Science.gov

Sample records for high gravity levels

  1. The GRAVITY instrument software/high-level software

    NASA Astrophysics Data System (ADS)

    Burtscher, Leonard; Wieprecht, Ekkehard; Ott, Thomas; Kok, Yitping; Yazici, Senol; Anugu, Narsireddy; Dembet, Roderick; Fedou, Pierre; Lacour, Sylvestre; Ott, Jürgen; Paumard, Thibaut; Lapeyrere, Vincent; Kervella, Pierre; Abuter, Roberto; Pozna, Eszter; Eisenhauer, Frank; Blind, Nicolas; Genzel, Reinhard; Gillessen, Stefan; Hans, Oliver; Haug, Marcus; Haussmann, Frank; Kellner, Stefan; Lippa, Magdalena; Pfuhl, Oliver; Sturm, Eckhard; Weber, Johannes; Amorim, Antonio; Brandner, Wolfgang; Rousselet-Perraut, Karine; Perrin, Guy S.; Straubmeier, Christian; Schöller, Markus

    2014-07-01

    GRAVITY is the four-beam, near-infrared, AO-assisted, fringe tracking, astrometric and imaging instrument for the Very Large Telescope Interferometer (VLTI). It is requiring the development of one of the most complex instrument software systems ever built for an ESO instrument. Apart from its many interfaces and interdependencies, one of the most challenging aspects is the overall performance and stability of this complex system. The three infrared detectors and the fast reflective memory network (RMN) recorder contribute a total data rate of up to 20 MiB/s accumulating to a maximum of 250 GiB of data per night. The detectors, the two instrument Local Control Units (LCUs) as well as the five LCUs running applications under TAC (Tools for Advanced Control) architecture, are interconnected with fast Ethernet, RMN fibers and dedicated fiber connections as well as signals for the time synchronization. Here we give a simplified overview of all subsystems of GRAVITY and their interfaces and discuss two examples of high-level applications during observations: the acquisition procedure and the gathering and merging of data to the final FITS file.

  2. Modeling and Scaling of oscillating or pulsating heat transfer devices subjected to earth gravity and to high acceleration levels

    NASA Astrophysics Data System (ADS)

    Delil, A. A. M.

    2001-02-01

    The discussions, presented in this article, suppose that the reader is familiar with the contents of the accompanying article ``Thermal-Gravitational Modeling and Scaling of Two-Phase Heat Transport Systems from Micro-Gravity to Super-Gravity Levels.'' The latter article describes the history of this particular research at NLR, the approach (based on dimension analysis and similarity considerations), the derivation of constitutive equations for (annular) two-phase flow and heat transfer, the identification of thermal-gravitational scaling possibilities, condensation length issues, and the impact of the magnitude of super-gravity and its direction relative to the flow direction. But the discussions are restricted to ``classical'' two-phase loops. The most recent part of the research is discussed in this follow-up article. It concerns the extension of the research to the modelling, scaling and testing of the steady and transient performance of various types of oscillating or pulsating single-phase and two-phase heat transfer devices. This extension was opportune, as it turned out to be essential to properly support the research and development of such oscillating or pulsating heat transfer devices. For these devices several very promising applications have been identified, not only to cool commercial electronics, but also for cooling high-power electronics in spinning satellites and in military combat aircraft. In such applications, the electronics can be exposed to steady and transient accelerations up to levels around 120 m/s2. .

  3. Off-level corrections for gravity meters

    NASA Astrophysics Data System (ADS)

    Niebauer, T. M.; Blitz, Thomas; Constantino, Andy

    2016-04-01

    Gravity meters must be aligned with the local gravity at any location on the surface of the earth in order to measure the full amplitude of the gravity vector. The gravitational force on the sensitive component of the gravity meter decreases by the cosine of the angle between the measurement axis and the local gravity vector. Most gravity meters incorporate two horizontal orthogonal levels to orient the gravity meter for a maximum gravity reading. In order to calculate a gravity correction it is often necessary to estimate the overall angular deviation between the gravity meter and the local gravity vector using two measured horizontal tilt meters. Typically this is done assuming that the two horizontal angles are independent and that the product of the cosines of the horizontal tilts is equivalent to the cosine of the overall deviation. These approximations, however, break down at large angles. This paper derives analytic formulae to transform angles measured by two orthogonal tilt meters into the vertical deviation of the third orthogonal axis. The equations can be used to calibrate the tilt sensors attached to the gravity meter or provide a correction for a gravity meter used in an off-of-level condition.

  4. High-precision gravity network to monitor temporal variations in gravity across Yucca Mountain, Nevada

    SciTech Connect

    Harris, R.N.; Ponce, D.A.

    1988-12-31

    Repeatable high-precision gravity surveys provide a method of monitoring temporal variations in the gravity field. Fluctuations in the gravity field may indicate water table changes, crustal deformation, or precursors to volcanism and earthquakes. This report describes a high-precision gravity loop which has been established across Yucca Mountain, Nevada in support of the Nevada Nuclear Waste Storage Investigations (NNWSI) program. The purpose of this gravity loop is to monitor temporal variations in gravity across Yucca Mountain in an effort to interpret and predict the stability of the tectonic framework and changes in the subsurface density field. Studies of the tectonic framework which include volcanic hazard seismicity, and faulting studies are in progress. Repeat high-precision gravity surveys are less expensive and can be made more rapidly than a corresponding leveling survey. High-precision gravity surveys are capable of detecting elevation changes of 3 to 5 cm, and thus can be employed as an efficient tool for monitoring vertical crustal movements while supplementing or partially replacing leveling data. The Yucca Mountain gravity network has been tied to absolute gravity measurements established in southern Nevada. These ties provide an absolute datum for comparing repeat occupations of the gravity network, and provide a method of monitoring broad-scale changes in gravity. Absolute gravity measurements were also made at the bottom and top of the Charleston Peak calibration loop in southern Nevada. These absolute gravity measurements provide local control of calibrating gravity meters over the gravity ranges observed at Yucca Mountain. 13 refs., 7 figs., 3 tabs.

  5. Effects of wort gravity and nitrogen level on fermentation performance of brewer's yeast and the formation of flavor volatiles.

    PubMed

    Lei, Hongjie; Zhao, Haifeng; Yu, Zhimin; Zhao, Mouming

    2012-03-01

    Normal gravity wort and high gravity wort with different nitrogen levels were used to examine their effects on the fermentation performance of brewer's yeast and the formation of flavor volatiles. Results showed that both the wort gravity and nitrogen level had significant impacts on the growth rate, viability, flocculation, and gene expression of brewer's yeast and the levels of flavor volatiles. The sugar (glucose, maltose, and maltotriose) consumption rates and net cell growth decreased when high gravity worts were used, while these increased with increasing nitrogen level. Moreover, high gravity resulted in lower expression levels of ATF1, BAP2, BAT1, HSP12, and TDH, whereas the higher nitrogen level caused higher expression levels for these genes. Furthermore, the lower nitrogen level resulted in increases in the levels of higher alcohols and esters at high wort gravity. All these results demonstrated that yeast physiology and flavor balance during beer brewing were significantly affected by the wort gravity and nitrogen level.

  6. High-resolution regional gravity field modelling in a mountainous area from terrestrial gravity data

    NASA Astrophysics Data System (ADS)

    Bucha, Blažej; Janák, Juraj; Papčo, Juraj; Bezděk, Aleš

    2016-11-01

    We develop a high-resolution regional gravity field model by a combination of spherical harmonics, band-limited spherical radial basis functions (SRBFs) and the residual terrain model (RTM) technique. As the main input data set, we employ a dense terrestrial gravity database (3-6 stations km-2), which enables gravity field modelling up to very short spatial scales. The approach is based on the remove-compute-restore methodology in which all the parts of the signal that can be modelled are removed prior to the least-squares adjustment in order to smooth the input gravity data. To this end, we utilize degree-2159 spherical harmonic models and the RTM technique using topographic models at 2 arcsec resolution. The residual short-scale gravity signal is modelled via the band-limited Shannon SRBF expanded up to degree 21 600, which corresponds to a spatial resolution of 30 arcsec. The combined model is validated against GNSS/levelling-based height anomalies, independent surface gravity data, deflections of the vertical and terrestrial vertical gravity gradients achieving an accuracy of 2.7 cm, 0.53 mGal, 0.39 arcsec and 279 E in terms of the RMS error, respectively. A key aspect of the combined approach, especially in mountainous areas, is the quality of the RTM. We therefore compare the performance of two RTM techniques within the innermost zone, the tesseroids and the polyhedron. It is shown that the polyhedron-based approach should be preferred in rugged terrain if a high-quality RTM is required. In addition, we deal with the RTM computations at points located below the reference surface of the residual terrain which is known to be a rather delicate issue.

  7. The Gravity Model for High School Students

    ERIC Educational Resources Information Center

    Tribble, Paul; Mitchell, William A.

    1977-01-01

    The authors suggest ways in which the gravity model can be used in high school geography classes. Based on Newton's Law of Molecular Gravitation, the law states that gravitation is in direct ratio to mass and inverse ratio to distance. One activity for students involves determination of zones of influence of cities of various sizes. (Author/AV)

  8. Landau levels in graphene in the presence of emergent gravity

    NASA Astrophysics Data System (ADS)

    Khaidukov, Zakhar V.; Zubkov, Mikhail A.

    2016-09-01

    We consider graphene in the presence of external magnetic field and elastic deformations that cause emergent magnetic field. The total magnetic field results in the appearance of Landau levels in the spectrum of quasiparticles. In addition, the quasiparticles in graphene experience the emergent gravity. We consider the particular choice of elastic deformation, which gives constant emergent magnetic field and vanishing torsion. Emergent gravity may be considered as perturbation. We demonstrate that the corresponding first order approximation affects the energies of the Landau levels only through the constant renormalization of Fermi velocity. The degeneracy of each Landau level receives correction, which depends essentially on the geometry of the sample. There is the limiting case of the considered elastic deformation, that corresponds to the uniformly stretched graphene. In this case in the presence of the external magnetic field the degeneracies of the Landau levels remain unchanged.

  9. The role of new terrestrial gravity/GPS/levelling data, GRACE geopotential model and SRTM elevations on the earth gravity field modelling and its changes in Iran

    NASA Astrophysics Data System (ADS)

    Hatam Chavari, Yaghoub; Bayer, Roger; Djamour, Yahya; Vanicek, Petr

    2010-05-01

    In order to model the earth gravity field and its temporal variations, different gravity data with terrestrial, airborne and satellite gathered kinds are necessary. It is possible to recover by them the short, medium and long wavelengths of the gravity field respectively. Terrestrial gravity data, especially for the regions with highly variations, are useful for different purposes, i.e. to estimate the actual gravity range in the country, to extend the gravity calibration line, to study the isostasy status (Aboghasem et al., EGU10), to modify the numerical density models, to ameliorate the local geoid models, to prepare a background for geodynamical researches, and so on. The Multi-purpose Physical Geodesy and Geodynamics Network of Iran has recently established over Iran with 700 stations of 30' by 30' distribution (MPGGNI05, Hatam et al., EGU08). About 2000 precise relative gravity measurements gathered between the neighbour stations are prepared the possibility to compute the accurate, confident and homogeneous gravity values for the mentioned network. The MPGGNI is connected to the new 24-stations established national absolute gravity base network of Iran (NGBI09, Hatam et al., EGU09) to unify the reference system and to strengthen the accuracy and confident over the country. All 6 used relative gravimeters were regularly calibrated by the recently established tele cabin/ land national gravity calibration line (TC/L NGCLI, Hatam et al., EGU07). In addition, precise levelling measurements have tied the MPGGNI stations and have connected the new network to the existed national precise levelling network of Iran. Also, precise GPS measurements have been done at each station of MPGGNI with 24 hours duration. The MPGGNI can be understood typically as a precise gravity and GPS/Levelling network, and by repeating it, it is possible to model the changes of different components of the gravity field. In order to improve the precision of old gravity data, each station of

  10. Effects of continuous exposure to high gravity on gravity preference in rats.

    NASA Technical Reports Server (NTRS)

    Mccoy, D. F.; Jankovich, J. P.

    1972-01-01

    Rats were chronically centrifuged in excess of 2.0 g for 6 or 12 mo. They were given four 24-hr gravity-preference tests in a spiral centrifuge in which they could adjust the gravity level imposed by locomoting inward or outward radially along a track. Chronically centrifuged rats (Group CC) spent as much time at 2.0 g as at 1.0 g while normally raised controls (Group NC) selecdonly 1.0 g. Group CC initially selected 2.0 g and a preference for 1.0 g developed over the four test sessions. These results suggest that hypergravity is not necessarily an aversive stimulus and that gravity preference may depend initially upon the reference level involved. The ultimate selection of 1.0 g by chronically centrifuged animals suggests that a preference for a familiar gravity environment is replaced by a preference for low-gravity stimuli.

  11. The effect of gravity level on the average primary dendritic spacing of a directionally solidified superalloy

    NASA Technical Reports Server (NTRS)

    Mccay, M. H.; Lee, J. E.; Curreri, P. A.

    1986-01-01

    The effect of alternating low (0.01 g) and high (1.8 g) gravity force on the primary spacings in the dendrite structure in a directionally solidified Ni-based superalloy (PWA 1480, containing 5 pct Co, 10 pct Cr, 4 pct W, 12 pct Ta, 5 pct Al, 1.5 pct Ti, and the balance Ni) was investigated using samples solidified in a directional solidification furnace aboard the NASA KC-135 aircraft that made a series of low-g parabolas. The cross-section slices for each growth rate were polished and etched with Kallings II, and the primary dendritic arm spacings were measured using the method of Jacobi and Schwerdtfeger (1976). The arm spacings were found to fluctuate with gravity force, increasing as the gravity level decreased, and growing finer as gravity increased.

  12. Lignocellulosic ethanol production at high-gravity: challenges and perspectives.

    PubMed

    Koppram, Rakesh; Tomás-Pejó, Elia; Xiros, Charilaos; Olsson, Lisbeth

    2014-01-01

    In brewing and ethanol-based biofuel industries, high-gravity fermentation produces 10-15% (v/v) ethanol, resulting in improved overall productivity, reduced capital cost, and reduced energy input compared to processing at normal gravity. High-gravity technology ensures a successful implementation of cellulose to ethanol conversion as a cost-competitive process. Implementation of such technologies is possible if all process steps can be performed at high biomass concentrations. This review focuses on challenges and technological efforts in processing at high-gravity conditions and how these conditions influence the physiology and metabolism of fermenting microorganisms, the action of enzymes, and other process-related factors. Lignocellulosic materials add challenges compared to implemented processes due to high inhibitors content and the physical properties of these materials at high gravity.

  13. A high frequency resonance gravity gradiometer

    SciTech Connect

    Bagaev, S. N.; Kvashnin, N. L.; Skvortsov, M. N.; Bezrukov, L. B.; Krysanov, V. A.; Oreshkin, S. I.; Motylev, A. M.; Popov, S. M.; Samoilenko, A. A.; Yudin, I. S.; Rudenko, V. N.

    2014-06-15

    A new setup OGRAN—the large scale opto-acoustical gravitational detector is described. As distinguished from known gravitational bar detectors it uses the optical interferometrical readout for registering weak variations of gravity gradient at the kilohetz frequency region. At room temperature, its sensitivity is limited only by the bar Brownian noise at the bandwidth close to 100 Hz. It is destined for a search for rare events—gravitational pulses coincident with signals of neutrino scintillator (BUST) in the deep underground of Baksan Neutrino Observatory of INR RAS.

  14. A high frequency resonance gravity gradiometer

    NASA Astrophysics Data System (ADS)

    Bagaev, S. N.; Bezrukov, L. B.; Kvashnin, N. L.; Krysanov, V. A.; Oreshkin, S. I.; Motylev, A. M.; Popov, S. M.; Rudenko, V. N.; Samoilenko, A. A.; Skvortsov, M. N.; Yudin, I. S.

    2014-06-01

    A new setup OGRAN—the large scale opto-acoustical gravitational detector is described. As distinguished from known gravitational bar detectors it uses the optical interferometrical readout for registering weak variations of gravity gradient at the kilohetz frequency region. At room temperature, its sensitivity is limited only by the bar Brownian noise at the bandwidth close to 100 Hz. It is destined for a search for rare events—gravitational pulses coincident with signals of neutrino scintillator (BUST) in the deep underground of Baksan Neutrino Observatory of INR RAS.

  15. Mapping High Latitude Gravity Wave Amplitudes over Antarctica during Summer

    NASA Astrophysics Data System (ADS)

    Badenhausen, P.; Millan, R. M.; Gerrard, A. J.

    2015-12-01

    Appropriate inclusion of gravity wave amplitudes into general circulation models is required to get accurate atmospheric circulation characteristics. However, high latitude gravity wave amplitudes are particularly difficult to obtain due to the challenging experimental and logistical constraints in these regions. In this study, we present gravity wave climatology of high latitudes during austral summer conditions over the Antarctic continent. These data were obtained using high-resolution GPS measurements aboard long duration high altitude balloon flights that were flown as part of the NASA Balloon Array for Radiation-belt Relativistic Electron Losses (BARREL) mission in December 2013-February 2014 and December 2012-February 2013. The results show increased gravity wave activity along the coast of the Antarctic continent, particularly over the Peninsula and Halley Bay, whereas at higher latitudes, particularly over regions near the South Pole, gravity wave amplitudes decrease substantially. Through use of horizontal winds data, we obtained measurements of the vertical transport of horizontal momentum fluxes, which were unusually high for the summer high latitude lower stratosphere. Such unique measurements as these are immediately applicable to understanding of upwelling in the summer middle atmosphere as well as to the formation of overlaying mesospheric clouds formation.

  16. Effects of gravity level on bubble formation and rise in low-viscosity liquids

    NASA Astrophysics Data System (ADS)

    Suñol, Francesc; González-Cinca, Ricard

    2015-05-01

    We present an experimental analysis of the effects of gravity level on the formation and rise dynamics of bubbles. Experiments were carried out with millimeter-diameter bubbles in the hypergravity environment provided by the large-diameter centrifuge of the European Space Agency. Bubble detachment from a nozzle is determined by buoyancy and surface tension forces regardless of the gravity level. Immediately after detachment, bubble trajectory is deviated by the Coriolis force. Subsequent bubble rise is dominated by inertial forces and follows a zig-zag trajectory with amplitude and frequency dependent on the gravity level. Vorticity production is enhanced as gravity increases, which destabilizes the flow and therefore the bubble path.

  17. Effects of gravity level on bubble formation and rise in low-viscosity liquids.

    PubMed

    Suñol, Francesc; González-Cinca, Ricard

    2015-05-01

    We present an experimental analysis of the effects of gravity level on the formation and rise dynamics of bubbles. Experiments were carried out with millimeter-diameter bubbles in the hypergravity environment provided by the large-diameter centrifuge of the European Space Agency. Bubble detachment from a nozzle is determined by buoyancy and surface tension forces regardless of the gravity level. Immediately after detachment, bubble trajectory is deviated by the Coriolis force. Subsequent bubble rise is dominated by inertial forces and follows a zig-zag trajectory with amplitude and frequency dependent on the gravity level. Vorticity production is enhanced as gravity increases, which destabilizes the flow and therefore the bubble path.

  18. Superalloy microstructural variations induced by gravity level during directional solidification

    SciTech Connect

    Johnston, M.H.; Curreri, P.A.; Parr, R.A.; Alter, W.S.

    1985-09-01

    The Ni-base superalloy MAR-M246 (Hf) was directionally solidified during low gravity maneuvers aboard a NASA KC-135 aircraft. Gravity force variations during this process yielded a concomitant variation in microstructure and microsegregation. Secondary dendrite arm spacings are noted to be larger in the low-g portion; this, in turn, decreases the extent of interdendritic segregation. The amount of Hf in both the carbides and interdendritic eutectic increases as the gravity force diminishes. Fewer carbides are present in the low-g regions. 6 references.

  19. Proteomic analysis of Saccharomyces cerevisiae under high gravity fermentation conditions.

    PubMed

    Pham, Trong Khoa; Chong, Poh Kuan; Gan, Chee Sian; Wright, Phillip C

    2006-12-01

    Saccharomyces cerevisiae KAY446 was utilized for ethanol production, with glucose concentrations ranging from 120 g/L (normal) to 300 g/L (high). Although grown in a high glucose environment, S. cerevisiae still retained the ability to produce ethanol with a high degree of glucose utilization. iTRAQ-mediated shotgun proteomics was applied to identify relative expression change of proteins under the different glucose conditions. A total of 413 proteins were identified from three replicate, independent LC-MS/MS runs. Unsurprisingly, many proteins in the glycolysis/gluconeogenesis pathway showed significant changes in expression level. Twenty five proteins involved in amino acid metabolism decreased their expression, while the expressions of 12 heat-shock related proteins were also identified. Under high glucose conditions, ethanol was produced as a major product. However, the assimilation of glucose as well as a number of byproducts was also enhanced. Therefore, to optimize the ethanol production under very high gravity conditions, a number of pathways will need to be deactivated, while still maintaining the correct cellular redox or osmotic state. Proteomics is demonstrated here as a tool to aid in this forward metabolic engineering.

  20. Nucleate pool boiling: High gravity to reduced gravity; liquid metals to cryogens

    NASA Technical Reports Server (NTRS)

    Merte, Herman, Jr.

    1988-01-01

    Requirements for the proper functioning of equipment and personnel in reduced gravity associated with space platforms and future space station modules introduce unique problems in temperature control; power generation; energy dissipation; the storage, transfer, control and conditioning of fluids; and liquid-vapor separation. The phase change of boiling is significant in all of these. Although both pool and flow boiling would be involved, research results to date include only pool boiling because buoyancy effects are maximized for this case. The effective application of forced convection boiling heat transfer in the microgravity of space will require a well grounded and cogent understanding of the mechanisms involved. Experimental results are presented for pool boiling from a single geometrical configuration, a flat surface, covering a wide range of body forces from a/g = 20 to 1 to a/g = 0 to -1 for a cryogenic liquid, and from a/g = 20 to 1 for water and a liquid metal. Similarities in behavior are noted for these three fluids at the higher gravity levels, and may reasonably be expected to continue at reduced gravity levels.

  1. Hydrological Modeling of Groundwater Disturbance to Gravity Signal for High-accuracy Monitoring of Volcanic Activity

    NASA Astrophysics Data System (ADS)

    Kazama, T.; Okubo, S.

    2007-12-01

    Gravity observation is one of the effective methods to detect magma movements in volcanic eruptions [e.g., Furuya et al., J. Geoph. Res., 2003]. Groundwater-derived disturbances have to be corrected from gravity variations for highly accurate monitoring of volcanic activities. They have been corrected with empirical methods, such as tank models and regression curves [e.g., Imanishi et al., J. Geodyn., 2006]. These methods, however, are not based on hydrological background, and are very likely to eliminate volcanic signals excessively. The correction method of groundwater disturbance has to be developed with hydrological and quantitative approach. We thus estimate the gravity disturbance arising from groundwater as follows. (1) Groundwater distributions are simulated on a hydrological model, utilizing groundwater flow equations. (2) Groundwater-derived gravity value is estimated for each instant of time, by integrating groundwater distributions spatially. (3) The groundwater-derived gravity, as the correction value, is subtracted from observed gravity data. In this study, we simulated groundwater flow and groundwater-derived gravity value on the east part of the Asama volcano, central Japan. A simple hydrological model was supposed, consisting of homogeneous soil, lying on a flat impermeable basement. Hydraulic conductivity, which defines groundwater velocity, was set as 2.0×10-6[m/s], which is consistent with typical volcanic soils. We also observed time variations of watertable height, soil moisture and gravity simultaneously during the summer of 2006 at Asama volcano, and compared the observations with the theoretical values. Both simulated groundwater distributions and gravity changes agree fairly well with observed values. On variations of water level and moisture content, rapid increase at the time of rainfalls and exponential decrease after rainfalls were illustrated. Theoretical gravity changes explained 90% of the observed gravity increase (+20μgals) for

  2. High-resolution gravity field modeling using GRAIL mission data

    NASA Astrophysics Data System (ADS)

    Lemoine, F. G.; Goossens, S. J.; Sabaka, T. J.; Nicholas, J. B.; Mazarico, E.; Rowlands, D. D.; Neumann, G. A.; Loomis, B.; Chinn, D. S.; Smith, D. E.; Zuber, M. T.

    2015-12-01

    The Gravity Recovery and Interior Laboratory (GRAIL) spacecraft were designed to map the structure of the Moon through high-precision global gravity mapping. The mission consisted of two spacecraft with Ka-band inter-satellite tracking complemented by tracking from Earth. The mission had two phases: a primary mapping mission from March 1 until May 29, 2012 at an average altitude of 50 km, and an extended mission from August 30 until December 14, 2012, with an average altitude of 23 km before November 18, and 20 and 11 km after. High-resolution gravity field models using both these data sets have been estimated, with the current resolution being degree and order 1080 in spherical harmonics. Here, we focus on aspects of the analysis of the GRAIL data: we investigate eclipse modeling, the influence of empirical accelerations on the results, and we discuss the inversion of large-scale systems. In addition to global models we also estimated local gravity adjustments in areas of particular interest such as Mare Orientale, the south pole area, and the farside. We investigate the use of Ka-band Range Rate (KBRR) data versus numerical derivatives of KBRR data, and show that the latter have the capability to locally improve correlations with topography.

  3. High level nuclear waste

    SciTech Connect

    Crandall, J L

    1980-01-01

    The DOE Division of Waste Products through a lead office at Savannah River is developing a program to immobilize all US high-level nuclear waste for terminal disposal. DOE high-level wastes include those at the Hanford Plant, the Idaho Chemical Processing Plant, and the Savannah River Plant. Commercial high-level wastes, for which DOE is also developing immobilization technology, include those at the Nuclear Fuel Services Plant and any future commercial fuels reprocessing plants. The first immobilization plant is to be the Defense Waste Processing Facility at Savannah River, scheduled for 1983 project submission to Congress and 1989 operation. Waste forms are still being selected for this plant. Borosilicate glass is currently the reference form, but alternate candidates include concretes, calcines, other glasses, ceramics, and matrix forms.

  4. Investigating High Field Gravity using Astrophysical Techniques

    SciTech Connect

    Bloom, Elliott D.; /SLAC

    2008-02-01

    The purpose of these lectures is to introduce particle physicists to astrophysical techniques. These techniques can help us understand certain phenomena important to particle physics that are currently impossible to address using standard particle physics experimental techniques. As the subject matter is vast, compromises are necessary in order to convey the central ideas to the reader. Many general references are included for those who want to learn more. The paragraphs below elaborate on the structure of these lectures. I hope this discussion will clarify my motivation and make the lectures easier to follow. The lectures begin with a brief review of more theoretical ideas. First, elements of general relativity are reviewed, concentrating on those aspects that are needed to understand compact stellar objects (white dwarf stars, neutron stars, and black holes). I then review the equations of state of these objects, concentrating on the simplest standard models from astrophysics. After these mathematical preliminaries, Sec. 2(c) discusses 'The End State of Stars'. Most of this section also uses the simplest standard models. However, as these lectures are for particle physicists, I also discuss some of the more recent approaches to the equation of state of very dense compact objects. These particle-physics-motivated equations of state can dramatically change how we view the formation of black holes. Section 3 focuses on the properties of the objects that we want to characterize and measure. X-ray binary systems and Active Galactic Nuclei (AGN) are stressed because the lectures center on understanding very dense stellar objects, black hole candidates (BHCs), and their accompanying high gravitational fields. The use of x-ray timing and gamma-ray experiments is also introduced in this section. Sections 4 and 5 review information from x-ray and gamma-ray experiments. These sections also discuss the current state of the art in x-ray and gamma-ray satellite experiments and

  5. Feasibility of preparing nanodrugs by high-gravity reactive precipitation.

    PubMed

    Chen, Jian-Feng; Zhou, Min-Yi; Shao, Lei; Wang, Yu-Yong; Yun, Jimmy; Chew, Nora Y K; Chan, Hak-Kim

    2004-01-01

    To study the feasibility of producing nanoparticles of organic pharmaceuticals using a novel high-gravity reactive precipitation (HGRP) technique, reactive precipitation of benzoic acid as a model compound was carried out in a rotating packed bed under high gravity. The main factors such as the rotating bed speed, concentration and volume flow rate of the reactants (sodium benzoate and HCl) affecting the particle size of the precipitate were studied. Particle size was measured by transmission electron microscopy. Benzoic acid was precipitated as nanoparticles as fine as 10nm. The particle size was decreased with increasing rotating bed speed, concentration and volume flow rate of the reactants. The formation of ultrafine particles was due to intensified micro-mixing of reactants in the rotating bed to enhance nucleation while suppressing crystal growth. The results have demonstrated the feasibility to produce nanodrugs by the principle of acid-base precipitating reaction using HGRP.

  6. Effects of gravity level on bubble formation and rise in low-viscosity liquids.

    PubMed

    Suñol, Francesc; González-Cinca, Ricard

    2015-05-01

    We present an experimental analysis of the effects of gravity level on the formation and rise dynamics of bubbles. Experiments were carried out with millimeter-diameter bubbles in the hypergravity environment provided by the large-diameter centrifuge of the European Space Agency. Bubble detachment from a nozzle is determined by buoyancy and surface tension forces regardless of the gravity level. Immediately after detachment, bubble trajectory is deviated by the Coriolis force. Subsequent bubble rise is dominated by inertial forces and follows a zig-zag trajectory with amplitude and frequency dependent on the gravity level. Vorticity production is enhanced as gravity increases, which destabilizes the flow and therefore the bubble path. PMID:26066251

  7. EGSIEM: Combination of GRACE monthly gravity models on normal equation level

    NASA Astrophysics Data System (ADS)

    Meyer, Ulrich; Jean, Yoomin; Jäggi, Adrian; Mayer-Gürr, Torsten; Neumayer, Hans; Lemoine, Jean-Michel

    2016-04-01

    One of the three geodetic services to be realized in the frame of the EGSIEM project is a scientific combination service. Each associated processing center (AC) will follow a set of common processing standards but will apply its own, independent analysis method. Therefore the quality, robustness and reliability of the combined monthly gravity fields is expected to improve significantly compared to the individual solutions. The Monthly GRACE gravity fields of all ACs are combined on normal equation level. The individual normal equations are weighted depending on pairwise comparisons of the individual gravity field solutions. To derive these weights and for quality control of the individual contributions first a combination of the monthly gravity fields on solution level is performed. The concept of weighting and of the combination on normal equation level is introduced and the formats used for normal equation exchange and gravity field solutions is described. First results of the combination on normal equation level are presented and compared to the corresponding combinations on solution level. EGSIEM has an open data policy and all processing centers of GRACE gravity fields are invited to participate in the combination.

  8. The utility of gravity and water-level monitoring at alluvial aquifer wells in southern Arizona

    USGS Publications Warehouse

    Pool, D.R.

    2008-01-01

    Coincident monitoring of gravity and water levels at 39 wells in southern Arizona indicate that water-level change might not be a reliable indicator of aquifer-storage change for alluvial aquifer systems. One reason is that water levels in wells that are screened across single or multiple aquifers might not represent the hydraulic head and storage change in a local unconfined aquifer. Gravity estimates of aquifer-storage change can be approximated as a one-dimensional feature except near some withdrawal wells and recharge sources. The aquifer storage coefficient is estimated by the linear regression slope of storage change (estimated using gravity methods) and water-level change. Nonaquifer storage change that does not percolate to the aquifer can be significant, greater than 3 ??Gal, when water is held in the root zone during brief periods following extreme rates of precipitation. Monitor-ing of storage change using gravity methods at wells also can improve understanding of local hydrogeologic conditions. In the study area, confined aquifer conditions are likely at three wells where large water-level variations were accompanied by little gravity change. Unconfined conditions were indicated at 15 wells where significant water-level and gravity change were positively linearly correlated. Good positive linear correlations resulted in extremely large specific-yield values, greater than 0.35, at seven wells where it is likely that significant ephemeral streamflow infiltration resulted in unsaturated storage change. Poor or negative linear correlations indicate the occurrence of confined, multiple, or perched aquifers. Monitoring of a multiple compressible aquifer system at one well resulted in negative correlation of rising water levels and subsidence-corrected gravity change, which suggests that water-level trends at the well are not a good indicatior of overall storage change. ?? 2008 Society of Exploration Geophysicists. All rights reserved.

  9. High resolution gravity models combining terrestrial and satellite data

    NASA Technical Reports Server (NTRS)

    Rapp, Richard H.; Pavlis, Nikolaos K.; Wang, Yan M.

    1992-01-01

    Spherical harmonic expansions to degree 360 have been developed that combine satellite potential coefficient information, terrestrial gravity data, satellite altimeter information as a direct tracking data type and topographic information. These models define improved representations of the Earth's gravitational potential beyond that available from just satellite or terrestrial data. The development of the degree 360 models, however, does not imply a uniform accuracy in the determination of the gravity field as numerous geographic areas are devoid of terrestrial data or the resolution of such data is limited to, for example, 100 km. This paper will consider theoretical and numerical questions related to the combination of the various data types. Various models of the combination process are discussed with a discussion of various correction terms for the different models. Various sources of gravity data will be described. The new OSU91 360 model will be discussed with comparisons made to previous 360 models and to other potential coefficient models that are complete to degree 50. Future directions in high degree potential coefficient models will be discussed.

  10. Effect of additives on the properties of polyaniline nanofibers prepared by high gravity chemical oxidative polymerization.

    PubMed

    Zhao, Yibo; Arowo, Moses; Wu, Wei; Chen, Jianfeng

    2015-05-12

    Polyaniline (PANI) nanofibers with improved properties were prepared by high gravity chemical oxidative polymerization in a rotating packed bed with the assistance of p-aminodiphenylamine (AD) and p-phenylenediamine (AP). The effects of reactor type, additive dosage, reaction temperature, and high-gravity level on the properties of products were investigated in detail. Three conclusions were made: (1) a small amount of additive can significantly improve some properties of the nanofibers such as uniformity, specific surface area, and specific capacitance; (2) in order to obtain high-quality nanofibers, the high-gravity level should coordinate with the reaction rate; (3) the molecular weight and conductivity of PANI decrease with the increase of additive dosage. The products have larger specific surface areas of up to 73.9 and 68.4 m(2)/g and consequently improved specific capacitance of up to 527.5 and 552 F/g for the PANI nanofibers prepared with AD and AP, respectively. However, the specific surface area and specific capacitance of pure PANI are only 49.1 m(2)/g and 333.3 F/g, respectively. This research provides a simple, reliable, and scalable method to produce PANI nanofibers of high performances.

  11. The influence of gravity level during directional solidification of immiscible alloys

    NASA Technical Reports Server (NTRS)

    Andrews, J. B.; Schmale, A. L.; Sandlin, A. C.

    1992-01-01

    During directional solidification of immiscible (hypermonotectic) alloys it is theoretically possible to establish a stable macroscopically-planar solidification front, and thus avoid sedimentation. Unfortunately, convective instabilities often occur which interfere with the directional solidification process. In this paper, stability conditions are discussed and results presented from directional solidification studies carried out aboard NASA's KC-135 zero-g aircraft. Samples were directionally solidified while the effective gravity level was varied from approximately 0.01 g for 25 s to 1.8 g for 45 s. Dramatic variations in microstructure were observed with gravity level during solidification.

  12. High pressure droplet burning experiments in reduced gravity

    NASA Technical Reports Server (NTRS)

    Chauveau, Christian; Goekalp, Iskender

    1995-01-01

    A parametric investigation of single droplet gasification regimes is helpful in providing the necessary physical ideas for sub-grid models used in spray combustion numerical prediction codes. A research program has been initiated at the LCSR to explore the vaporization regimes of single and interacting hydrocarbon and liquid oxygen droplets under high pressure conditions. This paper summarizes the status of the LCSR program on the high pressure burning of single fuel droplets; recent results obtained under normal and reduced gravity conditions with suspended droplets are presented. In the work described here, parabolic flights of the CNES Caravelle is used to create a reduced gravity environment of the order of 10(exp -2) g(sub O). For all the droplet burning experiments reported here, the suspended droplet initial diameters are scattered around 1.5 mm; and the ambient air temperature is 300 K. The ambient pressure is varied between 0.1 MPa and 12 MPa. Four fuels are investigated: methanol (Pc = 7.9 MPa), n-heptane (Pc = 2.74 MPa), n-hexane (Pc = 3.01 MPa) and n-octane (Pc = 2.48 MPa).

  13. Grazing Occultation reveals Gravity Wave Breaking in Pluto's High Atmosphere

    NASA Astrophysics Data System (ADS)

    Kern, Susan D.; McCarthy, D. W.; Kulesa, C. A.; Hubbard, W. B.; Person, M. J.; Elliot, J. L.; Gulbis, A. A.

    2007-10-01

    Occultation observations of the star P445.3 (2UCAC 25823784; McDonald & Elliot 2000, AJ 120, 1599) by (134340) Pluto on 2007 March 18.453 UT were simultaneously collected in visible and H-band wavelengths from the 6.5-m MMT (Mt. Hopkins) in Arizona. The event was grazing and slow (6.77 km/s), lasting 4 minutes. These conditions facilitated the detection of large-scale, nearly limb-aligned features in Pluto's atmosphere over a pressure range of 0.1-0.7 μbar (0.01-0.07 Pa; radius range of 1500-1350 km). The data are high signal-to-noise and show these features to be fully resolved and achromatic. The scintillation increases with depth in Pluto's atmosphere and indicates a high-frequency cutoff operating on a broad-band spectrum of gravity waves generated deeper in Pluto's atmosphere. The data are in excellent agreement with atmospheric gravity wave theory (Fritts 1984, RGSP 22, 275). Observations reported here were obtained at the MMT Observatory, a joint facility of The University of Arizona and the Smithsonian Institution. The integration and alignment of both cameras was funded by the Astronomy Camp science education program. We also acknowledge support from NASA's Planetary Astronomy Program via grants NNG04GE48G and NNG04GF25G.

  14. Bed topography of Jakobshavn Isbræ, Greenland from high-resolution gravity data

    NASA Astrophysics Data System (ADS)

    An, L.; Rignot, E. J.; Morlighem, M.; Paden, J. D.; Holland, D. M.

    2015-12-01

    Jakobshavn Isbræ (JKS) is one of the largest marine terminating outlet glaciers in Greenland, feeding a fjord about 800 m deep in the west coast. JKS sped up more than twofold since 2002 and contributed nearly 1 mm of global sea level rise during the period from 2000 to 2011. Holland et al. (2008) posit that these changes coincided with a change in ocean conditions beneath the former ice tongue, yet little is known about the depth of the glacier at its grounding line and upstream of the grounding line and the sea floor depth of the fjord is not well known either. Here, we present a new approach to infer the glacier bed topography, ice thickness and sea floor bathymetry near the grounding line of JKS using high-resolution airborne gravity data from AirGRAV. AirGRAV data were collected in August 2012 from a helicopter platform. The data combined with radio echo sounding data, discrete point soundings in the fjord and the mass conservation approach on land ice. AirGRAV acquired a 500m spacing grid of free-air gravity data at 50 knots with sub-milligal accuracy, i.e. much higher than NASA Operation IceBridge (OIB)'s 5.2km resolution at 290 knots. We use a 3D inversion of the gravity data combining our observations and a forward modeling of the surrounding gravity field, and constrained at the boundary by radar echo soundings and point bathymetry. We reconstruct seamless bed topography at the grounding line that matches interior data and the sea floor bathymetry. The results reveal the true depth at the elbow of the terminal valley and the bed reversal in the proximity of the current grounding line. The analysis provides guidelines for future gravity survey of narrow fjords in terms of spatial resolution and gravity precision. The results also demonstrate the practicality of using high resolution gravity survey to resolve bed topography near glacier snouts, in places where radar sounding has been significantly challenged in the past. The inversion results are critical

  15. Completing Lorentz violating massive gravity at high energies

    SciTech Connect

    Blas, D.; Sibiryakov, S.

    2015-03-15

    Theories with massive gravitons are interesting for a variety of physical applications, ranging from cosmological phenomena to holographic modeling of condensed matter systems. To date, they have been formulated as effective field theories with a cutoff proportional to a positive power of the graviton mass m{sub g} and much smaller than that of the massless theory (M{sub P} ≈ 10{sup 19} GeV in the case of general relativity). In this paper, we present an ultraviolet completion for massive gravity valid up to a high energy scale independent of the graviton mass. The construction is based on the existence of a preferred time foliation combined with spontaneous condensation of vector fields. The perturbations of these fields are massive and below their mass, the theory reduces to a model of Lorentz violating massive gravity. The latter theory possesses instantaneous modes whose consistent quantization we discuss in detail. We briefly study some modifications to gravitational phenomenology at low-energies. The homogeneous cosmological solutions are the same as in the standard cosmology. The gravitational potential of point sources agrees with the Newtonian one at distances small with respect to m{sub g}{sup −1}. Interestingly, it becomes repulsive at larger distances.

  16. Short-wavelength, high-amplitude gravity anomalies around the Banda Sea, and the collapse of the Sulawesi orogen

    NASA Astrophysics Data System (ADS)

    Milsom, J.; Sardjono; Susilo, A.

    2001-04-01

    In eastern Indonesia, high-density ophiolitic rocks outcropping on islands surrounding the Banda Sea are in many cases associated with strong gravity anomalies and steep gravity gradients. However, the relationships are not always straightforward. Bouguer gravity levels and gradients over the extensive East Sulawesi Ophiolite are generally relatively low, although short-wavelength, high amplitude anomalies indicate rapid changes in thickness of high-density rocks in a few places. In the Banda Arc, most local positive anomalies due to ophiolites are superimposed on a steep regional gravity gradient but in one case, in western Seram, there is a distinct and important spatial separation between the two. On Buru, west of Seram, a gradient of more than 10 mGal/km testifies to the presence of very dense rocks in the near subsurface, despite the absence of ophiolites in the outcrop. Gravity variations and ophiolite distribution around the Banda Sea are compatible with extension having occurred in the Sulawesi region following, and as a result of, Oligo-Miocene collision with an Australian-derived microcontinent. Similar histories have been proposed for many Mediterranean deep basins of similar size, shape and character, and emplacement of some of the high-density masses in the Banda Arc has probably resembled at least the later stages in the emplacement of peridotite massifs in the Rif-Betic belt. In both areas the present close association of the ultramafic rocks and their associated local anomalies with a strong regional gravity gradient is largely coincidental.

  17. Influence of gravity level and interfacial energies on dispersion-forming tendencies in hypermonotectic Cu-Pb-Al alloys

    NASA Technical Reports Server (NTRS)

    Andrews, J. B.; Curreri, P. A.; Sandlin, A. C.

    1988-01-01

    Results on the nondirectional solidification of several hypermonotectic Cu-Pb-Al alloys were obtained aboard NASA's KC-135 zero-gravity aircraft in order to determine the influence of interfacial energies and gravity levels on dispersion-forming tendencies. The Al content was systematially varied in the alloys. The dispersion-forming ability is correlated with gravity level during solidification, the interfacial energy between the immiscible phases, and the tendency for the minority immiscible phase to wet the walls of the crucible.

  18. High potassium level

    MedlinePlus

    ... symptoms. Tests that may be ordered include: Electrocardiogram (ECG) Potassium level Your provider will likely check your ... have danger signs, such as changes in an ECG . Emergency treatment may include: Calcium given into your ...

  19. Thermal-gravitational modeling and scaling of two-phase heat transport systems from micro-gravity to super-gravity levels

    NASA Astrophysics Data System (ADS)

    Delil, A. A. M.

    2001-02-01

    Earlier publications extensively describe NLR research on thermal-gravitational modeling and scaling of two-phase heat transport systems for spacecraft applications. These publications on mechanically and capillary pumped two-phase loops discuss pure geometric scaling, pure fluid to fluid scaling, and combined (hybrid) scaling of a prototype system by a model at the same gravity level, and of a prototype in micro-gravity environment by a scale-model on earth. More recent publications include the scaling aspects of prototype two-phase loops for Moon or Mars applications by scale-models on earth. Recent work, discussed here, concerns extension of thermal-gravitational scaling to super-g acceleration levels. This turned out to be necessary, since a very promising super-g application for (two-phase) heat transport systems will be cooling of high-power electronics in spinning satellites and in military combat aircraft. In such aircraft, the electronics can be exposed during maneuvres to transient accelerations up to 120 m/s2. The discussions focus on ``conventional'' (capillary) pumped two-phase loops. It can be considered as introduction to the accompanying article, which focuses on pulsating and oscillating devices. .

  20. Testing gravity at the second post-Newtonian level through gravitational deflection of massive particles

    SciTech Connect

    Bhadra, A.; Sarkar, K.; Nandi, K. K.

    2007-06-15

    Expression for second post-Newtonian level gravitational deflection angle of massive particles is obtained in a model independent framework. Comparison of theoretical values with the observationally constructed values of post-Newtonian parameters for massive particles offers the future possibility of testing at that level competing gravitational theories as well as the equivalence principle. Advantage of studying gravitational deflection of massive particles over that of massless particles in testing gravity is discussed.

  1. High blood cholesterol levels

    MedlinePlus

    ... adults: selective update of 2001 US Preventive Services Task Force Review. Rockville, MD: Agency for Healthcare Research and ... 2016:chap 206. Siu AL; U.S. Preventive Services Task Force. Screening for high blood pressure in adults: U.S. ...

  2. Microfluidic platform for electrophysiological studies on Xenopus laevis oocytes under varying gravity levels.

    PubMed

    Schaffhauser, Daniel F; Andrini, Olga; Ghezzi, Chiara; Forster, Ian C; Franco-Obregón, Alfredo; Egli, Marcel; Dittrich, Petra S

    2011-10-21

    Voltage clamp measurements reveal important insights into the activity of membrane ion channels. While conventional voltage clamp systems are available for laboratory studies, these instruments are generally unsuitable for more rugged operating environments. In this study, we present a non-invasive microfluidic voltage clamp system developed for the use under varying gravity levels. The core component is a multilayer microfluidic device that provides an immobilisation site for Xenopus laevis oocytes on an intermediate layer, and fluid and electrical connections from either side of the cell. The configuration that we term the asymmetrical transoocyte voltage clamp (ATOVC) also permits electrical access to the cytosol of the oocyte without physical introduction of electrodes by permeabilisation of a large region of the oocyte membrane so that a defined membrane patch can be voltage clamped. The constant low level air pressure applied to the oocyte ensures stable immobilisation, which is essential for keeping the leak resistance constant even under varying gravitational forces. The ease of oocyte mounting and immobilisation combined with the robustness and complete enclosure of the fluidics system allow the use of the ATOVC under extreme environmental conditions, without the need for intervention by a human operator. Results for oocytes over-expressing the epithelial sodium channel (ENaC) obtained under laboratory conditions as well as under conditions of micro- and hypergravity demonstrate the high reproducibility and stability of the ATOVC system under distinct mechanical scenarios.

  3. Tethered gravity laboratories study

    NASA Technical Reports Server (NTRS)

    Lucchetti, F.

    1989-01-01

    The use is studied of tether systems to improve the lowest possible steady gravity level on the Space Station. Particular emphasis is placed by the microgravity community on the achievement of high quality microgravity conditions. The tether capability is explored for active control of the center of gravity and the analysis of possible tethered configurations.

  4. Regulation by gravity of the transcript levels of MAP65 in azuki bean epicotyls

    NASA Astrophysics Data System (ADS)

    Soga, Kouichi; Hoson, Takayuki; Wakabayashi, Kazuyuki; Kotake, Toshihisa

    2012-07-01

    Development of a short and thick body by reorientation of cortical microtubules is required for the resistance of plants to the gravitational force. The 65 kDa microtubule-associated protein (MAP65) has microtubule bundling activity and is involved in the reorientation of cortical microtubules. Here, we investigated the relation between the orientation of cortical microtubules and the transcript levels of VaMAP65-1 under centrifugal hypergravity conditions in azuki bean epicotyls. The percentage of cells with transverse microtubules was decreased, while that with longitudinal microtubules was increased, in proportion to the logarithm of the magnitude of gravity. The orientation of microtubules was restored to the original direction after removal of the hypergravity stimulus. The transcript level of VaMAP65-1 was down-regulated in proportion to the logarithm of the magnitude of gravity (R=-0.99). By removal of hypergravity stimulus, expression of VaMAP65-1 was increased to control levels. Strong correlations were observed between the percentage of cells with longitudinal or transverse microtubules and the transcript levels of VaMAP65-1 (R=-0.93, 0.91). These results suggest that down-regulation of VaMAP65-1 expression is involved in the regulation by gravity of the orientation of cortical microtubules in azuki bean epicotyls. Lanthanum and gadolinium ions, potential blockers of mechanosensitive calcium ion-permeable channels (mechanoreceptors), nullified the down-regulation of expression of VaMAP65-1 gene, suggesting that mechanoreceptors are responsible for regulation by gravity of VaMAP65-1 expression.

  5. High-gravity spreading of liquid puddles on wetting flexible substrates

    NASA Astrophysics Data System (ADS)

    Yang, Chen; Burrous, Adam; Xie, Jingjin; Shaikh, Hassan; Elike-Avion, Akofa; Rojas Rodriguez, Luis; Ramachandran, Adithya; Choi, Wonjae; Mazzeo, Aaron D.

    2016-02-01

    This letter describes a mechanical approach of using high gravity to decrease the capillary length and increase the spreading rate of liquid puddles on wetting flexible substrates. By using centrifugation and a flexible substrate floating on a high-density liquid, uniform acceleration enhances the spreading of liquid puddles. Under high gravity of 600 g, the capillary length reduces by a factor of 24.5 to ˜60 μm. The reduction in capillary length results in gravity dominating the spreading of small puddles that would otherwise have slower spreading driven by both surface tension and gravity of 1 g. The resulting measurements suggest that derived expressions in the literature for gravity-driven spreading of puddles under earth's standard gravity extend to predicting the behavior of sufficiently large puddles spreading on flexible substrates exposed to more than 100 g of acceleration. This work explores the spreading of puddles/coatings under high gravity, and the techniques described in this work will allow further interrogation of the transition between surface tension- and gravity-driven spreading.

  6. Effects of Varying Gravity Levels in Parabolic Flight on the Size-Mass Illusion

    PubMed Central

    Clément, Gilles

    2014-01-01

    When an observer lifts two objects with the same weight but different sizes, the smaller object is consistently reported to feel heavier than the larger object even after repeated trials. Here we explored the effect of reduced and increased gravity on this perceptual size-mass illusion. Experiments were performed on board the CNES Airbus A300 Zero-G during parabolic flights eliciting repeated exposures to short periods of zero g, 0.16 g, 0.38 g, one g, and 1.8 g. Subjects were asked to assess perceived heaviness by actively oscillating objects with various sizes and masses. The results showed that a perceptual size-mass illusion was clearly present at all gravity levels. During the oscillations, the peak arm acceleration varied as a function of the gravity level, irrespective of the mass and size of the objects. In other words we did not observe a sensorimotor size-mass illusion. These findings confirm dissociation between the sensorimotor and perceptual systems for determining object mass. In addition, they suggest that astronauts on the Moon or Mars with the eyes closed will be able to accurately determine the relative difference in mass between objects. PMID:24901519

  7. Effects of varying gravity levels in parabolic flight on the size-mass illusion.

    PubMed

    Clément, Gilles

    2014-01-01

    When an observer lifts two objects with the same weight but different sizes, the smaller object is consistently reported to feel heavier than the larger object even after repeated trials. Here we explored the effect of reduced and increased gravity on this perceptual size-mass illusion. Experiments were performed on board the CNES Airbus A300 Zero-G during parabolic flights eliciting repeated exposures to short periods of zero g, 0.16 g, 0.38 g, one g, and 1.8 g. Subjects were asked to assess perceived heaviness by actively oscillating objects with various sizes and masses. The results showed that a perceptual size-mass illusion was clearly present at all gravity levels. During the oscillations, the peak arm acceleration varied as a function of the gravity level, irrespective of the mass and size of the objects. In other words we did not observe a sensorimotor size-mass illusion. These findings confirm dissociation between the sensorimotor and perceptual systems for determining object mass. In addition, they suggest that astronauts on the Moon or Mars with the eyes closed will be able to accurately determine the relative difference in mass between objects.

  8. Degraded EEG response of the human brain in function of gravity levels by the method of chaotic attractor

    NASA Astrophysics Data System (ADS)

    Pletser, Vladimir; Quadens, Olga

    The measurement of the influence of different gravity levels on the brain allows to explain how humans react to microgravity in space and to predict the adaptation capability of astronauts. Human electroencephalographic (EEG) signals were recorded during low and high gravity phases of three consecutive days of parabolic flights on the Caravelle aircraft in 1991. EEG signals were processed, using the method of correlation dimensions d of chaotic strange attractors. Results show clear differences between the three flights, with a general decrease over time in the attractor dimensions, a measure of the brain response to changing g levels. However, the dimension is not a one-to-one relation with g levels, as additional variations are observed. Two hypotheses are introduced, the "fatigue/stress" and the " g stress" hypotheses corresponding, respectively, to long-term fatigue accumulated over the three flights, and to short-term fatigue in response to change in g levels. The former explains the overall decrease of dimensions, the latter yields additional variations on shorter time scales. As the brain response degrades with time, at least six degraded modes were observed, explained by both short- and long-term fatigue.

  9. Covariant loop quantum gravity, low-energy perturbation theory, and Einstein gravity with high-curvature UV corrections

    NASA Astrophysics Data System (ADS)

    Han, Muxin

    2014-06-01

    A low-energy perturbation theory is developed from the nonperturbative framework of covariant loop quantum gravity (LQG) by employing the background-field method. The resulting perturbation theory is a two-parameter expansion in the semiclassical and low-energy regime. The two expansion parameters are the large spin and small curvature. The leading-order effective action coincides with the Regge action, which well approximates the Einstein-Hilbert action in the regime. The subleading corrections organized by the two expansion parameters give the modifications of the Regge action in the quantum and high-energy regime from LQG. The perturbation theory developed here shows for the first time that covariant LQG produces the high-curvature corrections to Einstein-Regge gravity. This result means that LQG is not a naive quantization of Einstein gravity; rather, it provides the UV modification. The result of the paper may be viewed as the first step toward understanding the UV completeness of LQG.

  10. Evaluation of EIGEN-6C4 by means of various functions of the gravity potential, and by GPS/Leveling

    NASA Astrophysics Data System (ADS)

    Klokocnik, Jaroslav; Kostelecky, Jan; Bucha, Blazej; Bezdek, Ales; Foerste, Christoph

    2015-04-01

    The combined gravity field model EIGEN-6C4 (Foerste et al., 2014) is the latest combined global gravity field model of GFZ Potsdam and GRGS Toulouse. EIGEN-6C4 has been generated including the satellite gravity gradiometry data of the entire GOCE mission (November 2009 till October 2013) and is of maximum spherical degree and order 2190. In this study EIGEN-6C4 has been compared with EGM 2008 to its maximum degree and order via gravity disturbancies, the Marussi tensor of the second derivatives of the disturbing potential, the invariants of the gravity field, their specific combinations, strike angles and virtual deformations over the whole world. The emphasis is put on such areas where GOCE data (complete set of gradiometry measurements after reductions) in EIGEN-6C4 obviously contributes to an improvement of the gravity field description. GNSS/Leveling geoid heights are independent data source for the evaluation of gravity field models. Therefore, we use the GNSS/Leveling data sets over the territories of several countries in Europe, Brazil, the USA, Canada and Japan for the evaluation of EIGEN-6C4 w.r.t. EGM 2008.

  11. Silicone oil with high specific gravity for intraocular use.

    PubMed Central

    Gabel, V P; Kampik, A; Gabel, C; Spiegel, D

    1987-01-01

    Silicone oil with a higher specific gravity than that of intraocular fluid or polydimethylsiloxane may have special indications in vitreoretinal surgery. Trifluorsiloxane is such a substance, and therefore its biological compatibility was investigated in rabbit eyes. It was found that this substance was clinically well tolerated within the observation time of up to 6 months, even if there was some neovascularisation from the inferior limbus. Histologically both an inflammatory response and tissue impregnation were more pronounced than with normal polydimethylsiloxane. Images PMID:2437955

  12. High-resolution gravity and seismic-refraction surveys of the Smoke Tree Wash area, Joshua Tree National Park, California

    USGS Publications Warehouse

    Langenheim, Victoria E.; Rymer, Michael J.; Catchings, Rufus D.; Goldman, Mark R.; Watt, Janet T.; Powell, Robert E.; Matti, Jonathan C.

    2016-03-02

    We describe high-resolution gravity and seismic refraction surveys acquired to determine the thickness of valley-fill deposits and to delineate geologic structures that might influence groundwater flow beneath the Smoke Tree Wash area in Joshua Tree National Park. These surveys identified a sedimentary basin that is fault-controlled. A profile across the Smoke Tree Wash fault zone reveals low gravity values and seismic velocities that coincide with a mapped strand of the Smoke Tree Wash fault. Modeling of the gravity data reveals a basin about 2–2.5 km long and 1 km wide that is roughly centered on this mapped strand, and bounded by inferred faults. According to the gravity model the deepest part of the basin is about 270 m, but this area coincides with low velocities that are not characteristic of typical basement complex rocks. Most likely, the density contrast assumed in the inversion is too high or the uncharacteristically low velocities represent highly fractured or weathered basement rocks, or both. A longer seismic profile extending onto basement outcrops would help differentiate which scenario is more accurate. The seismic velocities also determine the depth to water table along the profile to be about 40–60 m, consistent with water levels measured in water wells near the northern end of the profile.

  13. Regional and global gravity models from the analysis of GOCE level-1b data

    NASA Astrophysics Data System (ADS)

    Schall, Judith; Eicker, Annette; Kusche, Jürgen

    2013-04-01

    ESA's GOCE satellite mission delivers accurate data of high resolution and nearly global coverage. The standard approach is to analyse these observations using the globally defined spherical harmonic functions. However, regional (radial) base functions provide the advantage to be more flexible in modelling data of differing density and variability, which clearly is the case for satellite gravity data. Particularly, a regionally adapted regularisation process enables optimal damping of both, regions featuring rough signal and rather smooth areas, at the same time. This is of special interest for GOCE because of its strength in observing the high frequency part of the gravity field. The present paper represents the final results of the project GLOREGOCE which is part of the German funded research programme REAL GOCE. The project mainly aims at providing regionally refined gravity field models by applying the short arc approach on GOCE orbit and (pure) gradiometer data. For easy investigation, regional solutions calculated on small patches all over the globe have been merged and transformed to a spherical harmonic expansion by means of quadrature methods. The power of the regional approach is demonstrated by comparison to spherical harmonic models, which are based on exactly the same processing strategy, standards and data time span. We show, that these global models are comparable in accuracy with respect to the official GOCE models published by ESA. Moreover, we will show that regional models perform even better compared to global models in the higher frequencies: In oceanic areas, the regionally adapted regularisation process leads to a noise reduction of about 10%. A more tailored choice of the regularisation areas tested for the South Sandwich Trench reveals improvements that are nearly twice as large.

  14. High-degree Gravity Models from GRAIL Primary Mission Data

    NASA Technical Reports Server (NTRS)

    Lemoine, Frank G.; Goossens, Sander J.; Sabaka, Terence J.; Nicholas, Joseph B.; Mazarico, Erwan; Rowlands, David D.; Loomis, Bryant D.; Chinn, Douglas S.; Caprette, Douglas S.; Neumann, Gregory A.; Smith, David E.; Zuber, Maria T.

    2013-01-01

    We have analyzed Ka?band range rate (KBRR) and Deep Space Network (DSN) data from the Gravity Recovery and Interior Laboratory (GRAIL) primary mission (1 March to 29 May 2012) to derive gravity models of the Moon to degree 420, 540, and 660 in spherical harmonics. For these models, GRGM420A, GRGM540A, and GRGM660PRIM, a Kaula constraint was applied only beyond degree 330. Variance?component estimation (VCE) was used to adjust the a priori weights and obtain a calibrated error covariance. The global root?mean?square error in the gravity anomalies computed from the error covariance to 320×320 is 0.77 mGal, compared to 29.0 mGal with the pre?GRAIL model derived with the SELENE mission data, SGM150J, only to 140×140. The global correlations with the Lunar Orbiter Laser Altimeter?derived topography are larger than 0.985 between l = 120 and 330. The free?air gravity anomalies, especially over the lunar farside, display a dramatic increase in detail compared to the pre?GRAIL models (SGM150J and LP150Q) and, through degree 320, are free of the orbit?track?related artifacts present in the earlier models. For GRAIL, we obtain an a posteriori fit to the S?band DSN data of 0.13 mm/s. The a posteriori fits to the KBRR data range from 0.08 to 1.5 micrometers/s for GRGM420A and from 0.03 to 0.06 micrometers/s for GRGM660PRIM. Using the GRAIL data, we obtain solutions for the degree 2 Love numbers, k20=0.024615+/-0.0000914, k21=0.023915+/-0.0000132, and k22=0.024852+/-0.0000167, and a preliminary solution for the k30 Love number of k30=0.00734+/-0.0015, where the Love number error sigmas are those obtained with VCE.

  15. High pressure liquid level monitor

    DOEpatents

    Bean, Vern E.; Long, Frederick G.

    1984-01-01

    A liquid level monitor for tracking the level of a coal slurry in a high-pressure vessel including a toroidal-shaped float with magnetically permeable bands thereon disposed within the vessel, two pairs of magnetic field generators and detectors disposed outside the vessel adjacent the top and bottom thereof and magnetically coupled to the magnetically permeable bands on the float, and signal processing circuitry for combining signals from the top and bottom detectors for generating a monotonically increasing analog control signal which is a function of liquid level. The control signal may be utilized to operate high-pressure control valves associated with processes in which the high-pressure vessel is used.

  16. Influence of temperature variations on the noise level of the data of the LaCoste and Romberg Earth tide gravity meter ET18

    NASA Astrophysics Data System (ADS)

    Hegewald, Anne; Jentzsch, Gerhard; Jahr, Thomas

    2011-04-01

    Gravity records include a wide spectrum of signals based on mass changes in the Earth's crust. Today, the detectable amplitudes of the signals of interest become smaller and smaller (e.g., hydrological effects). From this it follows that the accuracy and resolution of measurements must be very high and the noise level as low as possible. In this study, the influence of the temperature variations as noise signal in the gravity records was investigated. Therefore, two 215 day time series of the LaCoste and Romberg gravity meter ET18 in the broadband Geodynamical Observatory Moxa were analyzed and compared. Each time series was recorded in another room. The first room is characterized by a temperature variation of ±4°C per year. The second room has a constant temperature of 19°C. As reference data, the parallel recorded time series of the superconducting gravity meter (SG) CD-034, installed in the temperature-stabilized room were used. The result of this study shows a clear influence of temperature variation on the noise level in the spectra of the ET18 compared to the SG spectra. Depending on the frequency ranges, the ratios of the noise levels of the ET18 and SG spectra are between 2 and 5. In the frequency range up to 0.01 cph the ET18/SG factor is 2, between 0.01 cph and 0.09 cph the factor is 3, and above 0.09 cph the factor is 5.

  17. High Degree and Order Gravity Fields of the Moon Derived from GRAIL Data

    NASA Astrophysics Data System (ADS)

    Lemoine, F. G.; Goossens, S. J.; Sabaka, T. J.; Nicholas, J. B.; Mazarico, E.; Loomis, B. D.; Chinn, D. S.; Caprette, D.; McCarthy, J. J.; Neumann, G. A.; Zuber, M. T.; Smith, D. E.

    2012-12-01

    The Gravity Recovery and Interior Laboratory (GRAIL) spacecraft conducted the mapping of the gravity field of the Moon from March 1, 2012 to May 29, 2012. The twin spacecraft acquired highly precise K Band range-rate (KBRR) intersatellite ranging data and Deep Space Network (DSN) data during this prime mission phase from altitudes of 15 to 75 km above the lunar surface over three lunar months. We have processed these data using the NASA GSFC GEODYN orbit determination and geodetic parameter estimation program, and we have determined gravity fields up to degree and order 420 in spherical harmonics. The new gravity solutions show improved correlations with LOLA-derived topography to high degree and order and resolve many lunar features in the geopotential with a resolution of less than 30 km, including for example the central peak of the crater Tycho. We discuss the methodology used for the processing of the GRAIL data, the quality of the orbit determination on the GRAIL satellites and the derivation of the solutions, and their evaluation with independent data, including Lunar Prospector. We show that with these new GRAIL gravity solutions, we can now fit the low altitude, extended mission Lunar Prospector tracking data better than with any previous gravity model that included the LP data.

  18. High Degree and Order Gravity Fields of the Moon Derived from GRAIL Data

    NASA Technical Reports Server (NTRS)

    Lemoine, F. G.; Goossens, S. J.; Sabaka, T. J.; Nicholas, J. B.; Mazarico, E.; Rowlands, D. D.; Loomis, B. D.; Chinn, D. S.; Caprette, D. S.; McCarthy, J. J.; Neumann, G. A.; Zuber, M. T.; Smith, D. E.

    2012-01-01

    The Gravity Recovery and Interior Laboratory (GRAIL) spacecraft conducted the mapping of the gravity field of the Moon from March 1, 2012 to May 29, 2012. The twin spacecraft acquired highly precise K Band range-rate (KBRR) intersatellite ranging data and Deep Space Network (DSN) data during this prime mission phase from altitudes of 15 to 75 km above the lunar surface over three lunar months. We have processed these data using the NASA GSFC GEODYN orbit determination and geodetic parameter estimation program, and we have determined gravity fields up to degree and order 420 in spherical harmonics. The new gravity solutions show improved correlations with LOLA-derived topography to high degree and order and resolve many lunar features in the geopotential with a resolution of less than 30 km, including for example the central peak of the crater Tycho. We discuss the methodology used for the processing of the GRAIL data, the quality of the orbit determination on the GRAIL satellites and the derivation of the solutions, and their evaluation with independent data, including Lunar Prospector. We show that with these new GRAIL gravity solutions, we can now fit the low altitude, extended mission Lunar Prospector tracking data better than with any previous gravity model that included the LP data.

  19. Centrifugal Sieve for Gravity-Level-Independent Size Segregation of Granular Materials

    NASA Technical Reports Server (NTRS)

    Walton, Otis R.; Dreyer, Christopher; Riedel, Edward

    2013-01-01

    Conventional size segregation or screening in batch mode, using stacked vibrated screens, is often a time-consuming process. Utilization of centrifugal force instead of gravity as the primary body force can significantly shorten the time to segregate feedstock into a set of different-sized fractions. Likewise, under reduced gravity or microgravity, a centrifugal sieve system would function as well as it does terrestrially. When vibratory and mechanical blade sieving screens designed for terrestrial conditions were tested under lunar gravity conditions, they did not function well. The centrifugal sieving design of this technology overcomes the issues that prevented sieves designed for terrestrial conditions from functioning under reduced gravity. These sieves feature a rotating outer (cylindrical or conical) screen wall, rotating fast enough for the centrifugal forces near the wall to hold granular material against the rotating screen. Conventional centrifugal sieves have a stationary screen and rapidly rotating blades that shear the granular solid near the stationary screen, and effect the sieving process assisted by the airflow inside the unit. The centrifugal sieves of this new design may (or may not) have an inner blade or blades, moving relative to the rotating wall screen. Some continuous flow embodiments would have no inner auger or blades, but achieve axial motion through vibration. In all cases, the shearing action is gentler than conventional centrifugal sieves, which have very high velocity differences between the stationary outer screen and the rapidly rotating blades. The new design does not depend on airflow in the sieving unit, so it will function just as well in vacuum as in air. One advantage of the innovation for batch sieving is that a batch-mode centrifugal sieve may accomplish the same sieving operation in much less time than a conventional stacked set of vibrated screens (which utilize gravity as the primary driving force for size separation

  20. High-Level Radioactive Waste.

    ERIC Educational Resources Information Center

    Hayden, Howard C.

    1995-01-01

    Presents a method to calculate the amount of high-level radioactive waste by taking into consideration the following factors: the fission process that yields the waste, identification of the waste, the energy required to run a 1-GWe plant for one year, and the uranium mass required to produce that energy. Briefly discusses waste disposal and…

  1. The CMS high level trigger

    NASA Astrophysics Data System (ADS)

    Gori, Valentina

    2014-05-01

    The CMS experiment has been designed with a 2-level trigger system: the Level 1 Trigger, implemented on custom-designed electronics, and the High Level Trigger (HLT), a streamlined version of the CMS offline reconstruction software running on a computer farm. A software trigger system requires a tradeoff between the complexity of the algorithms running on the available computing power, the sustainable output rate, and the selection efficiency. Here we will present the performance of the main triggers used during the 2012 data taking, ranging from simpler single-object selections to more complex algorithms combining different objects, and applying analysis-level reconstruction and selection. We will discuss the optimisation of the triggers and the specific techniques to cope with the increasing LHC pile-up, reducing its impact on the physics performance.

  2. The CMS High Level Trigger

    NASA Astrophysics Data System (ADS)

    Trocino, Daniele

    2014-06-01

    The CMS experiment has been designed with a two-level trigger system: the Level-1 Trigger, implemented in custom-designed electronics, and the High-Level Trigger (HLT), a streamlined version of the CMS offline reconstruction software running on a computer farm. A software trigger system requires a tradeoff between the complexity of the algorithms running with the available computing power, the sustainable output rate, and the selection efficiency. We present the performance of the main triggers used during the 2012 data taking, ranging from simple single-object selections to more complex algorithms combining different objects, and applying analysis-level reconstruction and selection. We discuss the optimisation of the trigger and the specific techniques to cope with the increasing LHC pile-up, reducing its impact on the physics performance.

  3. Effect of Gravity Level on the Particle Shape and Size During Zeolite Crystal Growth

    NASA Technical Reports Server (NTRS)

    Song, Hong-Wei; Ilebusi, Olusegun J.; Sacco, Albert, Jr.

    2003-01-01

    A microscopic diffusion model is developed to represent solute transport in the boundary layer of a growing zeolite crystal. This model is used to describe the effect of gravity on particle shape and solute distribution. Particle dynamics and crystal growth kinetics serve as the boundary conditions of flow and convection-diffusion equations. A statistical rate theory is used to obtain the rate of solute transport across the growing interface, which is expressed in terms of concentration and velocity of solute species. Microgravity can significantly decrease the solute velocity across the growing interface compared to its earth-based counterpart. The extent of this reduction highly depends on solute diffusion constant in solution. Under gravity, the flow towards the crystal enhances solute transport rate across the growing interface while the flow away from crystals reduces this rate, suggesting a non-uniform growth rate and thus an elliptic final shape. However, microgravity can significantly reduce the influence of flow and obtain a final product with perfect spherical shape. The model predictions compare favorably with the data of space experiment of zeolites grown in space.

  4. Figuring large optics at the sub-nanometer level: compensation for coating and gravity distortions.

    PubMed

    Gensemer, Stephen; Gross, Mark

    2015-11-30

    Large, precision optics can now be manufactured with surface figures specified at the sub-nanometer level. However, coatings and gravity deform large optics, and there are limits to what can be corrected by clever compensation. Instead, deformations caused by stress from optical mounts and deposited coatings must be incorporated into the optical design. We demonstrate compensation of coating stress on a 370mm substrate to λ/200 by a process of coating and annealing. We also model the same process and identify the leading effects that must be anticipated in fabrication of optics for future gravitational wave detectors and other applications of large, precisely figured optics, and identify the limitations inherent in using coatings to compensate for these deformations.

  5. Figuring large optics at the sub-nanometer level: compensation for coating and gravity distortions.

    PubMed

    Gensemer, Stephen; Gross, Mark

    2015-11-30

    Large, precision optics can now be manufactured with surface figures specified at the sub-nanometer level. However, coatings and gravity deform large optics, and there are limits to what can be corrected by clever compensation. Instead, deformations caused by stress from optical mounts and deposited coatings must be incorporated into the optical design. We demonstrate compensation of coating stress on a 370mm substrate to λ/200 by a process of coating and annealing. We also model the same process and identify the leading effects that must be anticipated in fabrication of optics for future gravitational wave detectors and other applications of large, precisely figured optics, and identify the limitations inherent in using coatings to compensate for these deformations. PMID:26698746

  6. On the concentration structure of high-concentration constant-volume fluid mud gravity currents

    NASA Astrophysics Data System (ADS)

    Jacobson, M. R.; Testik, F. Y.

    2013-01-01

    An exhaustive laboratory experimental campaign was undertaken in order to elucidate the concentration structure of two-dimensional constant-volume non-Newtonian fluid mud gravity currents. Two sets of experiments were conducted in a lock-exchange tank. The first set of experiments involved measuring the vertical concentration profiles using a siphoning technique; the second set involved auxiliary visual observations. The first set of experiments consisted of 32 experimental runs for four different experimental conditions, with an array of siphoned samples being withdrawn throughout the head and body of the gravity current. From these samples, vertical concentration profiles occurring in constant-volume fluid mud gravity currents were classified and the underlying physical processes that led to the occurrence of observed profiles were discussed. Furthermore, the functional form of the vertical concentration profiles within the head of relatively low-initial-concentration gravity currents was proposed. The relatively high-initial-concentration gravity currents revealed the presence of a lutocline in the current head and body, the presence of which was observed for constant-flux release gravity currents. To our knowledge, this is the first measurement of a lutocline in constant-volume gravity currents. Abrupt transitions, a phenomenon in which the bulk of the suspended sediment in the propagating gravity current drops out, were observed through the concentration profiles and through 15 auxiliary visual experimental runs. It was found that abrupt transitions were caused by the presence of a lutocline. The entrainment of ambient water resulting in the dilution of the gravity current at different concentration contours has been quantified. In a previous work by the authors of this study, it was shown that the initial reduced gravity is directly proportional to the growth rate of the visual area of the two-dimensional current. The analysis of our experimental observations

  7. A Fast Full Tensor Gravity computation algorithm for High Resolution 3D Geologic Interpretations

    NASA Astrophysics Data System (ADS)

    Jayaram, V.; Crain, K.; Keller, G. R.

    2011-12-01

    We present an algorithm to rapidly calculate the vertical gravity and full tensor gravity (FTG) values due to a 3-D geologic model. This algorithm can be implemented on single, multi-core CPU and graphical processing units (GPU) architectures. Our technique is based on the line element approximation with a constant density within each grid cell. This type of parameterization is well suited for high-resolution elevation datasets with grid size typically in the range of 1m to 30m. The large high-resolution data grids in our studies employ a pre-filtered mipmap pyramid type representation for the grid data known as the Geometry clipmap. The clipmap was first introduced by Microsoft Research in 2004 to do fly-through terrain visualization. This method caches nested rectangular extents of down-sampled data layers in the pyramid to create view-dependent calculation scheme. Together with the simple grid structure, this allows the gravity to be computed conveniently on-the-fly, or stored in a highly compressed format. Neither of these capabilities has previously been available. Our approach can perform rapid calculations on large topographies including crustal-scale models derived from complex geologic interpretations. For example, we used a 1KM Sphere model consisting of 105000 cells at 10m resolution with 100000 gravity stations. The line element approach took less than 90 seconds to compute the FTG and vertical gravity on an Intel Core i7 CPU at 3.07 GHz utilizing just its single core. Also, unlike traditional gravity computational algorithms, the line-element approach can calculate gravity effects at locations interior or exterior to the model. The only condition that must be met is the observation point cannot be located directly above the line element. Therefore, we perform a location test and then apply appropriate formulation to those data points. We will present and compare the computational performance of the traditional prism method versus the line element

  8. Gravity modeling reveals that the "Miocene Pyrenean peneplain" developed at high elevation

    NASA Astrophysics Data System (ADS)

    Bosch, Gemma V.; Van Den Driessche, Jean; Robert, Alexandra; Babault, Julien; Le Carlier, Christian

    2016-04-01

    Geodynamics that shaped the present morphology of the western Mediterranean are mostly linked to the African-Eurasia collision and the extension related to the Mediterranean opening. The Pyrenean chain formed by the collision between the Iberian microplate and the Eurasian plate from the Eocene to the late Oligocene. This resulted in lithosphere thickening especially below the Central Pyrenees that becomes thinner eastwards. Whether the later thinning of the lithosphere in the easternmost Pyrenees involves the removal of the lithospheric mantle or not is debated. This issue joins the problematics about the origin of the high-elevation of the "Miocene Pyrenean peneplain" remnants. Indeed the most striking feature of the Pyrenean morphology is the occurrence of high-elevation, low relief erosional surfaces that are interpreted as the remnants of a Miocene single planation surface, dissected and reworked by Quaternary fluvial and glacial erosion. Two end-member interpretations have proposed to explain the high elevation of this original surface. The first considers that the Miocene Pyrenean peneplain develops near sea-level and was later uplifted, the second claims that the planation surface developed at high elevation in response to the inhibition of erosion consecutively to the progressive rise of the base-level of the Pyrenean drainage network. The first interpretation implies the return to normal crustal thickness by erosion and later uplift by removal of the lithospheric mantle. The second interpretation considers that the mean elevation of the original planation surface matches the thickness of the lithosphere below the chain, taking into account some hundred meters of isostatic rebound due to Quaternary erosion. To test these interpretations, we first restore the Miocene original planation surface by mapping and interpolating the high-elevation, low relief surfaces across the Pyrenees. We then performed 1D and 2D gravity models that we compare with recent

  9. Could quantum gravity phenomenology be tested with high intensity lasers?

    SciTech Connect

    Magueijo, Joao

    2006-06-15

    In phenomenological quantum gravity theories, Planckian behavior is triggered by the energy of elementary particles approaching the Planck energy, E{sub P}, but it is also possible that anomalous behavior strikes systems of particles with total energy near E{sub P}. This is usually perceived to be pathological and has been labeled 'the soccer ball problem'. We point out that there is no obvious contradiction with experiment if coherent collections of particles with bulk energy of order E{sub P} do indeed display Planckian behavior, a possibility that would open a new experimental window. Unfortunately, field theory realizations of 'doubly' (or deformed) special relativity never exhibit a soccer ball problem; we present several formulations where this is undeniably true. Upon closer scrutiny we discover that the only chance for Planckian behavior to be triggered by large coherent energies involves the details of second quantization. We find a formulation where the quanta have their energy-momentum (mass-shell) relations deformed as a function of the bulk energy of the coherent packet to which they belong, rather than the frequency. Given ongoing developments in laser technology, such a possibility would be of great experimental interest.

  10. Combustion of Gaseous Fuels with High Temperature Air in Normal- and Micro-gravity Conditions

    NASA Technical Reports Server (NTRS)

    Wang, Y.; Gupta, A. K.

    2001-01-01

    The objective of this study is determine the effect of air preheat temperature on flame characteristics in normal and microgravity conditions. We have obtained qualitative (global flame features) and some quantitative information on the features of flames using high temperature combustion air under normal gravity conditions with propane and methane as the fuels. This data will be compared with the data under microgravity conditions. The specific focus under normal gravity conditions has been on determining the global flame features as well as the spatial distribution of OH, CH, and C2 from flames using high temperature combustion air at different equivalence ratio.

  11. Virtuous trees at five- and six-point levels for Yang-Mills theory and gravity

    SciTech Connect

    Broedel, Johannes; Carrasco, John Joseph M.

    2011-10-15

    We present a particularly nice D-dimensional graph-based representation of the full color-dressed five-point tree-level gluon amplitude. It possesses the following virtues: (1) it satisfies the color-kinematic correspondence, and thus trivially generates the associated five-point graviton amplitude, (2) all external-state information is encoded in color-ordered partial amplitudes, and (3) one function determines the kinematic contribution of all graphs in the Yang-Mills amplitude, so the associated gravity amplitude is manifestly permutation symmetric. The third virtue, while shared among all known loop-level correspondence-satisfying representations, is novel for tree-level representations sharing the first two virtues. This new D-dimensional representation makes contact with the recently found multiloop five-point representations, suggesting all-loop, all-multiplicity ramifications through unitarity. Additionally we present a slightly less virtuous representation of the six-point maximally helicity-violating (MHV) and MHV amplitudes that holds only in four dimensions.

  12. High gravity and high cell density mitigate some of the fermentation inhibitory effects of softwood hydrolysates

    PubMed Central

    2013-01-01

    After steam pretreatment of lignocellulosic substrates the fermentation of the biomass derived sugars to ethanol is typically problematic because of both the generally low sugar concentrations that can be supplied and the presence of naturally occurring and process derived inhibitors. As the majority of the inhibitory materials are usually associated with the hemicellulose rich, water soluble component, this fraction was supplemented with glucose to simulate high solids, un-detoxified substrate to see if a high gravity/high cell consistency approach might better cope with inhibition. Several yeast strains were assessed, with the Tembec T1, T2 and Lallemand LYCC 6469 strains showing the greatest ethanol productivity and yield. The addition of supplemental glucose enabled the faster and quantitatively higher removal of hydroxymethylfurfural (HMF). High cell density could provide effective fermentation at high sugar concentrations while enhancing inhibitor reduction. A 77% ethanol yield could be achieved using strain LYCC 6469 after 48 h at high cell density. It was apparent that a high cell density approach improved ethanol production by all of the evaluated yeast strains. PMID:23410516

  13. Redox potential driven aeration during very-high-gravity ethanol fermentation by using flocculating yeast

    PubMed Central

    Liu, Chen-Guang; Hao, Xue-Mi; Lin, Yen-Han; Bai, Feng-Wu

    2016-01-01

    Ethanol fermentation requires oxygen to maintain high biomass and cell viability, especially under very-high-gravity (VHG) condition. In this work, fermentation redox potential (ORP) was applied to drive the aeration process at low dissolved oxygen (DO) levels, which is infeasible to be regulated by a DO sensor. The performance and characteristics of flocculating yeast grown under 300 and 260 g glucose/L conditions were subjected to various aeration strategies including: no aeration; controlled aeration at −150, −100 and −50 mV levels; and constant aeration at 0.05 and 0.2 vvm. The results showed that anaerobic fermentation produced the least ethanol and had the highest residual glucose after 72 h of fermentation. Controlled aerations, depending on the real-time oxygen demand, led to higher cell viability than the no-aeration counterpart. Constant aeration triggered a quick biomass formation, and fast glucose utilization. However, over aeration at 0.2 vvm caused a reduction of final ethanol concentration. The controlled aeration driven by ORP under VHG conditions resulted in the best fermentation performance. Moreover, the controlled aeration could enhance yeast flocculating activity, promote an increase of flocs size, and accelerate yeast separation near the end of fermentation. PMID:27161047

  14. Redox potential driven aeration during very-high-gravity ethanol fermentation by using flocculating yeast.

    PubMed

    Liu, Chen-Guang; Hao, Xue-Mi; Lin, Yen-Han; Bai, Feng-Wu

    2016-05-10

    Ethanol fermentation requires oxygen to maintain high biomass and cell viability, especially under very-high-gravity (VHG) condition. In this work, fermentation redox potential (ORP) was applied to drive the aeration process at low dissolved oxygen (DO) levels, which is infeasible to be regulated by a DO sensor. The performance and characteristics of flocculating yeast grown under 300 and 260 g glucose/L conditions were subjected to various aeration strategies including: no aeration; controlled aeration at -150, -100 and -50 mV levels; and constant aeration at 0.05 and 0.2 vvm. The results showed that anaerobic fermentation produced the least ethanol and had the highest residual glucose after 72 h of fermentation. Controlled aerations, depending on the real-time oxygen demand, led to higher cell viability than the no-aeration counterpart. Constant aeration triggered a quick biomass formation, and fast glucose utilization. However, over aeration at 0.2 vvm caused a reduction of final ethanol concentration. The controlled aeration driven by ORP under VHG conditions resulted in the best fermentation performance. Moreover, the controlled aeration could enhance yeast flocculating activity, promote an increase of flocs size, and accelerate yeast separation near the end of fermentation.

  15. Redox potential driven aeration during very-high-gravity ethanol fermentation by using flocculating yeast.

    PubMed

    Liu, Chen-Guang; Hao, Xue-Mi; Lin, Yen-Han; Bai, Feng-Wu

    2016-01-01

    Ethanol fermentation requires oxygen to maintain high biomass and cell viability, especially under very-high-gravity (VHG) condition. In this work, fermentation redox potential (ORP) was applied to drive the aeration process at low dissolved oxygen (DO) levels, which is infeasible to be regulated by a DO sensor. The performance and characteristics of flocculating yeast grown under 300 and 260 g glucose/L conditions were subjected to various aeration strategies including: no aeration; controlled aeration at -150, -100 and -50 mV levels; and constant aeration at 0.05 and 0.2 vvm. The results showed that anaerobic fermentation produced the least ethanol and had the highest residual glucose after 72 h of fermentation. Controlled aerations, depending on the real-time oxygen demand, led to higher cell viability than the no-aeration counterpart. Constant aeration triggered a quick biomass formation, and fast glucose utilization. However, over aeration at 0.2 vvm caused a reduction of final ethanol concentration. The controlled aeration driven by ORP under VHG conditions resulted in the best fermentation performance. Moreover, the controlled aeration could enhance yeast flocculating activity, promote an increase of flocs size, and accelerate yeast separation near the end of fermentation. PMID:27161047

  16. Atmospheric inertia-gravity waves retrieved from level-2 data of the satellite microwave limb sounder Aura/MLS

    NASA Astrophysics Data System (ADS)

    Hocke, Klemens; Lainer, Martin; Moreira, Lorena; Hagen, Jonas; Fernandez Vidal, Susana; Schranz, Franziska

    2016-09-01

    The temperature profiles of the satellite experiment Aura/MLS are horizontally spaced by 1.5° or 165 km along the satellite orbit. These level-2 data contain valuable information about horizontal fluctuations in temperature, which are mainly induced by inertia-gravity waves. Wave periods of 2-12 h, horizontal wavelengths of 200-1500 km, and vertical wavelengths of 6-30 km efficiently contribute to the standard deviation of the horizontal temperature fluctuations. The study retrieves and discusses the global distributions of inertia-gravity waves in the stratosphere and mesosphere during July 2015 and January 2016. We find many patterns that were previously present in data of TIMED/SABER, Aura/HIRDLS, and ECMWF analysis. However, it seems that Aura/MLS achieves a higher vertical resolution in the gravity wave maps since the maps are derived from the analysis of horizontal fluctuations along the orbit of the sounding volume. The zonal mean of the inertia-gravity wave distribution shows vertical modulations with scales of 10-20 km. Enhanced wave amplitudes occur in regions of increased zonal wind or in the vicinity of strong wind gradients. Further, we find a banana-like shape of enhanced inertia-gravity waves above the Andes in the winter mesosphere. We find areas of enhanced inertia-gravity wave activity above tropical deep convection zones at 100 hPa (z ˜ 13 km). Finally, we study the temporal evolution of inertia-gravity wave activity at 100 hPa in the African longitude sector from December 2015 to February 2016.

  17. Venus gravity

    NASA Technical Reports Server (NTRS)

    Reasenberg, Robert D.

    1993-01-01

    The anomalous gravity field of Venus shows high correlation with surface features revealed by radar. We extract gravity models from the Doppler tracking data from the Pioneer Venus Orbiter (PVO) by means of a two-step process. In the first step, we solve the nonlinear spacecraft state estimation problem using a Kalman filter-smoother. The Kalman filter was evaluated through simulations. This evaluation and some unusual features of the filter are discussed. In the second step, we perform a geophysical inversion using a linear Bayesian estimator. To allow an unbiased comparison between gravity and topography, we use a simulation technique to smooth and distort the radar topographic data so as to yield maps having the same characteristics as our gravity maps. The maps presented cover 2/3 of the surface of Venus and display the strong topography-gravity correlation previously reported. The topography-gravity scatter plots show two distinct trends.

  18. Responses of Electromyogram Activity in Adductor Longus Muscle of Rats to the Altered Gravity Levels

    NASA Astrophysics Data System (ADS)

    Ohira, Takashi; Wang, Xiao Dong; Terada, Masahiro; Kawano, Fuminori; Higo, Yoko; Nakai, Naoya; Ochiai, Toshimasa; Gyotoku, Jyunichirou; Nishimoto, Norihiro; Ogura, Akihiko; Ohira, Yoshinobu

    2008-06-01

    Responses of electromyogram (EMG) activities in the rostral and caudal regions of adductor longus (AL) muscle to altered gravity levels during parabolic flight of a jet airplane, as well as hindlimb suspension, were investigated in adult rats. Tonic EMGs in both regions were noted when the rats were exposed to hyper-G, as well as 1-G. The hip joints were adducted and the sedental quadrupedal position was maintained at these G levels. However, the EMG activities in these regions decreased and became phasic, when the hip joints were abducted and extended backward in μ-G environment. Such changes of joint angles caused passive shortening of sarcomeres only in the caudal region of AL. Atrophy and shift toward fast-twitch type were noted in fibers of the caudal region after 16-day unloading. Although fiber transformation was also induced in the rostral region, no atrophy was seen in fast-twitch fibers. The data may suggest that the atrophy and shift of phenotype caused by gravitational unloading in fibers of the caudal region may be related to the decrease in the neural and mechanical activities. Fiber type transformation toward fast-twitch type may be also related to the change of muscle activity from tonic to phasic patterns, which are the typical characteristics of fast-twitch muscle. However, the responses to unloading in fibers of rostral region were not related to the reduction of mechanical load.

  19. On the recovery of gravity anomalies from high precision altimeter data

    NASA Technical Reports Server (NTRS)

    Lelgemann, D.

    1976-01-01

    A model for the recovery of gravity anomalies from high precision altimeter data is derived which consists of small correction terms to the inverse Stokes' formula. The influence of unknown sea surface topography in the case of meandering currents such as the Gulf Stream is discussed. A formula was derived in order to estimate the accuracy of the gravity anomalies from the known accuracy of the altimeter data. It is shown that for the case of known harmonic coefficients of lower order the range of integration in Stokes inverse formula can be reduced very much.

  20. Gravity wave transmission diagram

    NASA Astrophysics Data System (ADS)

    Tomikawa, Yoshihiro

    2016-07-01

    A possibility of gravity wave propagation from a source region to the airglow layer around the mesopause has been discussed based on the gravity wave blocking diagram taking into account the critical level filtering alone. This paper proposes a new gravity wave transmission diagram in which both the critical level filtering and turning level reflection of gravity waves are considered. It shows a significantly different distribution of gravity wave transmissivity from the blocking diagram.

  1. Isolation and characterization of brewer's yeast variants with improved fermentation performance under high-gravity conditions.

    PubMed

    Blieck, Lies; Toye, Geert; Dumortier, Françoise; Verstrepen, Kevin J; Delvaux, Freddy R; Thevelein, Johan M; Van Dijck, Patrick

    2007-02-01

    To save energy, space, and time, today's breweries make use of high-gravity brewing in which concentrated medium (wort) is fermented, resulting in a product with higher ethanol content. After fermentation, the product is diluted to obtain beer with the desired alcohol content. While economically desirable, the use of wort with an even higher sugar concentration is limited by the inability of brewer's yeast (Saccharomyces pastorianus) to efficiently ferment such concentrated medium. Here, we describe a successful strategy to obtain yeast variants with significantly improved fermentation capacity under high-gravity conditions. We isolated better-performing variants of the industrial lager strain CMBS33 by subjecting a pool of UV-induced variants to consecutive rounds of fermentation in very-high-gravity wort (>22 degrees Plato). Two variants (GT336 and GT344) showing faster fermentation rates and/or more-complete attenuation as well as improved viability under high ethanol conditions were identified. The variants displayed the same advantages in a pilot-scale stirred fermenter under high-gravity conditions at 11 degrees C. Microarray analysis identified several genes whose altered expression may be responsible for the superior performance of the variants. The role of some of these candidate genes was confirmed by genetic transformation. Our study shows that proper selection conditions allow the isolation of variants of commercial brewer's yeast with superior fermentation characteristics. Moreover, it is the first study to identify genes that affect fermentation performance under high-gravity conditions. The results are of interest to the beer and bioethanol industries, where the use of more-concentrated medium is economically advantageous.

  2. Measured and predicted effects of gravity level on directional dendritic solidification of NH4Cl-H2O

    NASA Technical Reports Server (NTRS)

    Mccay, T. D.; Mccay, Mary H.

    1993-01-01

    Dendritic growth front rates during vertical directional solidification are predicted for gravity levels of 10 exp 0 g sub e (where e is earth gravity), 10 exp -1 g sub e, 10 exp -2 g sub e, 10 exp -3 g sub e, 10 exp -4 g sub e, and 10 exp -5 g sub e (microgravity) for the physical conditions used for a recent ammonium chloride-water solidification experiment on the International Microgravity Laboratory I (IMLI). The growth front rates at 10 exp 0 g sub e and 10 exp -5 g sub e are validated using ground based laboratory and IMLI experimental data. As the gravity decreases, the growth rates increase until they approach a maximum at approximately 10 exp -4 g sub e. The 10 exp -4 and 10 exp -5 levels are equivalent. Liquid concentration and volume fraction, temperature profiles and fluid flow velocities are also calculated. Kinetic energy calculations for each of the six gravity levels indicate that the threshold for fluid flow to affect the growth front rate is in the range of 10 exp -8 ergs.

  3. An Online Gravity Modeling Method Applied for High Precision Free-INS.

    PubMed

    Wang, Jing; Yang, Gongliu; Li, Jing; Zhou, Xiao

    2016-01-01

    For real-time solution of inertial navigation system (INS), the high-degree spherical harmonic gravity model (SHM) is not applicable because of its time and space complexity, in which traditional normal gravity model (NGM) has been the dominant technique for gravity compensation. In this paper, a two-dimensional second-order polynomial model is derived from SHM according to the approximate linear characteristic of regional disturbing potential. Firstly, deflections of vertical (DOVs) on dense grids are calculated with SHM in an external computer. And then, the polynomial coefficients are obtained using these DOVs. To achieve global navigation, the coefficients and applicable region of polynomial model are both updated synchronously in above computer. Compared with high-degree SHM, the polynomial model takes less storage and computational time at the expense of minor precision. Meanwhile, the model is more accurate than NGM. Finally, numerical test and INS experiment show that the proposed method outperforms traditional gravity models applied for high precision free-INS. PMID:27669261

  4. High-resolution global and local lunar gravity field models using GRAIL mission data

    NASA Astrophysics Data System (ADS)

    Goossens, S. J.; Lemoine, F. G.; Sabaka, T. J.; Nicholas, J. B.; Mazarico, E.; Rowlands, D. D.; Neumann, G. A.; Loomis, B.; Chinn, D. S.; Smith, D. E.; Zuber, M. T.

    2014-12-01

    The Gravity Recovery and Interior Laboratory (GRAIL) spacecraft were designed to map the structure of the Moon through high-precision global gravity mapping. The mission consisted of two spacecraft with Ka-band inter-satellite tracking complemented by tracking from Earth. The mission had two phases: (1) a primary mapping mission from March 1 until May 29, 2012 at an average altitude of 50 km; (2) an extended mission from August 30 until December 14, 2012, with an average altitude of 23 km before November 18, and between 11-20 km through December 14. Both the primary and the extended mission data have been processed into global models of the lunar gravity field at NASA/GSFC using the GEODYN software. Here we present our latest global model, an expansion in spherical harmonics of degree and order 1080. We discuss this new solution in terms of its power spectrum, its free-air and Bouguer anomalies, its associated error spectrum, and its correlations with topography-induced gravity. In addition to global models we also estimated local gravity adjustments in areas of particular interest such as Mare Orientale and the south pole area. We express gravity in terms of anomalies, and estimate them with respect to a global background model. We apply neighbor-smoothing in our estimation procedure. We present a local solution over the south pole area in a resolution of 1/6 by 1/6 of a degree, equivalent to degree and order 1080, and we compare this local solution to our global model.

  5. Holography as a highly efficient renormalization group flow. I. Rephrasing gravity

    NASA Astrophysics Data System (ADS)

    Behr, Nicolas; Kuperstein, Stanislav; Mukhopadhyay, Ayan

    2016-07-01

    We investigate how the holographic correspondence can be reformulated as a generalization of Wilsonian renormalization group (RG) flow in a strongly interacting large-N quantum field theory. We first define a highly efficient RG flow as one in which the Ward identities related to local conservation of energy, momentum and charges preserve the same form at each scale. To achieve this, it is necessary to redefine the background metric and external sources at each scale as functionals of the effective single-trace operators. These redefinitions also absorb the contributions of the multitrace operators to these effective Ward identities. Thus, the background metric and external sources become effectively dynamical, reproducing the dual classical gravity equations in one higher dimension. Here, we focus on reconstructing the pure gravity sector as a highly efficient RG flow of the energy-momentum tensor operator, leaving the explicit constructive field theory approach for generating such RG flows to the second part of the work. We show that special symmetries of the highly efficient RG flows carry information through which we can decode the gauge fixing of bulk diffeomorphisms in the corresponding gravity equations. We also show that the highly efficient RG flow which reproduces a given classical gravity theory in a given gauge is unique provided the endpoint can be transformed to a nonrelativistic fixed point with a finite number of parameters under a universal rescaling. The results obtained here are used in the second part of this work, where we do an explicit field-theoretic construction of the RG flow and obtain the dual classical gravity theory.

  6. Liquid Droplet Dynamics in Gravity Compensating High Magnetic Field

    NASA Technical Reports Server (NTRS)

    Bojarevics, V.; Easter, S.; Pericleous, K.

    2012-01-01

    Numerical models are used to investigate behavior of liquid droplets suspended in high DC magnetic fields of various configurations providing microgravity-like conditions. Using a DC field it is possible to create conditions with laminar viscosity and heat transfer to measure viscosity, surface tension, electrical and thermal conductivities, and heat capacity of a liquid sample. The oscillations in a high DC magnetic field are quite different for an electrically conducting droplet, like liquid silicon or metal. The droplet behavior in a high magnetic field is the subject of investigation in this paper. At the high values of magnetic field some oscillation modes are damped quickly, while others are modified with a considerable shift of the oscillating droplet frequencies and the damping constants from the non-magnetic case.

  7. Bathymetry of Patagonia glacier fjords and glacier ice thickness from high-resolution airborne gravity combined with other data

    NASA Astrophysics Data System (ADS)

    An, L.; Rignot, E.; Rivera, A.; Bunetta, M.

    2012-12-01

    The North and South Patagonia Ice fields are the largest ice masses outside Antarctica in the Southern Hemisphere. During the period 1995-2000, these glaciers lost ice at a rate equivalent to a sea level rise of 0.105 ± 0.001 mm/yr. In more recent years, the glaciers have been thinning more quickly than can be explained by warmer air temperatures and decreased precipitation. A possible cause is an increase in flow speed due to enhanced ablation of the submerged glacier fronts. To understand the dynamics of these glaciers and how they change with time, it is critical to have a detailed view of their ice thickness, the depth of the glacier bed below sea or lake level, how far inland these glaciers remain below sea or lake level, and whether bumps or hollows in the bed may slow down or accelerate their retreat. A grid of free-air gravity data over the Patagonia Glaciers was collected in May 2012 and October 2012, funded by the Gordon and Betty Moore Foundation (GBMF) to measure ice thickness and sea floor bathymetry. This survey combines the Sander Geophysics Limited (SGL) AIRGrav system, SGL laser altimetry and Chilean CECS/UCI ANDREA-2 radar. To obtain high-resolution and high-precision gravity data, the helicopter operates at 50 knots (25.7 m/s) with a grid spacing of 400m and collects gravity data at sub mGal level (1 Gal =1 Galileo = 1 cm/s2) near glacier fronts. We use data from the May 2012 survey to derive preliminarily high-resolution, high-precision thickness estimates and bathymetry maps of Jorge Montt Glacier and San Rafael Glacier. Boat bathymetry data is used to optimize the inversion of gravity over water and radar-derived thickness over glacier ice. The bathymetry maps will provide a breakthrough in our knowledge of the ice fields and enable a new era of glacier modeling and understanding that is not possible at present because ice thickness is not known.

  8. High level white noise generator

    DOEpatents

    Borkowski, Casimer J.; Blalock, Theron V.

    1979-01-01

    A wide band, stable, random noise source with a high and well-defined output power spectral density is provided which may be used for accurate calibration of Johnson Noise Power Thermometers (JNPT) and other applications requiring a stable, wide band, well-defined noise power spectral density. The noise source is based on the fact that the open-circuit thermal noise voltage of a feedback resistor, connecting the output to the input of a special inverting amplifier, is available at the amplifier output from an equivalent low output impedance caused by the feedback mechanism. The noise power spectral density level at the noise source output is equivalent to the density of the open-circuit thermal noise or a 100 ohm resistor at a temperature of approximately 64,000 Kelvins. The noise source has an output power spectral density that is flat to within 0.1% (0.0043 db) in the frequency range of from 1 KHz to 100 KHz which brackets typical passbands of the signal-processing channels of JNPT's. Two embodiments, one of higher accuracy that is suitable for use as a standards instrument and another that is particularly adapted for ambient temperature operation, are illustrated in this application.

  9. High Sensitivity Gravity Measurements in the Adverse Environment of Oil Wells

    NASA Astrophysics Data System (ADS)

    Pfutzner, Harold

    2014-03-01

    Bulk density is a primary measurement within oil and gas reservoirs and is the basis of most reserves calculations by oil companies. The measurement is performed with a gamma-ray source and two scintillation gamma-ray detectors from within newly drilled exploration and production wells. This nuclear density measurement, while very precise is also very shallow and is therefore susceptible to errors due to any alteration of the formation and fluids in the vicinity of the borehole caused by the drilling process. Measuring acceleration due to gravity along a well provides a direct measure of bulk density with a very large depth of investigation that makes it practically immune to errors from near-borehole effects. Advances in gravity sensors and associated mechanics and electronics provide an opportunity for routine borehole gravity measurements with comparable density precision to the nuclear density measurement and with sufficient ruggedness to survive the rough handling and high temperatures experienced in oil well logging. We will describe a borehole gravity meter and its use under very realistic conditions in an oil well in Saudi Arabia. The density measurements will be presented. Alberto Marsala (2), Paul Wanjau (1), Olivier Moyal (1), and Justin Mlcak (1); (1) Schlumberger, (2) Saudi Aramco.

  10. Exploration of Anomalous Gravity Effects by rf-Pumped Magnetized High-T(c) Superconducting Oxides

    NASA Technical Reports Server (NTRS)

    Robertson, Tony; Litchford, Ron; Peters, Randall; Thompson, Byran; Rodgers, Stephen L. (Technical Monitor)

    2001-01-01

    A number of anomalous gravitational effects have been reported in the scientific literature during recent years, but there has been no independent confirmation with regard to any of these claims. Therefore, the NASA Marshall Space Flight Center, in response to the propulsion challenges specified by NASA's Breakthrough Propulsion Physics (BPP) program, proposed to explore the possibility of observing anomalous gravitation behavior through the manipulation of Josephson junction effects in magnetized high-Tc superconducting oxides. The technical goal was to critically test this revolutionary physical claim and provide a rigorous, independent, empirical confirmation (or refutation) of anomalous effects related to the manipulation of gravity by radio frequency (rf)-pumped magnetized type-2 superconductors. Because the current empirical evidence for gravity modification is anecdotal, our objective was to design, construct, and meticulously implement a discriminating experiment, which would put these observations on a more firm footing within the scientific community. Our approach is unique in that we advocate the construction of an extremely sensitive torsion balance with which to measure gravity modification effects by rf-pumped type-2 superconductor test masses. This paper reviews the anecdotal evidence for anomalous gravity effects, describes the design and development of a simplified torsion balance experiment for empirically investigating these claims, and presents the results of preliminary experiments.

  11. Optimizing High Level Waste Disposal

    SciTech Connect

    Dirk Gombert

    2005-09-01

    If society is ever to reap the potential benefits of nuclear energy, technologists must close the fuel-cycle completely. A closed cycle equates to a continued supply of fuel and safe reactors, but also reliable and comprehensive closure of waste issues. High level waste (HLW) disposal in borosilicate glass (BSG) is based on 1970s era evaluations. This host matrix is very adaptable to sequestering a wide variety of radionuclides found in raffinates from spent fuel reprocessing. However, it is now known that the current system is far from optimal for disposal of the diverse HLW streams, and proven alternatives are available to reduce costs by billions of dollars. The basis for HLW disposal should be reassessed to consider extensive waste form and process technology research and development efforts, which have been conducted by the United States Department of Energy (USDOE), international agencies and the private sector. Matching the waste form to the waste chemistry and using currently available technology could increase the waste content in waste forms to 50% or more and double processing rates. Optimization of the HLW disposal system would accelerate HLW disposition and increase repository capacity. This does not necessarily require developing new waste forms, the emphasis should be on qualifying existing matrices to demonstrate protection equal to or better than the baseline glass performance. Also, this proposed effort does not necessarily require developing new technology concepts. The emphasis is on demonstrating existing technology that is clearly better (reliability, productivity, cost) than current technology, and justifying its use in future facilities or retrofitted facilities. Higher waste processing and disposal efficiency can be realized by performing the engineering analyses and trade-studies necessary to select the most efficient methods for processing the full spectrum of wastes across the nuclear complex. This paper will describe technologies being

  12. Influence of high gravity process conditions on the environmental impact of ethanol production from wheat straw.

    PubMed

    Janssen, Matty; Tillman, Anne-Marie; Cannella, David; Jørgensen, Henning

    2014-12-01

    Biofuel production processes at high gravity are currently under development. Most of these processes however use sugars or first generation feedstocks as substrate. This paper presents the results of a life cycle assessment (LCA) of the production of bio-ethanol at high gravity conditions from a second generation feedstock, namely, wheat straw. The LCA used lab results of a set of 36 process configurations in which dry matter content, enzyme preparation and loading, and process strategy were varied. The LCA results show that higher dry matter content leads to a higher environmental impact of the ethanol production, but this can be compensated by reducing the impact of enzyme production and use, and by polyethylene glycol addition at high dry matter content. The results also show that the renewable and non-renewable energy use resulting from the different process configurations ultimately determine their environmental impact. PMID:25299491

  13. Influence of high gravity process conditions on the environmental impact of ethanol production from wheat straw.

    PubMed

    Janssen, Matty; Tillman, Anne-Marie; Cannella, David; Jørgensen, Henning

    2014-12-01

    Biofuel production processes at high gravity are currently under development. Most of these processes however use sugars or first generation feedstocks as substrate. This paper presents the results of a life cycle assessment (LCA) of the production of bio-ethanol at high gravity conditions from a second generation feedstock, namely, wheat straw. The LCA used lab results of a set of 36 process configurations in which dry matter content, enzyme preparation and loading, and process strategy were varied. The LCA results show that higher dry matter content leads to a higher environmental impact of the ethanol production, but this can be compensated by reducing the impact of enzyme production and use, and by polyethylene glycol addition at high dry matter content. The results also show that the renewable and non-renewable energy use resulting from the different process configurations ultimately determine their environmental impact.

  14. Gravity investigations

    SciTech Connect

    Healey, D.L.

    1983-12-31

    A large density contrast exists between the Paleozoic rocks (including the rocks of Climax stock) and less dense, Tertiary volcanic rocks and alluvium. This density contrast ranges widely, and herein for interpretive purposes, is assumed to average 0.85 Mg/m{sup 3} (megagrams per cubic meter). The large density contrast makes the gravity method a useful tool with which to study the interface between these rock types. However, little or no density contrast is discernible between the sedimentary Paleozoic rocks that surround the Climax stock and the intrusive rocks of the stock itself. Therefore the gravity method can not be used to define the configuration of the stock. Gravity highs coincide with outcrops of the dense Paleozoic rocks, and gravity lows overlie less-dense Tertiary volcanic rocks and Quaternary alluvium. The positions of three major faults (Boundary, Yucca, and Butte faults) are defined by steep gravity gradients. West of the Climax stock, the Tippinip fault has juxtaposed Paleozoic rocks of similar density, and consequently, has no expression in the gravity data in that area. The gravity station spacing, across Oak Spring Butte, is not sufficient to adequately define any gravity expression of the Tippinip fault. 18 refs., 5 figs.

  15. Glacier mass balance in high-arctic areas with anomalous gravity

    NASA Astrophysics Data System (ADS)

    Sharov, A.; Rieser, D.; Nikolskiy, D.

    2012-04-01

    All known glaciological models describing the evolution of Arctic land- and sea-ice masses in changing climate treat the Earth's gravity as horizontally constant, but it isn't. In the High Arctic, the strength of the gravitational field varies considerably across even short distances under the influence of a density gradient, and the magnitude of free air gravity anomalies attains 100 mGal and more. On long-term base, instantaneous deviations of gravity can have a noticeable effect on the regime and mass budget of glaciological objects. At best, the gravity-induced component of ice mass variations can be determined on topographically smooth, open and steady surfaces, like those of arctic planes, regular ice caps and landfast sea ice. The present research is devoted to studying gravity-driven impacts on glacier mass balance in the outer periphery of four Eurasian shelf seas with a very cold, dry climate and rather episodic character of winter precipitation. As main study objects we had chosen a dozen Russia's northernmost insular ice caps, tens to hundreds of square kilometres in extent, situated in a close vicinity of strong gravity anomalies and surrounded with extensive fields of fast and/or drift ice for most of the year. The supposition about gravitational forcing on glacioclimatic settings in the study region is based on the results of quantitative comparison and joint interpretation of existing glacier change maps and available data on the Arctic gravity field and solid precipitation. The overall mapping of medium-term (from decadal to half-centennial) changes in glacier volumes and quantification of mass balance characteristics in the study region was performed by comparing reference elevation models of study glaciers derived from Russian topographic maps 1:200,000 (CI = 20 or 40 m) representing the glacier state as in the 1950s-1980s with modern elevation data obtained from satellite radar interferometry and lidar altimetry. Free-air gravity anomalies were

  16. [Very high gravity ethanol fermentation with cassava flour and sugarcane juice].

    PubMed

    Shen, Naikun; Zhang, Hongyan; Wang, Qingyan; Qin, Yan; Liao, Siming; Wang, Chenghua; Huang, Ribo

    2010-09-01

    We optimized the conditions of mixed fermentation of very high gravity ethanol with cassava flour and sugarcane juice. Based on the single factor experiment, we screened the important parameters for very high gravity ethanol fermentation with cassava flour and sugarcane juice by the Plackeet-burman design. Then, we obtained the optimum values of the important parameters by the orthogonal experiments: the mixing ratio of cassava flour to sugarcane juice, 1:5; initial pH of fermentation, 4.0-4.5; the concentrations of urea and MgSO4, 0.25% and 0.04% (W/W), respectively. Finally, we used a gradient temperature control strategy with the optimized conditions, and ethanol concentration of 17.84% (V/V) and fermentation efficiency of 91.82% were achieved, correspondingly.

  17. High temperature liquid level sensor

    DOEpatents

    Tokarz, Richard D.

    1983-01-01

    A length of metal sheathed metal oxide cable is perforated to permit liquid access to the insulation about a pair of conductors spaced close to one another. Changes in resistance across the conductors will be a function of liquid level, since the wetted insulation will have greater electrical conductivity than that of the dry insulation above the liquid elevation.

  18. A laboratory model of post-Newtonian gravity with high power lasers and 4th generation light sources

    NASA Astrophysics Data System (ADS)

    Gregori, G.; Levy, M. C.; Wadud, M. A.; Crowley, B. J. B.; Bingham, R.

    2016-04-01

    Using the post-Newtonian formalism of gravity, we attempt to calculate the x-ray Thomson scattering cross section of electrons that are accelerated in the field of a high intensity optical laser. We show that our results are consistent with previous calculations, suggesting that the combination of high power laser and 4th generation light sources may become a powerful platform to test models exploring high order corrections to the Newtonian gravity.

  19. Microstructural variations induced by gravity level during directional solidification of near-eutectic iron-carbon type alloys

    NASA Technical Reports Server (NTRS)

    Stefanescu, Doru M.; Fiske, Michael R.; Curreri, Peter A.

    1986-01-01

    The effects of gravity on the microstructure of directionally solidified near-eutectic cast irons are studied, using a Bridgman-type automatic directional solidification furnace aboard a NASA KC-135 aircraft which flies parabolic arcs and generates alternating periods of low-g (0.01 to 0.001 g, 30 seconds long) and high-g (1.8 g, 1.5 minutes long). Results show a refinement of the interlamellar spacing of the eutectic during low-g processing of metastable Fe-C eutectic alloys. Low-g processing of stable Fe-C-Si eutectic alloys (lamellar or spheroidal graphic) results in a coarsening of the eutectic grain structure. Secondary dendrite arm spacing of austenite increases in low-g and decreases in high-g. The effectiveness of low-gravity in the removal of buoyancy-driven graphite phase segregation is demonstrated.

  20. Manifestations of the rotation and gravity of the Earth in high-energy physics experiments

    NASA Astrophysics Data System (ADS)

    Obukhov, Yuri N.; Silenko, Alexander J.; Teryaev, Oleg V.

    2016-08-01

    The inertial (due to rotation) and gravitational fields of the Earth affect the motion of an elementary particle and its spin dynamics. This influence is not negligible and should be taken into account in high-energy physics experiments. Earth's influence is manifest in perturbations in the particle motion, in an additional precession of the spin, and in a change of the constitutive tensor of the Maxwell electrodynamics. Bigger corrections are oscillatory, and their contributions average to zero. Other corrections due to the inhomogeneity of the inertial field are not oscillatory but they are very small and may be important only for the storage ring electric dipole moment experiments. Earth's gravity causes the Newton-like force, the reaction force provided by a focusing system, and additional torques acting on the spin. However, there are no observable indications of the electromagnetic effects due to Earth's gravity.

  1. High-resolution airborne gravity imaging over James Ross Island (West Antarctica)

    USGS Publications Warehouse

    Jordan, T.A.; Ferraccioli, F.; Jones, P.C.; Smellie, J.L.; Ghidella, M.; Corr, H. F. J.; Zakrajsek, A.F.

    2007-01-01

    James Ross Island (JRI) exposes a Miocene-Recent alkaline basaltic volcanic complex that developed in a back-arc, east of the northern Antarctic Peninsula. JRI has been the focus of several geological studies because it provides a window on Neogene magmatic processes and paleoenvironments. However, little is known about its internal structure. New airborne gravity data were collected as part of the first high-resolution aerogeophysical survey flown over the island and reveal a prominent negative Bouguer gravity anomaly over Mt Haddington. This is intriguing as basaltic volcanoes are typically associated with positive Bouguer anomalies, linked to underlying mafic intrusions. The negative Bouguer anomaly may be associated with a hitherto unrecognised low-density sub-surface body, such as a breccia-filled caldera, or a partially molten magma chamber.

  2. High resolution lunar mascon three dimensional density structure revealed by GRAIL gravity

    NASA Astrophysics Data System (ADS)

    Jianguo, Yan; Yi, Zhang

    2016-07-01

    In the history of the moon exploration, the most amazing achievement is that some mass concentrated areas were found on the near side of the moon1, 2. These mass concentrated areas, which are referred to mascons, are usually covered with a positive gravity anomaly peak, and surrounded by negative gravity anomalies with low geographical elevation1-7. Here we proposed a gravity inverse method including geological constraint to obtain density structure of the lunar mascons. The method was implemented in spherical coordinates and validated with simulation test. Using this method we obtained high resolution density anomaly structure of lunar near side maria mascons basins and far side highland mascons. The high resolution depth information and density anomalies structure of the lunar mascons are presented for the first time. By comparing the near side maria mascons with far side mascons, we found all the mascons have an annulus density structures in their shallow stratums; the mascon depth information also indicates that the mascon depth on lunar far side is much deeper than that on the near side. These results indicate various origination mechanism between nearside and farside mascons.

  3. High-resolution simulations of downslope gravity currents in the acceleration phase

    NASA Astrophysics Data System (ADS)

    Dai, Albert

    2015-07-01

    Gravity currents generated from an instantaneous buoyancy source propagating down a slope in the range of 0∘ ≤ θ < 90∘ have been investigated in the acceleration phase by means of high-resolution two-dimensional simulations of the incompressible Navier-Stokes equations with the Boussinesq approximation. Front velocity history shows that, after the heavy fluid is released from rest, the flow goes through the acceleration phase, reaching a maximum front velocity Uf,max, and followed by the deceleration phase. The existence of a maximum of Uf,max is found near θ = 40∘, which is supported by the improved theory. It is identified for the first time that the time of acceleration decreases as the slope angle increases, when the slope angle is approximately greater than 10∘, and the time of acceleration increases as the slope angle increases for gravity currents on lower slope angles. A fundamental difference in flow patterns, which helps explain the distinct characteristics of gravity currents on high and low slope angles using scaling arguments, is revealed. Energy budgets further show that, as the slope angle increases, the ambient fluid is more easily engaged in the gravitational convection and the potential energy loss is more efficiently converted into the kinetic energy associated with ambient fluid. The propagation of gravity currents on a slope is found to be qualitatively modified as the depth ratio, i.e., the lock height to channel height ratio, approaches unity. As the depth ratio increases, the conversion of potential energy loss into the kinetic energy associated with heavy fluid is inhibited and the conversion into the kinetic energy associated with ambient fluid is enhanced by the confinement of the top wall.

  4. High-Level Data Races

    NASA Technical Reports Server (NTRS)

    Artho, Cyrille; Havelund, Klaus; Biere, Armin; Koga, Dennis (Technical Monitor)

    2003-01-01

    Data races are a common problem in concurrent and multi-threaded programming. They are hard to detect without proper tool support. Despite the successful application of these tools, experience shows that the notion of data race is not powerful enough to capture certain types of inconsistencies occurring in practice. In this paper we investigate data races on a higher abstraction layer. This enables us to detect inconsistent uses of shared variables, even if no classical race condition occurs. For example, a data structure representing a coordinate pair may have to be treated atomically. By lifting the meaning of a data race to a higher level, such problems can now be covered. The paper defines the concepts view and view consistency to give a notation for this novel kind of property. It describes what kinds of errors can be detected with this new definition, and where its limitations are. It also gives a formal guideline for using data structures in a multi-threading environment.

  5. Revealing the beneficial effect of protease supplementation to high gravity beer fermentations using "-omics" techniques

    PubMed Central

    2011-01-01

    Background Addition of sugar syrups to the basic wort is a popular technique to achieve higher gravity in beer fermentations, but it results in dilution of the free amino nitrogen (FAN) content in the medium. The multicomponent protease enzyme Flavourzyme has beneficial effect on the brewer's yeast fermentation performance during high gravity fermentations as it increases the initial FAN value and results in higher FAN uptake, higher specific growth rate, higher ethanol yield and improved flavour profile. Results In the present study, transcriptome and metabolome analysis were used to elucidate the effect on the addition of the multicomponent protease enzyme Flavourzyme and its influence on the metabolism of the brewer's yeast strain Weihenstephan 34/70. The study underlines the importance of sufficient nitrogen availability during the course of beer fermentation. The applied metabolome and transcriptome analysis allowed mapping the effect of the wort sugar composition on the nitrogen uptake. Conclusion Both the transcriptome and the metabolome analysis revealed that there is a significantly higher impact of protease addition for maltose syrup supplemented fermentations, while addition of glucose syrup to increase the gravity in the wort resulted in increased glucose repression that lead to inhibition of amino acid uptake and hereby inhibited the effect of the protease addition. PMID:21513553

  6. High-order discontinuous Galerkin methods for coupled thermoconvective flows under gravity modulation

    NASA Astrophysics Data System (ADS)

    Papanicolaou, N. C.; Aristotelous, A. C.

    2015-10-01

    In this work, we develop a High-Order Symmetric Interior Penalty (SIP) Discontinuous Galerkin (DG) Finite Element Method (FEM) to investigate convective flows in a rectangular cavity subject to both vertical and horizontal temperature gradients. The whole cavity is subject to gravity modulation (g-jitter), simulating a microgravity environment. The sensitivity of the bifurcation problem makes the use of a high-order accurate and efficient technique essential. Our method is validated by solving the plane-parallel flow problem and the results were found to be in good agreement with published results. The numerical method was designed to be easily extendable to even more complex flows.

  7. Probing low-scale quantum gravity with high-energy neutrinos

    SciTech Connect

    Ennadifi, Salah Eddine

    2013-05-15

    Motivated by the quantum structure of space-time at high scales M{sub QG}, we study the propagation behavior of the high-energy neutrino within the quantum gravity effect. We consider the possible induced dispersive effect and derive the resulting vacuum refraction index {eta}{sub vac}(E{sub {nu}}) Asymptotically-Equal-To 1 + E{sub {nu}}{sup 2}/M{sub QG}{sup 2}. Then, by referring to the SN1987A and basing on the recorded neutrino data we approach the corresponding scale M{sub QG} Asymptotically-Equal-To 10{sup 4} GeV.

  8. Viscosity Measurement of Highly Viscous Liquids Using Drop Coalescence in Low Gravity

    NASA Technical Reports Server (NTRS)

    Antar, Basil N.; Ethridge, Edwin; Maxwell, Daniel

    1999-01-01

    The method of drop coalescence is being investigated for use as a method for determining the viscosity of highly viscous undercooled liquids. Low gravity environment is necessary in this case to minimize the undesirable effects of body forces and liquid motion in levitated drops. Also, the low gravity environment will allow for investigating large liquid volumes which can lead to much higher accuracy for the viscosity calculations than possible under 1 - g conditions. The drop coalescence method is preferred over the drop oscillation technique since the latter method can only be applied for liquids with vanishingly small viscosities. The technique developed relies on both the highly accurate solution of the Navier-Stokes equations as well as on data from experiments conducted in near zero gravity environment. In the analytical aspect of the method two liquid volumes are brought into contact which will coalesce under the action of surface tension alone. The free surface geometry development as well as its velocity during coalescence which are obtained from numerical computations are compared with an analogous experimental model. The viscosity in the numerical computations is then adjusted to bring into agreement of the experimental results with the calculations. The true liquid viscosity is the one which brings the experiment closest to the calculations. Results are presented for method validation experiments performed recently on board the NASA/KC-135 aircraft. The numerical solution for this validation case was produced using the Boundary Element Method. In these tests the viscosity of a highly viscous liquid, in this case glycerine at room temperature, was determined to high degree of accuracy using the liquid coalescence method. These experiments gave very encouraging results which will be discussed together with plans for implementing the method in a shuttle flight experiment.

  9. Geophysical Investigation of Australian-Antarctic Ridge Using High-Resolution Gravity and Bathymetry

    NASA Astrophysics Data System (ADS)

    Kim, S. S.; Lin, J.; Park, S. H.; Choi, H.

    2015-12-01

    Much of the Australian-Antarctic Ridge (AAR) has been remained uncharted until 2011 because of its remoteness and harsh weather conditions. From 2011, the multidisciplinary ridge program initiated by the Korea Polar Research Institute (KOPRI) surveyed the little-explored eastern ends of the AAR to characterize the tectonics, geochemistry, and hydrothermal activity of this intermediate spreading system. In this study, we present a detailed analysis of a 300-km-long supersegment of the AAR to quantify the spatial variations in ridge morphology and axial and off-axis volcanisms as constrained by high-resolution shipboard bathymetry and gravity. The ridge axis morphology alternates between rift valleys and axial highs within relatively short ridge segments. To obtain a geological proxy for regional variations in magma supply, we calculated residual mantle Bouguer gravity anomalies (RMBA), gravity-derived crustal thickness, and residual topography for neighboring seven sub-segments. The results of the analyses revealed that the southern flank of the AAR is associated with shallower seafloor, more negative RMBA, thicker crust, and/or less dense mantle in comparison to the conjugate northern flank. Furthermore, this north-south asymmetry becomes more prominent toward the KR1 supersegment of the AAR. The axial topography of the KR1 supersegment exhibits a sharp transition from axial highs at the western end to rift valleys at the eastern end, with regions of axial highs being associated with more robust magma supply as indicated by more negative RMBA. We also compare and contrast the characteristics of the AAR supersegment with that of other ridges of intermediate spreading rates, including the Juan de Fuca Ridge, Galápagos Spreading Center, and Southeast Indian Ridge west of the Australian-Antarctic Discordance, to investigate the influence of ridge-hotspot interaction on ridge magma supply and tectonics.

  10. High-resolution Gravity Field Models of the Moon Using GRAIL mission Data

    NASA Astrophysics Data System (ADS)

    Lemoine, Frank G.; Goossens, Sander; Sabaka, Terrence J.; Nicholas, Joseph B.; Mazarico, Erwan; Rowlands, David D.; Loomis, Bryant D.; Chinn, Douglas S.; Neumann, Gregory A.; Smith, David E.; Zuber, Maria T.

    2015-04-01

    The Gravity Recovery and Interior Laboratory (GRAIL) mission was designed to map the structure of the lunar interior from crust to core and to advance the understanding of the Moon's thermal evolution by producing a high-quality, high-resolution map of the gravitational field of the Moon. GRAIL consisted of two spacecraft, with Ka-band tracking between the two satellites as the single science instrument, with the addition of Earth-based tracking using the Deep Space Network. The science mission was divided into two phases: a primary mission from March 1, 2012 to May 29, 2012, and an extended mission from August 30, 2012 to December 14, 2012. The altitude varied from 3 km to 94 km above the lunar surface during both mission phases. Both the primary and the extended mission data have been processed into global models of the lunar gravity field at NASA/GSFC using the GEODYN software up to 1080 x 1080 in spherical harmonics. In addition to the high-resolution global models, local models have also been developed. Due to varying spacecraft altitude and ground track spacing, the actual resolution of the global models varies geographically. Information beyond the current resolution is still present in the data, as indicated by relatively higher fits in the last part of the extended mission, where the satellites achieved their lowest altitude above lunar surface. Local models of the lunar gravitational field at high resolution were thus estimated to accommodate this signal. Here, we present the current status of GRAIL gravity modeling at NASA/GSFC, for both global and local models. We discuss the methods we used for the processing of the GRAIL data, and evaluate these solutions with respect to the derived power spectra, Bouguer anomalies, and fits with independent data (such as from the low-altitude phase of the Lunar Prospector mission). We also evaluate the prospects for extending the resolution of our current models

  11. Pseudonephritis is associated with high urinary osmolality and high specific gravity in adolescent soccer players.

    PubMed

    Van Biervliet, Stephanie; Van Biervliet, Jean Pierre; Watteyne, Karel; Langlois, Michel; Bernard, Dirk; Vande Walle, Johan

    2013-08-01

    The study aimed to evaluate the effect of exercise on urine sediment in adolescent soccer players. In 25 15-year-old (range 14.4-15.8 yrs) athletes, urinary protein, osmolality and cytology were analyzed by flow cytometry and automated dipstick analysis before (T(0)), during (T(1)), and after a match (T(2)). All athletes had normal urine analysis and blood pressure at rest, tested before the start of the soccer season. Fifty-eight samples were collected (T(0): 20, T(1): 17, T(2): 21). Proteinuria was present in 20 of 38 samples collected after exercise. Proteinuria was associated with increased urinary osmolality (p < .001) and specific gravity (p < .001). Hyaline and granular casts were present in respectively 8 of 38 and 8 of 38 of the urinary samples after exercise. The presence of casts was associated with urine protein concentration, osmolality, and specific gravity. This was also the case for hematuria (25 of 38) and leucocyturia (9 of 38). Squamous epithelial cells were excreted in equal amounts to white and red blood cells. A notable proportion of adolescent athletes developed sediment abnormalities, which were associated with urinary osmolality and specific gravity.

  12. A simulation for gravity fine structure recovery from high-low GRAVSAT SST data

    NASA Technical Reports Server (NTRS)

    Estes, R. H.; Lancaster, E. R.

    1976-01-01

    Covariance error analysis techniques were applied to investigate estimation strategies for the high-low SST mission for accurate local recovery of gravitational fine structure, considering the aliasing effects of unsolved for parameters. Surface density blocks of 5 deg x 5 deg and 2 1/2 deg x 2 1/2 deg resolution were utilized to represent the high order geopotential with the drag-free GRAVSAT configured in a nearly circular polar orbit at 250 km. altitude. GEOPAUSE and geosynchronous satellites were considered as high relay spacecraft. It is demonstrated that knowledge of gravitational fine structure can be significantly improved at 5 deg x 5 deg resolution using SST data from a high-low configuration with reasonably accurate orbits for the low GRAVSAT. The gravity fine structure recoverability of the high-low SST mission is compared with the low-low configuration and shown to be superior.

  13. Observation and modeling of mesospheric Na density and OH airglow perturbations by a gravity wave approaching a critical level

    NASA Astrophysics Data System (ADS)

    Snively, Jonathan; Pautet, Pierre-Dominique; Taylor, Michael; Swenson, Gary; Liu, Alan

    2010-05-01

    Atmospheric gravity waves at a broad range of temporal and spatial scales are frequently observed in MLT airglow imaging experiments. Airglow data provide significant insight into gravity wave propagation, directionality, and seasonality, and allow estimations of wave fluxes [e.g., Swenson et al., JGR, 104(D6), 1999]. The USU CEDAR Mesospheric Temperature Mapper (MTM) is a specialized CCD airglow imaging system, which was operated at Maui MALT from November 2001 to December 2006. The MTM captures OH(6,2) and O2(0,1) emissions intensities and associated rotational temperatures. The MTM is able to reveal two-dimensional structure of intensity and temperature perturbations associated with small-scale gravity waves, and has been used to assess zenith temperatures, showing close agreement with simultaneous lidar temperature data [Zhao et al., J. Geophys. Res., 110, D09S07, 2005]. Here we investigate the vertical and horizontal structure of a small-scale gravity wave (~18 minute period and ~37 km horizontal wavelength) captured by the Maui MTM on April 11, 2002. The event was strongly visible in the OH(6,2) image data, showing intensity perturbations ~ 5-10 %, however relatively weak in the O2 data. Lidar temperatures and winds suggest the presence of a critical level shortly above ~90 km, which would have contributed to increased dissipation, and reduced detectability, due to small vertical scale. With imaged intensity and rotational temperature data, along with evolving Na lidar profile data, we reconstruct and simulate the wave event under realistic ambient conditions using a suite of numerical models. Hydroxyl photochemistry and dynamics of O3, H, O, and Na densities are obtained with a two-dimensional nonlinear numerical model for gravity wave dynamics [Snively and Pasko, JGR, 113, A06303, 2008], allowing direct comparison of OH(6,2) intensity and brightness-weighted temperature perturbations [e.g., Makhlouf et al., JGR, 100(D6), 11289, 1995]. The strong sheared

  14. Adjusting the Ion Permeability of Polyelectrolyte Multilayers through Layer-by-Layer Assembly under a High Gravity Field.

    PubMed

    Jiang, Chao; Luo, Caijun; Liu, Xiaolin; Shao, Lei; Dong, Youqing; Zhang, Yingwei; Shi, Feng

    2015-05-27

    The layer-by-layer (LbL) assembled multilayer has been widely used as good barrier film or capsule due to the advantages of its flexible tailoring of film permeability and compactness. Although many specific systems have been proposed for film design, developing a versatile strategy to control film compactness remains a challenge. We introduced the simple mechanical energy of a high gravity field to the LbL assembly process to tailor the multilayer permeability through adjusting film compactness. By taking poly(diallyldimethylammonium chloride) (PDDA) and poly{1-4[4-(3-carboxy-4-hydroxyphenylazo)benzenesulfonamido]-1,2-ethanediyl sodium salt} (PAzo) as a model system, we investigated the LbL assembly process under a high gravity field. The results showed that the high gravity field introduced effectively accelerated the multilayer deposition process by 20-fold compared with conventional dipping assembly; the adsorption rate was positively dependent on the rotating speed of the high gravity equipment and the concentration of the building block solutions. More interestingly, the film compactness of the PDDA/PAzo multilayer prepared under the high gravity field increased remarkably with the growing rotational speed of the high gravity equipment, as demonstrated through comparisons of surface morphology, cyclic voltammetry curves, and photoisomerization kinetics of PDDA/PAzo multilayers fabricated through the conventional dipping method and through LbL assembly under a high gravity field, respectively. In this way, we have introduced a simple and versatile external form of mechanical energy into the LbL assembling process to improve film compactness, which should be useful for further applications in controlled ion permeability, anticorrosion, and drug loading.

  15. The use of high-resolution terrain data in gravity field prediction

    NASA Technical Reports Server (NTRS)

    Groten, E.; Becker, M.; Euler, H.-J.; Hausch, W.; Kling, TH.

    1989-01-01

    Different types of gravity prediction methods for local and regional gravity evaluation are developed, tested, and compared. Four different test areas were particularly selected in view of different prediction requirements. Also different parts of the spectrum of the gravity field were considered.

  16. High-resolution Local Gravity Model of the South Pole of the Moon from GRAIL Extended Mission Data

    NASA Technical Reports Server (NTRS)

    Goossens, Sander Johannes; Sabaka, Terence J.; Nicholas, Joseph B.; Lemoine, Frank G.; Rowlands, David D.; Mazarico, Erwan; Neumann, Gregory A.; Smith, David E.; Zuber, Maria T.

    2014-01-01

    We estimated a high-resolution local gravity field model over the south pole of the Moon using data from the Gravity Recovery and Interior Laboratory's extended mission. Our solution consists of adjustments with respect to a global model expressed in spherical harmonics. The adjustments are expressed as gridded gravity anomalies with a resolution of 1/6deg by 1/6deg (equivalent to that of a degree and order 1080 model in spherical harmonics), covering a cap over the south pole with a radius of 40deg. The gravity anomalies have been estimated from a short-arc analysis using only Ka-band range-rate (KBRR) data over the area of interest. We apply a neighbor-smoothing constraint to our solution. Our local model removes striping present in the global model; it reduces the misfit to the KBRR data and improves correlations with topography to higher degrees than current global models.

  17. Regional high-resolution spatiotemporal gravity modeling from GRACE data using spherical wavelets

    NASA Astrophysics Data System (ADS)

    Schmidt, M.; Han, S.-C.; Kusche, J.; Sanchez, L.; Shum, C. K.

    2006-04-01

    We determine a regional spatiotemporal gravity field over northern South America including the Amazon region using GRACE inter-satellite range-rate measurements by application of a wavelet-based multiresolution technique. A major advantage of this method is that we are able to represent the Amazon hydrological signals in form of time series of detail signals with level-dependent temporal resolution: the coarser structures generally require only ten days, whereas the medium and finer details are computable from one month of data. To this end, we employ the basic property of multiresolution representations, which is to split a signal into detail signals, each related to a specific resolution level and computable from data covering a specific part of the spectrum. Our results, which for the first time fully exploit the spatial and temporal resolutions of GRACE data in modeling Amazon hydrological fluxes, are in good agreement with hydrological models and GPS-derived height variations.

  18. Goose Bay radar observations of earth-reflected atmospheric gravity waves in the high-latitude ionosphere

    SciTech Connect

    Ruohoniemi, J.M.; Greenwald, R.A.; Baker, K.B.; Samson, J.C.

    1990-05-03

    An HF backscatter radar at Goose Bay, Labrador made it possible to observe irregularities in the distribution of ionospheric ionization at E and F region altitudes (100 - 600 km) in the high-latitude (65 - 85 deg Lambda) ionosphere. Recently it has been established that the passage of atmospheric gravity waves perturbs the ionosphere in ways that are readily detected in returns that reflect off the ionospheric layers. The particular strength of the technique lies in the nearly instantaneous measurement of gravity wave effects over large areas ( 1 million sq. km). With this information the propagation of gravity waves can be accurately modelled. Generally gravity waves are observed during daylight hours propagating away from the auroral electrojets. The propagation mode involves penetration of wave energy through the lower atmosphere and subsequent reflection by the earth's surface. The frequencies associated with the waves lie in the 0.4 - 0.6 mHz range and the wavelengths vary from 300 to 500 km. The excitation sources appear to lie in the vicinity of the high-latitude electrojets. In this paper we outline the analysis of gravity wave effects on HF propagation and present an example of a modelled gravity wave event.

  19. Assessment of Gravity Field and Steady State Ocean Circulation Explorer (GOCE) geoid model using GPS levelling over Sabah and Sarawak

    NASA Astrophysics Data System (ADS)

    Othman, A. H.; Omar, K. M.; Din, A. H. M.; Som, Z. A. M.; Yahaya, N. A. Z.; Pa'suya, M. F.

    2016-06-01

    The GOCE satellite mission has significantly contributed to various applications such as solid earth physics, oceanography and geodesy. Some substantial applications of geodesy are to improve the gravity field knowledge and the precise geoid modelling towards realising global height unification. This paper aims to evaluate GOCE geoid model based on the recent GOCE Global Geopotential Model (GGM), as well as EGM2008, using GPS levelling data over East Malaysia, i.e. Sabah and Sarawak. The satellite GGMs selected in this study are the GOCE GGM models which include GOCE04S, TIM_R5 and SPW_R4, and the EGM2008 model. To assess these models, the geoid heights from these GGMs are compared to the local geometric geoid height. The GGM geoid heights was derived using EGMLAB1 software and the geometric geoid height was computed by available GPS levelling information obtained from the Department Survey and Mapping Malaysia. Generally, the GOCE models performed better than EGM2008 over East Malaysia and the best fit GOCE model for this region is the TIM_R5 model. The TIM_R5 GOCE model demonstrated the lowest R.M.S. of ± 16.5 cm over Sarawak, comparatively. For further improvement, this model should be combined with the local gravity data for optimum geoid modelling over East Malaysia.

  20. Dynamic equilibrium under vibrations of H2 liquid-vapor interface at various gravity levels

    NASA Astrophysics Data System (ADS)

    Gandikota, G.; Chatain, D.; Lyubimova, T.; Beysens, D.

    2014-06-01

    Horizontal vibration applied to the support of a simple pendulum can deviate from the equilibrium position of the pendulum to a nonvertical position. A similar phenomenon is expected when a liquid-vapor interface is subjected to strong horizontal vibration. Beyond a threshold value of vibrational velocity the interface should attain an equilibrium position at an angle to the initial horizontal position. In the present paper experimental investigation of this phenomenon is carried out in a magnetic levitation device to study the effect of the vibration parameters, gravity acceleration, and the liquid-vapor density on the interface position. The results compare well with the theoretical expression derived by Wolf [G. H. Wolf, Z. Phys. B 227, 291 (1969), 10.1007/BF01397662].

  1. Dynamic equilibrium under vibrations of H₂ liquid-vapor interface at various gravity levels.

    PubMed

    Gandikota, G; Chatain, D; Lyubimova, T; Beysens, D

    2014-06-01

    Horizontal vibration applied to the support of a simple pendulum can deviate from the equilibrium position of the pendulum to a nonvertical position. A similar phenomenon is expected when a liquid-vapor interface is subjected to strong horizontal vibration. Beyond a threshold value of vibrational velocity the interface should attain an equilibrium position at an angle to the initial horizontal position. In the present paper experimental investigation of this phenomenon is carried out in a magnetic levitation device to study the effect of the vibration parameters, gravity acceleration, and the liquid-vapor density on the interface position. The results compare well with the theoretical expression derived by Wolf [G. H. Wolf, Z. Phys. B 227, 291 (1969)].

  2. Dynamic equilibrium under vibrations of H₂ liquid-vapor interface at various gravity levels.

    PubMed

    Gandikota, G; Chatain, D; Lyubimova, T; Beysens, D

    2014-06-01

    Horizontal vibration applied to the support of a simple pendulum can deviate from the equilibrium position of the pendulum to a nonvertical position. A similar phenomenon is expected when a liquid-vapor interface is subjected to strong horizontal vibration. Beyond a threshold value of vibrational velocity the interface should attain an equilibrium position at an angle to the initial horizontal position. In the present paper experimental investigation of this phenomenon is carried out in a magnetic levitation device to study the effect of the vibration parameters, gravity acceleration, and the liquid-vapor density on the interface position. The results compare well with the theoretical expression derived by Wolf [G. H. Wolf, Z. Phys. B 227, 291 (1969)]. PMID:25019875

  3. A Robust, Gravity-Insensitive, High-Temperature Condenser for Water Recovery

    NASA Technical Reports Server (NTRS)

    Chen, Weibo; Conboy, Thomas; Ewert, Michael

    2016-01-01

    Regenerative life support systems are vital for NASA's future long-duration human space exploration missions. A Heat Melt Compactor (HMC) system is being developed by NASA to dry and compress trash generated during space missions. The resulting water vapor is recovered and separated from the process gas flow by a gravity-insensitive condenser. Creare is developing a high-temperature condenser for this application. The entire condenser is constructed from metals that have excellent resistance to chemical attack from contaminants and is suitable for high-temperature operation. The metal construction and design configuration also offer greatest flexibility for potential coating and regeneration processes to reduce biofilm growth and thus enhancing the reliability of the condenser. The proposed condenser builds on the gravity-insensitive phase separator technology Creare developed for aircraft and spacecraft applications. This paper will first discuss the design requirements for the condenser in an HMC system that will be demonstrated on the International Space Station (ISS). Then, it will present the overall design of the condenser and the preliminary thermal test results of a subscale condenser. Finally, this paper will discuss the predicted performance of the full-size condenser and the development plan to mature the technology and enhance its long-term reliability for a flight system.

  4. Ethanol Production from Extruded Thermoplastic Maize Meal by High Gravity Fermentation with Zymomonas mobilis.

    PubMed

    Peralta-Contreras, Mayeli; Aguilar-Zamarripa, Edna; Pérez-Carrillo, Esther; Escamilla-García, Erandi; Serna-Saldívar, Sergio Othon

    2014-01-01

    A comparative study of extruded and ground maize meals as raw materials for the production of regular (12°P) and high gravity (20°P) worts was devised. Extruded water solubility index (WSI) was higher (9.8 percentage units) and crude fat was lower (2.64 percentage units) compared to ground maize. Free-amino nitrogen compounds (FAN), pH, and glucose were evaluated in regular and high gravity worts produced from ground or extruded maize. Extrusion improved glucose content and ethanol yield. In 20°P mashes, extrusion is enhanced by 2.14% initial glucose compared with regular ground mashes. The 12°P and 20°P extruded treatments averaged 12.2% and 8.4% higher ethanol, respectively, compared to the uncooked counterpart. The 20°P worts fermented with Zymomonas mobilis produced 9.56% more ethanol than the 12°P counterpart. The results show that the combination of extrusion and fermentation of 20°P worts improved ethanol yield per kg flour until 20.93%. This pretreatment stimulates Z. mobilis fermentation efficiency. PMID:25530885

  5. Ethanol Production from Extruded Thermoplastic Maize Meal by High Gravity Fermentation with Zymomonas mobilis

    PubMed Central

    Peralta-Contreras, Mayeli; Aguilar-Zamarripa, Edna; Pérez-Carrillo, Esther; Escamilla-García, Erandi; Serna-Saldívar, Sergio Othon

    2014-01-01

    A comparative study of extruded and ground maize meals as raw materials for the production of regular (12°P) and high gravity (20°P) worts was devised. Extruded water solubility index (WSI) was higher (9.8 percentage units) and crude fat was lower (2.64 percentage units) compared to ground maize. Free-amino nitrogen compounds (FAN), pH, and glucose were evaluated in regular and high gravity worts produced from ground or extruded maize. Extrusion improved glucose content and ethanol yield. In 20°P mashes, extrusion is enhanced by 2.14% initial glucose compared with regular ground mashes. The 12°P and 20°P extruded treatments averaged 12.2% and 8.4% higher ethanol, respectively, compared to the uncooked counterpart. The 20°P worts fermented with Zymomonas mobilis produced 9.56% more ethanol than the 12°P counterpart. The results show that the combination of extrusion and fermentation of 20°P worts improved ethanol yield per kg flour until 20.93%. This pretreatment stimulates Z. mobilis fermentation efficiency. PMID:25530885

  6. High Throughput Fluorescent Screening of Membrane Potential under Variable Gravity Conditions

    NASA Astrophysics Data System (ADS)

    Kohn, F. P. M.

    2013-02-01

    In bilayer and patch-clamp experiments it was shown that the electrophysiological parameters of neuronal cells, as there are ion channel activity, intracellular ion concentrations and membrane potential, respond to gravity changes. Due to technical limitations (e.g. time-consuming manual operations) of electrophysiological techniques the amount of acquired data is limited. Optical techniques as fluorescence and fluorometric measurements can also be used to investigate electrophysiological properties of cells as sensitive fluorescent probes for these properties have been developed. On ground various high-throughput fluorometric systems are commercially available. Such a high throughput system would significantly increase the possible data yield and facilitate a lot of future experiments in micro- and hypergravity research. Therefore a FlexStation® 1 from Molecular Devices, a high-throughput multiwell reader, was adapted to parabolic flight conditions. In a first series of experiments the membrane potential of neuronal cells was investigated to verify the system.

  7. Physics of Artificial Gravity

    NASA Technical Reports Server (NTRS)

    Bukley, Angie; Paloski, William; Clement, Gilles

    2006-01-01

    This chapter discusses potential technologies for achieving artificial gravity in a space vehicle. We begin with a series of definitions and a general description of the rotational dynamics behind the forces ultimately exerted on the human body during centrifugation, such as gravity level, gravity gradient, and Coriolis force. Human factors considerations and comfort limits associated with a rotating environment are then discussed. Finally, engineering options for designing space vehicles with artificial gravity are presented.

  8. Effects of Varying Gravity Levels on fNIRS Headgear Performance and Signal Recovery

    NASA Technical Reports Server (NTRS)

    Mackey, Jeffrey R.; Harrivel, Angela R.; Adamovsky, Grigory; Lewandowski, Beth E.; Gotti, Daniel J.; Tin, Padetha; Floyd, Bertram M.

    2013-01-01

    This paper reviews the effects of varying gravitational levels on functional Near-Infrared Spectroscopy (fNIRS) headgear. The fNIRS systems quantify neural activations in the cortex by measuring hemoglobin concentration changes via optical intensity. Such activation measurement allows for the detection of cognitive state, which can be important for emotional stability, human performance and vigilance optimization, and the detection of hazardous operator state. The technique depends on coupling between the fNIRS probe and users skin. Such coupling may be highly susceptible to motion if probe-containing headgear designs are not adequately tested. The lack of reliable and self-applicable headgear robust to the influence of motion artifact currently inhibits its operational use in aerospace environments. Both NASAs Aviation Safety and Human Research Programs are interested in this technology as a method of monitoring cognitive state of pilots and crew.

  9. Application of the spherical harmonic gravity model in high precision inertial navigation systems

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Yang, Gongliu; Li, Xiangyun; Zhou, Xiao

    2016-09-01

    The spherical harmonic gravity model (SHM) may, in general, be considered as a suitable alternative to the normal gravity model (NGM), because it represents the Earth’s gravitational field more accurately. However, the high-resolution SHM has never been used in current inertial navigation systems (INSs) due to its extremely complex expression. In this paper, the feasibility and accuracy of a truncated SHM are discussed for application in a real-time free-INS with a precision demand better than 0.8 nm h‑1. In particular, the time and space complexity are analyzed mathematically to verify the feasibility of the SHM. Also, a test on a typical navigation computer shows a storable range of cut-off degrees. To further evaluate the appropriate degree and accuracy of the truncated SHM, analyses of covariance and truncation error are proposed. Finally, a SHM of degree 12 is demonstrated to be the appropriate model for routine INSs in the precision range of 0.4–0.75 nm h‑1. Flight simulations and road tests show its outstanding performance over the traditional NGM.

  10. Application of the spherical harmonic gravity model in high precision inertial navigation systems

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Yang, Gongliu; Li, Xiangyun; Zhou, Xiao

    2016-09-01

    The spherical harmonic gravity model (SHM) may, in general, be considered as a suitable alternative to the normal gravity model (NGM), because it represents the Earth’s gravitational field more accurately. However, the high-resolution SHM has never been used in current inertial navigation systems (INSs) due to its extremely complex expression. In this paper, the feasibility and accuracy of a truncated SHM are discussed for application in a real-time free-INS with a precision demand better than 0.8 nm h-1. In particular, the time and space complexity are analyzed mathematically to verify the feasibility of the SHM. Also, a test on a typical navigation computer shows a storable range of cut-off degrees. To further evaluate the appropriate degree and accuracy of the truncated SHM, analyses of covariance and truncation error are proposed. Finally, a SHM of degree 12 is demonstrated to be the appropriate model for routine INSs in the precision range of 0.4-0.75 nm h-1. Flight simulations and road tests show its outstanding performance over the traditional NGM.

  11. Local gravity disturbance estimation from multiple-high-single-low satellite-to-satellite tracking

    NASA Technical Reports Server (NTRS)

    Jekeli, Christopher

    1989-01-01

    The idea of satellite-to-satellite tracking in the high-low mode has received renewed attention in light of the uncertain future of NASA's proposed low-low mission, Geopotential Research Mission (GRM). The principal disadvantage with a high-low system is the increased time interval required to obtain global coverage since the intersatellite visibility is often obscured by Earth. The U.S. Air Force has begun to investigate high-low satellite-to-satellite tracking between the Global Positioning System (GPS) of satellites (high component) and NASA's Space Transportation System (STS), the shuttle (low component). Because the GPS satellites form, or will form, a constellation enabling continuous three-dimensional tracking of a low-altitude orbiter, there will be no data gaps due to lack of intervisibility. Furthermore, all three components of the gravitation vector are estimable at altitude, a given grid of which gives a stronger estimate of gravity on Earth's surface than a similar grid of line-of-sight gravitation components. The proposed Air Force mission is STAGE (Shuttle-GPS Tracking for Anomalous Gravitation Estimation) and is designed for local gravity field determinations since the shuttle will likely not achieve polar orbits. The motivation for STAGE was the feasibility to obtain reasonable accuracies with absolutely minimal cost. Instead of simulating drag-free orbits, STAGE uses direct measurements of the nongravitational forces obtained by an inertial package onboard the shuttle. The sort of accuracies that would be achievable from STAGE vis-a-vis other satellite tracking missions such as GRM and European Space Agency's POPSAT-GRM are analyzed.

  12. Cineradiographic Analysis of Mouse Postural Response to Alteration of Gravity and Jerk (Gravity Deceleration Rate)

    PubMed Central

    Hasegawa, Katsuya; de Campos, Priscila S.; Zeredo, Jorge L.; Kumei, Yasuhiro

    2014-01-01

    The ability to maintain the body relative to the external environment is important for adaptation to altered gravity. However, the physiological limits for adaptation or the disruption of body orientation are not known. In this study, we analyzed postural changes in mice upon exposure to various low gravities. Male C57BL6/J mice (n = 6) were exposed to various gravity-deceleration conditions by customized parabolic flight-maneuvers targeting the partial-gravity levels of 0.60, 0.30, 0.15 and μ g (<0.001 g). Video recordings of postural responses were analyzed frame-by-frame by high-definition cineradiography and with exact instantaneous values of gravity and jerk. As a result, the coordinated extension of the neck, spine and hindlimbs was observed during the initial phase of gravity deceleration. Joint angles widened to 120%–200% of the reference g level, and the magnitude of the thoracic-curvature stretching was correlated with gravity and jerk, i.e., the gravity deceleration rate. A certain range of jerk facilitated mouse skeletal stretching efficiently, and a jerk of −0.3~−0.4 j (g/s) induced the maximum extension of the thoracic-curvature. The postural response of animals to low gravity may undergo differential regulation by gravity and jerk. PMID:25370191

  13. GOCE long-wavelength gravity field recovery from high-low satellite-to-satellite-tracking using the acceleration approach

    NASA Astrophysics Data System (ADS)

    Reubelt, T.; Baur, O.; Weigelt, M.; Roth, M.; Sneeuw, N.

    2012-04-01

    The restricted sensitivity of the GOCE (Gravity field and steady-state Ocean Circulation Explorer) gradiometer instrument requires satellite gravity gradiometry to be supplemented by orbit analysis in order to resolve long-wavelength features of the geopotential. In this context, the energy conservation method gained particular interest to exploit GPS-based satellite-to-satellite tracking (SST) information. This method has been adopted within official ESA products. On the other hand, various investigations showed the energy conservation principle to be a sub-optimal choice. For this reason, we propose to estimate the low-frequency part of the gravity field by the acceleration approach, which proved to be an efficient and accurate tool in high-low-SST data analysis of former satellite data. This approach balances the gravitational vector with satellite accelerations by means of Newton's law of motion, and hence is characterized by (second-order) numerical differentiation of the kinematic orbit. However, the application of this method to GOCE-SST data, given with a 1s-sampling, showed that serious problems arise due to strong noise amplification of high frequency noise. In order to mitigate this problem, tailored processing strategies with regard to low-pass filtering, variance-covariance information handling, and robust parameter estimation have been adopted. By comparison of our GIWF (Geodetic Institute (GI), Space Research Institute (Institut für Weltraumforschung, IWF)) solutions and the official GOCE models with a state-of-the-art gravity field solution derived from GRACE (Gravity Recovery And Climate Experiment), we conclude that the acceleration approach is better suited for GOCE-only gravity field determination as opposed to the energy conservation method. Comparisons with solutions from other algorithms, e.g. the variational approach, show that the acceleration approach is able to estimate gravity fields of similar quality.

  14. Impact of Low-Level Southerly Surges on Mixed Rossby Gravity Waves over the Central Pacific.

    NASA Astrophysics Data System (ADS)

    Fukutomi, Y.

    2014-12-01

    This study examines dynamical impacts of lower-tropospheric southerly wind surges originating in midlatitudes of the Southern Hemisphere (SH) on the development of mixed Rossby gravity (MRG) waves over the central Pacific during June-August 1979-2012, through the statistical analysis of the JRA-55 products and NOAA outgoing long wave radiation data. The central Pacific MRG waves are identified by an extended EOF (EEOF) analysis on 2-8-day filtered daily 850-hPa meridional wind anomalies during June-August 1979-2012. Composite analysis based on the leading EEOF time coefficients is able to capture the development of the MRG waves associated with a southerly surge originating in the SH extratropics. As a weak clockwise gyre as a part of an off-equatorial easterly wavetrain moves eastward and southeastward from the off-equatorial eastern Pacific into the equatorial central Pacific, the southerly surge penetrates into the equatorial tropics at around 150W. Then, the clockwise gyre develops into a MRG-type gyre over the central Pacific. A transition from an easterly wave-type gyre into a MRG-type gyre occurs associated with the southerly surge. The southerly surge forms a cross-equatorial flow on the western flank of the MRG-type gyre. The gyre is amplified when the southerly surge reaches the equatorial tropics. At the same time, convection coupled with the MRG-type gyre is enhanced. The southerly surges are originated in the midlatitude South Pacific, and they are induced by synoptic-scale baroclinic disturbances propagating along the SH midlatitude westerly jet. An eddy vorticity budget analysis indicates that the southerly surge plays an important role in spinning up the MRG-type gyre through transient advection of absolute vorticiy. A case study of a MRG-wave event in mid-July 2006 also illustrates development of a MRG wave associated with the southerly surge and an easterly wave-to-MRG wave transition.

  15. Gravity, Time, and Lagrangians

    ERIC Educational Resources Information Center

    Huggins, Elisha

    2010-01-01

    Feynman mentioned to us that he understood a topic in physics if he could explain it to a college freshman, a high school student, or a dinner guest. Here we will discuss two topics that took us a while to get to that level. One is the relationship between gravity and time. The other is the minus sign that appears in the Lagrangian. (Why would one…

  16. High-resolution combined global gravity field modelling: Solving large kite systems using distributed computational algorithms

    NASA Astrophysics Data System (ADS)

    Zingerle, Philipp; Fecher, Thomas; Pail, Roland; Gruber, Thomas

    2016-04-01

    One of the major obstacles in modern global gravity field modelling is the seamless combination of lower degree inhomogeneous gravity field observations (e.g. data from satellite missions) with (very) high degree homogeneous information (e.g. gridded and reduced gravity anomalies, beyond d/o 1000). Actual approaches mostly combine such data only on the basis of the coefficients, meaning that previously for both observation classes (resp. models) a spherical harmonic analysis is done independently, solving dense normal equations (NEQ) for the inhomogeneous model and block-diagonal NEQs for the homogeneous. Obviously those methods are unable to identify or eliminate effects as spectral leakage due to band limitations of the models and non-orthogonality of the spherical harmonic base functions. To antagonize such problems a combination of both models on NEQ-basis is desirable. Theoretically this can be achieved using NEQ-stacking. Because of the higher maximum degree of the homogeneous model a reordering of the coefficient is needed which leads inevitably to the destruction of the block diagonal structure of the appropriate NEQ-matrix and therefore also to the destruction of simple sparsity. Hence, a special coefficient ordering is needed to create some new favorable sparsity pattern leading to a later efficient computational solving method. Such pattern can be found in the so called kite-structure (Bosch, 1993), achieving when applying the kite-ordering to the stacked NEQ-matrix. In a first step it is shown what is needed to attain the kite-(NEQ)system, how to solve it efficiently and also how to calculate the appropriate variance information from it. Further, because of the massive computational workload when operating on large kite-systems (theoretically possible up to about max. d/o 100.000), the main emphasis is put on to the presentation of special distributed algorithms which may solve those systems parallel on an indeterminate number of processes and are

  17. Simultaneous dewatering and reconstitution in a high-gravity solid-bowl centrifuge

    SciTech Connect

    Wen, W.W.; Gray, M.L.; Killmeyer, R.P.; Finseth, D.H.

    1994-12-31

    The Pittsburgh Energy Technology Center has developed a dewatering and reconstitution process in which bitumen emulsion is added to a fine clean coal slurry ahead of the dewatering device. The process simultaneously improves dewatering efficiency and reduces dustiness of the fine coal product during subsequent handling. This paper describes the test results from dewatering and reconstitution of fine coal in a 500 lb. per hour continuous bench scale high-gravity solid-bowl centrifuge in PETC`s Coal Preparation Process Research Facility. Test results will be evaluated in terms of type and dosage of emulsion, product moisture and strength, and product handling and dust reduction efficiency. A preliminary cost analysis will also be included.

  18. High Energy Astrophysics Tests of Lorentz Invariance and Quantum Gravity Models

    NASA Technical Reports Server (NTRS)

    Stecker, Floyd W.

    2011-01-01

    High-energy astrophysics observations provide the best possibilities to detect a very small violation of Lorentz invariance such as may be related to the structure of space-time near the Planck scale of approximately 10-35 m. I will discuss here the possible signatures of Lorentz invariance violation (LIV) from observations of the spectra, polarization, and timing of gamma-rays from active galactic nuclei and gamma-ray bursts. Other sensitive tests are provided by observations ofthe spectra of ultrahigh energy cosmic rays and neutrinos. Using the latest data from the Pierre Auger Observatory one can already derive an upper limit of 4.5 x 10(exp -23) to the amount of LIV at a proton Lorentz factor of -2 x 10(exp 11). This result has fundamental implications for quantum gravity models. I will also discuss the possibilities of using more sensitive space based detection techniques to improve searches for LIV in the future.

  19. High-resolution local gravity model of the south pole of the Moon from GRAIL extended mission data

    PubMed Central

    Goossens, Sander; Sabaka, Terence J; Nicholas, Joseph B; Lemoine, Frank G; Rowlands, David D; Mazarico, Erwan; Neumann, Gregory A; Smith, David E; Zuber, Maria T

    2014-01-01

    We estimated a high-resolution local gravity field model over the south pole of the Moon using data from the Gravity Recovery and Interior Laboratory's extended mission. Our solution consists of adjustments with respect to a global model expressed in spherical harmonics. The adjustments are expressed as gridded gravity anomalies with a resolution of 1/6° by 1/6° (equivalent to that of a degree and order 1080 model in spherical harmonics), covering a cap over the south pole with a radius of 40°. The gravity anomalies have been estimated from a short-arc analysis using only Ka-band range-rate (KBRR) data over the area of interest. We apply a neighbor-smoothing constraint to our solution. Our local model removes striping present in the global model; it reduces the misfit to the KBRR data and improves correlations with topography to higher degrees than current global models. Key Points We present a high-resolution gravity model of the south pole of the Moon Improved correlations with topography to higher degrees than global models Improved fits to the data and reduced striping that is present in global models PMID:26074637

  20. Terrestrial Gravity Fluctuations

    NASA Astrophysics Data System (ADS)

    Harms, Jan

    2015-12-01

    Different forms of fluctuations of the terrestrial gravity field are observed by gravity experiments. For example, atmospheric pressure fluctuations generate a gravity-noise foreground in measurements with super-conducting gravimeters. Gravity changes caused by high-magnitude earthquakes have been detected with the satellite gravity experiment GRACE, and we expect high-frequency terrestrial gravity fluctuations produced by ambient seismic fields to limit the sensitivity of ground-based gravitational-wave (GW) detectors. Accordingly, terrestrial gravity fluctuations are considered noise and signal depending on the experiment. Here, we will focus on ground-based gravimetry. This field is rapidly progressing through the development of GW detectors. The technology is pushed to its current limits in the advanced generation of the LIGO and Virgo detectors, targeting gravity strain sensitivities better than 10‑23 Hz‑1/2 above a few tens of a Hz. Alternative designs for GW detectors evolving from traditional gravity gradiometers such as torsion bars, atom interferometers, and superconducting gradiometers are currently being developed to extend the detection band to frequencies below 1 Hz. The goal of this article is to provide the analytical framework to describe terrestrial gravity perturbations in these experiments. Models of terrestrial gravity perturbations related to seismic fields, atmospheric disturbances, and vibrating, rotating or moving objects, are derived and analyzed. The models are then used to evaluate passive and active gravity noise mitigation strategies in GW detectors, or alternatively, to describe their potential use in geophysics. The article reviews the current state of the field, and also presents new analyses especially with respect to the impact of seismic scattering on gravity perturbations, active gravity noise cancellation, and time-domain models of gravity perturbations from atmospheric and seismic point sources. Our understanding of

  1. Propagation and Breaking at High Altitudes of Gravity Waves Excited by Tropospheric Forcing

    NASA Technical Reports Server (NTRS)

    Prusa, Joseph M.; Smolarkiewicz, Piotr K.; Garcia, Rolando R.

    1996-01-01

    An anelastic approximation is used with a time-variable coordinate transformation to formulate a two-dimensional numerical model that describes the evolution of gravity waves. The model is solved using a semi-Lagrangian method with monotone (nonoscillatory) interpolation of all advected fields. The time-variable transformation is used to generate disturbances at the lower boundary that approximate the effect of a traveling line of thunderstorms (a squall line) or of flow over a broad topographic obstacle. The vertical propagation and breaking of the gravity wave field (under conditions typical of summer solstice) is illustrated for each of these cases. It is shown that the wave field at high altitudes is dominated by a single horizontal wavelength; which is not always related simply to the horizontal dimension of the source. The morphology of wave breaking depends on the horizontal wavelength; for sufficiently short waves, breaking involves roughly one half of the wavelength. In common with other studies, it is found that the breaking waves undergo "self-acceleration," such that the zonal-mean intrinsic frequency remains approximately constant in spite of large changes in the background wind. It is also shown that many of the features obtained in the calculations can be understood in terms of linear wave theory. In particular, linear theory provides insights into the wavelength of the waves that break at high altitudes, the onset and evolution of breaking. the horizontal extent of the breaking region and its position relative to the forcing, and the minimum and maximum altitudes where breaking occurs. Wave breaking ceases at the altitude where the background dissipation rate (which in our model is a proxy for molecular diffusion) becomes greater than the rate of dissipation due to wave breaking, This altitude, in effect, the model turbopause, is shown to depend on a relatively small number of parameters that characterize the waves and the background state.

  2. Parallel Processing at the High School Level.

    ERIC Educational Resources Information Center

    Sheary, Kathryn Anne

    This study investigated the ability of high school students to cognitively understand and implement parallel processing. Data indicates that most parallel processing is being taught at the university level. Instructional modules on C, Linux, and the parallel processing language, P4, were designed to show that high school students are highly…

  3. The effects of shrinkage flow and gravity level on the onset of convection during vertical directional dendritic solidification of NH4Cl-H2O

    NASA Technical Reports Server (NTRS)

    Hopkins, J. A.; Mccay, T. D.; Mccay, M. H.

    1993-01-01

    A numerical investigation of the conditions influencing the onset of convection during Bridgman vertical directional solidification of NH4Cl- 72 wt percent H2O has been made using a linear stability model. The effects of shrinkage flow and gravity level on the transition from diffusion-dominated to convection-dominated solidification are shown to be significant. Both shrinkage flow opposite the direction of growth and increased gravity levels tend to decrease the stability limits defining the onset of convection for the solidifying NH4Cl-H2O system.

  4. Very high gravity ethanol and fatty acid production of Zymomonas mobilis without amino acid and vitamin.

    PubMed

    Wang, Haoyong; Cao, Shangzhi; Wang, William Tianshuo; Wang, Kaven Tianyv; Jia, Xianhui

    2016-06-01

    Very high gravity (VHG) fermentation is the mainstream technology in ethanol industry, which requires the strains be resistant to multiple stresses such as high glucose concentration, high ethanol concentration, high temperature and harsh acidic conditions. To our knowledge, it was not reported previously that any ethanol-producing microbe showed a high performance in VHG fermentations without amino acid and vitamin. Here we demonstrate the engineering of a xylose utilizing recombinant Zymomonas mobilis for VHG ethanol fermentations. The recombinant strain can produce ethanol up to 136 g/L without amino acid and vitamin with a theoretical yield of 90 %, which is significantly superior to that produced by all the reported ethanol-producing strains. The intracellular fatty acids of the bacterial were about 16 % of the bacterial dry biomass, with the ratio of ethanol:fatty acids was about 273:1 (g/g). The recombinant strain was achieved by a multivariate-modular strategy tackles with the multiple stresses which are closely linked to the ethanol productivity of Z. mobilis. The over-expression of metB/yfdZ operon enabled the growth of the recombinant Z. mobilis in a chemically defined medium without amino acid and vitamin; and the fatty acids overproduction significantly increased ethanol tolerance and ethanol production. The coupled production of ethanol with fatty acids of the Z. mobilis without amino acid and vitamin under VHG fermentation conditions may permit a significant reduction of the production cost of ethanol and microbial fatty acids.

  5. High-Level Application Framework for LCLS

    SciTech Connect

    Chu, P; Chevtsov, S.; Fairley, D.; Larrieu, C.; Rock, J.; Rogind, D.; White, G.; Zalazny, M.; /SLAC

    2008-04-22

    A framework for high level accelerator application software is being developed for the Linac Coherent Light Source (LCLS). The framework is based on plug-in technology developed by an open source project, Eclipse. Many existing functionalities provided by Eclipse are available to high-level applications written within this framework. The framework also contains static data storage configuration and dynamic data connectivity. Because the framework is Eclipse-based, it is highly compatible with any other Eclipse plug-ins. The entire infrastructure of the software framework will be presented. Planned applications and plug-ins based on the framework are also presented.

  6. Aeromagnetic study of the midcontinent gravity high of central United States

    USGS Publications Warehouse

    King, Elizabeth R.; Zietz, Isidore

    1971-01-01

    A composite map of detailed aeromagnetic surveys over the midcontinent gravity high provides coverage of the 600-mi-long buried belt of mafic rocks of the Keweenawan Series from their outcrop localities in Minnesota and Wisconsin through Iowa and Nebraska. A map of the subsurface extent of the mafic rocks, based on the intricate magnetic patterns, shows that the rocks form a long, semicontinuous block, averaging 40 mi wide and consisting mainly of a sequence of layered flows. This sequence is probably fault-bounded and has been tilted up along the margins, where the linearity of the anomalies indicates steeper dips. The associated clastic rocks, indicated by a smoother magnetic pattern, occur in basins along both sides of the mafic belt and in grabens and a series of axial basins on the upper surface of the block. The well-defined outliers of flows marginal to the main block and the truncation of some of the outermost flow units along a diagonal boundary striking at an angle to them suggest that the present boundaries of the block are postdepositional structural features. The basins and the edges of the block appear to have controlled later, largely vertical movement in the overlying Paleozoic and younger sedimentary cover. Calculated models based on coincident magnetic and detailed gravity profiles along typical cross sections of the midcontinent gravity high show that the block of mafic rocks is steep-sided and as much as several miles thick. The free-air gravity anomaly, which consists of a large positive maximum flanked by minima, averages very close to zero, indicating that this major crustal feature is regionally compensated, although locally each of its components shows a large departure from equilibrium. Remanent magnetization is a primary factor in the interpretation of the magnetic data. Magnetic property studies of Keweenawan mafic rocks in the Lake Superior region show that remanent magnetization may be five times the magnetization induced by the

  7. Aeromagrnetic study of the midcontinent gravity high of central United States

    USGS Publications Warehouse

    King, Elizabeth R.; Zietz, Isidore

    1971-01-01

    A composite map of detailed aeromagnetic surveys over the midcontinent gravity high provides coverage of the 600-mi-long buried belt of mafic rocks of the Keweenawan Series from their outcrop localities in Minnesota and Wisconsin through Iowa and Nebraska. A map of the subsurface extent of the mafic rocks, based on the intricate magnetic patterns, shows that the rocks form a long, semicontinuous block, averaging 40 mi wide and consisting mainly of a sequence of layered flows. This sequence is probably fault-bounded and has been tilted up along the margins, where the linearity of the anomalies indicates steeper dips. The associated clastic rocks, indicated by a smoother magnetic pattern, occur in basins along both sides of the mafic belt and in grabens and a series of axial basins on the upper surface of the block. The well-defined outliers of flows marginal to the main block and the truncation of some of the outermost flow units along a diagonal boundary striking at an angle to them suggest that the present boundaries of the block are postdepositional structural features. The basins and the edges of the block appear to have controlled later, largely vertical movement in the overlying Paleozoic and younger sedimentary cover. Calculated models based on coincident magnetic and detailed gravity profiles along typical cross sections of the midcontinent gravity high show that the block of mafic rocks is steep-sided and as much as several miles thick. The free-air gravity anomaly, which consists of a large positive maximum flanked by minima, averages very close to zero, indicating that this major crustal feature is regionally compensated, although locally each of its components shows a large departure from equilibrium. Remanent magnetization is a primary factor in the interpretation of the magnetic data. Magnetic property studies of Keweenawan mafic rocks in the Lake Superior region show that remanent magnetization may be five times the magnetization induced by the

  8. Highly compact neutron stars in scalar-tensor theories of gravity: Spontaneous scalarization versus gravitational collapse

    NASA Astrophysics Data System (ADS)

    Mendes, Raissa F. P.; Ortiz, Néstor

    2016-06-01

    Scalar-tensor theories of gravity are extensions of general relativity (GR) including an extra, nonminimally coupled scalar degree of freedom. A wide class of these theories, albeit indistinguishable from GR in the weak field regime, predicts a radically different phenomenology for neutron stars, due to a nonperturbative, strong-field effect referred to as spontaneous scalarization. This effect is known to occur in theories where the effective linear coupling β0 between the scalar and matter fields is sufficiently negative, i.e. β0≲-4.35 , and has been strongly constrained by pulsar timing observations. In the test-field approximation, spontaneous scalarization manifests itself as a tachyonic-like instability. Recently, it was argued that, in theories where β0>0 , a similar instability would be triggered by sufficiently compact neutron stars obeying realistic equations of state. In this work we investigate the end state of this instability for some representative coupling functions with β0>0 . This is done both through an energy balance analysis of the existing equilibrium configurations, and by numerically determining the nonlinear Cauchy development of unstable initial data. We find that, contrary to the β0<0 case, the final state of the instability is highly sensitive to the details of the coupling function, varying from gravitational collapse to spontaneous scalarization. In particular, we show, for the first time, that spontaneous scalarization can happen in theories with β0>0 , which could give rise to novel astrophysical tests of the theory of gravity.

  9. The long-term consequences of the exposure to increasing gravity levels on the muscular, vestibular and cognitive functions in adult mice.

    PubMed

    Bojados, Mickael; Jamon, Marc

    2014-05-01

    Adult male mice C57Bl6/J were exposed to gravity levels between 1G and 4G during three weeks, and the long-term consequences on muscular, vestibular, emotional, and cognitive abilities were evaluated at the functional level to test the hypothesis of a continuum in the response to the increasing gravitational force. In agreement with the hypothesis, the growth of body mass slowed down in relation with the gravity level during the centrifugation, and weight recovery was inversely proportional. On the other hand, the long-term consequences on muscular, vestibular, emotional, and cognitive abilities did not fit the hypothesis of a continuum in the response to the gravity level. The hypergravity acted as endurance training on muscle force until 3G, then became deleterious at 4G. The vestibular reactions were not affected until 4G. Persistent emotional reactions appeared at 3G, and particularly 4G. The mice centrifuged at 3G and 4G showed an impaired spatial learning, probably in relation with the increased level of anxiety, but a greater difficulty was also observed in mice exposed at 2G, suggesting another cause for the impairment of spatial memory. The long-term response to the hypergravity was shown to depend on both the level of gravity and the duration of exposition, with different importance depending on the function considered.

  10. High-frequency gravity waves and homogeneous ice nucleation in tropical tropopause layer cirrus

    NASA Astrophysics Data System (ADS)

    Jensen, Eric J.; Ueyama, Rei; Pfister, Leonhard; Bui, Theopaul V.; Alexander, M. Joan; Podglajen, Aurélien; Hertzog, Albert; Woods, Sarah; Lawson, R. Paul; Kim, Ji-Eun; Schoeberl, Mark R.

    2016-06-01

    The impact of high-frequency gravity waves on homogeneous-freezing ice nucleation in cold cirrus clouds is examined using parcel model simulations driven by superpressure balloon measurements of temperature variability experienced by air parcels in the tropical tropopause region. We find that the primary influence of high-frequency waves is to generate rapid cooling events that drive production of numerous ice crystals. Quenching of ice nucleation events by temperature tendency reversal in the highest-frequency waves does occasionally produce low ice concentrations, but the overall impact of high-frequency waves is to increase the occurrence of high ice concentrations. The simulated ice concentrations are considerably higher than indicated by in situ measurements of cirrus in the tropical tropopause region. One-dimensional simulations suggest that although sedimentation reduces mean ice concentrations, a discrepancy of about a factor of 3 with observed ice concentrations remains. Reconciliation of numerical simulations with the observed ice concentrations will require inclusion of physical processes such as heterogeneous nucleation and entrainment.

  11. High degree gravitational sensitivity from Mars orbiters for the GMM-1 gravity model

    NASA Technical Reports Server (NTRS)

    Lerch, F. J.; Smith, D. E.; Chan, J. C.; Patel, G. B.; Chinn, D. S.

    1994-01-01

    Orbital sensitivity of the gravity field for high degree terms (greater than 30) is analyzed on satellites employed in a Goddard Mars Model GMM-1, complete in spherical harmonics through degree and order 50. The model is obtained from S-band Doppler data on Mariner 9 (M9), Viking Orbiter 1 (VO1), and Viking Orbiter 2 (VO2) spacecraft, which were tracked by the NASA Deep Space Network on seven different highly eccentric orbits. The main sensitivity of the high degree terms is obtained from the VO1 and VO2 low orbits (300 km periapsis altitude), where significant spectral sensitivity is seen for all degrees out through degree 50. The velocity perturbations show a dominant effect at periapsis and significant effects out beyond the semi-latus rectum covering over 180 degrees of the orbital groundtrack for the low altitude orbits. Because of the wideband of periapsis motion covering nearly 180 degrees in w and +39 degrees in latitude coverage, the VO1 300 km periapsis altitude orbit with inclination of 39 degrees gave the dominant sensitivity in the GMM-1 solution for the high degree terms. Although the VO2 low periapsis orbit has a smaller band of periapsis mapping coverage, it strongly complements the VO1 orbit sensitivity for the GMM-1 solution with Doppler tracking coverage over a different inclination of 80 degrees.

  12. Future high sea levels in south Sweden

    SciTech Connect

    Blomgren, S.H.; Hanson, H.

    1997-12-31

    An estimation of future mean high water levels in Oeresund and the southwest Baltic Sea is presented together with a discussion of probable consequences for Falsterbo Peninsula, a trumpet-shaped sandy formation of some 25 km{sup 2} size situated in the very southwest corner of Sweden. A literature review coupled with sea-level measurements and observations made in the area every four hours since October 1945 are given and comprise the base for the present analysis.

  13. High-level waste processing and disposal

    NASA Astrophysics Data System (ADS)

    Crandall, J. L.; Drause, H.; Sombret, C.; Uematsu, K.

    The national high level waste disposal plans for France, the Federal Republic of Germany, Japan, and the United States are covered. Three conclusions are reached. The first conclusion is that an excellent technology already exists for high level waste disposal. With appropriate packaging, spent fuel seems to be an acceptable waste form. Borosilicate glass reprocessing waste forms are well understood, in production in France, and scheduled for production in the next few years in a number of other countries. For final disposal, a number of candidate geological repository sites have been identified and several demonstration sites opened. The second conclusion is that adequate financing and a legal basis for waste disposal are in place in most countries. Costs of high level waste disposal will probably and about 5 to 10% to the costs of nuclear electric power. Third conclusion is less optimistic.

  14. A Software Architecture for High Level Applications

    SciTech Connect

    Shen,G.

    2009-05-04

    A modular software platform for high level applications is under development at the National Synchrotron Light Source II project. This platform is based on client-server architecture, and the components of high level applications on this platform will be modular and distributed, and therefore reusable. An online model server is indispensable for model based control. Different accelerator facilities have different requirements for the online simulation. To supply various accelerator simulators, a set of narrow and general application programming interfaces is developed based on Tracy-3 and Elegant. This paper describes the system architecture for the modular high level applications, the design of narrow and general application programming interface for an online model server, and the prototype of online model server.

  15. On the Importance of High Frequency Gravity Waves for Ice Nucleation in the Tropical Tropopause Layer

    NASA Technical Reports Server (NTRS)

    Jensen, Eric J.

    2016-01-01

    Recent investigations of the influence of atmospheric waves on ice nucleation in cirrus have identified a number of key processes and sensitivities: (1) ice concentrations produced by homogeneous freezing are strongly dependent on cooling rates, with gravity waves dominating upper tropospheric cooling rates; (2) rapid cooling driven by high-frequency waves are likely responsible for the rare occurrences of very high ice concentrations in cirrus; (3) sedimentation and entrainment tend to decrease ice concentrations as cirrus age; and (4) in some situations, changes in temperature tendency driven by high-frequency waves can quench ice nucleation events and limit ice concentrations. Here we use parcel-model simulations of ice nucleation driven by long-duration, constant-pressure balloon temperature time series, along with an extensive dataset of cold cirrus microphysical properties from the recent ATTREX high-altitude aircraft campaign, to statistically examine the importance of high-frequency waves as well as the consistency between our theoretical understanding of ice nucleation and observed ice concentrations. The parcel-model simulations indicate common occurrence of peak ice concentrations exceeding several hundred per liter. Sedimentation and entrainment would reduce ice concentrations as clouds age, but 1-D simulations using a wave parameterization (which underestimates rapid cooling events) still produce ice concentrations higher than indicated by observations. We find that quenching of nucleation events by high-frequency waves occurs infrequently and does not prevent occurrences of large ice concentrations in parcel simulations of homogeneous freezing. In fact, the high-frequency variability in the balloon temperature data is entirely responsible for production of these high ice concentrations in the simulations.

  16. Complete Bouguer gravity map of the Nevada Test Site and vicinity, Nevada

    SciTech Connect

    Healey, D.L.; Harris, R.N.; Ponce, D.A.; Oliver, H.W.

    1987-12-31

    About 15,000 gravity stations were used to create the gravity map. Gravity studies at the Nevada Test Site were undertaken to help locate geologically favorable areas for underground nuclear tests and to help characterize potential high-level nuclear waste storage sites. 48 refs. (TEM)

  17. Turbulent behaviour of non-cohesive sediment gravity flows at unexpectedly high flow density

    NASA Astrophysics Data System (ADS)

    Baker, Megan; Baas, Jaco H.; Malarkey, Jonathan; Kane, Ian

    2016-04-01

    Experimental lock exchange-type turbidity currents laden with non-cohesive silica-flour were found to be highly dynamic at remarkably high suspended sediment concentrations. These experiments were conducted to produce sediment gravity flows of volumetric concentrations ranging from 1% to 52%, to study how changes in suspended sediment concentration affects the head velocities and run-out distances of these flows, in natural seawater. Increasing the volumetric concentration of suspended silica-flour, C, up to C = 46%, within the flows led to a progressive increase in the maximum head velocity. This relationship suggests that suspended sediment concentration intensifies the density difference between the turbulent suspension and the ambient water, which drives the flow, even if almost half of the available space is occupied by sediment particles. However, from C = 46% to C = 52% a rapid reduction in the maximum head velocity was measured. It is inferred that at C = 46%, friction from grain-to-grain interactions begins to attenuate turbulence within the flows. At C > 46%, the frictional stresses become progressively more dominant over the turbulent forces and excess density, thus producing lower maximum head velocities. This grain interaction process started to rapidly reduce the run-out distance of the silica-flour flows at equally high concentrations of C ≥ 47%. All flows with C < 47% reflected off the end of the 5-m long tank, but the head velocities gradually reduced along the tank. Bagnold (1954, 1963) estimated that, for sand flows, grain-to-grain interactions start to become important in modulating turbulence at C > 9%. Yet, the critical flow concentration at which turbulence modulation commenced for these silica-flour laden flows appeared to be much higher. We suggest that Bagnold's 9% criterion cannot be applied to flows that carry fine-grained sediment, because turbulent forces are more important than dispersive forces, and frictional forces start to

  18. Chiral gravity, log gravity, and extremal CFT

    SciTech Connect

    Maloney, Alexander; Song Wei; Strominger, Andrew

    2010-03-15

    We show that the linearization of all exact solutions of classical chiral gravity around the AdS{sub 3} vacuum have positive energy. Nonchiral and negative-energy solutions of the linearized equations are infrared divergent at second order, and so are removed from the spectrum. In other words, chirality is confined and the equations of motion have linearization instabilities. We prove that the only stationary, axially symmetric solutions of chiral gravity are BTZ black holes, which have positive energy. It is further shown that classical log gravity--the theory with logarithmically relaxed boundary conditions--has finite asymptotic symmetry generators but is not chiral and hence may be dual at the quantum level to a logarithmic conformal field theories (CFT). Moreover we show that log gravity contains chiral gravity within it as a decoupled charge superselection sector. We formally evaluate the Euclidean sum over geometries of chiral gravity and show that it gives precisely the holomorphic extremal CFT partition function. The modular invariance and integrality of the expansion coefficients of this partition function are consistent with the existence of an exact quantum theory of chiral gravity. We argue that the problem of quantizing chiral gravity is the holographic dual of the problem of constructing an extremal CFT, while quantizing log gravity is dual to the problem of constructing a logarithmic extremal CFT.

  19. Characterization of low-acetic-acid-producing yeast isolated from 2-deoxyglucose-resistant mutants and its application to high-gravity brewing.

    PubMed

    Mizuno, Akihiro; Tabei, Hideaki; Iwahuti, Masahumi

    2006-01-01

    We isolated a mutant with low acetic acid and high ethanol productivities from 2-deoxyglucose-resistant mutants of brewers' yeast NCYC1245 (Saccharomyces cerevisiae). To determine the mechanism for these properties in the mutant (2DGR19) during fermentation, gene expression and enzyme activity related to acetic acid and ethanol production were investigated. DNA microarray analysis revealed that the transcriptional levels of many genes involved in glycolysis were higher in 2DGR19 than in NCYC1245. Among these transcriptional levels of 2DGR19 relative to NCYC1245, the expression level of ADH4 encoding alcohol dehydrogenase (ADH) was highest, which corresponded to the high ADH activity in 2DGR19. Quantitative PCR analysis also revealed that the transcriptional level of ADH4 was the highest among ADH1 to ADH4. Although no significant differences in the transcriptional levels of ALD2 to ALD6 encoding acetaldehyde dehydrogenase (ALD) between 2DGR19 and NCYC1245 were observed, ALD activity in 2DGR19 was lower. Using quantitative PCR analysis, ALD6 was found to be the most highly expressed among the ALD2 to ALD6 genes. These results indicate that ALD6 contributes to a low ALD activity, depending on post-transcriptional regulation. A high ADH activity appeared to be the major reason for the high ethanol productivity of 2DGR19. A low ALD activity was considered to be principally responsible for a low acetic acid productivity, although a high ADH activity also might have played a role. Beer brewed using 2DGR19 in pilot-scale high-gravity brewing contained about half as much acetic acid and 1.1% more ethanol compared with that brewed using NCYC1245. The use of 2DGR19 may overcome difficulties associated with high-gravity brewing.

  20. Optical Mass Gauging System for Measuring Liquid Levels in a Reduced Gravity Environment

    NASA Technical Reports Server (NTRS)

    Sullenberger, Ryan M.; Munoz, Wesley M.; Lyon, Matt P.; Vogel, Kenny; Yalin, Azer P.; Korman, Valentin; Polzin, Kurt A.

    2010-01-01

    A compact and rugged fiber-coupled liquid volume sensor designed for flight on a sounding rocket platform is presented. The sensor consists of a Mach-Zehnder interferometer capable of measuring the amount of liquid contained in a tank under any gravitational conditions, including a microgravity environment, by detecting small changes in the index of refraction of the gas contained within a sensing region. By monitoring changes in the interference fringe pattern as the system undergoes a small compression provided by a piston, the ullage volume of a tank can be directly measured allowing for a determination of the liquid volume. To demonstrate the technique, data are acquired using two tanks containing different volumes of liquid, which are representative of the levels of liquid in a tank at different time periods during a mission. The two tanks are independently exposed to the measurement apparatus, allowing for a determination of the liquid level in each. In a controlled, laboratory test of the unit, the system demonstrated a capability of measuring a liquid level in an individual tank of 10.53 mL with a 2% error. The overall random uncertainty for the flight system is higher than that one test, at +/- 1.5 mL.

  1. Optimization of low-cost medium for very high gravity ethanol fermentations by Saccharomyces cerevisiae using statistical experimental designs.

    PubMed

    Pereira, Francisco B; Guimarães, Pedro M R; Teixeira, José A; Domingues, Lucília

    2010-10-01

    Statistical experimental designs were used to develop a medium based on corn steep liquor (CSL) and other low-cost nutrient sources for high-performance very high gravity (VHG) ethanol fermentations by Saccharomyces cerevisiae. The critical nutrients were initially selected according to a Plackett-Burman design and the optimized medium composition (44.3 g/L CSL; 2.3 g/L urea; 3.8 g/L MgSO₄·7H₂O; 0.03 g/L CuSO₄·5H₂O) for maximum ethanol production by the laboratory strain CEN.PK 113-7D was obtained by response surface methodology, based on a three-level four-factor Box-Behnken design. The optimization process resulted in significantly enhanced final ethanol titre, productivity and yeast viability in batch VHG fermentations (up to 330 g/L glucose) with CEN.PK113-7D and with industrial strain PE-2, which is used for bio-ethanol production in Brazil. Strain PE-2 was able to produce 18.6±0.5% (v/v) ethanol with a corresponding productivity of 2.4±0.1g/L/h. This study provides valuable insights into cost-effective nutritional supplementation of industrial fuel ethanol VHG fermentations.

  2. PAIRWISE BLENDING OF HIGH LEVEL WASTE (HLW)

    SciTech Connect

    CERTA, P.J.

    2006-02-22

    The primary objective of this study is to demonstrate a mission scenario that uses pairwise and incidental blending of high level waste (HLW) to reduce the total mass of HLW glass. Secondary objectives include understanding how recent refinements to the tank waste inventory and solubility assumptions affect the mass of HLW glass and how logistical constraints may affect the efficacy of HLW blending.

  3. High-level radioactive wastes. Supplement 1

    SciTech Connect

    McLaren, L.H.

    1984-09-01

    This bibliography contains information on high-level radioactive wastes included in the Department of Energy's Energy Data Base from August 1982 through December 1983. These citations are to research reports, journal articles, books, patents, theses, and conference papers from worldwide sources. Five indexes, each preceded by a brief description, are provided: Corporate Author, Personal Author, Subject, Contract Number, and Report Number. 1452 citations.

  4. Do we understand high-level vision?

    PubMed

    Cox, David Daniel

    2014-04-01

    'High-level' vision lacks a single, agreed upon definition, but it might usefully be defined as those stages of visual processing that transition from analyzing local image structure to analyzing structure of the external world that produced those images. Much work in the last several decades has focused on object recognition as a framing problem for the study of high-level visual cortex, and much progress has been made in this direction. This approach presumes that the operational goal of the visual system is to read-out the identity of an object (or objects) in a scene, in spite of variation in the position, size, lighting and the presence of other nearby objects. However, while object recognition as a operational framing of high-level is intuitive appealing, it is by no means the only task that visual cortex might do, and the study of object recognition is beset by challenges in building stimulus sets that adequately sample the infinite space of possible stimuli. Here I review the successes and limitations of this work, and ask whether we should reframe our approaches to understanding high-level vision.

  5. Preparation of inhalable salbutamol sulphate using reactive high gravity controlled precipitation.

    PubMed

    Hu, Tingting; Chiou, Herbert; Chan, Hak-Kim; Chen, Jian-Feng; Yun, Jimmy

    2008-02-01

    Reactive high gravity controlled precipitation (HGCP) was carried out to produce salbutamol sulphate (SS) particles suitable for inhalation. Aqueous solutions of free salbutamol base and sulphuric acid were mixed intensely inside a HGCP reactor to form the particles. Spray drying was employed to obtain dry powders. Physical properties of the powders were characterised by scanning electron microscopy, X-ray powder diffraction, thermal gravimetric analysis and dynamic water vapour sorption. Aerosol performance of the powders was measured using an Aeroliser connected to a multiple stage liquid impinger operating at 60 L/min. The results showed that the reactive HGCP powder, comprising primary SS sub-micron particles (approximately 100 nm in width and approximately 500 nm in length) packed into loose spherical agglomerates of about 2 microm in diameter, is of the same polymorphic form as the raw crystalline material, has a high specific surface area (24.7 +/- 0.1 m(2)/g), but a low moisture content (0.2%) and low moisture uptake (1.4% at RH 90%). The aerosol performance of the reactive HGCP powder is excellent, showing FPF(loaded) and FPF(emitted) of 76 +/- 5% and 83 +/- 7%, respectively, with low capsule and device retention. In conclusion, reactive HGCP followed by spray drying is suitable to produce stable crystalline powders of salbutamol with enhanced inhalation properties.

  6. Preparation of inhalable salbutamol sulphate using reactive high gravity controlled precipitation.

    PubMed

    Hu, Tingting; Chiou, Herbert; Chan, Hak-Kim; Chen, Jian-Feng; Yun, Jimmy

    2008-02-01

    Reactive high gravity controlled precipitation (HGCP) was carried out to produce salbutamol sulphate (SS) particles suitable for inhalation. Aqueous solutions of free salbutamol base and sulphuric acid were mixed intensely inside a HGCP reactor to form the particles. Spray drying was employed to obtain dry powders. Physical properties of the powders were characterised by scanning electron microscopy, X-ray powder diffraction, thermal gravimetric analysis and dynamic water vapour sorption. Aerosol performance of the powders was measured using an Aeroliser connected to a multiple stage liquid impinger operating at 60 L/min. The results showed that the reactive HGCP powder, comprising primary SS sub-micron particles (approximately 100 nm in width and approximately 500 nm in length) packed into loose spherical agglomerates of about 2 microm in diameter, is of the same polymorphic form as the raw crystalline material, has a high specific surface area (24.7 +/- 0.1 m(2)/g), but a low moisture content (0.2%) and low moisture uptake (1.4% at RH 90%). The aerosol performance of the reactive HGCP powder is excellent, showing FPF(loaded) and FPF(emitted) of 76 +/- 5% and 83 +/- 7%, respectively, with low capsule and device retention. In conclusion, reactive HGCP followed by spray drying is suitable to produce stable crystalline powders of salbutamol with enhanced inhalation properties. PMID:17722000

  7. The energetics and mechanics of level and gradient skipping: Preliminary results for a potential gait of choice in low gravity environments.

    NASA Astrophysics Data System (ADS)

    Minetti, Alberto E.; Pavei, Gaspare; Biancardi, Carlo M.

    2012-12-01

    Walking and running in low gravity cannot be used at useful speeds, while 'skipping', a gait displayed by kids and spontaneously adopted by astronauts of Apollo missions, proved to have the potential to become the gait of choice in that condition. In this paper the previous biomechanical and metabolic analysis of level skipping is extended to positive and negative gradients, in normal gravity. The results confirm at all gradients the higher (average) ground reaction force during the contact phase, with respect to running at the same speed, which would allow confidently facing the Lunar surface where the dust and regoliths affect, in addition to a lower gravity, the locomotion dynamics. Metabolic data, other gait variables related to the mechanical work done and the locomotor/respiratory coupling have also been investigated.

  8. GravityCam: ground-based wide-field high-resolution imaging and high-speed photometry

    NASA Astrophysics Data System (ADS)

    Dominik, Martin; Mackay, Craig; Steele, Iain; Snodgrass, Colin; Hirsch, Michael; Gråe Jørgensen, Uffe; Hundertmark, Markus; Rebolo, Rafael; Horne, Keith; Bridle, Sarah; Sicardy, Bruno; Bramich, Daniel; Alsubai, Khalid

    2015-12-01

    The image blurring by the Earth's atmosphere generally poses a substantial limitation to ground-based observations. While opportunities in space are scarce, lucky imaging can correct over a much larger patch of sky and with much fainter reference stars. We propose the first of a new kind of versatile instruments, "GravityCam", composed of ~100 EMCCDs, that will open up two entirely new windows to ground-based astronomy: (1) wide-field high-resolution imaging, and (2) wide-field high-speed photometry. Potential applications include (a) a gravitational microlensing survey going 4 magnitudes deeper than current efforts, and thereby gaining a factor 100 in mass at the same sensitivity, which means probing down to Lunar mass or even below, (b) extra-solar planet hunting via transits in galactic bulge fields, with high time resolution well-suited for transit timing variation studies, (c) variable stars in crowded fields, with sensitivity to very short periods, (d) asteroseismology with many bright stars in one pointing, (e) serendipitous occultations of stars by small solar system bodies, giving access to the small end of the Kuiper Belt size distribution and potentially leading to the first detection of true Oort cloud objects, while predicted occultations at high time resolution can reveal atmospheres, satellites, or rings, (f) general data mining of the high-speed variable sky (down to 40 ms cadence).

  9. Plants tolerant of high boron levels.

    PubMed

    Miwa, Kyoko; Takano, Junpei; Omori, Hiroyuki; Seki, Motoaki; Shinozaki, Kazuo; Fujiwara, Toru

    2007-11-30

    Reduced crop productivity due to soils containing toxic levels of boron (B) is a worldwide problem in food production. It is estimated that up to 17% of the barley yield losses in southern Australia are caused by B toxicity. We found that the expression of AtBOR4, an Arabidopsis paralog of BOR1, the first identified boron transporter gene, generates plants that are tolerant of high B levels. BOR4 is a polarly localized borate exporter that enhances B efflux from roots. The present study is a foundation for the improvement of crop productivity in soils containing excess B, which are distributed in arid areas of the world. PMID:18048682

  10. Investigating why recycling gravity harvested algae increases harvestability and productivity in high rate algal ponds.

    PubMed

    Park, J B K; Craggs, R J; Shilton, A N

    2013-09-15

    It has previously been shown that recycling gravity harvested algae promotes Pediastrum boryanum dominance and improves harvestability and biomass production in pilot-scale High Rate Algal Ponds (HRAPs) treating domestic wastewater. In order to confirm the reproducibility of these findings and investigate the mechanisms responsible, this study utilized twelve 20 L outdoor HRAP mesocosms operated with and without algal recycling. It then compared the recycling of separated solid and liquid components of the harvested biomass against un-separated biomass. The work confirmed that algal recycling promoted P. boryanum dominance, improved 1 h-settleability by >20% and increased biomass productivity by >25% compared with controls that had no recycling. With regard to the improved harvestability, of particular interest was that recycling the liquid fraction alone caused a similar improvement in settleability as recycling the solid fraction. This may be due to the presence of extracellular polymeric substances in the liquid fraction. While there are many possible mechanisms that could account for the increased productivity with algal recycling, all but two were systematically eliminated: (i) the mean cell residence time was extended thereby increasing the algal concentration and more fully utilizing the incident sunlight and, (ii) the relative proportions of algal growth stages (which have different specific growth rates) was changed, resulting in a net increase in the overall growth rate of the culture.

  11. Martian atmospheric gravity waves simulated by a high-resolution general circulation model

    NASA Astrophysics Data System (ADS)

    Kuroda, Takeshi; Yiǧit, Erdal; Medvedev, Alexander S.; Hartogh, Paul

    2016-07-01

    Gravity waves (GWs) significantly affect temperature and wind fields in the Martian middle and upper atmosphere. They are also one of the observational targets of the MAVEN mission. We report on the first simulations with a high-resolution general circulation model (GCM) and present a global distributions of small-scale GWs in the Martian atmosphere. The simulated GW-induced temperature variances are in a good agreement with available radio occultation data in the lower atmosphere between 10 and 30 km. For the northern winter solstice, the model reveals a latitudinal asymmetry with stronger wave generation in the winter hemisphere and two distinctive sources of GWs: mountainous regions and the meandering winter polar jet. Orographic GWs are filtered upon propagating upward, and the mesosphere is primarily dominated by harmonics with faster horizontal phase velocities. Wave fluxes are directed mainly against the local wind. GW dissipation in the upper mesosphere generates a body force per unit mass of tens of m s^{-1} per Martian solar day (sol^{-1}), which tends to close the simulated jets. The results represent a realistic surrogate for missing observations, which can be used for constraining GW parameterizations and validating GCMs.

  12. Investigating why recycling gravity harvested algae increases harvestability and productivity in high rate algal ponds.

    PubMed

    Park, J B K; Craggs, R J; Shilton, A N

    2013-09-15

    It has previously been shown that recycling gravity harvested algae promotes Pediastrum boryanum dominance and improves harvestability and biomass production in pilot-scale High Rate Algal Ponds (HRAPs) treating domestic wastewater. In order to confirm the reproducibility of these findings and investigate the mechanisms responsible, this study utilized twelve 20 L outdoor HRAP mesocosms operated with and without algal recycling. It then compared the recycling of separated solid and liquid components of the harvested biomass against un-separated biomass. The work confirmed that algal recycling promoted P. boryanum dominance, improved 1 h-settleability by >20% and increased biomass productivity by >25% compared with controls that had no recycling. With regard to the improved harvestability, of particular interest was that recycling the liquid fraction alone caused a similar improvement in settleability as recycling the solid fraction. This may be due to the presence of extracellular polymeric substances in the liquid fraction. While there are many possible mechanisms that could account for the increased productivity with algal recycling, all but two were systematically eliminated: (i) the mean cell residence time was extended thereby increasing the algal concentration and more fully utilizing the incident sunlight and, (ii) the relative proportions of algal growth stages (which have different specific growth rates) was changed, resulting in a net increase in the overall growth rate of the culture. PMID:23866138

  13. High Energy Astrophysics Tests of Lorentz Invariance and Quantum Gravity Models

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.

    2011-01-01

    High energy astrophysics observations provide the best possibilities to detect a very small violation of Lorentz invariance such as may be related to the structure of space-time near the Planck scale of approximately 10(exp -35)m. I will discuss the possible signatures of Lorentz invariance violation (LIV) that can be manifested by observing of the spectra, polarization, and timing of gamma-rays from active galactic nuclei and y-ray bursts. Other sensitive tests are provided by observations of the spectra of ultrahigh energy cosmic rays and neutrinos. Using the latest data from the Pierre Auger Observatory one can already derive an upper limit of 4.5 x 10(exp -23) on the fraction of LIV at a Lorentz factor of approximately 2 x 10(exp 11). This result has fundamental implications for quantum gravity models. I will also discuss the possibilities of using more sensitive space-based detection techniques to improve searches for LIV in the future.

  14. High Energy Astrophysics Tests of Lorentz Invariance and Quantum Gravity Models

    NASA Technical Reports Server (NTRS)

    Stecker, Floyd W.

    2012-01-01

    High energy astrophysics observations provide the best possibilities to detect a very small violation of Lorentz invariance such as may be related to the structure of space-time near the Planck scale of approx.10(exp -35) m. I will discuss the possible signatures of Lorentz invariance violation (LIV) that can be manifested by observing of the spectra, polarization, and timing of gamma-rays from active galactic nuclei and gamma-ray bursts. Other sensitive tests are provided by observations of the spectra of ultrahigh energy cosmic rays and neutrinos. Using the latest data from the Pierre Auger Observatory one can already derive an upper limit of 4.5 x 10(exp -23) on the fraction of LIV at a Lorentz factor of approx. 2 x 10(exp 11). This result has fundamental implications for quantum gravity models. I will also discuss the possibilities of using more sensitive space-based detection techniques to improve searches for LIV in the future. I will also discuss how the LIV formalism casts doubt on the OPERA superluminal neutrino claim.

  15. Nanohertz frequency determination for the gravity probe B high frequency superconducting quantum interference device signal.

    PubMed

    Salomon, M; Conklin, J W; Kozaczuk, J; Berberian, J E; Keiser, G M; Silbergleit, A S; Worden, P; Santiago, D I

    2011-12-01

    In this paper, we present a method to measure the frequency and the frequency change rate of a digital signal. This method consists of three consecutive algorithms: frequency interpolation, phase differencing, and a third algorithm specifically designed and tested by the authors. The succession of these three algorithms allowed a 5 parts in 10(10) resolution in frequency determination. The algorithm developed by the authors can be applied to a sampled scalar signal such that a model linking the harmonics of its main frequency to the underlying physical phenomenon is available. This method was developed in the framework of the gravity probe B (GP-B) mission. It was applied to the high frequency (HF) component of GP-B's superconducting quantum interference device signal, whose main frequency f(z) is close to the spin frequency of the gyroscopes used in the experiment. A 30 nHz resolution in signal frequency and a 0.1 pHz/s resolution in its decay rate were achieved out of a succession of 1.86 s-long stretches of signal sampled at 2200 Hz. This paper describes the underlying theory of the frequency measurement method as well as its application to GP-B's HF science signal.

  16. Ageing vessel configuration for continuous redox potential-controlled very-high-gravity fermentation.

    PubMed

    Liu, Chen-Guang; Lin, Yen-Han; Bai, Feng-Wu

    2011-01-01

    The development of continuous very-high-gravity (VHG) fermentation is hindered by ineffective glucose uptake in order to result in zero discharge in the effluent stream. To overcome the problem, we proposed a continuous redox potential-controlled fermentation configuration, consisting of a Chemostat vessel connected with two ageing vessels installed in parallel, and the relevant design criteria are also specified. The Chemostat vessel is subjected to redox potential control to maintain yeast viability, and the ageing vessels are used to completely utilize glucose before discharging to next process unit. Two ageing vessels are scheduled alternatively, resulting in continuously-like operation. The size of ageing vessel is governed by the Chemostat size, dilution rate and filling time. The guideline to choose proper dilution rate is provided and the selection criterion of the proposed continuous configuration over batch fermentation is derived. The excess ethanol produced by the proposed continuous configuration over batch fermenter is quantified. As an illustration, a bio-ethanol plant is typically operated 8000 h per annum and the downtime between batches is 6h. Given that the fermenter size of 100 m(3) for both batch fermenter and Chemostat vessel, and glucose fed at 300 g/l, if the proposed continuous redox potential-controlled fermentation configuration (operated at 0.028 h(-1) and controlled at -50 mV) is selected, it will take 191 h for this configuration to outperform the batch counterpart, and the excess amount of ethanol being produced will be 1142 t. PMID:20875953

  17. Assimilation of TOPEX Sea Level Measurements with a Reduced-Gravity, Shallow Water Model of the Tropical Pacific Ocean

    NASA Technical Reports Server (NTRS)

    Fukumori, Ichiro

    1995-01-01

    Sea surface height variability measured by TOPEX is analyzed in the tropical Pacific Ocean by way of assimilation into a wind-driven, reduced-gravity, shallow water model using an approximate Kalman filter and smoother. The analysis results in an optimal fit of the dynamic model to the observations, providing it dynamically consistent interpolation of sea level and estimation of the circulation. Nearly 80% of the expected signal variance is accounted for by the model within 20 deg of the equator, and estimation uncertainty is substantially reduced by the voluminous observation. Notable features resolved by the analysis include seasonal changes associated with the North Equatorial Countercurrent and equatorial Kelvin and Rossby waves. Significant discrepancies are also found between the estimate and TOPEX measurements, especially near the eastern boundary. Improvements in the estimate made by the assimilation are validated by comparisons with independent tide gauge and current meter observations. The employed filter and smoother are based on approximately computed estimation error covariance matrices, utilizing a spatial transformation and an symptotic approximation. The analysis demonstrates the practical utility of a quasi-optimal filter and smoother.

  18. High-Level Waste Melter Review

    SciTech Connect

    Ahearne, J.; Gentilucci, J.; Pye, L. D.; Weber, T.; Woolley, F.; Machara, N. P.; Gerdes, K.; Cooley, C.

    2002-02-26

    The U.S. Department of Energy (DOE) is faced with a massive cleanup task in resolving the legacy of environmental problems from years of manufacturing nuclear weapons. One of the major activities within this task is the treatment and disposal of the extremely large amount of high-level radioactive (HLW) waste stored at the Hanford Site in Richland, Washington. The current planning for the method of choice for accomplishing this task is to vitrify (glassify) this waste for disposal in a geologic repository. This paper describes the results of the DOE-chartered independent review of alternatives for solidification of Hanford HLW that could achieve major cost reductions with reasonable long-term risks, including recommendations on a path forward for advanced melter and waste form material research and development. The potential for improved cost performance was considered to depend largely on increased waste loading (fewer high-level waste canisters for disposal), higher throughput, or decreased vitrification facility size.

  19. High-Level Waste Melter Study Report

    SciTech Connect

    Perez, Joseph M.; Bickford, Dennis F.; Day, Delbert E.; Kim, Dong-Sang; Lambert, Steven L.; Marra, Sharon L.; Peeler, David K.; Strachan, Denis M.; Triplett, Mark B.; Vienna, John D.; Wittman, Richard S.

    2001-07-13

    At the Hanford Site in Richland, Washington, the path to site cleanup involves vitrification of the majority of the wastes that currently reside in large underground tanks. A Joule-heated glass melter is the equipment of choice for vitrifying the high-level fraction of these wastes. Even though this technology has general national and international acceptance, opportunities may exist to improve or change the technology to reduce the enormous cost of accomplishing the mission of site cleanup. Consequently, the U.S. Department of Energy requested the staff of the Tanks Focus Area to review immobilization technologies, waste forms, and modifications to requirements for solidification of the high-level waste fraction at Hanford to determine what aspects could affect cost reductions with reasonable long-term risk. The results of this study are summarized in this report.

  20. Commissioning of the CMS High Level Trigger

    SciTech Connect

    Agostino, Lorenzo; et al.

    2009-08-01

    The CMS experiment will collect data from the proton-proton collisions delivered by the Large Hadron Collider (LHC) at a centre-of-mass energy up to 14 TeV. The CMS trigger system is designed to cope with unprecedented luminosities and LHC bunch-crossing rates up to 40 MHz. The unique CMS trigger architecture only employs two trigger levels. The Level-1 trigger is implemented using custom electronics, while the High Level Trigger (HLT) is based on software algorithms running on a large cluster of commercial processors, the Event Filter Farm. We present the major functionalities of the CMS High Level Trigger system as of the starting of LHC beams operations in September 2008. The validation of the HLT system in the online environment with Monte Carlo simulated data and its commissioning during cosmic rays data taking campaigns are discussed in detail. We conclude with the description of the HLT operations with the first circulating LHC beams before the incident occurred the 19th September 2008.

  1. High level intelligent control of telerobotics systems

    NASA Technical Reports Server (NTRS)

    Mckee, James

    1988-01-01

    A high level robot command language is proposed for the autonomous mode of an advanced telerobotics system and a predictive display mechanism for the teleoperational model. It is believed that any such system will involve some mixture of these two modes, since, although artificial intelligence can facilitate significant autonomy, a system that can resort to teleoperation will always have the advantage. The high level command language will allow humans to give the robot instructions in a very natural manner. The robot will then analyze these instructions to infer meaning so that is can translate the task into lower level executable primitives. If, however, the robot is unable to perform the task autonomously, it will switch to the teleoperational mode. The time delay between control movement and actual robot movement has always been a problem in teleoperations. The remote operator may not actually see (via a monitor) the results of high actions for several seconds. A computer generated predictive display system is proposed whereby the operator can see a real-time model of the robot's environment and the delayed video picture on the monitor at the same time.

  2. GRAIL gravity field determination using the Celestial Mechanics Approach

    NASA Astrophysics Data System (ADS)

    Arnold, Daniel; Bertone, Stefano; Jäggi, Adrian; Beutler, Gerhard; Mervart, Leos

    2015-11-01

    The NASA mission GRAIL (Gravity Recovery and Interior Laboratory) inherited its concept from the GRACE (Gravity Recovery and Climate Experiment) mission to determine the gravity field of the Moon. We present lunar gravity fields based on the data of GRAIL's primary mission phase. Gravity field recovery is realized in the framework of the Celestial Mechanics Approach, using a development version of the Bernese GNSS Software along with Ka-band range-rate data series as observations and the GNI1B positions provided by NASA JPL as pseudo-observations. By comparing our results with the official level-2 GRAIL gravity field models we show that the lunar gravity field can be recovered with a high quality by adapting the Celestial Mechanics Approach, even when using pre-GRAIL gravity field models as a priori fields and when replacing sophisticated models of non-gravitational accelerations by appropriately spaced pseudo-stochastic pulses (i.e., instantaneous velocity changes). We present and evaluate two lunar gravity field solutions up to degree and order 200 - AIUB-GRL200A and AIUB-GRL200B. While the first solution uses no gravity field information beyond degree 200, the second is obtained by using the official GRAIL field GRGM900C up to degree and order 660 as a priori information. This reduces the omission errors and demonstrates the potential quality of our solution if we resolved the gravity field to higher degree.

  3. Performance of the CMS High Level Trigger

    NASA Astrophysics Data System (ADS)

    Perrotta, Andrea

    2015-12-01

    The CMS experiment has been designed with a 2-level trigger system. The first level is implemented using custom-designed electronics. The second level is the so-called High Level Trigger (HLT), a streamlined version of the CMS offline reconstruction software running on a computer farm. For Run II of the Large Hadron Collider, the increases in center-of-mass energy and luminosity will raise the event rate to a level challenging for the HLT algorithms. The increase in the number of interactions per bunch crossing, on average 25 in 2012, and expected to be around 40 in Run II, will be an additional complication. We present here the expected performance of the main triggers that will be used during the 2015 data taking campaign, paying particular attention to the new approaches that have been developed to cope with the challenges of the new run. This includes improvements in HLT electron and photon reconstruction as well as better performing muon triggers. We will also present the performance of the improved tracking and vertexing algorithms, discussing their impact on the b-tagging performance as well as on the jet and missing energy reconstruction.

  4. Feeling Gravity's Pull: Gravity Modeling. The Gravity Field of Mars

    NASA Astrophysics Data System (ADS)

    Lemoine, Frank; Smith, David; Rowlands, David; Zuber, Maria; Neumann, G.; Chinn, Douglas; Pavlis, D.

    2000-01-01

    Most people take the constant presence of gravitys pull for granted. However, the Earth's gravitational strength actually varies from location to location. This variation occurs because mass, which influences an object's gravitational pull, is not evenly distributed within the planet. Changes in topography, such as glacial movement, an earthquake, or a rise in the ocean level, can subtly affect the gravity field. An accurate measurement of the Earth's gravity field helps us understand the distribution of mass beneath the surface. This insight can assist us in locating petroleum, mineral deposits, ground water, and other valuable substances. Gravity mapping can also help notice or verify changes in sea surface height and other ocean characteristics. Such changes may indicate climate change from polar ice melting and other phenomena. In addition, gravity mapping can indicate how land moves under the surface after earthquakes and other plate tectonic processes. Finally, changes in the Earth's gravity field might indicate a shift in water distribution that could affect agriculture, water supplies for population centers, and long-term weather prediction. Scientists can map out the Earth's gravity field by watching satellite orbits. When a satellite shifts in vertical position, it might be passing over an area where gravity changes in strength. Gravity is only one factor that may shape a satellite's orbital path. To derive a gravity measurement from satellite movement, scientists must remove other factors that might affect a satellite's position: 1. Drag from atmospheric friction. 2. Pressure from solar radiation as it heads toward Earth and. as it is reflected off the surface of the Earth 3. Gravitational pull from the Sun, the Moon, and other planets in the Solar System. 4. The effect of tides. 5. Relativistic effects. Scientists must also correct for the satellite tracking process. For example, the tracking signal must be corrected for refraction through the

  5. Feeling Gravity's Pull: Gravity Modeling. The Gravity Field of Mars

    NASA Technical Reports Server (NTRS)

    Lemoine, Frank; Smith, David; Rowlands, David; Zuber, Maria; Neumann, G.; Chinn, Douglas; Pavlis, D.

    2000-01-01

    Most people take the constant presence of gravitys pull for granted. However, the Earth's gravitational strength actually varies from location to location. This variation occurs because mass, which influences an object's gravitational pull, is not evenly distributed within the planet. Changes in topography, such as glacial movement, an earthquake, or a rise in the ocean level, can subtly affect the gravity field. An accurate measurement of the Earth's gravity field helps us understand the distribution of mass beneath the surface. This insight can assist us in locating petroleum, mineral deposits, ground water, and other valuable substances. Gravity mapping can also help notice or verify changes in sea surface height and other ocean characteristics. Such changes may indicate climate change from polar ice melting and other phenomena. In addition, gravity mapping can indicate how land moves under the surface after earthquakes and other plate tectonic processes. Finally, changes in the Earth's gravity field might indicate a shift in water distribution that could affect agriculture, water supplies for population centers, and long-term weather prediction. Scientists can map out the Earth's gravity field by watching satellite orbits. When a satellite shifts in vertical position, it might be passing over an area where gravity changes in strength. Gravity is only one factor that may shape a satellite's orbital path. To derive a gravity measurement from satellite movement, scientists must remove other factors that might affect a satellite's position: 1. Drag from atmospheric friction. 2. Pressure from solar radiation as it heads toward Earth and. as it is reflected off the surface of the Earth 3. Gravitational pull from the Sun, the Moon, and other planets in the Solar System. 4. The effect of tides. 5. Relativistic effects. Scientists must also correct for the satellite tracking process. For example, the tracking signal must be corrected for refraction through the

  6. A novel strategy to construct yeast Saccharomyces cerevisiae strains for very high gravity fermentation.

    PubMed

    Tao, Xianglin; Zheng, Daoqiong; Liu, Tianzhe; Wang, Pinmei; Zhao, Wenpeng; Zhu, Muyuan; Jiang, Xinhang; Zhao, Yuhua; Wu, Xuechang

    2012-01-01

    Very high gravity (VHG) fermentation is aimed to considerably increase both the fermentation rate and the ethanol concentration, thereby reducing capital costs and the risk of bacterial contamination. This process results in critical issues, such as adverse stress factors (ie., osmotic pressure and ethanol inhibition) and high concentrations of metabolic byproducts which are difficult to overcome by a single breeding method. In the present paper, a novel strategy that combines metabolic engineering and genome shuffling to circumvent these limitations and improve the bioethanol production performance of Saccharomyces cerevisiae strains under VHG conditions was developed. First, in strain Z5, which performed better than other widely used industrial strains, the gene GPD2 encoding glycerol 3-phosphate dehydrogenase was deleted, resulting in a mutant (Z5ΔGPD2) with a lower glycerol yield and poor ethanol productivity. Second, strain Z5ΔGPD2 was subjected to three rounds of genome shuffling to improve its VHG fermentation performance, and the best performing strain SZ3-1 was obtained. Results showed that strain SZ3-1 not only produced less glycerol, but also increased the ethanol yield by up to 8% compared with the parent strain Z5. Further analysis suggested that the improved ethanol yield in strain SZ3-1 was mainly contributed by the enhanced ethanol tolerance of the strain. The differences in ethanol tolerance between strains Z5 and SZ3-1 were closely associated with the cell membrane fatty acid compositions and intracellular trehalose concentrations. Finally, genome rearrangements in the optimized strain were confirmed by karyotype analysis. Hence, a combination of genome shuffling and metabolic engineering is an efficient approach for the rapid improvement of yeast strains for desirable industrial phenotypes.

  7. Normalization to specific gravity prior to analysis improves information recovery from high resolution mass spectrometry metabolomic profiles of human urine.

    PubMed

    Edmands, William M B; Ferrari, Pietro; Scalbert, Augustin

    2014-11-01

    Extraction of meaningful biological information from urinary metabolomic profiles obtained by liquid-chromatography coupled to mass spectrometry (MS) necessitates the control of unwanted sources of variability associated with large differences in urine sample concentrations. Different methods of normalization either before analysis (preacquisition normalization) through dilution of urine samples to the lowest specific gravity measured by refractometry, or after analysis (postacquisition normalization) to urine volume, specific gravity and median fold change are compared for their capacity to recover lead metabolites for a potential future use as dietary biomarkers. Twenty-four urine samples of 19 subjects from the European Prospective Investigation into Cancer and nutrition (EPIC) cohort were selected based on their high and low/nonconsumption of six polyphenol-rich foods as assessed with a 24 h dietary recall. MS features selected on the basis of minimum discriminant selection criteria were related to each dietary item by means of orthogonal partial least-squares discriminant analysis models. Normalization methods ranked in the following decreasing order when comparing the number of total discriminant MS features recovered to that obtained in the absence of normalization: preacquisition normalization to specific gravity (4.2-fold), postacquisition normalization to specific gravity (2.3-fold), postacquisition median fold change normalization (1.8-fold increase), postacquisition normalization to urinary volume (0.79-fold). A preventative preacquisition normalization based on urine specific gravity was found to be superior to all curative postacquisition normalization methods tested for discovery of MS features discriminant of dietary intake in these urinary metabolomic datasets.

  8. Detection method and observed data of high-energy gamma rays under the influence of quantum gravity

    SciTech Connect

    Kifune, T.

    2014-05-20

    The interaction of high-energy particles affected by quantum gravity is argued from the experimental viewpoint of raising a question, 'our detection method for high-energy γ-rays supplies trustworthy observation data and we are now seeing the true image of the universe through high-energy γ-rays?' The modified dispersion relation (MDR) for particles' energy and momentum is applied to the equation of energy-momentum conservation in particle reactions, to study the restriction imposed on the kinematic state of high-energy particles by the Lorentz invariance violation (LIV) due to quantum gravity, as a function of the incident particle energy of the reaction. The result suggests that the interaction utilized for γ-ray detection is not free from the effect of quantum gravity when γ-ray energy is higher than 10{sup 13} ∼ 10{sup 17} eV depending on models of MDR. Discussion is presented on the prospect of finding clear evidence of the LIV effect from γ-ray observations, as well as on the radiation and propagation mechanism of γ-rays under the influence of the LIV effect.

  9. Fast fabrication of W-Cu functionally graded material by high-gravity combustion synthesis and melt-infiltration

    NASA Astrophysics Data System (ADS)

    Zhao, P.; Guo, S. B.; Liu, G. H.; Chen, Y. X.; Li, J. T.

    2014-02-01

    W-Cu functionally graded material (FGM, 75 wt% W + 25 wt% Cu-40 wt% W + 60 wt% Cu) has been prepared by a method of high-gravity combustion synthesis and melt-infiltration in a short time (∼5 min). The infiltration mechanism in the high-gravity field was investigated. The W-Cu FGM showed an overall relative density of ∼97% and gradually-varying properties in terms of density, micro hardness, coefficient of thermal expansion. Especially, the W-Cu FGM exhibited a coefficient of thermal expansion between those of W and Cu, and thus could be used as a transition layer between W and Cu to relax the thermal stresses.

  10. Gravity effects obtained from global hydrology models in comparison with high precision gravimetric time series

    NASA Astrophysics Data System (ADS)

    Wziontek, Hartmut; Wilmes, Herbert; Güntner, Andreas; Creutzfeldt, Benjamin

    2010-05-01

    Water mass changes are a major source of variations in residual gravimetric time series obtained from the combination of observations with superconducting and absolute gravimeters. Changes in the local water storage are the main influence, but global variations contribute to the signal significantly. For three European gravity stations, Bad Homburg, Wettzell and Medicina, different global hydrology models are compared. The influence of topographic effects is discussed and due to the long-term stability of the combined gravity time series, inter-annual signals in model data and gravimetric observations are compared. Two sources of influence are discriminated, i.e., the effect of a local zone with an extent of a few kilometers around the gravimetric station and the global contribution beyond 50km. Considering their coarse resolution and uncertainties, local effects calculated from global hydrological models are compared with the in-situ gravity observations and, for the station Wettzell, with local hydrological monitoring data.

  11. Electrochemical energy storage by polyaniline nanofibers: high gravity assisted oxidative polymerization vs. rapid mixing chemical oxidative polymerization.

    PubMed

    Zhao, Yibo; Wei, Huige; Arowo, Moses; Yan, Xingru; Wu, Wei; Chen, Jianfeng; Wang, Yiran; Guo, Zhanhu

    2015-01-14

    Polyaniline (PANI) nanofibers prepared by high gravity chemical oxidative polymerization in a rotating packed bed (RPB) have demonstrated a much higher specific capacitance of 667.6 F g(-1) than 375.9 F g(-1) of the nanofibers produced by a stirred tank reactor (STR) at a gravimetric current of 10 A g(-1). Meanwhile, the cycling stability of the electrode is 62.2 and 65.9% for the nanofibers from RPB and STR after 500 cycles, respectively.

  12. EAP high-level product architecture

    NASA Astrophysics Data System (ADS)

    Gudlaugsson, T. V.; Mortensen, N. H.; Sarban, R.

    2013-04-01

    EAP technology has the potential to be used in a wide range of applications. This poses the challenge to the EAP component manufacturers to develop components for a wide variety of products. Danfoss Polypower A/S is developing an EAP technology platform, which can form the basis for a variety of EAP technology products while keeping complexity under control. High level product architecture has been developed for the mechanical part of EAP transducers, as the foundation for platform development. A generic description of an EAP transducer forms the core of the high level product architecture. This description breaks down the EAP transducer into organs that perform the functions that may be present in an EAP transducer. A physical instance of an EAP transducer contains a combination of the organs needed to fulfill the task of actuator, sensor, and generation. Alternative principles for each organ allow the function of the EAP transducers to be changed, by basing the EAP transducers on a different combination of organ alternatives. A model providing an overview of the high level product architecture has been developed to support daily development and cooperation across development teams. The platform approach has resulted in the first version of an EAP technology platform, on which multiple EAP products can be based. The contents of the platform have been the result of multi-disciplinary development work at Danfoss PolyPower, as well as collaboration with potential customers and research institutions. Initial results from applying the platform on demonstrator design for potential applications are promising. The scope of the article does not include technical details.

  13. The effects of high level infrasound

    SciTech Connect

    Johnson, D.L.

    1980-02-01

    This paper will attempt to survey the current knowledge on the effects of relative high levels of infrasound on humans. While this conference is concerned mainly about hearing, some discussion of other physiological effects is appropriate. Such discussion also serves to highlight a basic question, 'Is hearing the main concern of infrasound and low frequency exposure, or is there a more sensitive mechanism'. It would be comforting to know that the focal point of this conference is indeed the most important concern. Therefore, besides hearing loss and auditory threshold of infrasonic and low frequency exposure, four other effects will be provided. These are performance, respiration, annoyance, and vibration.

  14. Service Oriented Architecture for High Level Applications

    SciTech Connect

    Chu, Chungming; Chevtsov, Sergei; Wu, Juhao; Shen, Guobao; /Brookhaven

    2012-06-28

    Standalone high level applications often suffer from poor performance and reliability due to lengthy initialization, heavy computation and rapid graphical update. Service-oriented architecture (SOA) is trying to separate the initialization and computation from applications and to distribute such work to various service providers. Heavy computation such as beam tracking will be done periodically on a dedicated server and data will be available to client applications at all time. Industrial standard service architecture can help to improve the performance, reliability and maintainability of the service. Robustness will also be improved by reducing the complexity of individual client applications.

  15. Time-dependent convective flows with high viscosity contrasts under micro gravity conditions.

    NASA Astrophysics Data System (ADS)

    Zaussinger, Florian; Egbers, Christoph; Krebs, Andreas; Schwarzbach, Felix; Kunze, Christian

    2015-04-01

    Thermal driven convection in spherical geometry is of main interest in geo- and astrophysical research. To capture certain aspects of temperature dependent viscosity we investigate the micro-gravity experiment GeoFlow-IIb, located on the ISS. This unique experimental setup consists of a bottom heated and top cooled spherical gap, filled with the silicon oil 1-Nonanol. However, rotation and varying temperature gradients can be applied, to spread the experimental parameter space. The main focus of the current mission is the investigation of time dependent convective flow structures. Since the ISS requirements makes it impossible to use tracer particles, the flow structures are captured by interferometry, whose outcome is analysed by an ground based adapted image processing technique. To guarantee valid results the experimental time of each parameter is in the order of the thermal time scale, which is about 40 min. We are presenting latest results of plume-like and sheet-like time-dependent convective patterns in the spherical shell, their evolution and temporal behaviour under high viscosity contrasts. Due to an unexpected nonlinear coupling between the temperature dependent viscosity of the working fluid and the applied dielectrophoretic force field, we are able to maintain a viscosity contrast of 50 and more. This gives the chance to compare cautiously our experimental results with theoretical assumptions of the mantle convection theory. Besides, numerical simulations in the same parameter regime are performed, which give the opportunity to deduce the internal structure of the experimental flow flied. The main focus of the presented results are the long time temporal evolution of convective plumes in the spherical gap, image capturing- and processing techniques and the deduction of the internal flow field based on planar interferometry pictures.

  16. Sensorimotor aspects of high-speed artificial gravity: III. Sensorimotor adaptation

    NASA Technical Reports Server (NTRS)

    DiZio, Paul; Lackner, James R.; Young, L. R. (Principal Investigator)

    2002-01-01

    As a countermeasure to the debilitating physiological effects of weightlessness, astronauts could live continuously in an artificial gravity environment created by slow rotation of an entire spacecraft or be exposed to brief daily "doses" in a short radius centrifuge housed within a non-rotating spacecraft. A potential drawback to both approaches is that head movements made during rotation may be disorienting and nauseogenic. These side effects are more severe at higher rotation rates, especially upon first exposure. Head movements during rotation generate aberrant vestibular stimulation and Coriolis force perturbations of the head-neck motor system. This article reviews our progress toward distinguishing vestibular and motor factors in side effects of rotation, and presents new data concerning the rates of rotation up to which adaptation is possible. We have studied subjects pointing to targets during constant velocity rotation, because these movements generate Coriolis motor perturbations of the arm but do not involve unusual vestibular stimulation. Initially, reaching paths and endpoints are deviated in the direction of the transient lateral Coriolis forces generated. With practice, subjects soon move in straighter paths and land on target once more. If sight of the arm is permitted, adaptation is more rapid than in darkness. Initial arm movement trajectory and endpoint deviations are proportional to Coriolis force magnitude over a range of rotation speeds from 5 to 20 rpm, and there is rapid, complete motor adaptation at all speeds. These new results indicate that motor adaptation to high rotation rates is possible. Coriolis force perturbations of head movements also occur in a rotating environment but adaptation gradually develops over the course of many head movements.

  17. The effects of gravity level during directional solidification on the microstructure of hypermonotectic Al-In-Sn alloys

    NASA Technical Reports Server (NTRS)

    Curreri, P. A.; Kaukler, W. F.

    1986-01-01

    Five hypermonotectic Al-In-Sn compositions were directionally solidified in a Bridgman-type furnace at normal gravity and during aircraft low-gravity maneuvers. The tendency of the Al-30In alloy to form an indium-rich band at the start of unidirectional growth (SUG) made it difficult to study the integration of L sub 2 into the solidification interface. Hypermonotectic compositions closer to monotectic slightly hypermonotectic caused only a partial band on L sub 2 to form at SUG and allowed the study of such variables as gravity, composition, and monotectic dome height on integration of excess L sub 2 into the solid plus L sub 2 interface. It was found that formation of aligned composite structures for the Al-In-Sn system is not only a function of G and R but also of the degree to which the composition varies from monotectic. Most of the aligned fibrous structures formed from hypermonotectic Al-In-Sn had spacings that were of the order of irregular fibrous structures reported for on monotectic Al-In-Sn. The spacings for the large fibers and aligned globules found for ground and low-gravity processed Al-In-18-Sn-22, respectively, were significantly larger than the others measured and were of the order expected for cell spacings under the growth conditions utilized. It was found that the integration into the solidification front of excess L sub 2 in low gravity was a function of the Sn composition of the alloy.

  18. The High Level Data Reduction Library

    NASA Astrophysics Data System (ADS)

    Ballester, P.; Gabasch, A.; Jung, Y.; Modigliani, A.; Taylor, J.; Coccato, L.; Freudling, W.; Neeser, M.; Marchetti, E.

    2015-09-01

    The European Southern Observatory (ESO) provides pipelines to reduce data for most of the instruments at its Very Large telescope (VLT). These pipelines are written as part of the development of VLT instruments, and are used both in the ESO's operational environment and by science users who receive VLT data. All the pipelines are highly specific geared toward instruments. However, experience showed that the independently developed pipelines include significant overlap, duplication and slight variations of similar algorithms. In order to reduce the cost of development, verification and maintenance of ESO pipelines, and at the same time improve the scientific quality of pipelines data products, ESO decided to develop a limited set of versatile high-level scientific functions that are to be used in all future pipelines. The routines are provided by the High-level Data Reduction Library (HDRL). To reach this goal, we first compare several candidate algorithms and verify them during a prototype phase using data sets from several instruments. Once the best algorithm and error model have been chosen, we start a design and implementation phase. The coding of HDRL is done in plain C and using the Common Pipeline Library (CPL) functionality. HDRL adopts consistent function naming conventions and a well defined API to minimise future maintenance costs, implements error propagation, uses pixel quality information, employs OpenMP to take advantage of multi-core processors, and is verified with extensive unit and regression tests. This poster describes the status of the project and the lesson learned during the development of reusable code implementing algorithms of high scientific quality.

  19. Exposure to unusually high indoor radon levels

    SciTech Connect

    Rasheed, F.N. )

    1993-03-27

    Unusually high indoor radon concentrations were reported in a small village in western Tyrol, Austria. The authors have measured the seasonal course of indoor radon concentrations in 390 houses of this village. 71% of houses in winter and 33% in summer, showed radon values on the ground floor above the Austrian action level of 400 Bq/cm[sup 3]. This proportion results in an unusually high indoor radon exposure of the population. The radon source was an 8,700-year-old rock slide of granite gneiss, the largest of the alpine crystalline rocks. It has a strong emanating power because its rocks are heavily fractured and show a slightly increased uranium content. Previous reports show increased lung cancer mortality, myeloid leukemia, kidney cancer, melanoma, and prostate cancer resulting from indoor radon exposure. However, many studies fail to provide accurate information on indoor radon concentrations, classifying them merely as low, intermediate, and high, or they record only minor increases in indoor radon concentrations. Mortality data for 1970-91 were used to calculate age and sex standardized mortality rates (SMR) for 51 sites of carcinoma. The total population of Tyrol were controls. A significantly higher risk was recorded for lung cancer. The high SMR for lung cancer in female subjects is especially striking. Because the numbers were low for the other cancer sites, these were combined in one group to calculate the SMR. No significant increase in SMR was found for this group.

  20. CMS High Level Trigger Timing Measurements

    NASA Astrophysics Data System (ADS)

    Richardson, Clint

    2015-12-01

    The two-level trigger system employed by CMS consists of the Level 1 (L1) Trigger, which is implemented using custom-built electronics, and the High Level Trigger (HLT), a farm of commercial CPUs running a streamlined version of the offline CMS reconstruction software. The operational L1 output rate of 100 kHz, together with the number of CPUs in the HLT farm, imposes a fundamental constraint on the amount of time available for the HLT to process events. Exceeding this limit impacts the experiment's ability to collect data efficiently. Hence, there is a critical need to characterize the performance of the HLT farm as well as the algorithms run prior to start up in order to ensure optimal data taking. Additional complications arise from the fact that the HLT farm consists of multiple generations of hardware and there can be subtleties in machine performance. We present our methods of measuring the timing performance of the CMS HLT, including the challenges of making such measurements. Results for the performance of various Intel Xeon architectures from 2009-2014 and different data taking scenarios are also presented.

  1. Technetium Chemistry in High-Level Waste

    SciTech Connect

    Hess, Nancy J.

    2006-06-01

    Tc contamination is found within the DOE complex at those sites whose mission involved extraction of plutonium from irradiated uranium fuel or isotopic enrichment of uranium. At the Hanford Site, chemical separations and extraction processes generated large amounts of high level and transuranic wastes that are currently stored in underground tanks. The waste from these extraction processes is currently stored in underground High Level Waste (HLW) tanks. However, the chemistry of the HLW in any given tank is greatly complicated by repeated efforts to reduce volume and recover isotopes. These processes ultimately resulted in mixing of waste streams from different processes. As a result, the chemistry and the fate of Tc in HLW tanks are not well understood. This lack of understanding has been made evident in the failed efforts to leach Tc from sludge and to remove Tc from supernatants prior to immobilization. Although recent interest in Tc chemistry has shifted from pretreatment chemistry to waste residuals, both needs are served by a fundamental understanding of Tc chemistry.

  2. High accuracy electronic material level sensor

    DOEpatents

    McEwan, Thomas E.

    1997-01-01

    The High Accuracy Electronic Material Level Sensor (electronic dipstick) is a sensor based on time domain reflectometry (TDR) of very short electrical pulses. Pulses are propagated along a transmission line or guide wire that is partially immersed in the material being measured; a launcher plate is positioned at the beginning of the guide wire. Reflected pulses are produced at the material interface due to the change in dielectric constant. The time difference of the reflections at the launcher plate and at the material interface are used to determine the material level. Improved performance is obtained by the incorporation of: 1) a high accuracy time base that is referenced to a quartz crystal, 2) an ultrawideband directional sampler to allow operation without an interconnect cable between the electronics module and the guide wire, 3) constant fraction discriminators (CFDs) that allow accurate measurements regardless of material dielectric constants, and reduce or eliminate errors induced by triple-transit or "ghost" reflections on the interconnect cable. These improvements make the dipstick accurate to better than 0.1%.

  3. High accuracy electronic material level sensor

    DOEpatents

    McEwan, T.E.

    1997-03-11

    The High Accuracy Electronic Material Level Sensor (electronic dipstick) is a sensor based on time domain reflectometry (TDR) of very short electrical pulses. Pulses are propagated along a transmission line or guide wire that is partially immersed in the material being measured; a launcher plate is positioned at the beginning of the guide wire. Reflected pulses are produced at the material interface due to the change in dielectric constant. The time difference of the reflections at the launcher plate and at the material interface are used to determine the material level. Improved performance is obtained by the incorporation of: (1) a high accuracy time base that is referenced to a quartz crystal, (2) an ultrawideband directional sampler to allow operation without an interconnect cable between the electronics module and the guide wire, (3) constant fraction discriminators (CFDs) that allow accurate measurements regardless of material dielectric constants, and reduce or eliminate errors induced by triple-transit or ``ghost`` reflections on the interconnect cable. These improvements make the dipstick accurate to better than 0.1%. 4 figs.

  4. High-level waste: View from Nevada

    SciTech Connect

    Miller, B.

    1994-12-31

    {open_quotes}Instead of acknowledging the serious shortcomings of the current waste program, the Department of Energy (DOE) has sought to tighten the screws on Nevada,{close_quotes} says Nevada Governor Bob Miller. Nevada`s opposition to the federal government`s proposed high-level radioactive waste repository at Yucca Mountain has grown out of fundamental flaws within the siting process, says Miller. {open_quotes}This process has left the nation with one technically flawed site as its sole prospect for nuclear waste disposal,{close_quotes} he says. Miller claims that DOE has acknowledged that the site is inadequate. Nevertheless, he says, the agency has insisted on pressing ahead with its plans, attempting to {open_quotes}adjust the standards to fit the site.{close_quotes} Miller concludes that dry and/or above-ground waste storage at reactor site represents a more sensible - and less costly - disposal method for high-level wastes, at least in the short term.

  5. Will the level of seismic noise at Livingston Observatory interfere with the detection of gravity waves from binary inspirals?

    NASA Astrophysics Data System (ADS)

    Rizzi, Anthony

    2002-11-01

    A major impediment to gravity wave detection in interferometer detectors such as Laser Interferometer Gravitational Wave Observatory (LIGO) is nongravitational wave-induced motion of the test masses. All types of noise sources including environmental sources contribute to this problem. Seismic motion is a significant source of such motion. I introduce a method to quantify the contribution of a given noise source to motion that is most deleterious to gravity wave detection, e.g., motion that mimics gravity wave signatures. I define such a benchmark in two senses: A relative benchmark that quantifies the degree of intrinsic interference with the gravity wave detection and an absolute benchmark which incorporates scaling factors appropriate to a given experiment. To give statistical meaning to the method and to illustrate it, I benchmark Gaussian noise and seismic colored Gaussian noise; both benchmark at 0 false events/day, which, applying a simple statistical model, implies <1 event for even year-long data runs. Finally, the relative benchmark for seismic noise at the Livingston observatory is (for the band from approx100-400 Hz), using two 24 h data sets, 40-290 false events/day. Given the LIGO I noise curves, it is shown that the seismic noise should not interfere with the detection of binary inspiral generated gravity waves using optimal filtering. Its absolute benchmark is 0 false events/day, which, applying as above a simple statistical model, implies <1 event/year. In rough terms, if only Livingston seismic noise and gravity waves were impinging on the detector, one would expect to see neutron star binary inspiral's that occur anywhere in the universe.

  6. The measurement of surface gravity

    NASA Technical Reports Server (NTRS)

    Harrison, J. C.; Lacoste, L. J. B.

    1978-01-01

    LaCoste and Romberg G and D gravity meters are normally employed when attempting high precision measurement of gravity differences on land. The capabilities and limitations of these instruments are discussed.

  7. Effect of melt convection at various gravity levels and orientations on the forces acting on a large spherical particle in the vicinity of a solidification interface

    NASA Astrophysics Data System (ADS)

    Bune, Andris V.; Sen, Subhayu; Mukherjee, Sundeep; Catalina, Adrian; Stefanescu, Doru M.

    2000-04-01

    Numerical modeling was undertaken to analyze the influence of both radial and axial thermal gradients on convection patterns and velocities during solidification of pure Al and an Al-4 wt% Cu alloy. The objective of the numerical task was to predict the influence of convective velocity on an insoluble particle near a solid/liquid (s/l) interface. These predictions were then be used to define the minimum gravity level ( g) required to investigate the fundamental physics of interactions between a particle and a s/l interface. This is an ongoing NASA funded flight experiment entitled "particle engulfment and pushing by solidifying interfaces (PEP)". Steady-state calculations were performed for different gravity levels and orientations with respect to the gravity vector. The furnace configuration used in this analysis is the quench module insert (QMI-1) proposed for the Material Science Research Facility (MSRF) on board the International Space Station (ISS). The general model of binary alloy solidification was based on the finite element code FIDAP. At a low g level of 10 -4g 0 ( g 0=9.8 m/s 2) maximum melt convection was obtained for an orientation of 90°. Calculations showed that even for this worst case orientation the dominant forces acting on the particle are the fundamental drag and interfacial forces.

  8. Effect of Melt Convection at Various Gravity Levels and Orientations on the Forces Acting on a Large Spherical Particle in the Vicinity of a Solidification Interface

    NASA Technical Reports Server (NTRS)

    Bune, Andris V.; Sen, Subhayu; Mukherjee, Sundeep; Catalina, Adrian; Stefanescu, Doru M.

    2000-01-01

    Numerical modeling was Undertaken to analyze the influence of both radial and axial thermal gradients on convection patterns and velocities claiming solidification of pure Al and an Al-4 wt% Cu alloy. The objective of the numerical task was to predict the influence of convective velocity on an insoluble particle near a solid/liquid (s/l) interface. These predictions were then be used to define the minimum gravity level (q) required to investigate the fundamental physics of interactions between a particle and a s/l interface. This is an ongoing NASA founded flight experiment entitled "particle engulfment and pushing by solidifying interfaces (PEP)". Steady-state calculations were performed for different gravity levels and orientations with respect to the gravity vector The furnace configuration used in this analysis is the quench module insert (QMI-1) proposed for the Material Science Research Facility (MSRF) on board the International Space Station (ISS). The general model of binary alloy solidification was based on the finite element code FIDAP. At a low g level of 10(exp -4) g(sub o) (g(sub o) = 9.8 m/square s) maximum melt convection was obtained for an orientation of 90 deg. Calculations showed that even for this worst case orientation the dominant forces acting on the particle are the fundamental drag and interfacial forces.

  9. High-level connectionist models. Semiannual report

    SciTech Connect

    Pollack, J.B.

    1989-08-01

    The major achievement of this semiannum was the significant revision and extension of the Recursive Auto-Associative Memory (RAAM) work for publication in the journal Artificial Intelligence. Included as an appendix to this report, the article includes several new elements: (1) Background - The work was more clearly set into the area of recursive distributed representations, machine learning, and the adequacy of the connectionist approach for high-level cognitive modeling; (2) New Experiment - RAAM was applied to finding compact representations for sequences of letters; (3) Analysis - The developed representations were analyzed as features which range from categorical to distinctive. Categorical features distinguish between conceptual categories while distinctive features vary within categories and discriminate or label the members. The representations were also analyzed geometrically; and (4) Applications - Feasibility studies were performed and described on inference by association, and on using RAAM-generated patterns along with cascaded networks for natural language parsing. Both of these remain long-term goals of the project.

  10. Goose Bay radar observations of Earth-reflected, atmospheric gravity waves in the high-latitude ionosphere

    SciTech Connect

    Samson, J.C.; Greenwald, R.A.; Ruohoniemi, J.M.; Frey, A.; Baker, K.B. )

    1990-06-01

    In the late fall and early winter, The Johns Hopkins University HF radar at Goose Bay, Labrador, observes the effects of atmospheric gravity waves on radar transmissions that are obliquely reflected from the ionosphere and subsequently backscattered from the Earth's surface. The waves exist under a wide variety of geomagnetic conditions; however, they are particularly noticeable under quiet conditions (O {le} Kp {le} 1 +). The clearest signatures of the waves are spatially localized enhancements in the backscattered power and quasi-periodic fluctuations in the backscatter powers, Doppler velocities, and reflection heights. The waves are generally observed during daylight hours and propagate equatorward from regions of high-latitude ionospheric backscatter that are located near the ionospheric convection reversal boundary. The gravity waves appear to be generated just equatorward of the dayside flow-reversal boundary in the vicinity of the auroral electrojet at altitudes of 115 to 135 km and propagate approximately perpendicular to the boundary along azimuths ranging from 156{degree} to 180{degree}. The waves propagate obliquely downward through the lower atmosphere until they are reflected by the Earth's surface back into the upper atmosphere. The frequencies associated with these gravity waves cover the range of 0.3 to 0.6 mHz, with wavelengths of 300 to 500 km, and with average phase velocities of 110 to 180 m/s. The maximum phase speeds are 270 to 300 m/s, which is slightly less than the speed of sound in the lower atmosphere. Poleward-propagating gravity waves are sometimes observed under disturbed conditions when the polar cap and convection reversal boundary have expanded equatorward.

  11. Effects of gravity level during directional solidification on the microstructure of hypermonotectic Al-In-Sn alloys

    SciTech Connect

    Curreri, P.A.; Kaukler, W.F.

    1986-11-01

    Five hypermonotectic Al-In-Sn compositions were directionally solidified in a Bridgman-type furnace at normal gravity and during aircraft low-gravity maneuvers. The tendency of the Al-30In alloy to form an indium-rich band at the start of unidirectional growth (SUG) made it difficult to study the integration of L/sub 2/into the solidification interface. Hypermonotectic compositions closer to monotectic slightly hypermonotectic caused only a partial band on L/sub 2/to form at SUG and allowed the study of such variables as gravity, composition, and monotectic dome height on integration of excess L /sub 2/into the solid plus L/sub 2/interface. It was found that formation of aligned composite structures for the Al-In-Sn system is not only a function of G and R but also of the degree to which the composition varies from monotectic. Most of the aligned fibrous structures formed from hypermonotectic Al-In-Sn had spacings that were of the order of irregular fibrous structures reported for on monotectic Al-In-Sn. The spacings for the large fibers and aligned globules found for ground and low-gravity processed Al-In-18-Sn-22, respectively, were significantly larger than the others measured and were of the order expected for cell spacings under the growth conditions utilized. It was found that the integration into the solidification front of excess L/sub 2/in low gravity was a function of the Sn composition of the alloy.

  12. Application of low-cost algal nitrogen source feeding in fuel ethanol production using high gravity sweet potato medium.

    PubMed

    Shen, Yu; Guo, Jin-Song; Chen, You-Peng; Zhang, Hai-Dong; Zheng, Xu-Xu; Zhang, Xian-Ming; Bai, Feng-Wu

    2012-08-31

    Protein-rich bloom algae biomass was employed as nitrogen source in fuel ethanol fermentation using high gravity sweet potato medium containing 210.0 g l(-1) glucose. In batch mode, the fermentation could not accomplish even in 120 h without any feeding of nitrogen source. While, the feeding of acid-hydrolyzed bloom algae powder (AHBAP) notably promoted fermentation process but untreated bloom algae powder (UBAP) was less effective than AHBAP. The fermentation times were reduced to 96, 72, and 72 h if 5.0, 10.0, and 20.0 g l(-1) AHBAP were added into medium, respectively, and the ethanol yields and productivities increased with increasing amount of feeding AHBAP. The continuous fermentations were performed in a three-stage reactor system. Final concentrations of ethanol up to 103.2 and 104.3 g l(-1) with 4.4 and 5.3 g l(-1) residual glucose were obtained using the previously mentioned medium feeding with 20.0 and 30.0 g l(-1) AHBAP, at dilution rate of 0.02 h(-1). Notably, only 78.5 g l(-1) ethanol and 41.6 g l(-1) residual glucose were obtained in the comparative test without any nitrogen source feeding. Amino acids analysis showed that approximately 67% of the protein in the algal biomass was hydrolyzed and released into the medium, serving as the available nitrogen nutrition for yeast growth and metabolism. Both batch and continuous fermentations showed similar fermentation parameters when 20.0 and 30.0 g l(-1) AHBAP were fed, indicating that the level of available nitrogen in the medium should be limited, and an algal nitrogen source feeding amount higher than 20.0 g l(-1) did not further improve the fermentation performance.

  13. Gravity Waves

    Atmospheric Science Data Center

    2013-04-19

    article title:  Gravity Waves Ripple over Marine Stratocumulus Clouds ... Imaging SpectroRadiometer (MISR), a fingerprint-like gravity wave feature occurs over a deck of marine stratocumulus clouds. Similar ... that occur when a pebble is thrown into a still pond, such "gravity waves" sometimes appear when the relatively stable and stratified air ...

  14. Estimating gravity wave parameters from oblique high-frequency backscatter: Modeling and analysis

    NASA Technical Reports Server (NTRS)

    Bristow, W. A.; Greenwald, R. A.

    1995-01-01

    A new technique for estimating electron density perturbation amplitudes of traveling ionospheric disturbances (TIDs), using HF radar data, is presented. TIDs are observed in HF radar data as enhancements of the ground-scattered power which propagate through the radar's field of view. These TIDs are the ionospheric manifestation of atmospheric acoustic-gravity waves. TID electron density perturbation amplitudes were estimated by simulating the radar returns, using HF ray tracing through a model ionosphere perturbed by a model gravity wave. The simulation determined the return power in the ground-scattered portion of the signal as a function of range, and this was compared to HF radar data from the Goose Bay HF radar at a time when evidence of gravity waves was present in the data. By varying the amplitude of the electron density perturbation in the model it was possible to estimate the perturbation of the actual wave. It was found that the perturbations that are observed by the Goose Bay HF radar are of the order of 20% to 35%. It was also found that the number of observable power enhancements, and the relative amplitudes of these enhancements, depended on the vertical thickness of the gravity wave's source region. From the simulations and observations it was estimated that the source region for the case presented here was approximately 20 km thick. In addition, the energy in the wave packet was calculated and compared to an estimate of the available energy in the source region. It was found that the wave energy was about 0.2% of the estimated available source region energy.

  15. Estimating gravity wave parameters from oblique high-frequency backscatter: Modeling and analysis

    SciTech Connect

    Bristow, W.A.; Greenwald, R.A.

    1995-03-01

    A new technique for estimating electron density perturbation amplitudes of traveling ionospheric disturbances (TIDs), using HF radar data, is presented. TIDs are observed in HF radar data as enhancements of the ground-scattered power which propagate through the radar`s field of view. These TIDs are the ionospheric manifestation of atmospheric acoustic-gravity waves. TID electron density perturbation amplitudes were estimated by simulating the radar returns, using HF ray tracing through a model ionosphere perturbed by a model gravity wave. The simulation determined the return power in the ground-scattered portion of the signal as a function of range, and this was compared to HF radar data from the Goose Bay HF radar at a time when evidence of gravity waves was present in the data. By varying the amplitude of the electron density perturbation in the model it was possible to estimate the perturbation of the actual wave. It was found that the perturbations that are observed by the Goose Bay HF radar are of the order of 20% to 35%. It was also found that the number of observable power enhancements, and the relative amplitudes of these enhancements, depended on the vertical thickness of the gravity wave`s source region. From the simulations and observations it was estimated that the source region for the case presented here was approximately 20 km thick. In addition, the energy in the wave packet was calculated and compared to an estimate of the available energy in the source region. It was found that the wave energy was about 0.2% of the estimated available source region energy. 20 refs., 12 figs.

  16. Comparison of publically available Moho depth and crustal thickness grids with newly derived grids by 3D gravity inversion for the High Arctic region.

    NASA Astrophysics Data System (ADS)

    Lebedeva-Ivanova, Nina; Gaina, Carmen; Minakov, Alexander; Kashubin, Sergey

    2016-04-01

    We derived Moho depth and crustal thickness for the High Arctic region by 3D forward and inverse gravity modelling method in the spectral domain (Minakov et al. 2012) using lithosphere thermal gravity anomaly correction (Alvey et al., 2008); a vertical density variation for the sedimentary layer and lateral crustal variation density. Recently updated grids of bathymetry (Jakobsson et al., 2012), gravity anomaly (Gaina et al, 2011) and dynamic topography (Spasojevic & Gurnis, 2012) were used as input data for the algorithm. TeMAr sedimentary thickness grid (Petrov et al., 2013) was modified according to the most recently published seismic data, and was re-gridded and utilized as input data. Other input parameters for the algorithm were calibrated using seismic crustal scale profiles. The results are numerically compared with publically available grids of the Moho depth and crustal thickness for the High Arctic region (CRUST 1 and GEMMA global grids; the deep Arctic Ocean grids by Glebovsky et al., 2013) and seismic crustal scale profiles. The global grids provide coarser resolution of 0.5-1.0 geographic degrees and not focused on the High Arctic region. Our grids better capture all main features of the region and show smaller error in relation to the seismic crustal profiles compare to CRUST 1 and GEMMA grids. Results of 3D gravity modelling by Glebovsky et al. (2013) with separated geostructures approach show also good fit with seismic profiles; however these grids cover the deep part of the Arctic Ocean only. Alvey A, Gaina C, Kusznir NJ, Torsvik TH (2008). Integrated crustal thickness mapping and plate recon-structions for the high Arctic. Earth Planet Sci Lett 274:310-321. Gaina C, Werner SC, Saltus R, Maus S (2011). Circum-Arctic mapping project: new magnetic and gravity anomaly maps of the Arctic. Geol Soc Lond Mem 35, 39-48. Glebovsky V.Yu., Astafurova E.G., Chernykh A.A., Korneva M.A., Kaminsky V.D., Poselov V.A. (2013). Thickness of the Earth's crust in the

  17. Generation of Acoustic Gravity Waves by Periodic Radio Transmissions from a High-Power Ionospheric Heater

    NASA Astrophysics Data System (ADS)

    Frolov, Vladimir; Chernogor, Leonid; Rozumenko, Victor

    The Radiophysical Research Institute (Nizhny Novgorod, Russia) and Kharkiv V. N. Karazin National University (Kharkiv, Ukraine) have studied opportunities for the effective generation of acoustic gravity waves (AGWs) in 3 - 180-min period range. The excitation of such waves was conducted for the last several years using the SURA heating facility (Nizhny Novgorod). The detection of the HF-induced AGWs was carried out in the Radiophysical Observatory located near Kharkiv City at a distance of about 960 km from the SURA. A coherent radar for vertical sounding, an ionosonde, and magnetometer chains were used in our measurements. The main results are the following (see [1-5]): 1. Infrasound oscillation trains with a period of 6 min are detected during periodic SURA heater turn-on and -off. Similar oscillation trains are detected after long time pumping, during periodic transmissions with a period of 20 s, as well as after pumping turn-off. The train recordings begin 28 - 54 min after the heater turn-on or -off, and the train propagation speeds are about 300 - 570 m/s, the value of which is close to the sound speed at upper atmospheric altitudes. The amplitude of the Doppler shift frequency is of 10 - 40 mHz, which fits to the 0.1 - 0.3% electron density disturbances at ionospheric altitudes. The amplitude of the infrasound oscillations depends on the SURA mode of operation and the state of the upper atmosphere and ionosphere. 2. High-power radio transmissions stimulate the generation (or enhancement) of waves at ionospheric altitudes in the range of internal gravity wave periods. The HF-induced waves propagate with speeds of 360 - 460 m/s and produce changes in electron density with amplitudes of 2 - 3%. The generation of such periodic perturbations is more preferable with periods of 10 - 60 minutes. Their features depend significantly on the heater mode of operation. It should be stressed that perturbation intensity increases when a pumping wave frequency approaches

  18. Tethered gravity laboratories study

    NASA Technical Reports Server (NTRS)

    Lucchetti, F.

    1989-01-01

    Variable Gravity Laboratory studies are discussed. The following subject areas are covered: (1) conceptual design and engineering analysis; (2) control strategies (fast crawling maneuvers, main perturbations and their effect upon the acceleration level); and (3) technology requirements.

  19. Integration of P- and SH-wave high-resolution seismic reflection and micro-gravity techniques to improve interpretation of shallow subsurface structure: New Madrid seismic zone

    USGS Publications Warehouse

    Bexfield, C.E.; McBride, J.H.; Pugin, Andre J.M.; Ravat, D.; Biswas, S.; Nelson, W.J.; Larson, T.H.; Sargent, S.L.; Fillerup, M.A.; Tingey, B.E.; Wald, L.; Northcott, M.L.; South, J.V.; Okure, M.S.; Chandler, M.R.

    2006-01-01

    Shallow high-resolution seismic reflection surveys have traditionally been restricted to either compressional (P) or horizontally polarized shear (SH) waves in order to produce 2-D images of subsurface structure. The northernmost Mississippi embayment and coincident New Madrid seismic zone (NMSZ) provide an ideal laboratory to study the experimental use of integrating P- and SH-wave seismic profiles, integrated, where practicable, with micro-gravity data. In this area, the relation between "deeper" deformation of Paleozoic bedrock associated with the formation of the Reelfoot rift and NMSZ seismicity and "shallower" deformation of overlying sediments has remained elusive, but could be revealed using integrated P- and SH-wave reflection. Surface expressions of deformation are almost non-existent in this region, which makes seismic reflection surveying the only means of detecting structures that are possibly pertinent to seismic hazard assessment. Since P- and SH-waves respond differently to the rock and fluid properties and travel at dissimilar speeds, the resulting seismic profiles provide complementary views of the subsurface based on different levels of resolution and imaging capability. P-wave profiles acquired in southwestern Illinois and western Kentucky (USA) detect faulting of deep, Paleozoic bedrock and Cretaceous reflectors while coincident SH-wave surveys show that this deformation propagates higher into overlying Tertiary and Quaternary strata. Forward modeling of micro-gravity data acquired along one of the seismic profiles further supports an interpretation of faulting of bedrock and Cretaceous strata. The integration of the two seismic and the micro-gravity methods therefore increases the scope for investigating the relation between the older and younger deformation in an area of critical seismic hazard. ?? 2006 Elsevier B.V. All rights reserved.

  20. Decontamination of high-level waste canisters

    SciTech Connect

    Nesbitt, J.F.; Slate, S.C.; Fetrow, L.K.

    1980-12-01

    This report presents evaluations of several methods for the in-process decontamination of metallic canisters containing any one of a number of solidified high-level waste (HLW) forms. The use of steam-water, steam, abrasive blasting, electropolishing, liquid honing, vibratory finishing and soaking have been tested or evaluated as potential techniques to decontaminate the outer surfaces of HLW canisters. Either these techniques have been tested or available literature has been examined to assess their applicability to the decontamination of HLW canisters. Electropolishing has been found to be the most thorough method to remove radionuclides and other foreign material that may be deposited on or in the outer surface of a canister during any of the HLW processes. Steam or steam-water spraying techniques may be adequate for some applications but fail to remove all contaminated forms that could be present in some of the HLW processes. Liquid honing and abrasive blasting remove contamination and foreign material very quickly and effectively from small areas and components although these blasting techniques tend to disperse the material removed from the cleaned surfaces. Vibratory finishing is very capable of removing the bulk of contamination and foreign matter from a variety of materials. However, special vibratory finishing equipment would have to be designed and adapted for a remote process. Soaking techniques take long periods of time and may not remove all of the smearable contamination. If soaking involves pickling baths that use corrosive agents, these agents may cause erosion of grain boundaries that results in rough surfaces.

  1. HIGH LEVEL RF FOR THE SNS RING.

    SciTech Connect

    ZALTSMAN,A.; BLASKIEWICZ,M.; BRENNAN,J.; BRODOWSKI,J.; METH,M.; SPITZ,R.; SEVERINO,F.

    2002-06-03

    A high level RF system (HLRF) consisting of power amplifiers (PA's) and ferrite loaded cavities is being designed and built by Brookhaven National Laboratory (BNL) for the Spallation Neutron Source (SNS) project. It is a fixed frequency, two harmonic system whose main function is to maintain a gap for the kicker rise time. Three cavities running at the fundamental harmonic (h=l) will provide 40 kV and one cavity at the second harmonic (h=2) will provide 20 kV. Each cavity has two gaps with a design voltage of 10 kV per gap and will be driven by a power amplifier (PA) directly adjacent to it. The PA uses a 600kW tetrode to provide the necessary drive current. The anode of the tetrode is magnetically coupled to the downstream cell of the cavity. Drive to the PA will be provided by a wide band, solid state amplifier located remotely. A dynamic tuning scheme will be implemented to help compensate for the effect of beam loading.

  2. Physical exertion may cause high troponin levels.

    PubMed

    Agewall, Stefan; Tjora, Solve

    2011-11-15

    It is important to measure troponin levels when acute myocardial infarct is suspected. Many other factors that affect the heart can cause an increase in troponin levels, for example extreme physical exertion. Recent studies have shown that more normal physical activity can also lead to increase in troponin levels in healthy individuals.

  3. The Current Status of the Space Station Biological Research Project: a Core Facility Enabling Multi-Generational Studies under Slectable Gravity Levels

    NASA Astrophysics Data System (ADS)

    Santos, O.

    2002-01-01

    The Space Station Biological Research Project (SSBRP) has developed a new plan which greatly reduces the development costs required to complete the facility. This new plan retains core capabilities while allowing for future growth. The most important piece of equipment required for quality biological research, the 2.5 meter diameter centrifuge capable of accommodating research specimen habitats at simulated gravity levels ranging from microgravity to 2.0 g, is being developed by NASDA, the Japanese space agency, for the SSBRP. This is scheduled for flight to the ISS in 2007. The project is also developing a multi-purpose incubator, an automated cell culture unit, and two microgravity habitat holding racks, currently scheduled for launch in 2005. In addition the Canadian Space Agency is developing for the project an insect habitat, which houses Drosophila melanogaster, and provides an internal centrifuge for 1 g controls. NASDA is also developing for the project a glovebox for the contained manipulation and analysis of biological specimens, scheduled for launch in 2006. This core facility will allow for experimentation on small plants (Arabidopsis species), nematode worms (C. elegans), fruit flies (Drosophila melanogaster), and a variety of microorganisms, bacteria, yeast, and mammalian cells. We propose a plan for early utilization which focuses on surveys of changes in gene expression and protein structure due to the space flight environment. In the future, the project is looking to continue development of a rodent habitat and a plant habitat that can be accommodated on the 2.5 meter centrifuge. By utilizing the early phases of the ISS to broadly answer what changes occur at the genetic and protein level of cells and organisms exposed to the ISS low earth orbit environment, we can generate interest for future experiments when the ISS capabilities allow for direct manipulation and intervention of experiments. The ISS continues to hold promise for high quality, long

  4. The effects of winds and atmospheric structure on long-range gravity wave propagation at high latitudes

    NASA Astrophysics Data System (ADS)

    Heale, C. J.; Snively, J. B.; Hickey, M. P.

    2013-12-01

    Recent studies of waves over Halley, Antarctica by Nielsen et al. [JASTP, 71,8 2009; JGR, 117, D5, 2012] suggest that gravity waves at high latitude sites are less likely to exhibit narrow ducting in the mesosphere and lower thermosphere (MLT) region than at mid-to-low latitude sites, and thus may be less likely to travel large horizontal distances. These studies estimate that 82% of the wave events are freely propagating (not ducted), when compared to ~25% in some mid/low-latitude studies [Isler et al., JGR, 102, D22, 1997]. This is due to relatively weak meridional winds at high latitudes, which are typically not strong enough to provide a Doppler ducted environment. However, thermal reflection of gravity waves may still occur in the lower thermosphere, which may lead to deep non-ideal thermal ducting between the thermosphere and ground, providing another mechanism for long range propagation that would not necessarily be identifiable in measurements at OH airglow heights. In general, the horizontal propagation of gravity waves is highly dependent on the wave parameters and background atmosphere/wind structure. This complex interaction will determine dissipation processes, propagation trajectories, packet spatial extents and spectral evolutions, among other things. We use a 2D, nonlinear, compressible model [e.g., Snively et al., JGR, 113, A06303, 2008] to study specific cases of long-range propagation of atmospheric gravity waves in high-latitude atmospheric conditions, and a 1D steady-state compressible full-wave model [e.g., Hickey et al., JGR, 102, A6 1997] to study effects of varying atmospheric parameters. We investigate possible conditions which are (or are not) conducive to sustained propagation via reflections, and how these conditions may vary in space or time. Background temperature and wind structure are specified to represent profiles over Halley, Antarctica, in order to compare with observations at the same location and to assess the effects of

  5. High-Gravity Carbonation Process for Enhancing CO2 Fixation and Utilization Exemplified by the Steelmaking Industry.

    PubMed

    Pan, Shu-Yuan; Chen, Yi-Hung; Chen, Chun-Da; Shen, Ai-Lin; Lin, Michael; Chiang, Pen-Chi

    2015-10-20

    The high-gravity carbonation process for CO2 mineralization and product utilization as a green cement was evaluated using field operation data from the steelmaking industry. The effect of key operating factors, including rotation speed, liquid-to-solid ratio, gas flow rate, and slurry flow rate, on CO2 removal efficiency was studied. The results indicated that a maximal CO2 removal of 97.3% was achieved using basic oxygen furnace slag at a gas-to-slurry ratio of 40, with a capture capacity of 165 kg of CO2 per day. In addition, the product with different carbonation conversions (i.e., 0%, 17%, and 48%) was used as supplementary cementitious materials in blended cement at various substitution ratios (i.e., 0%, 10%, and 20%). The performance of the blended cement mortar, including physicochemical properties, morphology, mineralogy, compressive strength, and autoclave soundness, was evaluated. The results indicated that the mortar with a high carbonation conversion of slag exhibited a higher mechanical strength in the early stage than pure portland cement mortar, suggesting its suitability for use as a high early strength cement. It also possessed superior soundness compared to the mortar using fresh slag. Furthermore, the optimal operating conditions of the high-gravity carbonation were determined by response surface models for maximizing CO2 removal efficiency and minimizing energy consumption.

  6. High-Gravity Carbonation Process for Enhancing CO2 Fixation and Utilization Exemplified by the Steelmaking Industry.

    PubMed

    Pan, Shu-Yuan; Chen, Yi-Hung; Chen, Chun-Da; Shen, Ai-Lin; Lin, Michael; Chiang, Pen-Chi

    2015-10-20

    The high-gravity carbonation process for CO2 mineralization and product utilization as a green cement was evaluated using field operation data from the steelmaking industry. The effect of key operating factors, including rotation speed, liquid-to-solid ratio, gas flow rate, and slurry flow rate, on CO2 removal efficiency was studied. The results indicated that a maximal CO2 removal of 97.3% was achieved using basic oxygen furnace slag at a gas-to-slurry ratio of 40, with a capture capacity of 165 kg of CO2 per day. In addition, the product with different carbonation conversions (i.e., 0%, 17%, and 48%) was used as supplementary cementitious materials in blended cement at various substitution ratios (i.e., 0%, 10%, and 20%). The performance of the blended cement mortar, including physicochemical properties, morphology, mineralogy, compressive strength, and autoclave soundness, was evaluated. The results indicated that the mortar with a high carbonation conversion of slag exhibited a higher mechanical strength in the early stage than pure portland cement mortar, suggesting its suitability for use as a high early strength cement. It also possessed superior soundness compared to the mortar using fresh slag. Furthermore, the optimal operating conditions of the high-gravity carbonation were determined by response surface models for maximizing CO2 removal efficiency and minimizing energy consumption. PMID:26397167

  7. DEFENSE HIGH LEVEL WASTE GLASS DEGRADATION

    SciTech Connect

    W. Ebert

    2001-09-20

    The purpose of this Analysis/Model Report (AMR) is to document the analyses that were done to develop models for radionuclide release from high-level waste (HLW) glass dissolution that can be integrated into performance assessment (PA) calculations conducted to support site recommendation and license application for the Yucca Mountain site. This report was developed in accordance with the ''Technical Work Plan for Waste Form Degradation Process Model Report for SR'' (CRWMS M&O 2000a). It specifically addresses the item, ''Defense High Level Waste Glass Degradation'', of the product technical work plan. The AP-3.15Q Attachment 1 screening criteria determines the importance for its intended use of the HLW glass model derived herein to be in the category ''Other Factors for the Postclosure Safety Case-Waste Form Performance'', and thus indicates that this factor does not contribute significantly to the postclosure safety strategy. Because the release of radionuclides from the glass will depend on the prior dissolution of the glass, the dissolution rate of the glass imposes an upper bound on the radionuclide release rate. The approach taken to provide a bound for the radionuclide release is to develop models that can be used to calculate the dissolution rate of waste glass when contacted by water in the disposal site. The release rate of a particular radionuclide can then be calculated by multiplying the glass dissolution rate by the mass fraction of that radionuclide in the glass and by the surface area of glass contacted by water. The scope includes consideration of the three modes by which water may contact waste glass in the disposal system: contact by humid air, dripping water, and immersion. The models for glass dissolution under these contact modes are all based on the rate expression for aqueous dissolution of borosilicate glasses. The mechanism and rate expression for aqueous dissolution are adequately understood; the analyses in this AMR were conducted to

  8. Electrochemical energy storage by polyaniline nanofibers: high gravity assisted oxidative polymerization vs. rapid mixing chemical oxidative polymerization.

    PubMed

    Zhao, Yibo; Wei, Huige; Arowo, Moses; Yan, Xingru; Wu, Wei; Chen, Jianfeng; Wang, Yiran; Guo, Zhanhu

    2015-01-14

    Polyaniline (PANI) nanofibers prepared by high gravity chemical oxidative polymerization in a rotating packed bed (RPB) have demonstrated a much higher specific capacitance of 667.6 F g(-1) than 375.9 F g(-1) of the nanofibers produced by a stirred tank reactor (STR) at a gravimetric current of 10 A g(-1). Meanwhile, the cycling stability of the electrode is 62.2 and 65.9% for the nanofibers from RPB and STR after 500 cycles, respectively. PMID:25431883

  9. Fermilab tevatron high level RF accelerating systems

    SciTech Connect

    Kerns, Q.; Kerns, C.; Miller, H.; Reid, J.; Tawzer, S.; Webber, R.; Wildman, D.

    1985-10-01

    Eight tuned rf cavities have been installed and operated in the F0 straight section of the Tevatron. Their mechanical placement along the beam line enables them to be operated for colliding beams as two independent groups of four cavities, group 1-4 accelerating antiprotons and group 5-8 accelerating protons. The only difference is that the spacing between cavities 4 and 5 was increased to stay clear of the F0 colliding point. The cavities can easily be rephased by switching cables in a low-level distribution system (fan-out) so that the full accelerating capability of all eight cavities can be used during fixed target operations. Likewise, the cables from capacitive probes on each cavity gap can be switched to proper lengths and summed in a fan-back system to give an rf signal representing the amplitude and phase as ''seen by the beam,'' separately for protons and antiprotons. Such signals have been used to phase lock the Tevatron to the Main Ring for synchronous transfer. A cavity consists of two quarter-wave resonators placed back to back with a coaxial drift tube separating the two accelerating gaps by ..pi.. radians. The cavities are very similar to the prototype which has been previously described/sup 3/ and is operating as Station 8 in the Tevatron. Only additional water cooling around the high current region of the drift tube supports and a double loop used to monitor the unbalance current through the Hipernom mode damping resistor have been added. Each cavity has a Q of about7100, a shunt impedance of 1.2 M..cap omega.., and is capable of running cw with a peak accelerating voltage of 360

  10. High-Accuracy Measurements of the Centre of Gravity of Avalanches in Proportional Chambers

    DOE R&D Accomplishments Database

    Charpak, G.; Jeavons, A.; Sauli, F.; Stubbs, R.

    1973-09-24

    In a multiwire proportional chamber the avalanches occur close to the anode wires. The motion of the positive ions in the large electric fields at the vicinity of the wires induces fast-rising positive pulses on the surrounding electrodes. Different methods have been developed in order to determine the position of the centre of the avalanches. In the method we describe, the centre of gravity of the pulse distribution is measured directly. It seems to lead to an accuracy which is limited only by the stability of the spatial distribution of the avalanches generated by the process being measured.

  11. Point stability at shallow depths: experience from tilt measurements in the Lower Rhine Embayment, Germany, and implications for high-resolution GPS and gravity recordings

    NASA Astrophysics Data System (ADS)

    Kümpel, H.-J.; Lehmann, K.; Fabian, M.; Mentes, Gy.

    2001-09-01

    From 1996 to 1999, we have studied ground tilts at depths of between 2m and 5m at three sites in the Lower Rhine Embayment (LRE), western Germany. The LRE is a tectonically active extensional sedimentary basin roughly 50km×100km. The purpose of the tilt measurements was (a) to provide insight into the magnitude, nature and variability of background tilts and (b) to assess possible limitations of high-resolution GPS campaigns and microgravity surveys due to natural ground deformation. The tilt readings, sensed by biaxial borehole tiltmeters of baselength 0.85m, cover a frequency range from 10-8Hz to 10-2Hz (periods from minutes to years). Assuming that the tilt signals represent ground displacements on a scale typically not larger than several times the tiltmeters' baselength, and that tilt signals at shallow depth could in a simple geometric way be related to changes in surface elevation and gravity, we try to estimate the magnitude level of point movements and corresponding Bouguer gravity effects that is generally not surpassed. The largest tilt signals observed were some +/-50µradyr-1. If they were observable over a ground section of extension, e.g. 10m, the converted rates may correspond to about +/-0.5mm per 10myr-1 in vertical ground displacement, and +/-0.1µgalyr-1 in Bouguer gravity effect, respectively. Large signals are mostly related to seasonal effects, probably linked to thermomechanical strain. Other causes of ground deformation identified include seepage effects after rainfalls (order of +/-10µrad) and diurnal strains due to thermal heating and/or fluctuations in the water consumption of nearby trees (order of +/-1µrad). Episodic step-like tilt anomalies with amplitudes up to 22µrad at one of the observation sites might reflect creep events associated to a nearby active fault. Except for short-term ground deformation caused by the passage of seismic waves from distant earthquakes, amplitudes of non-identified tilt signals in the studied

  12. High-frequency non-tidal ocean loading effects on surface gravity measurements

    NASA Astrophysics Data System (ADS)

    Paul Boy, Jean; Lyard, Florent

    2008-10-01

    We model atmospheric and non-tidal oceanic loading effects on surface gravity variations, using global surface pressure field provided by the European Centre for Medium-range Weather Forecasts (ECMWF), and sea surface height from the Toulouse Hydrodynamic Unstructured Grid Ocean model (HUGO-m) barotropic ocean model. We show the improvement in terms of reduction of variance of 15 different superconducting gravimeters of the worldwide Global Geodynamics Project (GGP) network, compared to the classical inverted barometer assumption. We also study two storm surges over the Western European Shelf in 2000 and 2003. We compare the HUGO-m sea surface height variations to various tide gauges measurements as well as the induced loading effects to the computations of Fratepietro et al., using the Proudman Storm Surge model, for the Membach (Belgium) station. The agreement between modelled ocean loading and gravity observations is largely improved when using a global atmospheric loading correction, compared to the classical local approach. The remaining discrepancies are mainly due to hydrological loading contributions.

  13. Hot water and dilute acid pretreatment of high and low specific gravity Populus deltoides clones.

    PubMed

    Martin, Elizabeth M; Bunnell, Kris A; Lau, Ching-Shuan; Pelkki, Matthew H; Patterson, David W; Clausen, Edgar C; Smith, James A; Carrier, Danielle Julie

    2011-02-01

    Populus sp. are hardwood feedstocks that grow in forest management areas that are logged for softwoods; however, they are also being considered as an energy-destined feedstock. The objective of this work was to determine the effect of xylose yield from dilute acid and hot water pretreatments performed in unstirred batch stainless steel reactors at temperatures ranging from 140 to 200°C. Populus deltoides clones S13C20 and S7C15 used in this study originated from Eastern Texas and were cultivated for 14 years in Pine Tree, AR. P. deltoides clones S13C20 and S7C15 had specific gravities of 0.48 and 0.40, respectively. Bark and wood were examined separately. As expected, hot water pretreatments, in the tested temperature range, resulted in very little direct xylose recovery. However, the 140°C dilute acid pretreatment of the lower specific gravity clone, S7C15, wood yielded the highest average xylose recovery of 56%. This condition also yielded the highest concentration of furfural, 9 mg/g sample, which can be inhibitory to the fermentation step. The highest xylose recovery from bark samples, 31%, was obtained with clone S7C15, using the 160°C dilute acid pretreatment for 60 min.

  14. Statistics of high-level scene context

    PubMed Central

    Greene, Michelle R.

    2013-01-01

    Context is critical for recognizing environments and for searching for objects within them: contextual associations have been shown to modulate reaction time and object recognition accuracy, as well as influence the distribution of eye movements and patterns of brain activations. However, we have not yet systematically quantified the relationships between objects and their scene environments. Here I seek to fill this gap by providing descriptive statistics of object-scene relationships. A total of 48, 167 objects were hand-labeled in 3499 scenes using the LabelMe tool (Russell et al., 2008). From these data, I computed a variety of descriptive statistics at three different levels of analysis: the ensemble statistics that describe the density and spatial distribution of unnamed “things” in the scene; the bag of words level where scenes are described by the list of objects contained within them; and the structural level where the spatial distribution and relationships between the objects are measured. The utility of each level of description for scene categorization was assessed through the use of linear classifiers, and the plausibility of each level for modeling human scene categorization is discussed. Of the three levels, ensemble statistics were found to be the most informative (per feature), and also best explained human patterns of categorization errors. Although a bag of words classifier had similar performance to human observers, it had a markedly different pattern of errors. However, certain objects are more useful than others, and ceiling classification performance could be achieved using only the 64 most informative objects. As object location tends not to vary as a function of category, structural information provided little additional information. Additionally, these data provide valuable information on natural scene redundancy that can be exploited for machine vision, and can help the visual cognition community to design experiments guided by

  15. Food and Nutrition Curriculum Guide for Florida. Elementary Level, Middle/Junior High Level, Senior High Level, Post-Secondary Level.

    ERIC Educational Resources Information Center

    Crabtree, Myrna P.; Baum, Rosemere

    This curriculum guide contains competency-based curricula suggested for teaching foods and nutrition courses on the elementary, middle/junior high school, senior high school, and postsecondary levels in Florida. For each level, concepts and subconcepts are presented, referenced to competencies or terminal performance objectives. For each…

  16. Observation and modeling of Na density and OH airglow temperature and intensity perturbations by a gravity wave approaching a critical level

    NASA Astrophysics Data System (ADS)

    Snively, J. B.; Pautet, P.; Taylor, M. J.; Swenson, G. R.

    2009-12-01

    Atmospheric gravity waves at a broad range of temporal and spatial scales are frequently observed in MLT airglow imaging experiments. Airglow data provide significant insight into gravity wave propagation, directionality, and seasonality, and allow estimations of wave fluxes [e.g., Swenson et al., JGR, 104(D6), 1999]. The USU CEDAR Mesospheric Temperature Mapper (MTM) is a specialized CCD airglow imaging system, which was operated at Maui MALT from November 2001 to December 2006. The MTM captures OH(6,2) and O2(0,1) emissions intensities and associated rotational temperatures. The MTM has been used previously to assess zenith temperatures, showing close agreement with simultaneous lidar temperature data [Zhao et al., J. Geophys. Res., 110, D09S07, 2005]. It is additionally able to reveal two-dimensional structure of intensity and temperature perturbations associated with small-scale gravity waves. Here we investigate the vertical and horizontal structure of a small-scale gravity wave (~18 minute period and ~37 km horizontal wavelength) captured by the Maui MTM on April 11, 2002. The event was strongly visible in the OH(6,2) image data, showing intensity perturbations ~ 5-10 %, however relatively weak in the O2 data. Lidar temperatures and winds suggest the presence of a critical level shortly above ~90 km, which would have contributed to increased dissipation, and reduced detectability, due to small vertical scale. Using imaged intensity and rotational temperature data, along with evolving Na lidar data, we reconstruct and simulate the wave event under realistic ambient conditions using a suite of numerical models. Hydroxyl photochemistry and dynamics of O3, H, O, and Na densities are obtained with a two-dimensional nonlinear numerical model for gravity wave dynamics [Snively and Pasko, JGR, 113, A06303, 2008], allowing direct comparison of OH(6,2) intensity and brightness-weighted temperature perturbations [e.g., Makhlouf et al., JGR, 100(D6), 11289, 1995]. The

  17. High-energy scatterings in infinite-derivative field theory and ghost-free gravity

    NASA Astrophysics Data System (ADS)

    Talaganis, Spyridon; Mazumdar, Anupam

    2016-07-01

    In this paper, we will consider scattering diagrams in the context of infinite-derivative theories. First, we examine a finite-order, higher-derivative scalar field theory and find that we cannot eliminate the growth of scattering diagrams for large external momenta. Then, we employ an infinite-derivative scalar toy model and obtain that the external momentum dependence of scattering diagrams is convergent as the external momenta become very large. In order to eliminate the external momentum growth, one has to dress the bare vertices of the scattering diagrams by considering renormalised propagator and vertex loop corrections to the bare vertices. Finally, we investigate scattering diagrams in the context of a scalar toy model which is inspired by a ghost-free and singularity-free infinite-derivative theory of gravity, where we conclude that infinite derivatives can eliminate the external momentum growth of scattering diagrams and make the scattering diagrams convergent in the ultraviolet.

  18. Exploring medium gravity icy planetary bodies: an opportunity in the Inner System by landing at Ceres high latitudes

    NASA Astrophysics Data System (ADS)

    Poncy, J.; Grasset, O.; Martinot, V.; Tobie, G.

    2009-04-01

    With potentially up to 25% of its mass as H2O and current indications of a differentiated morphology, 950km-wide "dwarf planet" Ceres is holding the promise to be our closest significant icy planetary body. Ceres is within easier reach than the icy moons, allowing for the use of solar arrays and not lying inside the deep gravity well of a giant planet. As such, it would represent an ideal step stone for future in-situ exploration of other airless icy bodies of major interest such as Europa or Enceladus. But when NASA's Dawn orbits Ceres and maps it in 2015, will we be ready to undertake the next logical step: landing? Ceres' gravity at its poles, at about one fifth of the Moon's gravity, is too large for rendezvous-like asteroid landing techniques to apply. Instead, we are there fully in the application domain of soft precision landing techniques such as the ones being developed for ESA's MoonNext mission. These latter require a spacecraft architecture akin to robotic lunar Landers or NASA's Phoenix, and differing from missions to comets and asteroids. If Dawn confirms the icy nature of Ceres under its regolith-covered surface, the potential presence of some ice spots on the surface would call for specific attention. Such spots would indeed be highly interesting landing sites. They are more likely to lie close to the poles of Ceres where cold temperatures should prevent exposed ice from sublimating and/or may limit the thickness of the regolith layer. Also the science and instruments suite should be fitted to study a large body that has probably been or may still be geologically active: its non-negligible gravity field combined with its high volatile mass fraction would then bring Ceres closer in morphology and history to an "Enceladus" or a frozen or near-frozen "Europa" than to a rubble-pile-structured asteroid or a comet nucleus. Thales Alenia Space and the "Laboratoire de Planétologie et Géodynamique" of the University of Nantes have carried out a preliminary

  19. Increased expression of the yeast multidrug resistance ABC transporter Pdr18 leads to increased ethanol tolerance and ethanol production in high gravity alcoholic fermentation

    PubMed Central

    2012-01-01

    Background The understanding of the molecular basis of yeast tolerance to ethanol may guide the design of rational strategies to increase process performance in industrial alcoholic fermentations. A set of 21 genes encoding multidrug transporters from the ATP-Binding Cassette (ABC) Superfamily and Major Facilitator Superfamily (MFS) in S. cerevisiae were scrutinized for a role in ethanol stress resistance. Results A yeast multidrug resistance ABC transporter encoded by the PDR18 gene, proposed to play a role in the incorporation of ergosterol in the yeast plasma membrane, was found to confer resistance to growth inhibitory concentrations of ethanol. PDR18 expression was seen to contribute to decreased 3 H-ethanol intracellular concentrations and decreased plasma membrane permeabilization of yeast cells challenged with inhibitory ethanol concentrations. Given the increased tolerance to ethanol of cells expressing PDR18, the final concentration of ethanol produced during high gravity alcoholic fermentation by yeast cells devoid of PDR18 was lower than the final ethanol concentration produced by the corresponding parental strain. Moreover, an engineered yeast strain in which the PDR18 promoter was replaced in the genome by the stronger PDR5 promoter, leading to increased PDR18 mRNA levels during alcoholic fermentation, was able to attain a 6 % higher ethanol concentration and a 17 % higher ethanol production yield than the parental strain. The improved fermentative performance of yeast cells over-expressing PDR18 was found to correlate with their increased ethanol tolerance and ability to restrain plasma membrane permeabilization induced throughout high gravity fermentation. Conclusions PDR18 gene over-expression increases yeast ethanol tolerance and fermentation performance leading to the production of highly inhibitory concentrations of ethanol. PDR18 overexpression in industrial yeast strains appears to be a promising approach to improve alcoholic

  20. Impacts of Thermal and Wind structures on Mesospheric Short-period Gravity Wave Propagation at High Latitudes

    NASA Astrophysics Data System (ADS)

    Nielsen, Kim; Taylor, Michael J.; Siskind, David; Collins, Richard; Harvey, V. Lynn; Russell, James; Irving, Brita; Negale, Michael

    2012-07-01

    Mesospheric short-period (<1-hr) gravity waves are of great importance for dynamics in the mesosphere-lower thermosphere (MLT) region, and are typically measured by instruments capable of high temporal and/or spatial resolutions, such as lidars and airglow imagers. These waves have been studied extensively at low- and mid-latitudes where known wave sources are well established. The results show strong dependence on the background wind and temperature fields, which can act as a barrier prohibiting vertical propagation of the waves, as well as providing a ducted environment in which the waves can travel large horizontal distances. In fact, results show that up to 75% of these waves may exhibit ducted wave motion. Recent efforts to quantify the existence and nature of these waves over the Antarctic continent have lead to a long-term (10 years) data set obtained with airglow imagers. Our results suggest that these southern polar waves are predominantly freely propagating in the airglow region, in stark contrast to results at other latitudes. A new study in the Arctic enables a comparison between the two data sets. In this work, we investigate the propagation nature of the observed wave field and attempt to identify dominant source regions and potential sources of polar gravity waves through ray tracing.

  1. On the influence of the ground track on the gravity field recovery from high-low satellite-to-satellite tracking missions: CHAMP monthly gravity field recovery using the energy balance approach revisited

    NASA Astrophysics Data System (ADS)

    Weigelt, Matthias; Sideris, Michael G.; Sneeuw, Nico

    2009-12-01

    In this paper, the influence of the ground track coverage on the quality of a monthly gravity field solution is investigated for the scenario of a high-low satellite- to-satellite tracking mission. Data from the CHAllenging Minisatellite Payload ( champ) mission collected in the period April 2002 to February 2004 has been used to recover the gravity field to degree and order 70 on a monthly basis. The quality is primarily restricted by the accuracy of the instruments. Besides, champ passed through a 31/2 repeat mode three times during the period of interest resulting in an insufficient spatial sampling and a degraded solution. Contrary to the rule of thumb by Colombo (The global mapping of gravity with two satellites, Publications on Geodesy, vol 7(3), Netherlands Geodetic Commission, The Netherlands, 263 pp, 1984), see also Wagner (J Geod 80(2): 94-103, 2006), we found that the monthly solutions themselves could be recovered to about degree 30, not 15. In order to improve the monthly gravity solutions, two strategies have been developed: the restriction to a low degree, and the densification of the sampling by the introduction of additional sensitive measurements from contemporaneous satellite missions. The latter method is tested by combining the champ measurements with data from the Gravity Recovery And Climate Experiment ( grace). Note that the two grace satellites are considered independent here, i.e. no use is made of the K-band ranging data. This way, we are able to almost entirely remove the influence of the ground track leaving the accuracy of the instruments as the primary restriction on the quality of a monthly solution. These findings are especially interesting for the upcoming swarm-mission since it will consist of a similar configuration as the combined champ and ( grace) missions.

  2. New Antarctic gravity anomaly grid for enhanced geodetic and geophysical studies in Antarctica

    NASA Astrophysics Data System (ADS)

    Scheinert, M.; Ferraccioli, F.; Schwabe, J.; Bell, R.; Studinger, M.; Damaske, D.; Jokat, W.; Aleshkova, N.; Jordan, T.; Leitchenkov, G.; Blankenship, D. D.; Damiani, T. M.; Young, D.; Cochran, J. R.; Richter, T. D.

    2016-01-01

    Gravity surveying is challenging in Antarctica because of its hostile environment and inaccessibility. Nevertheless, many ground-based, airborne, and shipborne gravity campaigns have been completed by the geophysical and geodetic communities since the 1980s. We present the first modern Antarctic-wide gravity data compilation derived from 13 million data points covering an area of 10 million km2, which corresponds to 73% coverage of the continent. The remove-compute-restore technique was applied for gridding, which facilitated leveling of the different gravity data sets with respect to an Earth gravity model derived from satellite data alone. The resulting free-air and Bouguer gravity anomaly grids of 10 km resolution are publicly available. These grids will enable new high-resolution combined Earth gravity models to be derived and represent a major step forward toward solving the geodetic polar data gap problem. They provide a new tool to investigate continental-scale lithospheric structure and geological evolution of Antarctica.

  3. Globalism on the High School Level.

    ERIC Educational Resources Information Center

    Presutti, Robert M.

    1997-01-01

    Describes the International Sibling Program at Lewiston-Porter High School in Youngstown, New York. Notes that 10 "sibling schools" in eight countries participate by exchanging faculty and students. Suggests that the program has given students, staff, and the community many opportunities to interact with the real world. (RS)

  4. Formal Thought at the High School Level

    ERIC Educational Resources Information Center

    Johnson, Donald

    1977-01-01

    A study was undertaken to determine the Piagetian stages of intellectual development of a group of Saskatchewan high school students. Results confirmed that the percentage of students at the final substage of formal thought was less than 50 percent, indicating serious problems. (JC)

  5. How High Glucose Levels Affect Tendon Homeostasis.

    PubMed

    Snedeker, Jess G

    2016-01-01

    Among the many factors playing a role in tendon disease, unregulated biochemical reactions between glucose and the collagen extracellular matrix are coming increasingly into focus. We have shown that formation of advanced glycation end-products that cross-link the collagen extracellular matrix can drastically affect cellular level mechanical properties of the matrix, and in turn affect cell-level biomechanical stimuli during physiological loading of the tissue. We suggest that these may adversely affect tendon cell response to matrix damage, as well as the quality of the consequent repair. If such mechanical feedback loops are altered, the ability of tendon cells to maintain tissue in a functional, healthy state may be compromised. Although key foundational elements of biochemical, biomechanical, and biological understanding are now in place, the full extent of how these aspects interact, including the precise mechanisms by which advanced glycation end-products pathologically disrupt connective tissue homeostasis and damage repair, are only beginning to be adequately appreciated. PMID:27535261

  6. High resolution evidence for the Garrett-Munk spectrum of stratospheric gravity waves

    NASA Technical Reports Server (NTRS)

    Dewan, E. M.; Grossbard, N.; Quesada, A. F.; Good, R. E.

    1984-01-01

    Vertical profiles of scalar horizontal winds have been measured at high resolution (10 m) in the 13 to 37 km region of the stratosphere. This resolution (at that range of altitude) represents the state-of-the-art, and is unique. The technique used smoke trails laid by rockets in the stratosphere, and were taken by AFGL at Wallops Island, VA, White Sands Missile Range, NM, and Ft. Churchill, Canada, in the 1977-78 time period. Two or three cameras were used to give the time-lapse photographs. The goal was to ascertain whether or not the internal waves of the stratosphere behave consistently with the Garrett-Munk model which was originally created for oceanic internal waves. Five profiles of horizontal wind are presented. It is concluded: (1) stratospheric internal waves obey the Garrett-Munk model for vertical wave numbers; (2) there is not statistically significant evidence for a break in the curve at high wave numbers when due allowance is made for aliasing effects; and (3) the power density level of the spectra are almost equal on a log-log scale in spite of the difference in time, season, and geographical location.

  7. Fermilab Tevatron high level rf accelerating systems

    SciTech Connect

    Kerns, Q.; Kerns, C.; Miller, H.; Tawser, S.; Reid, J.; Webber, R.; Wildman, D.

    1985-06-01

    Eight tuned rf cavities have been installed and operated in the F0 straight section of the Tevatron. Their mechanical placement along the beam line enables them to be operated for colliding beams as two independent groups of four cavities, group 1-4 accelerating antiprotons and group 5-8 accelerating protons. The only difference is that the spacing between cavities 4 and 5 was increased to stay clear of the F0 colliding point. The cavities can easily be rephased by switching cables in a low-level distribution system (fan-out) so that the full accelerating capability of all eight cavities can be used during fixed target operations. Likewise, the cables from capacitive probes on each cavity gap can be switched to proper lengths and summed in a fan-back system to give an rf signal representing the amplitude and phase as ''seen by the beam,'' separately for protons and antiprotons. Such signals have been used to phase lock the Tevatron to the Main Ring for synchronous transfer.

  8. Bumblebee Pupae Contain High Levels of Aluminium

    PubMed Central

    Exley, Christopher; Rotheray, Ellen; Goulson, David

    2015-01-01

    The causes of declines in bees and other pollinators remains an on-going debate. While recent attention has focussed upon pesticides, other environmental pollutants have largely been ignored. Aluminium is the most significant environmental contaminant of recent times and we speculated that it could be a factor in pollinator decline. Herein we have measured the content of aluminium in bumblebee pupae taken from naturally foraging colonies in the UK. Individual pupae were acid-digested in a microwave oven and their aluminium content determined using transversely heated graphite furnace atomic absorption spectrometry. Pupae were heavily contaminated with aluminium giving values between 13.4 and 193.4 μg/g dry wt. and a mean (SD) value of 51.0 (33.0) μg/g dry wt. for the 72 pupae tested. Mean aluminium content was shown to be a significant negative predictor of average pupal weight in colonies. While no other statistically significant relationships were found relating aluminium to bee or colony health, the actual content of aluminium in pupae are extremely high and demonstrate significant exposure to aluminium. Bees rely heavily on cognitive function and aluminium is a known neurotoxin with links, for example, to Alzheimer’s disease in humans. The significant contamination of bumblebee pupae by aluminium raises the intriguing spectre of cognitive dysfunction playing a role in their population decline. PMID:26042788

  9. Bumblebee pupae contain high levels of aluminium.

    PubMed

    Exley, Christopher; Rotheray, Ellen; Goulson, David

    2015-01-01

    The causes of declines in bees and other pollinators remains an on-going debate. While recent attention has focussed upon pesticides, other environmental pollutants have largely been ignored. Aluminium is the most significant environmental contaminant of recent times and we speculated that it could be a factor in pollinator decline. Herein we have measured the content of aluminium in bumblebee pupae taken from naturally foraging colonies in the UK. Individual pupae were acid-digested in a microwave oven and their aluminium content determined using transversely heated graphite furnace atomic absorption spectrometry. Pupae were heavily contaminated with aluminium giving values between 13.4 and 193.4 μg/g dry wt. and a mean (SD) value of 51.0 (33.0) μg/g dry wt. for the 72 pupae tested. Mean aluminium content was shown to be a significant negative predictor of average pupal weight in colonies. While no other statistically significant relationships were found relating aluminium to bee or colony health, the actual content of aluminium in pupae are extremely high and demonstrate significant exposure to aluminium. Bees rely heavily on cognitive function and aluminium is a known neurotoxin with links, for example, to Alzheimer's disease in humans. The significant contamination of bumblebee pupae by aluminium raises the intriguing spectre of cognitive dysfunction playing a role in their population decline.

  10. Bumblebee pupae contain high levels of aluminium.

    PubMed

    Exley, Christopher; Rotheray, Ellen; Goulson, David

    2015-01-01

    The causes of declines in bees and other pollinators remains an on-going debate. While recent attention has focussed upon pesticides, other environmental pollutants have largely been ignored. Aluminium is the most significant environmental contaminant of recent times and we speculated that it could be a factor in pollinator decline. Herein we have measured the content of aluminium in bumblebee pupae taken from naturally foraging colonies in the UK. Individual pupae were acid-digested in a microwave oven and their aluminium content determined using transversely heated graphite furnace atomic absorption spectrometry. Pupae were heavily contaminated with aluminium giving values between 13.4 and 193.4 μg/g dry wt. and a mean (SD) value of 51.0 (33.0) μg/g dry wt. for the 72 pupae tested. Mean aluminium content was shown to be a significant negative predictor of average pupal weight in colonies. While no other statistically significant relationships were found relating aluminium to bee or colony health, the actual content of aluminium in pupae are extremely high and demonstrate significant exposure to aluminium. Bees rely heavily on cognitive function and aluminium is a known neurotoxin with links, for example, to Alzheimer's disease in humans. The significant contamination of bumblebee pupae by aluminium raises the intriguing spectre of cognitive dysfunction playing a role in their population decline. PMID:26042788

  11. Removal of phosphorus-rich phase from high-phosphorous iron ore by melt separation at 1573 K in a super-gravity field

    NASA Astrophysics Data System (ADS)

    Gao, Jin-tao; Guo, Lei; Zhong, Yi-wei; Ren, Hong-ru; Guo, Zhan-cheng

    2016-07-01

    A new approach of removing the phosphorus-rich phase from high-phosphorous iron ore by melt separation at 1573 K in a super- gravity field was investigated. The iron-slag separation by super-gravity resulted in phosphorus being effectively removed from the iron-rich phase and concentrated as a phosphorus-rich phase at a temperature below the melting point of iron. The samples obtained by super-gravity exhibited obvious layered structures. All the iron grains concentrated at the bottom of the sample along the super-gravity direction, whereas the molten slag concentrated in the upper part of the sample along the opposite direction. Meanwhile, fine apatite crystals collided and grew into larger crystals and concentrated at the slag-iron interface. Consequently, in the case of centrifugation with a gravity coefficient of G = 900, the mass fractions of the slag phase and iron-rich phase were similar to their respective theoretical values. The mass fraction of MFe in the iron-rich phase was as high as 97.77wt% and that of P was decreased to 0.092wt%.

  12. Cascading gravity is ghost free

    SciTech Connect

    Rham, Claudia de; Khoury, Justin; Tolley, Andrew J.

    2010-06-15

    We perform a full perturbative stability analysis of the 6D cascading gravity model in the presence of 3-brane tension. We demonstrate that for sufficiently large tension on the (flat) 3-brane, there are no ghosts at the perturbative level, consistent with results that had previously only been obtained in a specific 5D decoupling limit. These results establish the cascading gravity framework as a consistent infrared modification of gravity.

  13. Basement Aquifers : How Useful Are Gravity Data ?

    NASA Astrophysics Data System (ADS)

    Genthon, P.; Mouhouyouddine, A. H.; Hinderer, J.; Hector, B.; Yameogo, S.

    2014-12-01

    Gravity data with a few microgal precision were proved to be able to constrain the specific yield of various kinds of aquifer in West Africa from annual fluctuations of both the gravimetric and piezometric signals (Pfeffer et al., Geophys. J. Int., 2011; Hector et al., Geophys. J. Int., 2013). However some recent papers reported a disappointing potential of gravity measurements during a pumping experiment in a sandy aquifer (Blainey et al., WRR, 2007; Herckenrath et al., WRR, 2012) and their poor ability in constraining the transmissity and specific yield of the aquifer, which are the parameters to which pumping tests give access. Fresh basement rocks present generally a null porosity and the structure of basement aquifers is given by the weathering profile. In tropical climate, this profile consists of a few tens meter thick saprolite layer, with noticeable porosity but low permeability overlying the weathering front. This weathering front includes in many instances a fractured medium and presents a high permeability with variable porosity. It is hardly sampled in coring experiments. We present some numerical simulation results on the ability of gravity to constrain the transmissivity of this medium. Due to poroelasticity of clay minerals in the saprolite, soil subsidence is expected to occur during pumping with a significant gravity effect. Gravity measurements have therefore to be completed with leveling data at a millimetric precision. We present first the results of numerical modeling of the gravity and subsidence for a theoretical horizontally stratified basement aquifer, and show that gravity and leveling are able to provide independently the poroelasticity coefficient and a single transmissivity coefficient for the bottom of the aquifer, if the properties of the upper saprolites are known. We will discuss then the general case, where the aquifer presents a vertical fracture where the weathering profile thickens.

  14. Gravity model studies of Newberry Volcano, Oregon

    SciTech Connect

    Gettings, M.E.; Griscom, A.

    1988-09-10

    Newberry, Volcano, a large Quaternary volcano located about 60 km east of the axis of the High Cascades volcanoes in central Oregon, has a coincident positive residual gravity anomaly of about 12 mGals. Model calculations of the gravity anomaly field suggest that the volcano is underlain by an intrusive complex of mafic composition of about 20-km diameter and 2-km thickness, at depths above 4 km below sea level. However, uplifted basement in a northwest trending ridge may form part of the underlying excess mass, thus reducing the volume of the subvolcanic intrusive. A ring dike of mafic composition is inferred to intrude to near-surface levels along the caldera ring fractures, and low-density fill of the caldera floor probably has a thickness of 0.7--0.9 km. The gravity anomaly attributable to the volcano is reduced to the east across a north-northwest trending gravity anomaly gradient through Newberry caldera and suggests that normal, perhaps extensional, faulting has occurred subsequent to caldera formation and may have controlled the location of some late-stage basaltic and rhyolitic eruptions. Significant amounts of felsic intrusive material may exist above the mafic intrusive zone but cannot be resolved by the gravity data.

  15. Interactions between Artificial Gravity, the Affected Physiological Systems, and Nutrition

    NASA Technical Reports Server (NTRS)

    Heer, Martina; Baecker, Nathalie; Zwart, Sara; Smith, Scott

    2006-01-01

    Malnutrition, either by insufficient supply of some nutrients or by overfeeding, has a profound effect on the health of an organism. Therefore, optimal nutrition is a necessity in normal gravity on Earth, in microgravity, and when applying artificial gravity to the human system. Reduced physical activity, such as observed in microgravity or bed rest, has an effect on many physiological systems, such as the cardiovascular, musculoskeletal, immune, and body fluids regulation systems. There is currently no countermeasure that is effective to counteract both the cardiovascular and musculoskeletal deconditioning when applied for a short duration (see Chapter 1). Artificial gravity therefore seems the simplest physiological approach to keep these systems intact. The application of intermittent daily dose of artificial gravity by means of centrifugation has often been proposed as a potential countermeasure against the physiological deconditioning induced by spaceflight. However, neither the optimal gravity level, nor its optimal duration of exposure have been enough studied to recommend a validated, effective, and efficient artificial gravity application. As discussed in previous chapters, artificial gravity has a very high potential to counteract any changes caused by reduced physical activity. The nutrient supply, which ideally should match the actual needs, will interact with these changes and therefore has also to be taken into account. This chapter reviews the potential interactions between these nutrients (energy intake, vitamins, minerals) and the other physiological systems affected by artificial gravity generated by an on-board short-radius centrifuge.

  16. Effects of Body Orientation and Retinal Image Pitch on the Perception of Gravity-Referenced Eye Level (GREL)

    NASA Technical Reports Server (NTRS)

    Cohen, Malcolm M.; Guzy, Larry T.; Wade, Charles E. (Technical Monitor)

    1994-01-01

    It has been asserted that the pitch orientation of a visual array and of an observer's body jointly determine the perception of GREL. The current study formally tests this assertion over an extended range with multiple combinations of visual and body pitch orientations. Ten subjects were individually secured in a Circolectric bed surrounded by a room (pitchroom) with walls that could be pitched at various angles with respect to gravity. The bed and the walls of the room were independently adjusted to each of five positions relative to gravitational vertical: -15, -7.5, 0, +7.5, and +15 degrees, yielding 25 combinations of body x room pitch angles, and retinal image pitch (RIP) conditions ranging from -30 to +30 degrees. Each subject set a target to apparent GREL while viewing it against a background of two electroluminescent strips on the outer edges of the far wall of the room. As determined by ANOVA, the orientation of the room, and its interaction with that of the observer, significantly altered GREL (p less than 0.01). Regression analysis showed that GREL was best described as a linear summation of the weighted independent contributions from a body-referenced mechanism (B) and a visual mechanism given by the orientation of the background array on the retina (RIP). The equation for this relationship is: GREL = .74 (B) +.64 (RIP) - 1.42; r-squared = .994.

  17. High-gravity-assisted pulsed laser ablation system for the fabrication of functionally graded material thin film.

    PubMed

    Nishiyama, T; Morinaga, S; Nagayama, K

    2009-03-01

    This paper describes a novel method for the fabrication of a thin film deposited on an appropriate substrate having a continuous composition gradient. The composition gradient was achieved by a combination of pulsed laser ablation (PLA) of the target material with a very strong acceleration field generated on a moving disk rotating at a very high speed. The PLA process was used to produce a cloud of high-energy particles of the target material that will be deposited on a substrate placed on the rotating disk. After deposition, the particles will diffuse on the surface of the thin film under a strong acceleration field. The high energy of the particles and their diffusion on the substrate surface in a high-vacuum environment produces a macroscopic composition distribution in the thin film. We have constructed an experimental apparatus consisting of a vacuum chamber in which a circular disk made of titanium is driven by a high-frequency inductive motor. An acceleration field of up to 10,000 G can be generated by this apparatus. Functionally graded material thin films of FeSi(2) with a continuous concentration gradient were successfully fabricated by this method under a gravity field of 5400 G. A significant advantage of this method is that it allows us to fabricate graded thin films with a very smooth surface covered by few droplets.

  18. High-gravity-assisted pulsed laser ablation system for the fabrication of functionally graded material thin film.

    PubMed

    Nishiyama, T; Morinaga, S; Nagayama, K

    2009-03-01

    This paper describes a novel method for the fabrication of a thin film deposited on an appropriate substrate having a continuous composition gradient. The composition gradient was achieved by a combination of pulsed laser ablation (PLA) of the target material with a very strong acceleration field generated on a moving disk rotating at a very high speed. The PLA process was used to produce a cloud of high-energy particles of the target material that will be deposited on a substrate placed on the rotating disk. After deposition, the particles will diffuse on the surface of the thin film under a strong acceleration field. The high energy of the particles and their diffusion on the substrate surface in a high-vacuum environment produces a macroscopic composition distribution in the thin film. We have constructed an experimental apparatus consisting of a vacuum chamber in which a circular disk made of titanium is driven by a high-frequency inductive motor. An acceleration field of up to 10,000 G can be generated by this apparatus. Functionally graded material thin films of FeSi(2) with a continuous concentration gradient were successfully fabricated by this method under a gravity field of 5400 G. A significant advantage of this method is that it allows us to fabricate graded thin films with a very smooth surface covered by few droplets. PMID:19334931

  19. Gravity's overdrive

    NASA Astrophysics Data System (ADS)

    Reichhardt, Tony

    1994-03-01

    Mariner 10 traveled to Mercury by using Venus' gravity to bend its course in toward the sun, a correction that would otherwise required vast amounts of rocket fuel. For the first time, an interplanetary spacecraft changed course not with rocket fuel but by using a planet's gravitational field. That maneuver stands, along with the development of the rocket engine, as one of the keys that opened the solar system for exploration. The Pioneer, Voyager, and Galileo missions all used gravity assist, and in fact would not have been possible otherwise. Gravity assist is the most efficient form of space propulsion known. Various aspects of the developmental history of the gravity assist technique and the dispute over who should receive credit for inventing the technique are discussed.

  20. Gravity brake

    DOEpatents

    Lujan, Richard E.

    2001-01-01

    A mechanical gravity brake that prevents hoisted loads within a shaft from free-falling when a loss of hoisting force occurs. A loss of hoist lifting force may occur in a number of situations, for example if a hoist cable were to break, the brakes were to fail on a winch, or the hoist mechanism itself were to fail. Under normal hoisting conditions, the gravity brake of the invention is subject to an upward lifting force from the hoist and a downward pulling force from a suspended load. If the lifting force should suddenly cease, the loss of differential forces on the gravity brake in free-fall is translated to extend a set of brakes against the walls of the shaft to stop the free fall descent of the gravity brake and attached load.

  1. 40 CFR 227.30 - High-level radioactive waste.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 26 2012-07-01 2011-07-01 true High-level radioactive waste. 227.30...-level radioactive waste. High-level radioactive waste means the aqueous waste resulting from the operation of the first cycle solvent extraction system, or equivalent, and the concentrated waste...

  2. 40 CFR 227.30 - High-level radioactive waste.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false High-level radioactive waste. 227.30...-level radioactive waste. High-level radioactive waste means the aqueous waste resulting from the operation of the first cycle solvent extraction system, or equivalent, and the concentrated waste...

  3. 40 CFR 227.30 - High-level radioactive waste.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false High-level radioactive waste. 227.30...-level radioactive waste. High-level radioactive waste means the aqueous waste resulting from the operation of the first cycle solvent extraction system, or equivalent, and the concentrated waste...

  4. 40 CFR 227.30 - High-level radioactive waste.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false High-level radioactive waste. 227.30...-level radioactive waste. High-level radioactive waste means the aqueous waste resulting from the operation of the first cycle solvent extraction system, or equivalent, and the concentrated waste...

  5. 40 CFR 227.30 - High-level radioactive waste.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 26 2013-07-01 2013-07-01 false High-level radioactive waste. 227.30...-level radioactive waste. High-level radioactive waste means the aqueous waste resulting from the operation of the first cycle solvent extraction system, or equivalent, and the concentrated waste...

  6. Gravity waves

    NASA Technical Reports Server (NTRS)

    Fritts, David

    1987-01-01

    Gravity waves contributed to the establishment of the thermal structure, small scale (80 to 100 km) fluctuations in velocity (50 to 80 m/sec) and density (20 to 30%, 0 to peak). Dominant gravity wave spectrum in the middle atmosphere: x-scale, less than 100 km; z-scale, greater than 10 km; t-scale, less than 2 hr. Theorists are beginning to understand middle atmosphere motions. There are two classes: Planetary waves and equatorial motions, gravity waves and tidal motions. The former give rise to variability at large scales, which may alter apparent mean structure. Effects include density and velocity fluctuations, induced mean motions, and stratospheric warmings which lead to the breakup of the polar vortex and cooling of the mesosphere. On this scale are also equatorial quasi-biennial and semi-annual oscillations. Gravity wave and tidal motions produce large rms fluctuations in density and velocity. The magnitude of the density fluctuations compared to the mean density is of the order of the vertical wavelength, which grows with height. Relative density fluctuations are less than, or of the order of 30% below the mesopause. Such motions may cause significant and variable convection, and wind shear. There is a strong seasonal variation in gravity wave amplitude. Additional observations are needed to address and quantify mean and fluctuation statistics of both density and mean velocity, variability of the mean and fluctuations, and to identify dominant gravity wave scales and sources as well as causes of variability, both temporal and geographic.

  7. Analysis of Cyberbullying Sensitivity Levels of High School Students and Their Perceived Social Support Levels

    ERIC Educational Resources Information Center

    Akturk, Ahmet Oguz

    2015-01-01

    Purpose: The purpose of this paper is to determine the cyberbullying sensitivity levels of high school students and their perceived social supports levels, and analyze the variables that predict cyberbullying sensitivity. In addition, whether cyberbullying sensitivity levels and social support levels differed according to gender was also…

  8. Monthly gravity field models derived from GRACE Level 1B data using a modified short-arc approach

    NASA Astrophysics Data System (ADS)

    Chen, Qiujie; Shen, Yunzhong; Zhang, Xingfu; Hsu, Houze; Chen, Wu; Ju, Xiaolei; Lou, Lizhi

    2015-03-01

    In this study, a new time series of Gravity Recovery and Climate Experiment (GRACE) monthly solutions, complete to degree and order 60 spanning from January 2003 to August 2011, has been derived based on a modified short-arc approach. Our models entitled Tongji-GRACE01 are available on the website of International Centre for Global Earth Models http://icgem.gfz-potsdam.de/ICGEM/. The traditional short-arc approach, with no more than 1 h arcs, requires the gradient corrections of satellite orbits in order to reduce the impact of orbit errors on the final solution. Here the modified short-arc approach has been proposed, which has three major differences compared to the traditional one: (1) All the corrections of orbits and range rate measurements are solved together with the geopotential coefficients and the accelerometer biases using a weighted least squares adjustment; (2) the boundary position parameters are not required; and (3) the arc length can be extended to 2 h. The comparisons of geoid degree powers and the mass change signals in the Amazon basin, the Antarctic, and Antarctic Peninsula demonstrate that our model is comparable with the other existing models, i.e., the Centre for Space Research RL05, Jet Propulsion Laboratory RL05, and GeoForschungsZentrum RL05a models. The correlation coefficients of the mass change time series between our model and the other models are better than 0.9 in the Antarctic and Antarctic Peninsula. The mass change rates in the Antarctic and Antarctic Peninsula derived from our model are -92.7 ± 38.0 Gt/yr and -23.9 ± 12.4 Gt/yr, respectively, which are very close to those from other three models and with similar spatial patterns of signals.

  9. The 3-D motion of the centre of gravity of the human body during level walking. II. Lower limb amputees.

    PubMed

    Tesio, L; Lanzi, D; Detrembleur, C

    1998-03-01

    OBJECTIVE: To analyse the motion of the centre of gravity (CG) of the body during gait in unilateral lower limb amputees with good kinematic patterns. DESIGN: Three transtibial (below-knee, BK) and four transfemoral (above-knee, AK) amputees were required to perform successive walks over a 2.4 m long force plate, at freely chosen cadence and speed. BACKGROUND: In previous studies it has been shown that in unilateral lower limb amputee gait, the motion of the CG can be more asymmetric than might be suspected from kinematic analysis. METHODS: The mechanical energy changes of the CG due to its motion in the vertical, forward and lateral direction were measured. Gait speed ranged 0.75-1.32 m s(-1) in the different subjects. This allowed calculation of (a) the positive work done by muscles to maintain the motion of the CG with respect to the ground ('external' work, W(ext)) and (b) the amount of the pendulum-like, energy-saving transfer between gravitational potential energy and kinetic energy of the CG during each step (percent recovery, R). Step length and vertical displacement of the CG were also measured. RESULTS: The recorded variables were kept within the normal limits, calculated in a previous work, when an average was made of the steps performed on the prosthetic (P) and on the normal (N) limb. Asymmetries were found, however, between the P and the N step. In BK amputees, the P step R was 5% greater and W(ext) was 21% lower than in the N step; in AK amputees, in the P step R was 54% greater and W(ext) was 66% lower than in the N step. Asymmetries were also found in the relative magnitude of the external work provided by each lower limb during the single stance as compared with the double stance: a marked deficit of work occurred at the P to N transition. PMID:11415775

  10. High temperature testing of the EDCON borehole gravity housing system conducted at Los Alamos National Laboratories, January 12-18, 1986

    SciTech Connect

    Not Available

    1986-01-01

    A series of tests were conducted on the EDCON borehole gravity meter (BHGM) high temperature sonde. The tests were conducted to determine the suitability of this sonde for logging operations in the Department of Energy Salton Trough test well. 1 ref., 3 figs., 4 tabs.

  11. Magma and fluid migration at Yellowstone Caldera in the last three decades inferred from InSAR, leveling, and gravity measurements

    NASA Astrophysics Data System (ADS)

    Tizzani, P.; Battaglia, M.; Castaldo, R.; Pepe, A.; Zeni, G.; Lanari, R.

    2015-04-01

    We studied the Yellowstone caldera geological unrest between 1977 and 2010 by investigating temporal changes in differential Interferometric Synthetic Aperture Radar (InSAR), precise spirit leveling and gravity measurements. The analysis of the 1992-2010 displacement time series, retrieved by applying the SBAS InSAR technique, allowed the identification of three areas of deformation: (i) the Mallard Lake (ML) and Sour Creek (SC) resurgent domes, (ii) a region close to the Northern Caldera Rim (NCR), and (iii) the eastern Snake River Plain (SRP). While the eastern SRP shows a signal related to tectonic deformation, the other two regions are influenced by the caldera unrest. We removed the tectonic signal from the InSAR displacements, and we modeled the InSAR, leveling, and gravity measurements to retrieve the best fitting source parameters. Our findings confirmed the existence of different distinct sources, beneath the brittle-ductile transition zone, which have been intermittently active during the last three decades. Moreover, we interpreted our results in the light of existing seismic tomography studies. Concerning the SC dome, we highlighted the role of hydrothermal fluids as the driving force behind the 1977-1983 uplift; since 1983-1993 the deformation source transformed into a deeper one with a higher magmatic component. Furthermore, our results support the magmatic nature of the deformation source beneath ML dome for the overall investigated period. Finally, the uplift at NCR is interpreted as magma accumulation, while its subsidence could either be the result of fluids migration outside the caldera or the gravitational adjustment of the source from a spherical to a sill-like geometry.

  12. Observed correlation of Venus topography with the zonal wind and albedo at cloud top level: the role of stationary gravity waves.

    NASA Astrophysics Data System (ADS)

    Bertaux, Jean-Loup; Khatunstsev, Igor; Hauchecorne, Alain; Markiewicz, Wojtek; Emmanuel, Marcq; Sébastien, Lebonnois; Marina, Patsaeva; Alex, Turin; Anna, Fedorova

    2016-04-01

    Based on the analysis of UV images (at 365 nm) of Venus cloud top (altitude 67±2 km) collected with VMC (Venus Monitoring Camera) on board Venus Express (VEX), it is found that the zonal wind speed south of the equator (from 5°S to 15°s) shows a conspicuous variation (from -101 to -83 m/s) with geographic longitude of Venus, correlated with the underlying relief of Aphrodite Terra. We interpret this pattern as the result of stationary gravity waves produced at ground level by the up lift of air when the horizontal wind encounters a mountain slope. These waves can propagate up to cloud top level, break there and transfer their momentum to the zonal flow. Such upward propagation of gravity waves and influence on the wind speed vertical profile was shown to play an important role in the middle atmosphere of the Earth by Lindzen [1981], but is not reproduced in a current GCM of Venus atmosphere. Consistent with present findings, the two VEGA mission balloons experienced a small, but significant, difference of westward velocity, at their 53 km floating altitude. The albedo at 365 nm varies also with longitude and latitude in a pattern strikingly similar in the low latitude regions to a recent map of cloud top H2O [Fedorova et al., 2015], in which a lower UV albedo is correlated with increased H2O. We argue that H2O enhancement is the sign of upwelling, suggesting that the UV absorber is also brought to cloud top by upwelling.

  13. Bilateral medial patellofemoral ligament reconstruction in high-level athletes.

    PubMed

    Kuroda, Yuichi; Matsushita, Takehiko; Matsumoto, Tomoyuki; Kawakami, Yohei; Kurosaka, Masahiro; Kuroda, Ryosuke

    2014-10-01

    This report presents two cases of high-level athletes with bilateral patellar dislocations who were able to return to their preinjury level of activity after bilateral medial patellofemoral ligament (MPFL) reconstruction, without any major complications. Patient 1 was a 19-year-old male volleyball player for a top-level college volleyball team, and patient 2 was a 24-year-old woman who was a member of a national-level adult softball team. MPFL reconstruction could be an effective treatment for bilateral patellar dislocation in high-level athletes. Level of evidence V.

  14. Memorial stone (Cliosophic Society), level 270 Washington Monument, High ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Memorial stone (Cliosophic Society), level 270 - Washington Monument, High ground West of Fifteenth Street, Northwest, between Independence & Constitution Avenues, Washington, District of Columbia, DC

  15. Changes in water levels and storage in the High Plains Aquifer, predevelopment to 2009

    USGS Publications Warehouse

    McGuire, V.L.

    2011-01-01

    The High Plains aquifer underlies 111.8 million acres (175,000 square miles) in parts of eight States - Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming. The area overlying the High Plains aquifer is one of the primary agricultural regions in the Nation. Water-level declines began in parts of the High Plains aquifer soon after the onset of substantial irrigation with groundwater from the aquifer (about 1950 and termed "predevelopment" in this fact sheet). By 1980, water levels in the High Plains aquifer in parts of Texas, Oklahoma, and southwestern Kansas had declined more than 100 feet (ft) (Luckey and others, 1981). In 1987, in response to declining water levels, Congress directed the U.S. Geological Survey (USGS), in collaboration with numerous Federal, State, and local water-resources entities, to assess and track water-level changes in the aquifer. This fact sheet summarizes changes in water levels and drainable water in storage in the High Plains aquifer from predevelopment to 2009. Drainable water in storage is the fraction of water in the aquifer that will drain by gravity and can be withdrawn by wells. The remaining water in the aquifer is held to the aquifer material by capillary forces and generally cannot be withdrawn by wells. Drainable water in storage is termed "water in storage" in this report. A companion USGS report presents more detailed and technical information about water-level and storage changes in the High Plains aquifer during this period (McGuire, 2011).

  16. Gravity Field Recovery with Simulated GOCE Observations

    NASA Astrophysics Data System (ADS)

    Marty, J.; Bruinsma, S.; Balmino, G.; Abrikosov, O.; Foerste, C.; Rothacher, M.

    2005-12-01

    Numerical simulations of the gravity field parameter recovery using the direct method, with satellite positions as pseudo observations instead of simulated GPS Satellite-to-Satellite (SST) tracking data, and with gravity gradients (SGG data), were done and are ongoing in the framework of the European GOCE Gravity Consortium test and validation plan for GOCE mission data processing. This work shows the latest results from the CNES and GFZ software packages, GINS and EPOS, respectively. After the iterative least-squares orbit adjustment procedure has converged to the highest attainable precision level, the gravity field normal equations are computed in a subsequent step. These SST normal equations, representing the long wavelength gravity field signal, are then reduced for arc-dependent parameters (i.e. state vector at epoch, empirical parameters) and cumulated over the entire observation period. Secondly, the gravity gradient measurements (SGG) are processed, taking into account the coloured noise in these data, and yield (high resolution) normal equations. They are combined with the SST normal equations and the gravity field and gradiometer common mode calibration parameters are simultaneously estimated. The coloured noise in the SGG data is based on the latest and realistic gradiometer specifications. The precision in the measurement bandwidth is approximately 3-5 milliEotvos, but rapidly decreasing for lower frequencies. Due to this behaviour, the observation equations have to be filtered in order to obtain the most accurate recovery. The filter algorithm, design and results are presented to considerable detail since this particular step is the key element that will enable the achievement of the GOCE mission objectives from the ground segment point of view.

  17. Tethered gravity laboratories study

    NASA Technical Reports Server (NTRS)

    Lucchetti, F.

    1990-01-01

    The scope of the study is to investigate ways of controlling the microgravity environment of the International Space Station by means of a tethered system. Four main study tasks were performed. First, researchers analyzed the utilization of the tether systems to improve the lowest possible steady gravity level on the Space Station and the tether capability to actively control the center of gravity position in order to compensate for activities that would upset the mass distribution of the Station. The purpose of the second task was to evaluate the whole of the experiments performable in a variable gravity environment and the related beneficial residual accelerations, both for pure and applied research in the fields of fluid, materials, and life science, so as to assess the relevance of a variable g-level laboratory. The third task involves the Tethered Variable Gravity Laboratory. The use of the facility that would crawl along a deployed tether and expose experiments to varying intensities of reduced gravity is discussed. Last, a study performed on the Attitude Tether Stabilizer concept is discussed. The stabilization effect of ballast masses tethered to the Space Station was investigated as a means of assisting the attitude control system of the Station.

  18. Partial gravity - Human impacts on facility design

    NASA Technical Reports Server (NTRS)

    Capps, Stephen; Moore, Nathan

    1990-01-01

    Partial gravity affects the body differently than earth gravity and microgravity environments. The main difference from earth gravity is human locomotion; while the main dfference from microgravity is the specific updown orientation and reach envelopes which increase volume requirements. Much data are available on earth gravity and microgravity design; however, very little information is available on human reactions to reduced gravity levels in IVA situations (without pressure suits). Therefore, if humans commit to permanent lunar habitation, much research should be conducted in the area of partial gravity effects on habitat design.

  19. Using continuous GPS and absolute gravity to separate vertical land movements and changes in sea-level at tide-gauges in the UK.

    PubMed

    Teferle, F N; Bingley, R M; Williams, S D P; Baker, T F; Dodson, A H

    2006-04-15

    Researchers investigating climate change have used historical tide-gauge measurements from all over the world to investigate the changes in sea-level that have occurred over the last century or so. However, such estimates are a combination of any true sea-level variations and any vertical movements of the land at the specific tide-gauge. For a tide- gauge record to be used to determine the climate related component of changes in sea-level, it is therefore necessary to correct for the vertical land movement component of the observed change in sea-level.In 1990, the Institute of Engineering Surveying and Space Geodesy and Proudman Oceanographic Laboratory started developing techniques based on the Global Positioning System (GPS) for measuring vertical land movements (VLM) at tide-gauges in the UK. This paper provides brief details of these early developments and shows how they led to the establishment of continuous GPS (CGPS) stations at a number of tide-gauges. The paper then goes on to discuss the use of absolute gravity (AG), as an independent technique for measuring VLM at tide-gauges. The most recent results, from CGPS time-series dating back to 1997 and AG time-series dating back to 1995/1996, are then used to demonstrate the complementarity of these two techniques and their potential for providing site-specific estimates of VLM at tide-gauges in the UK.

  20. Deciphering Jupiter's atmospheric dynamics using the upcoming Juno gravity measurements

    NASA Astrophysics Data System (ADS)

    Kaspi, Yohai; Galanti, Eli

    2016-07-01

    This summer, the Juno spacecraft will arrive at Jupiter in course for close flybys of the planet, obtaining a high precision gravity spectrum of Jupiter. This data can be used to estimate the depth of Jupiter's observed cloud-level wind, and decipher the possible internal flows, that might be decoupled from the surface wind. In this talk, we discuss the Juno gravity experiment, and the possible outcomes with regard to the flows on Jupiter. We show several ways in which the gravity spectrum might be used to study the large scale flows: 1. measurements of the high order even harmonics which beyond J10 are dominated by the dynamics; 2. measurements of odd gravity harmonics which have no contribution from a static planet, and therefore are a pure signature of dynamics; 3. upper limits on the depth of the surface flow can be obtained by comparing low order even harmonics from dynamical models to the difference between the measured low order even harmonics and the largest possible values of a static planet; 4. direct latitudinally varying measurements of the gravity field exerted on the spacecraft. We will discuss how these methods may be applied given the expected sensitivities of the Juno gravity experiment. In addition, we present an inverse adjoint model, which allows given the gravity data, to infer the flows that produce it. This will allow, hopefully, to make significant progress in one of the longest-standing question in planetary atmospheric dynamics regarding the nature of the flows on the giant planets.

  1. A Framework for Translating a High Level Security Policy into Low Level Security Mechanisms

    NASA Astrophysics Data System (ADS)

    Hassan, Ahmed A.; Bahgat, Waleed M.

    2010-01-01

    Security policies have different components; firewall, active directory, and IDS are some examples of these components. Enforcement of network security policies to low level security mechanisms faces some essential difficulties. Consistency, verification, and maintenance are the major ones of these difficulties. One approach to overcome these difficulties is to automate the process of translation of high level security policy into low level security mechanisms. This paper introduces a framework of an automation process that translates a high level security policy into low level security mechanisms. The framework is described in terms of three phases; in the first phase all network assets are categorized according to their roles in the network security and relations between them are identified to constitute the network security model. This proposed model is based on organization based access control (OrBAC). However, the proposed model extend the OrBAC model to include not only access control policy but also some other administrative security policies like auditing policy. Besides, the proposed model enables matching of each rule of the high level security policy with the corresponding ones of the low level security policy. Through the second phase of the proposed framework, the high level security policy is mapped into the network security model. The second phase could be considered as a translation of the high level security policy into an intermediate model level. Finally, the intermediate model level is translated automatically into low level security mechanism. The paper illustrates the applicability of proposed approach through an application example.

  2. Evaluating Material Flammability in Microgravity and Martian Gravity Compared to the NASA Standard Normal Gravity Test

    NASA Technical Reports Server (NTRS)

    Oslon, Sandra. L.; Ferkul, Paul

    2012-01-01

    Drop tower tests are conducted at Martian gravity to determine the flammability of three materials compared to previous tests in other normal gravity and reduced gravity environments. The comparison is made with consideration of a modified NASA standard test protocol. Material flammability limits in the different gravity and flow environments are tabulated to determine the factor of safety associated with normal gravity flammability screening. Previous testing at microgravity and Lunar gravity indicated that some materials burned to lower oxygen concentrations in low gravity than in normal gravity, although the low g extinction limit criteria are not the same as 1g due to time constraints in drop testing. Similarly, the data presented in this paper for Martian gravity suggest that there is a gravity level below Earth s at which materials burn more readily than on Earth. If proven for more materials, this may indicate the need to include a factor of safety on 1g flammability limits.

  3. BF gravity

    NASA Astrophysics Data System (ADS)

    Celada, Mariano; González, Diego; Montesinos, Merced

    2016-11-01

    BF gravity comprises all the formulations of gravity that are based on deformations of BF theory. Such deformations consist of either constraints or potential terms added to the topological BF action that turn some of the gauge degrees of freedom into physical ones, particularly giving rise to general relativity. The BF formulations have provided new and deep insights into many classical and quantum aspects of the gravitational field, setting the foundations for the approach to quantum gravity known as spinfoam models. In this review, we present a self-contained and unified treatment of the BF formulations of D-dimensional general relativity and other related models, focusing on the classical aspects of them and including some new results.

  4. [Biology of size and gravity].

    PubMed

    Yamashita, Masamichi; Baba, Shoji A

    2004-03-01

    Gravity is a force that acts on mass. Biological effects of gravity and their magnitude depend on scale of mass and difference in density. One significant contribution of space biology is confirmation of direct action of gravity even at the cellular level. Since cell is the elementary unit of life, existence of primary effects of gravity on cells leads to establish the firm basis of gravitational biology. However, gravity is not limited to produce its biological effects on molecules and their reaction networks that compose living cells. Biological system has hierarchical structure with layers of organism, group, and ecological system, which emerge from the system one layer down. Influence of gravity is higher at larger mass. In addition to this, actions of gravity in each layer are caused by process and mechanism that is subjected and different in each layer of the hierarchy. Because of this feature, summing up gravitational action on cells does not explain gravity for biological system at upper layers. Gravity at ecological system or organismal level can not reduced to cellular mechanism. Size of cells and organisms is one of fundamental characters of them and a determinant in their design of form and function. Size closely relates to other physical quantities, such as mass, volume, and surface area. Gravity produces weight of mass. Organisms are required to equip components to support weight and to resist against force that arise at movement of body or a part of it. Volume and surface area associate with mass and heat transport process at body. Gravity dominates those processes by inducing natural convection around organisms. This review covers various elements and process, with which gravity make influence on living systems, chosen on the basis of biology of size. Cells and biochemical networks are under the control of organism to integrate a consolidated form. How cells adjust metabolic rate to meet to the size of the composed organism, whether is gravity

  5. Crustal architecture of the Faroe-Shetland Margin: insights from a newly merged high resolution gravity and magnetic dataset

    NASA Astrophysics Data System (ADS)

    Rippington, Stephen; Mazur, Stan; Anderson, Chris

    2014-05-01

    The Faroe-Shetland region is geologically complex; it has undergone several phases of extension and rifting since the middle Palaeozoic (Ritchie et al., 2011; Coward et al., 2003), culminating in the Eocene with continental breakup between Northwest Europe and Greenland (Gernigon et al., 2012). Final breakup may have been facilitated by the presence of the Iceland Plume and was accompanied by the emplacement of voluminous basaltic rocks, attributed to the North Atlantic Igneous Province (White and McKenzie, 1989). It is difficult to image beneath the thick Paleogene basalts in the region using conventional seismic methods, because the high impedance contrast between the sediments and shallow basalts causes strong reflections. These mask deeper and weaker reflections and cause prominent inter-bed multiples (White et al., 1999). Consequently, determining the location and shape of basins and basement highs, and elucidating the timing and manner of their formation, remains a major cause of uncertainty in the appraisal of the hydrocarbon potential of the region. Gravity and magnetic data record variations in the density and susceptibility of the entire crust. Consequently, the thick basalt piles that are shallow in the section do not hinder the ability to detect deeper features. Instead, the principal challenge is distinguishing superposed bodies, with different densities and susceptibilities, from the combined gravity and magnetic anomalies. In this study, seismic data and horizons from the shallow section are used in combination with gravity and magnetic data to produce map view interpretations, and 2D and 3D models of the crust in the Faroe-Shetland region. These models help distinguish important variations in timing of rifting in different basins, and reveal the crustal architecture of the Faroe-Shetland Basin from the seabed to the Moho. We present a new structural and kinematic interpretation of the geology of the region, and propose an asymmetric simple shear

  6. Application of high-pass filtering techniques on gravity and magnetic data of the eastern Qattara Depression area, Western Desert, Egypt

    NASA Astrophysics Data System (ADS)

    Zahra, Hesham Shaker; Oweis, Hesham T.

    2016-06-01

    In this work, a reconnaissance study is presented to delineate the subsurface tectonics and lithological inferences of the eastern area of Qattara Depression using the Bouguer gravity and aeromagnetic data. To achieve this goal, several transformation techniques and filtering processes are accomplished on these maps. At first, the total intensity aeromagnetic map is processed through the application of reduction to the magnetic north pole technique. The fast Fourier transform is carried out on the gravity and RTP magnetic data for establishing and defining the residual (shallow) sources. The frequency high-pass filtering is used to enhance the anomaly wavelengths associated with the shallow sources. The used processing techniques are the polynomial surface fitting enhancement, Laplacian, Strike Filtering, Enhancement Utilization, Suppression Utilization, Butterworth Filtering Utilization, Butterworth high-pass filter, Euler's deconvolution and forward modeling. The equivalent depths of the isolated short wavelength anomalies are 0.759 and 0.340 km below the flight surface, and the depths of the intermediate wavelength anomalies are 1.28 and 2.00 km for the gravity and magnetic data, respectively. Finally, the quantitative interpretations of the Bouguer gravity and RTP magnetic maps of the study area, reflect the occurrence of the various types of structures and their components. The main tectonic deformations of the study area have NNW-SSE, NNE-SSW, NE-SW, NW-SE and E-W trends.

  7. Physical Activity Levels in Portuguese High School Physical Education

    ERIC Educational Resources Information Center

    Marmeleira, Jose Francisco Filipe; Aldeias, Nuno Micael Carrasqueira; da Graca, Pedro Miguel dos Santos Medeira

    2012-01-01

    The main aim of this study was to evaluate the physical activity (PA) levels of high school Portuguese students during physical education (PE) and investigate the association of PA levels with students' goal orientation and intrinsic motivation. Forty-six students from three high schools participated. Heart rate telemetry and pedometry were used…

  8. 46 CFR 153.409 - High level alarms.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false High level alarms. 153.409 Section 153.409 Shipping... BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Gauging Systems § 153.409 High level alarms. When Table 1 refers to this section or requires a cargo to have...

  9. Process for solidifying high-level nuclear waste

    DOEpatents

    Ross, Wayne A.

    1978-01-01

    The addition of a small amount of reducing agent to a mixture of a high-level radioactive waste calcine and glass frit before the mixture is melted will produce a more homogeneous glass which is leach-resistant and suitable for long-term storage of high-level radioactive waste products.

  10. Regeneration of eye tissues is modulated by altered levels of gravity at 1g, 2g, and in microgravity during spaceflight

    NASA Astrophysics Data System (ADS)

    Grigoryan, Eleonora; Almeida, Eduardo; Mitashov, Victor

    The pursuit of human space exploration requires detailed knowledge of microgravity-related changes in fundamental biological processes, and their effects on health. Normal regeneration of organs and tissues is one such fundamental process that allows maintenance of vitality and function of living organisms. Animal models of tissue regeneration include the newt (Pleurodeles waltl, Urodela) eye, which has been extensively used by our team in Russian Bion and Foton microgravity experiments since 1985, and in recent NASA 2.5 meter diameter centrifuge hypergravity experiments. In total, these experiments allow us to draw several broad conclusions: Newt lens regeneration is significantly altered in microgravity and hypergravity relative to 1g controls. Lenses formed in microgravity are larger and more developed than those regenerated in 1g controls; Microgravity alterations of lens regeneration can persist after spaceflight, and continue to affect repeated removal and regeneration of the lens after return to 1g; Microgravity increases the numbers of early stage regenerative proliferating BrdU-labeled cells in dorsal iris progenitors and in the lens regenerate. Regeneration under hypergravity conditions at 2g inhibits lens regeneration, and often causes retinal detachment. Molecular mechanisms regulating lens regeneration rate include FGF2 signaling, (a key pathway for eye tissue development and regeneration), and an expression of stress-related proteins - HSPs. In conclusion, regeneration of lens and other eye tissues in the newt is sensitive to, and regulated by the level of gravity mechanotransduction and developmental signaling pathways, with microgravity favoring stem cell progenitor proliferation, and gravity at 1g promoting terminal differentiation, while hypergravity at 2g often causes damage of delicate regenerating tissues.

  11. Time dependent corrections to absolute gravity determinations in the establishment of modern gravity control

    NASA Astrophysics Data System (ADS)

    Dykowski, Przemyslaw; Krynski, Jan

    2015-04-01

    The establishment of modern gravity control with the use of exclusively absolute method of gravity determination has significant advantages as compared to the one established mostly with relative gravity measurements (e.g. accuracy, time efficiency). The newly modernized gravity control in Poland consists of 28 fundamental stations (laboratory) and 168 base stations (PBOG14 - located in the field). Gravity at the fundamental stations was surveyed with the FG5-230 gravimeter of the Warsaw University of Technology, and at the base stations - with the A10-020 gravimeter of the Institute of Geodesy and Cartography, Warsaw. This work concerns absolute gravity determinations at the base stations. Although free of common relative measurement errors (e.g. instrumental drift) and effects of network adjustment, absolute gravity determinations for the establishment of gravity control require advanced corrections due to time dependent factors, i.e. tidal and ocean loading corrections, atmospheric corrections and hydrological corrections that were not taken into account when establishing the previous gravity control in Poland. Currently available services and software allow to determine high accuracy and high temporal resolution corrections for atmospheric (based on digital weather models, e.g. ECMWF) and hydrological (based on hydrological models, e.g. GLDAS/Noah) gravitational and loading effects. These corrections are mostly used for processing observations with Superconducting Gravimeters in the Global Geodynamics Project. For the area of Poland the atmospheric correction based on weather models can differ from standard atmospheric correction by even ±2 µGal. The hydrological model shows the annual variability of ±8 µGal. In addition the standard tidal correction may differ from the one obtained from the local tidal model (based on tidal observations). Such difference at Borowa Gora Observatory reaches the level of ±1.5 µGal. Overall the sum of atmospheric and

  12. Low-level awareness accompanies "unconscious" high-level processing during continuous flash suppression.

    PubMed

    Gelbard-Sagiv, Hagar; Faivre, Nathan; Mudrik, Liad; Koch, Christof

    2016-01-01

    The scope and limits of unconscious processing are a matter of ongoing debate. Lately, continuous flash suppression (CFS), a technique for suppressing visual stimuli, has been widely used to demonstrate surprisingly high-level processing of invisible stimuli. Yet, recent studies showed that CFS might actually allow low-level features of the stimulus to escape suppression and be consciously perceived. The influence of such low-level awareness on high-level processing might easily go unnoticed, as studies usually only probe the visibility of the feature of interest, and not that of lower-level features. For instance, face identity is held to be processed unconsciously since subjects who fail to judge the identity of suppressed faces still show identity priming effects. Here we challenge these results, showing that such high-level priming effects are indeed induced by faces whose identity is invisible, but critically, only when a lower-level feature, such as color or location, is visible. No evidence for identity processing was found when subjects had no conscious access to any feature of the suppressed face. These results suggest that high-level processing of an image might be enabled by-or co-occur with-conscious access to some of its low-level features, even when these features are not relevant to the processed dimension. Accordingly, they call for further investigation of lower-level awareness during CFS, and reevaluation of other unconscious high-level processing findings. PMID:26756173

  13. Plasma hormone levels in human subject during stress loads in microgravity and at readaptation to Earth's gravity.

    PubMed

    Macho, L; Koska, J; Ksinantova, L; Vigas, M; Noskov, V B; Grigoriev, A I; Kvetnansky, R

    2001-07-01

    In great part of the investigations of endocrine system functions in astronauts during space flights the plasma levels of hormones and metabolites were determined only in resting conditions, usually from one blood sample collection. Such levels reflected the psychical and physical state and new hormonal homeostasis of organism at the time of blood collection, however, the functional capacity of neuroendocrine system to respond to various stress stimuli during space flight remained unknown. The aim of present investigations was to study dynamic changes of hormone levels during the stress and metabolic loads (insulin induced hypoglycemia, physical exercise and oral glucose tolerance test) at the exposure of human subject to microgravity on the space station MIR. The responses of sympatico-adrenomedullary system to these stress and workloads were presented by Kvetnansky et al. PMID:12650202

  14. Highly efficient and flexible electrospun carbon-silica nanofibrous membrane for ultrafast gravity-driven oil-water separation.

    PubMed

    Tai, Ming Hang; Gao, Peng; Tan, Benny Yong Liang; Sun, Darren D; Leckie, James O

    2014-06-25

    A novel free-standing and flexible electrospun carbon-silica composite nanofibrous membrane is newly introduced. The characterization results suggest that the electrospun composite nanofibers are constructed by carbon chains interpenetrated through a linear network of 3-dimensional SiO2. Thermogravimetric analysis indicates that the presence of insulating silica further improve the thermal resistance of the membrane. Additionally, the mechanical strength test shows that the membrane's toughness and flexibility can be enhanced if the concentration of SiO2 is maintained below 2.7 wt %. Thermal and chemical stability test show that the membrane's wettability properties can be sustained at an elevated temperature up to 300 °C and no discernible change in wettability was observed under highly acidic and basic conditions. After surface-coating with silicone oil for 30 mins, the composite membrane exhibits ultra-hydrophobic and superoleophilic properties with water and oil contact angles being 144.2 ± 1.2° and 0°, respectively. The enhanced flexibility and selective wetting property enables the membrane to serve as an effective substrate for separating free oil from water. Lab-scale oil-water separation test indicates that the membrane possesses excellent oil-water separation efficiency. In addition, its inherent property of high porosity allows oil-water separation to be performed in a gravity-driven process with high-flux. We anticipate that this study will open up a new avenue for fabrication of free-standing carbonaceous composite membrane with tunable flexibility for energy efficient and high-throughput production of clean water. PMID:24867399

  15. Gravity and Biology

    NASA Technical Reports Server (NTRS)

    Morey-Holton, Emily R.

    1996-01-01

    Gravity has been the most constant environmental factor throughout the evolution of biological species on Earth. Organisms are rarely exposed to other gravity levels, either increased or decreased, for prolonged periods. Thus, evolution in a constant 1G field has historically prevented us from appreciating the potential biological consequences of a multi-G universe. To answer the question 'Can terrestrial life be sustained and thrive beyond our planet?' we need to understand the importance of gravity on living systems, and we need to develop a multi-G, rather than a 1G, mentality. The science of gravitational biology took a giant step with the advent of the space program, which provided the first opportunity to examine living organisms in gravity environments lower than could be sustained on Earth. Previously, virtually nothing was known about the effects of extremely low gravity on living organisms, and most of the initial expectations were proven wrong. All species that have flown in space survive in microgravity, although no higher organism has ever completed a life cycle in space. It has been found, however, that many systems change, transiently or permanently, as a result of prolonged exposure to microgravity.

  16. Secondary arm coarsening and microsegregation in superalloy PWA-1480 single crystals: Effect of low gravity

    NASA Technical Reports Server (NTRS)

    Vijayakumar, M.; Tewari, S. N.; Lee, J. E.; Curreri, P. A.

    1990-01-01

    Single crystal specimens of nickel base superalloy PWA-1480 were directionally solidified on ground and during low gravity (20 sec) and high gravity (90 sec) parabolic maneuver of KC-135 aircraft. Thermal profiles were measured during solidification by two in-situ thermocouples positioned along the sample length. The samples were quenched during either high or low gravity cycles so as to freeze the structures of the mushy zone developing under different gravity levels. Microsegregation was measured by examining the solutal profiles on several transverse cross-sections across primary dendrites along their length in the quenched mushy zone. Effect of gravity level on secondary arm coarsening kinetics and microsegregation have been investigated. The results indicate that there is no appreciable difference in the microsegregation and coarsening kinetics behavior in the specimens grown under high or low gravity. This suggests that short duration changes in gravity/levels (0.02 to 1.7 g) do not influence convection in the interdendritic region. Examination of the role of natural convection, in the melt near the primary dendrite tips, on secondary arm spacings requires low gravity periods longer than presently available on KC-135. Secondary arm coarsening kinetics show a reasonable fit with the predictions from a simple analytical model proposed by Kirkwood for a binary alloy.

  17. Stable superconducting magnet. [high current levels below critical temperature

    NASA Technical Reports Server (NTRS)

    Boom, R. W. (Inventor)

    1967-01-01

    Operation of a superconducting magnet is considered. A method is described for; (1) obtaining a relatively high current in a superconducting magnet positioned in a bath of a gas refrigerant; (2) operating a superconducting magnet at a relatively high current level without training; and (3) operating a superconducting magnet containing a plurality of turns of a niobium zirconium wire at a relatively high current level without training.

  18. Gravity, Magnetism, and "Down": Non-Physics College Students' Conceptions of Gravity

    ERIC Educational Resources Information Center

    Asghar, Anila; Libarkin, Julie C.

    2010-01-01

    This study investigates how students enrolled in entry-level geology, most of whom would graduate from college without university-level physics courses, thought about and applied the concept of gravity while solving problems concerning gravity. The repercussions of students' gravity concepts are then considered in the context of non-physics…

  19. Global gene expression analysis of Saccharomyces cerevisiae grown under redox potential-controlled very-high-gravity conditions.

    PubMed

    Liu, Chen-Guang; Lin, Yen-Han; Bai, Feng-Wu

    2013-11-01

    Redox potential (ORP) plays a pivotal role in yeast viability and ethanol production during very-high-gravity (VHG) ethanol fermentation. In order to identify the correlation between redox potential profiles and gene expression patterns, global gene expression of Saccharomyces cerevisiae was investigated. Results indicated that significant changes in gene expression occurred at the periods of 0 - 6 h and 30 - 36 h, respectively. Changes noted in the period of 0 - 6 h were mainly related to carbohydrate metabolism. In contrast, gene expression variation at 30 - 36 h could be attributed primarily to stress response. Although CDC19 was down-regulated, expression of PYK2, PDC6 and ADH2 correlated inversely with ORP. Meanwhile, expression of GPD1 decreased due to the depletion of dissolved oxygen in the fermentation broth, but expression of GPD2 correlated with ORP. Transcription of genes encoding heat shock proteins was characterized by uphill, downhill, valley and plateau expression profiles, accordingly to specific function in stress response. These results highlight the role of ORP in modulating yeast physiology and metabolism under VHG conditions.

  20. On the impact of airborne gravity data to fused gravity field models

    NASA Astrophysics Data System (ADS)

    Bolkas, Dimitrios; Fotopoulos, Georgia; Braun, Alexander

    2016-06-01

    In gravity field modeling, fused models that utilize satellite, airborne and terrestrial gravity observations are often employed to deal with erroneous terrestrially derived gravity datasets. These terrestrial datasets may suffer from long-wavelength systematic errors and inhomogeneous data coverage, which are not prevalent in airborne and satellite datasets. Airborne gravity acquisition plays an essential role in gravity field modeling, providing valuable information of the Earth's gravity field at medium and short wavelengths. Thus, assessing the impact of airborne gravity data to fused gravity field models is important for identifying problematic regions. Six study regions that represent different gravity field variability and terrestrial data point-density characteristics are investigated to quantify the impact of airborne gravity data to fused gravity field models. The numerical assessments of these representative regions resulted in predictions of airborne gravity impact for individual states and provinces in the USA and Canada, respectively. Prediction results indicate that, depending on the terrestrial data point-density and gravity field variability, the expected impact of airborne gravity can reach up to 3mGal (in terms of standard deviation) in Canada and Alaska (over areas of 1° × 1°). However, in the mainland US region, small changes are expected (0.2-0.4 mGal over areas of 1° × 1°) due to the availability of high spatial resolution terrestrial data. These results can serve as a guideline for setting airborne gravity data acquisition priorities and for improving future planning of airborne gravity surveys.

  1. Observed longitude variations of zonal wind, UV albedo and H2O at Venus cloud top level: the role of stationary gravity waves generated by Venus topography

    NASA Astrophysics Data System (ADS)

    Bertaux, Jean-Loup; Hauchecorne, Alain; khatuntsev, Igor; Markiewicz, Wojciech; Marcq, emmanuel; Lebonnois, Sebastien; Patsaeva, Marina; Turin, Alexander; Fedorova, Anna

    2016-10-01

    Based on the analysis of UV images (at 365 nm) of Venus cloud top (altitude 67±2 km) collected with VMC (Venus Monitoring Camera) on board Venus Express (VEX), it is found that the zonal wind speed south of the equator (from 5°S to 15°S) shows a conspicuous variation (from -101 to -83 m/s) with geographic longitude of Venus, correlated with the underlying relief of Aphrodite Terra. We interpret this pattern as the result of stationary gravity waves produced at ground level by the up lift of air when the horizontal wind encounters a mountain slope. These waves can propagate up to the cloud top level, break there and transfer their momentum to the zonal flow. Such upward propagation of gravity waves and influence on the wind speed vertical profile was shown to play an important role in the middle atmosphere of the Earth but is not reproduced in the current GCM of Venus atmosphere from LMD.In the equatorial regions, the UV albedo of clouds at 365 nm and the H2O mixing ratio at cloud top varies also with longitude, with an anti-correlation: the more H2O, the darker are the clouds. We argue that these variations may be simply explained by the divergence of the horizontal wind field. In the longitude region (from 60° to -10°) where the horizontal wind speed is increasing in magnitude (stretch), it triggers air upwelling which brings both the UV absorber and H2O at cloud top level and decreases the albedo, and vice-versa when the wind is decreasing in magnitude (compression). This picture is fully consistent with the classical view of Venus meridional circulation, with upwelling at equator revealed by horizontal air motions away from equator: the longitude effect is only an additional but important modulation of this effect. We argue that H2O enhancement is the sign of upwelling because the H2O mixing ratio decreases with altitude, comforting the view that the UV absorber is also brought to cloud top by upwelling.

  2. Influence of Venus topography on the zonal wind and UV albedo at cloud top level: The role of stationary gravity waves

    NASA Astrophysics Data System (ADS)

    Bertaux, Jean-Loup; Khatuntsev, I. V.; Hauchecorne, A.; Markiewicz, W. J.; Marcq, E.; Lebonnois, S.; Patsaeva, M.; Turin, A.; Fedorova, A.

    2016-06-01

    Based on the analysis of UV images (at 365 nm) of Venus cloud top (altitude 67 ± 2 km) collected with Venus Monitoring Camera on board Venus Express (VEX), it is found that the zonal wind speed south of the equator (from 5°S to 15°S) shows a conspicuous variation (from -101 to -83 m/s) with geographic longitude of Venus, correlated with the underlying relief of Aphrodite Terra. We interpret this pattern as the result of stationary gravity waves produced at ground level by the uplift of air when the horizontal wind encounters a mountain slope. These waves can propagate up to the cloud top level, break there, and transfer their momentum to the zonal flow. Such upward propagation of gravity waves and influence on the wind speed vertical profile was shown to play an important role in the middle atmosphere of the Earth by Lindzen (1981) but is not reproduced in the current GCM of Venus atmosphere from LMD. (Laboratoire de Météorologie Dynamique) In the equatorial regions, the UV albedo at 365 nm varies also with longitude. We argue that this variation may be simply explained by the divergence of the horizontal wind field. In the longitude region (from 60° to -10°) where the horizontal wind speed is increasing in magnitude (stretch), it triggers air upwelling which brings the UV absorber at cloud top level and decreases the albedo and vice versa when the wind is decreasing in magnitude (compression). This picture is fully consistent with the classical view of Venus meridional circulation, with upwelling at equator revealed by horizontal air motions away from equator: the longitude effect is only an additional but important modulation of this effect. This interpretation is comforted by a recent map of cloud top H2O, showing that near the equator the lower UV albedo longitude region is correlated with increased H2O. We argue that H2O enhancement is the sign of upwelling, suggesting that the UV absorber is also brought to cloud top by upwelling.

  3. Gravity settling

    DOEpatents

    Davis, Hyman R.; Long, R. H.; Simone, A. A.

    1979-01-01

    Solids are separated from a liquid in a gravity settler provided with inclined solid intercepting surfaces to intercept the solid settling path to coalesce the solids and increase the settling rate. The intercepting surfaces are inverted V-shaped plates, each formed from first and second downwardly inclined upwardly curved intersecting conical sections having their apices at the vessel wall.

  4. Simulating Gravity

    ERIC Educational Resources Information Center

    Pipinos, Savas

    2010-01-01

    This article describes one classroom activity in which the author simulates the Newtonian gravity, and employs the Euclidean Geometry with the use of new technologies (NT). The prerequisites for this activity were some knowledge of the formulae for a particle free fall in Physics and most certainly, a good understanding of the notion of similarity…

  5. Quantum Gravity

    NASA Astrophysics Data System (ADS)

    Goradia, Shantilal

    2009-11-01

    The continuing search for quantum gravity and never ending attempts to unify gravity with other forces of nature represent tremendous waste of public and private funds directing students' energy towards non-creative manipulative work instead of learning from the scientific creativity in Einstein's 1919 paper that unifies gravity with nuclear force. It reflects Einstein's 1919 jump beyond his own 1915 theory of gravity, including that of Newton as implicitly demanded by Newton in 1686. Einstein corrected and retracted his 1917 introduction of cosmological constant in 1919. Dislike of the fact that Einstein did not use quantum mechanics to prove his point has no real value now, because we will use key ingredients (Planck scale and probabilistic aspect) of quantum mechanics and show that they reach the same conclusion. Newton explained the solar system known after Kepler. Likewise, our quantum mechanical approach explains the strong coupling as well the solar system and shows new horizons, otherwise unexplained. Explanation of unexplained observations need no prediction per Hawking, and obviously otherwise.

  6. Effect of tapioca starch and amyloglucosidase concentration on very high gravity simultaneous saccharification and fermentation (VHG-SSF) of bioethanol

    NASA Astrophysics Data System (ADS)

    Sugih, A. K.; Santoso, I. V.; Kristijarti, A. P.

    2015-12-01

    Tapioca starch is isolated from the root of cassava plant (Manihot esculenta). It is produced in a large quantity in Indonesia and other south east Asian countries. Tapioca starch has been commonly used as a feedstock for food as well as non-food industries. Due to its high carbohydrate content, tapioca starch has the potentiality to be used as a raw material for bioethanol production. In this research, a novel approach (Very High Gravity Simultaneous Sacharification and Fermentation/ VHG-SSF) to synthesise highly concentrated ethanol from tapioca starch was investigated. Tapioca starch suspension was first gelatinised for two hours at 90°C and hydrolised at the same temperature for another two hours using commercial α- amylase (Liquozyme Supra, 0.16%-v/ w starch). The pretreated suspension was sterilised and mixed with nitrogenous supplement. In order to start the fermentation, Saccharomyces cereviseae NRRL Y-132 inoculum (10%-v/v; 107 cells/ ml) and commercial amyloglucosidase (Dextrozyme GA, 35-105 AGU/ g starch) were added to the mixture. The initial total carbohydrate, yeast extract, and peptone concentrations of the fermentation broths were 30-40 %-w/v, 1%-w/v, and 2%-w/v, respectively. VHG-SSF was allowed to proceed for 6 days at 30°C with rotary shaker speed of 100 rpm. The concentration of glucose and ethanol during fermentation was monitored using HPLC. The experimental result shows that tapioca starch has been successfully converted to ethanol with a final concentration of 10.12-16.14 %-w/v, which is corresponding to yield of 34.68-56.83 %-w ethanol/ w-converted sugar. The result suggests that VHG-SSF is a prospective method to synthesise bioethanol from tapioca starch.

  7. Massive gravity

    NASA Astrophysics Data System (ADS)

    Mukohyama, Shinji

    2013-09-01

    The concept of mass has been central in many areas of physics. Gravitation is not an exception, and it has been one of the long-standing questions whether the graviton, a spin-2 particle that mediates gravity, can have a non-vanishing mass or not. This question is relevant from not only theoretical but also phenomenological viewpoints, since a nonzero graviton mass may lead to late-time acceleration of the universe and thus may be considered as an alternative to dark energy. In 2010, de Rham, Gabadadze and Tolley proposed the first example of a fully nonlinear massive gravity theory and showed that the so called Boulware-Deser ghost, which had been one of the major obstacles against a stable nonlinear theory of massive gravity since 1972, can be removed by construction. Since then, nonlinear massive gravity has been attracting significant interest among physicists and cosmologists. The nonlinear theory of massive gravity provides a theoretical framework in which properties of the remaining five physical degrees of freedom of massive gravity can be studied. As always with any low-energy effective theories, one of the first tasks would be to identify good and bad backgrounds. Depending on the choice of backgrounds, some of the five degrees of freedom may become strongly coupled, may exhibit instantaneous propagation, or may lead to ghost/gradient instabilities. A related subject is to seek interesting solutions such as those relevant for astrophysical objects and those describing self-accelerating cosmology. Those solutions will allow us to study phenomenological and cosmological implications of the theory. Yet another important task would be to seek a possible (partial) UV completion that can be applied beyond the regime of validity of the low-energy effective theory that we currently know of. We invited articles to cover those important subjects in massive gravity. Given the recent rapid developments in the field, however, it must be noted that this focus issue

  8. Self-assembled, nanostructured polypyrrole films grown in a high-gravity environment.

    PubMed

    Chang, Jean H; de Leon, Christian R Aleman; Hunter, Ian W

    2012-03-13

    A simple, novel method of synthesizing self-assembled, nanostructured conducting polymer films has been developed. Applying an increased centrifugal force on the electrodes during the electrochemical deposition process yields high surface area, micro- or nanostructured polymer films. Scanning electron microscopy showed that as the applied g-force increased, the polymers progressed from having smooth, "cauliflower" morphologies, to intermediate microstructured surfaces, to finally dense nanostructured surfaces with pore sizes as small as 50 nm. Cyclic voltammetry revealed that films grown at higher centrifugal accelerations (higher than 500g) exhibited less degradation after electrochemical cycling and more capacitive behavior.

  9. High Power MPD Nuclear Electric Propulsion (NEP) for Artificial Gravity HOPE Missions to Callisto

    NASA Technical Reports Server (NTRS)

    McGuire, Melissa L.; Borowski, Stanley K.; Mason, Lee M.; Gilland, James

    2003-01-01

    This documents the results of a one-year multi-center NASA study on the prospect of sending humans to Jupiter's moon, Callisto, using an all Nuclear Electric Propulsion (NEP) space transportation system architecture with magnetoplasmadynamic (MPD) thrusters. The fission reactor system utilizes high temperature uranium dioxide (UO2) in tungsten (W) metal matrix cermet fuel and electricity is generated using advanced dynamic Brayton power conversion technology. The mission timeframe assumes on-going human Moon and Mars missions and existing space infrastructure to support launch of cargo and crewed spacecraft to Jupiter in 2041 and 2045, respectively.

  10. MJO-related intraseasonal variation of gravity waves in the Southern Hemisphere tropical stratosphere revealed by high-resolution AIRS observations

    NASA Astrophysics Data System (ADS)

    Tsuchiya, Chikara; Sato, Kaoru; Alexander, M. Joan; Hoffmann, Lars

    2016-07-01

    The intraseasonal variability of gravity waves (GWs) in the austral summer middle stratosphere was examined using dedicated high-resolution temperature retrieval from the Atmospheric Infrared Sounder data. Composite maps were made of stratospheric GW temperature variances, large-scale zonal winds around the tropopause, and precipitation based on the real-time multivariate Madden-Julian Oscillation (MJO) index. Regional distributions of these quantities are synchronized with the MJO: The GW variances are larger for stronger precipitation and for more strongly westward wind around the tropopause at a given precipitation. These results suggest that the GWs observed by Atmospheric Infrared Sounder (AIRS) in the stratosphere originate from convection. Moreover, it is shown that the zonal wind around the tropopause likely controls the GW propagation into the stratosphere by a critical level filtering mechanism and/or the GW generation by an obstacle source effect. This means that the MJO can modulate the middle atmospheric circulation by regulating the GWs in two ways, namely, generation and propagation.

  11. Predicting gravity and sediment thickness in Afghanistan

    NASA Astrophysics Data System (ADS)

    Jung, W.; Brozena, J.; Peters, M.

    2013-02-01

    The US Naval Research Laboratory conducted comprehensive high-altitude (7 km above mean sea level) aero-geophysical surveys over Afghanistan in 2006 (Rampant Lion I). The surveys were done in collaboration with the US Geological Survey and upon the request of Islamic Republic of Afghanistan Ministry of Mines. In this study, we show that a best fitting admittance between topography and airborne gravity in western Afghanistan can be used to predict airborne gravity for the no-data area of eastern Afghanistan where the mountains are too high to conduct airborne surveys, due to the threat of ground fire. The differences between the airborne and the predicted gravity along a tie-track through the no-data area were found to be within ±12 mGal range with rms difference 7.3 mGal, while those between the predicted gravity from a simple Airy model (with compensation depth of 32 km and crustal density of 2.67 g cm-3) and the airborne gravity were within ±22 mGal range with rms difference 10.3 mGal. A combined airborne free-air anomaly has been constructed by merging the predicted gravity with the airborne data. We also demonstrate that sediment thickness can be estimated for basin areas where surface topography and airborne free-air anomaly profiles do not show a correlation presumably because of thick sediments. In order to estimate sediment thickness, we first determine a simple linear relationship from a scatter plot of the airborne gravity points and the interpolated Shuttle Radar Topography Mission (SRTM) topography along the Rampant Lion I tracks, and computed corresponding quasi-topography tracks by multiplying the linear relationship with the airborne free-air anomalies. We then take the differences between the SRTM and quasi-topography as a first-order estimate of sediment thickness. A global gravity model (GOCO02S), upward continued to the same altitude (7 km above mean sea level) as the data collection, was compared with the low-pass filtered (with cutoff

  12. Effect of water immersion on cardiopulmonary physiology at high gravity (+Gz)

    NASA Technical Reports Server (NTRS)

    Arieli, R.; Boutellier, U.; Farhi, L. E.

    1986-01-01

    The cardiopulmonary responses of eight male subject between 21-31 years exposed to 1, 2, and 3 Gz during immersion at 35 + or - 0.5 C to heart level and during control dry rides are studied. Ventilation, O2 consumption, the end-tidal pressure of CO2, heart frequency, cardiac output, functional residual capacity, and the arterial pressure of CO2 were measured. It is observed that as Gz increases ventilation, heart frequency, and O2 consumption increase, and the end-tidal and arterial pressures of CO2 decrease during dry rides, but are not altered during immersion. It is detected that the functional residual capacity is lower during immersion and decreases in both the dry and immersed state as Gz increases, and cardiac output decreases as Gz increases in dry rides. It is noted that changes produced by acceleration in a Gz direction are due to the effect on the systemic circulation rather than to the effect on the lungs.

  13. Tongji-GRACE01: A GRACE-only static gravity field model recovered from GRACE Level-1B data using modified short arc approach

    NASA Astrophysics Data System (ADS)

    Chen, Qiujie; Shen, Yunzhong; Zhang, Xingfu; Chen, Wu; Hsu, Houze

    2015-09-01

    The modified short arc approach, where the position vector in force model are regarded as pseudo observation, is implemented in the SAtellite Gravimetry Analysis Software (SAGAS) developed by Tongji university. Based on the SAGAS platform, a static gravity field model (namely Tongji-GRACE01) complete to degree and order 160 is computed from 49 months of real GRACE Level-1B data spanning the period 2003-2007 (including the observations of K-band range-rate, reduced dynamic orbits, non-conservative accelerations and altitudes). The Tongji-GRACE01 model is compared with the recent GRACE-only models (such as GGM05S, AIUB-GRACE03S, ITG-GRACE03, ITG-GRACE2010S, and ITSG-GRACE2014S) and validated with GPS-leveling data sets in different countries. The results show that the Tongji-GRACE01 model has a considered quality as GGM05S, AIUB-GRACE03S and ITG-GRACE03. The Tongji-GRACE01 model is available at the International Centre for Global Earth Models (ICGEM) web page (http://icgem.gfz-potsdam.de/ICGEM/).

  14. Reference commercial high-level waste glass and canister definition.

    SciTech Connect

    Slate, S.C.; Ross, W.A.; Partain, W.L.

    1981-09-01

    This report presents technical data and performance characteristics of a high-level waste glass and canister intended for use in the design of a complete waste encapsulation package suitable for disposal in a geologic repository. The borosilicate glass contained in the stainless steel canister represents the probable type of high-level waste product that will be produced in a commercial nuclear-fuel reprocessing plant. Development history is summarized for high-level liquid waste compositions, waste glass composition and characteristics, and canister design. The decay histories of the fission products and actinides (plus daughters) calculated by the ORIGEN-II code are presented.

  15. A Direct Comparison of Two High Precision Relative Gravity Meters at Optimal Performance

    NASA Astrophysics Data System (ADS)

    van Westrum, D.

    2015-12-01

    NGS has maintained and operated GWR Superconducting Gravimeter #024 since 1995. It has been widely considered one of the most quiet instruments from that era. It was recently upgraded with state of the art electronics and its operating parameters reoptimzied. A Micro-g LaCoste gPhoneX, installed on a high precision tilt table, was collocated with the SG at the Table Mountain Geophysical Observatory near Boulder, CO and the two instruments operated side by side for approximately two months. Results in both the frequency domain and selected time series from large seismic signals (e.g. earthquakes) will be presented, allowing for a direct comparison between the instruments in identical, ideal conditions.

  16. Venus Gravity Handbook

    NASA Technical Reports Server (NTRS)

    Konopliv, Alexander S.; Sjogren, William L.

    1996-01-01

    This report documents the Venus gravity methods and results to date (model MGNP90LSAAP). It is called a handbook in that it contains many useful plots (such as geometry and orbit behavior) that are useful in evaluating the tracking data. We discuss the models that are used in processing the Doppler data and the estimation method for determining the gravity field. With Pioneer Venus Orbiter and Magellan tracking data, the Venus gravity field was determined complete to degree and order 90 with the use of the JPL Cray T3D Supercomputer. The gravity field shows unprecedented high correlation with topography and resolution of features to the 2OOkm resolution. In the procedure for solving the gravity field, other information is gained as well, and, for example, we discuss results for the Venus ephemeris, Love number, pole orientation of Venus, and atmospheric densities. Of significance is the Love number solution which indicates a liquid core for Venus. The ephemeris of Venus is determined to an accuracy of 0.02 mm/s (tens of meters in position), and the rotation period to 243.0194 +/- 0.0002 days.

  17. MtBE biodegradation in a gravity flow, high-biomass retaining bioreactor.

    PubMed

    Zein, Maher M; Suidan, Makram T; Venosa, Albert D

    2004-06-15

    The aerobic biodegradation of methyl tert-butyl ether (MtBE), a widely used fuel oxygenate, was investigated using a pilot-scale biomass-retaining bioreactor called a Biomass Concentrator Reactor (BCR). The reactor was operated for a year at a flow rate of 2500 L/d on Cincinnati dechlorinated tap water and an influent MtBE concentration of 5 mg/L. Treatment efficiency of MtBE in the reactor during stable operations exceeded 99.9%. The upper 95% confidence levels of effluent MtBE concentrations and its degradation byproduct tert-butyl alcohol (TBA) were 2.9 and 0.9 microg/L, respectively, during these stable conditions. In addition, the effluent was found to be of better quality than the influent tap water as reflected by dissolved organic carbon analysis. Microbial community DNA profiling was carried out using denaturing gradient gel electrophoresis (DGGE) of polymerase chain reaction amplified 16s rDNA. The BCR was found to be inhabited by a wide spectrum of bacterial species, most notably microorganisms related to the genera Hydrogenophaga, Methylobacterium, Sphingomonas, and Pseudomonas. These organisms were previously reported to be associated with MtBE degradation. With the contamination of groundwater by MtBE being a wide-ranging problem throughout the United States, it is essential to develop a technology capable of effectively remediating such aquifers in order to protect public health and the environment. The BCR's simple operation and low maintenance requirements may render it an economically attractive approach to remediating groundwater contaminated with MtBE.

  18. Asymptotically Safe Lorentzian Gravity

    SciTech Connect

    Manrique, Elisa; Rechenberger, Stefan; Saueressig, Frank

    2011-06-24

    The gravitational asymptotic safety program strives for a consistent and predictive quantum theory of gravity based on a nontrivial ultraviolet fixed point of the renormalization group (RG) flow. We investigate this scenario by employing a novel functional renormalization group equation which takes the causal structure of space-time into account and connects the RG flows for Euclidean and Lorentzian signature by a Wick rotation. Within the Einstein-Hilbert approximation, the {beta} functions of both signatures exhibit ultraviolet fixed points in agreement with asymptotic safety. Surprisingly, the two fixed points have strikingly similar characteristics, suggesting that Euclidean and Lorentzian quantum gravity belong to the same universality class at high energies.

  19. Asymptotically safe Lorentzian gravity.

    PubMed

    Manrique, Elisa; Rechenberger, Stefan; Saueressig, Frank

    2011-06-24

    The gravitational asymptotic safety program strives for a consistent and predictive quantum theory of gravity based on a nontrivial ultraviolet fixed point of the renormalization group (RG) flow. We investigate this scenario by employing a novel functional renormalization group equation which takes the causal structure of space-time into account and connects the RG flows for Euclidean and Lorentzian signature by a Wick rotation. Within the Einstein-Hilbert approximation, the β functions of both signatures exhibit ultraviolet fixed points in agreement with asymptotic safety. Surprisingly, the two fixed points have strikingly similar characteristics, suggesting that Euclidean and Lorentzian quantum gravity belong to the same universality class at high energies. PMID:21770628

  20. Asymptotically safe Lorentzian gravity.

    PubMed

    Manrique, Elisa; Rechenberger, Stefan; Saueressig, Frank

    2011-06-24

    The gravitational asymptotic safety program strives for a consistent and predictive quantum theory of gravity based on a nontrivial ultraviolet fixed point of the renormalization group (RG) flow. We investigate this scenario by employing a novel functional renormalization group equation which takes the causal structure of space-time into account and connects the RG flows for Euclidean and Lorentzian signature by a Wick rotation. Within the Einstein-Hilbert approximation, the β functions of both signatures exhibit ultraviolet fixed points in agreement with asymptotic safety. Surprisingly, the two fixed points have strikingly similar characteristics, suggesting that Euclidean and Lorentzian quantum gravity belong to the same universality class at high energies.

  1. Sensorimotor aspects of high-speed artificial gravity: II. The effect of head position on illusory self motion

    NASA Technical Reports Server (NTRS)

    Mast, F. W.; Newby, N. J.; Young, L. R.

    2002-01-01

    The effects of cross-coupled stimuli on the semicircular canals are shown to be influenced by the position of the subject's head with respect to gravity and the axis of rotation, but not by the subject's head position relative to the trunk. Seventeen healthy subjects made head yaw movements out of the horizontal plane while lying on a horizontal platform (MIT short radius centrifuge) rotating at 23 rpm about an earth-vertical axis. The subjects reported the magnitude and duration of the illusory pitch or roll sensations elicited by the cross-coupled rotational stimuli acting on the semicircular canals. The results suggest an influence of head position relative to gravity. The magnitude estimation is higher and the sensation decays more slowly when the head's final position is toward nose-up (gravity in the subject's head x-z-plane) compared to when the head is turned toward the side (gravity in the subject's head y-z-plane). The results are discussed with respect to artificial gravity in space and the possible role of pre-adaptation to cross-coupled angular accelerations on earth.

  2. Characteristics of an immobilized yeast cell system using very high gravity for the fermentation of ethanol.

    PubMed

    Ji, Hairui; Yu, Jianliang; Zhang, Xu; Tan, Tianwei

    2012-09-01

    The characteristics of ethanol production by immobilized yeast cells were investigated for both repeated batch fermentation and continuous fermentation. With an initial sugar concentration of 280 g/L during the repeated batch fermentation, more than 98% of total sugar was consumed in 65 h with an average ethanol concentration and ethanol yield of 130.12 g/L and 0.477 g ethanol/g consumed sugar, respectively. The immobilized yeast cell system was reliable for at least 10 batches and for a period of 28 days without accompanying the regeneration of Saccharomyces cerevisiae inside the carriers. The multistage continuous fermentation was carried out in a five-stage column bioreactor with a total working volume of 3.75 L. The bioreactor was operated for 26 days at a dilution rate of 0.015 h(-1). The ethanol concentration of the effluent reached 130.77 g/L ethanol while an average 8.18 g/L residual sugar remained. Due to the high osmotic pressure and toxic ethanol, considerable yeast cells died without regeneration, especially in the last two stages, which led to the breakdown of the whole system of multistage continuous fermentation.

  3. Sensorimotor aspects of high-speed artificial gravity: I. Sensory conflict in vestibular adaptation

    NASA Technical Reports Server (NTRS)

    Brown, Erika L.; Hecht, Heiko; Young, Laurence R.

    2002-01-01

    Short-radius centrifugation offers a promising and affordable countermeasure to the adverse effects of prolonged weightlessness. However, head movements made in a fast rotating environment elicit Coriolis effects, which seriously compromise sensory and motor processes. We found that participants can adapt to these Coriolis effects when exposed intermittently to high rotation rates and, at the same time, can maintain their perceptual-motor coordination in stationary environments. In this paper, we explore the role of inter-sensory conflict in this adaptation process. Different measures (vertical nystagmus, illusory body tilt, motion sickness) react differently to visual-vestibular conflict and adapt differently. In particular, proprioceptive-vestibular conflict sufficed to adapt subjective parameters and the time constant of nystagmus decay, while retinal slip was required for VOR gain adaptation. A simple correlation between the strength of intersensory conflict and the efficacy of adaptation fails to explain the data. Implications of these findings, which differ from existing data for low rotation rates, are discussed.

  4. First test of high frequency Gravity Waves from inflation using Advanced LIGO

    SciTech Connect

    Lopez, Alejandro; Freese, Katherine E-mail: ktfreese@umich.edu

    2015-01-01

    Inflation models ending in a first order phase transition produce gravitational waves (GW) via bubble collisions of the true vacuum phase. We demonstrate that these bubble collisions can leave an observable signature in Advanced LIGO, an upcoming ground-based GW experiment. These GW are dependent on two parameters of the inflationary model: ε represents the energy difference between the false vacuum and the true vacuum of the inflaton potential, and χ measures how fast the phase transition ends (χ ∼ the number of e-folds during the actual phase transition). Advanced LIGO will be able to test the validity of single-phase transition models within the parameter space 10{sup 7} GeV∼< ε{sup 1/4} ∼< 10{sup 10} GeV and 0.19 ∼< χ ∼< 1. If inflation occurred through a first order phase transition, then Advanced LIGO could be the first to discover high frequency GW from inflation.

  5. Luminance and color inputs to mid-level and high-level vision.

    PubMed

    Jennings, Ben J; Martinovic, Jasna

    2014-01-01

    We investigated the interdependence of activity within the luminance (L + M) and opponent chromatic (L - M and S - [L + M]) postreceptoral mechanisms in mid-level and high-level vision. Mid-level processes extract contours and perform figure-background organization whereas high-level processes depend on additional semantic input, such as object knowledge. We collected mid-level (good/poor continuation) and high-level (object/nonobject) two-alternative forced-choice discrimination threshold data over a range of conditions that isolate mechanisms or simultaneously stimulate them. The L - M mechanism drove discrimination in the presence of very low luminance inputs. Contrast-dependent interactions between the luminance and L - M as well as combined L - M and S - (L + M) inputs were also found, but S - (L + M) signals, on their own, did not interact with luminance. Mean mid-level and high-level thresholds were related, with luminance providing inputs capable of sustaining performance over a broader, linearly corresponding range of contrasts when compared to L - M signals. The observed interactions are likely to be driven by L - M signals and relatively low luminance signals (approximately 0.05-0.09 L + M contrast) facilitating each other. The results are consistent with previous findings on low-level interactions between chromatic and luminance signals and demonstrate that functional interdependence between the geniculate mechanisms extends to the highest stages of the visual hierarchy.

  6. Identification of candidate genes for yeast engineering to improve bioethanol production in very high gravity and lignocellulosic biomass industrial fermentations

    PubMed Central

    2011-01-01

    Background The optimization of industrial bioethanol production will depend on the rational design and manipulation of industrial strains to improve their robustness against the many stress factors affecting their performance during very high gravity (VHG) or lignocellulosic fermentations. In this study, a set of Saccharomyces cerevisiae genes found, through genome-wide screenings, to confer resistance to the simultaneous presence of different relevant stresses were identified as required for maximal fermentation performance under industrial conditions. Results Chemogenomics data were used to identify eight genes whose expression confers simultaneous resistance to high concentrations of glucose, acetic acid and ethanol, chemical stresses relevant for VHG fermentations; and eleven genes conferring simultaneous resistance to stresses relevant during lignocellulosic fermentations. These eleven genes were identified based on two different sets: one with five genes granting simultaneous resistance to ethanol, acetic acid and furfural, and the other with six genes providing simultaneous resistance to ethanol, acetic acid and vanillin. The expression of Bud31 and Hpr1 was found to lead to the increase of both ethanol yield and fermentation rate, while Pho85, Vrp1 and Ygl024w expression is required for maximal ethanol production in VHG fermentations. Five genes, Erg2, Prs3, Rav1, Rpb4 and Vma8, were found to contribute to the maintenance of cell viability in wheat straw hydrolysate and/or the maximal fermentation rate of this substrate. Conclusions The identified genes stand as preferential targets for genetic engineering manipulation in order to generate more robust industrial strains, able to cope with the most significant fermentation stresses and, thus, to increase ethanol production rate and final ethanol titers. PMID:22152034

  7. Neptunium estimation in dissolver and high-level-waste solutions

    SciTech Connect

    Pathak, P.N.; Prabhu, D.R.; Kanekar, A.S.; Manchanda, V.K.

    2008-07-01

    This papers deals with the optimization of the experimental conditions for the estimation of {sup 237}Np in spent-fuel dissolver/high-level waste solutions using thenoyltrifluoroacetone as the extractant. (authors)

  8. Effects of modified gravity in galactic clustering

    NASA Astrophysics Data System (ADS)

    Verma, Murli; Krishna Yadav, Bal

    2016-07-01

    We discuss the distinct effects of the modified gravity, especially f(R) gravity in structure formation. The small redshift as well as high redshift epochs are studied with a potential set of diagnostics distinguishing between the standard general relativistic and the modified gravity. These diagnostics are further put to test against the observations obtained in clustering surveys.

  9. Field Trips as Cognitive Motivators for High Level Science Learning

    ERIC Educational Resources Information Center

    Hurley, Marlene M.

    2006-01-01

    Using a composite example of field trips from several years of traveling to Yellowstone with high school biology students, the author illustrates how to raise the cognitive level of science instruction and student learning through science field trips. The author examines what teachers can do to raise the level of both teaching and learning in all…

  10. 46 CFR 153.409 - High level alarms.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... LEVEL ALARM.” Cargo Temperature Control Systems ... 46 Shipping 5 2011-10-01 2011-10-01 false High level alarms. 153.409 Section 153.409 Shipping... BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo...

  11. 46 CFR 153.409 - High level alarms.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... LEVEL ALARM.” Cargo Temperature Control Systems ... 46 Shipping 5 2012-10-01 2012-10-01 false High level alarms. 153.409 Section 153.409 Shipping... BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo...

  12. Decision Document for Heat Removal from High Level Waste Tanks

    SciTech Connect

    WILLIS, W.L.

    2000-07-31

    This document establishes the combination of design and operational configurations that will be used to provide heat removal from high-level waste tanks during Phase 1 waste feed delivery to prevent the waste temperature from exceeding tank safety requirement limits. The chosen method--to use the primary and annulus ventilation systems to remove heat from the high-level waste tanks--is documented herein.

  13. High-Level Waste System Process Interface Description

    SciTech Connect

    d'Entremont, P.D.

    1999-01-14

    The High-Level Waste System is a set of six different processes interconnected by pipelines. These processes function as one large treatment plant that receives, stores, and treats high-level wastes from various generators at SRS and converts them into forms suitable for final disposal. The three major forms are borosilicate glass, which will be eventually disposed of in a Federal Repository, Saltstone to be buried on site, and treated water effluent that is released to the environment.

  14. Imaging and Analysis of Void-defects in Solder Joints Formed in Reduced Gravity using High-Resolution Computed Tomography

    NASA Technical Reports Server (NTRS)

    Easton, John W.; Struk, Peter M.; Rotella, Anthony

    2008-01-01

    As a part of efforts to develop an electronics repair capability for long duration space missions, techniques and materials for soldering components on a circuit board in reduced gravity must be developed. This paper presents results from testing solder joint formation in low gravity on a NASA Reduced Gravity Research Aircraft. The results presented include joints formed using eutectic tin-lead solder and one of the following fluxes: (1) a no-clean flux core, (2) a rosin flux core, and (3) a solid solder wire with external liquid no-clean flux. The solder joints are analyzed with a computed tomography (CT) technique which imaged the interior of the entire solder joint. This replaced an earlier technique that required the solder joint to be destructively ground down revealing a single plane which was subsequently analyzed. The CT analysis technique is described and results presented with implications for future testing as well as implications for the overall electronics repair effort discussed.

  15. The location and nature of the Telemzan High Ghadames basin boundary in southern Tunisia based on gravity and magnetic anomalies

    NASA Astrophysics Data System (ADS)

    Gabtni, H.; Jallouli, C.; Mickus, K. L.; Zouari, H.; Turki, M. M.

    2006-03-01

    Gravity and magnetic data were analyzed to add constraints on the location and nature of the Telemzan-Ghadames boundary (TGB) and structure of the Ghadames basin in southern Tunisia. TGB is the boundary between the thick sedimentary cover of the intracratonic Ghadames basin to the south and the thin sedimentary cover of the Saharan platform to the north. The upward continuation of the Bouguer gravity anomalies showed that the TGB is a regional geophysical feature that may have controlled the amount of sediment being deposited both north and south of the boundary and the tectonic environment in the region since Paleozoic time. To emphasize the shorter wavelength gravity and magnetic anomalies, a series of gray scale images of the directional horizontal gradients were constructed that determined a series of previously unknown east-west-trending gravity and magnetic anomalies south of 31.6°N that correspond to lineaments seen on a Landsat 7 image and the location of the TGB. Also, an edge-enhancement analysis illustrated the same linear gravity anomalies and showed the subbasins and uplifts within the Ghadames basin had source depths of between 0.5 and 3.4 km. A north-south trending gravity model showed that the TGB is a relatively gradual feature (possibly basement stepped down by relatively low-displacement faulting) controlling the subsidence of the main Ghadames basin and confirms the edge-enhancement analysis that subbasin S3 and uplift U1 are the main structural features within the Ghadames basin. The knowledge of basement architecture of the Ghadames basin is important for future petroleum exploration within this intracratonic basin.

  16. Gravity Modeling for Variable Fidelity Environments

    NASA Technical Reports Server (NTRS)

    Madden, Michael M.

    2006-01-01

    Aerospace simulations can model worlds, such as the Earth, with differing levels of fidelity. The simulation may represent the world as a plane, a sphere, an ellipsoid, or a high-order closed surface. The world may or may not rotate. The user may select lower fidelity models based on computational limits, a need for simplified analysis, or comparison to other data. However, the user will also wish to retain a close semblance of behavior to the real world. The effects of gravity on objects are an important component of modeling real-world behavior. Engineers generally equate the term gravity with the observed free-fall acceleration. However, free-fall acceleration is not equal to all observers. To observers on the sur-face of a rotating world, free-fall acceleration is the sum of gravitational attraction and the centrifugal acceleration due to the world's rotation. On the other hand, free-fall acceleration equals gravitational attraction to an observer in inertial space. Surface-observed simulations (e.g. aircraft), which use non-rotating world models, may choose to model observed free fall acceleration as the gravity term; such a model actually combines gravitational at-traction with centrifugal acceleration due to the Earth s rotation. However, this modeling choice invites confusion as one evolves the simulation to higher fidelity world models or adds inertial observers. Care must be taken to model gravity in concert with the world model to avoid denigrating the fidelity of modeling observed free fall. The paper will go into greater depth on gravity modeling and the physical disparities and synergies that arise when coupling specific gravity models with world models.

  17. Time variable Earth's gravity field from SLR satellites

    NASA Astrophysics Data System (ADS)

    Sośnica, Krzysztof; Jäggi, Adrian; Meyer, Ulrich; Thaller, Daniela; Beutler, Gerhard; Arnold, Daniel; Dach, Rolf

    2015-10-01

    The time variable Earth's gravity field contains information about the mass transport within the system Earth, i.e., the relationship between mass variations in the atmosphere, oceans, land hydrology, and ice sheets. For many years, satellite laser ranging (SLR) observations to geodetic satellites have provided valuable information of the low-degree coefficients of the Earth's gravity field. Today, the Gravity Recovery and Climate Experiment (GRACE) mission is the major source of information for the time variable field of a high spatial resolution. We recover the low-degree coefficients of the time variable Earth's gravity field using SLR observations up to nine geodetic satellites: LAGEOS-1, LAGEOS-2, Starlette, Stella, AJISAI, LARES, Larets, BLITS, and Beacon-C. We estimate monthly gravity field coefficients up to degree and order 10/10 for the time span 2003-2013 and we compare the results with the GRACE-derived gravity field coefficients. We show that not only degree-2 gravity field coefficients can be well determined from SLR, but also other coefficients up to degree 10 using the combination of short 1-day arcs for low orbiting satellites and 10-day arcs for LAGEOS-1/2. In this way, LAGEOS-1/2 allow recovering zonal terms, which are associated with long-term satellite orbit perturbations, whereas the tesseral and sectorial terms benefit most from low orbiting satellites, whose orbit modeling deficiencies are minimized due to short 1-day arcs. The amplitudes of the annual signal in the low-degree gravity field coefficients derived from SLR agree with GRACE K-band results at a level of 77 %. This implies that SLR has a great potential to fill the gap between the current GRACE and the future GRACE Follow-On mission for recovering of the seasonal variations and secular trends of the longest wavelengths in gravity field, which are associated with the large-scale mass transport in the system Earth.

  18. Heat and Momentum Transfer Studies in High Reynolds Number Wavy Films at Normal and Reduced Gravity Conditions

    NASA Technical Reports Server (NTRS)

    Balakotaiah, V.

    1996-01-01

    We examined the effect of the gas flow on the liquid film when the gas flows in the countercurrent direction in a vertical pipe at normal gravity conditions. The most dramatic effect of the simultaneous flow of gas and liquid in pipes is the greatly increased transport rates of heat, mass, and momentum. In practical situations this enhancement can be a benefit or it can result in serious operational problems. For example, gas-liquid flow always results in substantially higher pressure drop and this is usually undesirable. However, much higher heat transfer coefficients can be expected and this can obviously be of benefit for purposes of design. Unfortunately, designers know so little of the behavior of such two phase systems and as a result these advantages are not utilized. Due to the complexity of the second order boundary model as well as the fact that the pressure variation across the film is small compared to the imposed gas phase pressure, the countercurrent gas flow affect was studied for the standard boundary layer model. A different stream function that can compensate the shear stress affect was developed and this stream function also can predict periodic solutions. The discretized model equations were transformed to a traveling wave coordinate system. A stability analysis of these sets of equations showed the presence of a Hopf bifurcation for certain values of the traveling wave velocity and the shear stress. The Hopf celerity was increased due to the countercurrent shear. For low flow rate the increases of celerity are more than for the high flow rate, which was also observed in experiments. Numerical integration of a traveling wave simplification of the model also predicts the existence of chaotic large amplitude, nonperiodic waves as observed in the experiments. The film thickness was increased by the shear.

  19. Does high serum uric acid level cause aspirin resistance?

    PubMed

    Yildiz, Bekir S; Ozkan, Emel; Esin, Fatma; Alihanoglu, Yusuf I; Ozkan, Hayrettin; Bilgin, Murat; Kilic, Ismail D; Ergin, Ahmet; Kaftan, Havane A; Evrengul, Harun

    2016-06-01

    In patients with coronary artery disease (CAD), though aspirin inhibits platelet activation and reduces atherothrombotic complications, it does not always sufficiently inhibit platelet function, thereby causing a clinical situation known as aspirin resistance. As hyperuricemia activates platelet turnover, aspirin resistance may be specifically induced by increased serum uric acid (SUA) levels. In this study, we thus investigated the association between SUA level and aspirin resistance in patients with CAD. We analyzed 245 consecutive patients with stable angina pectoris (SAP) who in coronary angiography showed more than 50% occlusion in a major coronary artery. According to aspirin resistance, two groups were formed: the aspirin resistance group (Group 1) and the aspirin-sensitive group (Group 2). Compared with those of Group 2, patients with aspirin resistance exhibited significantly higher white blood cell counts, neutrophil counts, neutrophil-to-lymphocyte ratios, SUA levels, high-sensitivity C-reactive protein levels, and fasting blood glucose levels. After multivariate analysis, a high level of SUA emerged as an independent predictor of aspirin resistance. The receiver-operating characteristic analysis provided a cutoff value of 6.45 mg/dl for SUA to predict aspirin resistance with 79% sensitivity and 65% specificity. Hyperuricemia may cause aspirin resistance in patients with CAD and high SUA levels may indicate aspirin-resistant patients. Such levels should thus recommend avoiding heart attack and stroke by adjusting aspirin dosage. PMID:26656902

  20. Expanding Gravity

    NASA Astrophysics Data System (ADS)

    Aisenberg, Sol

    2005-04-01

    Newton's gravitational constant Gn and Laws of Gravity are based upon observations in our solar system. Mysteries appear when they are used far outside our solar system Apparently, Newton's gravitational constant can not be applied at large distances. Dark matter was needed to explain the observed flat rotational velocity curves of spiral galaxies (Rubin), and of groups of remote galaxies (Zwicky). Our expansion of Newton's gravitational constant Gn as a power series in distance r, is sufficient to explain these observations without using dark matter. This is different from the MOND theory of Milgrom involving acceleration. Also, our Expanded Gravitational Constant (EGC) can show the correct use of the red shift. In addition to the Doppler contribution, there are three other contributions and these depend only upon gravity. Thus, velocity observations only based on the red shift can not be used to support the concept of the expanding universe, the accelerating expansion, or dark energy. Our expanded gravity constant can predict and explain Olbers' paradox (dark sky), and the temperature of the CMB (cosmic microwave background). Thus, CMB may not support the big bang and inflation.

  1. A Testing Instrument for High School Arabic, Level III.

    ERIC Educational Resources Information Center

    Wolowelsky, Joel B.

    The Arabic language examination was designed for Jewish immigrants from Syria wishing to satisfy New York State language requirements for high school graduation by indicating their proficiency in Arabic. The test is essentially a translation of a state test of Hebrew, and is intended to test Arabic at the third-year high school level. The…

  2. Selection of artificial gravity by animals during suborbital rocket flights

    NASA Technical Reports Server (NTRS)

    Lange, K. O.; Belleville, R. E.; Clark, F. C.

    1975-01-01

    White rats selected preferred artificial gravity levels by locomotion in centrifuges consisting of two runways mounted in the nose of sounding rockets. Roll rate of the Aerobee 150A rocket was designed to produce an angular velocity of 45 rpm during 5 min of free-fall, providing a gravity range from 0.3 to 1.5 G depending on a subject's runway position. One animal was released at the high and one at the low gravity position in each flight. Animal positions were continuously recorded. Locomotion patterns during these flights were similar. All four animals explored the entire available G-range. One rat settled at 0.4 G after 2 min; the others crossed the 1-G location in progressively narrower excursions and were near earth gravity at the end of the test period. Tentatively, the data suggest that normal earth-reared rats select earth gravity when available magnitudes include values above and below 1 G. Modification of gravity preference by prolonged exposure to higher or lower levels remains a possibility.

  3. Locomotion while load-carrying in reduced gravities.

    PubMed

    Wickman, L A; Luna, B

    1996-10-01

    Supporting the mass of a protective suit and portable life support system (PLSS) will impose an energy requirement on planetary astronauts. To design extravehicular protective equipment for planetary missions, scientists must learn more about human physical capabilities while load-carrying in reduced gravities. In this study, an underwater treadmill and weighting system were used to simulate reduced-gravity locomotion while load-carrying. The test matrix included 3 gravity levels, 6 subjects, 2 locomotion speeds, and a range of load sizes. Energy expenditure, calculated from measured oxygen consumption, is positively correlated with gravity level, speed, and load size. The data are used to project that individuals in average physical condition will be able to walk for 8 h on the Moon while carrying up to 170% of their body mass without undue fatigue, and on Mars with up to 50% of their body mass. These approximate limits, especially for Martian gravity, may prove quite a challenge for designers of advanced protective systems. Requirements for regenerable and non-venting PLSS components have been driving the total projected masses of advanced PLSSs increasingly higher, perhaps beyond what is reasonable to carry. However, the larger mass can be beneficial in maintaining bone mass. Using Whalen's model (1988), the daily planetary walking times required to maintain bone mass were calculated for a range of carried load sizes. The calculated times were unattainably high, suggesting that some combination of loads carrying and supplemental bone maintenance measures will likely be required to maintain bone mass in reduced gravity environments.

  4. Is nonrelativistic gravity possible?

    SciTech Connect

    Kocharyan, A. A.

    2009-07-15

    We study nonrelativistic gravity using the Hamiltonian formalism. For the dynamics of general relativity (relativistic gravity) the formalism is well known and called the Arnowitt-Deser-Misner (ADM) formalism. We show that if the lapse function is constrained correctly, then nonrelativistic gravity is described by a consistent Hamiltonian system. Surprisingly, nonrelativistic gravity can have solutions identical to relativistic gravity ones. In particular, (anti-)de Sitter black holes of Einstein gravity and IR limit of Horava gravity are locally identical.

  5. Gravity quantized: Loop quantum gravity with a scalar field

    SciTech Connect

    Domagala, Marcin; Kaminski, Wojciech; Giesel, Kristina; Lewandowski, Jerzy

    2010-11-15

    ...''but we do not have quantum gravity.'' This phrase is often used when analysis of a physical problem enters the regime in which quantum gravity effects should be taken into account. In fact, there are several models of the gravitational field coupled to (scalar) fields for which the quantization procedure can be completed using loop quantum gravity techniques. The model we present in this paper consists of the gravitational field coupled to a scalar field. The result has similar structure to the loop quantum cosmology models, except that it involves all the local degrees of freedom of the gravitational field because no symmetry reduction has been performed at the classical level.

  6. The gravity field in Taiwan Strait

    SciTech Connect

    Su Daquan; Chen Xue; Liu Zuhui )

    1990-06-01

    Gravity surveys have been carried out in the western part of Taiwan Strait by South China Sea Institute of Oceanology, Academia Sinica, from 1986 to 1989. More than 3,000 km of gravity profile data have been collected. The accuracy of the gravity is about {plus minus}2.5 mGal. Based on these data, gravity maps of Taiwan Strait (1:2,000,000) have been compiled, combined with the data from University of Tokyo, Lamont-Doherty geological observatory, and the USSR, which were collected from the east and southeast parts of Taiwan Strait. The interval of contour is 5 mGal. These maps cover part of East China Sea and South China Sea, where good gravity data have been gathered. Comparing the data from different sources in the same area, the authors think they are in very good agreement. These maps for the first time give detailed gravity information in the Taiwan Strait. It is very useful for the tectonic study and oil exploration in this area. The relationship between gravity anomalies and sedimentary basins has been studied in this area. Most of data show that the gravity low corresponds to the basin area and the gravity high is related to tectonic structure high. Xia-Peng depression, Wuqiuy depression, and Xinzhu depression, etc., show the gravity low. The relationship also can be seen in the gravity profiles clearly. The general tendency of gravity in the Taiwan Strait is that the gravity values gradually increase from the south part to the north part. It can be probably explained by deep geological structures. The relationship between gravity and geological structure units is also studied. They think the undulation of gravity anomalies is closely related to tectonic structures. Some main faults can be confirmed by the gravity maps.

  7. Model studies of time-dependent ducting for high-frequency gravity waves and associated airglow responses in the upper atmosphere

    NASA Astrophysics Data System (ADS)

    Yu, Yonghui

    This doctoral dissertation has mainly concentrated on modeling studies of shorter period acoustic-gravity waves propagating in the upper atmosphere. Several cases have been investigated in the literature, which are focusing on the propagation characteristics of highfrequency gravity wave packets. The dissertation consists of five main divisions of which each has its own significance to be addressed, and these five chapters are also bridged in order with each other to present a theme about gravity wave ducting dynamics, energetics, and airglows. The first chapter is served as an introduction of the general topic about atmospheric acoustic-gravity waves. Some of the historical backgrounds are provided as an interesting refreshment and also as a motivation reasoning this scientific research for decades. A new 2-D, time-dependent, and nonlinear model is introduced in the second chapter (the AGE-TIP model, acronymically named atmospheric gravity waves for the Earth plus tides and planetary waves). The model is developed during this entire doctoral study and has carried out almost all research results in this dissertation. The third chapter is a model application for shorter period gravity waves ducted in a thermally stratified atmosphere. In spite of mean winds the thermal ducting occurs because ducted waves are fairly common occurrences in airglow observations. One-dimensional Fourier analysis is applied to identify the ducted wave modes that reside within multiple thermal ducts. Besides, the vertical energy flux and the wave kinetic energy density are derived as wave diagnostic variables to better understand the time-resolved vertical transport of wave energy in the presence of multiple thermal ductings. The fourth chapter is also a model application for shorter period gravity waves, but it instead addresses the propagation of high-frequency gravity waves in the presence of mean background wind shears. The wind structure acts as a significant directional filter to the

  8. Airborne Gravity Gradiometry Resolves a Full Range of Gravity Frequencies

    NASA Astrophysics Data System (ADS)

    Mataragio, J.; Brewster, J.; Mims, J.

    2007-12-01

    Airborne Full Tensor Gradiometry (Air\\-FTGR) was flown at high altitude coincident with Airborne Gravity (AG) flown in 2003 in West Arnhem Land, Australia. A preliminary analysis of two data sets indicates that the Air\\-FTGR system has the capability of resolving intermediate to long wavelengths features that may be associated with relatively deeper geological structures. A comparison of frequency filtered slices and power spectral density (PSD) for both data sets using the short (> 5 km), intermediate (10 km) and long (20 km) wavelengths reveals that high altitude Air\\-FTGR data show greater response in high frequency anomalies than a conventional Airborne Gravity and matches well with the AG even at the longest wavelengths anomalies. The effect of line spacing and target resolution was examined between the two data sets. Reprocessed gradient and AG data at 2, 4 and 6 km line spacing suggest that Air\\-FTGR could be effectively flown at a comparatively wider line spacing to resolve similar targets the AG would resolve with tighter line spacing. Introduction Airborne Full Tensor Gradiometry (Air\\-FTGR) data have been available to the mining industry since 2002 and their use for geologic applications is well established. However, Air\\-FTGR data has been mostly considered and used in mapping and delineation of near surface geological targets. This is due to the fact that gravity gradiometer measurements are well suited to capture the high frequency signal associated with near\\-surface targets ( Li, 2001). This is possible because the gradiometer signal strength falls off with the cube of the distance to the target. Nonetheless, in recent years there has been an increasing demand from the mining, oil, and gas industry in utilizing Full Tensor Gravity Gradiometer as a mapping tool for both regional and prospect level surveys. Air\\-FTGR as a Regional Mapping Tool Several, relatively low altitude surveys have been successfully flown in Brazil, Canada and Australia

  9. Joint Tomographic Imaging of 3-­-D Density Structure Using Cosmic Ray Muons and High-­-Precision Gravity Data

    NASA Astrophysics Data System (ADS)

    Rowe, C. A.; Guardincerri, E.; Roy, M.; Dichter, M.

    2015-12-01

    As part of the CO2 reservoir muon imaging project headed by the Pacific Northwest National Laboraory (PNNL) under the U.S. Department of Energy Subsurface Technology and Engineering Research, Development, and Demonstration (SubTER) iniative, Los Alamos National Laboratory (LANL) and the University of New Mexico (UNM) plan to leverage the recently decommissioned and easily accessible Tunnel Vault on LANL property to test the complementary modeling strengths of muon radiography and high-precision gravity surveys. This tunnel extends roughly 300 feet into the hillside, with a maximum depth below the surface of approximately 300 feet. We will deploy LANL's Mini Muon Tracker (MMT), a detector consisting of 576 drift tubes arranged in alternating parallel planes of orthogonally oriented tubes. This detector is capable of precise determination of trajectories for incoming muons with angular resolution of a few milliradians. We will deploy the MMT at several locations within the tunnel, to obtain numerous crossing muon trajectories and permit a 3D tomographic image of the overburden to be built. In the same project, UNM will use a Scintrex digital gravimeter to collect high-precision gravity data from a dense grid on the hill slope above the tunnel as well as within the tunnel itself. This will provide both direct and differential gravity readings for density modeling of the overburden. By leveraging detailed geologic knowledge of the canyon and the lithology overlying the tunnel, as well as the structural elements, elevations and blueprints of the tunnel itself, we will evaluate the muon and gravity data both independently and in a simultaneous, joint inversion to build a combined 3D density model of the overburden.

  10. Mercury levels in high-end consumers of fish.

    PubMed Central

    Hightower, Jane M; Moore, Dan

    2003-01-01

    Consumption of food containing mercury has been identified as a health risk. The U.S. Environmental Protection Agency (U.S. EPA) and the National Academy of Sciences recommend keeping the whole blood mercury level < 5.0 microg/L or the hair level < 1.0 microg/g. This corresponds to a reference dose (RfD) of 0.1 microg/kg body weight per day. All patients in a 1-year period (n = 720) who came for an office visit in a private internal medicine practice in San Francisco, California, were evaluated for mercury excess using the current RfD. One hundred twenty-three patients were tested (93 females, 30 males). Of these, data were statistically analyzed for 89 subjects. Mercury levels ranged from 2.0 to 89.5 microg/L for the 89 subjects. The mean for 66 women was 15 microg/L [standard deviation (SD) = 15], and for 23 men was 13 microg/L (SD = 5); 89% had levels exceeding the RfD. Subjects consumed 30 different forms or types of fish. Swordfish had the highest correlation with mercury level. Sixty-seven patients with serial blood levels over time after stopping fish showed a decline in mercury levels; reduction was significant (p < 0.0001). A substantial fraction of patients had diets high in fish consumption; of these, a high proportion had blood mercury levels exceeding the maximum level recommended by the U.S. EPA and National Academy of Sciences. The mean level for women in this survey was 10 times that of mercury levels found in a recent population survey by the U.S. Centers for Disease Control and Prevention. Some children were > 40 times the national mean. PMID:12676623

  11. Radon action level for high-rise buildings

    SciTech Connect

    Leung, J.K.C.; Tso, M.Y.W.; Ho, C.W. . Radioisotope Unit)

    1999-05-01

    Radon and its progeny are the major contributors to the natural radiation dose received by human beings. Many countries and radiological authorities have recommended radon action levels to limit the indoor radon concentrations, and, hence, the annual doses to the general public. Since the sources of indoor radon and the methods for reducing its concentration are different for different types of buildings, social and economic factors have to be considered when setting the action level. But so far no action levels are specifically recommended for cities that have dwellings and offices all housed in high-rise buildings. In this study, an optimization approach was used to determine an action level for high-rise buildings based on data obtained through previous territory-wide radon surveys. A protection cost of HK $0.044 per unit fresh air change rate per unit volume and a detriment cost of HK $120,000 per person-Sv were used, which gave a minimum total cost at an action level of 200 Bq m[sup [minus]3]. The optimization analyses were repeated for different simulated radon distributions and living environment, which resulted in quite significantly different action levels. Finally, an action level of 200 Bq m[sup [minus]3] was recommended for existing buildings and 150 Bq m[sup [minus]3] for newly built buildings.

  12. High level radioactive waste management facility design criteria

    SciTech Connect

    Sheikh, N.A.; Salaymeh, S.R.

    1993-10-01

    This paper discusses the engineering systems for the structural design of the Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS). At the DWPF, high level radioactive liquids will be mixed with glass particles and heated in a melter. This molten glass will then be poured into stainless steel canisters where it will harden. This process will transform the high level waste into a more stable, manageable substance. This paper discuss the structural design requirements for this unique one of a kind facility. A special emphasis will be concentrated on the design criteria pertaining to earthquake, wind and tornado, and flooding.

  13. Final report on cermet high-level waste forms

    SciTech Connect

    Kobisk, E.H.; Quinby, T.C.; Aaron, W.S.

    1981-08-01

    Cermets are being developed as an alternate method for the fixation of defense and commercial high level radioactive waste in a terminal disposal form. Following initial feasibility assessments of this waste form, consisting of ceramic particles dispersed in an iron-nickel base alloy, significantly improved processing methods were developed. The characterization of cermets has continued through property determinations on samples prepared by various methods from a variety of simulated and actual high-level wastes. This report describes the status of development of the cermet waste form as it has evolved since 1977. 6 tables, 18 figures.

  14. Disposal of high-level nuclear waste in space

    NASA Astrophysics Data System (ADS)

    Coopersmith, Jonathan

    1992-08-01

    A solution of launching high-level nuclear waste into space is suggested. Disposal in space includes solidifying the wastes, embedding them in an explosion-proof vehicle, and launching it into earth orbit, and then into a solar orbit. The benefits of such a system include not only the safe disposal of high-level waste but also the establishment of an infrastructure for large-scale space exploration and development. Particular attention is given to the wide range of technical choices along with the societal, economic, and political factors needed for success.

  15. Photovoltaic (PV) Impact Assessment for Very High Penetration Levels

    SciTech Connect

    Cheng, Danling; Mather, Barry A.; Seguin, Richard; Hambrick, Joshua; Broadwater, Robert P.

    2016-01-01

    This paper describes a granular approach for investigating the impacts of very high photovoltaic (PV) generation penetration. Studies on two real-world distribution feeders connected to PV plants are presented. The studies include both steady-state and time-series power flow analyses, which include the effects of solar variability. The goal of the study is to predict the effects of increasing levels of PV generation as it reaches very high penetration levels. The loss and return of generation with and without regulation is simulated to capture short-term problems such as voltage fluctuations. Impact results from the analyses are described along with potential mitigations.

  16. The Use of ARTEMIS with High-Level Applications

    SciTech Connect

    B. A. Bowling; H. Shoaee; S. Witherspoon

    1995-10-01

    ARTEMIS is an online accelerator modeling server developed at CEBAF. One of the design goals of ARTEMIS was to provide an integrated modeling environment for high- level accelerator diagnostic and control applications such as automated beam steering, Linac Energy management (LEM) and the fast feedback system. This report illustrates the use of ARTEMIS in these applications as well as the application interface using the EPICS cdev device support API. Concentration is placed on the design and implementation aspects of high- level applications which utilize the ARTEMIS server for information on beam dynamics. Performance benchmarks for various model operations provided by ARTEMIS are also discussed.

  17. Low voltage to high voltage level shifter and related methods

    NASA Technical Reports Server (NTRS)

    Mentze, Erik J. (Inventor); Hess, Herbert L. (Inventor); Buck, Kevin M. (Inventor); Cox, David F. (Inventor)

    2006-01-01

    A shifter circuit comprises a high and low voltage buffer stages and an output buffer stage. The high voltage buffer stage comprises multiple transistors arranged in a transistor stack having a plurality of intermediate nodes connecting individual transistors along the stack. The transistor stack is connected between a voltage level being shifted to and an input voltage. An inverter of this stage comprises multiple inputs and an output. Inverter inputs are connected to a respective intermediate node of the transistor stack. The low voltage buffer stage has an input connected to the input voltage and an output, and is operably connected to the high voltage buffer stage. The low voltage buffer stage is connected between a voltage level being shifted away from and a lower voltage. The output buffer stage is driven by the outputs of the high voltage buffer stage inverter and the low voltage buffer stage.

  18. Preparation of dynamic gravity testing system

    NASA Astrophysics Data System (ADS)

    Bowin, Carl

    Bowin's interest at WHOI is to obtain the most accurate gravity and gravity gradient measurements possible. The Navy's interest is to have the most accurate navigation possible. Neither can have one without the other. Through Zarak Corporation, Bowin has proposed to the Navy Air System Command to develop a dynamic navigational gravity/gravity gradient (NAV/GRAV) system utilizing superconducting squid gravity and tensor gravity gradient sensors for high precision performance. The proposed system development incorporates that inter-dependency, not only to provide the best estimates of both, but also to provide estimates of the quality of the results obtained. Zarak is pursuing funds for the development of superconducting gravity and gravity gradient sensors. Such sensors, when available, will then be utilized in this palletized system for higher accuracy navigation, gravity and gravity gradient determination. It is desired that initial testing utilize Vibrating String Accelerometers (VSA) gravity sensors and readout systems available at WHOI. This way the development and testing of the NAV/GRAV system can proceed using the VSA sensors while the superconducting gravity sensors are being fabricated. Initial dynamic systems tests will be in a van vehicle for convenience and practicality. The system units will be palletized, and therefore they shall be easily transferable, and thus also be usable in aircraft and ships. It is planned that WHOI will have loan of prototype systems for about two months each year for earth research use.

  19. Cosmological tests of gravity

    SciTech Connect

    Jain, Bhuvnesh; Khoury, Justin

    2010-07-15

    Modifications of general relativity provide an alternative explanation to dark energy for the observed acceleration of the universe. We review recent developments in modified gravity theories, focusing on higher-dimensional approaches and chameleon/f(R) theories. We classify these models in terms of the screening mechanisms that enable such theories to approach general relativity on small scales (and thus satisfy solar system constraints). We describe general features of the modified Friedman equation in such theories. The second half of this review describes experimental tests of gravity in light of the new theoretical approaches. We summarize the high precision tests of gravity on laboratory and solar system scales. We describe in some detail tests on astrophysical scales ranging from {approx} kpc (galaxy scales) to {approx} Gpc (large-scale structure). These tests rely on the growth and inter-relationship of perturbations in the metric potentials, density and velocity fields which can be measured using gravitational lensing, galaxy cluster abundances, galaxy clustering and the integrated Sachs-Wolfe effect. A robust way to interpret observations is by constraining effective parameters, such as the ratio of the two metric potentials. Currently tests of gravity on astrophysical scales are in the early stages - we summarize these tests and discuss the interesting prospects for new tests in the coming decade.

  20. High-Precise Gravity Observations at Archaeological Sites: How We Can Improve the Interpretation Effectiveness and Reliability?

    NASA Astrophysics Data System (ADS)

    Eppelbaum, Lev

    2015-04-01

    Microgravity investigations are comparatively rarely used for searching of hidden ancient targets (e.g., Eppelbaum, 2013). It is caused mainly by small geometric size of the desired archaeological objects and various types of noise complicating the observed useful signal. At the same time, development of modern generation of field gravimetric equipment allows to register microGal (10-8 m/s2) anomalies that offer a new challenge in this direction. Correspondingly, an accuracy of gravity variometers (gradientometers) is also sharply increased. How we can improve the interpretation effectiveness and reliability? Undoubtedly, it must be a multi-stage process. I believe that we must begin since nonconventional methodologies for reducing topographic effect and terrain correction computation. Topographic effect reducing The possibilities of reducing topographic effects by grouping the points of additional gravimetric observations around the central point located on the survey network were demonstrated in (Khesin et al., 1996). A group of 4 to 8 additional points is located above and below along the relief approximately symmetrically and equidistant from the central point. The topographic effect is reduced to the obtained difference between the gravity field in the center of the group and its mean value for the whole group. Application of this methodology in the gold-pyrite deposit Gyzyl-Bulakh (Lesser Caucasus, western Azerbaijan) indicated its effectiveness. Computation of terrain correction Some geophysicists compare the new ideas in the field of terrain correction (TC) in gravimetry with the 'perpetuum mobile' invention. However, when we speak about very detailed gravity observations, the problem of most optimal computation of surrounding relief influence is of a great importance. Let us will consider two approaches applied earlier in ore geophysics. First approach A first method was applied in the Gyzyl-Bulakh gold-pyrite deposit situated in the Mekhmana ore region of

  1. Directional solidification of Cu- Pb and Bi- Ga monotectic alloys under normal gravity and during parabolic flight

    NASA Astrophysics Data System (ADS)

    Dhindaw, B. K.; Stefanescu, D. M.; Singh, A. K.; Curreri, P. A.

    1988-11-01

    Cu-Pb and Bi-Ga monotectic alloys of nominal hypermonotectic compositions were directionally solidified under various furnace translation rates, temperature gradients, and gravity levels. Gravity was varied by solidifying the alloys under ground conditions and in the furnace aboard NASA KC-135 aircraft, flying on parabolic trajectories. High translation rates, high gradients, high gravity levels, and higher density and lower thermal conductivity of the L2 phase favored the formation of fiber composite structure, while the opposite conditions resulted in structures consisting of L2 droplets in α matrix. A modified particle engulfment theory as originally enunciated by Ulhmann et al. is proposed to explain these observations.

  2. Directional solidification of Cu-Pb and Bi-Ga monotectic alloys under normal gravity and during parabolic flight

    NASA Technical Reports Server (NTRS)

    Dhindaw, B. K.; Stefanescu, D. M.; Singh, A. K.; Curreri, P. A.

    1988-01-01

    Cu-Pb and Bi-Ga monotectic alloys of nominal hypermonotectic compositions were directionally solidified under various furnace translation rates, temperature gradients, and gravity levels. Gravity was varied by solidifying the alloys under ground conditions and in the furnace aboard NASA KC-135 aircraft, flying on parabolic trajectories. High translation rates, high gradients, high gravity levels, and higher density and lower thermal conductivity of the L2 phase favored the formation of fiber composite structure, while the opposite conditions resulted in structures consisting of L2 droplets in alpha matrix. A modified particle engulfment theory as originally enunciated by Ulhmann et al. (1964) is proposed to explain these observations.

  3. Aluminosilicate Formation in High Level Waste Evaporators: A Mechanism for Uranium Accumulation

    SciTech Connect

    Wilmarth, W.R.

    2002-02-08

    High level waste Evaporators at the Savannah River Site (SRS) process radioactive waste to concentrate supernate and thus conserve tank space. In June of 1997, difficulty in evaporator operation was initially observed. This operational difficulty evidenced itself as a plugging of the evaporator's gravity drain line (GDL). The material blocking the GDL was determined to be a sodium aluminosilicate. Following a mechanical cleaning of the GDL, the evaporator was returned to service until October 1999. At this time massive deposits were discovered in the evaporator pot. As a result of the changes in evaporator chemistry and the resulting formation of aluminosilicate deposits in the evaporator, a comprehensive research and development program has been undertaken. This program is underway in order to assist in understanding the new evaporator chemistry and gain insight into the deposition phenomena. Key results from testing in FY01 have demonstrated that the chemistry of the evaporator feed favors aluminosilicate formation. Both the reaction kinetics and particle growth of the aluminosilicate material under SRS evaporator conditions has been demonstrated to occur within the residence times utilized in the SRS evaporator operation. Batch and continuous-flow experiments at known levels of supersaturation have shown a significant correlation between the deposition of aluminosilicates and mixing intensity in the vessel. Advances in thermodynamic modeling of the evaporator chemistry have been accomplished. The resulting thermodynamic model has been related to the operational history of the evaporator, is currently assisting in feed selection, and could potentially assist in expanding the operating envelopes technical baselines for evaporator operation.

  4. The ATLAS Data Acquisition and High Level Trigger system

    NASA Astrophysics Data System (ADS)

    The ATLAS TDAQ Collaboration

    2016-06-01

    This paper describes the data acquisition and high level trigger system of the ATLAS experiment at the Large Hadron Collider at CERN, as deployed during Run 1. Data flow as well as control, configuration and monitoring aspects are addressed. An overview of the functionality of the system and of its performance is presented and design choices are discussed.

  5. High-level manpower movement and Japan's foreign aid.

    PubMed

    Furuya, K

    1992-01-01

    "Japan's technical assistance programs to Asian countries are summarized. Movements of high-level manpower accompanying direct foreign investments by private enterprise are also reviewed. Proposals for increased human resources development include education and training of foreigners in Japan as well as the training of Japanese aid experts and the development of networks for information exchange."

  6. THE XAL INFRASTRUCTURE FOR HIGH LEVEL CONTROL ROOM APPLICATIONS

    SciTech Connect

    Shishlo, Andrei P; Allen, Christopher K; Chu, Paul; Galambos, John D; Pelaia II, Tom

    2009-01-01

    XAL is a Java programming framework for building high-level control applications related to accelerator physics. The structure, details of implementation, and interaction between components, auxiliary XAL packages, and the latest modifications are discussed. A general overview of XAL applications created for the SNS project is presented.

  7. Equity-Focused Schools Carry All Students to High Levels

    ERIC Educational Resources Information Center

    WestEd, 2014

    2014-01-01

    Despite decades of experience supporting efforts from local to state levels to improve learning for underserved students, Sonia Caus Gleason and WestEd's Nancy Gerzon could not point to examples of entire schools accomplishing what they believed was possible: high-poverty public schools personalizing learning for all students to consistently reach…

  8. Device enables calibration of microphones at high sound pressure levels

    NASA Technical Reports Server (NTRS)

    Gillen, A.

    1967-01-01

    Coupling device accurately calibrates microphones at high sound pressure intensities. The system which uses a liquid as the coupling medium can operate in an automatic mode by using a standard microphone as a control sensor. Feedback from the standard microphone controls the calibration signal level.

  9. 46 CFR 182.530 - Bilge high level alarms.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... operating station to indicate a high water level in each of the following normally unmanned spaces: (1) A space with a through-hull fitting below the deepest load waterline, such as a lazarette; (2) A machinery space bilge, bilge well, shaft alley bilge, or other spaces subject to flooding from sea water...

  10. 46 CFR 182.530 - Bilge high level alarms.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... operating station to indicate a high water level in each of the following normally unmanned spaces: (1) A space with a through-hull fitting below the deepest load waterline, such as a lazarette; (2) A machinery space bilge, bilge well, shaft alley bilge, or other spaces subject to flooding from sea water...

  11. 46 CFR 182.530 - Bilge high level alarms.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... operating station to indicate a high water level in each of the following normally unmanned spaces: (1) A space with a through-hull fitting below the deepest load waterline, such as a lazarette; (2) A machinery space bilge, bilge well, shaft alley bilge, or other spaces subject to flooding from sea water...

  12. 46 CFR 182.530 - Bilge high level alarms.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... operating station to indicate a high water level in each of the following normally unmanned spaces: (1) A space with a through-hull fitting below the deepest load waterline, such as a lazarette; (2) A machinery space bilge, bilge well, shaft alley bilge, or other spaces subject to flooding from sea water...

  13. 46 CFR 182.530 - Bilge high level alarms.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... operating station to indicate a high water level in each of the following normally unmanned spaces: (1) A space with a through-hull fitting below the deepest load waterline, such as a lazarette; (2) A machinery space bilge, bilge well, shaft alley bilge, or other spaces subject to flooding from sea water...

  14. The Estuary Guide. Level 3: High School. Draft.

    ERIC Educational Resources Information Center

    Alexander, Glen; And Others

    Estuaries are marine systems that serve as nurseries for animals, links in the migratory pathways, and habitat for a complex community of organisms. This curriculum guide intended for use at the high school level seeks to teach what estuaries are; provide opportunities to practice decision-making that affects estuaries; and encourage students to…

  15. High level cognitive information processing in neural networks

    NASA Technical Reports Server (NTRS)

    Barnden, John A.; Fields, Christopher A.

    1992-01-01

    Two related research efforts were addressed: (1) high-level connectionist cognitive modeling; and (2) local neural circuit modeling. The goals of the first effort were to develop connectionist models of high-level cognitive processes such as problem solving or natural language understanding, and to understand the computational requirements of such models. The goals of the second effort were to develop biologically-realistic model of local neural circuits, and to understand the computational behavior of such models. In keeping with the nature of NASA's Innovative Research Program, all the work conducted under the grant was highly innovative. For instance, the following ideas, all summarized, are contributions to the study of connectionist/neural networks: (1) the temporal-winner-take-all, relative-position encoding, and pattern-similarity association techniques; (2) the importation of logical combinators into connection; (3) the use of analogy-based reasoning as a bridge across the gap between the traditional symbolic paradigm and the connectionist paradigm; and (4) the application of connectionism to the domain of belief representation/reasoning. The work on local neural circuit modeling also departs significantly from the work of related researchers. In particular, its concentration on low-level neural phenomena that could support high-level cognitive processing is unusual within the area of biological local circuit modeling, and also serves to expand the horizons of the artificial neural net field.

  16. [Kinetic theory and boundary conditions for flows of highly inelastic spheres: Application to gravity driven granular flows down bumpy inclines

    SciTech Connect

    Richman, M.W.

    1992-01-01

    In this quarter, we extended our study of the effects of isotropic boundary vibrations to steady, gravity driven, inclined granular flows. These flows are more complex than those considered last quarter because of the presence of slip and mean velocity gradients at the boundary. Consequently, it was first necessary to modify the boundary conditions derived by Richman (1992) to account for corrections to the flow particle velocity distribution function from velocity gradients. In what follows we only summarize the results obtained.

  17. Quantitative interpretation of airborne gravity gradiometry data for mineral exploration

    NASA Astrophysics Data System (ADS)

    Martinez, Cericia D.

    In the past two decades, commercialization of previously classified instrumentation has provided the ability to rapidly collect quality gravity gradient measurements for resource exploration. In the near future, next-generation instrumentation are expected to further advance acquisition of higher-quality data not subject to pre-processing regulations. Conversely, the ability to process and interpret gravity gradiometry data has not kept pace with innovations occurring in data acquisition systems. The purpose of the research presented in this thesis is to contribute to the understanding, development, and application of processing and interpretation techniques available for airborne gravity gradiometry in resource exploration. In particular, this research focuses on the utility of 3D inversion of gravity gradiometry for interpretation purposes. Towards this goal, I investigate the requisite components for an integrated interpretation workflow. In addition to practical 3D inversions, components of the workflow include estimation of density for terrain correction, processing of multi-component data using equivalent source for denoising, quantification of noise level, and component conversion. The objective is to produce high quality density distributions for subsequent geological interpretation. I then investigate the use of the inverted density model in orebody imaging, lithology differentiation, and resource evaluation. The systematic and sequential approach highlighted in the thesis addresses some of the challenges facing the use of gravity gradiometry as an exploration tool, while elucidating a procedure for incorporating gravity gradient interpretations into the lifecycle of not only resource exploration, but also resource modeling.

  18. Superconducting gravity gradiometer for sensitive gravity measurements. I. Theory

    SciTech Connect

    Chan, H.A.; Paik, H.J.

    1987-06-15

    Because of the equivalence principle, a global measurement is necessary to distinguish gravity from acceleration of the reference frame. A gravity gradiometer is therefore an essential instrument needed for precision tests of gravity laws and for applications in gravity survey and inertial navigation. Superconductivity and SQUID (superconducting quantum interference device) technology can be used to obtain a gravity gradiometer with very high sensitivity and stability. A superconducting gravity gradiometer has been developed for a null test of the gravitational inverse-square law and space-borne geodesy. Here we present a complete theoretical model of this instrument. Starting from dynamical equations for the device, we derive transfer functions, a common mode rejection characteristic, and an error model of the superconducting instrument. Since a gradiometer must detect a very weak differential gravity signal in the midst of large platform accelerations and other environmental disturbances, the scale factor and common mode rejection stability of the instrument are extremely important in addition to its immunity to temperature and electromagnetic fluctuations. We show how flux quantization, the Meissner effect, and properties of liquid helium can be utilized to meet these challenges.

  19. Validation of GOCE gravity gradient grids for geophysical applications

    NASA Astrophysics Data System (ADS)

    Fecher, Thomas; Pail, Roland; Rexer, Moritz

    2015-04-01

    In addition to global gravity models parameterized in spherical harmonic coefficients, gravity functionals such as gravity gradients, as they have been measured by the GOCE satellite, are an important data product for many user groups. Exemplarily, in geophysical modelling, the directional information contained in the gravity gradients can further constrain the inversion problem. Global and regional gravity gradient grids have been computed in the frame of the ESA STSE GOCE+ project GeoExplore in a local north-oriented frame in two altitudes of 225 km and 255 km, basically as a combination of GOCE and GRACE information in a regional combination approach. In parallel, in the frame of the project GOCE High-level Processing Facility (HPF) global grids based purely on GOCE information have been produced by applying the space-wise approach. Following a recommendation of the ESA GOCE User Workshop (Paris, November 2014), these grids have to be validated externally before they can be reliably used for geophysical applications. In this paper, these grid products are validated against external gravity information, by applying global gravity field models and terrestrial data bases in well-surveyed areas. By comparing the gravity gradient grid products against reference values computed from the global satellite-only model GOCO05S (both the official as well as an unregularized version of it), it shall be evaluated if systematic effects show up, which might be related to the specific features of the combination strategy. The differences shall be analysed applying statistical test methods, and the error estimates associated with the grid products shall be evaluated. In parallel, it shall be investigated whether the gravity gradient grid product indeed contains more (high-frequency) signals than global models. This shall further be elaborated on by a validation against a combined gravity field model, which also includes terrestrial gravity and satellite altimetry data, as well as

  20. Gravity waves and gravity wave "breaking" as contributors to aviation turbulence

    NASA Astrophysics Data System (ADS)

    Sharman, R.; Lane, T. P.; Trier, S. B.; Fovell, R. G.

    2012-12-01

    Turbulence is a well-known hazard to aviation that is responsible for numerous injuries each year, with occasional fatalities, and results in millions of dollars of operational costs to airlines each year. It has been widely accepted that aviation-scale turbulence that occurs in clear air (CAT) at upper levels (upper troposphere and lower stratosphere) has its origins in Kelvin-Helmholtz instabilities induced by enhanced shears and reduced Richardson numbers associated with the jet stream and upper level fronts. However, it is becoming increasingly apparent that gravity waves and gravity wave "breaking" also play a major role in instigating turbulence that affects aviation. Gravity waves and inertia-gravity waves may be produced by a variety of sources, but one major source that impacts aviation seems to be those produced by convection. Several examples of high-resolution numerical simulations that are based on actual encounters with turbulence by commercial aircraft will be presented to demonstrate these situations. Implications for aviation-scale turbulence forecasting will also be discussed.

  1. Very-high-level neutral-beam control system

    SciTech Connect

    Elischer, V.; Jacobson, V.; Theil, E.

    1981-10-01

    As increasing numbers of neutral beams are added to fusion machines, their operation can consume a significant fraction of a facility's total resources. LBL has developed a very high level control system that allows a neutral beam injector to be treated as a black box with just 2 controls: one to set the beam power and one to set the pulse duration. This 2 knob view allows simple operation and provides a natural base for implementing even higher level controls such as automatic source conditioning.

  2. Overview of high-level waste management accomplishments

    SciTech Connect

    Lawroski, H; Berreth, J R; Freeby, W A

    1980-01-01

    Storage of power reactor spent fuel is necessary at present because of the lack of reprocessing operations particularly in the U.S. By considering the above solidification and storage scenario, there is more than reasonable assurance that acceptable, stable, low heat generation rate, solidified waste can be produced, and safely disposed. The public perception of no waste disposal solutions is being exploited by detractors of nuclear power application. The inability to even point to one overall system demonstration lends credibility to the negative assertions. By delaying the gathering of on-line information to qualify repository sites, and to implement a demonstration, the actions of the nuclear power detractors are self serving in that they can continue to point out there is no demonstration of satisfactory high-level waste disposal. By maintaining the liquid and solidified high-level waste in secure above ground storage until acceptable decay heat generation rates are achieved, by producing a compatible, high integrity, solid waste form, by providing a second or even third barrier as a compound container and by inserting the enclosed waste form in a qualified repository with spacing to assure moderately low temperature disposal conditions, there appears to be no technical reason for not progressing further with the disposal of high-level wastes and needed implementation of the complete nuclear power fuel cycle.

  3. High levels of molecular chlorine in the Arctic atmosphere

    NASA Astrophysics Data System (ADS)

    Liao, Jin; Huey, L. Gregory; Liu, Zhen; Tanner, David J.; Cantrell, Chris A.; Orlando, John J.; Flocke, Frank M.; Shepson, Paul B.; Weinheimer, Andrew J.; Hall, Samuel R.; Ullmann, Kirk; Beine, Harry J.; Wang, Yuhang; Ingall, Ellery D.; Stephens, Chelsea R.; Hornbrook, Rebecca S.; Apel, Eric C.; Riemer, Daniel; Fried, Alan; Mauldin, Roy L.; Smith, James N.; Staebler, Ralf M.; Neuman, J. Andrew; Nowak, John B.

    2014-02-01

    Chlorine radicals can function as a strong atmospheric oxidant, particularly in polar regions, where levels of hydroxyl radicals are low. In the atmosphere, chlorine radicals expedite the degradation of methane and tropospheric ozone, and the oxidation of mercury to more toxic forms. Here we present direct measurements of molecular chlorine levels in the Arctic marine boundary layer in Barrow, Alaska, collected in the spring of 2009 over a six-week period using chemical ionization mass spectrometry. We report high levels of molecular chlorine, of up to 400 pptv. Concentrations peaked in the early morning and late afternoon, and fell to near-zero levels at night. Average daytime molecular chlorine levels were correlated with ozone concentrations, suggesting that sunlight and ozone are required for molecular chlorine formation. Using a time-dependent box model, we estimate that the chlorine radicals produced from the photolysis of molecular chlorine oxidized more methane than hydroxyl radicals, on average, and enhanced the abundance of short-lived peroxy radicals. Elevated hydroperoxyl radical levels, in turn, promoted the formation of hypobromous acid, which catalyses mercury oxidation and the breakdown of tropospheric ozone. We therefore suggest that molecular chlorine exerts a significant effect on the atmospheric chemistry of the Arctic.

  4. Artificial gravity.

    PubMed

    Scott, William B

    2005-04-25

    NASA's Artificial Gravity program consists of a team of researchers from Wyle Laboratories, NASA Johnson Space Center, and the University of Texas Medical Branch (UTMB). The short-radius centrifuge (SRC), built by Wyle Laboratories, will be integrated with UTMB's conducted bedrest studies, which mimic the detrimental effects of weightlessness (or microgravity). Bedrest subjects will be spun on the SRC at various accelerations and for various time periods, while being monitored medically. Parameters such as bone loss, muscle atrophy, balance control, and oxygen consumption will then be compared in order to research ways of mitigating the impact on astronauts' physiology. Other potential benefits from these studies extend to population groups on Earth, such as bedridden patients. PMID:15852559

  5. Quantum gravity and charge renormalization

    SciTech Connect

    Toms, David J.

    2007-08-15

    We study the question of the gauge dependence of the quantum gravity contribution to the running gauge coupling constant for electromagnetism. The calculations are performed using dimensional regularization in a manifestly gauge-invariant and gauge-condition-independent formulation of the effective action. It is shown that there is no quantum gravity contribution to the running charge, and hence there is no alteration to asymptotic freedom at high energies as predicted by Robinson and Wilczek.

  6. Phase-field modelling of β(Ti) solidification in Ti-45at.%Al: columnar dendrite growth at various gravity levels

    NASA Astrophysics Data System (ADS)

    Viardin, A.; Berger, R.; Sturz, L.; Apel, M.; Hecht, U.

    2016-03-01

    The effect of solutal convection on the solidification of γ titanium aluminides, specifically on β(Ti) dendrite growth, is not well known. With the aim of supporting directional solidification experiments under hyper-gravity using a large diameter centrifuge, 2D-phase field simulations of β(Ti) dendrite growth have been performed for the binary alloy Ti-45at.%Al and various gravity scenarios. Both, the direction and magnitude of the gravity vector were varied systematically in order to reveal the subtle interplay between the convective flow pattern and mushy zone characteristics. In this presentation, gravity effects are discussed for early dendrite growth. For selected cases the evolution on longer timescales is also analyse of and oscillatory modes leading to dynamically stable steady state growth are outlined. In a dedicated simulation series forced flow is superimposed, as to mimic thermally driven fluid flow expected to establish on the macroscopic scale (sample size) in the centrifugal experiments. Above a certain threshold this flow turns dominant and precludes solutally driven convective effects.

  7. Driving of the SAO by gravity waves as observed from satellite

    NASA Astrophysics Data System (ADS)

    Ern, M.; Preusse, P.; Riese, M.

    2015-04-01

    It is known that atmospheric dynamics in the tropical stratosphere have an influence on higher altitudes and latitudes as well as on surface weather and climate. In the tropics, the dynamics are governed by an interplay of the quasi-biennial oscillation (QBO) and semiannual oscillation (SAO) of the zonal wind. The QBO is dominant in the lower and middle stratosphere, and the SAO in the upper stratosphere/lower mesosphere. For both QBO and SAO the driving by atmospheric waves plays an important role. In particular, the role of gravity waves is still not well understood. In our study we use observations of the High Resolution Dynamics Limb Sounder (HIRDLS) satellite instrument to derive gravity wave momentum fluxes and gravity wave drag in order to investigate the interaction of gravity waves with the SAO. These observations are compared with the ERA-Interim reanalysis. Usually, QBO westward winds are much stronger than QBO eastward winds. Therefore, mainly gravity waves with westward-directed phase speeds are filtered out through critical-level filtering already below the stratopause region. Accordingly, HIRDLS observations show that gravity waves contribute to the SAO momentum budget mainly during eastward wind shear, and not much during westward wind shear. These findings confirm theoretical expectations and are qualitatively in good agreement with ERA-Interim and other modeling studies. In ERA-Interim most of the westward SAO driving is due to planetary waves, likely of extratropical origin. Still, we find in both observations and ERA-Interim that sometimes westward-propagating gravity waves may contribute to the westward driving of the SAO. Four characteristic cases of atmospheric background conditions are identified. The forcings of the SAO in these cases are discussed in detail, supported by gravity wave spectra observed by HIRDLS. In particular, we find that the gravity wave forcing of the SAO cannot be explained by critical-level filtering alone; gravity

  8. Gravity wave diagnosis using empirical normal modes

    NASA Astrophysics Data System (ADS)

    Charron, Martin

    We adapt the theory of Empirical Normal Modes (ENMs) to diagnose gravity waves generated by a relatively high resolution numerical model solving the primitive equations. The ENM approach is based on the Principal Component Analysis (which consists of finding the most efficient basis explaining the variance of a time series), except that it takes advantage of wave-activity conservation laws. In the present work, the small- amplitude version of the pseudoenergy is used to extract from data quasi-monochromatic three-dimensional empirical modes that describe atmospheric wave activity. The spatial distributions of these quasi-monochromatic modes are identical to the normal modes of the linearized primitive equations when the underlying dynamics can be described with a stochastic linear and forced model, thus establishing a bridge between statistics and dynamics. We use this diagnostic method to study inertia-gravity wave generation, propagation, transience, and breaking over the Rockies, the North Pacific, and Central America in the troposphere-stratosphere-mesosphere GFDL SKYHI general circulation model at a resolution of 1° of latitude by 1.2° of longitude. Besides the action of mountains in exciting orographic waves, inertia-gravity wave activity has been found to be generated at the jet stream level as a possible consequence of a sustained nonlinear and ageostrophic flow. In the Tropical region of the model, the ``obstacle effect'' has been found to be the major source of inertia-gravity waves. A significant proportion of these inertia-gravity waves was able to reach the model mesosphere without much dissipation and absorption.

  9. A high resolution water level forecast for the German Bight

    NASA Astrophysics Data System (ADS)

    Niehüser, Sebastian; Dangendorf, Sönke; Arns, Arne; Jensen, Jürgen

    2016-04-01

    Many coastal regions worldwide are potentially endangered by storm surges which can cause disastrous damages and loss of life. Due to climate change induced sea level rise, an accumulation of such events is expected by the end of the 21th century. Therefore, advanced storm surge warnings are needed to be prepared when another storm surge hits the coast. In the shallow southeastern North Sea these storm surge warnings are nowadays routinely provided for selected tide gauge locations along a coastline through state-of-the-art forecast systems, which are based on a coupled system of empirical tidal predictions and numerical storm surge forecasts. Along the German North Sea coastline, the Federal Maritime and Hydrographic Agency in cooperation with the German Weather Service is responsible for the storm surge warnings. They provide accurate, high frequency and real-time water level forecasts for up to six days ahead at selected tide gauge sites via internet, telephone and broadcast. Since water levels along the German North Sea coastline are dominated by shallow water effects and a very complex bathymetric structure of the seabed, the pointwise forecast is not necessarily transferable to un-gauged areas between the tide gauges. Here we aim to close this existing gap and develop water level forecasts with a high spatial (continuously with a resolution of at least 1 kilometer) as well as a high temporal (at least 15-minute values) resolution along the entire German North Sea coastline. We introduce a new methodology for water level forecasts which combines empirical or statistical and numerical models. While the tidal forecast is performed by non-parametric interpolation techniques between un-gauged and gauged sites, storm surges are estimated on the basis of statistical/empirical storm surge formulas taken from a numerical model hindcast. The procedure will be implemented in the operational mode forced with numerical weather forecasts.

  10. High-level waste management technology program plan

    SciTech Connect

    Harmon, H.D.

    1995-01-01

    The purpose of this plan is to document the integrated technology program plan for the Savannah River Site (SRS) High-Level Waste (HLW) Management System. The mission of the SRS HLW System is to receive and store SRS high-level wastes in a see and environmentally sound, and to convert these wastes into forms suitable for final disposal. These final disposal forms are borosilicate glass to be sent to the Federal Repository, Saltstone grout to be disposed of on site, and treated waste water to be released to the environment via a permitted outfall. Thus, the technology development activities described herein are those activities required to enable successful accomplishment of this mission. The technology program is based on specific needs of the SRS HLW System and organized following the systems engineering level 3 functions. Technology needs for each level 3 function are listed as reference, enhancements, and alternatives. Finally, FY-95 funding, deliverables, and schedules are s in Chapter IV with details on the specific tasks that are funded in FY-95 provided in Appendix A. The information in this report represents the vision of activities as defined at the beginning of the fiscal year. Depending on emergent issues, funding changes, and other factors, programs and milestones may be adjusted during the fiscal year. The FY-95 SRS HLW technology program strongly emphasizes startup support for the Defense Waste Processing Facility and In-Tank Precipitation. Closure of technical issues associated with these operations has been given highest priority. Consequently, efforts on longer term enhancements and alternatives are receiving minimal funding. However, High-Level Waste Management is committed to participation in the national Radioactive Waste Tank Remediation Technology Focus Area. 4 refs., 5 figs., 9 tabs.

  11. Evaluation and selection of candidate high-level waste forms

    SciTech Connect

    Bernadzikowski, T. A.; Allender, J. S.; Butler, J. L.; Gordon, D. E.; Gould, Jr., T. H.; Stone, J. A.

    1982-03-01

    Seven candidate waste forms being developed under the direction of the Department of Energy's National High-Level Waste (HLW) Technology Program, were evaluated as potential media for the immobilization and geologic disposal of high-level nuclear wastes. The evaluation combined preliminary waste form evaluations conducted at DOE defense waste-sites and independent laboratories, peer review assessments, a product performance evaluation, and a processability analysis. Based on the combined results of these four inputs, two of the seven forms, borosilicate glass and a titanate based ceramic, SYNROC, were selected as the reference and alternative forms for continued development and evaluation in the National HLW Program. Both the glass and ceramic forms are viable candidates for use at each of the DOE defense waste-sites; they are also potential candidates for immobilization of commercial reprocessing wastes. This report describes the waste form screening process, and discusses each of the four major inputs considered in the selection of the two forms.

  12. Multipurpose optimization models for high level waste vitrification

    SciTech Connect

    Hoza, M.

    1994-08-01

    Optimal Waste Loading (OWL) models have been developed as multipurpose tools for high-level waste studies for the Tank Waste Remediation Program at Hanford. Using nonlinear programming techniques, these models maximize the waste loading of the vitrified waste and optimize the glass formers composition such that the glass produced has the appropriate properties within the melter, and the resultant vitrified waste form meets the requirements for disposal. The OWL model can be used for a single waste stream or for blended streams. The models can determine optimal continuous blends or optimal discrete blends of a number of different wastes. The OWL models have been used to identify the most restrictive constraints, to evaluate prospective waste pretreatment methods, to formulate and evaluate blending strategies, and to determine the impacts of variability in the wastes. The OWL models will be used to aid in the design of frits and the maximize the waste in the glass for High-Level Waste (HLW) vitrification.

  13. RETENTION OF SULFATE IN HIGH LEVEL RADIOACTIVE WASTE GLASS

    SciTech Connect

    Fox, K.

    2010-09-07

    High level radioactive wastes are being vitrified at the Savannah River Site for long term disposal. Many of the wastes contain sulfate at concentrations that can be difficult to retain in borosilicate glass. This study involves efforts to optimize the composition of a glass frit for combination with the waste to improve sulfate retention while meeting other process and product performance constraints. The fabrication and characterization of several series of simulated waste glasses are described. The experiments are detailed chronologically, to provide insight into part of the engineering studies used in developing frit compositions for an operating high level waste vitrification facility. The results lead to the recommendation of a specific frit composition and a concentration limit for sulfate in the glass for the next batch of sludge to be processed at Savannah River.

  14. Review of High Level Waste Tanks Ultrasonic Inspection Data

    SciTech Connect

    Wiersma, B

    2006-03-09

    A review of the data collected during ultrasonic inspection of the Type I high level waste tanks has been completed. The data was analyzed for relevance to the possibility of vapor space corrosion and liquid/air interface corrosion. The review of the Type I tank UT inspection data has confirmed that the vapor space general corrosion is not an unusually aggressive phenomena and correlates well with predicted corrosion rates for steel exposed to bulk solution. The corrosion rates are seen to decrease with time as expected. The review of the temperature data did not reveal any obvious correlations between high temperatures and the occurrences of leaks. The complex nature of temperature-humidity interaction, particularly with respect to vapor corrosion requires further understanding to infer any correlation. The review of the waste level data also did not reveal any obvious correlations.

  15. Life Extension of Aging High Level Waste (HLW) Tanks

    SciTech Connect

    BRYSON, D.

    2002-02-04

    The Double Shell Tanks (DSTs) play a critical role in the Hanford High-Level Waste Treatment Complex, and therefore activities are underway to protect and better understand these tanks. The DST Life Extension Program is focused on both tank life extension and on evaluation of tank integrity. Tank life extension activities focus on understanding tank failure modes and have produced key chemistry and operations controls to minimize tank corrosion and extend useful tank life. Tank integrity program activities have developed and applied key technologies to evaluate the condition of the tank structure and predict useful tank life. Program results to date indicate that DST useful life can be extended well beyond the original design life and allow the existing tanks to fill a critical function within the Hanford High-Level Waste Treatment Complex. In addition the tank life may now be more reliably predicted, facilitating improved planning for the use and possible future replacement of these tanks.

  16. Management of data quality of high level waste characterization

    SciTech Connect

    Winters, W.I., Westinghouse Hanford

    1996-06-12

    Over the past 10 years, the Hanford Site has been transitioning from nuclear materials production to Site cleanup operations. High-level waste characterization at the Hanford Site provides data to support present waste processing operations, tank safety programs, and future waste disposal programs. Quality elements in the high-level waste characterization program will be presented by following a sample through the data quality objective, sampling, laboratory analysis and data review process. Transition from production to cleanup has resulted in changes in quality systems and program; the changes, as well as other issues in these quality programs, will be described. Laboratory assessment through quality control and performance evaluation programs will be described, and data assessments in the laboratory and final reporting in the tank characterization reports will be discussed.

  17. FLUIDIZED BED STEAM REFORMING ENABLING ORGANIC HIGH LEVEL WASTE DISPOSAL

    SciTech Connect

    Williams, M

    2008-05-09

    Waste streams planned for generation by the Global Nuclear Energy Partnership (GNEP) and existing radioactive High Level Waste (HLW) streams containing organic compounds such as the Tank 48H waste stream at Savannah River Site have completed simulant and radioactive testing, respectfully, by Savannah River National Laboratory (SRNL). GNEP waste streams will include up to 53 wt% organic compounds and nitrates up to 56 wt%. Decomposition of high nitrate streams requires reducing conditions, e.g. provided by organic additives such as sugar or coal, to reduce NOX in the off-gas to N2 to meet Clean Air Act (CAA) standards during processing. Thus, organics will be present during the waste form stabilization process regardless of the GNEP processes utilized and exists in some of the high level radioactive waste tanks at Savannah River Site and Hanford Tank Farms, e.g. organics in the feed or organics used for nitrate destruction. Waste streams containing high organic concentrations cannot be stabilized with the existing HLW Best Developed Available Technology (BDAT) which is HLW vitrification (HLVIT) unless the organics are removed by pretreatment. The alternative waste stabilization pretreatment process of Fluidized Bed Steam Reforming (FBSR) operates at moderate temperatures (650-750 C) compared to vitrification (1150-1300 C). The FBSR process has been demonstrated on GNEP simulated waste and radioactive waste containing high organics from Tank 48H to convert organics to CAA compliant gases, create no secondary liquid waste streams and create a stable mineral waste form.

  18. A network of superconducting gravimeters detects submicrogal coseismic gravity changes.

    PubMed

    Imanishi, Yuichi; Sato, Tadahiro; Higashi, Toshihiro; Sun, Wenke; Okubo, Shuhei

    2004-10-15

    With high-resolution continuous gravity recordings from a regional network of superconducting gravimeters, we have detected permanent changes in gravity acceleration associated with a recent large earthquake. Detected changes in gravity acceleration are smaller than 10(-8) meters seconds(-2) (1 micro-Galileo, about 10(-9) times the surface gravity acceleration) and agree with theoretical values calculated from a dislocation model. Superconducting gravimetry can contribute to the studies of secular gravity changes associated with tectonic processes.

  19. High Level Information Fusion (HLIF) with nested fusion loops

    NASA Astrophysics Data System (ADS)

    Woodley, Robert; Gosnell, Michael; Fischer, Amber

    2013-05-01

    Situation modeling and threat prediction require higher levels of data fusion in order to provide actionable information. Beyond the sensor data and sources the analyst has access to, the use of out-sourced and re-sourced data is becoming common. Through the years, some common frameworks have emerged for dealing with information fusion—perhaps the most ubiquitous being the JDL Data Fusion Group and their initial 4-level data fusion model. Since these initial developments, numerous models of information fusion have emerged, hoping to better capture the human-centric process of data analyses within a machine-centric framework. 21st Century Systems, Inc. has developed Fusion with Uncertainty Reasoning using Nested Assessment Characterizer Elements (FURNACE) to address challenges of high level information fusion and handle bias, ambiguity, and uncertainty (BAU) for Situation Modeling, Threat Modeling, and Threat Prediction. It combines JDL fusion levels with nested fusion loops and state-of-the-art data reasoning. Initial research has shown that FURNACE is able to reduce BAU and improve the fusion process by allowing high level information fusion (HLIF) to affect lower levels without the double counting of information or other biasing issues. The initial FURNACE project was focused on the underlying algorithms to produce a fusion system able to handle BAU and repurposed data in a cohesive manner. FURNACE supports analyst's efforts to develop situation models, threat models, and threat predictions to increase situational awareness of the battlespace. FURNACE will not only revolutionize the military intelligence realm, but also benefit the larger homeland defense, law enforcement, and business intelligence markets.

  20. Local acceptance of a high-level nuclear waste repository.

    PubMed

    Sjöberg, Lennart

    2004-06-01

    The siting of nuclear waste facilities has been very difficult in all countries. Recent experience in Sweden indicates, however, that it may be possible, under certain circumstances, to gain local support for the siting of a high-level nuclear waste (HLNW) repository. The article reports on a study of attitudes and risk perceptions of people living in four municipalities in Sweden where HLNW siting was being intensely discussed at the political level, in media, and among the public. Data showed a relatively high level of consensus on acceptability of at least further investigation of the issue; in two cases local councils have since voted in favor of a go-ahead, and in one case only a very small majority defeated the issue. Models of policy attitudes showed that these were related to attitude to nuclear power, attributes of the perceived HLNW risk, and trust. Factors responsible for acceptance are discussed at several levels. One is the attitude to nuclear power, which is becoming more positive, probably because no viable alternatives are in sight. Other factors have to do with the extensive information programs conducted in these municipalities, and with the logical nature of the conclusion that they would be good candidates for hosting the national HLNW repository.

  1. Case for retrievable high-level nuclear waste disposal

    USGS Publications Warehouse

    Roseboom, Eugene H.

    1994-01-01

    Plans for the nation's first high-level nuclear waste repository have called for permanently closing and sealing the repository soon after it is filled. However, the hydrologic environment of the proposed site at Yucca Mountain, Nevada, should allow the repository to be kept open and the waste retrievable indefinitely. This would allow direct monitoring of the repository and maintain the options for future generations to improve upon the disposal methods or use the uranium in the spent fuel as an energy resource.

  2. Automatic rule generation for high-level vision

    NASA Technical Reports Server (NTRS)

    Rhee, Frank Chung-Hoon; Krishnapuram, Raghu

    1992-01-01

    Many high-level vision systems use rule-based approaches to solving problems such as autonomous navigation and image understanding. The rules are usually elaborated by experts. However, this procedure may be rather tedious. In this paper, we propose a method to generate such rules automatically from training data. The proposed method is also capable of filtering out irrelevant features and criteria from the rules.

  3. Mixing Processes in High-Level Waste Tanks - Final Report

    SciTech Connect

    Peterson, P.F.

    1999-05-24

    The mixing processes in large, complex enclosures using one-dimensional differential equations, with transport in free and wall jets is modeled using standard integral techniques. With this goal in mind, we have constructed a simple, computationally efficient numerical tool, the Berkeley Mechanistic Mixing Model, which can be used to predict the transient evolution of fuel and oxygen concentrations in DOE high-level waste tanks following loss of ventilation, and validate the model against a series of experiments.

  4. First results from a high-speed infrared imaging system for the observation of gravity waves in OH airglow

    NASA Astrophysics Data System (ADS)

    Bittner, Michael; Hannawald, Patrick; Schmidt, Carsten; Wüst, Sabine

    2015-04-01

    The OH-airglow-layer is concentrated at a height of about 87 km with a half-width of approximately 3 km. Observing the infrared emissions of the vibrational-rotational excited OH moelcules offers a unique possibility for studying atmospheric dynamics. Especially, atmospheric gravity waves are prominent features in the measurements. Since December 2013 the new imaging system FAIm (Fast Infrared Imager) for the study of smaller-scale features (both in space and time)is operational at the NDMC (Network for the Detection of Mesospheric Change, http://wdc.dlr.de/ndmc)station Oberpfaffenhofen. Covering the brightest OH vibrational bands between 1.3 and 1.7micrometer, the imaging system can acquire 2 frames per second. The field of view is approximately 50 km x 60 km at the mesopause height with a mean spatial resolution of 200 m. More than 370 nights of observation have successfully been performed already. The observations show a large variety of atmospheric waves with horizontal wavelengths down to less than 3km, different directions of propagation and phase velocities varying from nearly 0 m/s (quasi stationary waves) to more than 50 m/s. We present the experimental setup and will show first results. Especially, spatio-temporal sequences of the generation of smaller scale gravity wave fields as well as their turbulent dissipation will be shown. An outlook will be given to planned future simultaneous measurements from different stations in the alpine region in order to achieve some stereoscopic information about gravity wave fields.

  5. Handbook of high-level radioactive waste transportation

    SciTech Connect

    Sattler, L.R.

    1992-10-01

    The High-Level Radioactive Waste Transportation Handbook serves as a reference to which state officials and members of the general public may turn for information on radioactive waste transportation and on the federal government`s system for transporting this waste under the Civilian Radioactive Waste Management Program. The Handbook condenses and updates information contained in the Midwestern High-Level Radioactive Waste Transportation Primer. It is intended primarily to assist legislators who, in the future, may be called upon to enact legislation pertaining to the transportation of radioactive waste through their jurisdictions. The Handbook is divided into two sections. The first section places the federal government`s program for transporting radioactive waste in context. It provides background information on nuclear waste production in the United States and traces the emergence of federal policy for disposing of radioactive waste. The second section covers the history of radioactive waste transportation; summarizes major pieces of legislation pertaining to the transportation of radioactive waste; and provides an overview of the radioactive waste transportation program developed by the US Department of Energy (DOE). To supplement this information, a summary of pertinent federal and state legislation and a glossary of terms are included as appendices, as is a list of publications produced by the Midwestern Office of The Council of State Governments (CSG-MW) as part of the Midwestern High-Level Radioactive Waste Transportation Project.

  6. Materials Science of High-Level Nuclear Waste Immobilization

    SciTech Connect

    Weber, William J.; Navrotsky, Alexandra; Stefanovsky, S. V.; Vance, E. R.; Vernaz, Etienne Y.

    2009-01-09

    With the increasing demand for the development of more nuclear power comes the responsibility to address the technical challenges of immobilizing high-level nuclear wastes in stable solid forms for interim storage or disposition in geologic repositories. The immobilization of high-level nuclear wastes has been an active area of research and development for over 50 years. Borosilicate glasses and complex ceramic composites have been developed to meet many technical challenges and current needs, although regulatory issues, which vary widely from country to country, have yet to be resolved. Cooperative international programs to develop advanced proliferation-resistant nuclear technologies to close the nuclear fuel cycle and increase the efficiency of nuclear energy production might create new separation waste streams that could demand new concepts and materials for nuclear waste immobilization. This article reviews the current state-of-the-art understanding regarding the materials science of glasses and ceramics for the immobilization of high-level nuclear waste and excess nuclear materials and discusses approaches to address new waste streams.

  7. A theoretical comparison of internal gravity wave propagation and dissipation in high and low temperature thermospheres Implications for orbiting spacecraft

    NASA Technical Reports Server (NTRS)

    Hickey, M. P.

    1987-01-01

    In this paper the propagation and dissipation characteristics of a number of individual internal gravity waves are discussed and compared by using a multilayer, time-averaged model in which the waves lose energy due to viscous, thermal conduction and ion-drag dissipation. From this both the height and horizontal distance (from an assumed 'source') at which the waves achieve a maximum density amplitude may be determined. Such calculations are performed for both a very hot and a very cold thermosphere, and the subsequent differences in the wave characteristics and their relation to the control of orbiting spacecraft for each of these is discussed.

  8. Bubble Detachment in Variable Gravity Under the Influence of Electric Fields

    NASA Technical Reports Server (NTRS)

    Herman, Cila; Chang, Shinan; Iacona, Estelle

    2002-01-01

    The objective of the research is to investigate the behavior of individual air bubbles injected through an orifice into an electrically insulating liquid under the influence of a static electric field. Situations were considered with both uniform and nonuniform electric fields. Bubble formation and detachment were visualized in terrestrial gravity as well as for several levels of reduced gravity (lunar, martian and microgravity) using a high-speed video camera. Bubble volume, dimensions and contact angles at detachment were measured. In addition to the experimental studies, a simple model, predicting bubble characteristics at detachment in an initially uniform electric field was developed. The model, based on thermodynamic considerations, accounts for the level of gravity as well as the magnitude of the uniform electric field. The results of the study indicate that the level of gravity and the electric field magnitude significantly affect bubble behavior as well as shape, volume and dimensions.

  9. Bubble Formation and Detachment in Reduced Gravity Under the Influence of Electric Fields

    NASA Technical Reports Server (NTRS)

    Herman, Cila; Iacona, Estelle; Chang, Shinan

    2002-01-01

    The objective of the study is to investigate the behavior of individual air bubbles injected through an orifice into an electrically insulating liquid under the influence of a static electric field. Both uniform and nonuniform electric field configurations were considered. Bubble formation and detachment were recorded and visualized in reduced gravity (corresponding to gravity levels on Mars, on the Moon as well as microgravity) using a high-speed video camera. Bubble volume, dimensions and contact angle at detachment were measured. In addition to the experimental studies, a simple model, predicting bubble characteristics at detachment was developed. The model, based on thermodynamic considerations, accounts for the level of gravity as well as the magnitude of the uniform electric field. Measured data and model predictions show good agreement and indicate that the level of gravity and the electric field magnitude significantly affect bubble shape, volume and dimensions.

  10. High Levels of Molecular Chlorine found in the Arctic Atmosphere

    NASA Astrophysics Data System (ADS)

    Liao, J.; Huey, L. G.; Liu, Z.; Tanner, D.; Cantrell, C. A.; Orlando, J. J.; Flocke, F. M.; Shepson, P. B.; Weinheimer, A. J.; Hall, S. R.; Beine, H.; Wang, Y.; Ingall, E. D.; Thompson, C. R.; Hornbrook, R. S.; Apel, E. C.; Fried, A.; Mauldin, L.; Smith, J. N.; Staebler, R. M.; Neuman, J. A.; Nowak, J. B.

    2014-12-01

    Chlorine radicals are a strong atmospheric oxidant, particularly in polar regions where levels of hydroxyl radicals can be quite low. In the atmosphere, chlorine radicals expedite the degradation of methane and tropospheric ozone and the oxidation of mercury to more toxic forms. Here, we present direct measurements of molecular chlorine levels in the Arctic marine boundary layer in Barrow, Alaska, collected in the spring of 2009 over a six-week period using chemical ionization mass spectrometry. We detected high levels of molecular chlorine of up to 400 pptv. Concentrations peaked in the early morning and late afternoon and fell to near-zero levels at night. Average daytime molecular chlorine levels were correlated with ozone concentrations, suggesting that sunlight and ozone are required for molecular chlorine formation. Using a time-dependent box model, we estimated that the chlorine radicals produced from the photolysis of molecular chlorine on average oxidized more methane than hydroxyl radicals and enhanced the abundance of short-lived peroxy radicals. Elevated hydroperoxyl radical levels, in turn, promoted the formation of hypobromous acid, which catalyzed mercury oxidation and the breakdown of tropospheric ozone. Therefore, we propose that molecular chlorine exerts a significant effect on the atmospheric chemistry in the Arctic. While the formation mechanisms of molecular chlorine are not yet understood, the main potential sources of chlorine include snowpack, sea salt, and sea ice. There is recent evidence of molecular halogen (Br2 and Cl2) formation in the Arctic snowpack. The coverage and composition of the snow may control halogen chemistry in the Arctic. Changes of sea ice and snow cover in the changing climate may affect air-snow-ice interaction and have a significant impact on the levels of radicals, ozone, mercury and methane in the Arctic troposphere.

  11. Threshold Gravity Determination and Artificial Gravity Studies Using Magnetic Levitation

    NASA Technical Reports Server (NTRS)

    Ramachandran, N.; Leslie, F.

    2005-01-01

    What is the threshold gravity (minimum gravity level) required for the nominal functioning of the human system? What dosage is required (magnitude and duration)? Do human cell lines behave differently in microgravity in response to an external stimulus? The critical need for a variable gravity simulator is emphasized by recent experiments on human epithelial cells and lymphocytes on the Space Shuttle clearly showing that cell growth and function are markedly different from those observed terrestrially. Those differences are also dramatic between cells grown in space and those in Rotating Wall Vessels (RWV), or NASA bioreactor often used to simulate microgravity, indicating that although morphological growth patterns (three dimensional growth) can be successfully simulated using RWVs, cell function performance is not reproduced - a critical difference. If cell function is dramatically affected by gravity off-loading, then cell response to stimuli such as radiation, stress, etc. can be very different from terrestrial cell lines. Yet, we have no good gravity simulator for use in study of these phenomena. This represents a profound shortcoming for countermeasures research. We postulate that we can use magnetic levitation of cells and tissue, through the use of strong magnetic fields and field gradients, as a terrestrial microgravity model to study human cells. Specific objectives of the research are: 1. To develop a tried, tested and benchmarked terrestrial microgravity model for cell culture studies; 2. Gravity threshold determination; 3. Dosage (magnitude and duration) of g-level required for nominal functioning of cells; 4. Comparisons of magnetic levitation model to other models such as RWV, hind limb suspension, etc. and 5. Cellular response to reduced gravity levels of Moon and Mars.

  12. Thermosyphon Flooding in Reduced Gravity Environments

    NASA Technical Reports Server (NTRS)

    Gibson, Marc Andrew

    2013-01-01

    An innovative experiment to study the thermosyphon flooding limits was designed and flown on aparabolic flight campaign to achieve the Reduced Gravity Environments (RGE) needed to obtainempirical data for analysis. Current correlation models of Faghri and Tien and Chung do not agreewith the data. A new model is presented that predicts the flooding limits for thermosyphons inearths gravity and lunar gravity with a 95 confidence level of +- 5W.

  13. Cellular basis of gravity resistance in plants

    NASA Astrophysics Data System (ADS)

    Hoson, Takayuki; Matsumoto, Shouhei; Inui, Kenichi; Zhang, Yan; Soga, Kouichi; Wakabayashi, Kazuyuki; Hashimoto, Takashi

    Mechanical resistance to the gravitational force is a principal gravity response in plants distinct from gravitropism. In the final step of gravity resistance, plants increase the rigidity of their cell walls via modifications to the cell wall metabolism and apoplastic environment. We studied cellular events that are related to the cell wall changes under hypergravity conditions produced by centrifugation. Hypergravity induced reorientation of cortical microtubules from transverse to longitudinal directions in epidermal cells of stem organs. In Arabidopsis tubulin mutants, the percentage of cells with longitudinal microtubules was high even at 1 g, and it was further increased by hypergravity. Hypocotyls of tubulin mutants also showed either left-handed or right-handed helical growth at 1 g, and the degree of twisting phenotype was intensified under hypergravity conditions. The left-handed helical growth mutants had right-handed microtubule arrays, whereas the right-handed mutant had left-handed arrays. There was a close correlation between the alignment angle of epidermal cell files and the alignment of cortical microtubules. Gadolinium ions suppressed both the twisting phenotype and reorientation of microtubules in tubulin mutants. These results support the hypothesis that cortical microtubules play an es-sential role in maintenance of normal growth phenotype against the gravitational force, and suggest that mechanoreceptors are involved in modifications to morphology and orientation of microtubule arrays by hypergravity. Actin microfilaments, in addition to microtubules, may be involved in gravity resistance. The nucleus of epidermal cells of azuki bean epicotyls, which is present almost in the center of the cell at 1 g, was displaced to the cell bottom by increasing the magnitude of gravity. Cytochalasin D stimulated the sedimentation by hypergravity of the nu-cleus, suggesting that the positioning of the nucleus is regulated by actin microfilaments, which is

  14. High illness loads (physical and social) do not always force high levels of mass religiosity.

    PubMed

    Paul, Gregory S

    2012-04-01

    The hypothesis that high levels of religiosity are partly caused by high disease loads is in accord with studies showing that societal dysfunction promotes mass supernaturalism. However, some cultures suffering from high rates of disease and other socioeconomic dysfunction exhibit low levels of popular religiosity. At this point, it appears that religion is hard pressed to thrive in healthy societies, but poor conditions do not always make religion popular, either.

  15. Feasibility of disposal of high-level radioactive wastes into the seabed: Engineering

    SciTech Connect

    Hickerson, J.; Freeman, T.J.; Boisson, J.Y.; Gera, F.; Murray, N.; Nakamura, H.; Nieuwenhuis, J.D.; Schaller, K.H.

    1988-04-01

    This report summarizes the work of the Engineering Studies Task Group (ESTG) of the Seabed Working Group during its study of emplacement systems for the subseabed disposal of high level radioactive waste. ESTG has performed design studies of emplacement systems, costed them, and estimated operational reliabilities. Mathematical models for important physical and engineering processes were developed and a large number of laboratory tests, sea trials, and in situ experiments for the purpose of understanding the emplacement environment and developing the specialized equipment necessary for emplacement were performed. Attention was focused on two systems. The first would emplace a 450-m column of waste packages in predrilled holes 750 m deep. The second would use free falling gravity penetrators launched from a disposal ship to embed waste packages about 50 m below the seafloor in an array that separated each by an average of 180 m from its neighbors. Studies of each system covered all aspects, from the configuration and functions of the port facilities through transport to the ocean site, emplacement operations, and post emplacement behavior of the waste packages. Cost and reliability studies were similarly broad. ESTG concludes that viable disposal systems for subseabed emplacement of waste are feasible. If appropriate sites can be found, it appears that straightforward methods are available for producing satisfactory waste packages that can survive a 500-yr emplacement period. 172 refs., 40 figs., 19 tabs.

  16. The 3-D motion of the centre of gravity of the human body during level walking. I. Normal subjects at low and intermediate walking speeds.

    PubMed

    Tesio, L; Lanzi, D; Detrembleur, C

    1998-03-01

    OBJECTIVE: To measure the mechanical energy changes of the centre of gravity (CG) of the body in the forward, lateral and vertical direction during normal level walking at intermediate and low speeds. DESIGN: Eight healthy adults performed successive walks at speeds ranging from 0.25 to 1.75 m s(-1) over a dedicated force platform system. BACKGROUND: In previous studies, it was shown that the motion of the CG during gait can be altered more than the motion of individual segments. However, more detailed normative data are needed for clinical analysis. METHODS: The positive work done during the step to accelerate the body CG in the forward direction, W(f), to lift it, W(v), to accelerate it in the lateral direction, W(I), and the actual work done by the muscles to maintain its motion with respect to the ground ('external' work), W(ext), were measured. This allowed the calculation of the pendulum-like transfer between gravitational potential energy and kinetic energy of the CG, (percentage recovery, R). At the optimal speed of about 1.3 m s(-1), this transfer allows saving of as much as 65% of the muscular work which would have been otherwise needed to keep the body in motion with respect to the ground. The distance covered by the CG at each step either forward (step length, S(I)), or vertically (vertical displacement, S(v)) was also recorded. RESULTS: W(I) was, as a median, only 1.6-5.9% of W(ext). This ratio was higher, the lower the speed. At each step, W(ext) is needed to sustain two distinct increments of the total mechanical energy of the CG, E(tot). The increment a takes place during the double stance phase; the increment b takes place during the single stance phase. Both of these increments increased with speed. Over the speed range analyzed, the power spent to to sustain the a increment was 2.8-3.9 times higher than the power spent to sustain the b increment. PMID:11415774

  17. Positive signs in massive gravity

    DOE PAGES

    Cheung, Clifford; Remmen, Grant N.

    2016-04-01

    Here, we derive new constraints on massive gravity from unitarity and analyticity of scattering amplitudes. Our results apply to a general effective theory defined by Einstein gravity plus the leading soft diffeomorphism-breaking corrections. We calculate scattering amplitudes for all combinations of tensor, vector, and scalar polarizations. Furthermore, the high-energy behavior of these amplitudes prescribes a specific choice of couplings that ameliorates the ultraviolet cutoff, in agreement with existing literature. We then derive consistency conditions from analytic dispersion relations, which dictate positivity of certain combinations of parameters appearing in the forward scattering amplitudes. These constraints exclude all but a small islandmore » in the parameter space of ghost-free massive gravity. And while the theory of the "Galileon" scalar mode alone is known to be inconsistent with positivity constraints, this is remedied in the full massive gravity theory.« less

  18. Positive signs in massive gravity

    NASA Astrophysics Data System (ADS)

    Cheung, Clifford; Remmen, Grant N.

    2016-04-01

    We derive new constraints on massive gravity from unitarity and analyticity of scattering amplitudes. Our results apply to a general effective theory defined by Einstein gravity plus the leading soft diffeomorphism-breaking corrections. We calculate scattering amplitudes for all combinations of tensor, vector, and scalar polarizations. The high-energy behavior of these amplitudes prescribes a specific choice of couplings that ameliorates the ultraviolet cutoff, in agreement with existing literature. We then derive consistency conditions from analytic dispersion relations, which dictate positivity of certain combinations of parameters appearing in the forward scattering amplitudes. These constraints exclude all but a small island in the parameter space of ghost-free massive gravity. While the theory of the "Galileon" scalar mode alone is known to be inconsistent with positivity constraints, this is remedied in the full massive gravity theory.

  19. Radiative Lifetimes for High Levels of Neutral Fe

    NASA Astrophysics Data System (ADS)

    Lawler, James E.; Den Hartog, E.; Guzman, A.

    2013-01-01

    New radiative lifetime measurements for ~ 50 high lying levels of Fe I are reported. Laboratory astrophysics faces a challenge to provide basic spectroscopic data, especially reliable atomic transition probabilities, in the IR region for abundance studies. The availability of HgCdTe (HAWAII) detector arrays has opened IR spectral regions for extensive new spectroscopic studies. The SDSS III APOGEE project in the H-Band is an important example which will penetrate the dust obscuring the Galactic bulge. APOGEE will survey elemental abundances of 100,000 red giant stars in the bulge, bar, disk, and halo of the Milky Way. Many stellar spectra in the H-Band are, as expected, dominated by transitions of Fe I. Most of these IR transitions connect high levels of Fe. Our program has started an effort to meet this challenge with new radiative lifetime measurements on high lying levels of Fe I using time resolved laser induced fluorescence (TRLIF). The TRLIF method is typically accurate to 5% and is efficient. Our goal is to combine these accurate, absolute radiative lifetimes with emission branching fractions [1] to determine log(gf) values of the highest quality for Fe I lines in the UV, visible, and IR. This method was used very successfully by O’Brian et al. [2] on lower levels of Fe I. This method is still the best available for all but very simple spectra for which ab-initio theory is more accurate. Supported by NSF grant AST-0907732. [1] Branching fractions are being measured by M. Ruffoni and J. C. Pickering at Imperial College London. [2] O'Brian, T. R., Wickliffe, M. E., Lawler, J. E., Whaling, W., & Brault, J. W. 1991, J. Opt. Soc. Am. B 8, 1185

  20. Granular Superconductors and Gravity

    NASA Technical Reports Server (NTRS)

    Noever, David; Koczor, Ron

    1999-01-01

    As a Bose condensate, superconductors provide novel conditions for revisiting previously proposed couplings between electromagnetism and gravity. Strong variations in Cooper pair density, large conductivity and low magnetic permeability define superconductive and degenerate condensates without the traditional density limits imposed by the Fermi energy (approx. 10(exp -6) g cu cm). Recent experiments have reported anomalous weight loss for a test mass suspended above a rotating Type II, YBCO superconductor, with a relatively high percentage change (0.05-2.1%) independent of the test mass' chemical composition and diamagnetic properties. A variation of 5 parts per 104 was reported above a stationary (non-rotating) superconductor. In experiments using a sensitive gravimeter, bulk YBCO superconductors were stably levitated in a DC magnetic field and exposed without levitation to low-field strength AC magnetic fields. Changes in observed gravity signals were measured to be less than 2 parts in 108 of the normal gravitational acceleration. Given the high sensitivity of the test, future work will examine variants on the basic magnetic behavior of granular superconductors, with particular focus on quantifying their proposed importance to gravity.

  1. Exceptionally high levels of multiple mating in an army ant

    NASA Astrophysics Data System (ADS)

    Denny, A. Jay; Franks, Nigel R.; Powell, Scott; Edwards, Keith J.

    Most species of social insects have singly mated queens, although there are notable exceptions. Competing hypotheses have been proposed to explain the evolution of high levels of multiple mating, but this issue is far from resolved. Here we use microsatellites to investigate mating frequency in the army ant Eciton burchellii and show that queens mate with an exceptionally large number of males, eclipsing all but one other social insect species for which data are available. In addition we present evidence that suggests that mating is serial, continuing throughout the lifetime of the queen. This is the first demonstration of serial mating among social hymenoptera. We propose that high paternity within colonies is most likely to have evolved to increase genetic diversity and to counter high pathogen and parasite loads.

  2. Variable gravity research facility

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Eight fourth-year engineering design students formed two teams to study methods of varying the perceived gravity level in a variable gravity research facility. A tether system and an arm system were the chosen topics. Both teams have produced and built scale models of their design. In addition, a three-credit Special Topics Course (Aviation 370) was formed, as the project offers an excellent opportunity to build a multi-disciplinary program around the initial conceptualization process. Fifty students were registered in the Special Topics course. Each week during a three hour class, a guest lecturer covered one or more of the many areas associated with the concept of a variable-gravity facility. The students formed small groups organized on a multi-disciplinary basis (there were twelve separate disciplines represented by one or more students) where they discussed among themselves the various issues involved. These groups also met outside class for three or more hours each week. During class each group presented oral reports on their findings during a one-hour general question and answer period.

  3. High-level power analysis and optimization techniques

    NASA Astrophysics Data System (ADS)

    Raghunathan, Anand

    1997-12-01

    This thesis combines two ubiquitous trends in the VLSI design world--the move towards designing at higher levels of design abstraction, and the increasing importance of power consumption as a design metric. Power estimation and optimization tools are becoming an increasingly important part of design flows, driven by a variety of requirements such as prolonging battery life in portable computing and communication devices, thermal considerations and system cooling and packaging costs, reliability issues (e.g. electromigration, ground bounce, and I-R drops in the power network), and environmental concerns. This thesis presents a suite of techniques to automatically perform power analysis and optimization for designs at the architecture or register-transfer, and behavior or algorithm levels of the design hierarchy. High-level synthesis refers to the process of synthesizing, from an abstract behavioral description, a register-transfer implementation that satisfies the desired constraints. High-level synthesis tools typically perform one or more of the following tasks: transformations, module selection, clock selection, scheduling, and resource allocation and assignment (also called resource sharing or hardware sharing). High-level synthesis techniques for minimizing the area, maximizing the performance, and enhancing the testability of the synthesized designs have been investigated. This thesis presents high-level synthesis techniques that minimize power consumption in the synthesized data paths. This thesis investigates the effects of resource sharing on the power consumption in the data path, provides techniques to efficiently estimate power consumption during resource sharing, and resource sharing algorithms to minimize power consumption. The RTL circuit that is obtained from the high-level synthesis process can be further optimized for power by applying power-reducing RTL transformations. This thesis presents macro-modeling and estimation techniques for switching

  4. Permitting plan for the high-level waste interim storage

    SciTech Connect

    Deffenbaugh, M.L.

    1997-04-23

    This document addresses the environmental permitting requirements for the transportation and interim storage of solidified high-level waste (HLW) produced during Phase 1 of the Hanford Site privatization effort. Solidified HLW consists of canisters containing vitrified HLW (glass) and containers that hold cesium separated during low-level waste pretreatment. The glass canisters and cesium containers will be transported to the Canister Storage Building (CSB) in a U.S. Department of Energy (DOE)-provided transportation cask via diesel-powered tractor trailer. Tri-Party Agreement (TPA) Milestone M-90 establishes a new major milestone, and associated interim milestones and target dates, governing acquisition and/or modification of facilities necessary for: (1) interim storage of Tank Waste Remediation Systems (TWRS) immobilized HLW (IHLW) and other canistered high-level waste forms; and (2) interim storage and disposal of TWRS immobilized low-activity tank waste (ILAW). An environmental requirements checklist and narrative was developed to identify the permitting path forward for the HLW interim storage (HLWIS) project (See Appendix B). This permitting plan will follow the permitting logic developed in that checklist.

  5. Space augmentation of military high-level waste disposal

    NASA Technical Reports Server (NTRS)

    English, T.; Lees, L.; Divita, E.

    1979-01-01

    Space disposal of selected components of military high-level waste (HLW) is considered. This disposal option offers the promise of eliminating the long-lived radionuclides in military HLW from the earth. A space mission which meets the dual requirements of long-term orbital stability and a maximum of one space shuttle launch per week over a period of 20-40 years, is a heliocentric orbit about halfway between the orbits of earth and Venus. Space disposal of high-level radioactive waste is characterized by long-term predictability and short-term uncertainties which must be reduced to acceptably low levels. For example, failure of either the Orbit Transfer Vehicle after leaving low earth orbit, or the storable propellant stage failure at perihelion would leave the nuclear waste package in an unplanned and potentially unstable orbit. Since potential earth reencounter and subsequent burn-up in the earth's atmosphere is unacceptable, a deep space rendezvous, docking, and retrieval capability must be developed.

  6. Measurement of bone conduction levels for high frequencies.

    PubMed

    Lenhardt, Martin L; Richards, Douglas G; Madsen, Alan G; Goldstein, Barbara A; Shulman, Abraham; Guinta, Robert

    2002-01-01

    For assessment of safety, it is necessary to measure the maximum possible force exerted by a bone conduction device coupled to the human head. Calibration of bone conduction hearing aids and vibrators in the audiometric range is based on measurement of acceleration and force using an artificial mastoid. Extending the measurement to the high audio range was accomplished using a live head. To assess safety of the UltraQuiet tinnitus treatment system, as an example, acceleration was measured from 5 to 20 kHz on a live human head as compared with calibrated levels at 6 kHz on an artificial mastoid and the live head. Using head acceleration and anchoring it to established calibration levels is a means of establishing clinical safety. Stimulation in the high audio frequencies at low levels was found to be safe. In contrast, stimulation with ultrasound requires more energy (approximately 75-90 dB re 6 kHz), which may increase the risk of damage to the car.

  7. High level language-based robotic control system

    NASA Technical Reports Server (NTRS)

    Rodriguez, Guillermo (Inventor); Kreutz, Kenneth K. (Inventor); Jain, Abhinandan (Inventor)

    1996-01-01

    This invention is a robot control system based on a high level language implementing a spatial operator algebra. There are two high level languages included within the system. At the highest level, applications programs can be written in a robot-oriented applications language including broad operators such as MOVE and GRASP. The robot-oriented applications language statements are translated into statements in the spatial operator algebra language. Programming can also take place using the spatial operator algebra language. The statements in the spatial operator algebra language from either source are then translated into machine language statements for execution by a digital control computer. The system also includes the capability of executing the control code sequences in a simulation mode before actual execution to assure proper action at execution time. The robot's environment is checked as part of the process and dynamic reconfiguration is also possible. The languages and system allow the programming and control of multiple arms and the use of inward/outward spatial recursions in which every computational step can be related to a transformation from one point in the mechanical robot to another point to name two major advantages.

  8. High level language-based robotic control system

    NASA Technical Reports Server (NTRS)

    Rodriguez, Guillermo (Inventor); Kruetz, Kenneth K. (Inventor); Jain, Abhinandan (Inventor)

    1994-01-01

    This invention is a robot control system based on a high level language implementing a spatial operator algebra. There are two high level languages included within the system. At the highest level, applications programs can be written in a robot-oriented applications language including broad operators such as MOVE and GRASP. The robot-oriented applications language statements are translated into statements in the spatial operator algebra language. Programming can also take place using the spatial operator algebra language. The statements in the spatial operator algebra language from either source are then translated into machine language statements for execution by a digital control computer. The system also includes the capability of executing the control code sequences in a simulation mode before actual execution to assure proper action at execution time. The robot's environment is checked as part of the process and dynamic reconfiguration is also possible. The languages and system allow the programming and control of multiple arms and the use of inward/outward spatial recursions in which every computational step can be related to a transformation from one point in the mechanical robot to another point to name two major advantages.

  9. High asymmetric dimethylarginine (ADMA) levels in patients with brucellosis.

    PubMed

    Mengeloglu, Zafer; Sünnetcioglu, Mahmut; Tosun, Mehmet; Kücükbayrak, Abdülkadir; Ceylan, Mehmet Resat; Baran, Ali Irfan; Karahocagil, Mustafa; Akdeniz, Hayrettin

    2014-02-01

    Asymmetric dimethylarginine (ADMA) is the main endogenous inhibitor of nitric oxide synthase and is considered to be associated with endothelial dysfunction. Brucellosis, a zoonotic disease caused by Brucella spp., can manifest as vasculopathy. The present study was performed to investigate the relationship between ADMA and brucellosis. Serum samples from 39 patients with an accurate diagnosis of brucellosis and from 18 healthy control individuals were included in this study. ADMA levels were significantly higher in the patient group than the controls (P < 0.001). Receiver operating characteristic (ROC) curve analysis indicated that ADMA level ≥ 0.61 had a sensitivity of 79.5 %, specificity of 88.9 %, positive predictive value of 93.9 %, and negative predictive value of 66.7 %. This is the first report of an association between brucellosis and high levels of ADMA. In conclusion, ADMA levels should be tested in brucellosis cases and that further studies to clarify the mechanism underlying the association between ADMA and brucellosis are required.

  10. Study of the Earth's short-scale gravity field using the ERTM2160 gravity model

    NASA Astrophysics Data System (ADS)

    Hirt, Christian; Kuhn, Michael; Claessens, Sten; Pail, Roland; Seitz, Kurt; Gruber, Thomas

    2014-12-01

    This paper describes the computation and analysis of the Earth's short-scale gravity field through high-resolution gravity forward modelling using the Shuttle Radar Topography Mission (SRTM) global topography model. We use the established residual terrain modelling technique along with advanced computational resources and massive parallelisation to convert the high-pass filtered SRTM topography - complemented with bathymetric information in coastal zones - to implied short-scale gravity effects. The result is the ERTM2160 model (Earth Residual Terrain Modelled-gravity field with the spatial scales equivalent to spherical-harmonic coefficients up to degree 2160 removed). ERTM2160, used successfully for the construction of the GGMplus gravity maps, approximates the short-scale (i.e., ~10 km down to ~250 m) gravity field in terms of gravity disturbances, quasi/geoid heights and vertical deflections at ~3 billion gridded points within ±60° latitude. ERTM2160 reaches maximum values for the quasi/geoid height of ~30 cm, gravity disturbance in excess of 100 mGal, and vertical deflections of ~30″ over the Himalaya mountains. Analysis of the ERTM2160 field as a function of terrain roughness shows in good approximation a linear relationship between terrain roughness and gravity effects, with values of ~1.7 cm (quasi/geoid heights), ~11 mGal (gravity disturbances) and 1.5″ (vertical deflections) signal strength per 100 m standard deviation of the terrain. These statistics can be used to assess the magnitude of omitted gravity signals over various types of terrain when using degree-2160 gravity models such as EGM2008. Applications for ERTM2160 are outlined including its use in gravity smoothing procedures, augmentation of EGM2008, fill-in for future ultra-high resolution gravity models in spherical harmonics, or calculation of localised or global power spectra of Earth's short-scale gravity field. ERTM2160 is freely available via

  11. Gravity Waves

    NASA Technical Reports Server (NTRS)

    Vanzandt, T. E.

    1985-01-01

    Atmospheric parameters fluctuate on all scales. In the mesoscale these fluctuations are occasionally sinusoidal so that they can be interpreted as gravity waves. Usually, however, the fluctuations are noise like, so that their cause is not immediately evident. Results of mesoscale observations in the 20 to 120 m altitude range that are suitable for incorporation into a model atmosphere are very limited. In the stratosphere and lower mesosphere observations are sparse and very little data has been summarized into appropriate form. There is much more data in the upper mesosphere and lower thermosphere, but again very little of it has been summarized. The available mesoscale spectra of horizontal wind u versus vertical wave number m in the 20 to 120 km altitude range are shown together with a spectrum from the lower atmosphere for comparison. Further information about these spectra is given. In spite of the large range of altitudes and latitudes, the spectra from the lower atmosphere (NASA, 1971 and DEWAN, 1984) are remarkably similar in both shape and amplitude. The mean slopes of -2.38 for the NASA spectrum and -2.7 for the Dewan spectra are supported by the mean slope of -2.75 found by ROSENBERG et al. (1974). The mesospheric spectrum is too short to establish a shape. Its amplitude is about an order of magnitude larger than the NASA spectrum in the same wave number range. The NASA and Dewan spectra suggest that the mesoscale spectra in the lower atmosphere are insensitive to meteorological conditions.

  12. Effects of high vs low-level radiation exposure

    SciTech Connect

    Bond, V.P.

    1983-01-01

    In order to appreciate adequately the various possible effects of radiation, particularly from high-level vs low-level radiation exposure (HLRE, vs LLRE), it is necessary to understand the substantial differences between (a) exposure as used in exposure-incidence curves, which are always initially linear and without threshold, and (b) dose as used in dose-response curves, which always have a threshold, above which the function is curvilinear with increasing slope. The differences are discussed first in terms of generally familiar nonradiation situations involving dose vs exposure, and then specifically in terms of exposure to radiation, vs a dose of radiation. Examples are given of relevant biomedical findings illustrating that, while dose can be used with HLRE, it is inappropriate and misleading the LLRE where exposure is the conceptually correct measure of the amount of radiation involved.

  13. University-Level Research Projects for High School Students

    NASA Technical Reports Server (NTRS)

    McConnell, Mark L.

    2000-01-01

    The goal of this project was to provide an opportunity for high school students to participate in university-level research projects. In this case, students from Pinkerton Academy (Derry, New Hampshire) were invited to participate in efforts to catalog data from the COMPTEL experiment on NASA's Compton Gamma-Ray Observatory (CGRO). These activities were part of a senior level honors course at Pinkerton. Although the success of this particular program was rather limited, we feel that the general concept is a sound one. In principle, the concept of partnerships between local schools and university researchers is one that could be especially attractive to soft money researchers. Programs can be carefully designed to benefit both the students and the research program.

  14. Unscreening Modified Gravity in the Matter Power Spectrum.

    PubMed

    Lombriser, Lucas; Simpson, Fergus; Mead, Alexander

    2015-06-26

    Viable modifications of gravity that may produce cosmic acceleration need to be screened in high-density regions such as the Solar System, where general relativity is well tested. Screening mechanisms also prevent strong anomalies in the large-scale structure and limit the constraints that can be inferred on these gravity models from cosmology. We find that by suppressing the contribution of the screened high-density regions in the matter power spectrum, allowing a greater contribution of unscreened low densities, modified gravity models can be more readily discriminated from the concordance cosmology. Moreover, by variation of density thresholds, degeneracies with other effects may be dealt with more adequately. Specializing to chameleon gravity as a worked example for screening in modified gravity, employing N-body simulations of f(R) models and the halo model of chameleon theories, we demonstrate the effectiveness of this method. We find that a percent-level measurement of the clipped power at k<0.3h/Mpc can yield constraints on chameleon models that are more stringent than what is inferred from Solar System tests or distance indicators in unscreened dwarf galaxies. Finally, we verify that our method is also applicable to the Vainshtein mechanism. PMID:26197114

  15. Unscreening Modified Gravity in the Matter Power Spectrum.

    PubMed

    Lombriser, Lucas; Simpson, Fergus; Mead, Alexander

    2015-06-26

    Viable modifications of gravity that may produce cosmic acceleration need to be screened in high-density regions such as the Solar System, where general relativity is well tested. Screening mechanisms also prevent strong anomalies in the large-scale structure and limit the constraints that can be inferred on these gravity models from cosmology. We find that by suppressing the contribution of the screened high-density regions in the matter power spectrum, allowing a greater contribution of unscreened low densities, modified gravity models can be more readily discriminated from the concordance cosmology. Moreover, by variation of density thresholds, degeneracies with other effects may be dealt with more adequately. Specializing to chameleon gravity as a worked example for screening in modified gravity, employing N-body simulations of f(R) models and the halo model of chameleon theories, we demonstrate the effectiveness of this method. We find that a percent-level measurement of the clipped power at k<0.3h/Mpc can yield constraints on chameleon models that are more stringent than what is inferred from Solar System tests or distance indicators in unscreened dwarf galaxies. Finally, we verify that our method is also applicable to the Vainshtein mechanism.

  16. Engineering Escherichia coli for high-level production of propionate.

    PubMed

    Akawi, Lamees; Srirangan, Kajan; Liu, Xuejia; Moo-Young, Murray; Perry Chou, C

    2015-07-01

    Mounting environmental concerns associated with the use of petroleum-based chemical manufacturing practices has generated significant interest in the development of biological alternatives for the production of propionate. However, biological platforms for propionate production have been limited to strict anaerobes, such as Propionibacteria and select Clostridia. In this work, we demonstrated high-level heterologous production of propionate under microaerobic conditions in engineered Escherichia coli. Activation of the native Sleeping beauty mutase (Sbm) operon not only transformed E. coli to be propionogenic (i.e., propionate-producing) but also introduced an intracellular "flux competition" between the traditional C2-fermentative pathway and the novel C3-fermentative pathway. Dissimilation of the major carbon source of glycerol was identified to critically affect such "flux competition" and, therefore, propionate synthesis. As a result, the propionogenic E. coli was further engineered by inactivation or overexpression of various genes involved in the glycerol dissimilation pathways and their individual genetic effects on propionate production were investigated. Generally, knocking out genes involved in glycerol dissimilation (except glpA) can minimize levels of solventogenesis and shift more dissimilated carbon flux toward the C3-fermentative pathway. For optimal propionate production with high C3:C2-fermentative product ratios, glycerol dissimilation should be channeled through the respiratory pathway and, upon suppressed solventogenesis with minimal production of highly reduced alcohols, the alternative NADH-consuming route associated with propionate synthesis can be critical for more flexible redox balancing. With the implementation of various biochemical and genetic strategies, high propionate titers of more than 11 g/L with high yields up to 0.4 g-propionate/g-glycerol (accounting for ~50 % of dissimilated glycerol) were achieved, demonstrating the

  17. Salivary fluoride levels after use of high-fluoride dentifrice.

    PubMed

    Vale, Glauber Campos; Cruz, Priscila Figueiredo; Bohn, Ana Clarissa Cavalcante Elvas; de Moura, Marcoeli Silva

    2015-01-01

    The aim of the study was to evaluate salivary fluoride (F) availability after toothbrushing with a high-F dentifrice. Twelve adult volunteers took part in this crossover and blind study. F concentration in saliva was determined after brushing with a high-F dentifrice (5000 µg F/g) or with a conventional F concentration dentifrice (1100 µg F/g) followed by a 15 mL distilled water rinse. Samples of nonstimulated saliva were collected on the following times: before (baseline), and immediately after spit (time = 0) and after 1, 2, 3, 4, 5, 10, 15, 20, 30, 45, 60, 90, and 120 min. F analysis was performed with a fluoride-sensitive electrode and the area under curve of F salivary concentration × time (µg F/mL × min(-1)) was calculated. At baseline, no significant difference was found among dentifrices (P > 0.05). After brushing, both dentifrices caused an elevated fluoride level in saliva; however salivary F concentration was significantly higher at all times, when high-F dentifrice was used (P < 0.01). Even after 120 min, salivary F concentration was still higher than the baseline values for both dentifrices (P < 0.001). High-F dentifrice enhanced the bioavailability of salivary F, being an option for caries management in patients with high caries risk.

  18. Elevated glucose levels in early puerperium, and association with high cortisol levels during parturition.

    PubMed

    Risberg, Anitha; Sjöquist, Mats; Wedenberg, Kaj; Larsson, Anders

    2016-07-01

    Background Gestational diabetes is one of the commonest metabolic problems associated with pregnancy and an accurate diagnosis is critical for the care. Research has shown that pregnant women have high levels of cortisol during the last stage of parturition. As cortisol is a diabetogenic hormone causing increased glucose levels, we wanted to study the association between cortisol and glucose levels during parturition. Materials and methods Glucose and cortisol were analyzed during parturition in 50 females divided according to slow (n = 11) and normal labors (n = 39). Blood samples were analyzed three times during the parturition and four times in the first day after delivery. Glucose levels were also measured once in each trimester. Results In the normal group, the glucose concentration increased from 6.2 (IQR 5.6-8.0) mmol/L in the latency phase to 11.6 (10.0-13.3) mmol/L at aftercare (p < 0.05). After parturition the glucose concentrations decreased gradually. There were significant Spearman rank correlations between glucose and cortisol values. Conclusions The changes associated with birth cause significant elevations of cortisol and glucose around parturition.

  19. CEMENTITIOUS GROUT FOR CLOSING SRS HIGH LEVEL WASTE TANKS - #12315

    SciTech Connect

    Langton, C.; Burns, H.; Stefanko, D.

    2012-01-10

    In 1997, the first two United States Department of Energy (US DOE) high level waste tanks (Tanks 17-F and 20-F: Type IV, single shell tanks) were taken out of service (permanently closed) at the Savannah River Site (SRS). In 2012, the DOE plans to remove from service two additional Savannah River Site (SRS) Type IV high-level waste tanks, Tanks 18-F and 19-F. These tanks were constructed in the late 1950's and received low-heat waste and do not contain cooling coils. Operational closure of Tanks 18-F and 19-F is intended to be consistent with the applicable requirements of the Resource Conservation and Recovery Act (RCRA) and the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and will be performed in accordance with South Carolina Department of Health and Environmental Control (SCDHEC). The closure will physically stabilize two 4.92E+04 cubic meter (1.3 E+06 gallon) carbon steel tanks and isolate and stabilize any residual contaminants left in the tanks. The closure will also fill, physically stabilize and isolate ancillary equipment abandoned in the tanks. A Performance Assessment (PA) has been developed to assess the long-term fate and transport of residual contamination in the environment resulting from the operational closure of the F-Area Tank Farm (FTF) waste tanks. Next generation flowable, zero-bleed cementitious grouts were designed, tested, and specified for closing Tanks 18-F and 19-F and for filling the abandoned equipment. Fill requirements were developed for both the tank and equipment grouts. All grout formulations were required to be alkaline with a pH of 12.4 and chemically reduction potential (Eh) of -200 to -400 to stabilize selected potential contaminants of concern. This was achieved by including Portland cement and Grade 100 slag in the mixes, respectively. Ingredients and proportions of cementitious reagents were selected and adjusted, respectively, to support the mass placement strategy developed by closure

  20. Development of a High Level Waste Tank Inspection System

    SciTech Connect

    Appel, D.K.; Loibl, M.W.; Meese, D.C.

    1995-03-21

    The Westinghouse Savannah River Technology Center was requested by it`s sister site, West Valley Nuclear Service (WVNS), to develop a remote inspection system to gather wall thickness readings of their High Level Waste Tanks. WVNS management chose to take a proactive approach to gain current information on two tanks t hat had been in service since the early 70`s. The tanks contain high level waste, are buried underground, and have only two access ports to an annular space between the tank and the secondary concrete vault. A specialized remote system was proposed to provide both a visual surveillance and ultrasonic thickness measurements of the tank walls. A magnetic wheeled crawler was the basis for the remote delivery system integrated with an off-the-shelf Ultrasonic Data Acquisition System. A development program was initiated for Savannah River Technology Center (SRTC) to design, fabricate, and test a remote system based on the Crawler. The system was completed and involved three crawlers to perform the needed tasks, an Ultrasonic Crawler, a Camera Crawler, and a Surface Prep Crawler. The crawlers were computer controlled so that their operation could be done remotely and their position on the wall could be tracked. The Ultrasonic Crawler controls were interfaced with ABB Amdata`s I-PC, Ultrasonic Data Acquisition System so that thickness mapping of the wall could be obtained. A second system was requested by Westinghouse Savannah River Company (WSRC), to perform just ultrasonic mapping on their similar Waste Storage Tanks; however, the system needed to be interfaced with the P-scan Ultrasonic Data Acquisition System. Both remote inspection systems were completed 9/94. Qualifications tests were conducted by WVNS prior to implementation on the actual tank and tank development was achieved 10/94. The second inspection system was deployed at WSRC 11/94 with success, and the system is now in continuous service inspecting the remaining high level waste tanks at WSRC.

  1. Overview of the Spanish high-level waste program

    SciTech Connect

    Ulibarri, A.; Beceiro, A.R.

    1995-12-31

    The Empresa Nacional de Residuos Radiactivos, S.A. (ENRESA) was set up in 1984 with the mandate to be responsible for the management of all radioactive wastes generated in Spain. The strategy and main guidelines of ENRESA`s program to fulfill this mandate are contained in the General Radioactive Waste Plan (PGRR), a basic document which ENRESA is due to submit every year to the Ministry of Industry and Energy for Government approval. The Spanish nuclear electricity generating program consists of nine Light Water Reactors (LWR) with an overall capacity of 7.1 GWe, after the Vandellos 1 nuclear power plant were phased-out in 1989. The spent nuclear fuel from LWRs is defined, in accordance with the 1983 National Energy Plan, as high level waste, and its management is accordingly focused to the direct disposal option. The spent nuclear fuel from Vandellos 1, a graphite gas-cooled reactor which was in operation from 1972 to 1989, in reprocessed abroad, and the wastes generated in the processes will be returned to Spain. The final objective of the Spanish High Level Waste program is to dispose of the spent nuclear fuel and high level vitrified waste into a deep geological repository. In fulfilling this target, taking into account the time frame in which it can reasonably be achieved, a previous step is necessary in order to secure the temporary storage of the spent fuel. This paper presents the strategy and a description of the different elements of the program currently under way as established in the fourth General Radioactive Waste Plan that has been approved by the Government in December 1994.

  2. Stagnation Region Heat Transfer Augmentation at Very High Turbulence Levels

    SciTech Connect

    Ames, Forrest; Kingery, Joseph E.

    2015-06-17

    A database for stagnation region heat transfer has been extended to include heat transfer measurements acquired downstream from a new high intensity turbulence generator. This work was motivated by gas turbine industry heat transfer designers who deal with heat transfer environments with increasing Reynolds numbers and very high turbulence levels. The new mock aero-combustor turbulence generator produces turbulence levels which average 17.4%, which is 37% higher than the older turbulence generator. The increased level of turbulence is caused by the reduced contraction ratio from the liner to the exit. Heat transfer measurements were acquired on two large cylindrical leading edge test surfaces having a four to one range in leading edge diameter (40.64 cm and 10.16 cm). Gandvarapu and Ames [1] previously acquired heat transfer measurements for six turbulence conditions including three grid conditions, two lower turbulence aero-combustor conditions, and a low turbulence condition. The data are documented and tabulated for an eight to one range in Reynolds numbers for each test surface with Reynolds numbers ranging from 62,500 to 500,000 for the large leading edge and 15,625 to 125,000 for the smaller leading edge. The data show augmentation levels of up to 136% in the stagnation region for the large leading edge. This heat transfer rate is an increase over the previous aero-combustor turbulence generator which had augmentation levels up to 110%. Note, the rate of increase in heat transfer augmentation decreases for the large cylindrical leading edge inferring only a limited level of turbulence intensification in the stagnation region. The smaller cylindrical leading edge shows more consistency with earlier stagnation region heat transfer results correlated on the TRL (Turbulence, Reynolds number, Length scale) parameter. The downstream regions of both test surfaces continue to accelerate the flow but at a much lower rate than the leading edge. Bypass transition occurs

  3. High-level neutron coincidence counter maintenance manual

    SciTech Connect

    Swansen, J.; Collinsworth, P.

    1983-05-01

    High-level neutron coincidence counter operational (field) calibration and usage is well known. This manual makes explicit basic (shop) check-out, calibration, and testing of new units and is a guide for repair of failed in-service units. Operational criteria for the major electronic functions are detailed, as are adjustments and calibration procedures, and recurrent mechanical/electromechanical problems are addressed. Some system tests are included for quality assurance. Data on nonstandard large-scale integrated (circuit) components and a schematic set are also included.

  4. THE AMERICAN HIGH SCHOOL GRADUATION RATE: TRENDS AND LEVELS*

    PubMed Central

    Heckman, James J.; LaFontaine, Paul A.

    2009-01-01

    This paper applies a unified methodology to multiple data sets to estimate both the levels and trends in U.S. high school graduation rates. We establish that (a) the true rate is substantially lower than widely used measures; (b) it peaked in the early 1970s; (c) majority/minority differentials are substantial and have not converged for 35 years; (d) lower post-1970 rates are not solely due to increasing immigrant and minority populations; (e) our findings explain part of the slowdown in college attendance and rising college wage premiums; and (f) widening graduation differentials by gender help explain increasing male-female college attendance gaps. PMID:20625528

  5. CLASSIFICATION OF THE MGR DEFENSE HIGH LEVEL WASTE DISPOSAL CONTIANER

    SciTech Connect

    J.A. Ziegler

    1999-08-31

    The purpose of this analysis is to document the Quality Assurance (QA) classification of the Monitored Geologic Repository (MGR) defense high-level waste disposal container system structures, systems and components (SSCs) performed by the MGR Safety Assurance Department. This analysis also provides the basis for revision of YMP/90-55Q, Q-List (YMP 1998). The Q-List identifies those MGR SSCs subject to the requirements of DOE/RW-0333PY ''Quality Assurance Requirements and Description'' (QARD) (DOE 1998).

  6. Market Designs for High Levels of Variable Generation: Preprint

    SciTech Connect

    Milligan, M.; Holttinen, H.; Kiviluoma, J.; Orths, A.; Lynch, M.; Soder, L.

    2014-10-01

    Variable renewable generation is increasing in penetration in modern power systems, leading to higher variability in the supply and price of electricity as well as lower average spot prices. This raises new challenges, particularly in ensuring sufficient capacity and flexibility from conventional technologies. Because the fixed costs and lifetimes of electricity generation investments are significant, designing markets and regulations that ensure the efficient integration of renewable generation is a significant challenge. This papers reviews the state of play of market designs for high levels of variable generation in the United States and Europe and considers new developments in both regions.

  7. High-level wastes: DOE names three sites for characterization

    SciTech Connect

    1986-07-01

    DOE announced in May 1986 that there will be there site characterization studies made to determine suitability for a high-level radioactive waste repository. The studies will include several test drillings to the proposed disposal depths. Yucca Mountain, Nevada; Deaf Smith Country, Texas, and Hanford, Washington were identified as the study sites, and further studies for a second repository site in the East were postponed. The affected states all filed suits in federal circuit courts because they were given no advance warning of the announcement of their selection or the decision to suspend work on a second repository. Criticisms of the selection process include the narrowing or DOE options.

  8. Spanish high level radioactive waste management system issues

    SciTech Connect

    Ulibarri, A.; Veganzones, A.

    1993-12-31

    The Empresa Nacional de Residuous Radiactivos, S.A. (ENRESA) was set up in 1984 as a state-owned limited liability company to be responsible for the management of all kinds of radioactive wastes in Spain. This paper provides an overview of the strategy and main lines of action stated in the third General Radioactive Waste Plan, currently in force, for the management of spent nuclear fuel and high-level wastes, as well as an outline of the main related projects, either being developed or foreseen. Aspects concerning the organizational structure, the economic and financing system and the international co-operational are also included.

  9. Corrosion and failure processes in high-level waste tanks

    SciTech Connect

    Mahidhara, R.K.; Elleman, T.S.; Murty, K.L.

    1992-11-01

    A large amount of radioactive waste has been stored safely at the Savannah River and Hanford sites over the past 46 years. The aim of this report is to review the experimental corrosion studies at Savannah River and Hanford with the intention of identifying the types and rates of corrosion encountered and indicate how these data contribute to tank failure predictions. The compositions of the High-Level Wastes, mild steels used in the construction of the waste tanks and degradation-modes particularly stress corrosion cracking and pitting are discussed. Current concerns at the Hanford Site are highlighted.

  10. Modern Alchemy: Solidifying high-level nuclear waste

    SciTech Connect

    Newton, C.C.

    1997-07-01

    The U.S. Department of Energy is putting a modern version of alchemy to work to produce an answer to a decades-old problem. It is taking place at the Savannah River Site (SRS) in Aiken, South Carolina and at the West Valley Demonstration Project (WVDP) near Buffalo, New York. At both locations, contractor Westinghouse Electric Corporation is applying technology that is turning liquid high-level radioactive waste (HLW) into a stabilized, durable glass for safer and easier management. The process is called vitrification. SRS and WVDP are now operating the nation`s first full-scale HLW vitrification plants.

  11. The DYNAMO Orbiter Project: High Resolution Mapping of Gravity/Magnetic Fields and In Situ Investigation of Mars Atmospheric Escape

    NASA Technical Reports Server (NTRS)

    Smrekar, S.; Chassefiere, E.; Forget, F.; Reme, H.; Mazelle, C.; Blelly, P. -L.; Acuna, M.; Connerney, J.; Purucker, M.; Lin, R.

    2000-01-01

    Dynamo is a small Mars orbiter planned to be launched in 2005 or 2007, in the frame of the NASA/CNES Mars exploration program. It is aimed at improving gravity and magnetic field resolution, in order to better understand the magnetic, geologic and thermal history of Mars, and at characterizing current atmospheric escape, which is still poorly constrained. These objectives are achieved by using a low periapsis orbit, similar to the one used by the Mars Global Surveyor spacecraft during its aerobraking phases. The proposed periapsis altitude for Dynamo of 120-130 km, coupled with the global distribution of periapses to be obtained during one Martian year of operation, through about 5000 low passes, will produce a magnetic/gravity field data set with approximately five times the spatial resolution of MGS. Low periapsis provides a unique opportunity to investigate the chemical and dynamical properties of the deep ionosphere, thermosphere, and the interaction between the atmosphere and the solar wind, therefore atmospheric escape, which may have played a crucial role in removing atmosphere, and water, from the planet. There is much room for debate on the importance of current atmosphere escape processes in the evolution of the Martian atmosphere, as early "exotic" processes including hydrodynamic escape and impact erosion are traditionally invoked to explain the apparent sparse inventory of present-day volatiles. Yet, the combination of low surface gravity and the absence of a substantial internally generated magnetic field have undeniable effects on what we observe today. In addition to the current losses in the forms of Jeans and photochemical escape of neutrals, there are solar wind interaction-related erosion mechanisms because the upper atmosphere is directly exposed to the solar wind. The solar wind related loss rates, while now comparable to those of a modest comet, nonetheless occur continuously, with the intriguing possibility of important cumulative and

  12. Psilocybin impairs high-level but not low-level motion perception.

    PubMed

    Carter, Olivia L; Pettigrew, John D; Burr, David C; Alais, David; Hasler, Felix; Vollenweider, Franz X

    2004-08-26

    The hallucinogenic serotonin(1A&2A) agonist psilocybin is known for its ability to induce illusions of motion in otherwise stationary objects or textured surfaces. This study investigated the effect of psilocybin on local and global motion processing in nine human volunteers. Using a forced choice direction of motion discrimination task we show that psilocybin selectively impairs coherence sensitivity for random dot patterns, likely mediated by high-level global motion detectors, but not contrast sensitivity for drifting gratings, believed to be mediated by low-level detectors. These results are in line with those observed within schizophrenic populations and are discussed in respect to the proposition that psilocybin may provide a model to investigate clinical psychosis and the pharmacological underpinnings of visual perception in normal populations.

  13. HIGH LEVELS OF URANIUM IN GROUNDWATER OF ULAANBAATAR, MONGOLIA

    PubMed Central

    Nriagu, Jerome; Nam, Dong-Ha; Ayanwola, Titilayo A.; Dinh, Hau; Erdenechimeg, Erdenebayar; Ochir, Chimedsuren; Bolormaa, Tsend-Ayush

    2011-01-01

    Water samples collected from 129 wells in seven of the nine sub-divisions of Ulaanbaatar were analyzed by inductively coupled plasma mass spectrometry (ICP-MS) using Clean Lab methods. The levels of many trace elements were found to be very low with the average concentrations (ranges in brackets) being 0.9 (<0.1-7.9) μg/L for As; 7.7 (0.12-177) μg/L for Mn; 0.2 (<0.05-1.9) μg/L for Co; 16 (<0.1-686) μg/L for Zn; 0.7 (<0.1-1.8) μg/L for Se; <0.1 (<0.02-0.69) μg/L for Cd; and 1.3 (<0.02-32) μg/L for Pb. The levels of uranium were surprisingly elevated (mean, 4.6 μg/L; range <0.01-57 μg/L, with the values for many samples exceeding the World Health Organization's guideline of 15 μg/L for uranium in drinking water. Local rocks and soils appear to be the natural source of the uranium. The levels of uranium in Ulaanbaatar's groundwater are in the range that has been associated with nephrotoxicity, high blood pressure, bone dysfunction and likely reproductive impairment in human populations. We consider the risk associated with drinking the groundwater with elevated levels of uranium in Ulaanbaatar to be a matter for some public health concern and conclude that the paucity of data on chronic effects of low level exposure is a risk factor for continuing the injury to many people in this city. PMID:22142646

  14. Abnormally high serum ferritin levels among professional road cyclists

    PubMed Central

    Zotter, H; Robinson, N; Zorzoli, M; Schattenberg, L; Saugy, M; Mangin, P

    2004-01-01

    Background: An international, longitudinal medical follow up examination of male professional road cyclists revealed excessively elevated serum ferritin levels. Objective: To evaluate the importance of elevated ferritin values among professional cyclists, their relationship with age and nationality, and their evolution over 3 years. Methods: Over 1000 serum ferritin values were collected. Other parameters were included in order to exclude conditions which might have increased ferritin levels without changing body iron stores. Results: In 1999, over 45% of riders displayed ferritin values above 300 ng/ml and one fourth levels over 500 ng/ml. These percentages had decreased to 27% and 9%, respectively, 3 years later, while the overall average, which was above the normal limits in 1999, had decreased by 33% in 3 years. Older cyclists had higher ferritin values than younger cyclists. There was also a relationship between ferritin levels and the nationality of the cyclists. Analysis of 714 riders in 2000 and 2002 showed only a slight and insignificant decrease in the mean ferritin value although those with initially elevated iron stores had a much greater decrease. Conclusion: Professional road cyclists used excessive iron supplementation leading to high serum ferritin levels correlating with increased body iron stores. Although the situation progressively improved over 3 years, it remains worrying as increased body iron stores are related to health complications. Therefore, prevention in addition to the fight against doping should be a main goal of the UCI. Aggressive therapy for athletes with excessive ferritin values should be carried out at or before the end of their careers. PMID:15562163

  15. High levels of uranium in groundwater of Ulaanbaatar, Mongolia.

    PubMed

    Nriagu, Jerome; Nam, Dong-Ha; Ayanwola, Titilayo A; Dinh, Hau; Erdenechimeg, Erdenebayar; Ochir, Chimedsuren; Bolormaa, Tsend-Ayush

    2012-01-01

    Water samples collected from 129 wells in seven of the nine sub-divisions of Ulaanbaatar were analyzed by inductively coupled plasma mass spectrometry (ICP-MS) using Clean Lab methods. The levels of many trace elements were found to be low with the average concentrations (ranges in brackets) being 0.9 (<0.1-7.9) μg/L for As; 7.7 (0.12-177) μg/L for Mn; 0.2 (<0.05-1.9)μg/L for Co; 16 (<0.1-686) μg/L for Zn; 0.7 (<0.1-1.8) μg/L for Se; <0.1 (<0.02-0.69) μg/L for Cd; and 1.3 (<0.02-32) μg/L for Pb. The levels of uranium were surprisingly elevated (mean, 4.6 μg/L; range <0.01-57 μg/L), with the values for many samples exceeding the World Health Organization's guideline of 15 μg/L for uranium in drinking water. Local rocks and soils appear to be the natural source of the uranium. The levels of uranium in Ulaanbaatar's groundwater are in the range that has been associated with nephrotoxicity, high blood pressure, bone dysfunction and likely reproductive impairment in human populations. We consider the risk associated with drinking the groundwater with elevated levels of uranium in Ulaanbaatar to be a matter for some public health concern and conclude that the paucity of data on chronic effects of low level exposure is a risk factor for continuing the injury to many people in this city.

  16. Gravity gradient determination with tethered systems

    NASA Technical Reports Server (NTRS)

    Kalaghan, P. M.; Colombo, G.

    1978-01-01

    A detailed investigation of the Earth's gravity field is needed for application to modern solid earth and oceanic investigations. The use of gravity gradiometers presents a technique to measure the intermediate wavelength components of the gravity field. One configuration of a gradiometer involves a tethered pair of masses orbiting the Earth and stabilized by vertical gravity gradient of the earth. A mesurement of the tension in such a system, called the DUMBBELL system is described. It allows the determination of the vertical gradient of the anomalous component of the Earth's gravtiy field. Preliminary analysis of the dynamics, mechanization, expected signal levels and noise environment indicates that the Dumbbell system is feasible.

  17. Remote ignitability analysis of high-level radioactive waste

    SciTech Connect

    Lundholm, C.W.; Morgan, J.M.; Shurtliff, R.M.; Trejo, L.E.

    1992-09-01

    The Idaho Chemical Processing Plant (ICPP), was used to reprocess nuclear fuel from government owned reactors to recover the unused uranium-235. These processes generated highly radioactive liquid wastes which are stored in large underground tanks prior to being calcined into a granular solid. The Resource Conservation and Recovery Act (RCRA) and state/federal clean air statutes require waste characterization of these high level radioactive wastes for regulatory permitting and waste treatment purposes. The determination of the characteristic of ignitability is part of the required analyses prior to calcination and waste treatment. To perform this analysis in a radiologically safe manner, a remoted instrument was needed. The remote ignitability Method and Instrument will meet the 60 deg. C. requirement as prescribed for the ignitability in method 1020 of SW-846. The method for remote use will be equivalent to method 1020 of SW-846.

  18. Linearization of the Fermilab recycler high level RF

    SciTech Connect

    Joseph E Dey; Tom Kubicki; John Reid

    2003-05-28

    In studying the Recycler high level RF, it was found that at 89 kHz, the lowest frequency required by the system, some nonlinearities in magnitude and phase were discovered. The visible evidence of this was that beam injected in a barrier bucket had a definite slope at the top. Using a network analyzer, the S-parameter S{sub 21} was realized for the overall system and from mathematical modeling a second order numerator and denominator transfer function was found. The inverse of this transfer function gives their linearization transfer function. The linearization transfer function was realized in hardware by summing a high pass, band pass and low pass filter together. The resulting magnitude and phase plots, along with actual beam response will be shown.

  19. High levels of subgenomic HCV plasma RNA in immunosilent infections

    PubMed Central

    Bernardin, Flavien; Stramer, Susan; Rehermann, Barbara; Page-Shafer, Kimberly; Cooper, Stewart; Bangsberg, David; Hahn, Judith; Tobler, Leslie; Busch, Michael; Delwart, Eric

    2007-01-01

    A genetic analysis of hepatitis C virus (HCV) in rare blood donors who remained HCV seronegative despite long-term high-level viremia revealed the chronic presence of HCV genomes with large in frame deletions in their structural genes. Full-length HCV genomes were only detected as minority variants. In one immunodeficiency virus (HIV) co-infected donor the truncated HCV genome transiently decreased in frequency concomitant with delayed seroconversion and re-emerged following partial seroreversion. The long-term production of heavily truncated HCV genomes in vivo suggests that these viruses retained the necessary elements for RNA replication while the deleted structural functions necessary for their spread in vivo was provided in trans by wild type helper virus in co-infected cells. The absence of immunological pressure and a high viral load may therefore promote the emergence of truncated HCV subgenomic replicons in vivo. PMID:17493654

  20. Attenuation of high-level impulses by earmuffs.

    PubMed

    Zera, Jan; Mlynski, Rafal

    2007-10-01

    Attenuation of high-level acoustic impulses (noise reduction) by various types of earmuffs was measured using a laboratory source of type A impulses and an artificial test fixture compatible with the ISO 4869-3 standard. The measurements were made for impulses of peak sound-pressure levels (SPLs) from 150 to 170 dB. The rise time and A duration of the impulses depended on their SPL and were within a range of 12-400 mus (rise time) and 0.4-1.1 ms (A duration). The results showed that earmuff peak level attenuation increases by about 10 dB when the impulse's rise time and the A duration are reduced. The results also demonstrated that the signals under the earmuff cup have a longer rise and A duration than the original impulses recorded outside the earmuff. Results of the measurements were used to check the validity of various hearing damage risk criteria that specify the maximum permissible exposure to impulse noise. The present data lead to the conclusion that procedures in which hearing damage risk is assessed only from signal attenuation, without taking into consideration changes in the signal waveform under the earmuff, tend to underestimate the risk of hearing damage. PMID:17902846

  1. Wind resource quality affected by high levels of renewables

    DOE PAGES

    Diakov, Victor

    2015-06-17

    For solar photovoltaic (PV) and wind resources, the capacity factor is an important parameter describing the quality of the resource. As the share of variable renewable resources (such as PV and wind) on the electric system is increasing, so does curtailment (and the fraction of time when it cannot be avoided). At high levels of renewable generation, curtailments effectively change the practical measure of resource quality from capacity factor to the incremental capacity factor. The latter accounts only for generation during hours of no curtailment and is directly connected with the marginal capital cost of renewable generators for a givenmore » level of renewable generation during the year. The Western U.S. wind generation is analyzed hourly for a system with 75% of annual generation from wind, and it is found that the value for the system of resources with equal capacity factors can vary by a factor of 2, which highlights the importance of using the incremental capacity factor instead. Finally, the effect is expected to be more pronounced in smaller geographic areas (or when transmission limitations imposed) and less pronounced at lower levels of renewable energy in the system with less curtailment.« less

  2. Wind resource quality affected by high levels of renewables

    SciTech Connect

    Diakov, Victor

    2015-06-17

    For solar photovoltaic (PV) and wind resources, the capacity factor is an important parameter describing the quality of the resource. As the share of variable renewable resources (such as PV and wind) on the electric system is increasing, so does curtailment (and the fraction of time when it cannot be avoided). At high levels of renewable generation, curtailments effectively change the practical measure of resource quality from capacity factor to the incremental capacity factor. The latter accounts only for generation during hours of no curtailment and is directly connected with the marginal capital cost of renewable generators for a given level of renewable generation during the year. The Western U.S. wind generation is analyzed hourly for a system with 75% of annual generation from wind, and it is found that the value for the system of resources with equal capacity factors can vary by a factor of 2, which highlights the importance of using the incremental capacity factor instead. Finally, the effect is expected to be more pronounced in smaller geographic areas (or when transmission limitations imposed) and less pronounced at lower levels of renewable energy in the system with less curtailment.

  3. System-Level Virtualization for High Performance Computing

    SciTech Connect

    Vallee, Geoffroy R; Naughton, III, Thomas J; Engelmann, Christian; Ong, Hong Hoe; Scott, Stephen L

    2008-01-01

    System-level virtualization has been a research topic since the 70's but regained popularity during the past few years because of the availability of efficient solution such as Xen and the implementation of hardware support in commodity processors (e.g. Intel-VT, AMD-V). However, a majority of system-level virtualization projects is guided by the server consolidation market. As a result, current virtualization solutions appear to not be suitable for high performance computing (HPC) which is typically based on large-scale systems. On another hand there is significant interest in exploiting virtual machines (VMs) within HPC for a number of other reasons. By virtualizing the machine, one is able to run a variety of operating systems and environments as needed by the applications. Virtualization allows users to isolate workloads, improving security and reliability. It is also possible to support non-native environments and/or legacy operating environments through virtualization. In addition, it is possible to balance work loads, use migration techniques to relocate applications from failing machines, and isolate fault systems for repair. This document presents the challenges for the implementation of a system-level virtualization solution for HPC. It also presents a brief survey of the different approaches and techniques to address these challenges.

  4. Long-term high-level waste technology. Composite report

    NASA Astrophysics Data System (ADS)

    Cornman, W. R.

    1981-12-01

    Research and development studies on the immobilization of high-level wastes from the chemical reprocessing of nuclear reactor fuels are summarized. The reports are grouped under the following tasks: (1) program management and support; (2) waste preparation; (3) waste fixation; and (4) final handling. Some of the highlights are: leaching properties were obtained for titanate and tailored ceramic materials being developed at ICPP to immobilize zirconia calcine; comparative leach tests, hot-cell tests, and process evaluations were conducted of waste form alternatives to borosilicate glass for the immobilization of SRP high-level wastes, experiments were run at ANL to qualify neutron activation analysis and radioactive tracers for measuring leach rates from simulated waste glasses; comparative leach test samples of SYNROC D were prepared, characterized, and tested at LLNL; encapsulation of glass marbles with lead or lead alloys was demonstrated on an engineering scale at PNL; a canister for reference Commercial HLW was designed at PNL; a study of the optimization of salt-crete was completed at SRL; a risk assessment showed that an investment for tornado dampers in the interim storage building of the DWPF is unjustified.

  5. ATW system impact on high-level waste

    SciTech Connect

    Arthur, E.D.

    1992-12-01

    This report discusses the Accelerator Transmutation of Waste (ATW) concept which aims at destruction of key long-lived radionuclides in high-level nuclear waste (HLW), both fission products and actinides. This focus makes it different from most other transmutation concepts which concentrate primarily on actinide burning. The ATW system uses an accelerator-driven, sub-critical assembly to create an intense thermal neutron environment for radionuclide transmutation. This feature allows rapid transmutation under low-inventory system conditions, which in turn, has a direct impact on the size of chemical separations and materials handling components of the system. Inventories in ATW are factors of eight to thirty times smaller than reactor systems of equivalent thermal power. Chemical separations systems are relatively small in scale and can be optimized to achieve high decontamination factors and minimized waste streams. The low-inventory feature also directly impacts material amounts remaining in the system at its end of life. In addition to its low-inventory operation, the accelerator-driven neutron source features of ATW are key to providing a sufficient level of neutrons to allow transmutation of long-lived fission products.

  6. Spent Fuel and High-Level Radioactive Waste Transportation Report

    SciTech Connect

    Not Available

    1992-03-01

    This publication is intended to provide its readers with an introduction to the issues surrounding the subject of transportation of spent nuclear fuel and high-level radioactive waste, especially as those issues impact the southern region of the United States. It was originally issued by SSEB in July 1987 as the Spent Nuclear Fuel and High-Level Radioactive Waste Transportation Primer, a document patterned on work performed by the Western Interstate Energy Board and designed as a ``comprehensive overview of the issues.`` This work differs from that earlier effort in that it is designed for the educated layman with little or no background in nuclear waste Issues. In addition. this document is not a comprehensive examination of nuclear waste issues but should instead serve as a general introduction to the subject. Owing to changes in the nuclear waste management system, program activities by the US Department of Energy and other federal agencies and developing technologies, much of this information is dated quickly. While this report uses the most recent data available, readers should keep in mind that some of the material is subject to rapid change. SSEB plans periodic updates in the future to account for changes in the program. Replacement pages will be supplied to all parties in receipt of this publication provided they remain on the SSEB mailing list.

  7. Spent fuel and high-level radioactive waste transportation report

    SciTech Connect

    Not Available

    1990-11-01

    This publication is intended to provide its readers with an introduction to the issues surrounding the subject of transportation of spent nuclear fuel and high-level radioactive waste, especially as those issues impact the southern region of the United States. It was originally issued by the Southern States Energy Board (SSEB) in July 1987 as the Spent Nuclear Fuel and High-Level Radioactive Waste Transportation Primer, a document patterned on work performed by the Western Interstate Energy Board and designed as a ``comprehensive overview of the issues.`` This work differs from that earlier effort in that it is designed for the educated layman with little or no background in nuclear waste issues. In addition, this document is not a comprehensive examination of nuclear waste issues but should instead serve as a general introduction to the subject. Owing to changes in the nuclear waste management system, program activities by the US Department of Energy and other federal agencies and developing technologies, much of this information is dated quickly. While this report uses the most recent data available, readers should keep in mind that some of the material is subject to rapid change. SSEB plans periodic updates in the future to account for changes in the program. Replacement pages will be supplied to all parties in receipt of this publication provided they remain on the SSEB mailing list.

  8. Spent fuel and high-level radioactive waste transportation report

    SciTech Connect

    Not Available

    1989-11-01

    This publication is intended to provide its readers with an introduction to the issues surrounding the subject of transportation of spent nuclear fuel and high-level radioactive waste, especially as those issues impact the southern region of the United States. It was originally issued by the Southern States Energy Board (SSEB) in July 1987 as the Spent Nuclear Fuel and High-Level Radioactive Waste Transportation Primer, a document patterned on work performed by the Western Interstate Energy Board and designed as a ``comprehensive overview of the issues.`` This work differs from that earlier effort in that it is designed for the educated layman with little or no background in nuclear waste issues. In addition, this document is not a comprehensive examination of nuclear waste issues but should instead serve as a general introduction to the subject. Owing to changes in the nuclear waste management system, program activities by the US Department of Energy and other federal agencies and developing technologies, much of this information is dated quickly. While this report uses the most recent data available, readers should keep in mind that some of the material is subject to rapid change. SSEB plans periodic updates in the future to account for changes in the program. Replacement pages sew be supplied to all parties in receipt of this publication provided they remain on the SSEB mailing list.

  9. Burning high-level TRU waste in fusion fission reactors

    NASA Astrophysics Data System (ADS)

    Shen, Yaosong

    2016-09-01

    Recently, the concept of actinide burning instead of a once-through fuel cycle for disposing spent nuclear fuel seems to get much more attention. A new method of burning high-level transuranic (TRU) waste combined with Thorium-Uranium (Th-U) fuel in the subcritical reactors driven by external fusion neutron sources is proposed in this paper. The thorium-based TRU fuel burns all of the long-lived actinides via a hard neutron spectrum while outputting power. A one-dimensional model of the reactor concept was built by means of the ONESN_BURN code with new data libraries. The numerical results included actinide radioactivity, biological hazard potential, and much higher burnup rate of high-level transuranic waste. The comparison of the fusion-fission reactor with the thermal reactor shows that the harder neutron spectrum is more efficient than the soft. The Th-U cycle produces less TRU, less radiotoxicity and fewer long-lived actinides. The Th-U cycle provides breeding of 233U with a long operation time (>20 years), hence significantly reducing the reactivity swing while improving safety and burnup.

  10. Predicting high levels of multitasking reduces between-tasks interactions.

    PubMed

    Fischer, Rico; Dreisbach, Gesine

    2015-12-01

    The simultaneous handling of 2 tasks requires shielding of the prioritized primary task (T1) from interference caused by the secondary task (T2) processing. Such interactions between tasks (e.g., between-task interference, or crosstalk) depend on the similarity of both tasks and are especially pronounced when both tasks overlap strongly in time. In the present study we investigated whether between-tasks interference can be reduced when specific items do not predict the level of interference but instead the degree of temporal proximity between both tasks. We implemented an item-specific proportion manipulation of temporal task overlap (stimulus onset asynchrony [SOA]). Selected stimuli of T1 predicted high temporal task overlap (short SOAs) in 80% of trials, whereas other stimuli of T1 predicted low temporal task overlap (long SOAs) in 80% of trials. Results showed that the predictive value of T1 stimuli determined the adjustment of T1 shielding. That is, interference from the secondary task was significantly reduced for items predicting high temporal task overlap compared to items predicting low temporal task overlap. It is important to note that task shielding was not initiated by predicting the actual conflict level (i.e., whether T1 and T2 required compatible/incompatible responses) between tasks but by specific items predicting conditions in which 2 tasks are likely to interact (i.e., short vs. long SOA). These findings offer new insights into the specificity of contextual bottom-up regulations of cognitive control. PMID:26480246

  11. How to achieve high-level expression of microbial enzymes

    PubMed Central

    Liu, Long; Yang, Haiquan; Shin, Hyun-dong; Chen, Rachel R.; Li, Jianghua; Du, Guocheng; Chen, Jian

    2013-01-01

    Microbial enzymes have been used in a large number of fields, such as chemical, agricultural and biopharmaceutical industries. The enzyme production rate and yield are the main factors to consider when choosing the appropriate expression system for the production of recombinant proteins. Recombinant enzymes have been expressed in bacteria (e.g., Escherichia coli, Bacillus and lactic acid bacteria), filamentous fungi (e.g., Aspergillus) and yeasts (e.g., Pichia pastoris). The favorable and very advantageous characteristics of these species have resulted in an increasing number of biotechnological applications. Bacterial hosts (e.g., E. coli) can be used to quickly and easily overexpress recombinant enzymes; however, bacterial systems cannot express very large proteins and proteins that require post-translational modifications. The main bacterial expression hosts, with the exception of lactic acid bacteria and filamentous fungi, can produce several toxins which are not compatible with the expression of recombinant enzymes in food and drugs. However, due to the multiplicity of the physiological impacts arising from high-level expression of genes encoding the enzymes and expression hosts, the goal of overproduction can hardly be achieved, and therefore, the yield of recombinant enzymes is limited. In this review, the recent strategies used for the high-level expression of microbial enzymes in the hosts mentioned above are summarized and the prospects are also discussed. We hope this review will contribute to the development of the enzyme-related research field. PMID:23686280

  12. Predicting high levels of multitasking reduces between-tasks interactions.

    PubMed

    Fischer, Rico; Dreisbach, Gesine

    2015-12-01

    The simultaneous handling of 2 tasks requires shielding of the prioritized primary task (T1) from interference caused by the secondary task (T2) processing. Such interactions between tasks (e.g., between-task interference, or crosstalk) depend on the similarity of both tasks and are especially pronounced when both tasks overlap strongly in time. In the present study we investigated whether between-tasks interference can be reduced when specific items do not predict the level of interference but instead the degree of temporal proximity between both tasks. We implemented an item-specific proportion manipulation of temporal task overlap (stimulus onset asynchrony [SOA]). Selected stimuli of T1 predicted high temporal task overlap (short SOAs) in 80% of trials, whereas other stimuli of T1 predicted low temporal task overlap (long SOAs) in 80% of trials. Results showed that the predictive value of T1 stimuli determined the adjustment of T1 shielding. That is, interference from the secondary task was significantly reduced for items predicting high temporal task overlap compared to items predicting low temporal task overlap. It is important to note that task shielding was not initiated by predicting the actual conflict level (i.e., whether T1 and T2 required compatible/incompatible responses) between tasks but by specific items predicting conditions in which 2 tasks are likely to interact (i.e., short vs. long SOA). These findings offer new insights into the specificity of contextual bottom-up regulations of cognitive control.

  13. Behavior construction and refinement from high-level specifications

    NASA Astrophysics Data System (ADS)

    Martignoni, Andrew J., III; Smart, William D.

    2004-12-01

    Mobile robots are excellent examples of systems that need to show a high level of autonomy. Often robots are loosely supervised by humans who are not intimately familiar with the inner workings of the robot. We cannot generally predict exact environmental conditions in which the robot will operate in advance. This means that the behavior must be adapted in the field. Untrained individuals cannot (and probably should not) program the robot to effect these changes. We need a system that will (a) allow re-tasking, and (b) allow adaptation of the behavior to the specific conditions in the field. In this paper we concentrate on (b). We will describe how to assemble controllers, based on high-level descriptions of the behavior. We will show how the behavior can be tuned by the human, despite not knowing how the code is put together. We will also show how this can be done automatically, using reinforcement learning, and point out the problems that must be overcome for this approach to work.

  14. AIRS high-resolution stratospheric temperature retrievals evaluated with operational Level-2 data and ERA-Interim

    NASA Astrophysics Data System (ADS)

    Meyer, Catrin I.; Hoffmann, Lars

    2015-04-01

    The Atmospheric InfraRed Sounder (AIRS) aboard NASA's Aqua satellite provides stratospheric temperature observations for a variety of scientific tasks. However, the horizontal resolution of the operational temperature retrievals is generally not sufficient for studies of gravity waves. The retrieval discussed here provides stratospheric temperature profiles for each individual AIRS footprint and therefore has nine times better horizontal sampling than the operational data. The retrieval configuration is optimized so that the results provide a trade-off between spatial resolution and retrieval noise which is considered optimal for gravity wave analysis. Here the quality of the high-resolution data is assessed by comparing a nine-year record (2003 - 2011) of stratospheric temperatures with results from the AIRS operational Level-2 data and the ERA-Interim meteorological reanalysis. Due to the large amount of data we performed a statistical comparison of the high-resolution retrieval and reference data sets based on zonal averages and time-series. The temperature data sets are split into day and night, because the AIRS high-resolution retrieval uses different configurations for day- and night-time conditions to cope with non-LTE effects. The temperature data are averaged on a latitudinal grid with a resolution of one degree. The zonal averages are calculated on a daily basis and show significant day-to-day variability. To further summarize the data we calculated monthly averages from the daily averaged data and also computed zonal means. Additionally, the standard deviation of the three data sets was computed. The comparisons show that the high-resolution temperature data are in good agreement with the reference data sets. The bias in the zonal averages is mostly within ± 2 K and reaches a maximum of 7 K to ERA-Interim and 4 K to the AIRS operational data at the stratopause, which is related to the different resolutions of the data sets. Variability is nearly the

  15. High-level hepatitis B virus replication in transgenic mice.

    PubMed Central

    Guidotti, L G; Matzke, B; Schaller, H; Chisari, F V

    1995-01-01

    Hepatitis B virus (HBV) transgenic mice whose hepatocytes replicate the virus at levels comparable to that in the infected livers of patients with chronic hepatitis have been produced, without any evidence of cytopathology. High-level viral gene expression was obtained in the liver and kidney tissues in three independent lineages. These animals were produced with a terminally redundant viral DNA construct (HBV 1.3) that starts just upstream of HBV enhancer I, extends completely around the circular viral genome, and ends just downstream of the unique polyadenylation site in HBV. In these animals, the viral mRNA is more abundant in centrilobular hepatocytes than elsewhere in the hepatic lobule. High-level viral DNA replication occurs inside viral nucleocapsid particles that preferentially form in the cytoplasm of these centrilobular hepatocytes, suggesting that an expression threshold must be reached for nucleocapsid assembly and viral replication to occur. Despite the restricted distribution of the viral replication machinery in centrilobular cytoplasmic nucleocapsids, nucleocapsid particles are detectable in the vast majority of hepatocyte nuclei throughout the hepatic lobule. The intranuclear nucleocapsid particles are empty, however, suggesting that viral nucleocapsid particle assembly occurs independently in the nucleus and the cytoplasm of the hepatocyte and implying that cytoplasmic nucleocapsid particles do not transport the viral genome across the nuclear membrane into the nucleus during the viral life cycle. This model creates the opportunity to examine the influence of viral and host factors on HBV pathogenesis and replication and to assess the antiviral potential of pharmacological agents and physiological processes, including the immune response. PMID:7666518

  16. Superconducting gravity gradiometer for space and terrestrial applications

    NASA Technical Reports Server (NTRS)

    Moody, M. V.; Chan, H. A.; Paik, H. J.

    1986-01-01

    A three-axis superconducting gravity gradiometer with a potential sensitivity better than Eotvos per sq root Hz is currently under development for applications in space. Although such a high sensitivity may be needed for only a limited number of terrestrial applications, superconductivity offers many extraordinary effects which can be used to obtain a gravity gradiometer with other characteristics necessary for operation in a hostile moving-base environment. Utilizing a number of recently devised techniques which rely on certain properties of superconductors, a design for a sensitive yet rugged gravity gradiometer with a high degree of stability and a common-mode rejection ratio greater than 10 to the 9th is produced. With a base line of 0.11 m, a sensitivity of 0.1 Eotvos per sq root Hz is expected in an environment monitored to a level of 0.01 m/sq sec sq root Hz for linear vibration and 7 x 10 to the -6th rad/s sq root Hz for angular vibration. A conventional stabilized platform can be used at this level. The intrinsic noise level, which is two orders of magnitude lower, could be achieved by monitoring the attitude with a superconducting angular accelerometer which is under development. In addition, the new gradiometer design has the versatility of adapting the instrument to different gravity biases by adjusting stored dc currents.

  17. High-level microsatellite instability in appendiceal carcinomas.

    PubMed

    Taggart, Melissa W; Galbincea, John; Mansfield, Paul F; Fournier, Keith F; Royal, Richard E; Overman, Michael J; Rashid, Asif; Abraham, Susan C

    2013-08-01

    High-level microsatellite instability (MSI-high) is found in approximately 15% of all colorectal adenocarcinomas (CRCs) and in at least 20% of right-sided cancers. It is most commonly due to somatic hypermethylation of the MLH1 gene promoter region, with familial cases (Lynch syndrome) representing only 2% to 3% of CRCs overall. In contrast to CRC, MSI-high in appendiceal adenocarcinomas is rare. Only 4 MSI-high appendiceal carcinomas and 1 MSI-high appendiceal serrated adenoma have been previously reported, and the prevalence of MSI in the appendix is unknown. We identified 108 appendiceal carcinomas from MD Anderson Cancer Center in which MSI status had been assessed by immunohistochemistry for the DNA mismatch-repair proteins MLH1, MSH2, MSH6, and PMS2 (n=83), polymerase chain reaction (n=7), or both (n=18). Three cases (2.8%) were MSI-high, and 1 was MSI-low. The 3 MSI-high cases included: (1) a poorly differentiated nonmucinous adenocarcinoma with loss of MLH1/PMS2 expression, lack of MLH1 promoter methylation, and lack of BRAF gene mutation, but no detected germline mutation in MLH1 from a 39-year-old man; (2) an undifferentiated carcinoma with loss of MSH2/MSH6, but no detected germline mutation in MSH2 or TACSTD1, from a 59-year-old woman; and (3) a moderately differentiated mucinous adenocarcinoma arising in a villous adenoma with loss of MSH2/MSH6 expression, in a 38-year-old man with a strong family history of CRC who declined germline testing. When the overall group of appendiceal carcinomas was classified according to histologic features and precursor lesions, the frequencies of MSI-high were: 3 of 108 (2.8%) invasive carcinomas, 3 of 96 (3.1%) invasive carcinomas that did not arise from a background of goblet cell carcinoid tumors, and 0 of 12 (0%) signet ring and mucinous carcinomas arising in goblet cell carcinoid tumors. These findings, in conjunction with the previously reported MSI-high appendiceal carcinomas, highlight the low prevalence of MSI

  18. Human mesenchymal stem cells are sensitive to abnormal gravity and exhibit classic apoptotic features.

    PubMed

    Meng, Rui; Xu, Hui-yun; Di, Sheng-meng; Shi, Dong-yan; Qian, Ai-rong; Wang, Jin-fu; Shang, Peng

    2011-02-01

    The aim of the present study was to investigate the effects of abnormal gravity on human mesenchymal stem cells (hMSCs). Strong magnetic field and magnetic field gradient generate a magnetic force that can add to or subtract from the gravitational force. In this study, this is defined as a high-magneto-gravitational environment (HMGE). The HMGE provides three apparent gravity levels, i.e. hypogravity (μg), hypergravity (2g) and normal gravity with strong magnetic field (1g) conditions. After hMSCs were subject to HMGE for 12 h, the proliferation, morphology, structure and apoptosis were investigated. Results showed that the proliferation of hMSCs was inhibited under μg condition. The abnormal gravity induced morphologic characteristics of apoptosis cells, such as cell shrinkage, membrane blebbing, nuclear chromatin condensation and margination, decreased cell viability, and increased caspase-3/7 activity. The rate of apoptosis under μg condition is up to 56.95%. The F-actin stress fibers and microtubules were disrupted under abnormal gravity condition. Under μg-condition, the expression of p53 at mRNA and protein levels was up-regulated more than 9- and 6 folds, respectively. The Pifithrin-α, an specific inhibitor of p53, inhibited the apoptosis and prevented the disruption of cytoskeleton induced by abnormal gravity. These results implied that hMSCs were sensitive to abnormal gravity and exhibited classic apoptotic features, which might be associated with p53 signaling.

  19. Engineering neural systems for high-level problem solving.

    PubMed

    Sylvester, Jared; Reggia, James

    2016-07-01

    There is a long-standing, sometimes contentious debate in AI concerning the relative merits of a symbolic, top-down approach vs. a neural, bottom-up approach to engineering intelligent machine behaviors. While neurocomputational methods excel at lower-level cognitive tasks (incremental learning for pattern classification, low-level sensorimotor control, fault tolerance and processing of noisy data, etc.), they are largely non-competitive with top-down symbolic methods for tasks involving high-level cognitive problem solving (goal-directed reasoning, metacognition, planning, etc.). Here we take a step towards addressing this limitation by developing a purely neural framework named galis. Our goal in this work is to integrate top-down (non-symbolic) control of a neural network system with more traditional bottom-up neural computations. galis is based on attractor networks that can be "programmed" with temporal sequences of hand-crafted instructions that control problem solving by gating the activity retention of, communication between, and learning done by other neural networks. We demonstrate the effectiveness of this approach by showing that it can be applied successfully to solve sequential card matching problems, using both human performance and a top-down symbolic algorithm as experimental controls. Solving this kind of problem makes use of top-down attention control and the binding together of visual features in ways that are easy for symbolic AI systems but not for neural networks to achieve. Our model can not only be instructed on how to solve card matching problems successfully, but its performance also qualitatively (and sometimes quantitatively) matches the performance of both human subjects that we had perform the same task and the top-down symbolic algorithm that we used as an experimental control. We conclude that the core principles underlying the galis framework provide a promising approach to engineering purely neurocomputational systems for problem

  20. Confidence Level and Sensitivity Limits in High Contrast Imaging

    SciTech Connect

    Marois, C

    2007-11-07

    In long adaptive optics corrected exposures, exoplanet detections are currently limited by speckle noise originating from the telescope and instrument optics, and it is expected that such noise will also limit future high-contrast imaging instruments for both ground and space-based telescopes. Previous theoretical analysis have shown that the time intensity variations of a single speckle follows a modified Rician. It is first demonstrated here that for a circular pupil this temporal intensity distribution also represents the speckle spatial intensity distribution at a fix separation from the point spread function center; this fact is demonstrated using numerical simulations for coronagraphic and non-coronagraphic data. The real statistical distribution of the noise needs to be taken into account explicitly when selecting a detection threshold appropriate for some desired confidence level. In this paper, a technique is described to obtain the pixel intensity distribution of an image and its corresponding confidence level as a function of the detection threshold. Using numerical simulations, it is shown that in the presence of speckles noise, a detection threshold up to three times higher is required to obtain a confidence level equivalent to that at 5{sigma} for Gaussian noise. The technique is then tested using TRIDENT CFHT and angular differential imaging NIRI Gemini adaptive optics data. It is found that the angular differential imaging technique produces quasi-Gaussian residuals, a remarkable result compared to classical adaptive optic imaging. A power-law is finally derived to predict the 1-3 x 10{sup -7} confidence level detection threshold when averaging a partially correlated non-Gaussian noise.

  1. Confidence Level and Sensitivity Limits in High Contrast Imaging

    SciTech Connect

    Marois, C; LaFreniere, D; Macintosh, B; Doyon, R

    2008-06-02

    In long adaptive optics corrected exposures, exoplanet detections are currently limited by speckle noise originating from the telescope and instrument optics, and it is expected that such noise will also limit future high-contrast imaging instruments for both ground and space-based telescopes. Previous theoretical analysis have shown that the time intensity variations of a single speckle follows a modified Rician. It is first demonstrated here that for a circular pupil this temporal intensity distribution also represents the speckle spatial intensity distribution at a fix separation from the point spread function center; this fact is demonstrated using numerical simulations for coronagraphic and non-coronagraphic data. The real statistical distribution of the noise needs to be taken into account explicitly when selecting a detection threshold appropriate for some desired confidence level. In this paper, a technique is described to obtain the pixel intensity distribution of an image and its corresponding confidence level as a function of the detection threshold. Using numerical simulations, it is shown that in the presence of speckles noise, a detection threshold up to three times higher is required to obtain a confidence level equivalent to that at 5{sigma} for Gaussian noise. The technique is then tested using TRIDENT CFHT and angular differential imaging NIRI Gemini adaptive optics data. It is found that the angular differential imaging technique produces quasi-Gaussian residuals, a remarkable result compared to classical adaptive optic imaging. A power-law is finally derived to predict the 1-3 x 10{sup -7} confidence level detection threshold when averaging a partially correlated non-Gaussian noise.

  2. Engineering neural systems for high-level problem solving.

    PubMed

    Sylvester, Jared; Reggia, James

    2016-07-01

    There is a long-standing, sometimes contentious debate in AI concerning the relative merits of a symbolic, top-down approach vs. a neural, bottom-up approach to engineering intelligent machine behaviors. While neurocomputational methods excel at lower-level cognitive tasks (incremental learning for pattern classification, low-level sensorimotor control, fault tolerance and processing of noisy data, etc.), they are largely non-competitive with top-down symbolic methods for tasks involving high-level cognitive problem solving (goal-directed reasoning, metacognition, planning, etc.). Here we take a step towards addressing this limitation by developing a purely neural framework named galis. Our goal in this work is to integrate top-down (non-symbolic) control of a neural network system with more traditional bottom-up neural computations. galis is based on attractor networks that can be "programmed" with temporal sequences of hand-crafted instructions that control problem solving by gating the activity retention of, communication between, and learning done by other neural networks. We demonstrate the effectiveness of this approach by showing that it can be applied successfully to solve sequential card matching problems, using both human performance and a top-down symbolic algorithm as experimental controls. Solving this kind of problem makes use of top-down attention control and the binding together of visual features in ways that are easy for symbolic AI systems but not for neural networks to achieve. Our model can not only be instructed on how to solve card matching problems successfully, but its performance also qualitatively (and sometimes quantitatively) matches the performance of both human subjects that we had perform the same task and the top-down symbolic algorithm that we used as an experimental control. We conclude that the core principles underlying the galis framework provide a promising approach to engineering purely neurocomputational systems for problem

  3. Department of Energy pretreatment of high-level and low-level wastes

    SciTech Connect

    McGinnis, C.P.; Hunt, R.D.

    1995-12-31

    The remediation of the 1 {times} 10{sup 8} gal of highly radioactive waste in the underground storage tanks (USTs) at five US Department of Energy (DOE) sites is one of DOE`s greatest challenges. Therefore, the DOE Office of Environmental Management has created the Tank Focus Area (TFA) to manage an integrated technology development program that results in the safe and efficient remediation of UST waste. The TFA has divided its efforts into five areas, which are safety, characterization, retrieval/closure, pretreatment, and immobilization. All DOE pretreatment activities are integrated by the Pretreatment Technical Integration Manager of the TFA. For FY 1996, the 14 pretreatment tasks are divided into 3 systems: supernate separations, sludge treatment, and solid/liquid separation. The plans and recent results of these TFA tasks, which include two 25,000-gal demonstrations and two former TFA tasks on Cs removal, are presented. The pretreatment goals are to minimize the volume of high-level waste and the radioactivity in low-level waste.

  4. Structural mapping over the 85°E Ridge and surroundings using EIGEN6C4 high-resolution global combined gravity field model: an integrated approach

    NASA Astrophysics Data System (ADS)

    Pal, S. K.; Narayan, Satya; Majumdar, T. J.; Kumar, Ujjawal

    2016-07-01

    A revised gravity anomaly map, generated from the EIGEN6C4 high resolution global gravity model, has been utilized for understanding structure and tectonics over the 85°E Ridge and surroundings. EIGEN6C4 data have been analysed using different derivatives and Analytical Signal techniques for delineation of structural features and comparative analysis with the published results, which shows good correlation. All the structural features observed in two seismic reflection sections over a small part of the 85°E Ridge have also been delineated very well. The lineament trends of N-S, NNW-SSE, ENE-WSW and E-W are consequences of the major changes occurred in the mid-Cretaceous towards the spreading trends from NNW-SSE to N-S and resulted in northward movement of the Indian Plate trailed by interaction with the Asian Plate in the Early Eocene. The lineaments in the eastern side of the ridge have greater circular variances and greater circular standard deviation than those of the western side, which reveals that the eastern side of the ridge has suffered more tectonic activities.

  5. Structural mapping over the 85°E Ridge and surroundings using EIGEN6C4 high-resolution global combined gravity field model: an integrated approach

    NASA Astrophysics Data System (ADS)

    Pal, S. K.; Narayan, Satya; Majumdar, T. J.; Kumar, Ujjawal

    2016-09-01

    A revised gravity anomaly map, generated from the EIGEN6C4 high resolution global gravity model, has been utilized for understanding structure and tectonics over the 85°E Ridge and surroundings. EIGEN6C4 data have been analysed using different derivatives and Analytical Signal techniques for delineation of structural features and comparative analysis with the published results, which shows good correlation. All the structural features observed in two seismic reflection sections over a small part of the 85°E Ridge have also been delineated very well. The lineament trends of N-S, NNW-SSE, ENE-WSW and E-W are consequences of the major changes occurred in the mid-Cretaceous towards the spreading trends from NNW-SSE to N-S and resulted in northward movement of the Indian Plate trailed by interaction with the Asian Plate in the Early Eocene. The lineaments in the eastern side of the ridge have greater circular variances and greater circular standard deviation than those of the western side, which reveals that the eastern side of the ridge has suffered more tectonic activities.

  6. Processing of Bulk YBa2Cu3O(7-x) High Temperature Superconductor Materials for Gravity Modification Experiments and Performance Under AC Levitation

    NASA Technical Reports Server (NTRS)

    Koczor, Ronald; Noever, David; Hiser, Robert

    1999-01-01

    We have previously reported results using a high precision gravimeter to probe local gravity changes in the neighborhood of bulk-processed high temperature superconductor disks. Others have indicated that large annular disks (on the order of 25cm diameter) and AC levitation fields play an essential role in their observed experiments. We report experiments in processing such large bulk superconductors. Successful results depend on material mechanical characteristics, and pressure and heat treat protocols. Annular disks having rough dimensions of 30cm O.D., 7cm I.D. and 1 cm thickness have been routinely fabricated and tested under AC levitation fields ranging from 45 to 300OHz. Implications for space transportation initiatives and power storage flywheel technology will be discussed.

  7. Do Highly Effective Principals Also Have High Levels of Cultural Intelligence?

    ERIC Educational Resources Information Center

    Naughton, Whitney Michelle

    2010-01-01

    Purpose: The purpose of this study was to determine if elementary school principals who exhibit characteristics of highly effective principals also possess high levels of cultural intelligence. Methodology: Three instruments were used in this study, combining both qualitative and quantitative approaches to the collection of data. The first…

  8. High-Voltage-Input Level Translator Using Standard CMOS

    NASA Technical Reports Server (NTRS)

    Yager, Jeremy A.; Mojarradi, Mohammad M.; Vo, Tuan A.; Blalock, Benjamin J.

    2011-01-01

    proposed integrated circuit would translate (1) a pair of input signals having a low differential potential and a possibly high common-mode potential into (2) a pair of output signals having the same low differential potential and a low common-mode potential. As used here, "low" and "high" refer to potentials that are, respectively, below or above the nominal supply potential (3.3 V) at which standard complementary metal oxide/semiconductor (CMOS) integrated circuits are designed to operate. The input common-mode potential could lie between 0 and 10 V; the output common-mode potential would be 2 V. This translation would make it possible to process the pair of signals by use of standard 3.3-V CMOS analog and/or mixed-signal (analog and digital) circuitry on the same integrated-circuit chip. A schematic of the circuit is shown in the figure. Standard 3.3-V CMOS circuitry cannot withstand input potentials greater than about 4 V. However, there are many applications that involve low-differential-potential, high-common-mode-potential input signal pairs and in which standard 3.3-V CMOS circuitry, which is relatively inexpensive, would be the most appropriate circuitry for performing other functions on the integrated-circuit chip that handles the high-potential input signals. Thus, there is a need to combine high-voltage input circuitry with standard low-voltage CMOS circuitry on the same integrated-circuit chip. The proposed circuit would satisfy this need. In the proposed circuit, the input signals would be coupled into both a level-shifting pair and a common-mode-sensing pair of CMOS transistors. The output of the level-shifting pair would be fed as input to a differential pair of transistors. The resulting differential current output would pass through six standoff transistors to be mirrored into an output branch by four heterojunction bipolar transistors. The mirrored differential current would be converted back to potential by a pair of diode-connected transistors

  9. High-level fluorescence labeling of gram-positive pathogens.

    PubMed

    Aymanns, Simone; Mauerer, Stefanie; van Zandbergen, Ger; Wolz, Christiane; Spellerberg, Barbara

    2011-01-01

    Fluorescence labeling of bacterial pathogens has a broad range of interesting applications including the observation of living bacteria within host cells. We constructed a novel vector based on the E. coli streptococcal shuttle plasmid pAT28 that can propagate in numerous bacterial species from different genera. The plasmid harbors a promoterless copy of the green fluorescent variant gene egfp under the control of the CAMP-factor gene (cfb) promoter of Streptococcus agalactiae and was designated pBSU101. Upon transfer of the plasmid into streptococci, the bacteria show a distinct and easily detectable fluorescence using a standard fluorescence microscope and quantification by FACS-analysis demonstrated values that were 10-50 times increased over the respective controls. To assess the suitability of the construct for high efficiency fluorescence labeling in different gram-positive pathogens, numerous species were transformed. We successfully labeled Streptococcus pyogenes, Streptococcus agalactiae, Streptococcus dysgalactiae subsp. equisimilis, Enterococcus faecalis, Enterococcus faecium, Streptococcus mutans, Streptococcus anginosus and Staphylococcus aureus strains utilizing the EGFP reporter plasmid pBSU101. In all of these species the presence of the cfb promoter construct resulted in high-level EGFP expression that could be further increased by growing the streptococcal and enterococcal cultures under high oxygen conditions through continuous aeration.

  10. Analysis of Metagenomic Data Containing High Biodiversity Levels

    PubMed Central

    Valverde, José R.; Mellado, Rafael P.

    2013-01-01

    In this paper we have addressed the problem of analysing Next Generation Sequencing samples with an expected large biodiversity content. We analysed several well-known 16S rRNA datasets from experimental samples, including both large and short sequences, in numbers of tens of thousands, in addition to carefully crafted synthetic datasets containing more than 7000 OTUs. From this data analysis several patterns were identified and used to develop new guidelines for experimentation in conditions of high biodiversity. We analysed the suitability of different clustering packages for these type of situations, the problem of even sampling, the relative effectiveness of Chao1 and ACE estimators as well as their effect on sampling size for a variety of population distributions. As regards practical analysis procedures, we advocated an approach that retains as much high-quality experimental data as possible. By carefully applying selection rules combining the taxonomic assignment with clustering strategies, we derived a set of recommendations for ultra-sequencing data analysis at high biodiversity levels. PMID:23505458

  11. High-Precise Gravity Observations at Archaeological Sites: How We Can Improve the Interpretation Effectiveness and Reliability?

    NASA Astrophysics Data System (ADS)

    Eppelbaum, Lev

    2015-04-01

    Microgravity investigations are comparatively rarely used for searching of hidden ancient targets (e.g., Eppelbaum, 2013). It is caused mainly by small geometric size of the desired archaeological objects and various types of noise complicating the observed useful signal. At the same time, development of modern generation of field gravimetric equipment allows to register microGal (10-8 m/s2) anomalies that offer a new challenge in this direction. Correspondingly, an accuracy of gravity variometers (gradientometers) is also sharply increased. How we can improve the interpretation effectiveness and reliability? Undoubtedly, it must be a multi-stage process. I believe that we must begin since nonconventional methodologies for reducing topographic effect and terrain correction computation. Topographic effect reducing The possibilities of reducing topographic effects by grouping the points of additional gravimetric observations around the central point located on the survey network were demonstrated in (Khesin et al., 1996). A group of 4 to 8 additional points is located above and below along the relief approximately symmetrically and equidistant from the central point. The topographic effect is reduced to the obtained difference between the gravity field in the center of the group and its mean value for the whole group. Application of this methodology in the gold-pyrite deposit Gyzyl-Bulakh (Lesser Caucasus, western Azerbaijan) indicated its effectiveness. Computation of terrain correction Some geophysicists compare the new ideas in the field of terrain correction (TC) in gravimetry with the 'perpetuum mobile' invention. However, when we speak about very detailed gravity observations, the problem of most optimal computation of surrounding relief influence is of a great importance. Let us will consider two approaches applied earlier in ore geophysics. First approach A first method was applied in the Gyzyl-Bulakh gold-pyrite deposit situated in the Mekhmana ore region of

  12. Partial gravity reaction experiment sysytem on graund using multi-Copter

    NASA Astrophysics Data System (ADS)

    Hasegawa, Katsuya; Maeda, Naoko

    2016-07-01

    In order to enable further space exploration into the space, Moon, Mars, and other planets, it is essential to understand the physiological response to low gravity environments. However, We made low gravity environment for studies using the satellite parabolic flight and drop tower. It is very expensive experiment that low gravity physiological response. Because, it requires rockets and airplanes and dedicated Tower, low gravity conditions test have not been conducted sufficiently due to the extraordinary high cost for conducting experiments. The study present is to develop the radio-controlled multicopter system that is used for the controlled falling flight vehicle (not free fall). During the controlled falling, the payload is exposed to a certain level of low gravity. 1) G profile: low gravity from 0 g to 1 g that will last approximately 5seconds, 50 kg. 2) Supply limited imaging techniques, high-speed or normal video and X ray images. 3) Wireless transmission of up to 64 channels of analog and digital signals. This vehicle is designed for experimentation on various model organisms, from cells to animals and plants. The multicopter flight system enables conducting experiments in low gravity conditions with less than 1% of the budget for spaceflight or parabolic flights. Experiment is possible to perform repeated many times in one day. We can expect reproducible results from many repeated trials at the lowest cost.

  13. Tethered variable gravity laboratory study: Low gravity process identification report

    NASA Technical Reports Server (NTRS)

    Briccarello, M.

    1989-01-01

    Experiments are described performable in the variable gravity environment, and the related compatible/beneficial residual accelerations, both for pure and applied research in the fields of Fluid Mechanics (static and dynamic), Materials Sciences (Crystal Growth, Metal and Alloy Solidification, Glasses, etc.), and Life Sciences, so as to assess the relevance of a variable G-level laboratory.

  14. GRACE: Gravity Recovery and Climate Experiment

    NASA Technical Reports Server (NTRS)

    Ward, A.

    2002-01-01

    While gravity is much weaker than other basic forces in nature, such as magnetism and electricity, its effects are ubiquitous and dramatic. Gravity controls everything from the motion of the ocean tides to the expansion of the entire Universe. To learn more about the mysteries of gravity, twin satellites named GRACE--short for the Gravity Recovery and Climate Experiment--are being launched to make detailed measurements of Earth's gravity field. This experiment could lead to discoveries about gravity and Earth's natural systems, which could have substantial benefits for society and the world's population. The GRACE mission will be the inaugural flight of NASA's Earth System Science Pathfinder Program (ESSP). A component of NASA's Earth Science Enterprise (ESE), the ESSP missions are intended to address unique, specific highly focused scientific issues and provide measurements required to support Earth science research.

  15. High Level Waste System Impacts from Acid Dissolution of Sludge

    SciTech Connect

    KETUSKY, EDWARD

    2006-04-20

    This research evaluates the ability of OLI{copyright} equilibrium based software to forecast Savannah River Site High Level Waste system impacts from oxalic acid dissolution of Tank 1-15 sludge heels. Without further laboratory and field testing, only the use of oxalic acid can be considered plausible to support sludge heel dissolution on multiple tanks. Using OLI{copyright} and available test results, a dissolution model is constructed and validated. Material and energy balances, coupled with the model, identify potential safety concerns. Overpressurization and overheating are shown to be unlikely. Corrosion induced hydrogen could, however, overwhelm the tank ventilation. While pH adjustment can restore the minimal hydrogen generation, resultant precipitates will notably increase the sludge volume. OLI{copyright} is used to develop a flowsheet such that additional sludge vitrification canisters and other negative system impacts are minimized. Sensitivity analyses are used to assess the processability impacts from variations in the sludge/quantities of acids.

  16. High level radioactive waste vitrification process equipment component testing

    NASA Astrophysics Data System (ADS)

    Siemens, D. H.; Health, W. C.; Larson, D. E.; Craig, S. N.; Berger, D. N.; Goles, R. W.

    1985-04-01

    Remote operability and maintainability of vitrification equipment were assessment under shielded cell conditions. The equipment tested will be applied to immobilize high level and transuranic liquid waste slurries that resulted from plutonium production for defense weapons. Equipment tested included: a turntable for handling waste canisters under the melter; a removable discharge cone in the melter overflow section; a thermocouple jumper that extends into a shielded cell; remote instrument and electrical connectors; remote, mechanical, and heat transfer aspects of the melter glass overflow section; a reamer to clean out plugged nozzles in the melter top; a closed circuit camera to view the melter interior; and a device to retrieve samples of the glass product. A test was also conduucted to evaluate liquid metals for use in a liquid metal sealing system.

  17. Sandia National Laboratories' new high level acoustic test facility

    SciTech Connect

    Rogers, J. D.; Hendrick, D. M.

    1989-01-01

    A high intensity acoustic test facility has been designed and is under construction at Sandia National Laboratories in Albuquerque, NM. The chamber is designed to provide an acoustic environment of 154dB (re 20 {mu}Pa) overall sound pressure level over the bandwidth of 50 Hz to 10,000 Hz. The chamber has a volume of 16,000 cubic feet with interior dimensions of 21.6 ft {times} 24.6 ft {times} 30 ft. The construction of the chamber should be complete by the summer of 1990. This paper discusses the design goals and constraints of the facility. The construction characteristics are discussed in detail, as are the acoustic performance design characteristics. The authors hope that this work will help others in designing acoustic chambers. 12 refs., 6 figs.

  18. Characterization of composite ceramic high level waste forms.

    SciTech Connect

    Frank, S. M.; Bateman, K. J.; DiSanto, T.; Johnson, S. G.; Moschetti, T. L.; Noy, M. H.; O'Holleran, T. P.

    1997-12-05

    Argonne National Laboratory has developed a composite ceramic waste form for the disposition of high level radioactive waste produced during electrometallurgical conditioning of spent nuclear fuel. The electrorefiner LiCl/KCl eutectic salt, containing fission products and transuranics in the chloride form, is contacted with a zeolite material which removes the fission products from the salt. After salt contact, the zeolite is mixed with a glass binder. The zeolite/glass mixture is then hot isostatic pressed (HIPed) to produce the composite ceramic waste form. The ceramic waste form provides a durable medium that is well suited to incorporate fission products and transuranics in the chloride form. Presented are preliminary results of the process qualification and characterization studies, which include chemical and physical measurements and product durability testing, of the ceramic waste form.

  19. Calculates Neutron Production in Canisters of High-level Waste

    1993-01-15

    ALPHN calculates the (alpha,n) neutron production rate of a canister of vitrified high-level waste. The user supplies the chemical composition of the glass or glass-ceramic and the curies of the alpha-emitting actinides present. The output of the program gives the (alpha,n) neutron production of each actinide in neutrons per second and the total for the canister. The (alpha,n) neutron production rates are source terms only; that is, they are production rates within the glass andmore » do not take into account the shielding effect of the glass. For a given glass composition, the user can calculate up to eight cases simultaneously; these cases are based on the same glass composition but contain different quantities of actinides per canister.« less

  20. A high-level language for rule-based modelling.

    PubMed

    Pedersen, Michael; Phillips, Andrew; Plotkin, Gordon D

    2015-01-01

    Rule-based languages such as Kappa excel in their support for handling the combinatorial complexities prevalent in many biological systems, including signalling pathways. But Kappa provides little structure for organising rules, and large models can therefore be hard to read and maintain. This paper introduces a high-level, modular extension of Kappa called LBS-κ. We demonstrate the constructs of the language through examples and three case studies: a chemotaxis switch ring, a MAPK cascade, and an insulin signalling pathway. We then provide a formal definition of LBS-κ through an abstract syntax and a translation to plain Kappa. The translation is implemented in a compiler tool which is available as a web application. We finally demonstrate how to increase the expressivity of LBS-κ through embedded scripts in a general-purpose programming language, a technique which we view as generally applicable to other domain specific languages. PMID:26043208