Science.gov

Sample records for high hydrostatic presure

  1. [Effect of high hydrostatic pressure on microbial physiological characteristics].

    PubMed

    Li, Zong-Jun; Xu, Jian-Xing

    2005-08-01

    Physiological characterizations of Listeria monocytogenes NCTC 11994 and Escherichia coli ATCC 80739 have deeply changed by high hydrostatic pressure. The results showed that counts of both microbial strains decreased 7 log cfu at 400MPa, 10 min. Pressure treatments also resulted in change of Intracellular pH value, lowed membrane potential, have internal potassium filtered out, and decreased ATP concentration.

  2. Hybrid hydrostatic/ball bearings in high-speed turbomachinery

    NASA Technical Reports Server (NTRS)

    Nielson, C. E.

    1983-01-01

    A high speed, high pressure liquid hydrogen turbopump was designed, fabricated, and tested under a previous contract. This design was then modified to incorporate hybrid hydrostatic/ball bearings on both the pump end and turbine end to replace the original conventional ball bearing packages. The design, analysis, turbopump modification, assembly, and testing of the turbopump with hybrid bearings is presented here. Initial design considerations and rotordynamic performance analysis was made to define expected turbopump operating characteristics and are reported. The results of testing the turbopump to speeds of 9215 rad/s (88,000 rpm) using a wide range of hydrostatic bearing supply pressures are presented. The hydrostatic bearing test data and the rotordynamic behavior of the turbopump was closely analyzed and are included in the report. The testing of hybrid hydrostatic/ball bearings on a turbopump to the high speed requirements has indicated the configuration concept is feasible. The program has presented a great deal of information on the technology requirements of integrating the hybrid bearing into high speed turbopump designs for improved bearing life.

  3. Refolding of endostatin from inclusion bodies using high hydrostatic pressure.

    PubMed

    Chura-Chambi, Rosa Maria; Genova, Luis Antonio; Affonso, Regina; Morganti, Ligia

    2008-08-01

    High hydrostatic pressure was used for concomitant solubilization and refolding of insoluble endostatin (ES) aggregated as inclusion bodies (IBs). High hydrostatic pressure (200 MPa or 2 kbar) was applied in combination with nondenaturing concentrations of guanidine hydrochloride. High levels of correctly folded ES (90 mg/L culture) were obtained after optimization/standardization of the procedure by applying pressures of 200 MPa for 16 h in 1.5 M guanidine hydrochloride/0.5 mM oxidized glutathione and reduced glutathione. Refolded ES was purified by affinity chromatography on a heparin column and analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blotting, size exclusion HPLC, circular dichroism, and intrinsic fluorescence. We demonstrated that high pressure can successfully convert insoluble IBs of ES expressed in Escherichia coli into an ES preparation with native tertiary structure and full biological activity.

  4. High hydrostatic pressure treatment of finfish to inactivate Anisakis simplex.

    PubMed

    Dong, Faye M; Cook, Allison R; Herwig, Russell P

    2003-10-01

    High hydrostatic pressure has been demonstrated to be a useful technique for treating food to reduce the number of pathogenic organisms and to extend shelf life. Most research in this area has focused on bacteria. However, a concern in the sashimi (raw fish) industry is that nematode worms such as Anisakis simplex occur naturally in cold-water marine fish. The objectives of this research were to perform a pilot study to determine the effect of high hydrostatic pressure on the viability of Anisakis simplex larvae, commonly found in king salmon and arrowtooth flounder, and to evaluate the effects of high hydrostatic pressure on the color and texture of the fish fillets. Pieces of fish (ca. 100 g per bag) containing 13 to 118 larvae were exposed to pressures of up to 80,000 lb/in2 (552 MPa) for up to 180 s. The times and pressures required to kill 100% of the larvae were as follows: 30 to 60 s at 60,000 lb/in2 (414 MPa), 90 to 180 s at 40,000 lb/in2 (276 MPa), and 180 s at 30,000 lb/in2 (207 MPa). For all salmon treatments that killed 100% of the larvae, a significant increase in the whiteness of the flesh was observed. Although high hydrostatic pressure was effective in killing A. simplex larvae in raw fish fillets, its significant effect on the color and overall appearance of the fillet may limit its application to the processing of fish for raw-fish markets.

  5. Single-molecule imaging at high hydrostatic pressure

    NASA Astrophysics Data System (ADS)

    Vass, Hugh; Lucas Black, S.; Flors, Cristina; Lloyd, Diarmuid; Bruce Ward, F.; Allen, Rosalind J.

    2013-04-01

    Direct microscopic fluorescence imaging of single molecules can provide a wealth of mechanistic information, but up to now, it has not been possible under high pressure conditions, due to limitations in microscope pressure cell design. We describe a pressure cell window design that makes it possible to image directly single molecules at high hydrostatic pressure. We demonstrate our design by imaging single molecules of Alexa Fluor 647 dye bound to DNA, at 120 and 210 bar, and following their fluorescence photodynamics. We further show that the failure pressure of this type of pressure cell window can be in excess of 1 kbar.

  6. Pasteurization of food by hydrostatic high pressure: chemical aspects.

    PubMed

    Tauscher, B

    1995-01-01

    Food pasteurized by hydrostatic high pressure have already been marketed in Japan. There is great interest in this method also in Europe and USA. Temperature and pressure are the essential parameters influencing the state of substances including foods. While the influence of temperature on food has been extensively investigated, effects of pressure, also in combination with temperature, are attracting increasing scientific attention now. Processes and reactions in food governed by Le Chatelier's principle are of special interest; they include chemical reactions of both low- and macromolecular compounds. Theoretical fundamentals and examples of pressure affected reactions are presented. PMID:7732731

  7. Porcine radial artery decellularization by high hydrostatic pressure.

    PubMed

    Negishi, Jun; Funamoto, Seiichi; Kimura, Tsuyoshi; Nam, Kwangoo; Higami, Tetsuya; Kishida, Akio

    2015-11-01

    Many types of decellularized tissues have been studied and some have been commercially used in clinics. In this study, small-diameter vascular grafts were made using HHP to decellularize porcine radial arteries. One decellularization method, high hydrostatic pressure (HHP), has been used to prepare the decellularized porcine tissues. Low-temperature treatment was effective in preserving collagen and collagen structures in decellularized porcine carotid arteries. The collagen and elastin structures and mechanical properties of HHP-decellularized radial arteries were similar to those of untreated radial arteries. Xenogeneic transplantation (into rats) was performed using HHP-decellularized radial arteries and an untreated porcine radial artery. Two weeks after transplantation into rat carotid arteries, the HHP-decellularized radial arteries were patent and without thrombosis. In addition, the luminal surface of each decellularized artery was covered by recipient endothelial cells and the arterial medium was fully infiltrated with recipient cells.

  8. Recent Advances in Food Processing Using High Hydrostatic Pressure Technology.

    PubMed

    Wang, Chung-Yi; Huang, Hsiao-Wen; Hsu, Chiao-Ping; Yang, Binghuei Barry

    2016-01-01

    High hydrostatic pressure is an emerging non-thermal technology that can achieve the same standards of food safety as those of heat pasteurization and meet consumer requirements for fresher tasting, minimally processed foods. Applying high-pressure processing can inactivate pathogenic and spoilage microorganisms and enzymes, as well as modify structures with little or no effects on the nutritional and sensory quality of foods. The U.S. Food and Drug Administration (FDA) and the U.S. Department of Agriculture (USDA) have approved the use of high-pressure processing (HPP), which is a reliable technological alternative to conventional heat pasteurization in food-processing procedures. This paper presents the current applications of HPP in processing fruits, vegetables, meats, seafood, dairy, and egg products; such applications include the combination of pressure and biopreservation to generate specific characteristics in certain products. In addition, this paper describes recent findings on the microbiological, chemical, and molecular aspects of HPP technology used in commercial and research applications.

  9. High hydrostatic pressure and biology: a brief history.

    PubMed

    Demazeau, Gérard; Rivalain, Nolwennig

    2011-03-01

    Pressure as a thermodynamical parameter was successively introduced in physics, hydrometallurgy, geochemistry, and biology. In all cases, the main objective was to recreate a natural phenomenon (gas or liquid compressibility, synthesis or crystal growth of minerals, survival of deep sea microorganisms…). The introduction of high hydrostatic pressure (HHP) in Biology was an important scientific feature over the last hundred years. This paper describes the different steps that have led to the spreading of pressure in biology and the opening of new frontiers either in basic and applied researches due to the specific characteristics of the pressure parameter. Because of the low energy conveyed by this parameter, leading to the preservation of most organoleptic properties of foods, and its ability to inactivate many pathogens, the use of HHP began to spread at the end of the twentieth century into the food industry, in particular for the development of pathogen inactivation processes. Today, even if this field is still the first application domain for HHP, more and more research works have shown that this parameter could be of great interest in health and medicine sciences.

  10. Effect of high hydrostatic pressure on overall quality parameters of watermelon juice.

    PubMed

    Liu, Y; Zhao, X Y; Zou, L; Hu, X S

    2013-06-01

    High hydrostatic pressure as a kind of non-thermal processing might maintain the quality of thermo-sensitive watermelon juice. So, the effect of high hydrostatic pressure treatment on enzymes and quality of watermelon juice was investigated. After high hydrostatic pressure treatment, the activities of polyphenol oxidase, peroxidase, and pectin methylesterase of juice decreased significantly with the pressure (P < 0.05). Inactivation of polyphenol oxidase and peroxidase could be fitted by two-fraction model and that of pectin methylesterase could be described by first-order reaction model. Titratable acidity, pH, and total soluble solid of juice did not change significantly (P > 0.05). No significant difference was observed in lycopene and total phenolics after high hydrostatic pressure treatment when compared to the control (P > 0.05). Cloudiness and viscosity increased with pressure (P < 0.05) but did not change significantly with treatment time (P > 0.05). a*- and b*-value both unchanged after high hydrostatic pressure treatment (P > 0.05) while L*-value increased but the values had no significant difference among treated juices. Browning degree after high hydrostatic pressure treatment decreased with increase in pressure and treatment time (P < 0.05). Through the comparison of total color difference values, high hydrostatic pressure had little effect on color of juice. The results of this study demonstrated the efficacy of high hydrostatic pressure in inactivating enzymes and maintaining the quality of watermelon juice.

  11. High-pressure resistivity technique for quasi-hydrostatic compression experiments

    NASA Astrophysics Data System (ADS)

    Rotundu, C. R.; Ćuk, T.; Greene, R. L.; Shen, Z.-X.; Hemley, Russell J.; Struzhkin, V. V.

    2013-06-01

    Diamond anvil cell techniques are now well established and powerful methods for measuring materials properties to very high pressure. However, high pressure resistivity measurements are challenging because the electrical contacts attached to the sample have to survive to extreme stress conditions. Until recently, experiments in a diamond anvil cell were mostly limited to non-hydrostatic or quasi-hydrostatic pressure media other than inert gases. We present here a solution to the problem by using focused ion beam ultrathin lithography for a diamond anvil cell loaded with inert gas (Ne) and show typical resistivity data. These ultrathin leads are deposited on the culet of the diamond and are attaching the sample to the anvil mechanically, therefore allowing for measurements in hydrostatic or nearly hydrostatic conditions of pressure using noble gases like Ne or He as pressure transmitting media.

  12. Solid-Supported Lipid Multilayers under High Hydrostatic Pressure.

    PubMed

    Nowak, Benedikt; Paulus, Michael; Nase, Julia; Salmen, Paul; Degen, Patrick; Wirkert, Florian J; Honkimäki, Veijo; Tolan, Metin

    2016-03-22

    In this work, the structure of solid-supported lipid multilayers exposed to increased hydrostatic pressure was studied in situ by X-ray reflectometry at the solid-liquid interface between silicon and an aqueous buffer solution. The layers' vertical structure was analyzed up to a maximum pressure of 4500 bar. The multilayers showed phase transitions from the fluid into different gel phases. With increasing pressure, a gradual filling of the sublayers between the hydrophilic head groups with water was observed. This process was inverted when the pressure was decreased, yielding finally smaller water layers than those in the initial state. As is commonly known, water has an abrasive effect on lipid multilayers by the formation of vesicles. We show that increasing pressure can reverse this process so that a controlled switching between multi- and bilayers is possible. PMID:26927365

  13. A high-order staggered finite-element vertical discretization for non-hydrostatic atmospheric models

    DOE PAGESBeta

    Guerra, Jorge E.; Ullrich, Paul A.

    2016-06-01

    Atmospheric modeling systems require economical methods to solve the non-hydrostatic Euler equations. Two major differences between hydrostatic models and a full non-hydrostatic description lies in the vertical velocity tendency and numerical stiffness associated with sound waves. In this work we introduce a new arbitrary-order vertical discretization entitled the staggered nodal finite-element method (SNFEM). Our method uses a generalized discrete derivative that consistently combines the discontinuous Galerkin and spectral element methods on a staggered grid. Our combined method leverages the accurate wave propagation and conservation properties of spectral elements with staggered methods that eliminate stationary (2Δx) modes. Furthermore, high-order accuracy alsomore » eliminates the need for a reference state to maintain hydrostatic balance. In this work we demonstrate the use of high vertical order as a means of improving simulation quality at relatively coarse resolution. We choose a test case suite that spans the range of atmospheric flows from predominantly hydrostatic to nonlinear in the large-eddy regime. Our results show that there is a distinct benefit in using the high-order vertical coordinate at low resolutions with the same robust properties as the low-order alternative.« less

  14. A high-order staggered finite-element vertical discretization for non-hydrostatic atmospheric models

    NASA Astrophysics Data System (ADS)

    Guerra, Jorge E.; Ullrich, Paul A.

    2016-06-01

    Atmospheric modeling systems require economical methods to solve the non-hydrostatic Euler equations. Two major differences between hydrostatic models and a full non-hydrostatic description lies in the vertical velocity tendency and numerical stiffness associated with sound waves. In this work we introduce a new arbitrary-order vertical discretization entitled the staggered nodal finite-element method (SNFEM). Our method uses a generalized discrete derivative that consistently combines the discontinuous Galerkin and spectral element methods on a staggered grid. Our combined method leverages the accurate wave propagation and conservation properties of spectral elements with staggered methods that eliminate stationary (2Δx) modes. Furthermore, high-order accuracy also eliminates the need for a reference state to maintain hydrostatic balance. In this work we demonstrate the use of high vertical order as a means of improving simulation quality at relatively coarse resolution. We choose a test case suite that spans the range of atmospheric flows from predominantly hydrostatic to nonlinear in the large-eddy regime. Our results show that there is a distinct benefit in using the high-order vertical coordinate at low resolutions with the same robust properties as the low-order alternative.

  15. High-pressure, high-temperature bioreactor for comparing effects of hyperbaric and hydrostatic pressure on bacterial growth.

    PubMed Central

    Nelson, C M; Schuppenhauer, M R; Clark, D S

    1992-01-01

    We describe a high-pressure reactor system suitable for simultaneous hyperbaric and hydrostatic pressurization of bacterial cultures at elevated temperatures. For the deep-sea thermophile ES4, the growth rate at 500 atm (1 atm = 101.29 kPa) and 95 degrees C under hydrostatic pressure was ca. three times the growth rate under hyperbaric pressure and ca. 40% higher than the growth rate at 35 atm. PMID:1622255

  16. Effect of high hydrostatic pressure processing on in vitro digestion of milk proteins and fats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The use of high hydrostatic pressure processing (HPP) is increasing in popularity in the food industry. Its ability to modify milk proteins and fats suggests that it may be useful in creating foods that suppress appetite; however, its effect on the digestibility of proteins and fats is unclear. The...

  17. A class-A GPCR solubilized under high hydrostatic pressure retains its ligand binding ability

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effect of high hydrostatic pressure (HHP) on the solubilization of a class-A G protein-coupled receptor, the silkmoth pheromone biosynthesis-activating neuropeptide receptor (PBANR), was investigated. PBANR was expressed in expresSF+ insect cells as a C-terminal fusion protein with EGFP. The mem...

  18. Effect of Pulsed Ultraviolet Light and High Hydrostatic Pressure on the Antigenicity of Almond Protein Extracts.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The efficacy of pulsed ultraviolet light (PUV) and high hydrostatic pressure (HHP) on reducing the IgE binding to the almond extracts, was studied using SDS-PAGE, Western Blot, and ELISA probed with human plasma containing IgE antibodies to almond allergens, and a polyclonal antibody against almond ...

  19. Inactivation of human norovirus in contaminated oysters and clams by high-hydrostatic pressure

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Human norovirus (NoV) is the most frequent causative agent of foodborne disease associated with shellfish consumption. In this study, the effect of high-hydrostatic pressure (HHP) on inactivation of NoV was determined. Genogroup I.1 (GI.1) or Genogroup II.4 (GII.4) NoV were inoculated into oyster ho...

  20. High hydrostatic pressure adaptive strategies in an obligate piezophile Pyrococcus yayanosii

    PubMed Central

    Michoud, Grégoire; Jebbar, Mohamed

    2016-01-01

    Pyrococcus yayanosii CH1, as the first and only obligate piezophilic hyperthermophilic microorganism discovered to date, extends the physical and chemical limits of life on Earth. It was isolated from the Ashadze hydrothermal vent at 4,100 m depth. Multi-omics analyses were performed to study the mechanisms used by the cell to cope with high hydrostatic pressure variations. In silico analyses showed that the P. yayanosii genome is highly adapted to its harsh environment, with a loss of aromatic amino acid biosynthesis pathways and the high constitutive expression of the energy metabolism compared with other non-obligate piezophilic Pyrococcus species. Differential proteomics and transcriptomics analyses identified key hydrostatic pressure-responsive genes involved in translation, chemotaxis, energy metabolism (hydrogenases and formate metabolism) and Clustered Regularly Interspaced Short Palindromic Repeats sequences associated with Cellular apoptosis susceptibility proteins. PMID:27250364

  1. High hydrostatic pressure adaptive strategies in an obligate piezophile Pyrococcus yayanosii

    NASA Astrophysics Data System (ADS)

    Michoud, Grégoire; Jebbar, Mohamed

    2016-06-01

    Pyrococcus yayanosii CH1, as the first and only obligate piezophilic hyperthermophilic microorganism discovered to date, extends the physical and chemical limits of life on Earth. It was isolated from the Ashadze hydrothermal vent at 4,100 m depth. Multi-omics analyses were performed to study the mechanisms used by the cell to cope with high hydrostatic pressure variations. In silico analyses showed that the P. yayanosii genome is highly adapted to its harsh environment, with a loss of aromatic amino acid biosynthesis pathways and the high constitutive expression of the energy metabolism compared with other non-obligate piezophilic Pyrococcus species. Differential proteomics and transcriptomics analyses identified key hydrostatic pressure-responsive genes involved in translation, chemotaxis, energy metabolism (hydrogenases and formate metabolism) and Clustered Regularly Interspaced Short Palindromic Repeats sequences associated with Cellular apoptosis susceptibility proteins.

  2. Partial alignment and measurement of residual dipolar couplings of proteins under high hydrostatic pressure

    PubMed Central

    Fu, Yinan; Wand, A. Joshua

    2013-01-01

    High-pressure NMR spectroscopy has emerged as a complementary approach for investigating various structural and thermodynamic properties of macromolecules. Noticeably absent from the array of experimental restraints that have been employed to characterize protein structures at high hydrostatic pressure is the residual dipolar coupling, which requires the partial alignment of the macromolecule of interest. Here we examine five alignment media that are commonly used at ambient pressure for this purpose. We find that the spontaneous alignment of Pf1 phage, d(GpG) and a C12E5/n-hexnanol mixture in a magnetic field is preserved under high hydrostatic pressure. However, DMPC/ DHPC bicelles and collagen gel are found to be unsuitable. Evidence is presented to demonstrate that pressure-induced structural changes can be identified using the residual dipolar coupling. PMID:23807390

  3. Highly birefringent polymer side-hole fiber for hydrostatic pressure sensing.

    PubMed

    Martynkien, Tadeusz; Wojcik, Grzegorz; Mergo, Pawel; Urbanczyk, Waclaw

    2015-07-01

    We report on the fabrication of a birefringent side-hole polymer optical fiber with an elliptical core made of polymethyl metacrylate-polystyrene (PMMA/PS) copolymer and pure PMMA cladding. The fiber core is located in a narrow PMMA bridge separating the holes. Two fibers with different bridge thickness were fabricated and characterized. We demonstrate, experimentally and numerically, that, by narrowing the bridge between the holes, one can increase simultaneously the fiber birefringence and the polarimetric sensitivity to hydrostatic pressure. In the fiber with the bridge as narrow as 5 μm, we achieved a record-high polarimetric sensitivity to hydrostatic pressure ranging between 175 and 140 rad/MPa/m in the spectral range of 600-830 nm. The phase modal birefringence in this fiber is also high and exceeds 3×10(-5) at 600 nm, which results in small polarization cross talk. PMID:26125360

  4. Advanced Decontamination Technologies: High Hydrostatic Pressure on Meat Products

    NASA Astrophysics Data System (ADS)

    Garriga, Margarita; Aymerich, Teresa

    The increasing demand for “natural” foodstuffs, free from chemical additives, and preservatives has triggered novel approaches in food technology developments. In the last decade, practical use of high-pressure processing (HPP) made this emerging non-thermal technology very attractive from a commercial point of view. Despite the fact that the investment is still high, the resulting value-added products, with an extended and safe shelf-life, will fulfil the wishes of consumers who prefer preservative-free minimally processed foods, retaining sensorial characteristics of freshness. Moreover, unlike thermal treatment, pressure treatment is not time/mass dependant, thus reducing the time of processing.

  5. Escherichia coli mutants resistant to inactivation by high hydrostatic pressure.

    PubMed Central

    Hauben, K J; Bartlett, D H; Soontjens, C C; Cornelis, K; Wuytack, E Y; Michiels, C W

    1997-01-01

    Alternating cycles of exposure to high pressure and outgrowth of surviving populations were used to select for highly pressure-resistant mutants of Escherichia coli MG1655. Three barotolerant mutants (LMM1010, LMM1020, and LMM1030) were isolated independently by using outgrowth temperatures of 30, 37, and 42 degrees C, respectively. Survival of these mutants after pressure treatment for 15 min at ambient temperature was 40 to 85% at 220 MPa and 0.5 to 1.5% at 800 MPa, while survival of the parent strain, MG1655, decreased from 15% at 220 MPa to 2 x 10(-8)% at 700 MPa. Heat resistance of mutants LMM1020 and LMM1030 was also altered, as evident by higher D values at 58 and 60 degrees C and reduced z values compared to those for the parent strain. D and z values for mutant LMM1010 were not significantly different from those for the parent strain. Pressure sensitivity of the mutants increased from 10 to 50 degrees C, as opposed to the parent strain, which showed a minimum around 40 degrees C. The ability of the mutants to grow at moderately elevated pressure (50 MPa) was reduced at temperatures above 37 degrees C, indicating that resistance to pressure inactivation is unrelated to barotolerant growth. The development of high levels of barotolerance as demonstrated in this work should cause concern about the safety of high-pressure food processing. PMID:9055412

  6. High hydrostatic pressure increases amino acid requirements in the piezo-hyperthermophilic archaeon Thermococcus barophilus.

    PubMed

    Cario, Anaïs; Lormières, Florence; Xiang, Xiao; Oger, Philippe

    2015-11-01

    We have established a defined growth medium for the piezophilic hyperthermophilic archaeon Thermococcus barophilus, which allows growth yields of ca. 10(8) cells/ml under both atmospheric and high hydrostatic pressure. Our results demonstrate a major impact of hydrostatic pressure on amino acid metabolism, with increases from 3 amino acids required at atmospheric pressure to 17 at 40 MPa. We observe in T. barophilus and other Thermococcales a similar discrepancy between the presence/absence of amino acid synthesis pathways and amino acid requirements, which supports the existence of alternate, but yet unknown, amino acid synthesis pathways, and may explain the low number of essential amino acids observed in T. barophilus and other Thermococcales. T. barophilus displays a strong metabolic preference for organic polymers such as polypeptides and chitin, which may constitute a more readily available resource of carbon and energy in situ in deep-sea hydrothermal vents. We hypothesize that the low energy yields of fermentation of organic polymers, together with energetic constraints imposed by high hydrostatic pressure, may render de novo synthesis of amino acids ecologically unfavorable. Induction of this metabolic switch to amino acid recycling can explain the requirement for non-essential amino acids by Thermococcales for efficient growth in defined medium. PMID:26226334

  7. High hydrostatic pressure increases amino acid requirements in the piezo-hyperthermophilic archaeon Thermococcus barophilus.

    PubMed

    Cario, Anaïs; Lormières, Florence; Xiang, Xiao; Oger, Philippe

    2015-11-01

    We have established a defined growth medium for the piezophilic hyperthermophilic archaeon Thermococcus barophilus, which allows growth yields of ca. 10(8) cells/ml under both atmospheric and high hydrostatic pressure. Our results demonstrate a major impact of hydrostatic pressure on amino acid metabolism, with increases from 3 amino acids required at atmospheric pressure to 17 at 40 MPa. We observe in T. barophilus and other Thermococcales a similar discrepancy between the presence/absence of amino acid synthesis pathways and amino acid requirements, which supports the existence of alternate, but yet unknown, amino acid synthesis pathways, and may explain the low number of essential amino acids observed in T. barophilus and other Thermococcales. T. barophilus displays a strong metabolic preference for organic polymers such as polypeptides and chitin, which may constitute a more readily available resource of carbon and energy in situ in deep-sea hydrothermal vents. We hypothesize that the low energy yields of fermentation of organic polymers, together with energetic constraints imposed by high hydrostatic pressure, may render de novo synthesis of amino acids ecologically unfavorable. Induction of this metabolic switch to amino acid recycling can explain the requirement for non-essential amino acids by Thermococcales for efficient growth in defined medium.

  8. High Speed, High Temperature, Fault Tolerant Operation of a Combination Magnetic-Hydrostatic Bearing Rotor Support System for Turbomachinery

    NASA Technical Reports Server (NTRS)

    Jansen, Mark; Montague, Gerald; Provenza, Andrew; Palazzolo, Alan

    2004-01-01

    Closed loop operation of a single, high temperature magnetic radial bearing to 30,000 RPM (2.25 million DN) and 540 C (1000 F) is discussed. Also, high temperature, fault tolerant operation for the three axis system is examined. A novel, hydrostatic backup bearing system was employed to attain high speed, high temperature, lubrication free support of the entire rotor system. The hydrostatic bearings were made of a high lubricity material and acted as journal-type backup bearings. New, high temperature displacement sensors were successfully employed to monitor shaft position throughout the entire temperature range and are described in this paper. Control of the system was accomplished through a stand alone, high speed computer controller and it was used to run both the fault-tolerant PID and active vibration control algorithms.

  9. THE EFFECTS OF HIGH HYDROSTATIC PRESSURE ON THE MICROTUBULES OF TETRAHYMENA PYRIFORMIS

    PubMed Central

    Kennedy, John R.; Zimmerman, Arthur M.

    1970-01-01

    Exposure of Tetrahymena pyriformis to 7,500 or 10,000 psi of hydrostatic pressure for 2, 5, or 10 min intervals results in a change in cell shape and ciliary activity. Shape changes occur concurrently with a degradation of longitudinal microtubules in a posterior to anterior direction. High pressure also causes a disruption of ciliary activity. Fine structural analysis reveals a breakdown (presumably microtubule depolymerization) of the central ciliary microtubules. The depolymerization begins at the junction of the central ciliary microtubules with the axosome and progresses distally along the ciliary shaft for a distance of about 0.5 µ. PMID:5497538

  10. Effects of high hydrostatic pressure on microflora and some quality attributes of grape juice

    NASA Astrophysics Data System (ADS)

    Mert, Mecnun; Buzrul, Sencer; Alpas, Hami

    2013-03-01

    Red and white grape juices were treated with high hydrostatic pressure (HHP) at three different pressures, temperature and time values to investigate the effects of HHP on natural microflora and some quality attributes of the juices. Increased pressure, temperature and time showed significant effect on the microbial reduction and no microbial growth were observed in HHP-treated grape juices up to 90 days. HHP had little or no effect on pH and color of the juices. Although 5-hydroxymethylfurfural (HMF) formation was observed in heat pasteurized samples, no HMF was detected in HHP-treated juices. This study demonstrated that HHP could be used as an alternative to heat treatment.

  11. High hydrostatic pressure processing: a method having high success potential in pollen protein extraction

    NASA Astrophysics Data System (ADS)

    Murat Altuner, Ergin; Çeter, Talip; Alpas, Hami

    2012-06-01

    Even a single peptide that is present in the pollen wall and cytoplasm could cause pollen allergy. To produce skin-prick test kits, the first step is the extraction of these molecules. In this study, Cedrus atlantica pollens were subjected to 220 and 330 MPa for 10 and 30 min in order to extract these molecules. After high hydrostatic pressure processing (HHPP), the total amounts of proteins (TAPs) are measured and compared with the results of the conventional extraction method (CEM). As a result, the TAPs extracted by HHPP is 18.0210 μ g/mL at 220 MPa for 10 min, 22.5770 μ g/mL at 220 MPa for 30 min, 23.3810 μ g/mL at 330 MPa for 10 min and 25.9270 μ g/mL at 330 MPa for 30 min, while this is 1.9460 μ g/mL in 24 h by the CEM. In addition to these results, visual pollen deformation and eruption, pollen wall and surface damage have also been observed.

  12. Physicochemical properties of natural actomyosin from threadfin bream (Nemipterus spp.) induced by high hydrostatic pressure.

    PubMed

    Zhou, Aimei; Lin, Liying; Liang, Yan; Benjakul, Soottawat; Shi, Xiaoling; Liu, Xin

    2014-08-01

    Changes of physicochemical properties in natural actomyosin (NAM) from threadfin bream (Nemipterus spp.) induced by high hydrostatic pressure (200, 400, 600MPa for 10, 30, 50min) were studied. The increase in turbidity of NAM was coincidental with the decrease in protein solubility with increasing pressure and time, suggesting the formation of protein aggregates. SDS-PAGE showed that polymerisation and degradation of myosin heavy chain were induced by high pressure. Ca(2+)-ATPase activity of NAM treated by high pressure was lost, suggesting the denaturation of myosin and the dissociation of actomyosin complex. Surface hydrophobicity of NAM increased when the pressure and pressurization time increased, indicating that the exposed hydrophobic residues increased upon application of high pressure. Decrease in total sulfhydryl content and increase in surface-reactive sulfhydryl content of NAM samples were observed with the extension of pressurizing time, indicating the formation of disulphide bonds through oxidation of SH groups or disulphide interchanges. The above changes of physicochemical properties suggested conformational changes of NAM from muscle of threadfin bream induced by high hydrostatic pressure.

  13. Prediction of acid lactic-bacteria growth in turkey ham processed by high hydrostatic pressure

    PubMed Central

    Mathias, S.P.; Rosenthal, A.; Gaspar, A.; Aragão, G.M.F.; Slongo-Marcusi, A.

    2013-01-01

    High hydrostatic pressure (HHP) has been investigated and industrially applied to extend shelf life of meat-based products. Traditional ham packaged under microaerophilic conditions may sometimes present high lactic acid bacteria population during refrigerated storage, which limits shelf life due to development of unpleasant odor and greenish and sticky appearance. This study aimed at evaluating the shelf life of turkey ham pressurized at 400 MPa for 15 min and stored at 4, 8 and 12 °C, in comparison to the non pressurized product. The lactic acid bacteria population up to 107 CFU/g of product was set as the criteria to determine the limiting shelf life According to such parameter the pressurized sample achieved a commercial viability within 75 days when stored at 4 °C while the control lasted only 45 days. Predictive microbiology using Gompertz and Baranyi and Roberts models fitted well both for the pressurized and control samples. The results indicated that the high hydrostatic pressure treatment greatly increased the turkey ham commercial viability in comparison to the usual length, by slowing down the growth of microorganisms in the product. PMID:24159279

  14. Use of pulsed-high hydrostatic pressure treatment to decrease patulin in apple juice

    NASA Astrophysics Data System (ADS)

    Avsaroglu, M. D.; Bozoglu, F.; Alpas, H.; Largeteau, A.; Demazeau, G.

    2015-04-01

    This study was aimed at reducing patulin content of apple juice using a non-thermal method, namely pulsed-high hydrostatic pressure (p-HHP). Commercially available clear apple juice was contaminated artificially with different concentrations of patulin (5, 50 and 100 ppb). Then, the samples were processed 5 min at different pressure treatments (300-500 MPa) in combination with different temperatures (30-50°C) and pulses (6 pulses × 50 s and 2 pulses × 150 s). To compare the impact of pulses, single pulse of high hydrostatic pressure (HHP) treatment was also applied with the same pressure/temperature combinations and holding time. Results indicated that pressure treatment in combination with mild heat and pulses reduced the levels of patulin in clear apple juice up to 62.11%. However, reduction rates did not follow a regular pattern. p-HHP was found to be more effective in low patulin concentrations, whereas HHP was more effective for high patulin concentrations. To the best of our knowledge, this is the first study using p-HHP to investigate the reduction of patulin content in apple juice.

  15. Enhancing the thermal stability of inulin fructotransferase with high hydrostatic pressure.

    PubMed

    Li, Yungao; Miao, Ming; Liu, Miao; Chen, Xiangyin; Jiang, Bo; Feng, Biao

    2015-03-01

    The thermal stability of inulin fructotransferase (IFTase) subjected to high hydrostatic pressure (HHP) was studied. The value of inactivation rate of IFTase in the range of 70-80°C decreased under the pressure of 100 or 200 MPa, indicating that the thermostability of IFTase under high temperature was enhanced by HHP. Far-UV CD and fluorescence spectra showed that HHP impeded the unfolding of the conformation of IFTase under high temperature, reflecting the antagonistic effect between temperature and pressure on IFTase. The new intramolecular disulfide bonds in IFTase were formed under a combination of HHP and high temperature. These bonds might be related to the stabilization of IFTase at high temperature. All the above results suggested that HHP had the protective effect on IFTase against high temperature.

  16. High resolution non-hydrostatic GCM simulations of Venus polar vortices

    NASA Astrophysics Data System (ADS)

    Rodin, Alexander V.; Orlov, Konstantin; Mingalev, Igor

    Non-hydrostatic general circulation model of the Venus atmosphere is capable of reproducing both superrotatoin and subsolar-antisolar circulation, providing proper parameterization of the peculiar heat balance. Using high resolution (0.7 (o) in longitude and latitude, 250 m in height) simulations from the bottom to 120 km, we explore the response of the circulation system to perturbation of heating and cooling rates in the polar regions. It is shown that diurnal tide results in off-axis displacement of the polar vortex external part at the upper cloud level, consistent with the patterns retrieved from cloud tracking observations. On the other hand, minor (3 (o) -7 (o) ) displacement of the polar vortex central part constrains the diurnal variations of the heating/cooling rates within main cloud deck. Based on the recently developed radiative transfer code, we simulate heat balance in the polar Venus atmosphere, that results in realistic circulation pattern. It is shown that Hadley cell circulation provides extra heating above the clouds, resulting in the effective damping of superrotation and development of subsolar-antisolar circulation at higher altitudes. In turin high slant opacity of the polar atmosphere within the clouds provides the effective cooling near the pole, that causes non-hydrostatic downwelling flow, manifested as a core of the observed polar vortex. The work has been supported by the Ministry of Education and Science of Russian Federation grant #11.G34.31.0074

  17. Bacteriophage performance against Staphylococcus aureus in milk is improved by high hydrostatic pressure treatments.

    PubMed

    Tabla, R; Martínez, B; Rebollo, J E; González, J; Ramírez, M R; Roa, I; Rodríguez, A; García, P

    2012-06-01

    The combined effect of bacteriophages, vB_SauS-phi-IPLA35 (phiIPLA35) and vB_SauS-phi-IPLA88 (phiIPLA88), and high hydrostatic pressure (HHP) on Staphylococcus aureus Sa9 was evaluated in pasteurized whole milk under a simulated cold chain break, which was simulated by incubation of milk at 25°C for 48 h. Four-hundred MPa was found to be the most suitable pressure to be used in combination with these phages. Two different levels of staphylococcal initial contamination (1×10(4) and 1×10(6) CFU/mL) were tested. A synergistic effect between HHP and phages was observed in both cases. Compared to each single treatment, the combined treatment was able to reduce the initial S. aureus contamination below the detection limit (<10 CFU/mL). Bacteriophage performance in pressurize milk against S. aureus enabled milder hydrostatic pressure treatments, therefore phages can be regarded as a valuable hurdle on minimally processed food. PMID:22525459

  18. High hydrostatic pressure leads to free radicals accumulation in yeast cells triggering oxidative stress.

    PubMed

    Bravim, Fernanda; Mota, Mainã M; Fernandes, A Alberto R; Fernandes, Patricia M B

    2016-08-01

    Saccharomyces cerevisiae is a unicellular organism that during the fermentative process is exposed to a variable environment; hence, resistance to multiple stress conditions is a desirable trait. The stress caused by high hydrostatic pressure (HHP) in S. cerevisiae resembles the injuries generated by other industrial stresses. In this study, it was confirmed that gene expression pattern in response to HHP displays an oxidative stress response profile which is expanded upon hydrostatic pressure release. Actually, reactive oxygen species (ROS) concentration level increased in yeast cells exposed to HHP treatment and an incubation period at room pressure led to a decrease in intracellular ROS concentration. On the other hand, ethylic, thermic and osmotic stresses did not result in any ROS accumulation in yeast cells. Microarray analysis revealed an upregulation of genes related to methionine metabolism, appearing to be a specific cellular response to HHP, and not related to other stresses, such as heat and osmotic stresses. Next, we investigated whether enhanced oxidative stress tolerance leads to enhanced tolerance to HHP stress. Overexpression of STF2 is known to enhance tolerance to oxidative stress and we show that it also leads to enhanced tolerance to HHP stress. PMID:27388472

  19. Islet amyloid polypeptide and high hydrostatic pressure: towards an understanding of the fibrillization process

    NASA Astrophysics Data System (ADS)

    Lopes, D. H. J.; Smirnovas, V.; Winter, R.

    2008-07-01

    Type II Diabetes Mellitus is a disease which is characterized by peripheral insulin resistance coupled with a progressive loss of insulin secretion that is associated with a decrease in pancreatic islet β-cell mass and the deposition of amyloid in the extracellular matrix of β-cells, which lead to islet cell death. The principal component of the islet amyloid is a pancreatic hormone called islet amyloid polypeptide (IAPP). High-pressure coupled with FT-IR, CD, ThT fluorescence spectroscopic and AFM studies were carried out to reveal information on the aggregation pathway as well as the aggregate structure of IAPP. Our data indicate that IAPP pre-formed fibrils exhibit a strong polymorphism with heterogeneous structures very sensitive to high hydrostatic pressure, indicating a high percentage of ionic and hydrophobic interactions being responsible for the stability the IAPP fibrils.

  20. [Effects of high hydrostatic pressure on energy metabolism of Lactobacillus plantarum].

    PubMed

    Gao, Yu-long; Ju, Xing-rong; Jiang, Han-hu

    2006-02-01

    Effects of high hydrostatic pressure on energy metabolism were investigated with Lactobacillus plantarum ATCC8014 as the test microorganism in this work. An INT colorimetric method of oxidation-reduction was established to measure INT metabolic activity of deoxidization of L. plantarum ATCC8014 cells. The utilization of glucose and INT metabolic activity of deoxidization of the cells after HPP treatment were determined using colorimetric methods. The experimental results showed that survival counts of ATCC8014 cells on MRS agar medium and INT metabolic activity of deoxidization decreased significantly, and little changes of utilization of glucose took place with increasing pressure ranging from 150 to 250 MPa for 15 min. Utilization of glucose also reduced evidently at high pressure ( > 300 MPa) for 15 min. Whereas survival cell counts on MRS agar medium were below the detection limit and INT metabolic activity of deoxidization of ATCC8014 was 0% after a 15-min pressure holding time at 400MPa, utilization of glucose of the cells retained 56.1% compared with that of untreated cells. In summary, it can be concluded that enzymes absorbing and transporting glucose in cellular membrane appear to have a high resistance to pressure, enzymes and biological regulating systems involved in glycolysis are more resistant to pressure than those in TCA (tricarboxylic acid cycle) system, TCA of ATCC8014 is more sensitive to pressure than glycolysis, and the decrease of INT metabolic activity of deoxidization is highly related to cell reduction during HHP, which provide some theoretical evidences for mechanisms of HHP sterilization. Inhibition of TCA metabolism is a very important cause of ATCC8014 inactivation by HHP. High hydrostatic pressure can be used as an effective tool to explore pathways of biological metabolism.

  1. Sorbitol counteracts high hydrostatic pressure-induced denaturation of inulin fructotransferase.

    PubMed

    Li, Yungao; Miao, Ming; Liu, Miao; Jiang, Bo; Zhang, Tao; Chen, Xiangyin

    2014-09-01

    Inulin fructotransferase (IFTase), a novel hydrolase for inulin, was exposed to high hydrostatic pressure (HHP) at 400 and 600 MPa for 15 min in the presence or absence of sorbitol. Sorbitol protected the enzyme against HHP-induced activity loss. The relative residual activity increased nearly 3.1- and 3.8-fold in the presence of 3 mol/L sorbitol under 400 MPa and 600 MPa for 15 min, respectively. Circular dichroism results indicated that the original chaotic unfolding conformation of the enzyme under HHP shifted toward more ordered and impact with 3 mol/L sorbitol. Fluorescence and UV spectra results suggested that sorbitol prevented partially the unfolding of the enzyme and stabilized the conformation under high pressure. These results might be attributed to the binding of sorbitol on the surface of IFTase to rearrange and strengthen intra- and intermolecular hydrogen bonds.

  2. Impact of high hydrostatic pressure on non-volatile and volatile compounds of squid muscles.

    PubMed

    Yue, Jin; Zhang, Yifeng; Jin, Yafang; Deng, Yun; Zhao, Yanyun

    2016-03-01

    The effects of high hydrostatic pressure processing (HHP at 200, 400 or 600MPa) on non-volatile and volatile compounds of squid muscles during 10-day storage at 4°C were investigated. HHP increased the concentrations of Cl(-) and volatile compounds, reduced the level of PO4(3-), but did not affect the contents of 5'-uridine monophosphate (UMP), 5'-guanosine monophosphate (GMP), 5'-inosine monophosphate (IMP), Na(+) and Ca(2+) in squids on Day 0. At 600MPa, squids had the highest levels of 5'-adenosine monophosphate, Cl(-) and lactic acid, but the lowest contents of CMP and volatile compounds on Day 10. Essential free amino acids and succinic acids were lower on Day 0 than on Day 10. HHP at 200MPa caused higher equivalent umami concentration (EUC) on Day 0, and the EUC decreased with increasing pressure on Day 10. Generally, HHP at 200MPa was beneficial for improving EUC and volatile compounds of squids.

  3. Adaptive laboratory evolution of Escherichia coli K-12 MG1655 for growth at high hydrostatic pressure

    PubMed Central

    Marietou, Angeliki; Nguyen, Alice T. T.; Allen, Eric E.; Bartlett, Douglas H.

    2015-01-01

    Much of microbial life on Earth grows and reproduces under the elevated hydrostatic pressure conditions that exist in deep-ocean and deep-subsurface environments. In this study adaptive laboratory evolution (ALE) experiments were conducted to investigate the possible modification of the piezosensitive Escherichia coli for improved growth at high pressure. After approximately 500 generations of selection, a strain was isolated that acquired the ability to grow at pressure non-permissive for the parental strain. Remarkably, this strain displayed growth properties and changes in the proportion and regulation of unsaturated fatty acids that indicated the acquisition of multiple piezotolerant properties. These changes developed concomitantly with a change in the gene encoding the acyl carrier protein, which is required for fatty acid synthesis. PMID:25610434

  4. Effect of high hydrostatic pressure on rheological and thermophysical properties of murtilla (Ugni molinae Turcz) berries.

    PubMed

    Lemus-Mondaca, Roberto; Ah-Hen, Kong; Vega-Gálvez, Antonio; Zura-Bravo, Liliana

    2016-06-01

    Effects of high hydrostatic pressure (HHP) on rheological and thermophysical properties of murtilla berries were evaluated after pressure treatments for 5 min between 100 and 500 MPa. Differential scanning calorimetry was employed to measure specific heat capacity. HHP caused a significant decrease in specific heat and density, while thermal diffusivity did not changed significantly. Thermal conductivity showed a slight increase upon HHP treatment. Apparent viscosity increased significantly above 200 MPa HHP treatment. Apparent viscosity of treated samples between 200 and 400 MPa did not differ significantly and the increase was significant at 500 MPa. Herschel-Bulkley, Bingham and Ostwald de Waele models were used to describe the rheological behaviour of murtilla purée, and Ostwald de Waele model gave the best fit for the experimental data. PMID:27478228

  5. Effect of oscillatory high hydrostatic pressure treatments on Byssochlamys nivea ascospores suspended in fruit juice concentrates.

    PubMed

    Palou, E; López-Malo, A; Barbosa-Cánovas, G V; Welti-Chanes, J; Davidson, P M; Swanson, B G

    1998-12-01

    The effect of continuous (689 MPa with holding times of 5, 15 or 25 min) and oscillatory (one, three or five cycles at 689 MPa with holding times of 1 s) high hydrostatic pressure treatments on the viability of Byssochlamys nivea ascospores suspended in apple and cranberry juice concentrates adjusted by dilution to water activities (aw) of 0.98 and 0.94 was evaluated at 21 and 60 degrees C. Inactivation of the initial spore inocula was achieved after three or five cycles of oscillatory pressurization at 60 degrees C when the aw was 0.98 in both fruit juices. With aw 0.94, the initial inocula were reduced by less than 1 log-cycle after five pressure cycles. Inactivation was not observed within 25 min with continuous pressurization at 60 degrees C. In treatments at 21 degrees C, no effect on spore viability was observed with continuous or oscillatory treatments. PMID:9871357

  6. Effects of High Hydrostatic Pressure on Bacterial Growth on Human Ossicles Explanted from Cholesteatoma Patients

    PubMed Central

    Ostwald, Jürgen; Lindner, Tobias; Zautner, Andreas Erich; Arndt, Kathleen; Pau, Hans Wilhelm; Podbielski, Andreas

    2012-01-01

    Background High hydrostatic pressure (HHP) treatment can eliminate cholesteatoma cells from explanted human ossicles prior to re-insertion. We analyzed the effects of HHP treatment on the microbial flora on ossicles and on the planktonic and biofilm states of selected isolates. Methodology Twenty-six ossicles were explanted from cholesteatoma patients. Five ossicles were directly analyzed for microbial growth without further treatment. Fifteen ossicles were cut into two pieces. One piece was exposed to HHP of 350 MPa for 10 minutes. Both the treated and untreated (control) pieces were then assessed semi-quantitatively. Three ossicles were cut into two pieces and exposed to identical pressure conditions with or without the addition of one of two different combinations of antibiotics to the medium. Differential effects of 10-minute in vitro exposure of planktonic and biofilm bacteria to pressures of 100 MPa, 250 MPa, 400 MPa and 540 MPa in isotonic and hypotonic media were analyzed using two patient isolates of Staphylococcus epidermidis and Neisseria subflava. Bacterial cell inactivation and biofilm destruction were assessed by colony counting and electron microscopy. Principal Findings A variety of microorganisms were isolated from the ossicles. Irrespective of the medium, HHP treatment at 350 MPa for 10 minutes led to satisfying but incomplete inactivation especially of Gram-negative bacteria. The addition of antibiotics increased the efficacy of elimination. A comparison of HHP treatment of planktonic and biofilm cells showed that the effects of HPP were reduced by about one decadic logarithmic unit when HPP was applied to biofilms. High hydrostatic pressure conditions that are suitable to inactivate cholesteatoma cells fail to completely sterilize ossicles even if antibiotics are added. As a result of the reduced microbial load and the viability loss of surviving bacteria, however, there is a lower risk of re-infection after re-insertion. PMID:22291908

  7. Inactivation of Salmonella enterica and Listeria monocytogenes in cantaloupe puree by high hydrostatic pressure with/without added ascorbic acid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this research was to evaluate and develop a method for inactivation of Salmonella enterica and Listeria monocytogenes in cantaloupe puree (CP) by high hydrostatic pressure (HHP). Cantaloupe being the most netted varieties of melons presents a greater risk of pathogen transmission. ...

  8. Genes that are involved in high hydrostatic pressure treatments in a Listeria monocytogenes Scott A ctsR deletion mutant

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Listeria monocytogenes is a food-borne pathogen of significant threat to public health. High Hydrostatic Pressure (HHP) treatment can be used to control L. monocytogenes in food. The CtsR (class three stress gene repressor) protein negatively regulates the expression of class III heat shock genes....

  9. Insights into alternative prion protein topologies induced under high hydrostatic pressure

    NASA Astrophysics Data System (ADS)

    Torrent, Joan; Alvarez-Martinez, Maria Teresa; Heitz, Frédéric; Liautard, Jean-Pierre; Balny, Claude; Lange, Reinhard

    2004-04-01

    The critical step in the pathogenesis of transmissible spongiform encephalopathies (TSEs) appears to be a conformational transition of a normal prion protein (PrPC) into a misfolded isoform (PrPSc). To gain insight into the structural conversion of the prion protein we have exploited the use of high hydrostatic pressure combined with various spectroscopic techniques. In vitro transitions of the recombinant PrP to a scrapie-like form have never resulted in an infectious structure. It is our hypothesis that the acquisition of the disease-causing conformation depends on folding pathways which are difficult to attain. We attempt to favour, via specific reaction conditions at high pressure, alternative routes of misfolding leading to a stable infectious amyloidogenic conformer. Our results have demonstrated the potential of high pressure to reveal various prion structural changes, which are inaccessible by conventional methods. Especially, we have characterized a pressure-induced conformer in which the normal agr-helical structure is changed into a highly aggregated bgr-sheet conformation showing markedly increased resistance to proteolysis (key markers of potential infectious agents). Our work may have important implications, not only for ultimately proving the protein-only hypothesis and for understanding the basic mechanism of the disease, but also for developing preventative and therapeutic measures.

  10. Factors influencing the inactivation of Alicyclobacillus acidoterrestris spores exposed to high hydrostatic pressure in apple juice

    NASA Astrophysics Data System (ADS)

    Sokołowska, B.; Skąpska, S.; Fonberg-Broczek, M.; Niezgoda, J.; Chotkiewicz, M.; Dekowska, A.; Rzoska, S. J.

    2013-03-01

    Alicyclobacillus acidoterrestris, a thermoacidophilic and spore-forming bacterium, survives the typical pasteurization process and can cause the spoilage of juices, producing compounds associated with disinfectant-like odour (guaiacol, 2,6 - dibromophenol, 2,6 - dichlorophenol). Therefore, the use of other more effective techniques such as high hydrostatic pressure (HHP) is considered for preserving juices. The aim of this study was to search for factors affecting the resistance of A. acidoterrestris spores to HHP. The baroprotective effect of increased solute concentration in apple juice on A. acidoterrestris spores during high pressure processing was observed. During the 45 min pressurization (200 MPa, 50°C) of the spores in concentrated apple juice (71.1°Bx), no significant changes were observed in their number. However, in the juices with a soluble solids content of 35.7, 23.6 and 11.2°Bx, the reduction in spores was 1.3-2.4 log, 2.6-3.3 log and 2.8-4.0 log, respectively. No clear effect of age of spores on the survival under high pressure conditions was found. Spores surviving pressurization and subjected to subsequent HHP treatment showed increased resistance to pressure, by even as much as 2.0 log.

  11. Retrogradation of Maize Starch after High Hydrostatic Pressure Gelation: Effect of Amylose Content and Depressurization Rate

    PubMed Central

    Yang, Zhi; Swedlund, Peter; Gu, Qinfen; Hemar, Yacine; Chaieb, Sahraoui

    2016-01-01

    High hydrostatic pressure (HHP) has been employed to gelatinize or physically modify starch dispersions. In this study, waxy maize starch, normal maize starch, and two high amylose content starch were processed by a HHP of the order of 600 MPa, at 25°C for 15min. The effect of HHP processing on the crystallization of maize starches with various amylose content during storage at 4°C was investigated. Crystallization kinetics of HHP treated starch gels were investigated using rheology and FTIR. The effect of crystallization on the mechanical properties of starch gel network were evaluated in terms of dynamic complex modulus (G*). The crystallization induced increase of short-range helices structures were investigated using FTIR. The pressure releasing rate does not affect the starch retrogradation behaviour. The rate and extent of retrogradation depends on the amylose content of amylose starch. The least retrogradation was observed in HHP treated waxy maize starch. The rate of retrogradation is higher for HHP treated high amylose maize starch than that of normal maize starch. A linear relationship between the extent of retrogradation (phase distribution) measured by FTIR and G* is proposed. PMID:27219066

  12. Sustainable production of pectin from lime peel by high hydrostatic pressure treatment.

    PubMed

    Naghshineh, Mahsa; Olsen, Karsten; Georgiou, Constantinos A

    2013-01-15

    The application of high hydrostatic pressure technology for enzymatic extraction of pectin was evaluated. Cellulase and xylanase under five different combinations (cellulase/xylanase: 50/0, 50/25, 50/50, 25/50, and 0/50 U/g lime peel) at ambient pressure, 100 and 200 MPa were used to extract pectin from dried lime peel. Extraction yield, galacturonic acid (GalA) content, average molecular weight (M(w,ave)), intrinsic viscosity [η](w), and degree of esterification (DE) were compared to those parameters obtained for pectins extracted using acid and aqueous processes. Pressure level, type and concentration of enzyme significantly (p<0.05) influenced yield and DE of pectin. Enzyme and high pressure extraction resulted in yields which were significantly (p<0.05) higher than those using acid and aqueous extraction. Although pressure-induced enzymatic treatment improves pectin yield, it does not have any significant effect on M(w,ave) and [η](w) of pectin extracts indicating the potential of high pressure treatment for enzymatic pectin production as a novel and sustainable process.

  13. High hydrostatic pressure effects on the texture of meat and meat products.

    PubMed

    Sun, Xiang Dong; Holley, Richard A

    2010-01-01

    High hydrostatic pressure (HHP) treatment can influence meat protein conformation and induce protein denaturation, aggregation, or gelation. The means whereby HHP treatment exerts effects on meat protein structure change are due to the rupture of noncovalent interactions within protein molecules, and to the subsequent re-formation of intra- and inter-molecular bonds within or among protein molecules. Depending upon the meat protein system, the pressure, the temperature, and the duration of the pressure treatment, meat can be either tenderized or toughened. Muscle texture variation induced by heat treatment is due to breakage of hydrogen bonds, whereas changes from high pressure treatment are due to the rupture of hydrophobic and electrostatic interactions. Pressure treatment has little effect on the toughness of connective tissue. Juiciness, springiness, and chewiness are increased upon HHP treatment. Prerigor HHP treatment tenderizes meat, whereas tenderizing effects of postrigor HHP treatment are only measureable if pressure and heat treatment are combined. The limitations and future applications of high pressure technology are also discussed.

  14. Effects of high hydrostatic pressure on Campylobacter jejuni in poultry meat.

    PubMed

    Jackowska-Tracz, A; Tracz, M

    2015-01-01

    Campylobacter jejuni inactivation by high pressure processing (HPP) in poultry meat (chicken breast) was investigated. The pressure was created by high hydrostatic pressure piston-cylinder food processor. Contaminated with C. jejuni (108 CFU g-1) samples of ground poultry meat were hermetically sealed in a polyamide-polyethylene bags and exposed to HPP for 9 different combinations of pressure (200 MPa, 300 MPa and 400 MPa) and time (5 min, 10 min and 15 min). Quantitative bacteriological analysis was carried out in order to determine the number of surviving C. jejuni cells. The obtained results showed that C. jejuni is relatively sensitive to high pressure treatment as compared to other food-borne pathogens. The loss of C. jejuni viability increased in a dose- and time-dependent manner. On the basis of the results, D-values were calculated. For reduction C. jejuni in poultry meat by 6 log units (6D-values), considered as sufficient for consumer protection, the application of 300 MPa for 8.73 min, or 400 MPa for 4.37 min is needed. The linear regression equations, which has been calculated on the basis of this study, allows to determine the degree of C. jejuni reduction in poultry meat for any selected duration of pressurization in a given pressure range.

  15. Predictive model for inactivation of feline calicivirus, a norovirus surrogate, by heat and high hydrostatic pressure.

    PubMed

    Buckow, Roman; Isbarn, Sonja; Knorr, Dietrich; Heinz, Volker; Lehmacher, Anselm

    2008-02-01

    Noroviruses, which are members of the Caliciviridae family, represent the leading cause of nonbacterial gastroenteritis in developed countries; such norovirus infections result in high economic costs for health protection. Person-to-person contact, contaminated water, and foods, especially raw shellfish, vegetables, and fruits, can transmit noroviruses. We inactivated feline calicivirus, a surrogate for the nonculturable norovirus, in cell culture medium and mineral water by heat and high hydrostatic pressure. Incubation at ambient pressure and 75 degrees C for 2 min as well as treatment at 450 MPa and 15 degrees C for 1 min inactivated more than 7 log10 PFU of calicivirus per ml in cell culture medium or mineral water. The heat and pressure time-inactivation curves obtained with the calicivirus showed tailing in the logarithmic scale. Modeling by nth-order kinetics of the virus inactivation was successful in predicting the inactivation of the infective virus particles. The developed model enables the prediction of the calicivirus reduction in response to pressures up to 500 MPa, temperatures ranging from 5 to 75 degrees C, and various treatment times. We suggest high pressure for processing of foods to reduce the health threat posed by noroviruses.

  16. High hydrostatic pressure effects on the texture of meat and meat products.

    PubMed

    Sun, Xiang Dong; Holley, Richard A

    2010-01-01

    High hydrostatic pressure (HHP) treatment can influence meat protein conformation and induce protein denaturation, aggregation, or gelation. The means whereby HHP treatment exerts effects on meat protein structure change are due to the rupture of noncovalent interactions within protein molecules, and to the subsequent re-formation of intra- and inter-molecular bonds within or among protein molecules. Depending upon the meat protein system, the pressure, the temperature, and the duration of the pressure treatment, meat can be either tenderized or toughened. Muscle texture variation induced by heat treatment is due to breakage of hydrogen bonds, whereas changes from high pressure treatment are due to the rupture of hydrophobic and electrostatic interactions. Pressure treatment has little effect on the toughness of connective tissue. Juiciness, springiness, and chewiness are increased upon HHP treatment. Prerigor HHP treatment tenderizes meat, whereas tenderizing effects of postrigor HHP treatment are only measureable if pressure and heat treatment are combined. The limitations and future applications of high pressure technology are also discussed. PMID:20492191

  17. The development of high hydrostatic pressure processes as an alternative to other pathogen reduction methods.

    PubMed

    Demazeau, G; Rivalain, N

    2011-06-01

    In biology, scientist's interest for high hydrostatic pressure (HHP) has increased over the last 20 years, for both research and industrial developments, mainly because of the low energy associated with its application in liquid phase and its capacity to inactivate pathogens. It is now considered as an interesting alternative to heat treatments for the inactivation of contaminants in many products, from foods to pharmaceutical preparations. This last statement implies different objectives according to the type of product. The therapeutic properties of pharmaceutical preparations or other biological media of physiological importance are in general associated with specific and well-defined molecules such as proteins. Their activity mainly depends on their spatial conformation, maintained by weak chemical bonds that are often pressure sensitive. In this case, the optimization of a HHP process can be more complex than for foods, for which the organoleptic molecules are less pressure sensitive, and the evaluation of their preservation is more subjective and highly dependent on the consumers acceptance. The objective of this review is therefore to underline how, even if the basic concept for the optimization of a pathogen reduction process using HHP is the same whatever the product, major differences arise from the product itself and its final use.

  18. Effect of high hydrostatic pressure on the profile of proteins extracted from Betula pendula pollens

    NASA Astrophysics Data System (ADS)

    Murat Altuner, Ergin; Çeter, Talip; Alpas, Hami

    2014-10-01

    High hydrostatic pressure (HHP) has high success potential in pollen protein extraction, but its effect on pollen protein profiles has not been studied yet. The aim of this study is to put forward whether HHP processing causes a change in the protein profiles extracted from pollens or not. In this study, proteins extracted from Betula pendula pollens were studied at 100, 200 and 300 MPa at room temperature for 5 min. In addition, the efficiency of three different extraction solvents, namely phosphate buffer saline (PBS) buffer pH 7.5, trichloroacetic acid-acetone and Tris-HCl buffer pH 8.8, was also observed, and the results were compared with the conventional pollen protein extraction procedure. As a result, it is concluded that 200 MPa for 5 min has extracted similar amounts of protein compared with the conventional extraction method which lasted for 24 h, which lasted for 24 h. On the other hand, the application time for 200 MPa for 5 min is extremely shorter when it is compared to the conventional extraction method.

  19. Single-molecule analysis of the rotation of F₁-ATPase under high hydrostatic pressure.

    PubMed

    Okuno, Daichi; Nishiyama, Masayoshi; Noji, Hiroyuki

    2013-10-01

    F1-ATPase is the water-soluble part of ATP synthase and is an ATP-driven rotary molecular motor that rotates the rotary shaft against the surrounding stator ring, hydrolyzing ATP. Although the mechanochemical coupling mechanism of F1-ATPase has been well studied, the molecular details of individual reaction steps remain unclear. In this study, we conducted a single-molecule rotation assay of F1 from thermophilic bacteria under various pressures from 0.1 to 140 MPa. Even at 140 MPa, F1 actively rotated with regular 120° steps in a counterclockwise direction, showing high conformational stability and retention of native properties. Rotational torque was also not affected. However, high hydrostatic pressure induced a distinct intervening pause at the ATP-binding angles during continuous rotation. The pause was observed under both ATP-limiting and ATP-saturating conditions, suggesting that F1 has two pressure-sensitive reactions, one of which is evidently ATP binding. The rotation assay using a mutant F1(βE190D) suggested that the other pressure-sensitive reaction occurs at the same angle at which ATP binding occurs. The activation volumes were determined from the pressure dependence of the rate constants to be +100 Å(3) and +88 Å(3) for ATP binding and the other pressure-sensitive reaction, respectively. These results are discussed in relation to recent single-molecule studies of F1 and pressure-induced protein unfolding.

  20. Development of High Hydrostatic Pressure Applied in Pathogen Inactivation for Plasma.

    PubMed

    Yang, Chunhui; Bian, Guohui; Yang, Hong; Zhang, Xinmin; Chen, Limin; Wang, Jingxing

    2016-01-01

    High hydrostatic pressure has been used to inactivate pathogens in foods for decades. There is a great potential to adapt this technology to inactivate pathogens in plasma and derivatives. To better evaluate the potential of this method, pathogen inoculated plasma samples were pressurized under different pressure application modes and temperatures. The inactivation efficacy of pathogens and activities of plasma proteins were monitored after treatment. The CFUs of E.coli was examined as the indicator of the inactivation efficiency. The factor V and VIII were chosen as the indicator of the plasma function. Preliminary experiments identified optimized treatment conditions: 200-250MPa, with 5×1 minute multi-pulsed high pressure at near 0°C (ice-water bath). Under this conditions, the inactivation efficacy of EMCV was >8.5log. The CFUs of E. coli were reduced by 7.5log, B. cereus were 8log. However, PPV and S. aureus cannot be inactivated efficiently. The activities of factor II, VII, IX, X, XI, XII, fibrinogen, IgG, IgM stayed over 95% compared to untreated. Factor V and VIII activity was maintained at 46-63% and 77-82%, respectively. PMID:27561010

  1. pH dependence of the dissociation of multimeric hemoglobin probed by high hydrostatic pressure.

    PubMed

    Bispo, Jose A C; Santos, Jose L R; Landini, Gustavo F; Goncalves, Juliana M; Bonafe, Carlos F S

    2007-02-01

    We investigated the thermodynamic features of the classic alkaline dissociation of multimeric hemoglobin (3.1 MDa) from Glossoscolex paulistus (Annelidea) using high hydrostatic pressure. Light scattering measurements up to microscopic thermodynamic equilibrium indicated a high pH dependency of dissociation and association. Electron microscopy and gel filtration corroborated these findings. The volume change of dissociation decreased in absolute values from -48.0 mL/mol of subunit at pH 6.0 to -19.2 mL/mol at pH 9.0, suggesting a lack of protein interactions under alkaline conditions. Concomitantly, an increase in pH reduced the Gibbs free energy of dissociation from 37.7 to 27.5 kJ/mol of subunit. The stoichiometry of proton release calculated from the pressure-induced dissociation curves was +0.602 mol of H(+)/mol of subunit. These results provide a direct quantification of proton participation in stabilizing the aggregated state of the hemoglobin, and contribute to our understanding of protein-protein interactions and of the surrounding conditions that modulate the process of aggregation. PMID:17046147

  2. pH dependence of the dissociation of multimeric hemoglobin probed by high hydrostatic pressure.

    PubMed

    Bispo, Jose A C; Santos, Jose L R; Landini, Gustavo F; Goncalves, Juliana M; Bonafe, Carlos F S

    2007-02-01

    We investigated the thermodynamic features of the classic alkaline dissociation of multimeric hemoglobin (3.1 MDa) from Glossoscolex paulistus (Annelidea) using high hydrostatic pressure. Light scattering measurements up to microscopic thermodynamic equilibrium indicated a high pH dependency of dissociation and association. Electron microscopy and gel filtration corroborated these findings. The volume change of dissociation decreased in absolute values from -48.0 mL/mol of subunit at pH 6.0 to -19.2 mL/mol at pH 9.0, suggesting a lack of protein interactions under alkaline conditions. Concomitantly, an increase in pH reduced the Gibbs free energy of dissociation from 37.7 to 27.5 kJ/mol of subunit. The stoichiometry of proton release calculated from the pressure-induced dissociation curves was +0.602 mol of H(+)/mol of subunit. These results provide a direct quantification of proton participation in stabilizing the aggregated state of the hemoglobin, and contribute to our understanding of protein-protein interactions and of the surrounding conditions that modulate the process of aggregation.

  3. Development of High Hydrostatic Pressure Applied in Pathogen Inactivation for Plasma

    PubMed Central

    Yang, Hong; Zhang, Xinmin; Chen, Limin; Wang, Jingxing

    2016-01-01

    High hydrostatic pressure has been used to inactivate pathogens in foods for decades. There is a great potential to adapt this technology to inactivate pathogens in plasma and derivatives. To better evaluate the potential of this method, pathogen inoculated plasma samples were pressurized under different pressure application modes and temperatures. The inactivation efficacy of pathogens and activities of plasma proteins were monitored after treatment. The CFUs of E.coli was examined as the indicator of the inactivation efficiency. The factor V and VIII were chosen as the indicator of the plasma function. Preliminary experiments identified optimized treatment conditions: 200-250MPa, with 5×1 minute multi-pulsed high pressure at near 0°C (ice-water bath). Under this conditions, the inactivation efficacy of EMCV was >8.5log. The CFUs of E. coli were reduced by 7.5log, B. cereus were 8log. However, PPV and S. aureus cannot be inactivated efficiently. The activities of factor II, VII, IX, X, XI, XII, fibrinogen, IgG, IgM stayed over 95% compared to untreated. Factor V and VIII activity was maintained at 46–63% and 77–82%, respectively. PMID:27561010

  4. Effects of High Hydrostatic Pressure on the Physical, Microbial, and Chemical Attributes of Oysters (Crassostrea virginica).

    PubMed

    Lingham, Talaysha; Ye, Mu; Chen, Haiqiang; Chintapenta, Lathadevi Karuna; Handy, Eunice; Zhao, Jing; Wu, Changqing; Ozbay, Gulnihal

    2016-05-01

    The change in the quality attributes (physical, microbial, and chemical) of oysters (Crassostrea virginica) after high hydrostatic pressure (HHP) treatment at 300 MPa at room temperature (RT, 25 °C) 300, 450, and 500 MPa at 0 °C for 2 min and control oysters without treatment were evaluated over 3 wk. The texture and tissue yield percentages of oysters HHP treated at 300 MPa, RT increased significantly (P < 0.05) compared to control. Aerobic and psychrotrophic bacteria in control oysters reached the spoilage point of 7 log CFU/g after 15 d. Coliform counts (log MPN/g) were low during storage with total and fecal coliforms less than 3.5 and 1.0. High pressure treated oysters at 500 MPa at 0 °C were significantly higher (P < 0.05) than oysters HHP treated at 300 MPa at 0 °C in lipid oxidation values. The highest pressure (500 MPa) treatment in this study, significantly (P < 0.05) decreased unsaturated fatty acid percentage compared to control. The glycogen content of control oysters at 3 wk was significantly higher (P < 0.05) when compared to HHP treated oysters [300 MPa, (RT); 450 MPa (0 °C); and 500 MPa (0 °C)]. HHP treatments of oysters were not significantly different in pH, percent salt extractable protein (SEP), and total lipid values compared to control. Based on our results, HHP prolongs the physical, microbial, and chemical quality of oysters. PMID:27074447

  5. High hydrostatic pressure, a novel approach in orthopedic surgical oncology to disinfect bone, tendons and cartilage.

    PubMed

    Diehl, Peter; Schauwecker, Johannes; Mittelmeier, Wolfram; Schmitt, Manfred

    2008-01-01

    High hydrostatic pressure (HHP) is widely used in the food processing industry, for example to inactivate vegetative microorganisms in meat products, milk and juice, thereby avoiding the addition of any chemical preservatives. Besides this, HHP is also an attractive novel approach to effectively kill vegetative microorganisms or tumor cells in bone, cartilage and tendon ex vivo while leaving the tissues' mechanical properties unimpaired, thus allowing reimplantation of the resected tissue explants. In contrast, sterilization by gamma irradiation and thermal or chemical inactivation of potentially infected autografts, allografts and other biomaterials considered for tissue regeneration and reconstruction is often associated with deterioration of the mechanical, physical and biological properties of the implant. HHP technology is now in preclinical testing with the aim of disinfecting/devitalizing grafts in order to inactivate both vegetative microorganisms and tumor cells in resected bone tissue segments, eventually allowing reimplantation of resected bone segments initially afflicted with osteomyelitis or tumors. The technical advantages, state-of-the-art, and potential application of HHP in orthopedic surgery are reviewed.

  6. Modification of deoiled cumin dietary fiber with laccase and cellulase under high hydrostatic pressure.

    PubMed

    Ma, Mengmei; Mu, Taihua

    2016-01-20

    In this study, we evaluated the effects of high hydrostatic pressure (HHP) and enzyme (laccase and cellulase) treatment on the structural, physicochemical, and functional properties and antioxidant activity of deoiled cumin dietary fiber (DF). HHP-enzyme treatment increased the contents of soluble dietary fiber (SDF) (30.37 g/100g), monosaccharides (except for glucose), uronic acids, and total polyphenol. HHP-enzyme treatment altered the honey-comb structure of DF and generated new polysaccharides. DF modified by HHP-enzyme treatment exhibited improved water retention capacity (10.02 g/g), water swelling capacity (11.19 mL/g), fat and glucose absorption capacities (10.44 g/g, 22.18-63.54 mmol/g), α-amylase activity inhibition ration (37.95%), and bile acid retardation index (48.85-52.58%). The antioxidant activity of DF was mainly correlated to total polyphenol content (R=0.8742). Therefore, DF modified by HHP-enzyme treatment from deoiled cumin could be used as a fiber-rich ingredient in functional foods.

  7. Super-fine rice-flour production by enzymatic treatment with high hydrostatic pressure processing

    NASA Astrophysics Data System (ADS)

    Kido, Miyuki; Kobayashi, Kaneto; Chino, Shuji; Nishiwaki, Toshikazu; Homma, Noriyuki; Hayashi, Mayumi; Yamamoto, Kazutaka; Shigematsu, Toru

    2013-06-01

    In response to the recent expansion of rice-flour use, we established a new rice-flour manufacturing process through the application of high hydrostatic pressure (HP) to the enzyme-treated milling method. HP improved both the activity of pectinase, which is used in the enzyme-treated milling method and the water absorption capacity of rice grains. These results indicate improved damage to the tissue structures of rice grains. In contrast, HP suppressed the increase in glucose, which may have led to less starch damage. The manufacturing process was optimized to HP treatment at 200 MPa (40°C) for 1 h and subsequent wet-pulverization at 11,000 rpm. Using this process, rice flour with an exclusively fine mean particle size less than 20 μm and starch damage less than 5% was obtained from rice grains soaked in an enzyme solution and distilled water. This super-fine rice flour is suitable for bread, pasta, noodles and Western-style sweets.

  8. Changes in microbial diversity of brined green asparagus upon treatment with high hydrostatic pressure.

    PubMed

    Toledo Del Árbol, Julia; Pérez Pulido, Rubén; La Storia, Antonietta; Grande Burgos, Maria José; Lucas, Rosario; Ercolini, Danilo; Gálvez, Antonio

    2016-01-01

    The application of high hydrostatic pressure (HHP, 600MPa, 8 min) on brined green asparagus and the changes in bacterial diversity after treatments and during storage at 4 °C (30 days) or 22 °C (10 days) were studied. HHP treatments reduced viable cell counts by 3.6 log cycles. The residual surviving population did not increase during storage at 4 °C. However, bacterial counts significantly increased at 22 °C by day 3, leading to rapid spoilage. The microbiota of green asparagus was composed mainly by Proteobacteria (mainly Pantoea and Pseudomonas), followed by Firmicutes (mainly Lactococcus and Enterococcus) and to a less extent Bacteroidetes and Actinobacteria. During chill storage of untreated asparagus, the relative abundance of Proteobacteria as well as Enterococcus and Lactococcus decreased while Lactobacillus increased. During storage of untreated asparagus at 22 °C, the abundance of Bacteroidetes decreased while Proteobacteria increased during late storage. The HHP treatment determined a reduction of the Proteobacteria both early after treatment and during chill storage. In the HHP treated samples stored at 22 °C, the relative abundance of Pseudomonas rapidly decreased at day 1, with an increase of Bacteroidetes. This was followed by a marked increase in Enterobacteriaceae (Escherichia) simultaneously with increase in viable counts and spoilage. Results from the study indicate that the effect of HHP treatments on the viability ofmicrobial populations in foods also has an impact on the dynamics of microbial populations during the storage of the treated foods. PMID:26372734

  9. Nonthermal Pasteurization of Fermented Green Table Olives by means of High Hydrostatic Pressure Processing

    PubMed Central

    Argyri, Anthoula A.; Panagou, Efstathios Z.; Nychas, George-John E.; Tassou, Chrysoula C.

    2014-01-01

    Green fermented olives cv. Halkidiki were subjected to different treatments of high hydrostatic pressure (HHP) processing (400, 450, and 500 MPa for 15 or 30 min). Total viable counts, lactic acid bacteria and yeasts/moulds, and the physicochemical characteristics of the product (pH, colour, and firmness) were monitored right after the treatment and after 7 days of storage at 20°C to allow for recovery of injured cells. The treatments at 400 MPa for 15 and 30 min, 450 MPa for 15 and 30 min, and 500 MPa for 15 min were found insufficient as a recovery of the microbiota was observed. The treatment at 500 MPa for 30 min was effective in reducing the olive microbiota below the detection limit of the enumeration method after the treatment and after 1 week of storage and was chosen as being more appropriate for storing olives for an extended time period (5 months). After 5 months of storage at 20°C, no microbiota was detected in treated samples, while significant changes for both HHP treated and untreated olives were observed for colour parameters only (minor degradation). In conclusion, HHP treatment may introduce a reliable nonthermal pasteurization method to extend the microbiological shelf-life of fermented table olives. PMID:25243146

  10. The effect of high hydrostatic pressure on black truffle (tuber melanosporum) flavour compounds

    NASA Astrophysics Data System (ADS)

    Verret, C.; Ballestra, P.; Cruz, C.; Pardon, P.; Largeteau, A.; Moueffak, A. H. E.

    2008-07-01

    The effects of high hydrostatic pressure (HHP), at 4°C or -18°C, on black truffle flavour compounds, alteration enzymes (lipoxigenase (LOX), peroxidase (POD) and polyphenoloxidase (PPO)) and microbiological qualities were evaluated. The choosen analytes for this study are six alcohols, three aldehydes, one ketone and on sulfur component. The highest flavour stability was observed when samples were pressurized at 300 MPa / 4°C / 10 min. All the treatments induced a drastic decrease of LOX activity and a slight decrease of POD activity. On the other hand, the PPO was not inactivated by pressurization at sub-zero (200 MPa / -18°C / 10 min) and was strongly increased after the 300 MPa / 4°C / 10 min treatment. Pressurization at 300 and 550 MPa lead to an almost complete Pseudomonas fluorescens reduction (6 and 6.5 log destruction, respectively) whereas pressurization at -18°C (200MPa) allowed to obtain only 3 log reduction.

  11. Molecular Mechanisms for High Hydrostatic Pressure-Induced Wing Mutagenesis in Drosophila melanogaster.

    PubMed

    Wang, Hua; Wang, Kai; Xiao, Guanjun; Ma, Junfeng; Wang, Bingying; Shen, Sile; Fu, Xueqi; Zou, Guangtian; Zou, Bo

    2015-01-01

    Although High hydrostatic pressure (HHP) as an important physical and chemical tool has been increasingly applied to research of organism, the response mechanisms of organism to HHP have not been elucidated clearly thus far. To identify mutagenic mechanisms of HHP on organisms, here, we treated Drosophila melanogaster (D. melanogaster) eggs with HHP. Approximately 75% of the surviving flies showed significant morphological abnormalities from the egg to the adult stages compared with control flies (p < 0.05). Some eggs displayed abnormal chorionic appendages, some larvae were large and red, and some adult flies showed wing abnormalities. Abnormal wing phenotypes of D. melanogaster induced by HHP were used to investigate the mutagenic mechanisms of HHP on organism. Thus 285 differentially expressed genes associated with wing mutations were identified using Affymetrix Drosophila Genome Array 2.0 and verified with RT-PCR. We also compared wing development-related central genes in the mutant flies with control flies using DNA sequencing to show two point mutations in the vestigial (vg) gene. This study revealed the mutagenic mechanisms of HHP-induced mutagenesis in D. melanogaster and provided a new model for the study of evolution on organisms.

  12. Microbial diversity and adaptation to high hydrostatic pressure in deep-sea hydrothermal vents prokaryotes.

    PubMed

    Jebbar, Mohamed; Franzetti, Bruno; Girard, Eric; Oger, Philippe

    2015-07-01

    Prokaryotes inhabiting in the deep sea vent ecosystem will thus experience harsh conditions of temperature, pH, salinity or high hydrostatic pressure (HHP) stress. Among the fifty-two piezophilic and piezotolerant prokaryotes isolated so far from different deep-sea environments, only fifteen (four Bacteria and eleven Archaea) that are true hyper/thermophiles and piezophiles have been isolated from deep-sea hydrothermal vents; these belong mainly to the Thermococcales order. Different strategies are used by microorganisms to thrive in deep-sea hydrothermal vents in which "extreme" physico-chemical conditions prevail and where non-adapted organisms cannot live, or even survive. HHP is known to impact the structure of several cellular components and functions, such as membrane fluidity, protein activity and structure. Physically the impact of pressure resembles a lowering of temperature, since it reinforces the structure of certain molecules, such as membrane lipids, and an increase in temperature, since it will also destabilize other structures, such as proteins. However, universal molecular signatures of HHP adaptation are not yet known and are still to be deciphered. PMID:26101015

  13. Changes in microbial diversity of brined green asparagus upon treatment with high hydrostatic pressure.

    PubMed

    Toledo Del Árbol, Julia; Pérez Pulido, Rubén; La Storia, Antonietta; Grande Burgos, Maria José; Lucas, Rosario; Ercolini, Danilo; Gálvez, Antonio

    2016-01-01

    The application of high hydrostatic pressure (HHP, 600MPa, 8 min) on brined green asparagus and the changes in bacterial diversity after treatments and during storage at 4 °C (30 days) or 22 °C (10 days) were studied. HHP treatments reduced viable cell counts by 3.6 log cycles. The residual surviving population did not increase during storage at 4 °C. However, bacterial counts significantly increased at 22 °C by day 3, leading to rapid spoilage. The microbiota of green asparagus was composed mainly by Proteobacteria (mainly Pantoea and Pseudomonas), followed by Firmicutes (mainly Lactococcus and Enterococcus) and to a less extent Bacteroidetes and Actinobacteria. During chill storage of untreated asparagus, the relative abundance of Proteobacteria as well as Enterococcus and Lactococcus decreased while Lactobacillus increased. During storage of untreated asparagus at 22 °C, the abundance of Bacteroidetes decreased while Proteobacteria increased during late storage. The HHP treatment determined a reduction of the Proteobacteria both early after treatment and during chill storage. In the HHP treated samples stored at 22 °C, the relative abundance of Pseudomonas rapidly decreased at day 1, with an increase of Bacteroidetes. This was followed by a marked increase in Enterobacteriaceae (Escherichia) simultaneously with increase in viable counts and spoilage. Results from the study indicate that the effect of HHP treatments on the viability ofmicrobial populations in foods also has an impact on the dynamics of microbial populations during the storage of the treated foods.

  14. Microbial diversity and adaptation to high hydrostatic pressure in deep-sea hydrothermal vents prokaryotes.

    PubMed

    Jebbar, Mohamed; Franzetti, Bruno; Girard, Eric; Oger, Philippe

    2015-07-01

    Prokaryotes inhabiting in the deep sea vent ecosystem will thus experience harsh conditions of temperature, pH, salinity or high hydrostatic pressure (HHP) stress. Among the fifty-two piezophilic and piezotolerant prokaryotes isolated so far from different deep-sea environments, only fifteen (four Bacteria and eleven Archaea) that are true hyper/thermophiles and piezophiles have been isolated from deep-sea hydrothermal vents; these belong mainly to the Thermococcales order. Different strategies are used by microorganisms to thrive in deep-sea hydrothermal vents in which "extreme" physico-chemical conditions prevail and where non-adapted organisms cannot live, or even survive. HHP is known to impact the structure of several cellular components and functions, such as membrane fluidity, protein activity and structure. Physically the impact of pressure resembles a lowering of temperature, since it reinforces the structure of certain molecules, such as membrane lipids, and an increase in temperature, since it will also destabilize other structures, such as proteins. However, universal molecular signatures of HHP adaptation are not yet known and are still to be deciphered.

  15. Recrystallization characteristics of high hydrostatic pressure gelatinized normal and waxy corn starch.

    PubMed

    Li, Wenhao; Tian, Xiaoling; Wang, Peng; Saleh, Ahmed S M; Luo, Qingui; Zheng, Jianmei; Ouyang, Shaohui; Zhang, Guoquan

    2016-02-01

    High hydrostatic pressure (HHP) can lead to starch gelatinization at room temperature, while the retrogradation mechanism of HHP gelatinized starch is not well known. HHP gelatinized normal and waxy corn starches were stored at room temperature for 192 h in order to investigate the retrogradation characteristics. The scanning electron microscopy (SEM), polarised light microscopy and differential scanning calorimetric (DSC) analysis showed that the pressurization of normal and waxy corn starch suspensions with concentration of 30% (w/v) at 600 MPa for 15 min resulted in a complete gelatinization. In addition, the pressure-gelatinized normal and waxy corn starch gels were stored and subjected to X-ray diffraction (XRD) analysis, resistant starch content determination, swelling power and pasting behavior. The retrograded normal maize and waxy maize starch showed a substantial loss of A-type crystallinity. Both pressure-gelatinized normal and waxy corn starches showed an increase in resistant starch content and relative crystallinity degree with the increase of storage time. In addition, restricted starch swelling power and lower pasting viscosities were observed for these two retrograded starches. The amylose molecule within starch granules has been regarded as the main factor to affect the structural and physicochemical properties during the retrogradation process of HHP-gelatinized starch granules.

  16. The Rapid Inactivation of Porcine Skin by Applying High Hydrostatic Pressure without Damaging the Extracellular Matrix

    PubMed Central

    Morimoto, Naoki; Shima, Kouji; Ogawa, Mami; Jinno, Chizuru; Kakudo, Natsuko; Kusumoto, Kenji; Fujisato, Toshia; Suzuki, Shigehiko; Yamaoka, Tetsuji

    2015-01-01

    We previously reported that high hydrostatic pressure (HHP) of 200 MPa for 10 minutes could induce cell killing. In this study, we explored whether HHP at 200 MPa or HHP at lower pressure, in combination with hyposmotic distilled water (DW), could inactivate the skin, as well as cultured cells. We investigated the inactivation of porcine skin samples 4 mm in diameter. They were immersed in either a normal saline solution (NSS) or DW, and then were pressurized at 100 and 200 MPa for 5, 10, 30, or 60 min. Next, we explored the inactivation of specimens punched out from the pressurized skin 10 × 2 cm in size. The viability was evaluated using a WST-8 assay and an outgrowth culture. The histology of specimens was analyzed histologically. The mitochondrial activity was inactivated after the pressurization at 200 MPa in both experiments, and no outgrowth was observed after the pressurization at 200 MPa. The arrangement and proportion of the dermal collagen fibers or the elastin fibers were not adversely affected after the pressurization at 200 MPa for up to 60 minutes. This study showed that a HHP at 200 MPa for 10 min could inactivate the skin without damaging the dermal matrix. PMID:25879028

  17. Influence of High Hydrostatic Pressure on Epitope Mapping of Tobacco Mosaic Virus Coat Protein

    PubMed Central

    Bonafe, Carlos Francisco Sampaio; Arns, Clarice Weis

    2014-01-01

    Abstract In this study, we investigated the effect of high hydrostatic pressure (HHP) on tobacco mosaic virus (TMV), a model virus in immunology and one of the most studied viruses to date. Exposure to HHP significantly altered the recognition epitopes when compared to sera from mice immunized with native virus. These alterations were studied further by combining HHP with urea or low temperature and then inoculating the altered virions into Balb-C mice. The antibody titers and cross-reactivity of the resulting sera were determined by ELISA. The antigenicity of the viral particles was maintained, as assessed by using polyclonal antibodies against native virus. The antigenicity of canonical epitopes was maintained, although binding intensities varied among the treatments. The patterns of recognition determined by epitope mapping were cross checked with the prediction algorithms for the TMVcp amino acid sequence to infer which alterations had occurred. These findings suggest that different cleavage sites were exposed after the treatments and this was confirmed by epitope mapping using sera from mice immunized with virus previously exposed to HHP. PMID:24605789

  18. Effects of High Hydrostatic Pressure on Expression Profiles of In Vitro Produced Vitrified Bovine Blastocysts

    PubMed Central

    Jiang, Zongliang; Harrington, Patrick; Zhang, Ming; Marjani, Sadie L.; Park, Joonghoon; Kuo, Lynn; Pribenszky, Csaba; Tian, Xiuchun (Cindy)

    2016-01-01

    High hydrostatic pressure (HHP) has been used to pre-condition embryos before essential, yet potentially detrimental procedures such as cryopreservation. However, the mechanisms for HHP are poorly understood. We treated bovine blastocysts with three different HHP (40, 60 and 80 MPa) in combination with three recovery periods (0, 1 h, 2 h post HHP). Re-expansion rates were significantly higher at 40 and 60 but lower at 80 MPa after vitrification-warming in the treated groups than controls. Microarray analysis revealed 399 differentially expressed transcripts, representing 254 unique genes, among different groups. Gene ontology analysis indicated that HHP at 40 and 60 MPa promoted embryo competence through down-regulation of genes in cell death and apoptosis, and up-regulation of genes in RNA processing, cellular growth and proliferation. In contrast, 80 MPa up-regulated genes in apoptosis, and down-regulated protein folding and cell cycle-related genes. Moreover, gene expression was also influenced by the length of the recovery time after HHP. The significantly over-represented categories were apoptosis and cell death in the 1 h group, and protein folding, response to unfolded protein and cell cycle in the 2 h group compared to 0 h. Taken together, HHP promotes competence of vitrified bovine blastocysts through modest transcriptional changes. PMID:26883277

  19. Nonthermal pasteurization of fermented green table olives by means of high hydrostatic pressure processing.

    PubMed

    Argyri, Anthoula A; Panagou, Efstathios Z; Nychas, George-John E; Tassou, Chrysoula C

    2014-01-01

    Green fermented olives cv. Halkidiki were subjected to different treatments of high hydrostatic pressure (HHP) processing (400, 450, and 500 MPa for 15 or 30 min). Total viable counts, lactic acid bacteria and yeasts/moulds, and the physicochemical characteristics of the product (pH, colour, and firmness) were monitored right after the treatment and after 7 days of storage at 20(°)C to allow for recovery of injured cells. The treatments at 400 MPa for 15 and 30 min, 450 MPa for 15 and 30 min, and 500 MPa for 15 min were found insufficient as a recovery of the microbiota was observed. The treatment at 500 MPa for 30 min was effective in reducing the olive microbiota below the detection limit of the enumeration method after the treatment and after 1 week of storage and was chosen as being more appropriate for storing olives for an extended time period (5 months). After 5 months of storage at 20(°)C, no microbiota was detected in treated samples, while significant changes for both HHP treated and untreated olives were observed for colour parameters only (minor degradation). In conclusion, HHP treatment may introduce a reliable nonthermal pasteurization method to extend the microbiological shelf-life of fermented table olives.

  20. Modification of deoiled cumin dietary fiber with laccase and cellulase under high hydrostatic pressure.

    PubMed

    Ma, Mengmei; Mu, Taihua

    2016-01-20

    In this study, we evaluated the effects of high hydrostatic pressure (HHP) and enzyme (laccase and cellulase) treatment on the structural, physicochemical, and functional properties and antioxidant activity of deoiled cumin dietary fiber (DF). HHP-enzyme treatment increased the contents of soluble dietary fiber (SDF) (30.37 g/100g), monosaccharides (except for glucose), uronic acids, and total polyphenol. HHP-enzyme treatment altered the honey-comb structure of DF and generated new polysaccharides. DF modified by HHP-enzyme treatment exhibited improved water retention capacity (10.02 g/g), water swelling capacity (11.19 mL/g), fat and glucose absorption capacities (10.44 g/g, 22.18-63.54 mmol/g), α-amylase activity inhibition ration (37.95%), and bile acid retardation index (48.85-52.58%). The antioxidant activity of DF was mainly correlated to total polyphenol content (R=0.8742). Therefore, DF modified by HHP-enzyme treatment from deoiled cumin could be used as a fiber-rich ingredient in functional foods. PMID:26572332

  1. Effects of high hydrostatic pressure on secondary structure and emulsifying behavior of sweet potato protein

    NASA Astrophysics Data System (ADS)

    Mehmood Khan, Nasir; Mu, Tai-Hua; Sun, Hong-Nan; Zhang, Miao; Chen, Jing-Wang

    2015-04-01

    In this study, secondary structures of sweet potato protein (SPP) after high hydrostatic pressure (HHP) treatment (200-600 MPa) were evaluated and emulsifying properties of emulsions with HHP-treated SPP solutions in different pH values (3, 6, and 9) were investigated. Circular dichroism analysis confirmed the modification of the SPP secondary structure. Surface hydrophobicity increased at pH 3 and decreased at 6 and 9. Emulsifying activity index at pH 6 increased with an increase in pressure, whereas emulsifying stability index increased at pH 6 and 9. Oil droplet sizes decreased, while volume frequency distribution of the smaller droplets increased at pH 3 and 6 with the HHP treatment. Emulsion viscosity increased at pH 6 and 9 and pseudo-plastic flow behaviors were not altered for all emulsions produced with HHP-treated SPP. These results suggested that HHP could modify the SPP structure for better emulsifying properties, which could increase the use of SPP emulsion in the food industry.

  2. Enzymatic production of γ-aminobutyric acid in soybeans using high hydrostatic pressure and precursor feeding.

    PubMed

    Ueno, Shigeaki; Katayama, Takumi; Watanabe, Takae; Nakajima, Kanako; Hayashi, Mayumi; Shigematsu, Toru; Fujii, Tomoyuki

    2013-01-01

    The effects were investigated of the glutamic acid (Glu) substrate concentration on the generation and kinetics of γ-aminobutyric acid (GABA) in soybeans treated under high hydrostatic pressure (HHP; 200 MPa for 10 min at 25 °C). The conversion of Glu to GABA decreased with increasing initial Glu concentration in the soybeans. The crude glutamate decarboxylase (GAD) obtained from the HHP-treated soybeans showed substrate inhibition. The GABA production rate in the HHP-treated soybeans fitted the following substrate inhibition kinetic equation: v0=(VmaxS0)/(Km+S0+(S0)2/Ki). The Km value for the HHP-treated soybeans was significantly higher than that of the untreated soybeans. The Km values in this study show the affinity between Glu and GAD, and indicate that the HHP-treated soybeans had lower affinity between Glu and GAD than the untreated soybeans. GAD extracted from the HHP-treated soybeans showed a similar value to that in the HHP-treated soybeans. The intact biochemical system was so damaged in the HHP-treated soybeans that it showed substrate inhibition kinetics similar to that of the extracted GAD. The combination of HHP and precursor feeding proved to be a novel tool that can be used to increase the concentration of a target component.

  3. Optical Probes of MEH-PPV films at High Hydrostatic Pressure

    NASA Astrophysics Data System (ADS)

    Olejnik, E.; Singh, S.; Pandit, B.; Morandi, V.; Holt, J.; Sheng, C.-X.; Vardeny, Z. V.

    2010-03-01

    We investigate the primary and long-lived photoexcitations in π-conjugated polymer films with increased interchain coupling by studying the photophysics of substituted PPV derivative thin films, namely 2-methoxy-5-(2'-ethylhexyloxy) [MEH-PPV] at high hydrostatic pressure, P up to 120 kbar in a diamond anvil cell, using both ultrafast transient mid- and near-IR spectroscopies with 0.1 ps resolution, and cw optical techniques (photo induced absorption (PA) and photoluminescence (PL) in a broad spectral range from 0.2 to 2.2 eV). With increasing P the cw PL band weakens, broadens, and red-shifts by ˜ 2 meV/kbar; whereas the triplet PA red shifts to a lesser extent. The ultrafast PA band of the singlet exciton at ˜ 0.95 eV at ambient splits, blue shifts and acquires a much longer decay component. A second, weak PA band at ˜ 0.33 eV at ambient, dramatically blue-shifts (˜ 3 meV/kbar) and substantially intensifies with P. These pressure-induced effects are discussed considering the interplay of two phases in the MEH-PPV film: a disordered phase with large PL efficiency, and PA that does not change much with P; and a less emissive ordered phase that increases with P, where the interchain coupling substantially increases with P.

  4. Metastable phase transformation and hcp-ω transformation pathways in Ti and Zr under high hydrostatic pressures

    NASA Astrophysics Data System (ADS)

    Gao, Lei; Ding, Xiangdong; Lookman, Turab; Sun, Jun; Salje, E. K. H.

    2016-07-01

    The energy landscape of Zr at high hydrostatic pressure suggests that its transformation behavior is strongly pressure dependent. This is in contrast to the known transition mechanism in Ti, which is essentially independent of hydrostatic pressure. Generalized solid-state nudged elastic band calculations at constant pressure shows that α-Zr transforms like Ti only at the lowest pressure inside the stability field of ω-phase. Different pathways apply at higher pressures where the energy landscape contains several high barriers so that metastable states are expected, including the appearance of a transient bcc phase at ca. 23 GPa. The global driving force for the hcp-ω transition increases strongly with increasing pressure and reaches 23.7 meV/atom at 23 GPa. Much of this energy relates to the excess volume of the hcp phase compared with its ω phase.

  5. Infectious Causes of Cholesteatoma and Treatment of Infected Ossicles prior to Reimplantation by Hydrostatic High-Pressure Inactivation

    PubMed Central

    Hinz, Rebecca

    2015-01-01

    Chronic inflammation, which is caused by recurrent infections, is one of the factors contributing to the pathogenesis of cholesteatoma. If reimplantation of autologous ossicles after a surgical intervention is intended, inactivation of planktonic bacteria and biofilms is desirable. High hydrostatic pressure treatment is a procedure, which has been used to inactivate cholesteatoma cells on ossicles. Here we discuss the potential inactivating effect of high hydrostatic pressure on microbial pathogens including biofilms. Recent experimental data suggest an incomplete inactivation at a pressure level, which is tolerable for the bone substance of ossicles and results at least in a considerable reduction of pathogen load. Further studies are necessary to access how far this quantitative reduction of pathogens is sufficient to prevent ongoing chronic infections, for example, due to forming of biofilms. PMID:25705686

  6. Effect of high hydrostatic pressure on Salmonella inoculated into creamy peanut butter with modified composition.

    PubMed

    D'Souza, Tanya; Karwe, Mukund; Schaffner, Donald W

    2014-10-01

    Peanut butter has been associated with several large foodborne salmonellosis outbreaks. This research investigates the potential of high hydrostatic pressure processing (HPP) for inactivation of Salmonella in peanut butter of modified composition, both by modifying its water activity as well by the addition of various amounts of nisin. A cocktail of six Salmonella strains associated with peanut butter and nut-related outbreaks was used for all experiments. Different volumes of sterile distilled water were added to peanut butter to increase water activity, and different volumes of peanut oil were added to decrease water activity. Inactivation in 12% fat, light roast, partially defatted peanut flour, and peanut oil was also quantified. Nisaplin was incorporated into peanut butter at four concentrations corresponding to 2.5, 5.0, 12.5, and 25.0 ppm of pure nisin. All samples were subjected to 600 MPa for 18 min. A steady and statistically significant increase in log reduction was seen as added moisture was increased from 50 to 90%. The color of all peanut butter samples containing added moisture contents darkened after high pressure processing. The addition of peanut oil to further lower the water activity of peanut butter further reduced the effectiveness of HPP. Just over a 1-log reduction was obtained in peanut flour, while inactivation to below detection limits (2 log CFU/g) was observed in peanut oil. Nisin alone without HPP had no effect. Recovery of Salmonella after a combined nisin and HPP treatment did show increased log reduction with longer storage times. The maximum log reduction of Salmonella achieved was 1.7 log CFU/g, which was comparable to that achieved by noncycling pressure treatment alone. High pressure processing alone or with other formulation modification, including added nisin, is not a suitable technology to manage the microbiological safety of Salmonella-contaminated peanut butter. PMID:25285482

  7. High hydrostatic pressure treatment for the inactivation of Staphylococcus aureus in human blood plasma.

    PubMed

    Rivalain, Nolwennig; Roquain, Jean; Boiron, Jean-Michel; Maurel, Jean-Paul; Largeteau, Alain; Ivanovic, Zoran; Demazeau, Gérard

    2012-02-15

    For the past 30years, pressure inactivation of microorganisms has been developed in biosciences, in particular for foods and more recently for biological products, including pharmaceutical ones. In many past studies, the effect of high hydrostatic pressure (HHP) processes on pathogens focused mainly on the effect of an increase of the pressure value. To assure the safety of pharmaceutical products containing fragile therapeutic components, development of new decontamination processes at the lowest pressure value is needed to maintain their therapeutic properties. The aim of this study was therefore to evaluate the impact of the process parameters characterizing high-pressure treatments [such as the pressurization rate (PR) and the application mode (AM)] on the inactivation of pathogens, in particular to determine how these parameters values could help decrease the pressure value necessary to reach the same inactivation level. The effect of these physical parameters was evaluated on the inactivation of Staphylococcus aureus ATCC 6538 which is an opportunistic pathogen of important relevance in the medical, pharmaceutical and food domains. Human blood plasma was chosen as the suspension medium because of its physiological importance in the transfusion field. It was shown that the optimization of all the selected parameters could lead to a high inactivation level (≈5log(10) decrease of the initial bacterial load) at a pressure level as low as 200MPa, underlining some synergistic effects among these parameters. Complete inactivation of the initial bacterial population was achieved for the following conditions: PR=50MPas(-1), AM=5×2min, T≈-5°C and P=300MPa.

  8. Environmental factors influencing the inactivation of Cronobacter sakazakii by high hydrostatic pressure.

    PubMed

    Arroyo, C; Cebrián, G; Mackey, B M; Condón, S; Pagán, R

    2011-05-27

    The effect of High Hydrostatic Pressure (HHP) on the survival of Cronobacter sakazakii was investigated. Deviations from linearity were found on the survival curves and the Mafart equation accurately described the kinetics of inactivation. Comparisons between strains and treatments were made based on the time needed for a 5-log(10) reduction in viable count. The ability of C. sakazakii to tolerate high pressure was strain-dependent with a 26-fold difference in resistance among four strains tested. Pressure resistance was greatest in the stationary growth phase and at the highest growth temperatures tested (30 and 37 °C). Cells treated in neutral pH buffer were 5-fold more resistant than those treated at pH 4.0, and 8-fold more sensitive than those treated in buffer with sucrose added (a(w)=0.98). Pressure resistance data obtained in buffer at the appropriate pH adequately estimated the resistance of C. sakazakii in chicken and vegetables soups. In contrast, a significant protective effect against high pressure was conferred by rehydrated powdered milk. As expected, treatment efficacy improved as pressure increased. z values of 112, 136 and 156 MPa were obtained for pH 4.0, pH 7.0 and a(w)=0.98 buffers, respectively. Cells with sublethal injury to their outer and cytoplasmic membranes were detected after HHP under all the conditions tested. The lower resistance of C. sakazakii cells when treated in media of pH 4.0 seemed to be due to a decreased barostability of the bacterial envelopes. Conversely, the higher resistance displayed in media of reduced water activity may relate to a higher stability of bacterial envelopes.

  9. Effect of high hydrostatic pressure on Salmonella inoculated into creamy peanut butter with modified composition.

    PubMed

    D'Souza, Tanya; Karwe, Mukund; Schaffner, Donald W

    2014-10-01

    Peanut butter has been associated with several large foodborne salmonellosis outbreaks. This research investigates the potential of high hydrostatic pressure processing (HPP) for inactivation of Salmonella in peanut butter of modified composition, both by modifying its water activity as well by the addition of various amounts of nisin. A cocktail of six Salmonella strains associated with peanut butter and nut-related outbreaks was used for all experiments. Different volumes of sterile distilled water were added to peanut butter to increase water activity, and different volumes of peanut oil were added to decrease water activity. Inactivation in 12% fat, light roast, partially defatted peanut flour, and peanut oil was also quantified. Nisaplin was incorporated into peanut butter at four concentrations corresponding to 2.5, 5.0, 12.5, and 25.0 ppm of pure nisin. All samples were subjected to 600 MPa for 18 min. A steady and statistically significant increase in log reduction was seen as added moisture was increased from 50 to 90%. The color of all peanut butter samples containing added moisture contents darkened after high pressure processing. The addition of peanut oil to further lower the water activity of peanut butter further reduced the effectiveness of HPP. Just over a 1-log reduction was obtained in peanut flour, while inactivation to below detection limits (2 log CFU/g) was observed in peanut oil. Nisin alone without HPP had no effect. Recovery of Salmonella after a combined nisin and HPP treatment did show increased log reduction with longer storage times. The maximum log reduction of Salmonella achieved was 1.7 log CFU/g, which was comparable to that achieved by noncycling pressure treatment alone. High pressure processing alone or with other formulation modification, including added nisin, is not a suitable technology to manage the microbiological safety of Salmonella-contaminated peanut butter.

  10. Modelling of noble anaesthetic gases and high hydrostatic pressure effects in lipid bilayers

    DOE PAGESBeta

    Moskovitz, Yevgeny; Yang, Hui

    2015-01-08

    Our objective was to study molecular processes that might be responsible for inert gas narcosis and high-pressure nervous syndrome. The classical molecular dynamics trajectories (200 ns-long) of dioleoylphosphatidylcholine (DOPC) bilayers simulated by the Berger force field were evaluated for water and the atomic distribution of noble gases around DOPC molecules at a pressure range of 1 - 1000 bar and temperature of 310 Kelvin. Xenon and argon have been tested as model gases for general anesthetics, and neon has been investigated for distortions that are potentially responsible for neurological tremor at hyperbaric conditions. The analysis of stacked radial pair distributionmore » functions of DOPC headgroup atoms revealed the explicit solvation potential of gas molecules, which correlates with their dimensions. The orientational dynamics of water molecules at the biomolecular interface should be considered as an influential factor; while excessive solvation effects appearing in the lumen of membrane-embedded ion channels could be a possible cause of inert gas narcosis. All the noble gases tested exhibit similar patterns of the order parameter for both DOPC acyl chains, which is opposite to the patterns found for the order parameter curve at high hydrostatic pressures in intact bilayers. This finding supports the ‘critical volume’ hypothesis of anesthesia pressure reversal. The irregular lipid headgroup-water boundary observed in DOPC bilayers saturated with neon in the pressure range of 1 - 100 bar could be associated with the possible manifestation of neurological tremor at the atomic scale. The non-immobilizer neon also demonstrated the highest momentum impact on the normal component of the DOPC diffusion coefficient representing monolayers undulations rate, which indicates enhanced diffusivity, rather than atom size, as the key factor.« less

  11. Modelling of noble anaesthetic gases and high hydrostatic pressure effects in lipid bilayers

    SciTech Connect

    Moskovitz, Yevgeny; Yang, Hui

    2015-01-08

    Our objective was to study molecular processes that might be responsible for inert gas narcosis and high-pressure nervous syndrome. The classical molecular dynamics trajectories (200 ns-long) of dioleoylphosphatidylcholine (DOPC) bilayers simulated by the Berger force field were evaluated for water and the atomic distribution of noble gases around DOPC molecules at a pressure range of 1 - 1000 bar and temperature of 310 Kelvin. Xenon and argon have been tested as model gases for general anesthetics, and neon has been investigated for distortions that are potentially responsible for neurological tremor at hyperbaric conditions. The analysis of stacked radial pair distribution functions of DOPC headgroup atoms revealed the explicit solvation potential of gas molecules, which correlates with their dimensions. The orientational dynamics of water molecules at the biomolecular interface should be considered as an influential factor; while excessive solvation effects appearing in the lumen of membrane-embedded ion channels could be a possible cause of inert gas narcosis. All the noble gases tested exhibit similar patterns of the order parameter for both DOPC acyl chains, which is opposite to the patterns found for the order parameter curve at high hydrostatic pressures in intact bilayers. This finding supports the ‘critical volume’ hypothesis of anesthesia pressure reversal. The irregular lipid headgroup-water boundary observed in DOPC bilayers saturated with neon in the pressure range of 1 - 100 bar could be associated with the possible manifestation of neurological tremor at the atomic scale. The non-immobilizer neon also demonstrated the highest momentum impact on the normal component of the DOPC diffusion coefficient representing monolayers undulations rate, which indicates enhanced diffusivity, rather than atom size, as the key factor.

  12. Single-Molecule Analysis of the Rotation of F1-ATPase under High Hydrostatic Pressure

    PubMed Central

    Okuno, Daichi; Nishiyama, Masayoshi; Noji, Hiroyuki

    2013-01-01

    F1-ATPase is the water-soluble part of ATP synthase and is an ATP-driven rotary molecular motor that rotates the rotary shaft against the surrounding stator ring, hydrolyzing ATP. Although the mechanochemical coupling mechanism of F1-ATPase has been well studied, the molecular details of individual reaction steps remain unclear. In this study, we conducted a single-molecule rotation assay of F1 from thermophilic bacteria under various pressures from 0.1 to 140 MPa. Even at 140 MPa, F1 actively rotated with regular 120° steps in a counterclockwise direction, showing high conformational stability and retention of native properties. Rotational torque was also not affected. However, high hydrostatic pressure induced a distinct intervening pause at the ATP-binding angles during continuous rotation. The pause was observed under both ATP-limiting and ATP-saturating conditions, suggesting that F1 has two pressure-sensitive reactions, one of which is evidently ATP binding. The rotation assay using a mutant F1(βE190D) suggested that the other pressure-sensitive reaction occurs at the same angle at which ATP binding occurs. The activation volumes were determined from the pressure dependence of the rate constants to be +100 Å3 and +88 Å3 for ATP binding and the other pressure-sensitive reaction, respectively. These results are discussed in relation to recent single-molecule studies of F1 and pressure-induced protein unfolding. PMID:24094404

  13. Modelling of noble anaesthetic gases and high hydrostatic pressure effects in lipid bilayers.

    PubMed

    Moskovitz, Yevgeny; Yang, Hui

    2015-03-21

    Our objective was to study molecular processes that might be responsible for inert gas narcosis and high-pressure nervous syndrome. The classical molecular dynamics trajectories (200 ns) of dioleoylphosphatidylcholine (DOPC) bilayers simulated by the Berger force field were evaluated for water and the atomic distribution of noble gases around DOPC molecules in the pressure range of 1-1000 bar and at a temperature of 310 K. Xenon and argon have been tested as model gases for general anaesthetics, and neon has been investigated for distortions that are potentially responsible for neurological tremors in hyperbaric conditions. The analysis of stacked radial pair distribution functions of DOPC headgroup atoms revealed the explicit solvation potential of the gas molecules, which correlates with their dimensions. The orientational dynamics of water molecules at the biomolecular interface should be considered as an influential factor, while excessive solvation effects appearing in the lumen of membrane-embedded ion channels could be a possible cause of inert gas narcosis. All the noble gases tested exhibit similar order parameter patterns for both DOPC acyl chains, which are opposite of the patterns found for the order parameter curve at high hydrostatic pressures in intact bilayers. This finding supports the 'critical volume' hypothesis of anaesthesia pressure reversal. The irregular lipid headgroup-water boundary observed in DOPC bilayers saturated with neon in the pressure range of 1-100 bar could be associated with the possible manifestation of neurological tremors at the atomic scale. The non-immobiliser neon also demonstrated the highest momentum impact on the normal component of the DOPC diffusion coefficient representing the monolayer undulation rate, which indicates that enhanced diffusivity rather than atomic size is the key factor. PMID:25612767

  14. High hydrostatic pressure processing reduces the glycemic index of fresh mango puree in healthy subjects.

    PubMed

    Elizondo-Montemayor, Leticia; Hernández-Brenes, Carmen; Ramos-Parra, Perla A; Moreno-Sánchez, Diana; Nieblas, Bianca; Rosas-Pérez, Aratza M; Lamadrid-Zertuche, Ana C

    2015-04-01

    Dietary guidelines recommend the daily consumption of fruits; however, healthy and type 2 diabetes mellitus (T2DM) subjects receive conflicting messages regarding ingestion of fruits, such as mango, because of its sugar content. We investigated the effects of high hydrostatic pressure (HHP) processing of fresh mango puree (MP) on the glycemic indexes (GIs) and postprandial glycemic responses of 38 healthy Mexican subjects in a randomized cross-over clinical trial. Physicochemical characterization of MP included sugar profiles by HPLC-ELSD, starch, fibers, moisture, viscosity, swelling capacity and solubility properties of alcohol insoluble residue (AIR). The mean GI for HHP-MP was significantly lower (32.7 ± 13.4) than that of unprocessed-MP (42.7 ± 19.5). A significantly higher proportion of subjects showed a low GI following the consumption of HHP-MP compared to unprocessed-MP and none of them showed a high GI for the HHP-MP, compared to a significantly higher proportion for the unprocessed-MP. The viscosity and AIR solubility values of HHP-MP samples were significantly higher, which influenced glucose peaking later (Tmax) at 45 minutes and induced 20% lower AUC values than unprocessed-MP, corresponding to greater retardation indexes. The study findings support data stating that low GI fruits are appropriate for glycemic control and that mango may be included as part of healthy subjects' diets and potentially T2DM subjects' diets. Furthermore, HHP processing of mango may offer additional benefits for glycemic control, as its performance regarding GI, AUC and Tmax was significantly better than that of the unprocessed-MP. To our knowledge, this is the first report on the impact of this commercial non-thermal pasteurization technology on glucose metabolism.

  15. The influence of high hydrostatic pressure on bacterial dissimilatory iron reduction

    NASA Astrophysics Data System (ADS)

    Picard, Aude; Testemale, Denis; Hazemann, Jean-Louis; Daniel, Isabelle

    2012-07-01

    The impact of deep-subsurface pressure conditions on microbial activity is still poorly constrained. In particular it is unknown how pressure of deep environments affects microbial transformations of iron. We investigated the effects of high hydrostatic pressure (HHP) on the rate and the extent of bacterial dissimilatory iron reduction (DIR). We employed a novel experimental setup that enables in situ monitoring of Fe oxidation state and speciation in bacterial cultures in an optimized HHP incubation system using X-ray Absorption Near-Edge Structure (XANES) spectroscopy. The iron-reducing bacterium Shewanella oneidensis MR-1 was incubated at 30 °C with Fe(III) citrate and tryptone at pressures between 0.1 and 100 MPa. For pressures up to 70 MPa strain MR-1 (108 cells ml-1) was able to reduce all 5 mM Fe(III) provided. Above 70 MPa, the final amount of Fe(III) that MR-1 could reduce decreased linearly and DIR was estimated to stop at 109 ± 7 MPa. The decrease in the reduction yield was correlated with the dramatic decrease in survival (as determined by CFU counts) above 70 MPa. The initial rate of DIR increased with pressure up to 40 MPa, then decreased to reach zero at about 110 MPa. Increased rates of DIR activity and relatively high growth rates for pressures below 40 MPa would potentially ensure the maintenance of MR-1 in most of deep subsurface environments where moderate pressures occur, i.e. deep-sea environments. This study not only provides the first in situ quantitative results for microbial iron metabolism under HHP conditions but also sets the stage for future investigations of deep-sea pressure-adapted iron reducers. Moreover it demonstrates for the first time that XANES at the Fe K-edge is a powerful probe for in vivo monitoring of iron transformations in living microbial cultures.

  16. Decrease in optical density as a results of germination of Alicyclobacillus acidoterrestris spores under high hydrostatic pressure

    NASA Astrophysics Data System (ADS)

    Porębska, I.; Rutkowska, M.; Sokołowska, B.

    2015-01-01

    Alicyclobacillus acidoterrestris is a spore-forming bacterium, causing spoilage of juices. The spores of these bacteria have the ability to survive in the typical conditions used for thermal pasteurization. Therefore, the use of other techniques such as high hydrostatic pressure is considered for their inactivation. The effect of hydrostatic pressure of 200-500 MPa, at temperatures 4-50 °C for 15 min, on the dynamics of germination of A. acidoterrestris spores in apple juice and pH 4 buffer was studied. To estimate the share of germinated spores, the method of determining the optical density at a wavelength of 660 nm (OD660) was used. Parameters of hydrostatic pressure treatment used in this work affected the dynamics of germination of A. acidoterrestris spores in apple juice, and the temperature had the greatest effect. The results indicate that nutrients present in apple juice can promote the germination of A. acidoterrestris spores. This paper was presented at the 8th International Conference on High Pressure Bioscience & Biotechnology (HPBB 2014) in Nantes (France) 15-18 July 2014.

  17. Inactivation of Human Norovirus in Contaminated Oysters and Clams by High Hydrostatic Pressure

    PubMed Central

    Ye, Mu; Li, Xinhui; Kingsley, David H.; Jiang, Xi

    2014-01-01

    Human norovirus (NoV) is the most frequent causative agent of food-borne disease associated with shellfish consumption. In this study, the effect of high hydrostatic pressure (HHP) on inactivation of NoV was determined. Genogroup I.1 (GI.1) or genogroup II.4 (GII.4) NoV was inoculated into oyster homogenates and treated at 300 to 600 MPa at 25, 6, and 1°C for 5 min. After HHP, samples were treated with RNase and viral particles were extracted with porcine gastric mucin (PGM)-conjugated magnetic beads (PGM-MBs). Viral RNA was then quantified by real-time reverse transcription (RT)-PCR. Since PGM contains histo-blood group-like antigens, which can act as receptors for NoV, deficiency for binding to PGM is an indication of loss of infectivity of NoV. After binding to PGM-MBs, RT-PCR-detectable NoV RNA in oysters was reduced by 0.4 to >4 log10 by HHP at 300 to 600 MPa. The GI.1 NoV was more resistant to HHP than the GII.4 NoV (P < 0.05). HHP at lower temperatures significantly enhanced the inactivation of NoV in oysters (P < 0.05). Pressure treatment was also conducted for clam homogenates. Treatment at 450 MPa at 1°C achieved a >4 log10 reduction of GI.1 NoV in both oyster and clam homogenates. It is therefore concluded that HHP could be applied as a potential intervention for inactivating NoV in raw shellfish. The method of pretreatment of samples with RNase, extraction of viral particles using PGM-MB binding, and quantification of viral RNA using RT-PCR can be explored as a practical means of distinguishing between infectious and noninfectious NoV. PMID:24487534

  18. Inactivation of human norovirus in contaminated oysters and clams by high hydrostatic pressure.

    PubMed

    Ye, Mu; Li, Xinhui; Kingsley, David H; Jiang, Xi; Chen, Haiqiang

    2014-04-01

    Human norovirus (NoV) is the most frequent causative agent of food-borne disease associated with shellfish consumption. In this study, the effect of high hydrostatic pressure (HHP) on inactivation of NoV was determined. Genogroup I.1 (GI.1) or genogroup II.4 (GII.4) NoV was inoculated into oyster homogenates and treated at 300 to 600 MPa at 25, 6, and 1°C for 5 min. After HHP, samples were treated with RNase and viral particles were extracted with porcine gastric mucin (PGM)-conjugated magnetic beads (PGM-MBs). Viral RNA was then quantified by real-time reverse transcription (RT)-PCR. Since PGM contains histo-blood group-like antigens, which can act as receptors for NoV, deficiency for binding to PGM is an indication of loss of infectivity of NoV. After binding to PGM-MBs, RT-PCR-detectable NoV RNA in oysters was reduced by 0.4 to >4 log10 by HHP at 300 to 600 MPa. The GI.1 NoV was more resistant to HHP than the GII.4 NoV (P < 0.05). HHP at lower temperatures significantly enhanced the inactivation of NoV in oysters (P < 0.05). Pressure treatment was also conducted for clam homogenates. Treatment at 450 MPa at 1°C achieved a >4 log10 reduction of GI.1 NoV in both oyster and clam homogenates. It is therefore concluded that HHP could be applied as a potential intervention for inactivating NoV in raw shellfish. The method of pretreatment of samples with RNase, extraction of viral particles using PGM-MB binding, and quantification of viral RNA using RT-PCR can be explored as a practical means of distinguishing between infectious and noninfectious NoV.

  19. Structural phase transitions and photoluminescence properties of oxonitridosilicate phosphors under high hydrostatic pressure

    PubMed Central

    Lazarowska, Agata; Mahlik, Sebastian; Grinberg, Marek; Li, Guogang; Liu, Ru-Shi

    2016-01-01

    Spectroscopic properties of a series of (Sr0.98-xBaxEu0.02)Si2O2N2 (0 ≤ x ≤ 0.98) compounds has been studied under high hydrostatic pressure applied in a diamond anvil cell up to 200 kbar. At ambient pressure the crystal structures of (Sr0.98-xBaxEu0.02)Si2O2N2 (0 ≤ x ≤ 0.98) are related to the ratio of strontium to barium and three different phases exists: orthorhombic Pbcn(0.78 ≤ x ≤ 0.98), triclinic P1 (0 < x ≤ 0.65) and triclinic P1 (0.65 < x < 0.78). It was found that Eu2+ luminescence reveals abrupt changes under pressure (decay time, energy and shape) which indicate the variation of the local symmetry and crystal field strength in Eu2+ sites. These changes are attributed to the reversible pressure-induced structural phase transitions of triclinic (Sr0.98-xBaxEu0.02)Si2O2N2 into orthorhombic structure. Pressure in which phase transition occurs decreases linearly with increasing of Ba composition in (Sr0.98-xBaxEu0.02)Si2O2N2 series. Additionally, very different pressure shifts of the Eu2+ luminescence in different phases of (Sr0.98-xBaxEu0.02)Si2O2N2:Eu from −40 cm−1/kbar to 0 cm−1/kbar have been observed. This effect is explained by different interaction of the Eu2+ 5d electron with the second coordination sphere around the impurity cations. PMID:27734847

  20. Parameter identification of the rotordynamic coefficients of high-Reynolds-number hydrostatic bearings

    NASA Astrophysics Data System (ADS)

    Rouvas, Constantinos

    The research presented here concentrates on experimental and analytical methods to identify the twelve rotordynamic coefficients of high-Reynolds-number hydrostatic bearings. Fluid-flow-induced noise (turbulence, cavitation) presents a significant problem in testing these bearings, since this noise exists in the same frequency range as the test signals. This common frequency range eliminates the possibility of rejecting the noise through filtering. A frequency-domain analysis method has been developed to extract the rotordynamic coefficients from data obtained by multi-frequency sequential excitation testing. Power-spectral-density estimates are used to reject noise that is independent of the applied excitation. The method is verified experimentally by single-frequency excitation, and repeatability tests. A second power-spectral-density based identification method has been developed and applied to simultaneous excitation test data. Here, two independent random excitations are applied simultaneously to the bearing, and their effects are separated by computing appropriate power-spectral-density estimates, while, at the same time, maintaining excellent noise rejection properties. This method yields results identical to the sequential excitation procedure, and reduces the actual test and analysis times by one half. Last, an analysis method in the time domain has been developed and implemented. In essence it is a direct application of least squares to the bearing housing equations of motion. For this method, it is shown that for the low-frequency noise present in the measurements, differentiation of the signals is acceptable, and preferable over integration. The twelve rotordynamic coefficients are obtained from a recursive formulation of least squares, and the results are shown to have acceptable convergence. Also, the coefficients extracted from this method are found to reconstruct the bearing response more accurately than the coefficients extracted from the power

  1. Structural phase transitions and photoluminescence properties of oxonitridosilicate phosphors under high hydrostatic pressure

    NASA Astrophysics Data System (ADS)

    Lazarowska, Agata; Mahlik, Sebastian; Grinberg, Marek; Li, Guogang; Liu, Ru-Shi

    2016-10-01

    Spectroscopic properties of a series of (Sr0.98-xBaxEu0.02)Si2O2N2 (0 ≤ x ≤ 0.98) compounds has been studied under high hydrostatic pressure applied in a diamond anvil cell up to 200 kbar. At ambient pressure the crystal structures of (Sr0.98-xBaxEu0.02)Si2O2N2 (0 ≤ x ≤ 0.98) are related to the ratio of strontium to barium and three different phases exists: orthorhombic Pbcn(0.78 ≤ x ≤ 0.98), triclinic P1 (0 < x ≤ 0.65) and triclinic P1 (0.65 < x < 0.78). It was found that Eu2+ luminescence reveals abrupt changes under pressure (decay time, energy and shape) which indicate the variation of the local symmetry and crystal field strength in Eu2+ sites. These changes are attributed to the reversible pressure-induced structural phase transitions of triclinic (Sr0.98-xBaxEu0.02)Si2O2N2 into orthorhombic structure. Pressure in which phase transition occurs decreases linearly with increasing of Ba composition in (Sr0.98-xBaxEu0.02)Si2O2N2 series. Additionally, very different pressure shifts of the Eu2+ luminescence in different phases of (Sr0.98-xBaxEu0.02)Si2O2N2:Eu from ‑40 cm‑1/kbar to 0 cm‑1/kbar have been observed. This effect is explained by different interaction of the Eu2+ 5d electron with the second coordination sphere around the impurity cations.

  2. Effect of high hydrostatic pressure on mycelial development, spore viability and enzyme activity of Penicillium Roqueforti.

    PubMed

    Martínez-Rodríguez, Yamile; Acosta-Muñiz, Carlos; Olivas, Guadalupe I; Guerrero-Beltrán, José; Rodrigo-Aliaga, Dolores; Mujica-Paz, Hugo; Welti-Chanes, Jorge; Sepulveda, David R

    2014-01-01

    This study investigated the effect of high hydrostatic pressure treatments on mycelial development, spore viability, and total proteolytic and lipolytic activity of Penicillium roqueforti PV-LYO 10 D. Fungus growing in liquid medium was pressure-treated at 300, 400, and 500 MPa for 10 min at 20°C following seven days of incubation at 25°C and analyzed periodically up to day 9 after treatments to evaluate the effect on fungal growth. Mycelial mass of P. roqueforti was significantly affected at all pressure treatments evaluated, being 15.48%, 22.28%, 30.03%, and 12.53% lower than controls on day 1, 3, 6, and 9 after 300 MPa treatment, respectively. In a similar way, at 400 and 500 MPa, mycelial mass was 31.08% and 60.34% lower than controls one day after treatments and 49.74% and 80.85% lower on day 9, respectively. The viability of P. roqueforti spores decreased by 36.53% at 300 MPa, and complete inactivation took place at ≥400 MPa from an initial count of 7 log cfu/mL. Total proteolytic activity was not significantly affected at 300 MPa but was reduced by 18.22% at 400 MPa and by 43.18% at 500 MPa. Total lipolytic activity also decreased as the intensity of the pressure treatments increased. 21.69%, 39.12%, and 56.26% activity reductions were observed when treatments of 300, 400 and 500 MPa were applied, respectively. The results from this study show that pressure treatments are able to control growth, inactivate spores, and alter enzyme activity of P. roqueforti, which could be of interest in extending the shelf-life of blue-veined cheeses and other food products.

  3. Correction: The anti-inflammatory effect of a glycosylation product derived from the high hydrostatic pressure enzymatic hydrolysate of a flatfish byproduct.

    PubMed

    Choe, In-Hu; Jeon, Hyeon Jin; Eom, Sung-Hwan; Han, Young-Ki; Kim, Yoon Sook; Lee, Sang-Hoon

    2016-08-10

    Correction for 'The anti-inflammatory effect of a glycosylation product derived from the high hydrostatic pressure enzymatic hydrolysate of a flatfish byproduct' by In-Hu Choe, et al., Food Funct., 2016, 7, 2557-2565.

  4. High hydrostatic pressure influences the in vitro response to xenobiotics in Dicentrarchus labrax liver.

    PubMed

    Lemaire, Benjamin; Mignolet, Eric; Debier, Cathy; Calderon, Pedro Buc; Thomé, Jean Pierre; Rees, Jean François

    2016-04-01

    Hydrostatic pressure (HP) increases by about 1 atmosphere (0.1MPa) for each ten-meter depth increase in the water column. This thermodynamical parameter could well influence the response to and effects of xenobiotics in the deep-sea biota, but this possibility remains largely overlooked. To grasp the extent of HP adaptation in deep-sea fish, comparative studies with living cells of surface species exposed to chemicals at high HP are required. We initially conducted experiments with precision-cut liver slices of a deep-sea fish (Coryphaenoides rupestris), co-exposed for 15h to the aryl hydrocarbon receptor (AhR) agonist 3-methylcholanthrene at HP levels representative of the surface (0.1MPa) and deep-sea (5-15MPa; i.e., 500-1500m depth) environments. The transcript levels of a suite of stress-responsive genes, such as the AhR battery CYP1A, were subsequently measured (Lemaire et al., 2012; Environ. Sci. Technol. 46, 10310-10316). Strikingly, the AhR agonist-mediated increase of CYP1A mRNA content was pressure-dependently reduced in C. rupestris. Here, the same co-exposure scenario was applied for 6 or 15h to liver slices of a surface fish, Dicentrarchus labrax, a coastal species presumably not adapted to high HP. Precision-cut liver slices of D. labrax were also used in 1h co-exposure studies with the pro-oxidant tert-butylhydroperoxide (tBHP) as to investigate the pressure-dependence of the oxidative stress response (i.e., reactive oxygen production, glutathione and lipid peroxidation status). Liver cells remained viable in all experiments (adenosine triphosphate content). High HP precluded the AhR agonist-mediated increase of CYP1A mRNA expression in D. labrax, as well as that of glutathione peroxidase, and significantly reduced that of heat shock protein 70. High HP (1h) also tended per se to increase the level of oxidative stress in liver cells of the surface fish. Trends to an increased resistance to tBHP were also noted. Whether the latter observation truly

  5. High hydrostatic pressure perturbs the interactions between CF(0)F(1) subunits and induces a dual effect on activity.

    PubMed

    Souza, Manuela O; Creczynski-Pasa, Tânia B; Scofano, Helena M; Gräber, Peter; Mignaco, Julio A

    2004-05-01

    Chloroplast ATP-synthase is an H(+)/ATP-driven rotary motor in which a hydrophobic multi-subunit assemblage rotates within a hydrophilic stator, and subunit interactions dictate alternate-site catalysis. To explore the relevance of these interactions for catalysis we use hydrostatic pressure to induce conformational changes and/or subunit dissociation, and the resulting changes in the ATPase activity and oligomer structure are evaluated. Under moderate hydrostatic pressure (up to 60-80 MPa), ATPase activity is increased by 1.5-fold. This is not related to an increase in the affinity for ATP, but seems to correlate with an enhanced turnover induced by pressure, and an activation volume for the ATPase reaction of -23.7 ml/mol. Higher pressure (up to 200 MPa) leads to dissociation of the enzyme, as shown by enzyme inactivation, increased binding of 8-anilinonaphthalene-1-sulfonate (ANS) to hydrophobic regions, and labeling of specific Cys residues on the beta and alpha subunits by N-iodoacetyl-N'-(5-sulfo-1-naphthyl)ethylene-4-diamine (IAEDANS). Compression-decompression cycles (between 0.1 and 200 MPa) inactivate CF(0)F(1) in a concentration-dependent manner, although after decompression no enzyme subunit is retained on a Sephadex-G-50 centrifuge column or is further labeled by IAEDANS. It is proposed that moderate hydrostatic pressures induce elastic compression of CF(0)F(1), leading to enhanced turnover. High pressure dissociation impairs the contacts needed for rotational catalysis.

  6. Molecular chaperone accumulation as a function of stress evidences adaptation to high hydrostatic pressure in the piezophilic archaeon Thermococcus barophilus

    PubMed Central

    Cario, Anaïs; Jebbar, Mohamed; Thiel, Axel; Kervarec, Nelly; Oger, Phil M.

    2016-01-01

    The accumulation of mannosyl-glycerate (MG), the salinity stress response osmolyte of Thermococcales, was investigated as a function of hydrostatic pressure in Thermococcus barophilus strain MP, a hyperthermophilic, piezophilic archaeon isolated from the Snake Pit site (MAR), which grows optimally at 40 MPa. Strain MP accumulated MG primarily in response to salinity stress, but in contrast to other Thermococcales, MG was also accumulated in response to thermal stress. MG accumulation peaked for combined stresses. The accumulation of MG was drastically increased under sub-optimal hydrostatic pressure conditions, demonstrating that low pressure is perceived as a stress in this piezophile, and that the proteome of T. barophilus is low-pressure sensitive. MG accumulation was strongly reduced under supra-optimal pressure conditions clearly demonstrating the structural adaptation of this proteome to high hydrostatic pressure. The lack of MG synthesis only slightly altered the growth characteristics of two different MG synthesis deletion mutants. No shift to other osmolytes was observed. Altogether our observations suggest that the salinity stress response in T. barophilus is not essential and may be under negative selective pressure, similarly to what has been observed for its thermal stress response. PMID:27378270

  7. Hydrostatic Stress Effects Incorporated Into the Analysis of the High-Strain-Rate Deformation of Polymer Matrix Composites

    NASA Technical Reports Server (NTRS)

    Goldberg, Robert K.; Roberts, Gary D.

    2003-01-01

    Procedures for modeling the effect of high strain rate on composite materials are needed for designing reliable composite engine cases that are lighter than the metal cases in current use. The types of polymer matrix composites that are likely to be used in such an application have a deformation response that is nonlinear and that varies with strain rate. The nonlinearity and strain rate dependence of the composite response is primarily due to the matrix constituent. Therefore, in developing material models to be used in the design of impact-resistant composite engine cases, the deformation of the polymer matrix must be correctly analyzed. However, unlike in metals, the nonlinear response of polymers depends on the hydrostatic stresses, which must be accounted for within an analytical model. An experimental program has been carried out through a university grant with the Ohio State University to obtain tensile and shear deformation data for a representative polymer for strain rates ranging from quasi-static to high rates of several hundred per second. This information has been used at the NASA Glenn Research Center to develop, characterize, and correlate a material model in which the strain rate dependence and nonlinearity (including hydrostatic stress effects) of the polymer are correctly analyzed. To obtain the material data, Glenn s researchers designed and fabricated test specimens of a representative toughened epoxy resin. Quasi-static tests at low strain rates and split Hopkinson bar tests at high strain rates were then conducted at the Ohio State University. The experimental data confirmed the strong effects of strain rate on both the tensile and shear deformation of the polymer. For the analytical model, Glenn researchers modified state variable constitutive equations previously used for the viscoplastic analysis of metals to allow for the analysis of the nonlinear, strain-rate-dependent polymer deformation. Specifically, we accounted for the effects of

  8. Increases of heat shock proteins and their mRNAs at high hydrostatic pressure in a deep-sea piezophilic bacterium, Shewanella violacea.

    PubMed

    Sato, Hiroshi; Nakasone, Kaoru; Yoshida, Takao; Kato, Chiaki; Maruyama, Tadashi

    2015-07-01

    When non-extremophiles encounter extreme environmental conditions, which are natural for the extremophiles, stress reactions, e.g., expression of heat shock proteins (HSPs), are thought to be induced for survival. To understand how the extremophiles live in such extreme environments, we studied the effects of high hydrostatic pressure on cellular contents of HSPs and their mRNAs during growth in a piezophilic bacterium, Shewanella violacea. HSPs increased at high hydrostatic pressures even when optimal for growth. The mRNAs and proteins of these HSPs significantly increased at higher hydrostatic pressure in S. violacea. In the non-piezophilic Escherichia coli, however, their mRNAs decreased, while their proteins did not change. Several transcriptional start sites (TSSs) for HSP genes were determined by the primer extension method and some of them showed hydrostatic pressure-dependent increase of the mRNAs. A major refolding target of one of the HSPs, chaperonin, at high hydrostatic pressure was shown to be RplB, a subunit of the 50S ribosome. These results suggested that in S. violacea, HSPs play essential roles, e.g., maintaining protein complex machinery including ribosomes, in the growth and viability at high hydrostatic pressure, and that, in their expression, the transcription is under the control of σ(32).

  9. A novel set-up to investigate the low-frequency spectra of aqueous solutions at high hydrostatic pressure

    NASA Astrophysics Data System (ADS)

    Knake, L.; Vondracek, H.; Havenith, M.

    2016-10-01

    We present a novel setup to investigate the low frequency (THz/FIR) spectra of an aqueous solution under high hydrostatic pressure (HHP). By integration of a diamond anvil cell into a THz Fourier transform spectrometer, we are able to record the absorption of bulk water in the pressure range from 1 bar to 10 kbar. The difference in intensity can directly be compared to the difference in extinction coefficients. The spectroscopic data reveal a blue shift of the H-bond stretch vibration at 180 cm-1, which is evidence of changes in the H-bond network dynamics.

  10. Hydrostatic Level Sensors as High Precision Ground Motion Instrumentation for Tevatron and Other Energy Frontier Accelerators

    SciTech Connect

    Volk, James; Hansen, Sten; Johnson, Todd; Jostlein, Hans; Kiper, Terry; Shiltsev, Vladimir; Chupyra, Andrei; Kondaurov, Mikhail; Medvedko, Anatoly; Parkhomchuk, Vasily; Singatulin, Shavkat

    2012-01-01

    Particle accelerators require very tight tolerances on the alignment and stability of their elements: magnets, accelerating cavities, vacuum chambers, etc. In this article we describe the Hydrostatic Level Sensors (HLS) for very low frequency measurements used in a variety of facilities at Fermilab. We present design features of the sensors, outline their technical parameters, describe their test and calibration procedures, discuss different regimes of operation and give few illustrative examples of the experimental data. Detail experimental results of the ground motion measurements with these detectors will be presented in subsequent papers.

  11. High Hydrostatic Pressure Extract of Red Ginseng Attenuates Inflammation in Rats with High-fat Diet Induced Obesity

    PubMed Central

    Jung, Sunyoon; Lee, Mak-Soon; Shin, Yoonjin; Kim, Chong-Tai; Kim, In-Hwan; Kim, Yangha

    2015-01-01

    Chronic low-grade inflammation is associated with obesity. This study investigated effect of high hydrostatic pressure extract of red ginseng (HRG) on inflammation in rats with high-fat (HF) diet induced obesity. Male, Sprague-Dawley rats (80~110 g) were randomly divided into two groups, and fed a 45% HF diet (HF) and a 45% HF diet containing 1.5% HRG (HF+HRG) for 14 weeks. At the end of the experiment, the serum leptin level was reduced by the HRG supplementation. The mRNA expression of genes related to adipogenesis including peroxisome proliferator-activated receptor-gamma and adipocyte protein 2 was down-regulated in the white adipose tissue (WAT). The mRNA levels of major inflammatory cytokines such as tumor necrosis factor-α, monocyte chemoattractant protein 1, and interleukin-6 were remarkably down-regulated by the HRG in WAT. These results suggest that HRG might be beneficial in ameliorating the inflammation-associated health complications by suppressing adipogenic and pro-inflammatory gene expression. PMID:26770912

  12. Crystallization of a Li2O2SiO2 Glass under High Hydrostatic Pressures

    NASA Technical Reports Server (NTRS)

    Fuss, T.; Day, D. E.; Lesher, C. E.; Ray, C. S.

    2004-01-01

    The crystallization behavior of a Li2O.2SiO2 (LS2) glass subjected to a uniform hydrostatic pressure of 4.5 or 6 GPa was investigated between 550 and 800 C using XRD, IR, Raman, TEM, NMR, and DTA. The density of the glass subjected to 6 GPa was between 2.52 plus or minus 0.01 and 2.57 plus or minus 0.01 grams per cubic centimeters, depending upon the processing temperatures, and was higher than that of the stoichiometric LS2 crystals, 2.46 plus or minus 0.01 grams per cubic centimeter. Thus, crystallization in 6 GPa glass occurred in a condition of negative volume dilatation, deltaV = V(sub glass) - V(sub crystal), while that for the 4.5 GPa glass occurred in the condition deltaV greater than 0. For deltaV greater than 0, which also includes the control glass at ambient (one atmosphere) pressure, the glasses always crystallize Li2Si2O5 (orthorhombic, Ccc2) crystals, but for deltaV less than 0 (6 GPa), the glasses crystallize Li2SiO3 crystals with a slightly deformed structure. The crystal growth rate vs. temperature curve moved to higher temperature with increasing pressure, and was independent of the sign of deltaV. These results for the effect of hydrostatic pressure on the crystallization of LS2 glass were discussed from thermodynamic considerations.

  13. Cells under pressure - treatment of eukaryotic cells with high hydrostatic pressure, from physiologic aspects to pressure induced cell death.

    PubMed

    Frey, Benjamin; Janko, Christina; Ebel, Nina; Meister, Silke; Schlücker, Eberhard; Meyer-Pittroff, Roland; Fietkau, Rainer; Herrmann, Martin; Gaipl, Udo S

    2008-01-01

    The research on high hydrostatic pressure in medicine and life sciences is multifaceted. According to the used pressure head the research has to be divided into two different parts. To study physiological aspects of pressure on eukaryotic cells physiological pressure (pHHP; < 100 MPa) is used. pHHP induces morphological alterations in the cellular organelles and evokes a reversible stress response similar to the well known heat shock response. pHHP induces highly reversible alterations and normally does not affect cellular viability. The treatment of eukaryotic cells with non-physiological pressure (HHP; > or = 100 MPa) reveals different outcomes. Treatment with HHP < 150 MPa does not markedly affect viability of human cells, but induces apoptosis in murine cells. In human cells apoptosis is observed after treatment with > or = 200 MPa. Moreover, HHP treatment with > 300 MPa leads to necrosis. Therefore, HHP plays a role for the sterilisation of human transplants, of food stuff, and pharmaceuticals. Human tumour cells subjected to HHP > 300 MPa display a necrotic phenotype along with a gelificated cytoplasm, preserve their shape, and retain their immunogenicity. These observations favour the use of HHP to produce whole cell based tumour vaccines. Further experiments revealed that the increment of pressure as well as the pressure holding time influences the cell death of tumour cells. We conclude that high hydrostatic pressure offers both, an economic, easy to apply, clean, and fast technique for the generation of vaccines, and a promising tool to study physiological aspects.

  14. Genes required for growth at high hydrostatic pressure in Escherichia coli K-12 identified by genome-wide screening.

    PubMed

    Black, S Lucas; Dawson, Angela; Ward, F Bruce; Allen, Rosalind J

    2013-01-01

    Despite the fact that much of the global microbial biosphere is believed to exist in high pressure environments, the effects of hydrostatic pressure on microbial physiology remain poorly understood. We use a genome-wide screening approach, combined with a novel high-throughput high-pressure cell culture method, to investigate the effects of hydrostatic pressure on microbial physiology in vivo. The Keio collection of single-gene deletion mutants in Escherichia coli K-12 was screened for growth at a range of pressures from 0.1 MPa to 60 MPa. This led to the identification of 6 genes, rodZ, holC, priA, dnaT, dedD and tatC, whose products were required for growth at 30 MPa and a further 3 genes, tolB, rffT and iscS, whose products were required for growth at 40 MPa. Our results support the view that the effects of pressure on cell physiology are pleiotropic, with DNA replication, cell division, the cytoskeleton and cell envelope physiology all being potential failure points for cell physiology during growth at elevated pressure.

  15. Genes Required for Growth at High Hydrostatic Pressure in Escherichia coli K-12 Identified by Genome-Wide Screening

    PubMed Central

    Black, S. Lucas; Dawson, Angela; Ward, F. Bruce; Allen, Rosalind J.

    2013-01-01

    Despite the fact that much of the global microbial biosphere is believed to exist in high pressure environments, the effects of hydrostatic pressure on microbial physiology remain poorly understood. We use a genome-wide screening approach, combined with a novel high-throughput high-pressure cell culture method, to investigate the effects of hydrostatic pressure on microbial physiology in vivo. The Keio collection of single-gene deletion mutants in Escherichia coli K-12 was screened for growth at a range of pressures from 0.1 MPa to 60 MPa. This led to the identification of 6 genes, rodZ, holC, priA, dnaT, dedD and tatC, whose products were required for growth at 30 MPa and a further 3 genes, tolB, rffT and iscS, whose products were required for growth at 40 MPa. Our results support the view that the effects of pressure on cell physiology are pleiotropic, with DNA replication, cell division, the cytoskeleton and cell envelope physiology all being potential failure points for cell physiology during growth at elevated pressure. PMID:24040140

  16. Gluconacetobacter hansenii subsp. nov., a high-yield bacterial cellulose producing strain induced by high hydrostatic pressure.

    PubMed

    Ge, Han-Jing; Du, Shuang-Kui; Lin, De-Hui; Zhang, Jun-Na; Xiang, Jin-Le; Li, Zhi-Xi

    2011-12-01

    Strain M(438), deposited as CGMCC3917 and isolated from inoculums of bacterial cellulose (BC) producing strain screened in homemade vinegar and then induced by high hydrostatic pressure treatment (HHP), has strong ability to produce BC more than three times as that of its initial strain. It is the highest yield BC-producing strain ever reported. In this paper, M(438) was identidied as Gluconacetobacter hansenii subsp. nov. on the basis of the results obtained by examining it phylogenetically, phenotypically, and physiologically-biochemically. Furthermore, the genetic diversity of strain M(438) and its initial strain was examined by amplified fragment length polymorphism. The results indicated that strain M(438) was a deletion mutant induced by HHP, and the only deleted sequence showed 99% identity with 24,917-24,723 bp in the genome sequence of Ga. hansenii ATCC23769, and the complement gene sequence was at 24,699-25,019 bp with local tag GXY_15142, which codes small multidrug resistance (SMR) protein. It can be inferred that SMR might be related to inhibiting BC production to a certain extent.

  17. Thermoelastic temperature changes in poly(methyl methacrylate) at high hydrostatic pressure: Experimental

    NASA Astrophysics Data System (ADS)

    Rodriquez, E. L.; Filisko, F. E.

    1982-10-01

    Temperature changes as a result of large rapid hydrostatic pressure changes were measured for poly(methyl methacrylate) at various temperatures from ambient to 95 °C and for various pressure increments from 14 to 207 MN/m2. We observe complete reversibility of the measurements over the pressure range studied. The value of the incremental ratio ΔT/ΔP was a function of both temperature and pressure, ranging from 0.04 to 0.09 K/MNm-2 from 298 to 368 K at low pressures, and 0.03-0.05 at 200 MN/m2 over the same temperature range. The largest variation of ΔT/ΔP with pressure was at low pressures, the ratio becoming nearly constant above about 200 MN/M2.

  18. High hydrostatic pressure processing: a promising nonthermal technology to inactivate viruses in high-risk foods.

    PubMed

    Lou, Fangfei; Neetoo, Hudaa; Chen, Haiqiang; Li, Jianrong

    2015-01-01

    Foodborne outbreaks of viral origin have become increasingly a serious public health concern. High-pressure processing (HPP), a nonthermal technology, has come to the forefront for food processing given its minimal effects on food quality. Recent studies have revealed encouraging results for the inactivation of several human viruses by HPP. This review provides comprehensive information on the use of HPP to eliminate viruses in model systems and foods. We address the influences of various parameters, including pressure level, holding time, pH, temperature, and food matrix on the efficacy of pressure inactivation of viruses, as well as insight into the mechanisms for inactivation of enveloped and nonenveloped viruses. HPP is a promising technology for mitigating virus contamination of foods, thus it is essential to identify the optimal parameters for enhancing virus inactivation while ensuring sensory and nutritional quality retention of foods.

  19. Effects of high hydrostatic pressure treatments on haemagglutination activity and structural conformations of phytohemagglutinin from red kidney bean (Phaseolus vulgaris).

    PubMed

    Liu, Cencen; Zhao, Mouming; Sun, Weizheng; Ren, Jiaoyan

    2013-02-15

    Red kidney beans were subjected to high hydrostatic pressure (HHP) treatment (50, 150, 250, 350, 450 MPa) and phytohaemagglutinin (PHA) was then extracted by affinity chromatography. It appeared that HHP treatment could increase crude extract yield and decrease its haemagglutination activity. For purified samples, PHA yield was not affected at pressures <450 MPa while the haemagglutination activity was noticeably reduced at 450 MPa. The structural changes were investigated using electrophoresis, size exclusion chromatography (SEC), Fourier transform infrared (FTIR) and differencial scanning calorimetry (DSC). Electrophoresis and SEC profiles revealed a new high molecular weight polymer after 450 MPa treatment. At pressures <450 MPa, FTIR showed an increase in β-sheet structure and a decrease in α-helix. At 450 MPa, the bands at 1688 cm(-1), representing aggregate strands and random coils, increased. The conclusions are that pressures <450 MPa can cause PHA unfolding and induce PHA aggregation at 450 MPa.

  20. High hydrostatic pressure treatment provides persimmon good characteristics to formulate milk-based beverages with enhanced functionality.

    PubMed

    Hernández-Carrión, M; Tárrega, A; Hernando, I; Fiszman, S M; Quiles, A

    2014-06-01

    High hydrostatic pressure (HHP) applied during food processing can improve the retention of food quality attributes and nutritional values in comparison with pasteurization. Persimmon is a good source of bioactive compounds but it is a seasonal fruit that cannot be consumed throughout the year. The aim of this work was to compare the HHP and pasteurization treatments to formulate milk-based beverages containing this carotenoid rich ingredient and to evaluate their performance in these beverages. The carotenoid and tannin contents of persimmon were determined and the microstructure and rheology of the new milk-based persimmon beverages were examined. The results showed that HHP treatment favoured the release of carotenoids from the fruit matrix and precipitation of the tannins. The milk-based beverages prepared with the high-pressure persimmon presented the best rheological properties because unlike the untreated and pasteurized persimmon milk-based beverages, they did not form a gel-like structure or separate out. PMID:24733518

  1. Effects of high hydrostatic pressure treatments on haemagglutination activity and structural conformations of phytohemagglutinin from red kidney bean (Phaseolus vulgaris).

    PubMed

    Liu, Cencen; Zhao, Mouming; Sun, Weizheng; Ren, Jiaoyan

    2013-02-15

    Red kidney beans were subjected to high hydrostatic pressure (HHP) treatment (50, 150, 250, 350, 450 MPa) and phytohaemagglutinin (PHA) was then extracted by affinity chromatography. It appeared that HHP treatment could increase crude extract yield and decrease its haemagglutination activity. For purified samples, PHA yield was not affected at pressures <450 MPa while the haemagglutination activity was noticeably reduced at 450 MPa. The structural changes were investigated using electrophoresis, size exclusion chromatography (SEC), Fourier transform infrared (FTIR) and differencial scanning calorimetry (DSC). Electrophoresis and SEC profiles revealed a new high molecular weight polymer after 450 MPa treatment. At pressures <450 MPa, FTIR showed an increase in β-sheet structure and a decrease in α-helix. At 450 MPa, the bands at 1688 cm(-1), representing aggregate strands and random coils, increased. The conclusions are that pressures <450 MPa can cause PHA unfolding and induce PHA aggregation at 450 MPa. PMID:23194535

  2. High hydrostatic pressure treatment provides persimmon good characteristics to formulate milk-based beverages with enhanced functionality.

    PubMed

    Hernández-Carrión, M; Tárrega, A; Hernando, I; Fiszman, S M; Quiles, A

    2014-06-01

    High hydrostatic pressure (HHP) applied during food processing can improve the retention of food quality attributes and nutritional values in comparison with pasteurization. Persimmon is a good source of bioactive compounds but it is a seasonal fruit that cannot be consumed throughout the year. The aim of this work was to compare the HHP and pasteurization treatments to formulate milk-based beverages containing this carotenoid rich ingredient and to evaluate their performance in these beverages. The carotenoid and tannin contents of persimmon were determined and the microstructure and rheology of the new milk-based persimmon beverages were examined. The results showed that HHP treatment favoured the release of carotenoids from the fruit matrix and precipitation of the tannins. The milk-based beverages prepared with the high-pressure persimmon presented the best rheological properties because unlike the untreated and pasteurized persimmon milk-based beverages, they did not form a gel-like structure or separate out.

  3. The effect of high hydrostatic pressure on the physiological and biochemical properties of pepper (Capsicum annuum L.) seedlings

    NASA Astrophysics Data System (ADS)

    İşlek, Cemil; Murat Altuner, Ergin; Alpas, Hami

    2015-10-01

    High hydrostatic pressure is a non-thermal food processing technology, which also has several successful applications in different areas besides food processing. In this study, Capsicum annuum L. (pepper) seeds are subjected to 50, 100, 200 and 300 MPa pressure for 5 min at 25°C and the seedlings of HHP processed seeds are used to compare percentage of seed germination and biochemical properties such as chlorophyll a, b and a/b, proline content, total protein, carotenoid, malondialdehyde, glucose, fructose and phenolic compounds concentrations. As a result of the study, it was observed that there are remarkable changes in terms of biochemical properties especially for seedlings, whose seeds were pressurized at 200 and 300 MPa. More detailed studies are needed to put forward the mechanism behind the changes in biochemical properties.

  4. [Study on the effect of high hydrostatic pressure treatment on the secondary structure of mushroom polyphenoloxidase by SRCD and FTIR].

    PubMed

    Yi, Jian-yong; Dong, Peng; Wang, Yong-tao; Jiang, Bin; Liao, Xiao-jun; Hu, Xiao-song; Zhang, Yan

    2012-02-01

    The secondary structure of the mushroom polyphenoloxidase treated by the high hydrostatic pressure (HHP) was analyzed by the synchrotron radiation circular dichroism (SRCD) and Fourier transform infrared spectroscopy (FTIR). The alpha-helix content of mushroom PPO was decreased after HHP treatment, which indicated that the secondary structure of PPO was changed. There was a discrepancy of the result of the secondary structure content between untreated or HHP-treated mushroom PPO analyzed by SRCD and FTIR spectra, and this discrepancy may be due to the different determination temperature, the concentration of the PPO solution and the spectra analysis method etc. The fluorescence spectra showed that the fluorescence intensity of the mushroom PPO was decreased after HHP treatment, and a red shift was observed after HHP treatment, which indicated that the tertiary structure of the enzyme molecule has been modified.

  5. Identification of Microorganisms in Duck Meat Products Available in Korea and the Effect of High Hydrostatic Pressure.

    PubMed

    Kim, Hyun-Joo; Yong, Hae In; Lee, Hyun Jung; Jung, Samooel; Kwon, Joong-Ho; Heo, Kang Nyung; Jo, Cheorun

    2016-01-01

    The objective of this study was to investigate the microbial count of duck meat and duck meat products commercially available in Korea. High hydrostatic pressure (HHP) treatment was applied at 0.1, 300, 400, and 500 MPa for 5 min to enhance the microbiological safety of duck meats. The levels of total aerobic bacteria were in the ranges of 3.53-6.19 and 3.62-6.85 Log CFU/g in raw and smoked duck products, respectively. By DNA sequence analysis, we identified microorganisms responsible for spoilage, with the most common species in the raw and smoked duck products being Aeromonas spp. or Pseudomonas spp. and Leuconostoc mesenteroides, respectively. HHP treatment significantly reduced the levels of total aerobic bacteria in raw and smoked duck products. This study demonstrates that HHP treatment may be used to effectively improve the safety of raw and smoked duck meat products.

  6. Microbiological, physicochemical and sensory parameters of dry fermented sausages manufactured with high hydrostatic pressure processed raw meat.

    PubMed

    Omer, M K; Prieto, B; Rendueles, E; Alvarez-Ordoñez, A; Lunde, K; Alvseike, O; Prieto, M

    2015-10-01

    The aim of this trial was to describe physicochemical, microbiological and organoleptic characteristics of dry fermented sausages produced from high hydrostatic pressure (HHP) pre-processed trimmings. During ripening of the meat products pH, weight, water activity (aw), and several microbiological parameters were measured at zero, eight, fifteen days and after 6weeks. Sensory characteristics were estimated at day 15 and after six weeks by a test panel by using several sensory tests. Enterobacteriaceae were not detected in sausages from HHP-processed trimmings. Fermentation was little affected, but weight and aw of the HHP-processed sausages decreased faster during ripening. HHP-treated sausages were consistently less favoured than non HHP-treated sausages, but the strategy may be an alternative approach if the process is optimized.

  7. Physicochemical characteristics and quality parameters of a beef product subjected to chemical preservatives and high hydrostatic pressure.

    PubMed

    Giménez, Belén; Graiver, Natalia; Califano, Alicia; Zaritzky, Noemí

    2015-02-01

    The use of high hydrostatic pressure (HHP) on fresh beef causes a deleterious effect on red colour. A beef product subjected to HHP exhibiting acceptable colour and microbiological stability was developed; the process requires as a first step the immersion in a preservative solution containing ascorbic acid, sodium nitrite, and sodium chloride. Desirability functions were used to optimise the composition of this solution in order to maintain the colour attributes minimising the concentration of sodium nitrite. The product was packed in low gas permeability film before HHP treatment. The effect of the applied pressure (300, 600 MPa) on quality parameters (colour,texture) was analysed. The stability of the product during storage at 4 °C was determined by microbial counts, colour, texture, and exudate. The combination of treatments provided acceptable colour and microbiological stability during four and six weeks of refrigerated storage after the product has been subjected to 300 and 600 MPa, respectively.

  8. Identification of Microorganisms in Duck Meat Products Available in Korea and the Effect of High Hydrostatic Pressure.

    PubMed

    Kim, Hyun-Joo; Yong, Hae In; Lee, Hyun Jung; Jung, Samooel; Kwon, Joong-Ho; Heo, Kang Nyung; Jo, Cheorun

    2016-01-01

    The objective of this study was to investigate the microbial count of duck meat and duck meat products commercially available in Korea. High hydrostatic pressure (HHP) treatment was applied at 0.1, 300, 400, and 500 MPa for 5 min to enhance the microbiological safety of duck meats. The levels of total aerobic bacteria were in the ranges of 3.53-6.19 and 3.62-6.85 Log CFU/g in raw and smoked duck products, respectively. By DNA sequence analysis, we identified microorganisms responsible for spoilage, with the most common species in the raw and smoked duck products being Aeromonas spp. or Pseudomonas spp. and Leuconostoc mesenteroides, respectively. HHP treatment significantly reduced the levels of total aerobic bacteria in raw and smoked duck products. This study demonstrates that HHP treatment may be used to effectively improve the safety of raw and smoked duck meat products. PMID:27194939

  9. Identification of Microorganisms in Duck Meat Products Available in Korea and the Effect of High Hydrostatic Pressure

    PubMed Central

    Kim, Hyun-Joo; Jung, Samooel; Kwon, Joong-Ho; Heo, Kang Nyung

    2016-01-01

    The objective of this study was to investigate the microbial count of duck meat and duck meat products commercially available in Korea. High hydrostatic pressure (HHP) treatment was applied at 0.1, 300, 400, and 500 MPa for 5 min to enhance the microbiological safety of duck meats. The levels of total aerobic bacteria were in the ranges of 3.53-6.19 and 3.62-6.85 Log CFU/g in raw and smoked duck products, respectively. By DNA sequence analysis, we identified microorganisms responsible for spoilage, with the most common species in the raw and smoked duck products being Aeromonas spp. or Pseudomonas spp. and Leuconostoc mesenteroides, respectively. HHP treatment significantly reduced the levels of total aerobic bacteria in raw and smoked duck products. This study demonstrates that HHP treatment may be used to effectively improve the safety of raw and smoked duck meat products. PMID:27194939

  10. In vitro release of theophylline from starch-based matrices prepared via high hydrostatic pressure treatment and autoclaving.

    PubMed

    Błaszczak, Wioletta; Buciński, Adam; Górecki, Adrian R

    2015-03-01

    Recent works have demonstrated that release behavior of bioactive compounds varies with the nature of the matrix regarding its chemical composition, morphology and surface properties. Starch matrices varying in amylose content (maize, sorghum, Hylon VII) or pure amylopectin ones (waxy maize, amaranth starch), containing theophylline (10 mg, 50 mg/0.5 g of starch), were obtained via high hydrostatic pressure treatment (650 MPa/9 min) and autoclaving (120 °C/20 min). Both the treatment used and drug dose affected the theophylline release profiles from the matrices studied. The profiles of amylopectin starch matrices satisfactorily fitted with selected mathematical models, indicating a controlled theophylline release. The principal component analysis confirmed substantial differences in drug release between the amylose and amylopectin matrices. The differences in matrix morphology, internal surface area and porosity (mesopore diameter, cumulative pore volume) between the matrices studied were found to be key factors affecting the theophylline dissolution.

  11. Extraction of ginsenosides from fresh ginseng roots (Panax ginseng C.A. Meyer) using commercial enzymes and high hydrostatic pressure.

    PubMed

    Sunwoo, Hoon H; Kim, Chong-Tai; Kim, Do-Yeon; Maeng, Jin-Soo; Cho, Chang-Won; Lee, Soo-Jeong

    2013-07-01

    A combination of high hydrostatic pressure (HHP) and enzymatic hydrolysis (HHP-EH) was applied for the extraction of ginsenosides from fresh ginseng roots (Panax ginseng C.A. Myer). The highest yield of ginsenosides was obtained by using a mixture of three enzymes (Celluclast + Termamyl + Viscozyme) along with HHP (100 MPa, at 50 °C for 12 h) in comparison to control samples (no enzymes, atmosphere pressure, P < 0.05). Total ginsenosides increased by 184% while Rg1 + Rb1 increased by 273%. Application of these conditions significantly increased total ginsenosides by 49% and Rg1 + Rb1 by 103% compared to HHP treatment alone (P < 0.05). The effect of HHP on increased yield of ginsenosides is likely due in part, to acceleration of enzyme activity. Thus HHP-EH significantly improves the extraction of ginsenosides from fresh ginseng roots.

  12. Synergistic effects of high hydrostatic pressure, mild heating, and amino acids on germination and inactivation of Clostridium sporogenes spores.

    PubMed

    Ishimori, Takateru; Takahashi, Katsutoshi; Goto, Masato; Nakagawa, Suguru; Kasai, Yoshiaki; Konagaya, Yukifumi; Batori, Hiroshi; Kobayashi, Atsushi; Urakami, Hiroshi

    2012-12-01

    The synergistic effects of high hydrostatic pressure (HHP), mild heating, and amino acids on the germination of Clostridium sporogenes spores were examined by determining the number of surviving spores that returned to vegetative growth after pasteurization following these treatments. Pressurization at 200 MPa at a temperature higher than 40°C and treatment with some of the 19 l-amino acids at 10 mM or higher synergistically facilitated germination. When one of these factors was omitted, the level of germination was insignificant. Pressures of 100 and 400 MPa were less effective than 200 MPa. The spores were effectively inactivated by between 1.8 and 4.8 logs by pasteurization at 80°C after pressurization at 200 MPa at 45°C for 120 min with one of the amino acids with moderate hydrophobicity, such as Leu, Phe, Cys Met, Ala, Gly, or Ser. However, other amino acids showed poor inactivation effects of less than 0.9 logs. Spores in solutions containing 80 mM of either Leu, Phe, Cys, Met, Ala, Gly, or Ser were successfully inactivated by pasteurization by more than 5.4 logs after pressurization at 200 MPa at 70°C for 15 to 120 min. Ala and Met reduced the spore viability by 2.8 and 1.8 logs, respectively, by pasteurization at a concentration of 1 mM under 200 MPa at 70°C. These results indicate that germination of the spores is facilitated by a combination of high hydrostatic pressure, mild heating, and amino acids.

  13. Lift and drag in intruders moving through hydrostatic granular media at high speeds.

    PubMed

    Potiguar, Fabricio Q; Ding, Yang

    2013-07-01

    Recently, experiments showed that forces on intruders dragged horizontally through dense, hydrostatic granular packings mainly depend on the local surface orientation and can be seen as the sum of the forces exerted on small surface elements. In order to understand such forces more deeply, we perform a two-dimensional soft-sphere molecular dynamics simulation, on a similar setup, of an intruder dragged through a 50-50 bi-disperse granular packing, with diameters 0.30 and 0.34 cm. We measure, for both circular and half-circle shapes, the forces parallel (drag) and perpendicular (lift) to the drag direction as functions of the drag speed, with V=10.3-309 cm/s, and intruder depths, with D=3.75-37.5 cm. The drag forces on an intruder monotonically increase with V and D, and are larger for the circle. However, the lift force does not depend monotonically on V and D, and this relationship is affected by the shape of the intruder. The vertical force was negative for the half-circle, but for a small range of V and D, we measure positive lift. We find no sign change for the lift on the circle, which is always positive. The explanation for the nonmonotonic dependence is related to the decrease in contacts on the intruder as V increases. This is qualitatively similar to supersonic flow detachment from an obstacle. The detachment picture is supported by simulation measurements of the velocity field around the intruder and force profiles measured on its surface.

  14. Draft genome sequence of Staphylococcus saprophyticus subsp. saprophyticus M1-1, isolated from the gills of a Korean rockfish, Sebastes schlegeli Hilgendorf, after high hydrostatic pressure processing.

    PubMed

    Kim, Bong-Soo; Kim, Chong-Tai; Park, Bang Heon; Kwon, Sujin; Cho, Yong-Jin; Kim, Namsoo; Kim, Chul-Jin; Chun, Jongsik; Kwak, Jangyul; Maeng, Jin-Soo

    2012-08-01

    A bacterium designated M1-1 was isolated from the gills of a Korean rockfish, Sebastes schlegeli Hilgendorf, after high hydrostatic pressure processing. Studies of 16S rRNA phylogeny and comparative genomics demonstrated that the isolate belongs to Staphylococcus saprophyticus subsp. saprophyticus. Here, we report the draft genome sequence of S. saprophyticus subsp. saprophyticus M1-1 (KACC 16562).

  15. Cellular damage of Escherichia coli 0157:H7 and Salmonella spp. in apple juice treated with high hydrostatic pressure and thermal death time disks

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Differences in membrane damage including leakage of intracellular UV-materials and loss of viability of Salmonella spp. and Escherichia coli O157:H7 bacteria in apple juice, pH 3.1 following thermal-death-time (TDT) disk and high hydrostatic pressure (HHP) treatments were investigated. Salmonella an...

  16. Membrane damage and viability loss of thermally treated and high hydrostatic pressurized E. coli 0157:H7 and Salmonella spp. in apple juice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Differences in membrane damage including leakage of intracellular UV-materials and loss of viability of Salmonella spp. and Escherichia coli O157:H7 bacteria in apple juice following thermal death time disk (TDT) and high hydrostatic pressure treatments were investigated. Salmonella and E. coli O157...

  17. Leakage of Intracellular UV Materials of High Hydrostatic Pressure-Injured Escherichia Coli O157:H7 Strains in Tomato Juice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effect of high hydrostatic pressure (HHP) treatment on inactivation, injury and recovery of Salmonella Enteritidis and Escherichia coli O157:H7 cocktail inoculated in tomato juice (pH 4.1) and phosphate buffer saline (PBS. pH 7.2) at 8.0 log CFU/ml and treated at 350, 400, 450 MPa for 20 min at ...

  18. ANSYS Modeling of Hydrostatic Stress Effects

    NASA Technical Reports Server (NTRS)

    Allen, Phillip A.

    1999-01-01

    Classical metal plasticity theory assumes that hydrostatic pressure has no effect on the yield and postyield behavior of metals. Plasticity textbooks, from the earliest to the most modem, infer that there is no hydrostatic effect on the yielding of metals, and even modem finite element programs direct the user to assume the same. The object of this study is to use the von Mises and Drucker-Prager failure theory constitutive models in the finite element program ANSYS to see how well they model conditions of varying hydrostatic pressure. Data is presented for notched round bar (NRB) and "L" shaped tensile specimens. Similar results from finite element models in ABAQUS are shown for comparison. It is shown that when dealing with geometries having a high hydrostatic stress influence, constitutive models that have a functional dependence on hydrostatic stress are more accurate in predicting material behavior than those that are independent of hydrostatic stress.

  19. Inactivation and recovery of Listeria monocytogenes, Salmonella enterica and Staphylococcus aureus after high hydrostatic pressure treatments up to 900 MPa.

    PubMed

    Jofré, Anna; Aymerich, Teresa; Bover-Cid, Sara; Garriga, Margarita

    2010-09-01

    High hydrostatic pressure (HP) processing is used in the food industry to enhance the safety and extend the shelf-life of food. Although a drastic decrease in microbial viability is achieved immediately after the application of HP treatments, under favorable conditions the injured bacteria can recover. The present study evaluated the inactivation and recovery of five strains of Listeria monocytogenes, Salmonella enterica and Staphylococcus aureus subjected to pressures of 400, 600, and 900 MPa under stressing and non-stressing conditions in a complex medium. Treatments at 400 and 600 MPa were found to greatly affect the viability of L. monocytogenes and S. enterica, but only a treatment of 5 min at 900 MPa decreased the levels of the three pathogens to below the detection limit (8-9 log units reduction). After HP treatment, not only the baroresistant S. aureus but also several replicates of L. monocytogenes and S. enterica strains recovered during subsequent incubation under favorable conditions. However, when HP was combined with low pH and nitrite but not with NaCl or lactate, the viability of pressurized S. aureus cells progressively decreased. As pathogenic bacteria can recover even after the application of very high pressure levels, the combination of HP with other hurdles for microbial growth, either intrinsically present in the food product or extrinsically applied, may be needed to guarantee the efficacy of technologies aimed at pathogen reduction and shelf-life extension.

  20. Study of the inactivation of Escherichia coli and pectin methylesterase in mango nectar under selected high hydrostatic pressure treatments.

    PubMed

    Bermúdez-Aguirre, D; Guerrero-Beltrán, J Ángel; Barbosa-Cánovas, G V; Welti-Chanes, J

    2011-12-01

    High hydrostatic pressure (HHP) was applied to fresh mango nectar (FMN) and sterilized mango nectar (SMN) to inactivate Escherichia coli and pectin methylesterase (PME). Pressure was applied at 275, 345 and 414 MPa. The come-up time (CUT) as well as 1, 2 and 4 min of treatment times were applied at the selected pressure to evaluate the inactivation effect on E. coli and PME. Total plate counts (TPC) were also evaluated in FMN. Results showed that mesophiles are inactivated in FMN to an important degree (up to 4 log) only with the CUT; the highest inactivation for mesophiles (7 log) was reported at 414 MPa after 4 min. Meanwhile, for E. coli 345 and 414 MPa after 2 and 1 min, respectively, were able to inactivate all viable cells in FMN. However, in SMN after 4 min at 275 MPa all cells of E. coli were also inactivated, showing the protective effect of the media between FMN and SMN. The PME showed its resistance to be inactivated with high pressure, showing the highest decrease in enzymatic activity (45%) after 4 min at 345 MPa but with an important activation at the highest pressure (414 MPa).

  1. Dissociation of the light-harvesting membrane protein complex I from Rhodobacter sphaeroides under high hydrostatic pressure

    NASA Astrophysics Data System (ADS)

    Puusepp, Marit; Kangur, Liina; Freiberg, Arvi

    2015-04-01

    The light-harvesting complex 1 (LH1) from Rhodobacter sphaeroides is an excellent model system for investigating the stability of oligomeric membrane proteins under high hydrostatic pressure. The currently investigated LH1 forms a 16-meric ring structure of B825 subunits. B825 is a heterodimer of transmembrane α- and β-polypeptide chains, which non-covalently binds two bacteriochlorophyll a molecules. These pigment molecules were used as intrinsic spectroscopic sensors to follow the dissociation reaction. Our results demonstrate that the LH1 dissociates into B825 subunits through an intermediary tetrameric unit B845. The dissociation mechanism depends on pressure. At ∼200-500 MPa the dissociation corresponds to a pseudo-first-order reaction, characterised by the apparent reaction rate at atmospheric pressure k0 = 3.10-5 s-1, activation volume ΔV‡ = -4 mL/mol, and free energy of activation ΔG‡ = 26 kJ/mol. Below 200 MPa and above 500 MPa, the reaction is more complex, including further dissociation of B825 into monomers B777. This paper was presented at the LIIth European High Pressure Research Group (EHPRG 52) Meeting in Lyon (France), 7-12 September 2014.

  2. Influence of high hydrostatic pressure on quality parameters and structural properties of aloe vera gel (Aloe barbadensis Miller).

    PubMed

    Vega-Gálvez, Antonio; Miranda, Margarita; Nuñez-Mancilla, Yissleen; Garcia-Segovia, Purificación; Ah-Hen, Kong; Tabilo-Munizaga, Gipsy; Pérez-Won, Mario

    2014-10-01

    The aim of this work was to study the effect of high hydrostatic pressure (HHP) on colour, dietary fibre, vitamin C content, polysaccharides content, physico-chemical and structural properties of aloe vera gel at three pressure levels (300, 400 and 500 MPa for 3 min) after 35 days of storage at 4 ± 1 °C. The results showed that HHP exerted a clear influence on most of the quality parameters studied. Moisture, protein and fat contents did not show changes with an increasing pressure. Ash, crude fibre and carbohydrates content increased with increasing pressure. Vitamin C content did not show significant differences after 35 days of storage. The variation of colour in the samples increased at 500 MPa. Total dietary fibre, water holding capacity and firmness increased with pressure. However, all HHP-treated samples presented a decrease in hydration ratio and polysaccharides content; and also minor alterations in the structural properties were produced at HHP of 300-500 MPa, resulting in a high quality gel. PMID:25328187

  3. Modification of superconducting and resistive properties of HoBa2Cu3O7-δ single crystals under application-removal of high hydrostatic pressure

    NASA Astrophysics Data System (ADS)

    Vovk, R. V.; Khadzhai, G. Ya.; Dobrovolskiy, O. V.; Kamchatna, S. N.; Chroneos, A.

    2016-06-01

    The influence of a high hydrostatic pressure on the basal-plane electrical resistance along the twin boundaries in underdoped HoBa2Cu3O7-δ single crystals is investigated. An enhancement of the phase segregation caused by the high-pressure-induced redistribution of the labile oxygen has been revealed. The temperature dependences of the electrical resistance above Tc can be approximated well within the framework of the model of s - d electron-phonon scattering.

  4. Acidic Electrolyzed Water as a Novel Transmitting Medium for High Hydrostatic Pressure Reduction of Bacterial Loads on Shelled Fresh Shrimp.

    PubMed

    Du, Suping; Zhang, Zhaohuan; Xiao, Lili; Lou, Yang; Pan, Yingjie; Zhao, Yong

    2016-01-01

    Acidic electrolyzed water (AEW), a novel non-thermal sterilization technology, is widely used in the food industry. In this study, we firstly investigated the effect of AEW as a new pressure transmitting medium for high hydrostatic pressure (AEW-HHP) processing on microorganisms inactivation on shelled fresh shrimp. The optimal conditions of AEW-HHP for Vibrio parahaemolyticus inactivation on sterile shelled fresh shrimp were obtained using response surface methodology: NaCl concentration to electrolysis 1.5 g/L, treatment pressure 400 MPa, treatment time 10 min. Under the optimal conditions mentioned above, AEW dramatically enhanced the efficiency of HHP for inactivating V. parahaemolyticus and Listeria monocytogenes on artificially contaminated shelled fresh shrimp, and the log reductions were up to 6.08 and 5.71 log10 CFU/g respectively, while the common HHP could only inactivate the two pathogens up to 4.74 and 4.31 log10 CFU/g respectively. Meanwhile, scanning electron microscopy (SEM) showed the same phenomenon. For the naturally contaminated shelled fresh shrimp, AEW-HHP could also significantly reduce the micro flora when examined using plate count and PCR-DGGE. There were also no significant changes, histologically, in the muscle tissues of shrimps undergoing the AEW-HHP treatment. In summary, using AEW as a new transmitting medium for HHP processing is an innovative non thermal technology for improving the food safety of shrimp and other aquatic products.

  5. Oenological characteristics, amino acids and volatile profiles of Hongqu rice wines during pottery storage: Effects of high hydrostatic pressure processing.

    PubMed

    Tian, Yuting; Huang, Jiamei; Xie, Tingting; Huang, Luqiang; Zhuang, Weijin; Zheng, Yafeng; Zheng, Baodong

    2016-07-15

    Hongqu rice wines were subjected to high hydrostatic pressure (HHP) treatments of 200 MPa and 550 MPa at 25 °C for 30 min and effects on wine quality during pottery storage were examined. HHP treatment can significantly (p<0.05) decrease the content of fusel-like alcohols and maintain the concentration of lactones in these wines. After 18 months of storage, the HHP-treated wines exhibited a more rapid decrease in total sugars (9.3-15.3%), lower free amino acid content (e.g. lysine content decreased by 45.0-84.5%), and higher ketone content (e.g. 6- and 14-fold increase for 2-nonanone). These changes could be attributed to the occurrence of Maillard and oxidation reactions. The wines treated at 550 MPa for 30 min developed about twice as rapidly during pottery storage than untreated wines based on principal component analysis. After only 6 months, treated wines had a volatile composition and an organoleptic quality similar to that of untreated wines stored in pottery for 18 months.

  6. Impact of high hydrostatic pressure processing on individual cellular resuscitation times and protein aggregates in Escherichia coli.

    PubMed

    Govers, Sander K; Aertsen, Abram

    2015-11-20

    Live cell biology approaches can contribute to a more comprehensive understanding of heterogeneous injury and resuscitation phenomena in stressed populations of foodborne pathogens and spoilage microorganisms, and in turn lead to better insights in the mechanisms and dynamics of inactivation that can improve food safety and preservation measures. Especially in the context of designing minimal processing strategies, which depend on a synergistic combination of different mild stresses to ensure sufficient microbial reduction, a more profound understanding of the impact of each such stress or hurdle is mandatory. High hydrostatic pressure (HHP) stress is an interesting hurdle in this concept since cells that manage to survive this stress nevertheless tend to be injured and sensitized to subsequent stresses. In this study, populations of Escherichia coli were subjected to different HHP intensities and studied at the single-cell level with time-lapse fluorescence microscopy while monitoring resuscitation times and protein aggregate integrity at the single-cell level. This approach revealed that higher pressure intensities lead to longer and more variable resuscitation times of surviving cells as well as an increased dispersal of intracellular protein aggregates. Interestingly, at mild HHP exposure, cells within the population incurring less dispersion of protein aggregates appeared to have a higher probability of survival.

  7. Acidic Electrolyzed Water as a Novel Transmitting Medium for High Hydrostatic Pressure Reduction of Bacterial Loads on Shelled Fresh Shrimp

    PubMed Central

    Du, Suping; Zhang, Zhaohuan; Xiao, Lili; Lou, Yang; Pan, Yingjie; Zhao, Yong

    2016-01-01

    Acidic electrolyzed water (AEW), a novel non-thermal sterilization technology, is widely used in the food industry. In this study, we firstly investigated the effect of AEW as a new pressure transmitting medium for high hydrostatic pressure (AEW-HHP) processing on microorganisms inactivation on shelled fresh shrimp. The optimal conditions of AEW-HHP for Vibrio parahaemolyticus inactivation on sterile shelled fresh shrimp were obtained using response surface methodology: NaCl concentration to electrolysis 1.5 g/L, treatment pressure 400 MPa, treatment time 10 min. Under the optimal conditions mentioned above, AEW dramatically enhanced the efficiency of HHP for inactivating V. parahaemolyticus and Listeria monocytogenes on artificially contaminated shelled fresh shrimp, and the log reductions were up to 6.08 and 5.71 log10 CFU/g respectively, while the common HHP could only inactivate the two pathogens up to 4.74 and 4.31 log10 CFU/g respectively. Meanwhile, scanning electron microscopy (SEM) showed the same phenomenon. For the naturally contaminated shelled fresh shrimp, AEW-HHP could also significantly reduce the micro flora when examined using plate count and PCR-DGGE. There were also no significant changes, histologically, in the muscle tissues of shrimps undergoing the AEW-HHP treatment. In summary, using AEW as a new transmitting medium for HHP processing is an innovative non thermal technology for improving the food safety of shrimp and other aquatic products. PMID:27014228

  8. Effects of high hydrostatic pressure on distribution dynamics of free amino acids in water soaked brown rice grain

    NASA Astrophysics Data System (ADS)

    Shigematsu, T.; Hayashi, M.; Nakajima, K.; Uno, Y.; Sakano, A.; Murakami, M.; Narahara, Y.; Ueno, S.; Fujii, T.

    2010-03-01

    High hydrostatic pressure (HP) with approximately below 400 MPa can induce a transformation of food materials to an alternative form, where membrane systems are damaged but certain enzymes are still active. HP treatment of water soaked brown rice grain could modify the mass transfer inside and apparent activities of enzymes, resulting in HP-dependent change of distribution of free amino acids. Thus, the distribution of free amino acids in brown rice grain during preservation after HP treatment was analyzed. Just after HP treatment at 200 MPa for 10 min, the distribution of free amino acids was not apparently different from that of untreated control. In contrast, after 1 to 4 days preservation at 25°C, amino acids, such as Ala, Glu, Gly, Asp and Val, showed higher concentrations than those in control. This result suggested that HP treatment induced proteolysis to produce free amino acids. However, Gln, Thr and Cys, showed no apparent difference, suggesting that conversion of certain amino acids produced by proteolysis occurred. Moreover, the concentration of γ-aminobutyric acid (GABA) in HP-treated sample was higher than that in untreated control. These results suggested that HP treatment induced alteration of distribution of free amino acids of rice grains via proteolysis and certain amino acids metabolism pathways.

  9. Inactivation and sublethal injury of Escherichia coli and Listeria innocua by high hydrostatic pressure in model suspensions and beetroot juice

    NASA Astrophysics Data System (ADS)

    Sokołowska, Barbara; Skąpska, Sylwia; Niezgoda, Jolanta; Rutkowska, Małgorzata; Dekowska, Agnieszka; Rzoska, Sylwester J.

    2014-01-01

    Cells exposed to different physical and chemical treatments, including high hydrostatic pressure (HHP), suffer from injuries that could be reversible in food materials when stored. Escherichia coli and Listeria innocua cells suspended in phosphate-buffered saline (PBS) (model suspensions), and acidified beetroot juice were subjected to a pressure of 400 MPa at a temperature of 20°C for up to 10 min. The difference between the viable and non-injured cells was used to estimate the number of injured survivors. The reduction in E. coli cell number was 3.4-4.1 log after 10 min pressurization in model suspensions and 6.2 log in beetroot juice. Sublethally injured cells in PBS accounted for up to 2.7 log after 10 min HHP treatment and 0.8 log in beetroot juice. The reduction in L. innocua cell number after 10 min pressure treatment reached from 3.8 to 4.8 log, depending on the initial concentration in model suspensions. Among the surviving L. innocua cells, even up to 100% were injured. L. innocua cells were completely inactivated after 1 min HHP treatment in beetroot juice.

  10. High-order mimetic finite elements for the hydrostatic primitive equations on a cubed-sphere grid using Hamiltonian methods

    NASA Astrophysics Data System (ADS)

    Eldred, Christopher; Dubos, Thomas; Kritsikis, Evaggelos

    2016-04-01

    There has been a great deal of work in the past decade on the development of mimetic and conservative numerical schemes for atmospheric dynamical cores using Hamiltonian methods, such as Dynamico (Dubos et. al 2015). This model conserves mass, potential vorticity and total energy; and posses properties such as a curl-free pressure gradient that does not produce spurious vorticity. Unfortunately, the underlying finite-difference discretization scheme used in Dynamico has been shown to be inconsistent on general grids. An alternative scheme based on mimetic finite elements has been developed for the rotating shallow water equations that solves these accuracy issues but retains the desirable mimetic and conservation properties. Preliminary results on the extension of this scheme to the hydrostatic primitive equations are shown. The compatible 2D finite elements spaces are extended to compatible 3D spaces using tensor products, in a way that preserves their properties. It is shown that use of the same prognostic variables as Dynamico combined with a Lorenz staggering leads to a relatively simple formulation that allows conservation of total energy along with high-order accuracy.

  11. High hydrostatic pressure activates gene expression that leads to ethanol production enhancement in a Saccharomyces cerevisiae distillery strain

    PubMed Central

    Bravim, Fernanda; Lippman, Soyeon I.; da Silva, Lucas F.; Souza, Diego T.; Fernandes, A. Alberto R.; Masuda, Claudio A.; Broach, James R.

    2016-01-01

    High hydrostatic pressure (HHP) is a stress that exerts broad effects on microorganisms with characteristics similar to those of common environmental stresses. In this study, we aimed to identify genetic mechanisms that can enhance alcoholic fermentation of wild Saccharomyces cerevisiae isolated from Brazilian spirit fermentation vats. Accordingly, we performed a time course microarray analysis on a S. cerevisiae strain submitted to mild sublethal pressure treatment of 50 MPa for 30 min at room temperature, followed by incubation for 5, 10 and 15 min without pressure treatment. The obtained transcriptional profiles demonstrate the importance of post-pressurisation period on the activation of several genes related to cell recovery and stress tolerance. Based on these results, we over-expressed genes strongly induced by HHP in the same wild yeast strain and identified genes, particularly SYM1, whose over-expression results in enhanced ethanol production and stress tolerance upon fermentation. The present study validates the use of HHP as a biotechnological tool for the fermentative industries. PMID:22915193

  12. Effect of hydrostatic high-pressure processing on the chemical, functional, and rheological properties of starter-free Queso Fresco.

    PubMed

    Van Hekken, D L; Tunick, M H; Farkye, N Y; Tomasula, P M

    2013-10-01

    Queso Fresco (QF), a popular high-moisture, high-pH Hispanic-style cheese sold in the United States, underwent high-pressure processing (HPP), which has the potential to improve the safety of cheese, to determine the effects of this process on quality traits of the cheese. Starter-free, rennet-set QF (manufactured from pasteurized, homogenized milk, milled before hooping, and not pressed) was cut into 4.5- × 4.5- × 15-cm blocks and double vacuum packaged. Phase 1 of the research examined the effects of hydrostatic HPP on the quality traits of fresh QF that had been warmed to a core temperature of 20 or 40 °C; processed at 200, 400, or 600 MPa for 5, 10, or 20 min; and stored at 4 °C for 6 to 8d. Phase 2 examined the long-term effects of HPP on quality traits when QF was treated at 600 MPa for 3 or 10 min, and stored at 4 or 10 °C for up to 12 wk. Warming the QF to 40 °C before packaging and exposure to high pressure resulted in loss of free whey from the cheese into the package, lower moisture content, and harder cheese. In phase 2, the control QF, regardless of aging temperature, was significantly softer than HPP cheeses over the 12 wk of storage. Hardness, fracture stress, and fracture rigidity increased with length of exposure time and storage temperature, with minor changes in the other properties. Queso Fresco remained a bright white, weak-bodied cheese that crumbled and did not melt upon heating. Although high pressures or long processing times may be required for the elimination of pathogens, cheese producers must be aware that HPP altered the rheological properties of QF and caused wheying-off in cheeses not pressed before packaging.

  13. Inactivation of Gram-Negative Bacteria by Lysozyme, Denatured Lysozyme, and Lysozyme-Derived Peptides under High Hydrostatic Pressure

    PubMed Central

    Masschalck, Barbara; Van Houdt, Rob; Van Haver, Ellen G. R.; Michiels, Chris W.

    2001-01-01

    We have studied the inactivation of six gram-negative bacteria (Escherichia coli, Pseudomonas fluorescens, Salmonella enterica serovar Typhimurium, Salmonella enteritidis, Shigella sonnei, and Shigella flexneri) by high hydrostatic pressure treatment in the presence of hen egg-white lysozyme, partially or completely denatured lysozyme, or a synthetic cationic peptide derived from either hen egg white or coliphage T4 lysozyme. None of these compounds had a bactericidal or bacteriostatic effect on any of the tested bacteria at atmospheric pressure. Under high pressure, all bacteria except both Salmonella species showed higher inactivation in the presence of 100 μg of lysozyme/ml than without this additive, indicating that pressure sensitized the bacteria to lysozyme. This extra inactivation by lysozyme was accompanied by the formation of spheroplasts. Complete knockout of the muramidase enzymatic activity of lysozyme by heat treatment fully eliminated its bactericidal effect under pressure, but partially denatured lysozyme was still active against some bacteria. Contrary to some recent reports, these results indicate that enzymatic activity is indispensable for the antimicrobial activity of lysozyme. However, partial heat denaturation extended the activity spectrum of lysozyme under pressure to serovar Typhimurium, suggesting enhanced uptake of partially denatured lysozyme through the serovar Typhimurium outer membrane. All test bacteria were sensitized by high pressure to a peptide corresponding to amino acid residues 96 to 116 of hen egg white, and all except E. coli and P. fluorescens were sensitized by high pressure to a peptide corresponding to amino acid residues 143 to 155 of T4 lysozyme. Since they are not enzymatically active, these peptides probably have a different mechanism of action than all lysozyme polypeptides. PMID:11133464

  14. Exposure to high hydrostatic pressure rapidly selects for increased RpoS activity and general stress-resistance in Escherichia coli O157:H7.

    PubMed

    Vanlint, Dietrich; Rutten, Nele; Govers, Sander K; Michiels, Chris W; Aertsen, Abram

    2013-04-15

    Exposure to high hydrostatic pressure (HHP) is increasingly being used in food preservation as a non-thermal pasteurization process, and its further implementation necessitates a more thorough understanding of bacterial resistance development and intraspecies variability with regard to inactivation by HHP. In this report, we discovered that exposure to high hydrostatic pressure stress can rapidly select for strongly increased RpoS activity in a hypersensitive Escherichia coli O157:H7 strain (ATCC 43888), leading to a simultaneous increase in HHP and heat resistance. Moreover, the level of RpoS activity correlated well with the original hypersensitivity and the extent of acquired HHP resistance, and extremely HHP-resistant mutants of ATCC 43888 clearly incurred a number of additional RpoS-dependent phenotypes. These findings suggest that implementation of novel processing techniques in the food production chain can readily affect the physiology of food-borne pathogens.

  15. Preparation of a Nanoscaled Poly(vinyl alcohol)/Hydroxyapatite/DNA Complex Using High Hydrostatic Pressure Technology for In Vitro and In Vivo Gene Delivery.

    PubMed

    Kimura, Tsuyoshi; Nibe, Yoichi; Funamoto, Seiichi; Okada, Masahiro; Furuzono, Tsutomu; Ono, Tsutomu; Yoshizawa, Hidekazu; Fujisato, Toshiya; Nam, Kwangwoo; Kishida, Akio

    2011-01-01

    Our previous research showed that poly(vinyl alcohol) (PVA) nanoparticles incorporating DNA with hydrogen bonds obtained by high hydrostatic pressurization are able to deliver DNA without any significant cytotoxicity. To enhance transfection efficiency of PVA/DNA nanoparticles, we describe a novel method to prepare PVA/DNA nanoparticles encapsulating nanoscaled hydroxyapatites (HAps) prepared by high hydrostatic pressurization (980 MPa), which is designed to facilitate endosomal escape induced by dissolving HAps in an endosome. Scanning electron microscopic observation and dynamic light scattering measurement revealed that HAps were significantly encapsulated in PVA/HAp/DNA nanoparticles. The cytotoxicity, cellular uptake, and transgene expression of PVA/HAp/DNA nanoparticles were investigated using COS-7 cells. It was found that, in contrast to PVA/DNA nanoparticles, their internalization and transgene expression increased without cytotoxicity occurring. Furthermore, a similar level of transgene expression between plasmid DNA and PVA/HAp/DNA nanoparticles was achieved using in vivo hydrodynamic injection. Our results show a novel method of preparing PVA/DNA nanoparticles encapsulating HAp nano-crystals by using high hydrostatic pressure technology and the potential use of HAps as an enhancer of the transfection efficiency of PVA/DNA nanoparticles without significant cytotoxicity.

  16. Development of a novel nanocapsule formulation by emulsion-diffusion combined with high hydrostatic pressure.

    PubMed

    Lee, Mi-Yeon; Min, Sang-Gi; Bourgeois, Sandrine; Choi, Mi-Jung

    2009-03-01

    A common method used to prepare polymeric nanoparticles in pharmaceutical technology is emulsion-diffusion. However, this method has several disadvantages due to the long duration of the process. At the diffusion step of conventional emulsion-diffusion, high pressure treatment could replace the addition of great quantities of water resulting in diffusion of the solvents from the internal phase to the external phase. The objective of the present study was to develop a novel method for nanoparticle formulation by combining high pressure treatment with the emulsion-diffusion method to avoid an additional diffusion step in the aqueous phase. After emulsification at 11,000 rpm, the emulsions were pressurized at 100, 200 and 300 Mpa, each for 300, 600, 900 or 1200 s. The mean size and morphology of the nanoparticles were analysed by Mastersizer, TEM and SEM. The mean size of pressurized emulsion nanoparticles was the same at 100 MPa for holding times up to 600 s. Also, the pressurized emulsion nanoparticle size increased and the peak and width of the size distribution curve was higher and slightly narrower depending on the pressure and the holding time. This study shows that pressure treatment can produce polymer membranes surrounding the oil surface owing to the precipitation of PCL, inducing the diffusion of solvent from the interior to the exterior based on TEM images. From these results, it is believed that high pressure treatment should be considered as a successful alternative for preparing nanoparticles.

  17. Friction-induced ignition of metals in high-pressure oxygen

    NASA Technical Reports Server (NTRS)

    Schoenman, Len; Stoltzfus, Joel; Kazaroff, John

    1988-01-01

    Data are presented on friction-induced metal ignition (such as occurring as a result of the possible rubbing of oxygen-pressurized hydrostatic bearings and turbine blade tips) in a high-presure oxygen environment. Friction heating tests were carried out at oxygen pressures from 1 to 300 atm and surface speeds from 10 to 33 m/sec, using the NASA/White Sands Test Facility. Test results are presented on the rubbing of like material pairs spanning a wide range of burn factors and on that of dissimilar metal pairs having significantly different burn factors, indicating that the burn factor is a suitable index for rank ordering in ignition resistance for the most, but not all, materials.

  18. Analysis on the DNA Fingerprinting of Aspergillus Oryzae Mutant Induced by High Hydrostatic Pressure

    NASA Astrophysics Data System (ADS)

    Wang, Hua; Zhang, Jian; Yang, Fan; Wang, Kai; Shen, Si-Le; Liu, Bing-Bing; Zou, Bo; Zou, Guang-Tian

    2011-01-01

    The mutant strains of aspergillus oryzae (HP300a) are screened under 300 MPa for 20 min. Compared with the control strains, the screened mutant strains have unique properties such as genetic stability, rapid growth, lots of spores, and high protease activity. Random amplified polymorphic DNA (RAPD) and inter simple sequence repeats (ISSR) are used to analyze the DNA fingerprinting of HP300a and the control strains. There are 67.9% and 51.3% polymorphic bands obtained by these two markers, respectively, indicating significant genetic variations between HP300a and the control strains. In addition, comparison of HP300a and the control strains, the genetic distances of random sequence and simple sequence repeat of DNA are 0.51 and 0.34, respectively.

  19. Assessment of Clostridium perfringens spore response to high hydrostatic pressure and heat with nisin.

    PubMed

    Gao, Yulong; Qiu, Weifen; Wu, Ding; Fu, Qiang

    2011-08-01

    The elimination of spores from low-acid foods presents food-processing and food-safety challenges to high-pressure processing (HPP) developers as bacterial spores are extremely resistant to pressure. Therefore, the effects of pressure (400-800 MPa), temperature (35-95 °C), and nisin (0-496 IU/mL) on the inactivation of Clostridium perfringens AS 64701 spores at various pressure-holding times (7.5-17.5 min) were explored. A second-order polynomal equation for HPP- and nisin-induced inactivation of C. perfringens spores was constructed with response surface methodology. Experiment results showed that the experimental values were shown to be significantly in agreement with the predicted values because the adjusted determination coefficient (R (Adj)²) was 0.9708 and the level of significance was P < 0.0001. The optimum process parameters (obtained by solving the quadratic polynomal equation) for a six-log cycle reduction of C. perfringens AS 64701 spores were pressure of 654 Mpa, temperature of 74 °C, pressure-holding time of 13.6 min, and nisin concentration of 328 IU/mL. The validation of the model equation for predicting the optimum response values was verified effectively by ten test points that were not used in the establishment of the model. Compared with conventional HPP techniques, the main process advantages of HPP-nisin combination sterilization in the UHT milk are, lower pressure, temperature, natural preservative (nisin), and in a shorter treatment time. The synergistic inactivation of bacteria by HPP-nisin combination is a promising and natural method to increase the efficiency and safety of high-pressure pasteurization.

  20. Randomized, Double-Blinded Clinical Trial for Human Norovirus Inactivation in Oysters by High Hydrostatic Pressure Processing ▿ †

    PubMed Central

    Leon, Juan S.; Kingsley, David H.; Montes, Julia S.; Richards, Gary P.; Lyon, G. Marshall; Abdulhafid, Gwen M.; Seitz, Scot R.; Fernandez, Marina L.; Teunis, Peter F.; Flick, George J.; Moe, Christine L.

    2011-01-01

    Contamination of oysters with human noroviruses (HuNoV) constitutes a human health risk and may lead to severe economic losses in the shellfish industry. There is a need to identify a technology that can inactivate HuNoV in oysters. In this study, we conducted a randomized, double-blinded clinical trial to assess the effect of high hydrostatic pressure processing (HPP) on Norwalk virus (HuNoV genogroup I.1) inactivation in virus-seeded oysters ingested by subjects. Forty-four healthy, positive-secretor adults were divided into three study phases. Subjects in each phase were randomized into control and intervention groups. Subjects received Norwalk virus (8FIIb, 1.0 × 104 genomic equivalent copies) in artificially seeded oysters with or without HPP treatment (400 MPa at 25°C, 600 MPa at 6°C, or 400 MPa at 6°C for 5 min). HPP at 600 MPa, but not 400 MPa (at 6° or 25°C), completely inactivated HuNoV in seeded oysters and resulted in no HuNoV infection among these subjects, as determined by reverse transcription-PCR detection of HuNoV RNA in subjects' stool or vomitus samples. Interestingly, a white blood cell (granulocyte) shift was identified in 92% of the infected subjects and was significantly associated with infection (P = 0.0014). In summary, these data suggest that HPP is effective at inactivating HuNoV in contaminated whole oysters and suggest a potential intervention to inactivate infectious HuNoV in oysters for the commercial shellfish industry. PMID:21705552

  1. pH and solute concentration of suspension media affect the outcome of high hydrostatic pressure treatment of Listeria monocytogenes.

    PubMed

    Koseki, Shigenobu; Yamamoto, Kazutaka

    2006-09-01

    The effect of pH and solute concentration of suspension media on high hydrostatic pressure (HHP) induced inactivation of Listeria monocytogenes (approximate 10(8) CFU/ml) was investigated by the using treatment between 300 MPa and 600 MPa at 25 degrees C for 10 min. The suspension media used in this study represented different concentrations (0.1% to 10%) of buffered peptone water (BPW) with an adjusted pH of 4 to 7. An increase in the concentration of BPW resulted in a decreased HHP-induced inactivation of L. monocytogenes that was dependent on the pH of the medium. HHP-treatment at 300 MPa showed no bactericidal effect at neutral pH regardless of the BPW concentration. When the pH of BPW (0.1% to 5%) was reduced to 4, L. monocytogenes was completely inactivated (more than an 8 log cycle reduction) with a HHP-treatment of at least 300 MPa. HHP-treatment above 400 MPa completely inactivated L. monocytogenes in a relatively dilute BPW (0.1% and 1%) with an adjusted pH below 6. While only a 2 log cycle reduction was observed in 10% BPW at the pH ranging from 5 to 7 after treatment with 600 MPa, L. monocytogenes in 10% BPW at pH 4 was completely inactivated. Even though a significant bactericidal effect of HHP-treatment was not observed when applied with a low pressure such as 300 MPa or suspended in higher BPW at neutral pH, a reduction of the pH greatly affected the HHP-induced inactivation of L. monocytogenes. These results indicated that information concerning the pH of food or media would greatly assist an optimization of HHP-treatment for the inactivation of bacteria.

  2. Synergistic combinations of high hydrostatic pressure and essential oils or their constituents and their use in preservation of fruit juices.

    PubMed

    Espina, Laura; García-Gonzalo, Diego; Laglaoui, Amin; Mackey, Bernard M; Pagán, Rafael

    2013-01-15

    This work addresses the inactivation achieved with Escherichia coli O157:H7 and Listeria monocytogenes EGD-e by combined processes of high hydrostatic pressure (HHP) and essential oils (EOs) or their chemical constituents (CCs). HHP treatments (175-400 MPa for 20 min) were combined with 200 μL/L of each EO (Citrus sinensis L., Citrus lemon L., Citrus reticulata L., Thymus algeriensis L., Eucalyptus globulus L., Rosmarinus officinalis L., Mentha pulegium L., Juniperus phoenicea L., and Cyperus longus L.) or each CC ((+)-limonene, α-pinene, β-pinene, p-cymene, thymol, carvacrol, borneol, linalool, terpinen-4-ol, 1,8-cineole, α-terpinyl acetate, camphor, and (+)-pulegone) in buffer of pH 4.0 or 7.0. The tested combinations achieved different degrees of inactivation, the most effective being (+)-limonene, carvacrol, C. reticulata L. EO, T. algeriensis L. EO and C. sinensis L. EO which were capable of inactivating about 4-5 log(10) cycles of the initial cell populations in combination with HHP, and therefore showed outstanding synergistic effects. (+)-Limonene was also capable of inactivating 5 log(10) cycles of the initial E. coli O157:H7 population in combination with HHP (300 MPa for 20 min) in orange and apple juices, and a direct relationship was established between the inactivation degree caused by the combined process with (+)-limonene and the occurrence of sublethal injury after the HHP treatment. This work shows the potential of EOs and CCs in the inactivation of foodborne pathogens in combined treatments with HHP, and proposes their possible use in liquid food such as fruit juices. PMID:23246609

  3. Effects of High-Hydrostatic Pressure on Inactivation of Human Norovirus and Physical and Sensory Characteristics of Oysters.

    PubMed

    Ye, Mu; Lingham, Talaysha; Huang, Yaoxin; Ozbay, Gulnihal; Ji, Lin; Karwe, Mukund; Chen, Haiqiang

    2015-06-01

    The purpose of the study was to determine the effect of high-hydrostatic pressure (HHP) on inactivation of human norovirus (HuNoV) in oysters and to evaluate organoleptic characteristics of oysters treated at pressure levels required for HuNoV inactivation. Genogroup I.1 (GI.1) or Genogroup II.4 (GII.4) HuNoV was inoculated into oysters and treated at 300 to 600 MPa at 25 and 0 °C for 2 min. After HHP, viral particles were extracted by porcine gastric mucin-conjugated magnetic beads (PGM-MBs) and viral RNA was quantified by real-time RT-PCR. Lower initial temperature (0 °C) significantly enhanced HHP inactivation of HuNoV compared to ambient temperature (25 °C; P < 0.05). HHP at 350 and 500 MPa at 0 °C could achieve more than 4 log10 reduction of GII.4 and GI.1 HuNoV in oysters, respectively. HHP treatments did not significantly change color or texture of oyster tissue. A 1- to 5-scale hedonic sensory evaluation on appearance, aroma, color, and overall acceptability showed that pressure-treated oysters received significantly higher quality scores than the untreated control (P < 0.05). Elevated pressure levels at 450 and 500 MPa did not significantly affect scores compared to 300 MPa at 0 °C, indicating increasing pressure level did not affect sensory acceptability of oysters. Oysters treated at 0 °C had slightly lower acceptability than the group treated at room temperature on day 1 (P < 0.05), but after 1 wk storage, no significant difference in sensory attributes and consumer desirability was observed (P > 0.05).

  4. The Alteration of the Epidermal Basement Membrane Complex of Human Nevus Tissue and Keratinocyte Attachment after High Hydrostatic Pressurization

    PubMed Central

    Jinno, Chizuru; Sakamoto, Michiharu; Kakudo, Natsuko; Inoie, Masukazu; Fujisato, Toshia; Suzuki, Shigehiko; Kusumoto, Kenji; Yamaoka, Tetsuji

    2016-01-01

    We previously reported that human nevus tissue was inactivated after high hydrostatic pressure (HHP) higher than 200 MPa and that human cultured epidermis (hCE) engrafted on the pressurized nevus at 200 MPa but not at 1000 MPa. In this study, we explore the changes to the epidermal basement membrane in detail and elucidate the cause of the difference in hCE engraftment. Nevus specimens of 8 mm in diameter were divided into five groups (control and 100, 200, 500, and 1000 MPa). Immediately after HHP, immunohistochemical staining was performed to detect the presence of laminin-332 and type VII collagen, and the specimens were observed by transmission electron microscopy (TEM). hCE was placed on the pressurized nevus specimens in the 200, 500, and 1000 MPa groups and implanted into the subcutis of nude mice; the specimens were harvested at 14 days after implantation. Then, human keratinocytes were seeded on the pressurized nevus and the attachment was evaluated. The immunohistochemical staining results revealed that the control and 100 MPa, 200 MPa, and 500 MPa groups were positive for type VII collagen and laminin-332 immediately after HHP. TEM showed that, in all of the groups, the lamina densa existed; however, anchoring fibrils were not clearly observed in the 500 or 1000 MPa groups. Although the hCE took in the 200 and 500 MPa groups, keratinocyte attachment was only confirmed in the 200 MPa group. This result indicates that HHP at 200 MPa is preferable for inactivating nevus tissue to allow its reuse for skin reconstruction in the clinical setting. PMID:27747221

  5. Effects of high hydrostatic pressure processing on embryonation of Toxocara canis eggs.

    PubMed

    Rosypal, Alexa C; Houk, Alice E; Flick, George J; Lindsay, David S

    2014-07-01

    Toxocara canis is a zoonotic nematode parasite that can be transmitted to humans by food or water contaminated with T. canis eggs from infected dog feces. High-pressure processing (HPP) is a useful alternative to thermal treatments to eliminate pathogens from foods. Most of the research on HPP has focused on prokaryotes, but little is known about its effects on eukaryotic organisms. We evaluated the ability of HPP to affect embryonation of T. canis eggs to test the hypothesis that HPP treatment can delay development of T. canis eggs. Efficacy of HPP was determined by using an embryonation assay on T. canis eggs from naturally infected puppies. For each treatment, 2500 T. canis eggs in tap water were placed in sealable plastic bags and subjected to 138-400 megapascals (MPa; 1 MPa=10 atm=147 psi) for 60 s in a commercial HPP unit. We found that treatment with 300 or 400 MPa for 60 s killed 100% of eggs using embryonation as the standard. Treatment with 250, 241, and 207 MPa was less effective and killed 80%, 56%, and 8% of eggs, respectively. Results from this study suggest that HPP may be a useful treatment to protect foods from T. canis contamination.

  6. Impurity trapped exciton states related to rare earth ions in crystals under high hydrostatic pressure

    SciTech Connect

    Grinberg, M. Mahlik, S.

    2013-01-15

    Emission related to rare earth ions in solids takes place usually due to 4f{sup n} {yields} 4f{sup n} and 4f{sup n-1}5d{sup 1} {yields} 4f{sup n} internal transitions. In the case of band to band excitation the effective energy transfer from the host to optically active impurity is required. Among other processes one of the possibilities is capturing of the electron at excited state and hole at the ground state of impurity. Localization of electron or hole at the dopand site creates a long range Coulomb potential that attracts the second carrier which then occupies the localized Rydberg-like states. Such a system can be considered as impurity trapped exciton. Usually impurity trapped exciton is a short living phenomenon which decays non-radiatively leaving the impurity ion in the excited state. However, in several compounds doped with Eu{sup 2+} the impurity trapped exciton states become stable and contribute to the radiative processes though anomalous luminescence that appears apart of the 4f{sup 7} {yields} 4f{sup 7} and 4f{sup 7}5d{sup 1} {yields} 5f{sup 7} emission. In this contribution pressure effect on energies of the 4f{sup n-1}5d{sup 1}{yields}5f{sup n} transitions in Ln doped oxides and fluorides as well as influence of pressure on the energy of impurity trapped exciton states is discussed. The latest results on high pressure investigations of luminescence related to Pr{sup 3+}, and Eu{sup 2+} in different lattices are reviewed.

  7. Resistance of Mexican fruit fly to quarantine treatments of high hydrostatic pressure combined with heat.

    PubMed

    Candelario, Hugo Ernesto; Velazquez, Gonzalo; Castañón-Rodríguez, Juan Francisco; Ramírez, José Alberto; Montoya, Pablo; Vázquez, Manuel

    2010-08-01

    High-pressure processing (HPP) has been proposed as an alternative quarantine method against the Mexican fruit fly Anastrepha ludens Loew (Diptera: Tephritidae), which is one of the most important pests infesting mangoes, citrus, and other fruits in Mexico and other Latin-American countries. However, processing conditions used to destroy eggs and larvae also affect the shelf life of fruits. The objective of this study was to assess the biological viability of A. ludens eggs treated with HPP, establishing whether undestroyed eggs were able to develop larvae, pupae, and adults capable of reproduction. Eggs of 1, 2, 3, and 4 days old were pressurized at 50, 75, or 100 MPa for 0, 5, 10, or 20 min. The hatching ability of pressurized eggs; survivorship of third instars, pupae, and adults emerged; and their capability to produce viable eggs were examined. The results showed that the hatching capacity of eggs and the larval development were affected negatively by the treatment duration and level of pressure. Treatments with 100 MPa for 20 min inhibited the hatching capacity of eggs of 2, 3, or 4 days old by 100%, but the inhibition was of 99.8% for 1-day-old eggs. Most of the eggs that survived the treatments were able to produce adults that can reproduce. The percent of hatching of eggs of A. ludens oviposited for adults obtained from pressurized 1-day-old eggs treated with 100 MPa for 20 min was 64.81%. Thus, more efforts must be addressed to destroy eggs and larvae during HPP because surviving organisms can reach adult stage and reproduce.

  8. Germination and inactivation of Bacillus coagulans and Alicyclobacillus acidoterrestris spores by high hydrostatic pressure treatment in buffer and tomato sauce.

    PubMed

    Vercammen, Anne; Vivijs, Bram; Lurquin, Ine; Michiels, Chris W

    2012-01-16

    Acidothermophilic bacteria like Alicyclobacillus acidoterrestris and Bacillus coagulans can cause spoilage of heat-processed acidic foods because they form spores with very high heat resistance and can grow at low pH. The objective of this work was to study the germination and inactivation of A. acidoterrestris and B. coagulans spores by high hydrostatic pressure (HP) treatment at temperatures up to 60°C and both at low and neutral pH. In a first experiment, spores suspended in buffers at pH 4.0, 5.0 and 7.0 were processed for 10min at different pressures (100-800MPa) at 40°C. None of these treatments caused any significant inactivation, except perhaps at 800MPa in pH 4.0 buffer where close to 1 log inactivation of B. coagulans was observed. Spore germination up to about 2 log was observed for both bacteria but occurred mainly in a low pressure window (100-300MPa) for A. acidoterrestris and only in a high pressure window (600-800MPa) for B. coagulans. In addition, low pH suppressed germination in A. acidoterrestris, but stimulated it in B. coagulans. In a second series of experiments, spores were treated in tomato sauce of pH 4.2 and 5.0 at 100 - 800MPa at 25, 40 and 60°C for 10min. At 40°C, results for B. coagulans were similar as in buffer. For A. acidoterrestris, germination levels in tomato sauce were generally higher than in buffer, and showed little difference at low and high pressure. Remarkably, the pH dependence of A. acidoterrestris spore germination was reversed in tomato sauce, with more germination at the lowest pH. Furthermore, HP treatments in the pH 4.2 sauce caused between 1 and 1.5 log inactivation of A. acidoterrestris. Germination of spores in the high pressure window was strongly temperature dependent, whereas germination of A. acidoterrestris in the low pressure window showed little temperature dependence. When HP treatment was conducted at 60°C, most of the germinated spores were also inactivated. For the pH 4.2 tomato sauce, this

  9. High hydrostatic pressure and biopreservation of dry-cured ham to meet the Food Safety Objectives for Listeria monocytogenes.

    PubMed

    Hereu, Anna; Bover-Cid, Sara; Garriga, Margarita; Aymerich, Teresa

    2012-03-15

    This work aimed to evaluate the effect of nisin application (biopreservation) combined with high hydrostatic pressure processing (HHP) on the behavior of Listeria monocytogenes CTC1034 intentionally inoculated (at ca. 10(7)cells/g) onto the surface of ready-to-eat (RTE) sliced dry-cured ham. Two types of dry-cured ham, which had different water activities and fat contents were studied (a(w) of 0.92 and 14.25% fat and a(w) of 0.88 and 33.26% fat). Three batches were prepared for each type of product: (C) control, without nisin; (N) nisin directly applied (200 AU/cm(2)) and (F) nisin applied through active packaging, polyvinyl alcohol films with 200 AU/cm(2). Half of the samples were pressurized at 600 MPa for 5min. Counts of L. monocytogenes were periodically monitored throughout 60 days of storage at 8°C. The physico-chemical characteristics of the products enabled the survival of L. monocytogenes, but it was significantly reduced by the presence of nisin. The effect of biopreservation was greater when applied directly to the surface and in the product with lower water activity in comparison with the active packaging and the high water activity products, respectively. The immediate inactivation of L. monocytogenes by HHP ranged from 1.82 to 3.85 Log units, depending on the type of dry-cured ham. The lower the water activity, the less was the inactivation induced by HHP, both immediately and during storage. The reduction of L. monocytogenes immediately after HHP and during storage was more evident in batches with nisin applied directly to the surface of the product. The pathogen was not detected in some samples from day 5 of storage in the product with higher water activity. The effect of nisin applied through active packaging was lower than the direct application. The results of the present study indicated that HHP, as post-processing listericidal treatment, is more effective (both immediately and long term) than the use of nisin as an antimicrobial measure

  10. Effect of α-Amylase Degradation on Physicochemical Properties of Pre-High Hydrostatic Pressure-Treated Potato Starch

    PubMed Central

    Mu, Tai-Hua; Zhang, Miao; Raad, Leyla; Sun, Hong-Nan; Wang, Cheng

    2015-01-01

    The effect of high hydrostatic pressure (HHP) on the susceptibility of potato starch (25%, w/v) suspended in water to degradation by exposure to bacterial α-amylase (0.02%, 0.04% and 0.06%, w/v) for 40 min at 25°C was investigated. Significant differences (p < 0.05) in the structure, morphology and physicochemical properties were observed. HHP-treated potato starch (PS) exposed to α-amylase (0.06%, w/v) showed a significantly greater degree of hydrolysis and amount of reducing sugar released compared to α-amylase at a concentration of 0.04% (w/v) or 0.02% (w/v). Native PS (NPS) granules have a spherical and elliptical form with a smooth surface, whereas the hydrolyzed NPS (hNPS) and hydrolyzed HHP-treated PS granules showed irregular and ruptured forms with several cracks and holes on the surface. Hydrolysis of HHP-treated PS by α-amylase could decrease the average granule size significantly (p <0.05) from 29.43 to 20.03 μm. Swelling power decreased and solubility increased with increasing enzyme concentration and increasing pressure from 200–600 MPa, with the exception of the solubility of HHP-treated PS at 600 MPa (HHP600 PS). Fourier transform infrared spectroscopy (FTIR) showed extensive degradation of the starch in both the ordered and the amorphous structure, especially in hydrolyzed HHP600 PS. The B-type of hydrolyzed HHP600 PS with α-amylase at a concentration 0.06% (w/v) changed to a B+V type with an additional peak at 2θ = 19.36°. The HHP600 starch with 0.06% (w/v) α-amylase displayed the lowest value of To (onset temperature), Tc (conclusion temperature) and ΔHgel (enthalpies of gelatinization). These results indicate the pre-HHP treatment of NPS leads to increased susceptibility of the granules to enzymatic degradation and eventually changes of both the amorphous and the crystalline structures. PMID:26642044

  11. Evaluation of high hydrostatic pressure inactivation of human norovirus on strawberries, blueberries, raspberries and in their purees.

    PubMed

    Huang, Runze; Ye, Mu; Li, Xinhui; Ji, Lin; Karwe, Mukund; Chen, Haiqiang

    2016-04-16

    Human norovirus (HuNoV) has been an increasing concern of foodborne illness related to fresh and frozen berries. In this study, high hydrostatic pressure (HHP) inactivation of HuNoV on fresh strawberries, blueberries, and raspberries and in their purees was investigated. Porcine gastric mucin (PGM)-conjugated magnetic beads (PGM-MBs) and real-time reverse transcriptional polymerase chain reaction (RT-qPCR) were utilized for infectious HuNoV discrimination and quantification. Strawberry puree inoculated with HuNoV genogroup I.1 (GI.1) strain was HHP-treated at 450, 500 and 550 MPa for 2 min each at initial sample temperatures of 0, 4 and 20 °C. HuNoV GI.1 strain became more sensitive to HHP treatment as the temperature decreased from 20 to 0 °C. HuNoV GI.1 or genogroup II.4 (GII.4) strains were inoculated into three types of berries and their purees and treated at pressure levels from 250 to 650 MPa for 2 min at initial sample temperature of 0 °C. For the purees, the HHP condition needed to achieve >2.9 log reduction of HuNoV GI.1 strain and >4.0 log reduction of HuNoV GII.4 strain was found to be ≥ 550 MPa for 2 min at 0 °C. HHP treatment showed better inactivation effect of HuNoV on blueberries than on strawberry quarters and raspberries. HuNoV GI.1 strain was more resistant to HHP treatment than HuNoV GII.4 strain under different temperatures and environment. The physical properties and sensory qualities of HHP-treated and untreated blueberries and the three types of berry purees were evaluated. Color, pH and viscosity of blueberries and three berry purees showed no or slight changes after HHP treatment. Sensory evaluation demonstrated that HHP treatment of 550 MPa for 2 min at 0 °C did not significantly reduced the sensory qualities of three berry purees. The results demonstrated that the HHP treatment of 550 MPa for 2 min at 0 °C could be a potential nonthermal intervention for HuNoV in berry purees without adversely affecting their sensory qualities

  12. Effect of α-Amylase Degradation on Physicochemical Properties of Pre-High Hydrostatic Pressure-Treated Potato Starch.

    PubMed

    Mu, Tai-Hua; Zhang, Miao; Raad, Leyla; Sun, Hong-Nan; Wang, Cheng

    2015-01-01

    The effect of high hydrostatic pressure (HHP) on the susceptibility of potato starch (25%, w/v) suspended in water to degradation by exposure to bacterial α-amylase (0.02%, 0.04% and 0.06%, w/v) for 40 min at 25°C was investigated. Significant differences (p < 0.05) in the structure, morphology and physicochemical properties were observed. HHP-treated potato starch (PS) exposed to α-amylase (0.06%, w/v) showed a significantly greater degree of hydrolysis and amount of reducing sugar released compared to α-amylase at a concentration of 0.04% (w/v) or 0.02% (w/v). Native PS (NPS) granules have a spherical and elliptical form with a smooth surface, whereas the hydrolyzed NPS (hNPS) and hydrolyzed HHP-treated PS granules showed irregular and ruptured forms with several cracks and holes on the surface. Hydrolysis of HHP-treated PS by α-amylase could decrease the average granule size significantly (p <0.05) from 29.43 to 20.03 μm. Swelling power decreased and solubility increased with increasing enzyme concentration and increasing pressure from 200-600 MPa, with the exception of the solubility of HHP-treated PS at 600 MPa (HHP600 PS). Fourier transform infrared spectroscopy (FTIR) showed extensive degradation of the starch in both the ordered and the amorphous structure, especially in hydrolyzed HHP600 PS. The B-type of hydrolyzed HHP600 PS with α-amylase at a concentration 0.06% (w/v) changed to a B+V type with an additional peak at 2θ = 19.36°. The HHP600 starch with 0.06% (w/v) α-amylase displayed the lowest value of To (onset temperature), Tc (conclusion temperature) and ΔHgel (enthalpies of gelatinization). These results indicate the pre-HHP treatment of NPS leads to increased susceptibility of the granules to enzymatic degradation and eventually changes of both the amorphous and the crystalline structures. PMID:26642044

  13. Inactivation of Salmonella enterica and Listeria monocytogenes in cantaloupe puree by high hydrostatic pressure with/without added ascorbic acid.

    PubMed

    Mukhopadhyay, Sudarsan; Sokorai, Kimberly; Ukuku, Dike; Fan, Xuetong; Juneja, Vijay; Sites, Joseph; Cassidy, Jennifer

    2016-10-17

    The objective of this research was to evaluate and develop a method for inactivation of Salmonella enterica and Listeria monocytogenes in cantaloupe puree (CP) by high hydrostatic pressure (HHP). Cantaloupe being the most netted varieties of melons presents a greater risk of pathogen transmission. Freshly prepared CP with or without 0.1% ascorbic acid (AA) was inoculated with a bacterial cocktail composed of a three serotype mixture of S. enterica (S. Poona, S. Newport H1275 and S. Stanley H0558) and a mixture of three strains of L. monocytogenes (Scott A, 43256 and 51742) to a population of ca. 10(8)CFU/g. Double sealed and double bagged inoculated CP (ca. 5g) were pressure treated at 300, 400 and 500MPa at 8°C and 15°C for 5min. Data indicated increased inactivation of both Salmonella and Listeria spp. with higher pressure. Log reduction for CP at 300MPa, 8°C for 5min was 2.4±0.2 and 1.6±0.5logCFU/g for Salmonella and Listeria, respectively. Survivability of the pathogens was significantly compromised at 400MPa and 8°C, inactivating 4.5±0.3logCFU/g of Salmonella and 3.0±0.4logCFU/g of Listeria spp. Complete inactivation of the pathogens in the puree (log reduction >6.7logCFU/g), with or without AA, was achieved when the pressure was further increased to 500MPa, except that for Listeria containing no AA at 8°C. Listeria presented higher resistance to pressure treatment compared to Salmonella spp. Initial temperatures (8 and 15°C) had no significant influence on Salmonella log reductions. Log reduction of pathogens increased but not significantly with increase of temperature. AA did not show any significant antimicrobial activity. Viable counts were about 0.2-0.4logCFU/g less in presence of 0.1% AA. These data validate that HHP can be used as an effective method for decontamination of cantaloupe puree.

  14. Inactivation of Salmonella enterica and Listeria monocytogenes in cantaloupe puree by high hydrostatic pressure with/without added ascorbic acid.

    PubMed

    Mukhopadhyay, Sudarsan; Sokorai, Kimberly; Ukuku, Dike; Fan, Xuetong; Juneja, Vijay; Sites, Joseph; Cassidy, Jennifer

    2016-10-17

    The objective of this research was to evaluate and develop a method for inactivation of Salmonella enterica and Listeria monocytogenes in cantaloupe puree (CP) by high hydrostatic pressure (HHP). Cantaloupe being the most netted varieties of melons presents a greater risk of pathogen transmission. Freshly prepared CP with or without 0.1% ascorbic acid (AA) was inoculated with a bacterial cocktail composed of a three serotype mixture of S. enterica (S. Poona, S. Newport H1275 and S. Stanley H0558) and a mixture of three strains of L. monocytogenes (Scott A, 43256 and 51742) to a population of ca. 10(8)CFU/g. Double sealed and double bagged inoculated CP (ca. 5g) were pressure treated at 300, 400 and 500MPa at 8°C and 15°C for 5min. Data indicated increased inactivation of both Salmonella and Listeria spp. with higher pressure. Log reduction for CP at 300MPa, 8°C for 5min was 2.4±0.2 and 1.6±0.5logCFU/g for Salmonella and Listeria, respectively. Survivability of the pathogens was significantly compromised at 400MPa and 8°C, inactivating 4.5±0.3logCFU/g of Salmonella and 3.0±0.4logCFU/g of Listeria spp. Complete inactivation of the pathogens in the puree (log reduction >6.7logCFU/g), with or without AA, was achieved when the pressure was further increased to 500MPa, except that for Listeria containing no AA at 8°C. Listeria presented higher resistance to pressure treatment compared to Salmonella spp. Initial temperatures (8 and 15°C) had no significant influence on Salmonella log reductions. Log reduction of pathogens increased but not significantly with increase of temperature. AA did not show any significant antimicrobial activity. Viable counts were about 0.2-0.4logCFU/g less in presence of 0.1% AA. These data validate that HHP can be used as an effective method for decontamination of cantaloupe puree. PMID:27441819

  15. Reduction of Listeria Innocua Contamination in Vacuum-Packaged Dry-Cured Italian Pork Products After High Hydrostatic Pressure Treatment

    PubMed Central

    Merialdi, Giuseppe; Ramini, Mattia; Ravanetti, Emanuela; Gherri, Giorgio

    2015-01-01

    The present work aims to present the results of the application of a treatment with high hydrostatic pressure (HHP) on Italian fermented and dry-cured pork products. The products used in this study were portioned cured ham, portioned bacon and salami, vacuumpackaged and produced by a single processing company. Two studies were conducted on a single batch of the three products by means of an artificial contamination with Listeria innocua as a surrogate of L. monocytogenes. In the first trial a superficial contamination was obtained by immersion for 3 min in the culture broth with a concentration of approximately 9 log cfu/mL. At the end of the inoculum step, the pieces were dred at room temperature and vacuum packaged. In the second trial 50 kg of minced pork meat were contaminated before production of salami. In both cases the inoculum contained 5 strains of L. innocua. Subsequently, in both trials, 10 samples were randomly divided into two groups of 5 pieces each: i) TH group, samples treated with HHP; ii) group C, control samples, not subjected to any treatment. All samples were stored at refrigeration temperature at the end of HHP treatments (if applied), and analyzed for the determination of the surface (1st trial) and deep (2nd trial) quantitative contamination of L. innocua. pH and aW were also determined on 3 pieces of each products belonging to group C. The difference between the medians of the log cfu/cm2 or g established between controls and treated were compared using the non-parametric test (Kruskal-Wallis test) with P<0.01. In all products and in both trials the level of contamination detected in treatment groups was always significantly lower than in controls (P<0.01). In particular, in vacuum-packaged ham, bacon and salami viability logarithmic viability reductions equal to -2.29, -2.54 and -2.51 were observed, respectively. This study aimed to evaluate a not-thermal treatment on Italian cured or fermented pork products. The results of this study

  16. Evaluation of high hydrostatic pressure inactivation of human norovirus on strawberries, blueberries, raspberries and in their purees.

    PubMed

    Huang, Runze; Ye, Mu; Li, Xinhui; Ji, Lin; Karwe, Mukund; Chen, Haiqiang

    2016-04-16

    Human norovirus (HuNoV) has been an increasing concern of foodborne illness related to fresh and frozen berries. In this study, high hydrostatic pressure (HHP) inactivation of HuNoV on fresh strawberries, blueberries, and raspberries and in their purees was investigated. Porcine gastric mucin (PGM)-conjugated magnetic beads (PGM-MBs) and real-time reverse transcriptional polymerase chain reaction (RT-qPCR) were utilized for infectious HuNoV discrimination and quantification. Strawberry puree inoculated with HuNoV genogroup I.1 (GI.1) strain was HHP-treated at 450, 500 and 550 MPa for 2 min each at initial sample temperatures of 0, 4 and 20 °C. HuNoV GI.1 strain became more sensitive to HHP treatment as the temperature decreased from 20 to 0 °C. HuNoV GI.1 or genogroup II.4 (GII.4) strains were inoculated into three types of berries and their purees and treated at pressure levels from 250 to 650 MPa for 2 min at initial sample temperature of 0 °C. For the purees, the HHP condition needed to achieve >2.9 log reduction of HuNoV GI.1 strain and >4.0 log reduction of HuNoV GII.4 strain was found to be ≥ 550 MPa for 2 min at 0 °C. HHP treatment showed better inactivation effect of HuNoV on blueberries than on strawberry quarters and raspberries. HuNoV GI.1 strain was more resistant to HHP treatment than HuNoV GII.4 strain under different temperatures and environment. The physical properties and sensory qualities of HHP-treated and untreated blueberries and the three types of berry purees were evaluated. Color, pH and viscosity of blueberries and three berry purees showed no or slight changes after HHP treatment. Sensory evaluation demonstrated that HHP treatment of 550 MPa for 2 min at 0 °C did not significantly reduced the sensory qualities of three berry purees. The results demonstrated that the HHP treatment of 550 MPa for 2 min at 0 °C could be a potential nonthermal intervention for HuNoV in berry purees without adversely affecting their sensory qualities

  17. Worm Gear With Hydrostatic Engagement

    NASA Technical Reports Server (NTRS)

    Chaiko, Lev I.

    1994-01-01

    In proposed worm-gear transmission, oil pumped at high pressure through meshes between teeth of gear and worm coil. Pressure in oil separates meshing surfaces slightly, and oil reduces friction between surfaces. Conceived for use in drive train between gas-turbine engine and rotor of helicopter. Useful in other applications in which weight critical. Test apparatus simulates and measures some loading conditions of proposed worm gear with hydrostatic engagement.

  18. Multiple plate hydrostatic viscous damper

    NASA Technical Reports Server (NTRS)

    Ludwig, L. P. (Inventor)

    1981-01-01

    A device for damping radial motion of a rotating shaft is described. The damper comprises a series of spaced plates extending in a radial direction. A hydraulic piston is utilized to place a load in these plates. Each annular plate is provided with a suitable hydrostatic bearing geometry on at least one of its faces. This structure provides a high degree of dampening in a rotor case system of turbomachinery in general. The damper is particularly useful in gas turbine engines.

  19. Effect of high hydrostatic pressure and high dynamic pressure on stability and rheological properties of model oil-in-water emulsions

    NASA Astrophysics Data System (ADS)

    Bigikocin, Erman; Mert, Behic; Alpas, Hami

    2011-09-01

    Both static and dynamic high pressure applications provide interesting modifications in food structures which lead to new product formulations. In this study, the effects of two different treatments, high hydrostatic pressure (HHP) and high dynamic pressure (HDP), on oil-in-water emulsions were identified and compared. Microfluidization was selected from among the HDP homogenization techniques. The performance of each process was analyzed in terms of rheological modifications and emulsion stability improvements compared with the coarse emulsions. The stability of the emulsions was determined comparatively by using an analytical photo-centrifuge device employing novel analysis technology. Whey protein isolate (WPI) in combination with a food polysaccharide (xanthan gum, guar gum or locust bean gum) were used as emulsifying and stabilizing ingredients. The effective disruption of oil droplets and the degradation of polysaccharides by the shear forces under high pressure in HDP microfluidization yielded finer emulsions with lower viscosities, leading to distinctive improvements in emulsion stability. On the other hand, improvements in stability obtained with HHP treatment were due to the thickening of the emulsions mainly induced by protein unfolding. The corresponding increases in viscosity were intensified in emulsion formulations containing higher oil content. Apart from these, HHP treatment was found to be relatively more contributive to the enhancements in viscoelastic properties.

  20. Analysis of oligomeric transition of silkworm small heat shock protein sHSP20.8 using high hydrostatic pressure native PAGE

    NASA Astrophysics Data System (ADS)

    Fujisawa, Tetsuro; Ueda, Toshifumi; Kameyama, Keiichi; Aso, Yoichi; Ishiguro, Ryo

    2013-06-01

    The small heat shock proteins (sHSPs) solubilize thermo-denatured proteins without adenosine triphosphate energy consumption to facilitate protein refolding. sHSP20.8 is one of the silkworm (Bombyx mori) sHSPs having only one cystein in the N-terminal domain: Cys43. We report a simple measurement of oligomeric transition of sHSP20.8 using high hydrostatic pressure native polyacrylamide gel electrophoresis (high hydrostatic pressure (HP) native polyacrylamide gel electrophoresis (PAGE)). At ambient pressure under oxydative condition, the native PAGE of thermal transition of sHSP20.8 oligomer displayed a cooperative association. In contrast, HP native PAGE clearly demonstrated that sHSP20.8 dissociated at 80 MPa and 25°C, and the resultant molecular species gradually reassociated with time under that condition. In addition, the reassociation process was suppressed in the presence of the reductant. These results are consistent with the idea that sHSP20.8 oligomer temporally dissociates at the first thermo-sensing step and reassociates with the oxidation of Cys43.

  1. Compression of scheelite-type SrMoO4 under quasi-hydrostatic conditions: Redefining the high-pressure structural sequence

    NASA Astrophysics Data System (ADS)

    Errandonea, D.; Gracia, L.; Lacomba-Perales, R.; Polian, A.; Chervin, J. C.

    2013-03-01

    The high-pressure behavior of tetragonal SrMoO4 was analyzed by Raman and optical-absorption measurements. Pressures up to 46.1 GPa were generated using diamond-anvil cells and Ne or N2 as quasi-hydrostatic pressure-transmitting media. A reversible phase transition is observed at 17.7 GPa. A second transition is found at 28.8 GPa and the onset of a third one at 44.2 GPa. The pressure dependence of Raman-active modes is reported for the different phases and the pressure evolution of the fundamental band-gap reported for the low-pressure phase. The observed changes in the Raman spectra contradict the structural sequence determined from previous experiments performed under higher non-hydrostaticity. This fact suggests that deviatoric stresses can influence pressure-driven transitions in scheelite-type oxides. We also report total-energy, lattice-dynamics, and band-structure calculations. They reproduce accurately the behavior of the physical properties of the low-pressure phase and predict the occurrence of phase transitions at pressures similar to experimental transition pressures. According to theory, the high-pressure phases have monoclinic and orthorhombic structures, which are much more compact than tetragonal scheelite. Theoretical results and experiments are compared with previous studies.

  2. Hydrostatic Stress Effects in Metal Plasticity

    NASA Technical Reports Server (NTRS)

    Wilson, Christopher D.

    1999-01-01

    Since the 1940s, the theory of plasticity has assumed that hydrostatic stress does not affect the yield or postyield behavior of metals. This assumption is based on the early work of Bridgman. Bridgman found that hydrostatic pressure (compressive stress) does not affect yield behavior until a substantial amount of pressure (greater than 100 ksi) is present. The objective of this study was to determine the effect of hydrostatic tension on yield behavior. Two different specimen geometries were examined: an equal-arm bend specimen and a double edge notch specimen. The presence of a notch is sufficient to develop high enough hydrostatic tensile stresses to affect yield. The von Mises yield function, which does not have a hydrostatic component, and the Drucker-Prager yield function, which includes a hydrostatic component, were used in finite element analyses of the two specimen geometries. The analyses were compared to test data from IN 100 specimens. For both geometries, the analyses using the Drucker-Prager yield function more closely simulated the test data. The von Mises yield function lead to 5-10% overprediction of the force-displacement or force-strain response of the test specimens.

  3. Effects of high hydrostatic pressures on living cells: a consequence of the properties of macromolecules and macromolecule-associated water.

    PubMed

    Mentré, P; Hui Bon Hoa, G

    2001-01-01

    Sixty percent of the Earth's biomass is found in the sea, at depths greater than 1000 m, i.e., at hydrostatic pressures higher than 100 atm. Still more surprising is the fact that living cells can reversibly withstand pressure shifts of 1000 atm. One explanation lies in the properties of cellular water. Water forms a very thin film around macromolecules, with a heterogeneous structure that is an image of the heterogeneity of the macromolecular surface. The density of water in contact with macromolecules reflects the physical properties of their different domains. Therefore, any macromolecular shape variations involving the reorganization of water and concomitant density changes are sensitive to pressure (Le Chatelier's principle). Most of the pressure-induced changes to macromolecules are reversible up to 2000 atm. Both the effects of pressure shifts on living cells and the characteristics of pressure-adapted species are opening new perspectives on fundamental problems such as regulation and adaptation. PMID:11057830

  4. High-pressure deformation of calcite marble and its transformation to aragonite under non-hydrostatic conditions

    USGS Publications Warehouse

    Hacker, B.R.; Kirby, S.H.

    1993-01-01

    We conducted deformation experiments on Carrara marble in the aragonite and calcite stability fields to observe the synkinematic transformation of calcite to aragonite, and to identify any relationships between transformation and deformation or sample strength. Deformation-induced microstructures in calcite crystals varied most significantly with temperature, ranging from limited slip and twinning at 400??C, limited recrystallization at 500??C, widespread recrystallization at 600 and 700??C, to grain growth at 800-900??C. Variations in confining pressure from 0.3 to 2.0 GPa have no apparent effect on calcite deformation microstructures. Aragonite grew in 10-6-10-7 s-1strain rate tests conducted for 18-524 h at confining pressures of 1.7-2.0 GPa and temperatures of 500-600??C. As in our previously reported hydrostatic experiments on this same transformation, the aragonite nucleated on calcite grain boundaries. The extent of transformation varied from a few percent conversion near pistons at 400??C, 2.0 GPa and 10-4 s-1 strain rate in a 0.8 h long experiment, to 98% transformation in a 21-day test at a strain rate of 10-7 s-7, a temperature of 600??C and a pressure of 2.0 GPa. At 500??C, porphyroblastic 100-200 ??m aragonite crystals grew at a rate faster than 8 ?? 10-1m s-1. At 600??C, the growth of aragonite neoblasts was slower, ???6 ?? 10-1 m s -1, and formed 'glove-and-finger' cellularprecipitation-like textures identical to those observed in hydrostatic experiments. The transformation to aragonite is not accompanied by a shear instability or anisotropic aragonite growth, consistent with its relatively small volume change and latent heat in comparison with compounds that do display those features. ?? 1993.

  5. Effect of Hydrostatic Pressure on the 3D Porosity Distribution and Mechanical Behavior of a High Pressure Die Cast Mg AZ91 Alloy

    NASA Astrophysics Data System (ADS)

    Sket, Federico; Fernández, Ana; Jérusalem, Antoine; Molina-Aldareguía, Jon M.; Pérez-Prado, María Teresa

    2015-09-01

    A limiting factor of high pressure die cast (HPDC) Mg alloys is the presence of porosity, which has a detrimental effect on the mechanical strength and gives rise to a large variability in the ductility. The application of hydrostatic pressure after casting is known to be beneficial to improve the mechanical response of HPDC Mg alloys. In this study, a combined experimental and simulation approach has been developed in order to investigate the influence of pressurization on the 3D porosity distribution and on the mechanical behavior of an HPDC Mg AZ91 alloy. Examination of about 10,000 pores by X-ray computed microtomography allowed determining the effect of hydrostatic pressure on the bulk porosity volume fraction, as well as the change in volume and geometry of each individual pore. The evolution of the 3D porosity distribution and mechanical behavior of a sub-volume containing 200 pores was also simulated by finite element analysis. Both experiments and simulations consistently revealed a decrease in the bulk porosity fraction and a bimodal distribution of the individual volume changes after the application of the pressure. This observation is associated with pores containing internal pressure as a result of the HPDC process. Furthermore, a decrease in the complexity factor with increasing volume change is observed experimentally and predicted by simulations. The pressure-treated samples have consistently higher plastic flow strengths.

  6. Full Inactivation of Human Influenza Virus by High Hydrostatic Pressure Preserves Virus Structure and Membrane Fusion While Conferring Protection to Mice against Infection

    PubMed Central

    Dumard, Carlos H.; Barroso, Shana P. C.; de Oliveira, Guilherme A. P.; Carvalho, Carlos A. M.; Gomes, Andre M. O.; Couceiro, José Nelson S. S.; Ferreira, Davis F.; Nico, Dirlei; Oliveira, Andrea C.; Silva, Jerson L.; Santos, Patrícia S.

    2013-01-01

    Whole inactivated vaccines (WIVs) possess greater immunogenicity than split or subunit vaccines, and recent studies have demonstrated that WIVs with preserved fusogenic activity are more protective than non-fusogenic WIVs. In this work, we describe the inactivation of human influenza virus X-31 by high hydrostatic pressure (HHP) and analyze the effects on the structure by spectroscopic measurements, light scattering, and electron microscopy. We also investigated the effects of HHP on the glycoprotein activity and fusogenic activity of the viral particles. The electron microscopy data showed pore formation on the viral envelope, but the general morphology was preserved, and small variations were seen in the particle structure. The activity of hemagglutinin (HA) during the process of binding and fusion was affected in a time-dependent manner, but neuraminidase (NA) activity was not affected. Infectious activity ceased after 3 hours of pressurization, and mice were protected from infection after being vaccinated. Our results revealed full viral inactivation with overall preservation of viral structure and maintenance of fusogenic activity, thereby conferring protection against infection. A strong response consisting of serum immunoglobulin IgG1, IgG2a, and serum and mucosal IgA was also detected after vaccination. Thus, our data strongly suggest that applying hydrostatic pressure may be an effective method for developing new vaccines against influenza A as well as other viruses. PMID:24282553

  7. Arsenolite: a quasi-hydrostatic solid pressure-transmitting medium

    NASA Astrophysics Data System (ADS)

    Sans, J. A.; Manjón, F. J.; Popescu, C.; Muñoz, A.; Rodríguez-Hernández, P.; Jordá, J. L.; Rey, F.

    2016-11-01

    This study reports the experimental characterization of the hydrostatic properties of arsenolite (As4O6), a molecular solid which is one of the softest minerals in the absence of hydrogen bonding. The high compressibility of arsenolite and its stability up to 15 GPa have been proved by x-ray diffraction measurements, and the progressive loss of hydrostaticity with increasing pressure up to 20 GPa has been monitored by ruby photoluminescence. Arsenolite has been found to exhibit hydrostatic behavior up to 2.5 GPa and a quasi-hydrostatic behavior up to 10 GPa at room temperature. This result opens the way to explore other molecular solids as possible quasi-hydrostatic pressure-transmitting media. The validity of arsenolite as an insulating, stable, non-penetrating and quasi-hydrostatic medium is explored by the study of the x-ray diffraction of zeolite ITQ-29 at high pressure.

  8. Arsenolite: a quasi-hydrostatic solid pressure-transmitting medium.

    PubMed

    Sans, J A; Manjón, F J; Popescu, C; Muñoz, A; Rodríguez-Hernández, P; Jordá, J L; Rey, F

    2016-11-30

    This study reports the experimental characterization of the hydrostatic properties of arsenolite (As4O6), a molecular solid which is one of the softest minerals in the absence of hydrogen bonding. The high compressibility of arsenolite and its stability up to 15 GPa have been proved by x-ray diffraction measurements, and the progressive loss of hydrostaticity with increasing pressure up to 20 GPa has been monitored by ruby photoluminescence. Arsenolite has been found to exhibit hydrostatic behavior up to 2.5 GPa and a quasi-hydrostatic behavior up to 10 GPa at room temperature. This result opens the way to explore other molecular solids as possible quasi-hydrostatic pressure-transmitting media. The validity of arsenolite as an insulating, stable, non-penetrating and quasi-hydrostatic medium is explored by the study of the x-ray diffraction of zeolite ITQ-29 at high pressure. PMID:27636010

  9. A Hydrostatic Paradox Revisited

    ERIC Educational Resources Information Center

    Ganci, Salvatore

    2012-01-01

    This paper revisits a well-known hydrostatic paradox, observed when turning upside down a glass partially filled with water and covered with a sheet of light material. The phenomenon is studied in its most general form by including the mass of the cover. A historical survey of this experiment shows that a common misunderstanding of the phenomenon…

  10. The Hydrostatic Paradox.

    ERIC Educational Resources Information Center

    Wilson, Alpha E.

    1995-01-01

    Presents an example demonstrating the quantitative resolution of the hydrostatic paradox which is the realization that the force due to fluid pressure on the bottom of a vessel can be considerably greater or considerably less than the weight of the fluid in the vessel. (JRH)

  11. A comparative study of changes in the microbiota of apple juice treated by high hydrostatic pressure (HHP) or high pressure homogenisation (HPH).

    PubMed

    McKay, Alan M; Linton, Mark; Stirling, Jennifer; Mackle, Aideen; Patterson, Margaret F

    2011-12-01

    The objective of this study was to assess the effect of High Pressure Homogenisation (HPH) compared with High Hydrostatic Pressure (HHP) on the microbiological quality of raw apple juice during storage at ideal (4 °C) and abuse (12 °C) temperatures. In the case of HPH, only low numbers of micro-organisms were detected after treatment at 300 MPa (typically between 2 and 3 log.ml⁻¹). These were identified as Streptomyces spp., and numbers did not increase during storage of the juice for 35 days, irrespective of storage temperature. In the case of HHP, the total aerobic counts were also reduced significantly (p < 0.05) after treatment for 1 min at 500 and 600 MPa and the numbers did not increase significantly during storage at 4 °C. However, during storage at 12 °C the counts did increase significantly (p < 0.05) and by day 14 counts at 500 MPa were not significantly different from the control juice. This confirms that good temperature control is important if the full benefits of HHP treatment are to be realised. Frateuria aurantia dominated the microbiota of the HHP apple juice stored at 12 °C along with low levels of Bacillus and Streptomyces spp. The HPH and HHP juices both turned brown during storage indicating that neither treatment was sufficient to inactivate polyphenol oxidase. The enzyme is known to be pressure resistant and this discolouration was controlled by a heat treatment (70 °C for 1 min) used in commercial practice and given prior to HP treatment.

  12. A preliminary study about the influence of high hydrostatic pressure processing in parallel with oak chip maceration on the physicochemical and sensory properties of a young red wine.

    PubMed

    Tao, Yang; Sun, Da-Wen; Górecki, Adrian; Błaszczak, Wioletta; Lamparski, Grzegorz; Amarowicz, Ryszard; Fornal, Józef; Jeliński, Tomasz

    2016-03-01

    The influence of high hydrostatic pressure (HHP) processing in parallel with oak chip maceration on the physicochemical and sensory properties of a young red wine was investigated preliminarily. Wines were treated by HHP at 250, 450 and 650MPa for up to 45min and French oak chips (5g/L) were added. HHP enhanced the extraction of phenolics from oak chips. The phenolic contents and antioxidant activity of the wine increased after HHP processing in the presence of oak chips. Meanwhile, the anthocyanin content and wine color intensity decreased in the first 5min of pressure treatment and then increased gradually. The multivariate analysis revealed that "pressure holding time" was the key factor affecting wine physicochemical characteristics during HHP processing in the presence of oak chips. Furthermore, oak chip maceration with and without HHP processing weakened the intensities of several sensory attributes and provided the wine with an artificial taste.

  13. Effect of high hydrostatic pressure on seed germination, microbial quality, anatomy-morphology and physiological characteristics of garden cress (Lepidium sativum) seedlings

    NASA Astrophysics Data System (ADS)

    İşlek, Cemil; Murat Altuner, Ergin; Çeter, Talip; Alpas, Hami

    2013-06-01

    High hydrostatic pressure is a non-thermal food processing technology that is found to increase the percentage of germination, decrease the germination time and improve the microbial quality of seeds. In this study, pressures of 100-400 MPa for 10 min at 30°C are used to compare the percentage of germination, the microbial quality of seeds, chlorophyll a and b, and total phenolic compounds concentrations in seedlings, and the anatomy-morphology characteristics of garden cress. Enhanced reductions of total aerobic mesophilic bacteria, total and fecal coliforms, and yeast and mould populations in seeds were observed, especially at 300 MPa. In addition, the percentage of germination, chlorophyll content and phenolic compounds concentrations, fresh and dry weights, and hypocotyl lengths of the seedlings are higher than those of all samples, where the percentage of germination is equal to controls but higher than other samples, and radicula length is lower than controls but higher than others.

  14. A preliminary study about the influence of high hydrostatic pressure processing in parallel with oak chip maceration on the physicochemical and sensory properties of a young red wine.

    PubMed

    Tao, Yang; Sun, Da-Wen; Górecki, Adrian; Błaszczak, Wioletta; Lamparski, Grzegorz; Amarowicz, Ryszard; Fornal, Józef; Jeliński, Tomasz

    2016-03-01

    The influence of high hydrostatic pressure (HHP) processing in parallel with oak chip maceration on the physicochemical and sensory properties of a young red wine was investigated preliminarily. Wines were treated by HHP at 250, 450 and 650MPa for up to 45min and French oak chips (5g/L) were added. HHP enhanced the extraction of phenolics from oak chips. The phenolic contents and antioxidant activity of the wine increased after HHP processing in the presence of oak chips. Meanwhile, the anthocyanin content and wine color intensity decreased in the first 5min of pressure treatment and then increased gradually. The multivariate analysis revealed that "pressure holding time" was the key factor affecting wine physicochemical characteristics during HHP processing in the presence of oak chips. Furthermore, oak chip maceration with and without HHP processing weakened the intensities of several sensory attributes and provided the wine with an artificial taste. PMID:26471591

  15. Combined of ultrasound irradiation with high hydrostatic pressure (US/HHP) as a new method to improve immobilization of dextranase onto alginate gel.

    PubMed

    Bashari, Mohanad; Abbas, Shabbar; Xu, Xueming; Jin, Zhengyu

    2014-07-01

    In this research work, dextranase was immobilized onto calcium alginate beads by the combination of ultrasonic irradiation and high hydrostatic pressure (US/HHP) treatments. Effects of US/HHP treatments on loading efficiency and immobilization yield of dextranase enzyme onto calcium alginate beads were investigated. Furthermore, the activities of immobilized enzymes prepared with and without US/HHP treatments and that prepared with ultrasonic irradiation (US) and high hydrostatic pressure (HHP), as a function of pH, temperature, recyclability and enzyme kinetic parameters, were compared with that for free enzyme. The maximum loading efficiency and the immobilization yield were observed when the immobilized dextranase was prepared with US (40 W at 25 kHz for 15 min) combined with HHP (400 MPa for 15 min), under which the loading efficiency and the immobilization yield increased by 88.92% and 80.86%, respectively, compared to immobilized enzymes prepared without US/HHP treatment. On the other hand, immobilized enzyme prepared with US/HHP treatment showed Vmax, KM, catalytic and specificity constants values higher than that for the immobilized enzyme prepared with HHP treatment, indicated that, this new US/HHP method improved the catalytic kinetics activity of immobilized dextranase at all the reaction conditions studied. Compared to immobilized enzyme prepared either with US or HHP, the immobilized enzymes prepared with US/HHP method exhibited a higher: pH optimum, optimal reaction temperature, thermal stability and recyclability, and lower activation energy, which, illustrating the effectiveness of the US/HHP method. These results indicated that, the combination of US and HHP treatments could be an effective method for improving the immobilization of enzymes in polymers.

  16. Hydrostatic Hyperbaric Chamber Ventilation System

    NASA Technical Reports Server (NTRS)

    Sargusingh, Miriam M.

    2011-01-01

    The hydrostatic hyperbaric chamber (HHC) represents the merger of several technologies in development for NASA aerospace applications, harnessed to directly benefit global health. NASA has significant experience developing composite hyperbaric chambers for a variety of applications, including the treatment of medical conditions. NASA also has researched the application of water-filled vessels to increase tolerance of acceleration forces. The combination of these two applications has resulted in the hydrostatic chamber, which has been conceived as a safe, affordable means of making hyperbaric oxygen therapy available in the developing world for the treatment of a variety of medical conditions. Specifically, hyperbaric oxygen therapy is highly-desired as a possibly curative treatment for Buruli Ulcer, an infectious condition that afflicts children in sub-Saharan Africa. Hyperbaric oxygen therapy is simply too expensive and too dangerous to implement in the developing world using standard equipment. The hydrostatic hyperbaric chamber technology changes the paradigm. The HHC differs from standard hyperbaric chambers in that the majority of its volume is filled with water which is pressurized by oxygen being supplied in the portion of the chamber containing the patient s head. This greatly reduces the amount of oxygen required to sustain a hyperbaric atmosphere, thereby making the system more safe and economical to operate. An effort was taken to develop an HHC system to apply HBOT to children that is simple and robust enough to support transport, assembly, maintenance and operation in developing countries. This paper details the concept for an HHC ventilation and pressurization system that will provide controlled pressurization of the system, and provide adequate washout of carbon dioxide while the subject is enclosed in the confined space during the administration of the medical treatment. The concept took into consideration operational complexity, safety to the

  17. High-precision measurements of the compressibility of chalcogenide glasses at a hydrostatic pressure up to 9 GPa

    NASA Astrophysics Data System (ADS)

    Brazhkin, V. V.; Bychkov, E.; Tsiok, O. B.

    2016-08-01

    The volumes of glassy germanium chalcogenides GeSe2, GeS2, Ge17Se83, and Ge8Se92 are precisely measured at a hydrostatic pressure up to 8.5 GPa. The stoichiometric GeSe2 and GeS2 glasses exhibit elastic behavior in the pressure range up to 3 GPa, and their bulk modulus decreases at pressures higher than 2-2.5 GPa. At higher pressures, inelastic relaxation processes begin and their intensity is proportional to the logarithm of time. The relaxation rate for the GeSe2 glasses has a pronounced maximum at 3.5-4.5 GPa, which indicates the existence of several parallel structural transformation mechanisms. The nonstoichiometric glasses exhibit a diffuse transformation and inelastic behavior at pressures above 1-2 GPa. The maximum relaxation rate in these glasses is significantly lower than that in the stoichiometric GeSe2 glasses. All glasses are characterized by the "loss of memory" of history: after relaxation at a fixed pressure, the further increase in the pressure returns the volume to the compression curve obtained without a stop for relaxation. After pressure release, the residual densification in the stoichiometric glasses is about 7% and that in the Ge17Se83 glasses is 1.5%. The volume of the Ge8Se92 glass returns to its initial value within the limits of experimental error. As the pressure decreases, the effective bulk moduli of the Ge17Se83 and Ge8Se92 glasses coincide with the moduli after isobaric relaxation at the stage of increasing pressure, and the bulk modulus of the stoichiometric GeSe2 glass upon decreasing pressure noticeably exceeds the bulk modulus after isobaric relaxation at the stage of increasing pressure. Along with the reported data, our results can be used to draw conclusions regarding the diffuse transformations in glassy germanium chalcogenides during compression.

  18. Draft genome sequencing of Bacillus sp. strain M2-6, isolated from the roots of Korean ginseng, Panax ginseng C. A. Meyer, after high-hydrostatic-pressure processing.

    PubMed

    Kim, Chong-Tai; Kim, Bong-Soo; Kim, Min-Ji; Park, Bang Heon; Kwon, Sujin; Maeng, Hack Young; Kwak, Jangyul; Chun, Jongsik; Cho, Yong-Jin; Kim, Namsoo; Kim, Chul-Jin; Maeng, Jin-Soo

    2012-12-01

    A bacterium, designated M2-6, was isolated from Korean ginseng, Panax ginseng C. A. Meyer, roots after high-hydrostatic-pressure processing. On the basis of 16 rRNA gene phylogeny, the isolate was presumptively identified as a Bacillus sp. Here we report the draft genome sequence of Bacillus sp. strain M2-6 (= KACC 16563).

  19. Investigation on solubilization protocols in the refolding of the thioredoxin TsnC from Xylella fastidiosa by high hydrostatic pressure approach.

    PubMed

    Lemke, Laura Simoni; Chura-Chambi, Rosa Maria; Rodrigues, Daniella; Cussiol, Jose Renato Rosa; Malavasi, Natalia Vallejo; Alegria, Thiago Geronimo Pires; Netto, Luis Eduardo Soares; Morganti, Ligia

    2015-02-01

    The lack of efficient refolding methodologies must be overcome to take full advantage of the fact that bacteria express high levels of aggregated recombinant proteins. High hydrostatic pressure (HHP) impairs intermolecular hydrophobic and electrostatic interactions, dissociating aggregates, which makes HHP a useful tool to solubilize proteins for subsequent refolding. A process of refolding was set up by using as a model TsnC, a thioredoxin that catalyzes the disulfide reduction to a dithiol, a useful indication of biological activity. The inclusion bodies (IB) were dissociated at 2.4 kbar. The effect of incubation of IB suspensions at 1-800 bar, the guanidine hydrochloride concentration, the oxidized/reduced glutathione (GSH/GSSG) ratios, and the additives in the refolding buffer were analyzed. To assess the yields of fully biologically active protein obtained for each tested condition, it was crucial to analyze both the TsnC solubilization yield and its enzymatic activity. Application of 2.4 kbar to the IB suspension in the presence of 9 mM GSH, 1mM GSSG, 0.75 M guanidine hydrochloride, and 0.5M arginine with subsequent incubation at 1 bar furnished high refolding yield (81%). The experience gained in this study shall help to establish efficient HHP-based protein refolding processes for other proteins. PMID:25448595

  20. Impact of high hydrostatic pressure and pasteurization on the structure and the extractability of bioactive compounds of persimmon “Rojo Brillante”.

    PubMed

    Hernández-Carrión, M; Vázquez-Gutiérrez, J L; Hernando, I; Quiles, A

    2014-01-01

    Rojo Brillante is an astringent oriental persimmon variety with high levels of bioactive compounds such as soluble tannins, carotenoids, phenolic acids, and dietary fiber. The purpose of this study was to investigate the effects of high hydrostatic pressure (HHP) and pasteurization on the structure of the fruit and on the extractability of certain bioactive compounds. The microstructure was studied using light microscopy, transmission electron microscopy, and low temperature scanning electron microscopy, and certain physicochemical properties (carotenoid and total soluble tannin content, antioxidant activity, fiber content, color, and texture properties) were measured. The structural changes induced by HHP caused a rise in solute circulation in the tissues that could be responsible for the increased carotenoid level and the unchanged antioxidant activity in comparison with the untreated persimmon. In contrast, the changes that took place during pasteurization lowered the tannin content and antioxidant activity. Consequently, HHP treatment could improve the extraction of potentially bioactive compoundsxsts from persimmons. A high nutritional value ingredient to be used when formulating new functional foods could be obtained using HHP.

  1. Refolding of the recombinant protein OmpA70 from Leptospira interrogans from inclusion bodies using high hydrostatic pressure and partial characterization of its immunological properties.

    PubMed

    Fraga, Tatiana R; Chura-Chambi, Rosa M; Gonçales, Amane P; Morais, Zenaide M; Vasconcellos, Sílvio A; Morganti, Ligia; Martins, Elizabeth A L

    2010-07-20

    Leptospira is the etiological agent of leptospirosis, a life-threatening disease that affects human populations worldwide. Available vaccines have demonstrated limited effectiveness, and therapeutic interventions are complicated by the difficulty of establishing an early diagnosis. The genome of Leptospira strains was sequenced, and bioinformatic analyses revealed potential vaccine and serodiagnosis candidates. The present work studied OmpA70, a putative outer membrane protein from Leptospira interrogans serovar Copenhageni that combines structural features of Loa22, the first genetically defined virulence factor in Leptospira, and Lp49, a protein that reacts with sera from early and convalescent patients. Recombinant OmpA was produced in Escherichia coli in an insoluble form. Considering the importance of the structural integrity of a protein to confer immune protection, high hydrostatic pressure (HHP) was used to refold OmpA70 aggregated as inclusion bodies. HHP was applied in association with redox-shuffling reagents (oxidized and reduced glutathione) and guanidine hydrochloride or l-arginine. About 40% of the protein was refolded by applying 200MPa for 16h in concentrations of l-arginine above 0.4M. Circular dichroism revealed the presence of secondary structure. OmpA70 has immunogenic and antigenic properties as high antibody titers were seen after immunization with this protein, and sera from infected hamsters reacted with soluble OmpA70.

  2. Effects of high hydrostatic pressure on Escherichia coli ultrastructure, membrane integrity and molecular composition as assessed by FTIR spectroscopy and microscopic imaging techniques.

    PubMed

    Prieto-Calvo, María; Prieto, Miguel; López, Mercedes; Alvarez-Ordóñez, Avelino

    2014-12-18

    High hydrostatic pressure (HHP) is a novel food processing technology that is considered as an attractive alternative to conventional heat treatments for the preservation of foods, due to its lethal effects on pathogenic and spoilage microorganisms, while causing minor effects on food quality and sensorial attributes. This study is aimed at investigating how HHP treatments at varying intensities in the range 50-900 MPa affect the viability, membrane integrity, ultrastructure and molecular composition of Escherichia coli. Results of membrane integrity tests (measurement of cellular leakage and monitoring of propidium iodide uptake through fluorescence microscopy) and ultrastructural observations by transmission electron microscopy demonstrated that HHP gave rise to cellular enlargement, membrane damage or detachment, DNA and protein denaturation and loss of intracellular contents. Fourier-transform infrared (FTIR) spectroscopy analyses evidenced minor changes in molecular composition in response to high pressures, which were mostly observed on the spectral region w4 (1200-900 cm-1), mainly informative of carbohydrates and polysaccharides of the cell wall. These findings suggest that exposure of E. coli cells to HHP causes alterations in their physical integrity while producing minor modifications in biochemical cellular composition. The current study increases the knowledge on the mechanisms of E. coli inactivation by HHP and provides valuable information for the design of more effective food preservation regimes based on the integration of mild HHP in combination with other food preservation strategies into a multi-target hurdle technology approach.

  3. Impact of Radio Frequency, Microwaving, and High Hydrostatic Pressure at Elevated Temperature on the Nutritional and Antinutritional Components in Black Soybeans.

    PubMed

    Zhong, Yu; Wang, Zhuyi; Zhao, Yanyun

    2015-12-01

    In this study, the effects of high hydrostatic pressure (HHP) at elevated temperature (60 °C) and 2 dielectric heating (DH) methods (radio frequency [RF], and microwaving [MW]) on the nutritional compositions and removal of antinutritional factors in black soybeans were studied. Each treatment caused <2% reduction in protein, and 3.3% to 7.0% decline in total amino acid content. However, the proportion of essential amino acid slightly increased in DH treated samples. The treatment decreased fat content (14.0% to 35.7%), but had small influence on fatty acid proportion. Antinutritional factors including trypsin inhibitor, tannins, saponins, and phytic acid were all declined by the 3 treatments, and DH treatment was generally more efficient. The most abundant saponins was decreased >22% in DH treated samples. MW and HHP led to higher in vitro protein digestibility, RF and MW promoted protein aggregation from atomic force microscope topography, but HHP caused more damages on protein subunits as seen from SDS-PAGE image. PMID:26579996

  4. Lethality and injuring the effect of compression and decompression rates of high hydrostatic pressure on Escherichia coli O157:H7 in different matrices

    NASA Astrophysics Data System (ADS)

    Syed, Qamar Abbas; Buffa, Martin; Guamis, Buenaventura; Saldo, Jordi

    2013-03-01

    The effect of compression and decompression rates of high hydrostatic pressure (HHP) on Escherichia coli O157:H7 was investigated. Samples of orange juice, skimmed milk and Tris buffer were inoculated with E. coli O157:H7 and subjected to 600 MPa for 3 min at 4°C with fast, medium and slow compression and decompression. Analyses immediately after HHP treatment revealed that E. coli in milk and juice treated with fast compression suffered more than slow compression rates. Slow decompression resulted in higher inactivation of E. coli in all matrices. After overnight storage, highest stress-recovery (1.19 log cfu/mL) was observed in Tris buffer. Healthy cells were<1 log cfu/mL in milk and buffer samples, but no growth was detected in orange juice for any of the treatments immediately after HHP. After 15 days at 4°C, E. coli cells in skimmed milk and Tris buffer recovered significantly, whereas the recovery of sublethally injured cells was inhibited in orange juice.

  5. Effect of High Hydrostatic Pressure Combined with Moderate Heat to Inactivate Pressure-Resistant Bacteria in Water-Boiled Salted Duck.

    PubMed

    Ye, Keping; Feng, Yulin; Wang, Kai; Bai, Yun; Xu, Xinglian; Zhou, Guanghong

    2015-06-01

    The objective of this work was to study the effect of high hydrostatic pressure combined with moderate heat to inactivate pressure-resistant bacteria in water-boiled salted duck meat (WBSDM), and to establish suitable procedures to improve the quality of WBSDM. The conditions (300 MPa/60 °C, 400 MPa/60 °C, and 500 MPa/50 °C) effectively inactivated the pressure-resistant bacteria (Bacillus cereus and Staphylococcus warneri) in WBSDM. Although more pressure-resistant than S. warneri, the above treatment conditions inactivated B. cereus more than 10(7) CFU/mL in buffer, and more than 10(6) CFU/g in WBSDM, and did not cause any changes in color, texture, or moisture content of products. The interaction between pressure and temperature is a more significant factor than only pressure in inactivating both B. cereus and S. warneri, the treatment of WBSDM at 400 MPa/ 60 °C/ 10 min is the most practical condition for postprocess of WBSDM after cooking. PMID:25943207

  6. Devitalisation of human cartilage by high hydrostatic pressure treatment: Subsequent cultivation of chondrocytes and mesenchymal stem cells on the devitalised tissue

    PubMed Central

    Hiemer, B.; Genz, B.; Jonitz-Heincke, A.; Pasold, J.; Wree, A.; Dommerich, S.; Bader, R.

    2016-01-01

    The regeneration of cartilage lesions still represents a major challenge. Cartilage has a tissue-specific architecture, complicating recreation by synthetic biomaterials. A novel approach for reconstruction is the use of devitalised cartilage. Treatment with high hydrostatic pressure (HHP) achieves devitalisation while biomechanical properties are remained. Therefore, in the present study, cartilage was devitalised using HHP treatment and the potential for revitalisation with chondrocytes and mesenchymal stem cells (MSCs) was investigated. The devitalisation of cartilage was performed by application of 480 MPa over 10 minutes. Effective cellular inactivation was demonstrated by the trypan blue exclusion test and DNA quantification. Histology and electron microscopy examinations showed undamaged cartilage structure after HHP treatment. For revitalisation chondrocytes and MSCs were cultured on devitalised cartilage without supplementation of chondrogenic growth factors. Both chondrocytes and MSCs significantly increased expression of cartilage-specific genes. ECM stainings showed neocartilage-like structure with positive AZAN staining as well as collagen type II and aggrecan deposition after three weeks of cultivation. Our results showed that HHP treatment caused devitalisation of cartilage tissue. ECM proteins were not influenced, thus, providing a scaffold for chondrogenic differentiation of MSCs and chondrocytes. Therefore, using HHP-treated tissue might be a promising approach for cartilage repair. PMID:27671122

  7. The anti-inflammatory effect of a glycosylation product derived from the high hydrostatic pressure enzymatic hydrolysate of a flatfish byproduct.

    PubMed

    Choe, In-Hu; Jeon, Hyeon Jin; Eom, Sung-Hwan; Han, Young-Ki; Kim, Yoon Sook; Lee, Sang-Hoon

    2016-06-15

    In this study, flatfish byproducts were hydrolyzed by Protamex at high hydrostatic pressure and glycosylated with ribose to utilize the protein of flatfish byproducts as a nutraceutical. We investigated the anti-inflammatory effects of glycosylated fish byproduct protein hydrolysate (GFPH) and its anti-inflammatory mechanisms were elucidated in lipopolysaccharide (LPS)-stimulated RAW 264.7 mouse macrophage. The results showed that GFPH suppresses LPS-induced production of nitric oxide (NO) and prostaglandin E2 (PGE2) and expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) dose-dependently. The enzyme-linked immunosorbent assay (ELISA) kit clearly demonstrated that GFPH significantly reduced the production of pro-inflammatory cytokines such as, interleukin (IL)-6, interleukin (IL)-1β and tumor necrosis factor (TNF)-α, and monocyte chemoattractant protein (MCP)-1. Moreover, GFPH reduced nuclear factor κB (NF-κB) and mitogen-activated protein kinase (MAPK) activation. These results indicate that the inhibitory effects of GFPH on LPS-induced NO and PGE2 production might be due to the suppression of the NF-κB and MAPKs signaling pathways. Therefore, these results suggest that flatfish byproducts are latent bioactive resources and GFPH may have potential as a therapeutic agent in the treatment of various inflammatory diseases.

  8. Effect of High Hydrostatic Pressure Processing on Microbiological Shelf-Life and Quality of Fruits Pretreated with Ascorbic Acid or SnCl2

    PubMed Central

    Argyri, Anthoula A.; Tassou, Chrysoula C.; Samaras, Fotios; Mallidis, Constantinos

    2014-01-01

    In the current study, the processing conditions required for the inactivation of Paenibacillus polymyxa and relevant spoilage microorganisms by high hydrostatic pressure (HHP) treatment on apricot, peach, and pear pieces in sucrose (22°Brix) solution were assessed. Accordingly, the shelf-life was determined by evaluating both the microbiological quality and the sensory characteristics (taste, odor, color, and texture) during refrigerated storage after HHP treatment. The microbiological shelf-life of apricots, peaches, and pears was prolonged in the HHP-treated products in comparison with the untreated ones. In all HHP-treated packages for apricots, peaches, and pears, all populations were below the detection limit of the method (1 log CFU/g) and no growth of microorganisms was observed until the end of storage. Overall, no differences of the L*, a*, or b* value among the untreated and the HHP-treated fruit products were observed up to the time at which the unpressurized product was characterized as spoiled. HHP treatment had no remarkable effect on the firmness of the apricots, peaches, and pears. With regard to the sensory assessment, the panelists marked better scores to HHP-treated products compared to their respective controls, according to taste and total evaluation during storage of fruit products. PMID:25295275

  9. Changes of phenolic-acids and vitamin E profiles on germinated rough rice (Oryza sativa L.) treated by high hydrostatic pressure.

    PubMed

    Kim, Min Young; Lee, Sang Hoon; Jang, Gwi Yeong; Li, Meishan; Lee, Youn Ri; Lee, Junsoo; Jeong, Heon Sang

    2017-02-15

    This study was performed to investigate changes in the phenolic acid and vitamin E profiles of germinated rough rice following high hydrostatic pressure treatment (HPT). Rough rice was germinated at 37°C for two days and subjected to 0.1, 10, 30, 50, and 100MPa pressures for 24h. The total phenolic acid content increased from 85.37μg/g at 0.1MPa to 183.52μg/g at 100MPa. The highest gallic acid (4.29μg/g), catechin (9.55μg/g), p-coumaric acid (8.36μg/g), ferulic acid (14.99μg/g), salicylic acid (14.88μg/g), naringin (6.18μg/g), trans-cinnamic acid (45.23μg/g), and kaempferol (40.95μg/g) contents occurred in the sample treated at 100MPa after germination. The maximum vitamin E content of about 2.56 (BG) and 4.34mg/100g (AG) were achieved at 30MPa. These result suggest that a combination of HPT and germination are efficient method for enhancement of functionality in rough rice, and clarify the influence of HPT conditions on the vitamin E and phenolic acid in germination rough rice. PMID:27664614

  10. Comparison of microbiological loads and physicochemical properties of raw milk treated with single-/multiple-cycle high hydrostatic pressure and ultraviolet-C light

    NASA Astrophysics Data System (ADS)

    Hu, Guanglan; Zheng, Yuanrong; Wang, Danfeng; Zha, Baoping; Liu, Zhenmin; Deng, Yun

    2015-07-01

    The effects of ultraviolet-C radiation (UV-C, 11.8 W/m2), single-cycle and multiple-cycle high hydrostatic pressure (HHP at 200, 400 or 600 MPa) on microbial load and physicochemical quality of raw milk were evaluated. Reductions of aerobic plate count (APC) and coliform count (CC) by HHP were more than 99.9% and 98.7%, respectively. Inactivation efficiency of microorganisms increased with pressure level. At the same pressure level, two-cycle treatments caused lower APC, but did not show CC differences compared with single-cycle treatments. Reductions of APC and CC by UV-C were somewhere between 200 MPa and 400/600 MPa. Both HHP and UV-C significantly decreased lightness and increased pH, but did not change soluble solids content and thiobarbituric acid-reactive substances' values. Two 2.5 min cycles of HHP at 600 MPa caused minimum APC and CC, and maximum conductivity. Compared with HHP, UV-C markedly increased protein oxidation and reduced darkening.

  11. Combined effect of enterocin AS-48 and high hydrostatic pressure to control food-borne pathogens inoculated in low acid fermented sausages.

    PubMed

    Ananou, Samir; Garriga, Margarita; Jofré, Anna; Aymerich, Teresa; Gálvez, Antonio; Maqueda, Mercedes; Martínez-Bueno, Manuel; Valdivia, Eva

    2010-04-01

    The single and combined effects of enterocin AS-48 and high hydrostatic pressure (HHP) on Listeria monocytogenes, Salmonellaenterica, and Staphylococcus aureus was investigated in fuet (a low acid fermented sausage) during ripening and storage at 7 degrees C or at room temperature. AS-48 (148 AU g(-1)) caused a drastic 5.5 log cfu g(-1) decrease in L. monocytogenes (P<0.001) and a significant (P<0.01) inhibition (1.79 logs) for Salmonella at the end of ripening (10 d). After pressurization (400 MPa) and storage Listeria counts remained below 5 cfu g(-1) in all fuets containing AS-48 (pressurized or not). HHP alone had no anti-Listeria effect. HHP treatment significantly reduced Salmonella counts, with lowest levels in pressurized fuets with AS-48. S. aureus showed similar growth for all treatments and storage conditions. These results indicate that AS-48 can be applied alone to control L. monocytogenes and combined with HHP treatment to control Salmonella in fuets.

  12. Impact of Radio Frequency, Microwaving, and High Hydrostatic Pressure at Elevated Temperature on the Nutritional and Antinutritional Components in Black Soybeans.

    PubMed

    Zhong, Yu; Wang, Zhuyi; Zhao, Yanyun

    2015-12-01

    In this study, the effects of high hydrostatic pressure (HHP) at elevated temperature (60 °C) and 2 dielectric heating (DH) methods (radio frequency [RF], and microwaving [MW]) on the nutritional compositions and removal of antinutritional factors in black soybeans were studied. Each treatment caused <2% reduction in protein, and 3.3% to 7.0% decline in total amino acid content. However, the proportion of essential amino acid slightly increased in DH treated samples. The treatment decreased fat content (14.0% to 35.7%), but had small influence on fatty acid proportion. Antinutritional factors including trypsin inhibitor, tannins, saponins, and phytic acid were all declined by the 3 treatments, and DH treatment was generally more efficient. The most abundant saponins was decreased >22% in DH treated samples. MW and HHP led to higher in vitro protein digestibility, RF and MW promoted protein aggregation from atomic force microscope topography, but HHP caused more damages on protein subunits as seen from SDS-PAGE image.

  13. Effect of High Hydrostatic Pressure Combined with Moderate Heat to Inactivate Pressure-Resistant Bacteria in Water-Boiled Salted Duck.

    PubMed

    Ye, Keping; Feng, Yulin; Wang, Kai; Bai, Yun; Xu, Xinglian; Zhou, Guanghong

    2015-06-01

    The objective of this work was to study the effect of high hydrostatic pressure combined with moderate heat to inactivate pressure-resistant bacteria in water-boiled salted duck meat (WBSDM), and to establish suitable procedures to improve the quality of WBSDM. The conditions (300 MPa/60 °C, 400 MPa/60 °C, and 500 MPa/50 °C) effectively inactivated the pressure-resistant bacteria (Bacillus cereus and Staphylococcus warneri) in WBSDM. Although more pressure-resistant than S. warneri, the above treatment conditions inactivated B. cereus more than 10(7) CFU/mL in buffer, and more than 10(6) CFU/g in WBSDM, and did not cause any changes in color, texture, or moisture content of products. The interaction between pressure and temperature is a more significant factor than only pressure in inactivating both B. cereus and S. warneri, the treatment of WBSDM at 400 MPa/ 60 °C/ 10 min is the most practical condition for postprocess of WBSDM after cooking.

  14. Effect of hydrostatic high-pressure processing on the chemical, functional, and rheological properties of starter-free Queso Fresco

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Queso Fresco (QF), a popular high-moisture, high-pH Hispanic-style cheese sold in the U.S., underwent high-pressure processing (HPP), which has the potential to improve the safety of cheese, to determine the effects of this process on quality traits of the cheese. Starter-free rennet-set QF (manufa...

  15. Hydrostatic Hyperbaric Chamber Ventilation System

    NASA Technical Reports Server (NTRS)

    Sarguisingh, Miriam J.

    2012-01-01

    The hydrostatic hyperbaric chamber (HHC) represents the merger of several technologies in development for NASA aerospace applications, harnessed to directly benefit global health. NASA has significant experience developing composite hyperbaric chambers for a variety of applications. NASA also has researched the application of water-filled vessels to increase tolerance of acceleration forces. The combination of these two applications has resulted in the hydrostatic chamber, which has been conceived as a safe, affordable means of making hyperbaric oxygen therapy (HBOT) available in the developing world for the treatment of a variety of medical conditions. Specifically, HBOT is highly-desired as a possibly curative treatment for Buruli Ulcer, an infectious condition that afflicts children in sub-Saharan Africa. HBOT is simply too expensive and too dangerous to implement in the developing world using standard equipment. The HHC technology changes the paradigm. The HHC differs from standard hyperbaric chambers in that the majority of its volume is filled with water which is pressurized by oxygen being supplied in the portion of the chamber containing the patient s head. This greatly reduces the amount of oxygen required to sustain a hyperbaric atmosphere, thereby making the system more safe and economical to operate. An effort was taken to develop an HHC system to apply HBOT to children that is simple and robust enough to support transport, assembly, maintenance and operation in developing countries. This paper details the concept for an HHC ventilation and pressurization system to provide controlled pressurization and adequate washout of carbon dioxide while the subject is enclosed in the confined space during the administration of the medical treatment. The concept took into consideration operational complexity, safety to the patient and operating personnel, and physiological considerations. The simple schematic, comprised of easily acquired commercial hardware

  16. A predictive model for the influence of food components on survival of Listeria monocytogenes LM 54004 under high hydrostatic pressure and mild heat conditions.

    PubMed

    Gao, Yu-Long; Ju, Xing-Rong; Wu-Ding

    2007-07-15

    The combination of high hydrostatic pressure with mild temperature was explored to achieve a predictive model of microbial inactivation in food matrix processing. The pressure processing conditions were fixed at 448 MPa for 11 min at the treatment temperature of 41 degrees C, which have been determined as the optimum processing conditions considering six log-cycle reductions of Listeria monocytogenes. Based on the results, response surface methodology (RSM) was performed in the present work, the influence of food components like soybean protein (0-5.00%), sucrose (0.25-13.25%), bean oil (0-10.00%), and pH (4-10) of the food matrix on survival of L. monocytogenes by high pressure and mild heat was studied, and a quadratic predictive model for the influence of food components and pH of food matrix on L. monocytogenes reduction by high pressure and mild heat was built with RSM accurately. The experimental results showed that the efficiency of L. monocytogenes reduction in milk buffer and food matrix designed in the present work, under the HPP treatment process parameters described above, were different. The soybean protein (P=0.0086), sucrose (P<0.0001), and pH (P=0.0136) significantly affected reduction of L. monocytogenes, but the effect of bean oil on reduction of L. monocytogenes was not significant (P=0.1028). The predictive model is significant since the level of significance was P<0.0001 and the calculated F value (11.53) is much greater than the tabulated F value (F(0.01 (14, 5))=9.77). Moreover, the adequacy of the predictive model equation for predicting the level of L. monocytogenes reduction was verified effectively by the validation data.

  17. High hydrostatic pressure inactivation of vegetative microorganisms, aerobic and anaerobic spores in pork Marengo, a low acidic particulate food product.

    PubMed

    Moerman, F

    2005-02-01

    To prolong the shelf-life of particulate food products, high pressure processing is one of the emerging technologies to be studied as an alternative to classical pasteurization and sterilization by heat. Pork Marengo (a low acidic, partially prepared stew of pieces pork, carrots and peas) was inoculated with several strains of sporulating and vegetative microorganisms. The microbial spoilage of the product was evaluated after a high pressure treatment of 400 MPa during 30 min at, respectively, 20 and 50 °C. Several Clostridium spp. and Bacillus spp. survived the treatment, and the Gram-positive cocci Enterococcus faecalis and Staphylococcus aureus were revealed to be more pressure resistant than Saccharomyces cerevisiae and the Gram-negative bacteria Pseudomonas fluorescens and Escherichia coli. The high pressure treatment at 20 °C demonstrated that high pressure processing (HPP) of neutral-pH foods cannot rely on pressure alone as a pasteurization/sterilization process. Another physical agent like heat is needed. High pressure treatment at 50 °C demonstrated that heat transfer limitations in particulate food products still can trouble their successful pasteurization/sterilization.

  18. Improvement of texture and palatability of chicken breast: effect of high hydrostatic pressure and sodium hydrogen carbonate

    NASA Astrophysics Data System (ADS)

    Tabe, Kanae; Kim, Yun-Jung; Ohnuma, Shun; Ogoshi, Hiro; Suzuki, Atsushi; Nishiumi, Tadayuki

    2013-06-01

    Chicken breast is not preferred in Japan because it is not juicy. In this study, the effect of combined high pressure and sodium hydrogen carbonate (NaHCO3) treatment on the texture and palatability of chicken breast was investigated. The sample used was broiler chicken breast. Meat samples were soaked in.0-.4 M NaHCO3 solution and then pressurized at 100-400 MPa. After pressurization, the samples were heated for 30 min at 80°C and cooled down in ice-cold water. High pressure and NaHCO3 treatment of broiler chicken breast resulted in increased water content, and decreased weight reduction and rupture stress. Moreover, meat exposed to 200 MPa pressurization and.3 M NaHCO3 treatment was judged tender, juicy and of good taste by sensory evaluation. The combination of high pressure and NaHCO3 treatment can be effectively used for broiler chicken breast production.

  19. Work capsule for lightweight hydrostatic machines

    NASA Astrophysics Data System (ADS)

    Hunt, M. S.

    1983-02-01

    The theoretical feasibility of designing a lightweight flexible capsule suitable for use as the basic actuating means in the place of the conventional piston and cylinder in a high pressure hydrostatic machine was investigated. The idea was suggested by the high strength/modulus ratio obtained with glass fiber reinforced composites. It is found that the combined effect of hoop and bend stresses in the flexible walls of a bellows type capsule imposes severe limitations on the work output of the capsule.

  20. Application of detergents or high hydrostatic pressure as decellularization processes in uterine tissues and their subsequent effects on in vivo uterine regeneration in murine models.

    PubMed

    Santoso, Erna G; Yoshida, Keita; Hirota, Yasushi; Aizawa, Masanori; Yoshino, Osamu; Kishida, Akio; Osuga, Yutaka; Saito, Shigeru; Ushida, Takashi; Furukawa, Katsuko S

    2014-01-01

    Infertility caused by ovarian or tubal problems can be treated using In Vitro Fertilization and Embryo Transfer (IVF-ET); however, this is not possible for women with uterine loss and malformations that require uterine reconstruction for the treatment of their infertility. In this study, we are the first to report the usefulness of decellularized matrices as a scaffold for uterine reconstruction. Uterine tissues were extracted from Sprague Dawley (SD) rats and decellularized using either sodium dodecyl sulfate (SDS) or high hydrostatic pressure (HHP) at optimized conditions. Histological staining and quantitative analysis showed that both SDS and HHP methods effectively removed cells from the tissues with, specifically, a significant reduction of DNA contents for HHP constructs. HHP constructs highly retained the collagen content, the main component of extracellular matrices in uterine tissue, compared to SDS constructs and had similar content levels of collagen to the native tissue. The mechanical strength of the HHP constructs was similar to that of the native tissue, while that of the SDS constructs was significantly elevated. Transmission electron microscopy (TEM) revealed no apparent denaturation of collagen fibers in the HHP constructs compared to the SDS constructs. Transplantation of the decellularized tissues into rat uteri revealed the successful regeneration of the uterine tissues with a 3-layer structure 30 days after the transplantation. Moreover, a lot of epithelial gland tissue and Ki67 positive cells were detected. Immunohistochemical analyses showed that the regenerated tissues have a normal response to ovarian hormone for pregnancy. The subsequent pregnancy test after 30 days transplantation revealed successful pregnancy for both the SDS and HHP groups. These findings indicate that the decellularized matrix from the uterine tissue can be a potential scaffold for uterine regeneration.

  1. Relationship between Sublethal Injury and Microbial Inactivation by the Combination of High Hydrostatic Pressure and Citral or tert-Butyl Hydroquinone ▿

    PubMed Central

    Somolinos, Maria; García, Diego; Pagán, Rafael; Mackey, Bernard

    2008-01-01

    The aim was to investigate (i) the occurrence of sublethal injury in Listeria monocytogenes, Escherichia coli, and Saccharomyces cerevisiae after high hydrostatic pressure (HHP) treatment as a function of the treatment medium pH and composition and (ii) the relationship between the occurrence of sublethal injury and the inactivating effect of a combination of HHP and two antimicrobial compounds, tert-butyl hydroquinone (TBHQ) and citral. The three microorganisms showed a high proportion of sublethally injured cells (up to 99.99% of the surviving population) after HHP. In E. coli and L. monocytogenes, the extent of inactivation and sublethal injury depended on the pH and the composition of the treatment medium, whereas in S. cerevisiae, inactivation and sublethal injury were independent of medium pH or composition under the conditions tested. TBHQ alone was not lethal to E. coli or L. monocytogenes but acted synergistically with HHP and 24-h refrigeration, resulting in a viability decrease of >5 log10 cycles of both organisms. The antimicrobial effect of citral depended on the microorganism and the treatment medium pH. Acting alone for 24 h under refrigeration, 1,000 ppm of citral caused a reduction of 5 log10 cycles of E. coli at pH 7.0 and almost 3 log10 cycles of L. monocytogenes at pH 4.0. The combination of citral and HHP also showed a synergistic effect. Our results have confirmed that the detection of sublethal injury after HHP may contribute to the identification of those treatment conditions under which HHP may act synergistically with other preserving processes. PMID:18952869

  2. Effect of single- and two-cycle high hydrostatic pressure treatments on water properties, physicochemical and microbial qualities of minimally processed squids (todarodes pacificus).

    PubMed

    Zhang, Yifeng; Jiao, Shunshan; Lian, Zixuan; Deng, Yun; Zhao, Yanyun

    2015-05-01

    This study investigated the effect of single- and two-cycle high hydrostatic pressure (HHP) treatments on water properties, physicochemical, and microbial qualities of squids (Todarodes pacificus) during 4 °C storage for up to 10 d. Single-cycle treatments were applied at 200, 400, or 600 MPa for 20 min (S-200, S-400, and S-600), and two-cycle treatments consisted of two 10 min cycles at 200, 400, or 600 MPa, respectively (T-200, T-400, and T-600). HHP-treated samples had higher (P < 0.05) content of P2b (immobilized water) and P21 (myofibril water), but lower P22 (free water) than those of control. The single- and two-cycle HHP treatments at the same pressure level caused no significant difference in water state of squids. The two-cycle HHP treatment was more effective in controlling total volatile basic nitrogen, pH, and total plate counts (TPC) of squids during storage, in which TPC of S-600 and T-600 was 2.9 and 1.8 log CFU/g at 10 d, respectively, compared with 7.5 log CFU/g in control. HHP treatments delayed browning discoloration of the squids during storage, and the higher pressure level and two-cycle HHP were more effective. Water properties highly corresponded with color and texture indices of squids. This study demonstrated that the two-cycle HHP treatment was more effective in controlling microbial growth and quality deterioration while having similar impact on the physicochemical and water properties of squids in comparison with the single-cycle treatment, thus more desirable for extending shelf-life of fresh squids.

  3. Measuring bacterial activity and community composition at high hydrostatic pressure using a novel experimental approach: a pilot study.

    PubMed

    Wannicke, Nicola; Frindte, Katharina; Gust, Giselher; Liskow, Iris; Wacker, Alexander; Meyer, Andreas; Grossart, Hans-Peter

    2015-05-01

    In this pilot study, we describe a high-pressure incubation system allowing multiple subsampling of a pressurized culture without decompression. The system was tested using one piezophilic (Photobacterium profundum), one piezotolerant (Colwellia maris) bacterial strain and a decompressed sample from the Mediterranean deep sea (3044 m) determining bacterial community composition, protein production (BPP) and cell multiplication rates (BCM) up to 27 MPa. The results showed elevation of BPP at high pressure was by a factor of 1.5 ± 1.4 and 3.9 ± 2.3 for P. profundum and C. maris, respectively, compared to ambient-pressure treatments and by a factor of 6.9 ± 3.8 fold in the field samples. In P. profundum and C. maris, BCM at high pressure was elevated (3.1 ± 1.5 and 2.9 ± 1.7 fold, respectively) compared to the ambient-pressure treatments. After 3 days of incubation at 27 MPa, the natural bacterial deep-sea community was dominated by one phylum of the genus Exiguobacterium, indicating the rapid selection of piezotolerant bacteria. In future studies, our novel incubation system could be part of an isopiestic pressure chain, allowing more accurate measurement of bacterial activity rates which is important both for modeling and for predicting the efficiency of the oceanic carbon pump.

  4. Effect of processing temperature on tenderness, colour and yield of beef steaks subjected to high-hydrostatic pressure.

    PubMed

    Sikes, Anita L; Tume, Ron K

    2014-06-01

    Our aim was to achieve a single-step pressure-heat process that would produce tender, juicy beef steaks from meat that would otherwise be tough when cooked. Steak portions (25mm thick) from hind-quarter muscles were subjected to heat treatment at 60, 64, 68, 72 or 76°C for 20min, with or without simultaneous application of high pressure (200MPa). Control steaks were heated at 60°C for 20min with or without pressure and cooked at 80°C for 30min. Compared with heat alone, pressure treatment resulted in higher lightness scores at all temperatures and overall yield was improved by pressure treatment at each temperature. Even at 76°C, the overall water losses were <10% compared with >30% for heat alone. Meat tenderness (peak shear force) was improved for the pressure-heat samples at temperatures above 64°C, and was optimal at 76°C. Therefore, subject to microbial evaluation, this single-step pressure-heat process could be used to produce tender, high moisture content steaks ready for consumption.

  5. Effect of processing by hydrostatic high pressure of two ready to heat vegetable meals and stability after refrigerated storage.

    PubMed

    Masegosa, Rosa; Delgado-Adámez, Jonathan; Contador, Rebeca; Sánchez-Íñiguez, Francisco; Ramírez, Rosario

    2014-12-01

    The effect of high pressure processing (HPP) (400 and 600 MPa for 1 and 5 min) and the stability during storage were studied in two ready to heat vegetable meals: meal A, mainly composed by pumpkin and broccoli, and meal B, mainly composed by eggplant, zucchini, chard and spinach. The treatment at 600 MPa/5 min was the most effective to reduce the initial microbial loads of the meals and maintained better the microbial safety during storage. HPP had no effect on the physico-chemical and sensory properties. HPP at 600 MPa increased the antioxidant activity of the meal A. In contrast HPP reduced the antioxidant activity of the meal B, although in general high levels of antioxidants were maintained after processing and during storage. In conclusion, treatments at 600 MPa for 5 min were the most suitable to increase the shelf-life of the meals without affecting their physico-chemical, antioxidant and sensory properties.

  6. Overexpression of EAR1 and SSH4 that encode PPxY proteins in the multivesicular body provides stability to tryptophan permease Tat2, allowing yeast cells to grow under high hydrostatic pressure

    NASA Astrophysics Data System (ADS)

    Hiraki, Toshiki; Usui, Keiko; Abe, Fumiyoshi

    2010-12-01

    Tryptophan uptake in yeast Saccharomyces cerevisiae is susceptible to high hydrostatic pressure and it limits the growth of tryptophan auxotrophic (Trp-) strains under pressures of 15-25 MPa. The susceptibility of tryptophan uptake is accounted for by the pressure-induced degradation of tryptophan permease Tat2 occurring in a Rsp5 ubiquitin ligase-dependent manner. Ear1 and Ssh4 are multivesicular body proteins that physically interact with Rsp5. We found that overexpression of either of the EAR1 or SSH4 genes enabled the Trp- cells to grow at 15-25 MPa. EAR1 and SSH4 appeared to provide stability to the Tat2 protein when overexpressed. The result suggests that Ear1 and Ssh4 negatively regulate Rsp5 on ubiquitination of Tat2. Currently, high hydrostatic pressure is widely used in bioscience and biotechnology for structurally perturbing macromolecules such as proteins and lipids or in food processing and sterilizing microbes. We suggest that hydrostatic pressure is an operative experimental parameter to screen yeast genes specifically for regulation of Tat2 through the function of Rsp5 ubiquitin ligase.

  7. Effect of high hydrostatic pressure on phenolic compounds, ascorbic acid and antioxidant activity in cashew apple juice

    NASA Astrophysics Data System (ADS)

    Queiroz, C.; Moreira, C. F. F.; Lavinas, F. C.; Lopes, M. L. M.; Fialho, E.; Valente-Mesquita, V. L.

    2010-12-01

    The cashew apple is native to Brazil, but there is insufficient information regarding the nutritional properties of this fruit. The objective of this study was to evaluate the impact of high pressure processing (HPP) at room temperature (25 °C) on phenolic compound and ascorbic acid contents and antioxidant capacity of cashew apple juice. This study showed that HPP at 250 or 400 MPa for 3, 5 and 7 min did not change pH, acidity, total soluble solids, ascorbic acid or hydrolysable polyphenol contents. However, juice pressurized for 3 and 5 min showed higher soluble polyphenol contents. Antioxidant capacity, measured by the ferric-reducing antioxidant power method, was not altered by HPP, but when treated at 250 MPa for 3 min, it resulted in an increased value when 2,2-diphenyl-1-picrylhydrazyl was used. These data demonstrate that HPP can be used in the food industry for the generation of products with higher nutritional quality.

  8. Inactivation of Staphylococcus aureus and Escherichia coli by the synergistic action of high hydrostatic pressure and dissolved CO₂.

    PubMed

    Wang, Li; Pan, Jian; Xie, Huiming; Yang, Yi; Lin, Chunming

    2010-11-15

    This study focused on the synergistic inactivation effects of combined treatment of HHP and dissolved CO₂ on microorganisms. The aim was to reduce the treatment pressure of the traditional HHP technology and make it more economically feasible. The combined treatment showed a strong bactericidal effect on Staphylococcus aureus and Escherichia coli in liquid culture, which usually have high levels of barotolerance under pressure alone. To identify the influence of CO₂, a new setup to dissolve, retain and measure the concentration of CO₂ was constructed. The results demonstrated that an inactivation rate of more than 8 log units was obtained for E. coli both at 300 MPa with 1.2 NL/L CO₂ and at 250 MPa with 3.2 NL/L CO₂, while only 2.2 and 1.8 log reductions were observed at 300 MPa and 250 MPa, respectively, for the HHP treatments alone. For S. aureus, the inactivation rate of more than 7 log units was found at 350 MPa with 3.8 NL/L CO₂, while only a 0.9 log reduction was achieved at this pressure in the absence of CO₂. The SEM photographs showed seriously deformed cells after the synergistic treatments. In contrast, the cells treated with individual HHP maintained a relatively smooth surface with invaginations. Propidium iodide staining and fluorescence observation was performed after pressure treatments. The results demonstrated that the combination of CO₂ with HHP also promoted pressure induced cell membrane permeabilization greatly. It was deduced that the enrichment of CO₂ on the cell surface and its penetration into the cells at high pressure accounted for the membrane damage and cell death.

  9. Hydrostatic High-Pressure Studies to 25 GPA on the Model Superconducting Pnictide LaRu2P2

    NASA Astrophysics Data System (ADS)

    Lim, Jinhyuk; Forouzani, Neda; Schilling, James; Fotovat, Roxanna; Zheng, Chong; Hoffmann, Roald

    2014-03-01

    Prior to the discovery of the Fe-pnictides in 2008, the ruthenium phosphide LaRu2P2 possessed the highest value of the su- perconducting transition temperature, Tc ~ 4 K, in the entire pnictide family. Recently, there has been renewed interest in this compound in an effort to better understand why the Fe-pnictides have much higher values of Tc. In related phosphides superconductivity appears to only be present if the separation be- tween the phosphor ions dp-p in neigh- boring Ru2P2 planes is greater than the critical value 2.8 Å, too great for a P-P covalent bond to be formed. For example, in superconducting LaRu2P2, the value of dp-p is 3.0 Å. To test these ideas directly, we have carried out hydro- static high-pressure studies on single-crystalline LaRu2P2 in a diamond-anvil cell using He pressure medium to pres- sures as high as 25 GPa and temperatures as low as 1.5 K. We find that Tc initially increases under pressure, but suddenly disappears above 2.1 GPa. Since dp-p decreases under pressure, the sudden disappearance of superconductivity is likely due to the formation of a covalent P-P bond between adjacent Ru2P2 planes and a possible structural phase transition. Work at Washington University is supported by the NSF through Grant No. DMR-1104742 and by the Carnegie/DOE through NNSA/DOE Grant No. DE-FC52-08NA28554.

  10. Inactivation of Escherichia coli O157:H7 on Orange Fruit Surfaces and in Juice Using Photocatalysis and High Hydrostatic Pressure.

    PubMed

    Yoo, Sungyul; Ghafoor, Kashif; Kim, Jeong Un; Kim, Sanghun; Jung, Bora; Lee, Dong-Un; Park, Jiyong

    2015-06-01

    Nonpasteurized orange juice is manufactured by squeezing juice from fruit without peel removal. Fruit surfaces may carry pathogenic microorganisms that can contaminate squeezed juice. Titanium dioxide-UVC photocatalysis (TUVP), a nonthermal technique capable of microbial inactivation via generation of hydroxyl radicals, was used to decontaminate orange surfaces. Levels of spot-inoculated Escherichia coli O157:H7 (initial level of 7.0 log CFU/cm(2)) on oranges (12 cm(2)) were reduced by 4.3 log CFU/ml when treated with TUVP (17.2 mW/cm(2)). Reductions of 1.5, 3.9, and 3.6 log CFU/ml were achieved using tap water, chlorine (200 ppm), and UVC alone (23.7 mW/cm(2)), respectively. E. coli O157:H7 in juice from TUVP (17.2 mW/cm(2))-treated oranges was reduced by 1.7 log CFU/ml. After orange juice was treated with high hydrostatic pressure (HHP) at 400 MPa for 1 min without any prior fruit surface disinfection, the level of E. coli O157:H7 was reduced by 2.4 log CFU/ml. However, the E. coli O157:H7 level in juice was reduced by 4.7 log CFU/ml (to lower than the detection limit) when TUVP treatment of oranges was followed by HHP treatment of juice, indicating a synergistic inactivation effect. The inactivation kinetics of E. coli O157:H7 on orange surfaces followed a biphasic model. HHP treatment did not affect the pH, °Brix, or color of juice. However, the ascorbic acid concentration and pectinmethylesterase activity were reduced by 35.1 and 34.7%, respectively.

  11. High hydrostatic pressure can probe the effects of functionally related ligands on the quaternary structures of the chaperonins GroEL and GroES.

    PubMed

    Panda, M; Ybarra, J; Horowitz, P M

    2001-03-01

    We investigated the effects of high hydrostatic pressure in the range of 1--3 kilobars on tetradecameric GroEL, heptameric GroES, and the GroEL-GroES complex. Unlike GroEL monomers formed by urea dissociation, which can be reassembled back to the tetradecamer, the pressure-dissociated monomers do not reassemble readily. This indicates an alteration of their native structures, an example of conformational drift. Pressure versus time profiles and kinetics of the dissociation of both GroEL and GroES at fixed pressures were monitored by light scattering. Unlike GroEL, GroES monomers do reassociate readily. Reaction conditions were varied by adding ATP, Mg(2+), ADP, AMP-PNP, and KCl. At any individual pressure, the dissociation process is governed by both thermodynamics and kinetics. This leads to the decrease in the yield of monomers at lower pressures. In the presence of Mg(2+) and KCl, GroEL is stable up to 3 kilobars. The presence of either ATP or ADP but not AMP-PNP leads to GroEL dissociation at lower pressures. Interestingly, the GroEL-GroES complex is very stable in the range of 1--2.5 kilobars. However, the addition of ADP destabilizes the complex, which dissociates completely at 1.5 kilobars. The results are rationalized in terms of different degrees of cooperativity between individual monomers and heptameric rings in the GroEL tetradecamer. Such allosteric interactions leading to the alteration of quaternary structure of GroEL in the absence of chemical denaturants are important in understanding the mechanism of chaperonin-assisted protein folding by the GroEL-GroES system. PMID:11085994

  12. Inactivation of Escherichia coli O157:H7 on Orange Fruit Surfaces and in Juice Using Photocatalysis and High Hydrostatic Pressure.

    PubMed

    Yoo, Sungyul; Ghafoor, Kashif; Kim, Jeong Un; Kim, Sanghun; Jung, Bora; Lee, Dong-Un; Park, Jiyong

    2015-06-01

    Nonpasteurized orange juice is manufactured by squeezing juice from fruit without peel removal. Fruit surfaces may carry pathogenic microorganisms that can contaminate squeezed juice. Titanium dioxide-UVC photocatalysis (TUVP), a nonthermal technique capable of microbial inactivation via generation of hydroxyl radicals, was used to decontaminate orange surfaces. Levels of spot-inoculated Escherichia coli O157:H7 (initial level of 7.0 log CFU/cm(2)) on oranges (12 cm(2)) were reduced by 4.3 log CFU/ml when treated with TUVP (17.2 mW/cm(2)). Reductions of 1.5, 3.9, and 3.6 log CFU/ml were achieved using tap water, chlorine (200 ppm), and UVC alone (23.7 mW/cm(2)), respectively. E. coli O157:H7 in juice from TUVP (17.2 mW/cm(2))-treated oranges was reduced by 1.7 log CFU/ml. After orange juice was treated with high hydrostatic pressure (HHP) at 400 MPa for 1 min without any prior fruit surface disinfection, the level of E. coli O157:H7 was reduced by 2.4 log CFU/ml. However, the E. coli O157:H7 level in juice was reduced by 4.7 log CFU/ml (to lower than the detection limit) when TUVP treatment of oranges was followed by HHP treatment of juice, indicating a synergistic inactivation effect. The inactivation kinetics of E. coli O157:H7 on orange surfaces followed a biphasic model. HHP treatment did not affect the pH, °Brix, or color of juice. However, the ascorbic acid concentration and pectinmethylesterase activity were reduced by 35.1 and 34.7%, respectively. PMID:26038898

  13. Effects of thermal and high hydrostatic pressure processing and storage on the content of polyphenols and some quality attributes of fruit smoothies.

    PubMed

    Keenan, Derek F; Brunton, Nigel; Gormley, Ronan; Butler, Francis

    2011-01-26

    The aim of the present study was the evaluation of high hydrostatic pressure (HHP) processing on the levels of polyphenolic compounds and selected quality attributes of fruit smoothies compared to fresh and mild conventional pasteurization processing. Fruit smoothie samples were thermally (P(70) > 10 min) or HHP processed (450 MPa/1, 3, or 5 min/20 °C) (HHP1, HHP3, and HHP5, respectively). The polyphenolic content, color difference (ΔE), sensory acceptability, and rheological (G'; G''; G*) properties of the smoothies were assessed over a storage period of 30 days at 4 °C. Processing had a significant effect (p < 0.001) on the levels of polyphenolic compounds in smoothies. However, this effect was not consistent for all compound types. HHP processed samples (HHP1 and HHP3) had higher (p < 0.001) levels of phenolic compounds, for example, procyanidin B1 and hesperidin, than HHP5 samples. Levels of flavanones and hydroxycinnamic acid compounds decreased (p < 0.001) after 30 days of storage at 2-4 °C). Decreases were particularly notable between days 10 and 20 (hesperidin) and days 20 and 30 (chlorogenic acid) (p < 0.001). There was a wide variation in ΔE values recorded over the 30 day storage period (p < 0.001), with fresh and thermally processed smoothies exhibiting lower color change than their HHP counterparts (p < 0.001). No effect was observed for the type of process on complex modulus (G*) data, but all smoothies became less rigid during the storage period (p < 0.001). Despite minor product deterioration during storage (p < 0.001), sensory acceptability scores showed no preference for either fresh or processed (thermal/HHP) smoothies, which were deemed acceptable (>3) by panelists.

  14. Effects of different nitrite concentrations from a vegetable source with and without high hydrostatic pressure on the recovery of Listeria monocytogenes on ready-to-eat restructured ham.

    PubMed

    Lavieri, Nicolas A; Sebranek, Joseph G; Cordray, Joseph C; Dickson, James S; Horsch, Ashley M; Jung, Stephanie; Manu, David K; Brehm-Stecher, Byron F; Mendonça, Aubrey F

    2014-05-01

    Sodium nitrite exerts an inhibitory effect on the growth of Listeria monocytogenes. The objective of this study was to investigate the effects of various nitrite concentrations from a vegetable source with and without high hydrostatic pressure (HHP) on the recovery and growth of L. monocytogenes on ready-to-eat restructured ham. A preconverted celery powder was used as the vegetable source of nitrite. Targeted concentrations of natural nitrite investigated were 0, 50, and 100 mg/kg. HHP treatments evaluated were 400 MPa for 4 min and 600 MPa for 1 or 4 min at 12 ± 2 °C (initial temperature of the pressurization fluid). Viable L. monocytogenes populations were monitored on modified Oxford medium and thin agar layer medium through 98 days of storage at 4 ± 1 °C. Populations on both media did not differ. The HHP treatment at 600 MPa for 4 min resulted in L. monocytogenes populations below the detection limit of our sampling protocols throughout the storage period regardless of the natural nitrite concentration. The combination of HHP at 400 MPa for 4 min or 600 MPa for 1 min with natural nitrite resulted in initial inhibition of viable L. monocytogenes. Ham formulations that did not contain natural nitrite allowed faster growth of L. monocytogenes than did those with nitrite, regardless of whether they were treated with HHP. The results indicate that nitrite from a vegetable source at the concentrations used in this study resulted in slower growth of this microorganism. HHP treatments enhanced the inhibitory effects of natural nitrite on L. monocytogenes growth. Thus, the combination of natural nitrite plus HHP appears to have a synergistic inhibitory effect on L. monocytogenes growth.

  15. Lipid and protein oxidation and sensory properties of vacuum-packaged dry-cured ham subjected to high hydrostatic pressure.

    PubMed

    Fuentes, Verónica; Ventanas, Jesús; Morcuende, David; Estévez, Mario; Ventanas, Sonia

    2010-07-01

    The effect of HHP treatment (600 MPa) on the oxidative stability of lipids and proteins of vacuum-packaged Iberian dry-cured ham and the impact on the sensory characteristics of the product was investigated. In order to assess how different commercial presentations are affected by HHP treatment, three different presentations of vacuum-packaged Iberian dry-cured ham were considered, namely, (i) intact format (IF) corresponding to non-sliced vacuum-packaged dry-cured ham, (ii) conventional-sliced format (CSF) corresponding to dry-cured ham slices placed stretched out in the package and (iii) alternative-sliced format (ASF) corresponding to dry-cured ham slices piled up horizontally. The oxidation of dry-cured ham lipids and proteins was enhanced by HHP-treatment with the presentation being highly influential on these oxidative reactions. Pre-slicing dry-cured ham results in a more susceptible product to oxidative reactions during pressurisation and subsequent refrigerated storage. Possible mechanisms, by which HHP-induced oxidative reactions would affect particular sensory traits in vacuum-packaged Iberian dry-cured ham such as colour, texture and flavour attributes, are discussed.

  16. Efficacy of low-temperature high hydrostatic pressure processing in inactivating Vibrio parahaemolyticus in culture suspension and oyster homogenate.

    PubMed

    Phuvasate, Sureerat; Su, Yi-Cheng

    2015-03-01

    Culture suspensions of five clinical and five environmental Vibrio parahaemolyticus strains in 2% NaCl solution were subjected to high pressure processing (HPP) under various conditions (200-300MPa for 5 and 10 min at 1.5-20°C) to study differences in pressure resistance among the strains. The most pressure-resistant and pressure-sensitive strains were selected to investigate the effects of low temperatures (15, 5 and 1.5°C) on HPP (200 or 250MPa for 5 min) to inactivate V. parahaemolyticus in sterile oyster homogenates. Inactivation of V. parahaemolyticus cells in culture suspensions and oyster homogenates was greatly enhanced by lowering the processing temperature from 15 to 5 or 1.5°C. A treatment of oyster homogenates at 250MPa for 5 min at 5°C decreased the populations of V. parahaemolyticus by 6.2logCFU/g for strains 10290 and 100311Y11 and by >7.4logCFU/g for strain 10292. Decreasing the processing temperature of the same treatment to 1.5°C reduced all the V. parahaemolyticus strains inoculated to oyster homogenates to non-detectable (<10CFU/g) levels. Factors including pressure level, processing temperature and time all need to be considered for developing effective HPP for eliminating pathogens from foods. Further studies are needed to validate the efficacy of the HPP (250MPa for 5 min at 1.5°C) in inactivating V. parahaemolyticus cells in whole oysters.

  17. Inactivation of Anisakis simplex L3 in the flesh of white spotted conger (Conger myriaster) by high hydrostatic pressure and its effect on quality.

    PubMed

    Lee, Ki-Hoon; Park, Shin Young; Ha, Sang-Do

    2016-06-01

    Koreans consume much seafood; the country is surrounded on the east, west and south by the sea. Koreans have eaten raw sashimi for a long time. However, a concern in the raw sea food industry is that the parasitic nematode Anisakis simplex L3 occurs naturally in marine fish. Thus, the fishery industry needs a non-thermal processing method. High hydrostatic pressure (HPP) has been demonstrated to be effective. White spotted conger flesh containing 20 live larvae was exposed to different pressures (150 and 200 MPa for 1 and 5 min; 250 and 300 MPa each for 1 min). The viability of A. simplex L3 was significantly (p < 0.05) reduced in the flesh of white spotted conger by the stepwise increase of high pressure and time. The conditions required to eliminate A. simplex L3 were as follows: 200 MPa for 5 min or 300 MPa for 1 min. The flesh of the white spotted conger treated at 300 MPa for 1 min was whiter and yellower than untreated controls or that treated at 200 MPa for 5 min. No significant changes (p > 0.05) in any of the Hunter colour ('L', 'a' and 'b') values were found after HPP at 200 MPa for 5 min. The fresh treated at 300 MPa for 1 min scored < 4.0 (the defect limit of quality) of flavour, texture and overall acceptability in untrained sensory evaluation using a seven-point hedonic scale. However, the flesh treated at 200 MPa for 5 min scored > 5.0 ('like') for all sensory parameters. This study suggested that HPP at 200 MPa for 5 min could potentially be used for the inactivation of A. simplex L3 in raw fishery food products without any concomitant changes in their colour or sensory qualities.

  18. Inactivation of Anisakis simplex L3 in the flesh of white spotted conger (Conger myriaster) by high hydrostatic pressure and its effect on quality.

    PubMed

    Lee, Ki-Hoon; Park, Shin Young; Ha, Sang-Do

    2016-06-01

    Koreans consume much seafood; the country is surrounded on the east, west and south by the sea. Koreans have eaten raw sashimi for a long time. However, a concern in the raw sea food industry is that the parasitic nematode Anisakis simplex L3 occurs naturally in marine fish. Thus, the fishery industry needs a non-thermal processing method. High hydrostatic pressure (HPP) has been demonstrated to be effective. White spotted conger flesh containing 20 live larvae was exposed to different pressures (150 and 200 MPa for 1 and 5 min; 250 and 300 MPa each for 1 min). The viability of A. simplex L3 was significantly (p < 0.05) reduced in the flesh of white spotted conger by the stepwise increase of high pressure and time. The conditions required to eliminate A. simplex L3 were as follows: 200 MPa for 5 min or 300 MPa for 1 min. The flesh of the white spotted conger treated at 300 MPa for 1 min was whiter and yellower than untreated controls or that treated at 200 MPa for 5 min. No significant changes (p > 0.05) in any of the Hunter colour ('L', 'a' and 'b') values were found after HPP at 200 MPa for 5 min. The fresh treated at 300 MPa for 1 min scored < 4.0 (the defect limit of quality) of flavour, texture and overall acceptability in untrained sensory evaluation using a seven-point hedonic scale. However, the flesh treated at 200 MPa for 5 min scored > 5.0 ('like') for all sensory parameters. This study suggested that HPP at 200 MPa for 5 min could potentially be used for the inactivation of A. simplex L3 in raw fishery food products without any concomitant changes in their colour or sensory qualities. PMID:27117731

  19. Inactivation of Human Nevus Tissue Using High Hydrostatic Pressure for Autologous Skin Reconstruction: A Novel Treatment for Giant Congenital Melanocytic Nevi.

    PubMed

    Jinno, Chizuru; Morimoto, Naoki; Mahara, Atsushi; Liem, Pham Hieu; Sakamoto, Michiharu; Ogino, Shuichi; Kakudo, Natsuko; Inoie, Masukazu; Fujisato, Toshia; Kusumoto, Kenji; Suzuki, Shigehiko; Yamaoka, Tetsuji

    2015-11-01

    Giant congenital melanocytic nevi are intractable lesions associated with a risk of melanoma. High hydrostatic pressure (HHP) technology is a safe physical method for producing decellularized tissues without chemicals. We have reported that HHP can inactivate cells present in various tissues without damaging the native extracellular matrix (ECM). The objectives of this study were to inactivate human nevus tissue using HHP and to explore the possibility of reconstructing skin using inactivated nevus in combination with cultured epidermis (CE). Human nevus specimens 8 mm in diameter were pressurized by HHP at 100, 200, 500, and 1000 MPa for 10 min. The viability of specimens just after HHP, outgrowth of cells, and viability after cultivation were evaluated to confirm the inactivation by HHP. Histological evaluation using hematoxylin-eosin staining and immunohistochemical staining for type IV collagen was performed to detect damage to the ECM of the nevus. The pressurized nevus was implanted into the subcutis of nude mice for 6 months to evaluate the retention of human cells. Then, human CE was applied on the pressurized nevus and implanted into the subcutis of nude mice. The viability of pressurized nevus was not detected just after HHP and after cultivation, and outgrowth of fibroblasts was not observed in the 200, 500, and 1000 MPa groups. Human cells were not observed after 6 months of implantation in these groups. No apparent damage to the ECM was detected in all groups; however, CE took on nevus in the 200 and 500 MPa groups, but not in the 1000 MPa group. These results indicate that human nevus tissue was inactivated by HHP at more than 200 MPa; however, HHP at 1000 MPa might cause damage that prevents the take of CE. In conclusion, all cells in nevus specimens were inactivated after HHP at more than 200 MPa and this inactivated nevus could be used as autologous dermis for covering full-thickness skin defects after nevus removal. HHP between 200 and 500 MPa

  20. Hydrostatic and caustic mass profiles of galaxy clusters

    NASA Astrophysics Data System (ADS)

    Maughan, Ben J.; Giles, Paul A.; Rines, Kenneth J.; Diaferio, Antonaldo; Geller, Margaret J.; Van Der Pyl, Nina; Bonamente, Massimiliano

    2016-10-01

    We compare X-ray and caustic mass profiles for a sample of 16 massive galaxy clusters. We assume hydrostatic equilibrium in interpreting the X-ray data, and use large samples of cluster members with redshifts as a basis for applying the caustic technique. The hydrostatic and caustic masses agree to better than ≈20 per cent on average across the radial range covered by both techniques (˜[0.2-1.25]R500). The mass profiles were measured independently and do not assume a common functional form. Previous studies suggest that, at R500, the hydrostatic and caustic masses are biased low and high, respectively. We find that the ratio of hydrostatic to caustic mass at R500 is 1.20^{+0.13}_{-0.11}; thus it is larger than 0.9 at ≈3σ and the combination of under- and overestimation of the mass by these two techniques is ≈10 per cent at most. There is no indication of any dependence of the mass ratio on the X-ray morphology of the clusters, indicating that the hydrostatic masses are not strongly systematically affected by the dynamical state of the clusters. Overall, our results favour a small value of the so-called hydrostatic bias due to non-thermal pressure sources.

  1. Hydrostatic and non-hydrostatic simulations of dense waters cascading off a shelf: The East Greenland case

    NASA Astrophysics Data System (ADS)

    Magaldi, Marcello G.; Haine, Thomas W. N.

    2015-02-01

    The cascade of dense waters of the Southeast Greenland shelf during summer 2003 is investigated with two very high-resolution (0.5-km) simulations. The first simulation is non-hydrostatic. The second simulation is hydrostatic and about 3.75 times less expensive. Both simulations are compared to a 2-km hydrostatic run, about 31 times less expensive than the 0.5 km non-hydrostatic case. Time-averaged volume transport values for deep waters are insensitive to the changes in horizontal resolution and vertical momentum dynamics. By this metric, both lateral stirring and vertical shear instabilities associated with the cascading process are accurately parameterized by the turbulent schemes used at 2-km horizontal resolution. All runs compare well with observations and confirm that the cascade is mainly driven by cyclones which are linked to dense overflow boluses at depth. The passage of the cyclones is also associated with the generation of internal gravity waves (IGWs) near the shelf. Surface fields and kinetic energy spectra do not differ significantly between the runs for horizontal scales L > 30 km. Complex structures emerge and the spectra flatten at scales L < 30 km in the 0.5-km runs. In the non-hydrostatic case, additional energy is found in the vertical kinetic energy spectra at depth in the 2 km < L < 10 km range and with frequencies around 7 times the inertial frequency. This enhancement is missing in both hydrostatic runs and is here argued to be due to the different IGW evolution and propagation offshore. The different IGW behavior in the non-hydrostatic case has strong implications for the energetics: compared to the 2-km case, the baroclinic conversion term and vertical kinetic energy are about 1.4 and at least 34 times larger, respectively. This indicates that the energy transfer from the geostrophic eddy field to IGWs and their propagation away from the continental slope is not properly represented in the hydrostatic runs.

  2. High hydrostatic pressure effects on the exciton spin states in CdTe/Cd{sub 1-x}Mn{sub x}Te single quantum wells

    SciTech Connect

    Yokoi, H.; Kakudate, Y.; Schmiedel, T.; Tozer, S.; Jones, E.D.; Takeyama, S.; Wojtowicz, T.; Karczewski, G.; Kossut, J.

    1996-10-01

    Photoluminescence (PL) was measured in a CdTe/Cd{sub 0.76}Mn{sub 0. 24}Te single quantum well structure under hydrostatic pressure up to 2.68 GPa and magnetic fields up to 30 T at 4.2 K. Pressure coefficients of exciton energies were found to be well width dependent. Magneto-PL experiments revealed negative pressure dependence of N{sub 0}({alpha}-{beta}) in barriers and saturation of T{sub 0} by the pressure.

  3. Implementation of an Associative Flow Rule Including Hydrostatic Stress Effects Into the High Strain Rate Deformation Analysis of Polymer Matrix Composites

    NASA Technical Reports Server (NTRS)

    Goldberg, Robert K.; Roberts, Gary D.; Gilat, Amos

    2003-01-01

    A previously developed analytical formulation has been modified in order to more accurately account for the effects of hydrostatic stresses on the nonlinear, strain rate dependent deformation of polymer matrix composites. State variable constitutive equations originally developed for metals have been modified in order to model the nonlinear, strain rate dependent deformation of polymeric materials. To account for the effects of hydrostatic stresses, which are significant in polymers, the classical J2 plasticity theory definitions of effective stress and effective inelastic strain, along with the equations used to compute the components of the inelastic strain rate tensor, are appropriately modified. To verify the revised formulation, the shear and tensile deformation of two representative polymers are computed across a wide range of strain rates. Results computed using the developed constitutive equations correlate well with experimental data. The polymer constitutive equations are implemented within a strength of materials based micromechanics method to predict the nonlinear, strain rate dependent deformation of polymer matrix composites. The composite mechanics are verified by analyzing the deformation of a representative polymer matrix composite for several fiber orientation angles across a variety of strain rates. The computed values compare well to experimentally obtained results.

  4. Low-sodium Cheddar cheese: Effect of fortification of cheese milk with ultrafiltration retentate and high-hydrostatic pressure treatment of cheese.

    PubMed

    Ozturk, M; Govindasamy-Lucey, S; Jaeggi, J J; Johnson, M E; Lucey, J A

    2015-10-01

    Low-sodium cheeses often exhibit an acidic flavor due to excessive acid production during the manufacturing and the initial stage of ripening, which is caused by ongoing starter culture activity facilitated by the low salt-in-moisture levels. We proposed that this excessive starter-induced acidity could be prevented by the fortification of cheese milk with ultrafiltration (UF) retentates (to increase curd buffering), and by decreasing microbial activity using the application of high-hydrostatic pressure (HHP) treatment (that is, to reduce residual starter numbers). Camel chymosin was also used as a coagulant to help reduce bitterness development (a common defect in low-sodium cheeses). Three types of low-Na (0.8% NaCl) Cheddar cheeses were manufactured: non-UF fortified, no HHP applied (L-Na); UF-fortified (cheese milk total solids = 17.2 ± 0.6%), no HHP applied (L-Na-UF); and UF-fortified, HHP-treated (L-Na-UF-HHP; 500 MPa for 3 min applied at 1 d post-cheese manufacture). Regular salt (2% NaCl) non-UF fortified, non-HHP treated (R-Na) cheese was also manufactured for comparison purposes. Analysis was performed at 4 d, 2 wk, and 1, 3, and 6 mo after cheese manufacture. Cheese functionality during ripening was assessed using texture profile analysis and dynamic low-amplitude oscillatory rheology. Sensory Spectrum and quantitative descriptive analysis was conducted with 9 trained panelists to evaluate texture and flavor attributes using a 15-point scale. At 4 d and 2 wk of ripening, L-Na-UF-HHP cheese had ~2 and ~4.5 log lower starter culture numbers, respectively, than all other cheeses. Retentate fortification of cheese milk and HHP treatment resulted in low-Na cheeses having similar insoluble calcium concentrations and pH values compared with R-Na cheese during ripening. The L-Na-UF cheese exhibited significantly higher hardness values (measured by texture profile analysis) compared with L-Na cheese until 1 mo of ripening; however, after 1 mo, all low-Na cheeses

  5. Low-sodium Cheddar cheese: Effect of fortification of cheese milk with ultrafiltration retentate and high-hydrostatic pressure treatment of cheese.

    PubMed

    Ozturk, M; Govindasamy-Lucey, S; Jaeggi, J J; Johnson, M E; Lucey, J A

    2015-10-01

    Low-sodium cheeses often exhibit an acidic flavor due to excessive acid production during the manufacturing and the initial stage of ripening, which is caused by ongoing starter culture activity facilitated by the low salt-in-moisture levels. We proposed that this excessive starter-induced acidity could be prevented by the fortification of cheese milk with ultrafiltration (UF) retentates (to increase curd buffering), and by decreasing microbial activity using the application of high-hydrostatic pressure (HHP) treatment (that is, to reduce residual starter numbers). Camel chymosin was also used as a coagulant to help reduce bitterness development (a common defect in low-sodium cheeses). Three types of low-Na (0.8% NaCl) Cheddar cheeses were manufactured: non-UF fortified, no HHP applied (L-Na); UF-fortified (cheese milk total solids = 17.2 ± 0.6%), no HHP applied (L-Na-UF); and UF-fortified, HHP-treated (L-Na-UF-HHP; 500 MPa for 3 min applied at 1 d post-cheese manufacture). Regular salt (2% NaCl) non-UF fortified, non-HHP treated (R-Na) cheese was also manufactured for comparison purposes. Analysis was performed at 4 d, 2 wk, and 1, 3, and 6 mo after cheese manufacture. Cheese functionality during ripening was assessed using texture profile analysis and dynamic low-amplitude oscillatory rheology. Sensory Spectrum and quantitative descriptive analysis was conducted with 9 trained panelists to evaluate texture and flavor attributes using a 15-point scale. At 4 d and 2 wk of ripening, L-Na-UF-HHP cheese had ~2 and ~4.5 log lower starter culture numbers, respectively, than all other cheeses. Retentate fortification of cheese milk and HHP treatment resulted in low-Na cheeses having similar insoluble calcium concentrations and pH values compared with R-Na cheese during ripening. The L-Na-UF cheese exhibited significantly higher hardness values (measured by texture profile analysis) compared with L-Na cheese until 1 mo of ripening; however, after 1 mo, all low-Na cheeses

  6. High-order compact MacCormack scheme for two-dimensional compressible and non-hydrostatic equations of the atmosphere

    NASA Astrophysics Data System (ADS)

    JavanNezhad, R.; Meshkatee, A. H.; Ghader, S.; Ahmadi-Givi, F.

    2016-09-01

    This study is devoted to application of the fourth-order compact MacCormack scheme to spatial differencing of the conservative form of two-dimensional and non-hydrostatic equation of a dry atmosphere. To advance the solution in time a four-stage Runge-Kutta method is used. To perform the simulations, two test cases including evolution of a warm bubble and a cold bubble in a neutral atmosphere with open and rigid boundaries are employed. In addition, the second-order MacCormack and the standard fourth-order compact MacCormack schemes are used to perform the simulations. Qualitative and quantitative assessment of the numerical results for different test cases exhibit the superiority of the fourth-order compact MacCormack scheme on the second-order method.

  7. BE STAR DISK MODELS IN CONSISTENT VERTICAL HYDROSTATIC EQUILIBRIUM

    SciTech Connect

    Sigut, T. A. A.; McGill, M. A.; Jones, C. E. E-mail: mmcgill@astro.uwo.ca

    2009-07-10

    A popular model for the circumstellar disks of Be stars is that of a geometrically thin disk with a density in the equatorial plane that drops as a power law of distance from the star. It is usually assumed that the vertical structure of such a disk (in the direction parallel to the stellar rotation axis) is governed by the hydrostatic equilibrium set by the vertical component of the star's gravitational acceleration. Previous radiative equilibrium models for such disks have usually been computed assuming a fixed density structure. This introduces an inconsistency as the gas density is not allowed to respond to temperature changes and the resultant disk model is not in vertical, hydrostatic equilibrium. In this work, we modify the BEDISK code of Sigut and Jones so that it enforces a hydrostatic equilibrium consistent with the temperature solution. We compare the disk densities, temperatures, H{alpha} line profiles, and near-IR excesses predicted by such models with those computed from models with a fixed density structure. We find that the fixed models can differ substantially from the consistent hydrostatic models when the disk density is high enough that the circumstellar disk develops a cool (T {approx}< 10, 000 K) equatorial region close to the parent star. Based on these new hydrostatic disks, we also predict an approximate relation between the (global) density-averaged disk temperature and the T{sub eff} of the central star, covering the full range of central Be star spectral types.

  8. Switching skeletons: hydrostatic support in molting crabs

    NASA Technical Reports Server (NTRS)

    Taylor, Jennifer R A.; Kier, William M.; Walker, I. D. (Principal Investigator)

    2003-01-01

    Skeletal support systems are essential for support, movement, muscular antagonism, and locomotion. Crustaceans shed their rigid exoskeleton at each molt yet are still capable of forceful movement. We hypothesize that the soft water-inflated body of newly molted crabs may rely on a hydrostatic skeleton, similar to that of worms and polyps. We measured internal hydrostatic pressure and the force exerted during claw adduction and observed a strong correlation between force and hydrostatic pressure, consistent with hydrostatic skeletal support. This alternation between the two basic skeletal types may be widespread among arthropods.

  9. Comparison of hydrostatic and hydrodynamic pressure to inactivate foodborne viruses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effect of high hydrostatic pressure (HPP) and hydrodynamic pressure (HDP), in combination with chemical treatments, was evaluated for inactivation of foodborne viruses and non-pathogenic surrogates in a pork sausage product. Sausages were immersed in water, 100 ppm EDTA, or 2 percent lactoferrin...

  10. Effects of high hydrostatic pressure and varying concentrations of sodium nitrite from traditional and vegetable-based sources on the growth of Listeria monocytogenes on ready-to-eat (RTE) sliced ham.

    PubMed

    Myers, Kevin; Cannon, Jerry; Montoya, Damian; Dickson, James; Lonergan, Steven; Sebranek, Joseph

    2013-05-01

    The objective of this study was to determine the effect the source of added nitrite and high hydrostatic pressure (HHP) had on the growth of Listeria monocytogenes on ready-to-eat (RTE) sliced ham. Use of 600MPa HHP for 3min resulted in an immediate 3.9-4.3log CFU/g reduction in L. monocytogenes numbers, while use of 400MPa HHP (3min) provided less than 1log CFU/g reduction. With the 600MPa HHP treatment, sliced ham with a conventional concentration of sodium nitrite (200ppm) was not different in L. monocytogenes growth from use with 50 or 100ppm of sodium nitrite in pre-converted celery powder. Instrumental color values as well as residual nitrite and residual nitrate concentrations for cured (sodium nitrite and nitrite from celery powder) and uncured ham formulations are discussed.

  11. Hydrostatic compaction of Microtherm HT.

    SciTech Connect

    Broome, Scott Thomas; Bauer, Stephen J.

    2010-09-01

    Two samples of jacketed Microtherm{reg_sign}HT were hydrostatically pressurized to maximum pressures of 29,000 psi to evaluate both pressure-volume response and change in bulk modulus as a function of density. During testing, each of the two samples exhibited large irreversible compactive volumetric strains with only small increases in pressure; however at volumetric strains of approximately 50%, the Microtherm{reg_sign}HT stiffened noticeably at ever increasing rates. At the maximum pressure of 29,000 psi, the volumetric strains for both samples were approximately 70%. Bulk modulus, as determined from hydrostatic unload/reload loops, increased by more than two-orders of magnitude (from about 4500 psi to over 500,000 psi) from an initial material density of {approx}0.3 g/cc to a final density of {approx}1.1 g/cc. An empirical fit to the density vs. bulk modulus data is K = 492769{rho}{sup 4.6548}, where K is the bulk modulus in psi, and {rho} is the material density in g/cm{sup 3}. The porosity decreased from 88% to {approx}20% indicating that much higher pressures would be required to compact the material fully.

  12. 46 CFR 64.83 - Hydrostatic test.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... on the metal identification plate without leaking; and (6) If fitted with an internal heating coil, the heating coil passing a hydrostatic test at a pressure of 200 psig or more or 50 percent or more above the rated pressure of the coil, whichever is greater. (b) If the tank passes the hydrostatic...

  13. 46 CFR 64.83 - Hydrostatic test.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... on the metal identification plate without leaking; and (6) If fitted with an internal heating coil, the heating coil passing a hydrostatic test at a pressure of 200 psig or more or 50 percent or more above the rated pressure of the coil, whichever is greater. (b) If the tank passes the hydrostatic...

  14. Hydrostatic Modeling of Buoyant Plumes

    NASA Astrophysics Data System (ADS)

    Stroman, A.; Dewar, W. K.; Wienders, N.; Deremble, B.

    2014-12-01

    The Deepwater Horizon oil spill in the Gulf of Mexico has led to increased interest in understanding point source convection dynamics. Most of the existing oil plume models use a Lagrangian based approach, which computes integral measures such as plume centerline trajectory and plume radius. However, this approach doesn't account for feedbacks of the buoyant plume on the ambient environment. Instead, we employ an Eulerian based approach to acquire a better understanding of the dynamics of buoyant plumes. We have performed a series of hydrostatic modeling simulations using the MITgcm. Our results show that there is a dynamical response caused by the presence of the buoyant plume, in that there is a modification of the background flow. We find that the buoyant plume becomes baroclinically unstable and sheds eddies at the neutral buoyancy layer. We also explore different scenarios to determine the effect of the buoyancy source and the temperature stratification on the evolution of buoyant plumes.

  15. The effect of chitosan-based edible film and high hydrostatic pressure process on the microbiological and chemical quality of rainbow trout (Oncorhynchus mykiss Walbaum) fillets during cold storage (4±1°C)

    NASA Astrophysics Data System (ADS)

    Günlü, Ali; Sipahioğlu, Sinem; Alpas, Hami

    2014-01-01

    The objective of this study is to determine the changes in the chemical and microbiological quality of fresh rainbow trout (Oncorhynchus mykiss Walbaum) fillets during storage at 4±1°C as a result of chitosan-based edible film coating, vacuum packaging and high pressure application processes. Chemical (pH, total volatile basic nitrogen and thiobarbituric acid index) and microbiological (total mesophilic and total psychrophilic microorganism) shelf life analyses were carried out in 4-day intervals for samples that were vacuum packaged (C), subjected to high pressure after vacuum packaging (high hydrostatic pressure (HHP)), vacuum packaged after being wrapped by chitosan-based film (CFW) and subjected to high pressure after vacuum packaging and being wrapped by chitosan-based film (HHP+CFW ). According to the chemical and microbiological shelf life analysis results of rainbow trout fillets, shelf life increases of 4 days in HHP group samples, 8 days in CFW group samples and 24 days in HHP+CFW group samples were provided in comparison with the control group. In conclusion, it was determined that high pressure and wrapping with chitosan-based film had protective effect both chemically and microbiologically and that the most effective protection was obtained when both methods were used together.

  16. The effect of high hydrostatic pressure on the muscle proteins of rainbow trout (Oncorhynchus mykiss Walbaum) fillets wrapped with chitosan-based edible film during cold storage (4±1°C)

    NASA Astrophysics Data System (ADS)

    Günlü, Ali; Sipahioǧlu, Sinem; Alpas, Hami

    2014-01-01

    This study was to determine the effects of changes that occurred in the muscle proteins of fresh rainbow trout (Oncorhynchus mykiss) fillets during storage at 4±1°C as a result of packaging in vacuum (C), subject to high pressure after packaging in vacuum high hydrostatic pressue (HHP), packaged in vacuum after wrapping with chitosan film (CFW) and subject to high pressure after wrapping with chitosan-based film and packaged in vacuum (HHP+CFW ). Samples were subjected to SDS-PAGE in four-day intervals and the densitometric analyses of the gels were carried out. According to the results, minor changes were determined in the major bands of the sarcoplasmic and myofibrillar muscle fractions of trouts as a result of HHP application and CFW. The most important change occurred in the myofibrillar muscle fraction as a decrease in the densities of the bands at 200 and 31.4 kDa after HHP application. Similarly, the sarcoplasmic muscle fraction of trout fillet decreased in the densities of the bands at 39.3, 26.6 and 23.3 kDa after HHP application. In addition, it is thought that the bands that occur at 30 kDa in the myofibrillar muscle fraction and at 20.7 kDa at the sarcoplasmic muscle fraction may be related with the degradation of trouts during cold storage.

  17. Effects of germination and high hydrostatic pressure processing on mineral elements, amino acids and antioxidants in vitro bioaccessibility, as well as starch digestibility in brown rice (Oryza sativa L.).

    PubMed

    Xia, Qiang; Wang, Liping; Xu, Congcong; Mei, Jun; Li, Yunfei

    2017-01-01

    The effects of germination and high hydrostatic pressure (HHP) processing on the in vitro bioaccessibility of mineral elements, amino acids (AAs), antioxidants and starch in brown rice (BR) were investigated. Germinated BR (GBR) was obtained by incubating at 37°C for 36h and then subjected to HHP treatments at 0.1, 100, 300 and 500MPa for 10min. The in vitro bioaccessibility of calcium and copper was increased by 12.59-52.17% and 2.87-23.06% after HHP, respectively, but bioaccessible iron was decreased. In addition, HHP significantly improved individual AAs, particularly indispensable AAs and gama-aminobutyric acid, as well as bioaccessible total antioxidant activities and starch resistance to enzymatic hydrolysis. However, germination greatly increased starch digestibility. Atomic force microscopy characterization suggested an obvious structural change in bran fraction at pressures above 300MPa. These results can help to understand the effects of germination and HHP technologies on nutrients bioaccessibility and develop appropriate processing conditions. PMID:27507507

  18. The influence of hydrostatic pressure on tissue engineered bone development.

    PubMed

    Neßler, K H L; Henstock, J R; El Haj, A J; Waters, S L; Whiteley, J P; Osborne, J M

    2016-04-01

    The hydrostatic pressure stimulation of an appropriately cell-seeded porous scaffold within a bioreactor is a promising method for engineering bone tissue external to the body. We propose a mathematical model, and employ a suite of candidate constitutive laws, to qualitatively describe the effect of applied hydrostatic pressure on the quantity of minerals deposited in such an experimental setup. By comparing data from numerical simulations with experimental observations under a number of stimulation protocols, we suggest that the response of bone cells to an applied pressure requires consideration of two components; (i) a component describing the cell memory of the applied stimulation, and (ii) a recovery component, capturing the time cells require to recover from high rates of mineralisation. PMID:26796221

  19. Hydrostatic compression of Fe(1-x)O wuestite

    NASA Technical Reports Server (NTRS)

    Jeanloz, R.; Sato-Sorensen, Y.

    1986-01-01

    Hydrostatic compression measurements on Fe(0.95)O wuestite up to 12 GPa yield a room temperature value for the isothermal bulk modulus of K(ot) = 157 (+ or - 10) GPa at zero pressure. This result is in accord with previous hydrostatic and nonhydrostatic measurements of K(ot) for wuestites of composition: 0.89 = Fe/O 0.95. Dynamic measurements of the bulk modulus by ultrasonic, shock-wave and neutron-scattering experiments tend to yield a larger value: K(ot) approximately 180 GPa. The discrepancy between static and dynamic values cannot be explained by the variation of K(ot) with composition, as has been proposed. This conclusion is based on high-precision compression data and on theoretical models of the effects of defects on elastic constants. Barring serious errors in the published measurements, the available data suggest that wuestite exhibits a volume relaxation under pressure.

  20. Dielectric elastomer actuators with hydrostatic coupling

    NASA Astrophysics Data System (ADS)

    Carpi, Federico; Frediani, Gabriele; De Rossi, Danilo

    2009-03-01

    The rapidly growing adoption of dielectric elastomer (DE) actuators as a high performance EAP technology for many kinds of new applications continuously opens new technical challenges, in order to take always the most from each adopted device and actuating configuration. This paper presents a new type of DE actuators, which show attractive potentialities for specific application needs. The concept here proposed adopts an incompressible fluid to mechanically couple active and passive parts. The active parts work according to the DE actuation principle, while the passive parts represent the end effector, in contact with the load. The fluid is used to transfer actuation hydrostatically from an active to a passive part and, then, to the load. This can provide specific advantages, including improved safety and less stringent design constraints for the architecture of the actuator, especially for soft end effectors. Such a simple concept can be readily implemented according to different shapes and intended functionalities of the resulting actuators. The paper describes the structure and the performance of the first prototype devices developed so far.

  1. Compression of α-cristobalite under different hydrostatic conditions

    NASA Astrophysics Data System (ADS)

    Cernok, Ana; Marquardt, Katharina; Bykova, Elena; Liermann, Hanns-Peter; Dubrovinsky, Leonid

    2015-04-01

    The response of α-cristobalite to high-pressure has been a subject of numerous experimental and theoretical studies for more than two decades. The results indicated prolific polymorphism under high pressures, yet no consensus has emerged on what is the sequence of these pressure-induced transformations. In particular, the structure of the high-pressure polymorph that appears above ~10 GPa (hereafter cristobalite X-I), which is believed to be a direct link between the low-pressure (silicon in SiO4 tetrahedra) and the high-pressure (SiO6 octahedra) forms of silica remained elusive. This study examined the response of α-cristobalite when compressed at different levels of hydrostaticity, with the special focus on formation and stability of cristobalite X-I. The structural behavior of cristobalite under pressure was investigated up to ~80 GPa and at ambient temperature. We investigated behavior of single crystals and powders, in either (quasy)-hydrostatic or non-hydrostatic environment. In situ high pressure transformation path and structural behavior was studied by means of Raman spectroscopy and synchrotron X-ray diffraction (XRD). The samples recovered after pressure release were additionally investigated by transmission electron microscopy (TEM). Low- or α-cristobalite responds differently to high pressure depending on the degree of the hydrostaticity. The highest attainable hydrostaticity preserves the initial structure of cristobalite at least up to ~15 GPa. When the crystal experiences even slight stresses during an experiment, transformation sequence leads to cristobalite X-I - a monoclinic polymorph with silicon in octahedral coordination. This polymorph belongs to the family of the high-pressure silica phases that are comprised of distorted close-packed array of oxygen ions in which silicon atoms fully or partially occupy octahedral sites. The reflections collected on a single crystal at ~11 GPa can be indexed by a monoclinic unit cell a=6.658(9) Å, b=4

  2. Hydrostatic levelling systems: Measuring at the system limits

    NASA Astrophysics Data System (ADS)

    Meier, Edi; Geiger, Alain; Ingensand, Hilmar; Licht, Hans; Limpach, Philippe; Steiger, Andreas; Zwyssig, Roger

    2010-09-01

    Three hydrostatic displacement monitoring system applications in Switzerland are discussed; the first concerns experience gained monitoring the foundation of the Albigna dam, the second relating to the underground stability of the Swiss Light Source synchrotron and the third concerning the deformation of a bridge near the city of Lucerne. Two different principles were applied, the Hydrostatic Levelling System (HLS) using the “half-filled pipe principle” developed by the Paul Scherrer Institute and the Large Area Settlement System (LAS) using the “differential pressure principle”. With both systems ground deformations induced by tidal forces can be seen. However, high accuracy of single sensors is not sufficient. A well-designed configuration of the complete system is equally important. On the other hand there are also limits imposed by installation logistics and by the environmental conditions. An example is the bridge monitoring application, where the acceleration along the bridge due to the passage of heavy trucks limits the feasibility of using hydrostatic levelling measurements.

  3. Resonant DX centers in highly doped Sn-Ga 1- xAl xAs under hydrostatic pressure in magnetic field

    NASA Astrophysics Data System (ADS)

    Basmaji, P.; Portal, J. C.; Aulombard, R. L.; Gibart, P.

    1987-07-01

    We report experimental evidence of deep impurity states producing a localized resonance in the Γ 1c band continuum in highly doped Sn-Ga 1- xAl xAs. At low temperatures and increasing pressure, electrons were transferred from the Γ 1c band to the deep Sn donor state; this transfer of carriers was directly related to the pressure dependence of Shubnikov de Haas oscillations. Persistent photoconductivity, due to the DX nature of this deep level, was observed through the increase in the Γ carrier density resulting from illumination with a light emitting diode. This is interpreted as a photoionization of the DX centers up to the Γ 1c valley.

  4. Elimination of Escherichia coli O157:H7 from Alfalfa seeds through a combination of high hydrostatic pressure and mild heat.

    PubMed

    Neetoo, Hudaa; Pizzolato, Thompson; Chen, Haiqiang

    2009-04-01

    Escherichia coli O157:H7 has been associated with contaminated seed sprout outbreaks. The majority of these outbreaks have been traced to sprout seeds contaminated with low levels of pathogens. Sanitizing sprout seeds presents a unique challenge in the arena of produce safety in that even a low residual pathogen population remaining on contaminated seed after treatments appears capable of growing to very high levels during sprouting. In this study, the effectiveness of high-pressure treatment in combination with low and elevated temperatures was assessed for its ability to eliminate E. coli O157:H7 on artificially contaminated alfalfa seeds. Inoculated seed samples were treated at 600 MPa for 2 min at 4, 20, 25, 30, 35, 40, 45, and 50 degrees C. The pressure sensitivity of the pathogenic bacteria was strongly dependent on the treatment temperature. At 40 degrees C, the process was adequate in eliminating a 5-log-unit population on the seeds with no adverse effect on seed viability. Three treatments carried out at reduced pressure levels and/or extended treatment time, 550 MPa for 2 min at 40 degrees C, 300 MPa for 2 min at 50 degrees C, and 400 MPa for 5 min at 45 degrees C, were equally lethal to the pathogen. When all three treatments were compared in terms of their impact on seed viability, the process of 550 MPa for 2 min at 40 degrees C was the most desirable, achieving final germination percentages and sprout sizes statistically similar to those of control untreated seeds (P > 0.05).

  5. Investigating the potential of Bacillus subtilis alpha-amylase as a pressure-temperature-time indicator for high hydrostatic pressure pasteurization processes.

    PubMed

    Grauwet, Tara; Van der Plancken, Iesel; Vervoort, Liesbeth; Hendrickx, Marc E; Van Loey, Ann

    2009-01-01

    The potential of Bacillus subtilis alpha-amylase (BSA) as a pressure-temperature-time indicator (pTTI) for high pressure pasteurization processing (400-600 MPa; T(i) 10-40 degrees C; 1-15 min) was investigated. A stepwise approach was followed for the development of an enzyme-based, extrinsic, isolated pTTI. First, based on literature data on the pressure stability, BSA was selected as a candidate indicator. Next to the accuracy and ease of the measurement of the indicator's response (residual activity) to the pressure treatment, the storage and handling stability of BSA at atmospheric pressure was verified. Second, the stability of BSA at a constant temperature (T) and time in function of pressure (p) was investigated. Solvent engineering was used to shift the inactivation window of BSA in the processing range of interest. Third, the enzyme (1 g/L BSA-MES 0.05 M pH 5.0) was kinetically calibrated under isobaric-isothermal conditions. Time dependent changes in activity could be modeled best by a first-order model. Except for low pressures and high temperatures, a synergistic effect between pressure and temperature could be observed. Based on the model selected to describe the combined p,T-dependency of the inactivation rate constant, an elliptically shaped isorate contour plot could be constructed, illustrating the processing range where BSA can be used to demonstrate temperature gradients. Fourth, the validity of the kinetic model was tested successfully under dynamic conditions similar to those used in food industry. Finally, the indicator was found suitable to demonstrate nonuniformity in two-sectional planes of a vertical, single vessel system.

  6. Favourable effects of eicosapentaenoic acid on the late step of the cell division in a piezophilic bacterium, Shewanella violacea DSS12, at high-hydrostatic pressures.

    PubMed

    Kawamoto, Jun; Sato, Takako; Nakasone, Kaoru; Kato, Chiaki; Mihara, Hisaaki; Esaki, Nobuyoshi; Kurihara, Tatsuo

    2011-08-01

    Shewanella violacea DSS12, a deep-sea bacterium, produces eicosapentaenoic acid (EPA) as a component of membrane phospholipids. Although various isolates from the deep sea, such as Photobacterium profundum SS9, Colwellia psychrerythraea 34H and various Shewanella strains, produce EPA- or docosahexaenoic acid-containing phospholipids, the physiological role of these polyunsaturated fatty acids remains unclear. In this article, we illustrate the physiological importance of EPA for high-pressure adaptation in strain DSS12 with the help of an EPA-deficient mutant (DSS12(pfaA)). DSS12(pfaA) showed significant growth retardation at 30 MPa, but not at 0.1 MPa. We also found that DSS12(pfaA) grown at 30 MPa forms filamentous cells. When an EPA-containing phospholipid (sn-1-oleoly-sn-2-eicosapentaenoyl phosphatidylethanolamine) was supplemented, the growth retardation and the morphological defect of DSS12(pfaA) were suppressed, indicating that the externally added EPA-containing phospholipid compensated for the loss of endogenous EPA. In contrast, the addition of an oleic acid-containing phospholipid (sn-1,2-dioleoyl phosphatidylethanolamine) did not affect the growth and the morphology of the cells. Immunofluorescent microscopic analysis with anti-FtsZ antibody revealed a number of Z-rings and separated nucleoids in DSS12(pfaA) grown at 30 MPa. These results demonstrate the physiological importance of EPA for the later step of Z-ring formation of S. violacea DSS12 under high-pressure conditions. PMID:21518217

  7. Advances in the U.S. Navy Non-hydrostatic Unified Model of the Atmosphere (NUMA): LES as a Stabilization Methodology for High-Order Spectral Elements in the Simulation of Deep Convection

    NASA Astrophysics Data System (ADS)

    Marras, Simone; Giraldo, Frank

    2015-04-01

    The prediction of extreme weather sufficiently ahead of its occurrence impacts society as a whole and coastal communities specifically (e.g. Hurricane Sandy that impacted the eastern seaboard of the U.S. in the fall of 2012). With the final goal of solving hurricanes at very high resolution and numerical accuracy, we have been developing the Non-hydrostatic Unified Model of the Atmosphere (NUMA) to solve the Euler and Navier-Stokes equations by arbitrary high-order element-based Galerkin methods on massively parallel computers. NUMA is a unified model with respect to the following criteria: (a) it is based on unified numerics in that element-based Galerkin methods allow the user to choose between continuous (spectral elements, CG) or discontinuous Galerkin (DG) methods and from a large spectrum of time integrators, (b) it is unified across scales in that it can solve flow in limited-area mode (flow in a box) or in global mode (flow on the sphere). NUMA is the dynamical core that powers the U.S. Naval Research Laboratory's next-generation global weather prediction system NEPTUNE (Navy's Environmental Prediction sysTem Utilizing the NUMA corE). Because the solution of the Euler equations by high order methods is prone to instabilities that must be damped in some way, we approach the problem of stabilization via an adaptive Large Eddy Simulation (LES) scheme meant to treat such instabilities by modeling the sub-grid scale features of the flow. The novelty of our effort lies in the extension to high order spectral elements for low Mach number stratified flows of a method that was originally designed for low order, adaptive finite elements in the high Mach number regime [1]. The Euler equations are regularized by means of a dynamically adaptive stress tensor that is proportional to the residual of the unperturbed equations. Its effect is close to none where the solution is sufficiently smooth, whereas it increases elsewhere, with a direct contribution to the

  8. Inactivation of gram-negative bacteria in milk and banana juice by hen egg white and lambda lysozyme under high hydrostatic pressure.

    PubMed

    Nakimbugwe, Dorothy; Masschalck, Barbara; Anim, Grace; Michiels, Chris W

    2006-10-15

    The effect of hen egg white lysozyme (HEWL) and bacteriophage lambda lysozyme (LaL) in combination with high pressure (HP) treatment on the inactivation of four gram-negative bacteria (Escherichia coli O157:H7, Shigella flexneri, Yersinia enterocolitica and Salmonella typhimurium), was studied in skim milk (pH 6.8; a(w) 0.997) and in banana juice (pH 3.8; a(w) 0.971). In the absence of lysozymes, S. flexneri was more sensitive to HP in milk than in banana juice, while the opposite was observed for the other three bacteria. In combination with HP treatment, LaL was more effective than HEWL on all bacteria in both milk and banana juice. Depending on the bacteria, inactivation levels in banana juice were increased from 0.4-2.7 log units by HP treatment alone to 3.6-6.5 log units in the presence of 224 U/ml LaL. Bacterial inactivation in milk was also enhanced by LaL but only by 0.5-2.1 log units. Under the experimental conditions used, LaL was more effective in banana juice than in milk, while the effectiveness of HEWL under the same conditions was not significantly affected by the food matrix. This effect could be ascribed to the low pH of the banana juice since LaL was also more effective on E. coli in buffer at pH 3.8 than at pH 6.8. Since neither LaL nor HEWL are enzymatically active at pH 3.8, we analysed bacterial lysis after HP treatment in the presence of these enzymes, and found that inactivation proceeds through a non-lytic mechanism at pH 3.8 and a lytic mechanism at pH 6.8. Based on these results, LaL may offer interesting perspectives for use as an extra hurdle in high pressure food preservation. PMID:16843561

  9. Effect of pressure-induced changes in the ionization equilibria of buffers on inactivation of Escherichia coli and Staphylococcus aureus by high hydrostatic pressure.

    PubMed

    Gayán, Elisa; Condón, Santiago; Álvarez, Ignacio; Nabakabaya, Maria; Mackey, Bernard

    2013-07-01

    Survival rates of Escherichia coli and Staphylococcus aureus after high-pressure treatment in buffers that had large or small reaction volumes (ΔV°), and which therefore underwent large or small changes in pH under pressure, were compared. At a low buffer concentration of 0.005 M, survival was, as expected, better in MOPS (morpholinepropanesulfonic acid), HEPES, and Tris, whose ΔV° values are approximately 5.0 to 7.0 cm(3) mol(-1), than in phosphate or dimethyl glutarate (DMG), whose ΔV° values are about -25 cm(3) mol(-1). However, at a concentration of 0.1 M, survival was unexpectedly better in phosphate and DMG than in MOPS, HEPES, or Tris. This was because the baroprotective effect of phosphate and DMG increased much more rapidly with increasing concentration than it did with MOPS, HEPES, or Tris. Further comparisons of survival in solutions of salts expected to cause large electrostriction effects (Na2SO4 and CaCl2) and those causing lower electrostriction (NaCl and KCl) were made. The salts with divalent ions were protective at much lower concentrations than salts with monovalent ions. Buffers and salts both protected against transient membrane disruption in E. coli, but the molar concentrations necessary for membrane protection were much lower for phosphate and Na2SO4 than for HEPES and NaCl. Possible protective mechanisms discussed include effects of electrolytes on water compressibility and kosmotropic and specific ion effects. The results of this systematic study will be of considerable practical significance in studies of pressure inactivation of microbes under defined conditions but also raise important fundamental questions regarding the mechanisms of baroprotection by ionic solutes. PMID:23624471

  10. Hydrostatic extrusion of Cu-Ag melt spun ribbon

    DOEpatents

    Hill, Mary Ann; Bingert, John F.; Bingert, Sherri A.; Thoma, Dan J.

    1998-01-01

    The present invention provides a method of producing high-strength and high-conductance copper and silver materials comprising the steps of combining a predetermined ratio of the copper with the silver to produce a composite material, and melt spinning the composite material to produce a ribbon of copper and silver. The ribbon of copper and silver is heated in a hydrogen atmosphere, and thereafter die pressed into a slug. The slug then is placed into a high-purity copper vessel and the vessel is sealed with an electron beam. The vessel and slug then are extruded into wire form using a cold hydrostatic extrusion process.

  11. Hydrostatic extrusion of Cu-Ag melt spun ribbon

    DOEpatents

    Hill, M.A.; Bingert, J.F.; Bingert, S.A.; Thoma, D.J.

    1998-09-08

    The present invention provides a method of producing high-strength and high-conductance copper and silver materials comprising the steps of combining a predetermined ratio of the copper with the silver to produce a composite material, and melt spinning the composite material to produce a ribbon of copper and silver. The ribbon of copper and silver is heated in a hydrogen atmosphere, and thereafter die pressed into a slug. The slug then is placed into a high-purity copper vessel and the vessel is sealed with an electron beam. The vessel and slug then are extruded into wire form using a cold hydrostatic extrusion process. 5 figs.

  12. Hydrostatic liquid-bearing for precision gyro

    NASA Technical Reports Server (NTRS)

    Sgambati, R. J.

    1971-01-01

    Unit with 2W power increase and slightly larger overall dimensions performs as well as or better than its gas-bearing counterpart. Liquid-bearings are built by reworking serviceable gas-bearing components /sleeves, endplates, and cylinders/. Hydrostatic bearing is self-centered, requiring no magnetic suspension or centering jewel.

  13. A Load Cell for Hydrostatic Weighing

    ERIC Educational Resources Information Center

    Fahey, Thomas D.; Schroeder, Richard

    1978-01-01

    Although a load cell is more expensive than the autopsy scale for hydrostatic weighing, it is more accurate, easier to read, has no moving parts, is less susceptible to rust, and is less likely to be damaged by large subjects exceeding its capacity. (Author)

  14. Impurity trapped excitons under high hydrostatic pressure

    NASA Astrophysics Data System (ADS)

    Grinberg, Marek

    2013-09-01

    Paper summarizes the results on pressure effect on energies of the 4fn → 4fn and 4fn-15d1 → 4fn transitions as well as influence of pressure on anomalous luminescence in Lnα+ doped oxides and fluorides. A model of impurity trapped exciton (ITE) was developed. Two types of ITE were considered. The first where a hole is localized at the Lnα+ ion (creation of Ln(α+1)+) and an electron is attracted by Coulomb potential at Rydberg-like states and the second where an electron captured at the Lnα+ ion (creation of Ln(α-1)+) and a hole is attracted by Coulomb potential at Rydberg-like states. Paper presents detailed analysis of nonlinear changes of energy of anomalous luminescence of BaxSr1-xF2:Eu2+ (x > 0.3) and LiBaF3:Eu2+, and relate them to ITE-4f65d1 states mixing.

  15. Nonaxisymmetric incompressible hydrostatic pressure effects in radial face seals

    NASA Technical Reports Server (NTRS)

    Etsion, I.

    1976-01-01

    A flat seal having an angular misalinement is analyzed, taking into account the radial variations in seal clearance. An analytical solution for axial force, tilting moment, and leakage is presented that covers the whole range from zero to full angular misalinement. Nonaxisymmetric hydrostatic pressures due to the radial variations in the film thickness have a considerable effect on seal stability. When the high pressure is on the outer periphery of the seal, both the axial force and the tilting moment are nonrestoring. The case of high-pressure seals where cavitation is eliminated is discussed, and the possibility of dynamic instability is pointed out.

  16. 49 CFR 178.814 - Hydrostatic pressure test.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Hydrostatic pressure test. 178.814 Section 178.814... Hydrostatic pressure test. (a) General. The hydrostatic pressure test must be conducted for the qualification... loaded or discharged under pressure or intended to contain liquids. (b) Special preparation for...

  17. 49 CFR 178.814 - Hydrostatic pressure test.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Hydrostatic pressure test. 178.814 Section 178.814... Testing of IBCs § 178.814 Hydrostatic pressure test. (a) General. The hydrostatic pressure test must be... contain solids that are loaded or discharged under pressure or intended to contain liquids. (b)...

  18. 49 CFR 178.605 - Hydrostatic pressure test.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Hydrostatic pressure test. 178.605 Section 178.605... Packagings and Packages § 178.605 Hydrostatic pressure test. (a) General. The hydrostatic pressure test must... required for inner packagings of combination packagings. For internal pressure requirements for...

  19. 49 CFR 178.605 - Hydrostatic pressure test.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Hydrostatic pressure test. 178.605 Section 178.605... Packagings and Packages § 178.605 Hydrostatic pressure test. (a) General. The hydrostatic pressure test must... required for inner packagings of combination packagings. For internal pressure requirements for...

  20. 49 CFR 178.605 - Hydrostatic pressure test.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Hydrostatic pressure test. 178.605 Section 178.605... Testing of Non-bulk Packagings and Packages § 178.605 Hydrostatic pressure test. (a) General. The hydrostatic pressure test must be conducted for the qualification of all metal, plastic, and...

  1. 49 CFR 178.814 - Hydrostatic pressure test.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Hydrostatic pressure test. 178.814 Section 178.814... Hydrostatic pressure test. (a) General. The hydrostatic pressure test must be conducted for the qualification... loaded or discharged under pressure or intended to contain liquids. (b) Special preparation for...

  2. 49 CFR 178.814 - Hydrostatic pressure test.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Hydrostatic pressure test. 178.814 Section 178.814... Hydrostatic pressure test. (a) General. The hydrostatic pressure test must be conducted for the qualification... loaded or discharged under pressure or intended to contain liquids. (b) Special preparation for...

  3. 49 CFR 178.605 - Hydrostatic pressure test.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Hydrostatic pressure test. 178.605 Section 178.605... Packagings and Packages § 178.605 Hydrostatic pressure test. (a) General. The hydrostatic pressure test must... required for inner packagings of combination packagings. For internal pressure requirements for...

  4. 46 CFR 61.30-10 - Hydrostatic test.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... INSPECTIONS Tests and Inspections of Fired Thermal Fluid Heaters § 61.30-10 Hydrostatic test. All new installations of thermal fluid heaters must be given a hydrostatic test of 11/2 times the maximum allowable... all accessible parts under pressure. The thermal fluid may be used as the hydrostatic test medium....

  5. 46 CFR 61.30-10 - Hydrostatic test.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... INSPECTIONS Tests and Inspections of Fired Thermal Fluid Heaters § 61.30-10 Hydrostatic test. All new installations of thermal fluid heaters must be given a hydrostatic test of 11/2 times the maximum allowable... all accessible parts under pressure. The thermal fluid may be used as the hydrostatic test medium....

  6. 46 CFR 154.562 - Cargo hose: Hydrostatic test.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Cargo hose: Hydrostatic test. 154.562 Section 154.562 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY... Hose § 154.562 Cargo hose: Hydrostatic test. Each cargo hose must pass a hydrostatic pressure test...

  7. 46 CFR 154.562 - Cargo hose: Hydrostatic test.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Cargo hose: Hydrostatic test. 154.562 Section 154.562 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY... Hose § 154.562 Cargo hose: Hydrostatic test. Each cargo hose must pass a hydrostatic pressure test...

  8. 46 CFR 154.562 - Cargo hose: Hydrostatic test.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Cargo hose: Hydrostatic test. 154.562 Section 154.562 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY... Hose § 154.562 Cargo hose: Hydrostatic test. Each cargo hose must pass a hydrostatic pressure test...

  9. 46 CFR 154.562 - Cargo hose: Hydrostatic test.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Cargo hose: Hydrostatic test. 154.562 Section 154.562 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY... Hose § 154.562 Cargo hose: Hydrostatic test. Each cargo hose must pass a hydrostatic pressure test...

  10. 46 CFR 154.562 - Cargo hose: Hydrostatic test.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Cargo hose: Hydrostatic test. 154.562 Section 154.562 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY... Hose § 154.562 Cargo hose: Hydrostatic test. Each cargo hose must pass a hydrostatic pressure test...

  11. An Exploratory Clinical Trial of a Novel Treatment for Giant Congenital Melanocytic Nevi Combining Inactivated Autologous Nevus Tissue by High Hydrostatic Pressure and a Cultured Epidermal Autograft: Study Protocol

    PubMed Central

    Jinno, Chizuru; Sakamoto, Michiharu; Kakudo, Natsuko; Yamaoka, Tetsuji; Kusumoto, Kenji

    2016-01-01

    Background Giant congenital melanocytic nevi (GCMNs) are large brown to black skin lesions that appear at birth and are associated with a risk of malignant transformation. It is often difficult to reconstruct large full-thickness skin defects after the removal of GCMNs. Objective To overcome this difficulty we developed a novel treatment to inactivate nevus tissue and reconstruct the skin defect using the nevus tissue itself. For this research, we designed an exploratory clinical study to investigate the safety and efficacy of a novel treatment combining the engraftment of autologous nevus tissue inactivated by high hydrostatic pressurization with a cultured epidermal autograft (CEA). Methods Patients with congenital melanocytic nevi that were not expected to be closed by primary closure will be recruited for the present study. The target number of nevi is 10. The full-thickness nevus of the target is removed and pressurized at 200 MPa for 10 minutes. The pressurized and inactivated nevus is sutured to the original site. A small section of the patient’s normal skin is taken from around the nevus region and a CEA is prepared after a 3-week culturing process. The CEA is then grafted onto the engrafted inactivated nevus at four weeks after its retransplantation. The primary endpoint is the engraftment of the CEA at 8 weeks after its transplantation and is defined as being engrafted when the engraftment area of the inactivated nevus is 60% or more of the pretransplantation nevus area and when 80% or more of the transplanted inactivated nevus is epithelialized. Results The study protocol was approved by the Institutional Review Board of Kansai Medical University (No. 1520-2, January 5, 2016: version 1.3). The study opened for recruitment in February 2016. Conclusions This protocol is designed to show feasibility in delivering a novel treatment combining the engraftment of inactivated autologous nevus tissue and CEA. This is the first-in-man clinical trial of this

  12. Steady State Performance Analysis of Hydrostatic Transmission System using Two Motor Summation Drive

    NASA Astrophysics Data System (ADS)

    Dasgupta, K.; Kumar, N.; Kumar, R.

    2013-10-01

    Hydrostatic transmission (HST) system used in heavy earth moving machineries (HEMMs) has high power density, wide range of speed control and good overall efficiency. Hydrostatically coupled two motor summation drive is an alternative power transmission system, compared to existing closed-loop HST system with low speed high torque motor, used in HEMM. Such drive arrangement has made the possibility to design the transmission system, used in heavy vehicles, in an efficient way to cover wide range of torque-speed demand. This article studies the concept of two motor summation drive and its steady state performance. Experiments have been carried out to analyze the performance of such system. The characteristics of single and two motor drive systems are compared at different load-torque and speed levels. It is concluded that two motor hydrostatic drive systems is more effective at high load-torque and low speed compared to single motor drive system.

  13. The role of ontogeny in physiological tolerance: decreasing hydrostatic pressure tolerance with development in the northern stone crab Lithodes maja.

    PubMed

    Munro, Catriona; Morris, James P; Brown, Alastair; Hauton, Chris; Thatje, Sven

    2015-06-22

    Extant deep-sea invertebrate fauna represent both ancient and recent invasions from shallow-water habitats. Hydrostatic pressure may present a significant physiological challenge to organisms seeking to colonize deeper waters or migrate ontogenetically. Pressure may be a key factor contributing to bottlenecks in the radiation of taxa and potentially drive speciation. Here, we assess shifts in the tolerance of hydrostatic pressure through early ontogeny of the northern stone crab Lithodes maja, which occupies a depth range of 4-790 m in the North Atlantic. The zoea I, megalopa and crab I stages were exposed to hydrostatic pressures up to 30.0 MPa (equivalent of 3000 m depth), and the relative fold change of genes putatively coding for the N-methyl-D-aspartate receptor-regulated protein 1 (narg gene), two heat-shock protein 70 kDa (HSP70) isoforms and mitochondrial Citrate Synthase (CS gene) were measured. This study finds a significant increase in the relative expression of the CS and hsp70a genes with increased hydrostatic pressure in the zoea I stage, and an increase in the relative expression of all genes with increased hydrostatic pressure in the megalopa and crab I stages. Transcriptional responses are corroborated by patterns in respiratory rates in response to hydrostatic pressure in all stages. These results suggest a decrease in the acute high-pressure tolerance limit as ontogeny advances, as reflected by a shift in the hydrostatic pressure at which significant differences are observed.

  14. The role of ontogeny in physiological tolerance: decreasing hydrostatic pressure tolerance with development in the northern stone crab Lithodes maja

    PubMed Central

    Munro, Catriona; Morris, James P.; Brown, Alastair; Hauton, Chris; Thatje, Sven

    2015-01-01

    Extant deep-sea invertebrate fauna represent both ancient and recent invasions from shallow-water habitats. Hydrostatic pressure may present a significant physiological challenge to organisms seeking to colonize deeper waters or migrate ontogenetically. Pressure may be a key factor contributing to bottlenecks in the radiation of taxa and potentially drive speciation. Here, we assess shifts in the tolerance of hydrostatic pressure through early ontogeny of the northern stone crab Lithodes maja, which occupies a depth range of 4–790 m in the North Atlantic. The zoea I, megalopa and crab I stages were exposed to hydrostatic pressures up to 30.0 MPa (equivalent of 3000 m depth), and the relative fold change of genes putatively coding for the N-methyl-d-aspartate receptor-regulated protein 1 (narg gene), two heat-shock protein 70 kDa (HSP70) isoforms and mitochondrial Citrate Synthase (CS gene) were measured. This study finds a significant increase in the relative expression of the CS and hsp70a genes with increased hydrostatic pressure in the zoea I stage, and an increase in the relative expression of all genes with increased hydrostatic pressure in the megalopa and crab I stages. Transcriptional responses are corroborated by patterns in respiratory rates in response to hydrostatic pressure in all stages. These results suggest a decrease in the acute high-pressure tolerance limit as ontogeny advances, as reflected by a shift in the hydrostatic pressure at which significant differences are observed. PMID:26041343

  15. A Multipurpose Device for Some Hydrostatics Questions

    ERIC Educational Resources Information Center

    Ganci, Salvatore

    2008-01-01

    A number of well-known hydrostatics problems dealing with Archimedes' principle concern a loaded boat floating in a pool. Examples of this sort of problem include: 1. (a) If a stone is thrown overboard from a boat floating in a pool, does the water level in the pool rise, fall, or remain unchanged? (b) If a hole is made in the bottom of the boat…

  16. Hydrostatic Adjustment in Vertically Stratified Atmospheres

    NASA Technical Reports Server (NTRS)

    Duffy, Dean G.

    2000-01-01

    Hydrostatic adjustment due to diabatic heat in two nonisothermal atmospheres is examined. In the first case the temperature stratification is continuous; in the second case the atmosphere is composed of a warm, isothermal troposphere and a colder, isothermal semi-infinitely deep stratosphere.In both cases hydrostatic adjustment, to a good approximation, follows the pattern found in the Lamb problem (semi-infinitely deep. isothermal atmosphere): Initially we have acoustic waves with the kinetic energy increasing or decreasing at the expense of available elastic energy. After this initial period the acoustic waves evolve into acoustic-gravity waves with the kinetic, available potential and available elastic energies interacting with each other. Relaxation to hydrostatic balance occurs within a few oscillations. Stratification in an atmosphere with a continuous temperature profile affects primarily the shape and amplitude of the disturbances. In the two-layer atmosphere, a certain amount of energy is trapped in the tropospheric waveguide as disturbances reflect off the tropopause and back into the troposphere. With each internal reflection a portion of this trapped energy escapes and radiates to infinity.

  17. Hydrostatic testing of porous assemblies

    NASA Technical Reports Server (NTRS)

    Bigelow, W. L.

    1968-01-01

    Pores of the material were plugged with dust particles suspended in water. The plugging material used was a standard test dust prepared as a slurry in distilled water. This technique provides a permanent high-integrity seal for porous material without affecting its physical properties, yet permitting pressure testing to verify structural adequacy.

  18. Hydrostatic Water Level Systems At Homestake DUSEL

    NASA Astrophysics Data System (ADS)

    Stetler, L. D.; Volk, J. T.

    2009-12-01

    Two arrays of Fermilab-style hydrostatic water level sensors have been installed in the former Homestake gold mine in Lead, SD, the site of the new Deep Underground Science and Engineering Laboratory (DUSEL). Sensors were constructed at Fermilab from 8.5 cm diameter PVC pipe (housing) that was sealed on the ends and fit with a proximity sensor. The instrument have a height of 10 cm. Two ports in each sensor housing provide for connectivity, the upper port for air and the bottom port for water. Multiple instruments connected in series provide a precise water level and differences in readings between successive sensors provide for ground tilt to be resolved. Sensor resolution is 5 μm per count and has a range of approximately 1.25 cm. Data output from each sensor is relayed to a Fermilab-constructed readout card that also has temperature/relative humidity and barometric pressure sensors connected. All data are relayed out of the mine by fiber optic cable and can be recorded by Ethernet at remote locations. The current arrays have been installed on the 2000-ft level (610 m) and consist of six instruments in each array. Three sensors were placed in a N-S oriented drift and three in an E-W oriented drift. Using this orientation, it is anticipated that tilt direction may be resolved in addition to overall tilt magnitude. To date the data show passage of earth tides and frequency analysis has revealed five components to this signal, three associated with the semi-diurnal (~12.4 hr) and two with the diurnal (~24.9 hr) tides. Currently, installation methods are being analyzed between concrete pillar and rib-mounting using the existing setup on the 2000-ft level. Using these results, two additional arrays of Fermilab instruments will be installed on the 4550-ft and 4850-ft levels (1387 and 1478 m, respectively). In addition to Fermilab instruments, several high resolution Budker tiltmeters (1 μm resolution) will be installed in the mine workings in the near future, some

  19. Photomultiplier tube failure under hydrostatic pressure in future neutrino detectors

    DOE PAGESBeta

    Chambliss, K.; Diwan, M.; Simos, N.; Sundaram, S. K.

    2014-10-09

    Failure of photomultiplier tubes (PMTs) under hydrostatic pressure is a concern in neutrino detection, specifically, in the proposed Long-Baseline Neutrino Experiment project. Controlled hydrostatic implosion tests were performed on prototypic PMT bulbs of 10-inch diameter and recorded using high speed filming techniques to capture failures in detail. These high-speed videos were analyzed frame-by-frame in order to identify the origin of a crack, measure the progression of individual crack along the surface of the bulb as it propagates through the glass, and estimate crack velocity. Crack velocity was calculated for each individual crack, and an average velocity was determined for allmore » measurable cracks on each bulb. Overall, 32 cracks were measured in 9 different bulbs tested. Finite element modeling (FEM) of crack formation and growth in prototypic PMT shows stress concentration near the middle section of the PMT bulbs that correlates well with our crack velocity measurements in that section. The FEM model predicts a crack velocity value that is close to the terminal crack velocity reported. Our measurements also reveal significantly reduced crack velocities compared to terminal crack velocities measured in glasses using fracture mechanics testing and reported in literature.« less

  20. Photomultiplier tube failure under hydrostatic pressure in future neutrino detectors

    SciTech Connect

    Chambliss, K.; Diwan, M.; Simos, N.; Sundaram, S. K.

    2014-10-09

    Failure of photomultiplier tubes (PMTs) under hydrostatic pressure is a concern in neutrino detection, specifically, in the proposed Long-Baseline Neutrino Experiment project. Controlled hydrostatic implosion tests were performed on prototypic PMT bulbs of 10-inch diameter and recorded using high speed filming techniques to capture failures in detail. These high-speed videos were analyzed frame-by-frame in order to identify the origin of a crack, measure the progression of individual crack along the surface of the bulb as it propagates through the glass, and estimate crack velocity. Crack velocity was calculated for each individual crack, and an average velocity was determined for all measurable cracks on each bulb. Overall, 32 cracks were measured in 9 different bulbs tested. Finite element modeling (FEM) of crack formation and growth in prototypic PMT shows stress concentration near the middle section of the PMT bulbs that correlates well with our crack velocity measurements in that section. The FEM model predicts a crack velocity value that is close to the terminal crack velocity reported. Our measurements also reveal significantly reduced crack velocities compared to terminal crack velocities measured in glasses using fracture mechanics testing and reported in literature.

  1. Frustrated exchange interactions formation at low temperatures and high hydrostatic pressures in La{sub 0.70}Sr{sub 0.30}Mn{sub O2.85}

    SciTech Connect

    Trukhanov, S. V. Trukhanov, A. V.; Vasiliev, A. N.; Szymczak, H.

    2010-08-15

    The magnetic and thermal properties of the anion-deficient La{sub 0.70}Sr{sub 0.30}MnO{sub 2.85} manganite are investigated in wide temperature (4-350 K) range, including under hydrostatic pressure (0-1.1 GPa). Throughout the pressure range investigated, the sample is spin glass with diffused phase transition into paramagnetic state. It is established, that spin glass state is a consequence of exchange interaction frustration of the ferromagnetic clusters embeded into antiferromagnetic clusters. The magnetic moment freezing temperature T{sub f} of ferromagnetic clusters increases under pressure, freezing temperature dependence on pressure is characterized by derivative value {approx}4.5 K/GPa, while the magnetic ordering T{sub MO} temperature dependence is characterized by derivative value {approx}13 K/GPa. The volume fraction of sample having ferromagnetic state is V{sub fer} {approx} 13% and it increases under a pressure of 1.1 GPa by {Delta}V{sub fer} {approx} 6%. Intensification of ferromagnetic properties of the anion-deficient La{sub 0.70}Sr{sub 0.30}MnO{sub 2.85} manganite under hydrostatic pressure is a consequence of oxygen vacancies redistribution and unit cell parameters decrease. The most likely mechanism of frustrated exchange interactions formation is discussed.

  2. Inelastic compaction, dilation and hysteresis of sandstones under hydrostatic conditions

    NASA Astrophysics Data System (ADS)

    Shalev, Eyal; Lyakhovsky, Vladimir; Ougier-Simonin, Audrey; Hamiel, Yariv; Zhu, Wenlu

    2014-05-01

    Sandstones display non-linear and inelastic behaviour such as hysteresis when subjected to cyclic loading. We present three hydrostatic compaction experiments with multiple loading-unloading cycles on Berea and Darley Dale sandstones and explain their hysteretic behaviour using non-linear inelastic compaction and dilation. Each experiment included eight to nine loading-unloading cycles with increasing maximum pressure in each subsequent cycle. Different pressure-volumetric strain relations during loading and unloading were observed. During the first cycles, under relatively low pressures, not all of the volumetric strain is recovered at the end of each cycle whereas at the last cycles, under relatively high pressures, the strain is recovered and the pressure-volumetric strain hysteresis loops are closed. The observed pressure-volumetric strain relations are non-linear and the effective bulk modulus of the sandstones changes between cycles. Observations are modelled with two inelastic deformation processes: irreversible compaction caused by changes in grain packing and recoverable compaction associated with grain contact adhesion, frictional sliding on grains or frictional sliding on cracks. The irreversible compaction is suggested to reflect rearrangement of grains into a more compact mode as the maximum pressure increases. Our model describes the `inelastic compaction envelope' in which sandstone sample will follow during hydrostatic loading. Irreversible compaction occurs when pressure is greater than a threshold value defined by the `inelastic compaction envelope'.

  3. Constraints on Enceladus' Internal Structure from Cassini Gravity: Beyond Hydrostatic Cores and Uniformly Compensated Shells

    NASA Astrophysics Data System (ADS)

    McKinnon, W. B.; Bland, M. T.

    2014-12-01

    Cassini has determined three important gravitational coefficients for Enceladus, J2, C22 and J3 (Iess et al., Science 344, 78). The gravity field is non-hydrostatic to 3σ (J2/C22 = 3.38-3.63, as opposed to 10/3). Iess et al. interpret these in terms of a hydrostatic interior (core) and isostatic (not hydrostatic) floating ice shell. The hydrostatic and non-hydrostatic contributions are separated by assuming the isostatic compensation depth is the same for each gravity term, although this can't be strictly true in the case of a regional south polar sea. The inferred normalized moment-of-inertia (0.335) implies a core density of 2340-2400 kg/m3, consistent with a highly hydrated and oxidized (sulfate-rich) core, or more plausibly (in a cosmochemical sense), a porous, water-saturated core. The long-term stability of such porosity is questionable, however. Modest topography on a more indurated core could significantly contribute to the gravity signal. For example, if Enceladus' core density were 3000 kg/m3, excess topography of only 1 km amplitude could provide the same "hydrostatic" J2 component as modeled in Iess et al. (and requires only 0.1 MPa of stress support). There is also the question of compensation depth of the ice shell. Different formalisms for spherical shells exist in the literature (e.g., Lambeck vs. Turcotte); Iess et al. follow the former and derive a 30-to-40-km thick shell at the south pole, whereas the Turcotte formalism gives a shell only 18-25-km thick. We pay particular attention to this issue, and note a thinner shell would be more mechanically compatible with the spacing of the "tiger stripes," if the fissures are indeed crevasses open to the ocean below.

  4. Numerical Simulation of Damage during Forging with Superimposed Hydrostatic Pressure by Active Media

    SciTech Connect

    Behrens, B.-A.; Hagen, T.; Roehr, S.; Sidhu, K. B.

    2007-05-17

    The effective reduction of energy consumption and a reasonable treatment of resources can be achieved by minimizing a component's weight using lightweight metals. In this context, aluminum alloys play a major role. Due to their material-sided restricted formability, the mentioned aluminum materials are difficult to form. The plasticity of a material is ascertained by its maximum forming limit. It is attained, when the deformation causes mechanical damage within the material. Damage of that sort is reached more rapidly, the greater the tensile strength rate in relation to total tension rate. A promising approach of handling these low ductile, high-strength aluminum alloys within a forming process, is forming with a synchronized superposition of comprehensive stress by active media such as by controlling oil pressure. The influence of superimposed hydrostatic pressure on the flow stress was analyzed as well as the formability for different procedures at different hydrostatic pressures and temperature levels. It was observed that flow stress is independent of superimposed hydrostatic pressure. Neither the superimposed pressure has an influence on the plastic deformation, nor does a pressure dependent material hardening due to increasing hydrostatic pressure take place. The formability increases with rising hydrostatic pressure. The relative gain at room temperature and increase of the superimposed pressure from 0 to 600 bar for tested materials was at least 140 % and max. 220 %. Therefore in this paper, based on these experimental observations, it is the intended to develop a numerical simulation in order to predict ductile damage that occurs in the bulk forging process with superimposed hydrostatic pressure based Lemaitre's damage model.

  5. Hydrostatic shoe bearing system for the TIM

    NASA Astrophysics Data System (ADS)

    Ruiz Schneider, Elfego; Sohn, Erika; Quiros-Pacheco, Fernando; Godoy, Javier; Farah Simon, Alejandro; Quintanilla, R.; Soto, P.; Salas, Luis; Cruz-Gonzales, Irene

    2000-08-01

    We present an active, low cost hydrostatic shoe bearing system for the Mexican Infrared Telescope which solves the suspension and motion of a 100 ton, 7.8 m telescope. Different geometries are analyzed to optimize the shoe's pressure print. These designs offer a self-adjusting action between the shoe's sliding path and the girth track. Different parameters such as pressure, temperature and proximity are measured and implemented into a control system in order to stabilize the bearing from the fluid's thermal viscosity effects. A simple method for fluid injection is discussed.

  6. Power control for a hydrostatic transmission

    SciTech Connect

    Geringer, K.G.

    1988-05-24

    A power control for a hydrostatic transmission is described having a pair of hydraulic units at least one of which being of variable displacement. The variable displacement hydraulic unit has hydraulic servo means for varying the displacement. The hydrostatic transmission furthermore has a fixed displacement speed signal pump driven at a speed proportional to the input speed of the transmission and providing a hydraulic input speed signal. The power control comprises first and second valves in series flow relationship between the speed signal pump and the servo means. The first valve is a variable orifice valve spring biased toward a cloeed position and biased by the input speed signal toward an open position to establish a pressure drop having a generally linear relationship to the input speed signal. The second valve is spring biased toward a closed position relative to communicating the output of the first valve to the servo means and having first and second opposed pilots connected across the first valve so that the input speed signal induced pressure drop biases the second valve toward an open position. The second valve also has an output feedback proportional to pressure in the servo means and connected to a third pilot biasing the second valve towards the closed position.

  7. External Coulomb-Friction Damping For Hydrostatic Bearings

    NASA Technical Reports Server (NTRS)

    Buckmann, Paul S.

    1992-01-01

    External friction device damps vibrations of shaft and hydrostatic ring bearing in which it turns. Does not rely on wear-prone facing surfaces. Hydrostatic bearing ring clamped in radially flexing support by side plates clamped against radial surfaces by spring-loaded bolts. Plates provide friction against radial motions of shaft.

  8. A Simple Explanation of the Classic Hydrostatic Paradox

    ERIC Educational Resources Information Center

    Kontomaris, Stylianos-Vasileios; Malamou, Anna

    2016-01-01

    An interesting problem in fluid mechanics, with significant educational importance, is the classic hydrostatic paradox. The hydrostatic paradox states the fact that in different shaped containers, with the same base area, which are filled with a liquid of the same height, the applied force by the liquid on the base of each container is exactly the…

  9. 49 CFR 230.36 - Hydrostatic testing of boilers.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Pressure Testing of Boilers § 230.36 Hydrostatic testing of boilers. (a) Time of test. The... 49 Transportation 4 2012-10-01 2012-10-01 false Hydrostatic testing of boilers. 230.36 Section...

  10. 49 CFR 230.36 - Hydrostatic testing of boilers.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Pressure Testing of Boilers § 230.36 Hydrostatic testing of boilers. (a) Time of test. The... 49 Transportation 4 2010-10-01 2010-10-01 false Hydrostatic testing of boilers. 230.36 Section...

  11. 49 CFR 230.36 - Hydrostatic testing of boilers.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Pressure Testing of Boilers § 230.36 Hydrostatic testing of boilers. (a) Time of test. The... 49 Transportation 4 2014-10-01 2014-10-01 false Hydrostatic testing of boilers. 230.36 Section...

  12. 49 CFR 230.36 - Hydrostatic testing of boilers.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Pressure Testing of Boilers § 230.36 Hydrostatic testing of boilers. (a) Time of test. The... 49 Transportation 4 2011-10-01 2011-10-01 false Hydrostatic testing of boilers. 230.36 Section...

  13. 49 CFR 230.36 - Hydrostatic testing of boilers.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Pressure Testing of Boilers § 230.36 Hydrostatic testing of boilers. (a) Time of test. The... 49 Transportation 4 2013-10-01 2013-10-01 false Hydrostatic testing of boilers. 230.36 Section...

  14. Ultrahigh hydrostatic pressure extraction of flavonoids from Epimedium koreanum Nakai

    NASA Astrophysics Data System (ADS)

    Hou, Lili; Zhang, Shouqin; Dou, Jianpeng; Zhu, Junjie; Liang, Qing

    2011-02-01

    Herba Epimedii is one of the most famous Chinese herbal medicines listed in the Pharmacopoeia of the People's Republic of China, as one of the representatives of traditional Chinese herb, it has been widely applied in the field of invigorate the kidney and strengthen 'Yang'. The attention to Epimedium extract has more and more increased in recent years. In this work, a novel extraction technique, ultra-high hydrostatic pressure extraction (UPE) technology was applied to extract the total flavonoids of E. koreanum. Three factors (pressure, ethanol concentration and extraction time) were chosen as the variables of extraction experiments, and the optimum UPE conditions were pressure 350 MPa; ethanol concentration 50% (v/v); extraction time 5 min. Compared with Supercritical CO2 extraction, Reflux extraction and Ultrasonic-assisted extraction, UPE has excellent advantages (shorter extraction time, higher yield, better antioxidant activity, lower energy consumption and eco-friendly).

  15. Effect of hydrostatic pressure on ligand binding to hemoglobin.

    PubMed

    Carey, F G; Knowles, F; Gibson, Q H

    1977-06-25

    Increase in hydrostatic pressure to 1000 atm increased the affinity of human and menhaden (Brevoortia tyrannus) hemoglobins for oxygen. With necessary assumptions about the form of the equilibrium curve, and after correction for changes in pH and volume due to pressure, the increase in affinity is about 2-fold for both hemoglobins. At pH 6.5, Hill's n for menhaden hemoglobin is near 1, and it is believed to remain in the T state, whereas human hemoglobin undergoes a T to R transition. This suggests that the R-T equilibrium is not disturbed by pressure. In direct experiments the binding of a fluorescent effector (8 hydroxy-1,3,6-pyrene (trisulfonic acid) to deoxyhemoglobin was not changed by pressure. The binding of n-butylisocyanide to hemoglobin and to myoglobin is also greater at high pressures, similarly suggesting that the R-T transition is not involved in the pressure effect. PMID:16924

  16. Melting of icosahedral nickel clusters under hydrostatic pressure.

    PubMed

    Fu, Bing; Chen, Li; Wang, Feifei; Xie, Yiqun; Ye, Xiang

    2014-12-01

    The thermal stabilities and melting behavior of icosahedral nickel clusters under hydrostatic pressure have been studied by constant-pressure molecular dynamics simulation. The potential energy and Lindemann index are calculated. The overall melting temperature exhibits a strong dependence on pressure. The Lindemann index of solid structure before melting varies slowly and is almost independent of pressure. However, after the clusters melt completely, the Lindemann index at the overall melting point strongly depends on pressure. The overall melting temperature is found to be increasing nonlinearly with increasing pressure, while the volume change during melting decreases linearly with increasing pressure. Under a high pressure and temperature environment, similar angular distributions were found between liquid and solid structures, indicating the existence of a converging local structure.

  17. Solidification and loss of hydrostaticity in liquid media used for pressure measurements.

    PubMed

    Torikachvili, M S; Kim, S K; Colombier, E; Bud'ko, S L; Canfield, P C

    2015-12-01

    We carried out a study of the pressure dependence of the solidification temperature in nine pressure transmitting media that are liquid at ambient temperature, under pressures up to 2.3 GPa. These fluids are 1:1 isopentane/n-pentane, 4:6 light mineral oil/n-pentane, 1:1 isoamyl alcohol/n-pentane, 4:1 methanol/ethanol, 1:1 FC72/FC84 (Fluorinert), Daphne 7373, isopentane, and Dow Corning PMX silicone oils 200 and 60,000 cS. We relied on the high sensitivity of the electrical resistivity of Ba(Fe(1-x)Ru(x))2As2 single crystals to the freezing of the pressure media and cross-checked with corresponding anomalies observed in the resistance of the manganin coil that served as the ambient temperature resistive manometer. In addition to establishing the temperature-pressure line separating the liquid (hydrostatic) and frozen (non-hydrostatic) phases, these data permit rough estimates of the freezing pressure of these media at ambient temperature. This pressure establishes the extreme limit for the medium to be considered hydrostatic. For higher applied pressures, the medium has to be treated as non-hydrostatic. PMID:26724044

  18. Transcriptomics Reveal Several Gene Expression Patterns in the Piezophile Desulfovibrio hydrothermalis in Response to Hydrostatic Pressure

    PubMed Central

    Amrani, Amira; Bergon, Aurélie; Holota, Hélène; Tamburini, Christian; Garel, Marc; Ollivier, Bernard; Imbert, Jean; Dolla, Alain; Pradel, Nathalie

    2014-01-01

    RNA-seq was used to study the response of Desulfovibrio hydrothermalis, isolated from a deep-sea hydrothermal chimney on the East-Pacific Rise at a depth of 2,600 m, to various hydrostatic pressure growth conditions. The transcriptomic datasets obtained after growth at 26, 10 and 0.1 MPa identified only 65 differentially expressed genes that were distributed among four main categories: aromatic amino acid and glutamate metabolisms, energy metabolism, signal transduction, and unknown function. The gene expression patterns suggest that D. hydrothermalis uses at least three different adaptation mechanisms, according to a hydrostatic pressure threshold (HPt) that was estimated to be above 10 MPa. Both glutamate and energy metabolism were found to play crucial roles in these mechanisms. Quantitation of the glutamate levels in cells revealed its accumulation at high hydrostatic pressure, suggesting its role as a piezolyte. ATP measurements showed that the energy metabolism of this bacterium is optimized for deep-sea life conditions. This study provides new insights into the molecular mechanisms linked to hydrostatic pressure adaptation in sulfate-reducing bacteria. PMID:25215865

  19. Solidification and loss of hydrostaticity in liquid media used for pressure measurements

    SciTech Connect

    Torikachvili, M. S.; Kim, S. K.; Colombier, E.; Bud’ko, S. L.; Canfield, P. C.

    2015-12-16

    We carried out a study of the pressure dependence of the solidification temperature in nine pressure transmitting media that are liquid at ambient temperature, under pressures up to 2.3 GPa. These fluids are 1:1 isopentane/n-pentane, 4:6 light mineral oil/n-pentane, 1:1 isoamyl alcohol/n-pentane, 4:1 methanol/ethanol, 1:1 FC72/FC84 (Fluorinert), Daphne 7373, isopentane, and Dow Corning PMX silicone oils 200 and 60,000 cS. We relied on the high sensitivity of the electrical resistivity of Ba(Fe1–xRux)2As2 single crystals to the freezing of the pressure media and cross-checked with corresponding anomalies observed in the resistance of the manganin coil that served as the ambient temperature resistive manometer. In addition to establishing the temperature-pressure line separating the liquid (hydrostatic) and frozen (non-hydrostatic) phases, these data permit rough estimates of the freezing pressure of these media at ambient temperature. As a result, this pressure establishes the extreme limit for the medium to be considered hydrostatic. For higher applied pressures, the medium has to be treated as non-hydrostatic.

  20. Solidification and loss of hydrostaticity in liquid media used for pressure measurements

    DOE PAGESBeta

    Torikachvili, M. S.; Kim, S. K.; Colombier, E.; Bud’ko, S. L.; Canfield, P. C.

    2015-12-16

    We carried out a study of the pressure dependence of the solidification temperature in nine pressure transmitting media that are liquid at ambient temperature, under pressures up to 2.3 GPa. These fluids are 1:1 isopentane/n-pentane, 4:6 light mineral oil/n-pentane, 1:1 isoamyl alcohol/n-pentane, 4:1 methanol/ethanol, 1:1 FC72/FC84 (Fluorinert), Daphne 7373, isopentane, and Dow Corning PMX silicone oils 200 and 60,000 cS. We relied on the high sensitivity of the electrical resistivity of Ba(Fe1–xRux)2As2 single crystals to the freezing of the pressure media and cross-checked with corresponding anomalies observed in the resistance of the manganin coil that served as the ambient temperaturemore » resistive manometer. In addition to establishing the temperature-pressure line separating the liquid (hydrostatic) and frozen (non-hydrostatic) phases, these data permit rough estimates of the freezing pressure of these media at ambient temperature. As a result, this pressure establishes the extreme limit for the medium to be considered hydrostatic. For higher applied pressures, the medium has to be treated as non-hydrostatic.« less

  1. Solidification and loss of hydrostaticity in liquid media used for pressure measurements

    NASA Astrophysics Data System (ADS)

    Torikachvili, M. S.; Kim, S. K.; Colombier, E.; Bud'ko, S. L.; Canfield, P. C.

    2015-12-01

    We carried out a study of the pressure dependence of the solidification temperature in nine pressure transmitting media that are liquid at ambient temperature, under pressures up to 2.3 GPa. These fluids are 1:1 isopentane/n-pentane, 4:6 light mineral oil/n-pentane, 1:1 isoamyl alcohol/n-pentane, 4:1 methanol/ethanol, 1:1 FC72/FC84 (Fluorinert), Daphne 7373, isopentane, and Dow Corning PMX silicone oils 200 and 60 000 cS. We relied on the high sensitivity of the electrical resistivity of Ba(Fe1-xRux)2As2 single crystals to the freezing of the pressure media and cross-checked with corresponding anomalies observed in the resistance of the manganin coil that served as the ambient temperature resistive manometer. In addition to establishing the temperature-pressure line separating the liquid (hydrostatic) and frozen (non-hydrostatic) phases, these data permit rough estimates of the freezing pressure of these media at ambient temperature. This pressure establishes the extreme limit for the medium to be considered hydrostatic. For higher applied pressures, the medium has to be treated as non-hydrostatic.

  2. Strength Differential Measured in Inconel 718: Effects of Hydrostatic Pressure Studied

    NASA Technical Reports Server (NTRS)

    Lewandowski, John J.; Wesseling, Paul; Prabhu, Nishad S.; Larose, Joel; Lissenden, Cliff J.; Lerch, Bradley A.

    2003-01-01

    Aeropropulsion components, such as disks, blades, and shafts, are commonly subjected to multiaxial stress states at elevated temperatures. Experimental results from loadings as complex as those experienced in service are needed to help guide the development of accurate viscoplastic, multiaxial deformation models that can be used to improve the design of these components. During a recent study on multiaxial deformation (ref. 1) on a common aerospace material, Inconel 718, it was shown that the material in the aged state exhibits a strength differential effect (SDE), whereby the uniaxial compressive yield and subsequent flow behavior are significantly higher than those in uniaxial tension. Thus, this material cannot be described by a standard von Mises yield formulation. There have been other formulations postulated (ref. 2) that involve other combinations of the stress invariants, including the effect of hydrostatic stress. The question remained as to which invariants are necessary in the flow model. To capture the physical mechanisms occurring during deformation and reflect them in the plasticity formulation, researchers examined the flow of Inconel 718 under various amounts of hydrostatic stress to determine whether or not hydrostatic stress is needed in the formulation. Under NASA Grant NCC3-464, monitored by the NASA Glenn Research Center, a series of tensile tests were conducted at Case Western Reserve University on aged (precipitation hardened) Inconel 718 at 650 C and with superimposed hydrostatic pressure. Dogbone shaped tensile specimens (3-mm-diameter gauge by 16-mm gauge length) and cylindrical compression specimens (3-mm-diameter gauge by 6-mm gauge length) were strain gauged and loaded in a high-pressure testing apparatus. Hydrostatic pressures were obtained with argon and ranged from 210 to 630 MPa. The aged Inconel 718 showed a pronounced difference in the tension and compression yield strength (i.e., an SDE), as previously observed. Also, there were

  3. Hydrostatic Stress Effect On the Yield Behavior of Inconel 100

    NASA Technical Reports Server (NTRS)

    Allen, Phillip A.; Wilson, Christopher D.

    2002-01-01

    Classical metal plasticity theory assumes that hydrostatic stress has no effect on the yield and postyield behavior of metals. Recent reexaminations of classical theory have revealed a significant effect of hydrostatic stress on the yield behavior of notched geometries. New experiments and nonlinear finite element analyses (FEA) of Inconel 100 (IN 100) equal-arm bend and double-edge notch tension (DENT) test specimens have revealed the effect of internal hydrostatic tensile stresses on yielding. Nonlinear FEA using the von Mises (yielding is independent of hydrostatic stress) and the Drucker-Prager (yielding is linearly dependent on hydrostatic stress) yield functions was performed. In all test cases, the von Mises constitutive model, which is independent of hydrostatic pressure, overestimated the load for a given displacement or strain. Considering the failure displacements or strains, the Drucker-Prager FEMs predicted loads that were 3% to 5% lower than the von Mises values. For the failure loads, the Drucker Prager FEMs predicted strains that were 20% to 35% greater than the von Mises values. The Drucker-Prager yield function seems to more accurately predict the overall specimen response of geometries with significant internal hydrostatic stress influence.

  4. Effects of Hydrostatic Pressure on Carcinogenic Properties of Epithelia

    PubMed Central

    Tokuda, Shinsaku; Kim, Young Hak; Matsumoto, Hisako; Muro, Shigeo; Hirai, Toyohiro; Mishima, Michiaki; Furuse, Mikio

    2015-01-01

    The relationship between chronic inflammation and cancer is well known. The inflammation increases the permeability of blood vessels and consequently elevates pressure in the interstitial tissues. However, there have been only a few reports on the effects of hydrostatic pressure on cultured cells, and the relationship between elevated hydrostatic pressure and cell properties related to malignant tumors is less well understood. Therefore, we investigated the effects of hydrostatic pressure on the cultured epithelial cells seeded on permeable filters. Surprisingly, hydrostatic pressure from basal to apical side induced epithelial stratification in Madin-Darby canine kidney (MDCK) I and Caco-2 cells, and cavities with microvilli and tight junctions around their surfaces were formed within the multi-layered epithelia. The hydrostatic pressure gradient also promoted cell proliferation, suppressed cell apoptosis, and increased transepithelial ion permeability. The inhibition of protein kinase A (PKA) promoted epithelial stratification by the hydrostatic pressure whereas the activation of PKA led to suppressed epithelial stratification. These results indicate the role of the hydrostatic pressure gradient in the regulation of various epithelial cell functions. The findings in this study may provide clues for the development of a novel strategy for the treatment of the carcinoma. PMID:26716691

  5. Gravity, the hydrostatic indifference concept and the cardiovascular system.

    PubMed

    Hinghofer-Szalkay, Helmut

    2011-02-01

    Gravity, like any acceleration, causes a hydrostatic pressure gradient in fluid-filled bodily compartments. At a force of 1G, this pressure gradient amounts to 10 kPa/m. Postural changes alter the distribution of hydrostatic pressure patterns according to the body's alignment to the acceleration field. At a certain location--referred to as hydrostatically indifferent--within any given fluid compartment, pressure remains constant during a given change of position relative to the acceleration force acting upon the body. At this specific location, there is probably little change in vessel volume, wall tension, and the balance of Starling forces after a positional manoeuvre. In terms of cardiac function, this is important because arterial and venous hydrostatic indifference locations determine postural cardiac preload and afterload changes. Baroreceptors pick up pressure signals that depend on their respective distance to hydrostatic indifference locations with any change of body position. Vascular shape, filling volume, and compliance, as well as temperature, nervous and endocrine factors, drugs, and time all influence hydrostatic indifference locations. This paper reviews the physiology of pressure gradients in the cardiovascular system that are operational in a gravitational/acceleration field, offers a broadened hydrostatic indifference concept, and discusses implications that are relevant in physiological and clinical terms.

  6. Effect of working position on vertical motion straightness of open hydrostatic guideways in grinding machine

    NASA Astrophysics Data System (ADS)

    Zha, Jun; Wang, Zhiwei; Xue, Fei; Chen, Yaolong

    2016-08-01

    Hydrostatic guideways have various applications in precision machine tools due to their high motion accuracy. The analysis of motion straightness in hydrostatic guideways is generally ignoring the external load on the slider. A variation force also exists, caused by the different working positions, together with the dead load of the slider and that of other auxiliary devices. The effect of working position on vertical motion straightness is investigated based on the equivalent static model, considering the error averaging effort of pressured oil film in open hydrostatic guideways. Open hydrostatic guideways in LGF1000 are analyzed with this approach. The theoretical results show that the slider has maximum vertical motion straightness when the working position is closer the guiderail of Y axis. The vertical motion straightness reaches a minimum value as the working position is located at the center of the two guiderails on the Y axis. The difference between the maximum and minimum vertical motion straightness is 34.7%. The smaller vertical motion straightness is attributed to the smaller spacing of the two pads centers, along the Y direction. The experimental results show that the vertical motion straightness is 4.15 μm/1200 mm, when the working position is located in the middle of the X beam, and 5.08 μm/1200 mm, when the working position is approaching the Y guiderails, denoting an increase of 18.3%. The changing trends of the measured results validate the correctness of the theoretical model. The research work can be used to reveal the variation law of accuracy of the open hydrostatic guideways, under different working positions, to predict the machining precision, and provides the basis for an error compensation strategy for gantry type grinding machines.

  7. A simple explanation of the classic hydrostatic paradox

    NASA Astrophysics Data System (ADS)

    Kontomaris, Stylianos-Vasileios; Malamou, Anna

    2016-07-01

    An interesting problem in fluid mechanics, with significant educational importance, is the classic hydrostatic paradox. The hydrostatic paradox states the fact that in different shaped containers, with the same base area, which are filled with a liquid of the same height, the applied force by the liquid on the base of each container is exactly the same. However, if the shape of the container is different, the amount of the liquid (and as a consequence the weight) can greatly vary. In this paper, a simple explanation of the hydrostatic paradox, specifically designed and implemented for educational purposes regarding secondary education, is provided.

  8. RESIDUAL GAS MOTIONS IN THE INTRACLUSTER MEDIUM AND BIAS IN HYDROSTATIC MEASUREMENTS OF MASS PROFILES OF CLUSTERS

    SciTech Connect

    Lau, Erwin T.; Kravtsov, Andrey V.; Nagai, Daisuke

    2009-11-10

    We present analysis of bulk and random gas motions in the intracluster medium using high-resolution Eulerian cosmological simulations of 16 simulated clusters, including both very relaxed and unrelaxed systems and spanning a virial mass range of 5 x 10{sup 13} - 2 x 10{sup 15} h{sup -1} M-odot. We investigate effects of the residual subsonic gas motions on the hydrostatic estimates of mass profiles and concentrations of galaxy clusters. In agreement with previous studies, we find that the gas motions contribute up to approx5%-15% of the total pressure support in relaxed clusters with contribution increasing with the cluster-centric radius. The fractional pressure support is higher in unrelaxed systems. This contribution would not be accounted for in hydrostatic estimates of the total mass profile and would lead to systematic underestimate of mass. We demonstrate that total mass can be recovered accurately if pressure due to gas motions measured in simulations is explicitly taken into account in the equation of hydrostatic equilibrium. Given that the underestimate of mass is increasing at larger radii, where gas is less relaxed and contribution of gas motions to pressure is larger, the total density profile derived from hydrostatic analysis is more concentrated than the true profile. This may at least partially explain some high values of concentrations of clusters estimated from hydrostatic analysis of X-ray data.

  9. SPR Hydrostatic Column Model Verification and Validation.

    SciTech Connect

    Bettin, Giorgia; Lord, David; Rudeen, David Keith

    2015-10-01

    A Hydrostatic Column Model (HCM) was developed to help differentiate between normal "tight" well behavior and small-leak behavior under nitrogen for testing the pressure integrity of crude oil storage wells at the U.S. Strategic Petroleum Reserve. This effort was motivated by steady, yet distinct, pressure behavior of a series of Big Hill caverns that have been placed under nitrogen for extended period of time. This report describes the HCM model, its functional requirements, the model structure and the verification and validation process. Different modes of operation are also described, which illustrate how the software can be used to model extended nitrogen monitoring and Mechanical Integrity Tests by predicting wellhead pressures along with nitrogen interface movements. Model verification has shown that the program runs correctly and it is implemented as intended. The cavern BH101 long term nitrogen test was used to validate the model which showed very good agreement with measured data. This supports the claim that the model is, in fact, capturing the relevant physical phenomena and can be used to make accurate predictions of both wellhead pressure and interface movements.

  10. A Multipurpose Device for Some Hydrostatics Questions

    NASA Astrophysics Data System (ADS)

    Ganci, Salvatore

    2008-10-01

    A number of well-known hydrostatics problems dealing with Archimedes' principle concern a loaded boat floating in a pool.1-4 Examples of this sort of problem include: 1. (a) If a stone is thrown overboard from a boat floating in a pool, does the water level in the pool rise, fall, or remain unchanged? (b) If a hole is made in the bottom of the boat so that the boat sinks, does the water level in the pool change? If so, when does the change begin (when water first begins to enter the boat or later)? 2. A boat floating in a pool carries a mass M that can either be placed on the raft or hung below the raft. (a) How does the water level in the pool compare in the two cases? (b) In which case does the raft float higher in the water? This paper describes a simple low-cost experimental setup that can be used to demonstrate the solutions to such problems in a concrete and dramatic way.

  11. Control of hydrostatic transmission wind turbine

    NASA Astrophysics Data System (ADS)

    Rajabhandharaks, Danop

    In this study, we proposed a control strategy for a wind turbine that employed a hydrostatic transmission system for transmitting power from the wind turbine rotor via a hydraulic transmission line to a ground level generator. Wind turbine power curve tracking was achieved by controlling the hydraulic pump displacement and, at the other end of the hydraulic line, the hydraulic motor displacement was controlled so that the overall transmission loss was minimized. Steady state response, dynamic response, and system stability were assessed. The maximum transmission efficiency obtained ranged from 79% to 84% at steady state when the proposed control strategy was implemented. The leakage and friction losses of the hydraulic components were the main factors that compromised the efficiency. The simulation results showed that the system was stable and had fast and well-damped transient response. Double wind turbine system sharing hydraulic pipes, a hydraulic motor, and a generator were also studied. The hydraulic pipe diameter used in the double-turbine system increased by 27% compared to the single-turbine system in order to make the transmission coefficient comparable between both systems. The simulation results suggested that the leakage losses were so significant that the efficiency of the system was worsened compared with the single-turbine system. Future studies of other behavioral aspects and practical issues such as fluid dynamics, structure strength, materials, and costs are needed.

  12. A hydrostatic pressure-cycle energy harvester

    NASA Astrophysics Data System (ADS)

    Shafer, Michael W.; Hahn, Gregory; Morgan, Eric

    2015-04-01

    There have been a number of new applications for energy harvesting with the ever-decreasing power consumption of microelectronic devices. In this paper we explore a new area of marine animal energy harvesting for use in powering tags known as bio-loggers. These devices record data about the animal or its surroundings, but have always had limited deployment times due to battery depletion. Reduced solar irradiance below the water's surface provides the impetus to explore other energy harvesting concepts beyond solar power for use on marine animals. We review existing tag technologies in relation to this application, specifically relating to energy consumption. Additionally, we propose a new idea for energy harvesting, using hydrostatic pressure changes as a source for energy production. We present initial testing results of a bench-top model and show that the daily energy harvesting potential from this technology can meet or exceed that consumed by current marine bio-logging tags. The application of this concept in the arena of bio-logging technology could substantially increase bio-logger deployment lifetimes, allowing for longitudinal studies over the course of multiple breeding and/or migration cycles.

  13. Effect of Superimposed Hydrostatic Pressure on Bendability of Sheet Metals

    NASA Astrophysics Data System (ADS)

    Chen, X. X.; Wu, P. D.; Lloyd, D. J.

    2010-06-01

    The effect of superimposed hydrostatic pressure on fracture under three-point bending is studied numerically using the finite element method based on the Gurson damage model. It is demonstrated that superimposed hydrostatic pressure significantly increases the bendability and bending fracture strain due to the fact that a superimposed pressure delays or completely eliminates the nucleation, growth and coalescence of microvoids or microcracks. Numerical results are found to be in good agreement with experimental observations.

  14. Hydrostatic pressure influences HIF-2 alpha expression in chondrocytes.

    PubMed

    Inoue, Hiroaki; Arai, Yuji; Kishida, Tsunao; Terauchi, Ryu; Honjo, Kuniaki; Nakagawa, Shuji; Tsuchida, Shinji; Matsuki, Tomohiro; Ueshima, Keiichirou; Fujiwara, Hiroyoshi; Mazda, Osam; Kubo, Toshikazu

    2015-01-01

    Hypoxia-inducible factor (HIF)-2α is considered to play a major role in the progression of osteoarthritis. Recently, it was reported that pressure amplitude influences HIF-2α expression in murine endothelial cells. We examined whether hydrostatic pressure is involved in expression of HIF-2α in articular chondrocytes. Chondrocytes were cultured and stimulated by inflammation or hydrostatic pressure of 0, 5, 10, or 50 MPa. After stimulation, heat shock protein (HSP) 70, HIF-2α, nuclear factor kappa B (NF-κB), matrix metalloproteinase (MMP)-13, MMP-3, and vascular endothelial growth factor (VEGF) gene expression were evaluated. The levels of all gene expression were increased by inflammatory stress. When chondrocytes were exposed to a hydrostatic pressure of 5 MPa, HIF-2α, MMP-13, and MMP-3 gene expression increased significantly although those of HSP70 and NF-κB were not significantly different from the control group. In contrast, HIF-2α gene expression did not increase under a hydrostatic pressure of 50 MPa although HSP70 and NF-κB expression increased significantly compared to control. We considered that hydrostatic pressure of 5 MPa could regulate HIF-2α independent of NF-κB, because the level of HIF-2α gene expression increased significantly without upregulation of NF-κB expression at 5 MPa. Hydrostatic pressure may influence cartilage degeneration, inducing MMP-13 and MMP-3 expression through HIF-2α. PMID:25569085

  15. Hydrostatic Pressure Influences HIF-2 Alpha Expression in Chondrocytes

    PubMed Central

    Inoue, Hiroaki; Arai, Yuji; Kishida, Tsunao; Terauchi, Ryu; Honjo, Kuniaki; Nakagawa, Shuji; Tsuchida, Shinji; Matsuki, Tomohiro; Ueshima, Keiichirou; Fujiwara, Hiroyoshi; Mazda, Osam; Kubo, Toshikazu

    2015-01-01

    Hypoxia-inducible factor (HIF)-2α is considered to play a major role in the progression of osteoarthritis. Recently, it was reported that pressure amplitude influences HIF-2α expression in murine endothelial cells. We examined whether hydrostatic pressure is involved in expression of HIF-2α in articular chondrocytes. Chondrocytes were cultured and stimulated by inflammation or hydrostatic pressure of 0, 5, 10, or 50 MPa. After stimulation, heat shock protein (HSP) 70, HIF-2α, nuclear factor kappa B (NF-κB), matrix metalloproteinase (MMP)-13, MMP-3, and vascular endothelial growth factor (VEGF) gene expression were evaluated. The levels of all gene expression were increased by inflammatory stress. When chondrocytes were exposed to a hydrostatic pressure of 5 MPa, HIF-2α, MMP-13, and MMP-3 gene expression increased significantly although those of HSP70 and NF-κB were not significantly different from the control group. In contrast, HIF-2α gene expression did not increase under a hydrostatic pressure of 50 MPa although HSP70 and NF-κB expression increased significantly compared to control. We considered that hydrostatic pressure of 5 MPa could regulate HIF-2α independent of NF-κB, because the level of HIF-2α gene expression increased significantly without upregulation of NF-κB expression at 5 MPa. Hydrostatic pressure may influence cartilage degeneration, inducing MMP-13 and MMP-3 expression through HIF-2α. PMID:25569085

  16. Investigation of a hydrostatic azimuth thrust bearing for a large steerable antenna

    NASA Technical Reports Server (NTRS)

    Rumbarger, J.; Castelli, V.; Rippel, H.

    1972-01-01

    The problems inherent in the design and construction of a hydrostatic azimuth thrust bearing for a tracking antenna of very large size were studied. For a load of 48,000,000 lbs., it is concluded that the hydrostatic bearing concept is feasible, provided that a particular multiple pad arrangement, high oil viscosity, and a particular load spreading arrangement are used. Presently available computer programs and techniques are deemed to be adequate for a good portion of the design job but new integrated programs will have to be developed in the area of the computation of the deflections of the supporting bearing structure. Experimental studies might also be indicated to ascertain the life characteristics of grouting under cyclic loading, and the optimization of hydraulic circuits and pipe sizes to insure the long life operation of pumps with high viscosity oil while avoiding cavitation.

  17. The transition from hydrostatic to greater than hydrostatic fluid pressure in presently active continental hydrothermal systems in crystalline rock

    SciTech Connect

    Fournier, R.O. )

    1991-05-01

    Fluid flow at hydrostatic pressure (P{sub h}) is relatively common through fractures in silicic and in mafic crystalline rocks where temperatures are less than about 350-370C. In contrast, pore-fluid pressure (P{sub f}) > P{sub h} has been encountered at the bottom of 3 geothermal exploration wells that attained temperatures >370C (at Larderello, Italy, at Nesjavellir, Iceland, and at The Geysers, California). Chemical sealing by deposition of minerals in veins appears to have allowed the development of the high P{sub f} encountered in the above wells. The upper limit for the magnitude of P{sub f} that can be attained is controlled by either the onset of shear fracturing (where differential stress is relatively high) that reopens clogged veins, or the hydraulic opening of new or old fractures (at relatively low values of differential stress). The brittle-plastic transition for silicic rocks can occur at temperatures as high as 370-400C in tectonically active regions. In regions where high-temperature geothermal systems develop and persist, it appears that either strain rates commonly are in the range 10{sup {minus}12} to 10{sup {minus}13}, or that silicic rocks in the shallow crust generally behave rheologically more like wet quartz diorite than wet Westerly granite.

  18. A novel technique towards deployment of hydrostatic pressure based level sensor in nuclear fuel reprocessing facility

    NASA Astrophysics Data System (ADS)

    Praveen, K.; Rajiniganth, M. P.; Arun, A. D.; Sahoo, P.; Satya Murty, S. A. V.

    2016-02-01

    A novel approach towards deployment of a hydrostatic pressure based level monitoring device is presented for continuous monitoring of liquid level in a reservoir with high resolution and precision. Some of the major drawbacks such as spurious information of measured level due to change in ambient temperature, requirement of high resolution pressure sensor, and bubbling effect by passing air or any gaseous fluid into the liquid are overcome by using such a newly designed hydrostatic pressure based level monitoring device. The technique involves precise measurement of hydrostatic pressure exerted by the process liquid using a high sensitive pulsating-type differential pressure sensor (capacitive type differential pressure sensor using a specially designed oil manometer) and correlating it to the liquid level. In order to avoid strong influence of temperature on liquid level, a temperature compensation methodology is derived and used in the system. A wireless data acquisition feature has also been provided in the level monitoring device in order to work in a remote area such as a radioactive environment. At the outset, a prototype level measurement system for a 1 m tank is constructed and its test performance has been well studied. The precision, accuracy, resolution, uncertainty, sensitivity, and response time of the prototype level measurement system are found to be less than 1.1 mm in the entire range, 1%, 3 mm, <1%, 10 Hz/mm, and ˜4 s, respectively.

  19. A novel technique towards deployment of hydrostatic pressure based level sensor in nuclear fuel reprocessing facility.

    PubMed

    Praveen, K; Rajiniganth, M P; Arun, A D; Sahoo, P; Murty, S A V Satya

    2016-02-01

    A novel approach towards deployment of a hydrostatic pressure based level monitoring device is presented for continuous monitoring of liquid level in a reservoir with high resolution and precision. Some of the major drawbacks such as spurious information of measured level due to change in ambient temperature, requirement of high resolution pressure sensor, and bubbling effect by passing air or any gaseous fluid into the liquid are overcome by using such a newly designed hydrostatic pressure based level monitoring device. The technique involves precise measurement of hydrostatic pressure exerted by the process liquid using a high sensitive pulsating-type differential pressure sensor (capacitive type differential pressure sensor using a specially designed oil manometer) and correlating it to the liquid level. In order to avoid strong influence of temperature on liquid level, a temperature compensation methodology is derived and used in the system. A wireless data acquisition feature has also been provided in the level monitoring device in order to work in a remote area such as a radioactive environment. At the outset, a prototype level measurement system for a 1 m tank is constructed and its test performance has been well studied. The precision, accuracy, resolution, uncertainty, sensitivity, and response time of the prototype level measurement system are found to be less than 1.1 mm in the entire range, 1%, 3 mm, <1%, 10 Hz/mm, and ∼4 s, respectively.

  20. Distributed measurement of hydrostatic pressure based on Brillouin dynamic grating in polarization maintaining fibers.

    PubMed

    Kim, Yong Hyun; Kwon, Hong; Kim, Jeongjun; Song, Kwang Yong

    2016-09-19

    High-sensitivity distributed measurement of hydrostatic pressure is experimentally demonstrated by optical time-domain analysis of Brillouin dynamic grating (BDG) in polarization maintaining fibers (PMF's). The spectral shift of the BDG in four different types of PMF's are investigated under hydrostatic pressure variation from 14.5 psi (1 bar) to 884.7 psi (61 bar) with less than 2 m spatial resolution. The pressure sensitivity of BDG frequency is measured to be ‒1.69, + 0.65, + 0.78, and + 0.85 MHz/psi for a PM photonic crystal fiber (PM-PCF), two Bow-tie fibers, and a PANDA fiber, respectively, which is about 65 to 169 times larger than that of Brillouin frequency-based pressure sensing. PMID:27661881

  1. Temperature-compensated distributed hydrostatic pressure sensor with a thin-diameter polarization-maintaining photonic crystal fiber based on Brillouin dynamic gratings.

    PubMed

    Teng, Lei; Zhang, Hongying; Dong, Yongkang; Zhou, Dengwang; Jiang, Taofei; Gao, Wei; Lu, Zhiwei; Chen, Liang; Bao, Xiaoyi

    2016-09-15

    A temperature-compensated distributed hydrostatic pressure sensor based on Brillouin dynamic gratings (BDGs) is proposed and demonstrated experimentally for the first time, to the best of our knowledge. The principle is to measure the hydrostatic pressure induced birefringence changes through exciting and probing the BDGs in a thin-diameter pure silica polarization-maintaining photonic crystal fiber. The temperature cross-talk to the hydrostatic pressure sensing can be compensated through measuring the temperature-induced Brillouin frequency shift (BFS) changes using Brillouin optical time-domain analysis. A distributed measurement of hydrostatic pressure is demonstrated experimentally using a 4-m sensing fiber, which has a high sensitivity, with a maximum measurement error less than 0.03 MPa at a 20-cm spatial resolution.

  2. Temperature-compensated distributed hydrostatic pressure sensor with a thin-diameter polarization-maintaining photonic crystal fiber based on Brillouin dynamic gratings.

    PubMed

    Teng, Lei; Zhang, Hongying; Dong, Yongkang; Zhou, Dengwang; Jiang, Taofei; Gao, Wei; Lu, Zhiwei; Chen, Liang; Bao, Xiaoyi

    2016-09-15

    A temperature-compensated distributed hydrostatic pressure sensor based on Brillouin dynamic gratings (BDGs) is proposed and demonstrated experimentally for the first time, to the best of our knowledge. The principle is to measure the hydrostatic pressure induced birefringence changes through exciting and probing the BDGs in a thin-diameter pure silica polarization-maintaining photonic crystal fiber. The temperature cross-talk to the hydrostatic pressure sensing can be compensated through measuring the temperature-induced Brillouin frequency shift (BFS) changes using Brillouin optical time-domain analysis. A distributed measurement of hydrostatic pressure is demonstrated experimentally using a 4-m sensing fiber, which has a high sensitivity, with a maximum measurement error less than 0.03 MPa at a 20-cm spatial resolution. PMID:27628411

  3. Tropical Cyclones in the Non-hydrostatic GFDL HiRAM

    NASA Astrophysics Data System (ADS)

    Chen, J. H.

    2015-12-01

    A new, non-hydrostatic version of Geophysical Fluid Dynamics Laboratory (GFDL) High-Resolution Atmospheric Model (HiRAM) is being developed for tropical cyclone (TC) studies, with a focus on improving the climatology of TC genesis and landfall while maintaining the realism of the large-scale climate. This model marks a radical shift from the hydrostatic dynamics used by previous GFDL climate models. It uses a C384 (25 km) horizontal grid with 63 vertical levels, and includes many updates in the dynamical core, cloud microphysics and cloud convective parameterization. A new land model configuration with the effects of lakes and rivers, as well as many other land-surface process improvements is also tested and included. The long-term TC properties, e.g. storm counts, geographical distribution, and intensity, are examined in several climatology and AMIP(Atmospheric Model Intercomparison Project)-type simulations. We compare the results both to observations and to hydrostatic HiRAM which achieved a high prediction skill of Atlantic TCs.

  4. Hydrostatic pressure mimics gravitational pressure in characean cells.

    PubMed

    Staves, M P; Wayne, R; Leopold, A C

    1992-01-01

    Hydrostatic pressure applied to one end of a horizontal Chara cell induces a polarity of cytoplasmic streaming, thus mimicking the effect of gravity. A positive hydrostatic pressure induces a more rapid streaming away from the applied pressure and a slower streaming toward the applied pressure. In contrast, a negative pressure induces a more rapid streaming toward and a slower streaming away from the applied pressure. Both the hydrostatic pressure-induced and gravity-induced polarity of cytoplasmic streaming respond identically to cell ligation, UV microbeam irradiation, external Ca2+ concentrations, osmotic pressure, neutral red, TEA Cl-, and the Ca2+ channel blockers nifedipine and LaCl3. In addition, hydrostatic pressure applied to the bottom of a vertically-oriented cell can abolish and even reverse the gravity-induced polarity of cytoplasmic streaming. These data indicate that both gravity and hydrostatic pressure act at the same point of the signal transduction chain leading to the induction of a polarity of cytoplasmic streaming and support the hypothesis that characean cells respond to gravity by sensing a gravity-induced pressure differential between the cell ends.

  5. Hydrostatic pressure mimics gravitational pressure in characean cells

    NASA Technical Reports Server (NTRS)

    Staves, M. P.; Wayne, R.; Leopold, A. C.

    1992-01-01

    Hydrostatic pressure applied to one end of a horizontal Chara cell induces a polarity of cytoplasmic streaming, thus mimicking the effect of gravity. A positive hydrostatic pressure induces a more rapid streaming away from the applied pressure and a slower streaming toward the applied pressure. In contrast, a negative pressure induces a more rapid streaming toward and a slower streaming away from the applied pressure. Both the hydrostatic pressure-induced and gravity-induced polarity of cytoplasmic streaming respond identically to cell ligation, UV microbeam irradiation, external Ca2+ concentrations, osmotic pressure, neutral red, TEA Cl-, and the Ca2+ channel blockers nifedipine and LaCl3. In addition, hydrostatic pressure applied to the bottom of a vertically-oriented cell can abolish and even reverse the gravity-induced polarity of cytoplasmic streaming. These data indicate that both gravity and hydrostatic pressure act at the same point of the signal transduction chain leading to the induction of a polarity of cytoplasmic streaming and support the hypothesis that characean cells respond to gravity by sensing a gravity-induced pressure differential between the cell ends.

  6. Hydrostatic Stress Effect on the Yield Behavior of Inconel 100

    NASA Technical Reports Server (NTRS)

    Allen, Phillip A.; Wilson, Christopher D.

    2003-01-01

    Classical metal plasticity theory assumes that hydrostatic stress has negligible effect on the yield and postyield behavior of metals. Recent reexaminations of classical theory have revealed a significant effect of hydrostatic stress on the yield behavior of various geometries. Fatigue tests and nonlinear finite element analyses (FEA) of Inconel 100 (IN100) equal-arm bend specimens and new monotonic tests and nonlinear finite element analyses of IN100 smooth tension, smooth compression, and double-edge notch tension (DENT) test specimens have revealed the effect of internal hydrostatic tensile stresses on yielding. Nonlinear FEA using the von Mises (yielding is independent of hydrostatic stress) and the Drucker-Prager (yielding is linearly dependent on hydrostatic stress) yield functions were performed. A new FEA constitutive model was developed that incorporates a pressure-dependent yield function with combined multilinear kinematic and multilinear isotropic hardening using the ABAQUS user subroutine (UMAT) utility. In all monotonic tensile test cases, the von Mises constitutive model, overestimated the load for a given displacement or strain. Considering the failure displacements or strains for the DENT specimen, the Drucker-Prager FEM s predicted loads that were approximately 3% lower than the von Mises values. For the failure loads, the Drucker Prager FEM s predicted strains that were up to 35% greater than the von Mises values. Both the Drucker-Prager model and the von Mises model performed equally-well in simulating the equal-arm bend fatigue test.

  7. Challenging Oil Bioremediation at Deep-Sea Hydrostatic Pressure.

    PubMed

    Scoma, Alberto; Yakimov, Michail M; Boon, Nico

    2016-01-01

    The Deepwater Horizon accident has brought oil contamination of deep-sea environments to worldwide attention. The risk for new deep-sea spills is not expected to decrease in the future, as political pressure mounts to access deep-water fossil reserves, and poorly tested technologies are used to access oil. This also applies to the response to oil-contamination events, with bioremediation the only (bio)technology presently available to combat deep-sea spills. Many questions about the fate of petroleum-hydrocarbons within deep-sea environments remain unanswered, as well as the main constraints limiting bioremediation under increased hydrostatic pressures and low temperatures. The microbial pathways fueling oil bioassimilation are unclear, and the mild upregulation observed for beta-oxidation-related genes in both water and sediments contrasts with the high amount of alkanes present in the spilled oil. The fate of solid alkanes (tar), hydrocarbon degradation rates and the reason why the most predominant hydrocarbonoclastic genera were not enriched at deep-sea despite being present at hydrocarbon seeps at the Gulf of Mexico have been largely overlooked. This mini-review aims at highlighting the missing information in the field, proposing a holistic approach where in situ and ex situ studies are integrated to reveal the principal mechanisms accounting for deep-sea oil bioremediation.

  8. Raman study of radiation-damaged zircon under hydrostatic compression

    NASA Astrophysics Data System (ADS)

    Nasdala, Lutz; Miletich, Ronald; Ruschel, Katja; Váczi, Tamás

    2008-12-01

    Pressure-induced changes of Raman band parameters of four natural, gem-quality zircon samples with different degrees of self-irradiation damage, and synthetic ZrSiO4 without radiation damage, have been studied under hydrostatic compression in a diamond anvil cell up to ~10 GPa. Radiation-damaged zircon shows similar up-shifts of internal SiO4 stretching modes at elevated pressures as non-damaged ZrSiO4. Only minor changes of band-widths were observed in all cases. This makes it possible to estimate the degree of radiation damage from the width of the ν3(SiO4) band of zircon inclusions in situ, almost independent from potential “fossilized pressures” or compressive strain acting on the inclusions. An application is the non-destructive analysis of gemstones such as corundum or spinel: broadened Raman bands are a reliable indicator of self-irradiation damage in zircon inclusions, whose presence allows one to exclude artificial color enhancement by high-temperature treatment of the specimen.

  9. Challenging Oil Bioremediation at Deep-Sea Hydrostatic Pressure

    PubMed Central

    Scoma, Alberto; Yakimov, Michail M.; Boon, Nico

    2016-01-01

    The Deepwater Horizon accident has brought oil contamination of deep-sea environments to worldwide attention. The risk for new deep-sea spills is not expected to decrease in the future, as political pressure mounts to access deep-water fossil reserves, and poorly tested technologies are used to access oil. This also applies to the response to oil-contamination events, with bioremediation the only (bio)technology presently available to combat deep-sea spills. Many questions about the fate of petroleum-hydrocarbons within deep-sea environments remain unanswered, as well as the main constraints limiting bioremediation under increased hydrostatic pressures and low temperatures. The microbial pathways fueling oil bioassimilation are unclear, and the mild upregulation observed for beta-oxidation-related genes in both water and sediments contrasts with the high amount of alkanes present in the spilled oil. The fate of solid alkanes (tar), hydrocarbon degradation rates and the reason why the most predominant hydrocarbonoclastic genera were not enriched at deep-sea despite being present at hydrocarbon seeps at the Gulf of Mexico have been largely overlooked. This mini-review aims at highlighting the missing information in the field, proposing a holistic approach where in situ and ex situ studies are integrated to reveal the principal mechanisms accounting for deep-sea oil bioremediation. PMID:27536290

  10. Challenging Oil Bioremediation at Deep-Sea Hydrostatic Pressure.

    PubMed

    Scoma, Alberto; Yakimov, Michail M; Boon, Nico

    2016-01-01

    The Deepwater Horizon accident has brought oil contamination of deep-sea environments to worldwide attention. The risk for new deep-sea spills is not expected to decrease in the future, as political pressure mounts to access deep-water fossil reserves, and poorly tested technologies are used to access oil. This also applies to the response to oil-contamination events, with bioremediation the only (bio)technology presently available to combat deep-sea spills. Many questions about the fate of petroleum-hydrocarbons within deep-sea environments remain unanswered, as well as the main constraints limiting bioremediation under increased hydrostatic pressures and low temperatures. The microbial pathways fueling oil bioassimilation are unclear, and the mild upregulation observed for beta-oxidation-related genes in both water and sediments contrasts with the high amount of alkanes present in the spilled oil. The fate of solid alkanes (tar), hydrocarbon degradation rates and the reason why the most predominant hydrocarbonoclastic genera were not enriched at deep-sea despite being present at hydrocarbon seeps at the Gulf of Mexico have been largely overlooked. This mini-review aims at highlighting the missing information in the field, proposing a holistic approach where in situ and ex situ studies are integrated to reveal the principal mechanisms accounting for deep-sea oil bioremediation. PMID:27536290

  11. Determination of Unit Cell Parameters of Molecular Organic Crystals Under Hydrostatic Compression at Pressures up to 5.0 GPa

    NASA Astrophysics Data System (ADS)

    Russell, T. P.; Hardie, Michaele J.; Kirschbaum, Kristin; Martin, Anthony; Pinkerton, A. Alan; Tanbug, Rasim; Piermarini, G. J.

    1997-07-01

    An accurate determination of the unit cell parameters of large organic molecules under hydrostatic compression at static high pressure is now possible at pressures up to 5.0 GPa. A new high pressure diamond anvil cell has been developed to enable the determination of accurate unit cell lattice parameters during hydrostatic compression at static high pressure on a Seimens Plattform Diffractometer using a CCD detector. The hydrostatic compression of hexanitrohexaazaisowurtzitane (HNIW) has been determined up to 2.0 GPa. A sample of γ-HNIW was statically compressed and a phase transition to the high pressure ζ-HNIW phase was observed at 0.7 GPa. The compression of the unit cell parameters of γ-HNIW up to 0.7 GPa and the compression of the unit cell parameters of ζ-HNIW from 0.7-2.0 GPa is presented. In addition, changes in molecular structure associated with hydrostatic compression and the molecular structure changes associated with this γ-ζ first order phase transition are under investigation.

  12. A 3D unstructured non-hydrostatic ocean model for internal waves

    NASA Astrophysics Data System (ADS)

    Ai, Congfang; Ding, Weiye

    2016-10-01

    A 3D non-hydrostatic model is developed to compute internal waves. A novel grid arrangement is incorporated in the model. This not only ensures the homogenous Dirichlet boundary condition for the non-hydrostatic pressure can be precisely and easily imposed but also renders the model relatively simple in its discretized form. The Perot scheme is employed to discretize horizontal advection terms in the horizontal momentum equations, which is based on staggered grids and has the conservative property. Based on previous water wave models, the main works of the present paper are to (1) utilize a semi-implicit, fractional step algorithm to solve the Navier-Stokes equations (NSE); (2) develop a second-order flux-limiter method satisfying the max-min property; (3) incorporate a density equation, which is solved by a high-resolution finite volume method ensuring mass conservation and max-min property based on a vertical boundary-fitted coordinate system; and (4) validate the developed model by using four tests including two internal seiche waves, lock-exchange flow, and internal solitary wave breaking. Comparisons of numerical results with analytical solutions or experimental data or other model results show reasonably good agreement, demonstrating the model's capability to resolve internal waves relating to complex non-hydrostatic phenomena.

  13. A 3D unstructured non-hydrostatic ocean model for internal waves

    NASA Astrophysics Data System (ADS)

    Ai, Congfang; Ding, Weiye

    2016-08-01

    A 3D non-hydrostatic model is developed to compute internal waves. A novel grid arrangement is incorporated in the model. This not only ensures the homogenous Dirichlet boundary condition for the non-hydrostatic pressure can be precisely and easily imposed but also renders the model relatively simple in its discretized form. The Perot scheme is employed to discretize horizontal advection terms in the horizontal momentum equations, which is based on staggered grids and has the conservative property. Based on previous water wave models, the main works of the present paper are to (1) utilize a semi-implicit, fractional step algorithm to solve the Navier-Stokes equations (NSE); (2) develop a second-order flux-limiter method satisfying the max-min property; (3) incorporate a density equation, which is solved by a high-resolution finite volume method ensuring mass conservation and max-min property based on a vertical boundary-fitted coordinate system; and (4) validate the developed model by using four tests including two internal seiche waves, lock-exchange flow, and internal solitary wave breaking. Comparisons of numerical results with analytical solutions or experimental data or other model results show reasonably good agreement, demonstrating the model's capability to resolve internal waves relating to complex non-hydrostatic phenomena.

  14. Comparing effects of perfusion and hydrostatic pressure on gene profiles of human chondrocyte.

    PubMed

    Zhu, Ge; Mayer-Wagner, Susanne; Schröder, Christian; Woiczinski, Matthias; Blum, Helmut; Lavagi, Ilaria; Krebs, Stefan; Redeker, Julia I; Hölzer, Andreas; Jansson, Volkmar; Betz, Oliver; Müller, Peter E

    2015-09-20

    Hydrostatic pressure and perfusion have been shown to regulate the chondrogenic potential of articular chondrocytes. In order to compare the effects of hydrostatic pressure plus perfusion (HPP) and perfusion (P) we investigated the complete gene expression profiles of human chondrocytes under HPP and P. A simplified bioreactor was constructed to apply loading (0.1 MPa for 2 h) and perfusion (2 ml) through the same piping by pressurizing the medium directly. High-density monolayer cultures of human chondrocytes were exposed to HPP or P for 4 days. Controls (C) were maintained in static cultures. Gene expression was evaluated by sequencing (RNAseq) and quantitative real-time PCR analysis. Both treatments changed gene expression levels of human chondrocytes significantly. Specifically, HPP and P increased COL2A1 expression and decreased COL1A1 and MMP-13 expression. Despite of these similarities, RNAseq revealed a list of cartilage genes including ACAN, ITGA10 and TNC, which were differentially expressed by HPP and P. Of these candidates, adhesion related molecules were found to be upregulated in HPP. Both HPP and P treatment had beneficial effects on chondrocyte differentiation and decreased catabolic enzyme expression. The study provides new insight into how hydrostatic pressure and perfusion enhance cartilage differentiation and inhibit catabolic effects.

  15. Hydrostatic Pressure Promotes Domain Formation in Model Lipid Raft Membranes.

    PubMed

    Worcester, David L; Weinrich, Michael

    2015-11-01

    Neutron diffraction measurements demonstrate that hydrostatic pressure promotes liquid-ordered (Lo) domain formation in lipid membranes prepared as both oriented multilayers and unilamellar vesicles made of a canonical ternary lipid mixture for which demixing transitions have been extensively studied. The results demonstrate an unusually large dependence of the mixing transition on hydrostatic pressure. Additionally, data at 28 °C show that the magnitude of increase in Lo caused by 10 MPa pressure is much the same as the decrease in Lo produced by twice minimum alveolar concentrations (MAC) of general anesthetics such as halothane, nitrous oxide, and xenon. Therefore, the results may provide a plausible explanation for the reversal of general anesthesia by hydrostatic pressure.

  16. A hydrostatic stress-dependent anisotropic model of viscoplasticity

    NASA Technical Reports Server (NTRS)

    Robinson, D. N.; Tao, Q.; Verrilli, M. J.

    1994-01-01

    A hydrostatic stress-dependent, anisotropic model of viscoplasticity is formulated as an extension of Bodner's model. This represents a further extension of the isotropic Bodner model over that made to anisotropy by Robinson and MitiKavuma. Account is made of the inelastic deformation that can occur in metallic composites under hydrostatic stress. A procedure for determining the material parameters is identified that is virtually identical to the established characterization procedure for the original Bodner model. Characterization can be achieved using longitudinal/transverse tensile and shear tests and hydrostatic stress tests; alternatively, four off-axis tensile tests can be used. Conditions for a yield stress minimum under off-axis tension are discussed. The model is applied to a W/Cu composite; characterization is made using off-axis tensile data generated at NASA Lewis Research Center (LeRC).

  17. Hydrostatic piezoelectric properties of [011] poled Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals and 2-2 lamellar composites

    NASA Astrophysics Data System (ADS)

    Li, Lili; Zhang, Shujun; Xu, Zhuo; Geng, Xuecang; Wen, Fei; Luo, Jun; Shrout, Thomas R.

    2014-01-01

    The hydrostatic piezoelectric properties of [011] poled Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT) crystals and corresponding 2-2 crystal/epoxy composites were investigated. The crystal volume ratio and compositional dependencies of the hydrostatic charge and voltage coefficients (dh and gh) and hydrostatic figure of merit (FOM) dh × gh were determined, where large FOM value of 3.2 pm2/N with high stability as a function of hydrostatic pressure was achieved for rhombohedral crystal composites. In addition, the stress amplification effects of the face-plate and different epoxy matrixes were investigated, with maximum FOM value being on the order of 92 pm2/N, indicating that 2-2 crystal/epoxy composites are promising materials for hydrostatic applications.

  18. Hydrostatic piezoelectric properties of [011] poled Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals and 2-2 lamellar composites

    PubMed Central

    Li, Lili; Zhang, Shujun; Xu, Zhuo; Geng, Xuecang; Wen, Fei; Luo, Jun; Shrout, Thomas R.

    2014-01-01

    The hydrostatic piezoelectric properties of [011] poled Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT) crystals and corresponding 2-2 crystal/epoxy composites were investigated. The crystal volume ratio and compositional dependencies of the hydrostatic charge and voltage coefficients (dh and gh) and hydrostatic figure of merit (FOM) dh × gh were determined, where large FOM value of 3.2 pm2/N with high stability as a function of hydrostatic pressure was achieved for rhombohedral crystal composites. In addition, the stress amplification effects of the face-plate and different epoxy matrixes were investigated, with maximum FOM value being on the order of 92 pm2/N, indicating that 2-2 crystal/epoxy composites are promising materials for hydrostatic applications. PMID:24753619

  19. Hydrostatic piezoelectric properties of [011] poled Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals and 2-2 lamellar composites.

    PubMed

    Li, Lili; Zhang, Shujun; Xu, Zhuo; Geng, Xuecang; Wen, Fei; Luo, Jun; Shrout, Thomas R

    2014-01-20

    The hydrostatic piezoelectric properties of [011] poled Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT) crystals and corresponding 2-2 crystal/epoxy composites were investigated. The crystal volume ratio and compositional dependencies of the hydrostatic charge and voltage coefficients (dh and gh ) and hydrostatic figure of merit (FOM) dh  × gh were determined, where large FOM value of 3.2 pm(2)/N with high stability as a function of hydrostatic pressure was achieved for rhombohedral crystal composites. In addition, the stress amplification effects of the face-plate and different epoxy matrixes were investigated, with maximum FOM value being on the order of 92 pm(2)/N, indicating that 2-2 crystal/epoxy composites are promising materials for hydrostatic applications. PMID:24753619

  20. Phospholipids fatty acids of drinking water reservoir sedimentary microbial community: Structure and function responses to hydrostatic pressure and other physico-chemical properties.

    PubMed

    Chai, Bei-Bei; Huang, Ting-Lin; Zhao, Xiao-Guang; Li, Ya-Jiao

    2015-07-01

    Microbial communities in three drinking water reservoirs, with different depth in Xi'an city, were quantified by phospholipids fatty acids analysis and multivariate statistical analysis was employed to interpret their response to different hydrostatic pressure and other physico-chemical properties of sediment and overlying water. Principle component analyses of sediment characteristics parameters showed that hydrostatic pressure was the most important effect factor to differentiate the overlying water quality from three drinking water reservoirs from each other. NH4+ content in overlying water was positive by related to hydrostatic pressure, while DO in water-sediment interface and sediment OC in sediment were negative by related with it. Three drinking water reservoir sediments were characterized by microbial communities dominated by common and facultative anaerobic Gram-positive bacteria, as well as, by sulfur oxidizing bacteria. Hydrostatic pressure and physico-chemical properties of sediments (such as sediment OC, sediment TN and sediment TP) were important effect factors to microbial community structure, especially hydrostatic pressure. It is also suggested that high hydrostatic pressure and low dissolved oxygen concentration stimulated Gram-positive and sulfate-reducing bacteria (SRB) bacterial population in drinking water reservoir sediment. This research supplied a successful application of phospholipids fatty acids and multivariate analysis to investigate microbial community composition response to different environmental factors. Thus, few physico-chemical factors can be used to estimate composition microbial of community as reflected by phospholipids fatty acids, which is difficult to detect.

  1. Accurate pressure gradient calculations in hydrostatic atmospheric models

    NASA Technical Reports Server (NTRS)

    Carroll, John J.; Mendez-Nunez, Luis R.; Tanrikulu, Saffet

    1987-01-01

    A method for the accurate calculation of the horizontal pressure gradient acceleration in hydrostatic atmospheric models is presented which is especially useful in situations where the isothermal surfaces are not parallel to the vertical coordinate surfaces. The present method is shown to be exact if the potential temperature lapse rate is constant between the vertical pressure integration limits. The technique is applied to both the integration of the hydrostatic equation and the computation of the slope correction term in the horizontal pressure gradient. A fixed vertical grid and a dynamic grid defined by the significant levels in the vertical temperature distribution are employed.

  2. A model for hydrostatic consolidation of Pierre shale

    USGS Publications Warehouse

    Savage, W.Z.; Braddock, W.A.

    1991-01-01

    This paper presents closed-form solutions for consolidation of transversely isotropic porous media under hydrostatic stress. The solutions are applied to model the time variation of pore pressure, volume strain and strains parallel and normal to bedding, and to obtain coefficients of consolidation and permeability, as well as other properties, and the bulk modulus resulting from hydrostatic consolidation of Pierre shale. It is found that the coefficients consolidation and permeability decrease and the bulk moduli increase with increasing confining pressure, reflecting the closure of voids in the rock. ?? 1991.

  3. Weighing galaxy clusters with gas. II. On the origin of hydrostatic mass bias in ΛCDM galaxy clusters

    SciTech Connect

    Nelson, Kaylea; Nagai, Daisuke; Yu, Liang; Lau, Erwin T.; Rudd, Douglas H.

    2014-02-20

    The use of galaxy clusters as cosmological probes hinges on our ability to measure their masses accurately and with high precision. Hydrostatic mass is one of the most common methods for estimating the masses of individual galaxy clusters, which suffer from biases due to departures from hydrostatic equilibrium. Using a large, mass-limited sample of massive galaxy clusters from a high-resolution hydrodynamical cosmological simulation, in this work we show that in addition to turbulent and bulk gas velocities, acceleration of gas introduces biases in the hydrostatic mass estimate of galaxy clusters. In unrelaxed clusters, the acceleration bias is comparable to the bias due to non-thermal pressure associated with merger-induced turbulent and bulk gas motions. In relaxed clusters, the mean mass bias due to acceleration is small (≲ 3%), but the scatter in the mass bias can be reduced by accounting for gas acceleration. Additionally, this acceleration bias is greater in the outskirts of higher redshift clusters where mergers are more frequent and clusters are accreting more rapidly. Since gas acceleration cannot be observed directly, it introduces an irreducible bias for hydrostatic mass estimates. This acceleration bias places limits on how well we can recover cluster masses from future X-ray and microwave observations. We discuss implications for cluster mass estimates based on X-ray, Sunyaev-Zel'dovich effect, and gravitational lensing observations and their impact on cluster cosmology.

  4. Implausibility of Hydrostatic Funnels Constituting the Sun's Upper Transition Region

    NASA Astrophysics Data System (ADS)

    Oluseyi, Hakeem M.; Carpio, Melisa M.; Sheung, Janet

    2007-09-01

    Over the past thirty years, two bodies of literature have developed in parallel presenting mutually exclusive views of the Sun’s upper transition region. One model holds that the Sun’s upper-transition-region plasmas are confined primarily in hydrostatic funnels with a substantial backheating component. The other model holds that discrete structures, which are effectively isolated from the corona, predominate in the Sun’s upper transition region. Purveyors of the latter position have recently begun to present near-resolved observations of discrete structures. The funnel scenario, in contrast, has only been addressed by modeling unresolved upper transition region emission. To address this paradox we have constructed hydrostatic funnel models and tested them against a wider set of solar observations than previously performed. We reproduce the results of the previous analyses, yet find that the hydrostatic funnels are unable to self-consistently match the wider set of observations against which we test the models. We show that it is not possible for a class of funnels having peak temperatures in the transition region or in the corona to match the observations. We conclude that it is implausible that a class of hydrostatic funnels constitutes the dominant emitting component of the Sun’s upper-transition-region plasmas as has been suggested.

  5. Hydrostatic self-aligning axial/torsional mechanism

    DOEpatents

    O'Connor, Daniel G.; Gerth, Howard L.

    1990-01-01

    The present invention is directed to a self-aligning axial/torsional loading mechanism for testing the strength of brittle materials which are sensitive to bending moments. Disposed inside said self-aligning loading mechanism is a frictionless hydrostatic ball joint with a flexure ring to accommodate torsional loads through said ball joint.

  6. Numerical construction of magneto-hydrostatic atmospheres in three dimensions

    NASA Astrophysics Data System (ADS)

    Gilchrist, Stuart; Braun, Douglas; Barnes, Graham

    2016-05-01

    There is a general interest in constructing magneto-hydrostatic models of the solar atmosphere. These models describe large-scale, long-lived magnetic structures like sunspots, prominences, coronal loops, and the corona itself on global scales. The nonlinearity of the magneto-hydrostatic equations prohibits direct analytic solution except when idealized approximations like self-similarity are made. Numerical approaches, too, are limited in scope, and primarily focus on the two-dimensional problem --- the general three-dimensional magneto-hydrostatic problem is not treated. In this presentation we present a new numerical scheme for solving the magneto-hydrostatic equations in three dimensions. We are presently using this method to construct sunspot models for helioseismic MHD wave-propagation simulations with the goal of comparing the simulations to local-helioseismic measurements. We will present the details of the method and its application to test cases.This work is supported by NASA Heliophysics Division through grant NNX14AD42G and by the NSF Solar-Terrestrial program through grant AGS-1127327.

  7. Hydrostatic bearings for a turbine fluid flow metering device

    DOEpatents

    Fincke, James R.

    1982-01-01

    A rotor assembly fluid metering device has been improved by development of a hydrostatic bearing fluid system which provides bearing fluid at a common pressure to rotor assembly bearing surfaces. The bearing fluid distribution system produces a uniform film of fluid between bearing surfaces and allows rapid replacement of bearing fluid between bearing surfaces, thereby minimizing bearing wear and corrosion.

  8. Hydrostatic bearings for a turbine fluid flow metering device

    DOEpatents

    Fincke, J.R.

    1982-05-04

    A rotor assembly fluid metering device has been improved by development of a hydrostatic bearing fluid system which provides bearing fluid at a common pressure to rotor assembly bearing surfaces. The bearing fluid distribution system produces a uniform film of fluid between bearing surfaces and allows rapid replacement of bearing fluid between bearing surfaces, thereby minimizing bearing wear and corrosion. 3 figs.

  9. Comparison of shearing force and hydrostatic pressure on molecular structures of triphenylamine by fluorescence and Raman spectroscopies.

    PubMed

    Wu, Jinxia; Wang, Hailong; Xu, Shuping; Xu, Weiqing

    2015-02-26

    Luminescent mechanochromism (e.g., shearing force and hydrostatic pressure) has been intensively studied in recent years. However, there are few reported studies on the difference of the molecular configuration changes induced by these stresses. In this study, we chose triphenylamine, C18H6N (TPA), as a model molecule to study different molecular configuration changes under shearing force and hydrostatic pressure. Triphenylamine is an organic optoelectric functional molecule with a propeller-shaped configuration, a large conjugate structure, and a single molecular fluorescence material. Fluorescence and Raman spectra of TPA were recorded in situ under different pressures (0-1.9 GPa) produced by the mechanical grinding or using a diamond anvil cell (DAC). Our results show that the crystal phase of TPA transformed to the amorphous phase by grinding, whereas no obvious phase transition was observed under hydrostatic pressure up to 1.9 GPa, indicating the stability of TPA. Hydrostatic pressure by DAC induces molecular conformation changes, and the pressure-induced emission enhancement phenomenon of TPA is observed. By analyzing the Raman spectra at high pressure, we suggest that the molecular conformation changes under pressure are caused by the twisted dihedral angle between the benzene and the nitrogen atom, which is different from the phase transformation induced by the shearing force of grinding.

  10. Three-Dimensional Digital Image Correlation of a Composite Overwrapped Pressure Vessel During Hydrostatic Pressure Tests

    NASA Technical Reports Server (NTRS)

    Revilock, Duane M., Jr.; Thesken, John C.; Schmidt, Timothy E.

    2007-01-01

    Ambient temperature hydrostatic pressurization tests were conducted on a composite overwrapped pressure vessel (COPV) to understand the fiber stresses in COPV components. Two three-dimensional digital image correlation systems with high speed cameras were used in the evaluation to provide full field displacement and strain data for each pressurization test. A few of the key findings will be discussed including how the principal strains provided better insight into system behavior than traditional gauges, a high localized strain that was measured where gages were not present and the challenges of measuring curved surfaces with the use of a 1.25 in. thick layered polycarbonate panel that protected the cameras.

  11. Reversible Morphological Control of Tubulin-Encapsulating Giant Liposomes by Hydrostatic Pressure.

    PubMed

    Hayashi, Masahito; Nishiyama, Masayoshi; Kazayama, Yuki; Toyota, Taro; Harada, Yoshie; Takiguchi, Kingo

    2016-04-19

    Liposomes encapsulating cytoskeletons have drawn much recent attention to develop an artificial cell-like chemical-machinery; however, as far as we know, there has been no report showing isothermally reversible morphological changes of liposomes containing cytoskeletons because the sets of various regulatory factors, that is, their interacting proteins, are required to control the state of every reaction system of cytoskeletons. Here we focused on hydrostatic pressure to control the polymerization state of microtubules (MTs) within cell-sized giant liposomes (diameters ∼10 μm). MT is the cytoskeleton formed by the polymerization of tubulin, and cytoskeletal systems consisting of MTs are very dynamic and play many important roles in living cells, such as the morphogenesis of nerve cells and formation of the spindle apparatus during mitosis. Using real-time imaging with a high-pressure microscope, we examined the effects of hydrostatic pressure on the morphology of tubulin-encapsulating giant liposomes. At ambient pressure (0.1 MPa), many liposomes formed protrusions due to tubulin polymerization within them. When high pressure (60 MPa) was applied, the protrusions shrank within several tens of seconds. This process was repeatedly inducible (around three times), and after the pressure was released, the protrusions regenerated within several minutes. These deformation rates of the liposomes are close to the velocities of migrating or shape-changing living cells rather than the shortening and elongation rates of the single MTs, which have been previously measured. These results demonstrate that the elongation and shortening of protrusions of giant liposomes is repeatedly controllable by regulating the polymerization state of MTs within them by applying and releasing hydrostatic pressure. PMID:27023063

  12. Demagnetization of terrestrial and extraterrestrial rocks under hydrostatic pressure up to 1.2 GPa

    NASA Astrophysics Data System (ADS)

    Bezaeva, Natalia S.; Gattacceca, Jérôme; Rochette, Pierre; Sadykov, Ravil A.; Trukhin, Vladimir I.

    2010-03-01

    We carried out hydrostatic pressure demagnetization experiments up to 1.24 GPa on samples of terrestrial and extraterrestrial rocks and minerals of different lithologies as well as on synthetic samples. The magnetic remanence of samples was measured directly under pressure using a non-magnetic high-pressure cell of piston-cylinder type that was inserted into a high sensitivity SQUID magnetometer. In order to bring light on the pressure demagnetization effect, we investigated 50 samples with different magnetic mineralogies, remanent coercivities ( Bcr) and hysteresis parameters. The samples consisted of pyrrhotite-, magnetite- and titanomagnetite-bearing Martian meteorites, taenite-, tetrataenite- and kamacite-bearing ordinary chondrites and pyrrhotite-bearing Rumuruti chondrite; magnetite- and titanomagnetite-bearing basalts, andesites, ignimbrites, obsidians and granites; a variety of pyrrhotite- and hematite-bearing rocks and minerals (jasper, schist, rhyolite, radiolarite); samples of goethite and greigite as well as synthetic samples of dispersed powders of magnetite, hematite, pyrrhotite and native iron set into epoxy resin. Under hydrostatic pressure of 1.24 GPa, applied in a low magnetic field (<5 μT), the samples lost up to 84% of their initial saturation isothermal remanent magnetization (SIRM) without any changes in their intrinsic magnetic properties. We found that the efficiency of the pressure demagnetization is not exclusively controlled by the magnetic hardness of the samples ( Bcr), but that it is strongly dependent on their magnetic mineralogy. For a given magnetic mineralogy the resistance to hydrostatic pressure is roughly proportional to ln( Bcr). It was shown that there is no simple equivalence between pressure demagnetization and alternating field demagnetization effects. The pressure demagnetization was shown to be time-independent but repeated application of the same pressure level resulted in further demagnetization.

  13. Steel pressure vessels for hydrostatic pressures to 50 kilobars.

    PubMed

    Lavergne, A; Whalley, E

    1978-07-01

    Cylindrical steel pressure vessels are described that can be used for hydrostatic pressures up to 50 kilobars. Monoblock vessels of 350 maraging steel can be used to 40 kilobars and compound vessels with an inner vessel of 350 maraging steel and an outer vessel of 300 maraging steel to 50 kilobars. Neither requires the cylinder to be end loaded, and so they are much easier to use than the more usual compound vessels with a tungsten carbide inner and steel outer vessel.

  14. Hydrostatic bearings for a turbine fluid flow metering device

    DOEpatents

    Fincke, J.R.

    1980-05-02

    A rotor assembly fluid metering device has been improved by development of a hydrostatic bearing fluid system which provides bearing fluid at a common pressure to rotor assembly bearing surfaces. The bearing fluid distribution system produces a uniform film of fluid distribution system produces a uniform film of fluid between bearing surfaces and allows rapid replacement of bearing fluid between bearing surfaces, thereby minimizing bearing wear and corrosion.

  15. Non-hydrostatic equilibrium of the Sun and alternative physics

    NASA Astrophysics Data System (ADS)

    Ferronsky, V.

    2009-04-01

    The proved fact that the Earth and the Moon don't stay in hydrostatic equilibrium and many other evidences bring us to conclusion that dynamics and physics of all other Solar System bodies including the Sun itself ought to be studied on non-hydrostatic basis. The only reasonable and logical alternative to that is the dynamical approach. We accepted this option and found it as a promising direction. It was found that in order to change hydrostatics by dynamical physics the outer force field of the body must be replaced by its inner volumetric force pressure. This is because the gravitational and electromagnetic forces, being inner mass forces, are volumetric in their nature. The analytical approach of that is shown in our abstract presented to GD10 of GA2009. A novel equation of state for the Sun and other stars following from the dynamical approach was obtained. The common nature of gravitational and electromagnetic energy, generated by interacted (collide and scattered) elementary particles, follows from the dynamics. New ideas related to mechanism of the Solar System creation are aroused from the approach. See more information in our works: Ferronsky V.I. and S.V. Ferronsky (2007). Dynamics of the Earth, Scientific World, Moscow; Ferronsky V.I. (2008). Non-averaged virial theorem for natural systems: http://zhurnal.ape.relarn.ru/articles/2008/066e.pdf; Ferronsky V.I., S.A. Denisik and S.V. Ferronsky (1987). Jacobi Dynamics, Riedel, Dordrecht.

  16. Effects of Hydrostatic Pressure Exposure on Hepatic Progenitor Cells.

    PubMed

    Recker, Stephanie; Bukovec, Melani; Sparks, Jessica L

    2015-01-01

    Hepatic progenitor cells (HPCs) have the potential to regenerate healthy tissue in the setting of chronic liver disease. The goal of this study was to characterize the mechanosensitivity of HPCs to sustained hydrostatic pressure (20 mmHg) similar to that observed in liver cirrhosis. Bipotential Murine Oval Liver (BMOL) cells, an HPC-like cell line, were cultured in a hydrostatic pressure controlled chamber at 37°C and 5% CO2 for 4 days (to 90% confluency) or 12 days (superconfluency). Controls were run for each time point in a standard incubator without pressure. Nuclei were stained with DAPI and cells were viewed under a Zeiss 710 laser scanning confocal microscope with 40x objective. Nuclei were measured with Image J software (170 to 398 distinct cell nucleus area measurements per group). Two-way ANOVA was used to examine the influence of pressure and confluency on nuclear size. Cells exposed to pressure (mean nuclear area 126.7µm2, S.D. 56.9) had significantly larger nuclei than control cells (mean nuclear area 102.3µm2, S.D. 84.1), p<.001. The pressure*confluency interaction was also significant (p<.05). Results suggest that HPCs are sensitive to low-level hydrostatic pressure associated with chronic liver disease. Further experiments include analyzing cellular proliferation, morphology, and differentiation effects associated with pressure exposure.

  17. Non-Hydrostatic Modelling of Waves and Currents over Subtle Bathymetric Features

    NASA Astrophysics Data System (ADS)

    Gomes, E.; Mulligan, R. P.; McNinch, J.

    2014-12-01

    Localized areas with high rates of shoreline erosion on beaches, referred to as erosional hotspots, can occur near clusters of relict shore-oblique sandbars. Wave transformation and wave-driven currents over these morphological features could provide an understanding of the hydrodynamic-morphologic coupling mechanism that connects them to the occurrence of erosional hotspots. To investigate this, we use the non-hydrostatic SWASH model that phase-resolves the free surface and fluid motions throughout the water column, allowing for high resolution of wave propagation and breaking processes. In this study we apply a coupled system of nested models including SWAN over a large domain of the North Carolina shelf with smaller nested SWASH domains in areas of interest to determine the hydrodynamic processes occurring over shore oblique bars. In this presentation we focus on a high resolution grid (10 vertical layers, 10 m horizontal resolution) applied to the Duck region with model validation from acoustic wave and current data, and observations from the Coastal Lidar And Radar Imaging System (CLARIS). By altering the bathymetry input for each model run based on bathymetric surveys and comparing the predicted and observed wave heights and current profiles, the effects of subtle bathymetric perturbations have on wave refraction, wave breaking, surf zone currents and vorticity are investigated. The ability to predict wave breaking and hydrodynamics with a non-hydrostatic model may improve our understanding of surf zone dynamics in relation to morphologic conditions.

  18. A new generation of the regional climate model REMO: REMO non-hydrostatic

    NASA Astrophysics Data System (ADS)

    Sieck, Kevin; Raub, Thomas; Marien, Lennart; Buntemeyer, Lars; Jacob, Daniela

    2016-04-01

    The regional climate model REMO is well established and has proofed it's value in regional climate simulations for more than a decade. However, due to the hydrostatic formulation REMO is not able to produce useful regional climate information on scales smaller than ~10 km. The demand for higher resolution data especially in the climate service sector is evident. Often climate change information on urban district or even point level is needed. A previous development of a non-hydrostatic dynamical core for REMO utilizing ideas of Miller and Pearce (1974) and Janjic (2001) has been picked up and implemented into the latest hydrostatic REMO version. One of the advantages of the Janjic formulation is that hydrostatic and non-hydrostatic computations are well separated. This offers a straightforward implementation of the non-hydrostatic calculations into an existing hydrostatic model. Other advantages are the easy quantification of the error done by the hydrostatic approximation and the lower computational costs at lower resolutions by switching of the non-hydrostatic part. We will show results from climate simulations on the EURO-CORDEX domain with and without non-hydrostatic option.

  19. Evaluation of the lubrication properties of biodegradable fluids and their potential to replace mineral oil in heavily loaded hydrostatic transmissions

    SciTech Connect

    Feldmann, D.G.; Hinrichs, J.

    1997-12-31

    Increasing public interest in the environmental impact of technical machinery has led to the development of new hydraulic fluids. In case of leakage these fluids pose less of an environmental threat than mineral oil, because they degrade faster and are less toxic or non-toxic. The following paper describes methods and results of laboratory tests with these new, so called biodegradable fluids, in a hydrostatic transmission on a flywheel testing under high load conditions.

  20. The effects of vacancy on melting of Cu under hydrostatic and shock wave loading

    NASA Astrophysics Data System (ADS)

    Li, H.; Ni, S.

    2009-12-01

    Defects, ubiquitous in real solids, are relevant to high pressure melting under static and shock loading conditions as in the Earth’s interior and during planetary impact. A simplest type of defects is vacancy, and we investigate melt- ing of a representative metal (Cu) with pre-existing vacan- cies under hydrostatic and shock wave loading using molec- ular dynamics simulations. The equilibrium melting curve is established with the superheating-supercooling hysteresis method. During hydrostatic compression, the vacancy con- centration is reduced from its initial value and the vacancy effect on melting is minimized at high pressures. Shock wave loading is conducted along h100i at different initial vacancy concentrations. Considerable superheating occurs for initial vacancy concentration<2%. Quasi-continuous and continu- ous melting are found for vacancy concentration>5%. Dur- ing shock loading, preexistent vacancies facilitate plasticity and other defect formation, and thus reduce melting temper- ature. Our results indicate that vacancy effect on melting should be considered for shock loading and for low hydro- static pressures. 1

  1. Clarification of the recovery mechanism of Escherichia coli after hydrostatic pressure treatment

    NASA Astrophysics Data System (ADS)

    Ohshima, Shuto; Nomura, Kazuki; Iwahashi, Hitoshi

    2013-06-01

    High hydrostatic pressure (HP) technology has gained more attention as a non-thermal food pasteurization technology. Recently, a limitation of the HP technology was reported by Koseki and Yamamoto [Recovery of Escherichia coli ATCC 25922 in phosphate buffered saline after treatment with high hydrostatic pressure. Int. J. Food Microbiol. 2006;110:108-111], who completely recovered Escherichia coli species after HP treatment. We investigated the recovery mechanism of E. coli after HP treatment. The cells were treated with 200-300 MPa at 0-25°C for 24 h. The HP-treated E. coli was recovered in phosphate-buffered saline (PBS) during 120 h of incubation at 25°C, confirming the results reported by them. However, E. coli did not grow in PBS but grew with inactivated cells in PBS. In addition, the results of our "population size experiments" demonstrated that the recovery of E. coli cells depended on both the degree of pressure and the population size. These results suggest that some portion of cells recovered from the damage and then grew by using inactivated cells.

  2. Tunneling spectroscopy of Al/AlO{sub x}/Pb subjected to hydrostatic pressure

    SciTech Connect

    Zhu, Jun; Hou, Xing-Yuan; Guan, Tong; Zhang, Qin-Tong; Li, Yong-Qing; Han, Xiu-Feng; Li, Chun-Hong; Ren, Cong; Yang, Zheng-Xin; Zhang, Jin; Shan, Lei; Chen, Gen-Fu

    2015-05-18

    We develop an experimental tool to investigate high-pressure electronic density of state by combining electron tunneling spectroscopy measurements with high-pressure technique. It is demonstrated that tunneling spectroscopy measurement on Al/AlO{sub x}/Pb junction is systematically subjected to hydrostatic pressure up to 2.2 GPa. Under such high pressure, the normal state junction resistance is sensitive to the applied pressure, reflecting the variation of band structure of the barrier material upon pressures. In superconducting state, the pressure dependence of the energy gap Δ{sub 0}, the gap ratio 2Δ{sub 0}/k{sub B}T{sub c}, and the phonon spectral energy is extracted and compared with those obtained in the limited pressure range. Our experimental results show the accessibility and validity of high pressure tunneling spectroscopy, offering wealthy information about high pressure superconductivity.

  3. Effect of hydrostatic pressure and magnetic field on electromagnetically induced transparency based nonlinear frequency conversion in quantum ring

    NASA Astrophysics Data System (ADS)

    Gumber, Sukirti; Gambhir, Monica; Jha, Pradip Kumar; Mohan, Man

    2016-10-01

    We study the combined effect of hydrostatic pressure and magnetic field on electromagnetically induced transparency in quantum ring. The high flexibility in size and shape of ring makes it possible to fabricate a nearly perfect two-dimensional quantum structure. We also explore the dependence of frequency conversion, measured in terms of third order nonlinear susceptibility χ(3) , on coupling field, hydrostatic pressure and magnetic field. Although, a dip in χ(3) is observed with the introduction of strong coupling field, it renders the ring structure transparent to generated wave thus effectively enhancing the output of nonlinear frequency conversion process. At a fixed coupling strength, the output can be further enhanced by increasing the magnetic field while it shows an inverse relationship with pressure. These parameters, being externally controlled, provide an easy handle to control the output of quantum ring which can be used as frequency converter in communication networks.

  4. Dissecting the molecular origins of specific protein-nucleic acid recognition: hydrostatic pressure and molecular dynamics.

    PubMed Central

    Lynch, Thomas W; Kosztin, Dorina; McLean, Mark A; Schulten, Klaus; Sligar, Stephen G

    2002-01-01

    The fundamental processes by which proteins recognize and bind to nucleic acids are critical to understanding cellular function. To explore the factors involved in protein-DNA recognition, we used hydrostatic pressure to perturb the binding of the BamHI endonuclease to cognate DNA, both in experiment and in molecular dynamic simulations. A new technique of high-pressure gel mobility shift analysis was used to test the effects of elevated hydrostatic pressure on the binding of BamHI to its cognate recognition sequence. Upon application of a pressure of 500 bar, the equilibrium dissociation constant of BamHI binding to the cognate site was found to increase nearly 10-fold. A challenge has been to link this type of pure thermodynamic measurement to functional events occurring at the molecular level. Thus, we used molecular dynamic simulations at both ambient and elevated pressures to reveal details of the direct and water-mediated interactions between BamHI and cognate DNA, which allow explanation of the effects of pressure on site-specific protein-DNA binding and complex stability. PMID:11751298

  5. Prokaryotic responses to hydrostatic pressure in the ocean--a review.

    PubMed

    Tamburini, Christian; Boutrif, Mehdi; Garel, Marc; Colwell, Rita R; Deming, Jody W

    2013-05-01

    Effects of hydrostatic pressure on pure cultures of prokaryotes have been studied extensively but impacts at the community level in the ocean are less well defined. Here we consider hydrostatic pressure effects on natural communities containing both unadapted (piezosensitive) prokaryotes originating from surface water and adapted (including piezophilic) prokaryotes from the deep sea. Results from experiments mimicking pressure changes experienced by particle-associated prokaryotes during their descent through the water column show that rates of degradation of organic matter (OM) by surface-originating microorganisms decrease with sinking. Analysis of a much larger data set shows that, under stratified conditions, deep-sea communities adapt to in situ conditions of high pressure, low temperature and low OM. Measurements made using decompressed samples and atmospheric pressure thus underestimate in situ activity. Exceptions leading to overestimates can be attributed to deep mixing events, large influxes of surface particles, or provision of excessive OM during experimentation. The sediment-water interface, where sinking particles accumulate, will be populated by a mixture of piezosensitive, piezotolerant and piezophilic prokaryotes, with piezophilic activity prevailing deeper within sediment. A schematic representation of how pressure shapes prokaryotic communities in the ocean is provided, allowing a reasonably accurate interpretation of the available activity measurements.

  6. Hydrostatic pressure response of an oxide-based two-dimensional electron system

    NASA Astrophysics Data System (ADS)

    Zabaleta, J.; Borisov, V. S.; Wanke, R.; Jeschke, H. O.; Parks, S. C.; Baum, B.; Teker, A.; Harada, T.; Syassen, K.; Kopp, T.; Pavlenko, N.; Valentí, R.; Mannhart, J.

    2016-06-01

    Two-dimensional electron systems with fascinating properties exist in multilayers of standard semiconductors, on helium surfaces, and in oxides. Compared to the two-dimensional (2D) electron gases of semiconductors, the 2D electron systems in oxides are typically more strongly correlated and more sensitive to the microscopic structure of the hosting lattice. This sensitivity suggests that the oxide 2D systems are highly tunable by hydrostatic pressure. Here we explore the effects of hydrostatic pressure on the well-characterized 2D electron system formed at LaAlO3-SrTiO3 interfaces [A. Ohtomo and H. Y. Hwang, Nature (London) 427, 423 (2004), 10.1038/nature02308] and measure a pronounced, unexpected response. Pressure of ˜2 GPa reversibly doubles the 2D carrier density ns at 4 K. Along with the increase of ns, the conductivity and mobility are reduced under pressure. First-principles pressure simulations reveal the same behavior of the carrier density and suggest a possible mechanism of the mobility reduction, based on the dielectric properties of both materials and their variation under external pressure.

  7. Verification of a non-hydrostatic dynamical core using horizontally spectral element vertically finite difference method

    NASA Astrophysics Data System (ADS)

    Choi, S. J.; Kim, J.; Shin, S.

    2014-12-01

    In this presentation, a new non-hydrostatic (NH) dynamical core using the spectral element method (SEM) in the horizontal discretization and the finite difference method (FDM) in the vertical discretization will be presented. By using horizontal SEM, which decomposes the physical domain into smaller pieces with a small communication stencil, we can achieve a high level of scalability. Also by using vertical FDM, we provide an easy way for coupling the dynamics and existing physics packages. The Euler equations used here are in a flux form based on the hybrid sigma hydrostatic pressure vertical coordinate, which are similar to those used in the Weather Research and Forecasting (WRF) model. Within these Euler equations, we use a time-split third-order Runge-Kutta (RK3) for the time discretization. In order to establish robustness, firstly the NH dynamical core is verified in a simplified two dimensional (2D) slice framework by conducting widely used standard benchmark tests, and then we verify the global three dimensional (3D) dynamical core on the cubed-sphere grid with several test cases introduced by Dynamical Core Model Intercomparison Project (DCMIP).

  8. Hydrostatically coupled dielectric elastomer actuators for tactile displays and cutaneous stimulators

    NASA Astrophysics Data System (ADS)

    Carpi, Federico; Frediani, Gabriele; De Rossi, Danilo

    2010-04-01

    Hydrostatic coupling has been recently reported as a means to improve versatility and safety of dielectric elastomer (DE) actuators. Hydrostatically coupled DE actuators rely on an incompressible fluid that mechanically couples a DE-based active part to a passive part interfaced to the load. In this paper, we present ongoing development of bubble-like versions of such transducers, made of silicone and oil. In particular, the paper describes millimeter-scale actuators, currently being developed as soft, light, acoustically silent and cheap devices for two types of applications: tactile displays and cutaneous stimulators. In both cases, the most significant advantages of the proposed technology are represented by high versatility for design (due to the fluid based transmission mechanism), tailorable stiffness perceived by the user (obtained by adjusting the internal fluid pressure), and suitable electrical safety (enabled by both a passive interface with the user and the insulating internal fluid). Millimeter-scale prototypes showed a resonance frequency of about 250 Hz, which represents the value at which Pacinian cutaneous mechanoreceptors exhibit maximum sensitivity; this provides an optimum condition to eventually code tactile information dynamically, either in combination or as an alternative to static driving.

  9. Fourier analysis for hydrostatic pressure sensing in a polarization-maintaining photonic crystal fiber

    SciTech Connect

    Childs, Paul; Wong, Allan C. L.; Fu, H. Y.; Liao, Yanbiao; Tam, Hwayaw; Lu Chao; Wai, P. K. A.

    2010-12-20

    .We measured the hydrostatic pressure dependence of the birefringence and birefringent dispersion of a Sagnac interferometric sensor incorporating a length of highly birefringent photonic crystal fiber using Fourier analysis. Sensitivity of both the phase and chirp spectra to hydrostatic pressure is demonstrated. Using this analysis, phase-based measurements showed a good linearity with an effective sensitivity of 9.45nm/MPa and an accuracy of {+-}7.8kPa using wavelength-encoded data and an effective sensitivity of -55.7cm{sup -1}/MPa and an accuracy of {+-}4.4kPa using wavenumber-encoded data. Chirp-based measurements, though nonlinear in response, showed an improvement in accuracy at certain pressure ranges with an accuracy of {+-}5.5kPa for the full range of measured pressures using wavelength-encoded data and dropping to within {+-}2.5kPa in the range of 0.17 to 0.4MPa using wavenumber-encoded data. Improvements of the accuracy demonstrated the usefulness of implementing chirp-based analysis for sensing purposes.

  10. Effects of hydrostatic pressure on yeasts isolated from deep-sea hydrothermal vents.

    PubMed

    Burgaud, Gaëtan; Hué, Nguyen Thi Minh; Arzur, Danielle; Coton, Monika; Perrier-Cornet, Jean-Marie; Jebbar, Mohamed; Barbier, Georges

    2015-11-01

    Hydrostatic pressure plays a significant role in the distribution of life in the biosphere. Knowledge of deep-sea piezotolerant and (hyper)piezophilic bacteria and archaea diversity has been well documented, along with their specific adaptations to cope with high hydrostatic pressure (HHP). Recent investigations of deep-sea microbial community compositions have shown unexpected micro-eukaryotic communities, mainly dominated by fungi. Molecular methods such as next-generation sequencing have been used for SSU rRNA gene sequencing to reveal fungal taxa. Currently, a difficult but fascinating challenge for marine mycologists is to create deep-sea marine fungus culture collections and assess their ability to cope with pressure. Indeed, although there is no universal genetic marker for piezoresistance, physiological analyses provide concrete relevant data for estimating their adaptations and understanding the role of fungal communities in the abyss. The present study investigated morphological and physiological responses of fungi to HHP using a collection of deep-sea yeasts as a model. The aim was to determine whether deep-sea yeasts were able to tolerate different HHP and if they were metabolically active. Here we report an unexpected taxonomic-based dichotomic response to pressure with piezosensitve ascomycetes and piezotolerant basidiomycetes, and distinct morphological switches triggered by pressure for certain strains.

  11. Microstructure and mechanical properties of duplex stainless steel subjected to hydrostatic extrusion

    SciTech Connect

    Maj, P.; Adamczyk-Cieślak, B.; Mizera, J.; Pachla, W.; Kurzydłowski, K.J.

    2014-07-01

    The nanostructure and mechanical properties of ferritic-austenitic duplex stainless steel subjected to hydrostatic extrusion were examined. The refinement of the structure in the initial state and in the two deformation states (ε = 1.4 and ε = 3.8) was observed in an optical microscope (OM) and a transmission electron microscope (TEM). The results indicate that the structure evolved from microcrystalline with a grain size of about 4 μm to nanocrystalline with a grain size of about 150 nm in ferrite and 70 nm in austenite. The material was characterized mechanically by tensile tests performed in the two deformation states. The ultimate strength appeared to increase significantly compared to that in the initial deformation stages, which can be attributed to the grain refinement and plastic deformation. The heterogeneity observed in microregions results from the dual-phase structure of the steel. The results indicate that hydrostatic extrusion is a highly potential technology suitable for improving the properties of duplex steels. - Highlights: • Duplex stainless steel was hydro extruded to a total strain of 3.8 • After the last stage of deformation heterogeneous structure was obtained in the material • As a result of stresses non-diffusive transformation γ→α’ occurred in the material • Nanometric (sub)grains were obtained in the austenite regions.

  12. An analysis of the 70-meter antenna hydrostatic bearing by means of computer simulation

    NASA Technical Reports Server (NTRS)

    Bartos, R. D.

    1993-01-01

    Recently, the computer program 'A Computer Solution for Hydrostatic Bearings with Variable Film Thickness,' used to design the hydrostatic bearing of the 70-meter antennas, was modified to improve the accuracy with which the program predicts the film height profile and oil pressure distribution between the hydrostatic bearing pad and the runner. This article presents a description of the modified computer program, the theory upon which the computer program computations are based, computer simulation results, and a discussion of the computer simulation results.

  13. Evaluation of a hybrid hydrostatic bearing for cryogenic turbopump application

    NASA Technical Reports Server (NTRS)

    Spica, P. W.; Hannum, N. P.; Meyer, S. D.

    1986-01-01

    A hybrid hydrostatic bearing was designed to operate in liquid hydrogen at speeds to 80,000 rpm and radial loads to 440 n (100 lbf). The bearing assembly consisted of a pair of 20-mm angular-contact ball bearings encased in a journal, which was in turn supported by a fluid film of liquid hydrogen. The size and operating conditions of the bearing were selected to be compatible with the operating requirements of an advanced technology turbopump. Several test parameters were varied to characterize the bearing's steady-state operation. The rotation of the tester shaft was varied between 0 and 80,000 rpm. Bearing inlet fluid pressure was varied between 2.07 and 4.48 MPa (300 and 650 psia), while the fluid sump pressure was independently varied between 0.34 and 2.07 MPa (50 and 300 psia). The maximum radial load applied to the bearing was 440 N (110 lbf). Measured hybrid-hydrostatic-bearing stiffness was 1.5 times greater than predicted, while the fluid flow rate through the bearing was 35 to 65 percent less than predicted. Under two-phase fluid conditions, the stiffness was even greater and the flow rate was less. The optimal pressure ratio for the bearing should be between 0.2 and 0.55 depending on the balance desired between bearing efficiency and stiffness. Startup and shutdown cyclic tests were conducted to demonstrate the ability of the hybrid-hydrostatic-bearing assembly to survive at least a 300-firing-duty cycle. For a typical cycle, the shaft was accelerated to 50,000 rpm in 1.8 sec. The bearing operated for 337 start-stop cycles without failure.

  14. A technique to measure rotordynamic coefficients in hydrostatic bearings

    NASA Technical Reports Server (NTRS)

    Capaldi, Russell J.

    1993-01-01

    An experimental technique is described for measuring the rotordynamic coefficients of fluid film journal bearings. The bearing tester incorporates a double-spool shaft assembly that permits independent control over the journal spin speed and the frequency of an adjustable-magnitude circular orbit. This configuration yields data that enables determination of the full linear anisotropic rotordynamic coefficient matrices. The dynamic force measurements were made simultaneously with two independent systems, one with piezoelectric load cells and the other with strain gage load cells. Some results are presented for a four-recess, oil-fed hydrostatic journal bearing.

  15. A Petascale Non-Hydrostatic Atmospheric Dynamical Core in the HOMME Framework

    SciTech Connect

    Tufo, Henry

    2015-09-15

    The High-Order Method Modeling Environment (HOMME) is a framework for building scalable, conserva- tive atmospheric models for climate simulation and general atmospheric-modeling applications. Its spatial discretizations are based on Spectral-Element (SE) and Discontinuous Galerkin (DG) methods. These are local methods employing high-order accurate spectral basis-functions that have been shown to perform well on massively parallel supercomputers at any resolution and scale particularly well at high resolutions. HOMME provides the framework upon which the CAM-SE community atmosphere model dynamical-core is constructed. In its current incarnation, CAM-SE employs the hydrostatic primitive-equations (PE) of motion, which limits its resolution to simulations coarser than 0.1 per grid cell. The primary objective of this project is to remove this resolution limitation by providing HOMME with the capabilities needed to build nonhydrostatic models that solve the compressible Euler/Navier-Stokes equations.

  16. Piezochromic luminescence behaviors of two new benzothiazole-enamido boron difluoride complexes: intra- and inter-molecular effects induced by hydrostatic compression.

    PubMed

    Wang, Xiaoqing; Liu, Qingsong; Yan, Hui; Liu, Zhipeng; Yao, Mingguang; Zhang, Qingfu; Gong, Shuwen; He, Weijiang

    2015-05-01

    Two new propeller-shaped benzothiazole-enamide boron difluoride complexes exhibiting piezochromic luminescence upon mechanical grinding or hydrostatic compression were prepared. The two analogues displayed the red shift in luminescence under high pressure, while compound 2 with ICT effects showed a more sensitive piezochromic response at low pressure (<1.5 GPa). The different piezochromic luminescence behaviors of these compounds were investigated.

  17. The Effect of Hydrostatic Pressure up to 1.45 GPa on the Morin Transition of Hematite-Bearing Rock: Implications for Martian Crustal Magnetization

    NASA Astrophysics Data System (ADS)

    Bezaeva, N. S.; Demory, F.; Rochette, P.; Gattacceca, G.; Gabriel, T.; Quesnel, Y.

    2015-07-01

    We quantified the effect of hydrostatic pressure up to 1.45 GPa on the Morin transition of hematite-bearing rock via direct magnetic measurements using a high pressure cell and a SQUID magnetometer. Hematite is present in the martian crust.

  18. Verification of a non-hydrostatic dynamical core using horizontally spectral element vertically finite difference method: 2-D aspects

    NASA Astrophysics Data System (ADS)

    Choi, S.-J.; Giraldo, F. X.; Kim, J.; Shin, S.

    2014-06-01

    The non-hydrostatic (NH) compressible Euler equations of dry atmosphere are solved in a simplified two dimensional (2-D) slice framework employing a spectral element method (SEM) for the horizontal discretization and a finite difference method (FDM) for the vertical discretization. The SEM uses high-order nodal basis functions associated with Lagrange polynomials based on Gauss-Lobatto-Legendre (GLL) quadrature points. The FDM employs a third-order upwind biased scheme for the vertical flux terms and a centered finite difference scheme for the vertical derivative terms and quadrature. The Euler equations used here are in a flux form based on the hydrostatic pressure vertical coordinate, which are the same as those used in the Weather Research and Forecasting (WRF) model, but a hybrid sigma-pressure vertical coordinate is implemented in this model. We verified the model by conducting widely used standard benchmark tests: the inertia-gravity wave, rising thermal bubble, density current wave, and linear hydrostatic mountain wave. The results from those tests demonstrate that the horizontally spectral element vertically finite difference model is accurate and robust. By using the 2-D slice model, we effectively show that the combined spatial discretization method of the spectral element and finite difference method in the horizontal and vertical directions, respectively, offers a viable method for the development of a NH dynamical core.

  19. Double nanoplate-based NEMS under hydrostatic and electrostatic actuations

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Farzad; Hosseini, S. H. S.

    2016-05-01

    Presented herein is a comprehensive investigation on the nonlinear vibration behavior of nanoplate-based nano electromechanical systems (NEMS) under hydrostatic and electrostatic actuations based on nonlocal elasticity and Gurtin-Murdoch theory. Using nonlinear strain-displacement relations, the geometrical nonlinearity is modeled. Based on Kelvin-Voigt model, the influence of the viscoelastic coefficient is also discussed. Nonlocal plate theory and Hamilton's principle are utilized for deriving the governing equations. Furthermore, the differential quadrature method (DQM) is employed to compute the nonlinear frequency. In addition, pull-in voltage and hydrostatic pressure are considered by comparing the results obtained from nanoplates made of two different materials including aluminum (Al) and silicon (Si). Finally, the influences of important parameters including the small scale, thickness of the nanoplate, center gap and Winkler coefficient in the actuated nanoplate are thoroughly studied. The plots for the ratio of nonlinear-to-linear frequencies against thickness, maximum transverse amplitude and non-dimensional center gap of nanoplate are also presented.

  20. Opportunities of hydrostatically coupled dielectric elastomer actuators for haptic interfaces

    NASA Astrophysics Data System (ADS)

    Carpi, Federico; Frediani, Gabriele; De Rossi, Danilo

    2011-04-01

    As a means to improve versatility and safety of dielectric elastomer actuators (DEAs) for several fields of application, so-called 'hydrostatically coupled' DEAs (HC-DEAs) have recently been described. HC-DEAs are based on an incompressible fluid that mechanically couples a DE-based active part to a passive part interfaced to the load, so as to enable hydrostatic transmission. This paper presents ongoing developments of HC-DEAs and potential applications in the field of haptics. Three specific examples are considered. The first deals with a wearable tactile display used to provide users with tactile feedback during electronic navigation in virtual environments. The display consists of HCDEAs arranged in contact with finger tips. As a second example, an up-scaled prototype version of an 8-dots refreshable cell for dynamic Braille displays is shown. Each Braille dot consists of a miniature HC-DEA, with a diameter lower than 2 mm. The third example refers to a device for finger rehabilitation, conceived to work as a sort of active version of a rehabilitation squeezing ball. The device is designed to dynamically change its compliance according to an electric control. The three examples of applications intend to show the potential of the new technology and the prospective opportunities for haptic interfaces.

  1. Study of glass hydrometer calibration by hydrostatic weighting

    NASA Astrophysics Data System (ADS)

    Chen, Chaoyun; Wang, Jintao; Li, Zhihao; Zhang, Peiman

    2016-01-01

    Glass hydrometers are simple but effective instruments for measuring the density of liquids. Glass hydrometers calibration based on the Archimedes law, using silicon ring as a reference standard solid density, n-tridecane with density stability and low surface tension as the standard working liquid, based on hydrostatic weighing method designs a glass hydrometer calibration system. Glass hydrometer calibration system uses CCD image measurement system to align the scale of hydrometer and liquid surface, with positioning accuracy of 0.01 mm. Surface tension of the working liquid is measured by Whihemy plate. According to twice glass hydrometer weighing in the air and liquid can calculate the correction value of the current scale. In order to verify the validity of the principle of the hydrostatic weighing method of glass hydrometer calibration system, for measuring the density range of (770-790) kg/m3, with a resolution of 0.2 kg/m3 of hydrometer. The results of measurement compare with the Physikalisch-Technische Bundesanstalt(PTB) ,verifying the validity of the calibration system.

  2. DX centers in III-V semiconductors under hydrostatic pressure

    SciTech Connect

    Wolk, J.A.

    1992-11-01

    DX centers are deep level defects found in some III-V semiconductors. They have persistent photoconductivity and large difference between thermal and optical ionization energies. Hydrostatic pressure was used to study microstructure of these defects. A new local vibrational mode (LVM) was observed in hydrostatically stressed, Si-doped GaAs. Corresponding infrared absorption peak is distinct from the Si{sub Ga} shallow donor LVM peak, which is the only other LVM peak observed in our samples, and is assigned to the Si DX center. Analysis of the relative intensities of the Si DX LVM and the Si shallow donor LVM peaks, combined with Hall effect and resistivity indicate that the Si DX center is negatively charged. Frequency of this new mode provides clues to the structure of this defect. A pressure induced deep donor level in S-doped InP was also discovered which has the properties of a DX center. Pressure at which the new defect becomes more stable than the shallow donor is 82 kbar. Optical ionization energy and energy dependence of the optical absorption cross section was measured for this new effect. Capture barrier from the conduction band into the DX state were also determined. That DX centers can be formed in InP by pressure suggests that DX states should be common in n-type III-V semiconductors. A method is suggested for predicting under what conditions these defects will be the most stable form of the donor impurity.

  3. Optimization of conical hydrostatic bearing for minimum friction.

    NASA Technical Reports Server (NTRS)

    Nypan, L. J.; Hamrock, B. J.; Scibbe, H. W.; Anderson, W. J.

    1971-01-01

    Equations for the flow rate, load capacity, and friction torque for a conical hydrostatic bearing were developed. These equations were solved by a digital computer program to determine bearing configurations for minimum friction torque. Design curves are presented that show optimal bearing dimensions for minimum friction torque as a function of dimensionless flow rate for a range of dimensionless load capacity. Results are shown for both laminar and turbulent flow conditions. The results indicate that hydrostatic pocket friction is a significant portion of the total friction torque. However, the bearing dimensions for a minimum friction design are affected very little by inclusion of pocket friction in the analysis. For laminar flow the values of the outer-land radius ratio X3 and outer bearing radius ratio X4 did not change significantly with increasing friction factor. For turbulent flow, the outer bearing radius ratio X4 did not change with increasing friction factor; therefore the value determined for X4 in the laminar flow case is valid for all turbulent flows.

  4. A system for acoustical and optical analysis of encapsulated microbubbles at ultrahigh hydrostatic pressures.

    PubMed

    Zhushma, Aleksandr; Lebedeva, Natalia; Sen, Pabitra; Rubinstein, Michael; Sheiko, Sergei S; Dayton, Paul A

    2013-05-01

    Acoustics are commonly used for borehole (i.e., oil well) imaging applications, under conditions where temperature and pressure reach extremes beyond that of conventional medical ultrasonics. Recently, there has been an interest in the application of encapsulated microbubbles as borehole contrast agents for acoustic assessment of fluid composition and flow. Although such microbubbles are widely studied under physiological conditions for medical imaging applications, to date there is a paucity of information on the behavior of encapsulated gas-filled microbubbles at high pressures. One major limitation is that there is a lack of experimental systems to assess both optical and acoustic data of micrometer-sized particles data at these extremes. In this paper, we present the design and application of a high-pressure cell designed for acoustical and optical studies of microbubbles at hydrostatic pressures up to 27.5 MPa (271 atm). PMID:23742587

  5. A system for acoustical and optical analysis of encapsulated microbubbles at ultrahigh hydrostatic pressures

    NASA Astrophysics Data System (ADS)

    Zhushma, Aleksandr; Lebedeva, Natalia; Sen, Pabitra; Rubinstein, Michael; Sheiko, Sergei S.; Dayton, Paul A.

    2013-05-01

    Acoustics are commonly used for borehole (i.e., oil well) imaging applications, under conditions where temperature and pressure reach extremes beyond that of conventional medical ultrasonics. Recently, there has been an interest in the application of encapsulated microbubbles as borehole contrast agents for acoustic assessment of fluid composition and flow. Although such microbubbles are widely studied under physiological conditions for medical imaging applications, to date there is a paucity of information on the behavior of encapsulated gas-filled microbubbles at high pressures. One major limitation is that there is a lack of experimental systems to assess both optical and acoustic data of micrometer-sized particles data at these extremes. In this paper, we present the design and application of a high-pressure cell designed for acoustical and optical studies of microbubbles at hydrostatic pressures up to 27.5 MPa (271 atm).

  6. Effect of hydrostatic pressure on water penetration and rotational dynamics in phospholipid-cholesterol bilayers.

    PubMed Central

    Bernsdorff, C; Wolf, A; Winter, R; Gratton, E

    1997-01-01

    The effect of high hydrostatic pressure on the lipid bilayer hydration, the mean order parameter, and rotational dynamics of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) cholesterol vesicles has been studied by time-resolved fluorescence spectroscopy up to 1500 bar. Whereas the degree of hydration in the lipid headgroup and interfacial region was assessed from fluorescence lifetime data using the probe 1-(4-trimethylammonium-phenyl)-6-phenyl-1,3,5-hexatriene (TMA-DPH), the corresponding information in the upper acyl chain region was estimated from its effect on the fluorescence lifetime of and 3-(diphenylhexatrienyl)propyl-trimethylammonium (TMAP-DPH). The lifetime data indicate a greater level of interfacial hydration for DPPC bilayers than for POPC bilayers, but there is no marked difference in interchain hydration of the two bilayer systems. The addition of cholesterol at levels from 30 to 50 mol% to DPPC has a greater effect on the increase of hydrophobicity in the interfacial region of the bilayer than the application of hydrostatic pressure of several hundred to 1000 bar. Although the same trend is observed in the corresponding system, POPC/30 mol% cholesterol, the observed effects are markedly less pronounced. Whereas the rotational correlation times of the fluorophores decrease in passing the pressure-induced liquid-crystalline to gel phase transition of DPPC, the wobbling diffusion coefficient remains essentially unchanged. The wobbling diffusion constant of the two fluorophores changes markedly upon incorporation of 30 mol% cholesterol, and increases at higher pressures, also in the case of POPC/30 mol% cholesterol. The observed effects are discussed in terms of changes in the rotational characteristics of the fluorophores and the phase-state of the lipid mixture. The results demonstrate the ability of cholesterol to adjust the structural and dynamic properties of membranes composed of

  7. The tensile deformation behavior of nuclear-grade isotropic graphite posterior to hydrostatic loading

    NASA Astrophysics Data System (ADS)

    Yoda, S.; Eto, M.

    1983-10-01

    The effects of prehydrostatic loading on microstructural changes and tensile deformation behavior of nuclear-grade isotropic graphite have been examined. Scanning electron micrographs show that formation of microcracks associated with delamination between basal planes occurs under hydrostatic loading. Hydrostatic loading on specimens results in the decrease in tensile strength and increase in residual strain generated by the applied tensile stress at various levels, indicating that the graphite material is weakened by hydrostatic loading. A relationship between residual strain and applied tensile stress for graphite hydrostatically-loaded at several pressure levels can be approximately expressed as ɛ = ( AP + B) σn over a wide range hydrostatic pressure, where ɛ, P and σ denote residual strain, hydrostatic pressure and applied tensile stress, respectively; A, B and n are constants. The effects of prehydrostatic loading on the tensile stress-strain behavior of the graphite were examined in more detail. The ratio of stress after hydrostatic loading to that before hydrostatic loading on the stress-strain relationship remains almost unchanged irrespective of strain.

  8. Dynamic behavior of nano-voids in magnesium under hydrostatic tensile stress

    NASA Astrophysics Data System (ADS)

    Ponga, Mauricio; Ramabathiran, Amuthan A.; Bhattacharya, Kaushik; Ortiz, Michael

    2016-08-01

    We investigate the mechanisms responsible for nano-void growth in single crystal magnesium under dynamic hydrostatic tensile stress. A key conclusion derived from our study is that there is no secondary strain hardening near the nano-void. This behavior, which is in remarkable contrast to face-centered cubic and body-centered cubic materials, greatly limits the peak stress and explains the relatively lower spall strength of magnesium. The lack of secondary strain hardening is due to the fact that pyramidal dislocations do not interact with basal or prismatic dislocations. Our analysis also shows that for loads applied at moderate strain rates (\\overset{\\centerdot}{ε} ≤slant {{10}6} s‑1) the peak stress, dislocation velocity and temperature distribution converge asymptotically. However at very high strain rates (\\overset{\\centerdot}{ε} ≥slant {{10}8} s‑1), there is a sharp transition in these quantities.

  9. Director-configurational transitions around microbubbles of hydrostatically regulated size in liquid crystals.

    PubMed

    Völtz, C; Maeda, Y; Tabe, Y; Yokoyama, H

    2006-12-01

    A high-pressure technique is introduced which allows a continuous variation of the inclusion size in liquid crystal colloids. We use a nematic liquid crystal host into which micrometer-sized gas bubbles are injected. By applying hydrostatic pressures, the diameter of these gas bubbles can be continuously decreased via compression and absorption of gas into the host liquid crystal, so that the director configurations around a single bubble can be investigated as a function of the bubble size. The theoretically predicted transition from a hyperbolic hedgehog to a Saturn-ring configuration, on reduction of the particle size below a certain threshold, is confirmed to occur at the radius of a few micrometers.

  10. Analysis of a two row hydrostatic journal bearing with variable properties, inertia effects and surface roughness

    NASA Technical Reports Server (NTRS)

    Braun, M. J.; Adams, M. L.; Mullen, R. L.

    1985-01-01

    A computer algorithm for simulation of hydrostatic journal bearing pressure-flow behavior has been generated. The effects taken into account are inertia, cavitation, variable properties (isothermal bearing) and roughness. The program has been specifically tailored for simulation of the hybrid bearing of the cryogenic turbopumps of the main shuttle engine. Due to the high pressure (515 psia) of the supply line no cavitation has been found. The influence of the roughness effects have been found to become important only when the surface-roughness order of magnitude is comparable with that of the bearing clearance itself. Pocket edge inertia and variable properties have been found to have quite an important influence upon the pocket pressure, field pressure distribution and lubricant mass flow.

  11. Dynamic behavior of nano-voids in magnesium under hydrostatic tensile stress

    NASA Astrophysics Data System (ADS)

    Ponga, Mauricio; Ramabathiran, Amuthan A.; Bhattacharya, Kaushik; Ortiz, Michael

    2016-08-01

    We investigate the mechanisms responsible for nano-void growth in single crystal magnesium under dynamic hydrostatic tensile stress. A key conclusion derived from our study is that there is no secondary strain hardening near the nano-void. This behavior, which is in remarkable contrast to face-centered cubic and body-centered cubic materials, greatly limits the peak stress and explains the relatively lower spall strength of magnesium. The lack of secondary strain hardening is due to the fact that pyramidal dislocations do not interact with basal or prismatic dislocations. Our analysis also shows that for loads applied at moderate strain rates (\\overset{\\centerdot}{ɛ} ≤slant {{10}6} s-1) the peak stress, dislocation velocity and temperature distribution converge asymptotically. However at very high strain rates (\\overset{\\centerdot}{ɛ} ≥slant {{10}8} s-1), there is a sharp transition in these quantities.

  12. Generation of large volume hydrostatic pressure to 8 GPa for ultrasonic studies

    NASA Astrophysics Data System (ADS)

    Kozuki, Yasushi; Yoneda, Akira; Fujimura, Akio; Sawamoto, Hiroshi; Kumazawa, Mineo

    1986-09-01

    The design and performance of a liquid-solid hybrid cell to generate high hydrostatic pressures in a relatively large volume (for use in measurements of the pressure dependence of the physical properties of materials) are reported. A 4:1 methanol-ethanol mixture is employed in 12-mm-side and 20-mm-side versions of an eight-cubic-anvil apparatus driven by a 10-kt press. Pressures up to 8 GPa are obtained safely in a 16-cu cm volume by applying uniaxial force of 3 kt. The cell is used to obtain measurements of the velocity of ultrasonic waves in fused quartz: the experimental setup is described, and sample results are presented graphically.

  13. Role of osmotic and hydrostatic pressures in bacteriophage genome ejection

    NASA Astrophysics Data System (ADS)

    Lemay, Serge G.; Panja, Debabrata; Molineux, Ian J.

    2013-02-01

    A critical step in the bacteriophage life cycle is genome ejection into host bacteria. The ejection process for double-stranded DNA phages has been studied thoroughly in vitro, where after triggering with the cellular receptor the genome ejects into a buffer. The experimental data have been interpreted in terms of the decrease in free energy of the densely packed DNA associated with genome ejection. Here we detail a simple model of genome ejection in terms of the hydrostatic and osmotic pressures inside the phage, a bacterium, and a buffer solution or culture medium. We argue that the hydrodynamic flow associated with the water movement from the buffer solution into the phage capsid and further drainage into the bacterial cytoplasm, driven by the osmotic gradient between the bacterial cytoplasm and culture medium, provides an alternative mechanism for phage genome ejection in vivo; the mechanism is perfectly consistent with phage genome ejection in vitro.

  14. Cell Membranes Under Hydrostatic Pressure Subjected to Micro-Injection

    NASA Astrophysics Data System (ADS)

    Vassilev, Vassil M.; Kostadinov, Kostadin G.; Mladenov, Ivaïlo M.; Shulev, Assen A.; Stoilov, Georgi I.; Djondjorov, Peter A.

    2011-04-01

    The work is concerned with the determination of the mechanical behaviour of cell membranes under uniform hydrostatic pressure subject to micro-injections. For that purpose, assuming that the shape of the deformed cell membrane is axisymmetric a variational statement of the problem is developed on the ground of the so-called spontaneous curvature model. In this setting, the cell membrane is regarded as an axisymmetric surface in the three-dimensional Euclidean space providing a stationary value of the shape energy functional under the constraint of fixed total area and fixed enclosed volume. The corresponding Euler-Lagrange equations and natural boundary conditions are derived, analyzed and used to express the forces and moments in the membrane. Several examples of such surfaces representing possible shapes of cell membranes under pressure subjected to micro injection are determined numerically.

  15. Hydrometer calibration by hydrostatic weighing with automated liquid surface positioning

    NASA Astrophysics Data System (ADS)

    Aguilera, Jesus; Wright, John D.; Bean, Vern E.

    2008-01-01

    We describe an automated apparatus for calibrating hydrometers by hydrostatic weighing (Cuckow's method) in tridecane, a liquid of known, stable density, and with a relatively low surface tension and contact angle against glass. The apparatus uses a laser light sheet and a laser power meter to position the tridecane surface at the hydrometer scale mark to be calibrated with an uncertainty of 0.08 mm. The calibration results have an expanded uncertainty (with a coverage factor of 2) of 100 parts in 106 or less of the liquid density. We validated the apparatus by comparisons using water, toluene, tridecane and trichloroethylene, and found agreement within 40 parts in 106 or less. The new calibration method is consistent with earlier, manual calibrations performed by NIST. When customers use calibrated hydrometers, they may encounter uncertainties of 370 parts in 106 or larger due to surface tension, contact angle and temperature effects.

  16. Hydrostatic factors affect the gravity responses of algae and roots

    NASA Technical Reports Server (NTRS)

    Staves, Mark P.; Wayne, Randy; Leopold, A. C.

    1991-01-01

    The hypothesis of Wayne et al. (1990) that plant cells perceive gravity by sensing a pressure differential between the top and the bottom of the cell was tested by subjecting rice roots and cells of Caracean algae to external solutions of various densities. It was found that increasing the density of the external medium had a profound effect on the polar ratio (PR, the ratio between velocities of the downwardly and upwardly streaming cytoplasm) of the Caracean algae cells. When these cells were placed in solutions of denser compound, the PR decreased to less than 1, as the density of the external medium became higher than that of the cell; thus, the normal gravity-induced polarity was reversed, indicating that the osmotic pressure of the medium affects the cell's ability to respond to gravity. In rice roots, an increase of the density of the solution inhibited the rate of gravitropism. These results agree with predictions of a hydrostatic model for graviperception.

  17. On the Nature of Hydrostatic Equilibrium in Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Biffi, V.; Borgani, S.; Murante, G.; Rasia, E.; Planelles, S.; Granato, G. L.; Ragone-Figueroa, C.; Beck, A. M.; Gaspari, M.; Dolag, K.

    2016-08-01

    In this paper, we investigate the level of hydrostatic equilibrium (HE) in the intracluster medium of simulated galaxy clusters, extracted from state-of-the-art cosmological hydrodynamical simulations performed with the Smoothed-Particle-Hydrodynamic code GADGET-3. These simulations include several physical processes, among which are stellar and active galactic nucleus feedback, and have been performed with an improved version of the code that allows for a better description of hydrodynamical instabilities and gas mixing processes. Evaluating the radial balance between the gravitational and hydrodynamical forces via the gas accelerations generated, we effectively examine the level of HE in every object of the sample and its dependence on the radial distance from the center and on the classification of the cluster in terms of either cool-coreness or dynamical state. We find an average deviation of 10%–20% out to the virial radius, with no evident distinction between cool-core and non-cool-core clusters. Instead, we observe a clear separation between regular and disturbed systems, with a more significant deviation from HE for the disturbed objects. The investigation of the bias between the hydrostatic estimate and the total gravitating mass indicates that, on average, this traces the deviation from HE very well, even though individual cases show a more complex picture. Typically, in the radial ranges where mass bias and deviation from HE are substantially different, the gas is characterized by a significant amount of random motions (≳ 30 % ), relative to thermal ones. As a general result, the HE-deviation and mass bias, at a given distance from the cluster center, are not very sensitive to the temperature inhomogeneities in the gas.

  18. On the Nature of Hydrostatic Equilibrium in Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Biffi, V.; Borgani, S.; Murante, G.; Rasia, E.; Planelles, S.; Granato, G. L.; Ragone-Figueroa, C.; Beck, A. M.; Gaspari, M.; Dolag, K.

    2016-08-01

    In this paper, we investigate the level of hydrostatic equilibrium (HE) in the intracluster medium of simulated galaxy clusters, extracted from state-of-the-art cosmological hydrodynamical simulations performed with the Smoothed-Particle-Hydrodynamic code GADGET-3. These simulations include several physical processes, among which are stellar and active galactic nucleus feedback, and have been performed with an improved version of the code that allows for a better description of hydrodynamical instabilities and gas mixing processes. Evaluating the radial balance between the gravitational and hydrodynamical forces via the gas accelerations generated, we effectively examine the level of HE in every object of the sample and its dependence on the radial distance from the center and on the classification of the cluster in terms of either cool-coreness or dynamical state. We find an average deviation of 10%-20% out to the virial radius, with no evident distinction between cool-core and non-cool-core clusters. Instead, we observe a clear separation between regular and disturbed systems, with a more significant deviation from HE for the disturbed objects. The investigation of the bias between the hydrostatic estimate and the total gravitating mass indicates that, on average, this traces the deviation from HE very well, even though individual cases show a more complex picture. Typically, in the radial ranges where mass bias and deviation from HE are substantially different, the gas is characterized by a significant amount of random motions (≳ 30 % ), relative to thermal ones. As a general result, the HE-deviation and mass bias, at a given distance from the cluster center, are not very sensitive to the temperature inhomogeneities in the gas.

  19. The application of ICOM, a non-hydrostatic, fully unstructured mesh model in large scale ocean domains

    NASA Astrophysics Data System (ADS)

    Kramer, Stephan C.; Piggott, Matthew D.; Cotter, Colin J.; Pain, Chris C.; Nelson, Rhodri B.

    2010-05-01

    given of some of the difficulties that were encountered in the application of ICOM in large scale, high aspect ratio ocean domains and how they have been overcome. A large scale application in the form of a baroclinic, wind-driven double gyre will be presented and the results are compared to two other models, the MIT general circulation model (MITgcm, [3]) and NEMO (Nucleus for European Modelling of the Ocean, [4]). Also a comparison of the performance and parallel scaling of the models on a supercomputing platform will be made. References [1] M.D. Piggott, G.J. Gorman, C.C. Pain, P.A. Allison, A.S. Candy, B.T. Martin and W.R. Wells, "A new computational framework for multi-scale ocean modelling based on adapting unstructured meshes", International Journal for Numerical Methods in Fluids 56, pp 1003 - 1015, 2008 [2] S.C. Kramer, C.J. Cotter and C.C. Pain, "Solving the Poisson equation on small aspect ratio domains using unstructured meshes", submitted to Ocean Modelling [3] J. Marshall, C. Hill, L. Perelman, and A. Adcroft, "Hydrostatic, quasi-hydrostatic, and nonhydrostatic ocean modeling", J. Geophysical Res., 102(C3), pp 5733-5752, 1997 [4] G. Madec, "NEMO ocean engine", Note du Pole de modélisation, Institut Pierre-Simon Laplace (IPSL), France, No 27 ISSN No 1288-1619

  20. Moderate hydrostatic pressure-temperature combinations for inactivation of Bacillus subtilis spores

    NASA Astrophysics Data System (ADS)

    Obaidat, Rana; Yu, Darryl; Aljawhiri, Steve; Macgregor, Robert, Jr.

    2015-07-01

    We report the effect of using moderate hydrostatic pressure, 40-140 MPa, at moderate temperature (38-58°C) to inactivate Bacillus subtilis spores in McIlvaine's citric phosphate buffer at pH 6. We have investigated several parameters: pressure applied, holding time, pressure cycling, and temperature. The kinetics of spore inactivation is reported. The results show that spore inactivation is exponentially proportional to the time the sample is exposed to pressure. Spore germination and inactivation occur at the hydrostatic pressures/temperature combinations we explored. Cycling the pressure while keeping the total time at high pressure constant does not significantly increase spore inactivation. We show that temperature increases spore inactivation at two different rates; a slow rate below 33°C, and at a more rapid rate at higher temperatures. Increasing pressure leads to an increase in spore inactivation below 95 MPa; however, further increases in pressure give a similar rate kill. The time dependence of the effect of pressure is consistent with the first-order model (R2 > 0.9). The thermal resistance values (ZT) of B. subtilis spores are 30°C, 37°C, and 40°C at 60, 80, 100 MPa. The increase in ZT value at higher pressures indicates lower temperature sensitivity. The pressure resistance values (ZP) are 125, 125 and 143 MPa at 38°C, 48°C, and 58°C. These ZP values are lower than those reported for B. subtilis spores in the literature, which indicates higher sensitivity at pressures less than about 140 MPa. We show that at temperatures <60°C, B. subtilis spores are inactivated at pressures below 100 MPa. This finding could have implications for the design of the sterilization equipment.

  1. Error and energy budget analysis of a non-hydrostatic stretched-grid global atmospheric model

    NASA Astrophysics Data System (ADS)

    Uchida, J.; Nakajima, T.; Suzuki, K.

    2015-12-01

    A non-hydrostatic stretched-grid (SG) model is used to analyze the large-scale errors generated by the stretching of horizontal grids and their influences to the region of interest. Simulations by a fully compressible non-hydrostatic global atmospheric model, NICAM, and its SG regional model, a Stretched-NICAM, were performed for March-April-May 2011 with various resolutions and global stretching factors. The comparison of weeklong accumulative precipitation amounts between the Tropical Rainfall Measuring Mission (TRMM) satellite data, the quasi-uniform and SG simulations have shown that a stretched run leads to better representation of storms and associated precipitation, since the errors generated in the outer regions with a coarser grid spacing do not seriously affect the inner domain centered at the focal point. For season-long simulations, in one particular set of stretched runs with the focal point located in the eastern U.S., a larger grid spacing causes the artificial suppression of baroclinic development of mid-latitude eddies in the Southern Hemisphere, weakens the eddy-driven polar-front jet (PFJ), and resulting in a cold bias at mid- to high-latitudes. However, in the Northern Hemisphere, by contrast, the aforementioned changes are less apparent, such that each hemisphere acting nearly independent of the other. Therefore, for the SG runs, the mean temperature was maintained at the region of interest and the increased number of moderate to heavy precipitations, which are also frequent in TRMM, were observed, thus the benefits of increased resolution are realized.

  2. The preaggregated state of an amyloidogenic protein: Hydrostatic pressure converts native transthyretin into the amyloidogenic state

    PubMed Central

    Ferrão-Gonzales, Astria D.; Souto, Sandro O.; Silva, Jerson L.; Foguel, Débora

    2000-01-01

    Protein misfolding and aggregation cause several diseases, by mechanisms that are poorly understood. The formation of amyloid aggregates is the hallmark of most of these diseases. Here, the properties and formation of amyloidogenic intermediates of transthyretin (TTR) were investigated by the use of hydrostatic pressure and spectroscopic techniques. Native TTR tetramers (T4) were denatured by high pressure into a conformation that exposes tryptophan residues to the aqueous environment. This conformation was able to bind the hydrophobic probe bis-(8-anilinonaphthalene-1-sulfonate), indicating persistence of elements of secondary and tertiary structure. Lowering the temperature facilitated the pressure-induced denaturation of TTR, which suggests an important role of entropy in stabilizing the native protein. Gel filtration chromatography showed that after a cycle of compression-decompression at 1°C, the main species present was a tetramer, with a small population of monomers. This tetramer, designated T4*, had a non-native conformation: it bound more bis-(8-anilinonaphthalene-1-sulfonate) than native T4, was less stable under pressure, and on decompression formed aggregates under mild acidic conditions (pH 5–5.6). Our data show that hydrostatic pressure converts native tetramers of TTR into an altered state that shares properties with a previously described amyloidogenic intermediate, and it may be an intermediate that lies on the aggregation pathway. This “preaggregated” state, which we call T4*, provides insight into the question of how a correctly folded protein may degenerate into the aggregation pathway in amyloidogenic diseases. PMID:10841549

  3. Recent development of a hydrostatic dynamical cores using the spectral element and the discontinuous Galerkin method at KIAPS (Invited)

    NASA Astrophysics Data System (ADS)

    Choi, S.; Giraldo, F. X.; Park, J.; Jun, S.; Yi, T.; Kang, S.; Oh, T.

    2013-12-01

    Korea Institute of Atmospheric Prediction Systems (KIAPS) was founded in 2011 by Korea Meteorological Administration (KMA) as a non-profit foundation to develop Korea's own global NWP system including it's framework, data assimilation, coupler and so on. The final goal of KIAPS is to develop a global non-hydrostatic NWP system by 2019 for operational use at KMA. In the first stage (2011-2013), we have developed a dynamical core for the Eulerian hydrostatic primitive equation as a initial effort. At the meeting, the progress and status of the core will be presented. The core is based on spectral element (SE; or continuous Galerkin method) and discontinuous Galerkin methods (DG). It is expected to take the advantages that the horizontal operators can be approximated by local high-order elements while scaling efficiently on multiprocessor computers with such high processor counts, since the properties of the methods are local in nature and have a small communication footprint. In order to overcome polar singularities and retain flexibility of the grid, we consider the hydrostatic primitive equations in 3D Cartesian space. This approach is used in Giraldo and Rosmond (MWR 2004). For the horizontal discretization, the cubed sphere grid is used for the sake of isotropy and due to the simplicity with which to use quadrilateral elements. For the vertical discretization, a Lorenz staggered grid is implemented with the terrain following σ-p coordinate. Currently, explicit time integrators, such as strong stability preserving Runge-Kutta (SSPRK) are implemented. In order to validate the developed core, some results are presented for test cases such as the Rossby-Haurwitz wavenumber 4 and the Jablonowski-Williamson balanced initial state and baroclinic instability test.

  4. The strength of ruby from X-ray diffraction under non-hydrostatic compression to 68 GPa

    NASA Astrophysics Data System (ADS)

    Dong, Haini; Dorfman, Susannah M.; Wang, Jianghua; He, Duanwei; Duffy, Thomas S.

    2014-07-01

    Polycrystalline ruby (α-Al2O3:Cr3+), a widely used pressure calibrant in high-pressure experiments, was compressed to 68.1 GPa at room temperature under non-hydrostatic conditions in a diamond anvil cell. Angle-dispersive X-ray diffraction experiments in a radial geometry were conducted at beamline X17C of the National Synchrotron Light Source. The stress state of ruby at high pressure and room temperature was analyzed based on the measured lattice strain. The differential stress of ruby increases with pressure from ~3.4 % of the shear modulus at 18.5 GPa to ~6.5 % at 68.1 GPa. The polycrystalline ruby sample can support a maximum differential stress of ~16 GPa at 68.1 GPa under non-hydrostatic compression. The results of this study provide a better understanding of the mechanical properties of this important material for high-pressure science. From a synthesis of existing data for strong ceramic materials, we find that the high-pressure yield strength correlates well with the ambient pressure Vickers hardness.

  5. String and Sticky Tape Experiments: Light Pipes, Hydrostatics, Surface Tension and a Milk Carton.

    ERIC Educational Resources Information Center

    Edge, R. D., Ed.

    1984-01-01

    Describes a demonstration of light pipes using low-cost materials, relating it to fiber optics communication. Also provides several experiments in hydrostatics and hydrodynamics using the materials for light pipe. (JM)

  6. O'Sullivan's hydrostatic reduction of an inverted uterus: sonar sequence recorded.

    PubMed

    Ward, H R

    1998-10-01

    A case of acute uterine inversion which was successfully managed with hydrostatic reduction is reported. A sequence of sonograms demonstrating this is presented, as far as we are aware, for the first time.

  7. Intraband optical absorption in a single quantum ring: Hydrostatic pressure and intense laser field effects

    NASA Astrophysics Data System (ADS)

    Barseghyan, M. G.

    2016-11-01

    The intraband optical absorption in GaAs/Ga0.7Al0.3As two-dimensional single quantum ring is investigated. Considering the combined effects of hydrostatic pressure and intense laser field the energy of the ground and few excited states has been found using the effective mass approximation and exact diagonalization technique. The energies of these states and the corresponding threshold energy of the intraband optical transitions are examined as a function of hydrostatic pressure for the different values of the laser field parameter. We also investigated the dependencies of the intraband optical absorption coefficient as a function of incident photon energy for different values of hydrostatic pressure and laser field parameter. It is found that the effects of hydrostatic pressure and intense laser field lead to redshift and blueshift of the intraband optical spectrum respectively.

  8. Scaling of the hydrostatic skeleton in the earthworm Lumbricus terrestris.

    PubMed

    Kurth, Jessica A; Kier, William M

    2014-06-01

    The structural and functional consequences of changes in size or scale have been well studied in animals with rigid skeletons, but relatively little is known about scale effects in animals with hydrostatic skeletons. We used glycol methacrylate histology and microscopy to examine the scaling of mechanically important morphological features of the earthworm Lumbricus terrestris over an ontogenetic size range from 0.03 to 12.89 g. We found that L. terrestris becomes disproportionately longer and thinner as it grows. This increase in the length to diameter ratio with size means that, when normalized for mass, adult worms gain ~117% mechanical advantage during radial expansion, compared with hatchling worms. We also found that the cross-sectional area of the longitudinal musculature scales as body mass to the ~0.6 power across segments, which is significantly lower than the 0.66 power predicted by isometry. The cross-sectional area of the circular musculature, however, scales as body mass to the ~0.8 power across segments, which is significantly higher than predicted by isometry. By modeling the interaction of muscle cross-sectional area and mechanical advantage, we calculate that the force output generated during both circular and longitudinal muscle contraction scales near isometry. We hypothesize that the allometric scaling of earthworms may reflect changes in soil properties and burrowing mechanics with size. PMID:24871920

  9. Quantitative assessment of meteorological and tropospheric Zenith Hydrostatic Delay models

    NASA Astrophysics Data System (ADS)

    Zhang, Di; Guo, Jiming; Chen, Ming; Shi, Junbo; Zhou, Lv

    2016-09-01

    Tropospheric delay has always been an important issue in GNSS/DORIS/VLBI/InSAR processing. Most commonly used empirical models for the determination of tropospheric Zenith Hydrostatic Delay (ZHD), including three meteorological models and two empirical ZHD models, are carefully analyzed in this paper. Meteorological models refer to UNB3m, GPT2 and GPT2w, while ZHD models include Hopfield and Saastamoinen. By reference to in-situ meteorological measurements and ray-traced ZHD values of 91 globally distributed radiosonde sites, over a four-years period from 2010 to 2013, it is found that there is strong correlation between errors of model-derived values and latitudes. Specifically, the Saastamoinen model shows a systematic error of about -3 mm. Therefore a modified Saastamoinen model is developed based on the "best average" refractivity constant, and is validated by radiosonde data. Among different models, the GPT2w and the modified Saastamoinen model perform the best. ZHD values derived from their combination have a mean bias of -0.1 mm and a mean RMS of 13.9 mm. Limitations of the present models are discussed and suggestions for further improvements are given.

  10. Low hydrostatic head electrolyte addition to fuel cell stacks

    DOEpatents

    Kothmann, Richard E.

    1983-01-01

    A fuel cell and system for supply electrolyte, as well as fuel and an oxidant to a fuel cell stack having at least two fuel cells, each of the cells having a pair of spaced electrodes and a matrix sandwiched therebetween, fuel and oxidant paths associated with a bipolar plate separating each pair of adjacent fuel cells and an electrolyte fill path for adding electrolyte to the cells and wetting said matrices. Electrolyte is flowed through the fuel cell stack in a back and forth fashion in a path in each cell substantially parallel to one face of opposite faces of the bipolar plate exposed to one of the electrodes and the matrices to produce an overall head uniformly between cells due to frictional pressure drop in the path for each cell free of a large hydrostatic head to thereby avoid flooding of the electrodes. The bipolar plate is provided with channels forming paths for the flow of the fuel and oxidant on opposite faces thereof, and the fuel and the oxidant are flowed along a first side of the bipolar plate and a second side of the bipolar plate through channels formed into the opposite faces of the bipolar plate, the fuel flowing through channels formed into one of the opposite faces and the oxidant flowing through channels formed into the other of the opposite faces.

  11. A CANDIDATE DETECTION OF THE FIRST HYDROSTATIC CORE

    SciTech Connect

    Enoch, Melissa L.; Lee, Jeong-Eun; Harvey, Paul; Dunham, Michael M.; Schnee, Scott

    2010-10-10

    The first hydrostatic core (FHSC) represents a very early phase in the low-mass star formation process, after collapse of the parent core has begun but before a true protostar has formed. This large (few AU), cool (100 K), pressure-supported core of molecular hydrogen is expected from theory, but has yet to be observationally verified. Here, we present observations of an excellent candidate for the FHSC phase: Per-Bolo 58, a dense core in Perseus that was previously believed to be starless. The 70 {mu}m flux of 65 mJy, from new deep Spitzer MIPS observations, is consistent with that expected for the FHSC. A low signal-to-noise detection at 24 {mu}m leaves open the possibility that Per-Bolo 58 could be a very low luminosity protostar, however. We utilize radiative transfer models to determine the best-fitting FHSC and protostar models to the spectral energy distribution and 2.9 mm visibilities of Per-Bolo 58. The source is consistent with an FHSC with some source of lower opacity through the envelope allowing 24 {mu}m emission to escape; a small outflow cavity and a cavity in the envelope are both possible. While we are unable to rule out the presence of a protostar, if present it would be one of the lowest luminosity protostellar objects yet observed, with an internal luminosity of {approx}0.01 L {sub sun}.

  12. Ordered states of URu2Si2 under hydrostatic pressure

    NASA Astrophysics Data System (ADS)

    Jeffries, J. R.; Butch, N. P.; Paglione, J.; Maple, M. B.

    2006-03-01

    Oriented single crystalline samples of URu2Si2 have been synthesized and investigated under nearly hydrostatic pressure via electrical resistivity and ac susceptibility measurements. The heavy fermion compound URu2Si2 exhibits three distinct ordered states as a function of temperature and pressure: ``hidden order'' (HO), in which the order parameter has yet to be determined; antiferromagnetism (AFM), which seemingly develops out of the HO state at P <=15 kbar; and superconductivity (SC), which exists at ambient pressure. Careful measurements of the HO transition, occurring at THO˜16.5 K at ambient pressure, have been performed at several different pressures, yielding a P-T phase diagram for the HO state as a function of pressure. In addition, measurements of the superconducting critical temperature, Tc˜1.4 K at ambient pressure, and the upper critical field Hc2 have been performed at low temperatures using a ^3He-^4He dilution refrigerator, revealing the superconducting H-T-P phase diagram. Possible correlations between the HO, AFM, and SC states will be discussed. This research was supported by the National Nuclear Security Administration under the Stewardship Science Academic Alliances program through DOE Research Grant No. DE-FG52-03NA00068.

  13. II-VI wide band gap semiconductors under hydrostatic pressure

    NASA Astrophysics Data System (ADS)

    Baquero, R.; Decoss, R.; Olguin, D.

    1993-08-01

    We set an analytical expression for the gap as a function of hydrostatic deformation, E(sub g)(epsilon), by diagonalizing in Gamma the corresponding empirical tight-binding Hamiltonian (ETBH). In the ETBH we use the well known d(exp -2) Harrison scaling law (HSL) to adjust the TB parameter (TBP) to the changes in interatomic distances. We do not consider cation-anion charge transfer. We calculate E(sub g)(epsilon) for wide band gap II-VI semiconductors with zincblende crystal structure for deformations under pressure up to -5 percent. Results are in good agreement with experiment for the compounds of lower ionicity but deviate as the ionicity of the compound increases. This is due to the neglect of charge transfer which should be included self-consistently. Within the approximation we always find a positive second derivative of E(sub g)(epsilon) with respect to epsilon, independent of the material. Furthermore, the inclusion of deviations from HSL appear to be unimportant to this problem.

  14. Day-night variations in malate concentration, osmotic pressure, and hydrostatic pressure in Cereus validus

    SciTech Connect

    Luettge, U.; Nobel, P.S.

    1984-07-01

    Malate concentration and stem osmotic pressure concomitantly increase during nighttime CO/sub 2/ fixation and then decrease during the daytime in the obligate Crassulacean acid metabolism (CAM) plant, Cereus validus (Cactaceae). Changes in malate osmotic pressure calculated using the Van't Hoff relation match the changes in stem osmotic pressure, indicating that changes in malate level affected the water relations of the succulent stems. In contrast to stem osmotic pressure, stem water potential showed little day-night changes, suggesting that changes in cellular hydrostatic pressure occurred. This was corroborated by direct measurements of hydrostatic pressure using the Juelich pressure probe where a small oil-filled micropipette is inserted directly into chlorenchyma cells, which indicated a 4-fold increase in hydrostatic pressure from dusk to dawn. A transient increase of hydrostatic pressure at the beginning of the dark period was correlated with a short period of stomatal closing between afternoon and nighttime CO/sub 2/ fixation, suggesting that the rather complex hydrostatic pressure patterns could be explained by an interplay between the effects of transpiration and malate levels. A second CAM plant, Agave deserti, showed similar day-night changes in hydrostatic pressure in its succulent leaves. It is concluded that, in addition to the inverted stomatal rhythm, the oscillations of malate markedly affect osmotic pressures and hence water relations of CAM plants. 13 references, 4 figures.

  15. Combined use of infrared and Raman spectra in the characterization of orthoclase under various hydrostatic pressures.

    PubMed

    Liu, Rui; Wang, Zhi-Hua; Xu, Qiang; Yu, Na; Cao, Miao-Cong

    2014-02-01

    Colorless and pink orthoclase from Balikun granite body, East Zhunger in Xinjiang, served as the samples for the research on hydrostatic pressure experiment. The in-situ hydrostatic pressure test for orthoclases was conducted at the room temperature and pressures from 100 to 600 MPa using cubic zirconia anvil cell, with quartz as pressure gauge. The water located in the orthoclases for the conditions of different hydrostatic pressures was characterized through the methods of Fourier transform infrared (FTIR) and Raman spectra. The results showed that there was a linear correlation between the shifting of Raman bands and hydrostatic pressure applied to the feldspar. All of vibration peaks of M-O structural groups in orthoclases, the bending vibration peaks of Si(Al(IV))-O-Si bond and tetrahedron groups of [SiO4] in Raman spectra shifted toward the higher frequency regularly, the drift distance is 2, 2.19 and less than 2 cm(-1) respectively. The spectra of FTIR suggested that there was more water in colorless orthoclases than the pink one under certain conditions of hydrostatic pressure. The intensity and integral area centered at 3420 cm(-1) in FTIR spectra increased with the rising of hydrostatic pressure. The integral area for colorless and pink feldspar in FTIR spectra rose from 120, 1383 cm(-1) under normal pressure to 1570, 2001 cm(-1) at 600 MPa respectively. The experimental results might indicate that the water in the earth crust could enter the orthoclases in certain condition of the aqueous confining pressure.

  16. Hydraulic efficiency of a hydrostatic transmission with a variable displacement pump and motor

    NASA Astrophysics Data System (ADS)

    Coombs, Daniel

    Pumps and motors are commonly connected hydraulically to create hydrostatic drives, also known as hydrostatic transmissions. A typical hydrostatic transmission consists of a variable displacement pump and a fixed displacement motor. Maximum efficiency is typically created for the system when the motor operates at maximum volumetric displacement. The objective of this research is to determine if a hydrostatic transmission with a variable displacement motor can be more efficient than one with a fixed displacement motor. A work cycle for a Caterpillar 320D excavator was created and the efficiency of the hydrostatic drive system, controlling the swing circuit, with a fixed displacement motor was compared to the efficiency with a variable displacement motor. Both multiplicative and additive uncertainty analysis were performed to determine uncertainty models that could be used to analyze the robustness of the system with feedback control applied. A PID and an H∞ controller were designed for a position control model, as well as velocity control. It was found that while it may seem obvious to achieve maximum efficiency at maximum displacement, there are some cases where maximum efficiency is achieved at a lower displacement. It was also found that for the given work cycle, a hydrostatic transmission with a variable displacement motor can be more efficient.

  17. Hydrostatic pressure effects on vestibular hair cell afferents in fish and crustacea.

    PubMed

    Fraser, Peter J; Cruickshank, Stuart F; Shelmerdine, Richard L

    2003-01-01

    Following the discovery of a hydrostatic pressure sensor with no associated gas phase in the crab, and the knowledge that several systems of cells in culture show long term alterations to small changes in hydrostatic pressure, we show here that vestibular type II hair cells in a well known model system (the isolated elasmobranch labyrinth), are sensitive to hydrostatic pressure. This new finding for the vertebrate vestibular system may provide an explanation for low levels of resting activity in vertebrate hair cells and explain how fish without swim bladders sense hydrostatic cues. It could have implications for humans using their balancing systems in hypobaric or hyperbaric environments such as in aircraft or during space exploration. Although lacking the piston mechanism thought to operate in crab thread hairs which sense angular acceleration and hydrostatic pressure, the vertebrate system may use larger numbers of sensory cells with resultant improvement in signal to noise ratio. The main properties of the crab hydrostatic pressure sensing system are briefly reviewed and new experimental work on the isolated elasmobranch labyrinth is presented.

  18. A deep non-hydrostatic compressible atmospheric model on a Yin-Yang grid

    NASA Astrophysics Data System (ADS)

    Allen, T.; Zerroukat, M.

    2016-08-01

    The singularity in the traditional spherical polar coordinate system at the poles is a major factor in the lack of scalability of atmospheric models on massively parallel machines. Overset grids such as the Yin-Yang grid introduced by Kageyama and Sato [1] offer a potential solution to this problem. In this paper a three-dimensional, compressible, non-hydrostatic atmospheric model is developed and tested on the Yin-Yang grid building on ideas previously developed by the authors on the solution of Elliptic boundary value problems and conservation on overset grids. Using several tests from the literature, it is shown that this model is highly stable (even with little off-centering), accurate, and highly efficient in terms of computational cost. The model also incorporates highly efficient and accurate approaches to achieve positivity, monotonicity and conservative transport, which are paramount requirements for any atmospheric model. The parallel scalability of this model, using in excess of 212 million unknowns and more than 6000 processors, is also discussed and shown to compare favourably with a highly optimised latitude-longitude model in terms of scalability and actual run times.

  19. Study of flux pinning mechanism under hydrostatic pressure in optimally doped (Ba,K)Fe2As2 single crystals.

    PubMed

    Shabbir, Babar; Wang, Xiaolin; Ma, Y; Dou, S X; Yan, S S; Mei, L M

    2016-03-17

    Strong pinning depends on the pinning force strength and number density of effective defects. Using the hydrostatic pressure method, we demonstrate here that hydrostatic pressure of 1.2 GPa can significantly enhance flux pinning or the critical current density (Jc) of optimally doped Ba0.6K0.4Fe2As2 crystals by a factor of up to 5 in both low and high fields, which is generally rare with other Jc enhancement techniques. At 4.1 K, high pressure can significantly enhance Jc from 5 × 10(5 )A/cm(2) to nearly 10(6 )A/cm(2) at 2 T, and from 2 × 10(5 )A/cm(2) to nearly 5.5 × 10(5 )A/cm(2) at 12 T. Our systematic analysis of the flux pinning mechanism indicates that both the pinning centre number density and the pinning force are greatly increased by the pressure and enhance the pinning. This study also shows that superconducting performance in terms of flux pinning or Jc for optimally doped superconducting materials can be further improved by using pressure.

  20. Study of flux pinning mechanism under hydrostatic pressure in optimally doped (Ba,K)Fe2As2 single crystals

    PubMed Central

    Shabbir, Babar; Wang, Xiaolin; Ma, Y.; Dou, S. X.; Yan, S. S.; Mei, L. M.

    2016-01-01

    Strong pinning depends on the pinning force strength and number density of effective defects. Using the hydrostatic pressure method, we demonstrate here that hydrostatic pressure of 1.2 GPa can significantly enhance flux pinning or the critical current density (Jc) of optimally doped Ba0.6K0.4Fe2As2 crystals by a factor of up to 5 in both low and high fields, which is generally rare with other Jc enhancement techniques. At 4.1 K, high pressure can significantly enhance Jc from 5 × 105 A/cm2 to nearly 106 A/cm2 at 2 T, and from 2 × 105 A/cm2 to nearly 5.5 × 105 A/cm2 at 12 T. Our systematic analysis of the flux pinning mechanism indicates that both the pinning centre number density and the pinning force are greatly increased by the pressure and enhance the pinning. This study also shows that superconducting performance in terms of flux pinning or Jc for optimally doped superconducting materials can be further improved by using pressure. PMID:26983500

  1. Depletion of arginine in yeast cells decreases the resistance to hydrostatic pressure

    NASA Astrophysics Data System (ADS)

    Nomura, Kazuki; Iwahashi, Hitoshi; Iguchi, Akinori; Shigematsu, Toru

    2015-07-01

    High hydrostatic pressure (HP) inhibits growth and inactivates microorganisms by destabilizing non-covalent molecular interactions. Arginine contributes to stress resistance because it has a guanidine side chain, which assists in the refolding of aggregated proteins. We attempted to analyze the contribution of arginine to high HP stress using a pressure-sensitive mutant strain of Saccharomyces cerevisiae and a metabolomics approach. Our results showed that the content of 136 out of 250 detected metabolites differed in the mutant and parent strains. Decreased metabolites were involved in the tricarboxylic acid cycle and arginine biosynthesis. The expression of genes contributing to arginine biosynthesis was significantly lower in the mutant strain than in the parent strain. When arginine was supplemented to the medium, the mutant strain showed more tolerance to pressure. These results suggest that yeast cells survived due to the contribution of arginine to high pressure resistance. This indicates that depletion of arginine caused by decreased activity of the biosynthesis pathway confers sensitivity to HP.

  2. Hydrostatic pressure effect on magnetic hysteresis parameters of pseudo-single-domain magnetite

    NASA Astrophysics Data System (ADS)

    Sato, Masahiko; Yamamoto, Yuhji; Nishioka, Takashi; Kodama, Kazuto; Mochizuki, Nobutatsu; Tsunakawa, Hideo

    2016-07-01

    This paper reports the first in situ magnetic hysteresis measurements of pseudo-single-domain (PSD) magnetite under high pressure up to 1 GPa. The magnetic hysteresis measurements of stoichiometric PSD magnetite samples under hydrostatic pressure were carried out using a piston-cylinder high-pressure cell, and the pressure dependence of the hysteresis parameters of PSD magnetite was calculated from the hysteresis curves. It was found that coercivity (Bc) increases with increasing pressure as a quadratic function up to 1 GPa by ˜90%, which is different from the pressure dependences of Bc of multidomain and single-domain magnetites. Coercivity of remanence also increases as a quadratic function, and saturation remanence (Mrs) increases with pressure up to 0.5 GPa by ˜20% until reaching saturation. In contrast, saturation magnetization is constant up to 1 GPa. The approximate demagnetizing factor calculated from the ratio Bc/Mrs increases with increasing pressure, suggesting that the number of lamellar domains increases with increasing pressure. The number of lamellar domains and domain wall width are theoretically estimated to increase under high pressure due to the changes in magnetostriction, elastic, and magnetocrystalline anisotropy constants, and these changes in magnetic domain structure should relate to the changes in the magnetic properties of PSD magnetite.

  3. Dynamics of phenotypic reversibility of bacterial cells with oscillating hydrostatic pressure

    NASA Astrophysics Data System (ADS)

    Nepal, Sudip; Kumar, Pradeep

    Bacterial cells encounter and respond to physiochemical fluctuations. The response depends on the extent and type of the stresses applied. The response of bacterial cells to the fluctuating stress is relatively unknown. Here, we have studied the response of wild type Escherichia coli (E. coli) under fluctuating hydrostatic pressures ranging from 1 atm to 500 atm. High pressure acts as a stress to E. coli since these bacteria are adapted to grow optimally at atmospheric pressure. Cell division of E. coli is inhibited at high pressures resulting in increase in the length of the cells. Cell-length is reversible in nature and bacterial cells revert back to normal size on a time scale that is proportional to the strength and time of continuous pressure applied upon relaxing the high pressure condition. We have studied the dynamics of cellular reversibility of E. coli under the conditions in which continuous pressure is applied and subsequently relaxed over different time scales. We have quantified the dynamics of cellular reversibility with different relaxation times. Furthermore, we propose a model to describe the reversibility of the bacterial cell with the relaxation time. Our theoretical model fits well to the experimental data. We further

  4. Dissociation of F-actin induced by hydrostatic pressure.

    PubMed

    Garcia, C R; Amaral Júnior, J A; Abrahamsohn, P; Verjovski-Almeida, S

    1992-11-01

    F-actin purified from rabbit skeletal muscle undergoes reversible dissociation when subjected to hydrostatic pressures up to 240 MPa. Dissociation and reversibility were detected by the following procedures: fluorescence spectral changes observed under pressure, when either intrinsic tryptophan or pyrenyl emission of N-(1-pyrenyl)iodoacetamide-labeled actin were monitored; electron microscopy of samples fixed under pressure; size-exclusion HPLC of pressurized actin. The effect of pressure upon F-actin that had been polymerized in the presence of either Mg2+, Ca2+ or K+ was studied. The standard volume changes for the association of actin subunits, calculated from pressure/dissociation curves were 74 +/- 14 ml/mol for Mg-F-actin, 79 +/- 12 ml/mol for Ca-F-actin and 328 +/- 63 ml/mol for K-F-actin, indicating that actin subunits are packed differently in the polymer depending on which cation is present. All pressure/dissociation data could be fitted by a model for dissociation of a dimer, which suggests that in the F-actin filament there is a predominant intersubunit interaction interface, most likely the head-to-tail intrastrand interaction between two subunits which repeats itself along the polymer. A tenfold change in total protein concentration from 20 micrograms to 200 micrograms/ml Mg-F-actin did not cause a change in the pressure required for half-maximal dissociation. This indicates a heterogeneity of free energy of association among actin monomers in the Mg-F-actin polymer, suggesting that, in addition to the predominant intersubunit interaction, the disordered interactions in the filament significantly contribute to the heterogeneity of microenvironments in the interface between the subunits. PMID:1425683

  5. Energetics of Streptococcal Growth Inhibition by Hydrostatic Pressure

    PubMed Central

    Matsumura, Philip; Marquis, Robert E.

    1977-01-01

    Growth of Streptococcus faecalis in complex media with various fuel sources appeared to be limited by the rate of supply of adenosine-5′ -triphosphate (ATP) at 1 atm and also under 408 atm of hydrostatic pressure. Growth under pressure was energetically inefficient, as indicated by an average cell yield for exponentially growing cultures of only 10.7 g (dry weight) per mol of ATP produced compared with a 1-atm value of 15.6. Use of ATP for pressure-volume work or for turnover of protein, peptidoglycan, or stable ribonucleic acid (RNA) did not appear to be significant causes of growth inefficiency under pressure. In addition, there did not seem to be an increased ATP requirement for ion uptake because cells growing at 408 atm had significantly lower internal K+ levels than did those growing at 1 atm. Pressure did stimulate the membrane adenosine triphosphatase (ATPase) or S. faecalis at ATP concentrations greater than 0.5 mM. Intracellular ATP levels were found to vary during the culture cycle from about 2.5 μmol/ml of cytoplasmic water for lag-phase or stationary-phase cells to maxima for exponentially growing cells of about 7.5 μmol/ml at 1 atm and 5.5 μmol/ml at 408 atm. N,N′-dicyclohexylcarbodiimide at a 10 μM concentration improved growth efficiency under pressure, as did Mg2+ or Ca2+ ions at 50 mM concentration. These agents also enhanced ATP pooling, and it seemed that at least part of the growth inefficiency under pressure was due to increased ATPase activity. In all, it appeared that S. faecalis growing under pressure has somewhat reduced ATP supply but significantly increased demand and that the inhibitory effects of pressure can be interpreted largely in terms of ATP supply and demand. PMID:405925

  6. Parallel pathways and free-energy landscapes for enzymatic hydride transfer probed by hydrostatic pressure.

    PubMed

    Pudney, Christopher R; McGrory, Tom; Lafite, Pierre; Pang, Jiayun; Hay, Sam; Leys, David; Sutcliffe, Michael J; Scrutton, Nigel S

    2009-05-25

    Mutation of an active-site residue in morphinone reductase leads to a conformationally rich landscape that enhances the rate of hydride transfer from NADH to FMN at standard pressure (1 bar). Increasing the pressure causes interconversion between different conformational substates in the mutant enzyme. While high pressure reduces the donor-acceptor distance in the wild-type enzyme, increased conformational freedom "dampens" its effect in the mutant.We show that hydride transfer from NADH to FMN catalysed by the N189A mutant of morphinone reductase occurs along parallel "chemical" pathways in a conformationally rich free-energy landscape. We have developed experimental kinetic and spectroscopic tools by using hydrostatic pressure to explore this free-energy landscape. The crystal structure of the N189A mutant enzyme in complex with the unreactive coenzyme analogue NADH(4) indicates that the nicotinamide moiety of the analogue is conformationally less restrained than the corresponding structure of the wild-type NADH(4) complex. This increased degree of conformational freedom in the N189A enzyme gives rise to the concept of multiple reactive configurations (MRCs), and we show that the relative population of these states across the free-energy landscape can be perturbed experimentally as a function of pressure. Specifically, the amplitudes of individual kinetic phases that were observed in stopped-flow studies of the hydride transfer reaction are sensitive to pressure; this indicates that pressure drives an altered distribution across the energy landscape. We show by absorbance spectroscopy that the loss of charge-transfer character of the enzyme-coenzyme complex is attributed to the altered population of MRCs on the landscape. The existence of a conformationally rich landscape in the N189A mutant is supported by molecular dynamics simulations at low and high pressure. The work provides firm experimental and computational support for the existence of parallel pathways

  7. The Representation of Tropical Cyclones Within the Global William Putman Non-Hydrostatic Goddard Earth Observing System Model (GEOS-5) at Cloud-Permitting Resolutions

    NASA Technical Reports Server (NTRS)

    Putman, William M.

    2010-01-01

    The Goddard Earth Observing System Model (GEOS-S), an earth system model developed in the NASA Global Modeling and Assimilation Office (GMAO), has integrated the non-hydrostatic finite-volume dynamical core on the cubed-sphere grid. The extension to a non-hydrostatic dynamical framework and the quasi-uniform cubed-sphere geometry permits the efficient exploration of global weather and climate modeling at cloud permitting resolutions of 10- to 4-km on today's high performance computing platforms. We have explored a series of incremental increases in global resolution with GEOS-S from irs standard 72-level 27-km resolution (approx.5.5 million cells covering the globe from the surface to 0.1 hPa) down to 3.5-km (approx. 3.6 billion cells).

  8. A non-hydrostatic algorithm for free-surface ocean modelling

    NASA Astrophysics Data System (ADS)

    Auclair, Francis; Estournel, Claude; Floor, Jochem W.; Herrmann, Marine; Nguyen, Cyril; Marsaleix, Patrick

    An original implementation of a non-hydrostatic, free-surface algorithm based on a pressure correction method is proposed for ocean modelling. The free surface is implemented through an explicit scheme combined with a mode-spitting method but the depth-averaged velocity and the position of the free surface are updated at each non-hydrostatic iteration. The vertical momentum equation is also integrated up to the surface enabling a natural and accurate treatment of the surface layer. The consistent specification of the numerical schemes provides balanced transfers of potential and kinetic energy. This algorithm is well-suited for implementation as a non-hydrostatic kernel on originally hydrostatic free-surface ocean models such as Symphonie ( http://poc.obs-mip.fr/pages/research_topics/modelling/symphonie/symphonie.htm) for which it has originally been developed. Energy balances associated with the propagation of short surface waves and solitary waves are presented for two dedicated well-documented configurations over closed domains. The buoyancy flux, the work rate of the pressure force together with the power of the advective terms are evaluated and discussed for the generation and the propagation of these two types of waves. The dissipation rate is in particular shown to be several orders of magnitude smaller than the work rates of the hydrostatic and non-hydrostatic pressure forces confirming the necessity for the exchanges of energy to be numerically balanced. The algorithm is subsequently applied to the complex generation of non-linear solitary internal waves by surface tides over Georges Bank, in the Gulf of Maine. The generation and the propagation of the observed non-linear and non-hydrostatic features in this region are correctly reproduced.

  9. Effect of hydrostatic pressure on the structural and magnetic transitions in FeSe

    NASA Astrophysics Data System (ADS)

    Kothapalli, K.; Böhmer, A. E.; Jayasekara, W. T.; Das, P.; Sapkota, A.; Ueland, B. G.; Taufour, V.; Bud'Ko, S. L.; Canfield, P. C.; Xiao, Y.; Goldman, A. I.; Kreyssig, A.

    The phase diagram of FeSe is unique among all the iron-based superconductors. At ambient pressure, FeSe undergoes a tetragonal-to-orthorhombic structural phase transition at Ts = 90 K, and becomes superconducting below Tc = 8 K. Unlike other iron-based materials, it does not magnetically order down to the lowest measured temperature (T). However, under the application of hydrostatic pressure (p), a new magnetic phase is stabilized starting from ~1 GPa. Higher pressure increases Tc, whose maximum onset reaches a surprising 37 K at ~7 GPa. We investigate the p- T phase diagram using high-quality vapor-grown single crystals, which shows features not seen previously in powder and mixed-phase samples. Specifically, using high-pressure low-temperature diffraction and synchrotron Mössbauer we elucidate the effect of pressure - evolution of orthorhombic distortion and emergence of magnetic ordering - in the vicinity of the crossover region of the structural, magnetic and superconducting transitions.Work at Ames Lab. was supported by the DOE, BES, Division of Materials Sciences & Engineering, under Contract No. DEAC02-07CH11358. This research used resources at Argonne National Lab.

  10. Hydrostatic pressure: a very effective approach to significantly enhance critical current density in granular iron pnictide superconductors.

    PubMed

    Shabbir, Babar; Wang, Xiaolin; Ghorbani, S R; Shekhar, Chandra; Dou, Shixue; Srivastava, O N

    2015-01-01

    Pressure is well known to significantly raise the superconducting transition temperature, Tc, in both iron pnictides and cuprate based superconductors. Little work has been done, however, on how pressure can affect the flux pinning and critical current density in the Fe-based superconductors. Here, we propose to use hydrostatic pressure to significantly enhance flux pinning and Tc in polycrystalline pnictide bulks. We have chosen Sr4V2O6Fe2As2 polycrystalline samples as a case study. We demonstrate that the hydrostatic pressure up to 1.2 GPa can not only significantly increase Tc from 15 K (underdoped) to 22 K, but also significantly enhance the irreversibility field, Hirr, by a factor of 4 at 7 K, as well as the critical current density, Jc, by up to 30 times at both low and high fields. It was found that pressure can induce more point defects, which are mainly responsible for the Jc enhancement. Our findings provide an effective method to significantly enhance Tc, Jc, Hirr, and the upper critical field, Hc2, for other families of Fe-based superconductors in the forms of wires/tapes, films, and single crystal and polycrystalline bulks. PMID:25645351

  11. Hydrostatic pressure: A very effective approach to significantly enhance critical current density in granular iron pnictide superconductors

    PubMed Central

    Shabbir, Babar; Wang, Xiaolin; Ghorbani, S. R.; Shekhar, Chandra; Dou, Shixue; Srivastava, O. N.

    2015-01-01

    Pressure is well known to significantly raise the superconducting transition temperature, Tc, in both iron pnictides and cuprate based superconductors. Little work has been done, however, on how pressure can affect the flux pinning and critical current density in the Fe-based superconductors. Here, we propose to use hydrostatic pressure to significantly enhance flux pinning and Tc in polycrystalline pnictide bulks. We have chosen Sr4V2O6Fe2As2 polycrystalline samples as a case study. We demonstrate that the hydrostatic pressure up to 1.2 GPa can not only significantly increase Tc from 15 K (underdoped) to 22 K, but also significantly enhance the irreversibility field, Hirr, by a factor of 4 at 7 K, as well as the critical current density, Jc, by up to 30 times at both low and high fields. It was found that pressure can induce more point defects, which are mainly responsible for the Jc enhancement. Our findings provide an effective method to significantly enhance Tc, Jc, Hirr, and the upper critical field, Hc2, for other families of Fe-based superconductors in the forms of wires/tapes, films, and single crystal and polycrystalline bulks. PMID:25645351

  12. Synthetic photometry for M and K giants and stellar evolution: hydrostatic dust-free model atmospheres and chemical abundances

    NASA Astrophysics Data System (ADS)

    Aringer, B.; Girardi, L.; Nowotny, W.; Marigo, P.; Bressan, A.

    2016-04-01

    Based on a grid of hydrostatic spherical COMARCS models for cool stars, we have calculated observable properties of these objects, which will be mainly used in combination with stellar evolution tracks and population synthesis tools. The high-resolution opacity sampling and low-resolution convolved spectra as well as bolometric corrections for a large number of filter systems are made electronically available. We exploit those data to study the effect of mass, C/O ratio and nitrogen abundance on the photometry of K and M giants. Depending on effective temperature, surface gravity and the chosen wavelength ranges, variations of the investigated parameters cause very weak to moderate and, in the case of C/O values close to 1, even strong shifts of the colours. For the usage with stellar evolution calculations, they will be treated as correction factors applied to the results of an interpolation in the main quantities. When we compare the synthetic photometry to observed relations and to data from the Galactic bulge, we find in general a good agreement. Deviations appear for the coolest giants showing pulsations, mass-loss and dust shells, which cannot be described by hydrostatic models.

  13. An Experimental Study of Dynamic Tensile Failure of Rocks Subjected to Hydrostatic Confinement

    NASA Astrophysics Data System (ADS)

    Wu, Bangbiao; Yao, Wei; Xia, Kaiwen

    2016-10-01

    It is critical to understand the dynamic tensile failure of confined rocks in many rock engineering applications, such as underground blasting in mining projects. To simulate the in situ stress state of underground rocks, a modified split Hopkinson pressure bar system is utilized to load Brazilian disc (BD) samples hydrostatically, and then exert dynamic load to the sample by impacting the striker on the incident bar. The pulse shaper technique is used to generate a slowly rising stress wave to facilitate the dynamic force balance in the tests. Five groups of Laurentian granite BD samples (with static BD tensile strength of 12.8 MPa) under the hydrostatic confinement of 0, 5, 10, 15, and 20 MPa were tested with different loading rates. The result shows that the dynamic tensile strength increases with the hydrostatic confining pressure. It is also observed that under the same hydrostatic pressure, the dynamic tensile strength increases with the loading rate, revealing the so-called rate dependency for engineering materials. Furthermore, the increment of the tensile strength decreases with the hydrostatic confinement, which resembles the static tensile behavior of rock under confining pressure, as reported in the literature. The recovered samples are examined using X-ray micro-computed tomography method and the observed crack pattern is consistent with the experimental result.

  14. Pulmonary edema: an MR study of permeability and hydrostatic types in animals.

    PubMed

    Schmidt, H C; Tsay, D G; Higgins, C B

    1986-02-01

    Permeability pulmonary edema was induced in ten rats by intravenous injection of oleic acid. Hydrostatic pulmonary edema was induced in another ten rats by continuous infusion of saline. Permeability pulmonary edema was detected as increased signal intensity in all animals on images obtained with repetition times (TR) of 2.0 sec and echo times (TE) of 28 and 56 msec. Hydrostatic pulmonary edema was perceivable only in seven of ten rats. It was best seen on spin-echo TR = 2.0 sec, TE = 28 msec images as increased intensity either throughout the whole lung or in a predominant central distribution. The slopes of the relationships between the mean signal intensity and water content of both lungs were lower for hydrostatic pulmonary edema than for permeability pulmonary edema. Hydrostatic pulmonary edema demonstrated similar T1 but markedly shorter T2 relaxation times than permeability edema. Magnetic resonance imaging can be used to estimate severity of hydrostatic and permeability pulmonary edemas. PMID:3941856

  15. Performance of an Electro-Hydrostatic Actuator on the F-18 Systems Research Aircraft

    NASA Technical Reports Server (NTRS)

    Navarro, Robert

    1997-01-01

    An electro-hydrostatic actuator was evaluated at NASA Dryden Flight Research Center, Edwards, California. The primary goal of testing this actuator system was the flight demonstration of power-by-wire technology on a primary flight control surface. The electro-hydrostatic actuator uses an electric motor to drive a hydraulic pump and relies on local hydraulics for force transmission. This actuator replaced the F-18 standard left aileron actuator on the F-18 Systems Research Aircraft and was evaluated throughout the Systems Research Aircraft flight envelope. As of July 24, 1997 the electro-hydrostatic actuator had accumulated 23.5 hours of flight time. This paper presents the electro-hydrostatic actuator system configuration and component description, ground and flight test plans, ground and flight test results, and lessons learned. This actuator performs as well as the standard actuator and has more load capability than required by aileron actuator specifications of McDonnell- Douglas Aircraft, St. Louis, Missouri. The electro-hydrostatic actuator system passed all of its ground tests with the exception of one power-off test during unloaded dynamic cycling.

  16. Hydrostatic pressure induces conformational and catalytic changes on two alcohol dehydrogenases but no oligomeric dissociation.

    PubMed

    Dallet, S; Legoy, M D

    1996-05-01

    A comparison between the pressure effects on the catalysis of Thermoanaerobium brockii alcohol dehydrogenase (TBADH: a thermostable tetrameric enzyme) and yeast alcohol dehydrogenase (YADH: a mesostable tetrameric enzyme) revealed a different behaviour. YADH activity is continuously inhibited by an increase of pressure, whereas YADH affinity seems less sensitive to pressure. TBADH activity is enhanced by pressure up to 100 MPa. TBADH affinity for alcoholic substrates increases if pressure increases, was TBADH affinity for NADP decreases when pressure increases. Hypothesis has been raised concerning the dissociation of oligomeric enzymes under high hydrostatic pressure ( < 200 MPa) [1]. But in the case of these two enzymes, unless the oligomers reassociate very quickly (< 1 min), the activity inhibition of YADH at all pressures and TBADH for pressures above 100 MPa is not correlated to subunit dissociation. Hence we suggest that enzymes under pressure encounter a molecular rearrangement which can either have a positive or a negative effect on activity. Finally, we have observed that the catalytic behaviour of alcohol dehydrogenases under pressure is connected to their thermostability.

  17. Genome expression of Thermococcus barophilus and Thermococcus kodakarensis in response to different hydrostatic pressure conditions.

    PubMed

    Vannier, Pauline; Michoud, Grégoire; Oger, Philippe; Marteinsson, Viggó Þór; Jebbar, Mohamed

    2015-11-01

    Transcriptomes were analyzed for two related hyperthermophilic archaeal species, the piezophilic Thermococcus barophilus strain MP and piezosensitive Thermococcus kodakarensis strain KOD1 subjected to high hydrostatic pressures. A total of 378 genes were differentially expressed in T. barophilus cells grown at 0.1, 40 and 70 MPa, whereas 141 genes were differentially regulated in T. kodakarensis cells grown at 0.1 and 25 MPa. In T. barophilus cells grown under stress conditions (0.1 and 70 MPa), 178 upregulated genes were distributed among three clusters of orthologous groups (COG): energy production and conversion (C), inorganic ion transport and metabolism (P) and carbohydrate transport and metabolism (G), whereas 156 downregulated genes were distributed among: amino acid transport and metabolism (E), replication, recombination and repair (L) and nucleotide transport and metabolism (F). The expression of 141 genes was regulated in T. kodakarensis cells grown under stress conditions (25 MPa); 71 downregulated genes belong to three COG: energy production and conversion (C), amino acid transport and metabolism (E) and transcription (K), whereas 70 upregulated genes are associated with replication, recombination and repair (L), coenzyme transport (H) and defense mechanisms (V). PMID:26239966

  18. Correlation strength and Tc: quantum oscillations in YBa2Cu4O8 under hydrostatic pressure

    NASA Astrophysics Data System (ADS)

    Putzke, C.; Malone, L.; Badoux, S.; Vignolle, B.; Vignolles, D.; Tabis, W.; Walmsley, P.; Bird, M.; Hussey, N. E.; Proust, C.; Carrington, A.

    The unusual normal state electronic structure of the cuprates is widely believed to be at the heart of understanding high-temperature superconductivity in these materials. Recent quantum oscillation measurements in YBa2Cu3O7-d (Y123) have found a strong increase in the quasiparticle effective mass close to two separate critical points in the temperature-doping phase diagram. Here we present a study of quantum oscillations in the double chain cuprate superconductor YBa2Cu4O8 (Y124). Instead of varying the doping by changing d (in Y123) we study the evolution of the quantum oscillations under hydrostatic pressure. Pressure increases Tc by around 0.6K/kbar, primarily, it is thought, by increasing charge transfer between the chains and planes. Unlike in Y123, where the increase in Tc close to optimal doping is accompanied by a strong increase in quasiparticle mass, in Y124 we find that the mass decreases. Our results suggest that the mechanism that leads to the mass enhancement in the cuprates (most likely the emergence of a competing charge density wave instability) does not directly lead to an enhancement of the superconducting critical temperature.

  19. Hydrostatic pressure effect on charge transport properties of phenacene organic semiconductors.

    PubMed

    Nguyen, Thao P; Shim, Ji Hoon

    2016-05-18

    We investigate the charge transport properties of phenacene organic semiconductors including phenanthrene, chrysene and picene using density functional theory (DFT) calculations under hydrostatic pressure. Under compression, the crystal structures of the three materials are altered and thus, a decrease in the intermolecular distances gives changes in charge transport properties while the molecular structures remain stable. As a result of the applied pressure, the mobilities of these materials increase dramatically. Chrysene shows a transition from a p-type semiconductor to an ambipolar semiconductor at around 2.0 GPa. Interestingly, chrysene favors electron transport at above 3.0 GPa. On the other hand, both phenanthrene and picene exhibit hole transport characteristics under high pressure. Between 3.1 and 4.3 GPa, the picene crystal is found to transform from an anisotropic mobility to an isotropic mobility in the ab plane. We also found that, the bulk modulus representing the resistance of the material under pressure compression follows a linear relationship with molecular length. PMID:27146786

  20. Crystal-structure properties and the molecular nature of hydrostatically compressed realgar

    NASA Astrophysics Data System (ADS)

    Hejny, Clivia; Sagl, Raffaela; Többens, Daniel M.; Miletich, Ronald; Wildner, Manfred; Nasdala, Lutz; Ullrich, Angela; Balic-Zunic, Tonci

    2012-05-01

    The structure of realgar, As4S4, and its evolution with pressure have been investigated employing in situ X-ray diffraction, optical absorption and vibrational spectroscopy on single-crystal samples in diamond-anvil cells. Compression under true hydrostatic conditions up to 5.40 GPa reveals equation-of-state parameters of V 0 = 799.4(2.4) Å3 and K 0 = 10.5(0.4) GPa with K_0^' = 8.7. The remarkably high compressibility can be attributed to a denser packing of the As4S4 molecules with shortening of the intermolecular bonds of up to 12 %, while the As4S4 molecules remain intact showing rigid-unit behaviour. From ambient pressure to 4.5 GPa, Raman spectra exhibit a strong blue shift of the Raman bands of the lattice-phonon regime of 24 cm-1, whereas frequencies from intramolecular As-S stretching modes show negligible or no shifts at all. On pressurisation, realgar shows a continuous and reversible colour change from bright orange over deep red to black. Optical absorption spectroscopy shows a shift of the absorption edge from 2.30 to 1.81 eV up to 4.5 GPa, and DFT calculations show a corresponding reduction in the band gap. Synchrotron-based measurements on polycrystalline samples up to 45.5 GPa are indexed according to the monoclinic structure of realgar.

  1. Measurement of small values of hydrostatic pressure difference / Pomiar małych wartości różnicy ciśnień hydrostatycznych

    NASA Astrophysics Data System (ADS)

    Broda, Krzysztof; Filipek, Wiktor

    2012-10-01

    In order to describe the fluid flow through the porous centre, made of identical spheres, it is necessary to know the pressure, but in fact - the pressure distribution. For the flows in the range that was traditionally called laminar flow (i. e. for Reynolds numbers (Bear, 1988; Duckworth, 1983; Troskolański, 1957) from the range 0,01 to 3) it is virtually impossible with the use of the tools directly available on the market. Therefore, many scientists who explore this problem have concentrated only on the research of the velocity distribution of the medium that penetrates the intended centre (Bear, 1988) or pressure distribution at high hydraulic gradients (Trzaska & Broda, 1991, 2000; Trzaska et al., 2005). It may result from the inaccessibility to the measurement methods that provide measurement of very low hydrostatic pressures, such as pressure resulting from the weight of liquid located in the gravitational field (Duckworth, 1983; Troskolański, 1957). The pressure value c. 10 Pa (Troskolański, 1957) can be generated even by 1 mm height difference between the two levels of the free water surface, which in fact constitutes the definition of gauging tools of today measuring the level of the hydrostatic pressure. Authors proposed a method of hydrostatic pressure measurement and devised a gauging tool. Then a series of tests was conducted aiming at establishing what is the influence of various factors, such as temperature, atmospheric pressure, velocity of measurement completion, etc. on the accuracy and method of measurements. A method for considerable reduction of hysteresis that occurs during measurement was also devised. The method of measurement of small hydrostatic difference measurements allows for the accuracy of measurement of up to 0.5 Pa. Measurement results can be improved successfully by one order of magnitude, which for sure would entail necessary temperature stabilization of the tool. It will be more difficult though to compensate the influence

  2. Measurement method of compressibility and thermal expansion coefficients for density standard liquid at 2329 kg/m3 based on hydrostatic suspension principle

    NASA Astrophysics Data System (ADS)

    Wang, Jintao; Liu, Ziyong; Xu, Changhong; Li, Zhanhong

    2014-07-01

    The accurate measurement on the compressibility and thermal expansion coefficients of density standard liquid at 2329kg/m3 (DSL-2329) plays an important role in the quality control for silicon single crystal manufacturing. A new method is developed based on hydrostatic suspension principle in order to determine the two coefficients with high measurement accuracy. Two silicon single crystal samples with known density are immersed into a sealed vessel full of DSL-2329. The density of liquid is adjusted with varying liquid temperature and static pressure, so that the hydrostatic suspension of two silicon single crystal samples is achieved. The compression and thermal expansion coefficients are then calculated by using the data of temperature and static pressure at the suspension state. One silicon single crystal sample can be suspended at different state, as long as the liquid temperature and static pressure function linearly according to a certain mathematical relationship. A hydrostatic suspension experimental system is devised with the maximal temperature control error ±50 μK; Silicon single crystal samples can be suspended by adapting the pressure following the PID method. By using the method based on hydrostatic suspension principle, the two key coefficients can be measured at the same time, and measurement precision can be improved due to avoiding the influence of liquid surface tension. This method was further validated experimentally, where the mixture of 1, 2, 3-tribromopropane and 1,2-dibromoethane is used as DSL-2329. The compressibility and thermal expansion coefficients were measured, as 8.5×10-4 K-1 and 5.4×1010 Pa-1, respectively.

  3. Practical applications of hydrostatic pressure to refold proteins from inclusion bodies for NMR structural studies.

    PubMed

    Ogura, Kenji; Kobashigawa, Yoshihiro; Saio, Tomohide; Kumeta, Hiroyuki; Torikai, Shinnosuke; Inagaki, Fuyuhiko

    2013-06-01

    Recently, the hydrostatic pressure refolding method was reported as a practical tool for solubilizing and refolding proteins from inclusion bodies; however, there have been only a few applications for protein structural studies. Here, we report the successful applications of the hydrostatic pressure refolding method to refold proteins, including the MOE-2 tandem zinc-finger, the p62 PB1 domain, the GCN2 RWD domain, and the mTOR FRB domain. Moreover, the absence of aggregation and the correct folding of solubilized protein samples were evaluated with size exclusion chromatography and NMR experiments. The analyses of NMR spectra for MOE-2 tandem zinc-finger and GCN2 RWD further led to the determination of tertiary structures, which are consistent with those from soluble fractions. Overall, our results indicate that the hydrostatic pressure method is effective for preparing samples for NMR structural studies.

  4. On variable hydrostatic transmission for road vehicles, powered by supply of fluid at constant pressure

    NASA Technical Reports Server (NTRS)

    Magi, M.; Freivald, A.; Andersson, I.; Ericsson, U.

    1981-01-01

    Various hydrostatic power transmission systems for automotive applications with power supply at constant pressure and unrestricted flow and with a Volvo Flygmotor variable displacement motor as the principal unit were investigated. Two most promising concepts were analyzed in detail and their main components optimized for minimum power loss at the EPA Urban Driving Cycle. The best fuel consumption is less than 10 lit. per 100 kM for a 1542 kG vehicle with a hydrostatic motor and a two speed gear box in series (braking power not recovered). Realistic system pressure affects the fuel consumption just slightly, but the package volume/weight drastically. Back pressure increases losses significantly. Special attention was paid to description of the behavior and modeling of the losses of variable displacement hydrostatic machines.

  5. On variable hydrostatic transmission for road vehicles, powered by supply of fluid at constant pressure

    NASA Astrophysics Data System (ADS)

    Magi, M.; Freivald, A.; Andersson, I.; Ericsson, U.

    1981-05-01

    Various hydrostatic power transmission systems for automotive applications with power supply at constant pressure and unrestricted flow and with a Volvo Flygmotor variable displacement motor as the principal unit were investigated. Two most promising concepts were analyzed in detail and their main components optimized for minimum power loss at the EPA Urban Driving Cycle. The best fuel consumption is less than 10 lit. per 100 kM for a 1542 kG vehicle with a hydrostatic motor and a two speed gear box in series (braking power not recovered). Realistic system pressure affects the fuel consumption just slightly, but the package volume/weight drastically. Back pressure increases losses significantly. Special attention was paid to description of the behavior and modeling of the losses of variable displacement hydrostatic machines.

  6. DEVELOPMENT OF A HYDROSTATIC JOURNAL BEARING WITH SLIT-STEP COMPENSATION

    SciTech Connect

    Hale, L C; Donaldson, R R; Castro, C; Chung, C A; Hopkins, D J

    2006-07-28

    This paper describes the mathematical modeling and initial testing of an oil-hydrostatic bearing that derives compensation from both a central radial slit where fluid enters and stepped clearances near each end. Bearings using either a radial slit or stepped clearances for compensation were well studied over forty years ago by Donaldson. These bearings have smooth bores uninterrupted with multiple recesses around the circumference. The present slit-step bearing achieves the best of both types with somewhat higher hydrostatic stiffness than the slit bearing and fluid shear drag lower than the step bearing. This is apparent in TABLE 1, which compares calculated values of initial (i.e., centered) hydrostatic stiffness for each type. The slit-step bearing is one of several types being studied at Lawrence Livermore National Laboratory for possible use on the Precision Optical Grinder and Lathe (POGAL).

  7. Microstructure and properties of ultrafine grain nickel 200 after hydrostatic extrusion processes

    NASA Astrophysics Data System (ADS)

    Sitek, R.; Krajewski, C.; Kamiński, J.; Spychalski, M.; Garbacz, H.; Pachla, W.; Kurzydłowski, K. J.

    2012-09-01

    This paper presents the results of the studies of the structure and properties of ultrafine grained nickel 200 obtained by hydrostatic extrusion processes. Microstructure was characterized by means of optical microscopy and electron transmission microscopy. Corrosion resistance was studied by impedance and potentiodynamic methods using an AutoLab PGSTAT 100 potentiostat in 0.1 M Na2SO4 solution and in acidified (by addition of H2SO4) 0.1 M NaCl solution at pH = 4.2 at room temperature. Microhardness tests were also performed. The results showed that hydrostatic extrusion produces a heterogeneous, ultrafine-grained microstructure in nickel 200. The corrosive resistance tests showed that the grain refinement by hydrostatic extrusion is accompanied by a decreased corrosive resistance of nickel 200.

  8. Combined use of infrared and Raman spectra in the characterization of orthoclase under various hydrostatic pressures.

    PubMed

    Liu, Rui; Wang, Zhi-Hua; Xu, Qiang; Yu, Na; Cao, Miao-Cong

    2014-02-01

    Colorless and pink orthoclase from Balikun granite body, East Zhunger in Xinjiang, served as the samples for the research on hydrostatic pressure experiment. The in-situ hydrostatic pressure test for orthoclases was conducted at the room temperature and pressures from 100 to 600 MPa using cubic zirconia anvil cell, with quartz as pressure gauge. The water located in the orthoclases for the conditions of different hydrostatic pressures was characterized through the methods of Fourier transform infrared (FTIR) and Raman spectra. The results showed that there was a linear correlation between the shifting of Raman bands and hydrostatic pressure applied to the feldspar. All of vibration peaks of M-O structural groups in orthoclases, the bending vibration peaks of Si(Al(IV))-O-Si bond and tetrahedron groups of [SiO4] in Raman spectra shifted toward the higher frequency regularly, the drift distance is 2, 2.19 and less than 2 cm(-1) respectively. The spectra of FTIR suggested that there was more water in colorless orthoclases than the pink one under certain conditions of hydrostatic pressure. The intensity and integral area centered at 3420 cm(-1) in FTIR spectra increased with the rising of hydrostatic pressure. The integral area for colorless and pink feldspar in FTIR spectra rose from 120, 1383 cm(-1) under normal pressure to 1570, 2001 cm(-1) at 600 MPa respectively. The experimental results might indicate that the water in the earth crust could enter the orthoclases in certain condition of the aqueous confining pressure. PMID:24822414

  9. Enema reduction of intussusception: the success rate of hydrostatic and pneumatic reduction

    PubMed Central

    Khorana, Jiraporn; Singhavejsakul, Jesda; Ukarapol, Nuthapong; Laohapensang, Mongkol; Wakhanrittee, Junsujee; Patumanond, Jayanton

    2015-01-01

    Purpose Intussusception is a common surgical emergency in infants and children. The incidence of intussusception is from one to four per 2,000 infants and children. If there is no peritonitis, perforation sign on abdominal radiographic studies, and nonresponsive shock, nonoperative reduction by pneumatic or hydrostatic enema can be performed. The purpose of this study was to compare the success rates of both the methods. Methods Two institutional retrospective cohort studies were performed. All intussusception patients (ICD-10 code K56.1) who had visited Chiang Mai University Hospital and Siriraj Hospital from January 2006 to December 2012 were included in the study. The data were obtained by chart reviews and electronic databases, which included demographic data, symptoms, signs, and investigations. The patients were grouped according to the method of reduction followed into pneumatic reduction and hydrostatic reduction groups with the outcome being the success of the reduction technique. Results One hundred and seventy episodes of intussusception occurring in the patients of Chiang Mai University Hospital and Siriraj Hospital were included in this study. The success rate of pneumatic reduction was 61% and that of hydrostatic reduction was 44% (P=0.036). Multivariable analysis and adjusting of the factors by propensity scores were performed; the success rate of pneumatic reduction was 1.48 times more than that of hydrostatic reduction (P=0.036, 95% confidence interval [CI] =1.03–2.13). Conclusion Both pneumatic and hydrostatic reduction can be performed safely according to the experience of the radiologist or pediatric surgeon and hospital setting. This study showed that pneumatic reduction had a higher success rate than hydrostatic reduction. PMID:26719697

  10. Nonlinear Control of Wind Turbines with Hydrostatic Transmission Based on Takagi-Sugeno Model

    NASA Astrophysics Data System (ADS)

    Schulte, Horst; Georg, Soren

    2014-06-01

    A nonlinear model-based control concept for wind turbines with hydrostatic transmission is proposed. The complete mathematical model of a wind turbine drive train with variable displacement pump and variable displacement motor is presented. The controller design takes into consideration the nonlinearity of the aerodynamic maps and hydrostatic drive train by an convex combination of state space controller with measurable generator speed and hydraulic motor displacement as scheduling parameters. The objectives are the set point control of generator speed and tracking control of the rotor speed to reach the maximum power according to the power curve in the partial-load region.

  11. A Hydrostatic Bearing Test System for Measuring Bearing Load Using Magnetic-Fluid Lubricants.

    PubMed

    Weng, Huei Chu; Chen, Lu-Yu

    2016-05-01

    This paper conducts a study on the design of a hydrostatic bearing test system. It involves the determination of viscous properties of magnetic-fluid lubricants. The load of a hydrostatic thrust bearing using a water-based magnetite nanofluid of varying volume flow rate is measured under an applied external induction field via the test system. Results reveal that the presence of nanoparticles in a carrier liquid would cause an enhanced bearing load. Such an effect could be further magnified by increasing the lubricant volume flow rate or the external induction field strength. PMID:27483902

  12. Hydrostatic pressure sensor based on micro-cavities developed by the catastrophic fuse effect

    NASA Astrophysics Data System (ADS)

    Domingues, M. F.; Paixão, T.; Mesquita, E.; Alberto, N.; Antunes, P.; Varum, H.; André, P. S.

    2015-09-01

    In this work, an optical fiber hydrostatic pressure sensor based in Fabry-Perot micro-cavities is presented. These micro structures were generated by the recycling of optical fiber previously damaged by the fiber fuse effect, resulting in a cost effective solution when compared with the traditional methods used to produce similar micro-cavities. The developed sensor was tested for pressures ranging from 20.0 to 190.0 cmH2O and a sensitivity of 53.7 +/- 2.6 pm/cmH2O for hydrostatic pressures below to 100 cmH2O was achieved.

  13. Titan's Hydrostatic Figure and a Possible Dynamic Tidal Variation

    NASA Astrophysics Data System (ADS)

    Anderson, J. D.; Schubert, G.

    2012-12-01

    An archive of radio Doppler data from the Cassini mission can be found in NASA's PDS Atmospheres Node as a series of binary files called Orbit Data Files (ODF). We have downloaded six ODFs from the Cassini mission for six Titan gravity passes T11 (27-Feb-2006), T22 (28-Dec-2006), T33 (29-Jun-2007), T45 (31-Jul-2008), T68 (20-May-2010) and T74 (18-Feb-2011). After converting to text files with JPL space-navigation software (ODDUMP), we convert the observed Doppler shift for the Cassini spacecraft to radial velocity along the line of sight (LOS) at one-second sample interval. These data can be fit by a numerical integration of the equations of motion for the craft with respect to Titan, and a subsequent projection of the velocity so obtained along the LOS. The orbital parameters are represented by six standard Kepler elements with the plane of sky as the fundamental reference system, the system used for spectroscopic binary stars. While the systemic velocity Vs is taken as a constant for binary stars, it is represented for spacecraft by six parameters in a function developed for the Doppler detection of gravitational waves. We adopt well-determined values for the GM of Titan and Saturn and add a 13th gravity parameter C22 for an ellipsoidal hydrostatic Titan distorted by the Saturn tide and synchronous rotation (J2 = (10/3) C22). Also, we adopt the IAU definition for the pole and prime meridian of Titan in the ICRF/J2000 reference system. The interval of observation for each flyby is held to two hours, centered as closely as possible on the time of closest approach to Titan. This interval is sufficiently long for purposes of including all the detectable signal from C22, but short enough that spacecraft-generated translational forces can be neglected. By iterating on a linear least-squares system, 13 converged parameters and associated covariance matrix are found by singular-value decomposition of the least-squares design matrix for each of the six flybys. With

  14. Pressure-induced stiffness of Au nanoparticles to 71 GPa under quasi-hydrostatic loading.

    PubMed

    Hong, Xinguo; Duffy, Thomas S; Ehm, Lars; Weidner, Donald J

    2015-12-01

    The compressibility of nanocrystalline gold (n-Au, 20 nm) has been studied by x-ray total scattering using high-energy monochromatic x-rays in the diamond anvil cell under quasi-hydrostatic conditions up to 71 GPa. The bulk modulus, K0, of the n-Au obtained from fitting to a Vinet equation of state is ~196(3) GPa, which is about 17% higher than for the corresponding bulk materials (K0: 167 GPa). At low pressures (<7 GPa), the compression behavior of n-Au shows little difference from that of bulk Au. With increasing pressure, the compressive behavior of n-Au gradually deviates from the equation of state (EOS) of bulk gold. Analysis of the pair distribution function, peak broadening and Rietveld refinement reveals that the microstructure of n-Au is nearly a single-grain/domain at ambient conditions, but undergoes substantial pressure-induced reduction in grain size until 10 GPa. The results indicate that the nature of the internal microstructure in n-Au is associated with the observed EOS difference from bulk Au at high pressure. Full-pattern analysis confirms that significant changes in grain size, stacking faults, grain orientation and texture occur in n-Au at high pressure. We have observed direct experimental evidence of a transition in compressional mechanism for n-Au at ~20 GPa, i.e. from a deformation dominated by nucleation and motion of lattice dislocations (dislocation-mediated) to a prominent grain boundary mediated response to external pressure. The internal microstructure inside the nanoparticle (nanocrystallinity) plays a critical role for the macro-mechanical properties of nano-Au. PMID:26570982

  15. Hydrostatic Pressure Studies Distinguish Global from Local Protein Motions in C-H Activation by Soybean Lipoxygenase-1.

    PubMed

    Hu, Shenshen; Cattin-Ortolá, Jérôme; Munos, Jeffrey W; Klinman, Judith P

    2016-08-01

    The proposed contributions of distinct classes of local versus global protein motions during enzymatic bond making/breaking processes has been difficult to verify. We employed soybean lipoxygenase-1 as a model system to investigate the impact of high pressure at variable temperatures on the hydrogen-tunneling properties of the wild-type protein and three single-site mutants. For all variants, pressure dramatically elevates the enthalpies of activation for the C-H activation. In contrast, the primary kinetic isotope effects (KIEs) for C-H activation and their corresponding temperature dependencies remain unchanged up to ca. 700 bar. The differential impact of elevated hydrostatic pressure on the temperature dependencies of rate constants versus substrate KIEs provides direct evidence for two distinct classes of protein motions: local, isotope-dependent donor-acceptor distance-sampling modes, and a more global, isotope-independent search for productive protein conformational sub-states. PMID:27348724

  16. Effects of hydrostatic pressure on the stability and thermostability of poliovirus: a new method for vaccine preservation.

    PubMed

    Ferreira, Evanilce; Mendes, Ygara S; Silva, Jerson L; Galler, Ricardo; Oliveira, Andréa C; Freire, Marcos S; Gaspar, Luciane P

    2009-08-27

    Viruses are a structurally diverse group of infectious agents that differ widely in their sensitivities to high hydrostatic pressure (HHP). Studies on picornaviruses have demonstrated that these viruses are extremely resistant to HHP treatments, with poliovirus appearing to be the most resistant. Here, the three attenuated poliovirus serotypes were compared with regard to pressure and thermal resistance. We found that HHP does not inactivate any of the three serotypes studied (1-3). Rather, HHP treatment was found to stabilize poliovirus by increasing viral thermal resistance at 37 degrees C. Identification of new methods that stabilize poliovirus against heat inactivation would aid in the design of a more heat-stable vaccine, circumventing the problems associated with refrigeration during storage and transport of the vaccine prior to use. PMID:19616496

  17. A global non-hydrostatic weather forecast model in KIAPS using the spectral element on a cubed sphere

    NASA Astrophysics Data System (ADS)

    Choi, Suk-Jin; Lee, Eun-Hee; Hong, Song-You

    2016-04-01

    This presentation covers an introduction to the current state of a non-hydrostatic global atmospheric model to be named the KIAPS integrated model (KIM). Efforts to resolve an excessive dissipation in small scales in KIM will be discussed. Also, simulated results for several idealized benchmark tests and full-physics forecasts will be shown. The dynamical core of the model is using the Euler equation set in a flux form based on the terrain following mass-based vertical coordinate, which is discretized by horizontal spectral element method (SEM) and the vertical finite difference method (FDM) for the spatial discretization and a time-split third-order Runge-Kutta (RK3) for the time discretization. Owing to the virtue of SEM and the explicit time integrator, KIM can achieve easily a high level of scalability. The physics package coupled with the dynamical core is a standard physics package from existing models such as the GRIMs, WRF, and GFS.

  18. Hydrostatic Pressure and Temperature Effects on the Membranes of a Seasonally Migrating Marine Copepod

    PubMed Central

    Pond, David W.; Tarling, Geraint A.; Mayor, Daniel J.

    2014-01-01

    Marine planktonic copepods of the order Calanoida are central to the ecology and productivity of high latitude ecosystems, representing the interface between primary producers and fish. These animals typically undertake a seasonal vertical migration into the deep sea, where they remain dormant for periods of between three and nine months. Descending copepods are subject to low temperatures and increased hydrostatic pressures. Nothing is known about how these organisms adapt their membranes to these environmental stressors. We collected copepods (Calanoides acutus) from the Southern Ocean at depth horizons ranging from surface waters down to 1000 m. Temperature and/or pressure both had significant, additive effects on the overall composition of the membrane phospholipid fatty acids (PLFAs) in C. acutus. The most prominent constituent of the PLFAs, the polyunsaturated fatty acid docosahexanoic acid [DHA – 22:6(n-3)], was affected by a significant interaction between temperature and pressure. This moiety increased with pressure, with the rate of increase being greater at colder temperatures. We suggest that DHA is key to the physiological adaptations of vertically migrating zooplankton, most likely because the biophysical properties of this compound are suited to maintaining membrane order in the cold, high pressure conditions that persist in the deep sea. As copepods cannot synthesise DHA and do not feed during dormancy, sufficient DHA must be accumulated through ingestion before migration is initiated. Climate-driven changes in the timing and abundance of the flagellated microplankton that supply DHA to copepods have major implications for the capacity of these animals to undertake their seasonal life cycle successfully. PMID:25338196

  19. Structure-relaxation mechanism for the response of T4 lysozyme cavity mutants to hydrostatic pressure

    PubMed Central

    Lerch, Michael T.; López, Carlos J.; Yang, Zhongyu; Kreitman, Margaux J.; Horwitz, Joseph; Hubbell, Wayne L.

    2015-01-01

    Application of hydrostatic pressure shifts protein conformational equilibria in a direction to reduce the volume of the system. A current view is that the volume reduction is dominated by elimination of voids or cavities in the protein interior via cavity hydration, although an alternative mechanism wherein cavities are filled with protein side chains resulting from a structure relaxation has been suggested [López CJ, Yang Z, Altenbach C, Hubbell WL (2013) Proc Natl Acad Sci USA 110(46):E4306–E4315]. In the present study, mechanisms for elimination of cavities under high pressure are investigated in the L99A cavity mutant of T4 lysozyme and derivatives thereof using site-directed spin labeling, pressure-resolved double electron–electron resonance, and high-pressure circular dichroism spectroscopy. In the L99A mutant, the ground state is in equilibrium with an excited state of only ∼3% of the population in which the cavity is filled by a protein side chain [Bouvignies et al. (2011) Nature 477(7362):111–114]. The results of the present study show that in L99A the native ground state is the dominant conformation to pressures of 3 kbar, with cavity hydration apparently taking place in the range of 2–3 kbar. However, in the presence of additional mutations that lower the free energy of the excited state, pressure strongly populates the excited state, thereby eliminating the cavity with a native side chain rather than solvent. Thus, both cavity hydration and structure relaxation are mechanisms for cavity elimination under pressure, and which is dominant is determined by details of the energy landscape. PMID:25918400

  20. Turning performance in squid and cuttlefish: unique dual-mode, muscular hydrostatic systems.

    PubMed

    Jastrebsky, Rachel A; Bartol, Ian K; Krueger, Paul S

    2016-05-01

    Although steady swimming has received considerable attention in prior studies, unsteady swimming movements represent a larger portion of many aquatic animals' locomotive repertoire and have not been examined extensively. Squids and cuttlefishes are cephalopods with unique muscular hydrostat-driven, dual-mode propulsive systems involving paired fins and a pulsed jet. These animals exhibit a wide range of swimming behavior, but turning performance has not been examined quantitatively. Brief squid, Lolliguncula brevis, and dwarf cuttlefish, Sepia bandensis, were filmed during turns using high-speed cameras. Kinematic features were tracked, including the length-specific radius of the turn (R/L), a measure of maneuverability, and angular velocity (ω), a measure of agility. Both L. brevis and S. bandensis demonstrated high maneuverability, with (R/L)min values of 3.4×10(-3)±5.9×10(-4) and 1.2×10(-3)±4.7×10(-4) (mean±s.e.m.), respectively, which are the lowest measures of R/L reported for any aquatic taxa. Lolliguncula brevis exhibited higher agility than S. bandensis (ωa,max=725.8 versus 485.0 deg s(-1)), and both cephalopods have intermediate agility when compared with flexible-bodied and rigid-bodied nekton of similar size, reflecting their hybrid body architecture. In L. brevis, jet flows were the principal driver of angular velocity. Asymmetric fin motions played a reduced role, and arm wrapping increased turning performance to varying degrees depending on the species. This study indicates that coordination between the jet and fins is important for turning performance, with L. brevis achieving faster turns than S. bandensis and S. bandensis achieving tighter, more controlled turns than L. brevis.

  1. Porosity-Permeability Relationships Around the Percolation Threshold in a Near-Perfect Crystalline Rock Under Hydrostatic and Deviatoric Stress.

    NASA Astrophysics Data System (ADS)

    Clint, O. C.; Meredith, P. G.; Main, I. G.

    2001-12-01

    We are investigating the scaling properties of crack populations near the percolation thresholds for fracture and fluid flow. Here we report measurements of changes in fluid permeability and porosity during hydrostatic and deviatoric stressing on samples of Ailsa Craig Microgranite (ACM) with increasing levels of damage. We show virgin ACM to be almost perfectly isotropic with P & S wave velocity anisotropy coefficients of 0.05% and 0.08% respectively. The fluid permeability of the undeformed rock is 1.5 x 10-23 m2 determined at an effective pressure of 10MPa and it has a porosity <<1%. These properties show that ACM is a near-ideal material to investigate the percolation threshold. We have used thermal stressing to different elevated temperatures up to 900° C to induce crack damage in samples of ACM. For hydrostatic experiments; P and S wave velocities and the fluid permeability are then measured on each sample after the heat treatment process. Connected porosity is calculated using a novel ferrofluid saturation technique and the permeability is measured over a range of effective pressures up to 100MPa with a mean pore pressure of 10MPa. For the triaxial deformation experiments; a confining pressure of 40MPa, mean pore fluid pressure of 10MPa and a strain rates of 1.5 x 10-5 s-1 was employed. Permeability and porosity is calculated continuously during deformation from the steady-state flow rate, controlled by a servo-controlled double acting permeameter system. P and S wave velocities reduce by 48% and 32% respectively for thermal stressing up to 800° C, indicating the high level of cracking induced in the sample, while damage is found to remain isotropic over the temperature range, confirmed by magnetic susceptibility measurements. The fluid permeability increases by 7 orders of magnitude and connected crack porosity is increased by 4 orders of magnitude over this temperature range as induced cracks create more pathways available for fluid flow. This resulting

  2. Development of the Non-Hydrostatic Jupiter Global Ionosphere Thermosphere Model (J-GITM): Status and Current Simulations

    NASA Astrophysics Data System (ADS)

    Bougher, Stephen; Ridley, Aaron; Majeed, Tariq; Waite, J. Hunter; Gladstone, Randy; Bell, Jared

    2016-07-01

    The primary objectives for development and validation of a new 3-D non-hydrostatic model of Jupiter's upper atmosphere is to improve our understanding of Jupiter's thermosphere-ionosphere-magnetosphere system and to provide a global context within which to analyze the data retrieved from the new JUNO mission. The new J-GITM model presently incorporates the progress made on the previous Jupiter-TGCM code (i.e. key parameterizations, ion-neutral chemistry, IR cooling) while also employing the non-hydrostatic numerical core of the Earth Global Ionosphere-Thermosphere Model (GITM). The GITM numerical framework has been successfully applied to Earth, Mars, and Titan (see Ridley et al. [2006], Bougher et al. [2015], Bell [2008, 2010]). Moreover, it has been shown to simulate the effects of strong, localized heat sources (such as joule heating and auroral heating) more accurately than strictly hydrostatic GCMs (Deng et al. [2007, 2008]). Thus far, in the J-GITM model development and testing, model capability has been progressively augmented to capture the neutral composition (e.g. H, H2, He major species), 3-component neutral winds, and thermal structure, as well as the ion composition (H3+, H2+, and H+ among others) above 250 km. Presently, J-GITM: (a) provides an interactive calculation for auroral particle precipitation (i.e. heating, ionization), an improvement over the static formulation used previously in the J-TGCM (Bougher et al., 2005; Majeed et al., 2005, 2009, 2015); (b) self-consistently calculates an ionosphere using updated ion-neutral chemistry, ion dynamics, and electron transport; (c) simulates the chemistry that forms key hydrocarbons at the base of the thermosphere, focusing on CH4, C2H2, and C2H6; (d) allows the production of H3+, CH4, C2H2, and C2H6 to modify the global thermal balance of Jupiter through their non-LTE radiative cooling; (e) provides a calculation of H2 vibrational chemistry to regulate H+ densities; and (f) uses the improved

  3. Nuclear Technology. Course 26: Nondestructive Examination (NDE) Techniques I. Module 26-3, Hydrostatic Tests.

    ERIC Educational Resources Information Center

    Pelton, Rick; Espy, John

    This third in a series of seven modules for a course titled Nondestructive Examination (NDE) Techniques I describes the principles and practices associated with hydrostatic testing. The module follows a typical format that includes the following sections: (1) introduction, (2) module prerequisites, (3) objectives, (4) notes to instructor/student,…

  4. Deciphering the adaptation strategies of Desulfovibrio piezophilus to hydrostatic pressure through metabolic and transcriptional analyses.

    PubMed

    Amrani, Amira; van Helden, Jacques; Bergon, Aurélie; Aouane, Aicha; Ben Hania, Wajdi; Tamburini, Christian; Loriod, Béatrice; Imbert, Jean; Ollivier, Bernard; Pradel, Nathalie; Dolla, Alain

    2016-08-01

    Desulfovibrio piezophilus strain C1TLV30(T) is a mesophilic piezophilic sulfate-reducer isolated from Wood Falls at 1700 m depth in the Mediterranean Sea. In this study, we analysed the effect of the hydrostatic pressure on this deep-sea living bacterium at the physiologic and transcriptomic levels. Our results showed that lactate oxidation and energy metabolism were affected by the hydrostatic pressure. Especially, acetyl-CoA oxidation pathway and energy conservation through hydrogen and formate recycling would be more important when the hydrostatic pressure is above (26 MPa) than below (0.1 MPa) the optimal one (10 MPa). This work underlines also the role of the amino acid glutamate as a piezolyte for the Desulfovibrio genus. The transcriptomic analysis revealed 146 differentially expressed genes emphasizing energy production and conversion, amino acid transport and metabolism and cell motility and signal transduction mechanisms as hydrostatic pressure responding processes. This dataset allowed us to identify a sequence motif upstream of a subset of differentially expressed genes as putative pressure-dependent regulatory element. PMID:27264199

  5. Prolonged Exercise and Changes in Percent Fat Determinations by Hydrostatic Weighing and Scintillation Counting.

    ERIC Educational Resources Information Center

    Thomas, Tom R.; And Others

    1979-01-01

    This study, designed to determine the effect of a prolonged running bout on the measurement of percent fat, produced erroneously low readings. It is suggested that previous exercise and state of hydration of subjects should be controlled prior to percent fat determination by hydrostatic weighing or scintillation counting. (MJB)

  6. Hydrostatic Pressure Project: Linked-Class Problem-Based Learning in Engineering

    ERIC Educational Resources Information Center

    Davis, Freddie J.; Lockwood-Cooke, Pamela; Hunt, Emily M.

    2011-01-01

    Over the last few years, WTAMU Mathematics, Engineering and Science faculty has used interdisciplinary projects as the basis for implementation of a linked-class approach to Problem-Based Learning (PBL). A project that has significant relevance to engineering statics, fluid mechanics, and calculus is the Hydrostatic Pressure Project. This project…

  7. Vertical finite-element scheme for the hydrostatic primitive equations on a cubed-sphere

    NASA Astrophysics Data System (ADS)

    Park, J. R.; Yi, T. H.

    2014-12-01

    A vertical finite-element (VFE) scheme of three-dimensional hydrostatic primitive equations is adopted for the numerical weather prediction system, which is horizontally discretized with spectral elements on a cubed-sphere. The hybrid pressure-based vertical coordinate is employed to discretize a vertical grid, in which only the full levels of the coordinate are used in the VFE. Vertical integrals and derivatives in the hydrostatic equations are derived based on Galerkin-based finite elements with b-spline functions. These basis functions and their first-order derivatives are constructed using the Cox-de Boor algorithm. The computation of vertical integrals, derivatives and advections in the hydrostatic equations are easily done in physical space by matrix multiplication with the corresponding vertical operators. The VFE discretization scheme implemented into the global three-dimensional hydrostatic model on the cubed-sphere is evaluated by performing ideal test cases including the steady-state, baroclinic wave, 3D Rossby-Haurwitz wave, and mountain-induced Rossby wave train test cases. The two types of the VFE scheme are compared to the vertical finite difference scheme.

  8. 46 CFR 56.97-30 - Hydrostatic tests (modifies 137.4).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... system is filling. (b) Test medium and test temperature. (1) Water will be used for a hydrostatic leak test unless another medium is approved by the Commandant. (2) The temperature of the test medium will... greater than 90 percent of its yield strength (0.2 percent offset) at test temperature. (g)...

  9. 46 CFR 56.97-30 - Hydrostatic tests (modifies 137.4).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... system is filling. (b) Test medium and test temperature. (1) Water will be used for a hydrostatic leak test unless another medium is approved by the Commandant. (2) The temperature of the test medium will... greater than 90 percent of its yield strength (0.2 percent offset) at test temperature. (g)...

  10. Deciphering the adaptation strategies of Desulfovibrio piezophilus to hydrostatic pressure through metabolic and transcriptional analyses.

    PubMed

    Amrani, Amira; van Helden, Jacques; Bergon, Aurélie; Aouane, Aicha; Ben Hania, Wajdi; Tamburini, Christian; Loriod, Béatrice; Imbert, Jean; Ollivier, Bernard; Pradel, Nathalie; Dolla, Alain

    2016-08-01

    Desulfovibrio piezophilus strain C1TLV30(T) is a mesophilic piezophilic sulfate-reducer isolated from Wood Falls at 1700 m depth in the Mediterranean Sea. In this study, we analysed the effect of the hydrostatic pressure on this deep-sea living bacterium at the physiologic and transcriptomic levels. Our results showed that lactate oxidation and energy metabolism were affected by the hydrostatic pressure. Especially, acetyl-CoA oxidation pathway and energy conservation through hydrogen and formate recycling would be more important when the hydrostatic pressure is above (26 MPa) than below (0.1 MPa) the optimal one (10 MPa). This work underlines also the role of the amino acid glutamate as a piezolyte for the Desulfovibrio genus. The transcriptomic analysis revealed 146 differentially expressed genes emphasizing energy production and conversion, amino acid transport and metabolism and cell motility and signal transduction mechanisms as hydrostatic pressure responding processes. This dataset allowed us to identify a sequence motif upstream of a subset of differentially expressed genes as putative pressure-dependent regulatory element.

  11. Ill-Posedness of the Hydrostatic Euler and Singular Vlasov Equations

    NASA Astrophysics Data System (ADS)

    Han-Kwan, Daniel; Nguyen, Toan T.

    2016-09-01

    In this paper, we develop an abstract framework to establish ill-posedness, in the sense of Hadamard, for some nonlocal PDEs displaying unbounded unstable spectra. We apply this to prove the ill-posedness for the hydrostatic Euler equations as well as for the kinetic incompressible Euler equations and the Vlasov-Dirac-Benney system.

  12. 46 CFR 56.97-30 - Hydrostatic tests (modifies 137.4).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...) Examination for leakage after application of pressure. Following the application of the hydrostatic test pressure for a minimum of 10 minutes (see § 56.97-30(g)), examination for leakage must be made of all... of 10 minutes and for such additional time as may be necessary to conduct the examination for...

  13. Effects of hydrostatic pressure, agitation and CO2 stress on Phytophthora nicotianae zoospore survival

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phytophthora nicotianae Breda de Haan was used as a model pathogen to investigate the effects of hydrostatic pressure, agitation, and aeration with CO2 or breathable air on the survival of Phytophthora zoospores in water. Injecting CO2 into 2 liters of zoospore-infested water for 5 min at 110.4 ml ...

  14. Thermal fluid-solid interaction model and experimental validation for hydrostatic mechanical face seals

    NASA Astrophysics Data System (ADS)

    Huang, Weifeng; Liao, Chuanjun; Liu, Xiangfeng; Suo, Shuangfu; Liu, Ying; Wang, Yuming

    2014-09-01

    Hydrostatic mechanical face seals for reactor coolant pumps are very important for the safety and reliability of pressurized-water reactor power plants. More accurate models on the operating mechanism of the seals are needed to help improve their performance. The thermal fluid-solid interaction (TFSI) mechanism of the hydrostatic seal is investigated in this study. Numerical models of the flow field and seal assembly are developed. Based on the mechanism for the continuity condition of the physical quantities at the fluid-solid interface, an on-line numerical TFSI model for the hydrostatic mechanical seal is proposed using an iterative coupling method. Dynamic mesh technology is adopted to adapt to the changing boundary shape. Experiments were performed on a test rig using a full-size test seal to obtain the leakage rate as a function of the differential pressure. The effectiveness and accuracy of the TFSI model were verified by comparing the simulation results and experimental data. Using the TFSI model, the behavior of the seal is presented, including mechanical and thermal deformation, and the temperature field. The influences of the rotating speed and differential pressure of the sealing device on the temperature field, which occur widely in the actual use of the seal, are studied. This research proposes an on-line and assembly-based TFSI model for hydrostatic mechanical face seals, and the model is validated by full-sized experiments.

  15. 46 CFR 54.10-10 - Standard hydrostatic test (modifies UG-99).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Boiler and Pressure Vessel Code (incorporated by reference, see 46 CFR 54.01-1). The value of “S” at test... vessel, multiplied by the ratio of the stress value “S” at the test temperature to the stress value “S... ratio less than one shall be used. The stress resulting from the hydrostatic test shall not exceed...

  16. 46 CFR 54.10-10 - Standard hydrostatic test (modifies UG-99).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Boiler and Pressure Vessel Code (incorporated by reference, see 46 CFR 54.01-1). The value of “S” at test... vessel, multiplied by the ratio of the stress value “S” at the test temperature to the stress value “S... ratio less than one shall be used. The stress resulting from the hydrostatic test shall not exceed...

  17. 46 CFR 54.10-10 - Standard hydrostatic test (modifies UG-99).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Boiler and Pressure Vessel Code (incorporated by reference, see 46 CFR 54.01-1). The value of “S” at test... vessel, multiplied by the ratio of the stress value “S” at the test temperature to the stress value “S... ratio less than one shall be used. The stress resulting from the hydrostatic test shall not exceed...

  18. 46 CFR 54.10-10 - Standard hydrostatic test (modifies UG-99).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Boiler and Pressure Vessel Code (incorporated by reference, see 46 CFR 54.01-1). The value of “S” at test... vessel, multiplied by the ratio of the stress value “S” at the test temperature to the stress value “S... ratio less than one shall be used. The stress resulting from the hydrostatic test shall not exceed...

  19. Development And Application Of Non-Hydrostatic Model To The Coastal Engineering Problems

    NASA Astrophysics Data System (ADS)

    Maderych, V.; Brovchenko, I.; Fenical, S.; Nikishov, V.; Terletska, K.

    2007-12-01

    The 3D non-hydrostatic free surface model developed by Kanarska and Maderich (2003) for stratified flows was further improved and has been used to simulate coastal processes. In the model the surface elevation, hydrostatic and non-hydrostatic components of pressure and velocity are calculated at sequential stages. Unlike most non-hydrostatic models, the 2-D depth-averaged momentum and continuity equations were integrated explicitly, whereas the 3-D equations were solved semi-implicitly at subsequent stages. The RANS and subgrid- scale eddy viscosity and diffusivity parameterization were implemented in the model to parameterize small-scale mixing. The model was applied to three coastal engineering problems. First, we used the model coupled with a 3D Lagrangian sediment transport model to predict scour caused by propeller jets of slowly maneuvering ships. The results of the simulations show good agreement with laboratory experiments and field ADCP measurements with tug boats. Second, the model was applied, while nested into the hydrostatic far-field counterpart model, for near-field simulation of cooling water discharge through submerged outfalls. Third, laboratory experiments and simulations were performed to estimate effects of large-amplitude internal solitary waves (ISW) on submerged structures and coastal bottom sediments. In the first series of experiments and simulations, the interaction of ISW-depressions with a rectangular bottom obstacle was investigated. In the second series, the ISW-depression was studied passing through a smooth local lateral constriction. The third series of laboratory experiments and simulations was conducted to investigate the dynamics of ISW of depressions reflecting from a steep slope. Contribution of V. Maderych in this work was supported by Hankuk University of Foreign Studies Research Fund of 2007.

  20. Donor spectroscopy at large hydrostatic pressures and transport studies in compound semiconductors

    SciTech Connect

    Hsu, L.

    1997-06-01

    In the first part of this work, the author describes studies of donors in AlSb and in GaAs at large hydrostatic pressures, two materials in which the conduction band minimum is not parabolic, but has a camel`s back shape. These donors were found to display only one or two absorption lines corresponding to ground to bound excited state transitions. It is shown that due to the non-parabolic dispersion, camel`s back donors may have as few as one bound excited state and that higher excited states are auto-ionized. Thus, it is possible that transitions to these other states may be lost in the continuum. In the second part, calculations of mobilities in GaN and other group III-Nitride based structures were performed. GaN is interesting in that the carriers in nominally undoped material are thought to originate from impurities which have an ionization energy level resonant with the conduction band, rather than located in the forbidden gap. These donors have a short range potential associated with them which can be effective in scattering electrons in certain situations. It was found that effects of these resonant donors can be seen only at high doping levels in III-Nitride materials and in Al{sub x}Ga{sub 1{minus}x}N alloys, where the defect level can be pushed into the forbidden gap. Calculations were also performed to find intrinsic mobility limits in Al{sub x}Ga{sub 1{minus}x}N/GaN modulation doped heterostructures. Theoretical predictions show that electron mobilities in these devices are capable of rivaling those found in the best Al{sub x}Ga{sub 1{minus}x}As/GaAs heterostructures structures today. However, the currently available nitride heterostructures, while displaying mobilities superior to those in bulk material, have sheet carrier concentrations too large to display true two-dimensional electron gas behavior.