/experimental evidence. In contrast, a recent simulation study of plane shear flows by Mandal and Khakhar, suggests that the effective friction coefficient becomes maximum and then starts to decrease with increase in the inertial number for I > 0.5 . In order to investigate whether such a dip at higher inertial numbers is indeed a feature of granular rheology, we perform DEM simulations of chute flow of highly inelastic disks. We show that steady, fully developed flows are possible at inclinations much higher than those normally reported in literature. At such high inclinations, the flow is characterised by a significant slip at the base; the height of the layer increases by more than 300 % and kinetic energy of the layer increases by nearly 5 orders of magnitude. We observe, for the first time, steady chute flows at inertial number I 2 and show that the dip at higher inertial numbers can be observed in case of chute flow as well. The predictions of modified μ - I rheology, however, seem to remain valid in the bulk of the layer for packing fractions as low as 0.2. AT acknowledges the funding obtained from IIT Kanpur through the initiation Grant for this study.

  15. A subjective study and an objective metric to quantify the granularity level of textures

    NASA Astrophysics Data System (ADS)

    Subedar, Mahesh M.; Karam, Lina J.

    2015-03-01

    Texture granularity is an important visual characteristic that is useful in a variety of applications, including analysis, recognition, and compression, to name a few. A texture granularity measure can be used to quantify the perceived level of texture granularity. The granularity level of the textures is influenced by the size of the texture primitives. A primitive is defined as the smallest recognizable repetitive object in the texture. If the texture has large primitives then the perceived granularity level tends to be lower as compared to a texture with smaller primitives. In this work we are presenting a texture granularity database referred as GranTEX which consists of 30 textures with varying levels of primitive sizes and granularity levels. The GranTEX database consists of both natural and man-made textures. A subjective study is conducted to measure the perceived granularity level of textures present in the GranTEX database. An objective metric that automatically measures the perceived granularity level of textures is also presented as part of this work. It is shown that the proposed granularity metric correlates well with the subjective granularity scores.

  16. Transformations to granular zircon revealed: Twinning, reidite, and ZrO2 in shocked zircon from Meteor Crater (Arizona, USA)

    USGS Publications Warehouse

    Cavosie, Aaron; Timms, Nicholas E.; Erickson, Timmons M.; Hagerty, Justin J.; Hörz, Friedrich

    2016-01-01

    Granular zircon in impact environments has long been recognized but remains poorly understood due to lack of experimental data to identify mechanisms involved in its genesis. Meteor Crater in Arizona (United States) contains abundant evidence of shock metamorphism, including shocked quartz, the high pressure polymorphs coesite and stishovite, diaplectic SiO2 glass, and lechatelierite (fused SiO2). Here we report the presence of granular zircon, a new shocked mineral discovery at Meteor Crater, that preserve critical orientation evidence of specific transformations that occurred during its formation at extreme impact conditions. The zircon grains occur as aggregates of sub-µm neoblasts in highly shocked Coconino Formation Sandstone (CFS) comprised of lechatelierite. Electron backscatter diffraction shows that each grain consists of multiple domains, some with boundaries disoriented by 65°, a known {112} shock-twin orientation. Other domains have crystallographic c-axes in alignment with {110} of neighboring domains, consistent with the former presence of the high pressure ZrSiO4 polymorph reidite. Additionally, nearly all zircon preserve ZrO2 + SiO2, providing evidence of partial dissociation. The genesis of CFS granular zircon started with detrital zircon that experienced shock-twinning and reidite formation from 20 to 30 GPa, ultimately yielding a phase that retained crystallographic memory; this phase subsequently recrystallized to systematically oriented zircon neoblasts, and in some areas partially dissociated to ZrO2. The lechatelierite matrix, experimentally constrained to form at >2000 °C, provided an ultra high-temperature environment for zircon dissociation (~1670 °C) and neoblast formation. The capacity of granular zircon to preserve a cumulative P-T record has not been recognized previously, and provides a new method for retrieving histories of impact-related mineral transformations in the crust at conditions far beyond which most rocks melt.

  17. Stochastic clustering of material surface under high-heat plasma load

    NASA Astrophysics Data System (ADS)

    Budaev, Viacheslav P.

    2017-11-01

    The results of a study of a surface formed by high-temperature plasma loads on various materials such as tungsten, carbon and stainless steel are presented. High-temperature plasma irradiation leads to an inhomogeneous stochastic clustering of the surface with self-similar granularity - fractality on the scale from nanoscale to macroscales. Cauliflower-like structure of tungsten and carbon materials are formed under high heat plasma load in fusion devices. The statistical characteristics of hierarchical granularity and scale invariance are estimated. They differ qualitatively from the roughness of the ordinary Brownian surface, which is possibly due to the universal mechanisms of stochastic clustering of material surface under the influence of high-temperature plasma.

  18. Accommodating Ontologies to Biological Reality—Top-Level Categories of Cumulative-Constitutively Organized Material Entities

    PubMed Central

    Vogt, Lars; Grobe, Peter; Quast, Björn; Bartolomaeus, Thomas

    2012-01-01

    Background The Basic Formal Ontology (BFO) is a top-level formal foundational ontology for the biomedical domain. It has been developed with the purpose to serve as an ontologically consistent template for top-level categories of application oriented and domain reference ontologies within the Open Biological and Biomedical Ontologies Foundry (OBO). BFO is important for enabling OBO ontologies to facilitate in reliably communicating and managing data and metadata within and across biomedical databases. Following its intended single inheritance policy, BFO's three top-level categories of material entity (i.e. ‘object’, ‘fiat object part’, ‘object aggregate’) must be exhaustive and mutually disjoint. We have shown elsewhere that for accommodating all types of constitutively organized material entities, BFO must be extended by additional categories of material entity. Methodology/Principal Findings Unfortunately, most biomedical material entities are cumulative-constitutively organized. We show that even the extended BFO does not exhaustively cover cumulative-constitutively organized material entities. We provide examples from biology and everyday life that demonstrate the necessity for ‘portion of matter’ as another material building block. This implies the necessity for further extending BFO by ‘portion of matter’ as well as three additional categories that possess portions of matter as aggregate components. These extensions are necessary if the basic assumption that all parts that share the same granularity level exhaustively sum to the whole should also apply to cumulative-constitutively organized material entities. By suggesting a notion of granular representation we provide a way to maintain the single inheritance principle when dealing with cumulative-constitutively organized material entities. Conclusions/Significance We suggest to extend BFO to incorporate additional categories of material entity and to rearrange its top-level material entity taxonomy. With these additions and the notion of granular representation, BFO would exhaustively cover all top-level types of material entities that application oriented ontologies may use as templates, while still maintaining the single inheritance principle. PMID:22253856

  19. Rock images classification by using deep convolution neural network

    NASA Astrophysics Data System (ADS)

    Cheng, Guojian; Guo, Wenhui

    2017-08-01

    Granularity analysis is one of the most essential issues in authenticate under microscope. To improve the efficiency and accuracy of traditional manual work, an convolutional neural network based method is proposed for granularity analysis from thin section image, which chooses and extracts features from image samples while build classifier to recognize granularity of input image samples. 4800 samples from Ordos basin are used for experiments under colour spaces of HSV, YCbCr and RGB respectively. On the test dataset, the correct rate in RGB colour space is 98.5%, and it is believable in HSV and YCbCr colour space. The results show that the convolution neural network can classify the rock images with high reliability.

  20. Imaging Calorimeter: What Have We Learned So Far

    NASA Astrophysics Data System (ADS)

    Xia, Lei

    Particle Flow Algorithms (PFAs) have been applied to existing detectors to improve the measurement of hadronic jets in colliding beam experiments. For future experiments, such as a TeV lepton collider, detector concepts optimized for the application of PFAs are being developed. These concepts require so-called imaging calorimeters, with unprecedented granularity. We will review the various recent developments of such highly granular calorimeters.

  1. Analysis of the Tangjiaxi landslide-generated waves in the Zhexi Reservoir, China, by a granular flow coupling model

    NASA Astrophysics Data System (ADS)

    Huang, Bolin; Yin, Yueping; Wang, Shichang; Tan, Jianmin; Liu, Guangning

    2017-05-01

    A rocky granular flow is commonly formed after the failure of rocky bank slopes. An impulse wave disaster may also be initiated if the rocky granular flow rushes into a river with a high velocity. Currently, the granular mass-water body coupling study is an important trend in the field of landslide-induced impulse waves. In this paper, a full coupling numerical model for landslide-induced impulse waves is developed based on a non-coherent granular flow equation, i.e., the Mih equation. In this model, the Mih equation for continuous non-coherent granular flow controls movements of sliding mass, the two-phase flow equation regulates the interaction between sliding mass and water, and the renormalization group (RNG) turbulence model governs the movement of the water body. The proposed model is validated and applied for the 2014 Tangjiaxi landslide of the Zhexi Reservoir located in Hunan Province, China, to analyze the characteristics of both landslide motion and its following impulse waves. On 16 July 2014, a rocky debris flow was formed after the failure of the Tangjiaxi landslide, damming the Tangjiaxi stream and causing an impulse wave disaster with three dead and nine missing bodies. Based on the full coupling numerical analysis, the granular flow impacts the water with a maximum velocity of about 22.5 m s-1. Moreover, the propagation velocity of the generated waves reaches up to 12 m s-1. The maximum calculated run-up of 21.8 m is close enough to the real value of 22.7 m. The predicted landslide final deposit and wave run-up heights are in a good agreement with the field survey data. These facts verify the ability of the proposed model for simulating the real impulse wave generated by rocky granular flow events.

  2. Syn-eruptive, soft-sediment deformation of dilute pyroclastic density current deposits: triggers from granular shear, dynamic pore pressure, ballistic impacts and shock waves

    NASA Astrophysics Data System (ADS)

    Douillet, G. A.; Taisne, B.; Tsang-Hin-Sun, È.; Müller, S. K.; Kueppers, U.; Dingwell, D. B.

    2014-12-01

    Soft-sediment deformation produces intriguing sedimentary structures and can occur in diverse environments and from a variety of triggers. From the observation of such structures and their interpretation in terms of trigger mechanisms, valuable information can be extracted about former conditions. Here we document examples of syn-eruptive deformation in dilute pyroclastic density current deposits. Outcrops from 6 different volcanoes have been compiled in order to provide a broad perspective on the variety of structures: Ubehebe craters (USA), Tungurahua (Ecuador), Soufrière Hills (Montserrat), Laacher See (Germany), Tower Hill and Purrumbete lake (both Australia). Isolated slumps as well as sinking pseudonodules are driven by their excess weight and occur after deposition but penecontemporaneous to the eruption. Isolated, cm-scale, overturned beds with vortex forms have been interpreted to be the signature of shear instabilities occurring at the boundary of two granular media. They may represent the frozen record of granular, pseudo Kelvin-Helmholtz instabilities. Their recognition can be a diagnostic for flows with a granular basal boundary layer. The occurrence of degassing pipes together with basal intrusive dikes suggest fluidization during flow stages, and can facilitate the development of Kelvin-Helmholtz structures. The occurrence at the base of flow units of injection dikes in some outcrops compared with suction-driven local uplifts in others indicates the role of dynamic pore pressure. Variations of the latter are possibly related to local changes between depletive and accumulative dynamics of flows. Ballistic impacts can trigger unconventional sags producing local displacement or liquefaction. Based on the deformation depth, these can yield precise insights into depositional unit boundaries. Such impact structures may also be at the origin of some of the steep truncation planes visible at the base of the so-called "chute and pool" structures. Finally, the passage of shock waves emanating from the vent may be preserved in the form of trains of isolated, fine-grained overturned beds which may disturb the surface bedding without occurrence of a sedimentation phase in the vicinity of a vent. Dilute pyroclastic density currents occur contemporaneously with seismogenic volcanic explosions. They are often deposited on steep slopes and can incorporate large amounts of water and gas in the sediment. They can experience extremely high sedimentation rates and may flow at the border between traction, granular and fluid-escape boundary zones. These are just some of the many possible triggers acting in a single environment, and reveal the potential for insights into the eruptive mechanisms of dilute pyroclastic density currents.

  3. Pressure evolution and deformation of confined granular media during pneumatic fracturing

    NASA Astrophysics Data System (ADS)

    Eriksen, Fredrik K.; Toussaint, Renaud; Turquet, Antoine Léo; Mâløy, Knut J.; Flekkøy, Eirik G.

    2018-01-01

    By means of digital image correlation, we experimentally characterize the deformation of a dry granular medium confined inside a Hele-Shaw cell due to air injection at a constant overpressure high enough to deform it (from 50 to 250 kPa). Air injection at these overpressures leads to the formation of so-called pneumatic fractures, i.e., channels empty of beads, and we discuss the typical deformations of the medium surrounding these structures. In addition we simulate the diffusion of the fluid overpressure into the medium, comparing it with the Laplacian solution over time and relating pressure gradients with corresponding granular displacements. In the compacting medium we show that the diffusing pressure field becomes similar to the Laplace solution on the order of a characteristic time given by the properties of the pore fluid, the granular medium, and the system size. However, before the diffusing pressure approaches the Laplace solution on the system scale, we find that it resembles the Laplacian field near the channels, with the highest pressure gradients on the most advanced channel tips and a screened pressure gradient behind them. We show that the granular displacements more or less always move in the direction against the local pressure gradients, and when comparing granular velocities with pressure gradients in the zone ahead of channels, we observe a Bingham type of rheology for the granular paste (the mix of air and beads), with an effective viscosity μB and displacement thresholds ∇ ⃗Pc evolving during mobilization and compaction of the medium. Such a rheology, with disorder in the displacement thresholds, could be responsible for placing the pattern growth at moderate injection pressures in a universality class like the dielectric breakdown model with η =2 , where fractal dimensions are found between 1.5 and 1.6 for the patterns.

  4. Mineral assemblage transformation of a metakaolin-based waste form after geopolymer encapsulation

    NASA Astrophysics Data System (ADS)

    Williams, Benjamin D.; Neeway, James J.; Snyder, Michelle M. V.; Bowden, Mark E.; Amonette, James E.; Arey, Bruce W.; Pierce, Eric M.; Brown, Christopher F.; Qafoku, Nikolla P.

    2016-05-01

    Mitigation of hazardous and radioactive waste can be improved through conversion of existing waste to a more chemically stable and physically robust waste form. One option for waste conversion is the fluidized bed steam reforming (FBSR) process. The resulting FBSR granular material was encapsulated in a geopolymer matrix referred to here as Geo-7. This provides mechanical strength for ease in transport and disposal. However, it is necessary to understand the phase assemblage evolution as a result of geopolymer encapsulation. In this study, we examine the mineral assemblages formed during the synthesis of the multiphase ceramic waste form. The FBSR granular samples were created from waste simulant that was chemically adjusted to resemble Hanford tank waste. Another set of samples was created using Savannah River Site Tank 50 waste simulant in order to mimic a blend of waste collected from 68 Hanford tank. Waste form performance tests were conducted using the product consistency test (PCT), the Toxicity Characteristic Leaching Procedure (TCLP), and the single-pass flow-through (SPFT) test. X-ray diffraction analyses revealed the structure of a previously unreported NAS phase and indicate that monolith creation may lead to a reduction in crystallinity as compared to the primary FBSR granular product.

  5. Rheology of dense granular flows in two dimensions: Comparison of fully two-dimensional flows to unidirectional shear flow

    NASA Astrophysics Data System (ADS)

    Bhateja, Ashish; Khakhar, Devang V.

    2018-06-01

    We consider the rheology of steady two-dimensional granular flows, in different geometries, using discrete element method-based simulations of soft spheres. The flow classification parameter (ψ ), which defines the local flow type (ranging from pure rotation to simple shear to pure extension), varies spatially, to a significant extent, in the flows. We find that the material behaves as a generalized Newtonian fluid. The μ -I scaling proposed by Jop et al. [Nature (London) 441, 727 (2006), 10.1038/nature04801] is found to be valid in both two-dimensional and unidirectional flows, as observed in previous studies; however, the data for each flow geometry fall on a different curve. The results for the two-dimensional silo flow indicate that the viscosity does not depend directly on the flow type parameter, ψ . We find that the scaling based on "granular fluidity" [Zhang and Kamrin, Phys. Rev. Lett. 118, 058001 (2017), 10.1103/PhysRevLett.118.058001] gives good collapse of the data to a single curve for all the geometries. The data for the variation of the solid faction with inertial number show a reasonable collapse for the different geometries.

  6. Improvement of thermal stability of nano-granular TMR films by using a Mg-Al-O insulator matrix

    NASA Astrophysics Data System (ADS)

    Kanie, S.; Koyama, S.

    2018-05-01

    A new metal-insulator nano-granular tunneling magnetoresistance (TMR) film made of (Fe-Co)-(Mg-Al-O) has been investigated. It is confirmed that the film has granular structure in which crystal Fe-Co granules are surrounded by an amorphous Mg-Al-O matrix. A large MR ratio of 11.8 % at room temperature is observed for a 42 vol.%(Fe0.6Co0.4)-(Mg-Al-O) film annealed at 395 °C. The electrical resistivity increases rapidly by annealing at above the changing point (500 °C). The changing point is about 300 °C higher than that of conventional (Fe-Co)-(Mg-F) nano-granular TMR films. The 42 vol.%(Fe0.6Co0.4)-(Mg-Al-O) film also exhibits less degradation in the MR ratio at high annealing temperatures such as 600 °C. These results suggest the (Fe-Co)-(Mg-Al-O) film is superior to the (Fe-Co)-(Mg-F) film in thermal stability.

  7. A new solver for granular avalanche simulation: Indoor experiment verification and field scale case study

    NASA Astrophysics Data System (ADS)

    Wang, XiaoLiang; Li, JiaChun

    2017-12-01

    A new solver based on the high-resolution scheme with novel treatments of source terms and interface capture for the Savage-Hutter model is developed to simulate granular avalanche flows. The capability to simulate flow spread and deposit processes is verified through indoor experiments of a two-dimensional granular avalanche. Parameter studies show that reduction in bed friction enhances runout efficiency, and that lower earth pressure restraints enlarge the deposit spread. The April 9, 2000, Yigong avalanche in Tibet, China, is simulated as a case study by this new solver. The predicted results, including evolution process, deposit spread, and hazard impacts, generally agree with site observations. It is concluded that the new solver for the Savage-Hutter equation provides a comprehensive software platform for granular avalanche simulation at both experimental and field scales. In particular, the solver can be a valuable tool for providing necessary information for hazard forecasts, disaster mitigation, and countermeasure decisions in mountainous areas.

  8. Dynamic shear jamming in granular suspensions

    NASA Astrophysics Data System (ADS)

    Peters, Ivo; Majumdar, Sayantan; Jaeger, Heinrich

    2014-11-01

    Jamming by shear allows a frictional granular packing to transition from an unjammed state into a jammed state while keeping the system volume and average packing fraction constant. Shear jamming of dry granular media can occur quasi-statically, but boundaries are crucial to confine the material. We perform experiments in aqueous starch suspension where we apply shear using a rheometer with a large volume (400 ml) cylindrical Couette cell. In our suspensions the packing fraction is sufficiently low that quasi-static deformation does not induce a shear jammed state. Applying a shock-like deformation however, will turn the suspension into a jammed solid. A fully jammed state is reached within tens of microseconds, and can be sustained for at least several seconds. High speed imaging of the initial process reveals a jamming front propagating radially outward through the suspension, while the suspension near the outer boundary remains quiescent. This indicates that granular suspensions can be shear jammed without the need of confining solid boundaries. Instead, confinement is most likely provided by the dynamics in the front region.

  9. Liquid-Gas-Like Phase Transition in Sand Flow Under Microgravity

    NASA Astrophysics Data System (ADS)

    Huang, Yu; Zhu, Chongqiang; Xiang, Xiang; Mao, Wuwei

    2015-06-01

    In previous studies of granular flow, it has been found that gravity plays a compacting role, causing convection and stratification by density. However, there is a lack of research and analysis of the characteristics of different particles' motion under normal gravity contrary to microgravity. In this paper, we conduct model experiments on sand flow using a model test system based on a drop tower under microgravity, within which the characteristics and development processes of granular flow under microgravity are captured by high-speed cameras. The configurations of granular flow are simulated using a modified MPS (moving particle simulation), which is a mesh-free, pure Lagrangian method. Moreover, liquid-gas-like phase transitions in the sand flow under microgravity, including the transitions to "escaped", "jumping", and "scattered" particles are highlighted, and their effects on the weakening of shear resistance, enhancement of fluidization, and changes in particle-wall and particle-particle contact mode are analyzed. This study could help explain the surface geology evolution of small solar bodies and elucidate the nature of granular interaction.

  10. Multi-functional foot use during running in the zebra-tailed lizard (Callisaurus draconoides).

    PubMed

    Li, Chen; Hsieh, S Tonia; Goldman, Daniel I

    2012-09-15

    A diversity of animals that run on solid, level, flat, non-slip surfaces appear to bounce on their legs; elastic elements in the limbs can store and return energy during each step. The mechanics and energetics of running in natural terrain, particularly on surfaces that can yield and flow under stress, is less understood. The zebra-tailed lizard (Callisaurus draconoides), a small desert generalist with a large, elongate, tendinous hind foot, runs rapidly across a variety of natural substrates. We use high-speed video to obtain detailed three-dimensional running kinematics on solid and granular surfaces to reveal how leg, foot and substrate mechanics contribute to its high locomotor performance. Running at ~10 body lengths s(-1) (~1 m s(-1)), the center of mass oscillates like a spring-mass system on both substrates, with only 15% reduction in stride length on the granular surface. On the solid surface, a strut-spring model of the hind limb reveals that the hind foot saves ~40% of the mechanical work needed per step, significant for the lizard's small size. On the granular surface, a penetration force model and hypothesized subsurface foot rotation indicates that the hind foot paddles through fluidized granular medium, and that the energy lost per step during irreversible deformation of the substrate does not differ from the reduction in the mechanical energy of the center of mass. The upper hind leg muscles must perform three times as much mechanical work on the granular surface as on the solid surface to compensate for the greater energy lost within the foot and to the substrate.

  11. DETECTION OF SMALL-SCALE GRANULAR STRUCTURES IN THE QUIET SUN WITH THE NEW SOLAR TELESCOPE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abramenko, V. I.; Yurchyshyn, V. B.; Goode, P. R.

    2012-09-10

    Results of a statistical analysis of solar granulation are presented. A data set of 36 images of a quiet-Sun area on the solar disk center was used. The data were obtained with the 1.6 m clear aperture New Solar Telescope at Big Bear Solar Observatory and with a broadband filter centered at the TiO (705.7 nm) spectral line. The very high spatial resolution of the data (diffraction limit of 77 km and pixel scale of 0.''0375) augmented by the very high image contrast (15.5% {+-} 0.6%) allowed us to detect for the first time a distinct subpopulation of mini-granular structures.more » These structures are dominant on spatial scales below 600 km. Their size is distributed as a power law with an index of -1.8 (which is close to the Kolmogorov's -5/3 law) and no predominant scale. The regular granules display a Gaussian (normal) size distribution with a mean diameter of 1050 km. Mini-granular structures contribute significantly to the total granular area. They are predominantly confined to the wide dark lanes between regular granules and often form chains and clusters, but different from magnetic bright points. A multi-fractality test reveals that the structures smaller than 600 km represent a multi-fractal, whereas on larger scales the granulation pattern shows no multi-fractality and can be considered as a Gaussian random field. The origin, properties, and role of the population of mini-granular structures in the solar magnetoconvection are yet to be explored.« less

  12. Comparative Effects of Nitrogen Fertigation and Granular Fertilizer Application on Growth and Availability of Soil Nitrogen during Establishment of Highbush Blueberry

    PubMed Central

    Bryla, David R.; Machado, Rui M. A.

    2011-01-01

    A 2-year study was done to compare the effects of nitrogen (N) fertigation and granular fertilizer application on growth and availability of soil N during establishment of highbush blueberry (Vaccinium corymbosum L. “Bluecrop”). Treatments included four methods of N application (weekly fertigation, split fertigation, and two non-fertigated controls) and four levels of N fertilizer (0, 50, 100, and 150 kg·ha−1 N). Fertigation treatments were irrigated by drip and injected with a liquid urea solution; weekly fertigation was applied once a week from leaf emergence to 60 d prior to the end of the season while split fertigation was applied as a triple-split from April to June. Non-fertigated controls were fertilized with granular ammonium sulfate, also applied as a triple-split, and irrigated by drip or microsprinklers. Weekly fertigation produced the smallest plants among the four fertilizer application methods at 50 kg·ha−1 N during the first year after planting but the largest plants at 150 kg·ha−1 N in both the first and second year. The other application methods required less N to maximize growth but were less responsive than weekly fertigation to additional N fertilizer applications. In fact, 44–50% of the plants died when granular fertilizer was applied at 150 kg·ha−1 N. By comparison, none of the plants died with weekly fertigation. Plant death with granular fertilizer was associated with high ammonium ion concentrations (up to 650 mg·L−1) and electrical conductivity (>3 dS·m−1) in the soil solution. Early results indicate that fertigation may be less efficient (i.e., less plant growth per unit of N applied) at lower N rates than granular fertilizer application but is also safer (i.e., less plant death) and promotes more growth when high amounts of N fertilizer is applied. PMID:22639596

  13. Comparative Effects of Nitrogen Fertigation and Granular Fertilizer Application on Growth and Availability of Soil Nitrogen during Establishment of Highbush Blueberry.

    PubMed

    Bryla, David R; Machado, Rui M A

    2011-01-01

    A 2-year study was done to compare the effects of nitrogen (N) fertigation and granular fertilizer application on growth and availability of soil N during establishment of highbush blueberry (Vaccinium corymbosum L. "Bluecrop"). Treatments included four methods of N application (weekly fertigation, split fertigation, and two non-fertigated controls) and four levels of N fertilizer (0, 50, 100, and 150 kg·ha(-1) N). Fertigation treatments were irrigated by drip and injected with a liquid urea solution; weekly fertigation was applied once a week from leaf emergence to 60 d prior to the end of the season while split fertigation was applied as a triple-split from April to June. Non-fertigated controls were fertilized with granular ammonium sulfate, also applied as a triple-split, and irrigated by drip or microsprinklers. Weekly fertigation produced the smallest plants among the four fertilizer application methods at 50 kg·ha(-1) N during the first year after planting but the largest plants at 150 kg·ha(-1) N in both the first and second year. The other application methods required less N to maximize growth but were less responsive than weekly fertigation to additional N fertilizer applications. In fact, 44-50% of the plants died when granular fertilizer was applied at 150 kg·ha(-1) N. By comparison, none of the plants died with weekly fertigation. Plant death with granular fertilizer was associated with high ammonium ion concentrations (up to 650 mg·L(-1)) and electrical conductivity (>3 dS·m(-1)) in the soil solution. Early results indicate that fertigation may be less efficient (i.e., less plant growth per unit of N applied) at lower N rates than granular fertilizer application but is also safer (i.e., less plant death) and promotes more growth when high amounts of N fertilizer is applied.

  14. Evidence for Different Reaction Pathways for Liquid and Granular Micronutrients in a Calcareous Soil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hettiarachchi, Ganga M.; McLaughlin, Mike J.; Scheckel, Kirk G.

    2008-06-16

    The benefits of Mn and Zn fluid fertilizers over conventional granular products in calcareous sandy loam soils have been agronomically demonstrated. We hypothesized that the differences in the effectiveness between granular and fluid Mn and Zn fertilizers is due to different Mn and Zn reaction processes in and around fertilizer granules and fluid fertilizer bands. We used a combination of several synchrotron-based x-ray techniques, namely, spatially resolved micro-x-ray fluorescence (?-XRF), micro-x-ray absorption near edge structure spectroscopy (?-XANES), and bulk-XANES and -extended x-ray absorption fine structure (EXAFS) spectroscopy, along with several laboratory-based x-ray techniques to speciate different fertilizer-derived Mn and Znmore » species in highly calcareous soils to understand the chemistry underlying the observed differential behavior of fluid and granular micronutrient forms. Micro-XRF mapping of soil-fertilizer reactions zones indicated that the mobility of Mn and Zn from liquid fertilizer was greater than that observed for equivalent granular sources of these micronutrients in soil. After application of these micronutrient fertilizers to soil, Mn and Zn from liquid fertilizers were found to remain in comparatively more soluble solid forms, such as hydrated Mn phosphate-like, Mn calcite-like, adsorbed Zn-like, and Zn silicate-like phases, whereas Mn and Zn from equivalent granular sources tended to transform into comparatively less soluble solid forms such as Mn oxide-like, Mn carbonate-like, and Zn phosphate-like phases.« less

  15. Granular Materials and Risks in ISRU

    NASA Technical Reports Server (NTRS)

    Behringer, Robert P.; Wilki8nson, R. Allen

    2004-01-01

    Working with soil, sand, powders, ores, cement and sintered bricks, excavating, grading construction sites, driving off-road, transporting granules in chutes and pipes, sifting gravel, separating solids from gases, and using hoppers are so routine that it seems straightforward to execute these operations on the Moon and Mars as we do on Earth. We discuss how little these processes are understood and point out the nature of trial-and-error practices that are used in today s massive over-design. Nevertheless, such designs have a high failure rate. Implementation and extensive incremental scaling up of industrial processes are routine because of the inadequate predictive tools for design. We present a number of pragmatic scenarios where granular materials play a role, the risks involved, what some of the basic issues are, and what understanding is needed to greatly reduce the risks. This talk will focus on a particular class of granular flow issues, those that pertain to dense materials, their physics, and the failure problems associated with them. In particular, key issues where basic predictability is lacking include stability of soils for the support of vehicles and facilities, ability to control the flow of dense materials (jamming and flooding/unjamming at the wrong time), the ability to predict stress profiles (hence create reliable designs) for containers such as bunkers or silos. In particular, stress fluctuations, which are not accounted for in standard granular design models, can be very large as granular materials flows, and one result is frequent catastrophic failure of granular devices.

  16. Granular Materials and Risks In ISRU

    NASA Technical Reports Server (NTRS)

    Behringer, Robert P.; Wilkinson, R. Allen

    2004-01-01

    Working with soil, sand, powders, ores, cement and sintered bricks, excavating, grading construction sites, driving off-road, transporting granules in chutes and pipes, sifting gravel, separating solids from gases, and using hoppers are so routine that it seems straightforward to execute these operations on the Moon and Mars as we do on Earth. We discuss how little these processes are understood and point out the nature of trial-and-error practices that are used in today's massive over-design. Nevertheless, such designs have a high failure rate. Implementation and extensive incremental scaling up of industrial processes are routine because of the inadequate predictive tools for design. We present a number of pragmatic scenarios where granular materials play a role, the risks involved, what some of the basic issues are, and what understanding is needed to greatly reduce the risks. This talk will focus on a particular class of granular flow issues, those that pertain to dense materials, their physics, and the failure problems associated with them. In particular, key issues where basic predictability is lacking include stability of soils for the support of vehicles and facilities, ability to control the flow of dense materials (jamming and flooding/unjamming at the wrong time), the ability to predict stress profiles (hence create reliable designs) for containers such as bunkers or silos. In particular, stress fluctuations, which are not accounted for in standard granular design models, can be very large as granular materials flows, and one result is frequent catastrophic failure of granular devices.

  17. Granular media in the context of small bodies

    NASA Astrophysics Data System (ADS)

    Tancredi, G.

    2014-07-01

    Granular materials of different particle sizes are present on the surface and the interior of several atmosphereless Solar System bodies. The presence of very fine particles on the surface of the Moon, the so-called regolith, was confirmed by the Apollo astronauts. From the polarimetric observations and phase angle curves, it is possible to indirectly infer the presence of fine particles on the surfaces of asteroids and planetary satellites. More recently, the visit of spacecraft to several asteroids and comets has provided us with close pictures of the surface, where particles of a wide size range from cm to hundreds of meters have been directly observed. The presence of even finer particles on the visited bodies can also be inferred from image analysis. Solar System bodies smaller than a few hundred km may have a variety of internal structures: monolithic single bodies, objects with internal fractures, rubble piles maintained as a single object by self-gravity, etc. After the visit of the small asteroid Itokawa, it has been speculated that ''some small asteroids appear to be clumps of gravel glued by a very weak gravity field'' (Asphaug 2007). We still do not know the internal structure of these rubble piles and the size distribution of the interior constituents, but these clumps could have several million meter-sized boulders inside. There are several pieces of evidence that many asteroids are agglomerates of small components, like: - Rotation periods for small asteroids - Tidal disruption of asteroids and comets when they enter the Roche's limit of a massive object - The existence of crater chains like the ones observed in Ganymede - Low density estimates (< 2 gr/cm^3) for many asteroids like Mathilde It has been proposed that several typical processes of granular materials (such as: the size segregation of boulders on Itokawa, the displacement of boulders on Eros, the ejection of dust clouds after impacts) can explain some features observed on these bodies. We review the numerical and experimental studies on granular materials with relevance to the understanding of the physical processes on the interior and the surfaces of minor bodies of the Solar System. In particular, we compare the different codes in use to perform numerical simulations of the physical evolution of these objects. We highlight results of these simulations. Some groups have been involved in laboratory experiments on granular material trying to reproduce the conditions in space: vacuum and low gravity. We describe the experimental set-ups and some results of these experiments. Some open problems and future line of work in this field will be presented.

  18. Microstructure evolution of zinc oxide films derived from dip-coating sol-gel technique: formation of nanorods through orientation attachment.

    PubMed

    Huang, Nan; Sun, Chao; Zhu, Mingwei; Zhang, Bin; Gong, Jun; Jiang, Xin

    2011-07-01

    ZnO:Al thin films with Al incorporation of 0-20 at.% were deposited through the sol-gel technique. Such a film undergoes a significant microstructure development, from columnar to granular structures and then nanorod arrays with increasing Al content. The important role of Al incorporation level in the microstructure evolution was determined using scanning electron microscopy, x-ray photoelectron spectroscopy and transmission electron microscopy. At low Al level, the transition from columnar to granular grains can be attributed to the coarsening barrier resulting from the introduction of Al into the matrix. However, oriented structures of ZnO nanorod arrays are formed at a high Al level. TEM investigation reveals that a nanorod with smooth morphology at the top and rough morphology at the bottom has a single-crystalline wurtzite structure, which is the aggregation of nanoparticles of a few nanometers in size formed through the orientation attachment mechanism followed by epitaxial growth on the aggregated particles. Finally, the physical properties of the ZnO films with different degrees of Al concentration are discussed. Such detailed microstructure studies may aid the understanding of the doping effect process on the growth of a film, which is essential to altering its physical or chemical properties.

  19. Fluid-particle characteristics in fully-developed cluster-induced turbulence

    NASA Astrophysics Data System (ADS)

    Capecelatro, Jesse; Desjardins, Olivier; Fox, Rodney

    2014-11-01

    In this study, we present a theoretical framework for collisional fluid-particle turbulence. To identify the key mechanisms responsible for energy exchange between the two phases, an Eulerian-Lagrangian strategy is used to simulate fully-developed cluster-inudced turbulence (CIT) under a range of Reynolds numbers, where fluctuations in particle concentration generate and sustain the carrier-phase turbulence. Using a novel filtering approach, a length-scale separation between the correlated particle velocity and uncorrelated granular temperature (GT) is achieved. This separation allows us to extract the instantaneous Eulerian volume fraction, velocity and GT fields from the Lagrangian data. Direct comparisons can thus be made with the relevant terms that appear in the multiphase turbulence model. It is shown that the granular pressure is highly anisotropic, and thus additional transport equations (as opposed to a single equation for GT) are necessary in formulating a predictive multiphase turbulence model. In addition to reporting the relevant contributions to the Reynolds stresses of each phase, two-point statistics, integral length/timescales, averages conditioned on the local volume fraction, and PDFs of the key multiphase statistics are presented and discussed. The research reported in this paper is partially supported by the HPC equipment purchased through U.S. National Science Foundation MRI Grant Number CNS 1229081 and CRI Grant Number 1205413.

  20. Modelling of sequential groundwater treatment with zero valent iron and granular activated carbon.

    PubMed

    Bayer, Peter; Finkel, Michael

    2005-06-01

    Multiple contaminant mixtures in groundwater may not efficiently be treated by a single technology if contaminants possess rather different properties with respect to sorptivity, solubility, and degradation potential. An obvious choice is to use sequenced units of the generally accepted treatment materials zero valent iron (ZVI) and granular activated carbon (GAC). However, as the results of this modelling study suggest, the required dimensions of both reactor units may strongly differ from those expected on the grounds of a contaminant-specific design. This is revealed by performing an analysis for a broad spectrum of design alternatives through numerical experiments for selected patterns of contaminant mixtures consisting of monochlorobenzene, tetrachloroethylene, trichloroethylene (TCE), cis-1,2-dichloroethylene (cis-DCE), and vinyl chloride (VC). It is shown that efficient treatment can be achieved only if competitive sorption effects in the GAC unit as well as the formation of intermediate products in the ZVI unit are carefully taken into account. Cost-optimal designs turned out to vary extremely depending on the prevailing conditions concerning contaminant concentrations, branching ratios, and unit costs of both reactor materials. Where VC is the critical contaminant, due to high initial concentration or extensive production as an intermediate, two options are cost-effective: an oversized ZVI unit with an oversized GAC unit or a pure GAC reactor.

  1. Generation of ultra high-power thermal plasma jet and its application to crystallization of amorphous silicon films

    NASA Astrophysics Data System (ADS)

    Nakashima, Ryosuke; Shin, Ryota; Hanafusa, Hiroaki; Higashi, Seiichiro

    2017-06-01

    We have successfully generated ultra high-power thermal plasma jet (Super TPJ: s-TPJ) by increasing the Ar gas supply pressure to 0.4 MPa and the flow rate to 18 L/min. DC arc discharge was stably performed under a supply power of 4.6 kW. The peak power density of s-TPJ reached 64.1 kW/cm2 and enabled us to melt and recrystallize amorphous silicon (a-Si) films on quartz substrates with a scanning speed as high as 8000 mm/s. Under ultra high-speed scanning faster than 3000 mm/s, we observed granular crystal growth (GCG) competing with conventional high-speed lateral crystallization (HSLC). When further high speed scanning was performed, we observed a significant increase in grain density, which suggests spontaneous nucleation in undercooled molten Si as the origin of GCG. When we crystallized an isolated pattern of 6 × 6 µm2 under GCG conditions, single crystalline growth was successfully achieved.

  2. Granular compaction and the topology of pore deformation

    NASA Astrophysics Data System (ADS)

    Saadatfar, Mohammad; Takeuchi, Hiroshi; Hanifpour, Maryam; Robins, Vanessa; Francois, Nicolas; Hiraoka, Yasuaki

    2017-06-01

    The mechanism of crystallisation in highly dissipative materials such as foams or granular materials is still widely unknown. In macroscopic granular materials high levels of energy need to be injected to overcome the natural propensity of these dissipative materials to form amorphous structures [1, 2]. The transition from disordered to ordered packings in such systems triggers a wide range of geometrical, topological and mechanical changes at multi length scales [3]. Formation of cavities and patterns by aggregates of grains and their evolution during this transition requires a complete topological description of the system. Here, crystallisation of three-dimensional packings of frictional spheres is studied at the grain scale with x-ray tomography. Using a novel and powerful topological tool, Persistent Homology, we describe the complete formation process of perfect tetrahedral and octahedral patterns: the two building blocks of FCC and HCP crystalline arrangements. Additionally we present possible and allowable deformations of these components that accurately reproduce the main topological features of the system. These results give new insights into the crystallisation of these highly dissipative materials.

  3. Fluctuation-dissipation relations for motions of center of mass in driven granular fluids under gravity.

    PubMed

    Wakou, Jun'ichi; Isobe, Masaharu

    2012-06-01

    We investigated the validity of fluctuation-dissipation relations in the nonequilibrium stationary state of fluidized granular media under gravity by two independent approaches, based on theory and numerical simulations. A phenomenological Langevin-type theory describing the fluctuation of center of mass height, which was originally constructed for a one-dimensional granular gas on a vibrating bottom plate, was generalized to any dimensionality, even for the case in which the vibrating bottom plate is replaced by a thermal wall. The theory predicts a fluctuation-dissipation relation known to be satisfied at equilibrium, with a modification that replaces the equilibrium temperature by an effective temperature defined by the center of mass kinetic energy. To test the validity of the fluctuation-dissipation relation, we performed extensive and accurate event-driven molecular dynamics simulations for the model system with a thermal wall at the bottom. The power spectrum and response function of the center of mass height were measured and closely compared with theoretical predictions. It is shown that the fluctuation-dissipation relation for the granular system is satisfied, especially in the high-frequency (short time) region, for a wide range of system parameters. Finally, we describe the relationship between systematic deviations in the low-frequency (long time) region and the time scales of the driven granular system.

  4. Mechanics of Granular Materials (MGM)

    NASA Technical Reports Server (NTRS)

    Alshibli, Khalid A.; Costes, Nicholas C.; Porter, Ronald F.

    1996-01-01

    The constitutive behavior of uncemented granular materials such as strength, stiffness, and localization of deformations are to a large extend derived from interparticle friction transmitted between solid particles and particle groups. Interparticle forces are highly dependent on gravitational body forces. At very low effective confining pressures, the true nature of the Mohr envelope, which defines the Mohr-Coulomb failure criterion for soils, as well as the relative contribution of each of non-frictional components to soil's shear strength cannot be evaluated in terrestrial laboratories. Because of the impossibility of eliminating gravitational body forces on earth, the weight of soil grains develops interparticle compressive stresses which mask true soil constitutive behavior even in the smallest samples of models. Therefore the microgravity environment induced by near-earth orbits of spacecraft provides unique experimental opportunities for testing theories related to the mechanical behavior of terrestrial granular materials. Such materials may include cohesionless soils, industrial powders, crushed coal, etc. This paper will describe the microgravity experiment, 'Mechanics of Granular Materials (MGM)', scheduled to be flown on Space Shuttle-MIR missions. The paper will describe the experiment's hardware, instrumentation, specimen preparation procedures, testing procedures in flight, as well as a brief summary of the post-mission analysis. It is expected that the experimental results will significantly improve the understanding of the behavior of granular materials under very low effective stress levels.

  5. On the Accuracy and Parallelism of GPGPU-Powered Incremental Clustering Algorithms

    PubMed Central

    He, Li; Zheng, Hao; Wang, Lei

    2017-01-01

    Incremental clustering algorithms play a vital role in various applications such as massive data analysis and real-time data processing. Typical application scenarios of incremental clustering raise high demand on computing power of the hardware platform. Parallel computing is a common solution to meet this demand. Moreover, General Purpose Graphic Processing Unit (GPGPU) is a promising parallel computing device. Nevertheless, the incremental clustering algorithm is facing a dilemma between clustering accuracy and parallelism when they are powered by GPGPU. We formally analyzed the cause of this dilemma. First, we formalized concepts relevant to incremental clustering like evolving granularity. Second, we formally proved two theorems. The first theorem proves the relation between clustering accuracy and evolving granularity. Additionally, this theorem analyzes the upper and lower bounds of different-to-same mis-affiliation. Fewer occurrences of such mis-affiliation mean higher accuracy. The second theorem reveals the relation between parallelism and evolving granularity. Smaller work-depth means superior parallelism. Through the proofs, we conclude that accuracy of an incremental clustering algorithm is negatively related to evolving granularity while parallelism is positively related to the granularity. Thus the contradictory relations cause the dilemma. Finally, we validated the relations through a demo algorithm. Experiment results verified theoretical conclusions. PMID:29123546

  6. Resilience of sulfate-reducing granular sludge against temperature, pH, oxygen, nitrite, and free nitrous acid.

    PubMed

    Hao, Tianwei; Mackey, Hamish R; Guo, Gang; Liu, Rulong; Chen, Guanghao

    2016-10-01

    Sulfate-reducing granular sludge has recently been developed and characterized in detail as part of the development of the sulfate reduction, autotrophic denitrification, nitrification integrated (SANI) process. However, information regarding temperature of granules to environmental fluctuation is lacking, an aspect that is important in dealing with real wastewater. A comprehensive assessment of sulfate-reducing granular sludge performance under various environmental conditions was thus conducted in this study, including temperature, pH, oxygen, nitrite, and free nitrous acid (FNA) as possible encountering conditions in the removal of organics and/or nitrate. Specific chemical oxygen demand removal rate of the granules was determined to be reduced by 65 % when the temperature varied between 10-15 °C, reduced by 70 % when dissolved oxygen (DO) was 0.5 mg/L or greater, and at least, reduced by 75 % when nitrite was 30 mg N/L or above. Nevertheless, the sludge activity recovered by 82, 100, and 86 % from exposure to high oxygen and nitrite and low temperature levels, respectively. Combined inhibition of nitrite and FNA on the sludge is strong and complex, while FNA alone reduced cell viability from 60 to 40 % when its concentration increased to 2.3 mg N/L. The present study demonstrates that sulfate-reducing bacteria (SRB) granules possess high resilience against varying environmental conditions, showing the high application potential of sulfate-reducing granular sludge in dealing with brackish and saline industrial or domestic wastewaters.

  7. Effects of granule swelling on starch saccharification by granular starch hydrolyzing enzyme.

    PubMed

    Li, Zhaofeng; Cai, Liming; Gu, Zhengbiao; Shi, Yong-Cheng

    2014-08-13

    The effects of granule swelling on enzymatic saccharification of normal corn starch by granular starch hydrolyzing enzyme were investigated. After swelling, Km values for the saccharification of granular starch decreased compared with native granular starch, indicating that granule swelling caused granular starch hydrolyzing enzyme to have higher affinity for starch granules. The partial swelling of starch granules enhanced starch saccharification. Furthermore, the enhancement at an earlier stage of enzymatic reaction was much more significant than that at later stages. For granular starch pretreated at 67.5 °C for 30 min, conversions to glucose after incubation with the enzyme at 32 °C for 4 and 24 h were approximately 3-fold and 26% higher than for native granular starch, respectively. As a result, proper heat pretreatment of granular starch before simultaneous saccharification and fermentation has great potential to facilitate industrial production of ethanol by use of granular starch hydrolyzing enzyme.

  8. Rheology of sediment transported by a laminar flow

    NASA Astrophysics Data System (ADS)

    Houssais, M.; Ortiz, C. P.; Durian, D. J.; Jerolmack, D. J.

    2016-12-01

    Understanding the dynamics of fluid-driven sediment transport remains challenging, as it occurs at the interface between a granular material and a fluid flow. Boyer, Guazzelli, and Pouliquen [Phys. Rev. Lett. 107, 188301 (2011)], 10.1103/PhysRevLett.107.188301 proposed a local rheology unifying dense dry-granular and viscous-suspension flows, but it has been validated only for neutrally buoyant particles in a confined and homogeneous system. Here we generalize the Boyer, Guazzelli, and Pouliquen model to account for the weight of a particle by addition of a pressure P0 and test the ability of this model to describe sediment transport in an idealized laboratory river. We subject a bed of settling plastic particles to a laminar-shear flow from above, and use refractive-index-matching to track particles' motion and determine local rheology—from the fluid-granular interface to deep in the granular bed. Data from all experiments collapse onto a single curve of friction μ as a function of the viscous number Iv over the range 3 ×10-5 ≤Iv≤2 , validating the local rheology model. For Iv<3 ×10-5 , however, data do not collapse. Instead of undergoing a jamming transition with μ →μs as expected, particles transition to a creeping regime where we observe a continuous decay of the friction coefficient μ ≤μs as Iv decreases. The rheology of this creep regime cannot be described by the local model, and more work is needed to determine whether a nonlocal rheology model can be modified to account for our findings.

  9. Thickness Dependence of Magnetic Blocking in Granular Metallic Thin Films

    NASA Astrophysics Data System (ADS)

    Wang, J.-Q.; Zhao, Z.-D.; Whittenburg, S. L.

    2002-03-01

    Inter-particle interaction among single domain nano-size magnetic particles embedded in nonmagnetic matrix was studied. Attention was paid to concentrated Cu-Co granular thin films with a fixed magnetic volume fraction. By analyzing theoretical models and comparing with experimental results, we studied a dimensional constraint on the magnetic properties and found that as the film thickness reduces toward thin limit the inter-particle interaction plays important roles in modifying magnetic behavior. Experimental evidence showed that the peak temperature of the susceptibility for Cu80Co20 granular thin films strongly depends on the film thickness in the range of 0 120 nm (1). It was also observed that the spontaneous magnetization of the Co phase varies with the thickness though particle size remains constant. We calculated the dipolar interaction energy among magnetic particles including far-neighbor interaction for films with different thickness values. The calculation revealed that the interaction energy varies across the film from edge to edge and the average interaction energy is strongly dependent on film thickness. Good quantitative agreement of the calculated energy curve with the experimental blocking curve was achieved after taking the magnetization variation into account. In the calculation it is assumed the existence of 100 nm sized domain structures in granular film as demonstrate (2) by previous studies. *supported by DoD/DARPA grant No. MDA972-97-1-003. (1) L. M. Malkinski, J.-Q. Wang, et al, Appl. Phys. Lett. 75, 844 (1999). (2) A. Gavrin, et al, Appl. Phys. Lett. 66, 1683 (1995); Y. J. Chen, et al, Appl. Phys. Lett. 72, 2472 (1998).

  10. Characterization of Uterine Granular Cell Tumors in B6C3F1 Mice: A Histomorphologic, Immunohistochemical, and Ultrastructural Study

    PubMed Central

    Veit, A. C.; Painter, J. T.; Miller, R. A.; Hardisty, J. F.; Dixon, D.

    2009-01-01

    The granular cell tumor is most often a benign neoplasm of uncertain origin. Four uterine granular cell tumors in control and treated female B6C3F1 mice were identified in chronic studies at the National Toxicology Program. Two tumors occurred in untreated control animals and 2 in treated animals receiving different compounds. Tissue sections were evaluated histologically and stained with hematoxylin and eosin, periodic acid–Schiff with diastase resistance, Masson’s trichrome, toluidine blue, phosphotungstic acid–hematoxylin, and stained immunohistochemically with a panel of antibodies to muscle (desmin, alpha smooth muscle actin), neural (S-100, neuron specific enolase), epithelial (wide-spectrum cytokeratin), and macrophage (F4/80) markers. The main histomorphologic feature of tumor cells was the presence of abundant cytoplasmic eosinophilic granules that stained positive for periodic acid–Schiff with diastase resistance. Tumors varied in appearance and were comprised of sheets and nests of round to polygonal cells with distinct borders. Nuclei were hyperchromatic, pleomorphic, and centrally to eccentrically located and often contained single nucleoli. Occasional multinucleated giant cells were observed. Tumors were pale pink and homogeneous with trichrome stain and negative with toluidine blue. Three tumors had positive to weakly positive immunoreactivity for desmin, and 1 was positive for alpha smooth muscle actin. Expression of S-100, wide-spectrum cytokeratin, and neuron-specific enolase was negative for all tumors. Ultrastructurally, prominent electron-dense cytoplasmic granules were abundant and contained secondary lysosomes with heterogeneous lysosomal contents. The characteristics of these uterine granular cell tumors were suggestive of a myogenic origin. PMID:18725470

  11. CD3-negative lymphoproliferative disease of granular lymphocytes containing Epstein-Barr viral DNA.

    PubMed

    Kawa-Ha, K; Ishihara, S; Ninomiya, T; Yumura-Yagi, K; Hara, J; Murayama, F; Tawa, A; Hirai, K

    1989-07-01

    Lymphoproliferative disease of granular lymphocytes (LDGL) is a heterogeneous disorder and the pathogenesis is likely to be complex. Some patients with chronic active EBV (CAEBV) infection also have LDGL. To investigate the relationship between EBV infection and the pathogenesis of LDGL, we conducted a survey for EBV DNA sequences by Southern blot analysis of DNA obtained from the peripheral blood of seven patients with LDGL, including one with CAEBV infection. Interestingly, EBV DNA was detected in the sample from the patient with CAEBV infection, and in the samples from four other patients with CD3-LDGL. Moreover, a single band for the joined termini of the EBV genome was demonstrated in two samples, suggesting a clonal disorder of those LDGL. These findings strongly suggest that EBV may play a pathogenic role in some cases of LDGL.

  12. Construction and first beam-tests of silicon-tungsten prototype modules for the CMS High Granularity Calorimeter for HL-LHC

    NASA Astrophysics Data System (ADS)

    Jain, S.

    2017-03-01

    The High Granularity Calorimeter (HGCAL) is the technology choice of the CMS collaboration for the endcap calorimetry upgrade planned to cope with the harsh radiation and pileup environment at the High Luminosity-LHC . The HGCAL is realized as a sampling calorimeter, including an electromagnetic compartment comprising 28 layers of silicon pad detectors with pad areas of 0.5-01. cm2 interspersed with absorbers made from tungsten and copper to form a highly compact and granular device. Prototype modules, based on hexagonal silicon pad sensors, with 128 channels, have been constructed and tested in beams at FNAL and at CERN. The modules include many of the features required for this challenging detector, including a PCB glued directly to the sensor, using through-hole wire-bonding for signal readout and 5 mm spacing between layers—including the front-end electronics and all services. Tests in 2016 have used an existing front-end chip —Skiroc2 (designed for the CALICE experiment for ILC). We present results from first tests of these modules both in the laboratory and with beams of electrons, pions and protons, including noise performance, calibration with mips and electron signals.

  13. Granular flow: Dry and wet

    NASA Astrophysics Data System (ADS)

    Mitarai, N.; Nakanishi, H.

    2012-04-01

    Granular material is a collection of macroscopic particles that are visible with naked eyes. The non-equilibrium nature of the granular materials makes their rheology quite different from that of molecular systems. In this minireview, we present the unique features of granular materials focusing on the shear flow of dry granular materials and granule-liquid mixture.

  14. A Research Program in Computer Technology. 1983 Annual Technical Report

    DTIC Science & Technology

    1984-07-01

    Understanding We have found that Gist specifications are often difficult to read, despite the high-level nature of the constructs used. The essence of the...relationships is the essence of this type of granularity. " Temporal granularity concerns the amount of detail modeled about activities in the original...Support Staff: George Lewicki Victor Brown Danny Cohen Victoria Svoboda Vance Tyree Jasmin Witthoft Joel Goldberg Lee Magnone Ron Ayres Barden Smith

  15. Testing hadronic interaction models using a highly granular silicon-tungsten calorimeter

    NASA Astrophysics Data System (ADS)

    Bilki, B.; Repond, J.; Schlereth, J.; Xia, L.; Deng, Z.; Li, Y.; Wang, Y.; Yue, Q.; Yang, Z.; Eigen, G.; Mikami, Y.; Price, T.; Watson, N. K.; Thomson, M. A.; Ward, D. R.; Benchekroun, D.; Hoummada, A.; Khoulaki, Y.; Cârloganu, C.; Chang, S.; Khan, A.; Kim, D. H.; Kong, D. J.; Oh, Y. D.; Blazey, G. C.; Dyshkant, A.; Francis, K.; Lima, J. G. R.; Salcido, P.; Zutshi, V.; Boisvert, V.; Green, B.; Misiejuk, A.; Salvatore, F.; Kawagoe, K.; Miyazaki, Y.; Sudo, Y.; Suehara, T.; Tomita, T.; Ueno, H.; Yoshioka, T.; Apostolakis, J.; Folger, G.; Ivantchenko, V.; Ribon, A.; Uzhinskiy, V.; Cauwenbergh, S.; Tytgat, M.; Zaganidis, N.; Hostachy, J.-Y.; Morin, L.; Gadow, K.; Göttlicher, P.; Günter, C.; Krüger, K.; Lutz, B.; Reinecke, M.; Sefkow, F.; Feege, N.; Garutti, E.; Laurien, S.; Lu, S.; Marchesini, I.; Matysek, M.; Ramilli, M.; Kaplan, A.; Norbeck, E.; Northacker, D.; Onel, Y.; Kim, E. J.; van Doren, B.; Wilson, G. W.; Wing, M.; Bobchenko, B.; Chadeeva, M.; Chistov, R.; Danilov, M.; Drutskoy, A.; Epifantsev, A.; Markin, O.; Mizuk, R.; Novikov, E.; Popov, V.; Rusinov, V.; Tarkovsky, E.; Besson, D.; Popova, E.; Gabriel, M.; Kiesling, C.; Simon, F.; Soldner, C.; Szalay, M.; Tesar, M.; Weuste, L.; Amjad, M. S.; Bonis, J.; Callier, S.; Conforti di Lorenzo, S.; Cornebise, P.; Doublet, Ph.; Dulucq, F.; Faucci-Giannelli, M.; Fleury, J.; Frisson, T.; Kégl, B.; van der Kolk, N.; Li, H.; Martin-Chassard, G.; Richard, F.; de La Taille, Ch.; Pöschl, R.; Raux, L.; Rouëné, J.; Seguin-Moreau, N.; Anduze, M.; Balagura, V.; Becheva, E.; Boudry, V.; Brient, J.-C.; Cornat, R.; Frotin, M.; Gastaldi, F.; Magniette, F.; Matthieu, A.; Mora de Freitas, P.; Videau, H.; Augustin, J.-E.; David, J.; Ghislain, P.; Lacour, D.; Lavergne, L.; Zacek, J.; Cvach, J.; Gallus, P.; Havranek, M.; Janata, M.; Kvasnicka, J.; Lednicky, D.; Marcisovsky, M.; Polak, I.; Popule, J.; Tomasek, L.; Tomasek, M.; Ruzicka, P.; Sicho, P.; Smolik, J.; Vrba, V.; Zalesak, J.; Jeans, D.; Götze, M.; Calice Collaboration

    2015-09-01

    A detailed study of hadronic interactions is presented using data recorded with the highly granular CALICE silicon-tungsten electromagnetic calorimeter. Approximately 350,000 selected π- events at energies between 2 and 10 GeV have been studied. The predictions of several physics models available within the GEANT4 simulation tool kit are compared to this data. A reasonable overall description of the data is observed; the Monte Carlo predictions are within 20% of the data, and for many observables much closer. The largest quantitative discrepancies are found in the longitudinal and transverse distributions of reconstructed energy.

  16. Treatment of HMX-production wastewater in an aerobic granular reactor.

    PubMed

    Zhang, Jin-Hua; Wang, Min-Hui; Zhu, Xiao-Meng

    2013-04-01

    Aerobic granules were applied to the treatment of HMX-production wastewater using a gradual domestication method in a SBR. During the process, the granules showed a good settling ability, a high biomass retention rate, and high biological activity. After 40 days of stable operation, aerobic granular sludge performed very effectively in the removal of carbon and nitrogen compounds from HMX-production wastewater. Organic matter removal rates up to 97.57% and nitrogen removal efficiencies up to 80% were achieved during the process. Researchers conclude that using aerobic granules to treat explosive wastewater has good prospects for success.

  17. Are Brazil nuts attractive?

    PubMed

    Sanders, Duncan A; Swift, Michael R; Bowley, R M; King, P J

    2004-11-12

    We present event-driven simulation results for single and multiple intruders in a vertically vibrated granular bed. Under our vibratory conditions, the mean vertical position of a single intruder is governed primarily by a buoyancylike effect. Multiple intruders also exhibit buoyancy governed behavior; however, multiple neutrally buoyant intruders cluster spontaneously and undergo horizontal segregation. These effects can be understood by considering the dynamics of two neutrally buoyant intruders. We have measured an attractive force between such intruders which has a range of five intruder diameters, and we provide a mechanistic explanation for the origins of this force.

  18. Numerical simulation on the powder propellant pickup characteristics of feeding system at high pressure

    NASA Astrophysics Data System (ADS)

    Sun, Haijun; Hu, Chunbo; Zhu, Xiaofei

    2017-10-01

    A numerical study of powder propellant pickup progress at high pressure was presented in this paper by using two-fluid model with kinetic theory of granular flow in the computational fluid dynamics software package ANSYS/Fluent. Simulations were conducted to evaluate the effects of initial pressure, initial powder packing rate and mean particle diameter on the flow characteristics in terms of velocity vector distribution, granular temperature, pressure drop, particle velocity and volume. The numerical results of pressure drop were also compared with experiments to verify the TFM model. The simulated results show that the pressure drop value increases as the initial pressure increases, and the granular temperature under the conditions of different initial pressures and packing rates is almost the same in the area of throttling orifice plate. While there is an appropriate value for particle size and packing rate to form a ;core-annulus; structure in powder box, and the time-averaged velocity vector distribution of solid phase is inordinate.

  19. Tsunamis generated by long and thin granular landslides in a large flume

    NASA Astrophysics Data System (ADS)

    Miller, Garrett S.; Andy Take, W.; Mulligan, Ryan P.; McDougall, Scott

    2017-01-01

    In this experimental study, granular material is released down slope to investigate landslide-generated waves. Starting with a known volume and initial position of the landslide source, detailed data are obtained on the velocity and thickness of the granular flow, the shape and location of the submarine landslide deposit, the amplitude and shape of the near-field wave, the far-field wave evolution, and the wave runup elevation on a smooth impermeable slope. The experiments are performed on a 6.7 m long 30° slope on which gravity accelerates the landslides into a 2.1 m wide and 33.0 m long wave flume that terminates with a 27° runup ramp. For a fixed landslide volume of 0.34 m3, tests are conducted in a range of still water depths from 0.05 to 0.50 m. Observations from high-speed cameras and measurements from wave probes indicate that the granular landslide moves as a long and thin train of material, and that only a portion of the landslide (termed the "effective mass") is engaged in activating the leading wave. The wave behavior is highly dependent on the water depth relative to the size of the landslide. In deeper water, the near-field wave behaves as a stable solitary-like wave, while in shallower water, the wave behaves as a breaking dissipative bore. Overall, the physical model observations are in good agreement with the results of existing empirical equations when the effective mass is used to predict the maximum near-field wave amplitude, the far-field amplitude, and the runup of tsunamis generated by granular landslides.

  20. Characteristics and performance of aerobic algae-bacteria granular consortia in a photo-sequencing batch reactor.

    PubMed

    Liu, Lin; Zeng, Zhichao; Bee, Mingyang; Gibson, Valerie; Wei, Lili; Huang, Xu; Liu, Chaoxiang

    2018-05-05

    The characteristics and performance of algae-bacteria granular consortia which cultivated with aerobic granules and targeted algae (Chlorella and Scenedesmus), and the essential difference between granular consortia and aerobic granules were investigated in this experiment. The result indicated that algae-bacteria granular consortia could be successfully developed, and the algae present in the granular consortia were mainly Chlorella and Scenedesmus. Although the change of chlorophyll composition revealed the occurrence of light limitation for algal growth, the granular consortia could maintain stable granular structure, and even showed better settling property than aerobic granules. Total nitrogen and phosphate in the algal-bacterial granular system showed better removal efficiencies (50.2% and 35.7%) than those in the aerobic granular system (32.8% and 25.6%) within one cycle (6 h). The biodiesel yield of aerobic granules could be significantly improved by algal coupled process, yet methyl linolenate and methyl palmitoleate were the dominant composition of biodiesel obtained from granular consortia and aerobic granules, respectively. Meanwhile, the difference of dominant bacterial communities in the both granules was found at the order level and family level, and alpha diversity indexes revealed the granular consortia had a higher microbial diversity. Copyright © 2018. Published by Elsevier B.V.

  1. Granular Media-Based Tunable Passive Vibration Suppressor

    NASA Technical Reports Server (NTRS)

    Dillon, Robert P.; Davis, Gregory L.; Shapiro, Andrew A.; Borgonia, John Paul C.; Kahn, Daniel L.; Boechler, Nicholas; Boechler,, Chiara

    2013-01-01

    and vibration suppression device is composed of statically compressed chains of spherical particles. The device superimposes a combination of dissipative damping and dispersive effects. The dissipative damping resulting from the elastic wave attenuation properties of the bulk material selected for the granular media is independent of particle geometry and periodicity, and can be accordingly designed based on the dissipative (or viscoelastic) properties of the material. For instance, a viscoelastic polymer might be selected where broadband damping is desired. In contrast, the dispersive effects result from the periodic arrangement and geometry of particles composing a linear granular chain. A uniform (monatomic) chain of statically compressed spherical particles will have a low-pass filter effect, with a cutoff frequency tunable as a function of particle mass, elastic modulus, Poisson fs ratio, radius, and static compression. Elastic waves with frequency content above this cutoff frequency will exhibit an exponential decay in amplitude as a function of propagation distance. System design targeting a specific application is conducted using a combination of theoretical, computational, and experimental techniques to appropriately select the particle radii, material (and thus elastic modulus and Poisson fs ratio), and static compression to satisfy estimated requirements derived for shock and/or vibration protection needs under particular operational conditions. The selection of a chain of polymer spheres with an elastic modulus .3 provided the appropriate dispersive filtering effect for that exercise; however, different operational scenarios may require the use of other polymers, metals, ceramics, or a combination thereof, configured as an array of spherical particles. The device is a linear array of spherical particles compressed in a container with a mechanism for attachment to the shock and/or vibration source, and a mechanism for attachment to the article requiring isolation (Figure 1). This configuration is referred to as a single-axis vibration suppressor. This invention also includes further designs for the integration of the single-axis vibration suppressor into a six-degree-of-freedom hexapod "Stewart"mounting configuration (Figure 2). By integrating each singleaxis vibration suppressor into a hexapod formation, a payload will be protected in all six degrees of freedom from shock and/or vibration. Additionally, to further enable the application of this device to multiple operational scenarios, particularly in the case of high loads, the vibration suppressor devices can be used in parallel in any array configuration.

  2. Inhibitory effect of high NH{sub 4}{sup +}–N concentration on anaerobic biotreatment of fresh leachate from a municipal solid waste incineration plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Zhao; Dang, Yan; Li, Caihua

    2015-09-15

    Highlights: • High NH{sub 4}{sup +}–N concentrations inhibit anaerobic treatment of leachate. • Inhibitory effect of NH{sub 4}{sup +}–N concentrations on anaerobic granular sludge is reversible. • High NH{sub 4}{sup +}–N concentrations inhibit bioactivities of microorganisms instead of survival. - Abstract: Fresh leachate from municipal solid waste (MSW) incineration plants generally contains extremely high NH{sub 4}{sup +}–N concentration which could inhibit the bioactivity of microorganisms. The inhibitory effect of high NH{sub 4}{sup +}–N concentration on anaerobic biotreatment of fresh leachate from a MSW incineration plant in China has been investigated in this study. The inhibition processes was studied by bothmore » static tests and a laboratory-scale expanded granular sludge bed (EGSB) reactor. The specific methanogenic activity (SMA) of the microorganisms in anaerobic granular sludge was inhibited with the NH{sub 4}{sup +}–N concentration increasing to 1000 mg/L in static tests. As well the chemical oxygen demand (COD) removal efficiency and the methane yield decreased in the EGSB reactor, while the volatile fatty acids (VFAs) accumulated and extracellular polymeric substances (EPS) of the anaerobic granular sludge increased with NH{sub 4}{sup +}–N concentration rising to 1000 mg/L, without any rebounding during 30 days of operation. Decreasing NH{sub 4}{sup +}–N concentration to 500 mg/L in influent, the COD removal efficiency recovered to about 85% after 26 days. 1000 mg/L of NH{sub 4}{sup +}–N in leachate was suggested to be the inhibition threshold in EGSB reactor. High-throughput sequencing results showed little changes in microbial communities of the sludge for a high NH{sub 4}{sup +}–N concentration, indicating that the survival of most microorganisms was not affected under such a condition. It inhibited the bioactivity of the microorganisms, resulting in decrease of the COD removal efficiency.« less

  3. Granular computing with multiple granular layers for brain big data processing.

    PubMed

    Wang, Guoyin; Xu, Ji

    2014-12-01

    Big data is the term for a collection of datasets so huge and complex that it becomes difficult to be processed using on-hand theoretical models and technique tools. Brain big data is one of the most typical, important big data collected using powerful equipments of functional magnetic resonance imaging, multichannel electroencephalography, magnetoencephalography, Positron emission tomography, near infrared spectroscopic imaging, as well as other various devices. Granular computing with multiple granular layers, referred to as multi-granular computing (MGrC) for short hereafter, is an emerging computing paradigm of information processing, which simulates the multi-granular intelligent thinking model of human brain. It concerns the processing of complex information entities called information granules, which arise in the process of data abstraction and derivation of information and even knowledge from data. This paper analyzes three basic mechanisms of MGrC, namely granularity optimization, granularity conversion, and multi-granularity joint computation, and discusses the potential of introducing MGrC into intelligent processing of brain big data.

  4. Why granular media are thermal after all

    NASA Astrophysics Data System (ADS)

    Liu, Mario; Jiang, Yimin

    2017-06-01

    Two approaches exist to account for granular behavior. The thermal one considers the total entropy, which includes microscopic degrees of freedom such as phonons; the athermal one (as with the Edward entropy) takes grains as elementary. Granular solid hydrodynamics (GSH) belongs to the first, DEM, granular kinetic theory and athermal statistical mechanics (ASM) to the second. A careful discussion of their conceptual differences is given here. Three noteworthy insights or results are: (1) While DEM and granular kinetic theory are well justified to take grains as elementary, any athermal entropic consideration is bound to run into trouble. (2) Many general principles are taken as invalid in granular media. Yet within the thermal approach, energy conservation and fluctuation-dissipation theorem remain valid, granular temperatures equilibrate, and phase space is well explored in a grain at rest. Hence these are abnormalities of the athermal approximation, not of granular media as such. (3) GSH is a wide-ranged continuum mechanical description of granular dynamics.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, Eric J

    The ResStock analysis tool is helping states, municipalities, utilities, and manufacturers identify which home upgrades save the most energy and money. Across the country there's a vast diversity in the age, size, construction practices, installed equipment, appliances, and resident behavior of the housing stock, not to mention the range of climates. These variations have hindered the accuracy of predicting savings for existing homes. Researchers at the National Renewable Energy Laboratory (NREL) developed ResStock. It's a versatile tool that takes a new approach to large-scale residential energy analysis by combining: large public and private data sources, statistical sampling, detailed subhourly buildingmore » simulations, high-performance computing. This combination achieves unprecedented granularity and most importantly - accuracy - in modeling the diversity of the single-family housing stock.« less

  6. A Mesoscopic Electromechanical Theory of Ferroelectric Films and Ceramics

    NASA Astrophysics Data System (ADS)

    Li, Jiangyu; Bhattacharya, Kaushik

    2002-08-01

    We present a multi-scale modelling framework to predict the effective electromechanical behavior of ferroelectric ceramics and thin films. This paper specifically focuses on the mesoscopic scale and models the effects of domains and domain switching taking into account intergranular constraints. Starting from the properties of the single crystal and the pre-poling granular texture, the theory predicts the domain patterns, the post-poling texture, the saturation polarization, saturation strain and the electromechanical moduli. We demonstrate remarkable agreement with experimental data. The theory also explains the superior electromechanical property of PZT at the morphotropic phase boundary. The paper concludes with the application of the theory to predict the optimal texture for enhanced electromechanical coupling factors and high-strain actuation in selected materials.

  7. Assessment of intra-granular and extra-granular fracture in the development of tablet tensile strength.

    PubMed

    Mitra, Biplob; Hilden, Jon; Litster, James D

    2018-05-24

    When a tablet is compacted from deformable granules and then broken, the fracture plane may cleave granules in two (intra-granular fracture) or separate neighboring granules (extra-granular fracture). In this study, a novel method was developed to quantify the extent of intra- versus extra-granular fracture by compacting tablets from multi-colored ideal granules and evaluating fracture surfaces. The proportions of intra-granular and extra-granular fracture were quantified and modeled in light of a new metric, the deformation potential, Δ, reflecting the solid fraction increase as an initial granule bed is compressed into a final tablet. Results show that a measurable tablet strength is achieved at Δ > 0.18, but intra-granular fracture is not observed until Δ > 0.21. At very large Δ, tablets experience almost exclusively intra-granular fracture, yet the tablet tensile strength is considerably lower than that of a tablet compacted from raw powders versus pre-compacted granules. Thus, secondary compaction of granules appears to weaken the granule matrix, leading to reduced tablet tensile strength even in the presence of strong extra-granular bonding. Copyright © 2018. Published by Elsevier Inc.

  8. Influence of substitution, nonstoichiometry and annealing-conditions on superconductivity and normal conductivity of Fe1+δ (Te1‑x Xx ) (X=Se, S)

    NASA Astrophysics Data System (ADS)

    Lima, M. S. L.; ElMassalami, M.; Deguchi, K.; Takeya, H.; Takano, Y.

    2018-03-01

    Thermal evolution of resistivity, ρ(T, x), of as-prepared samples of Fe1+δ Te1‑x S x (δ ≈ 0, x ≤ 0.2 = solubility limit) demonstrate a granular log-in-T character within Ts < T <300K, a Kondo-like resistive contribution within Tc < T < Ts and granular superconductivity at low temperature (Ts = structural transition point of Fe1+δ Te, Tc =superconducting transition point). We attribute the log-in-T character as well as the nonbulk superconducting features of as-prepared samples to their granular superconductor nature. Annealing in oxygen removes Kondo-like contribution, annihilates pair-breaking centres and establishes bulk superconductivity but, in contrast, the high-temperature granular log-in-T character is hardly influenced. This analysis was successfully extended to the isomorphous Fe1+δ Te1‑x Se x as well as to other types of post-synthesis sample-treatment (e.g. annealing in different gas ambient or soaking in particular liquids).

  9. Optimization of hydraulic shear parameters and reactor configuration in the aerobic granular sludge process.

    PubMed

    Zhu, Liang; Zhou, Jiaheng; Yu, Haitian; Xu, Xiangyang

    2015-01-01

    The hydraulic shear acts as an important selection pressure in aerobic sludge granulation. The effects of the hydraulic shear rate and reactor configuration on structural characteristics of aerobic granule in view of the hydromechanics. The hydraulic shear analysis was proposed to overcome the limitation of using superficial gas velocity (SGV) to express the hydraulic shear stress. Results showed that the stronger hydraulic shear stress with SGV above 2.4 cm s(-1) promoted the microbial aggregation, and favoured the structural stability of the granular sludge. According to the hydraulic shear analysis, the total shear rate reached (0.56-2.31)×10(5) s(-1) in the granular reactor with a larger ratio of height to diameter (H/D), and was higher than that in the reactor with smaller H/D, where the sequencing airlift bioreactor with smaller H/D had a high total shear rate under the same SGV. Results demonstrated that the granular reactor could provide a stronger hydraulic shear stress which promotes the formation and structural stability of aerobic granules.

  10. Pore-scale Modeling of CO2 Local Trapping in Heterogeneous Porous Media with Inter-granular Cements

    NASA Astrophysics Data System (ADS)

    Wang, D.; Li, Y.

    2017-12-01

    Based on pore-scale modeling of CO2/brine multiphase flow in heterogeneous porous media with inter-granular cements, we numerically analyze the effects of cement-modified pore structure on CO2 local trapping. Results indicate: 1) small pore throat is the main reason for causing CO2 local trapping in front of low-porosity layers (namely dense layers) formed by inter-granular cements; 2) in the case of the same pore throat size, the smaller particle size can increase the number of flow paths for CO2 plume and equivalently enhances local permeability, which may counteract the impediment of high capillary pressure on CO2 migration to some extent and consequently disables CO2 local capillary trapping; 3) the isolated pores by inter-granular cements can lead to dramatic reduction of CO2 saturation inside the dense layers, whereas the change of connectivity of some pores due to the cements can increase CO2 accumulation in front of the dense layers by lowering the displacement area of CO2 plume.

  11. Two combined mechanisms responsible to hexavalent chromium removal on active anaerobic granular consortium.

    PubMed

    Durán, U; Coronado-Apodaca, K G; Meza-Escalante, E R; Ulloa-Mercado, G; Serrano, D

    2018-05-01

    Hexavalent chromium (Cr VI) from industrial wastewaters represents a highly toxic source at low concentrations. Biological treatments with anaerobic granular biomass are a promising alternative for the Cr VI bioremediation. This study evaluated the Cr VI removal in a range of 5-500 mg/L, using an active anaerobic granular consortium. Two removal mechanisms were differentiated from the assays: 1) biological reduction of 70 mg/L to Cr III at a concentration of 250 mg Cr VI/L and 2) physical bioadsorption of 297 mg of Cr VI/L or 31.39 mg of Cr VI/g biomass at concentration of 500 mg Cr VI /L. The half-maximal inhibitory concentration (IC 50 ) values for the rate and production of methane were 1.4 and 253 mg/L, respectively. In addition, Cr VI is a biostimulant that increase the methane production, in a range from 5 to 100 mg/L, of the anaerobic consortium. This work demonstrates the potential application of the anaerobic granular consortium in metal bioremediation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Coupled granular/continuous medium for thermally stable perpendicular magnetic recording

    NASA Astrophysics Data System (ADS)

    Sonobe, Y.; Weller, D.; Ikeda, Y.; Takano, K.; Schabes, M. E.; Zeltzer, G.; Do, H.; Yen, B. K.; Best, M. E.

    2001-10-01

    We studied coupled granular/continuous (CGC) perpendicular media consisting of a continuous multilayer structure and a granular layer. The addition of Co/Pt multilayers decreased the nucleation field from 200 to -1800 Oe and increased the squareness from 0.9 to 1.0. The moment decay at room temperature was significantly reduced from -4.8% to -0.05% per decade. At elevated temperatures, strong exchange coupling between a granular layer and a continuous layer is needed for thermal stability. The exchange-coupled continuous layer reduces thermal demagnetization as it effectively increases the grain size, tightens the grain distribution, and prevents the reversal of individual grains. Magnetic Force Microscope image showed a larger magnetic cluster size for the CGC structure. Compared to the CoCr 18Pt 12 medium, the CGC medium had 2.3 dB higher output. However, the noise for the CGC medium increased with the recording density, while the noise for the CoCr 18Pt 12 medium remained constant from 4 to 15 kfc/mm. Further optimization and noise reduction are still required for future high density recording.

  13. Legless locomotion in lattices

    NASA Astrophysics Data System (ADS)

    Schiebel, Perrin; Goldman, Daniel I.

    2014-11-01

    Little is known about interactions between an animal body and complex terrestrial terrain like sand and boulders during legless, undulatory travel (e.g. snake locomotion). We study the locomotor performance of Mojave shovel-nosed snakes (Chionactisoccipitalis , ~ 35 cm long) using a simplified model of heterogeneous terrain: symmetric lattices of obstacles. To quantify performance we measure mean forward speed and slip angle, βs, defined as the angle between the instantaneous velocity and tangent vectors at each point on the body. We find that below a critical peg density the presence of granular media results in high speed (~ 60 cm/s), low average slip (βs ~6°) snake performance as compared to movement in the same peg densities on hard ground (~ 25 cm/s and βs ~15°). Above this peg density, performance on granular and hard substrates converges. Speed on granular media decreases with increasing peg density to that of the speed on hard ground, while speed on hard ground remains constant. Conversely, βs on hard ground trends toward that on granular media as obstacle density increases.

  14. Endoscopic submucosal dissection for esophageal granular cell tumor using the clutch cutter

    PubMed Central

    Komori, Keishi; Akahoshi, Kazuya; Tanaka, Yoshimasa; Motomura, Yasuaki; Kubokawa, Masaru; Itaba, Soichi; Hisano, Terumasa; Osoegawa, Takashi; Nakama, Naotaka; Iwao, Risa; Oya, Masafumi; Nakamura, Kazuhiko

    2012-01-01

    Endoscopic submucosal dissection (ESD) with a knife is a technically demanding procedure associated with a high complication rate. The shortcomings of this method are the deficiencies of fixing the knife to the target lesion, and of compressing it. These shortcomings can lead to major complications such as perforation and bleeding. To reduce the risk of complications related to ESD, we developed a new grasping type scissors forceps (Clutch Cutter®, Fujifilm, Japan) which can grasp and incise the targeted tissue using an electrosurgical current. Esophagogastroduodenoscopy on a 59-year-old Japanese man revealed a 16mm esophageal submucosal nodule with central depression. Endoscopic ultrasonography demonstrated a hypoechoic solid tumor limited to the submucosa without lymph node involvement. The histologic diagnosis of the specimen obtained by biopsy was granular cell tumor. It was safely and accurately resected without unexpected incision by ESD using the CC. No delayed hemorrhage or perforation occurred. Histological examination confirmed that the granular cell tumor was completely excised with negative resection margin.We report herein a case of esophageal granular cell tumor successfully treated by an ESD technique using the CC. PMID:22267979

  15. Flow above and within granular media composed of spherical and non-spherical particles - using a 3D numerical model

    NASA Astrophysics Data System (ADS)

    Bartzke, Gerhard; Kuhlmann, Jannis; Huhn, Katrin

    2016-04-01

    The entrainment of single grains and, hence, their erosion characteristics are dependent on fluid forcing, grain size and density, but also shape variations. To quantitatively describe and capture the hydrodynamic conditions around individual grains, researchers commonly use empirical approaches such as laboratory flume tanks. Nonetheless, it is difficult with such physical experiments to measure the flow velocities in the direct vicinity or within the pore spaces of sediments, at a sufficient resolution and in a non-invasive way. As a result, the hydrodynamic conditions in the water column, at the fluid-porous interface and within pore spaces of a granular medium of various grain shapes is not yet fully understood. For that reason, there is a strong need for numerical models, since these are capable of quantifying fluid speeds within a granular medium. A 3D-SPH (Smooth Particle Hydrodynamics) numerical wave tank model was set up to provide quantitative evidence on the flow velocities in the direct vicinity and in the interior of granular beds composed of two shapes as a complementary method to the difficult task of in situ measurement. On the basis of previous successful numerical wave tank models with SPH, the model geometry was chosen in dimensions of X=2.68 [m], Y=0.48 [m], and Z=0.8 [m]. Three suites of experiments were designed with a range of particle shape models: (1) ellipsoids with the long axis oriented in the across-stream direction, (2) ellipsoids with the long axis oriented in the along-stream direction, and (3) spheres. Particle diameters ranged from 0.04 [m] to 0.08 [m]. A wave was introduced by a vertical paddle that accelerated to 0.8 [m/s] perpendicular to the granular bed. Flow measurements showed that the flow velocity values into the beds were highest when the grains were oriented across the stream direction and lowest in case when the grains were oriented parallel to the stream, indicating that the model was capable to simulate simultaneously the flow into and within a granular medium composed of spherical and non-spherical shapes under wave forcing. It is concluded that variations in grain shape orientation within a bed appear to control the amount of flow that can be accumulated by the pores, which was illustrated in a conceptual model.

  16. Granular fingering as a mechanism for ridge formation in debris avalanche deposits: Laboratory experiments and implications for Tutupaca volcano, Peru

    NASA Astrophysics Data System (ADS)

    Valderrama, P.; Roche, O.; Samaniego, P.; van Wyk des Vries, B.; Araujo, G.

    2018-01-01

    The origin of subparallel, regularly-spaced longitudinal ridges often observed at the surface of volcanic and other rock avalanche deposits remains unclear. We addressed this issue through analogue laboratory experiments on flows of bi-disperse granular mixtures, because this type of flow is known to exhibit granular fingering that causes elongated structures resembling the ridges observed in nature. We considered four different mixtures of fine (300-400 μm) glass beads and coarse (600-710 μm to 900-1000 μm) angular crushed fruit stones, with particle size ratios of 1.9-2.7 and mass fractions of the coarse component of 5-50 wt%. The coarse particles segregated at the flow surface and accumulated at the front where flow instabilities with a well-defined wavelength grew. These formed granular fingers made of coarse-rich static margins delimiting fines-rich central channels. Coalescence of adjacent finger margins created regular spaced longitudinal ridges, which became topographic highs as finger channels drained at final emplacement stages. Three distinct deposit morphologies were observed: 1) Joined fingers with ridges were formed at low (≤ 1.9) size ratio and moderate (10-20 wt%) coarse fraction whereas 2) separate fingers or 3) poorly developed fingers, forming series of frontal lobes, were created at larger size ratios and/or higher coarse contents. Similar ridges and lobes are observed at the debris avalanche deposits of Tutupaca volcano, Peru, suggesting that the processes operating in the experiments can also occur in nature. This implies that volcanic (and non-volcanic) debris avalanches can behave as granular flows, which has important implications for interpretation of deposits and for modeling. Such behaviour may be acquired as the collapsing material disaggregates and forms a granular mixture composed by a right grain size distribution in which particle segregation can occur. Limited fragmentation and block sliding, or grain size distributions inappropriate for promoting granular fingering can explain why ridges are absent in many deposits.

  17. Large nerve cells with long axons in the granular layer and white matter of the murine cerebellum.

    PubMed Central

    Müller, T

    1994-01-01

    The murine cerebellum was investigated by light microscopy using an improved modification of Ehrlich's methylene blue supravital staining technique. The dye exhibited a special affinity for the perikarya as well as the axons of Purkinje cells. In addition, large fusiform or stellate nerve cells which were characterised by long descending axons were seen to be distributed diffusely within the granular layer and the subcortical white matter. These findings indicate the existence of a 2nd type of projection neuron besides the Purkinje cells and are therefore in full accordance with older neuroanatomical observations based on silver impregnation. When correlated with recent studies on the occurrence of different calcium-binding proteins, the results show that the large perikarya demonstrated immunohistochemically within the granular layer seem to belong to the group of methylene blue positive neurons. Nevertheless, the definitive association of a single neuron with a nerve cell class is only possible if the axon is stained and clearly identifiable. Because of its selectivity for a special type of nerve cell, including its axon, the histological method used in this study may therefore also be suitable for investigating other parts of the brain and the spinal cord. Images Fig. 1 Fig. 2 PMID:7516932

  18. Vector-based model of elastic bonds for simulation of granular solids.

    PubMed

    Kuzkin, Vitaly A; Asonov, Igor E

    2012-11-01

    A model (further referred to as the V model) for the simulation of granular solids, such as rocks, ceramics, concrete, nanocomposites, and agglomerates, composed of bonded particles (rigid bodies), is proposed. It is assumed that the bonds, usually representing some additional gluelike material connecting particles, cause both forces and torques acting on the particles. Vectors rigidly connected with the particles are used to describe the deformation of a single bond. The expression for potential energy of the bond and corresponding expressions for forces and torques are derived. Formulas connecting parameters of the model with longitudinal, shear, bending, and torsional stiffnesses of the bond are obtained. It is shown that the model makes it possible to describe any values of the bond stiffnesses exactly; that is, the model is applicable for the bonds with arbitrary length/thickness ratio. Two different calibration procedures depending on bond length/thickness ratio are proposed. It is shown that parameters of the model can be chosen so that under small deformations the bond is equivalent to either a Bernoulli-Euler beam or a Timoshenko beam or short cylinder connecting particles. Simple analytical expressions, relating parameters of the V model with geometrical and mechanical characteristics of the bond, are derived. Two simple examples of computer simulation of thin granular structures using the V model are given.

  19. Time-resolved dynamics of granular matter by random laser emission

    NASA Astrophysics Data System (ADS)

    Folli, Viola; Ghofraniha, Neda; Puglisi, Andrea; Leuzzi, Luca; Conti, Claudio

    2013-07-01

    Because of the huge commercial importance of granular systems, the second-most used material in industry after water, intersecting the industry in multiple trades, like pharmacy and agriculture, fundamental research on grain-like materials has received an increasing amount of attention in the last decades. In photonics, the applications of granular materials have been only marginally investigated. We report the first phase-diagram of a granular as obtained by laser emission. The dynamics of vertically-oscillated granular in a liquid solution in a three-dimensional container is investigated by employing its random laser emission. The granular motion is function of the frequency and amplitude of the mechanical solicitation, we show how the laser emission allows to distinguish two phases in the granular and analyze its spectral distribution. This constitutes a fundamental step in the field of granulars and gives a clear evidence of the possible control on light-matter interaction achievable in grain-like system.

  20. Variable microstructural response of baddeleyite to shock metamorphism in young basaltic shergottite NWA 5298 and improved U-Pb dating of Solar System events

    NASA Astrophysics Data System (ADS)

    Darling, James R.; Moser, Desmond E.; Barker, Ivan R.; Tait, Kim T.; Chamberlain, Kevin R.; Schmitt, Axel K.; Hyde, Brendt C.

    2016-06-01

    The accurate dating of igneous and impact events is vital for the understanding of Solar System evolution, but has been hampered by limited knowledge of how shock metamorphism affects mineral and whole-rock isotopic systems used for geochronology. Baddeleyite (monoclinic ZrO2) is a refractory mineral chronometer of great potential to date these processes due to its widespread occurrence in achondrites and robust U-Pb isotopic systematics, but there is little understanding of shock-effects on this phase. Here we present new nano-structural measurements of baddeleyite grains in a thin-section of the highly-shocked basaltic shergottite Northwest Africa (NWA) 5298, using high-resolution electron backscattered diffraction (EBSD) and scanning transmission electron microscopy (STEM) techniques, to investigate shock-effects and their linkage with U-Pb isotopic disturbance that has previously been documented by in-situ U-Pb isotopic analyses. The shock-altered state of originally igneous baddeleyite grains is highly variable across the thin-section and often within single grains. Analyzed grains range from those that preserve primary (magmatic) twinning and trace-element zonation (baddeleyite shock Group 1), to quasi-amorphous ZrO2 (Group 2) and to recrystallized micro-granular domains of baddeleyite (Group 3). These groups correlate closely with measured U-Pb isotope compositions. Primary igneous features in Group 1 baddeleyites (n = 5) are retained in high shock impedance grain environments, and an average of these grains yields a revised late-Amazonian magmatic crystallization age of 175 ± 30 Ma for this shergottite. The youngest U-Pb dates occur from Group 3 recrystallized nano- to micro-granular baddeleyite grains, indicating that it is post-shock heating and new mineral growth that drives much of the isotopic disturbance, rather than just shock deformation and phase transitions. Our data demonstrate that a systematic multi-stage microstructural evolution in baddeleyite results from a single cycle of shock-loading, heating and cooling during transit to space, and that this leads to variable disturbance of the U-Pb isotope system. Furthermore, by linking in-situ U-Pb isotopic measurements with detailed micro- to nano-structural analyses, it is possible to resolve the timing of both endogenic crustal processes and impact events in highly-shocked planetary materials using baddeleyite. This opens up new opportunities to refine the timing of major events across the Solar System.

  1. Modelling equilibrium adsorption of single, binary, and ternary combinations of Cu, Pb, and Zn onto granular activated carbon.

    PubMed

    Loganathan, Paripurnanda; Shim, Wang Geun; Sounthararajah, Danious Pratheep; Kalaruban, Mahatheva; Nur, Tanjina; Vigneswaran, Saravanamuthu

    2018-03-30

    Elevated concentrations of heavy metals in water can be toxic to humans, animals, and aquatic organisms. A study was conducted on the removal of Cu, Pb, and Zn by a commonly used water treatment adsorbent, granular activated carbon (GAC), from three single, three binary (Cu-Pb, Cu-Zn, Pb-Zn), and one ternary (Cu-Pb-Zn) combination of metals. It also investigated seven mathematical models on their suitability to predict the metals adsorption capacities. Adsorption of Cu, Pb, and Zn increased with pH with an abrupt increase in adsorption at around pH 5.5, 4.5, and 6.0, respectively. At all pHs tested (2.5-7.0), the adsorption capacity followed the order Pb > Cu > Zn. The Langmuir and Sips models fitted better than the Freundlich model to the data in the single-metal system at pH 5. The Langmuir maximum adsorption capacities of Pb, Cu, and Zn (mmol/g) obtained from the model's fits were 0.142, 0.094, and 0.058, respectively. The adsorption capacities (mmol/g) for these metals at 0.01 mmol/L equilibrium liquid concentration were 0.130, 0.085, and 0.040, respectively. Ideal Adsorbed Solution (IAS)-Langmuir and IAS-Sips models fitted well to the binary and ternary metals adsorption data, whereas the Extended Langmuir and Extended Sips models' fits to the data were poor. The selectivity of adsorption followed the same order as the metals' capacities and affinities of adsorption in the single-metal systems.

  2. Spatio-structural granularity of biological material entities

    PubMed Central

    2010-01-01

    Background With the continuously increasing demands on knowledge- and data-management that databases have to meet, ontologies and the theories of granularity they use become more and more important. Unfortunately, currently used theories and schemes of granularity unnecessarily limit the performance of ontologies due to two shortcomings: (i) they do not allow the integration of multiple granularity perspectives into one granularity framework; (ii) they are not applicable to cumulative-constitutively organized material entities, which cover most of the biomedical material entities. Results The above mentioned shortcomings are responsible for the major inconsistencies in currently used spatio-structural granularity schemes. By using the Basic Formal Ontology (BFO) as a top-level ontology and Keet's general theory of granularity, a granularity framework is presented that is applicable to cumulative-constitutively organized material entities. It provides a scheme for granulating complex material entities into their constitutive and regional parts by integrating various compositional and spatial granularity perspectives. Within a scale dependent resolution perspective, it even allows distinguishing different types of representations of the same material entity. Within other scale dependent perspectives, which are based on specific types of measurements (e.g. weight, volume, etc.), the possibility of organizing instances of material entities independent of their parthood relations and only according to increasing measures is provided as well. All granularity perspectives are connected to one another through overcrossing granularity levels, together forming an integrated whole that uses the compositional object perspective as an integrating backbone. This granularity framework allows to consistently assign structural granularity values to all different types of material entities. Conclusions The here presented framework provides a spatio-structural granularity framework for all domain reference ontologies that model cumulative-constitutively organized material entities. With its multi-perspectives approach it allows querying an ontology stored in a database at one's own desired different levels of detail: The contents of a database can be organized according to diverse granularity perspectives, which in their turn provide different views on its content (i.e. data, knowledge), each organized into different levels of detail. PMID:20509878

  3. Zero valent iron simultaneously enhances methane production and sulfate reduction in anaerobic granular sludge reactors.

    PubMed

    Liu, Yiwen; Zhang, Yaobin; Ni, Bing-Jie

    2015-05-15

    Zero valent iron (ZVI) packed anaerobic granular sludge reactors have been developed for improved anaerobic wastewater treatment. In this work, a mathematical model is developed to describe the enhanced methane production and sulfate reduction in anaerobic granular sludge reactors with the addition of ZVI. The model is successfully calibrated and validated using long-term experimental data sets from two independent ZVI-enhanced anaerobic granular sludge reactors with different operational conditions. The model satisfactorily describes the chemical oxygen demand (COD) removal, sulfate reduction and methane production data from both systems. Results show ZVI directly promotes propionate degradation and methanogenesis to enhance methane production. Simultaneously, ZVI alleviates the inhibition of un-dissociated H2S on acetogens, methanogens and sulfate reducing bacteria (SRB) through buffering pH (Fe(0) + 2H(+) = Fe(2+) + H2) and iron sulfide precipitation, which improve the sulfate reduction capacity, especially under deterioration conditions. In addition, the enhancement of ZVI on methane production and sulfate reduction occurs mainly at relatively low COD/ [Formula: see text] ratio (e.g., 2-4.5) rather than high COD/ [Formula: see text] ratio (e.g., 16.7) compared to the reactor without ZVI addition. The model proposed in this work is expected to provide support for further development of a more efficient ZVI-based anaerobic granular system. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Generation of dense granular deposits for porosity analysis: assessment and application of large-scale non-smooth granular dynamics

    NASA Astrophysics Data System (ADS)

    Schruff, T.; Liang, R.; Rüde, U.; Schüttrumpf, H.; Frings, R. M.

    2018-01-01

    The knowledge of structural properties of granular materials such as porosity is highly important in many application-oriented and scientific fields. In this paper we present new results of computer-based packing simulations where we use the non-smooth granular dynamics (NSGD) method to simulate gravitational random dense packing of spherical particles with various particle size distributions and two types of depositional conditions. A bin packing scenario was used to compare simulation results to laboratory porosity measurements and to quantify the sensitivity of the NSGD regarding critical simulation parameters such as time step size. The results of the bin packing simulations agree well with laboratory measurements across all particle size distributions with all absolute errors below 1%. A large-scale packing scenario with periodic side walls was used to simulate the packing of up to 855,600 spherical particles with various particle size distributions (PSD). Simulation outcomes are used to quantify the effect of particle-domain-size ratio on the packing compaction. A simple correction model, based on the coordination number, is employed to compensate for this effect on the porosity and to determine the relationship between PSD and porosity. Promising accuracy and stability results paired with excellent computational performance recommend the application of NSGD for large-scale packing simulations, e.g. to further enhance the generation of representative granular deposits.

  5. Dilatant shear bands in solidifying metals.

    PubMed

    Gourlay, C M; Dahle, A K

    2007-01-04

    Compacted granular materials expand in response to shear, and can exhibit different behaviour from that of the solids, liquids and gases of which they are composed. Application of the physics of granular materials has increased the understanding of avalanches, geological faults, flow in hoppers and silos, and soil mechanics. During the equiaxed solidification of metallic alloys, there exists a range of solid fractions where the microstructure consists of a geometrically crowded disordered assembly of crystals saturated with liquid. It is therefore natural to ask if such a microstructure deforms as a granular material and what relevance this might have to solidification processing. Here we show that partially solidified alloys can exhibit the characteristics of a cohesionless granular material, including Reynolds' dilatancy and strain localization in dilatant shear bands 7-18 mean crystals wide. We show that this behaviour is important in defect formation during high pressure die casting of Al and Mg alloys, a global industry that contributes over $7.3 billion to the USA's economy alone and is used in the manufacture of products that include mobile-phone covers and steering wheels. More broadly, these findings highlight the potential to apply the principles and modelling approaches developed in granular mechanics to the field of solidification processing, and also indicate the possible benefits that might be gained from exploring and exploiting further synergies between these fields.

  6. PRN 2001-2: Acute Toxicity Data Requirements For Granular Pesticide Products, Including Those With Granular Fertilizers in the Product.

    EPA Pesticide Factsheets

    This PR Notice announces guidance intended to streamline the acute toxicity review and classification process for certain granular pesticide products, including those products that contain granular fertilizers.

  7. Syn-eruptive, soft-sediment deformation of deposits from dilute pyroclastic density current: triggers from granular shear, dynamic pore pressure, ballistic impacts and shock waves

    NASA Astrophysics Data System (ADS)

    Douillet, G. A.; Taisne, B.; Tsang-Hin-Sun, E.; Muller, S. K.; Kueppers, U.; Dingwell, D. B.

    2015-05-01

    Soft-sediment deformation structures can provide valuable information about the conditions of parent flows, the sediment state and the surrounding environment. Here, examples of soft-sediment deformation in deposits of dilute pyroclastic density currents are documented and possible syn-eruptive triggers suggested. Outcrops from six different volcanoes have been compiled in order to provide a broad perspective on the variety of structures: Soufriere Hills (Montserrat), Tungurahua (Ecuador), Ubehebe craters (USA), Laacher See (Germany), and Tower Hill and Purrumbete lakes (both Australia). The variety of features can be classified in four groups: (1) tubular features such as pipes; (2) isolated, laterally oriented deformation such as overturned or oversteepened laminations and vortex-shaped laminae; (3) folds-and-faults structures involving thick (>30 cm) units; (4) dominantly vertical inter-penetration of two layers such as potatoids, dishes, or diapiric flame-like structures. The occurrence of degassing pipes together with basal intrusions suggest fluidization during flow stages, and can facilitate the development of other soft-sediment deformation structures. Variations from injection dikes to suction-driven, local uplifts at the base of outcrops indicate the role of dynamic pore pressure. Isolated, centimeter-scale, overturned beds with vortex forms have been interpreted to be the signature of shear instabilities occurring at the boundary of two granular media. They may represent the frozen record of granular, pseudo Kelvin-Helmholtz instabilities. Their recognition can be a diagnostic for flows with a granular basal boundary layer. Vertical inter-penetration and those folds-and-faults features related to slumps are driven by their excess weight and occur after deposition but penecontemporaneous to the eruption. The passage of shock waves emanating from the vent may also produce trains of isolated, fine-grained overturned beds that disturb the surface bedding without occurrence of a sedimentation phase in the vicinity of explosion centers. Finally, ballistic impacts can trigger unconventional sags producing local displacement or liquefaction. Based on the deformation depth, these can yield precise insights into depositional unit boundaries. Such impact structures may also be at the origin of some of the steep truncation planes visible at the base of the so-called "chute and pool" structures. Dilute pyroclastic density currents occur contemporaneously with seismogenic volcanic explosions. They can experience extremely high sedimentation rates and may flow at the border between traction, granular and fluid-escape boundary zones. They are often deposited on steep slopes and can incorporate large amounts of water and gas in the sediment. These are just some of the many possible triggers acting in a single environment, and they reveal the potential for insights into the eruptive and flow mechanisms of dilute pyroclastic density currents.

  8. Fundamental structural characteristics of planar granular assemblies: Self-organization and scaling away friction and initial state.

    PubMed

    Matsushima, Takashi; Blumenfeld, Raphael

    2017-03-01

    The microstructural organization of a granular system is the most important determinant of its macroscopic behavior. Here we identify the fundamental factors that determine the statistics of such microstructures, using numerical experiments to gain a general understanding. The experiments consist of preparing and compacting isotropically two-dimensional granular assemblies of polydisperse frictional disks and analyzing the emergent statistical properties of quadrons-the basic structural elements of granular solids. The focus on quadrons is because the statistics of their volumes have been found to display intriguing universal-like features [T. Matsushima and R. Blumenfeld, Phys. Rev. Lett. 112, 098003 (2014)PRLTAO0031-900710.1103/PhysRevLett.112.098003]. The dependence of the structures and of the packing fraction on the intergranular friction and the initial state is analyzed, and a number of significant results are found. (i) An analytical formula is derived for the mean quadron volume in terms of three macroscopic quantities: the mean coordination number, the packing fraction, and the rattlers fraction. (ii) We derive a unique, initial-state-independent relation between the mean coordination number and the rattler-free packing fraction. The relation is supported numerically for a range of different systems. (iii) We collapse the quadron volume distributions from all systems onto one curve, and we verify that they all have an exponential tail. (iv) The nature of the quadron volume distribution is investigated by decomposition into conditional distributions of volumes given the cell order, and we find that each of these also collapses onto a single curve. (v) We find that the mean quadron volume decreases with increasing intergranular friction coefficients, an effect that is prominent in high-order cells. We argue that this phenomenon is due to an increased probability of stable irregularly shaped cells, and we test this using a herewith developed free cell analytical model. We conclude that, in principle, the microstructural characteristics are governed mainly by the packing procedure, while the effects of intergranular friction and initial states are details that can be scaled away. However, mechanical stability constraints suppress slightly the occurrence of small quadron volumes in cells of order ≥6, and the magnitude of this effect does depend on friction. We quantify in detail this dependence and the deviation it causes from an exact collapse for these cells. (vi) We argue that our results support strongly the view that ensemble granular statistical mechanics does not satisfy the uniform measure assumption of conventional statistical mechanics. Results (i)-(iv) have been reported in the aforementioned reference, and they are reviewed and elaborated on here.

  9. Influence of obstacles on bubbles rising in water-saturated sand

    NASA Astrophysics Data System (ADS)

    Poryles, Raphaël; Varas, Germán; Vidal, Valérie

    2017-06-01

    This work investigates the dynamics of air rising through a water-saturated sand confined in a Hele- Shaw cell in which a circular obstacle is trapped. The air is injected at constant flow rate through a single nozzle at the bottom center of the cell. Without obstacle, in a similar configuration, previous studies pointed out the existence of a fluidized zone generated by the central upward gas motion which entrains two granular convection rolls on its sides. Here, a circular obstacle which diameter is of the order of the central air channel width is trapped at the vertical of the injection nozzle. We analyze the influence of the obstacle location on the size of the fluidized zone and its impact on the morphology of the central air channel. Finally, we quantify the variations of the granular free surface. Two configurations with multiple obstacles are also considered.

  10. Clogging in constricted suspension flows

    NASA Astrophysics Data System (ADS)

    Marin, Alvaro; Lhuissier, Henri; Rossi, Massimiliano; Kähler, Christian J.

    2018-02-01

    The flow of a charged-stabilized suspension through a single constricted channel is studied experimentally by tracking the particles individually. Surprisingly, the behavior is found to be qualitatively similar to that of inertial dry granular systems: For small values of the neck-to-particle size ratio (D /d <3 ), clogs form randomly as arches of the particle span the constriction. The statistics of the clogging events are Poissonian as reported for granular systems and agree for moderate particle volume fraction (ϕ ≈20 % ) with a simple stochastic model for the number of particles at the neck. For larger neck sizes (D /d >3 ), even at the largest ϕ (≈60 %) achievable in the experiments, an uninterrupted particle flow is observed, which resembles that of an hourglass. This particularly small value of D /d (≃3 ) at the transition to a practically uninterrupted flow is attributed to the low effective friction between the particles, achieved by the particle's functionalization and lubrication.

  11. CD3-negative lymphoproliferative disease of granular lymphocytes containing Epstein-Barr viral DNA.

    PubMed Central

    Kawa-Ha, K; Ishihara, S; Ninomiya, T; Yumura-Yagi, K; Hara, J; Murayama, F; Tawa, A; Hirai, K

    1989-01-01

    Lymphoproliferative disease of granular lymphocytes (LDGL) is a heterogeneous disorder and the pathogenesis is likely to be complex. Some patients with chronic active EBV (CAEBV) infection also have LDGL. To investigate the relationship between EBV infection and the pathogenesis of LDGL, we conducted a survey for EBV DNA sequences by Southern blot analysis of DNA obtained from the peripheral blood of seven patients with LDGL, including one with CAEBV infection. Interestingly, EBV DNA was detected in the sample from the patient with CAEBV infection, and in the samples from four other patients with CD3-LDGL. Moreover, a single band for the joined termini of the EBV genome was demonstrated in two samples, suggesting a clonal disorder of those LDGL. These findings strongly suggest that EBV may play a pathogenic role in some cases of LDGL. Images PMID:2544630

  12. Pressure independence of granular flow through an aperture.

    PubMed

    Aguirre, M A; Grande, J G; Calvo, A; Pugnaloni, L A; Géminard, J-C

    2010-06-11

    We experimentally demonstrate that the flow rate of granular material through an aperture is controlled by the exit velocity imposed on the particles and not by the pressure at the base, contrary to what is often assumed in previous work. This result is achieved by studying the discharge process of a dense packing of monosized disks through an orifice. The flow is driven by a conveyor belt. This two-dimensional horizontal setup allows us to independently control the velocity at which the disks escape the horizontal silo and the pressure in the vicinity of the aperture. The flow rate is found to be proportional to the belt velocity, independent of the amount of disks in the container and, thus, independent of the pressure in the outlet region. In addition, this specific configuration makes it possible to get information on the system dynamics from a single image of the disks that rest on the conveyor belt after the discharge.

  13. New insights from cluster analysis methods for RNA secondary structure prediction

    PubMed Central

    Rogers, Emily; Heitsch, Christine

    2016-01-01

    A widening gap exists between the best practices for RNA secondary structure prediction developed by computational researchers and the methods used in practice by experimentalists. Minimum free energy (MFE) predictions, although broadly used, are outperformed by methods which sample from the Boltzmann distribution and data mine the results. In particular, moving beyond the single structure prediction paradigm yields substantial gains in accuracy. Furthermore, the largest improvements in accuracy and precision come from viewing secondary structures not at the base pair level but at lower granularity/higher abstraction. This suggests that random errors affecting precision and systematic ones affecting accuracy are both reduced by this “fuzzier” view of secondary structures. Thus experimentalists who are willing to adopt a more rigorous, multilayered approach to secondary structure prediction by iterating through these levels of granularity will be much better able to capture fundamental aspects of RNA base pairing. PMID:26971529

  14. Breakage mechanics for granular materials in surface-reactive environments

    NASA Astrophysics Data System (ADS)

    Zhang, Yida; Buscarnera, Giuseppe

    2018-03-01

    It is known that the crushing behaviour of granular materials is sensitive to the state of the fluids occupying the pore space. Here, a thermomechanical theory is developed to link such macroscopic observations with the physico-chemical processes operating at the microcracks of individual grains. The theory relies on the hypothesis that subcritical fracture propagation at intra-particle scale is the controlling mechanism for the rate-dependent, water-sensitive compression of granular specimens. First, the fracture of uniaxially compressed particles in surface-reactive environments is studied in light of irreversible thermodynamics. Such analysis recovers the Gibbs adsorption isotherm as a central component linking the reduction of the fracture toughness of a solid to the increase of vapour concentration. The same methodology is then extended to assemblies immersed in wet air, for which solid-fluid interfaces have been treated as a separate phase. It is shown that this choice brings the solid surface energy into the dissipation equations of the granular matrix, thus providing a pathway to (i) integrate the Gibbs isotherm with the continuum description of particle assemblies and (ii) reproduce the reduction of their yield strength in presence of high relative humidity. The rate-effects involved in the propagation of cracks and the evolution of breakage have been recovered by considering non-homogenous dissipation potentials associated with the creation of surface area at both scales. It is shown that the proposed model captures satisfactorily the compression response of different types of granular materials subjected to varying relative humidity. This result was achieved simply by using parameters based on the actual adsorption characteristics of the constituting minerals. The theory therefore provides a physically sound and thermodynamically consistent framework to study the behaviour of granular solids in surface-reactive environments.

  15. Anaerobic bioremediation of hexavalent uranium in groundwater by reductive precipitation with methanogenic granular sludge.

    PubMed

    Tapia-Rodriguez, Aida; Luna-Velasco, Antonia; Field, Jim A; Sierra-Alvarez, Reyes

    2010-04-01

    Uranium has been responsible for extensive contamination of groundwater due to releases from mill tailings and other uranium processing waste. Past evidence has confirmed that certain bacteria can enzymatically reduce soluble hexavalent uranium (U(VI)) to insoluble tetravalent uranium (U(IV)) under anaerobic conditions in the presence of appropriate electron donors. This paper focuses on the evaluation of anaerobic granular sludge as a source of inoculum for the bioremediation of uranium in water. Batch experiments were performed with several methanogenic anaerobic granular sludge samples and different electron donors. Abiotic controls consisting of heat-killed inoculum and non-inoculated treatments confirmed the biological removal process. In this study, unadapted anaerobic granular sludge immediately reduced U(VI), suggesting an intrinsic capacity of the sludge to support this process. The high biodiversity of anaerobic granular sludge most likely accounts for the presence of specific microorganisms capable of reducing U(VI). Oxidation by O(2) was shown to resolubilize the uranium. This observation combined with X-ray diffraction evidence of uraninite confirmed that the removal during anaerobic treatment was due to reductive precipitation. The anaerobic removal activity could be sustained after several respikes of U(VI). The U(VI) removal was feasible without addition of electron donors, indicating that the decay of endogenous biomass substrates was contributing electron equivalents to the process. Addition of electron donors, such as H(2) stimulated the removal of U(VI) to varying degrees. The stimulation was greater in sludge samples with lower endogenous substrate levels. The present work reveals the potential application of anaerobic granular sludge for continuous bioremediation schemes to treat uranium-contaminated water. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  16. Jammed Humans in High-Density Crowd Disasters

    NASA Astrophysics Data System (ADS)

    Bottinelli, Arianna; Sumpter, David; Silverberg, Jesse

    When people gather in large groups like those found at Black Friday sales events, pilgrimages, heavy metal concerts, and parades, crowd density often becomes exceptionally high. As a consequence, these events can produce tragic outcomes such as stampedes and ''crowd crushes''. While human collective motion has been studied with active particle simulations, the underlying mechanisms for emergent behavior are less well understood. Here, we use techniques developed to study jammed granular materials to analyze an active matter model inspired by large groups of people gathering at a point of common interest. In the model, a single behavioral rule combined with body-contact interactions are sufficient for the emergence of a self-confined steady state, where particles fluctuate around a stable position. Applying mode analysis to this system, we find evidence for Goldstone modes, soft spots, and stochastic resonance, which may be the preferential mechanisms for dangerous emergent collective motions in crowds.

  17. Revisiting ignited-quenched transition and the non-Newtonian rheology of a sheared dilute gas-solid suspension

    NASA Astrophysics Data System (ADS)

    Saha, Saikat; Alam, Meheboob

    2017-12-01

    The hydrodynamics and rheology of a sheared dilute gas-solid suspension, consisting of inelastic hard-spheres suspended in a gas, are analysed using anisotropic Maxwellian as the single particle distribution function. The closed-form solutions for granular temperature and three invariants of the second-moment tensor are obtained as functions of the Stokes number ($St$), the mean density ($\

  18. A High-Granularity Timing Detector for the Phase-II upgrade of the ATLAS calorimeter system: detector concept description and first beam test results

    NASA Astrophysics Data System (ADS)

    Lacour, D.

    2018-02-01

    The expected increase of the particle flux at the high luminosity phase of the LHC (HL-LHC) with instantaneous luminosities up to 7.5ṡ1034 cm-2s-1 will have a severe impact on the ATLAS detector performance. The pile-up is expected to increase on average to 200 interactions per bunch crossing. The reconstruction performance for electrons, photons as well as jets and transverse missing energy will be severely degraded in the end-cap and forward region. A High Granularity Timing Detector (HGTD) is proposed in front of the liquid Argon end-cap and forward calorimeters for pile-up mitigation. This device should cover the pseudo-rapidity range of 2.4 to about 4.0. Low Gain Avalanche Detectors (LGAD) technology has been chosen as it provides an internal gain good enough to reach large signal over noise ratio needed for excellent time resolution. The requirements and overall specifications of the High Granular Timing Detector at the HL-LHC will be presented as well as the conceptual design of its mechanics and electronics. Beam test results and measurements of irradiated LGAD silicon sensors, such as gain and timing resolution, will be shown.

  19. An experimental study of ultrasonic vibration and the penetration of granular material

    PubMed Central

    Firstbrook, David; Worrall, Kevin; Timoney, Ryan; Suñol, Francesc; Gao, Yang

    2017-01-01

    This work investigates the potential use of direct ultrasonic vibration as an aid to penetration of granular material. Compared with non-ultrasonic penetration, required forces have been observed to reduce by an order of magnitude. Similarly, total consumed power can be reduced by up to 27%, depending on the substrate and ultrasonic amplitude used. Tests were also carried out in high-gravity conditions, displaying a trend that suggests these benefits could be leveraged in lower gravity regimes. PMID:28293134

  20. Challenges of Particle Flow reconstruction in the CMS High-Granularity Calorimeter at the High-Luminosity LHC

    NASA Astrophysics Data System (ADS)

    Chlebana, Frank; CMS Collaboration

    2017-11-01

    The challenges of the High-Luminosity LHC (HL-LHC) are driven by the large number of overlapping proton-proton collisions (pileup) in each bunch-crossing and the extreme radiation dose to detectors at high pseudorapidity. To overcome this challenge CMS is developing an endcap electromagnetic+hadronic sampling calorimeter employing silicon sensors in the electromagnetic and front hadronic sections, comprising over 6 million channels, and highly-segmented plastic scintillators in the rear part of the hadronic section. This High- Granularity Calorimeter (HGCAL) will be the first of its kind used in a colliding beam experiment. Clustering deposits of energy over many cells and layers is a complex and challenging computational task, particularly in the high-pileup environment of HL-LHC. Baseline detector performance results are presented for electromagnetic and hadronic objects, and studies demonstrating the advantages of fine longitudinal and transverse segmentation are explored.

  1. TREATMENT OF LANDFILL LEACHATE BY COUPLING COAGULATION-FLOCCULATION OR OZONATION TO GRANULAR ACTIVATED CARBON ADSORPTION.

    PubMed

    Oloibiri, Violet; Ufomba, Innocent; Chys, Michael; Audenaert, Wim; Demeestere, Kristof; Van Hulle, Stijn W H

    2015-01-01

    A major concern for landfilling facilities is the treatment of their leachate. To optimize organic matter removal from this leachate, the combination of two or more techniques is preferred in order to meet stringent effluent standards. In our study, coagulation-flocculation and ozonation are compared as pre- treatment steps for stabilized landfill leachate prior to granular activated carbon (GAC) adsorption. The efficiency of the pre treatment techniques is evaluated using COD and UVA254 measurements. For coagulation- flocculation, different chemicals are compared and optimal dosages are determined. After this, iron (III) chloride is selected for subsequent adsorption studies due to its high percentage of COD and UVA254 removal and good sludge settle-ability. Our finding show that ozonation as a single treatment is effective in reducing COD in landfill leachate by 66% compared to coagulation flocculation (33%). Meanwhile, coagulation performs better in UVA254 reduction than ozonation. Subsequent GAC adsorption of ozonated effluent, coagulated effluent and untreated leachate resulted in 77%, 53% and 8% total COD removal respectively (after 6 bed volumes). The effect of the pre-treatment techniques on GAC adsorption properties is evaluated experimentally and mathematically using Thomas and Yoon-Nelson models. Mathematical modelling of the experimental GAC adsorption data shows that ozonation increases the adsorption capacity and break through time with a factor of 2.5 compared to coagulation-flocculation.

  2. The effect of texture granularity on texture synthesis quality

    NASA Astrophysics Data System (ADS)

    Golestaneh, S. Alireza; Subedar, Mahesh M.; Karam, Lina J.

    2015-09-01

    Natural and artificial textures occur frequently in images and in video sequences. Image/video coding systems based on texture synthesis can make use of a reliable texture synthesis quality assessment method in order to improve the compression performance in terms of perceived quality and bit-rate. Existing objective visual quality assessment methods do not perform satisfactorily when predicting the synthesized texture quality. In our previous work, we showed that texture regularity can be used as an attribute for estimating the quality of synthesized textures. In this paper, we study the effect of another texture attribute, namely texture granularity, on the quality of synthesized textures. For this purpose, subjective studies are conducted to assess the quality of synthesized textures with different levels (low, medium, high) of perceived texture granularity using different types of texture synthesis methods.

  3. Microgravity Experiments to Evaluate Electrostatic Forces in Controlling Cohesion and Adhesion of Granular Materials

    NASA Technical Reports Server (NTRS)

    Marshall, J.; Weislogel, M.; Jacobson, T.

    1999-01-01

    The bulk behavior of dispersed, fluidized, or undispersed stationary granular systems cannot be fully understood in terms of adhesive/cohesive properties without understanding the role of electrostatic forces acting at the level of the grains themselves. When grains adhere to a surface, or come in contact with one another in a stationary bulk mass, it is difficult to measure the forces acting on the grains, and the forces themselves that induced the cohesion and adhesion are changed. Even if a single gain were to be scrutinized in the laboratory, it might be difficult, perhaps impossible, to define the distribution and character of surface charging and the three- dimensional relationship that charges (electrons, holes) have to one another. The hypothesis that we propose to test in microgravity (for dielectric materials) is that adhesion and cohesion of granular matter are mediated primarily by dipole forces that do not require the presence of a net charge; in fact, nominally electrically neutral materials should express adhesive and cohesive behavior when the neutrality results from a balance of positive and negative charge carriers. Moreover, the use of net charge alone as a measure of the electrical nature of grain-to-grain relationships within a granular mass may be misleading. We believe that the dipole forces arise from the presence of randomly-distributed positive and negative fixed charge carriers on grains that give rise to a resultant dipole moment. These dipole forces have long-range attraction. Random charges are created whenever there is triboelectrical activity of a granular mass, that is, whenever the grains experience contact/separation sequences or friction. Electrostatic forces are generally under-estimated for their role in causing agglomeration of dispersed grains in particulate clouds, or their role in affecting the internal frictional relationships in packed granular masses. We believe that electrostatic, in particular dipole-mediated processes, are pervasive and probably affect, at some level, everything from astrophysical-scale granular systems such as interstellar nebulae, protoplanetary dust and debris disks, planetary-scale systems such as debris palls from meteorite impact, volcanic eruptions, and aeolian dust storms, all the way to industrial-scale systems in mining, powder and grain processing, pharmaceuticals, and smoke-stack technologies. NASA must concern itself with the electrostatic behavior of dust and sand on Mars because of its potentially critical importance to human exploration. The motion and adhesion of martian surface materials will affect the design and performance of spacesuits, habitats, processing plants, solar panels, and any externally exposed equipment such as surface rovers or communication and weather stations. Additionally, the adhesion of dust and sand could greatly enhance contact with the potentially toxic components of the martian soil.

  4. Immobilization of Cr(VI) and Its Reduction to Cr(III) Phosphate by Granular Biofilms Comprising a Mixture of Microbes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nancharaiah, Y.V.; Francis, A.; Dodge, C.

    2010-04-01

    We assessed the potential of mixed microbial consortia, in the form of granular biofilms, to reduce chromate and remove it from synthetic minimal medium. In batch experiments, acetate-fed granular biofilms incubated aerobically reduced 0.2 mM Cr(VI) from a minimal medium at 0.15 mM day-1 g-1, with reduction of 0.17 mM day-1 g-1 under anaerobic conditions. There was negligible removal of Cr(VI) (i) without granular biofilms, (ii) with lyophilized granular biofilms, and (iii) with granules in the absence of an electron donor. Analyses by X-ray absorption near edge spectroscopy (XANES) of the granular biofilms revealed the conversion of soluble Cr(VI) tomore » Cr(III). Extended X-ray absorption fine-structure (EXAFS) analysis of the Cr-laden granular biofilms demonstrated similarity to Cr(III) phosphate, indicating that Cr(III) was immobilized with phosphate on the biomass subsequent to microbial reduction. The sustained reduction of Cr(VI) by granular biofilms was confirmed in fed-batch experiments. Our study demonstrates the promise of granular-biofilm-based systems in treating Cr(VI)-containing effluents and wastewater.« less

  5. Friction on a granular-continuum interface: Effects of granular media

    NASA Astrophysics Data System (ADS)

    Ecke, Robert; Geller, Drew

    We consider the frictional interactions of two soft plates with interposed granular material subject to normal and shear forces. The plates are soft photo-elastic material, have length 50 cm, and are separated by a gap of variable width from 0 to 20 granular particle diameters. The granular materials are two-dimensional rods that are bi-dispersed in size to prevent crystallization. Different rod materials with frictional coefficients between 0 . 04 < μ < 0 . 5 are used to explore the effects of inter-granular friction on the effective friction of a granular medium. The gap is varied to test the dependence of the friction coefficient on the thickness of the granular layer. Because the soft plates absorb most of the displacement associated with the compressional normal force, the granular packing fractions are close to a jamming threshold, probably a shear jamming criterion. The overall shear and normal forces are measured using force sensors and the local strain tensor over a central portion of the gap is obtained using relative displacements of fiducial markers on the soft elastic material. These measurements provide a good characterization of the global and local forces giving rise to an effective friction coefficient. Funded by US DOE LDRD Program.

  6. 21 CFR 133.145 - Granular cheese for manufacturing.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Granular cheese for manufacturing. 133.145 Section... (CONTINUED) FOOD FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.145 Granular cheese for manufacturing. Granular cheese for...

  7. 21 CFR 133.145 - Granular cheese for manufacturing.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Granular cheese for manufacturing. 133.145 Section... (CONTINUED) FOOD FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.145 Granular cheese for manufacturing. Granular cheese for...

  8. Multiscale Phenomena in the Solid-Liquid Transition State of a Granular Material: Analysis and Modelling of Dense Granular Materials

    DTIC Science & Technology

    2011-09-26

    most challenging to characterize and model of the gamut of granular behaviour encountered in practice. In particular, it exhibits self-organized...is intrinsically multiscale and is arguably one of, if not, the most challenging to characterize and model of the gamut of granular behaviour...the most challenging to characterize and model of the gamut of granular behaviour encountered in practice. In particular, it exhibits self-organized

  9. A hydrodynamic model for granular material flows including segregation effects

    NASA Astrophysics Data System (ADS)

    Gilberg, Dominik; Klar, Axel; Steiner, Konrad

    2017-06-01

    The simulation of granular flows including segregation effects in large industrial processes using particle methods is accurate, but very time-consuming. To overcome the long computation times a macroscopic model is a natural choice. Therefore, we couple a mixture theory based segregation model to a hydrodynamic model of Navier-Stokes-type, describing the flow behavior of the granular material. The granular flow model is a hybrid model derived from kinetic theory and a soil mechanical approach to cover the regime of fast dilute flow, as well as slow dense flow, where the density of the granular material is close to the maximum packing density. Originally, the segregation model has been formulated by Thornton and Gray for idealized avalanches. It is modified and adapted to be in the preferred form for the coupling. In the final coupled model the segregation process depends on the local state of the granular system. On the other hand, the granular system changes as differently mixed regions of the granular material differ i.e. in the packing density. For the modeling process the focus lies on dry granular material flows of two particle types differing only in size but can be easily extended to arbitrary granular mixtures of different particle size and density. To solve the coupled system a finite volume approach is used. To test the model the rotational mixing of small and large particles in a tumbler is simulated.

  10. Recent bright gully deposits on Mars: Wet or dry flow?

    USGS Publications Warehouse

    Pelletier, J.D.; Kolb, K.J.; McEwen, A.S.; Kirk, R.L.

    2008-01-01

    Bright gully sediments attributed to liquid water flow have been deposited on Mars within the past several years. To test the liquid water flow hypothesis, we constructed a high-resolution (1 m/pixel) photogrammetric digital elevation model of a crater in the Centauri Montes region, where a bright gully deposit formed between 2001 and 2005. We conducted one-dimensional (1-D) and 2-D numerical flow modeling to test whether the deposit morphology is most consistent with liquid water or dry granular How. Liquid water flow models that incorporate freezing can match the runout distance of the flow for certain freezing rates but fail to reconstruct the distributary lobe morphology of the distal end of the deposit. Dry granular flow models can match both the observed runout distance and the distal morphology. Wet debris flows with high sediment concentrations are also consistent with the observed morphology because their rheologies are often similar to that of dry granular flows. As such, the presence of liquid water in this flow event cannot be ruled out, but the available evidence is consistent with dry landsliding. ?? 2008 The Geological Society of America.

  11. 21 CFR 133.145 - Granular cheese for manufacturing.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Granular cheese for manufacturing. 133.145 Section 133.145 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... Standardized Cheese and Related Products § 133.145 Granular cheese for manufacturing. Granular cheese for...

  12. Preliminary Results of a Microgravity Investigation to Measure Net Charge on Granular Materials

    NASA Technical Reports Server (NTRS)

    Green, Robert D.; Myers, Jerry G.; Hansen, Bonnie L.

    2003-01-01

    Accurate characterization of the electrostatic charge on granular materials has typically been limited to materials with diameters on the order of 10 microns and below due to high settling velocities of larger particles. High settling velocities limit both the time and the acceptable uncertainty with which a measurement can be made. A prototype device has been developed at NASA Glenn Research Center (GRC) to measure coulombic charge on individual particles of granular materials that are 50 to 500 microns in diameter. This device, a novel extension of Millikan's classic oil drop experiment, utilizes the NASA GRC 2.2 second drop tower to extend the range of electrostatic charge measurements to accommodate moderate size granular materials. A dielectric material with a nominal grain diameter between 1.06 and 250 microns was tribocharged using a dry gas jet, suspended in a 5x10x10 cm enclosure during a 2.2 second period of microgravity and exposed to a known electric field. The response was recorded on video and post processed to allow tracking of individual particles. By determining the particle trajectory and velocity, estimates of the coulombic charge were made. Over 30 drops were performed using this technique and the analysis showed that first order approximations of coulombic charge could successfully be obtained, with the mean charge of 3.4E-14 coulombs measured for F-75 Ottawa quartz sand. Additionally, the measured charge showed a near-Gaussian distribution, with a standard deviation of 2.14E -14 coulombs.

  13. Impact of surface energy on the shock properties of granular explosives.

    PubMed

    Bidault, X; Pineau, N

    2018-01-21

    This paper presents the first part of a two-fold molecular dynamics study of the impact of the granularity on the shock properties of high explosives. Recent experimental studies show that the granularity can have a substantial impact on the properties of detonation products {i.e., variations in the size distributions of detonation nanodiamonds [V. Pichot et al., Sci. Rep. 3, 2159 (2013)]}. These variations can have two origins: the surface energy, which is a priori enhanced from micro- to nano-scale, and the porosity induced by the granular structure. In this first report, we study the impact of the surface-energy contribution on the inert shock compression of TATB, TNT, α-RDX, and β-HMX nano-grains (triaminotrinitrobenzene, trinitrotoluene, hexogen and octogen, respectively). We compute the radius-dependent surface energy and combine it with an ab initio-based equation of state in order to obtain the resulting shock properties through the Rankine-Hugoniot relations. We find that the enhancement of the surface energy results in a moderate overheating under shock compression. This contribution is minor with respect to porosity, when compared to a simple macroscopic model. This result motivates further atomistic studies on the impact of nanoporosity networks on the shock properties.

  14. Effect of filter media size, mass flow rate and filtration stage number in a moving-bed granular filter on the yield and properties of bio-oil from fast pyrolysis of biomass.

    PubMed

    Paenpong, Chaturong; Inthidech, Sudsakorn; Pattiya, Adisak

    2013-07-01

    Fast pyrolysis of cassava rhizome was performed in a bench-scale fluidised-bed reactor unit incorporated with a cross-flow moving-bed granular filter. The objective of this research was to examine several process parameters including the granular size (425-1160 μm) and mass flow rate (0-12 g/min) as well as the number of the filtration stages (1-2 stages) on yields and properties of bio-oil. The results showed that the bio-oil yield decreased from 57.7 wt.% to 42.0-49.2 wt.% when increasing the filter media size, the mass flow rate and the filtration stage number. The effect of the process parameters on various properties of bio-oil is thoroughly discussed. In general, the bio-oil quality in terms of the solids content, ash content, initial viscosity, viscosity change and ageing rate could be enhanced by the hot vapour granular filtration. Therefore, bio-oil of high stability could be produced by the pyrolysis reactor configuration designed in this work. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Increasing the formability of ferritic stainless steel tube by granular medium-based hot forming

    NASA Astrophysics Data System (ADS)

    Chen, H.; Staupendahl, D.; Hiegemann, L.; Tekkaya, A. E.

    2017-09-01

    Ferritic stainless steel without the alloy constituent nickel is an economical substitution for austenitic stainless steel in the automotive industry. Its lower formability, however, oftentimes prevents the direct material substitution in forming processes such as hydroforming, necessitating new forming strategies. To extend the forming capacity of ferritic stainless steel tube, the approach of forming at elevated temperatures is proposed. Utilizing granular material as forming medium, high forming temperatures up to 900°C are realized. The forming process works by moving punches axially into the granular medium, thereby, compressing it and causing axial as well as radial pressure. In experimental and numerical investigations it is shown that interfacial friction between the granular medium and the tube inherently causes tube feed, resulting in stain states in the tension-compression region of the FLD. Formability data for this region are gained by notched tensile tests, which are performed at room temperature as well as at elevated temperatures. The measured data show that the formability is improved at forming temperatures higher than 700°C. This observed formability increase is experimentally validated using a demonstrator geometry, which reaches expansion ratios that show fracture in specimens formed at room temperature.

  16. Enhanced spin-dependent charge transport of Co-(Al-fluoride) granular nanocomposite by co-separate sputtering

    NASA Astrophysics Data System (ADS)

    Cao, Yang; Kobayashi, Nobukiyo; Zhang, Yi-Wen; Ohnuma, Shigehiro; Masumoto, Hiroshi

    2017-10-01

    Spin-dependent charge transport behavior involving the recently discovered tunnel-type magneto-dielectric (TMD) and magnetoresistance (TMR) effects was studied in Co-(Al-fluoride) granular nanocomposites. By setting a changeable partition height (t = 1-4 cm) on a substrate holder in a conventional co-sputtering (CS) deposition system, we developed a co-separate sputtering (CSS) method to fabricate Co-(Al-F) granular nanocomposites. XPS analysis shows that the Al content remains balanced between the Al metal and Al-F compounds by controlling t. This phenomenon can be attributed to the magnetron plasma interference from the two target sources. Fittings between TMR and normalized magnetization suggest that the CSS films with clear granular structures may have high spin polarization. Compared with the CS samples (t = 0 cm), the CSS films with t = 4 cm show enhanced charge transport properties with a maximum TMD ratio (0.5%) and TMR ratio (7.2%) under a magnetic field of H = 10 kOe. This study demonstrates that the Al-F tunnel barrier between Co granules plays an essential role in controlling the charge transport behavior and will be of significance for applications in field sensors and impedance-tunable devices with large magnetic-field response.

  17. Simulation of cemented granular materials. I. Macroscopic stress-strain response and strain localization.

    PubMed

    Estrada, Nicolas; Lizcano, Arcesio; Taboada, Alfredo

    2010-07-01

    This is the first of two papers investigating the mechanical response of cemented granular materials by means of contact dynamics simulations. In this paper, a two-dimensional polydisperse sample with high-void ratio is constructed and then sheared in a simple shear numerical device at different confinement levels. We study the macroscopic response of the material in terms of mean and deviatoric stresses and strains. We show that the introduction of a local force scale, i.e., the tensile strength of the cemented bonds, causes the material to behave in a rigid-plastic fashion, so that a yield surface can be easily determined. This yield surface has a concave-down shape in the mean:deviatoric stress plane and it approaches a straight line, i.e., a Coulomb strength envelope, in the limit of a very dense granular material. Beyond yielding, the cemented structure gradually degrades until the material eventually behaves as a cohesionless granular material. Strain localization is also investigated, showing that the strains concentrate in a shear band whose thickness increases with the confining stress. The void ratio inside the shear band at the steady state is shown to be a material property that depends only on contact parameters.

  18. Simulation of cemented granular materials. II. Micromechanical description and strength mobilization at the onset of macroscopic yielding.

    PubMed

    Estrada, Nicolas; Lizcano, Arcesio; Taboada, Alfredo

    2010-07-01

    This is the second of two papers investigating the mechanical response of cemented granular materials by means of contact dynamics simulations. In this paper, a two-dimensional polydisperse sample with high void ratio is sheared in a load-controlled simple shear numerical device until the stress state of the sample reaches the yield stress. We first study the stress transmission properties of the granular material in terms of the fabric of different subsets of contacts characterized by the magnitude of their normal forces. This analysis highlights the existence of a peculiar force carrying structure in the cemented material, which is reminiscent of the bimodal stress transmission reported for cohesionless granular media. Then, the evolution of contact forces and torques is investigated trying to identify the micromechanical conditions that trigger macroscopic yielding. It is shown that global failure can be associated to the apparition of a group of particles whose contacts fulfill at least one of the local rupture conditions. In particular, these particles form a large region that percolates through the sample at the moment of failure, evidencing the relationship between macroscopic yielding and the emergence of large-scale correlations in the system.

  19. Modeling of submicrometer aerosol penetration through sintered granular membrane filters.

    PubMed

    Marre, Sonia; Palmeri, John; Larbot, André; Bertrand, Marielle

    2004-06-01

    We present a deep-bed aerosol filtration model that can be used to estimate the efficiency of sintered granular membrane filters in the region of the most penetrating particle size. In this region the capture of submicrometer aerosols, much smaller than the filter pore size, takes place mainly via Brownian diffusion and direct interception acting in synergy. By modeling the disordered sintered grain packing of such filters as a simple cubic lattice, and mapping the corresponding 3D connected pore volume onto a discrete cylindrical pore network, the efficiency of a granular filter can be estimated, using new analytical results for the efficiency of cylindrical pores. This model for aerosol penetration in sintered granular filters includes flow slip and the kinetics of particle capture by the pore surface. With a unique choice for two parameters, namely the structural tortuosity and effective kinetic coefficient of particle adsorption, this semiempirical model can account for the experimental efficiency of a new class of "high-efficiency particulate air" ceramic membrane filters as a function of particle size over a wide range of filter thickness and texture (pore size and porosity) and operating conditions (face velocity).

  20. Impact of surface energy on the shock properties of granular explosives

    NASA Astrophysics Data System (ADS)

    Bidault, X.; Pineau, N.

    2018-01-01

    This paper presents the first part of a two-fold molecular dynamics study of the impact of the granularity on the shock properties of high explosives. Recent experimental studies show that the granularity can have a substantial impact on the properties of detonation products {i.e., variations in the size distributions of detonation nanodiamonds [V. Pichot et al., Sci. Rep. 3, 2159 (2013)]}. These variations can have two origins: the surface energy, which is a priori enhanced from micro- to nano-scale, and the porosity induced by the granular structure. In this first report, we study the impact of the surface-energy contribution on the inert shock compression of TATB, TNT, α-RDX, and β-HMX nano-grains (triaminotrinitrobenzene, trinitrotoluene, hexogen and octogen, respectively). We compute the radius-dependent surface energy and combine it with an ab initio-based equation of state in order to obtain the resulting shock properties through the Rankine-Hugoniot relations. We find that the enhancement of the surface energy results in a moderate overheating under shock compression. This contribution is minor with respect to porosity, when compared to a simple macroscopic model. This result motivates further atomistic studies on the impact of nanoporosity networks on the shock properties.

  1. Performance and microbial community composition dynamics of aerobic granular sludge from sequencing batch bubble column reactors operated at 20 degrees C, 30 degrees C, and 35 degrees C.

    PubMed

    Ebrahimi, Sirous; Gabus, Sébastien; Rohrbach-Brandt, Emmanuelle; Hosseini, Maryam; Rossi, Pierre; Maillard, Julien; Holliger, Christof

    2010-07-01

    Two bubble column sequencing batch reactors fed with an artificial wastewater were operated at 20 degrees C, 30 degrees C, and 35 degrees C. In a first stage, stable granules were obtained at 20 degrees C, whereas fluffy structures were observed at 30 degrees C. Molecular analysis revealed high abundance of the operational taxonomic unit 208 (OTU 208) affiliating with filamentous bacteria Leptothrix spp. at 30 degrees C, an OTU much less abundant at 20 degrees C. The granular sludge obtained at 20 degrees C was used for the second stage during which one reactor was maintained at 20 degrees C and the second operated at 30 degrees C and 35 degrees C after prior gradual increase of temperature. Aerobic granular sludge with similar physical properties developed in both reactors but it had different nutrient elimination performances and microbial communities. At 20 degrees C, acetate was consumed during anaerobic feeding, and biological phosphorous removal was observed when Rhodocyclaceae-affiliating OTU 214 was present. At 30 degrees C and 35 degrees C, acetate was mainly consumed during aeration and phosphorous removal was insignificant. OTU 214 was almost absent but the Gammaproteobacteria-affiliating OTU 239 was more abundant than at 20 degrees C. Aerobic granular sludge at all temperatures contained abundantly the OTUs 224 and 289 affiliating with Sphingomonadaceae indicating that this bacterial family played an important role in maintaining stable granular structures.

  2. Contactor/filter improvements

    DOEpatents

    Stelman, D.

    1988-06-30

    A contactor/filter arrangement for removing particulate contaminants from a gaseous stream is described. The filter includes a housing having a substantially vertically oriented granular material retention member with upstream and downstream faces, a substantially vertically oriented microporous gas filter element, wherein the retention member and the filter element are spaced apart to provide a zone for the passage of granular material therethrough. A gaseous stream containing particulate contaminants passes through the gas inlet means as well as through the upstream face of the granular material retention member, passing through the retention member, the body of granular material, the microporous gas filter element, exiting out of the gas outlet means. A cover screen isolates the filter element from contact with the moving granular bed. In one embodiment, the granular material is comprised of porous alumina impregnated with CuO, with the cover screen cleaned by the action of the moving granular material as well as by backflow pressure pulses. 6 figs.

  3. Onset of sediment transport is a continuous transition driven by fluid shear and granular creep.

    PubMed

    Houssais, Morgane; Ortiz, Carlos P; Durian, Douglas J; Jerolmack, Douglas J

    2015-03-09

    Fluid-sheared granular transport sculpts landscapes and undermines infrastructure, yet predicting the onset of sediment transport remains notoriously unreliable. For almost a century, this onset has been treated as a discontinuous transition at which hydrodynamic forces overcome gravity-loaded grain-grain friction. Using a custom laminar-shear flume to image slow granular dynamics deep into the bed, here we find that the onset is instead a continuous transition from creeping to granular flow. This transition occurs inside the dense granular bed at a critical viscous number, similar to granular flows and colloidal suspensions and inconsistent with hydrodynamic frameworks. We propose a new phase diagram for sediment transport, where 'bed load' is a dense granular flow bounded by creep below and suspension above. Creep is characteristic of disordered solids and reminiscent of soil diffusion on hillslopes. Results provide new predictions for the onset and dynamics of sediment transport that challenge existing models.

  4. Dynamic weakening is limited by granular dynamics

    NASA Astrophysics Data System (ADS)

    Kuwano, O.; Hatano, T.

    2011-12-01

    Earthquakes are the result of the frictional instability of faults containing fine rock powders called gouge derived from attrition in past fault motions. Understanding the frictional instability of granular matter in terms of constitutive laws is thus important. Because of the importance of granular matter for industries and engineering, the friction of granular matter has been studied in the field of solid earth science and other fields, such as statistical physics. In solid earth science, the rate- and state-dependent friction law was established by laboratory experiments at a very low sliding velocity (μm/s to mm/s). Recent experiments conducted at sub-seismic to seismic sliding velocities (mm/s to m/s), however, show that frictional properties are much richer than those predicted by the rate- and state-dependent friction law. One of the most important findings in such experiments is the remarkable weakening due to mechano-chemical effects by frictional heating [Tullis, 2007]. In statistical physics, another empirical law holds for much faster deformation than the former, showing positive shear-rate dependence. Until Recently, friction of granular matter has been investigated independently in the fields of solid earth science and statistical physics, and thus the relation between these distinct constitutive laws is not clear. Recently, some experimental studies have been reported to connect the achievements in these two fields. For example, a laboratory experiment on dry glass beads under very low normal stress (0.02 to 0.05 MPa) in which the frictional heat is negligible reveals the transition from velocity-weakening friction at low sliding velocities to velocity-strengthening friction at high sliding velocities [Kuwano et al., 2011]. Importantly, the velocity-strengthening nature at high sliding velocities is quantitatively the same as those observed in simulations. The inelastic deformation of the grains therefore plays a vital role at high sliding velocities. In this study, we report a friction experiment under higher pressure (0.1 to 0.9 MPa), in which the frictional heat is significant. To clarify the effect of frictional heat in high-speed friction systematically, we investigated both the pressure and the velocity dependence of the friction coefficient over a wide range of sliding velocities ranging from aseismic to seismic slip velocities. We observed considerable weakening, described well by a flash-heating theory, above the sliding velocity of 1 cm/s regardless of pressure. At higher velocities, the velocity strengthening behavior replaced the velocity weakening behavior. This strengthening at higher velocities agrees with data from numerical simulations on sheared granular matter and is therefore described in terms of energy dissipation due to the inelastic deformation of grains. We propose a unified steady-state friction law that well describes the velocity and pressure dependence of the steady-state friction coefficient.

  5. Introduction

    NASA Astrophysics Data System (ADS)

    Starosvetsky, Yuli; Jayaprakash, K. R.; Hasan, Md. Arif; Vakakis, Alexander F.

    The study of mechanics of granular media dates back to the era of Coulomb. He was the first to postulate the yield condition for homogeneous solids and also conditions for failure in granular media [1-4]. In fact the ideal Coulomb material is the simplest granular material model wherein the shear stress along a plane is linearly proportional to the normal stress on that plane. This can be considered analogous to the Coulomb friction model in cohesion-free interfaces between solids. Initial research in this domain focused mainly on the statics of granular materials from a soil mechanics perspective. However, as the applications of granular materials broadened, the objectives of different research communities contradicted. For example, in geophysics or soil mechanics the objective is to regard granular media with properties of a solid in order to take considerable loads without yielding; on the other hand, in food grain or pharmaceutical industries the granular media is considered as fluids and their rheological properties are of interest. In fact granular media can exhibit both of these behaviors (and also the properties of a gas), and such unique features pave the way for their broad range applications...

  6. Cytogenetic and molecular genetic study on granular cell glioblastoma: a case report.

    PubMed

    Joo, Mee; Park, Sung-Hye; Chang, Sun Hee; Kim, Hanseong; Choi, Chan-Young; Lee, Chae-Heuck; Lee, Byung Hoon; Hwang, Yoon Joon

    2013-02-01

    Granular cell astrocytoma is a rare infiltrative malignant glioma with prominent granular cell change. Granular cell astrocytomas are biologically aggressive compared with conventional infiltrating astrocytomas of similar grades, but their genetic alterations are poorly known. We report a case of granular cell glioblastoma and its genetic and molecular features. Histologically, the tumor not only showed features typical of granular cell astrocytoma but also demonstrated frequent mitoses, pseudopalisading necrosis, and vascular endothelial hyperplasia, compatible with glioblastoma. Array-based comparative genomic hybridization and focused molecular genetic analyses demonstrated gain of chromosome 7; losses of chromosome 1p, 8p, 9p, 10, 13q, and 22q; amplification of epidermal growth factor receptor; and homozygous deletion of CDKN2A as well as MGMT promoter methylation. However, neither isocitrate dehydrogenase 1 mutation nor codeletion of 1p/19q was found. Our results indicate that granular cell glioblastomas, despite having its peculiar granular cell changes, share common molecular genetic features with conventional glioblastoma, especially the classical subtype. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. [Soil biological activities at maize seedling stage under application of slow/controlled release nitrogen fertilizers].

    PubMed

    Li, Dongpo; Wu, Zhijie; Chen, Lijun; Liang, Chenghua; Zhang, Lili; Wang, Weicheng; Yang, Defu

    2006-06-01

    With pot experiment and simulating field ecological environment, this paper studied the effects of different slow/ controlled release N fertilizers on the soil nitrate - reductase and urease activities and microbial biomass C and N at maize seedling stage. The results showed that granular urea amended with dicyandiamide (DCD) and N-(n-bultyl) thiophosphoric triamide (NBPT) induced the highest soil nitrate-reductase activity, granular urea brought about the highest soil urease activity and microbial biomass C and N, while starch acetate (SA)-coated granular urea, SA-coated granular urea amended with DCD, methyl methacrylate (MMA) -coated granular urea amended with DCD, and no N fertilization gave a higher soil urease activity. Soil microbial C and N had a similar variation trend after applying various kinds of test slow/controlled release N fertilizers, and were the lowest after applying SA-coated granular urea amended with DCD and NBPT. Coated granular urea amended with inhibitors had a stronger effect on soil biological activities than coated granular urea, and MMA-coating had a better effect than SA-coating.

  8. Contactor/filter improvements

    DOEpatents

    Stelman, David

    1989-01-01

    A contactor/filter arrangement for removing particulate contaminants from a gaseous stream includes a housing having a substantially vertically oriented granular material retention member with upstream and downstream faces, a substantially vertically oriented microporous gas filter element, wherein the retention member and the filter element are spaced apart to provide a zone for the passage of granular material therethrough. The housing further includes a gas inlet means, a gas outlet means, and means for moving a body of granular material through the zone. A gaseous stream containing particulate contaminants passes through the gas inlet means as well as through the upstream face of the granular material retention member, passing through the retention member, the body of granular material, the microporous gas filter element, exiting out of the gas outlet means. Disposed on the upstream face of the filter element is a cover screen which isolates the filter element from contact with the moving granular bed and collects a portion of the particulates so as to form a dust cake having openings small enough to exclude the granular material, yet large enough to receive the dust particles. In one embodiment, the granular material is comprised of prous alumina impregnated with CuO, with the cover screen cleaned by the action of the moving granular material as well as by backflow pressure pulses.

  9. Fluctuation conductivity effects on thermoelectric power of granular Bi/sub 1. 75/Pb/sub 0. 25/Ca/sub 2/Sr/sub 2/Cu/sub 3/O/sub 10/ superconductor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laurent, C.; Patapis, S.K.; Luo, H.L.

    1989-04-10

    The authors report precise measurements of the thermoelectric power (TEP) of granular superconducting Bi/sub 1.75/Pb/sub 0.25/Ca/sub 2/Sr/sub 2/Cu/sub 3/O/sub 10/. The TEP is strictly linear at high temperature. Superconductivity fluctuations set in at about 140 K. From the temperature derivative of the excess TEP (with respect to a straight line at ''high temperature''), the critical behavior is obtained in the mean field regime, and is found identical to that of the temperature derivative of the excess electrical resistivity.

  10. Fabrication of superhydrophilic and underwater superoleophobic metal mesh by laser treatment and its application

    NASA Astrophysics Data System (ADS)

    Yu, Peng; Lian, Zhongxu; Xu, Jinkai; Yu, Zhanjiang; Ren, Wanfei; Yu, Huadong

    2018-04-01

    In this paper, a lot of micron-sized sand granular structures were formed on the substrate of the stainless steel mesh (SSM) by laser treatment. The rough surface with sand granular structures showed superhydrophilic in air and superoleophobic under water. With its special wettability, the SSM by laser treatment could achieve the separation of the oil/water mixture, showing good durability and high separation efficiency, which was very useful in the practical application of large-scale oil/water separation facility for reducing the impacts of oil leaked on the environment. In addition, it showed that the laser-treated SSM had a very high separation rate. The development of the laser-treated SSM is a simple, environmental, economical and high-efficiency method, which provides a new approach to the production of high efficiency facilities for oil/water separation.

  11. Ramifications of projectile velocity on the ballistic dart penetration of sand

    NASA Astrophysics Data System (ADS)

    Sable, Peter Anthony

    With the advent of novel in-situ experimental measurement techniques, highly resolved quantitative observations of dynamic events within granular media can now be made. In particular, high speed imagery and digital analysis now allow for the ballistic behaviors of sand to be examined not only across a range of event velocities but across multiple length scales. In an attempt to further understand the dynamic behavior of granular media, these new experimental developments were implemented utilizing high speed photography coupled with piezo-electric stress gauges to observe visually accessible ballistic events of a dart penetrating Ottawa sand. Projectile velocities ranged from 100 to over 300 meters per second with two distinct chosen fields of view to capture bulk and grain-scale behaviors. Each event was analyzed using the digital image correlation technique, particle image velocimetry from which two dimensional, temporally resolved, velocity fields were extracted, from which bulk granular flow and compaction wave propagation were observed and quantified. By comparing bulk, in situ, velocity field behavior resultant from dart penetration, momentum transfer could be quantified measuring radius of influence or dilatant fluid approximations from which a positive correlation was found across the explored velocity regime, including self similar tendencies. This was, however, not absolute as persistent scatter was observed attributed to granular heterogeneous effects. These were tentatively measured in terms of an irreversible energy amount calculated via energy balance. Grain scale analysis reveals analogous behavior to the bulk response with more chaotic structure, though conclusions were limited by the image processing method to qualitative observations. Even so, critical granular behaviors could be seen, such as densification, pore collapse, and grain fracture from which basic heterogeneous phenomena could be examined. These particularly dominated near nose interactions at high projectile velocities. Resulting empirical models and observations from all approaches provide a baseline from which other studies across may be compared, a metric against which penetrator effectiveness may be evaluated, and an alternative way to validate computationally based analyses. Velocity analysis was further contrasted with piezo-resistive stress gauge data in an effort to pair heterogeneous mechanisms in the bulk stress response. Phenomena such as grain fracture and densification were successfully observed in conjunction with a unique stress signature. Comparing stress responses across the tested velocity spectrum confirm conditional similitude with deviations a low projectile velocities attributed to domination by heterogeneous mechanisms.

  12. Temperature behavior of the magnetoresistance hysteresis in a granular high-temperature superconductor: Magnetic flux compression in the intergrain medium

    NASA Astrophysics Data System (ADS)

    Semenov, S. V.; Balaev, D. A.

    2018-07-01

    Granular high-temperature superconductors (HTSs) are characterized by the hysteretic behavior of magnetoresistance. This phenomenon is attributed to the effective field in the intergrain medium of a granular HTS. At the grain boundaries, which are, in fact, weak Josephson couplings, the dissipation is observed. The effective field in the intergrain medium is a superposition of the external field and the field induced by magnetic moments of HTS grains. Meanwhile, analysis of the field width of the R(H) magnetoresistance hysteresis ΔH = Hdec - Hinc at Hdec = const, where Hinc and Hdec are increasing and decreasing branches of the R(H) hysteretic dependence, shows that the effective field in the intergrain medium exceeds by far both the external field and the field induced by magnetic moments of HTS grains. This situation suggests the magnetic flux compression in the intergrain medium because of the small length of grain boundaries, which amounts to ∼1 nm, i.e., is comparable with the coherence length and corresponds to Josephson tunneling in HTS materials. In this work, using the previously developed approach, we examine experimental data on the magnetoresistance and magnetization hysteresis in the granular YBa2Cu3O7 HTS compound in the range from 77 K to the critical temperature. According to the results obtained, the degree of magnetic flux compression determined by the parameter α in the expression for the effective field Beff(H) = H - 4π M(H) α in the intergrain medium remains constant over the investigated temperature range. All the features of the observed evolution of the R(H) hysteretic dependences are explained well within the proposed approach when the expression for Beff(H) contains the experimental M(H) magnetization data and the parameter α of about 20-25. The latter is indicative of the dominant effect of magnetic flux compression in the intergrain medium on the transport properties of granular HTS materials.

  13. Removal of nano and microparticles by granular filter media coated with nanoporous aluminium oxide.

    PubMed

    Lau, B L T; Harrington, G W; Anderson, M A; Tejedor, I

    2004-01-01

    Conventional filtration was designed to achieve high levels of particle and pathogen removal. Previous studies have examined the possibility of modifying filtration media to improve their ability to remove microorganisms and viruses. Although these studies have evaluated filter media coatings for this purpose, none have evaluated nanoscale particle suspensions as coating materials. The overall goal of this paper is to describe the preliminary test results of nanoporous aluminium oxide coated media that can be used to enhance filtration of nano and microparticles. Filtration tests were carried out using columns packed with uncoated and coated forms of granular anthracite or granular activated carbon. A positive correlation between isoelectric pH of filter media and particle removal was observed. The modified filter media with a higher isoelectric pH facilitated better removal of bacteriophage MS2 and 3 microm latex microspheres, possibly due to increased favorable electrostatic interactions.

  14. A two-phase micromorphic model for compressible granular materials

    NASA Astrophysics Data System (ADS)

    Paolucci, Samuel; Li, Weiming; Powers, Joseph

    2009-11-01

    We introduce a new two-phase continuum model for compressible granular material based on micromorphic theory and treat it as a two-phase mixture with inner structure. By taking an appropriate number of moments of the local micro scale balance equations, the average phase balance equations result from a systematic averaging procedure. In addition to equations for mass, momentum and energy, the balance equations also include evolution equations for microinertia and microspin tensors. The latter equations combine to yield a general form of a compaction equation when the material is assumed to be isotropic. When non-linear and inertial effects are neglected, the generalized compaction equation reduces to that originally proposed by Bear and Nunziato. We use the generalized compaction equation to numerically model a mixture of granular high explosive and interstitial gas. One-dimensional shock tube and piston-driven solutions are presented and compared with experimental results and other known solutions.

  15. Meso-scale framework for modeling granular material using computed tomography

    DOE PAGES

    Turner, Anne K.; Kim, Felix H.; Penumadu, Dayakar; ...

    2016-03-17

    Numerical modeling of unconsolidated granular materials is comprised of multiple nonlinear phenomena. Accurately capturing these phenomena, including grain deformation and intergranular forces depends on resolving contact regions several orders of magnitude smaller than the grain size. Here, we investigate a method for capturing the morphology of the individual particles using computed X-ray and neutron tomography, which allows for accurate characterization of the interaction between grains. The ability of these numerical approaches to determine stress concentrations at grain contacts is important in order to capture catastrophic splitting of individual grains, which has been shown to play a key role in themore » plastic behavior of the granular material on the continuum level. Discretization approaches, including mesh refinement and finite element type selection are presented to capture high stress concentrations at contact points between grains. The effect of a grain’s coordination number on the stress concentrations is also investigated.« less

  16. Erosion and flow of hydrophobic granular materials

    NASA Astrophysics Data System (ADS)

    Utter, Brian; Benns, Thomas; Mahler, Joseph

    2013-11-01

    We experimentally investigate submerged granular flows of hydrophobic and hydrophilic grains both in a rotating drum geometry and under erosion by a surface water flow. While slurry and suspension flows are common in nature and industry, effects of surface chemistry on flow behavior have received relatively little attention. In the rotating drum , we use varying concentrations of hydrophobic and hydrophilic grains of sand submerged in water rotated at a constant angular velocity. Sequential images of the resulting avalanches are taken and analyzed. High concentrations of hydrophobic grains result in an effectively cohesive interaction between the grains forming aggregates, with aggregate size and repose angle increasing with hydrophobic concentration. However, the formation and nature of the aggregates depends significantly on the presence of air in the system. We present results from a related experiment on erosion by a surface water flow designed to characterize the effects of heterogeneous granular surfaces on channelization and erosion. Supported by NSF CBET Award 1067598.

  17. Erosion and flow of hydrophobic granular materials

    NASA Astrophysics Data System (ADS)

    Utter, Brian; Benns, Thomas; Foltz, Benjamin; Mahler, Joseph

    2015-03-01

    We experimentally investigate submerged granular flows of hydrophobic and hydrophilic grains both in a rotating drum geometry and under erosion by a surface water flow. While slurry and suspension flows are common in nature and industry, effects of surface chemistry on flow behavior have received relatively little attention. In the rotating drum, we use varying concentrations of hydrophobic and hydrophilic grains of sand submerged in water rotated at a constant angular velocity. Sequential images of the resulting avalanches are taken and analyzed. High concentrations of hydrophobic grains result in an effectively cohesive interaction between the grains forming aggregates, with aggregate size and repose angle increasing with hydrophobic concentration. However, the formation and nature of the aggregates depends significantly on the presence of air in the system. We present results from a related experiment on erosion by a surface water flow designed to characterize the effects of heterogeneous granular surfaces on channelization and erosion.

  18. Anaerobic digestion of glycerol derived from biodiesel manufacturing.

    PubMed

    Siles López, José Angel; Martín Santos, María de Los Angeles; Chica Pérez, Arturo Francisco; Martín Martín, Antonio

    2009-12-01

    The anaerobic digestion of glycerol derived from biodiesel manufacturing, in which COD was found to be 1010 g/kg, was studied in batch laboratory-scale reactors at mesophilic temperature using granular and non-granular sludge. Due to the high KOH concentration of this by-product, H(3)PO(4) was added to recover this alkaline catalyst as agricultural fertilizer (potassium phosphates). Although it would not be economically viable, a volume of glycerol was distilled and utilised as reference substrate. The anaerobic revalorisation of glycerol using granular sludge achieved a biodegradability of around 100%, while the methane yield coefficient was 0.306 m(3) CH(4)/kg acidified glycerol. Anaerobic digestion could be a good option for revalorising this available, impure and low priced by-product derived from the surplus of biodiesel companies. The organic loading rate studied was 0.21-0.38 g COD/g VSS d, although an inhibition phenomenon was observed at the highest load.

  19. Toward a unifying constitutive relation for sediment transport across environments

    NASA Astrophysics Data System (ADS)

    Houssais, Morgane; Jerolmack, Douglas J.

    2017-01-01

    Landscape evolution models typically parse the environment into different process domains, each with its own sediment transport law: e.g., soil creep, landslides and debris flows, and river bed-load and suspended-sediment transport. Sediment transport in all environments, however, contains many of the same physical ingredients, albeit in varying proportions: grain entrainment due to a shear force, that is a combination of fluid flow, particle-particle friction and gravity. We present a new take on the perspective originally advanced by Bagnold, that views the long profile of a hillsope-river-shelf system as a continuous gradient of decreasing granular friction dominance and increasing fluid drag dominance on transport capacity. Recent advances in understanding the behavior and regime transitions of dense granular systems suggest that the entire span of granular-to-fluid regimes may be accommodated by a single-phase rheology. This model predicts a material-flow effective friction (or viscosity) that changes with the degree of shear rate and confining pressure. We present experimental results confirming that fluid-driven sediment transport follows this same rheology, for bed and suspended load. Surprisingly, below the apparent threshold of motion we observe that sediment particles creep, in a manner characteristic of glassy systems. We argue that this mechanism is relevant for both hillslopes and rivers. We discuss the possibilities of unifying sediment transport across environments and disciplines, and the potential consequences for modeling landscape evolution.

  20. Reactivity of substituted benzotrichlorides toward granular iron, Cr(II), and an iron(II) porphyrin: A correlation analysis.

    PubMed

    Kohn, Tamar; Arnold, William A; Roberts, A Lynn

    2006-07-01

    Cross-correlations of rate constants between a system of interest and a better-defined one have become popular as a tool in studying transformations of organic pollutants. A slope of unity (if the correlation is conducted on a log-log basis) in such plots has been invoked as evidence of a common mechanism. To explore this notion, benzotrichloride and several of its substituted analogues were reacted with Cr(H2O)6(2+), an iron(II) porphyrin (iron meso-tetra(4-carboxyphenyl)porphine chloride, Fe(II)TCP), and granular iron. The first two reductants react with organohalides by dissociative inner sphere single-electron transfer, while mechanism(s) for organohalide reduction by granular iron are still debated. Apartfrom sterically hindered compounds, good correlations were obtained in comparing any two systems, although slopes (on a log-log basis) deviated from unity. We argue that a slope of unity is neither necessary nor sufficient evidence of a common mechanism. Overall rate constants may be composite entities, consisting in part of rate or equilibrium constants for adsorption onto surfaces or for precursor formation in solution; these components may differ between systems in their susceptibility to substituent effects. Cross-correlations may prove useful in predicting reactivity in the absence of steric effects, but additional evidence is required in deducing reaction mechanisms.

  1. Pore-Scale Investigation on Stress-Dependent Characteristics of Granular Packs and Their Impact on Multiphase Fluid Distribution

    NASA Astrophysics Data System (ADS)

    Torrealba, V.; Karpyn, Z.; Yoon, H.; Hart, D. B.; Klise, K. A.

    2013-12-01

    The pore-scale dynamics that govern multiphase flow under variable stress conditions are not well understood. This lack of fundamental understanding limits our ability to quantitatively predict multiphase flow and fluid distributions in natural geologic systems. In this research, we focus on pore-scale, single and multiphase flow properties that impact displacement mechanisms and residual trapping of non-wetting phase under varying stress conditions. X-ray micro-tomography is used to image pore structures and distribution of wetting and non-wetting fluids in water-wet synthetic granular packs, under dynamic load. Micro-tomography images are also used to determine structural features such as medial axis, surface area, and pore body and throat distribution; while the corresponding transport properties are determined from Lattice-Boltzmann simulations performed on lattice replicas of the imaged specimens. Results are used to investigate how inter-granular deformation mechanisms affect fluid displacement and residual trapping at the pore-scale. This will improve our understanding of the dynamic interaction of mechanical deformation and fluid flow during enhanced oil recovery and geologic CO2 sequestration. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  2. Transient Combustion in Granular Propellant Beds. Part I. Theoretical Modeling and Numerical Solution of Transient Combustion Processes in Mobile Granular Propellant Beds

    DTIC Science & Technology

    1977-08-01

    TR~ANSIENT COMBUSTION PROCESSES IN MOBILE GRANULAR PROPELLANT BEDS Prqprid by The Pennsylvania Stats UnIversiV 197 Dopartme of Nmchanica! EngwineerIng...the ignition and flame spreadinb prc-eases by assuming that the granular propillents are fixed in space; and 3) modeling cf mobile granular beds so...through an aggrtgate of mobile "’actin&, partic~vi. The diffevewsoa Wi derivation of conservation equa~tions betvewu our approacit md this -f a Aivorain

  3. Method of preparing meso-haloalkylporphyrins

    DOEpatents

    Wijesekera, Tilak; Lyons, James E.; Ellis, Jr., Paul E.; Bhinde, Manoj V.

    1998-01-01

    Transition metal complexes of meso-haloalkylporphyrins, wherein the haloalkyl groups contain 2 to 8 carbon atoms have been found to be highly effective catalysts for oxidation of alkanes and for the decomposition of hydroperoxides. Also disclosed is a process for the preparation of meso-halocarbyl-porphyrins which comprises contacting a halocarbyl dipyrromethane with a halocarbyl-substituted aldehyde in the presence of an acid granular solid catalyst. Also disclosed is a process for the preparation of meso-halocarbyl-porphyrins which comprises contacting a halocarbyl dipyrromethane with a halocarbyl-substituted aldehyde in the presence of an acid granular solic catalyst.

  4. Poly(ethylene imine)-based granular sorbents by a new process of templated gel-filling. High capacity and selectivity of copper sorption in acidic and alkaline media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chanda, M.; Rempel, G.L.

    A new process has been developed for making granular gel-type sorbents from chelating resins using metal ion as template. Named as templated gel-filling, the process uses the chosen metal as templating host ion on high-surface-area silica to build a templated gel layer from a solution of the chelating resin in a suitable solvent in which the resin is soluble but its metal complex is insoluble. After cross-linking the templated gel layer, the silica support is removed by alkali to produce a hollow shell of the templated gel. The shells are then soaked in a concentrated aqueous solution of the samemore » metal ion and suspended in the same resin solution to afford gel-filling. The shells thus filled with metal-templated gel are treated with cross-linking agent, followed by acid to remove the template ion and activate the resin for metal sorption. Poly(ethyleneimine) and its partially ethylated derivative have been used to produce granular gel-type sorbents by this process, with Cu(II) as the template ion. These sorbents are found to offer high capacity and selectivity for copper over nickel, cobalt, and zinc in both acidic and alkaline media. Containing a relatively high fraction of imbibed water, the sorbents exhibit markedly enhanced rate behavior, in both sorption and stripping.« less

  5. A Discrete Element Method Approach to Progressive Localization of Damage in Granular Rocks and Associated Seismicity

    NASA Astrophysics Data System (ADS)

    Vora, H.; Morgan, J.

    2017-12-01

    Brittle failure in rock under confined biaxial conditions is accompanied by release of seismic energy, known as acoustic emissions (AE). The objective our study is to understand the influence of elastic properties of rock and its stress state on deformation patterns, and associated seismicity in granular rocks. Discrete Element Modeling is used to simulate biaxial tests on granular rocks of defined grain size distribution. Acoustic Energy and seismic moments are calculated from microfracture events as rock is taken to conditions of failure under different confining pressure states. Dimensionless parameters such as seismic b-value and fractal parameter for deformation, D-value, are used to quantify seismic character and distribution of damage in rock. Initial results suggest that confining pressure has the largest control on distribution of induced microfracturing, while fracture energy and seismic magnitudes are highly sensitive to elastic properties of rock. At low confining pressures, localized deformation (low D-values) and high seismic b-values are observed. Deformation at high confining pressures is distributed in nature (high D-values) and exhibit low seismic b-values as shearing becomes the dominant mode of microfracturing. Seismic b-values and fractal D-values obtained from microfracturing exhibit a linear inverse relationship, similar to trends observed in earthquakes. Mode of microfracturing in our simulations of biaxial compression tests show mechanistic similarities to propagation of fractures and faults in nature.

  6. Dense granular flow rheology in turbulent bedload transport: from particle-scale simulations to continuous modelling

    NASA Astrophysics Data System (ADS)

    Maurin, R.; Chauchat, J.; Frey, P.

    2016-12-01

    Considering a granular bed submitted to a surface fluid flow, bedload transport is classically defined by opposition to suspension and aeolian saltation, as the part of the load in contact with the granular bed. The granular rheology in bedload transport is characteristic of the granular bed response to the fluid shear stress, and is fundamental both for the phenomenon understanding and for upscaling in the framework of two-phase continuous modelling. Using a validated coupled fluid-Discrete Element Model for turbulent bedload transport, the granular rheology is characterized by computing locally the granular stress tensor as a function of the depth for a serie of simulations varying the Shields number, the particle diameter and the specific density. The obtained results are analyzed in the framework of the mu(I) rheology and exhibit a collapse of the data over a wide range of inertial numbers. This shows the relevancy in modelling the granular phase in bedload transport using the mu(I) rheology. By pragmatically fitting the classical expression of the solid volume fraction and the shear to normal granular stress ratio with the results obtained, a parametrization of the mu(I) rheology is proposed for bedload transport, and tested using a 1D two-phase continuous model. The latter is shown to reproduce accurately the dense granular depth profiles, and the classical behavior in terms of dimensionless sediment transport rate as a function of the Shields number. The proposed rheology therefore represents an important step for upscaling in the framework of two-phase continuous modelling of bedload transport.

  7. Onset of sediment transport is a continuous transition driven by fluid shear and granular creep

    PubMed Central

    Houssais, Morgane; Ortiz, Carlos P.; Durian, Douglas J.; Jerolmack, Douglas J.

    2015-01-01

    Fluid-sheared granular transport sculpts landscapes and undermines infrastructure, yet predicting the onset of sediment transport remains notoriously unreliable. For almost a century, this onset has been treated as a discontinuous transition at which hydrodynamic forces overcome gravity-loaded grain–grain friction. Using a custom laminar-shear flume to image slow granular dynamics deep into the bed, here we find that the onset is instead a continuous transition from creeping to granular flow. This transition occurs inside the dense granular bed at a critical viscous number, similar to granular flows and colloidal suspensions and inconsistent with hydrodynamic frameworks. We propose a new phase diagram for sediment transport, where ‘bed load’ is a dense granular flow bounded by creep below and suspension above. Creep is characteristic of disordered solids and reminiscent of soil diffusion on hillslopes. Results provide new predictions for the onset and dynamics of sediment transport that challenge existing models. PMID:25751296

  8. Development of a double-layered ceramic filter for aerosol filtration at high-temperatures: the filter collection efficiency.

    PubMed

    de Freitas, Normanda L; Gonçalves, José A S; Innocentini, Murilo D M; Coury, José R

    2006-08-25

    The performance of double-layered ceramic filters for aerosol filtration at high temperatures was evaluated in this work. The filtering structure was composed of two layers: a thin granular membrane deposited on a reticulate ceramic support of high porosity. The goal was to minimize the high pressure drop inherent of granular structures, without decreasing their high collection efficiency for small particles. The reticulate support was developed using the technique of ceramic replication of polyurethane foam substrates of 45 and 75 pores per inch (ppi). The filtering membrane was prepared by depositing a thin layer of granular alumina-clay paste on one face of the support. Filters had their permeability and fractional collection efficiency analyzed for filtration of an airborne suspension of phosphatic rock in temperatures ranging from ambient to 700 degrees C. Results revealed that collection efficiency decreased with gas temperature and was enhanced with filtration time. Also, the support layer influenced the collection efficiency: the 75 ppi support was more effective than the 45 ppi. Particle collection efficiency dropped considerably for particles below 2 microm in diameter. The maximum collection occurred for particle diameters of approximately 3 microm, and decreased again for diameters between 4 and 8 microm. Such trend was successfully represented by the proposed correlation, which is based on the classical mechanisms acting on particle collection. Inertial impaction seems to be the predominant collection mechanism, with particle bouncing/re-entrainment acting as detachment mechanisms.

  9. Universal Robotic Gripper Based on the Jamming of Granular Material

    DTIC Science & Technology

    2010-11-02

    gas inside, can be turned into rigid molds for lifting the object. However, the mechanism for this transfor- mation was not understood and no data...are actuated passively by contact with the surface of the object to be gripped and are locked in place by a single active element, a pump that...interlocking between gripper and object surfaces, static friction from normal stresses at contact, and an additional suction effect , if the gripper

  10. Reconstruction of Porous Media with Multiple Solid Phases

    PubMed

    Losic; Thovert; Adler

    1997-02-15

    A process is proposed to generate three-dimensional multiphase porous media with fixed phase probabilities and an overall correlation function. By varying the parameters, a specific phase can be located either at the interface between two phases or within a single phase. When the interfacial phase has a relatively small probability, its shape can be chosen as granular or lamellar. The influence of a third phase on the macroscopic conductivity of a medium is illustrated.

  11. Effects of fall fertilization on morphology and cold hardiness of red pine (Pinus resinosa Ait.) seedlings

    Treesearch

    M. Anisul Islam; Kent G. Apostol; Douglass F. Jacobs; R. Kasten Dumroese

    2008-01-01

    Red pine (Pinus resinosa Ait.) seedlings were topdress-fertilized with granular ammonium nitrate (NH4NO3) at the rate of 0, 11, 22, 44, or 89 kg/ha (0, 10, 20, 40, or 80 lb N/ac) during fall of 2005 in Badoura State Forest Nursery, Akeley, Minnesota. Seedlings received either a single (September 16) or double (September 16 and 23) application of fall...

  12. Capturing 2D transient surface data of granular flows against obstacles with an RGB-D sensor

    NASA Astrophysics Data System (ADS)

    Caviedes-Voullieme, Daniel; Juez, Carmelo; Murillo, Javier; Garcia-Navarro, Pilar

    2014-05-01

    Landslides are an ubiquitous natural hazard, and therefore human infrastructure and settlements are often at risk in mountainous regions. In order to better understand and predict landslides, systematic studies of the phenomena need to be undertaken. In particular, computational tools which allow for analysis of field problems require to be thoroughly tested, calibrated and validated under controlled conditions. And to do so, it is necessary for such controlled experiments to be fully characterized in the same terms as the numerical model requires. This work presents an experimental study of dry granular flow over a rough bed with topography which resembles a mountain valley. It has an upper region with a very high slope. The geometry of the bed describes a fourth order polynomial curve, with a low point with zero slope, and afterwards a short region with adverse slope. Obstacles are present in the lower regions which are used as model geometries of human structures. The experiments consisted of a sudden release a mass of sand on the upper region, and allowing it to flow downslope. Furthermore, it has been frequent in previous studies to measure final states of the granular mass at rest, but seldom has transient data being provided, and never for the entire field. In this work we present transient measurements of the moving granular surfaces, obtained with a consumer-grade RGB-D sensor. The sensor, developed for the videogame industry, allows to measure the moving surface of the sand, thus obtaining elevation fields. The experimental results are very consistent and repeatable. The measured surfaces clearly show the distinctive features of the granular flow around the obstacles and allow to qualitatively describe the different flow patterns. More importantly, the quantitative description of the granular surface allows for benchmarking and calibration of predictive numerical models, key in scaling the small-scale experimental knowledge into the field.

  13. Bedrock erosion by sliding wear in channelized granular flow

    NASA Astrophysics Data System (ADS)

    Hung, C. Y.; Stark, C. P.; Capart, H.; Smith, B.; Maia, H. T.; Li, L.; Reitz, M. D.

    2014-12-01

    Boundary forces generated by debris flows can be powerful enough to erode bedrock and cause considerable damage to infrastructure during runout. Bedrock wear can be separated into impact and sliding wear processes. Here we focus on sliding wear. We have conducted experiments with a 40-cm-diameter grainflow-generating rotating drum designed to simulate dry channelized debris flows. To generate sliding erosion, we placed a 20-cm-diameter bedrock plate axially on the back wall of the drum. The rotating drum was half filled with 2.3-mm-diameter grains, which formed a thin grain-avalanching layer with peak flow speed and depth close to the drum axis. The whole experimental apparatus was placed on a 100g-ton geotechnical centrifuge and, in order to scale up the stress level, spun to a range of effective gravity levels. Rates and patterns of erosion of the bedrock plate were mapped after each experiment using 3d micro-photogrammetry. High-speed video and particle tracking were employed to measure granular flow dynamics. The resulting data for granular velocities and flow geometry were used to estimate impulse exchanges and forces on the bedrock plate. To address some of the complexities of granular flow under variable gravity levels, we developed a continuum model framed around a GDR MiDi rheology. This model allowed us to scale up boundary forcing while maintaining the same granular flow regime, and helped us to understand important aspects of the flow dynamics including e.g. fluxes of momentum and kinetic energy. In order to understand the detailed processes of boundary forcing, we performed numerical simulations with a new contact dynamics model. This model confirmed key aspects of our continuum model and provided information on second-order behavior such as fluctuations in the forces acting on the wall. By combining these measurements and theoretical analyses, we have developed and calibrated a constitutive model for sliding wear that is a threshold function of granular velocity and stress.

  14. Motion Imagery and Robotics Application (MIRA): Standards-Based Robotics

    NASA Technical Reports Server (NTRS)

    Martinez, Lindolfo; Rich, Thomas; Lucord, Steven; Diegelman, Thomas; Mireles, James; Gonzalez, Pete

    2012-01-01

    This technology development originated from the need to assess the debris threat resulting from soil material erosion induced by landing spacecraft rocket plume impingement on extraterrestrial planetary surfaces. The impact of soil debris was observed to be highly detrimental during NASA s Apollo lunar missions and will pose a threat for any future landings on the Moon, Mars, and other exploration targets. The innovation developed under this program provides a simulation tool that combines modeling of the diverse disciplines of rocket plume impingement gas dynamics, granular soil material liberation, and soil debris particle kinetics into one unified simulation system. The Unified Flow Solver (UFS) developed by CFDRC enabled the efficient, seamless simulation of mixed continuum and rarefied rocket plume flow utilizing a novel direct numerical simulation technique of the Boltzmann gas dynamics equation. The characteristics of the soil granular material response and modeling of the erosion and liberation processes were enabled through novel first principle-based granular mechanics models developed by the University of Florida specifically for the highly irregularly shaped and cohesive lunar regolith material. These tools were integrated into a unique simulation system that accounts for all relevant physics aspects: (1) Modeling of spacecraft rocket plume impingement flow under lunar vacuum environment resulting in a mixed continuum and rarefied flow; (2) Modeling of lunar soil characteristics to capture soil-specific effects of particle size and shape composition, soil layer cohesion and granular flow physics; and (3) Accurate tracking of soil-borne debris particles beginning with aerodynamically driven motion inside the plume to purely ballistic motion in lunar far field conditions.

  15. Influence of carbon source on nutrient removal performance and physical-chemical characteristics of aerobic granular sludge.

    PubMed

    Lashkarizadeh, Monireh; Yuan, Qiuyan; Oleszkiewicz, Jan A

    2015-01-01

    The impact of carbon source variation on the physical and chemical characteristics of aerobic granular sludge and its biological nutrient (nitrogen and phosphorus) removal performance was investigated. Two identical sequencing batch reactors, R1 and R2, were set up. Granular biomass was cultivated to maturity using acetate-based synthetic wastewater. After mature granules in both reactors with simultaneous chemical oxygen demand (COD), ammonium and phosphorus removal capability were achieved, the feed of R2 was changed to municipal wastewater and R1 was continued on synthetic feed as control. Biological phosphorus removal was completely inhibited in R2 due to lack of readily biodegradable COD; however, the biomass maintained high ammonium and COD removal efficiencies. The disintegration of the granules in R2 occurred during the first two weeks after the change of feed, but it did not have significant impacts on settling properties of the sludge. Re-granulation of the biomass in R2 was then observed within 30 d after granules' disintegration when the biomass acclimated to the new substrate. The granular biomass in R1 and R2 maintained a Sludge Volume Index close to 60 and 47 mL g(-1), respectively, during the experimental period. It was concluded that changing the carbon source from readily biodegradable acetate to the more complex ones present in municipal wastewater did not have significant impacts on aerobic granular sludge characteristics; it particularly did not affect its settling properties. However, sufficient readily biodegradable carbon would have to be provided to maintain simultaneous biological nitrate and phosphorus removal.

  16. HGCAL: A High-Granularity Calorimeter for the Endcaps of CMS at HL-LHC

    NASA Astrophysics Data System (ADS)

    Ochando, Christophe; CMS Collaboration

    2017-11-01

    Calorimetry at the High Luminosity LHC (HL-LHC) faces two enormous challenges, particularly in the forward direction: radiation tolerance and unprecedented in-time event pileup. To meet these challenges, the CMS experiment has decided to construct a High Granularity Calorimeter (HGCAL), featuring a previously unrealized transverse and longitudinal segmentation, for both electromagnetic and hadronic compartments. This will facilitate particle-flow-type calorimetry, where the fine structure of showers can be measured and used to enhance particle identification, energy resolution and pileup rejection. The majority of the HGCAL will be based on robust and cost-effective hexagonal silicon sensors with about 1cm2 or 0.5cm2 hexagonal cell size, with the final 5 interaction lengths of the hadronic compartment being based on highly segmented plastic scintillator with on-scintillator SiPM readout. We present an overview of the HGCAL project, including the motivation, engineering design, readout concept and simulated performance.

  17. HGCAL: a High-Granularity Calorimeter for the endcaps of CMS at HL-LHC

    NASA Astrophysics Data System (ADS)

    Magnan, A.-M.

    2017-01-01

    Calorimetry at the High Luminosity LHC (HL-LHC) faces two enormous challenges, particularly in the forward direction: radiation tolerance and unprecedented in-time event pileup. To meet these challenges, the CMS experiment has decided to construct a High Granularity Calorimeter (HGCAL), featuring a previously unrealized transverse and longitudinal segmentation, for both electromagnetic and hadronic compartments. This will facilitate particle-flow-type calorimetry, where the fine structure of showers can be measured and used to enhance particle identification, energy resolution and pileup rejection. The majority of the HGCAL will be based on robust and cost-effective hexagonal silicon sensors with simeq 1 cm2 or 0.5 cm2 hexagonal cell size, with the final five interaction lengths of the hadronic compartment being based on highly segmented plastic scintillator with on-scintillator SiPM readout. We present an overview of the HGCAL project, including the motivation, engineering design, readout/trigger concept and simulated performance.

  18. Magnetic characteristics and nanostructures of FePt granular films with GeO2 segregant

    NASA Astrophysics Data System (ADS)

    Ono, Takuya; Moriya, Tomohiro; Hatayama, Masatoshi; Tsumura, Kaoru; Kikuchi, Nobuaki; Okamoto, Satoshi; Kitakami, Osamu; Shimatsu, Takehito

    2017-01-01

    To realize a granular film composed of L10-FePt grains with high uniaxial magnetic anisotropy energy, Ku, and segregants for energy-assisted magnetic recording, a FePt-GeO2/FePt-C stacked film was investigated in the engineering process. The FePt-GeO2/FePt-C stacked film fabricated at a substrate temperature of 450 °C realized uniaxial magnetic anisotropy, Kugrain , of about 2.5 × 107 erg/cm3, which is normalized by the volume fraction of FePt grains, and a granular structure with an averaged grain size of 7.7 nm. As the thickness of the FePt-GeO2 upper layer was increased to 9 nm, the Ku values were almost constant. That result differs absolutely from the thickness dependences of the other oxide segregant materials such as SiO2 and TiO2. Such differences on the oxide segregant are attributed to their chemical bond. The strong covalent bond of GeO2 is expected to result in high Ku of the FePt-GeO2/FePt-C stacked films.

  19. Granular flow in silos with moving exit

    NASA Astrophysics Data System (ADS)

    To, Kiwing

    2017-11-01

    We conducted granular flow experiments of mono-disperse plastic beads falling out of a cylindrical silos through a circular orifice at the bottom. When the diameter of the orifice is about twice that of the beads, no finite flow rate can be sustained because of clogging at the orifice. We constructed a silo with a bottom that can rotate with respect to the wall of the silo. Then one can rotate the bottom of the silo so that the orifice can rotate (or move in a circle if the orifice is off centered) with respect to the beads. In such a silo with rotating bottom, a finite flow rate can be sustained. While the flow rate Q depends on the angular frequency ω of the rotating bottom as well as the distance R of the orifice from the axis of the silo, Q at different ω and R can be collapsed to a single curve when Q when plotted against the product of ω and R. Nankang, Taipei, Taiwan 11529.

  20. Multiple granular cell tumors with metachronous occurrence in tongue and vulva. Clinicopathological and immunohistochemical study

    PubMed Central

    Vera-Sirera, Beatriz; Zabala, Pablo; Aviño-Mira, Carlos; Vera-Sempere, Francisco J.

    2014-01-01

    Granular cell tumor (GCT) usually occurs as a single tumor, although sometimes multiple lesions can occur. In present report we analyze the clinicopathological and immunohistochemical features of a multiple GCT involving the tongue of a 14-year-old girl, with no other abnormalities, with a metachronous occurrence of a second GCT in vulva, after a period of 10 years. Both tumors revealed S-100, vimentin and CD57 positivity. In addition, over expression of calretinin was observed in tumor cells located in the vicinity of pseudoepitheliomatous hyperplasia (PEH) of the tongue. Tumor vasculature situated close to the PEH showed marked CD105 reactivity, data not described so far, suggesting an interaction between PEH cells and underlying stroma, since GCT completely lacks CD105 vessels. Our study emphasizes that patients with GCT, especially young patients, should be followed long-term, looking for multiple tumors or other abnormalities suggestive of a systemic syndrome, given the associations described in multiple GCT. PMID:25949003

  1. Self-organized cooperative swimming at low Reynolds numbers.

    PubMed

    Reinmüller, Alexander; Schöpe, Hans Joachim; Palberg, Thomas

    2013-02-12

    Investigations of swimming at low Reynolds numbers (Re < 10(-4)) so far have focused on individual or collectively moving autonomous microswimmers consisting of a single active building unit. Here we show that linear propulsion can also be reproducibly generated in a self-assembled dynamic complex formed from a granular, HCl-releasing particle settled on a charged quartz wall and a swarm of micrometer-sized negatively charged colloids. In isolation, none of the constituents shows motion beyond diffusion. When brought together, they self-assemble into a complex capable of directed swimming. It is stabilized by toroidal solvent flow centered about the granular particle. Propulsion is then launched by an asymmetric distribution of the colloids. Motion is self-stabilizing and continues for up to 25 min with velocities of 1-3 μm/s. Although the details of the mechanisms involved pose a formidable experimental and theoretical challenge, our observations offer a conceptually new, well-reproduced, versatile approach to swimming and transport at low Reynolds numbers.

  2. Measurement of grain wall contact forces in a granular bed using frequency-scanning interferometry

    NASA Astrophysics Data System (ADS)

    Osman, M. S.; Huntley, J. M.; Wildman, R. D.

    2005-07-01

    Micro-mechanical theories have recently been developed to model the propagation of force through a granular material based on single grain interactions. We describe here an experimental technique, developed to validate such theories, that is able to measure the individual contact forces between the grains and the wall of the containing vessel, thereby avoiding the spatial averaging effect of conventional pressure transducers. The method involves measuring interferometrically the deflection of an interface within a triple-layer elastic substrate consisting of epoxy, silicone rubber, and glass. A thin coating of gold between the epoxy and rubber acts as a reflective film, with the reference wave provided by the glass/air interface. Phase shifting is carried out by means of a tunable laser. Phase difference maps are calculated using a 15-frame phase-shifting formula based on a Hanning window. The resulting displacement resolution of order 1 nm allows the wall stiffness to be increased by some two orders of magnitude compared to previously described methods in the literature.

  3. Anomalous diffusion of a probe in a bath of active granular chains

    NASA Astrophysics Data System (ADS)

    Jerez, Michael Jade Y.; Confesor, Mark Nolan P.; Carpio-Bernido, M. Victoria; Bernido, Christopher C.

    2017-08-01

    We investigate the dynamics of a passive probe particle in a bath of active granular chains (AGC). The bath and the probe are enclosed in an experimental compartment with a sinusoidal boundary to prevent AGC congestion along the boundary while connected to an electrodynamic shaker. Single AGC trajectory analysis reveals a persistent type of motion compared to a purely Brownian motion as seen in its mean squared displacement (MSD). It was found that at small concentration, Φ ≤ 0.44, the MSD exhibits two dynamical regimes characterized by two different scaling exponents. For small time scales, the dynamics is superdiffusive (1.32-1.63) with the MSD scaling exponent increasing monotonically with increasing AGC concentration. On the other hand, at long time, we recover the Brownian dynamics regime, MSD = DΔt, where the mobility D ∝ Φ. We quantify the probe dynamics at short time scale by modeling it as a fractional Brownian motion. The analytical form of the MSD agrees with experimental results.

  4. Aerobic granular sludge technology: Mechanisms of granulation and biotechnological applications.

    PubMed

    Nancharaiah, Y V; Kiran Kumar Reddy, G

    2018-01-01

    Aerobic granular sludge (AGS) is a novel microbial community which allows simultaneous removal of carbon, nitrogen, phosphorus and other pollutants in a single sludge system. AGS is distinct from activated sludge in physical, chemical and microbiological properties and offers compact and cost-effective treatment for removing oxidized and reduced contaminants from wastewater. AGS sequencing batch reactors have shown their utility in the treatment of abattoir, live-stock, rubber, landfill leachate, dairy, brewery, textile and other effluents. AGS is extensively researched for wide-spread implementation in sewage treatment plants. However, formation of AGS takes relatively much longer time while treating low-strength wastewaters like sewage. Strategies like increased volumetric flow by means of short cycles and mixing of sewage with industrial wastewaters can promote AGS formation while treating low-strength sewage. This article reviewed the state of research on AGS formation mechanisms, bioremediation capabilities and biotechnological applications of AGS technology in domestic and industrial wastewater treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Application of anaerobic granular sludge for competitive biosorption of methylene blue and Pb(II): Fluorescence and response surface methodology.

    PubMed

    Shi, Li; Wei, Dong; Ngo, Huu Hao; Guo, Wenshan; Du, Bin; Wei, Qin

    2015-10-01

    This study assessed the biosorption of anaerobic granular sludge (AGS) and its capacity as a biosorbent to remove Pb(II) and methylene blue (MB) from multi-components aqueous solution. It emerged that the biosorption data fitted well to the pseudo-second-order and Langmuir adsorption isotherm models in both single and binary systems. In competitive biosorption systems, Pb(II) and MB will suppress each other's biosorption capacity. Spectroscopic analysis, including Fourier transform infrared spectroscopy (FTIR) and fluorescence spectroscopy were integrated to explain this interaction. Hydroxyl and amine groups in AGS were the key functional groups for sorption. Three-dimensional excitation-emission matrix (3D-EEM) implied that two main protein-like substances were identified and quenched when Pb(II) or MB were present. Response surface methodology (RSM) confirmed that the removal efficiency of Pb(II) and MB reached its peak when the concentration ratios of Pb(II) and MB achieved a constant value of 1. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Encapsulation of Ethylene Gas into Granular Cold-Water-Soluble Starch: Structure and Release Kinetics.

    PubMed

    Shi, Linfan; Fu, Xiong; Tan, Chin Ping; Huang, Qiang; Zhang, Bin

    2017-03-15

    Ethylene gas was introduced into granular cold-water-soluble (GCWS) starches using a solid encapsulation method. The morphological and structural properties of the novel inclusion complexes (ICs) were characterized using scanning electron microscopy, X-ray diffractometry, and Raman spectroscopy. The V-type single helix of GCWS starches was formed through controlled gelatinization and ethanol precipitation and was approved to host ethylene gas. The controlled release characteristics of ICs were also investigated at various temperature and relative humidity conditions. Avrami's equation was fitted to understand the release kinetics and showed that the release of ethylene from the ICs was accelerated by increasing temperature or RH and was decelerated by increased degree of amylose polymerization. The IC of Hylon-7 had the highest ethylene concentration (31.8%, w/w) among the five starches, and the IC of normal potato starch showed the best controlled release characteristics. As a renewable and inexpensive material, GCWS starch is a desirable solid encapsulation matrix with potential in agricultural and food applications.

  7. Construction and response of a highly granular scintillator-based electromagnetic calorimeter

    NASA Astrophysics Data System (ADS)

    Repond, J.; Xia, L.; Eigen, G.; Price, T.; Watson, N. K.; Winter, A.; Thomson, M. A.; Cârloganu, C.; Blazey, G. C.; Dyshkant, A.; Francis, K.; Zutshi, V.; Gadow, K.; Göttlicher, P.; Hartbrich, O.; Kotera, K.; Krivan, F.; Krüger, K.; Lu, S.; Lutz, B.; Reinecke, M.; Sefkow, F.; Sudo, Y.; Tran, H. L.; Kaplan, A.; Schultz-Coulon, H.-Ch.; Bilki, B.; Northacker, D.; Onel, Y.; Wilson, G. W.; Kawagoe, K.; Sekiya, I.; Suehara, T.; Yamashiro, H.; Yoshioka, T.; Alamillo, E. Calvo; Fouz, M. C.; Marin, J.; Navarrete, J.; Pelayo, J. Puerta; Verdugo, A.; Chadeeva, M.; Danilov, M.; Gabriel, M.; Goecke, P.; Graf, C.; Israeli, Y.; Kolk, N. Van Der; Simon, F.; Szalay, M.; Windel, H.; Bilokin, S.; Bonis, J.; Pöschl, R.; Thiebault, A.; Richard, F.; Zerwas, D.; Balagura, V.; Boudry, V.; Brient, J.-C.; Cornat, R.; Cvach, J.; Janata, M.; Kovalcuk, M.; Kvasnicka, J.; Polak, I.; Smolik, J.; Vrba, V.; Zalesak, J.; Zuklin, J.; Choi, W.; Kotera, K.; Nishiyama, M.; Sakuma, T.; Takeshita, T.; Tozuka, S.; Tsubokawa, T.; Uozumi, S.; Jeans, D.; Ootani, W.; Liu, L.; Chang, S.; Khan, A.; Kim, D. H.; Kong, D. J.; Oh, Y. D.; Ikuno, T.; Sudo, Y.; Takahashi, Y.; Götze, M.; Calice Collaboration

    2018-04-01

    A highly granular electromagnetic calorimeter with scintillator strip readout is being developed for future linear collider experiments. A prototype of 21.5 X0 depth and 180 × 180mm2 transverse dimensions was constructed, consisting of 2160 individually read out 10 × 45 × 3mm3 scintillator strips. This prototype was tested using electrons of 2-32 GeV at the Fermilab Test Beam Facility in 2009. Deviations from linear energy response were less than 1.1%, and the intrinsic energy resolution was determined to be (12 . 5 ± 0 . 1(stat.) ± 0 . 4(syst.)) % /√{ E [ GeV ] } ⊕(1.2 ± 0.1 (stat.)-0.7+0.6 (syst.)) %, where the uncertainties correspond to statistical and systematic sources, respectively.

  8. Toxicity of granular activated carbon treated coal gasification water as determined by the Microtox test and Escherichia coli.

    PubMed

    Makino, Y; Adams, J C; McTernan, W F

    1986-01-01

    The Microtox assay and various parameters (growth, ATP concentration and electrochemical detection) of Escherichia coli were used to assess the toxicity of various levels of granular activated carbon treated coal gasification process water. The generation time of E. coli was statistically significantly slower at the level of 50 percent treatment than any other level of treatment. No differences were seen for ATP concentration per cell or in the electrochemical detection methods for any level treatment. There was a very high correlation between total organic carbon removal by GAC treatment and reduction in toxicity as measured by the Microtox system. However, even the treated water which had 91 percent of the TOC removed was still highly toxic.

  9. Vertical drag force acting on intruders of different shapes in granular media

    NASA Astrophysics Data System (ADS)

    Zaidi, Ali Abbas; Müller, Christoph

    2017-06-01

    The penetration of large objects into granular media is encountered commonly both in nature (e.g. impacts of meteors and projectiles) and engineering applications (e.g. insertion of tractor blades into sand). The motion of the impacting intruder in granular media is resisted by a granular drag force. In this work, we assess the effect of intruder shape on the granular drag force using discrete element modelling (DEM). The following intruder shapes were modelled: spherical, conical, cylindrical and cubical. We observed that the drag force can be described well by a power-law relationship with intrusion depth, independent of the intruder shape. However, the exponent of the power-law expression increases with increasing "flatness" of the intruder's impacting surface due to an increasing fraction of the granular media affected by the impact of the intruder.

  10. Survey of shock-wave structures of smooth-particle granular flows.

    PubMed

    Padgett, D A; Mazzoleni, A P; Faw, S D

    2015-12-01

    We show the effects of simulated supersonic granular flow made up of smooth particles passing over two prototypical bodies: a wedge and a disk. We describe a way of computationally identifying shock wave locations in granular flows and tabulate the shock wave locations for flow over wedges and disks. We quantify the shock structure in terms of oblique shock angle for wedge impediments and shock standoff distance for disk impediments. We vary granular flow parameters including upstream volume fraction, average upstream velocity, granular temperature, and the collision coefficient of restitution. Both wedges and disks have been used in the aerospace community as prototypical impediments to flowing air in order to investigate the fundamentally different shock structures emanating from sharp and blunt bodies, and we present these results in order to increase the understanding of the fundamental behavior of supersonic granular flow.

  11. Note: "Lock-in accelerometry" to follow sink dynamics in shaken granular matter.

    PubMed

    Sánchez-Colina, G; Alonso-Llanes, L; Martínez, E; Batista-Leyva, A J; Clement, C; Fliedner, C; Toussaint, R; Altshuler, E

    2014-12-01

    Understanding the penetration dynamics of intruders in granular beds is relevant not only for fundamental physics, but also for geophysical processes and construction on sediments or granular soils in areas potentially affected by earthquakes. While the penetration of intruders in two dimensional (2D) laboratory granular beds can be followed using video recording, this is useless in three dimensional (3D) beds of non-transparent materials such as common sand. Here, we propose a method to quantify the sink dynamics of an intruder into laterally shaken granular beds based on the temporal correlations between the signals from a reference accelerometer fixed to the shaken granular bed, and a probe accelerometer deployed inside the intruder. Due to its analogy with the working principle of a lock-in amplifier, we call this technique lock-in accelerometry.

  12. Effects of granular charge on flow and mixing

    NASA Astrophysics Data System (ADS)

    Shinbrot, T.; Herrmann, H. J.

    2008-12-01

    Sandstorms in the desert have long been reported to produce sparks and other electrical disturbances - indeed as long ago as 1850, Faraday commented on the peculiarities of granular charging during desert sandstorms. Similarly, lightning strikes within volcanic dust plumes have been repeatedly reported for over half a century, but remain unexplained. The problem of granular charging has applied, as well as natural, implications, for charged particle clouds frequently generate spectacularly devastating dust explosions in granular processing plants, and sand becomes strongly electrified by helicopters traveling in desert environments. The issue even has implications for missions to the Moon and to Mars, where charged dust degrades solar cells viability and clings to spacesuits, limiting the lifetime of their joints. Despite the wide-ranging importance of granular charging, even the simplest aspects of its causes remain elusive. To take one example, sand grains in the desert manage to charge one another despite having only similar materials to rub against over expanses of many miles - thus existing theories of charging due to material differences fail entirely to account for the observed charging of desert sands. In this talk, we describe recent progress made in identifying underlying causes of granular charging, both in desert-like environments and in industrial applications, and we examine effects of granular charging on flow, mixing and separation of common granular materials. We find that charging of identical grains can occur under simple laboratory conditions, and we make new predictions for the effects of this charging on granular behaviours.

  13. Granular Crater Formation

    NASA Astrophysics Data System (ADS)

    Clark, Abe; Behringer, Robert; Brandenburg, John

    2009-11-01

    This project characterizes crater formation in a granular material by a jet of gas impinging on a granular material, such as a retro-rocket landing on the moon. We have constructed a 2D model of a planetary surface, which consists of a thin, clear box partially filled with granular materials (sand, lunar and Mars simulants...). A metal pipe connected to a tank of nitrogen gas via a solenoid valve is inserted into the top of the box to model the rocket. The results are recorded using high-speed video. We process these images and videos in order to test existing models and develop new ones for describing crater formation. A similar set-up has been used by Metzger et al.footnotetextP. T. Metzger et al. Journal of Aerospace Engineering (2009) We find that the long-time shape of the crater is consistent with a predicted catenary shape (Brandenburg). The depth and width of the crater both evolve logarithmically in time, suggesting an analogy to a description in terms of an activated process: dD/dt = A (-aD) (D is the crater depth, a and A constants). This model provides a useful context to understand the role of the jet speed, as characterized by the pressure used to drive the flow. The box width also plays an important role in setting the width of the crater.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stormont, John; Lampe, Brandon; Mills, Melissa

    The goal of this project is to improve the understanding of key aspects of the coupled thermal-mechanical-hydrologic response of granular (or crushed) salt used as a seal material for shafts, drifts, and boreholes in mined repositories in salt. The project is organized into three tasks to accomplish this goal: laboratory measurements of granular salt consolidation (Task 1), microstructural observations on consolidated samples (Task 2), and constitutive model development and evaluation (Task 3). Task 1 involves laboratory measurements of salt consolidation along with thermal properties and permeability measurements conducted under a range of temperatures and stresses expected for potential mined repositoriesmore » in salt. Testing focused on the role of moisture, temperature and stress state on the hydrologic (permeability) and thermal properties of consolidating granular salt at high fractional densities. Task 2 consists of microstructural observations made on samples after they have been consolidated to interpret deformation mechanisms and evaluate the ability of the constitutive model to predict operative mechanisms under different conditions. Task 3 concerns the development of the coupled thermal-mechanical-hydrologic constitutive model for granular salt consolidation. The measurements and observations in Tasks 1 and 2 were used to develop a thermal-mechanical constitutive model. Accomplishments and status from each of these efforts is reported in subsequent sections of this report« less

  15. Radioactive Demonstration Of Mineralized Waste Forms Made From Hanford Low Activity Waste (Tank SX-105, Tank AN-103, And AZ-101/102) By Fluidized Bed Steam Reformation (FBSR)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jantzen, C. M.; Crawford, C. L.; Bannochie, C. J.

    Fluidized Bed Steam Reforming (FBSR) is a robust technology for the immobilization of a wide variety of radioactive wastes. Applications have been tested at the pilot scale for the high sodium, sulfate, halide, organic and nitrate wastes at the Hanford site, the Idaho National Laboratory (INL), and the Savannah River Site (SRS). Due to the moderate processing temperatures, halides, sulfates, and technetium are retained in mineral phases of the feldspathoid family (nepheline, sodalite, nosean, carnegieite, etc). The feldspathoid minerals bind the contaminants such as Tc-99 in cage (sodalite, nosean) or ring (nepheline) structures to surrounding aluminosilicate tetrahedra in the feldspathoidmore » structures. The granular FBSR mineral waste form that is produced has a comparable durability to LAW glass based on the short term PCT testing in this study, the INL studies, SPFT and PUF testing from previous studies as given in the columns in Table 1-3 that represent the various durability tests. Monolithing of the granular product was shown to be feasible in a separate study. Macro-encapsulating the granular product provides a decrease in leaching compared to the FBSR granular product when the geopolymer is correctly formulated.« less

  16. Large Scale Beam-Tests of the Silicon and Scintillator-SiPM Modules for the CMS High Granularity Calorimeter at the HL-LHC

    NASA Astrophysics Data System (ADS)

    Jain, Shilpi

    The High Granularity Calorimeter (HGCAL) will replace the existing CMS endcap calorimeters during the High Luminosity run of the LHC (HL-LHC) era. The electromagnetic part, as well as the first layers of the hadronic part, foresees around 600 square metres of silicon sensors as the active material. The remainder of the HGCAL, in the lower radiation environment, will use plastic scintillators with on-tile silicon photomultiplier (SiPM) readout. Prototype hexagonal silicon modules, featuring a new ASIC (Skiroc2-CMS), together with a modified version of the scintillator-SiPM CALICE AHCAL, have been tested in beams at CERN. This setup represents a full slice through HGCAL. Results from MIP calibration, energy resolution, electromagnetic and hadronic shower-shapes are presented using electrons, pions and muons.

  17. Provenance Datasets Highlighting Capture Disparities

    DTIC Science & Technology

    2014-01-01

    Vistrails [20], Taverna [21] or Kepler [6], and an OS -observing system like PASS [18]. In less granular workflow systems, the data files, scripts...run, etc. are capturable as long as they are executed within the workflow system. In more granular OS -observing systems, the actual reads, writes...rolling up” very granular information to less granular information. OS -level capture knows that a socket was opened and that data was sent to a foreign

  18. A two-phase flow model for submarine granular flows: With an application to collapse of deeply-submerged granular columns

    NASA Astrophysics Data System (ADS)

    Lee, Cheng-Hsien; Huang, Zhenhua

    2018-05-01

    The collapse process of a submerged granular column is strongly affected by its initial packing. Previous models for particle response time, which is used to quantify the drag force between the solid and liquid phases in rheology-based two-phase flow models, have difficulty in simulating the collapse process of granular columns with different initial concentrations (initial packing conditions). This study introduces a new model for particle response time, which enables us to satisfactorily model the drag force between the two phases for a wide range of volume concentration. The present model can give satisfactory results for both loose and dense packing conditions. The numerical results have shown that (i) the initial packing affects the occurrence of contractancy/diltancy behavior during the collapse process, (ii) the general buoyancy and drag force are strongly affected by the initial packing through contractancy and diltancy, and (iii) the general buoyancy and drag force can destabilize the granular material in loose packing condition but stabilize the granular material in dense packing condition. The results have shown that the collapse process of a densely-packed granular column is more sensitive to particle response time than that of a loosely-packed granular column.

  19. Whole-genome sequencing of a malignant granular cell tumor with metabolic response to pazopanib

    PubMed Central

    Wei, Lei; Liu, Song; Conroy, Jeffrey; Wang, Jianmin; Papanicolau-Sengos, Antonios; Glenn, Sean T.; Murakami, Mitsuko; Liu, Lu; Hu, Qiang; Conroy, Jacob; Miles, Kiersten Marie; Nowak, David E.; Liu, Biao; Qin, Maochun; Bshara, Wiam; Omilian, Angela R.; Head, Karen; Bianchi, Michael; Burgher, Blake; Darlak, Christopher; Kane, John; Merzianu, Mihai; Cheney, Richard; Fabiano, Andrew; Salerno, Kilian; Talati, Chetasi; Khushalani, Nikhil I.; Trump, Donald L.; Johnson, Candace S.; Morrison, Carl D.

    2015-01-01

    Granular cell tumors are an uncommon soft tissue neoplasm. Malignant granular cell tumors comprise <2% of all granular cell tumors, are associated with aggressive behavior and poor clinical outcome, and are poorly understood in terms of tumor etiology and systematic treatment. Because of its rarity, the genetic basis of malignant granular cell tumor remains unknown. We performed whole-genome sequencing of one malignant granular cell tumor with metabolic response to pazopanib. This tumor exhibited a very low mutation rate and an overall stable genome with local complex rearrangements. The mutation signature was dominated by C>T transitions, particularly when immediately preceded by a 5′ G. A loss-of-function mutation was detected in a newly recognized tumor suppressor candidate, BRD7. No mutations were found in known targets of pazopanib. However, we identified a receptor tyrosine kinase pathway mutation in GFRA2 that warrants further evaluation. To the best of our knowledge, this is only the second reported case of a malignant granular cell tumor exhibiting a response to pazopanib, and the first whole-genome sequencing of this uncommon tumor type. The findings provide insight into the genetic basis of malignant granular cell tumors and identify potential targets for further investigation. PMID:27148567

  20. Synthesis mechanism and preparation of LaMgAl11O19 powder for plasma spraying

    NASA Astrophysics Data System (ADS)

    He, Mingtao; Meng, Huimin; Wang, Yuchao; Ren, Pengwei

    2018-06-01

    Lanthanide magnesium hexaaluminate (LaMgAl11O19) powders were successfully synthesized by the solid-state reaction method. The objective of this study was to investigate the synthesis mechanism of LaMgAl11O19 and prepare LaMgAl11O19 powders suitable for plasma spraying. The results show that LaAlO3 reacts with MgAl2O4 and Al2O3 to form LaMgAl11O19 at approximately 1300 °C. Single-phase LaMgAl11O19 powders were prepared successfully by solid-state reaction at a synthesis temperature of 1600 °C for 6 h. Unlike the particles in the synthesized powders, those of the centrifugally spray-dried powders have a spherical shape with uniform granularity and good flowability, density, and particle size distribution, making them suitable for plasma spraying. The synthesized powders and centrifugally spray-dried powders remained as a single phase after heat treatment at 1300 °C for 100 h, indicating that LaMgAl11O19 has excellent high-temperature stability.

  1. Wet granular materials

    NASA Astrophysics Data System (ADS)

    Mitarai, Namiko; Nori, Franco

    2006-04-01

    Most studies on granular physics have focused on dry granular media, with no liquids between the grains. However, in geology and many real world applications (e.g. food processing, pharmaceuticals, ceramics, civil engineering, construction, and many industrial applications), liquid is present between the grains. This produces inter-grain cohesion and drastically modifies the mechanical properties of the granular media (e.g. the surface angle can be larger than 90 degrees). Here we present a review of the mechanical properties of wet granular media, with particular emphasis on the effect of cohesion. We also list several open problems that might motivate future studies in this exciting but mostly unexplored field.

  2. Failure evolution in granular material retained by rigid wall in active mode

    NASA Astrophysics Data System (ADS)

    Pietrzak, Magdalena; Leśniewska, Danuta

    2012-10-01

    This paper presents a detailed study of a selected small scale model test, performed on a sample of surrogate granular material, retained by a rigid wall (typical geotechnical problem of earth thrust on a retaining wall). The experimental data presented in this paper show that the deformation of granular sample behind retaining wall can undergo some cyclic changes. The nature of these cycles is not clear - it is probably related to some micromechanical features of granular materials, which are recently extensively studied in many research centers in the world. Employing very precise DIC (PIV) method can help to relate micro and macro-scale behavior of granular materials.

  3. Droplet morphometry and velocimetry (DMV): a video processing software for time-resolved, label-free tracking of droplet parameters.

    PubMed

    Basu, Amar S

    2013-05-21

    Emerging assays in droplet microfluidics require the measurement of parameters such as drop size, velocity, trajectory, shape deformation, fluorescence intensity, and others. While micro particle image velocimetry (μPIV) and related techniques are suitable for measuring flow using tracer particles, no tool exists for tracking droplets at the granularity of a single entity. This paper presents droplet morphometry and velocimetry (DMV), a digital video processing software for time-resolved droplet analysis. Droplets are identified through a series of image processing steps which operate on transparent, translucent, fluorescent, or opaque droplets. The steps include background image generation, background subtraction, edge detection, small object removal, morphological close and fill, and shape discrimination. A frame correlation step then links droplets spanning multiple frames via a nearest neighbor search with user-defined matching criteria. Each step can be individually tuned for maximum compatibility. For each droplet found, DMV provides a time-history of 20 different parameters, including trajectory, velocity, area, dimensions, shape deformation, orientation, nearest neighbour spacing, and pixel statistics. The data can be reported via scatter plots, histograms, and tables at the granularity of individual droplets or by statistics accrued over the population. We present several case studies from industry and academic labs, including the measurement of 1) size distributions and flow perturbations in a drop generator, 2) size distributions and mixing rates in drop splitting/merging devices, 3) efficiency of single cell encapsulation devices, 4) position tracking in electrowetting operations, 5) chemical concentrations in a serial drop dilutor, 6) drop sorting efficiency of a tensiophoresis device, 7) plug length and orientation of nonspherical plugs in a serpentine channel, and 8) high throughput tracking of >250 drops in a reinjection system. Performance metrics show that highest accuracy and precision is obtained when the video resolution is >300 pixels per drop. Analysis time increases proportionally with video resolution. The current version of the software provides throughputs of 2-30 fps, suggesting the potential for real time analysis.

  4. The CMS High Granularity Calorimeter for the High Luminosity LHC

    NASA Astrophysics Data System (ADS)

    Sauvan, J.-B.

    2018-02-01

    The High Luminosity LHC (HL-LHC) will integrate 10 times more luminosity than the LHC, posing significant challenges for radiation tolerance and event pileup on detectors, especially for forward calorimetry, and hallmarks the issue for future colliders. As part of its HL-LHC upgrade program, the CMS collaboration is designing a High Granularity Calorimeter to replace the existing endcap calorimeters. It features unprecedented transverse and longitudinal segmentation for both electromagnetic (ECAL) and hadronic (HCAL) compartments. This will facilitate particle-flow calorimetry, where the fine structure of showers can be measured and used to enhance pileup rejection and particle identification, whilst still achieving good energy resolution. The ECAL and a large fraction of HCAL will be based on hexagonal silicon sensors of 0.5-1 cm2 cell size, with the remainder of the HCAL based on highly-segmented scintillators with silicon photomultiplier (SiPM) readout. The intrinsic high-precision timing capabilities of the silicon sensors will add an extra dimension to event reconstruction, especially in terms of pileup rejection.

  5. Probing Dynamics in Granular Media of Contrasting Geometries via X-Ray Phase Contrast Imaging and PDV

    NASA Astrophysics Data System (ADS)

    Crum, Ryan; Pagan, Darren; Lind, Jon; Homel, Michael; Hurley, Ryan; Herbold, Eric; Akin, Minta

    Granular systems are ubiquitous in our everyday world and play a central role in many dynamic scientific problems including mine blasting, projectile penetration, astrophysical collisions, explosions, and dynamic compaction. An understanding of granular media's behavior under various loading conditions is an ongoing scientific grand challenge. This is partly due to the intricate interplay between material properties, loading conditions, grain geometry, and grain connectivity. Previous dynamic studies in granular media predominantly utilize the macro-scale analyses VISAR or PDV, diagnostics that are not sensitive to the many degrees of freedom and their interactions, focusing instead on their aggregate effect. Results of a macro-scale analysis leave the principal interactions of these degrees of freedom too entangled to elucidate. To isolate the significance of grain geometry, this study probes various geometries of granular media subjected to gas gun generated waves via in-situ X-ray analysis. Analyses include evaluating displacement fields, grain fracture, inter- and intra-granular densification, and wave front motion. Phase Contrast Imaging (PCI) and PDV analyses feed directly into our concurrent meso-scale granular media modeling efforts to enhance our predictive capabilities.

  6. Gas stream clean-up filter and method for forming same

    DOEpatents

    Mei, Joseph S.; DeVault, James; Halow, John S.

    1993-01-01

    A gas cleaning filter is formed in-situ within a vessel containing a fluidizable bed of granular material of a relatively large size fraction. A filter membrane provided by a porous metal or ceramic body or such a body supported a perforated screen on one side thereof is coated in-situ with a layer of the granular material from the fluidized bed by serially passing a bed-fluidizing gas stream through the bed of granular material and the membrane. The layer of granular material provides the filtering medium for the combined membrane-granular layer filter. The filter is not blinded by the granular material and provides for the removal of virtually all of the particulates from a process gas stream. The granular material can be at least partially provided by a material capable of chemically reacting with and removing sulfur compounds from the process gas stream. Low level radioactive waste containing organic material may be incinerated in a fluidized bed in communication with the described filter for removing particulates from the gaseous combustion products.

  7. A Self-organized MIMO-OFDM-based Cellular Network

    NASA Astrophysics Data System (ADS)

    Grünheid, Rainer; Fellenberg, Christian

    2012-05-01

    This paper presents a system proposal for a self-organized cellular network, which is based on the MIMO-OFDM transmission technique. Multicarrier transmission, combined with appropriate beamforming concepts, yields high bandwidth-efficiency and shows a robust behavior in multipath radio channels. Moreover, it provides a fine and tuneable granularity of space-time-frequency resources. Using a TDD approach and interference measurements in each cell, the Base Stations (BSs) decide autonomously which of the space-time-frequency resource blocks are allocated to the Mobile Terminals (MTs) in the cell, in order to fulfil certain Quality of Service (QoS) parameters. Since a synchronized Single Frequency Network (SFN), i.e., a re-use factor of one is applied, the resource blocks can be shared adaptively and flexibly among the cells, which is very advantageous in the case of a non-uniform MT distribution.

  8. Construction of the STAR Event Plane Detector

    NASA Astrophysics Data System (ADS)

    Adams, Joseph

    2017-09-01

    The Event Plane Detector (EPD) is an upgrade to the STAR experiment at RHIC, providing high granularity and acceptance in the forward (2.2 < |eta| < 5.1) region. This will improve the resolution of the event plane determination and allow selection on the collision centrality at rapidities well-separated from the midrapidity region measured by the STAR Time Projection Chamber (TPC). The EPD consists of two scintillator discs, one at positive and one at negative rapidity, 3.75 m from the center of the TPC. Each disc is segmented into 372 optically isolated tiles, read out by wavelength shifting fibers coupled to silicon photomultipliers. One quarter of a single disc was installed in STAR for the 2017 run for commissioning. In this talk I will discuss the construction of the EPD, the installation of the quarter wheel, and plans for full installation in 2018.

  9. Design and Prototyping of a High Granularity Scintillator Calorimeter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zutshi, Vishnu

    A novel approach for constructing fine-granularity scintillator calorimeters, based on the concept of an Integrated Readout Layer (IRL) was developed. The IRL consists of a printed circuit board inside the detector which supports the directly-coupled scintillator tiles, connects to the surface-mount SiPMs and carries the necessary front-end electronics and signal/bias traces. Prototype IRLs using this concept were designed, prototyped and successfully exposed to test beams. Concepts and implementations of an IRL carried out with funds associated with this contract promise to result in the next generation of scintillator calorimeters.

  10. Variable Delay Testing Using ONE

    NASA Technical Reports Server (NTRS)

    Ishac, Joseph

    2002-01-01

    This paper investigates the effect of long and changing propagation delays on the performance of TCP file transfers. Tests are performed with machines that emulate communication from a low/medium-earth satellite to Earth by way of a geosynchronous satellite. As a result of these tests, we find that TCP is fairly robust to varying delays given a high enough TCP timer granularity. However, performance degrades noticeably for larger file transfers when a finer timer granularity is used. Such results have also been observed in previous simulations by other researchers, and thus, this work serves as an extension of those results.

  11. Detailed measurements of shower properties in a high granularity digital electromagnetic calorimeter

    NASA Astrophysics Data System (ADS)

    van der Kolk, N.

    2018-03-01

    The MAPS (Monolithic Active Pixel Sensors) prototype of the proposed ALICE Forward Calorimeter (FoCal) is the highest granularity electromagnetic calorimeter, with 39 million pixels with a size of 30 × 30 μm2. Particle showers can be studied with unprecedented detail with this prototype. Electromagnetic showers at energies between 2 GeV and 244 GeV have been studied and compared with GEANT4 simulations. Simulation models can be tested in more detail than ever before and the differences observed between FoCal data and GEANT4 simulations illustrate that improvements in electromagnetic models are still possible.

  12. Analytical modeling of structure-soil systems for lunar bases

    NASA Technical Reports Server (NTRS)

    Macari-Pasqualino, Jose Emir

    1989-01-01

    The study of the behavior of granular materials in a reduced gravity environment and under low effective stresses became a subject of great interest in the mid 1960's when NASA's Surveyor missions to the Moon began the first extraterrestrial investigation and it was found that Lunar soils exhibited properties quite unlike those on Earth. This subject gained interest during the years of the Apollo missions and more recently due to NASA's plans for future exploration and colonization of Moon and Mars. It has since been clear that a good understanding of the mechanical properties of granular materials under reduced gravity and at low effective stress levels is of paramount importance for the design and construction of surface and buried structures on these bodies. In order to achieve such an understanding it is desirable to develop a set of constitutive equations that describes the response of such materials as they are subjected to tractions and displacements. This presentation examines issues associated with conducting experiments on highly nonlinear granular materials under high and low effective stresses. The friction and dilatancy properties which affect the behavior of granular soils with low cohesion values are assessed. In order to simulate the highly nonlinear strength and stress-strain behavior of soils at low as well as high effective stresses, a versatile isotropic, pressure sensitive, third stress invariant dependent, cone-cap elasto-plastic constitutive model was proposed. The integration of the constitutive relations is performed via a fully implicit Backward Euler technique known as the Closest Point Projection Method. The model was implemented into a finite element code in order to study nonlinear boundary value problems associated with homogeneous as well as nonhomogeneous deformations at low as well as high effective stresses. The effect of gravity (self-weight) on the stress-strain-strength response of these materials is evaluated. The calibration of the model is performed via three techniques: (1) physical identification, (2) optimized calibration at the constitutive level, and (3) optimized calibration at the finite element level (Inverse Identification). Activities are summarized in graphic and outline form.

  13. Filamentous bacteria existence in aerobic granular reactors.

    PubMed

    Figueroa, M; Val del Río, A; Campos, J L; Méndez, R; Mosquera-Corral, A

    2015-05-01

    Filamentous bacteria are associated to biomass settling problems in wastewater treatment plants. In systems based on aerobic granular biomass they have been proposed to contribute to the initial biomass aggregation process. However, their development on mature aerobic granular systems has not been sufficiently studied. In the present research work, filamentous bacteria were studied for the first time after long-term operation (up to 300 days) of aerobic granular systems. Chloroflexi and Sphaerotilus natans have been observed in a reactor fed with synthetic wastewater. These filamentous bacteria could only come from the inoculated sludge. Thiothrix and Chloroflexi bacteria were observed in aerobic granular biomass treating wastewater from a fish canning industry. Meganema perideroedes was detected in a reactor treating wastewater from a plant processing marine products. As a conclusion, the source of filamentous bacteria in these mature aerobic granular systems fed with industrial effluents was the incoming wastewater.

  14. Navier-Stokes hydrodynamics of thermal collapse in a freely cooling granular gas.

    PubMed

    Kolvin, Itamar; Livne, Eli; Meerson, Baruch

    2010-08-01

    We show that, in dimension higher than one, heat diffusion and viscosity cannot arrest thermal collapse in a freely evolving dilute granular gas, even in the absence of gravity. Thermal collapse involves a finite-time blowup of the gas density. It was predicted earlier in ideal, Euler hydrodynamics of dilute granular gases in the absence of gravity, and in nonideal, Navier-Stokes granular hydrodynamics in the presence of gravity. We determine, analytically and numerically, the dynamic scaling laws that characterize the gas flow close to collapse. We also investigate bifurcations of a freely evolving dilute granular gas in circular and wedge-shaped containers. Our results imply that, in general, thermal collapse can only be arrested when the gas density becomes comparable with the close-packing density of grains. This provides a natural explanation to the formation of densely packed clusters of particles in a variety of initially dilute granular flows.

  15. 2D granular flows with the μ(I) rheology and side walls friction: A well-balanced multilayer discretization

    NASA Astrophysics Data System (ADS)

    Fernández-Nieto, E. D.; Garres-Díaz, J.; Mangeney, A.; Narbona-Reina, G.

    2018-03-01

    We present here numerical modelling of granular flows with the μ (I) rheology in confined channels. The contribution is twofold: (i) a model to approximate the Navier-Stokes equations with the μ (I) rheology through an asymptotic analysis; under the hypothesis of a one-dimensional flow, this model takes into account side walls friction; (ii) a multilayer discretization following Fernández-Nieto et al. (2016) [20]. In this new numerical scheme, we propose an appropriate treatment of the rheological terms through a hydrostatic reconstruction which allows this scheme to be well-balanced and therefore to deal with dry areas. Based on academic tests, we first evaluate the influence of the width of the channel on the normal profiles of the downslope velocity thanks to the multilayer approach that is intrinsically able to describe changes from Bagnold to S-shaped (and vice versa) velocity profiles. We also check the well-balanced property of the proposed numerical scheme. We show that approximating side walls friction using single-layer models may lead to strong errors. Secondly, we compare the numerical results with experimental data on granular collapses. We show that the proposed scheme allows us to qualitatively reproduce the deposit in the case of a rigid bed (i.e. dry area) and that the error made by replacing the dry area by a small layer of material may be large if this layer is not thin enough. The proposed model is also able to reproduce the time evolution of the free surface and of the flow/no-flow interface. In addition, it reproduces the effect of erosion for granular flows over initially static material lying on the bed. This is possible when using a variable friction coefficient μ (I) but not with a constant friction coefficient.

  16. PolyPole-1: An accurate numerical algorithm for intra-granular fission gas release

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pizzocri, D.; Rabiti, C.; Luzzi, L.

    2016-09-01

    This paper describes the development of a new numerical algorithm (called PolyPole-1) to efficiently solve the equation for intra-granular fission gas release in nuclear fuel. The work was carried out in collaboration with Politecnico di Milano and Institute for Transuranium Elements. The PolyPole-1 algorithms is being implemented in INL's fuels code BISON code as part of BISON's fission gas release model. The transport of fission gas from within the fuel grains to the grain boundaries (intra-granular fission gas release) is a fundamental controlling mechanism of fission gas release and gaseous swelling in nuclear fuel. Hence, accurate numerical solution of themore » corresponding mathematical problem needs to be included in fission gas behaviour models used in fuel performance codes. Under the assumption of equilibrium between trapping and resolution, the process can be described mathematically by a single diffusion equation for the gas atom concentration in a grain. In this work, we propose a new numerical algorithm (PolyPole-1) to efficiently solve the fission gas diffusion equation in time-varying conditions. The PolyPole-1 algorithm is based on the analytic modal solution of the diffusion equation for constant conditions, with the addition of polynomial corrective terms that embody the information on the deviation from constant conditions. The new algorithm is verified by comparing the results to a finite difference solution over a large number of randomly generated operation histories. Furthermore, comparison to state-of-the-art algorithms used in fuel performance codes demonstrates that the accuracy of the PolyPole-1 solution is superior to other algorithms, with similar computational effort. Finally, the concept of PolyPole-1 may be extended to the solution of the general problem of intra-granular fission gas diffusion during non-equilibrium trapping and resolution, which will be the subject of future work.« less

  17. Evaluating the granularity balance of hierarchical relationships within large biomedical terminologies towards quality improvement.

    PubMed

    Luo, Lingyun; Tong, Ling; Zhou, Xiaoxi; Mejino, Jose L V; Ouyang, Chunping; Liu, Yongbin

    2017-11-01

    Organizing the descendants of a concept under a particular semantic relationship may be rather arbitrarily carried out during the manual creation processes of large biomedical terminologies, resulting in imbalances in relationship granularity. This work aims to propose scalable models towards systematically evaluating the granularity balance of semantic relationships. We first utilize "parallel concepts set (PCS)" and two features (the length and the strength) of the paths between PCSs to design the general evaluation models, based on which we propose eight concrete evaluation models generated by two specific types of PCSs: single concept set and symmetric concepts set. We then apply those concrete models to the IS-A relationship in FMA and SNOMED CT's Body Structure subset, as well as to the Part-Of relationship in FMA. Moreover, without loss of generality, we conduct two additional rounds of applications on the Part-Of relationship after removing length redundancies and strength redundancies sequentially. At last, we perform automatic evaluation on the imbalances detected after the final round for identifying missing concepts, misaligned relations and inconsistencies. For the IS-A relationship, 34 missing concepts, 80 misalignments and 18 redundancies in FMA as well as 28 missing concepts, 114 misalignments and 1 redundancy in SNOMED CT were uncovered. In addition, 6,801 instances of imbalances for the Part-Of relationship in FMA were also identified, including 3,246 redundancies. After removing those redundancies from FMA, the total number of Part-Of imbalances was dramatically reduced to 327, including 51 missing concepts, 294 misaligned relations, and 36 inconsistencies. Manual curation performed by the FMA project leader confirmed the effectiveness of our method in identifying curation errors. In conclusion, the granularity balance of hierarchical semantic relationship is a valuable property to check for ontology quality assurance, and the scalable evaluation models proposed in this study are effective in fulfilling this task, especially in auditing relationships with sub-hierarchies, such as the seldom evaluated Part-Of relationship. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Particle Size Reduction in Geophysical Granular Flows: The Role of Rock Fragmentation

    NASA Astrophysics Data System (ADS)

    Bianchi, G.; Sklar, L. S.

    2016-12-01

    Particle size reduction in geophysical granular flows is caused by abrasion and fragmentation, and can affect transport dynamics by altering the particle size distribution. While the Sternberg equation is commonly used to predict the mean abrasion rate in the fluvial environment, and can also be applied to geophysical granular flows, predicting the evolution of the particle size distribution requires a better understanding the controls on the rate of fragmentation and the size distribution of resulting particle fragments. To address this knowledge gap we are using single-particle free-fall experiments to test for the influence of particle size, impact velocity, and rock properties on fragmentation and abrasion rates. Rock types tested include granodiorite, basalt, and serpentinite. Initial particle masses and drop heights range from 20 to 1000 grams and 0.1 to 3.0 meters respectively. Preliminary results of free-fall experiments suggest that the probability of fragmentation varies as a power function of kinetic energy on impact. The resulting size distributions of rock fragments can be collapsed by normalizing by initial particle mass, and can be fit with a generalized Pareto distribution. We apply the free-fall results to understand the evolution of granodiorite particle-size distributions in granular flow experiments using rotating drums ranging in diameter from 0.2 to 4.0 meters. In the drums, we find that the rates of silt production by abrasion and gravel production by fragmentation scale with drum size. To compare these rates with free-fall results we estimate the particle impact frequency and velocity. We then use population balance equations to model the evolution of particle size distributions due to the combined effects of abrasion and fragmentation. Finally, we use the free-fall and drum experimental results to model particle size evolution in Inyo Creek, a steep, debris-flow dominated catchment, and compare model results to field measurements.

  19. The automated design of materials far from equilibrium

    NASA Astrophysics Data System (ADS)

    Miskin, Marc Z.

    Automated design is emerging as a powerful concept in materials science. By combining computer algorithms, simulations, and experimental data, new techniques are being developed that start with high level functional requirements and identify the ideal materials that achieve them. This represents a radically different picture of how materials become functional in which technological demand drives material discovery, rather than the other way around. At the frontiers of this field, materials systems previously considered too complicated can start to be controlled and understood. Particularly promising are materials far from equilibrium. Material robustness, high strength, self-healing and memory are properties displayed by several materials systems that are intrinsically out of equilibrium. These and other properties could be revolutionary, provided they can first be controlled. This thesis conceptualizes and implements a framework for designing materials that are far from equilibrium. We show how, even in the absence of a complete physical theory, design from the top down is possible and lends itself to producing physical insight. As a prototype system, we work with granular materials: collections of athermal, macroscopic identical objects, since these materials function both as an essential component of industrial processes as well as a model system for many non-equilibrium states of matter. We show that by placing granular materials in the context of design, benefits emerge simultaneously for fundamental and applied interests. As first steps, we use our framework to design granular aggregates with extreme properties like high stiffness, and softness. We demonstrate control over nonlinear effects by producing exotic aggregates that stiffen under compression. Expanding on our framework, we conceptualize new ways of thinking about material design when automatic discovery is possible. We show how to build rules that link particle shapes to arbitrary granular packing density. We examine how the results of a design process are contingent upon operating conditions by studying which shapes dissipate energy fastest in a granular gas. We even move to create optimization algorithms for the expressed purpose of material design, by integrating them with statistical mechanics. In all of these cases, we show that turning to machines puts a fresh perspective on materials far from equilibrium. By matching forms to functions, complexities become possibilities, motifs emerge that describe new physics, and the door opens to rational design.

  20. Microbial Population Dynamics and Ecosystem Functions of Anoxic/Aerobic Granular Sludge in Sequencing Batch Reactors Operated at Different Organic Loading Rates

    PubMed Central

    Szabó, Enikö; Liébana, Raquel; Hermansson, Malte; Modin, Oskar; Persson, Frank; Wilén, Britt-Marie

    2017-01-01

    The granular sludge process is an effective, low-footprint alternative to conventional activated sludge wastewater treatment. The architecture of the microbial granules allows the co-existence of different functional groups, e.g., nitrifying and denitrifying communities, which permits compact reactor design. However, little is known about the factors influencing community assembly in granular sludge, such as the effects of reactor operation strategies and influent wastewater composition. Here, we analyze the development of the microbiomes in parallel laboratory-scale anoxic/aerobic granular sludge reactors operated at low (0.9 kg m-3d-1), moderate (1.9 kg m-3d-1) and high (3.7 kg m-3d-1) organic loading rates (OLRs) and the same ammonium loading rate (0.2 kg NH4-N m-3d-1) for 84 days. Complete removal of organic carbon and ammonium was achieved in all three reactors after start-up, while the nitrogen removal (denitrification) efficiency increased with the OLR: 0% at low, 38% at moderate, and 66% at high loading rate. The bacterial communities at different loading rates diverged rapidly after start-up and showed less than 50% similarity after 6 days, and below 40% similarity after 84 days. The three reactor microbiomes were dominated by different genera (mainly Meganema, Thauera, Paracoccus, and Zoogloea), but these genera have similar ecosystem functions of EPS production, denitrification and polyhydroxyalkanoate (PHA) storage. Many less abundant but persistent taxa were also detected within these functional groups. The bacterial communities were functionally redundant irrespective of the loading rate applied. At steady-state reactor operation, the identity of the core community members was rather stable, but their relative abundances changed considerably over time. Furthermore, nitrifying bacteria were low in relative abundance and diversity in all reactors, despite their large contribution to nitrogen turnover. The results suggest that the OLR has considerable impact on the composition of the granular sludge communities, but also that the granule communities can be dynamic even at steady-state reactor operation due to high functional redundancy of several key guilds. Knowledge about microbial diversity with specific functional guilds under different operating conditions can be important for engineers to predict the stability of reactor functions during the start-up and continued reactor operation. PMID:28507540

  1. A constitutive law for dense granular flows.

    PubMed

    Jop, Pierre; Forterre, Yoël; Pouliquen, Olivier

    2006-06-08

    A continuum description of granular flows would be of considerable help in predicting natural geophysical hazards or in designing industrial processes. However, the constitutive equations for dry granular flows, which govern how the material moves under shear, are still a matter of debate. One difficulty is that grains can behave like a solid (in a sand pile), a liquid (when poured from a silo) or a gas (when strongly agitated). For the two extreme regimes, constitutive equations have been proposed based on kinetic theory for collisional rapid flows, and soil mechanics for slow plastic flows. However, the intermediate dense regime, where the granular material flows like a liquid, still lacks a unified view and has motivated many studies over the past decade. The main characteristics of granular liquids are: a yield criterion (a critical shear stress below which flow is not possible) and a complex dependence on shear rate when flowing. In this sense, granular matter shares similarities with classical visco-plastic fluids such as Bingham fluids. Here we propose a new constitutive relation for dense granular flows, inspired by this analogy and recent numerical and experimental work. We then test our three-dimensional (3D) model through experiments on granular flows on a pile between rough sidewalls, in which a complex 3D flow pattern develops. We show that, without any fitting parameter, the model gives quantitative predictions for the flow shape and velocity profiles. Our results support the idea that a simple visco-plastic approach can quantitatively capture granular flow properties, and could serve as a basic tool for modelling more complex flows in geophysical or industrial applications.

  2. Nitrate removal from high strength nitrate-bearing wastes in granular sludge sequencing batch reactors.

    PubMed

    Krishna Mohan, Tulasi Venkata; Renu, Kadali; Nancharaiah, Yarlagadda Venkata; Satya Sai, Pedapati Murali; Venugopalan, Vayalam Purath

    2016-02-01

    A 6-L sequencing batch reactor (SBR) was operated for development of granular sludge capable of denitrification of high strength nitrates. Complete and stable denitrification of up to 5420 mg L(-1) nitrate-N (2710 mg L(-1) nitrate-N in reactor) was achieved by feeding simulated nitrate waste at a C/N ratio of 3. Compact and dense denitrifying granular sludge with relatively stable microbial community was developed during reactor operation. Accumulation of large amounts of nitrite due to incomplete denitrification occurred when the SBR was fed with 5420 mg L(-1) NO3-N at a C/N ratio of 2. Complete denitrification could not be achieved at this C/N ratio, even after one week of reactor operation as the nitrite levels continued to accumulate. In order to improve denitrification performance, the reactor was fed with nitrate concentrations of 1354 mg L(-1), while keeping C/N ratio at 2. Subsequently, nitrate concentration in the feed was increased in a step-wise manner to establish complete denitrification of 5420 mg L(-1) NO3-N at a C/N ratio of 2. The results show that substrate concentration plays an important role in denitrification of high strength nitrate by influencing nitrite accumulation. Complete denitrification of high strength nitrates can be achieved at lower substrate concentrations, by an appropriate acclimatization strategy. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  3. Pilot Construction Project for Granular Shoulder Stabilization

    DOT National Transportation Integrated Search

    2013-09-30

    Granular shoulders need to be maintained on a regular basis because edge ruts and potholes develop, posing a safety hazard to motorists. The successful mitigation of edge-rut issues for granular shoulders would increase safety and reduce the number o...

  4. Continuous cooling transformations and microstructures in a low-carbon, high-strength low-alloy plate steel

    NASA Astrophysics Data System (ADS)

    Thompson, S. W.; Vin, D. J., Col; Krauss, G.

    1990-06-01

    A continuous-cooling-transformation (CCT) diagram was determined for a high-strength low-alloy plate steel containing (in weight percent) 0.06 C, 1.45 Mn, 1.25 Cu, 0.97 Ni, 0.72 Cr, and 0.42 Mo. Dilatometric measurements were supplemented by microhardness testing, light microscopy, and transmission electron microscopy. The CCT diagram showed significant suppression of polygonal ferrite formation and a prominent transformation region, normally attributed to bainite formation, at temperatures intermediate to those of polygonal ferrite and martensite formation. In the intermediate region, ferrite formation in groups of similarly oriented crystals about 1 μm in size and containing a high density of dislocations dominated the transformation of austenite during continuous cooling. The ferrite grains assumed two morphologies, elongated or acicular and equiaxed or granular, leading to the terms “acicular ferrite” and “granular ferrite,” respectively, to describe these structures. Austenite regions, some transformed to martensite, were enriched in carbon and retained at interfaces between ferrite grains. Coarse interfacial ledges and the nonacicular morphology of the granular ferrite grains provided evidence for a phase transformation mechanism involving reconstructive diffusion of substitutional atoms. At slow cooling rates, polygonal ferrite and Widmanstätten ferrite formed. These latter structures contained low dislocation densities and e-copper precipitates formed by an interphase transformation mechanism.

  5. Peering inside the granular bed: illuminating feedbacks between bed-load transport and bed-structure evolution

    NASA Astrophysics Data System (ADS)

    Houssais, M.; Jerolmack, D. J.; Martin, R. L.

    2013-12-01

    The threshold of motion is perhaps the most important quantity to determine for understanding rates of bed load transport, however it is a moving target. Decades of research show that it changes in space and in time within a river, and is highly variable among different systems; however, these differences are not mechanistically understood. Recent researchers have proposed that the critical Shields stress is strongly dependent on the local configuration of the sediment bed [Frey and Church, 2011]. Critical Shields stress has been observed to change following sediment-transporting flood events in natural rivers [e.g., Turowski et al., 2011], while small-scale laboratory experiments have produced declining bed load transport rates associated with slow bed compaction [Charru et al., 2004]. However, no direct measurements have been made of the evolving bed structure under bed load transport, so the connection between granular controls and the threshold of motion remains uncertain. A perspective we adopt is that granular effects determine the critical Shields stress, while the fluid supplies a distribution of driving stresses. In order to isolate the granular effect, we undertake laminar bed load transport experiments using plastic beads sheared by a viscous oil in a small, annular flume. The fluid and beads are refractive index matched, and the fluid impregnated with a fluorescing powder. When illuminated with a planar laser sheet, we are able to image slices of the granular bed while also tracking the overlying sediment transport. We present the first results showing how bed load transport influences granular packing, and how changes in packing influence the threshold of motion to feed back on bed load transport rates. This effect may account for much of the variability observed in the threshold of motion in natural streams, and by extension offers a plausible explanation for hysteresis in bed load transport rates observed during floods. Charru, F., H. Mouilleron, and O. Eiff, Erosion and deposition of particles on a bed sheared by a viscous flow, Journal of Fluid Mech., 519, 55-80, 2004 Frey, P. and Church, M. (2011), Bedload: a granular phenomenon. Earth Surf. Process. Landforms, 36: 58-69. doi: 10.1002/esp.2103 Turowski, J. M., A. Badoux, and D. Rickenmann (2011), Start and end of bedload transport in gravel-bed streams, Geophys. Res. Lett., 38, L04401, doi:10.1029/2010GL046558.

  6. Characterization of granular flow dynamics from the generated high-frequency seismic signal: insights from laboratory experiments

    NASA Astrophysics Data System (ADS)

    Mangeney, A.; Farin, M.; de Rosny, J.; Toussaint, R.; Trinh, P. T.

    2017-12-01

    Landslides, rock avalanche and rockfalls represent a major natural hazard in steep environments. However, owing to the lack of visual observations, the dynamics of these gravitational events is still not well understood. A burning challenge is to deduce the landslide dynamics (flow potential energy, involved volume, particle size…) from the characteristics of the generated seismic signal (radiated seismic energy, maximum amplitude, frequencies,...). Laboratory experiments of granular columns collapse are conducted on an inclined plane. The seismic signal generated by the collapse is recorded by piezoelectric accelerometers sensitive in a wide frequency range (1 Hz - 56 kHz). The granular flow are constituted with steel beads of same diameter. We compare the dynamic parameters of the granular flows, deduced from the movie of the experiments, to the seismic parameters deduced from the measured seismic signals. The ratio of radiated seismic energy to potential energy lost is shown to slightly decrease with slope angle and is between 0.2% and 9%. It decreases as time, slope angle and flow volume increase and when the particle diameter decreases. These results explain the dispersion over several orders of magnitude of the seismic efficiency of natural landslides. We distinguish two successive phases of rise and decay in the time profiles if the amplitude of the seismic signal and of the mean frequency of the signal generated by the granular flows. The rise phase and the maximum are shown to be independent of the slope angle. The maximum seismic amplitude coincides with the maximum flow speed in the direction normal to the slope but not with the maximum downslope speed. We observe that the shape of the seismic envelope and frequencies as a function of time changes after a critical slope angle, between 10° and 15° with respect to the horizontal, with a decay phase lasting much longer as slope angle increases, due to a change in the flow regime, from a dense to a more agitated flow. In addition, we propose a semi-empirical scaling law to describe how the seismic energy radiated by a granular flow increases when the slope angle increases. The fit of this law with the seismic data allows us to retrieve the friction angle of the granular material, which is a crucial rheological parameter.

  7. A Single-Granule-Level Approach Reveals Ecological Heterogeneity in an Upflow Anaerobic Sludge Blanket Reactor

    PubMed Central

    Mei, Ran; Narihiro, Takashi; Bocher, Benjamin T. W.; Yamaguchi, Takashi; Liu, Wen-Tso

    2016-01-01

    Upflow anaerobic sludge blanket (UASB) reactor has served as an effective process to treat industrial wastewater such as purified terephthalic acid (PTA) wastewater. For optimal UASB performance, balanced ecological interactions between syntrophs, methanogens, and fermenters are critical. However, much of the interactions remain unclear because UASB have been studied at a “macro”-level perspective of the reactor ecosystem. In reality, such reactors are composed of a suite of granules, each forming individual micro-ecosystems treating wastewater. Thus, typical approaches may be oversimplifying the complexity of the microbial ecology and granular development. To identify critical microbial interactions at both macro- and micro- level ecosystem ecology, we perform community and network analyses on 300 PTA–degrading granules from a lab-scale UASB reactor and two full-scale reactors. Based on MiSeq-based 16S rRNA gene sequencing of individual granules, different granule-types co-exist in both full-scale reactors regardless of granule size and reactor sampling depth, suggesting that distinct microbial interactions occur in different granules throughout the reactor. In addition, we identify novel networks of syntrophic metabolic interactions in different granules, perhaps caused by distinct thermodynamic conditions. Moreover, unseen methanogenic relationships (e.g. “Candidatus Aminicenantes” and Methanosaeta) are observed in UASB reactors. In total, we discover unexpected microbial interactions in granular micro-ecosystems supporting UASB ecology and treatment through a unique single-granule level approach. PMID:27936088

  8. Cell size and morphological properties of yeast Saccharomyces cerevisiae in relation to growth temperature.

    PubMed

    Zakhartsev, Maksim; Reuss, Matthias

    2018-04-26

    Cell volume is an important parameter for modelling cellular processes. Temperature-induced variability of cellular size, volume, intracellular granularity, a fraction of budding cells of yeast Saccharomyces cerevisiae CEN.PK 113-7D (in anaerobic glucose unlimited batch cultures) were measured by flow cytometry and matched with the performance of the biomass growth (maximal specific growth rate (μ_max), specific rate of glucose consumption, the rate of maintenance, biomass yield on glucose). The critical diameter of single cells was 7.94 μm and it is invariant at growth temperatures above 18.5°C. Below 18.5°C, it exponentially increases up to 10.2 μm. The size of the bud linearly depends on μ_max, and it is between 50% at 5°C and 90% at 31°C of the averaged single cell. The intracellular granularity (SSC-index) negatively depends on μ_max. There are two temperature regions (5-31°C vs. 33-40°C) where the relationship between SSC-index and various cellular parameters differ significantly. In supraoptimal temperature range (33-40°C), cells are less granulated perhaps due to a higher rate of the maintenance. There is temperature dependent passage through the checkpoints in the cell cycle which influences the μ_max. The results point to the existence of two different morphological states of yeasts in these different temperature regions.

  9. The Second Spiking Threshold: Dynamics of Laminar Network Spiking in the Visual Cortex

    PubMed Central

    Forsberg, Lars E.; Bonde, Lars H.; Harvey, Michael A.; Roland, Per E.

    2016-01-01

    Most neurons have a threshold separating the silent non-spiking state and the state of producing temporal sequences of spikes. But neurons in vivo also have a second threshold, found recently in granular layer neurons of the primary visual cortex, separating spontaneous ongoing spiking from visually evoked spiking driven by sharp transients. Here we examine whether this second threshold exists outside the granular layer and examine details of transitions between spiking states in ferrets exposed to moving objects. We found the second threshold, separating spiking states evoked by stationary and moving visual stimuli from the spontaneous ongoing spiking state, in all layers and zones of areas 17 and 18 indicating that the second threshold is a property of the network. Spontaneous and evoked spiking, thus can easily be distinguished. In addition, the trajectories of spontaneous ongoing states were slow, frequently changing direction. In single trials, sharp as well as smooth and slow transients transform the trajectories to be outward directed, fast and crossing the threshold to become evoked. Although the speeds of the evolution of the evoked states differ, the same domain of the state space is explored indicating uniformity of the evoked states. All evoked states return to the spontaneous evoked spiking state as in a typical mono-stable dynamical system. In single trials, neither the original spiking rates, nor the temporal evolution in state space could distinguish simple visual scenes. PMID:27582693

  10. Free cooling phase-diagram of hard-spheres with short- and long-range interactions

    NASA Astrophysics Data System (ADS)

    Gonzalez, S.; Thornton, A. R.; Luding, S.

    2014-10-01

    We study the stability, the clustering and the phase-diagram of free cooling granular gases. The systems consist of mono-disperse particles with additional non-contact (long-range) interactions, and are simulated here by the event-driven molecular dynamics algorithm with discrete (short-range shoulders or wells) potentials (in both 2D and 3D). Astonishingly good agreement is found with a mean field theory, where only the energy dissipation term is modified to account for both repulsive or attractive non-contact interactions. Attractive potentials enhance cooling and structure formation (clustering), whereas repulsive potentials reduce it, as intuition suggests. The system evolution is controlled by a single parameter: the non-contact potential strength scaled by the fluctuation kinetic energy (granular temperature). When this is small, as expected, the classical homogeneous cooling state is found. However, if the effective dissipation is strong enough, structure formation proceeds, before (in the repulsive case) non-contact forces get strong enough to undo the clustering (due to the ongoing dissipation of granular temperature). For both repulsive and attractive potentials, in the homogeneous regime, the cooling shows a universal behaviour when the (inverse) control parameter is used as evolution variable instead of time. The transition to a non-homogeneous regime, as predicted by stability analysis, is affected by both dissipation and potential strength. This can be cast into a phase diagram where the system changes with time, which leaves open many challenges for future research.

  11. A study on structure, morphology, optical properties, and photocatalytic ability of SrTiO3/TiO2 granular composites

    NASA Astrophysics Data System (ADS)

    Thi Mai Oanh, Le; Xuan Huy, Nguyen; Thi Thuy Phuong, Doan; Danh Bich, Do; Van Minh, Nguyen

    2018-03-01

    (1-x)SrTiO3-xTiO2 granular composites with x=0.3, 0.4, 0.5, 0.6, 0.7, and 0.8 were synthesized by sol-gel process. Structure, morphology, optical properties, and photocatalytic activity were investigated in detail using x-ray diffraction (XRD) analysis, Raman scattering, field-emission scanning electron microscopy (FE-SEM), Transmission Electron Microscopy (TEM), ultraviolet-visible (UV-vis) absorption spectra, and photoluminescence (PL). XRD analysis showed the formation of single phase for parent phases and the present of two component phases in all composites without any impurity. A tight cohesion between TiO2 and SrTiO3 (STO) at grain boundary region was inferred from lattice parameter change of STO. Moreover, FE-SEM images revealed a granular structure of composite in which SrTiO3 particles were surrounded by smaller TiO2 nanoparticles. As TiO2 concentration increased, absorption edge firstly shifted to the left for composite with x=0.3 and then shifted gradually to the right with further increasing of TiO2 content from 30 mol% to 80 mol%. Composites exhibited a stronger photocatalytic activity than parent phases, with the highest efficiency at 50 mol% of TiO2. PL analysis result showed that the recombination rate of photogenerated electron-hole pairs decreased in composite sample, which partly explained the enhanced photocatalytic property.

  12. Methods and systems for concentrated solar power

    DOEpatents

    Ma, Zhiwen

    2016-05-24

    Embodiments described herein relate to a method of producing energy from concentrated solar flux. The method includes dropping granular solid particles through a solar flux receiver configured to transfer energy from concentrated solar flux incident on the solar flux receiver to the granular solid particles as heat. The method also includes fluidizing the granular solid particles from the solar flux receiver to produce a gas-solid fluid. The gas-solid fluid is passed through a heat exchanger to transfer heat from the solid particles in the gas-solid fluid to a working fluid. The granular solid particles are extracted from the gas-solid fluid such that the granular solid particles can be dropped through the solar flux receiver again.

  13. Coupled Leidenfrost states as a monodisperse granular clock

    NASA Astrophysics Data System (ADS)

    Liu, Rui; Yang, Mingcheng; Chen, Ke; Hou, Meiying; To, Kiwing

    2016-08-01

    Using an event-driven molecular dynamics simulation, we show that simple monodisperse granular beads confined in coupled columns may oscillate as a different type of granular clock. To trigger this oscillation, the system needs to be driven against gravity into a density-inverted state, with a high-density clustering phase supported from below by a gaslike low-density phase (Leidenfrost effect) in each column. Our analysis reveals that the density-inverted structure and the relaxation dynamics between the phases can amplify any small asymmetry between the columns, and lead to a giant oscillation. The oscillation occurs only for an intermediate range of the coupling strength, and the corresponding phase diagram can be universally described with a characteristic height of the density-inverted structure. A minimal two-phase model is proposed and a linear stability analysis shows that the triggering mechanism of the oscillation can be explained as a switchable two-parameter Andronov-Hopf bifurcation. Numerical solutions of the model also reproduce similar oscillatory dynamics to the simulation results.

  14. Pattern palette for complex fluid flows

    NASA Astrophysics Data System (ADS)

    Sandnes, B.

    2012-04-01

    From landslides to oil and gas recovery to the squeeze of a toothpaste tube, flowing complex fluids are everywhere around us in nature and engineering. That is not to say, though, that they are always well understood. The dissipative interactions, through friction and inelastic collisions, often give rise to nonlinear dynamics and complexity manifested in pattern formation on large scales. The images displayed on this poster illustrate the diverse morphologies found in multiphase flows involving wet granular material: Air is injected into a generic mixture of granular material and fluid contained in a 500 µm gap between two parallel glass plates. At low injection rates, friction between the grains - glass beads averaging 100 µm in diameter - dominates the rheology, producing "stick-slip bubbles" and labyrinthine frictional fingering. A transition to various other morphologies, including "corals" and viscous fingers, emerges for increasing injection rate. At sufficiently high granular packing fractions, the material behaves like a deformable, porous solid, and the air rips through in sudden fractures.

  15. Numerical modeling of the tensile strength of a biological granular aggregate: Effect of the particle size distribution

    NASA Astrophysics Data System (ADS)

    Heinze, Karsta; Frank, Xavier; Lullien-Pellerin, Valérie; George, Matthieu; Radjai, Farhang; Delenne, Jean-Yves

    2017-06-01

    Wheat grains can be considered as a natural cemented granular material. They are milled under high forces to produce food products such as flour. The major part of the grain is the so-called starchy endosperm. It contains stiff starch granules, which show a multi-modal size distribution, and a softer protein matrix that surrounds the granules. Experimental milling studies and numerical simulations are going hand in hand to better understand the fragmentation behavior of this biological material and to improve milling performance. We present a numerical study of the effect of granule size distribution on the strength of such a cemented granular material. Samples of bi-modal starch granule size distribution were created and submitted to uniaxial tension, using a peridynamics method. We show that, when compared to the effects of starch-protein interface adhesion and voids, the granule size distribution has a limited effect on the samples' yield stress.

  16. Moving Bed Granular Bed Filter Development Program. Topical report, September 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haas, J.C.; Prudhomme, J.W.; Wilson, K.W.

    1994-09-01

    Five test arrangements have been designed to support the Granular Bed Filter Development Program as defined in the Test Plan. The first arrangement is a 3.6 ft. diameter half filter, with a glass covering along the cross section to allow visual examination of the granular alumina material passing through the filter. The second test arrangement is a 3.6 ft diameter full size filter having refractory lining to simulate actual surface roughness conditions. The third test arrangement will examine filter geometry scale up by testing a 6.0 ft. diameter full size filter. The fourth Test Arrangement consists of a small 12more » inch diameter fluidizer to measure the minimum fluidization velocity of the 7 m (approx. size) alumina material to be used in the filter assemblies. The last Test Unit is used to evaluation relative abrasion characteristics of potential refractory and ceramic materials to be installed in high abrasion areas in the pneumatic transport piping.« less

  17. Effect of granular characteristics on pasting properties of starch blends.

    PubMed

    Lin, Jheng-Hua; Kao, Wen-Tsu; Tsai, You-Che; Chang, Yung-Ho

    2013-11-06

    Pasting and morphology properties of starch blends composed of waxy (waxy rice and waxy corn) and non-waxy (normal corn, tapioca and potato) starches at various ratios were investigated for elucidating effect of granular characteristics on pasting of blends. Pasting profiles of blends were between those of the component starches alone, while the changes varied with starch source. Results reveal obvious water competition during pasting for blends composed of waxy starch and highly swelling non-waxy (tapioca or potato) starch. On the contrary, starch blends composed of waxy starch and non-waxy (normal corn) starch with restricted swelling showed less water competition during pasting, and the pasting attributes could be estimated from those of the component starches following the mixing ratio. Results indicate that the pasting properties of starch blends composed of waxy and non-waxy starches depend on not only the mixing ratio, but also the granular characteristics of component starch. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Radioactive Demonstrations Of Fluidized Bed Steam Reforming (FBSR) With Hanford Low Activity Wastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jantzen, C. M.; Crawford, C. L.; Burket, P. R.

    Several supplemental technologies for treating and immobilizing Hanford low activity waste (LAW) are being evaluated. One immobilization technology being considered is Fluidized Bed Steam Reforming (FBSR) which offers a low temperature (700-750?C) continuous method by which wastes high in organics, nitrates, sulfates/sulfides, or other aqueous components may be processed into a crystalline ceramic (mineral) waste form. The granular waste form produced by co-processing the waste with kaolin clay has been shown to be as durable as LAW glass. The FBSR granular product will be monolithed into a final waste form. The granular component is composed of insoluble sodium aluminosilicate (NAS)more » feldspathoid minerals such as sodalite. Production of the FBSR mineral product has been demonstrated both at the industrial, engineering, pilot, and laboratory scales on simulants. Radioactive testing at SRNL commenced in late 2010 to demonstrate the technology on radioactive LAW streams which is the focus of this study.« less

  19. Changes in magnetic domain structure during twin boundary motion in single crystal Ni-Mn-Ga exhibiting magnetic shape memory effect

    NASA Astrophysics Data System (ADS)

    Kopecký, V.; Fekete, L.; Perevertov, O.; Heczko, O.

    2016-05-01

    The complexity of Ni-Mn-Ga single crystal originates from the interplay between ferromagnetic domain structure and ferroelastic twinned microstructure. Magnetic domain structure in the vicinity of single twin boundary was studied using magneto-optical indicator film and magnetic force microscopy technique. The single twin boundary of Type I was formed mechanically and an initial magnetization state in both variants were restored by local application of magnetic field (≈40 kA/m). The differently oriented variants exhibited either stripe or labyrinth magnetic domain pattern in agreement with the uniaxial magnetocrystalline anisotropy of the martensite. The twin boundary was then moved by compressive or tensile stress. The passage of the boundary resulted in the formation of granular or rake domains, respectively. Additionally, the specific magnetic domains pattern projected by twin boundary gradually vanished during twin boundary motion.

  20. Computed tomography and magnetic resonance imaging findings of intraorbital granular cell tumor (Abrikossoff's tumor): a case report.

    PubMed

    Yuan, Wei-Hsin; Lin, Tai-Chi; Lirng, Jiing-Feng; Guo, Wan-You; Chang, Fu-Pang; Ho, Donald Ming-Tak

    2016-05-13

    Granular cell tumors are rare neoplasms which can occur in any part of the body. Granular cell tumors of the orbit account for only 3 % of all granular cell tumor cases. Computed tomography and magnetic resonance imaging of the orbit have proven useful for diagnosing orbital tumors. However, the rarity of intraorbital granular cell tumors poses a significant diagnostic challenge for both clinicians and radiologists. We report a case of a 37-year-old Chinese woman with a rare intraocular granular cell tumor of her right eye presenting with diplopia, proptosis, and restriction of ocular movement. Preoperative orbital computed tomography and magnetic resonance imaging with contrast enhancement revealed an enhancing solid, ovoid, well-demarcated, retrobulbar nodule. In addition, magnetic resonance imaging features included an intraorbital tumor which was isointense relative to gray matter on T1-weighted imaging and hypointense on T2-weighted imaging. No diffusion restriction of water was noted on either axial diffusion-weighted images or apparent diffusion coefficient maps. Both computed tomography and magnetic resonance imaging features suggested an intraorbital hemangioma. However, postoperative pathology (together with immunohistochemistry) identified an intraorbital granular cell tumor. When intraorbital T2 hypointensity and free diffusion of water are observed on magnetic resonance imaging, a granular cell tumor should be included in the differential diagnosis of an intraocular tumor.

  1. 76 FR 8774 - Granular Polytetrafluoroethylene Resin From Japan

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-15

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 731-TA-386 (Third Review)] Granular Polytetrafluoroethylene Resin From Japan AGENCY: United States International Trade Commission. ACTION: Termination of five... revocation of the antidumping duty order on granular polytetrafluoroethylene resin from Japan would be likely...

  2. Influence of the organic loading rate on the performance and the granular sludge characteristics of an EGSB reactor used for treating traditional Chinese medicine wastewater.

    PubMed

    Li, Weiguang; Su, Chengyuan; Liu, Xingzhe; Zhang, Lei

    2014-01-01

    The effects of the organic loading rate (OLR) on the performance and the granular sludge characteristics of an expanded granular sludge bed (EGSB) reactor used for treating real traditional Chinese medicine (TCM) wastewater were investigated. Over 90% of the COD removal by the EGSB reactor was observed at the OLRs of 4 to 13 kg COD/(m(3) day). However, increasing the OLR to 20 kg COD/(m(3) day) by reducing the hydraulic retention time (HRT 6 h) reduced the COD removal efficiency to 78%. The volatile fatty acid (VFA) concentration was 512.22 mg/L, resulting in an accumulation of VFAs, and propionic acid was the main acidification product, accounting for 66.51% of the total VFAs. When the OLR increased from 10 to 20 kg COD/(m(3) day), the average size of the granule sludge decreased from 469 to 258 μm. There was an obvious reduction in the concentration of Ca(2+) and Mg(2+) in the granular sludge. The visible humic acid-like peak was identified in the three-dimensional excitation-emission matrix (EEM) fluorescence spectra of the soluble microbial products (SMPs). The fatty acid bond, amide II bond, amide III bond, and C-H bond bending were also observed in the Fourier transform infrared (FTIR) spectra of the SMPs. Methanobacterium formicicum, Methanococcus, and Bacteria populations exhibited significant shifts, and these changes were accompanied by an increase in VFA production. The results indicated that a short HRT and high OLR in the EGSB reactor caused the accumulation of polysaccharides, protein, and VFAs, thereby inhibiting the activity of methanogenic bacteria and causing granular sludge corruption.

  3. Colloquium: Biophysical principles of undulatory self-propulsion in granular media

    NASA Astrophysics Data System (ADS)

    Goldman, Daniel I.

    2014-07-01

    Biological locomotion, movement within environments through self-deformation, encompasses a range of time and length scales in an organism. These include the electrophysiology of the nervous system, the dynamics of muscle activation, the mechanics of the skeletal system, and the interaction mechanics of such structures within natural environments like water, air, sand, and mud. Unlike the many studies of cellular and molecular scale biophysical processes, movement of entire organisms (like flies, lizards, and snakes) is less explored. Further, while movement in fluids like air and water is also well studied, little is known in detail of the mechanics that organisms use to move on and within flowable terrestrial materials such as granular media, ensembles of small particles that collectively display solid, fluid, and gaslike behaviors. This Colloquium reviews recent progress to understand principles of biomechanics and granular physics responsible for locomotion of the sandfish, a small desert-dwelling lizard that "swims" within sand using undulation of its body. Kinematic and muscle activity measurements of sand swimming using high speed x-ray imaging and electromyography are discussed. This locomotion problem poses an interesting challenge: namely, that equations that govern the interaction of the lizard with its environment do not yet exist. Therefore, complementary modeling approaches are also described: resistive force theory for granular media, multiparticle simulation modeling, and robotic physical modeling. The models reproduce biomechanical and neuromechanical aspects of sand swimming and give insight into how effective locomotion arises from the coupling of the body movement and flow of the granular medium. The argument is given that biophysical study of movement provides exciting opportunities to investigate emergent aspects of living systems that might not depend sensitively on biological details.

  4. Inhibitory effect of high NH4(+)-N concentration on anaerobic biotreatment of fresh leachate from a municipal solid waste incineration plant.

    PubMed

    Liu, Zhao; Dang, Yan; Li, Caihua; Sun, Dezhi

    2015-09-01

    Fresh leachate from municipal solid waste (MSW) incineration plants generally contains extremely high NH4(+)-N concentration which could inhibit the bioactivity of microorganisms. The inhibitory effect of high NH4(+)-N concentration on anaerobic biotreatment of fresh leachate from a MSW incineration plant in China has been investigated in this study. The inhibition processes was studied by both static tests and a laboratory-scale expanded granular sludge bed (EGSB) reactor. The specific methanogenic activity (SMA) of the microorganisms in anaerobic granular sludge was inhibited with the NH4(+)-N concentration increasing to 1000mg/L in static tests. As well the chemical oxygen demand (COD) removal efficiency and the methane yield decreased in the EGSB reactor, while the volatile fatty acids (VFAs) accumulated and extracellular polymeric substances (EPS) of the anaerobic granular sludge increased with NH4(+)-N concentration rising to 1000mg/L, without any rebounding during 30days of operation. Decreasing NH4(+)-N concentration to 500mg/L in influent, the COD removal efficiency recovered to about 85% after 26days. 1000mg/L of NH4(+)-N in leachate was suggested to be the inhibition threshold in EGSB reactor. High-throughput sequencing results showed little changes in microbial communities of the sludge for a high NH4(+)-N concentration, indicating that the survival of most microorganisms was not affected under such a condition. It inhibited the bioactivity of the microorganisms, resulting in decrease of the COD removal efficiency. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Finite Element Methods and Multiphase Continuum Theory for Modeling 3D Air-Water-Sediment Interactions

    NASA Astrophysics Data System (ADS)

    Kees, C. E.; Miller, C. T.; Dimakopoulos, A.; Farthing, M.

    2016-12-01

    The last decade has seen an expansion in the development and application of 3D free surface flow models in the context of environmental simulation. These models are based primarily on the combination of effective algorithms, namely level set and volume-of-fluid methods, with high-performance, parallel computing. These models are still computationally expensive and suitable primarily when high-fidelity modeling near structures is required. While most research on algorithms and implementations has been conducted in the context of finite volume methods, recent work has extended a class of level set schemes to finite element methods on unstructured methods. This work considers models of three-phase flow in domains containing air, water, and granular phases. These multi-phase continuum mechanical formulations show great promise for applications such as analysis of coastal and riverine structures. This work will consider formulations proposed in the literature over the last decade as well as new formulations derived using the thermodynamically constrained averaging theory, an approach to deriving and closing macroscale continuum models for multi-phase and multi-component processes. The target applications require the ability to simulate wave breaking and structure over-topping, particularly fully three-dimensional, non-hydrostatic flows that drive these phenomena. A conservative level set scheme suitable for higher-order finite element methods is used to describe the air/water phase interaction. The interaction of these air/water flows with granular materials, such as sand and rubble, must also be modeled. The range of granular media dynamics targeted including flow and wave transmision through the solid media as well as erosion and deposition of granular media and moving bed dynamics. For the granular phase we consider volume- and time-averaged continuum mechanical formulations that are discretized with the finite element method and coupled to the underlying air/water flow via operator splitting (fractional step) schemes. Particular attention will be given to verification and validation of the numerical model and important qualitative features of the numerical methods including phase conservation, wave energy dissipation, and computational efficiency in regimes of interest.

  6. KSC-2012-2761

    NASA Image and Video Library

    2012-05-14

    CAPE CANAVERAL, Fla. – Dr. Phil Metzger demonstrates an experiment to study the physics of granular materials to students in the Granular Physics and Regolith Operations Lab at the Space Life Sciences Lab facility. The 26 honor students in chemistry and biology and their teachers got a chance to visit a number of high-tech labs at Kennedy Space Center as part of an effort to encourage students in the areas of science, technology, engineering and math. The tenth and eleventh grade students from Terry Parker High School in Jacksonville, Fla., visited a number of vastly different labs during their one-day tour. The group's visit to Kennedy was hosted by the Education Office as part of a nationwide effort by the National Lab Network to help introduce the nation's students to science careers. Photo credit: NASA/Jim Grossmann

  7. Optical reflectance of solution processed quasi-superlattice ZnO and Al-doped ZnO (AZO) channel materials

    NASA Astrophysics Data System (ADS)

    Buckley, Darragh; McCormack, Robert; O'Dwyer, Colm

    2017-04-01

    The angle-resolved reflectance of high crystalline quality, c-axis oriented ZnO and AZO single and periodic quasi-superlattice (QSL) spin-coated TFT channels materials are presented. The data is analysed using an adapted model to accurately determine the spectral region for optical thickness and corresponding reflectance. The optical thickness agrees very well with measured thickness of 1-20 layered QSL thin films determined by transmission electron microscopy if the reflectance from lowest interference order is used. Directional reflectance for single layers or homogeneous QSLs of ZnO and AZO channel materials exhibit a consistent degree of anti-reflection characteristics from 30 to 60° (~10-12% reflection) for thickness ranging from ~40 nm to 500 nm. The reflectance of AZO single layer thin films is  <10% from 30 to 75° at 514.5 nm, and  <6% at 632.8 nm from 30-60°. The data show that ZnO and AZO with granular or periodic substructure behave optically as dispersive, continuous thin films of similar thickness, and angle-resolved spectral mapping provides a design rule for transparency or refractive index determination as a function of film thickness, substructure (dispersion) and viewing angle.

  8. Microstructure effects on the recrystallization of low-symmetry alpha-uranium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCabe, Rodney James; Richards, Andrew Walter; Coughlin, Daniel Robert

    2015-10-01

    We employ electron backscatter diffraction (EBSD) to investigate microstructural evolution of uranium during recrystallization. To understand the relationship between microstructure and recrystallization, we use measures of intra-granular misorientation within grains and near grain boundaries in both deformed (non-recrystallized) uranium and recrystallizing uranium. The data show that the level of intra-granular misorientation depends on crystallographic orientation. However, contrary to expectation, this relationship does not significantly affect the recrystallization texture. Rather, the analysis suggests that recrystallization nucleation occurs along high angle grain boundaries in the deformed microstructure. Specifically, we show that the nucleation of recrystallized grains correlates well with the spatially heterogeneousmore » distribution of high angle boundaries. Due to the inhomogeneous distribution of high angle boundaries, the recrystallized microstructure after long times exhibits clustered distributions of small and large grains. Twin boundaries do not appear to act as recrystallization nucleation sites.« less

  9. A semi-empirical model for the formation and depletion of the high burnup structure in UO 2

    DOE PAGES

    Pizzocri, D.; Cappia, F.; Luzzi, L.; ...

    2017-01-31

    In the rim zone of UO 2 nuclear fuel pellets, the combination of high burnup and low temperature drives a microstructural change, leading to the formation of the high burnup structure (HBS). In this work, we propose a semi-empirical model to describe the formation of the HBS, which embraces the polygonisation/recrystallization process and the depletion of intra-granular fission gas, describing them as inherently related. To this end, we per-formed grain-size measurements on samples at radial positions in which the restructuring was incomplete. Moreover, based on these new experimental data, we assume an exponential reduction of the average grain size withmore » local effective burnup, paired with a simultaneous depletion of intra-granular fission gas driven by diffusion. The comparison with currently used models indicates the applicability of the herein developed model within integral fuel performance codes.« less

  10. Validation of GEANT4 Monte Carlo models with a highly granular scintillator-steel hadron calorimeter

    NASA Astrophysics Data System (ADS)

    Adloff, C.; Blaha, J.; Blaising, J.-J.; Drancourt, C.; Espargilière, A.; Gaglione, R.; Geffroy, N.; Karyotakis, Y.; Prast, J.; Vouters, G.; Francis, K.; Repond, J.; Schlereth, J.; Smith, J.; Xia, L.; Baldolemar, E.; Li, J.; Park, S. T.; Sosebee, M.; White, A. P.; Yu, J.; Buanes, T.; Eigen, G.; Mikami, Y.; Watson, N. K.; Mavromanolakis, G.; Thomson, M. A.; Ward, D. R.; Yan, W.; Benchekroun, D.; Hoummada, A.; Khoulaki, Y.; Apostolakis, J.; Dotti, A.; Folger, G.; Ivantchenko, V.; Uzhinskiy, V.; Benyamna, M.; Cârloganu, C.; Fehr, F.; Gay, P.; Manen, S.; Royer, L.; Blazey, G. C.; Dyshkant, A.; Lima, J. G. R.; Zutshi, V.; Hostachy, J.-Y.; Morin, L.; Cornett, U.; David, D.; Falley, G.; Gadow, K.; Göttlicher, P.; Günter, C.; Hermberg, B.; Karstensen, S.; Krivan, F.; Lucaci-Timoce, A.-I.; Lu, S.; Lutz, B.; Morozov, S.; Morgunov, V.; Reinecke, M.; Sefkow, F.; Smirnov, P.; Terwort, M.; Vargas-Trevino, A.; Feege, N.; Garutti, E.; Marchesini, I.; Ramilli, M.; Eckert, P.; Harion, T.; Kaplan, A.; Schultz-Coulon, H.-Ch; Shen, W.; Stamen, R.; Bilki, B.; Norbeck, E.; Onel, Y.; Wilson, G. W.; Kawagoe, K.; Dauncey, P. D.; Magnan, A.-M.; Bartsch, V.; Wing, M.; Salvatore, F.; Calvo Alamillo, E.; Fouz, M.-C.; Puerta-Pelayo, J.; Bobchenko, B.; Chadeeva, M.; Danilov, M.; Epifantsev, A.; Markin, O.; Mizuk, R.; Novikov, E.; Popov, V.; Rusinov, V.; Tarkovsky, E.; Kirikova, N.; Kozlov, V.; Smirnov, P.; Soloviev, Y.; Buzhan, P.; Ilyin, A.; Kantserov, V.; Kaplin, V.; Karakash, A.; Popova, E.; Tikhomirov, V.; Kiesling, C.; Seidel, K.; Simon, F.; Soldner, C.; Szalay, M.; Tesar, M.; Weuste, L.; Amjad, M. S.; Bonis, J.; Callier, S.; Conforti di Lorenzo, S.; Cornebise, P.; Doublet, Ph; Dulucq, F.; Fleury, J.; Frisson, T.; van der Kolk, N.; Li, H.; Martin-Chassard, G.; Richard, F.; de la Taille, Ch; Pöschl, R.; Raux, L.; Rouëné, J.; Seguin-Moreau, N.; Anduze, M.; Boudry, V.; Brient, J.-C.; Jeans, D.; Mora de Freitas, P.; Musat, G.; Reinhard, M.; Ruan, M.; Videau, H.; Bulanek, B.; Zacek, J.; Cvach, J.; Gallus, P.; Havranek, M.; Janata, M.; Kvasnicka, J.; Lednicky, D.; Marcisovsky, M.; Polak, I.; Popule, J.; Tomasek, L.; Tomasek, M.; Ruzicka, P.; Sicho, P.; Smolik, J.; Vrba, V.; Zalesak, J.; Belhorma, B.; Ghazlane, H.; Takeshita, T.; Uozumi, S.; Götze, M.; Hartbrich, O.; Sauer, J.; Weber, S.; Zeitnitz, C.

    2013-07-01

    Calorimeters with a high granularity are a fundamental requirement of the Particle Flow paradigm. This paper focuses on the prototype of a hadron calorimeter with analog readout, consisting of thirty-eight scintillator layers alternating with steel absorber planes. The scintillator plates are finely segmented into tiles individually read out via Silicon Photomultipliers. The presented results are based on data collected with pion beams in the energy range from 8 GeV to 100 GeV. The fine segmentation of the sensitive layers and the high sampling frequency allow for an excellent reconstruction of the spatial development of hadronic showers. A comparison between data and Monte Carlo simulations is presented, concerning both the longitudinal and lateral development of hadronic showers and the global response of the calorimeter. The performance of several GEANT4 physics lists with respect to these observables is evaluated.

  11. High granularity tracker based on a Triple-GEM optically read by a CMOS-based camera

    NASA Astrophysics Data System (ADS)

    Marafini, M.; Patera, V.; Pinci, D.; Sarti, A.; Sciubba, A.; Spiriti, E.

    2015-12-01

    The detection of photons produced during the avalanche development in gas chambers has been the subject of detailed studies in the past. The great progresses achieved in last years in the performance of micro-pattern gas detectors on one side and of photo-sensors on the other provide the possibility of making high granularity and very sensitive particle trackers. In this paper, the results obtained with a triple-GEM structure read-out by a CMOS based sensor are described. The use of an He/CF4 (60/40) gas mixture and a detailed optimization of the electric fields made possible to obtain a very high GEM light yield. About 80 photons per primary electron were detected by the sensor resulting in a very good capability of tracking both muons from cosmic rays and electrons from natural radioactivity.

  12. Synthesis of ultra-nano-carbon composite materials with extremely high conductivity by plasma post-treatment process of ultrananocrystalline diamond films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yeh, Chien-Jui; Leou, Keh-Chyang; Manoharan, Divinah

    2015-08-24

    Needle-like diamond grains encased in nano-graphitic layers are an ideal granular structure of diamond films to achieve high conductivity and superior electron field emission (EFE) properties. This paper describes the plasma post-treatment (ppt) of ultrananocrystalline diamond (UNCD) films at low substrate temperature to achieve such a unique granular structure. The CH{sub 4}/N{sub 2} plasma ppt-processed films exhibit high conductivity of σ = 1099 S/cm as well as excellent EFE properties with turn-on field of E{sub 0} = 2.48 V/μm (J{sub e} = 1.0 mA/cm{sup 2} at 6.5 V/μm). The ppt of UNCD film is simple and robust process that is especially useful for device applications.

  13. Laser-Induced Fluorescence Detection in High-Throughput Screening of Heterogeneous Catalysts and Single Cells Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, Hui

    2001-01-01

    Laser-induced fluorescence detection is one of the most sensitive detection techniques and it has found enormous applications in various areas. The purpose of this research was to develop detection approaches based on laser-induced fluorescence detection in two different areas, heterogeneous catalysts screening and single cell study. First, the author introduced laser-induced imaging (LIFI) as a high-throughput screening technique for heterogeneous catalysts to explore the use of this high-throughput screening technique in discovery and study of various heterogeneous catalyst systems. This scheme is based on the fact that the creation or the destruction of chemical bonds alters the fluorescence properties ofmore » suitably designed molecules. By irradiating the region immediately above the catalytic surface with a laser, the fluorescence intensity of a selected product or reactant can be imaged by a charge-coupled device (CCD) camera to follow the catalytic activity as a function of time and space. By screening the catalytic activity of vanadium pentoxide catalysts in oxidation of naphthalene, they demonstrated LIFI has good detection performance and the spatial and temporal resolution needed for high-throughput screening of heterogeneous catalysts. The sample packing density can reach up to 250 x 250 subunits/cm 2 for 40-μm wells. This experimental set-up also can screen solid catalysts via near infrared thermography detection. In the second part of this dissertation, the author used laser-induced native fluorescence coupled with capillary electrophoresis (LINF-CE) and microscope imaging to study the single cell degranulation. On the basis of good temporal correlation with events observed through an optical microscope, they have identified individual peaks in the fluorescence electropherograms as serotonin released from the granular core on contact with the surrounding fluid.« less

  14. PALLADIUM-FACILITATED ELECTROLYTIC DECHLORINATION OF 2-CHLOROBIPHENYL USING A GRANULAR-GRAPHITE ELECTRODE.

    EPA Science Inventory

    Palladium-assisted electrocatalytic dechlorination of 2-chlorobiphenyl (2-Cl BP) in aqueous solutions was conducted in a membrane-separated electrochemical reactor with granular-graphite packed electrodes. The dechlorination took place at a granular-graphite cathode while Pd was ...

  15. USE OF GRANULAR GRAPHITE FOR ELECTROLYTIC DECHLORINATION OF TRICHLOROETHYLENE

    EPA Science Inventory

    Granular graphite is a potential electrode material for the electrochemical remediation of refractory chlorinated organic compounds such as trichloroethylene (TCE). However, the use of granular graphite can complicate the experimental results. On one hand, up to 99% of TCE was re...

  16. Discrete element modeling of free-standing wire-reinforced jammed granular columns

    NASA Astrophysics Data System (ADS)

    Iliev, Pavel S.; Wittel, Falk K.; Herrmann, Hans J.

    2018-02-01

    The use of fiber reinforcement in granular media is known to increase the cohesion and therefore the strength of the material. However, a new approach, based on layer-wise deployment of predetermined patterns of the fiber reinforcement has led self-confining and free-standing jammed structures to become viable. We have developed a novel model to simulate fiber-reinforced granular materials, which takes into account irregular particles and wire elasticity and apply it to study the stability of unconfined jammed granular columns.

  17. Gravity and Granular Materials

    NASA Technical Reports Server (NTRS)

    Behringer, R. P.; Hovell, Daniel; Kondic, Lou; Tennakoon, Sarath; Veje, Christian

    1999-01-01

    We describe experiments that probe a number of different types of granular flow where either gravity is effectively eliminated or it is modulated in time. These experiments include the shaking of granular materials both vertically and horizontally, and the shearing of a 2D granular material. For the shaken system, we identify interesting dynamical phenomena and relate them to standard simple friction models. An interesting application of this set of experiments is to the mixing of dissimilar materials. For the sheared system we identify a new kind of dynamical phase transition.

  18. A numerical study of granular dam-break flow

    NASA Astrophysics Data System (ADS)

    Pophet, N.; Rébillout, L.; Ozeren, Y.; Altinakar, M.

    2017-12-01

    Accurate prediction of granular flow behavior is essential to optimize mitigation measures for hazardous natural granular flows such as landslides, debris flows and tailings-dam break flows. So far, most successful models for these types of flows focus on either pure granular flows or flows of saturated grain-fluid mixtures by employing a constant friction model or more complex rheological models. These saturated models often produce non-physical result when they are applied to simulate flows of partially saturated mixtures. Therefore, more advanced models are needed. A numerical model was developed for granular flow employing a constant friction and μ(I) rheology (Jop et al., J. Fluid Mech. 2005) coupled with a groundwater flow model for seepage flow. The granular flow is simulated by solving a mixture model using Finite Volume Method (FVM). The Volume-of-Fluid (VOF) technique is used to capture the free surface motion. The constant friction and μ(I) rheological models are incorporated in the mixture model. The seepage flow is modeled by solving Richards equation. A framework is developed to couple these two solvers in OpenFOAM. The model was validated and tested by reproducing laboratory experiments of partially and fully channelized dam-break flows of dry and initially saturated granular material. To obtain appropriate parameters for rheological models, a series of simulations with different sets of rheological parameters is performed. The simulation results obtained from constant friction and μ(I) rheological models are compared with laboratory experiments for granular free surface interface, front position and velocity field during the flows. The numerical predictions indicate that the proposed model is promising in predicting dynamics of the flow and deposition process. The proposed model may provide more reliable insight than the previous assumed saturated mixture model, when saturated and partially saturated portions of granular mixture co-exist.

  19. Fate and efficacy of metolachlor granular and emulsifiable concentrate formulations in a conservation tillage system.

    PubMed

    Potter, Thomas L; Gerstl, Zev; White, Paul W; Cutts, George S; Webster, Theodore M; Truman, Clint C; Strickland, Timothy C; Bosch, David D

    2010-10-13

    Use of genetically modified cultivars resistant to the herbicide glyphosate (N-phosphonomethylglycine) is strongly associated with conservation-tillage (CsT) management for maize ( Zea mays L.), soybean ( Glycine max L.), and cotton ( Gossypium hirsutum L.) cultivation. Due to the emergence of glyphosate-resistant weed biotypes, alternate weed management practices are needed to sustain CsT use. This work focused on metolachlor use (2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl)acetamide) in a CsT system. The fate and efficacy of granular and emulsifiable concentrate (EC) formulations or an EC surrogate were compared for CsT cotton production in the Atlantic Coastal Plain region of southern Georgia (USA). The granular formulation, a clay-alginate polymer, was produced in the authors' laboratory; EC was a commercial product. In field and laboratory dissipations the granular metolachlor exhibited 8-fold greater soil persistence. Rainfall simulation runoff assessments indicated that use of the granular formulation in a common CsT system, strip-tillage (ST), may reduce metolachlor runoff loss when compared to conventional tillage (CT) management or when EC formulations are used in the ST system. Metolachlor leaching assessments using field-deployed lysimeters showed some tillage (ST > CT) and formulation (EC > granular) differences. Overall leaching was generally small when compared to runoff loss. Finally, greenhouse bioassays showed control of two weed species with the granular was greater than or equal to that of the EC formulation; however, the granular formulation suppressed cotton growth to a greater extent. In sum, this metolachlor granular formulation has advantages for CsT cotton production; however, additional research is needed to assess impacts on crop injury.

  20. Treatment of semivolatile compounds in high strength wastes using an anaerobic expanded-bed GAC reactor

    EPA Science Inventory

    The potential of the anaerobic, expanded bed granular activated carbon (GAC) reactor in treating a high strength waste containing RCRA semivolatile organic compounds (VOCs) was studied. Six semivolatiles, orthochlorophenol, nitrobenzene, naphthalene, para-nitrophenol, lindane, a...

  1. Density profiles of granular gases studied by molecular dynamics and Brownian bridges

    NASA Astrophysics Data System (ADS)

    Peñuñuri, F.; Montoya, J. A.; Carvente, O.

    2018-02-01

    Despite the inherent frictional forces and dissipative collisions, confined granular matter can be regarded as a system in a stationary state if we inject energy continuously. Under these conditions, both the density and the granular temperature are, in general, non-monotonic variables along the height of the container. In consequence, an analytical description of a granular system is hard to conceive. Here, by using molecular dynamics simulations, we measure the packing fraction profiles for a vertically vibrating three-dimensional granular system in several gaseous-like stationary states. We show that by using the Brownian bridge concept, the determined packing fraction profiles can be reproduced accurately and give a complete description of the distribution of the particles inside the simulation box.

  2. Settling properties of aerobic granular sludge (AGS) and aerobic granular sludge molasses (AGSM)

    NASA Astrophysics Data System (ADS)

    Mat Saad, Azlina; Aini Dahalan, Farrah; Ibrahim, Naimah; Yasina Yusuf, Sara; Aqlima Ahmad, Siti; Khalil, Khalilah Abdul

    2018-03-01

    Aerobic granulation technology is applied to treat domestic and industrial wastewater. The Aerobic granular sludge (AGS) cultivated has strong properties that appears to be denser and compact in physiological structure compared to the conventional activated sludge. It offers rapid settling for solid:liquid separation in wastewater treatment. Aerobic granules were developed using sequencing batch reactor (SBR) with intermittent aerobic - anaerobic mode with 8 cycles in 24 hr. This study examined the settling velocity performance of cultivated aerobic granular sludge (AGS) and aerobic granular sludge molasses (AGSM). The elemental composition in both AGS and AGSM were determined using X-ray fluorescence (XRF). The results showed that AGSM has higher settling velocity 30.5 m/h compared to AGS.

  3. Origin of Granular Capillarity Revealed by Particle-Based Simulations

    NASA Astrophysics Data System (ADS)

    Fan, Fengxian; Parteli, Eric J. R.; Pöschel, Thorsten

    2017-05-01

    When a thin tube is dipped into water, the water will ascend to a certain height, against the action of gravity. While this effect, termed capillarity, is well known, recent experiments have shown that agitated granular matter reveals a similar behavior. Namely, when a vertical tube is inserted into a container filled with granular material and is then set into vertical vibration, the particles rise up along the tube. In the present Letter, we investigate the effect of granular capillarity by means of numerical simulations and show that the effect is caused by convection of the granular material in the container. Moreover, we identify two regimes of behavior for the capillary height Hc∞ depending on the tube-to-particle-diameter ratio, D /d . For large D /d , a scaling of Hc∞ with the inverse of the tube diameter, which is reminiscent of liquids, is observed. However, when D /d decreases down to values smaller than a few particle sizes, a uniquely granular behavior is observed where Hc∞ increases linearly with the tube diameter.

  4. Granular flows in constrained geometries

    NASA Astrophysics Data System (ADS)

    Murthy, Tejas; Viswanathan, Koushik

    Confined geometries are widespread in granular processing applications. The deformation and flow fields in such a geometry, with non-trivial boundary conditions, determine the resultant mechanical properties of the material (local porosity, density, residual stresses etc.). We present experimental studies of deformation and plastic flow of a prototypical granular medium in different nontrivial geometries- flat-punch compression, Couette-shear flow and a rigid body sliding past a granular half-space. These geometries represent simplified scaled-down versions of common industrial configurations such as compaction and dredging. The corresponding granular flows show a rich variety of flow features, representing the entire gamut of material types, from elastic solids (beam buckling) to fluids (vortex-formation, boundary layers) and even plastically deforming metals (dead material zone, pile-up). The effect of changing particle-level properties (e.g., shape, size, density) on the observed flows is also explicitly demonstrated. Non-smooth contact dynamics particle simulations are shown to reproduce some of the observed flow features quantitatively. These results showcase some central challenges facing continuum-scale constitutive theories for dynamic granular flows.

  5. Boltzmann distribution in a nonequilibrium steady state: measuring local potential by granular Brownian particles.

    PubMed

    To, Kiwing

    2014-06-01

    We investigate experimentally the steady state motion of a millimeter-sized granular polyhedral object on vertically vibrating platforms of flat, conical, and parabolic surfaces. We find that the position distribution of the granular object is related to the shape of the platform, just like that of a Brownian particle trapped in a potential at equilibrium, even though the granular object is intrinsically not at equilibrium due to inelastic collisions with the platform. From the collision dynamics, we derive the Langevin equation which describes the motion of the object under an effective potential that equals the gravitational potential along the platform surface. The potential energy is found to agree with the equilibrium equipartition theorem while the kinetic energy does not. Furthermore, the granular temperature is found to be higher than the effective temperature associated with the average potential energy, suggesting the presence of heat transfer from the kinetic part to the potential part of the granular object.

  6. Video Analysis of Granular Gases in a Low-Gravity Environment

    NASA Astrophysics Data System (ADS)

    Lewallen, Erin

    2004-10-01

    Granular Agglomeration in Non-Gravitating Systems is a research project undertaken by the University of Tulsa Granular Dynamics Group. The project investigates the effects of weightlessness on granular systems by studying the dynamics of a "gas" of 1-mm diameter brass ball bearings driven at various amplitudes and frequencies in low-gravity. Models predict that particles in systems subjected to these conditions should exhibit clustering behavior due to energy loss through multiple inelastic collisions. Observation and study of clustering in our experiment could shed light on this phenomenon as a possible mechanism by which particles in space coalesce to form stable objects such as planetesimals and planetary ring systems. Our experiment has flown on NASA's KC-135 low gravity aircraft. Data analysis techniques for video data collected during these flights include modification of images using Adobe Photoshop and development of ball identification and tracking programs written in Interactive Data Language. By tracking individual balls, we aim to establish speed distributions for granular gases and thereby obtain values for granular temperature.

  7. Impact of projectiles of different geometries on dry granular media using DEM simulations

    NASA Astrophysics Data System (ADS)

    Vajrala, Spandana; Bagheri, Hosain; Emady, Heather; Marvi, Hamid; Particulate Process; Product Design Group Team; Birth Lab Collaboration

    Recently, several studies involving numerical and experimental methods have focused on the study of impact dynamics in both dry and wet granular media. Most of these studies considered the impact of spherical projectiles under different conditions, while representative models could involve more complex shapes. Examples include such things as an animal's foot impacting sand or an asteroid hitting the ground. Dropping different shaped geometries with conserved density, volume and velocity on a granular bed may experience contrasting drag forces upon penetration. This is the result of the difference in the surface areas coming in contact with the granular media. Therefore, this work will utilize three-dimensional Discrete Element Modelling (DEM) simulations to observe and compare the impact of different geometries like cylinder and cuboid of same material properties and volume. These geometries will be impacted on a loosely packed non-cohesive dry granular bed with the same impact velocities where the effect of surface area in contact with the granular media will be analyzed upon impact and penetration.

  8. Permeable reactive barrier of surface hydrophobic granular activated carbon coupled with elemental iron for the removal of 2,4-dichlorophenol in water.

    PubMed

    Yang, Ji; Cao, Limei; Guo, Rui; Jia, Jinping

    2010-12-15

    Granular activated carbon was modified with dimethyl dichlorosilane to improve its surface hydrophobicity, and therefore to improve the performance of permeable reactive barrier constructed with the modified granular activated carbon and elemental iron. X-ray photoelectron spectroscopy shows that the surface silicon concentration of the modified granular activated carbon is higher than that of the original one, leading to the increased surface hydrophobicity. Although the specific surface area decreased from 895 to 835 m(2)g(-1), the modified granular activated carbon could adsorb 20% more 2,4-dichlorophenol than the original one did in water. It is also proven that the permeable reactive barrier with the modified granular activated carbon is more efficient at 2,4-dichlorophenol dechlorination, in which process 2,4-dichlorophenol is transformed to 2-chlorophenol or 4-chlorophenol then to phenol, or to phenol directly. Copyright © 2010 Elsevier B.V. All rights reserved.

  9. Critical phenomenon of granular flow on a conveyor belt.

    PubMed

    De-Song, Bao; Xun-Sheng, Zhang; Guang-Lei, Xu; Zheng-Quan, Pan; Xiao-Wei, Tang; Kun-Quan, Lu

    2003-06-01

    The relationship between the granular wafer movement on a two-dimensional conveyor belt and the size of the exit together with the velocity of the conveyor belt has been studied in the experiment. The result shows that there is a critical speed v(c) for the granular flow when the exit width d is fixed (where d=R/D, D being the diameter of a granular wafers). When vv(c), the flow rate Q is described as Q=Crho(v)(beta)(d-k)(3/2). These are the effects of the interaction among the granular wafers and the change of the states of the granular flow due to the changing of the speed or the exit width d.

  10. Boltzmann distribution in a nonequilibrium steady state: Measuring local potential by granular Brownian particles

    NASA Astrophysics Data System (ADS)

    To, Kiwing

    2014-06-01

    We investigate experimentally the steady state motion of a millimeter-sized granular polyhedral object on vertically vibrating platforms of flat, conical, and parabolic surfaces. We find that the position distribution of the granular object is related to the shape of the platform, just like that of a Brownian particle trapped in a potential at equilibrium, even though the granular object is intrinsically not at equilibrium due to inelastic collisions with the platform. From the collision dynamics, we derive the Langevin equation which describes the motion of the object under an effective potential that equals the gravitational potential along the platform surface. The potential energy is found to agree with the equilibrium equipartition theorem while the kinetic energy does not. Furthermore, the granular temperature is found to be higher than the effective temperature associated with the average potential energy, suggesting the presence of heat transfer from the kinetic part to the potential part of the granular object.

  11. The src-family protein-tyrosine kinase p59hck is located on the secretory granules in human neutrophils and translocates towards the phagosome during cell activation.

    PubMed

    Möhn, H; Le Cabec, V; Fischer, S; Maridonneau-Parini, I

    1995-07-15

    The src-family protein-tyrosine kinase p59hck is mainly expressed in neutrophils; however, its functional role in these cells is unknown. Several other src-family members are localized on secretory vesicles and have been proposed to regulate intracellular traffic. We have established here the subcellular localization of p59hck in human neutrophils. Immunoblotting of subcellular fractions showed that approx. 60% of the p59hck per cell is localized on the secretory granules; the other 40% is distributed equally between non-granular membranes and the cytosol. Immunofluorescence of neutrophils and HL60 cells suggests that the p59hck-positive granules are azurophil granules. Granular p59hck is highly susceptible to degradation by an azurophil-granule proteinase. Different forms of p59hck occur in the three subcellular compartments: a 61 kDa form is mainly found in the granules, a 59 kDa form is predominant in the non-granular membranes, whereas cytosolic p59hck migrates as a doublet at 63 kDa. During the process of phagocytosis-linked degranulation, induced by serum-opsonized zymosan in neutrophils or HL60 cells, granular p59hck translocates towards the phagosome. The subcellular localization of p59hck suggests that the enzyme could be involved in the regulation of the degranulation process.

  12. Pilot-plant studies of the pipe- and pipe-cross reactors in production of granular polyphosphate fertilizers. TVA Circular Z-148. [Methods of increasing polyphosphate content of suspension fertilizers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parker, B.R.; Norton, M.M.; Stumpe, T.R.

    1982-01-01

    Improvements have been made in the pipe-reactor or pipe-cross reactor/drum-granulator process to increase the polyphosphate content of the granular product. The goal of producing a granular APP product containing 20% of P/sub 2/O/sub 5/ as polyphosphate without adding external heat or sulfuric acid to the process has not yet been realized; however, products containing slightly more than 10% of the P/sub 2/O/sub 5/ as polyphosphate have been made without the need for external heat. Test results indicate that additions of small amounts of sulfuric acid, use of reactant NH/sub 3/:H/sub 3/PO/sub 4/ed mole ratios greater than 1.05, or use ofmore » some acid preheat may be required to consistently obtain 12% of the P/sub 2/O/sub 5/ as polyphosphate as is desired for use of the product in the preparation of suspension fertilizers. However, continued testing is being done to determine how high a mole ratio may be used successfully and to determine the effect of sulfate addition on use of the granular products for producing suspension fertilizers. The effort to obtain higher polyphosphate levels from the pipe-reactor and drum and the pipe-cross reactor and drum systems is being continued.« less

  13. Depletion forces drive polymer-like self-assembly in vibrofluidized granular materials†

    PubMed Central

    Nossal, Ralph

    2011-01-01

    Ranging from nano- to granular-scales, control of particle assembly can be achieved by limiting the available free space, for example by increasing the concentration of particles (“crowding”) or through their restriction to 2D environments. It is unclear, however, if self-assembly principles governing thermally-equilibrated molecules can also apply to mechanically-excited macroscopic particles in non-equilibrium steady-state. Here we show that low densities of vibrofluidized steel rods, when crowded by high densities of spheres and confined to quasi-2D planes, can self-assemble into linear polymer-like structures. Our 2D Monte Carlo simulations show similar finite sized aggregates in thermally equilibrated binary mixtures. Using theory and simulations, we demonstrate how depletion interactions create oriented “binding” forces between rigid rods to form these “living polymers.” Unlike rod-sphere mixtures in 3D that can demonstrate well-defined equilibrium phases, our mixtures confined to 2D lack these transitions because lower dimensionality favors the formation of linear aggregates, thus suppressing a true phase transition. The qualitative and quantitative agreement between equilibrium and granular patterning for these mixtures suggests that entropy maximization is the determining driving force for bundling. Furthermore, this study uncovers a previously unknown patterning behavior at both the granular and nanoscales, and may provide insights into the role of crowding at interfaces in molecular assembly. PMID:22039392

  14. Effect of sludge age on methanogenic and glycogen accumulating organisms in an aerobic granular sludge process fed with methanol and acetate

    PubMed Central

    Pronk, M; Abbas, B; Kleerebezem, R; van Loosdrecht, M C M

    2015-01-01

    The influence of sludge age on granular sludge formation and microbial population dynamics in a methanol- and acetate-fed aerobic granular sludge system operated at 35°C was investigated. During anaerobic feeding of the reactor, methanol was initially converted to methane by methylotrophic methanogens. These methanogens were able to withstand the relatively long aeration periods. Lowering the anaerobic solid retention time (SRT) from 17 to 8 days enabled selective removal of the methanogens and prevented unwanted methane formation. In absence of methanogens, methanol was converted aerobically, while granule formation remained stable. At high SRT values (51 days), γ-Proteobacteria were responsible for acetate removal through anaerobic uptake and subsequent aerobic growth on storage polymers formed [so called metabolism of glycogen-accumulating organisms (GAO)]. When lowering the SRT (24 days), Defluviicoccus-related organisms (cluster II) belonging to the α-Proteobacteria outcompeted acetate consuming γ-Proteobacteria at 35°C. DNA from the Defluviicoccus-related organisms in cluster II was not extracted by the standard DNA extraction method but with liquid nitrogen, which showed to be more effective. Remarkably, the two GAO types of organisms grew separately in two clearly different types of granules. This work further highlights the potential of aerobic granular sludge systems to effectively influence the microbial communities through sludge age control in order to optimize the wastewater treatment processes. PMID:26059251

  15. An Experimental study of Corner Turning in a Granular Ammonium Nitrate Based Explosive

    NASA Astrophysics Data System (ADS)

    Sorber, Susan; Taylor, Peter

    2007-06-01

    A novel experimental geometry has been designed to perform controlled studies of corner turning in a ``tap density'' granular explosive. It enables the study of corner turning and detonation properties with high speed framing camera, piezo probes and ionization probes. The basic geometry consists of a large diameter PMMA cylinder filled with the granular explosive which is initiated on axis from below by a smaller diameter cylinder of the same explosive or a booster charge. Four experiments have been performed on a granular Ammonium Nitrate based non ideal explosive (NIE). Two experiments were initiated directly from a PE4 booster charge and two were initiated from a train including a booster charge and a 1'' diameter Copper cylinder containing the same NIE. Data from the four experiments was reproducible and observed detonation and shock waves showed good 2-D symmetry. Detonation phase velocity on the vertical side of the main container was observed and both shock and detonation velocities were observed in the corner turning region along the base of the main container. Analysis of the data shows that the booster initiated geometries with a higher input shock pressure into the NIE gave earlier detonation arrival at the lowest probes on the container side. The corner turning data is compared to a hydrocode calculation using a simple JWL++ reactive burn model.

  16. Use of high-granularity CdZnTe pixelated detectors to correct response non-uniformities caused by defects in crystals

    DOE PAGES

    Bolotnikov, A. E.; Camarda, G. S.; Cui, Y.; ...

    2015-09-06

    Following our successful demonstration of the position-sensitive virtual Frisch-grid detectors, we investigated the feasibility of using high-granularity position sensing to correct response non-uniformities caused by the crystal defects in CdZnTe (CZT) pixelated detectors. The development of high-granularity detectors able to correct response non-uniformities on a scale comparable to the size of electron clouds opens the opportunity of using unselected off-the-shelf CZT material, whilst still assuring high spectral resolution for the majority of the detectors fabricated from an ingot. Here, we present the results from testing 3D position-sensitive 15×15×10 mm 3 pixelated detectors, fabricated with conventional pixel patterns with progressively smallermore » pixel sizes: 1.4, 0.8, and 0.5 mm. We employed the readout system based on the H3D front-end multi-channel ASIC developed by BNL's Instrumentation Division in collaboration with the University of Michigan. We use the sharing of electron clouds among several adjacent pixels to measure locations of interaction points with sub-pixel resolution. By using the detectors with small-pixel sizes and a high probability of the charge-sharing events, we were able to improve their spectral resolutions in comparison to the baseline levels, measured for the 1.4-mm pixel size detectors with small fractions of charge-sharing events. These results demonstrate that further enhancement of the performance of CZT pixelated detectors and reduction of costs are possible by using high spatial-resolution position information of interaction points to correct the small-scale response non-uniformities caused by crystal defects present in most devices.« less

  17. Studies of elasticity, sound propagation and attenuation of acoustic modes in granular media: final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makse, Hernan A.; Johnson, David L.

    2014-09-03

    This is the final report describing the results of DOE Grant # DE-FG02-03ER15458 with original termination date of April 31, 2013, which has been extended to April 31, 2014. The goal of this project is to develop a theoretical and experimental understanding of sound propagation, elasticity and dissipation in granular materials. The topic is relevant for the efficient production of hydrocarbon and for identifying and characterizing the underground formation for storage of either CO 2 or nuclear waste material. Furthermore, understanding the basic properties of acoustic propagation in granular media is of importance not only to the energy industry, butmore » also to the pharmaceutical, chemical and agricultural industries. We employ a set of experimental, theoretical and computational tools to develop a study of acoustics and dissipation in granular media. These include the concept effective mass of granular media, normal modes analysis, statistical mechanics frameworks and numerical simulations based on Discrete Element Methods. Effective mass measurements allow us to study the mechanisms of the elastic response and attenuation of acoustic modes in granular media. We perform experiments and simulations under varying conditions, including humidity and vacuum, and different interparticle force-laws to develop a fundamental understanding of the mechanisms of damping and acoustic propagation in granular media. A theoretical statistical approach studies the necessary phase space of configurations in pressure, volume fraction to classify granular materials.« less

  18. A FPGA-Based, Granularity-Variable Neuromorphic Processor and Its Application in a MIMO Real-Time Control System.

    PubMed

    Zhang, Zhen; Ma, Cheng; Zhu, Rong

    2017-08-23

    Artificial Neural Networks (ANNs), including Deep Neural Networks (DNNs), have become the state-of-the-art methods in machine learning and achieved amazing success in speech recognition, visual object recognition, and many other domains. There are several hardware platforms for developing accelerated implementation of ANN models. Since Field Programmable Gate Array (FPGA) architectures are flexible and can provide high performance per watt of power consumption, they have drawn a number of applications from scientists. In this paper, we propose a FPGA-based, granularity-variable neuromorphic processor (FBGVNP). The traits of FBGVNP can be summarized as granularity variability, scalability, integrated computing, and addressing ability: first, the number of neurons is variable rather than constant in one core; second, the multi-core network scale can be extended in various forms; third, the neuron addressing and computing processes are executed simultaneously. These make the processor more flexible and better suited for different applications. Moreover, a neural network-based controller is mapped to FBGVNP and applied in a multi-input, multi-output, (MIMO) real-time, temperature-sensing and control system. Experiments validate the effectiveness of the neuromorphic processor. The FBGVNP provides a new scheme for building ANNs, which is flexible, highly energy-efficient, and can be applied in many areas.

  19. A FPGA-Based, Granularity-Variable Neuromorphic Processor and Its Application in a MIMO Real-Time Control System

    PubMed Central

    Zhang, Zhen; Zhu, Rong

    2017-01-01

    Artificial Neural Networks (ANNs), including Deep Neural Networks (DNNs), have become the state-of-the-art methods in machine learning and achieved amazing success in speech recognition, visual object recognition, and many other domains. There are several hardware platforms for developing accelerated implementation of ANN models. Since Field Programmable Gate Array (FPGA) architectures are flexible and can provide high performance per watt of power consumption, they have drawn a number of applications from scientists. In this paper, we propose a FPGA-based, granularity-variable neuromorphic processor (FBGVNP). The traits of FBGVNP can be summarized as granularity variability, scalability, integrated computing, and addressing ability: first, the number of neurons is variable rather than constant in one core; second, the multi-core network scale can be extended in various forms; third, the neuron addressing and computing processes are executed simultaneously. These make the processor more flexible and better suited for different applications. Moreover, a neural network-based controller is mapped to FBGVNP and applied in a multi-input, multi-output, (MIMO) real-time, temperature-sensing and control system. Experiments validate the effectiveness of the neuromorphic processor. The FBGVNP provides a new scheme for building ANNs, which is flexible, highly energy-efficient, and can be applied in many areas. PMID:28832522

  20. Recent advances on biosorption by aerobic granular sludge.

    PubMed

    Wang, Li; Liu, Xiang; Lee, Duu-Jong; Tay, Joo-Hwa; Zhang, Yi; Wan, Chun-Li; Chen, Xiao-Feng

    2018-06-04

    Aerobic granular sludge is a form of microbial auto-aggregation, and a promising biotechnology for wastewater treatment. This review aims at providing the first comprehensive, systematic, and in-depth overview on the application of aerobic granules as biosorbents. The target pollutants encompass heavy metals (both cationic and oxyanionic), nuclides, dyes, and inorganic non-metal substances. Different granule types are discussed, i.e. intact and fragmented, compact and fluffy, original and modified, and the effects of granule surface modification are introduced. A detailed comparison is conducted on the characteristics of granular biomass, the conditions of the adsorption tests, and the resultant performance towards various sorbates. Analytical and mathematical tools typically employed are presented, and possible interactions between the pollutants and granules are theorized, leading to an analysis on the mechanisms of the adsorption processes. Original granules appear highly effective towards cationic metals, while surface modification by organic and inorganic agents can expand their applicability to other pollutants. Combined with their advantages of high mechanical strength, density, and settling speed, aerobic granules possess exceptional potential in real wastewater treatment as biosorbents. Possible future research, both fundamental and practical, is suggested to gain more insights into the mechanism of their function, and to advance their industrial application. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Design and performance studies of a hadronic calorimeter for a FCC-hh experiment

    NASA Astrophysics Data System (ADS)

    Faltova, J.

    2018-03-01

    The hadron-hadron Future Circular Collider (FCC-hh) project studies the physics reach of a proton-proton machine with a centre-of-mass-energy of 100 TeV and five times greater peak luminosities than at the High-Luminosity LHC (HL-LHC). The high-energy regime of the FCC-hh opens new opportunities for the discovery of physics beyond the standard model. At 100 TeV a large fraction of the W, Z, H bosons and top quarks are produced with a significant boost. It implies an efficient reconstruction of very high energetic objects decaying hadronically. The reconstruction of those boosted objects sets the calorimeter performance requirements in terms of energy resolution, containment of highly energetic hadron showers, and high transverse granularity. We present the current baseline technologies for the calorimeter system in the barrel region of the FCC-hh reference detector: a liquid argon electromagnetic and a scintillator-steel hadronic calorimeters. The focus of this paper is on the hadronic calorimeter and the performance studies for hadrons. The reconstruction of single particles and the achieved energy resolution for the combined system of the electromagnetic and hadronic calorimeters are discussed.

  2. 40 CFR 60.244 - Test methods and procedures.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Fertilizer Industry: Granular Triple Superphosphate Storage Facilities § 60.244 Test methods and procedures... quantities of product are being cured or stored in the facility. (1) Total granular triple superphosphate is at least 10 percent of the building capacity, and (2) Fresh granular triple superphosphate is at...

  3. 40 CFR 60.244 - Test methods and procedures.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Fertilizer Industry: Granular Triple Superphosphate Storage Facilities § 60.244 Test methods and procedures... quantities of product are being cured or stored in the facility. (1) Total granular triple superphosphate is at least 10 percent of the building capacity, and (2) Fresh granular triple superphosphate is at...

  4. Shear dilatancy and acoustic emission in dry and saturated granular materials

    NASA Astrophysics Data System (ADS)

    Brodsky, E. E.; Siman-Tov, S.

    2017-12-01

    Shearing of granular materials plays a strong role in naturally sheared systems as landslides and faults. Many works on granular flows have concentrated on dry materials, but relatively little work has been done on water saturated sands. Here we experimentally investigate dry versus saturated quartz-rich sand to understand the effect of the fluid medium on the rheology and acoustic waves emission of the sheared sand. The sand was sheared in a rotary shear rheometer under applied constant normal stress boundary at low (100 µm/s) to high (1 m/s) velocities. Mechanical, acoustic data and deformation were continuously recorded and imaged. For dry and water saturated experiments the granular volume remains constant for low shear velocities ( 10-3 m/s) and increases during shearing at higher velocities ( 1 m/s). Continuous imaging of the sheared sand show that the steady state shear band thickness is thicker during the high velocity steps. No significant change observed in the shear band thickness between dry and water saturated experiments. In contrast, the amount of dilation during water saturated experiments is about half the value measured for dry material. The measured decrease cannot be explained by shear band thickness change as such is not exist. However, the reduced dilation is supported by our acoustic measurements. In general, the event rate and acoustic event amplitudes increase with shear velocity. While isolated events are clearly detected during low velocities at higher the events overlap, resulting in a noisy signal. Although detection is better for saturated experiments, during the high velocity steps the acoustic energy measured from the signal is lower compared to that recorded for dry experiments. We suggest that the presence of fluid suppresses grain motion and particles impacts leading to mild increase in the internal pressure and therefore for the reduced dilation. In addition, the viscosity of fluids may influence the internal pressure via hydrodynamic lubrication which increases the fluid pressure and therefore increases the dilation compared to dry material. The effect is particularly strong for high viscosity fluids, as observed in the silicon oil experiment. Therefore, fluid viscosity can play a crucial role in determining the physics that controls the rheology of the sheared material.

  5. An OpenACC-Based Unified Programming Model for Multi-accelerator Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jungwon; Lee, Seyong; Vetter, Jeffrey S

    2015-01-01

    This paper proposes a novel SPMD programming model of OpenACC. Our model integrates the different granularities of parallelism from vector-level parallelism to node-level parallelism into a single, unified model based on OpenACC. It allows programmers to write programs for multiple accelerators using a uniform programming model whether they are in shared or distributed memory systems. We implement a prototype of our model and evaluate its performance with a GPU-based supercomputer using three benchmark applications.

  6. Time Shared Optical Network (TSON): a novel metro architecture for flexible multi-granular services.

    PubMed

    Zervas, Georgios S; Triay, Joan; Amaya, Norberto; Qin, Yixuan; Cervelló-Pastor, Cristina; Simeonidou, Dimitra

    2011-12-12

    This paper presents the Time Shared Optical Network (TSON) as metro mesh network architecture for guaranteed, statistically-multiplexed services. TSON proposes a flexible and tunable time-wavelength assignment along with one-way tree-based reservation and node architecture. It delivers guaranteed sub-wavelength and multi-granular network services without wavelength conversion, time-slice interchange and optical buffering. Simulation results demonstrate high network utilization, fast service delivery, and low end-to-end delay on a contention-free sub-wavelength optical transport network. In addition, implementation complexity in terms of Layer 2 aggregation, grooming and optical switching has been evaluated. © 2011 Optical Society of America

  7. Archimedes' principle in fluidized granular systems.

    PubMed

    Huerta, D A; Sosa, Victor; Vargas, M C; Ruiz-Suárez, J C

    2005-09-01

    We fluidize a granular bed in a rectangular container by injecting energy through the lateral walls with high-frequency sinusoidal horizontal vibrations. In this way, the bed is brought to a steady state with no convection. We measured buoyancy forces on light spheres immersed in the bed and found that they obey Archimedes' principle. The buoyancy forces decrease when we reduce the injected energy. By measuring ascension velocities as a function of gamma, we can evaluate the frictional drag of the bed; its exponential dependence agrees very well with previous findings. Rising times of the intruders ascending through the bed were also measured, they increase monotonically as we increase the density.

  8. Numerical experiments with flows of elongated granules

    NASA Technical Reports Server (NTRS)

    Elrod, Harold G.; Brewe, David E.

    1992-01-01

    Theory and numerical results are given for a program simulating two dimensional granular flow (1) between two infinite, counter-moving, parallel, roughened walls, and (2) for an infinitely wide slider. Each granule is simulated by a central repulsive force field ratcheted with force restitution factor to introduce dissipation. Transmission of angular momentum between particles occurs via Coulomb friction. The effect of granular hardness is explored. Gaps from 7 to 28 particle diameters are investigated, with solid fractions ranging from 0.2 to 0.9. Among features observed are: slip flow at boundaries, coagulation at high densities, and gross fluctuation in surface stress. A videotape has been prepared to demonstrate the foregoing effects.

  9. Superparamagnetic behavior of Fe70Dy30 granular thin film

    NASA Astrophysics Data System (ADS)

    Mekala, Laxman; Muhammed Shameem P., V.; Kumar, M. Senthil

    2018-04-01

    In the present study, the structural and magnetic properties of the Fe70Dy30 thin films are investigated. The Fe70Dy30 thin film with a thickness of 250 Å is fabricated using a dc magnetron sputtering system. Structural and temperature dependent magnetic properties indicate the granular nature of the film. The nonsaturation of the magnetization curves even at high fields of 50 kOe and the obtained very low coercivity in the temperature range 50 - 300 K reveal that films are superparamagnetic (SPM). The decreasing blocking temperature (Tb) with increasing an external magnetic field in temperature dependent magnetization curves are exposed qualitatively.

  10. Velocity distributions of granular gases with drag and with long-range interactions.

    PubMed

    Kohlstedt, K; Snezhko, A; Sapozhnikov, M V; Aranson, I S; Olafsen, J S; Ben-Naim, E

    2005-08-05

    We study velocity statistics of electrostatically driven granular gases. For two different experiments, (i) nonmagnetic particles in a viscous fluid and (ii) magnetic particles in air, the velocity distribution is non-Maxwellian, and its high-energy tail is exponential, P(upsilon) approximately exp(-/upsilon/). This behavior is consistent with the kinetic theory of driven dissipative particles. For particles immersed in a fluid, viscous damping is responsible for the exponential tail, while for magnetic particles, long-range interactions cause the exponential tail. We conclude that velocity statistics of dissipative gases are sensitive to the fluid environment and to the form of the particle interaction.

  11. Arsenate adsorption on three types of granular schwertmannite.

    PubMed

    Dou, Xiaomin; Mohan, Dinesh; Pittman, Charles U

    2013-06-01

    Schwertmannite was synthesized on a 2 m(3)-scale and fabricated to irregular, cylindrical and spherical shape granules using drum granulation, extrusion and spray coating, respectively. The granules were systematically evaluated for As(V) removal from drinking water in terms of both performance and safety. The irregular and cylindrical shape granules (IS and CS) had larger schwertmannite loadings, higher porosity, more abundant pore structure and larger micropore volumes than those with a spherical shape (SS). As(V) adsorption kinetics on IS, CS and SS schwertmannite granules followed a pseudo-second order rate equation and two-stages of intraparticle diffusion. The rate parameters were in an order of IS > CS > SS granules. The faster uptake kinetics of the IS granules was due to their largest pore volume and interparticle porosity. Furthermore, adsorption capacities of 34, 21 and 5 mg/g, for IS, CS and SS granular schwertmannite samples were achieved at an initial As(V) concentration of 20 mg/L and adsorbent dose of 0.5 g/L. IS and CS samples performed much better over a wide pH range versus SS samples. Except for humic acid, PO4(3-) and SiO4(4-) did not inhibit As(V) adsorption on IS and CS granular specimens. SS samples worked poorly even in the absence or presence of co-existing anions. Regeneration was achieved using 0.1 M NaOH. The recycled IS and CS granular specimens can be used for 4 different cycles with no or nominal loss of adsorption capacity. Column experiments were also conducted. The IS, CS and SS granular specimens treated 8100, 4200 and 120 bed volumes (BVs) of contaminated water. No heavy metals leached from the packed granular adsorbent and appeared in the column effluent. Furthermore, the toxicity characteristic leaching procedure (TCLP) showed that the spent IS and CS granules were inert and could safely be disposed of in landfills. In short, irregular-shaped granules (IS) fabricated by drum granulation is a good candidate for arsenic removal from drinking water with a high future application potential. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Creepy landscapes : river sediment entrainment develops granular flow rheology on creeping bed.

    NASA Astrophysics Data System (ADS)

    Prancevic, J.; Chatanantavet, P.; Ortiz, C. P.; Houssais, M.; Durian, D. J.; Jerolmack, D. J.

    2015-12-01

    To predict rates of river sediment transport, one must first address the zeroth-order question: when does sediment move? The concept and determination of the critical fluid shear stress remains hazy, as observing particle motion and determining sediment flux becomes increasingly hard in its vicinity. To tackle this problem, we designed a novel annular flume experiment - reproducing an infinite river channel - where the refractive index of particles and the fluid are matched. The fluid is dyed with a fluorescent powder and a green laser sheet illuminates the fluid only, allowing us to observe particle displacements in a vertical plane. Experiments are designed to highlight the basic granular interactions of sediment transport while suppressing the complicating effects of turbulence; accordingly, particles are uniform spheres and Reynolds numbers are of order 1. We have performed sediment transport measurements close to the onset of particle motion, at steady state, and over long enough time to record averaged rheological behavior of particles. We find that particles entrained by a fluid exhibit successively from top to bottom: a suspension regime, a dense granular flow regime, and - instead of a static bed - a creeping regime. Data from experiments at a range of fluid stresses can be collapsed onto one universal rheologic curve that indicates the effective friction is a monotonic function of a dimensionless number called the viscous number. These data are in remarkable agreement with the local rheology model proposed by Boyer et al., which means that dense granular flows, suspensions and bed-load transport are unified under a common frictional flow law. Importantly, we observe slow creeping of the granular bed even in the absence of bed load, at fluid stresses that are below the apparent critical value. This last observation challenges the classical definition of the onset of sediment transport, and points to a continuous transition from quasi-static deformation to granular flow. These results provide a new perspective to connect the transport laws for soil creep, landslides/debris flows and river transport. Although our experiments are highly idealized, evidence from other studies suggest that our observations may be directly relevant to natural systems. Finally we show that our findings are robust for mixed grain sizes.

  13. Heterogeneity of murine adherent interleukin-2-activated killer cells. Differential effect of prostaglandin E2 and forskolin.

    PubMed

    Vaillier, D; Daculsi, R; Gualde, N

    1995-01-01

    We have studied the relationship between cytotoxic activity, size and granularity of murine interleukin-2-activated adherent killer cells issued from spleen cells cultured with high levels of IL-2. The effects of prostaglandin E2 (PGE2) and forskolin upon these cells were assessed. All adherent spleen cells obtained after 5 days of culture were large granular lymphocytes but presented a heterogeneity in size and granularity. After fractionation on a discontinuous-density Percoll gradient, four cellular subpopulations were isolated. Fluorescence-activated cell sorting analysis showed that cells of the lightest fraction (F1) were the largest, while the cells found in the heaviest fraction (F4) were much more granular than the cells collected in the two intermediate fractions (F2 and F3). The serine esterases level was higher in F4 than in unfractionated cells and diminished to about 40% in cells of fractions F2 and F3, which expressed a cytotoxic activity against YAC-1 cells higher than that in unfractionated cells or in F1 or F4, which presented the lowest cytotoxic activity. When AK cells were cultured for 48 h in the presence of either PGE2 or forskolin, which induce an intracellular increase of cAMP, we observed that PGE2 (1 microM) inhibited the cytotoxic activity, but surprisingly forskolin (2 microM) exerted a stimulating effect on the induction of cytotoxic activity. After fractionation on a discontinuous Percoll gradient we observed the same cellular distribution among PGE2 or forskolin-treated or -untreated cells, but PGE2 induced an increase of size and granularity. This effect of PGE2 was more potent on the cells collected in F4. However this variation of granularity was not associated with any variation in the serine esterase level. The cytotoxic activity of PGE2- or forskolin-treated cells did not present any significant variation relative to the control for cells collected in F2 and F3; on the other hand, forskolin-treated cells collected in F4 showed a significantly higher cytotoxicity than did the corresponding untreated or PGE2-treated cells.

  14. Single-band mucosectomy for granular cell tumor of the esophagus: safe and easy technique.

    PubMed

    Battaglia, G; Rampado, S; Bocus, P; Guido, E; Portale, G; Ancona, E

    2006-08-01

    Mucosectomy involves resection of a digestive wall fragment that frequently removes a part or even all of the submucosal mass. The single-band mucosectomy technique was used to remove a granular cell tumor (GCT) of the esophagus. Only 3% of GCTs, which are relatively uncommon neoplasms, arise in the esophagus. Ultrasonography has allowed for more frequent recognition and better definition of this disease. Until recently, surgical resection of the esophagus has been the only treatment alternative to endoscopic surveillance. Endoscopic techniques such as mucosal resection (EMR), laser, and argon plasma have been proposed as safe and effective alternatives to surgery. However, to date, only a few reports of these endoscopic techniques have been published. This study aimed to evaluate the safety and feasibility of single-band mucosectomy for removing a GCT of the esophagus. Six patients (1 man and 5 women; mean age, 45 years) with a GCT were studied between January 2000 and May 2004. They underwent EMR after endoscopic ultrasonography. The EMR was performed with a diathermic loop after injection of saline solution into the esophageal wall. Only one session was necessary for removal of the tumor from all 6 patients, and no complication was observed. During a mean clinical endoscopic follow-up period of 36 months, no recurrences, scars, or stenoses were observed. These findings show EMR to be a safe and effective technique that allows complete removal of GCTs. Furthermore, this technique provides tissue for a definitive pathologic diagnosis, which laser and argon plasma do not provide. We recommend EMR as the treatment of choice for GCTs after an accurate ultrasonographic evaluation.

  15. TREATMENT OF VOCS IN HIGH STRENGTH WASTES USING AN ANAEROBIC EXPANDED-BED GAS REACTOR

    EPA Science Inventory

    The potential of the expanded-bed granular activated carbon (GAC) anaerobic reactor in treating a high strength waste containing RCRA volatile organic compounds (VOCs) was studied. A total of six VOCs, methylene chloride, chlorobenzene, carbon tetrachloride, chloroform, toluene ...

  16. Intelligent detectors modelled from the cat's eye

    NASA Astrophysics Data System (ADS)

    Lindblad, Th.; Becanovic, V.; Lindsey, C. S.; Szekely, G.

    1997-02-01

    Biologically inspired image/signal processing, in particular neural networks like the Pulse-Coupled Neural Network (PCNN), are revisited. Their use with high granularity high-energy physics detectors, as well as optical sensing devices, for filtering, de-noising, segmentation, object isolation and edge detection is discussed.

  17. 77 FR 59979 - Pure Magnesium (Granular) From China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-01

    ... (Granular) From China Determination On the basis of the record \\1\\ developed in the subject five-year review... magnesium (granular) from China would be likely to lead to continuation or recurrence of material injury to... China: Investigation No.731-TA- 895 (Second Review). Issued: September 25, 2012. By order of the...

  18. Evidence For Different Reaction Pathways For Liquid And Granular Micronutrients In A Calcareous Soil

    EPA Science Inventory

    The benefits of Mn and Zn fluid fertilizers over conventional granular products in calcareous sandy loam soils have been agronomically demonstrated. We hypothesized that the differences in the effectiveness between granular and fluid Mn and Zn fertilizers is due to different Mn ...

  19. 21 CFR 133.144 - Granular and stirred curd cheese.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Granular and stirred curd cheese. 133.144 Section... (CONTINUED) FOOD FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.144 Granular and stirred curd cheese. (a) Description. (1...

  20. 21 CFR 133.144 - Granular and stirred curd cheese.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Granular and stirred curd cheese. 133.144 Section... (CONTINUED) FOOD FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.144 Granular and stirred curd cheese. (a) Description. (1...

  1. Tunable Passive Vibration Suppressor

    NASA Technical Reports Server (NTRS)

    Boechler, Nicholas (Inventor); Dillon, Robert Peter (Inventor); Daraio, Chiara (Inventor); Davis, Gregory L. (Inventor); Shapiro, Andrew A. (Inventor); Borgonia, John Paul C. (Inventor); Kahn, Daniel Louis (Inventor)

    2016-01-01

    An apparatus and method for vibration suppression using a granular particle chain. The granular particle chain is statically compressed and the end particles of the chain are attached to a payload and vibration source. The properties of the granular particles along with the amount of static compression are chosen to provide desired filtering of vibrations.

  2. Invited Article: Refractive index matched scanning of dense granular materials

    NASA Astrophysics Data System (ADS)

    Dijksman, Joshua A.; Rietz, Frank; Lőrincz, Kinga A.; van Hecke, Martin; Losert, Wolfgang

    2012-01-01

    We review an experimental method that allows to probe the time-dependent structure of fully three-dimensional densely packed granular materials and suspensions by means of particle recognition. The method relies on submersing a granular medium in a refractive index matched fluid. This makes the resulting suspension transparent. The granular medium is then visualized by exciting, layer by layer, the fluorescent dye in the fluid phase. We collect references and unreported experimental know-how to provide a solid background for future development of the technique, both for new and experienced users.

  3. Numerical simulation of the sedimentation of a sphere in a sheared granular fluid: a granular Stokes experiment.

    PubMed

    Tripathi, Anurag; Khakhar, D V

    2011-09-02

    We study, computationally, the sedimentation of a sphere of higher mass in a steady, gravity-driven granular flow of otherwise identical spheres, on a rough inclined plane. Taking a hydrodynamic approach at the scale of the particle, we find the drag force to be given by a modified Stokes law and the buoyancy force by the Archimedes principle, with excluded volume effects taken into account. We also find significant differences between the hydrodynamic case and the granular case, which are highlighted.

  4. Numerical Simulation of the Sedimentation of a Sphere in a Sheared Granular Fluid: A Granular Stokes Experiment

    NASA Astrophysics Data System (ADS)

    Tripathi, Anurag; Khakhar, D. V.

    2011-09-01

    We study, computationally, the sedimentation of a sphere of higher mass in a steady, gravity-driven granular flow of otherwise identical spheres, on a rough inclined plane. Taking a hydrodynamic approach at the scale of the particle, we find the drag force to be given by a modified Stokes law and the buoyancy force by the Archimedes principle, with excluded volume effects taken into account. We also find significant differences between the hydrodynamic case and the granular case, which are highlighted.

  5. Numerical insight into the micromechanics of jet erosion of a cohesive granular material

    NASA Astrophysics Data System (ADS)

    Cuéllar, Pablo; Benseghier, Zeyd; Luu, Li-Hua; Bonelli, Stéphane; Delenne, Jean-Yves; Radjaï, Farhang; Philippe, Pierre

    2017-06-01

    Here we investigate the physical mechanisms behind the surface erosion of a cohesive granular soil induced by an impinging jet by means of numerical simulations coupling fluid and grains at the microscale. The 2D numerical model combines the Discrete Element and Lattice Boltzmann methods (DEM-LBM) and accounts for the granular cohesion with a contact model featuring a paraboloidal yield surface. Here we review first the hydrodynamical conditions imposed by the fluid jet on a solid granular packing, turning then the attention to the impact of cohesion on the erosion kinetics. Finally, the use of an additional subcritical debonding damage model based on the work of Silvani and co-workers provides a novel insight into the internal solicitation of the cohesive granular sample by the impinging jet.

  6. Elastogranular Mechanics: Buckling, Jamming, and Structure Formation.

    PubMed

    Schunter, David J; Brandenbourger, Martin; Perriseau, Sophia; Holmes, Douglas P

    2018-02-16

    Confinement of a slender body into a granular array induces stress localization in the geometrically nonlinear structure, and jamming, reordering, and vertical dislodging of the surrounding granular medium. By varying the initial packing density of grains and the length of a confined elastica, we identify the critical length necessary to induce jamming, and demonstrate how folds couple with the granular medium to localize along grain boundaries. Above the jamming threshold, the characteristic length of elastica deformation is shown to diverge in a manner that is coupled with the motion and rearrangement of the grains, suggesting the ordering of the granular array governs the deformation of the slender structure. However, overconfinement of the elastica will vertically dislodge grains, a form of stress relaxation in the granular medium that illustrates the intricate coupling in elastogranular interactions.

  7. Elastogranular Mechanics: Buckling, Jamming, and Structure Formation

    NASA Astrophysics Data System (ADS)

    Schunter, David J.; Brandenbourger, Martin; Perriseau, Sophia; Holmes, Douglas P.

    2018-02-01

    Confinement of a slender body into a granular array induces stress localization in the geometrically nonlinear structure, and jamming, reordering, and vertical dislodging of the surrounding granular medium. By varying the initial packing density of grains and the length of a confined elastica, we identify the critical length necessary to induce jamming, and demonstrate how folds couple with the granular medium to localize along grain boundaries. Above the jamming threshold, the characteristic length of elastica deformation is shown to diverge in a manner that is coupled with the motion and rearrangement of the grains, suggesting the ordering of the granular array governs the deformation of the slender structure. However, overconfinement of the elastica will vertically dislodge grains, a form of stress relaxation in the granular medium that illustrates the intricate coupling in elastogranular interactions.

  8. Tuning strain of granular matter by basal assisted Couette shear

    NASA Astrophysics Data System (ADS)

    Zhao, Yiqiu; Barés, Jonathan; Zheng, Hu; Behringer, Robert

    2017-06-01

    We present a novel Couette shear apparatus capable of generating programmable azimuthal strain inside 2D granular matter under Couette shear. The apparatus consists of 21 independently movable concentric rings and two boundary wheels with frictional racks. This makes it possible to quasistatically shear the granular matter not only from the boundaries but also from the bottom. We show that, by specifying the collective motion of wheels and rings, the apparatus successfully generates the desired strain profile inside the sample granular system, which is composed of about 2000 photoelastic disks. The motion and stress of each particle is captured by an imaging system utilizing reflective photoelasticimetry. This apparatus provides a novel method to investigate shear jamming properties of granular matter with different interior strain profiles and unlimited strain amplitudes.

  9. Central granular cell odontogenic tumor: immunohistochemistry and ultrastructure.

    PubMed

    Meer, Shabnum; Altini, Mario; Coleman, Hedley; Daya, Nilesh

    2004-01-01

    Central granular cell odontogenic tumors are rare, with only 30 cases having been reported. The tumors usually occur in the mandibular molar area and are seen as localized painless swellings in patients older than 40 years. We report an additional case that occurred in the posterior mandible of an elderly black woman. All reported cases of this tumor are benign, and cure is effected by localized surgical excision. Ultrastructurally, the cells contain numerous lysosomes and phagocytic vacuoles. Immunohistochemically, the granular cells were positive for vimentin, CD68, muramidase, carcinogenic embryonic antigen, and bcl-2. These features support a mesenchymal origin with a possible histiocytic lineage for the granular cells. Awareness of the occurrence of this neoplasm is important to promote detection and differentiation from other intraoral granular cell lesions.

  10. Optimization of Energy Resolution in the Digital Hadron Calorimeter using Longitudinal Weights

    NASA Astrophysics Data System (ADS)

    Smith, J. R.; Bilki, B.; Francis, K.; Repond, J.; Schlereth, J.; Xia, L.

    2013-04-01

    Physics at a future lepton collider requires unprecedented jet energy and dijet mass resolutions. Particle Flow Algorithms (PFAs) have been proposed to achieve these. PFAs measure particles in a jet individually with the detector subsystem providing the best resolution. For this to work a calorimeter system with very high granularity is required. A prototype Digital Hadron Calorimeter (the DHCAL) based on the Resistive Plate Chamber (RPC) technology with a record count of readout channels has been developed, constructed, and exposed to particle beams. In this context, we report on a technique to improve the single hadron energy resolution by applying a set of calibration weights to the individual layers of the calorimeter. This weighting procedure was applied to approximately 1 million events in the energy range up to 60 GeV and shows an improvement in the pion energy resolution. Simulated data is used to verify particle identification techniques and to compare with the data.

  11. Ion exchange of several radionuclides on the hydrous crystalline silicotitanate, UOP IONSIV IE-911

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huckman, M.E.; Latheef, I.M.; Anthony, R.G.

    1999-04-01

    The crystalline silicotitanate, UOP IONSIV IE-911, is a proven material for removing radionuclides from a wide variety of waste streams. It is superior for removing several radionuclides from the highly alkaline solutions typical of DOE wastes. This laboratory previously developed an equilibrium model applicable to complex solutions for IE-910 (the power form of the granular IE-911), and more recently, the authors have developed several single component ion-exchange kinetic models for predicting column breakthrough curves and batch reactor concentration histories. In this paper, the authors model ion-exchange column performance using effective diffusivities determined from batch kinetic experiments. This technique is preferablemore » because the batch experiments are easier, faster, and cheaper to perform than column experiments. They also extend these ideas to multicomponent systems. Finally, they evaluate the ability of the equilibrium model to predict data for IE-911.« less

  12. Assessing a hydrodynamic description for instabilities in highly dissipative, freely cooling granular gases.

    PubMed

    Mitrano, Peter P; Garzó, Vicente; Hilger, Andrew M; Ewasko, Christopher J; Hrenya, Christine M

    2012-04-01

    An intriguing phenomenon displayed by granular flows and predicted by kinetic-theory-based models is the instability known as particle "clustering," which refers to the tendency of dissipative grains to form transient, loose regions of relatively high concentration. In this work, we assess a modified-Sonine approximation recently proposed [Garzó, Santos, and Montanero, Physica A 376, 94 (2007)] for a granular gas via an examination of system stability. In particular, we determine the critical length scale associated with the onset of two types of instabilities--vortices and clusters--via stability analyses of the Navier-Stokes-order hydrodynamic equations by using the expressions of the transport coefficients obtained from both the standard and the modified-Sonine approximations. We examine the impact of both Sonine approximations over a range of solids fraction φ<0.2 for small restitution coefficients e = 0.25-0.4, where the standard and modified theories exhibit discrepancies. The theoretical predictions for the critical length scales are compared to molecular dynamics (MD) simulations, of which a small percentage were not considered due to inelastic collapse. Results show excellent quantitative agreement between MD and the modified-Sonine theory, while the standard theory loses accuracy for this highly dissipative parameter space. The modified theory also remedies a high-dissipation qualitative mismatch between the standard theory and MD for the instability that forms more readily. Furthermore, the evolution of cluster size is briefly examined via MD, indicating that domain-size clusters may remain stable or halve in size, depending on system parameters.

  13. An experimental study of low velocity impacts into granular material in reduced gravity

    NASA Astrophysics Data System (ADS)

    Murdoch, Naomi; Avila Martinez, Iris; Sunday, Cecily; Cherrier, Olivier; Zenou, Emanuel; Janin, Tristan; Cadu, Alexandre; Gourinat, Yves; Mimoun, David

    2016-04-01

    The granular nature of asteroid surfaces, in combination with the low surface gravity, makes it difficult to predict lander - surface interactions from existing theoretical models. Nonetheless, an understanding of such interactions is particularly important for the deployment of a lander package. This was demonstrated by the Philae lander, which bounced before coming to rest roughly 1 kilometer away from its intended landing site on the surface of comet 67P/Churyumov-Gerasimenko before coming to rest (Biele et al., 2015). In addition to being important for planning the initial deployment, information about the acceleration profile upon impact is also important in the choice of scientific payloads that want to exploit the initial landing to study the asteroid surface mechanical properties (e.g., Murdoch et al., 2016). Using the ISAE-SUPAERO drop tower, we have performed a series of low-velocity collisions into granular material in low gravity. Reduced-gravity is simulated by releasing a free-falling projectile into a surface container with a downward acceleration less than that of Earth's gravity. The acceleration of the surface is controlled through the use an Atwood machine, or a system of pulleys and counterweights. In reducing the effective surface acceleration of the granular material, the confining pressure will be reduced, and the properties of the granular material will become more representative of those on an asteroid's surface. In addition, since both the surface and projectile are falling, the projectile requires a minimum amount of time to catch the surface before the collision begins. This extended free-fall increases the experiment duration, making it easier to use accelerometers and high-speed cameras for data collection. The experiment is built into an existing 5.5 m drop-tower frame and has required the custom design of all components, including the projectile, surface sample container, release mechanism and deceleration system (Sunday et al., 2016). Previous experiments using similar methods have demonstrated the important role of gravity in the peak accelerations and collision timescales during low velocity granular impacts (Goldman and Umbanhower, 2007; Alsthuler et al., 2013). The design of our experiment accommodates collision velocities and effective accelerations that are lower than in previous experiments (<20 cm/s and ˜0.1 - 1.0 m/s2, respectively), allowing us to come closer to the conditions that may be encountered by current and future small body missions. [1] Altshuler, E., et al., "Extraterrestrial sink dynamics in granular matter", arXiv 1305.6796, 2013. [2] Biele, J., et al., "The landing(s) of Philae and inferences about comet surface mechanical properties", Science, 349 (6247), 2015. [3] Goldman, D. I., Umbanhowar, P., Scaling and dynamics of sphere and disk impact into granular media, Physics Review E 77 (2), (2008) 021308. [4] Murdoch, N., et al. "Investigating the surface and subsurface properties of the Didymos binary asteroid with a landed CubeSat", EGU, 2016. [5] Sunday, C., et al., "An original facility for reduced-gravity testing: a set-up for studying low-velocity collisions into granular surfaces", Submitted to the Review of Scientific Instruments, 2016.

  14. Speciation and Distribution of Phosphorus in a Fertilized Soil: A Synchrotron-Based Investigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lombi, E.; Scheckel, K.G.; Armstrong, R.D.

    2008-06-09

    Phosphorus availability is often a limiting factor for crop production around the world. The efficiency of P fertilizers in calcareous soils is limited by reactions that decrease P availability; however, fluid fertilizers have recently been shown, in highly calcareous soils of southern Australia, to be more efficient for crop (wheat [Triticum aestivum L.]) P nutrition than granular products. To elucidate the mechanisms responsible for this differential response, an isotopic dilution technique (E value) coupled with a synchrotron-based spectroscopic investigation were used to assess the reaction products of a granular (monoammonium phosphate, MAP) and a fluid P (technical-grade monoammonium phosphate, TG-MAP)more » fertilizer in a highly calcareous soil. The isotopic exchangeability of P from the fluid fertilizer, measured with the E-value technique, was higher than that of the granular product. The spatially resolved spectroscopic investigation, performed using nano x-ray fluorescence and nano x-ray absorption near-edge structure (n-XANES), showed that P is heterogeneously distributed in soil and that, at least in this highly calcareous soil, it is invariably associated with Ca rather than Fe at the nanoscale. 'Bulk' XANES spectroscopy revealed that, in the soil surrounding fertilizer granules, P precipitation in the form of octacalcium phosphate and apatite-like compounds is the dominant mechanism responsible for decreases in P exchangeability. This process was less prominent when the fluid P fertilizer was applied to the soil.« less

  15. Acoustic waves in the solar atmosphere at high spatial resolution. II. Measurement in the Fe I 5434 Å line

    NASA Astrophysics Data System (ADS)

    Bello González, N.; Flores Soriano, M.; Kneer, F.; Okunev, O.; Shchukina, N.

    2010-11-01

    Aims: We investigate the energy supply of the solar chromosphere by acoustic waves. Methods: A time sequence with high spatial and temporal resolution from the quiet Sun disc centre in Fe i 5434 Å (Landé factor g = 0) is analysed. We used models from a numerical simulation of granular convection and apply NLTE spectral line transfer to determine the height of formation. For estimates of acoustic energy flux, we adopted wave propagation with inclinations of the wave vector with respect to the vertical of 0°, 30°, and 45°. For a granular and an intergranular model, the transmissions of the atmosphere to high-frequency waves were determined for the three inclination angles. Wavelet and Fourier analyses were performed and the resulting power spectra were corrected for atmospheric transmission. Results: We find waves with periods down to ~40 s. They occur intermittently in space and time. The velocity signal is formed at a height of 500 km in the granular model and at 620 km in the intergranule. At periods shorter than the acoustic cutoff (~190 s), ~40% of the waves occur above granules and ~60% above intergranules. By adopting vertical propagation, we estimate total fluxes above granules of 2750-3360 W m-2, and of 910-1 000 W m-2 above intergranules. The weighted average is 1730-2 060 W m-2. The estimates of the total fluxes increase by 15% when inclined wave propagation of 45° is assumed.

  16. Laboratory and pilot-scale bioremediation of pentaerythritol tetranitrate (PETN) contaminated soil.

    PubMed

    Zhuang, Li; Gui, Lai; Gillham, Robert W; Landis, Richard C

    2014-01-15

    PETN (pentaerythritol tetranitrate), a munitions constituent, is commonly encountered in munitions-contaminated soils, and pose a serious threat to aquatic organisms. This study investigated anaerobic remediation of PETN-contaminated soil at a site near Denver Colorado. Both granular iron and organic carbon amendments were used in both laboratory and pilot-scale tests. The laboratory results showed that, with various organic carbon amendments, PETN at initial concentrations of between 4500 and 5000mg/kg was effectively removed within 84 days. In the field trial, after a test period of 446 days, PETN mass removal of up to 53,071mg/kg of PETN (80%) was achieved with an organic carbon amendment (DARAMEND) of 4% by weight. In previous laboratory studies, granular iron has shown to be highly effective in degrading PETN. However, for both the laboratory and pilot-scale tests, granular iron was proven to be ineffective. This was a consequence of passivation of the iron surfaces caused by the very high concentrations of nitrate in the contaminated soil. This study indicated that low concentration of organic carbon was a key factor limiting bioremediation of PETN in the contaminated soil. Furthermore, the addition of organic carbon amendments such as the DARAMEND materials or brewers grain, proved to be highly effective in stimulating the biodegradation of PETN and could provide the basis for full-scale remediation of PETN-contaminated sites. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. State of the art on granular sludge by using bibliometric analysis.

    PubMed

    Zheng, Tianlong; Li, Pengyu; Wu, Wenjun; Liu, Jianguo; Shi, Zhining; Guo, Xuesong; Liu, Junxin

    2018-04-01

    With rapid industrialization and urbanization in the nineteenth century, the activated sludge process (ASP) has experienced significant steps forward in the face of greater awareness of and sensitivity toward water-related environmental problems. Compared with conventional flocculent ASP, the major advantages of granular sludge are characterized by space saving and resource recovery, where the methane and hydrogen recovery in anaerobic granular and 50% more space saving, 30-50% of energy consumption reduction, 75% of footprint cutting, and even alginate recovery in aerobic granular. Numerous engineers and scientists have made great efforts to explore the superiority over the last 40 years. Therefore, a bibliometric analysis was desired to trace the global trends of granular sludge research from 1992 to 2016 indexed in the SCI-EXPANDED. Articles were published in 276 journals across 44 subject categories spanning 1420 institutes across 68 countries. Bioresource Technology (293, 11.9%), Water Research (235, 9.6%), and Applied Microbiology and Biotechnology (127, 5.2%) dominated in top three journals. The Engineering (991, 40.3%), China (906, 36.9%), and Harbin Inst Technol, China (114, 4.6%) were the most productive subject category, country, and institution, respectively. The hotspot is the emerging techniques depended on granular reactors in response to the desired removal requirements and bio-energy production (primarily in anaerobic granular sludge). In view of advanced and novel bio-analytical methods, the characteristics, functions, and mechanisms for microbial granular were further revealed in improving and innovating the granulation techniques. Therefore, a promising technique armed with strengthened treatment efficiency and efficient resource and bio-energy recovery can be achieved.

  18. Analog and numerical experiments investigating force chain influences on bed conditions in granular flows

    NASA Astrophysics Data System (ADS)

    Estep, J.; Dufek, J.

    2013-12-01

    Granular flows are fundamental processes in several terrestrial and planetary natural events; including surficial flows on volcanic edifices, debris flows, landslides, dune formation, rock falls, sector collapses, and avalanches. Often granular flows can be two-phase, whereby interstitial fluids occupy void space within the particulates. The mobility of granular flows has received significant attention, however the physics that govern their internal behavior remain poorly understood. Here we extend upon previous research showing that force chains can transmit extreme localized forces to the substrates of free surface granular flows, and we combine experimental and computational approaches to further investigate the forces at the bed of simplified granular flows. Analog experiments resolve discrete bed forces via a photoelastic technique, while numerical experiments validate laboratory tests using discrete element model (DEM) simulations. The current work investigates (1) the role of distributed grain sizes on force transmission via force chains, and (2) how the inclusion of interstitial fluids effects force chain development. We also include 3D numerical simulations to apply observed 2D characteristics into real world perspective, and ascertain if the added dimension alters force chain behavior. Previous research showed that bed forces generated by force chain structures can transiently greatly exceed (by several 100%) the bed forces predicted from continuum approaches, and that natural materials are more prone to excessive bed forces than photoelastic materials due to their larger contact stiffnesses. This work suggests that force chain activity may play an important role in the bed physics of dense granular flows by influencing substrate entrainment. Photoelastic experiment image showing force chains in gravity driven granular flow.

  19. Characterization and Leaching Tests of the Fluidized Bed Steam Reforming (FBSR) Waste Form for LAW Immobilization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neeway, James J.; Qafoku, Nikolla; Brown, Christopher F.

    2013-10-01

    Several supplemental technologies for treating and immobilizing Hanford low activity waste (LAW) have been evaluated. One such immobilization technology is the Fluidized Bed Steam Reforming (FBSR) granular product. The FBSR granular product is composed of insoluble sodium aluminosilicate (NAS) feldspathoid minerals. Production of the FBSR mineral product has been demonstrated both at the industrial and laboratory scale. Pacific Northwest National Laboratory (PNNL) was involved in an extensive characterization campaign. This goal of this campaign was study the durability of the FBSR mineral product and the mineral product encapsulated in a monolith to meet compressive strength requirements. This paper gives anmore » overview of results obtained using the ASTM C 1285 Product Consistency Test (PCT), the EPA Test Method 1311 Toxicity Characteristic Leaching Procedure (TCLP), and the ASTMC 1662 Single-Pass Flow-Through (SPFT) test. Along with these durability tests an overview of the characteristics of the waste form has been collected using Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), microwave digestions for chemical composition, and surface area from Brunauer, Emmett, and Teller (BET) theory.« less

  20. Characterization and Leaching Tests of the Fluidized Bed Steam Reforming (FBSR) Waste Form for LAW Immobilization - 13400

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neeway, James J.; Qafoku, Nikolla P.; Peterson, Reid A.

    2013-07-01

    Several supplemental technologies for treating and immobilizing Hanford low activity waste (LAW) have been evaluated. One such immobilization technology is the Fluidized Bed Steam Reforming (FBSR) granular product. The FBSR granular product is composed of insoluble sodium aluminosilicate (NAS) feldspathoid minerals. Production of the FBSR mineral product has been demonstrated both at the industrial and laboratory scale. Pacific Northwest National Laboratory (PNNL) was involved in an extensive characterization campaign. The goal of this campaign was to study the durability of the FBSR mineral product and the encapsulated FBSR product in a geo-polymer monolith. This paper gives an overview of resultsmore » obtained using the ASTM C 1285 Product Consistency Test (PCT), the EPA Test Method 1311 Toxicity Characteristic Leaching Procedure (TCLP), and the ASTMC 1662 Single-Pass Flow-Through (SPFT) test. Along with these durability tests an overview of the characteristics of the waste form has been collected using Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), microwave digestions for chemical composition, and surface area from Brunauer, Emmett, and Teller (BET) theory. (authors)« less

  1. The simultaneous discharge of liquid and grains from a silo

    NASA Astrophysics Data System (ADS)

    Cervantes-Álvarez, A. M.; Hidalgo-Caballero, S.; Pacheco-Vázquez, F.

    2018-04-01

    The flow rate of water through an orifice at the bottom of a container depends on the hydrostatic pressure whereas for a dry granular material it is nearly constant. But what happens during the simultaneous discharge of grains and liquid from a silo? By measuring the flow rate as a function of time, we found that (i) different regimes appear, going from the constant flow rate to a hydrostatic-like discharge depending on the aperture size and grain diameter, (ii) the mixed material is always discharged faster than dry grains but slower than liquid, (iii) for the mixture, the liquid level drops faster than the grain level, but they are always linearly proportional to one another, and (iv) a sudden growth in the flow rate happens during the transition from a biphasic discharge to a single phase discharge. These results are associated to the competition between the decrease in hydrostatic pressure above the granular bed and the hydrodynamic resistance. A model combining Darcy's law with Bernoulli and mass conservation equations is proposed, and the numerical results are in good agreement with experiments.

  2. A spectral approach for the stability analysis of turbulent open-channel flows over granular beds

    NASA Astrophysics Data System (ADS)

    Camporeale, C.; Canuto, C.; Ridolfi, L.

    2012-01-01

    A novel Orr-Sommerfeld-like equation for gravity-driven turbulent open-channel flows over a granular erodible bed is here derived, and the linear stability analysis is developed. The whole spectrum of eigenvalues and eigenvectors of the complete generalized eigenvalue problem is computed and analyzed. The fourth-order eigenvalue problem presents singular non-polynomial coefficients with non-homogenous Robin-type boundary conditions that involve first and second derivatives. Furthermore, the Exner condition is imposed at an internal point. We propose a numerical discretization of spectral type based on a single-domain Galerkin scheme. In order to manage the presence of singular coefficients, some properties of Jacobi polynomials have been carefully blended with numerical integration of Gauss-Legendre type. The results show a positive agreement with the classical experimental data and allow one to relate the different types of instability to such parameters as the Froude number, wavenumber, and the roughness scale. The eigenfunctions allow two types of boundary layers to be distinguished, scaling, respectively, with the roughness height and the saltation layer for the bedload sediment transport.

  3. Toward multiscale modelings of grain-fluid systems

    NASA Astrophysics Data System (ADS)

    Chareyre, Bruno; Yuan, Chao; Montella, Eduard P.; Salager, Simon

    2017-06-01

    Computationally efficient methods have been developed for simulating partially saturated granular materials in the pendular regime. In contrast, one hardly avoid expensive direct resolutions of 2-phase fluid dynamics problem for mixed pendular-funicular situations or even saturated regimes. Following previous developments for single-phase flow, a pore-network approach of the coupling problems is described. The geometry and movements of phases and interfaces are described on the basis of a tetrahedrization of the pore space, introducing elementary objects such as bridge, meniscus, pore body and pore throat, together with local rules of evolution. As firmly established local rules are still missing on some aspects (entry capillary pressure and pore-scale pressure-saturation relations, forces on the grains, or kinetics of transfers in mixed situations) a multi-scale numerical framework is introduced, enhancing the pore-network approach with the help of direct simulations. Small subsets of a granular system are extracted, in which multiphase scenario are solved using the Lattice-Boltzman method (LBM). In turns, a global problem is assembled and solved at the network scale, as illustrated by a simulated primary drainage.

  4. Improvement of hydrogen fermentation of galactose by combined inoculation strategy.

    PubMed

    Sivagurunathan, Periyasamy; Anburajan, Parthiban; Kumar, Gopalakrishnan; Arivalagan, Pugazhendhi; Bakonyi, Péter; Kim, Sang-Hyoun

    2017-03-01

    This study evaluated the feasibility of anaerobic hydrogen fermentation of galactose, a red algal biomass sugar, using individual and combined mixed culture inocula. Heat-treated (90°C, 30 min) samples of granular sludge (GS) and suspended digester sludge (SDS) were used as inoculum sources. The type of mixed culture inoculum played an important role in hydrogen production from galactose. Between two inocula, granular sludge showed higher hydrogen production rate (HPR) and hydrogen yield (HY) of 2.2 L H 2 /L-d and 1.09 mol H 2 /mol galactose added , respectively. Combined inoculation (GS + SDS) led to an elevated HPR and HY of 3.1 L H 2 /L-d and 1.28 mol H 2 /mol galactose added , respectively. Acetic and butyric acids are the major organic acids during fermentation. Quantitative polymerase chain reaction (qPCR) revealed that the mixed culture generated using the combined inoculation contained a higher cluster I Clostridium abundance than the culture produced using the single inoculum. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  5. Static magnetism and thermal switching in randomly oriented L10 FePt thin films

    NASA Astrophysics Data System (ADS)

    Lisfi, A.; Pokharel, S.; Alqarni, A.; Akioya, O.; Morgan, W.; Wuttig, M.

    2018-05-01

    Static magnetism and thermally activated magnetic relaxation were investigated in granular FePt films (20 nm-200 nm thick) with random magnetic anisotropy through hysteresis loop, torque curve and magnetization time dependence measurements. While the magnetism of thicker film (200 nm thick) is dominated by a single switching of the ordered L10 phase, thinner film (20 nm) displays a double switching, which is indicative of the presence of the disordered cubic phase. The pronounced behavior of double switching in thinner film suggests that the film grain boundary is composed of soft cubic magnetic phase. The magnetic relaxation study reveals that magnetic viscosity S of the films is strongly dependent on the external applied field and exhibits a maximum value (12 kAm) around the switching field and a vanishing behavior at low (1 kOe) and large (12 kOe) fields. The activation volume of the thermal switching was found to be much smaller than the physical volume of the granular structure due to the incoherent rotation mode of the magnetization reversal mechanism, which is established to be domain wall nucleation.

  6. Using Space for a Better Foundation on Earth: Mechanics of Granular Materials. Educational Brief. Grades 5-8.

    ERIC Educational Resources Information Center

    Alshibli, Khalid

    This publication presents a science activity and instructional information on mechanics of granular materials, interparticle friction and geometric interlocking between particles which is a fundamental concept in many fields like earthquakes. The activity described in this document focuses on the principal strength of granular materials,…

  7. Comparison of Novel Carboneous Structures to Treat Nitroaromatic Impacted Water

    DTIC Science & Technology

    2015-12-01

    MS-15-D-047 Abstract Carboneous materials such as carbon nanotube (CNT), granular activated carbon (GAC), and biochar are promising materials...TECHNOLOGIES ...................................................49 A.3 GRANULAR ACTIVATED CARBON (GAC) ............................................50 A.4...GENERAL ISSUE In this study, we compared the adsorptive capacity of bituminous-coal based granular activated carbon (GAC) versus pristine novel

  8. 76 FR 1404 - Pure Magnesium in Granular Form From the People's Republic of China: Rescission of Changed...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-10

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-570-864] Pure Magnesium in Granular... duty order \\1\\ on pure magnesium in granular form from the People's Republic of China (``PRC'') to... circumstances review. The Department is now rescinding this CCR. \\1\\ See Antidumping Duty Order: Pure Magnesium...

  9. Numerical simulation of granular flows : comparison with experimental results

    NASA Astrophysics Data System (ADS)

    Pirulli, M.; Mangeney-Castelnau, A.; Lajeunesse, E.; Vilotte, J.-P.; Bouchut, F.; Bristeau, M. O.; Perthame, B.

    2003-04-01

    Granular avalanches such as rock or debris flows regularly cause large amounts of human and material damages. Numerical simulation of granular avalanches should provide a useful tool for investigating, within realistic geological contexts, the dynamics of these flows and of their arrest phase and for improving the risk assessment of such natural hazards. Validation of debris avalanche numerical model on granular experiments over inclined plane is performed here. The comparison is performed by simulating granular flow of glass beads from a reservoir through a gate down an inclined plane. This unsteady situation evolves toward the steady state observed in the laboratory. Furthermore simulation exactly reproduces the arrest phase obtained by suddenly closing the gate of the reservoir once a thick flow has developped. The spreading of a granular mass released from rest at the top of a rough inclined plane is also investigated. The evolution of the avalanche shape, the velocity and the characteristics of the arrest phase are compared with experimental results and analysis of the involved forces are studied for various flow laws.

  10. PubMed Central

    BARBIERI, M.; MUSIZZANO, Y.; BOGGIO, M.; CARCUSCIA, C.

    2011-01-01

    SUMMARY Granular cell tumour is a rare soft tissue neoplasm that can virtually affect any site of the body. Its histological origin is controversial, since several studies have shown that different cells are involved. Granular cell tumour was initially described as myoblastoma, but, at present, a neural origin is supported by most Authors, due to the immunohistochemical pattern. Even if the biological behaviour of granular cell tumours is usually benign, accurate histological examination is mandatory, because in a small number of cases they can be malignant. Here, a case is described of granular cell tumour in a 14-year-old boy, which is a very rare occurrence, since these tumours typically manifest in subjects between the third and sixth decade. Histopathological features, differential diagnosis and therapeutic implications of granular cell tumour are discussed, together with a brief review of the recent literature. PMID:22058595

  11. Penetration of spherical projectiles into wet granular media.

    PubMed

    Birch, S P D; Manga, M; Delbridge, B; Chamberlain, M

    2014-09-01

    We measure experimentally the penetration depth d of spherical particles into a water-saturated granular medium made of much smaller sand-sized grains. We vary the density, size R, and velocity U of the impacting spheres, and the size δ of the grains in the granular medium. We consider velocities between 7 and 107 m/s, a range not previously addressed, but relevant for impacts produced by volcanic eruptions. We find that d∝R(1/3)δ(1/3)U(2/3). The scaling with velocity is similar to that identified in previous, low-velocity collisions, but it also depends on the size of the grains in the granular medium. We develop a model, consistent with the observed scaling, in which the energy dissipation is dominated by the work required to rearrange grains along a network of force chains in the granular medium.

  12. MGM - MS Reilly holds a container used in the MGM experiment

    NASA Image and Video Library

    1998-03-04

    S89-E-5328 (27 Jan 1998) --- This Electronic Still Camera (ESC) image shows astronaut James F. Reilly, mission specialist, holding the Mechanics of Granular Materials (MGM) experiment. The MGM experiment is aimed at understanding the behavior of granular materials, such as sand or salt, under very low confining pressure. This pressure is the force that keeps a granular material ?sticking together?. The experiment has applications in a wide range of fields, including earthquake engineering; coastal and off-shore engineering; mining; transportation of granular materials; soil erosion; the handling of granular materials such as grains and powders; off-road vehicles; geology of the Earth; and planetary geology and exploration. Findings from the experiment may lead to improved selection and preparation of building sites, better management of undeveloped land, and improved handling of materials in chemical, agricultural and other industries.

  13. Reduction of granular drag inspired by self-burrowing rotary seeds

    NASA Astrophysics Data System (ADS)

    Jung, Wonjong; Choi, Sung Mok; Kim, Wonjung; Kim, Ho-Young

    2017-04-01

    We present quantitative measurements and mat hematical analysis of the granular drag reduction by rotation, as motivated by the digging of Erodium and Pelargonium seeds. The seeds create a motion to dig into soil before germination using their moisture-responsive awns, which are originally helical shaped but reversibly deform to a linear configuration in a humid environment. We show that the rotation greatly lowers the resistance of soil against penetration because grain rearrangements near the intruder change the force chain network. We find a general correlation for the drag reduction by relative slip, leading to a mathematical model for the granular drag of a rotating intruder. In addition to shedding light on the mechanics of a rotating body in granular media, this work can guide us to design robots working in granular media with enhanced maneuverability.

  14. Couette shear of an ideal 2D photo-elastic granular system

    NASA Astrophysics Data System (ADS)

    Behringer, Robert; Zheng, Hu; Barés, Jonathan; Wang, Dong

    2016-11-01

    In this study, Couette shear experiments are conducted using 2D photoelastic granular particles, which allows us to apply infinite shear strain to the granular system. We obtain force information at the granular scale using the calibrated photo-elastic grain force response. The whole granular system is density matched in salt solution, which guarantees an ideal 2D system without basal friction between the particles and the table. The viscosity is negligible at the very small shear strain rate (0.017 rpm). This talk will address two main points: i) how does the system reach a jammed state; ii) how does system reach a long term stable state and what are the properties of that state. We acknowledge support from NSF Grant No. DMR1206351, NASA Grant No. NNX15AD38G and the W.M. Keck Foundation.

  15. Couette shear of an ideal 2D photo-elastic granular system

    NASA Astrophysics Data System (ADS)

    Wang, Meimei; Zheng, Hu; BaréS, Jonathan; Wang, Dong; Behringe, Robert

    In this study, Couette shear experiments are conducted using 2D photoelastic granular particles, which allows us to apply infinite shear strain to the granular system. We obtain force information st the granular scale using the calibrated photo-elastic grain force response. The whole granular system is density matched in salt solution, which guarantees an ideal 2D system without basal friction between the particles and the table. The viscosity is negligible at the very small shear strain rate (0.017 rpm). This talk will address two main points: i) how does the system reach a jammed state; ii) how does system reach a long term stable state and what are the properties of that state. NSF Grant No. DMR1206351, NASA Grant No. NNX15AD38G and the W.M. Keck Foundation.

  16. Granule Formation Mechanisms within an Aerobic Wastewater System for Phosphorus Removal▿ †

    PubMed Central

    Barr, Jeremy J.; Cook, Andrew E.; Bond, Phillip L.

    2010-01-01

    Granular sludge is a novel alternative for the treatment of wastewater and offers numerous operational and economic advantages over conventional floccular-sludge systems. The majority of research on granular sludge has focused on optimization of engineering aspects relating to reactor operation with little emphasis on the fundamental microbiology. In this study, we hypothesize two novel mechanisms for granule formation as observed in three laboratory scale sequencing batch reactors operating for biological phosphorus removal and treating two different types of wastewater. During the initial stages of granulation, two distinct granule types (white and yellow) were distinguished within the mixed microbial population. White granules appeared as compact, smooth, dense aggregates dominated by 97.5% “Candidatus Accumulibacter phosphatis,” and yellow granules appeared as loose, rough, irregular aggregates with a mixed microbial population of 12.3% “Candidatus Accumulibacter phosphatis” and 57.9% “Candidatus Competibacter phosphatis,” among other bacteria. Microscopy showed white granules as homogeneous microbial aggregates and yellow granules as segregated, microcolony-like aggregates, with phylogenetic analysis suggesting that the granule types are likely not a result of strain-associated differences. The microbial community composition and arrangement suggest different formation mechanisms occur for each granule type. White granules are hypothesized to form by outgrowth from a single microcolony into a granule dominated by one bacterial type, while yellow granules are hypothesized to form via multiple microcolony aggregation into a microcolony-segregated granule with a mixed microbial population. Further understanding and application of these mechanisms and the associated microbial ecology may provide conceptual information benefiting start-up procedures for full-scale granular-sludge reactors. PMID:20851963

  17. Studies on the toxic effects of pentachlorophenol on the biological activity of anaerobic granular sludge.

    PubMed

    Liu, Xin-Wen; He, Ruo; Shen, Dong-Sheng

    2008-09-01

    In order to explore the pathway of the anaerobic biotreatment of the wastewater containing pentachlorophenol (PCP) and ensure the normal operation of Upflow Anaerobic Sludge Blanket (UASB) reactor, the anaerobic sludge under different acclimation conditions were selected to seed and start up UASB reactors. Anaerobic toxicity assays were employed to study the biological activity, the tolerance and the capacity to degrade PCP of different anaerobic granular sludge from UASB reactors. Results showed that the anaerobic granular sludge acclimated to chlorophenols (CPs) could degrade PCP more quickly (up to 9.50mg-PCP g(-1)TVS d(-1)). And the anaerobic granular sludge without acclimation to CPs had only a little activity of degrading PCP (less than 0.07 mg-PCP g(-1)TVS d(-1)). Different PCP concentrations (2, 4, 6, 8 mg L(-1)) had different inhibition effects on glucose utilization, volatile fatted acidity (VFA)-degrading and methanogens activity of PCP degradation anaerobic granular sludge, and the biological activity declined with the increase in PCP concentration. The methanogens activity suffered inhibition from PCP more easily. The different acclimation patterns of seeded sludge had distinctly different effects on biological activity of the degradation of PCP of anaerobic granular sludge from UASB reactors. The biological activity of the anaerobic granular sludge acclimated to PCP only was also inhibited. This inhibition was weak compared to that of anaerobic granular sludge acclimated to CPs, further, the activity could recover more quickly in this case. In the same reactor, the anaerobic granular sludge from the mid and base layers showed higher tolerance to PCP than that from super layer or if the sludge is unacclimated to CPs, and the corresponding recovery time of the biological activity in the mid and base layers were short. Acetate-utilizing methanogens and syntrophic propinate degraders were sensitive to PCP, compared to syntrophic butyrate degraders.

  18. Granular materials flow like complex fluids

    NASA Astrophysics Data System (ADS)

    Kou, Binquan; Cao, Yixin; Li, Jindong; Xia, Chengjie; Li, Zhifeng; Dong, Haipeng; Zhang, Ang; Zhang, Jie; Kob, Walter; Wang, Yujie

    2017-11-01

    Granular materials such as sand, powders and foams are ubiquitous in daily life and in industrial and geotechnical applications. These disordered systems form stable structures when unperturbed, but in the presence of external influences such as tapping or shear they `relax', becoming fluid in nature. It is often assumed that the relaxation dynamics of granular systems is similar to that of thermal glass-forming systems. However, so far it has not been possible to determine experimentally the dynamic properties of three-dimensional granular systems at the particle level. This lack of experimental data, combined with the fact that the motion of granular particles involves friction (whereas the motion of particles in thermal glass-forming systems does not), means that an accurate description of the relaxation dynamics of granular materials is lacking. Here we use X-ray tomography to determine the microscale relaxation dynamics of hard granular ellipsoids subject to an oscillatory shear. We find that the distribution of the displacements of the ellipsoids is well described by a Gumbel law (which is similar to a Gaussian distribution for small displacements but has a heavier tail for larger displacements), with a shape parameter that is independent of the amplitude of the shear strain and of the time. Despite this universality, the mean squared displacement of an individual ellipsoid follows a power law as a function of time, with an exponent that does depend on the strain amplitude and time. We argue that these results are related to microscale relaxation mechanisms that involve friction and memory effects (whereby the motion of an ellipsoid at a given point in time depends on its previous motion). Our observations demonstrate that, at the particle level, the dynamic behaviour of granular systems is qualitatively different from that of thermal glass-forming systems, and is instead more similar to that of complex fluids. We conclude that granular materials can relax even when the driving strain is weak.

  19. Intercomparison of granular stress and turbulence models for unidirectional sheet flow applications

    NASA Astrophysics Data System (ADS)

    Chauchat, J.; Cheng, Z.; Hsu, T. J.

    2016-12-01

    The intergranular stresses are one of the key elements in two-phase sediment transport models. There are two main existing approaches, the kinetic theory of granular flows (Jenkins and Hanes, 1998; Hsu et al., 2004) and the phenomenological rheology such as the one proposed by Bagnold (Hanes and Bowen, 1985) or the μ(I) dense granular flow rheology (Revil-Baudard and Chauchat, 2013). Concerning the turbulent Reynolds stress, mixing length and k-ɛ turbulence models have been validated by previous studies (Revil-Baudard and Chauchat, 2013; Hsu et al., 2004). Recently, sedFoam was developed based on kinetic theory of granular flows and k-ɛ turbulence models (Cheng and Hsu, 2014). In this study, we further extended sedFoam by implementing the mixing length and the dense granular flow rheology by following Revil-Baudard and Chauchat (2013). This allows us to objectively compare the different combinations of intergranular stresses (kinetic theory or the dense granular flow rheology) and turbulence models (mixing length or k-ɛ) under unidirectional sheet flow conditions. We found that the calibrated mixing length and k-ɛ models predicts similar velocity and concentration profiles. The differences observed between the kinetic theory and the dense granular flow rheology requires further investigation. In particular, we hypothesize that the extended kinetic theory proposed by Berzi (2011) would probably improve the existing combination of the kinetic theory with a simple Coulomb frictional model in sedFoam. A semi-analytical solution proposed by Berzi and Fraccarollo(2013) for sediment transport rate and sheet layer thickness versus the Shields number is compared with the results obtained by using the dense granular flow rheology and the mixing length model. The results are similar which demonstrate that both the extended kinetic theory and the dense granular flow rheology can be used to model intergranular stresses under sheet flow conditions.

  20. Granular corneal dystrophy Groenouw type I (GrI) and Reis-Bücklers' corneal dystrophy (R-B). One entity?

    PubMed

    Møller, H U

    1989-12-01

    This paper maintains that Reis-Bücklers' corneal dystrophy and granular corneal dystrophy Groenouw type I are one and the same disease. Included are some of the technically best photographs of Reis-Bücklers' dystrophy found in the literature, and these are compared with photographs from patients with granular corneal dystrophy examined by the author. It is argued that most of the histological and ultrastructural findings on Reis Bücklers' dystrophy described in the literature are either congruent with what is found in granular corneal dystrophy or unspecific.

Top