Ion source and injection line for high intensity medical cyclotron
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jia, XianLu, E-mail: jiaxl@ciae.ac.cn; Guan, Fengping; Yao, Hongjuan
2014-02-15
A 14 MeV high intensity compact cyclotron, CYCIAE-14, was built at China Institute of Atomic Energy (CIAE). An injection system based on the external H− ion source was used on CYCIAE-14 so as to provide high intensity beam, while most positron emission tomography cyclotrons adopt internal ion source. A beam intensity of 100 μA/14 MeV was extracted from the cyclotron with a small multi-cusp H− ion source (CIAE-CH-I type) and a short injection line, which the H− ion source of 3 mA/25 keV H− beam with emittance of 0.3π mm mrad and the injection line of with only 1.2 m from themore » extraction of ion source to the medial plane of the cyclotron. To increase the extracted beam intensity of the cyclotron, a new ion source (CIAE-CH-II type) of 9.1 mA was used, with maximum of 500 μA was achieved from the cyclotron. The design and test results of the ion source and injection line optimized for high intensity acceleration will be given in this paper.« less
2016-08-25
AFRL-AFOSR-UK-TR-2016-0029 Intense Plasma-Waveguide Terahertz Sources for High-Field THz probe science with ultrafast lasers for Solid State Physics...Plasma-Waveguide Terahertz Sources for High-Field THz probe science with ultrafast lasers for Solid State Physics, 5a. CONTRACT NUMBER 5b. GRANT...an existing high energy laser system, has been applied to the study of intense terahertz radiation generated in gaseous plasmas in purpose
High power LED standard light sources for photometric applications
NASA Astrophysics Data System (ADS)
Ivashin, Evgeniy; Ogarev, Sergey; Khlevnoy, Boris; Shirokov, Stanislav; Dobroserdov, Dmitry; Sapritsky, Victor
2018-02-01
High power LED light sources have been developed as possible new VNIIOFI standard sources for luminous intensity, luminous flux and colour measurements. Stability, repeatability and spatial uniformity of the sources were investigated and demonstrated high accuracy and homogeneity. The paper describes different tests on one of the manufactured sources. In the future, these LED light sources are planned to be used as standard luminous flux sources to transfer the units of luminous intensity and luminous flux from gonio-spectrometer to sphere-spectrometer.
High intensity positron source at HFR: Basic concept, scoring and design optimisation
NASA Astrophysics Data System (ADS)
Zeman, A.; Tuček, K.; Debarberis, L.; Hogenbirk, A.
2012-01-01
Recent applications of positron beam techniques in various fields of research have led to an increasing demand for high intensity positron sources required for advanced applications, particularly in materials science. Considerable efforts are being made worldwide to design and set-up high intensity positron sources and beam systems that are based on several principles. Such positron sources could be used in fundamental and applied research experiments, as well as in industrial applications, especially in the field of condensed matter characterisation at the nanometre scale. Phenomena involving positrons are also important in other applied science fields such as medicine, biology, physics, energy, etc. However, such studies are often limited due to the relative lack of suitable positron sources. Results from the recently completed Exploratory Research Project called "HIPOS" are discussed in this paper, which describes the principles behind such a powerful very high intensity positron beam experimental facility that is based on a reactor source. Details of a proposed concept that uses nuclear reactions [(n, γ) and (γ, pair)] within a designed positron generator at the High Flux Reactor (HFR) in Petten are also discussed. The HIPOS source has been designed to produce slow positrons with intensity of the order of 10 10 e +/s.
Focusing and transport of high-intensity multi-MeV proton bunches from a compact laser-driven source
NASA Astrophysics Data System (ADS)
Busold, S.; Schumacher, D.; Deppert, O.; Brabetz, C.; Frydrych, S.; Kroll, F.; Joost, M.; Al-Omari, H.; Blažević, A.; Zielbauer, B.; Hofmann, I.; Bagnoud, V.; Cowan, T. E.; Roth, M.
2013-10-01
Laser ion acceleration provides for compact, high-intensity ion sources in the multi-MeV range. Using a pulsed high-field solenoid, for the first time high-intensity laser-accelerated proton bunches could be selected from the continuous exponential spectrum and delivered to large distances, containing more than 109 particles in a narrow energy interval around a central energy of 9.4 MeV and showing ≤30mrad envelope divergence. The bunches of only a few nanoseconds bunch duration were characterized 2.2 m behind the laser-plasma source with respect to arrival time, energy width, and intensity as well as spatial and temporal bunch profile.
On the scaling of multicrystal data sets collected at high-intensity X-ray and electron sources
Coppens, Philip; Fournier, Bertrand
2015-11-11
Here, the need for data-scaling has become increasingly evident as time-resolved pump-probe photocrystallography is rapidly developing at high intensity X-ray sources. Several aspects of the scaling of data sets collected at synchrotrons, XFELs (X-ray Free Electron Lasers) and high-intensity pulsed electron sources are discussed. They include laser-ON/laser-OFF data scaling, inter- and intra-data set scaling. (C) 2015 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License.
Conceptual design of an intense positron source based on an LIA
NASA Astrophysics Data System (ADS)
Long, Ji-Dong; Yang, Zhen; Dong, Pan; Shi, Jin-Shui
2012-04-01
Accelerator based positron sources are widely used due to their high intensity. Most of these accelerators are RF accelerators. An LIA (linear induction accelerator) is a kind of high current pulsed accelerator used for radiography. A conceptual design of an intense pulsed positron source based on an LIA is presented in the paper. One advantage of an LIA is its pulsed power being higher than conventional accelerators, which means a higher amount of primary electrons for positron generations per pulse. Another advantage of an LIA is that it is very suitable to decelerate the positron bunch generated by bremsstrahlung pair process due to its ability to adjustably shape the voltage pulse. By implementing LIA cavities to decelerate the positron bunch before it is moderated, the positron yield could be greatly increased. These features may make the LIA based positron source become a high intensity pulsed positron source.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bucksbaum, P.H.; Ceglio, N.M.
This volume contains the papers delivered at the conference which chronicle the major advances in short-wavelength laser physics and technology. It is divided into the following sections: Sources of Short-Wavelength Radiation; Applications of Short-Wavelength Radiation; High-Intensity Laser Sources; and High-Intensity Laser-Matter Interactions.
Calorimetric method for determination of {sup 51}Cr neutrino source activity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Veretenkin, E. P., E-mail: veretenk@inr.ru; Gavrin, V. N.; Danshin, S. N.
Experimental study of nonstandard neutrino properties using high-intensity artificial neutrino sources requires the activity of the sources to be determined with high accuracy. In the BEST project, a calorimetric system for measurement of the activity of high-intensity (a few MCi) neutrino sources based on {sup 51}Cr with an accuracy of 0.5–1% is created. In the paper, the main factors affecting the accuracy of determining the neutrino source activity are discussed. The calorimetric system design and the calibration results using a thermal simulator of the source are presented.
Intensity-Modulated Advanced X-ray Source (IMAXS) for Homeland Security Applications
NASA Astrophysics Data System (ADS)
Langeveld, Willem G. J.; Johnson, William A.; Owen, Roger D.; Schonberg, Russell G.
2009-03-01
X-ray cargo inspection systems for the detection and verification of threats and contraband require high x-ray energy and high x-ray intensity to penetrate dense cargo. On the other hand, low intensity is desirable to minimize the radiation footprint. A collaboration between HESCO/PTSE Inc., Schonberg Research Corporation and Rapiscan Laboratories, Inc. has been formed in order to design and build an Intensity-Modulated Advanced X-ray Source (IMAXS). Such a source would allow cargo inspection systems to achieve up to two inches greater imaging penetration capability, while retaining the same average radiation footprint as present fixed-intensity sources. Alternatively, the same penetration capability can be obtained as with conventional sources with a reduction of the average radiation footprint by about a factor of three. The key idea is to change the intensity of the source for each x-ray pulse based on the signal strengths in the inspection system detector array during the previous pulse. In this paper we describe methods to accomplish pulse-to-pulse intensity modulation in both S-band (2998 MHz) and X-band (9303 MHz) linac sources, with diode or triode (gridded) electron guns. The feasibility of these methods has been demonstrated. Additionally, we describe a study of a shielding design that would allow a 6 MV X-band source to be used in mobile applications.
NASA Astrophysics Data System (ADS)
Neri, L.; Celona, L.; Gammino, S.; Miraglia, A.; Leonardi, O.; Castro, G.; Torrisi, G.; Mascali, D.; Mazzaglia, M.; Allegra, L.; Amato, A.; Calabrese, G.; Caruso, A.; Chines, F.; Gallo, G.; Longhitano, A.; Manno, G.; Marletta, S.; Maugeri, A.; Passarello, S.; Pastore, G.; Seminara, A.; Spartà, A.; Vinciguerra, S.
2017-07-01
At the Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali del Sud (INFN-LNS) the beam commissioning of the high intensity Proton Source for the European Spallation Source (PS-ESS) started in November 2016. Beam stability at high current intensity is one of the most important parameter for the first steps of the ongoing commissioning. Promising results were obtained since the first source start with a 6 mm diameter extraction hole. The increase of the extraction hole to 8 mm allowed improving PS-ESS performances and obtaining the values required by the ESS accelerator. In this work, extracted beam current characteristics together with Doppler shift and emittance measurements are presented, as well as the description of the next phases before the installation at ESS in Lund.
Toohey, Kellie; Pumpa, Kate; McKune, Andrew; Cooke, Julie; Semple, Stuart
2018-01-01
There is an increasing body of evidence underpinning high-intensity exercise as an effective and time-efficient intervention for improving health in cancer survivors. The aim of this study was to, (1) evaluate the efficacy and (2) the safety of high-intensity exercise interventions in improving selected health outcomes in cancer survivors. Design Systematic review. Data sources Google Scholar and EBSCO, CINAHL Plus, Computers and Applied Sciences Complete, Health Source-Consumer Edition, Health Source: Nursing/Academic Edition, MEDLINE, Web of Science and SPORTDiscuss from inception up until August 2017. Eligibility criteria Randomized controlled trials of high-intensity exercise interventions in cancer survivors (all cancer types) with health-related outcome measures. The guidelines adopted for this review were the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA). The search returned 447 articles, of which nine articles (n = 531 participants mean, age 58 ± 9.5 years) met the eligibility criteria. Exercise interventions of between 4 and 18 weeks consisting of high-intensity interval bouts of up to 4-min were compared with a continuous moderate intensity (CMIT) intervention or a control group. High-intensity exercise interventions elicited significant improvements in VO 2 max, strength, body mass, body fat and hip and waist circumference compared with CMIT and/or control groups. The studies reviewed showed low risk in participating in supervised high-intensity exercise interventions. Mixed mode high-intensity interventions which included both aerobic and resistance exercises were most effective improving the aerobic fitness levels of cancer survivors by 12.45-21.35%, from baseline to post-intervention. High-intensity exercise interventions improved physical and physiological health-related outcome measures such as cardiovascular fitness and strength in cancer survivors. Given that high-intensity exercise sessions require a shorter time commitment, it may be a useful modality to improve health outcomes in those who are time poor. The risk of adverse events associated with high-intensity exercise was low.
High-intensity polarized H- ion source for the RHIC SPIN physics
NASA Astrophysics Data System (ADS)
Zelenski, A.; Atoian, G.; Raparia, D.; Ritter, J.; Kolmogorov, A.; Davydenko, V.
2017-08-01
A novel polarization technique had been successfully implemented for the RHIC polarized H- ion source upgrade to higher intensity and polarization. In this technique a proton beam inside the high magnetic field solenoid is produced by ionization of the atomic hydrogen beam (from external source) in the He-gas ionizer cell. Further proton polarization is produced in the process of polarized electron capture from the optically-pumped Rb vapour. The use of high-brightness primary beam and large cross-sections of charge-exchange cross-sections resulted in production of high intensity H- ion beam of 85% polarization. High beam brightness and polarization resulted in 75% polarization at 23 GeV out of AGS and 60-65% beam polarization at 100-250 GeV colliding beams in RHIC. The status of un-polarized magnetron type (Cs-vapour loaded) BNL source is also discussed.
NASA Astrophysics Data System (ADS)
Zhao, H. W.; Sun, L. T.; Guo, J. W.; Lu, W.; Xie, D. Z.; Hitz, D.; Zhang, X. Z.; Yang, Y.
2017-09-01
The superconducting electron cyclotron resonance ion source with advanced design in Lanzhou (SECRAL) is a superconducting-magnet-based electron cyclotron resonance ion source (ECRIS) for the production of intense highly charged heavy ion beams. It is one of the best performing ECRISs worldwide and the first superconducting ECRIS built with an innovative magnet to generate a high strength minimum-B field for operation with heating microwaves up to 24-28 GHz. Since its commissioning in 2005, SECRAL has so far produced a good number of continuous wave intensity records of highly charged ion beams, in which recently the beam intensities of 40Ar+ and 129Xe26+ have, for the first time, exceeded 1 emA produced by an ion source. Routine operations commenced in 2007 with the Heavy Ion accelerator Research Facility in Lanzhou (HIRFL), China. Up to June 2017, SECRAL has been providing more than 28,000 hours of highly charged heavy ion beams to the accelerator demonstrating its great capability and reliability. The great achievement of SECRAL is accumulation of numerous technical advancements, such as an innovative magnetic system and an efficient double-frequency (24 +18 GHz ) heating with improved plasma stability. This article reviews the development of SECRAL and production of intense highly charged ion beams by SECRAL focusing on its unique magnet design, source commissioning, performance studies and enhancements, beam quality and long-term operation. SECRAL development and its performance studies representatively reflect the achievements and status of the present ECR ion source, as well as the ECRIS impacts on HIRFL.
NASA Technical Reports Server (NTRS)
Mcdaniel, Oliver Herbert
1975-01-01
The propagation of plane wave and higher order acoustic modes in both hard-walled and absorbent cylindrical ducts was studied at moderate sound intensities where the linear wave equation is valid, and at high intensities where nonlinear effects can be observed. The experiments were conducted with an anechoically terminated twelve-inch inside-diameter transite pipe. Various types of sound sources were mounted at one end of the duct to generate the desired acoustic fields within the duct. Arrays of conventional loudspeakers were used to generate plane waves and higher order acoustic modes at moderate intensities, and an array of four high intensity electro-pneumatic sound sources was used for the experiments in the nonlinear region. The attenuation of absorbent liners made of several different materials was obtained at moderate intensities for both plane waves and high order modes. It was found that the characteristics of the liners studied did not change appreciably at high intensities.
High intensity, pulsed thermal neutron source
Carpenter, J.M.
1973-12-11
This invention relates to a high intensity, pulsed thermal neutron source comprising a neutron-producing source which emits pulses of fast neutrons, a moderator block adjacent to the last neutron source, a reflector block which encases the fast neutron source and the moderator block and has a thermal neutron exit port extending therethrough from the moderator block, and a neutron energy- dependent decoupling reflector liner covering the interior surfaces of the thermal neutron exit port and surrounding all surfaces of the moderator block except the surface viewed by the thermal neutron exit port. (Official Gazette)
The study towards high intensity high charge state laser ion sources.
Zhao, H Y; Jin, Q Y; Sha, S; Zhang, J J; Li, Z M; Liu, W; Sun, L T; Zhang, X Z; Zhao, H W
2014-02-01
As one of the candidate ion sources for a planned project, the High Intensity heavy-ion Accelerator Facility, a laser ion source has been being intensively studied at the Institute of Modern Physics in the past two years. The charge state distributions of ions produced by irradiating a pulsed 3 J/8 ns Nd:YAG laser on solid targets of a wide range of elements (C, Al, Ti, Ni, Ag, Ta, and Pb) were measured with an electrostatic ion analyzer spectrometer, which indicates that highly charged ions could be generated from low-to-medium mass elements with the present laser system, while the charge state distributions for high mass elements were relatively low. The shot-to-shot stability of ion pulses was monitored with a Faraday cup for carbon target. The fluctuations within ±2.5% for the peak current and total charge and ±6% for pulse duration were demonstrated with the present setup of the laser ion source, the suppression of which is still possible.
Zhao, H W; Sun, L T; Zhang, X Z; Guo, X H; Cao, Y; Lu, W; Zhang, Z M; Yuan, P; Song, M T; Zhao, H Y; Jin, T; Shang, Y; Zhan, W L; Wei, B W; Xie, D Z
2008-02-01
There has been increasing demand to provide higher beam intensity and high enough beam energy for heavy ion accelerator and some other applications, which has driven electron cyclotron resonance (ECR) ion source to produce higher charge state ions with higher beam intensity. One of development trends for highly charged ECR ion source is to build new generation ECR sources by utilization of superconducting magnet technology. SECRAL (superconducting ECR ion source with advanced design in Lanzhou) was successfully built to produce intense beams of highly charged ion for Heavy Ion Research Facility in Lanzhou (HIRFL). The ion source has been optimized to be operated at 28 GHz for its maximum performance. The superconducting magnet confinement configuration of the ion source consists of three axial solenoid coils and six sextupole coils with a cold iron structure as field booster and clamping. An innovative design of SECRAL is that the three axial solenoid coils are located inside of the sextupole bore in order to reduce the interaction forces between the sextupole coils and the solenoid coils. For 28 GHz operation, the magnet assembly can produce peak mirror fields on axis of 3.6 T at injection, 2.2 T at extraction, and a radial sextupole field of 2.0 T at plasma chamber wall. During the commissioning phase at 18 GHz with a stainless steel chamber, tests with various gases and some metals have been conducted with microwave power less than 3.5 kW by two 18 GHz rf generators. It demonstrates the performance is very promising. Some record ion beam intensities have been produced, for instance, 810 e microA of O(7+), 505 e microA of Xe(20+), 306 e microA of Xe(27+), and so on. The effect of the magnetic field configuration on the ion source performance has been studied experimentally. SECRAL has been put into operation to provide highly charged ion beams for HIRFL facility since May 2007.
NASA Astrophysics Data System (ADS)
Zhao, H. W.; Sun, L. T.; Zhang, X. Z.; Guo, X. H.; Cao, Y.; Lu, W.; Zhang, Z. M.; Yuan, P.; Song, M. T.; Zhao, H. Y.; Jin, T.; Shang, Y.; Zhan, W. L.; Wei, B. W.; Xie, D. Z.
2008-02-01
There has been increasing demand to provide higher beam intensity and high enough beam energy for heavy ion accelerator and some other applications, which has driven electron cyclotron resonance (ECR) ion source to produce higher charge state ions with higher beam intensity. One of development trends for highly charged ECR ion source is to build new generation ECR sources by utilization of superconducting magnet technology. SECRAL (superconducting ECR ion source with advanced design in Lanzhou) was successfully built to produce intense beams of highly charged ion for Heavy Ion Research Facility in Lanzhou (HIRFL). The ion source has been optimized to be operated at 28GHz for its maximum performance. The superconducting magnet confinement configuration of the ion source consists of three axial solenoid coils and six sextupole coils with a cold iron structure as field booster and clamping. An innovative design of SECRAL is that the three axial solenoid coils are located inside of the sextupole bore in order to reduce the interaction forces between the sextupole coils and the solenoid coils. For 28GHz operation, the magnet assembly can produce peak mirror fields on axis of 3.6T at injection, 2.2T at extraction, and a radial sextupole field of 2.0T at plasma chamber wall. During the commissioning phase at 18GHz with a stainless steel chamber, tests with various gases and some metals have been conducted with microwave power less than 3.5kW by two 18GHz rf generators. It demonstrates the performance is very promising. Some record ion beam intensities have been produced, for instance, 810eμA of O7+, 505eμA of Xe20+, 306eμA of Xe27+, and so on. The effect of the magnetic field configuration on the ion source performance has been studied experimentally. SECRAL has been put into operation to provide highly charged ion beams for HIRFL facility since May 2007.
Controlling the spectral shape of nonlinear Thomson scattering with proper laser chirping
Rykovanov, S. G.; Geddes, C. G. R.; Schroeder, C. B.; ...
2016-03-18
Effects of nonlinearity in Thomson scattering of a high intensity laser pulse from electrons are analyzed. Analytic expressions for laser pulse shaping in frequency (chirping) are obtained which control spectrum broadening for high laser pulse intensities. These analytic solutions allow prediction of the spectral form and required laser parameters to avoid broadening. Results of analytical and numerical calculations agree well. The control over the scattered radiation bandwidth allows narrow bandwidth sources to be produced using high scattering intensities, which in turn greatly improves scattering yield for future x- and gamma-ray sources.
Probing the positron moderation process using high-intensity, highly polarized slow-positron beams
NASA Technical Reports Server (NTRS)
Van House, J.; Zitzewitz, P. W.
1984-01-01
A highly polarized (P = 0.48 + or - 0.02) intense (500,000/sec) beam of 'slow' (Delta E = about 2 eV) positrons (e+) is generated, and it is shown that it is possible to achieve polarization as high as P = 0.69 + or - 0.04 with reduced intensity. The measured polarization of the slow e+ emitted by five different positron moderators showed no dependence on the moderator atomic number (Z). It is concluded that only source positrons with final kinetic energy below 17 keV contribute to the slow-e+ beam, in disagreement with recent yield functions derived from low-energy measurements. Measurements of polarization and yield with absorbers of different Z between the source and moderator show the effects of the energy and angular distributions of the source positrons on P. The depolarization of fast e+ transmitted through high-Z absorbers has been measured. Applications of polarized slow-e+ beams are discussed.
Glass strengthening and patterning methods
Harper, David C; Wereszczak, Andrew A; Duty, Chad E
2015-01-27
High intensity plasma-arc heat sources, such as a plasma-arc lamp, are used to irradiate glass, glass ceramics and/or ceramic materials to strengthen the glass. The same high intensity plasma-arc heat source may also be used to form a permanent pattern on the glass surface--the pattern being raised above the glass surface and integral with the glass (formed of the same material) by use of, for example, a screen-printed ink composition having been irradiated by the heat source.
Pulsed x-ray imaging of high-density objects using a ten picosecond high-intensity laser driver
NASA Astrophysics Data System (ADS)
Rusby, D. R.; Brenner, C. M.; Armstrong, C.; Wilson, L. A.; Clarke, R.; Alejo, A.; Ahmed, H.; Butler, N. M. H.; Haddock, D.; Higginson, A.; McClymont, A.; Mirfayzi, S. R.; Murphy, C.; Notley, M.; Oliver, P.; Allott, R.; Hernandez-Gomez, C.; Kar, S.; McKenna, P.; Neely, D.
2016-10-01
Point-like sources of X-rays that are pulsed (sub nanosecond), high energy (up to several MeV) and bright are very promising for industrial and security applications where imaging through large and dense objects is required. Highly penetrating X-rays can be produced by electrons that have been accelerated by a high intensity laser pulse incident onto a thin solid target. We have used a pulse length of 10ps to accelerate electrons to create a bright x-ray source. The bremsstrahlung temperature was measured for a laser intensity from 8.5-12×1018 W/cm2. These x-rays have sequentially been used to image high density materials using image plate and a pixelated scintillator system.
REPORT OF THE SNOWMASS M6 WORKING GROUP ON HIGH INTENSITY PROTON SOURCES.
DOE Office of Scientific and Technical Information (OSTI.GOV)
CHOU,W.; WEI,J.
The M6 working group had more than 40 active participants (listed in Section 4). During the three weeks at Snowmass, there were about 50 presentations, covering a wide range of topics associated with high intensity proton sources. The talks are listed in Section 5. This group also had joint sessions with a number of other working groups, including E1 (Neutrino Factories and Muon Colliders), E5 (Fixed-Target Experiments), M1 (Muon Based Systems), T4 (Particle Sources), T5 (Beam dynamics), T7 (High Performance Computing) and T9 (Diagnostics). The M6 group performed a survey of the beam parameters of existing and proposed high intensitymore » proton sources, in particular, of the proton drivers. The results are listed in Table 1. These parameters are compared with the requirements of high-energy physics users of secondary beams in Working Groups E1 and E5. According to the consensus reached in the E1 and E5 groups, the U.S. HEP program requires an intense proton source, a 1-4 MW Proton Driver, by the end of this decade.« less
Neuronal generator patterns of olfactory event-related brain potentials in schizophrenia.
Kayser, Jürgen; Tenke, Craig E; Malaspina, Dolores; Kroppmann, Christopher J; Schaller, Jennifer D; Deptula, Andrew; Gates, Nathan A; Harkavy-Friedman, Jill M; Gil, Roberto; Bruder, Gerard E
2010-11-01
To better characterize neurophysiologic processes underlying olfactory dysfunction in schizophrenia, nose-referenced 30-channel electroencephalogram was recorded from 32 patients and 35 healthy adults (18 and 18 male) during detection of hydrogen sulfide (constant-flow olfactometer, 200 ms unirhinal exposure). Event-related potentials (ERPs) were transformed to reference-free current source density (CSD) waveforms and analyzed by unrestricted Varimax-PCA. Participants indicated when they perceived a high (10 ppm) or low (50% dilution) odor concentration. Patients and controls did not differ in detection of high (23% misses) and low (43%) intensities and also had similar olfactory ERP waveforms. CSDs showed a greater bilateral frontotemporal N1 sink (305 ms) and mid-parietal P2 source (630 ms) for high than low intensities. N1 sink and P2 source were markedly reduced in patients for high intensity stimuli, providing further neurophysiological evidence of olfactory dysfunction in schizophrenia. Copyright © 2010 Society for Psychophysiological Research.
Microholography of Living Organisms.
ERIC Educational Resources Information Center
Solem, Johndale C.; Baldwin, George C.
1982-01-01
By using intense pulsed coherent x-ray sources it will be possible to obtain magnified three-dimensional images of living elementary biological structures at precisely defined instants. Discussed are sources/geometrics for x-ray holography, x-radiation interactions, factors affecting resolution, recording the hologram, high-intensity holography,…
Intense fusion neutron sources
NASA Astrophysics Data System (ADS)
Kuteev, B. V.; Goncharov, P. R.; Sergeev, V. Yu.; Khripunov, V. I.
2010-04-01
The review describes physical principles underlying efficient production of free neutrons, up-to-date possibilities and prospects of creating fission and fusion neutron sources with intensities of 1015-1021 neutrons/s, and schemes of production and application of neutrons in fusion-fission hybrid systems. The physical processes and parameters of high-temperature plasmas are considered at which optimal conditions for producing the largest number of fusion neutrons in systems with magnetic and inertial plasma confinement are achieved. The proposed plasma methods for neutron production are compared with other methods based on fusion reactions in nonplasma media, fission reactions, spallation, and muon catalysis. At present, intense neutron fluxes are mainly used in nanotechnology, biotechnology, material science, and military and fundamental research. In the near future (10-20 years), it will be possible to apply high-power neutron sources in fusion-fission hybrid systems for producing hydrogen, electric power, and technological heat, as well as for manufacturing synthetic nuclear fuel and closing the nuclear fuel cycle. Neutron sources with intensities approaching 1020 neutrons/s may radically change the structure of power industry and considerably influence the fundamental and applied science and innovation technologies. Along with utilizing the energy produced in fusion reactions, the achievement of such high neutron intensities may stimulate wide application of subcritical fast nuclear reactors controlled by neutron sources. Superpower neutron sources will allow one to solve many problems of neutron diagnostics, monitor nano-and biological objects, and carry out radiation testing and modification of volumetric properties of materials at the industrial level. Such sources will considerably (up to 100 times) improve the accuracy of neutron physics experiments and will provide a better understanding of the structure of matter, including that of the neutron itself.
Determining X-ray source intensity and confidence bounds in crowded fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Primini, F. A.; Kashyap, V. L., E-mail: fap@head.cfa.harvard.edu
We present a rigorous description of the general problem of aperture photometry in high-energy astrophysics photon-count images, in which the statistical noise model is Poisson, not Gaussian. We compute the full posterior probability density function for the expected source intensity for various cases of interest, including the important cases in which both source and background apertures contain contributions from the source, and when multiple source apertures partially overlap. A Bayesian approach offers the advantages of allowing one to (1) include explicit prior information on source intensities, (2) propagate posterior distributions as priors for future observations, and (3) use Poisson likelihoods,more » making the treatment valid in the low-counts regime. Elements of this approach have been implemented in the Chandra Source Catalog.« less
Anshel, Mark H; Sutarso, Toto; Jubenville, Colby
2009-04-01
The authors examined racial and gender differences on sport-related sources of acute stress that competitive athletes perceived as highly intense and experienced during the competitive event. Athletes (N = 332, 176 men, 156 women; 59 African Americans: 27 men, 32 women; 232 Caucasians: 125 men, 107 women; and 41 Hispanics: 24 men, 17 women) who competed in sport on a high school or college team participated in this study. The sources of the acute stress and the coping style in sport scales, which M. H. Anshel and T. Sutarso (2007) developed, required the athletes to indicate their perceived stress intensity and their "typical" coping responses after experiencing the two stressors they perceived as most intense. A multivarite analysis of variance indicated that Caucasians experienced higher stress intensity more often than did African Americans on each of two sources of acute stress, and Caucasians tended to use an approach-behavior coping style. Women reported higher stress intensity for coach-related sources of acute stress and used approach-behavioral and avoidance-cognitive coping styles more often than did their male counterparts. Hispanic athletes did not differ from other groups on any measure. The authors conclude that race and gender influence the coping process in competitive sport.
NASA Astrophysics Data System (ADS)
Balmashnov, A. A.; Kalashnikov, A. V.; Kalashnikov, V. V.; Stepina, S. P.; Umnov, A. M.
2018-01-01
The formation of a spatially localized plasma with a high brightness has been experimentally observed in a dielectric plasma guide under the electron cyclotron resonance discharge at the excitation of a standing ion-acoustic wave. The results obtained show the possibility of designing compact high-intensity radiation sources with a spectrum determined by the working gas or gas mixture type, high-intensity chemically active particle flow sources, and plasma thrusters for correcting orbits of light spacecraft.
NASA Astrophysics Data System (ADS)
Suemasa, Aru; Shimo-oku, Ayumi; Nakagawa, Ken'ichi; Musha, Mitsuru
2017-12-01
In Japan, not only the ground-based gravitational wave (GW) detector mission KAGRA but also the space GW detector mission DECIGO (DECi-hertz Interferometer Gravitational wave Observatory) and its milestone mission B-DECIGO have been promoted. The designed strain sensitivity of DECIGO and B-DECIGO are δL/ L < 10-23. Since the GW detector requires high power and highly-stable light source, we have developed the light source with high frequency and intensity stability for DECIGO and B-DECIGO. The frequency of the Yb-doped fiber DFB lasers are stabilized to the iodine saturated absorption at 515 nm, and the intensity of the laser at 1 Hz (observation band) is stabilized by controlling the pump source of an Yb-doped fiber amplifier. The intensity of the laser at 200 kHz (modulation band) is also stabilized using an acousto-optic modulator to improve the frequency stability of the laser. In the consequences, we obtain the frequency stability of δf = 0.4 Hz/√Hz (in-loop) at 1 Hz, and the intensity stability of δI/ I = 1.2 × 10-7/√Hz (out-of-loop) and δI/I = 1.5 × 10-7/√Hz (in-loop) at 1 Hz and 200 kHz, respectively.
Laser-driven powerful kHz hard x-ray source
NASA Astrophysics Data System (ADS)
Li, Minghua; Huang, Kai; Chen, Liming; Yan, Wenchao; Tao, Mengze; Zhao, Jiarui; Ma, Yong; Li, Yifei; Zhang, Jie
2017-08-01
A powerful hard x-ray source based on laser plasma interaction is developed. By introducing the kHz, 800 nm pulses onto a rotating molybdenum (Mo) disk target, intense Mo Kα x-rays are emitted with suppressed bremsstrahlung background. Results obtained with different laser intensities suggest that the dominant absorption mechanism responsible for the high conversion efficiency is vacuum heating (VH). The high degree of spatial coherence is verified. With the high average flux and a source size comparable to the laser focus spot, absorption contrast imaging and phase contrast imaging are carried out to test the imaging capability of the source. Not only useful for imaging application, this compact x-ray source is also holding great potential for ultrafast x-ray diffraction (XRD) due to the intrinsic merits such as femtosecond pulse duration and natural synchronization with the driving laser pulses.
Bremsstrahlung Dose Yield for High-Intensity Short-Pulse Laser–Solid Experiments
Liang, Taiee; Bauer, Johannes M.; Liu, James C.; ...
2016-12-01
A bremsstrahlung source term has been developed by the Radiation Protection (RP) group at SLAC National Accelerator Laboratory for high-intensity short-pulse laser–solid experiments between 10 17 and 10 22 W cm –2. This source term couples the particle-in-cell plasma code EPOCH and the radiation transport code FLUKA to estimate the bremsstrahlung dose yield from laser–solid interactions. EPOCH characterizes the energy distribution, angular distribution, and laser-to-electron conversion efficiency of the hot electrons from laser–solid interactions, and FLUKA utilizes this hot electron source term to calculate a bremsstrahlung dose yield (mSv per J of laser energy on target). The goal of thismore » paper is to provide RP guidelines and hazard analysis for high-intensity laser facilities. In conclusion, a comparison of the calculated bremsstrahlung dose yields to radiation measurement data is also made.« less
Bremsstrahlung Dose Yield for High-Intensity Short-Pulse Laser–Solid Experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liang, Taiee; Bauer, Johannes M.; Liu, James C.
A bremsstrahlung source term has been developed by the Radiation Protection (RP) group at SLAC National Accelerator Laboratory for high-intensity short-pulse laser–solid experiments between 10 17 and 10 22 W cm –2. This source term couples the particle-in-cell plasma code EPOCH and the radiation transport code FLUKA to estimate the bremsstrahlung dose yield from laser–solid interactions. EPOCH characterizes the energy distribution, angular distribution, and laser-to-electron conversion efficiency of the hot electrons from laser–solid interactions, and FLUKA utilizes this hot electron source term to calculate a bremsstrahlung dose yield (mSv per J of laser energy on target). The goal of thismore » paper is to provide RP guidelines and hazard analysis for high-intensity laser facilities. In conclusion, a comparison of the calculated bremsstrahlung dose yields to radiation measurement data is also made.« less
Stress, deformation and diffusion interactions in solids - A simulation study
NASA Astrophysics Data System (ADS)
Fischer, F. D.; Svoboda, J.
2015-05-01
Equations of diffusion treated in the frame of Manning's concept, are completed by equations for generation/annihilation of vacancies at non-ideal sources and sinks, by conservation laws, by equations for generation of an eigenstrain state and by a strain-stress analysis. The stress-deformation-diffusion interactions are demonstrated on the evolution of a diffusion couple consisting of two thin layers of different chemical composition forming a free-standing plate without external loading. The equations are solved for different material parameters represented by the values of diffusion coefficients of individual components and by the intensity of sources and sinks for vacancies. The results of simulations indicate that for low intensity of sources and sinks for vacancies a significant eigenstress state can develop and the interdiffusion process is slowed down. For high intensity of sources and sinks for vacancies a significant eigenstrain state can develop and the eigenstress state quickly relaxes. If the difference in the diffusion coefficients of individual components is high, then the intensity of sources and sinks for vacancies influences the interdiffusion process considerably. For such systems their description only by diffusion coefficients is insufficient and must be completed by a microstructure characterization.
Assessment of macroseismic intensity in the Nile basin, Egypt
NASA Astrophysics Data System (ADS)
Fergany, Elsayed
2018-01-01
This work intends to assess deterministic seismic hazard and risk analysis in terms of the maximum expected intensity map of the Egyptian Nile basin sector. Seismic source zone model of Egypt was delineated based on updated compatible earthquake catalog in 2015, focal mechanisms, and the common tectonic elements. Four effective seismic source zones were identified along the Nile basin. The observed macroseismic intensity data along the basin was used to develop intensity prediction equation defined in terms of moment magnitude. Expected maximum intensity map was proven based on the developed intensity prediction equation, identified effective seismic source zones, and maximum expected magnitude for each zone along the basin. The earthquake hazard and risk analysis was discussed and analyzed in view of the maximum expected moment magnitude and the maximum expected intensity values for each effective source zone. Moderate expected magnitudes are expected to put high risk at Cairo and Aswan regions. The results of this study could be a recommendation for the planners in charge to mitigate the seismic risk at these strategic zones of Egypt.
Note: A new design for a low-temperature high-intensity helium beam source
NASA Astrophysics Data System (ADS)
Lechner, B. A. J.; Hedgeland, H.; Allison, W.; Ellis, J.; Jardine, A. P.
2013-02-01
A high-intensity supersonic beam source is a key component of any atom scattering instrument, affecting the sensitivity and energy resolution of the experiment. We present a new design for a source which can operate at temperatures as low as 11.8 K, corresponding to a beam energy of 2.5 meV. The new source improves the resolution of the Cambridge helium spin-echo spectrometer by a factor of 5.5, thus extending the accessible timescales into the nanosecond range. We describe the design of the new source and discuss experiments characterizing its performance. Spin-echo measurements of benzene/Cu(100) illustrate its merit in the study of a typical slow-moving molecular adsorbate species.
Optical long baseline intensity interferometry: prospects for stellar physics
NASA Astrophysics Data System (ADS)
Rivet, Jean-Pierre; Vakili, Farrokh; Lai, Olivier; Vernet, David; Fouché, Mathilde; Guerin, William; Labeyrie, Guillaume; Kaiser, Robin
2018-06-01
More than sixty years after the first intensity correlation experiments by Hanbury Brown and Twiss, there is renewed interest for intensity interferometry techniques for high angular resolution studies of celestial sources. We report on a successful attempt to measure the bunching peak in the intensity correlation function for bright stellar sources with 1 meter telescopes (I2C project). We propose further improvements of our preliminary experiments of spatial interferometry between two 1 m telescopes, and discuss the possibility to export our method to existing large arrays of telescopes.
Compton backscattered collimated x-ray source
Ruth, R.D.; Huang, Z.
1998-10-20
A high-intensity, inexpensive and collimated x-ray source is disclosed for applications such as x-ray lithography is disclosed. An intense pulse from a high power laser, stored in a high-finesse resonator, repetitively collides nearly head-on with and Compton backscatters off a bunched electron beam, having relatively low energy and circulating in a compact storage ring. Both the laser and the electron beams are tightly focused and matched at the interaction region inside the optical resonator. The laser-electron interaction not only gives rise to x-rays at the desired wavelength, but also cools and stabilizes the electrons against intrabeam scattering and Coulomb repulsion with each other in the storage ring. This cooling provides a compact, intense bunch of electrons suitable for many applications. In particular, a sufficient amount of x-rays can be generated by this device to make it an excellent and flexible Compton backscattered x-ray (CBX) source for high throughput x-ray lithography and many other applications. 4 figs.
Compton backscattered collimated x-ray source
Ruth, Ronald D.; Huang, Zhirong
1998-01-01
A high-intensity, inexpensive and collimated x-ray source for applications such as x-ray lithography is disclosed. An intense pulse from a high power laser, stored in a high-finesse resonator, repetitively collides nearly head-on with and Compton backscatters off a bunched electron beam, having relatively low energy and circulating in a compact storage ring. Both the laser and the electron beams are tightly focused and matched at the interaction region inside the optical resonator. The laser-electron interaction not only gives rise to x-rays at the desired wavelength, but also cools and stabilizes the electrons against intrabeam scattering and Coulomb repulsion with each other in the storage ring. This cooling provides a compact, intense bunch of electrons suitable for many applications. In particular, a sufficient amount of x-rays can be generated by this device to make it an excellent and flexible Compton backscattered x-ray (CBX) source for high throughput x-ray lithography and many other applications.
Compton backscattered collmated X-ray source
Ruth, Ronald D.; Huang, Zhirong
2000-01-01
A high-intensity, inexpensive and collimated x-ray source for applications such as x-ray lithography is disclosed. An intense pulse from a high power laser, stored in a high-finesse resonator, repetitively collides nearly head-on with and Compton backscatters off a bunched electron beam, having relatively low energy and circulating in a compact storage ring. Both the laser and the electron beams are tightly focused and matched at the interaction region inside the optical resonator. The laser-electron interaction not only gives rise to x-rays at the desired wavelength, but also cools and stabilizes the electrons against intrabeam scattering and Coulomb repulsion with each other in the storage ring. This cooling provides a compact, intense bunch of electrons suitable for many applications. In particular, a sufficient amount of x-rays can be generated by this device to make it an excellent and flexible Compton backscattered x-ray (CBX) source for high throughput x-ray lithography and many other applications.
LED intense headband light source for fingerprint analysis
Villa-Aleman, Eliel
2005-03-08
A portable, lightweight and high-intensity light source for detecting and analyzing fingerprints during field investigation. On-site field analysis requires long hours of mobile analysis. In one embodiment, the present invention comprises a plurality of light emitting diodes; a power source; and a personal attachment means; wherein the light emitting diodes are powered by the power source, and wherein the power source and the light emitting diodes are attached to the personal attachment means to produce a personal light source for on-site analysis of latent fingerprints. The present invention is available for other applications as well.
OCT imaging with temporal dispersion induced intense and short coherence laser source
NASA Astrophysics Data System (ADS)
Manna, Suman K.; le Gall, Stephen; Li, Guoqiang
2016-10-01
Lower coherence length and higher intensity are two indispensable requirements on the light source for high resolution and large penetration depth OCT imaging. While tremendous interest is being paid on engineering various laser sources to enlarge their bandwidth and hence lowering the coherence length, here we demonstrate another approach by employing strong temporal dispersion onto the existing laser source. Cholesteric liquid crystal (CLC) cells with suitable dispersive slope at the edge of 1-D organic photonic band gap have been designed to provide maximum reduction in coherence volume while maintaining the intensity higher than 50%. As an example, the coherence length of a multimode He-Ne laser is reduced by more than 730 times.
Novel high-energy physics studies using intense lasers and plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leemans, Wim P.; Bulanov, Stepan; Esarey, Eric
2015-06-29
In the framework of the project “Novel high-energy physics studies using intense lasers and plasmas” we conducted the study of ion acceleration and “flying mirrors” with high intensity lasers in order to develop sources of ion beams and high frequency radiation for different applications. Since some schemes of laser ion acceleration are also considered a good source of “flying mirrors”, we proposed to investigate the mechanisms of “mirror” formation. As a result we were able to study the laser ion acceleration from thin foils and near critical density targets. We identified several fundamental factors limiting the acceleration in the RPAmore » regime and proposed the target design to compensate these limitations. In the case of near critical density targets, we developed a concept for the laser driven ion source for the hadron therapy. Also we studied the mechanism of “flying mirror” generation during the intense laser interaction with thin solid density targets. As for the laser-based positron creation and capture we initially proposed to study different regimes of positron beam generation and positron beam cooling. Since the for some of these schemes a good quality electron beam is required, we studied the generation of ultra-low emittance electron beams. In order to understand the fundamental physics of high energy electron beam interaction with high intensity laser pulses, which may affect the efficient generation of positron beams, we studied the radiation reaction effects.« less
Berman, Gennady P [Los Alamos, NM; Bishop, Alan R [Los Alamos, NM; Nguyen, Dinh C [Los Alamos, NM; Chernobrod, Boris M [Santa Fe, NM; Gorshkov, Vacheslav N [Kiev, UA
2009-10-13
A high-speed (Gbps), free space optical communication system is based on spectral encoding of radiation from a wide band light source, such as a laser. By using partially coherent laser beams in combination with a relatively slow photosensor, scintillations can be suppressed by orders of magnitude for distances of more than 10 km. To suppress the intensity fluctuations due to atmospheric turbulence, a source with partial transverse coherence in combination with slow response time photodetector is used. Information is encoded in the spectral domain of a wideband optical source by modulation of spectral amplitudes. A non-coherent light source with wide spectrum (an LED, for example) may be used for high-speed communication over short (less than about a mile) distances.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coppens, Philip; Fournier, Bertrand
Here, the need for data-scaling has become increasingly evident as time-resolved pump-probe photocrystallography is rapidly developing at high intensity X-ray sources. Several aspects of the scaling of data sets collected at synchrotrons, XFELs (X-ray Free Electron Lasers) and high-intensity pulsed electron sources are discussed. They include laser-ON/laser-OFF data scaling, inter- and intra-data set scaling. (C) 2015 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License.
Ultra-intense Pair Creation using the Texas Petawatt Laser and Applications
NASA Astrophysics Data System (ADS)
Liang, Edison; Henderson, Alexander; Clarke, Taylor; Lo, Willie; Chaguine, Petr; Dyer, Gilliss; Riley, Nathan; Serratto, Kristina; Donovan, Michael; Ditmire, Todd
2014-10-01
Pair plasmas and intense gamma-ray sources are ubiquitous in the high-energy universe, from pulser winds to gamma-ray bursts (GRB). Their study can be greatly enhanced if such sources can be recreated in the laboratory under controlled conditions. In 2012 and 2013, a joint Rice-University of Texas team performed over 130 laser shots on thick gold and platinum targets using the 100 Joule Texas Petawatt Laser in Austin. The laser intensity of many shots exceeded 1021 W.cm-2 with pulses as short as 130 fs. These experiments probe a new extreme regime of ultra-intense laser - high-Z solid target interactions never achieved before. In addition to creating copious pairs with the highest density (>1015/cc) and emergent e +/e- ratio exceeding 20% in many shots, these experiments also created the highest density multi-MeV gamma-rays, comparable in absolute numbers to those found inside a gamma-ray burst (GRB). Potential applications of such intense pair and gamma-ray sources to laboratory astrophysics and innovative technologies will be discussed. Work supported by DOE HEDLP program.
NASA Astrophysics Data System (ADS)
Boucerredj, N.; Beggas, K.
2016-10-01
We present our study of high intensity femtosecond laser field interaction with large cluster of Kr and Na (contained 2.103 to 2.107 atoms). When laser intensity is above a critical value, it blows off all of electrons from the cluster and forms a non neutral ion cloud. The irradiation of these clusters by the intense laser field leads to highly excitation energy which can be the source of energetic electrons, electronic emission, highly charge, energetic ions and fragmentation process. During the Coulomb explosion of the resulting highly ionized, high temperature nanoplasma, ions acquire again their energy. It is shown that ultra fast ions are produced. The goal of our study is to investigate in detail a comparative study of the expansion and explosion then the ion energy of metallic and rare gas clusters irradiated by an intense femtosecond laser field. We have found that ions have a kinetic energy up to 105 eV and the Coulomb pressure is little than the hydrodynamic pressure. The Coulomb explosion of a cluster may provide a new high energy ion source.
A Highly intense DC muon source, MuSIC and muon CLFV search
NASA Astrophysics Data System (ADS)
Hino, Y.; Kuno, Y.; Sato, A.; Sakamoto, H.; Matsumoto, Y.; Tran, N. H.; Hashim, I. H.; Fukuda, M.; Hayashida, Y.; Ogitsu, T.; Yamamoto, A.; Yoshida, M.
2014-08-01
MuSIC is a new muon facility, which provides the world's highest intense muon beam with continuous time structure at Research Center of Nuclear Physics (RCNP), Osaka University. It's intensity is designed to be 108 muons per second with only 0.4 kW proton beam. Such a high intense muon beam is very important for searches of rare decay processes, for example search for the muon to electron conversion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, L., E-mail: sunlt@impcas.ac.cn; Feng, Y. C.; Zhang, W. H.
2014-02-15
Superconducting ECR ion sources can produce intense highly charged ion beams for the application in heavy ion accelerators. Superconducting Electron Resonance ion source with Advanced Design (SECRAL) is one of the few fully superconducting ECR ion sources that has been successfully built and put into routine operation for years. With enormous efforts and R and D work, promising results have been achieved with the ion source. Heated by the microwave power from a 7 kW/24 GHz gyrotron microwave generator, very intense highly charged gaseous ion beams have been produced, such as 455 eμA Xe{sup 27+}, 236 eμA Xe{sup 30+}, andmore » 64 eμA Xe{sup 35+}. Since heavy metallic ion beams are being more and more attractive and important for many accelerator projects globally, intensive studies have been made to produce highly charged heavy metal ion beams, such as those from bismuth and uranium. Recently, 420 eμA Bi{sup 30+} and 202 eμA U{sup 33+} have been produced with SECRAL source. This paper will present the latest results with SECRAL, and the operation status will be discussed as well. An introduction of recently started SECRAL II project will also be given in the presentation.« less
Sun, L; Lu, W; Feng, Y C; Zhang, W H; Zhang, X Z; Cao, Y; Zhao, Y Y; Wu, W; Yang, T J; Zhao, B; Zhao, H W; Ma, L Z; Xia, J W; Xie, D
2014-02-01
Superconducting ECR ion sources can produce intense highly charged ion beams for the application in heavy ion accelerators. Superconducting Electron Resonance ion source with Advanced Design (SECRAL) is one of the few fully superconducting ECR ion sources that has been successfully built and put into routine operation for years. With enormous efforts and R&D work, promising results have been achieved with the ion source. Heated by the microwave power from a 7 kW/24 GHz gyrotron microwave generator, very intense highly charged gaseous ion beams have been produced, such as 455 eμA Xe(27+), 236 eμA Xe(30+), and 64 eμA Xe(35+). Since heavy metallic ion beams are being more and more attractive and important for many accelerator projects globally, intensive studies have been made to produce highly charged heavy metal ion beams, such as those from bismuth and uranium. Recently, 420 eμA Bi(30+) and 202 eμA U(33+) have been produced with SECRAL source. This paper will present the latest results with SECRAL, and the operation status will be discussed as well. An introduction of recently started SECRAL II project will also be given in the presentation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Courtois, C.; Compant La Fontaine, A.; Bazzoli, S.
2013-08-15
Results of an experiment to characterise a MeV Bremsstrahlung x-ray emission created by a short (<10 ps) pulse, high intensity (1.4 × 10{sup 19} W/cm{sup 2}) laser are presented. X-ray emission is characterized using several diagnostics; nuclear activation measurements, a calibrated hard x-ray spectrometer, and dosimeters. Results from the reconstructed x-ray energy spectra are consistent with numerical simulations using the PIC and Monte Carlo codes between 0.3 and 30 MeV. The intense Bremsstrahlung x-ray source is used to radiograph an image quality indicator (IQI) heavily filtered with thick tungsten absorbers. Observations suggest that internal features of the IQI can bemore » resolved up to an external areal density of 85 g/cm{sup 2}. The x-ray source size, inferred by the radiography of a thick resolution grid, is estimated to be approximately 400 μm (full width half maximum of the x-ray source Point Spread Function)« less
Characterization of x- and gamma- radiation in relativistically intense laser-solid interactions
NASA Astrophysics Data System (ADS)
Hou, Bixue; Zulick, Calvin; Zhao, Zhen; Nees, John; Batson, Thomas; Maksimchuk, Anatoly; Thomas, Alexander G. R.; Krushelnick, Karl; CenterUltrafast Optical Science Team
2013-10-01
Using a high resolution (λ/ Δλ > 100) high purity germanium detector, the angular and material dependence, and the intensity scaling, of bremsstrahlung gamma radiation from relativistically intense (I > 1018 W/cm2) laser-solid interactions have been characterized at energies between 0.1 and 1 MeV with the high-repetition rate (500 Hz) Lambda-Cubed laser facility. The bremsstrahlung spectra of SiO2, Mo, and Eu2O3 were observed to have two-temperature energy distributions, corresponding to two different groups of electrons and depending on both laser intensity and observation angle. The spectra and source sizes of hard x-radiation under 0.1 MeV are also studied. These x-ray sources are being developed for phase-contrast imaging. Support provided by DHS (EECS-0833499), AFOSR (FA99550-12-1-0310), ARO (W911NF-11-1-0116).
MICROANALYSIS OF MATERIALS USING SYNCHROTRON RADIATION.
DOE Office of Scientific and Technical Information (OSTI.GOV)
JONES,K.W.; FENG,H.
2000-12-01
High intensity synchrotron radiation produces photons with wavelengths that extend from the infrared to hard x rays with energies of hundreds of keV with uniquely high photon intensities that can be used to determine the composition and properties of materials using a variety of techniques. Most of these techniques represent extensions of earlier work performed with ordinary tube-type x-ray sources. The properties of the synchrotron source such as the continuous range of energy, high degree of photon polarization, pulsed beams, and photon flux many orders of magnitude higher than from x-ray tubes have made possible major advances in the possiblemore » chemical applications. We describe here ways that materials analyses can be made using the high intensity beams for measurements with small beam sizes and/or high detection sensitivity. The relevant characteristics of synchrotron x-ray sources are briefly summarized to give an idea of the x-ray parameters to be exploited. The experimental techniques considered include x-ray fluorescence, absorption, and diffraction. Examples of typical experimental apparatus used in these experiments are considered together with descriptions of actual applications.« less
NASA Technical Reports Server (NTRS)
Adamovsky, G.; Sherer, T. N.; Maitland, D. J.
1989-01-01
A novel technique to compensate for unwanted intensity losses in a fiber-optic sensing system is described. The technique involves a continuous sinusoidal modulation of the light source intensity at radio frequencies and an intensity sensor placed in an unbalanced interferometer. The system shows high sensitivity and stability.
NASA Astrophysics Data System (ADS)
Booske, John H.
2008-05-01
Homeland security and military defense technology considerations have stimulated intense interest in mobile, high power sources of millimeter-wave (mmw) to terahertz (THz) regime electromagnetic radiation, from 0.1 to 10THz. While vacuum electronic sources are a natural choice for high power, the challenges have yet to be completely met for applications including noninvasive sensing of concealed weapons and dangerous agents, high-data-rate communications, high resolution radar, next generation acceleration drivers, and analysis of fluids and condensed matter. The compact size requirements for many of these high frequency sources require miniscule, microfabricated slow wave circuits. This necessitates electron beams with tiny transverse dimensions and potentially very high current densities for adequate gain. Thus, an emerging family of microfabricated, vacuum electronic devices share many of the same plasma physics challenges that are currently confronting "classic" high power microwave (HPM) generators including long-life bright electron beam sources, intense beam transport, parasitic mode excitation, energetic electron interaction with surfaces, and rf air breakdown at output windows. The contemporary plasma physics and other related issues of compact, high power mmw-to-THz sources are compared and contrasted to those of HPM generation, and future research challenges and opportunities are discussed.
Internal noise sources limiting contrast sensitivity.
Silvestre, Daphné; Arleo, Angelo; Allard, Rémy
2018-02-07
Contrast sensitivity varies substantially as a function of spatial frequency and luminance intensity. The variation as a function of luminance intensity is well known and characterized by three laws that can be attributed to the impact of three internal noise sources: early spontaneous neural activity limiting contrast sensitivity at low luminance intensities (i.e. early noise responsible for the linear law), probabilistic photon absorption at intermediate luminance intensities (i.e. photon noise responsible for de Vries-Rose law) and late spontaneous neural activity at high luminance intensities (i.e. late noise responsible for Weber's law). The aim of this study was to characterize how the impact of these three internal noise sources vary with spatial frequency and determine which one is limiting contrast sensitivity as a function of luminance intensity and spatial frequency. To estimate the impact of the different internal noise sources, the current study used an external noise paradigm to factorize contrast sensitivity into equivalent input noise and calculation efficiency over a wide range of luminance intensities and spatial frequencies. The impact of early and late noise was found to drop linearly with spatial frequency, whereas the impact of photon noise rose with spatial frequency due to ocular factors.
Loch, R A; Sobierajski, R; Louis, E; Bosgra, J; Bijkerk, F
2012-12-17
The single shot damage thresholds of multilayer optics for high-intensity short-wavelength radiation sources are theoretically investigated, using a model developed on the basis of experimental data obtained at the FLASH and LCLS free electron lasers. We compare the radiation hardness of commonly used multilayer optics and propose new material combinations selected for a high damage threshold. Our study demonstrates that the damage thresholds of multilayer optics can vary over a large range of incidence fluences and can be as high as several hundreds of mJ/cm(2). This strongly suggests that multilayer mirrors are serious candidates for damage resistant optics. Especially, multilayer optics based on Li(2)O spacers are very promising for use in current and future short-wavelength radiation sources.
Development of high intensity X-ray sources at the National Ignition Facility
NASA Astrophysics Data System (ADS)
May, M. J.; Colvin, J. D.; Kemp, G. E.; Barrios, M. A.; Widmann, K.; Benjamin, R.; Thorn, D.; Poole, P.; Blue, B.
2018-05-01
Laser heated plasmas have provided recently some of the most powerful and energetic nanosecond length laboratory sources of x-ray photons (Ephoton = 1-30 keV). The highest x-ray to laser conversion is currently accessible by using underdense (ne ˜ 0.25 nc) plasmas since optimal laser coupling is obtained in millimeter scale targets. The targets can have conversion efficiencies of up to 10%. Several types of targets can be used to produce underdense plasmas: metal lined cylindrical cavities, gas pipes, and most recently nano-wire foams. Both the experimental and simulation details of these high intensity x-ray sources are discussed.
Increased collection efficiency of LIFI high intensity electrodeless light source
NASA Astrophysics Data System (ADS)
Hafidi, Abdeslam; DeVincentis, Marc; Duelli, Markus; Gilliard, Richard
2008-02-01
Recently, RF driven electrodeless high intensity light sources have been implemented successfully in the projection display systems for HDTV and videowall applications. This paper presents advances made in the RF waveguide and electric field concentrator structures with the purpose of reducing effective arc size and increasing light collection. In addition, new optical designs are described that further improve system efficiency. The results of this work demonstrate that projection system light throughput is increased relative to previous implementations and performance is optimized for home theater and other front projector applications that maintain multi-year lifetime without re-lamping, complete spectral range, fast start times and high levels of dynamic contrast due to dimming flexibility in the light source system.
A DERATING METHOD FOR THERAPEUTIC APPLICATIONS OF HIGH INTENSITY FOCUSED ULTRASOUND
Bessonova, O.V.; Khokhlova, V.A.; Canney, M.S.; Bailey, M.R.; Crum, L.A.
2010-01-01
Current methods of determining high intensity focused ultrasound (HIFU) fields in tissue rely on extrapolation of measurements in water assuming linear wave propagation both in water and in tissue. Neglecting nonlinear propagation effects in the derating process can result in significant errors. In this work, a new method based on scaling the source amplitude is introduced to estimate focal parameters of nonlinear HIFU fields in tissue. Focal values of acoustic field parameters in absorptive tissue are obtained from a numerical solution to a KZK-type equation and are compared to those simulated for propagation in water. Focal waveforms, peak pressures, and intensities are calculated over a wide range of source outputs and linear focusing gains. Our modeling indicates, that for the high gain sources which are typically used in therapeutic medical applications, the focal field parameters derated with our method agree well with numerical simulation in tissue. The feasibility of the derating method is demonstrated experimentally in excised bovine liver tissue. PMID:20582159
A derating method for therapeutic applications of high intensity focused ultrasound
NASA Astrophysics Data System (ADS)
Bessonova, O. V.; Khokhlova, V. A.; Canney, M. S.; Bailey, M. R.; Crum, L. A.
2010-05-01
Current methods of determining high intensity focused ultrasound (HIFU) fields in tissue rely on extrapolation of measurements in water assuming linear wave propagation both in water and in tissue. Neglecting nonlinear propagation effects in the derating process can result in significant errors. A new method based on scaling the source amplitude is introduced to estimate focal parameters of nonlinear HIFU fields in tissue. Focal values of acoustic field parameters in absorptive tissue are obtained from a numerical solution to a KZK-type equation and are compared to those simulated for propagation in water. Focal wave-forms, peak pressures, and intensities are calculated over a wide range of source outputs and linear focusing gains. Our modeling indicates, that for the high gain sources which are typically used in therapeutic medical applications, the focal field parameters derated with our method agree well with numerical simulation in tissue. The feasibility of the derating method is demonstrated experimentally in excised bovine liver tissue.
A DERATING METHOD FOR THERAPEUTIC APPLICATIONS OF HIGH INTENSITY FOCUSED ULTRASOUND.
Bessonova, O V; Khokhlova, V A; Canney, M S; Bailey, M R; Crum, L A
2010-01-01
Current methods of determining high intensity focused ultrasound (HIFU) fields in tissue rely on extrapolation of measurements in water assuming linear wave propagation both in water and in tissue. Neglecting nonlinear propagation effects in the derating process can result in significant errors. In this work, a new method based on scaling the source amplitude is introduced to estimate focal parameters of nonlinear HIFU fields in tissue. Focal values of acoustic field parameters in absorptive tissue are obtained from a numerical solution to a KZK-type equation and are compared to those simulated for propagation in water. Focal waveforms, peak pressures, and intensities are calculated over a wide range of source outputs and linear focusing gains. Our modeling indicates, that for the high gain sources which are typically used in therapeutic medical applications, the focal field parameters derated with our method agree well with numerical simulation in tissue. The feasibility of the derating method is demonstrated experimentally in excised bovine liver tissue.
Raw data normalization for a multi source inverse geometry CT system
Baek, Jongduk; De Man, Bruno; Harrison, Daniel; Pelc, Norbert J.
2015-01-01
A multi-source inverse-geometry CT (MS-IGCT) system consists of a small 2D detector array and multiple x-ray sources. During data acquisition, each source is activated sequentially, and may have random source intensity fluctuations relative to their respective nominal intensity. While a conventional 3rd generation CT system uses a reference channel to monitor the source intensity fluctuation, the MS-IGCT system source illuminates a small portion of the entire field-of-view (FOV). Therefore, it is difficult for all sources to illuminate the reference channel and the projection data computed by standard normalization using flat field data of each source contains error and can cause significant artifacts. In this work, we present a raw data normalization algorithm to reduce the image artifacts caused by source intensity fluctuation. The proposed method was tested using computer simulations with a uniform water phantom and a Shepp-Logan phantom, and experimental data of an ice-filled PMMA phantom and a rabbit. The effect on image resolution and robustness of the noise were tested using MTF and standard deviation of the reconstructed noise image. With the intensity fluctuation and no correction, reconstructed images from simulation and experimental data show high frequency artifacts and ring artifacts which are removed effectively using the proposed method. It is also observed that the proposed method does not degrade the image resolution and is very robust to the presence of noise. PMID:25837090
Results of RIKEN superconducting electron cyclotron resonance ion source with 28 GHz.
Higurashi, Y; Ohnishi, J; Nakagawa, T; Haba, H; Tamura, M; Aihara, T; Fujimaki, M; Komiyama, M; Uchiyama, A; Kamigaito, O
2012-02-01
We measured the beam intensity of highly charged heavy ions and x-ray heat load for RIKEN superconducting electron cyclotron resonance ion source with 28 GHz microwaves under the various conditions. The beam intensity of Xe(20+) became maximum at B(min) ∼ 0.65 T, which was ∼65% of the magnetic field strength of electron cyclotron resonance (B(ECR)) for 28 GHz microwaves. We observed that the heat load of x-ray increased with decreasing gas pressure and field gradient at resonance zone. It seems that the beam intensity of highly charged heavy ions with 28 GHz is higher than that with 18 GHz at same RF power.
Decay pattern of the Pygmy Dipole Resonance in 130Te
NASA Astrophysics Data System (ADS)
Isaak, J.; Beller, J.; Fiori, E.; Krtička, M.; Löher, B.; Pietralla, N.; Romig, C.; Rusev, G.; Savran, D.; Scheck, M.; Silva, J.; Sonnabend, K.; Tonchev, A.; Tornow, W.; Weller, H.; Zweidinger, M.
2014-03-01
The electric dipole strength distribution in 130Te has been investigated using the method of Nuclear Resonance Fluorescence. The experiments were performed at the Darmstadt High Intensity Photon Setup using bremsstrahlung as photon source and at the High Intensity overrightarrow γ -Ray Source, where quasi-monochromatic and polarized photon beams are provided. Average decay properties of 130Te below the neutron separation energy are determined. Comparing the experimental data to the predictions of the statistical model indicate, that nuclear structure effects play an important role even at sufficiently high excitation energies. Preliminary results will be presented.
High-Quality Carbohydrates and Physical Performance
Kanter, Mitch
2018-01-01
While all experts agreed that protein needs for performance are likely greater than believed in past generations, particularly for strength training athletes, and that dietary fat could sustain an active person through lower-intensity training bouts, current research still points to carbohydrate as an indispensable energy source for high-intensity performance. PMID:29449746
Positron Beam Characteristics at NEPOMUC Upgrade
NASA Astrophysics Data System (ADS)
Hugenschmidt, C.; Ceeh, H.; Gigl, T.; Lippert, F.; Piochacz, C.; Reiner, M.; Schreckenbach, K.; Vohburger, S.; Weber, J.; Zimnik, S.
2014-04-01
In 2012, the new neutron induced positron source NEPOMUC upgrade was put into operation at FRMII. Major changes have been made to the source which consists of a neutron-γ-converter out of Cd and a Pt foil structure for electron positron pair production and positron moderation. The new design leads to an improvement of both intensity and brightness of the mono-energetic positron beam. In addition, the application of highly enriched 113Cd as neutron-γ-converter extends the lifetime of the positron source to 25 years. A new switching and remoderation device has been installed in order to allow toggling from the high-intensity primary beam to a brightness enhanced remoderated positron beam. At present, an intensity of more than 109 moderated positrons per second is achieved at NEPOMUC upgrade. The main characteristics are presented which comprise positron yield and beam profile of both the primary and the remoderated positron beam.
High-flux neutron source based on a liquid-lithium target
NASA Astrophysics Data System (ADS)
Halfon, S.; Feinberg, G.; Paul, M.; Arenshtam, A.; Berkovits, D.; Kijel, D.; Nagler, A.; Eliyahu, I.; Silverman, I.
2013-04-01
A prototype compact Liquid Lithium Target (LiLiT), able to constitute an accelerator-based intense neutron source, was built. The neutron source is intended for nuclear astrophysical research, boron neutron capture therapy (BNCT) in hospitals and material studies for fusion reactors. The LiLiT setup is presently being commissioned at Soreq Nuclear research Center (SNRC). The lithium target will produce neutrons through the 7Li(p,n)7Be reaction and it will overcome the major problem of removing the thermal power generated by a high-intensity proton beam, necessary for intense neutron flux for the above applications. The liquid-lithium loop of LiLiT is designed to generate a stable lithium jet at high velocity on a concave supporting wall with free surface toward the incident proton beam (up to 10 kW). During off-line tests, liquid lithium was flown through the loop and generated a stable jet at velocity higher than 5 m/s on the concave supporting wall. The target is now under extensive test program using a high-power electron-gun. Up to 2 kW electron beam was applied on the lithium flow at velocity of 4 m/s without any flow instabilities or excessive evaporation. High-intensity proton beam irradiation will take place at SARAF (Soreq Applied Research Accelerator Facility) superconducting linear accelerator currently in commissioning at SNRC.
Report of the Snowmass M6 Working Group on high intensity proton sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weiren Chou and J. Wei
The U.S. high-energy physics program needs an intense proton source, a 1-4 MW Proton Driver (PD), by the end of this decade. This machine will serve as a stand-alone facility that will provide neutrino superbeams and other high intensity secondary beams such as kaons, muons, neutrons, and anti-protons (cf. E1 and E5 group reports) and also serve as the first stage of a neutrino factory (cf. M1 group report). It can also be a high brightness source for a VLHC. Based on present accelerator technology and project construction experience, it is both feasible and cost-effective to construct a 1-4 MWmore » Proton Driver. Two recent PD design studies have been made, one at FNAL and the other at the BNL. Both designed PD's for 1 MW proton beams at a cost of about U.S. $200M (excluding contingency and overhead) and both designs were upgradeable to 4 MW. An international collaboration between FNAL, BNL and KEK on high intensity proton facilities is addressing a number of key design issues. The superconducting (sc) RF cavities, cryogenics, and RF controls developed for the SNS can be directly adopted to save R&D efforts, cost, and schedule. PD studies are also actively being pursued at Europe and Japan.« less
High-flux neutron source based on a liquid-lithium target
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halfon, S.; Feinberg, G.; Paul, M.
2013-04-19
A prototype compact Liquid Lithium Target (LiLiT), able to constitute an accelerator-based intense neutron source, was built. The neutron source is intended for nuclear astrophysical research, boron neutron capture therapy (BNCT) in hospitals and material studies for fusion reactors. The LiLiT setup is presently being commissioned at Soreq Nuclear research Center (SNRC). The lithium target will produce neutrons through the {sup 7}Li(p,n){sup 7}Be reaction and it will overcome the major problem of removing the thermal power generated by a high-intensity proton beam, necessary for intense neutron flux for the above applications. The liquid-lithium loop of LiLiT is designed to generatemore » a stable lithium jet at high velocity on a concave supporting wall with free surface toward the incident proton beam (up to 10 kW). During off-line tests, liquid lithium was flown through the loop and generated a stable jet at velocity higher than 5 m/s on the concave supporting wall. The target is now under extensive test program using a high-power electron-gun. Up to 2 kW electron beam was applied on the lithium flow at velocity of 4 m/s without any flow instabilities or excessive evaporation. High-intensity proton beam irradiation will take place at SARAF (Soreq Applied Research Accelerator Facility) superconducting linear accelerator currently in commissioning at SNRC.« less
1997 Technical Digest Series. Volume 7: Applications of High Field and Short Wavelength Sources VII
1997-03-01
clusters irradiated with ultrashort , high intensity laser pulses can exhibit "ionization ig- nition" which leads...8, 9]. 25-atom Ne clusters and 25-atom Ar clusters are modelled as irradiated by a 800 nm, 15 fs (fwhm) laser pulse with peak intensities ranging...Measurements of the spatial and spectral properties of ultrashort , intense laser pulses propagating in underdense plasmas demonstrate
Laboratory demonstration of Stellar Intensity Interferometry using a software correlator
NASA Astrophysics Data System (ADS)
Matthews, Nolan; Kieda, David
2017-06-01
In this talk I will present measurements of the spatial coherence function of laboratory thermal (black-body) sources using Hanbury-Brown and Twiss interferometry with a digital off-line correlator. Correlations in the intensity fluctuations of a thermal source, such as a star, allow retrieval of the second order coherence function which can be used to perform high resolution imaging and source geometry characterization. We also demonstrate that intensity fluctuations between orthogonal polarization states are uncorrelated but can be used to reduce systematic noise. The work performed here can readily be applied to existing and future Imaging Air-Cherenkov telescopes to measure spatial properties of stellar sources. Some possible candidates for astronomy applications include close binary star systems, fast rotators, Cepheid variables, and potentially even exoplanet characterization.
An Intense Excitation Source for High Power (Blue-Green) Laser.
1983-11-22
mild and forms plasma rings near the edges of the center holes as indicated by the circular line in Figure 1. For dye laser pumping, the high pressure... ring formation, and the heavy gas plasmas produce more high-intensity light pulses than light gas. It is also possible to adjust the diameter of plasma ...sheets into the center hole; 5. the formation of plasma rings ; 6. the expansion and radiative cooling of the plasma which results in 7. the intense
NASA Astrophysics Data System (ADS)
Long, Tao; Clement, Stephen W. J.; Bao, Zemin; Wang, Peizhi; Tian, Di; Liu, Dunyi
2018-03-01
A high spatial resolution and high brightness ion beam from a cold cathode duoplasmatron source and primary ion optics are presented and applied to in-situ analysis of micro-scale geological material with complex structural and chemical features. The magnetic field in the source as well as the influence of relative permeability of magnetic materials on source performance was simulated using COMSOL to confirm the magnetic field strength of the source. Based on SIMION simulation, a high brightness and high spatial resolution negative ion optical system has been developed to achieve Critical (Gaussian) illumination mode. The ion source and primary column are installed on a new Time-of-Flight secondary ion mass spectrometer for analysis of geological samples. The diameter of the ion beam was measured by the knife-edge method and a scanning electron microscope (SEM). Results show that an O2- beam of ca. 5 μm diameter with a beam intensity of ∼5 nA and an O- beam of ca. 5 μm diameter with a beam intensity of ∼50 nA were obtained, respectively. This design will open new possibilities for in-situ elemental and isotopic analysis in geological studies.
Surface modification of ferritic steels using MEVVA and duoplasmatron ion sources
NASA Astrophysics Data System (ADS)
Kulevoy, Timur V.; Chalyhk, Boris B.; Fedin, Petr A.; Sitnikov, Alexey L.; Kozlov, Alexander V.; Kuibeda, Rostislav P.; Andrianov, Stanislav L.; Orlov, Nikolay N.; Kravchuk, Konstantin S.; Rogozhkin, Sergey V.; Useinov, Alexey S.; Oks, Efim M.; Bogachev, Alexey A.; Nikitin, Alexander A.; Iskandarov, Nasib A.; Golubev, Alexander A.
2016-02-01
Metal Vapor Vacuum Arc (MEVVA) ion source (IS) is a unique tool for production of high intensity metal ion beam that can be used for material surface modification. From the other hand, the duoplasmatron ion source provides the high intensity gas ion beams. The MEVVA and duoplasmatron IS developed in Institute for Theoretical and Experimental Physics were used for the reactor steel surface modification experiments. Response of ferritic-martensitic steel specimens on titanium and nitrogen ions implantation and consequent vacuum annealing was investigated. Increase in microhardness of near surface region of irradiated specimens was observed. Local chemical analysis shows atom mixing and redistribution in the implanted layer followed with formation of ultrafine precipitates after annealing.
Jin, Cheng; Wang, Guoli; Wei, Hui; Le, Anh-Thu; Lin, C D
2014-05-30
High-order harmonics extending to the X-ray region generated in a gas medium by intense lasers offer the potential for providing tabletop broadband light sources but so far are limited by their low conversion efficiency. Here we show that harmonics can be enhanced by one to two orders of magnitude without an increase in the total laser power if the laser's waveform is optimized by synthesizing two- or three-colour fields. The harmonics thus generated are also favourably phase-matched so that radiation is efficiently built up in the gas medium. Our results, combined with the emerging intense high-repetition MHz lasers, promise to increase harmonic yields by several orders to make harmonics feasible in the near future as general bright tabletop light sources, including intense attosecond pulses.
NASA Astrophysics Data System (ADS)
Rodrigues, G.; Becker, R.; Hamm, R. W.; Baskaran, R.; Kanjilal, D.; Roy, A.
2014-02-01
The ion current achievable from high intensity ECR sources for highly charged ions is limited by the high space charge. This makes classical extraction systems for the transport and subsequent matching to a radio frequency quadrupole (RFQ) accelerator less efficient. The direct plasma injection (DPI) method developed originally for the laser ion source avoids these problems and uses the combined focusing of the gap between the ion source and the RFQ vanes (or rods) and the focusing of the rf fields from the RFQ penetrating into this gap. For high performance ECR sources that use superconducting solenoids, the stray magnetic field of the source in addition to the DPI scheme provides focusing against the space charge blow-up of the beam. A combined extraction/matching system has been designed for a high performance ECR ion source injecting into an RFQ, allowing a total beam current of 10 mA from the ion source for the production of highly charged 238U40+ (1.33 mA) to be injected at an ion source voltage of 60 kV. In this design, the features of IGUN have been used to take into account the rf-focusing of an RFQ channel (without modulation), the electrostatic field between ion source extraction and the RFQ vanes, the magnetic stray field of the ECR superconducting solenoid, and the defocusing space charge of an ion beam. The stray magnetic field is shown to be critical in the case of a matched beam.
Rodrigues, G; Becker, R; Hamm, R W; Baskaran, R; Kanjilal, D; Roy, A
2014-02-01
The ion current achievable from high intensity ECR sources for highly charged ions is limited by the high space charge. This makes classical extraction systems for the transport and subsequent matching to a radio frequency quadrupole (RFQ) accelerator less efficient. The direct plasma injection (DPI) method developed originally for the laser ion source avoids these problems and uses the combined focusing of the gap between the ion source and the RFQ vanes (or rods) and the focusing of the rf fields from the RFQ penetrating into this gap. For high performance ECR sources that use superconducting solenoids, the stray magnetic field of the source in addition to the DPI scheme provides focusing against the space charge blow-up of the beam. A combined extraction/matching system has been designed for a high performance ECR ion source injecting into an RFQ, allowing a total beam current of 10 mA from the ion source for the production of highly charged (238)U(40+) (1.33 mA) to be injected at an ion source voltage of 60 kV. In this design, the features of IGUN have been used to take into account the rf-focusing of an RFQ channel (without modulation), the electrostatic field between ion source extraction and the RFQ vanes, the magnetic stray field of the ECR superconducting solenoid, and the defocusing space charge of an ion beam. The stray magnetic field is shown to be critical in the case of a matched beam.
Shutterless ion mobility spectrometer with fast pulsed electron source
NASA Astrophysics Data System (ADS)
Bunert, E.; Heptner, A.; Reinecke, T.; Kirk, A. T.; Zimmermann, S.
2017-02-01
Ion mobility spectrometers (IMS) are devices for fast and very sensitive trace gas analysis. The measuring principle is based on an initial ionization process of the target analyte. Most IMS employ radioactive electron sources, such as 63Ni or 3H. These radioactive materials have the disadvantage of legal restrictions and the electron emission has a predetermined intensity and cannot be controlled or disabled. In this work, we replaced the 3H source of our IMS with 100 mm drift tube length with our nonradioactive electron source, which generates comparable spectra to the 3H source. An advantage of our emission current controlled nonradioactive electron source is that it can operate in a fast pulsed mode with high electron intensities. By optimizing the geometric parameters and developing fast control electronics, we can achieve very short electron emission pulses for ionization with high intensities and an adjustable pulse width of down to a few nanoseconds. This results in small ion packets at simultaneously high ion densities, which are subsequently separated in the drift tube. Normally, the required small ion packet is generated by a complex ion shutter mechanism. By omitting the additional reaction chamber, the ion packet can be generated directly at the beginning of the drift tube by our pulsed nonradioactive electron source with only slight reduction in resolving power. Thus, the complex and costly shutter mechanism and its electronics can also be omitted, which leads to a simple low-cost IMS-system with a pulsed nonradioactive electron source and a resolving power of 90.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baumgarten, C.; Barchetti, A.; Einenkel, H.
2011-05-15
A compact electron cyclotron resonance proton source has been developed and installed recently at thePaul Scherrer Institute's high intensity proton accelerator. Operation at the ion source test stand and the accelerator demonstrates a high reliability and stability of the new source. When operated at a 10 - 12 mA net proton current the lifetime of the source exceeds 2000 h. The essential development steps towards the observed performance are described.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fukao, Shinji; Nakanishi, Yoshikazu; Mizoguchi, Tadahiro
X-rays are radiated due to the bremsstrahlung caused by the collision of electrons with a metal target placed opposite the negative electric surface of a crystal by changing the temperature of a LiNbO{sub 3} single crystal uniaxially polarized in the c-axis direction. It is suggested that both electric field intensity and electron density determine the intensity of X-ray radiation. Electrons are supplied by the ionization of residual gas in space, field emission from a case inside which a crystal is located, considered to be due to the high electric-field intensity formed by the surface charges on the crystal, and anmore » external electron source, such as a thermionic source. In a high vacuum, it was found that the electrons supplied by electric-field emission mainly contribute to the radiation of X-rays. It was found that the integrated intensity of X-rays can be maximized by supplying electrons both external and by electric-field emission. Furthermore, the integrated intensity of the X-rays is stable for many repeated temperature changes.« less
NASA Astrophysics Data System (ADS)
Romanov, E. G.; Gavrin, V. N.; Tarasov, V. A.; Malkov, A. P.; Kupriyanov, A. V.; Danshin, S. N.; Veretenkin, E. P.
2017-01-01
Compact high intensity neutrino sources based on 51Cr isotope are demanded for very short baseline neutrino experiments. In particular, a 3 MCi 51Cr neutrino source is needed for the experiment BEST on search for transitions of electron neutrinos to sterile states. The paper presents the results of the analysis of options of the irradiation of highly enriched 50Cr in the existing trap of thermal neutrons of high-flux reactor SM-3, as well as using the most promising variants of the trap after upcoming reconstruction of the reactor. It is shown that it is possible to to obtain the intensity of 51Cr up to 3.85 MCi at the end of irradiation of 50Cr enriched to 97% in the high-flux reactor SM-3 of the JSC “SSC NIIAR”.
Novel system for picosecond photoemission spectroscopy
NASA Astrophysics Data System (ADS)
Haight, R.; Silberman, J. A.; Lilie, M. I.
1988-09-01
This article describes a laser-based source and detection scheme for performing time-resolved photoemission studies of materials. The pulsed laser source produces intense picosecond pulses of coherent radiation that are nearly continuously tunable from the near infrared to photon energies up to 13 eV. To achieve high sensitivity, a novel multianode time-of-flight spectrometer has been built that generates an angularly resolved intensity versus kinetic energy spectrum with better than 100-meV resolution. The source and detector provide an opportunity to study the electronic dynamics of excited systems on a picosecond time scale.
NASA Astrophysics Data System (ADS)
Haefner, C. L.; Bayramian, A.; Betts, S.; Bopp, R.; Buck, S.; Cupal, J.; Drouin, M.; Erlandson, A.; Horáček, J.; Horner, J.; Jarboe, J.; Kasl, K.; Kim, D.; Koh, E.; Koubíková, L.; Maranville, W.; Marshall, C.; Mason, D.; Menapace, J.; Miller, P.; Mazurek, P.; Naylon, A.; Novák, J.; Peceli, D.; Rosso, P.; Schaffers, K.; Sistrunk, E.; Smith, D.; Spinka, T.; Stanley, J.; Steele, R.; Stolz, C.; Suratwala, T.; Telford, S.; Thoma, J.; VanBlarcom, D.; Weiss, J.; Wegner, P.
2017-05-01
Large laser systems that deliver optical pulses with peak powers exceeding one Petawatt (PW) have been constructed at dozens of research facilities worldwide and have fostered research in High-Energy-Density (HED) Science, High-Field and nonlinear physics [1]. Furthermore, the high intensities exceeding 1018W/cm2 allow for efficiently driving secondary sources that inherit some of the properties of the laser pulse, e.g. pulse duration, spatial and/or divergence characteristics. In the intervening decades since that first PW laser, single-shot proof-of-principle experiments have been successful in demonstrating new high-intensity laser-matter interactions and subsequent secondary particle and photon sources. These secondary sources include generation and acceleration of charged-particle (electron, proton, ion) and neutron beams, and x-ray and gamma-ray sources, generation of radioisotopes for positron emission tomography (PET), targeted cancer therapy, medical imaging, and the transmutation of radioactive waste [2, 3]. Each of these promising applications requires lasers with peak power of hundreds of terawatt (TW) to petawatt (PW) and with average power of tens to hundreds of kW to achieve the required secondary source flux.
NASA Astrophysics Data System (ADS)
Schleifer, E.; Bruner, N.; Eisenmann, S.; Botton, M.; Pikuz, S. A., Jr.; Faenov, A. Y.; Gordon, D.; Zigler, A.
2011-05-01
Compact sources of high energy protons (50-500MeV) are expected to be key technology in a wide range of scientific applications 1-8. Particularly promising is the target normal sheah acceleration (TNSA) scheme 9,10, holding record level of 67MeV protons generated by a peta-Watt laser 11. In general, laser intensity exceeding 1018 W/cm2 is required to produce MeV level protons. Enhancing the energy of generated protons using compact laser sources is very attractive task nowadays. Recently, nano-scale targets were used to accelerate ions 12,13. Here we report on the first generation of 5.5-7.5MeV protons by modest laser intensities (4.5 × 1017 W/cm2) interacting with H2O nano-wires (snow) deposited on a Sapphire substrate. In this setup, the plasma near the tip of the nano-wire is subject to locally enhanced laser intensity with high spatial gradients, and confined charge separation is obtained. Electrostatic fields of extremely high intensities are produced, and protons are accelerated to MeV-level energies. Nano-wire engineered targets will relax the demand of peak energy from laser based sources.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mihalcea, D.; Murokh, A.; Piot, P.
2017-07-01
A high-brilliance (~10 22 photon s -1 mm -2 mrad -2 /0.1%) gamma-ray source experiment is currently being planned at Fermilab (E γ≃1.1 MeV). The source implements a high-repetition-rate inverse Compton scattering by colliding electron bunches formed in a ~300-MeV superconducting linac with a high-intensity laser pulse. This paper describes the design rationale along with some of technical challenges associated to producing high-repetition-rate collision. The expected performances of the gamma-ray source are also presented.
A new multidimensional diagnostic method for measuring the properties of intense ion beams
NASA Astrophysics Data System (ADS)
Yasuike, Kazuhito; Miyamoto, Shuji; Nakai, Sadao
1996-02-01
A new arrayed pinhole camera (APC) diagnostic method for intense ion beams has been developed. The APC diagnostic technique permits the acquisition of the angular divergences and the ion fluxes of high intensity ion beams, in one shot, with a spatial resolution on the source of better than 1 mm and an effective angular divergence resolution of better than 10 mrad. A prototype time integrated APC has been designed and evaluated. The demonstration experiments have been performed on a Reiden-IV, 1 MV and 1 Ω pulsed power machine [1 T W (tera-watt or trillion watts)]. Proton beams of 0.7 MeV, with a pulse duration of ˜50 ns and an ion current density of about 100 A/cm2, were generated in an applied-Br type ion diode source using paraffin-filled grooves. These experimental results show that the APC can measure nonuniformities in the ion beam intensity generated from the ion source and the dependence of beam angular divergence on ion beam intensity.
Terrestrial black holes as sources of super-high energy radiation
NASA Astrophysics Data System (ADS)
Trofimenko, A. P.; Gurin, V. S.
1993-04-01
The study proposes small black holes which can be located in the earth's interior as sources of superhigh energy radiation; their origin is not constrained to the big bang. The intensity and spectrum of massless and massive particle radiation due to the Hawking effect for black holes with masses of 10 exp 8 to 10 exp 16 are estimated. The possibility of their detection according to a number of features (high particle energies, thermal energetic spectrum, transientness or an explicit trend to intensity and energy increase, and some expressed direction of emission associated with source localization) is explored. The rates of the radiation of massless particles with spin-1/2 and with spin-1 are illustrated in graphic form.
Jochmann, A; Irman, A; Bussmann, M; Couperus, J P; Cowan, T E; Debus, A D; Kuntzsch, M; Ledingham, K W D; Lehnert, U; Sauerbrey, R; Schlenvoigt, H P; Seipt, D; Stöhlker, Th; Thorn, D B; Trotsenko, S; Wagner, A; Schramm, U
2013-09-13
Thomson backscattering of intense laser pulses from relativistic electrons not only allows for the generation of bright x-ray pulses but also for the investigation of the complex particle dynamics at the interaction point. For this purpose a complete spectral characterization of a Thomson source powered by a compact linear electron accelerator is performed with unprecedented angular and energy resolution. A rigorous statistical analysis comparing experimental data to 3D simulations enables, e.g., the extraction of the angular distribution of electrons with 1.5% accuracy and, in total, provides predictive capability for the future high brightness hard x-ray source PHOENIX (photon electron collider for narrow bandwidth intense x rays) and potential gamma-ray sources.
A positron remoderator for the high intensity positron source NEPOMUC
NASA Astrophysics Data System (ADS)
Piochacz, Christian; Kögel, Gottfried; Egger, Werner; Hugenschmidt, Christoph; Mayer, Jakob; Schreckenbach, Klaus; Sperr, Peter; Stadlbauer, Martin; Dollinger, Günther
2008-10-01
A remoderator for the high intensity positron source NEPOMUC was developed and installed at the beam facility. A beam of remoderated positrons could be produced with different energies and a diameter of less than 2 mm was obtained. The efficiency of the remoderation setup was determined to be 5%. Due to the brilliance of the remoderated beam, the measurements at the coincidence Doppler broadening spectrometer (CDBS) and at the positron annihilation induced Auger electron spectrometer (PAES) could be improved. The setup and functionality of the remoderation device is presented as well as the first measurements at the remoderator, CDBS and PAES.
Shigaki, Francirose; Sharpley, Andrew; Prochnow, Luis Ignacio
2007-02-01
Phosphorus runoff from agricultural fields amended with mineral fertilizers and manures has been linked to freshwater eutrophication. A rainfall simulation study was conducted to evaluate the effects of different rainfall intensities and P sources differing in water soluble P (WSP) concentration on P transport in runoff from soil trays packed with a Berks loam and grassed with annual ryegrass (Lolium multiflorum Lam.). Triple superphosphate (TSP; 79% WSP), low-grade super single phosphate (LGSSP; 50% WSP), North Carolina rock phosphate (NCRP; 0.5% WSP) and swine manure (SM; 70% WSP), were broadcast (100 kg total P ha-1) and rainfall applied at 25, 50 and 75 mm h-1 1, 7, 21, and 56 days after P source application. The concentration of dissolved reactive (DRP), particulate (PP), and total P (TP) was significantly (P<0.01) greater in runoff with a rainfall intensity of 75 than 25 mm h-1 for all P sources. Further, runoff DRP increased as P source WSP increased, with runoff from a 50 mm h-1 rain 1 day after source application having a DRP concentration of 0.25 mg L-1 for NCRP and 28.21 mg L-1 for TSP. In contrast, the proportion of runoff TP as PP was greater with low (39% PP for NCRP) than high WSP sources (4% PP for TSP) averaged for all rainfall intensities. The increased PP transport is attributed to the detachment and transport of undissolved P source particles during runoff. These results show that P source water solubility and rainfall intensity can influence P transport in runoff, which is important in evaluating the long-term risks of P source application on P transport in surface runoff.
Innovative Technologies for Maskless Lithography and Non-Conventional Patterning
2008-08-01
wave sources are used and quantitative data is produced on the local field intensities and scattered plane and plasmon wave amplitudes and phases...transistors”, Transducers 2007, Lyon, France, 3EH5.P, 2007. 9. D. Huang and V. Subramanian “Iodine-doped pentacene schottky diodes for high-frequency RFID...wave sources are used and quantitative data is produced on the local field intensities and scattered plane and plasmon wave amplitudes and phases
RF Design of a High Average Beam-Power SRF Electron Source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sipahi, Nihan; Biedron, Sandra; Gonin, Ivan
2016-06-01
There is a significant interest in developing high-average power electron sources, particularly in the area of electron sources integrated with Superconducting Radio Frequency (SRF) systems. For these systems, the electron gun and cathode parts are critical components for stable intensity and high-average powers. In this initial design study, we will present the design of a 9-cell accelerator cavity having a frequency of 1.3 GHz and the corresponding field optimization studies.
NASA Astrophysics Data System (ADS)
He, Yixin; Wang, Yuye; Xu, Degang; Nie, Meitong; Yan, Chao; Tang, Longhuang; Shi, Jia; Feng, Jiachen; Yan, Dexian; Liu, Hongxiang; Teng, Bing; Feng, Hua; Yao, Jianquan
2018-01-01
We have demonstrated a high-energy and broadly tunable monochromatic terahertz (THz) source based on difference frequency generation (DFG) in DAST crystal. A high-energy dual-wavelength optical parametric oscillator with two KTP crystals was constructed as a light source for DFG, where the effect of blue light was first observed accompanying with tunable dual-wavelength pump light due to different nonlinear processes. The THz frequency was tuned randomly in the range of 0.3-19.6 THz. The highest energy of 870 nJ/pulse was obtained at 18.9 THz under the intense pump intensity of 247 MW/cm2. The THz energy dips above 3 THz have been analyzed and mainly attributed to the resonance absorption induced by lattice vibration in DAST crystal. The dependence of THz output on the input energy was studied experimentally, and THz output saturation was observed. Furthermore, tests of transmission spectroscopy of four typical samples were demonstrated with this ultra-wideband THz source.
NASA Astrophysics Data System (ADS)
Skuhersky, Michael
2013-04-01
IsoDAR (Isotope Decay-At-Rest) is a proposed high-intensity source of electron antineutrinos intended for use in searches for beyond standard model physics, the main analysis being a short baseline search for sterile neutrinos at a kiloton scale liquid scintillator detector. The source uses a compact cyclotron to deliver 600kW of protons at 60 MeV/nucleon in the form of H2^+ onto a Beryllium target which produces a large intermediate energy neutron flux. These neutrons thermalize and capture on a 99.9% pure ^7Li sleeve, which produces ^8Li at rest, which subsequently beta decays producing νe. Due to the high neutron fluxes, large duty factor, and low background environment surrounding the neutrino detector, we need to understand the activation risk and design a shield to minimize this risk allowing for the safe operation of the source. I will report on my neutron activation studies and the benchmarking of Geant4 for these applications.
NASA Astrophysics Data System (ADS)
Badrianto, Muldani Dwi; Riupassa, Robi D.; Basar, Khairul
2015-09-01
Nuclear batteries have strategic applications and very high economic potential. One Important problem in application of nuclear betavoltaic battery is its low efficiency. Current efficiency of betavoltaic nuclear battery reaches only arround 2%. One aspect that can influence the efficiency of betavoltaic nuclear battery is the geometrical configuration of radioactive source. In this study we discuss the effect of geometrical configuration of radioactive source material to the radiation intensity in betavoltaic nuclear battery system. received by the detector. By obtaining the optimum configurations, the optimum usage of radioactive materials can be determined. Various geometrical configurations of radioactive source material are simulated. It is obtained that usage of radioactive source will be optimum for circular configuration.
Investigation of the Photon Strength Function in 130 Te
NASA Astrophysics Data System (ADS)
Isaak, J.; Beller, J.; Fiori, E.; Glorius, J.; Krtička, M.; Löher, B.; Pietralla, N.; Romig, C.; Rusev, G.; Savran, D.; Scheck, M.; Silva, J.; Sonnabend, K.; Tonchev, A. P.; Tornow, W.; Weller, H. R.; Zweidinger, M.
2016-01-01
The dipole strength distribution of 130Te was investigated with the method of Nuclear Resonance Fluorescence using continuous-energy bremsstrahlung at the Darmstadt High Intensity Photon Setup and quasi-monoenergetic photons at the High Intensity γ-Ray Source. The average decay properties were determined between 5.50 and 8.15 MeV and compared to simulations within the statistical model.
NASA Astrophysics Data System (ADS)
Edwards, R. D.; Sinclair, M. A.; Goldsack, T. J.; Krushelnick, K.; Beg, F. N.; Clark, E. L.; Dangor, A. E.; Najmudin, Z.; Tatarakis, M.; Walton, B.; Zepf, M.; Ledingham, K. W. D.; Spencer, I.; Norreys, P. A.; Clarke, R. J.; Kodama, R.; Toyama, Y.; Tampo, M.
2002-03-01
The application of high intensity laser-produced gamma rays is discussed with regard to picosecond resolution deep-penetration radiography. The spectrum and angular distribution of these gamma rays is measured using an array of thermoluminescent detectors for both an underdense (gas) target and an overdense (solid) target. It is found that the use of an underdense target in a laser plasma accelerator configuration produces a much more intense and directional source. The peak dose is also increased significantly. Radiography is demonstrated in these experiments and the source size is also estimated.
Opacity meter for monitoring exhaust emissions from non-stationary sources
Dec, John Edward
2000-01-01
Method and apparatus for determining the opacity of exhaust plumes from moving emissions sources. In operation, a light source is activated at a time prior to the arrival of a diesel locomotive at a measurement point, by means of a track trigger switch or the Automatic Equipment Identification system, such that the opacity measurement is synchronized with the passage of an exhaust plume past the measurement point. A beam of light from the light source passes through the exhaust plume of the locomotive and is detected by a suitable detector, preferably a high-rate photodiode. The light beam is well-collimated and is preferably monochromatic, permitting the use of a narrowband pass filter to discriminate against background light. In order to span a double railroad track and provide a beam which is substantially stronger than background, the light source, preferably a diode laser, must provide a locally intense beam. A high intensity light source is also desirable in order to increase accuracy at the high sampling rates required. Also included is a computer control system useful for data acquisition, manipulation, storage and transmission of opacity data and the identification of the associated diesel engine to a central data collection center.
Experimental quantum secret sharing and third-man quantum cryptography.
Chen, Yu-Ao; Zhang, An-Ning; Zhao, Zhi; Zhou, Xiao-Qi; Lu, Chao-Yang; Peng, Cheng-Zhi; Yang, Tao; Pan, Jian-Wei
2005-11-11
Quantum secret sharing (QSS) and third-man quantum cryptography (TQC) are essential for advanced quantum communication; however, the low intensity and fragility of the multiphoton entanglement source in previous experiments have made their realization an extreme experimental challenge. Here, we develop and exploit an ultrastable high intensity source of four-photon entanglement to report an experimental realization of QSS and TQC. The technology developed in our experiment will be important for future multiparty quantum communication.
Full spectrum optical safeguard
Ackerman, Mark R.
2008-12-02
An optical safeguard device with two linear variable Fabry-Perot filters aligned relative to a light source with at least one of the filters having a nonlinear dielectric constant material such that, when a light source produces a sufficiently high intensity light, the light alters the characteristics of the nonlinear dielectric constant material to reduce the intensity of light impacting a connected optical sensor. The device can be incorporated into an imaging system on a moving platform, such as an aircraft or satellite.
Radiation of X-Rays Using Uniaxially Polarized LiNbO3 Single Crystal
NASA Astrophysics Data System (ADS)
Fukao, Shinji; Nakanishi, Yoshikazu; Mizoguchi, Tadahiro; Ito, Yoshiaki; Nakamura, Toru; Yoshikado, Shinzo
2009-03-01
X-rays are radiated due to the bremsstrahlung caused by the collision of electrons with a metal target placed opposite the negative electric surface of a crystal by changing the temperature of a LiNbO3 single crystal uniaxially polarized in the c-axis direction. It is suggested that both electric field intensity and electron density determine the intensity of X-ray radiation. Electrons are supplied by the ionization of residual gas in space, field emission from a case inside which a crystal is located, considered to be due to the high electric-field intensity formed by the surface charges on the crystal, and an external electron source, such as a thermionic source. In a high vacuum, it was found that the electrons supplied by electric-field emission mainly contribute to the radiation of X-rays. It was found that the integrated intensity of X-rays can be maximized by supplying electrons both external and by electric-field emission. Furthermore, the integrated intensity of the X-rays is stable for many repeated temperature changes.
Zhao, H Y; Zhang, J J; Jin, Q Y; Liu, W; Wang, G C; Sun, L T; Zhang, X Z; Zhao, H W
2016-02-01
A laser ion source based on Nd:YAG laser has been being studied at the Institute of Modern Physics for the production of high intensity high charge state heavy ion beams in the past ten years, for possible applications both in a future accelerator complex and in heavy ion cancer therapy facilities. Based on the previous results for the production of multiple-charged ions from a wide range of heavy elements with a 3 J/8 ns Nd:YAG laser [Zhao et al., Rev. Sci. Instrum. 85, 02B910 (2014)], higher laser energy and intensity in the focal spot are necessary for the production of highly charged ions from the elements heavier than aluminum. Therefore, the laser ion source was upgraded with a new Nd:YAG laser, the maximum energy of which is 8 J and the pulse duration can be adjusted from 8 to 18 ns. Since then, the charge state distributions of ions from various elements generated by the 8 J Nd:YAG laser were investigated for different experimental conditions, such as laser energy, pulse duration, power density in the focal spot, and incidence angle. It was shown that the incidence angle is one of the most important parameters for the production of highly charged ions. The capability of producing highly charged ions from the elements lighter than silver was demonstrated with the incidence angle of 10° and laser power density of 8 × 10(13) W cm(-2) in the focal spot, which makes a laser ion source complementary to the superconducting electron cyclotron resonance ion source for the future accelerator complex especially in terms of the ion beam production from some refractory elements. Nevertheless, great efforts with regard to the extraction of intense ion beams, modification of the ion beam pulse duration, and reliability of the ion source still need to be made for practical applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, H. Y., E-mail: zhaohy@impcas.ac.cn; Zhang, J. J.; Jin, Q. Y.
2016-02-15
A laser ion source based on Nd:YAG laser has been being studied at the Institute of Modern Physics for the production of high intensity high charge state heavy ion beams in the past ten years, for possible applications both in a future accelerator complex and in heavy ion cancer therapy facilities. Based on the previous results for the production of multiple-charged ions from a wide range of heavy elements with a 3 J/8 ns Nd:YAG laser [Zhao et al., Rev. Sci. Instrum. 85, 02B910 (2014)], higher laser energy and intensity in the focal spot are necessary for the production ofmore » highly charged ions from the elements heavier than aluminum. Therefore, the laser ion source was upgraded with a new Nd:YAG laser, the maximum energy of which is 8 J and the pulse duration can be adjusted from 8 to 18 ns. Since then, the charge state distributions of ions from various elements generated by the 8 J Nd:YAG laser were investigated for different experimental conditions, such as laser energy, pulse duration, power density in the focal spot, and incidence angle. It was shown that the incidence angle is one of the most important parameters for the production of highly charged ions. The capability of producing highly charged ions from the elements lighter than silver was demonstrated with the incidence angle of 10° and laser power density of 8 × 10{sup 13} W cm{sup −2} in the focal spot, which makes a laser ion source complementary to the superconducting electron cyclotron resonance ion source for the future accelerator complex especially in terms of the ion beam production from some refractory elements. Nevertheless, great efforts with regard to the extraction of intense ion beams, modification of the ion beam pulse duration, and reliability of the ion source still need to be made for practical applications.« less
Broadband radio spectro-polarimetric observations of high-Faraday-rotation-measure AGN
NASA Astrophysics Data System (ADS)
Pasetto, Alice; Carrasco-González, Carlos; O'Sullivan, Shane; Basu, Aritra; Bruni, Gabriele; Kraus, Alex; Curiel, Salvador; Mack, Karl-Heinz
2018-06-01
We present broadband polarimetric observations of a sample of high-Faraday-rotation-measure (high-RM) active galactic nuclei (AGN) using the Karl. G. Jansky Very Large Array (JVLA) telescope from 1 to 2 GHz, and 4 to 12 GHz. The sample (14 sources) consists of very compact sources (linear resolution smaller than ≈5 kpc) that are unpolarized at 1.4 GHz in the NRAO VLA Sky Survey (NVSS). Total intensity data have been modeled using a combination of synchrotron components, revealing complex structure in their radio spectra. Depolarization modeling, through the so-called qu-fitting (the modeling of the fractional quantities of the Stokes Q and U parameters), has been performed on the polarized data using an equation that attempts to simplify the process of fitting many different depolarization models. These models can be divided into two major categories: external depolarization (ED) and internal depolarization (ID) models. Understanding which of the two mechanisms is the most representative would help the qualitative understanding of the AGN jet environment and whether it is embedded in a dense external magneto-ionic medium or if it is the jet-wind that causes the high RM and strong depolarization. This could help to probe the jet magnetic field geometry (e.g., helical or otherwise). This new high-sensitivity data shows a complicated behavior in the total intensity and polarization radio spectrum of individual sources. We observed the presence of several synchrotron components and Faraday components in their total intensity and polarized spectra. For the majority of our targets (12 sources), the depolarization seems to be caused by a turbulent magnetic field. Thus, our main selection criteria (lack of polarization at 1.4 GHz in the NVSS) result in a sample of sources with very large RMs and depolarization due to turbulent magnetic fields local to the source. These broadband JVLA data reveal the complexity of the polarization properties of this class of radio sources. We show how the new qu-fitting technique can be used to probe the magnetized radio source environment and to spectrally resolve the polarized components of unresolved radio sources.
Hur, M. S.; Ersfeld, B.; Noble, A.; Suk, H.; Jaroszynski, D. A.
2017-01-01
Ultra-intense, narrow-bandwidth, electromagnetic pulses have become important tools for exploring the characteristics of matter. Modern tuneable high-power light sources, such as free-electron lasers and vacuum tubes, rely on bunching of relativistic or near-relativistic electrons in vacuum. Here we present a fundamentally different method for producing narrow-bandwidth radiation from a broad spectral bandwidth current source, which takes advantage of the inflated radiation impedance close to cut-off in a medium with a plasma-like permittivity. We find that by embedding a current source in this cut-off region, more than an order of magnitude enhancement of the radiation intensity is obtained compared with emission directly into free space. The method suggests a simple and general way to flexibly use broadband current sources to produce broad or narrow bandwidth pulses. As an example, we demonstrate, using particle-in-cell simulations, enhanced monochromatic emission of terahertz radiation using a two-colour pumped current source enclosed by a tapered waveguide. PMID:28071681
Computer Modeling of High-Intensity Cs-Sputter Ion Sources
NASA Astrophysics Data System (ADS)
Brown, T. A.; Roberts, M. L.; Southon, J. R.
The grid-point mesh program NEDLab has been used to computer model the interior of the high-intensity Cs-sputter source used in routine operations at the Center for Accelerator Mass Spectrometry (CAMS), with the goal of improving negative ion output. NEDLab has several features that are important to realistic modeling of such sources. First, space-charge effects are incorporated in the calculations through an automated ion-trajectories/Poissonelectric-fields successive-iteration process. Second, space charge distributions can be averaged over successive iterations to suppress model instabilities. Third, space charge constraints on ion emission from surfaces can be incorporate under Child's Law based algorithms. Fourth, the energy of ions emitted from a surface can be randomly chosen from within a thermal energy distribution. And finally, ions can be emitted from a surface at randomized angles The results of our modeling effort indicate that significant modification of the interior geometry of the source will double Cs+ ion production from our spherical ionizer and produce a significant increase in negative ion output from the source.
NASA Astrophysics Data System (ADS)
Hur, M. S.; Ersfeld, B.; Noble, A.; Suk, H.; Jaroszynski, D. A.
2017-01-01
Ultra-intense, narrow-bandwidth, electromagnetic pulses have become important tools for exploring the characteristics of matter. Modern tuneable high-power light sources, such as free-electron lasers and vacuum tubes, rely on bunching of relativistic or near-relativistic electrons in vacuum. Here we present a fundamentally different method for producing narrow-bandwidth radiation from a broad spectral bandwidth current source, which takes advantage of the inflated radiation impedance close to cut-off in a medium with a plasma-like permittivity. We find that by embedding a current source in this cut-off region, more than an order of magnitude enhancement of the radiation intensity is obtained compared with emission directly into free space. The method suggests a simple and general way to flexibly use broadband current sources to produce broad or narrow bandwidth pulses. As an example, we demonstrate, using particle-in-cell simulations, enhanced monochromatic emission of terahertz radiation using a two-colour pumped current source enclosed by a tapered waveguide.
Intense X-ray and EUV light source
Coleman, Joshua; Ekdahl, Carl; Oertel, John
2017-06-20
An intense X-ray or EUV light source may be driven by the Smith-Purcell effect. The intense light source may utilize intense electron beams and Bragg crystals. This may allow the intense light source to range from the extreme UV range up to the hard X-ray range.
NASA Astrophysics Data System (ADS)
Gonzalo, I. B.; Maria, M.; Engelsholm, R. D.; Feuchter, T.; Leick, L.; Moselund, P. M.; Podoleanu, A.; Bang, O.
2018-02-01
Supercontinuum (SC) sources are of great interest for many applications due to their ultra-broad optical bandwidth, good beam quality and high power spectral density [1]. In particular, the high average power over large bandwidths makes SC light sources excellent candidates for ultra-high resolution optical coherence tomography (UHR-OCT) [2-5]. However, conventional SC sources suffer from high pulse-to-pulse intensity fluctuations as a result of the noise-sensitive nonlinear effects involved in the SC generation process [6-9]. This intensity noise from the SC source can limit the performance of OCT, resulting in a reduced signal-to-noise ratio (SNR) [10-12]. Much work has been done to reduce the noise of the SC sources for instance with fiber tapers [7,8] or increasing the repetition rate of the pump laser for averaging in the spectrometer [10,12]. An alternative approach is to use all-normal dispersion (ANDi) fibers [13,14] to generate SC light from well-known coherent nonlinear processes [15-17]. In fact, reduction of SC noise using ANDi fibers compared to anomalous dispersion SC pumped by sub-picosecond pulses has been recently demonstrated [18], but a cladding mode was used to stabilize the ANDi SC. In this work, we characterize the noise performance of a femtosecond pumped ANDi based SC and a commercial SC source in an UHR-OCT system at 1300 nm. We show that the ANDi based SC presents exceptional noise properties compared to a commercial source. An improvement of 5 dB in SNR is measured in the UHR-OCT system, and the noise behavior resembles that of a superluminiscent diode. This preliminary study is a step forward towards development of an ultra-low noise SC source at 1300 nm for ultra-high resolution OCT.
NASA Astrophysics Data System (ADS)
Kropivnitskaya, Y. Y.; Tiampo, K. F.; Qin, J.; Bauer, M.
2015-12-01
Intensity is one of the most useful measures of earthquake hazard, as it quantifies the strength of shaking produced at a given distance from the epicenter. Today, there are several data sources that could be used to determine intensity level which can be divided into two main categories. The first category is represented by social data sources, in which the intensity values are collected by interviewing people who experienced the earthquake-induced shaking. In this case, specially developed questionnaires can be used in addition to personal observations published on social networks such as Twitter. These observations are assigned to the appropriate intensity level by correlating specific details and descriptions to the Modified Mercalli Scale. The second category of data sources is represented by observations from different physical sensors installed with the specific purpose of obtaining an instrumentally-derived intensity level. These are usually based on a regression of recorded peak acceleration and/or velocity amplitudes. This approach relates the recorded ground motions to the expected felt and damage distribution through empirical relationships. The goal of this work is to implement and evaluate streaming data processing separately and jointly from both social and physical sensors in order to produce near real-time intensity maps and compare and analyze their quality and evolution through 10-minute time intervals immediately following an earthquake. Results are shown for the case study of the M6.0 2014 South Napa, CA earthquake that occurred on August 24, 2014. The using of innovative streaming and pipelining computing paradigms through IBM InfoSphere Streams platform made it possible to read input data in real-time for low-latency computing of combined intensity level and production of combined intensity maps in near-real time. The results compare three types of intensity maps created based on physical, social and combined data sources. Here we correlate the count and density of Tweets with intensity level and show the importance of processing combined data sources at the earliest time stages after earthquake happens. This method can supplement existing approaches of intensity level detection, especially in the regions with high number of Twitter users and low density of seismic networks.
Development of the ion source for cluster implantation
NASA Astrophysics Data System (ADS)
Kulevoy, T. V.; Seleznev, D. N.; Kozlov, A. V.; Kuibeda, R. P.; Kropachev, G. N.; Alexeyenko, O. V.; Dugin, S. N.; Oks, E. M.; Gushenets, V. I.; Hershcovitch, A.; Jonson, B.; Poole, H. J.
2014-02-01
Bernas ion source development to meet needs of 100s of electron-volt ion implanters for shallow junction production is in progress in Institute for Theoretical and Experimental Physics. The ion sources provides high intensity ion beam of boron clusters under self-cleaning operation mode. The last progress with ion source operation is presented. The mechanism of self-cleaning procedure is described.
Electronic imaging system and technique
Bolstad, J.O.
1984-06-12
A method and system for viewing objects obscurred by intense plasmas or flames (such as a welding arc) includes a pulsed light source to illuminate the object, the peak brightness of the light reflected from the object being greater than the brightness of the intense plasma or flame; an electronic image sensor for detecting a pulsed image of the illuminated object, the sensor being operated as a high-speed shutter; and electronic means for synchronizing the shutter operation with the pulsed light source.
Electronic imaging system and technique
Bolstad, Jon O.
1987-01-01
A method and system for viewing objects obscurred by intense plasmas or flames (such as a welding arc) includes a pulsed light source to illuminate the object, the peak brightness of the light reflected from the object being greater than the brightness of the intense plasma or flame; an electronic image sensor for detecting a pulsed image of the illuminated object, the sensor being operated as a high-speed shutter; and electronic means for synchronizing the shutter operation with the pulsed light source.
SU-E-T-155: Calibration of Variable Longitudinal Strength 103Pd Brachytherapy Sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reed, J; Radtke, J; Micka, J
Purpose: Brachytherapy sources with variable longitudinal strength (VLS) allow for a customized intensity along the length of the source. These have applications in focal brachytherapy treatments of prostate cancer where dose boosting can be achieved through modulation of intra-source strengths. This work focused on development of a calibration methodology for VLS sources based on measurements and Monte Carlo (MC) simulations of five 1 cm {sup 10} {sup 3}Pd sources each containing four regions of variable {sup 103}Pd strength. Methods: The air-kerma strengths of the sources were measured with a variable-aperture free-air chamber (VAFAC). Source strengths were also measured using amore » well chamber. The in-air azimuthal and polar anisotropy of the sources were measured by rotating them in front of a NaI scintillation detector and were calculated with MC simulations. Azimuthal anisotropy results were normalized to their mean intensity values. Polar anisotropy results were normalized to their average transverse axis intensity values. The relative longitudinal strengths of the sources were measured via on-contact irradiations with radiochromic film, and were calculated with MC simulations. Results: The variable {sup 103}Pd loading of the sources was validated by VAFAC and well chamber measurements. Ratios of VAFAC air-kerma strengths and well chamber responses were within ±1.3% for all sources. Azimuthal anisotropy results indicated that ≥95% of the normalized values for all sources were within ±1.7% of the mean values. Polar anisotropy results indicated variations within ±0.3% for a ±7.6° angular region with respect to the source transverse axis. Locations and intensities of the {sup 103}Pd regions were validated by radiochromic film measurements and MC simulations. Conclusion: The calibration methodology developed in this work confirms that the VLS sources investigated have a high level of polar uniformity, and that the strength and longitudinal intensity can be verified experimentally and through MC simulations. {sup 103}Pd sources were provided by CivaTech Oncology, Inc.« less
USDA-ARS?s Scientific Manuscript database
Multi-layer vertical production systems using sole-source (SS) lighting can be used for microgreen production; however, traditional SS lighting can consume large amounts of electrical energy. Light-emitting diodes (LEDs) offer many advantages over conventional light sources including: high photoelec...
Signal, Nada; McPherson, Kathryn; Lewis, Gwyn; Kayes, Nicola; Saywell, Nicola; Mudge, Suzie; Taylor, Denise
2016-10-14
Intensity refers to the amount of effort or rate of work undertaken during exercise. People receiving rehabilitation after stroke frequently do not reach the moderate to high intensity exercise recommended to maximise gains. To explore the factors that influence the acceptability of, and engagement with, a high intensity group-based exercise programme for people with stroke. This qualitative descriptive study included 14 people with stroke who had completed a 12-week, high intensity group-based exercise rehabilitation programme. Semi-structured interviews were used to explore the acceptability of high intensity exercise and the barriers and facilitators to engagement. Interviews were recorded, transcribed and analysed using qualitative content analysis. The participants found high intensity exercise rehabilitation acceptable despite describing the exercise intensity as hard and reporting post-exercise fatigue. Participants accepted the fatigue as a normal response to exercise, and it did not appear to negatively influence engagement. The ease with which an individual engaged in high intensity exercise rehabilitation appeared to be mediated by inter-related factors, including: seeing progress, sourcing motivation, working hard, the people involved and the fit with the person and their life. Participants directly related the intensity of their effort to the gains that they made. In this study, people with stroke viewed training at higher intensities as a facilitator, not a barrier, to engagement in exercise rehabilitation. The findings may challenge assumptions about the influence of exercise intensity on engagement.
Beam diagnostics at high-intensity storage rings
NASA Astrophysics Data System (ADS)
Plum, Mike
1994-10-01
Beam diagnostics at high-intensity facilities feature their own special set of problems and characteristics, issues peculiar to high-intensity storage rings include beam loss, beam halos, extraction efficiency, beam in the gap, clearing electrodes, and beam-profile measurement. The Los Alamos Proton Storage Ring (PSR) is a nice example of a high-intensity storage ring. I will discuss in some detail three diagnostic systems currently in use at the PSR: the beam-loss-monitor system, the electron-clearing system, and the beam-in-the-gap monitor. Much of our discussion is inspired by the problems we have encountered and the useful things we have learned while commissioning and developing the PSR. Another inspiration is our work on the next-generation neutron-spallation source, also known as the National Center for Neutron Research (NCNR).
NASA Astrophysics Data System (ADS)
Golubev, S. V.; Skalyga, V. A.; Izotov, I. V.; Sidorov, A. V.
2018-01-01
A possibility of an intense deuterium ion beam creation for a compact powerful point-like neutron source is discussed. The fusion takes place due to bombardment of deuterium (or tritium) loaded target by high-current focused deuterium ion beam with energy of 100 keV. The ways of high-current and low emittance ion beam formation from the plasma of quasi-gasdynamic ion source of a new generation based on an electron cyclotron resonance discharge in an open magnetic trap sustained by powerful microwave radiation are investigated.
Deng, Ouping; Zhang, Shirong; Deng, Liangji; Zhang, Chunlong; Fei, Jianbo
2018-03-01
Understanding of the spatial and temporal variation of the flux of atmospheric nitrogen (N) deposition is essential for assessment of its impact on ecosystems. However, little attention has been paid to the variability of N deposition across urban-intensive agricultural-rural transects. A continuous 2-year observational study (from January 2015 to December 2016) was conducted to determine wet N deposition across the urban-intensive agricultural-rural transect of a small urban area in southwest China. Significantly spatial and temporal variations were found in the research area. Along the urban-intensive agricultural-rural transect, the TN and NH 4 + -N deposition first increased and then decreased, and the NO 3 - -N and dissolved organic N (DON) deposition decreased continuously. Wet N deposition was mainly affected by the districts of agro-facilities, roads and build up lands. Wet NH 4 + -N deposition had non-seasonal emission sources including industrial emissions and urban excretory wastes in urban districts and seasonal emission sources such as fertilizer and manure volatilization in the other districts. However, wet NO 3 - -N deposition had seasonal emission sources such as industrial emissions and fireworks in urban district and non-seasonal emission sources such as transportation in the other districts. Deposition of DON was likely to have had similar sources to NO 3 - -N deposition in rural district, and high-temperature-dependent sources in urban and intensive agricultural districts. Considering the annual wet TN deposition in the intensive agricultural district was about 11.1% of the annual N fertilizer input, N fertilizer rates of crops should be reduced in this region to avoid the excessive application, and the risk of N emissions to the environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Badrianto, Muldani Dwi; Riupassa, Robi D.; Basar, Khairul, E-mail: khbasar@fi.itb.ac.id
2015-09-30
Nuclear batteries have strategic applications and very high economic potential. One Important problem in application of nuclear betavoltaic battery is its low efficiency. Current efficiency of betavoltaic nuclear battery reaches only arround 2%. One aspect that can influence the efficiency of betavoltaic nuclear battery is the geometrical configuration of radioactive source. In this study we discuss the effect of geometrical configuration of radioactive source material to the radiation intensity in betavoltaic nuclear battery system. received by the detector. By obtaining the optimum configurations, the optimum usage of radioactive materials can be determined. Various geometrical configurations of radioactive source material aremore » simulated. It is obtained that usage of radioactive source will be optimum for circular configuration.« less
A combined thermal dissociation and electron impact ionization source for RIB generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alton, G.D.; Williams, C.
1995-12-31
The probability for simultaneously dissociating and efficiently ionizing the individual atomic constituents of molecular feed materials with conventional, hot-cathode, electron-impact ion sources is low and consequently, the ion beams from these sources often appear as mixtures of several molecular sideband beams. This fragmentation process leads to dilution of the intensity of the species of interest for RIB applications where beam intensity is at a premium. We have conceived an ion source that combines the excellent molecular dissociation properties of a thermal dissociator and the high ionization efficiency characteristics of an electron impact ionization source that will, in principle, overcome thismore » handicap. The source concept will be evaluated as a potential candidate for use for RIB generation at the Holifield Radioactive Ion Beam Facility (HRIBF), now under construction at the Oak Ridge National Laboratory. The design features and principles of operation of the source are described in this article.« less
NASA Technical Reports Server (NTRS)
Adamovsky, Grigory (Inventor)
1991-01-01
A fiber optic interferometer utilizes a low coherence light emitting diode (LED) laser as a light source which is filtered and driven at two RF frequencies, high and low, that are specific to the initial length of the resonator chamber. A displacement of a reflecting mirror changes the length traveled by the nonreferencing signal. The low frequency light undergoes destructive interference which reduces the average intensity of the wave while the high frequency light undergoes constructive interference which increases the average intensity of the wave. The ratio of these two intensity measurements is proportional to the displacement incurred.
1983-09-01
pulses Ncr) of polymer materials in the multiple irradiation regime at a fixed laser intensity corresponding to Ncr = 20 for PMMA...KCl to repetitively pulsed 10.6 ~m laser irradiation . The technique of pulsed laser calorimetry [1] was used and at low intensity (~2s0 Mw/cm 2 ) a...power pulsed lasers . Under irradiation by high in tensity pUlsed monochromatic sources intensity dependent absorption mechanisms can be
Plasma heating and current drive using intense, pulsed microwaves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cohen, B.I.; Cohen, R.H.; Nevins, W.M.
1988-01-01
The use of powerful new microwave sources, e.g., free-electron lasers and relativistic gyrotrons, provide unique opportunities for novel heating and current-drive schemes in the electron-cyclotron and lower-hybrid ranges of frequencies. These high-power, pulsed sources have a number of technical advantages over conventional, low-intensity sources; and their use can lead to improved current-drive efficiencies and better penetration into a reactor-grade plasma in specific cases. The Microwave Tokamak Experiment at Lawrence Livermore National Laboratory will provide a test for some of these new heating and current-drive schemes. This paper reports theoretical progress both in modeling absorption and current drive for intense pulsesmore » and in analyzing some of the possible complications that may arise, e.g., parametric instabilities and nonlinear self-focusing. 22 refs., 9 figs., 1 tab.« less
Plasma Physics Challenges of MM-to-THz and High Power Microwave Generation
NASA Astrophysics Data System (ADS)
Booske, John
2007-11-01
Homeland security and military defense technology considerations have stimulated intense interest in mobile, high power sources of millimeter-wave to terahertz regime electromagnetic radiation, from 0.1 to 10 THz. While sources at the low frequency end, i.e., the gyrotron, have been deployed or are being tested for diverse applications such as WARLOC radar and active denial systems, the challenges for higher frequency sources have yet to be completely met for applications including noninvasive sensing of concealed weapons and dangerous agents, high-data-rate communications, and high resolution spectroscopy and atmospheric sensing. The compact size requirements for many of these high frequency sources requires miniscule, micro-fabricated slow wave circuits with high rf ohmic losses. This necessitates electron beams with not only very small transverse dimensions but also very high current density for adequate gain. Thus, the emerging family of mm-to-THz e-beam-driven vacuum electronics devices share many of the same plasma physics challenges that currently confront ``classic'' high power microwave (HPM) generators [1] including bright electron sources, intense beam transport, energetic electron interaction with surfaces and rf air breakdown at output windows. Multidimensional theoretical and computational models are especially important for understanding and addressing these challenges. The contemporary plasma physics issues, recent achievements, as well as the opportunities and outlook on THz and HPM will be addressed. [1] R.J. Barker, J.H. Booske, N.C. Luhmann, and G.S. Nusinovich, Modern Microwave and Millimeter-Wave Power Electronics (IEEE/Wiley, 2005).
Miniaturized, High-Speed, Modulated X-Ray Source
NASA Technical Reports Server (NTRS)
Gendreau, Keith; Arzoumanian, Zaven; Kenyon, Steve; Spartana, Nick
2013-01-01
A low-cost, miniature x-ray source has been developed that can be modulated in intensity from completely off to full intensity on nanosecond timescales. This modulated x-ray source (MXS) has no filaments and is extremely rugged. The energy level of the MXS is adjustable from 0 to more than 100 keV. It can be used as the core of many new devices, providing the first practical, arbitrarily time-variable source of x-rays. The high-speed switching capability and miniature size make possible many new technologies including x-ray-based communication, compact time-resolved x-ray diffraction, novel x-ray fluorescence instruments, and low- and precise-dose medical x-rays. To make x-rays, the usual method is to accelerate electrons into a target material held at a high potential. When the electrons stop in the target, x-rays are produced with a spectrum that is a function of the target material and the energy to which the electrons are accelerated. Most commonly, the electrons come from a hot filament. In the MXS, the electrons start off as optically driven photoelectrons. The modulation of the x-rays is then tied to the modulation of the light that drives the photoelectron source. Much of the recent development has consisted of creating a photoelectrically-driven electron source that is robust, low in cost, and offers high intensity. For robustness, metal photocathodes were adopted, including aluminum and magnesium. Ultraviolet light from 255- to 350-nm LEDs (light emitting diodes) stimulated the photoemissions from these photocathodes with an efficiency that is maximized at the low-wavelength end (255 nm) to a value of roughly 10(exp -4). The MXS units now have much higher brightness, are much smaller, and are made using a number of commercially available components, making them extremely inexpensive. In the latest MXS design, UV efficiency is addressed by using a high-gain electron multiplier. The photocathode is vapor-deposited onto the input cone of a Burle Magnum(TradeMark) multiplier. This system yields an extremely robust photon-driven electron source that can tolerate long, weeks or more, exposure to air with negligible degradation. The package is also small. When combined with the electron target, necessary vacuum fittings, and supporting components (but not including LED electronics or high-voltage sources), the entire modulated x-ray source weighs as little as 158 grams.
Design of magnetic system to produce intense beam of polarized molecules of H2 and D2
NASA Astrophysics Data System (ADS)
Yurchenko, A. V.; Nikolenko, D. M.; Rachek, I. A.; Shestakov, Yu V.; Toporkov, D. K.; Zorin, A. V.
2017-12-01
A magnetic-separating system is designed to produce polarized molecular high-density beams of H2/D2. The distribution of the magnetic field inside the aperture of the multipole magnet was calculated using the Mermaid software package. The calculation showed that the characteristic value of the magnetic field is 40 kGs, the field gradient is about 60 kGs/cm. A numerical calculation of the trajectories of the motion of molecules with different spin projections in this magnetic system is performed. The article discusses the possibility of using the magnetic system designed for the creation of a high-intensity source of polarized molecules. The expected intensity of this source is calculated. The expected flux of molecules focused in the receiver tube is 3.5·1016 mol/s for the hydrogen molecule and 2.0·1015 mol/s for the deuterium molecule.
Asymmetrically cut crystal pair as x-ray magnifier for imaging at high intensity laser facilitiesa)
NASA Astrophysics Data System (ADS)
Szabo, C. I.; Feldman, U.; Seely, J. F.; Curry, J. J.; Hudson, L. T.; Henins, A.
2010-10-01
The potential of an x-ray magnifier prepared from a pair of asymmetrically cut crystals is studied to explore high energy x-ray imaging capabilities at high intensity laser facilities. OMEGA-EP and NIF when irradiating mid and high Z targets can be a source of high-energy x-rays whose production mechanisms and use as backlighters are a subject of active research. This paper studies the properties and potential of existing asymmetric cut crystal pairs from the National Institute of Standards and Technology (NIST) built in a new enclosure for imaging x-ray sources. The technique of the x-ray magnifier has been described previously. This new approach is aimed to find a design that could be used at laser facilities by magnifying the x-ray source into a screen far away from the target chamber center, with fixed magnification defined by the crystals' lattice spacing and the asymmetry angles. The magnified image is monochromatic and the imaging wavelength is set by crystal asymmetry and incidence angles. First laboratory results are presented and discussed.
Ion-source modeling and improved performance of the CAMS high-intensity Cs-sputter ion source
NASA Astrophysics Data System (ADS)
Brown, T. A.; Roberts, M. L.; Southon, J. R.
2000-10-01
The interior of the high-intensity Cs-sputter source used in routine operations at the Center for Accelerator Mass Spectrometry (CAMS) has been computer modeled using the program NEDLab, with the aim of improving negative ion output. Space charge effects on ion trajectories within the source were modeled through a successive iteration process involving the calculation of ion trajectories through Poisson-equation-determined electric fields, followed by calculation of modified electric fields incorporating the charge distribution from the previously calculated ion trajectories. The program has several additional features that are useful in ion source modeling: (1) averaging of space charge distributions over successive iterations to suppress instabilities, (2) Child's Law modeling of space charge limited ion emission from surfaces, and (3) emission of particular ion groups with a thermal energy distribution and at randomized angles. The results of the modeling effort indicated that significant modification of the interior geometry of the source would double Cs + ion production from our spherical ionizer and produce a significant increase in negative ion output from the source. The results of the implementation of the new geometry were found to be consistent with the model results.
Fundamental Combustion Processes of Particle-Laden Shear Flows in Solid Fuel Ramjets
1990-05-17
permitted observation of the high- intensity , near- surface flame zone. The intensity of the near-surface flame was so strong that it overpowered the light ... intensity of the 100 watt tungsten-halogen lamp used as the schlieren system light source. Figure 9a shows the burning of a 10/40/50 B/Mg/PTFE...rf five millivo’ts from the photodiode), an aorupt increase in light emission, and maximum light intensity . As the heat flux increases, the time for
Numerical simulations of stripping effects in high-intensity hydrogen ion linacs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carneiro, J.-P.; /Fermilab; Mustapha, B.
2008-12-01
Numerical simulations of H{sup -} stripping losses from blackbody radiation, electromagnetic fields, and residual gas have been implemented into the beam dynamics code TRACK. Estimates of the stripping losses along two high-intensity H{sup -} linacs are presented: the Spallation Neutron Source linac currently being operated at Oak Ridge National Laboratory and an 8 GeV superconducting linac currently being designed at Fermi National Accelerator Laboratory.
Characteristics of extreme ultraviolet emission from high-Z plasmas
NASA Astrophysics Data System (ADS)
Ohashi, H.; Higashiguchi, T.; Suzuki, Y.; Kawasaki, M.; Suzuki, C.; Tomita, K.; Nishikino, M.; Fujioka, S.; Endo, A.; Li, B.; Otsuka, T.; Dunne, P.; O'Sullivan, G.
2016-03-01
We demonstrate the extreme ultraviolet (EUV) and soft x-ray sources in the 2 to 7 nm spectral region related to the beyond EUV (BEUV) question at 6.x nm and the water window source based on laser-produced high-Z plasmas. Resonance emission from multiply charged ions merges to produce intense unresolved transition arrays (UTAs), extending below the carbon K edge (4.37 nm). An outline of a microscope design for single-shot live cell imaging is proposed based on high-Z plasma UTA source, coupled to multilayer mirror optics.
New production systems at ISOLDE
NASA Astrophysics Data System (ADS)
Hagebø, E.; Hoff, P.; Jonsson, O. C.; Kugler, E.; Omtvedt, J. P.; Ravn, H. L.; Steffensen, K.
1992-08-01
New target systems for the ISOLDE on-line mass separator facility are presented. Targets of carbides, metal/graphite mixtures, foils of refractory metals, molten metals and oxides have been tested. Beams of high intensity of neutron-rich isotopes of a large number of elements are obtained from a uranium carbide target with a hot plasma-discharge ion source. A target of ZrO 2 has been shown to provide high intensity beams of neutron-deficient isotopes of Mn, Cu, Zn, Ga, Ge, As, Se, Br, Kr and Rb, while a SiC target with a hot plasma ion source gives intense beams of radioactive isotopes of a number of light elements. All these systems are rather chemically unselective. Chemically selective performance has been obtained for several systems, i.e.: the production of neutron-deficient Au from ( 3He, pχn) reactions on a Pt/graphite target with a hot plasma ion source; the production of neutron-deficient Lu and LuF + and Hf and HfF 3+ from a Ta-foil target with a hot plasma ion source under CF 4 addition; the production of neutron-deficient Sr as SrF + and Y as YF 2+ form a Nb-foil target with a W surface ionizer under CF 4 addition; the production of neutron-deficient Se as COSe + from a ZrO 2 target with a hot plasma ion source under O 2 addition; and the production of radioactive F from a SiC target with a hot plasma ion source operating in Al vapour.
Advancement of highly charged ion beam production by superconducting ECR ion source SECRAL (invited)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, L., E-mail: sunlt@impcas.ac.cn; Lu, W.; Zhang, W. H.
2016-02-15
At Institute of Modern Physics (IMP), Chinese Academy of Sciences (CAS), the superconducting Electron Cyclotron Resonance (ECR) ion source SECRAL (Superconducting ECR ion source with Advanced design in Lanzhou) has been put into operation for about 10 years now. It has been the main working horse to deliver intense highly charged heavy ion beams for the accelerators. Since its first plasma at 18 GHz, R&D work towards more intense highly charged ion beam production as well as the beam quality investigation has never been stopped. When SECRAL was upgraded to its typical operation frequency 24 GHz, it had already showedmore » its promising capacity of very intense highly charged ion beam production. And it has also provided the strong experimental support for the so called scaling laws of microwave frequency effect. However, compared to the microwave power heating efficiency at 18 GHz, 24 GHz microwave heating does not show the ω{sup 2} scale at the same power level, which indicates that microwave power coupling at gyrotron frequency needs better understanding. In this paper, after a review of the operation status of SECRAL with regard to the beam availability and stability, the recent study of the extracted ion beam transverse coupling issues will be discussed, and the test results of the both TE{sub 01} and HE{sub 11} modes will be presented. A general comparison of the performance working with the two injection modes will be given, and a preliminary analysis will be introduced. The latest results of the production of very intense highly charged ion beams, such as 1.42 emA Ar{sup 12+}, 0.92 emA Xe{sup 27+}, and so on, will be presented.« less
Linac design for the European spallation source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klein, H.
1995-10-01
A study group has started to develop a conceptual design for a European Spallation Source (ESS). This pulsed 5 MW source presently consists of a 1.334 GeV linac and two compressor rings. In the following mainly the high intensity linac part will be discussed, which has some features of interest for accelerators for transmutation of radioactive waste too.
Roadway Marking Optics for Autonomous Vehicle Guidance and Other Machine Vision Applications
NASA Astrophysics Data System (ADS)
Konopka, Anthony T.
This work determines optimal planar geometric light source and optical imager configurations and electromagnetic wavelengths for maximizing the reflected signal intensity when using machine vision technology to image roadway markings with embedded spherical glass beads. It is found through a first set of experiments that roadway marking samples exhibiting little or no bead rolling effects are uniformly reflective with respect to the azimuthal angle of observation when measured for retroreflectivity within industry standard 30-meter geometry. A second set of experiments indicate that white roadway markings exhibit higher reflectivity throughout the visible spectrum than yellow roadway markings. A roadway marking optical model capable of being used to determine optimal geometric light source and optical imager configurations for maximizing the reflected signal intensities of roadway marking targets is constructed and simulated using optical engineering software. It is found through a third set of experiments that high signal intensities can be measured when the polar angles of the light source and optical imager along a plane normal to a roadway marking are equal, with the maximum signal intensity being measured when the polar angles of both the light source and optical imager are 90°.
Impact of Noise on Nurses in Pediatric Intensive Care Units.
Watson, J'ai; Kinstler, Angela; Vidonish, William P; Wagner, Michael; Lin, Li; Davis, Kermit G; Kotowski, Susan E; Daraiseh, Nancy M
2015-09-01
Excessive exposure to noise places nurses at risk for safety events, near-misses, decreased job performance, and fatigue. Noise is particularly a concern in pediatric intensive care units, where highly skilled providers and vulnerable patients require a quiet environment to promote healing. To measure noise levels and noise duration on specialty pediatric intensive care units to explore sources of noise and its effects on the health of registered nurses. In a cross-sectional pilot study, levels and sources of noise in 3 different specialty pediatric intensive care units were assessed. Fifteen nurses were observed for 4-hour sessions during a 24-hour period. Sound pressure levels (noise) and heart rate were measured continuously, and stress ratings were recorded. Descriptive statistics were calculated for noise (level, source, location, and activity), heart rate, and stress. The Pearson correlation coefficient was calculated to analyze the relationship between heart rate and noise. Mean noise level was 71.9 (SD, 9.2) dBA. Mean heart rate was 85.2/min (SD, 15.8/min) and was significantly associated with noise, unit, within-unit location, nurse sources, and noise activities. The most frequent sources of noise were patients' rooms, care activities, and staff communications. Noise levels in pediatric intensive care units exceed recommended thresholds and require immediate attention through effective interventions. Although noise was not associated with stress, a significant correlation with increased heart rate indicates that noise may be associated with adverse health outcomes. ©2015 American Association of Critical-Care Nurses.
Integration of non-Lambertian LED and reflective optical element as efficient street lamp.
Pan, Jui-Wen; Tu, Sheng-Han; Sun, Wen-Shing; Wang, Chih-Ming; Chang, Jenq-Yang
2010-06-21
A cost effective, high throughput, and high yield method for the increase of street lamp potency was proposed in this paper. We integrated the imprinting technology and the reflective optical element to obtain a street lamp with high illumination efficiency and without glare effect. The imprinting technique can increase the light extraction efficiency and modulate the intensity distribution in the chip level. The non-Lambertian light source was achieved by using imprinting technique. The compact reflective optical element was added to efficiently suppress the emitting light intensity with small emitting angle for the uniform of illumination intensity and excluded the light with high emitting angle for the prevention of glare. Compared to the conventional street lamp, the novel design has 40% enhancement in illumination intensity, the uniform illumination and the glare effect elimination.
Gamma-ray Spectral Characteristics of Thermal and Non-thermal Emission from Three Black Holes
NASA Technical Reports Server (NTRS)
Ling, James C.; Wheaton, William A.
2004-01-01
Cygnus X-1 and the gamma-ray transients GROJ0422+32 and GROJ1719-24 displayed similar spectral properties when they underwent transitions between the high and low gamma-ray (30 keV to few MeV) intensity states. When these sources were in the high (gamma)-ray intensity state ((gamma)2, for Cygnus X-l), their spectra featured two components: a Comptonized shape below 200-300 keV with a soft power-law tail (photon index >= 3) that extended to 1 MeV or beyond. When the sources were in the low-intensity state ((gamma)0, for Cygnus X-l), the Comptonized spectral shape below 200 keV typically vanished and the entire spectrum from 30 keV to 1 MeV can be characterized by a single power law with a relatively harder photon index 2-2.7. Consequently the high- and low-intensity gamma-ray spectra intersect, generally in the 400 KeV - 1 MeV range, in contrast to the spectral pivoting seen previously at lower (10 keV) energies. The presence of the power-law component in both the high- and low-intensity gammaray spectra strongly suggests that the non-thermal process is likely to be at work in both the high and the low-intensity situations. We have suggested a possible scenario (Ling & Wheaton, 2003), by combining the ADAF model of Esin et al. (1998) with a separate jet region that produces the non-thermal gamma-ray emission, and which explains the state transitions. Such a scenario will be discussed in the context of the observational evidence, summarized above, from the database produced by EBOP, JPL's BATSE earth occultation analysis system.
Simulations On Pair Creation In Collision Of γ-Beams Produced With High Intensity Lasers
NASA Astrophysics Data System (ADS)
Jansen, Oliver; Ribeyre, Xavier; D'Humieres, Emmanuel; Lobet, Mathieu; Jequier, Sophie; Tikhonchuk, Vladimir
2016-10-01
Direct production of electron-positron pairs in two photon collisions, the Breit-Wheeler process, is one of the most basic processes in the universe. However, this process has never been directly observed in the laboratory due to the lack of high intensity γ sources. For a feasibility study and for the optimisation of experimental set-ups we developed a high-performance tree-code. Different possible set-ups with MeV photon sources were discussed and compared using collision detection for huge number of particles in a quantum-electrodynamic regime. The authors acknowledge the financial support from the French National Research Agency (ANR) in the framework of ''The Investments for the Future'' programme IdEx Bordeaux - LAPHIA (ANR-10IDEX-03-02)-Project TULIMA.
Variable magnification with Kirkpatrick-Baez optics for synchrotron X-ray microscopy
Jach, Terrence; Bakulin, Alex S.; Durbin, Stephen M.; ...
2006-05-01
In this study, we describe the distinction between the operation of a short focal length x-ray microscope forming a real image with a laboratory source (convergent illumination) and with a highly collimated intense beam from a synchrotron light source (Kohler illumination).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Castro, G., E-mail: Giuseppe.Castro@lns.infn.it; Celona, L.; Mascali, D.
2016-08-15
The versatile ion source is an off-resonance microwave discharge ion source which produces a slightly overdense plasma at 2.45 GHz of pumping wave frequency extracting more than 60 mA proton beams and 50 mA He{sup +} beams. DAEδALUS and IsoDAR experiments require high intensities for H{sub 2}{sup +} beams to be accelerated by high power cyclotrons for neutrinos generation. In order to fulfill the new requirements, a new plasma chamber and injection system has been designed and manufactured for increasing the H{sub 2}{sup +} beam intensity. In this paper the studies for the increasing of the H{sub 2}{sup +}/p ratiomore » and for the design of the new plasma chamber and injection system will be shown and discussed together with the experimental tests carried out at Istituto Nazionale di Fisica Nucleare-Laboratori Nazionali del Sud (INFN-LNS) and at Best Cyclotron Systems test-bench in Vancouver, Canada.« less
Diffraction based method to reconstruct the spectrum of the Thomson scattering x-ray source
NASA Astrophysics Data System (ADS)
Chi, Zhijun; Yan, Lixin; Zhang, Zhen; Zhou, Zheng; Zheng, Lianmin; Wang, Dong; Tian, Qili; Wang, Wei; Nie, Zan; Zhang, Jie; Du, Yingchao; Hua, Jianfei; Shi, Jiaru; Pai, Chihao; Lu, Wei; Huang, Wenhui; Chen, Huaibi; Tang, Chuanxiang
2017-04-01
As Thomson scattering x-ray sources based on the collision of intense laser and relativistic electrons have drawn much attention in various scientific fields, there is an increasing demand for the effective methods to reconstruct the spectrum information of the ultra-short and high-intensity x-ray pulses. In this paper, a precise spectrum measurement method for the Thomson scattering x-ray sources was proposed with the diffraction of a Highly Oriented Pyrolytic Graphite (HOPG) crystal and was demonstrated at the Tsinghua Thomson scattering X-ray source. The x-ray pulse is diffracted by a 15 mm (L) ×15 mm (H)× 1 mm (D) HOPG crystal with 1° mosaic spread. By analyzing the diffraction pattern, both x-ray peak energies and energy spectral bandwidths at different polar angles can be reconstructed, which agree well with the theoretical value and simulation. The higher integral reflectivity of the HOPG crystal makes this method possible for single-shot measurement.
Diffraction based method to reconstruct the spectrum of the Thomson scattering x-ray source.
Chi, Zhijun; Yan, Lixin; Zhang, Zhen; Zhou, Zheng; Zheng, Lianmin; Wang, Dong; Tian, Qili; Wang, Wei; Nie, Zan; Zhang, Jie; Du, Yingchao; Hua, Jianfei; Shi, Jiaru; Pai, Chihao; Lu, Wei; Huang, Wenhui; Chen, Huaibi; Tang, Chuanxiang
2017-04-01
As Thomson scattering x-ray sources based on the collision of intense laser and relativistic electrons have drawn much attention in various scientific fields, there is an increasing demand for the effective methods to reconstruct the spectrum information of the ultra-short and high-intensity x-ray pulses. In this paper, a precise spectrum measurement method for the Thomson scattering x-ray sources was proposed with the diffraction of a Highly Oriented Pyrolytic Graphite (HOPG) crystal and was demonstrated at the Tsinghua Thomson scattering X-ray source. The x-ray pulse is diffracted by a 15 mm (L) ×15 mm (H)× 1 mm (D) HOPG crystal with 1° mosaic spread. By analyzing the diffraction pattern, both x-ray peak energies and energy spectral bandwidths at different polar angles can be reconstructed, which agree well with the theoretical value and simulation. The higher integral reflectivity of the HOPG crystal makes this method possible for single-shot measurement.
NASA Astrophysics Data System (ADS)
Castro, G.; Torrisi, G.; Celona, L.; Mascali, D.; Neri, L.; Sorbello, G.; Leonardi, O.; Patti, G.; Castorina, G.; Gammino, S.
2016-08-01
The versatile ion source is an off-resonance microwave discharge ion source which produces a slightly overdense plasma at 2.45 GHz of pumping wave frequency extracting more than 60 mA proton beams and 50 mA He+ beams. DAEδALUS and IsoDAR experiments require high intensities for H2+ beams to be accelerated by high power cyclotrons for neutrinos generation. In order to fulfill the new requirements, a new plasma chamber and injection system has been designed and manufactured for increasing the H2+ beam intensity. In this paper the studies for the increasing of the H2+/p ratio and for the design of the new plasma chamber and injection system will be shown and discussed together with the experimental tests carried out at Istituto Nazionale di Fisica Nucleare-Laboratori Nazionali del Sud (INFN-LNS) and at Best Cyclotron Systems test-bench in Vancouver, Canada.
Beam shaping in high-power laser systems with using refractive beam shapers
NASA Astrophysics Data System (ADS)
Laskin, Alexander; Laskin, Vadim
2012-06-01
Beam Shaping of the spatial (transverse) profile of laser beams is highly desirable by building optical systems of high-power lasers as well in various applications with these lasers. Pumping of the crystals of Ti:Sapphire lasers by the laser radiation with uniform (flattop) intensity profile improves performance of these ultrashort pulse high-power lasers in terms of achievable efficiency, peak-power and stability, output beam profile. Specifications of the solid-state lasers built according to MOPA configuration can be also improved when radiation of the master oscillator is homogenized and then is amplified by the power amplifier. Features of building these high power lasers require that a beam shaping solution should be capable to work with single mode and multimode beams, provide flattop and super-Gauss intensity distributions, the consistency and divergence of a beam after the intensity re-distribution should be conserved and low absorption provided. These specific conditions are perfectly fulfilled by the refractive field mapping beam shapers due to their unique features: almost lossless intensity profile transformation, low output divergence, high transmittance and flatness of output beam profile, extended depth of field, adaptability to real intensity profiles of TEM00 and multimode laser sources. Combining of the refractive field mapping beam shapers with other optical components, like beam-expanders, relay imaging lenses, anamorphic optics makes it possible to generate the laser spots of necessary shape, size and intensity distribution. There are plenty of applications of high-power lasers where beam shaping bring benefits: irradiating photocathode of Free Electron Lasers (FEL), material ablation, micromachining, annealing in display making techniques, cladding, heat treating and others. This paper will describe some design basics of refractive beam shapers of the field mapping type, with emphasis on the features important for building and applications of high-power laser sources. There will be presented results of applying the refractive beam shapers in real installations.
Generation of High Brightness X-rays with the PLEIADES Thomson X-ray Source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, W J; Anderson, S G; Barty, C P J
2003-05-28
The use of short laser pulses to generate high peak intensity, ultra-short x-ray pulses enables exciting new experimental capabilities, such as femtosecond pump-probe experiments used to temporally resolve material structural dynamics on atomic time scales. PLEIADES (Picosecond Laser Electron InterAction for Dynamic Evaluation of Structures) is a next generation Thomson scattering x-ray source being developed at Lawrence Livermore National Laboratory (LLNL). Ultra-fast picosecond x-rays (10-200 keV) are generated by colliding an energetic electron beam (20-100 MeV) with a high intensity, sub-ps, 800 nm laser pulse. The peak brightness of the source is expected to exceed 10{sup 20} photons/s/0.1% bandwidth/mm2/mrad2. Simulationsmore » of the electron beam production, transport, and final focus are presented. Electron beam measurements, including emittance and final focus spot size are also presented and compared to simulation results. Measurements of x-ray production are also reported and compared to theoretical calculations.« less
Adjustable long duration high-intensity point light source
NASA Astrophysics Data System (ADS)
Krehl, P.; Hagelweide, J. B.
1981-06-01
A new long duration high-intensity point light source with adjustable light duration and a small light spot locally stable in time has been developed. The principle involved is a stationary high-temperature plasma flow inside a partly constrained capillary of a coaxial spark gap which is viewed end on through a terminating Plexiglas window. The point light spark gap is operated via a resistor by an artificial transmission line. Using two exchangeable inductance sets in the line, two ranges of photoduration 10-130 μs and 100-600 μs can be covered. For a light spot size of 1.5 mm diameter the corresponding peak light output amounts to 5×106 and 1.6×106 candelas, respectively. Within these ranges the duration is controlled by an ignitron crowbar to extinguish the plasma. The adjustable photoduration is very useful for the application of continuous writing rotating mirror cameras, thus preventing multiple exposures. The essentially uniform exposure within the visible spectral range makes the new light source suitable for color cinematography.
Formation of a high intensity low energy positron string
NASA Astrophysics Data System (ADS)
Donets, E. D.; Donets, E. E.; Syresin, E. M.; Itahashi, T.; Dubinov, A. E.
2004-05-01
The possibility of a high intensity low energy positron beam production is discussed. The proposed Positron String Trap (PST) is based on the principles and technology of the Electron String Ion Source (ESIS) developed in JINR during the last decade. A linear version of ESIS has been used successfully for the production of intense highly charged ion beams of various elements. Now the Tubular Electron String Ion Source (TESIS) concept is under study and this opens really new promising possibilities in physics and technology. In this report, we discuss the application of the tubular-type trap for the storage of positrons cooled to the cryogenic temperatures of 0.05 meV. It is intended that the positron flux at the energy of 1-5 eV, produced by the external source, is injected into the Tubular Positron Trap which has a similar construction as the TESIS. Then the low energy positrons are captured in the PST Penning trap and are cooled down because of their synchrotron radiation in the strong (5-10 T) applied magnetic field. It is expected that the proposed PST should permit storing and cooling to cryogenic temperature of up to 5×109 positrons. The accumulated cooled positrons can be used further for various physics applications, for example, antihydrogen production.
NASA Astrophysics Data System (ADS)
Galluzzi, V.; Massardi, M.; Bonaldi, A.; Casasola, V.; Gregorini, L.; Trombetti, T.; Burigana, C.; Bonato, M.; De Zotti, G.; Ricci, R.; Stevens, J.; Ekers, R. D.; Bonavera, L.; di Serego Alighieri, S.; Liuzzo, E.; López-Caniego, M.; Paladino, R.; Toffolatti, L.; Tucci, M.; Callingham, J. R.
2018-03-01
We present high sensitivity (σP ≃ 0.6 mJy) polarimetric observations in seven bands, from 2.1 to 38 GHz, of a complete sample of 104 compact extragalactic radio sources brighter than 200 mJy at 20 GHz. Polarization measurements in six bands, in the range 5.5-38 GHz, for 53 of these objects were reported by Galluzzi et al. We have added new measurements in the same six bands for another 51 sources and measurements at 2.1 GHz for the full sample of 104 sources. Also, the previous measurements at 18, 24, 33, and 38 GHz were re-calibrated using the updated model for the flux density absolute calibrator, PKS1934-638, not available for the earlier analysis. The observations, carried out with the Australia Telescope Compact Array, achieved a 90 per cent detection rate (at 5σ) in polarization. 89 of our sources have a counterpart in the 72-231 MHz GLEAM (GaLactic and Extragalactic All-sky Murchison Widefield Array) survey, providing an unparalleled spectral coverage of 2.7 decades of frequency for these sources. While the total intensity data from 5.5 to 38 GHz could be interpreted in terms of single component emission, a joint analysis of more extended total intensity spectra presented here, and of the polarization spectra, reveals that over 90 per cent of our sources show clear indications of at least two emission components. We interpret this as an evidence of recurrent activity. Our high sensitivity polarimetry has allowed a 5σ detection of the weak circular polarization for ˜ 38 per cent of the data set, and a deeper estimate of 20 GHz polarization source counts than has been possible so far.
Design of system calibration for effective imaging
NASA Astrophysics Data System (ADS)
Varaprasad Babu, G.; Rao, K. M. M.
2006-12-01
A CCD based characterization setup comprising of a light source, CCD linear array, Electronics for signal conditioning/ amplification, PC interface has been developed to generate images at varying densities and at multiple view angles. This arrangement is used to simulate and evaluate images by Super Resolution technique with multiple overlaps and yaw rotated images at different view angles. This setup also generates images at different densities to analyze the response of the detector port wise separately. The light intensity produced by the source needs to be calibrated for proper imaging by the high sensitive CCD detector over the FOV. One approach is to design a complex integrating sphere arrangement which costs higher for such applications. Another approach is to provide a suitable intensity feed back correction wherein the current through the lamp is controlled in a closed loop arrangement. This method is generally used in the applications where the light source is a point source. The third method is to control the time of exposure inversely to the lamp variations where lamp intensity is not possible to control. In this method, light intensity during the start of each line is sampled and the correction factor is applied for the full line. The fourth method is to provide correction through Look Up Table where the response of all the detectors are normalized through the digital transfer function. The fifth method is to have a light line arrangement where the light through multiple fiber optic cables are derived from a single source and arranged them in line. This is generally applicable and economical for low width cases. In our applications, a new method wherein an inverse multi density filter is designed which provides an effective calibration for the full swath even at low light intensities. The light intensity along the length is measured, an inverse density is computed, a correction filter is generated and implemented in the CCD based Characterization setup. This paper describes certain novel techniques of design and implementation of system calibration for effective Imaging to produce better quality data product especially while handling high resolution data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schweizer, W., E-mail: schweizer@physik.uni-frankfurt.de; Ratzinger, U.; Klump, B.
At the University of Frankfurt a high current proton source has been developed and tested for the FRANZ-Project [U. Ratzinger, L. P. Chau, O. Meusel, A. Schempp, K. Volk, M. Heil, F. Käppeler, and R. Stieglitz, “Intense pulsed neutron source FRANZ in the 1–500 keV range,” ICANS-XVIII Proceedings, Dongguan, April 2007, p. 210]. The ion source is a filament driven arc discharge ion source. The new design consists of a plasma generator, equipped with a filter magnet to produce nearly pure proton beams (92 %), and a compact triode extraction system. The beam current density has been enhanced up tomore » 521 mA/cm{sup 2}. Using an emission opening radius of 4 mm, a proton beam current of 240 mA at 50 keV beam energy in continuous wave mode (cw) has been extracted. This paper will present the current status of the proton source including experimental results of detailed investigations of the beam composition in dependence of different plasma parameters. Both, cw and pulsed mode were studied. Furthermore, the performance of the ion source was studied with deuterium as working gas.« less
High Intensity Tests of the NuMI Beam Monitoring Ionization Chambers
NASA Astrophysics Data System (ADS)
Zwaska, Robert
2002-04-01
The NuMI facility at Fermilab will generate an intense beam of neutrinos directed toward Soudan, MN, 735 km away. Components of the planned beam monitoring system will be exposed to fluences of up to 8 x 10^9 charge particles / cm^2 and 6 x 10^10 neutrons / cm^2 in an 8.6 us beam spill. These fluences will be measured by an array of Helium ionization chambers. We tested a pair of chambers with 8 GeV protons at the Fermilab Booster accelerator, and with high intensity neutron sources at the Texas Experimental Nuclear Facility.
High energy X-ray observations of CYG X-3 from from OSO-8: Further evidence of a 34.1 day period
NASA Technical Reports Server (NTRS)
Dolan, J. F.; Crannell, C. J.; Dennis, B. R.; Frost, K. J.; Orwig, L. E.
1981-01-01
The X-ray source Cyg X-3 (=4U2030+40) was observed with the high energy X-ray spectrometer on OSO-8 for two weeks in 1975 and in 1976 and for one week in 1977. No change in spectral shape and intensity above 23 keV was observed from year to year. No correlation is observed between the source's intensity and the phase of the 34.1 day period discovered by Molteni, et al. (1980). The pulsed fraction of the 4.8 hour light curve between 23 and 73 keV varies from week to week, however, and the magnitude of the pulsed fraction appears to be correlated with the 34.1 day phase. No immediate explanation of this behavior is apparent in terms of previously proposed models of the source.
Simulation of transvertron high power microwave sources
NASA Astrophysics Data System (ADS)
Sullivan, Donald J.; Walsh, John E.; Arman, M. Joseph; Godfrey, Brendan B.
1989-07-01
The transvertron oscillator or amplifier is a new and efficient type of intense relativistic electron-beam-driven microwave radiation source. In the m = 0 axisymmetric version, it consists of single or multiple cylindrical cavities driven at one of the TM(0np) resonances by a high-voltage, low-impedance electron beam. There is no applied magnetic field, and the oscillatory transverse motion acquired by the axially-injected electron beam is an essential part of the drive mechanism. The transvertron theory was systematically tested for a wide range of parameters and two possible applications. The simulations were designed to verify the theoretical predictions, assess the transvertron as a possible source of intense microwave radiation, and study its potential as a microwave amplifier. Numerical results agree well in all regards with the analytical theory. Simulations were carried out in two dimensions using CCUBE, with the exception of radial loading cases, where the three-dimensional code SOS was required.
The study of helicon plasma source.
Miao, Ting-Ting; Zhao, Hong-Wei; Liu, Zhan-Wen; Shang, Yong; Sun, Liang-Ting; Zhang, Xue-Zhen; Zhao, Huan-Yu
2010-02-01
Helicon plasma source is known as efficient generator of uniform and high density plasma. A helicon plasma source was developed for investigation of plasma neutralization and plasma lens in the Institute of Modern Physics in China. In this paper, the characteristics of helicon plasma have been studied by using Langmuir four-probe and a high argon plasma density up to 3.9x10(13) cm(-3) have been achieved with the Nagoya type III antenna at the conditions of the magnetic intensity of 200 G, working gas pressure of 2.8x10(-3) Pa, and rf power of 1200 W with a frequency of 27.12 MHz. In the experiment, the important phenomena have been found: for a given magnetic induction intensity, the plasma density became greater with the increase in rf power and tended to saturation, and the helicon mode appeared at the rf power between 200 and 400 W.
Development of a Supersonic Atomic Oxygen Nozzle Beam Source for Crossed Beam Scattering Experiments
DOE R&D Accomplishments Database
Sibener, S. J.; Buss, R. J.; Lee, Y. T.
1978-05-01
A high pressure, supersonic, radio frequency discharge nozzle beam source was developed for the production of intense beams of ground state oxygen atoms. An efficient impedance matching scheme was devised for coupling the radio frequency power to the plasma as a function of both gas pressure and composition. Techniques for localizing the discharge directly behind the orifice of a water-cooled quartz nozzle were also developed. The above combine to yield an atomic oxygen beam source which produces high molecular dissociation in oxygen seeded rare gas mixtures at total pressures up to 200 torr: 80 to 90% dissociation for oxygen/argon mixtures and 60 to 70% for oxygen/helium mixtures. Atomic oxygen intensities are found to be greater than 10{sup 17} atom sr{sup -1} sec{sup -1}. A brief discussion of the reaction dynamics of 0 + IC1 ..-->.. I0 + C1 is also presented.
Read-across predictions require high quality measured data for source analogues. These data are typically retrieved from structured databases, but biomedical literature data are often untapped because current literature mining approaches are resource intensive. Our high-throughpu...
Superconducting ECR ion source: From 24-28 GHz SECRAL to 45 GHz fourth generation ECR
NASA Astrophysics Data System (ADS)
Zhao, H. W.; Sun, L. T.; Guo, J. W.; Zhang, W. H.; Lu, W.; Wu, W.; Wu, B. M.; Sabbi, G.; Juchno, M.; Hafalia, A.; Ravaioli, E.; Xie, D. Z.
2018-05-01
The development of superconducting ECR source with higher magnetic fields and higher microwave frequency is the most straight forward path to achieve higher beam intensity and higher charge state performance. SECRAL, a superconducting third generation ECR ion source, is designed for 24-28 GHz microwave frequency operation with an innovative magnet configuration of sextupole coils located outside the three solenoids. SECRAL at 24 GHz has already produced a number of record beam intensities, such as 40Ar12+ 1.4 emA, 129Xe26+ 1.1 emA, 129Xe30+ 0.36 emA, and 209Bi31+ 0.68 emA. SECRAL-II, an upgraded version of SECRAL, was built successfully in less than 3 years and has recently been commissioned at full power of a 28 GHz gyrotron and three-frequency heating (28 + 45 + 18 GHz). New record beam intensities for highly charged ion production have been achieved, such as 620 eμA 40Ar16+, 15 eμA 40Ar18+, 146 eμA 86Kr28+, 0.5 eμA 86Kr33+, 53 eμA 129Xe38+, and 17 eμA 129Xe42+. Recent beam test results at SECRAL and SECRAL II have demonstrated that the production of more intense highly charged heavy ion beams needs higher microwave power and higher frequency, as the scaling law predicted. A 45 GHz superconducting ECR ion source FECR (a first fourth generation ECR ion source) is being built at IMP. FECR will be the world's first Nb3Sn superconducting-magnet-based ECR ion source with 6.5 T axial mirror field, 3.5 T sextupole field on the plasma chamber inner wall, and 20 kW at a 45 GHz microwave coupling system. This paper will focus on SECRAL performance studies at 24-28 GHz and technical design of 45 GHz FECR, which demonstrates a technical path for highly charged ion beam production from 24 to 28 GHz SECRAL to 45 GHz FECR.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Price, C. J., E-mail: c.price10@imperial.ac.uk; Giltrap, S.; Stuart, N. H.
2015-03-15
We report on the design, construction, and characterisation of a new class of in-vacuo optical levitation trap optimised for use in high-intensity, high-energy laser interaction experiments. The system uses a focused, vertically propagating continuous wave laser beam to capture and manipulate micro-targets by photon momentum transfer at much longer working distances than commonly used by optical tweezer systems. A high speed (10 kHz) optical imaging and signal acquisition system was implemented for tracking the levitated droplets position and dynamic behaviour under atmospheric and vacuum conditions, with ±5 μm spatial resolution. Optical trapping of 10 ± 4 μm oil droplets inmore » vacuum was demonstrated, over timescales of >1 h at extended distances of ∼40 mm from the final focusing optic. The stability of the levitated droplet was such that it would stay in alignment with a ∼7 μm irradiating beam focal spot for up to 5 min without the need for re-adjustment. The performance of the trap was assessed in a series of high-intensity (10{sup 17} W cm{sup −2}) laser experiments that measured the X-ray source size and inferred free-electron temperature of a single isolated droplet target, along with a measurement of the emitted radio-frequency pulse. These initial tests demonstrated the use of optically levitated microdroplets as a robust target platform for further high-intensity laser interaction and point source studies.« less
NASA Astrophysics Data System (ADS)
Price, C. J.; Donnelly, T. D.; Giltrap, S.; Stuart, N. H.; Parker, S.; Patankar, S.; Lowe, H. F.; Drew, D.; Gumbrell, E. T.; Smith, R. A.
2015-03-01
We report on the design, construction, and characterisation of a new class of in-vacuo optical levitation trap optimised for use in high-intensity, high-energy laser interaction experiments. The system uses a focused, vertically propagating continuous wave laser beam to capture and manipulate micro-targets by photon momentum transfer at much longer working distances than commonly used by optical tweezer systems. A high speed (10 kHz) optical imaging and signal acquisition system was implemented for tracking the levitated droplets position and dynamic behaviour under atmospheric and vacuum conditions, with ±5 μm spatial resolution. Optical trapping of 10 ± 4 μm oil droplets in vacuum was demonstrated, over timescales of >1 h at extended distances of ˜40 mm from the final focusing optic. The stability of the levitated droplet was such that it would stay in alignment with a ˜7 μm irradiating beam focal spot for up to 5 min without the need for re-adjustment. The performance of the trap was assessed in a series of high-intensity (1017 W cm-2) laser experiments that measured the X-ray source size and inferred free-electron temperature of a single isolated droplet target, along with a measurement of the emitted radio-frequency pulse. These initial tests demonstrated the use of optically levitated microdroplets as a robust target platform for further high-intensity laser interaction and point source studies.
Prussin, Aaron J; Zigler, David F; Jain, Avijita; Brown, Jared R; Winkel, Brenda S J; Brewer, Karen J
2008-04-01
Methods for the study of DNA photocleavage are illustrated using a mixed-metal supramolecular complex [{(bpy)(2)Ru(dpp)}(2)RhCl(2)]Cl(5). The methods use supercoiled pUC18 plasmid as a DNA probe and either filtered light from a xenon arc lamp source or monochromatic light from a newly designed, high-intensity light-emitting diode (LED) array. Detailed methods for performing the photochemical experiments and analysis of the DNA photoproduct are delineated. Detailed methods are also given for building an LED array to be used for DNA photolysis experiments. The Xe arc source has a broad spectral range and high light flux. The LEDs have a high-intensity, nearly monochromatic output. Arrays of LEDs have the advantage of allowing tunable, accurate output to multiple samples for high-throughput photochemistry experiments at relatively low cost.
Development of a cryogenic hydrogen microjet for high-intensity, high-repetition rate experiments
Kim, J. B.; Göde, S.; Glenzer, S. H.
2016-08-19
The advent of high-intensity, high-repetition-rate lasers has led to the need for replenishing targets of interest for high energy density sciences. We describe the design and characterization of a cryogenic microjet source, which can deliver a continuous stream of liquid hydrogen with a diameter of a few microns. The jet has been imaged at 1 μm resolution by shadowgraphy with a short pulse laser. In conclusion, the pointing stability has been measured at well below a mrad, for a stable free-standing filament of solid-density hydrogen.
Tu, Haohua; Zhao, Youbo; Liu, Yuan; Liu, Yuan-Zhi; Boppart, Stephen
2014-08-25
Optical sources in the visible region immediately adjacent to the near-infrared biological optical window are preferred in imaging techniques such as spectroscopic optical coherence tomography of endogenous absorptive molecules and two-photon fluorescence microscopy of intrinsic fluorophores. However, existing sources based on fiber supercontinuum generation are known to have high relative intensity noise and low spectral coherence, which may degrade imaging performance. Here we compare the optical noise and pulse compressibility of three high-power fiber Cherenkov radiation sources developed recently, and evaluate their potential to replace the existing supercontinuum sources in these imaging techniques.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chakravarty, U.; Rao, B. S.; Arora, V.
Enhanced water window x-ray emission (23–44 Å) from carbon clusters, formed in situ using a pre-pulse, irradiated by intense (I > 10{sup 17} W/cm{sup 2}) ultra-short laser pulse, is demonstrated. An order of magnitude x-ray enhancement over planar graphite target is observed in carbon clusters, formed by a sub-ns pre-pulse, interacting with intense main pulse after a delay. The effect of the delay and the duration of the main pulse is studied for optimizing the x-ray emission in the water window region. This x-ray source has added advantages of being an efficient, high repetition rate, and low debris x-ray source.
Illumination Modulation for Improved Propagation-Based Phase Imaging
NASA Astrophysics Data System (ADS)
Chakraborty, Tonmoy
Propagation-based phase imaging enables the quantitative reconstruction of a light beam's phase from measurements of its intensity. Because the intensity depends on the time-averaged square of the field the relationship between intensity and phase is, in general, nonlinear. The transport of intensity equation (TIE), is a linear equation relating phase and propagated intensity that arises from restricting the propagation distance to be small. However, the TIE limits the spatial frequencies that can be reliably reconstructed to those below some cutoff, which limits the accuracy of reconstruction of fine features in phase. On the other hand, the low frequency components suffer from poor signal to noise ratio (SNR) unless the propagation distance is sufficiently large, which leads to low frequency artifacts that obscure the reconstruction. In this research, I will consider the use of incoherent primary sources of illumination, in a Kohler illumination setup, to enhance the low-frequency performance of the TIE. The necessary steps required to design and build a table-top imaging setup which is capable of capturing intensity at any defocused position while modulating the source will be explained. In addition, it will be shown how by employing such illumination, the steps required for computationally recovering the phase, i.e. Fourier transforms and frequency-domain filtering, may be performed in the optical system. While these methods can address the low-frequency performance of the TIE, they do not extend its high-frequency cutoff. To avoid this cutoff, for objects with slowly varying phase, the contrast transfer function (CTF) model, an alternative to the TIE, can be used to recover phase. By allowing the combination of longer propagation distances and incoherent sources, it will be shown how CTF can improve performance at both high and low frequencies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alton, G.D.; Williams, C.
1996-04-01
The probability for simultaneously dissociating and efficiently ionizing the individual atomic constituents of molecular feed materials with conventional, hot-cathode, electron-impact ion sources is low and consequently, the ion beams from these sources often appear as mixtures of several molecular sideband beams. This fragmentation process leads to dilution of the intensity of the species of interest for radioactive ion beam (RIB) applications where beam intensity is at a premium. We have conceived an ion source that combines the excellent molecular dissociation properties of a thermal dissociator and the high ionization efficiency characteristics of an electron impact ionization source that will, inmore » principle, overcome this handicap. The source concept will be evaluated as a potential candidate for use for RIB generation at the Holifield Radioactive Ion Beam Facility, now under construction at the Oak Ridge National Laboratory. The design features and principles of operation of the source are described in this article. {copyright} {ital 1996 American Institute of Physics.}« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alton, G.D.; Williams, C.
1996-03-01
The probability for simultaneously dissociating and efficiently ionizing the individual atomic constituents of molecular feed materials with conventional, hot-cathode, electron-impact ion sources is low and consequently, the ion beams from these sources often appear as mixtures of several molecular sideband beams. This fragmentation process leads to dilution of the intensity of the species of interest for radioactive ion beam (RIB) applications where beam intensity is at a premium. We have conceived an ion source that combines the excellent molecular dissociation properties of a thermal dissociator and the high ionization efficiency characteristics of an electron impact ionization source that will, inmore » principle, overcome this handicap. The source concept will be evaluated as a potential candidate for use for RIB generation at the Holifield Radioactive Ion Beam Facility, now under construction at the Oak Ridge National Laboratory. The design features and principles of operation of the source are described in this article. {copyright} {ital 1996 American Institute of Physics.}« less
Academic Expectations as Sources of Stress in Asian Students
ERIC Educational Resources Information Center
Tan, Joyce Beiyu; Yates, Shirley
2011-01-01
Education is highly valued in Confucian Heritage Culture (CHC) countries such as China, Taiwan, Singapore, Hong Kong, Japan and Korea but the expectations of parents, teachers and students themselves to excel academically can also be a source of intense stress for many students. The "Academic Expectations Stress Inventory" (AESI),…
Photosynthetically supplemental lighting for vegetable crop production with super-bright laser diode
NASA Astrophysics Data System (ADS)
Hu, Yongguang; Li, Pingping; Shi, Jintong
2007-02-01
Although many artificial light sources like high-pressure sodium lamp, metal halide lamp, fluorescent lamp and so on are commonly used in horticulture, they are not widely applied because of the disadvantages of unreasonable spectra, high cost and complex control. Recently new light sources of light-emitting diode (LED) and laser diode (LD) are becoming more and more popular in the field of display and illumination with the improvement of material and manufacturing, long life-span and increasingly low cost. A new type of super-bright red LD (BL650, central wavelength is 650 nm) was selected to make up of the supplemental lighting panel, on which LDs were distributed with regular hexagon array. Drive circuit was designed to power it and adjust light intensity. System performance including temperature rise and light intensity distribution under different vertical/horizontal distances were tested. Photosynthesis of sweet pepper and eggplant leaf under LD was measured with LI-6400 to show the supplemental lighting effects. The results show that LD system can supply the maximum light intensity of 180 μmol/m2 •s at the distance of 50 mm below the panel and the temperature rise is little within 1 °C. Net photosynthetic rate became faster when LD system increased light intensity. Compared with sunlight and LED supplemental lighting system, LD's promotion on photosynthesis is in the middle. Thus it is feasible for LD light source to supplement light for vegetable crops. Further study would focus on the integration of LD and other artificial light sources.
Review on high current 2.45 GHz electron cyclotron resonance sources (invited).
Gammino, S; Celona, L; Ciavola, G; Maimone, F; Mascali, D
2010-02-01
The suitable source for the production of intense beams for high power accelerators must obey to the request of high brightness, stability, and reliability. The 2.45 GHz off-resonance microwave discharge sources are the ideal device to generate the requested beams, as they produce multimilliampere beams of protons, deuterons, and monocharged ions, remaining stable for several weeks without maintenance. A description of different technical designs will be given, analyzing their strength, and weakness, with regard to the extraction system and low energy beam transport line, as the presence of beam halo is detrimental for the accelerator.
NASA Astrophysics Data System (ADS)
Nitzan, Yeshayahu; Malik, Zvi; Kauffman, Merav; Ehrenberg, Benjamin
1997-12-01
(delta) -aminolevulinic acid (ALA) induces the production of very high amounts of porphyrins in Gram-positive and Gram- negative bacteria. Accumulation of the porphyrins in the bacterial cell is a consequence of the high porphyrin production but most of the porphyrins are excreted from the cells into the medium. By fluorescence, measurements of the endogenic and of the exogenic content of the produced porphyrins can be determined. Bacteria loaded by their own accumulated porphyrins can undergo photoinactivation by various light sources. Killing of S. aureus cells by its endogenic porphyrins can be achieved by illumination with intense blue lights or by HeNe laser. E. coli cells loaded with endogenic porphyrins can be photoinactivated by intense blue and red light.
NASA Astrophysics Data System (ADS)
Bartnik, A.
2015-06-01
In this work a review of investigations concerning interaction of intense extreme ultraviolet (EUV) and soft X-ray (SXR) pulses with matter is presented. The investigations were performed using laser-produced plasma (LPP) EUV/SXR sources based on a double stream gas puff target. The sources are equipped with dedicated collectors allowing for efficient focusing of the EUV/SXR radiation pulses. Intense radiation in a wide spectral range, as well as a quasi-monochromatic radiation can be produced. In the paper different kinds of LPP EUV/SXR sources developed in the Institute of Optoelectronics, Military University of Technology are described. Radiation intensities delivered by the sources are sufficient for different kinds of interaction experiments including EUV/SXR induced ablation, surface treatment, EUV fluorescence or photoionized plasma creation. A brief review of the main results concerning this kind of experiments performed by author of the paper are presented. However, since the LPP sources cannot compete with large scale X-ray sources like synchrotrons, free electron lasers or high energy density plasma sources, it was indicated that some investigations not requiring extreme irradiation parameters can be performed using the small scale installations. Some results, especially concerning low temperature photoionized plasmas are very unique and could be hardly obtained using the large facilities.
A compact high-resolution X-ray ion mobility spectrometer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reinecke, T.; Kirk, A. T.; Heptner, A.
For the ionization of gaseous samples, most ion mobility spectrometers employ radioactive ionization sources, e.g., containing {sup 63}Ni or {sup 3}H. Besides legal restrictions, radioactive materials have the disadvantage of a constant radiation with predetermined intensity. In this work, we replaced the {sup 3}H source of our previously described high-resolution ion mobility spectrometer with 75 mm drift tube length with a commercially available X-ray source. It is shown that the current configuration maintains the resolving power of R = 100 which was reported for the original setup containing a {sup 3}H source. The main advantage of an X-ray source ismore » that the intensity of the radiation can be adjusted by varying its operating parameters, i.e., filament current and acceleration voltage. At the expense of reduced resolving power, the sensitivity of the setup can be increased by increasing the activity of the source. Therefore, the performance of the setup can be adjusted to the specific requirements of any application. To investigate the relation between operating parameters of the X-Ray source and the performance of the ion mobility spectrometer, parametric studies of filament current and acceleration voltage are performed and the influence on resolving power, peak height, and noise is analyzed.« less
The Development of High-Intensity Negative Ion Sources and Beams in the USSR
1981-09-01
ion beams as the basis for creating neutral beams for injection into mirror traps and tokamaks, for inertial confinement fusion, and possibly for...create intense neutral beams for injection systems for mirror traps and tokamaks and for inertial confinement fusion. These applications require high...Scient. Instr., Vol. 44, 1973, p. 145. 46. Gabovich, M. D., Yu. N. Kozyrev , A. P. Nayda, L. S. Simonenko, I. A. Soloshenko, "H- Ion Beam Limit from a
NASA Astrophysics Data System (ADS)
Stork, D.; Heidinger, R.; Muroga, T.; Zinkle, S. J.; Moeslang, A.; Porton, M.; Boutard, J.-L.; Gonzalez, S.; Ibarra, A.
2017-09-01
Materials damage by 14.1MeV neutrons from deuterium-tritium (D-T) fusion reactions can only be characterised definitively by subjecting a relevant configuration of test materials to high-intensity ‘fusion-neutron spectrum sources’, i.e. those simulating closely D-T fusion-neutron spectra. This provides major challenges to programmes to design and construct a demonstration fusion reactor prior to having a large-scale, high-intensity source of such neutrons. In this paper, we discuss the different aspects related to these ‘relevant configuration’ tests, including: • generic issues in materials qualification/validation, comparing safety requirements against those of investment protection; • lessons learned from the fission programme, enabling a reduced fusion materials testing programme; • the use and limitations of presently available possible irradiation sources to optimise a fusion neutron testing program including fission-neutron irradiation of isotopically and chemically tailored steels, ion damage by high-energy helium ions and self-ion beams, or irradiation studies with neutron sources of non-fusion spectra; and • the different potential sources of simulated fusion neutron spectra and the choice using stripping reactions from deuterium-beam ions incident on light-element targets.
[Study on the risk assessment method of regional groundwater pollution].
Yang, Yan; Yu, Yun-Jiang; Wang, Zong-Qing; Li, Ding-Long; Sun, Hong-Wei
2013-02-01
Based on the boundary elements of system risk assessment, the regional groundwater pollution risk assessment index system was preliminarily established, which included: regional groundwater specific vulnerability assessment, the regional pollution sources characteristics assessment and the health risk assessment of regional featured pollutants. The three sub-evaluation systems were coupled with the multi-index comprehensive method, the risk was characterized with the Spatial Analysis of ArcMap, and a new method to evaluate regional groundwater pollution risk that suitable for different parts of natural conditions, different types of pollution was established. Take Changzhou as an example, the risk of shallow groundwater pollution was studied with the new method, and found that the vulnerability index of groundwater in Changzhou is high and distributes unevenly; The distribution of pollution sources is concentrated and has a great impact on groundwater pollution risks; Influenced by the pollutants and pollution sources, the values of health risks are high in the urban area of Changzhou. The pollution risk of shallow groundwater is high and distributes unevenly, and distributes in the north of the line of Anjia-Xuejia-Zhenglu, the center of the city and the southeast, where the human activities are more intense and the pollution sources are intensive.
Testing a high-power LED based light source for hyperspectral imaging microscopy
NASA Astrophysics Data System (ADS)
Klomkaew, Phiwat; Mayes, Sam A.; Rich, Thomas C.; Leavesley, Silas J.
2017-02-01
Our lab has worked to develop high-speed hyperspectral imaging systems that scan the fluorescence excitation spectrum for biomedical imaging applications. Hyperspectral imaging can be used in remote sensing, medical imaging, reaction analysis, and other applications. Here, we describe the development of a hyperspectral imaging system that comprised an inverted Nikon Eclipse microscope, sCMOS camera, and a custom light source that utilized a series of high-power LEDs. LED selection was performed to achieve wavelengths of 350-590 nm. To reduce scattering, LEDs with low viewing angles were selected. LEDs were surface-mount soldered and powered by an RCD. We utilized 3D printed mounting brackets to assemble all circuit components. Spectraradiometric calibration was performed using a spectrometer (QE65000, Ocean Optics) and integrating sphere (FOIS-1, Ocean Optics). Optical output and LED driving current were measured over a range of illumination intensities. A normalization algorithm was used to calibrate and optimize the intensity of the light source. The highest illumination power was at 375 nm (3300 mW/cm2), while the lowest illumination power was at 515, 525, and 590 nm (5200 mW/cm2). Comparing the intensities supplied by each LED to the intensities measured at the microscope stage, we found there was a great loss in power output. Future work will focus on using two of the same LEDs to double the power and finding more LED and/or laser diodes and chips around the range. This custom hyperspectral imaging system could be used for the detection of cancer and the identification of biomolecules.
2009-03-01
ideological commitment, their part-time or full-time commitment to jihad, and if they have high or low Social Intensity Syndrome. The conclusion of...emotional aggression; Social Intensity Syndrome; terrorism; counter-terrorism; counter-ideological. 16. PRICE CODE 17. SECURITY CLASSIFICATION OF... Social Intensity Syndrome. The conclusion of this thesis is that the FBI should concentrate recruitments on the more pragmatic Type B terrorists
Optical countermeasures against CLOS weapon systems
NASA Astrophysics Data System (ADS)
Toet, Alexander; Benoist, Koen W.; van Lingen, Joost N. J.; Schleijpen, H. Ric M. A.
2013-10-01
There are many weapon systems in which a human operator acquires a target, tracks it and designates it. Optical countermeasures against this type of systems deny the operator the possibility to fulfill this visual task. We describe the different effects that result from stimulation of the human visual system with high intensity (visible) light, and the associated potential operational impact. Of practical use are flash blindness, where an intense flash of light produces a temporary "blind-spot" in (part of) the visual field, flicker distraction, where strong intensity and/or color changes at a discomfortable frequency are produced, and disability glare where a source of light leads to contrast reduction. Hence there are three possibilities to disrupt the visual task of an operator with optical countermeasures such as flares or lasers or a combination of these; namely, by an intense flash of light, by an annoying light flicker or by a glare source. A variety of flares for this purpose is now available or under development: high intensity flash flares, continuous burning flares or strobe flares which have an oscillating intensity. The use of flare arrays seems particularly promising as an optical countermeasure. Lasers are particularly suited to interfere with human vision, because they can easily be varied in intensity, color and size, but they have to be directed at the (human) target, and issues like pointing and eye-safety have to be taken into account. Here we discuss the design issues and the operational impact of optical countermeasures against human operators.
NASA Astrophysics Data System (ADS)
Lizarelli, Rosane F. Z.; Pizzo, Renata C. A.; Florez, Fernando L. E.; Grecco, Clovis; Speciali, Jose G.; Bagnato, Vanderlei S.
2015-06-01
Considering several clinical situations, low intensity laser therapy has been widely applied in pain relief or analgesia mechanism. With the advent of new LED-based (light emitting diode) light sources, the need of further clinical experiments aiming to compare the effectiveness among them is paramount. The LED system therapeutic use can be denominated as LEDT - Light Emitting Diode Therapy. This study proposed two clinical evaluations of pain relief effect: to dentin hypersensitivity and to cervicogenic headache using different sources of lasers (low and high intensity) and light emitting diodes (LEDs), one emitting at the spectral band of red (630+/- 5nm) and the other one at infrared band (880+/- 5nm). Two different clinical studies were performed and presented interesting results. Considering dentin hypersensitivity, red and infrared led were so effective than the control group (high intensity laser system); by the other side, considering cervicogenic headache, control group (infrared laser) was the best treatment in comparison to red and infrared led system.
Canney, Michael S.; Khokhlova, Vera A.; Bessonova, Olga V.; Bailey, Michael R.; Crum, Lawrence A.
2009-01-01
Nonlinear propagation causes high intensity ultrasound waves to distort and generate higher harmonics, which are more readily absorbed and converted to heat than the fundamental frequency. Although such nonlinear effects have previously been investigated and found not to significantly alter high intensity focused ultrasound (HIFU) treatments, two results reported here change this paradigm. One is that at clinically relevant intensity levels, HIFU waves not only become distorted but form shock waves in tissue. The other is that the generated shock waves heat the tissue to boiling in much less time than predicted for undistorted or weakly distorted waves. In this study, a 2-MHz HIFU source operating at peak intensities up to 25,000 W/cm2 was used to heat transparent tissue-mimicking phantoms and ex vivo bovine liver samples. Initiation of boiling was detected using high-speed photography, a 20-MHz passive cavitation detector, and fluctuation of the drive voltage at the HIFU source. The time to boil obtained experimentally was used to quantify heating rates and was compared to calculations using weak shock theory and the shock amplitudes obtained from nonlinear modeling and from measurements with a fiber optic hydrophone. As observed experimentally and predicted by calculations, shocked focal waveforms produced boiling in as little as 3 ms and the time to initiate boiling was sensitive to small changes in HIFU output. Nonlinear heating due to shock waves is therefore important to HIFU and clinicians should be aware of the potential for very rapid boiling since it alters treatments. PMID:20018433
Observations of Space Charge effects in the Spallation Neutron Source Accumulator Ring
DOE Office of Scientific and Technical Information (OSTI.GOV)
Potts III, Robert E; Cousineau, Sarah M; Holmes, Jeffrey A
2012-01-01
The Spallation Neutron Source accumulator ring was designed to allow independent control of the transverse beam distribution in each plane. However, at high beam intensities, nonlinear space charge forces can strongly influence the final beam distribution and compromise our ability to independently control the transverse distributions. In this study we investigate the evolution of the beam at intensities of up to ~8x10^13 ppp through both simulation and experiment. Specifically, we analyze the evolution of the beam distribution for beams with different transverse aspect ratios and tune splits. We present preliminary results of simulations of our experiments.
Matsuta, Hideyuki; Naeem, Tariq M; Wagatsuma, Kazuaki
2003-06-01
A novel emission excitation source comprising a high repetition rate diode-pumped Q-switched Nd:YAG laser and a Grimm-style glow-discharge lamp is described. Laser-ablated atoms are introduced into the He glow discharge plasma, which then give emission signals. By using phase-sensitive detection with a lock-in amplifier, the emission signal modulated by the pulsed laser can be detected selectively. It is possible to estimate only the emission intensity of sample atoms ablated by laser irradiation with little interference from the other species in the plasma.
Method of high-density foil fabrication
Blue, Craig A.; Sikka, Vinod K.; Ohriner, Evan K.
2003-12-16
A method for preparing flat foils having a high density includes the steps of mixing a powdered material with a binder to form a green sheet. The green sheet is exposed to a high intensity radiative source adapted to emit radiation of wavelengths corresponding to an absorption spectrum of the powdered material. The surface of the green sheet is heated while a lower sub-surface temperature is maintained. An apparatus for preparing a foil from a green sheet using a radiation source is also disclosed.
Light intensity affects the uptake and metabolism of glycine by pakchoi (Brassica chinensis L.)
NASA Astrophysics Data System (ADS)
Ma, Qingxu; Cao, Xiaochuang; Wu, Lianghuan; Mi, Wenhai; Feng, Ying
2016-02-01
The uptake of glycine by pakchoi (Brassica chinensis L.), when supplied as single N-source or in a mixture of glycine and inorganic N, was studied at different light intensities under sterile conditions. At the optimal intensity (414 μmol m-2 s-1) for plant growth, glycine, nitrate, and ammonium contributed 29.4%, 39.5%, and 31.1% shoot N, respectively, and light intensity altered the preferential absorption of N sources. The lower 15N-nitrate in root but higher in shoot and the higher 15N-glycine in root but lower in shoot suggested that most 15N-nitrate uptake by root transported to shoot rapidly, with the shoot being important for nitrate assimilation, and the N contribution of glycine was limited by post-uptake metabolism. The amount of glycine that was taken up by the plant was likely limited by root uptake at low light intensities and by the metabolism of ammonium produced by glycine at high light intensities. These results indicate that pakchoi has the ability to uptake a large quantity of glycine, but that uptake is strongly regulated by light intensity, with metabolism in the root inhibiting its N contribution.
First results from the new RIKEN superconducting electron cyclotron resonance ion source (invited).
Nakagawa, T; Higurashi, Y; Ohnishi, J; Aihara, T; Tamura, M; Uchiyama, A; Okuno, H; Kusaka, K; Kidera, M; Ikezawa, E; Fujimaki, M; Sato, Y; Watanabe, Y; Komiyama, M; Kase, M; Goto, A; Kamigaito, O; Yano, Y
2010-02-01
The next generation heavy ion accelerator facility, such as the RIKEN radio isotope (RI) beam factory, requires an intense beam of high charged heavy ions. In the past decade, performance of the electron cyclotron resonance (ECR) ion sources has been dramatically improved with increasing the magnetic field and rf frequency to enhance the density and confinement time of plasma. Furthermore, the effects of the key parameters (magnetic field configuration, gas pressure, etc.) on the ECR plasma have been revealed. Such basic studies give us how to optimize the ion source structure. Based on these studies and modern superconducting (SC) technology, we successfully constructed the new 28 GHz SC-ECRIS, which has a flexible magnetic field configuration to enlarge the ECR zone and to optimize the field gradient at ECR point. Using it, we investigated the effect of ECR zone size, magnetic field configuration, and biased disk on the beam intensity of the highly charged heavy ions with 18 GHz microwaves. In this article, we present the structure of the ion source and first experimental results with 18 GHz microwave in detail.
Method for materials deposition by ablation transfer processing
Weiner, Kurt H.
1996-01-01
A method in which a thin layer of semiconducting, insulating, or metallic material is transferred by ablation from a source substrate, coated uniformly with a thin layer of said material, to a target substrate, where said material is desired, with a pulsed, high intensity, patternable beam of energy. The use of a patternable beam allows area-selective ablation from the source substrate resulting in additive deposition of the material onto the target substrate which may require a very low percentage of the area to be covered. Since material is placed only where it is required, material waste can be minimized by reusing the source substrate for depositions on multiple target substrates. Due to the use of a pulsed, high intensity energy source the target substrate remains at low temperature during the process, and thus low-temperature, low cost transparent glass or plastic can be used as the target substrate. The method can be carried out atmospheric pressures and at room temperatures, thus eliminating vacuum systems normally required in materials deposition processes. This invention has particular application in the flat panel display industry, as well as minimizing materials waste and associated costs.
Bigelow, Timothy A
2009-01-01
High-Intensity Focused Ultrasound (HIFU) is quickly becoming one of the best methods to thermally ablate tissue noninvasively. Unlike RF or Laser ablation, the tissue can be destroyed without inserting any probes into the body minimizing the risk of secondary complications such as infections. In this study, the heating efficiency of HIFU sources is improved by altering the excitation of the ultrasound source to take advantage of nonlinear propagation. For ultrasound, the phase velocity of the ultrasound wave depends on the amplitude of the wave resulting in the generation of higher harmonics. These higher harmonics are more efficiently converted into heat in the body due to the frequency dependence of the ultrasound absorption in tissue. In our study, the generation of the higher harmonics by nonlinear propagation is enhanced by transmitting an ultrasound wave with both the fundamental and a higher harmonic component included. Computer simulations demonstrated up to a 300% increase in temperature increase compared to transmitting at only the fundamental for the same acoustic power transmitted by the source.
Intense beams from gases generated by a permanent magnet ECR ion source at PKU.
Ren, H T; Peng, S X; Lu, P N; Yan, S; Zhou, Q F; Zhao, J; Yuan, Z X; Guo, Z Y; Chen, J E
2012-02-01
An electron cyclotron resonance (ECR) ion source is designed for the production of high-current ion beams of various gaseous elements. At the Peking University (PKU), the primary study is focused on developing suitable permanent magnet ECR ion sources (PMECRs) for separated function radio frequency quadrupole (SFRFQ) accelerator and for Peking University Neutron Imaging Facility. Recently, other kinds of high-intensity ion beams are required for new acceleration structure demonstration, simulation of fusion reactor material irradiation, aviation bearing modification, and other applications. So we expanded the ion beam category from O(+), H(+), and D(+) to N(+), Ar(+), and He(+). Up to now, about 120 mA of H(+), 83 mA of D(+), 50 mA of O(+), 63 mA of N(+), 70 mA of Ar(+), and 65 mA of He(+) extracted at 50 kV through a φ 6 mm aperture were produced by the PMECRs at PKU. Their rms emittances are less than 0.2 π mm mrad. Tungsten samples were irradiated by H(+) or He(+) beam extracted from this ion source and H∕He holes and bubbles have been observed on the samples. A method to produce a high intensity H∕He mixed beam to study synergistic effect is developed for nuclear material irradiation. To design a He(+) beam injector for coupled radio frequency quadruple and SFRFQ cavity, He(+) beam transmission experiments were carried out on PKU low energy beam transport test bench and the transmission was less than 50%. It indicated that some electrode modifications must be done to decrease the divergence of He(+) beam.
2007-05-18
number and intensity are highest in sunspot maximum. CME’s are considered the sources of the most intense geomagnetic storms (Gonzalez et al., 2002... storm . High speed solar wind The geomagnetic activity during the declining phase of the solar cycle can be even higher that at sunspot maximum. In...characteristic “calm before the storm ” – the decrease a couple of days before the maximum disturbance – in the case of high speed streams (Borovsky and
Asadi, R; Ouyang, Z; Mohammd, M M
2015-07-14
We design a compact, all-optical THz wave generator based on self-modulation in a 1-D slab photonic crystal (PhC) waveguide with a single sub-nanometer graphene layer by using enhanced nonlinearity of graphene. It has been shown that at the bandgap edge of higher bands of a 1-D slab PhC, through only one sub-nanometer graphene layer we can obtain a compact, high modulation factor (about 0.98 percent), self-intensity modulator at a high frequency (about 0.6 THz) and low threshold intensity (about 15 MW per square centimeter), and further a compact, all-optical THz wave generator by integrating the self-modulator with a THz photodiode or photonic mixer. Such a THz source is expected to have a relatively high efficiency compared with conventional sources based on optical methods. The proposed THz source can find wide applications in THz science and technology, e.g., in THz imaging, THz sensors and detectors, THz communication systems, and THz optical integrated logic circuits.
Protecting the source: Tools to evaluate fuel treatment cost vs. water quality protection
Brian Cooke; William Elliot; Mary Ellen Miller; Mark Finney; Matthew Thompson
2016-01-01
High-intensity wildfires are one of the leading causes of severe soil erosion in western U.S. watersheds. This erosion can lead to disruptive deposits of sediment in reservoirs and water supply systems. Fuel treatments such as controlled burns and forest thinning can reduce wildfire intensity and help preserve topsoil. But while these treatments are generally...
NASA Astrophysics Data System (ADS)
Ward, Jacob Wolfgang; Nave, Gillian
2016-01-01
Recent measurements of four times ionized iron and nickel (Fe V & Ni V) wavelengths in the vacuum ultraviolet (VUV) have been taken using the National Institute for Standards and Technology (NIST) Normal Incidence Vacuum Spectrograph (NIVS) with a sliding spark light source with invar electrodes. The wavelengths observed in those measurements make use of high resolution photographic plates with the majority of observed lines having uncertainties of approximately 3mÅ. In addition to observations made with photographic plates, the same wavelength region was observed with phosphor image plates, which have been demonstrated to be accurate as a method of intensity calibration when used with a deuterium light source. This work will evaluate the use of phosphor image plates and deuterium lamps as an intensity calibration method for the Ni V spectrum in the 1200-1600Å region of the VUV. Additionally, by pairing the observed wavelengths of Ni V with accurate line intensities, it is possible to create an energy level optimization for Ni V providing high accuracy Ritz wavelengths. This process has previously been applied to Fe V and produced Ritz wavelengths that agreed with the above experimental observations.
Purification effect of two typical water source vegetation buffer zones on land-sourced pollutants
NASA Astrophysics Data System (ADS)
Li, Gang
2017-03-01
Two vegetation buffer zones (tree-shrub-grass pattern and tree-grass pattern) were selected as test objects around Siming reservoir in Yuyao City of China. The effect of the storm runoff intensity (low and high intensity) and the buffer zone width (1 m, 3 m, 5 m, 7 m, 9 m, 12 m, 16 m) on pollutants (suspended solids, ammonium nitrogen and total phosphorus) was studied by the artificial simulation runoff. The results showed that with the increase of the width of buffer zone, the pollutant concentration was decreased. The purification effect of the two buffer zones on suspended solids and total phosphorus was basically stable at 52-55% and 34-37%, respectively. But the purification effect on ammonium nitrogen was the tree-shrub-grass pattern (69.7%) significantly better than that of tree-grass pattern (52.1%). The purification rate at the low runoff intensity was 1.8-2.0 times that at the high runoff intensity. The relationship between the purification rate and buffer zone width can be expressed by the natural logarithm equation, and the model adjustment coefficient was greater than 0.92.
Polarized Negative Light Ions at the Cooler Synchrotron COSY/Juelich
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gebel, R.; Felden, O.; Rossen, P. von
2005-04-06
The polarized ion source at the cooler synchrotron facility COSY of the research centre Juelich in Germany delivers negative polarized protons or deuterons for medium energy experiments. The polarized ion source, originally built by the universities of Bonn, Erlangen and Cologne, is based on the colliding beams principle, using after an upgrade procedure an intense pulsed neutralized caesium beam for charge exchange with a pulsed highly polarized hydrogen beam. The source is operated at 0.5 Hz repetition rate with 20 ms pulse length, which is the maximum useful length for the injection into the synchrotron. Routinely intensities of 20 {mu}Amore » are delivered for injection into the cyclotron of the COSY facility. For internal targets the intensity of 2 mA and a polarization up to 90% have been reached. Reliable long-term operation for experiments at COSY for up to 9 weeks has been achieved. Since 2003 polarized deuterons with different combinations of vector and tensor polarization were delivered to experiments.« less
NASA Astrophysics Data System (ADS)
Tamura, Fumihiko; Ohmori, Chihiro; Yamamoto, Masanobu; Yoshii, Masahito; Schnase, Alexander; Nomura, Masahiro; Toda, Makoto; Shimada, Taihei; Hasegawa, Katsushi; Hara, Keigo
2013-05-01
Beam loading compensation is a key for acceleration of a high intensity proton beam in the main ring (MR) of the Japan Proton Accelerator Research Complex (J-PARC). Magnetic alloy loaded rf cavities with a Q value of 22 are used to achieve high accelerating voltages without a tuning bias loop. The cavity is driven by a single harmonic (h=9) rf signal while the cavity frequency response also covers the neighbor harmonics (h=8,10). Therefore the wake voltage induced by the high intensity beam consists of the three harmonics, h=8,9,10. The beam loading of neighbor harmonics is the source of periodic transient effects and a possible source of coupled bunch instabilities. In the article, we analyze the wake voltage induced by the high intensity beam. We employ the rf feedforward method to compensate the beam loading of these three harmonics (h=8,9,10). The full-digital multiharmonic feedforward system was developed for the MR. We describe the system architecture and the commissioning methodology of the feedforward patterns. The commissioning of the feedforward system has been performed by using high intensity beams with 1.0×1014 proteins per pulse. The impedance seen by the beam is successfully reduced and the longitudinal oscillations due to the beam loading are reduced. By the beam loading compensation, stable high power beam operation is achieved. We also report the reduction of the momentum loss during the debunching process for the slow extraction by the feedforward.
NASA Astrophysics Data System (ADS)
Jiang, Cong; Yu, Zong-Wen; Wang, Xiang-Bin
2018-04-01
We present an analysis for measurement-device-independent quantum key distribution with correlated source-light-intensity errors. Numerical results show that the results here can greatly improve the key rate especially with large intensity fluctuations and channel attenuation compared with prior results if the intensity fluctuations of different sources are correlated.
Recent advances in laser-driven neutron sources
NASA Astrophysics Data System (ADS)
Alejo, A.; Ahmed, H.; Green, A.; Mirfayzi, S. R.; Borghesi, M.; Kar, S.
2016-11-01
Due to the limited number and high cost of large-scale neutron facilities, there has been a growing interest in compact accelerator-driven sources. In this context, several potential schemes of laser-driven neutron sources are being intensively studied employing laser-accelerated electron and ion beams. In addition to the potential of delivering neutron beams with high brilliance, directionality and ultra-short burst duration, a laser-driven neutron source would offer further advantages in terms of cost-effectiveness, compactness and radiation confinement by closed-coupled experiments. Some of the recent advances in this field are discussed, showing improvements in the directionality and flux of the laser-driven neutron beams.
Wan, Li; Baldridge, Robyn M; Colby, Amanda M; Stanford, Matthew S
2009-11-13
Intensity dependence is an electrophysiological measure of intra-individual stability of the augmenting/reducing characteristic of N1/ P2 event-related potential amplitudes in response to stimuli of varying intensities. Abstinent ecstasy users typically show enhanced intensity dependence and higher levels of impulsivity and aggression. Enhanced intensity dependence and high impulsivity and aggression levels may be due to damage in the brain's serotonergic neurons as a result of ecstasy use. The present study investigated whether intensity dependence, impulsivity and aggression history can be used as indicators of previous chronic ecstasy usage. Forty-four abstinent polydrug users (8 women; age 19 to 61 years old) were recruited. All participants were currently residents at a local substance abuse facility receiving treatment and had been free of all drugs for a minimum of 21 days. The study found significantly enhanced intensity dependence of tangential dipole source activity and a history of more aggressive behavior in those who had previously been involved in chronic ecstasy use. Intensity dependence of the tangential dipole source and aggressive behavior history correctly identified 73.3% of those who had been regular ecstasy users and 78.3% of those who had not. Overall, 76.3% of the participants were correctly classified.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jourdain, Elisabeth; Roques, Jean-Pierre; Rodi, James
2017-01-10
During its strong outburst of 2015 June/July, the X-ray transient V404 Cygni (=GS2023+338) was observed up to a level of 50 Crab in the hard X-ray domain. We focus here on a particularly intense episode preceeding a definitive decline of the source activity. We benefit from large signal-to-noise ratios to investigate the source spectral variability, on a timescale of five minutes. A hardness–intensity study of three broad bands reveals clearly different behaviors at low and high energy (below and above ∼100 keV). In particular, on two occasions, the source intensity varies by a factor of 3–4 in amplitude while keepingmore » the same spectral shape. On the other hand, at the end of the major flare, the emission presents a clear anticorrelation between flux and hardness. These behaviors strongly suggest the presence of two spectral components related to emission processes varying in a largely independent way. The first component ( E < 100–150 keV) is classically identified with a Comptonizing thermal electron population, and requires either an unusual seed photon population or a specific geometry with strong absorbing/reflecting material. The second component is modeled by a cutoff power-law, which could correspond to a second hotter Comptonizing population or another mechanism (synchrotron, non-thermal Comptonization...). In the framework of such a model, hardness–intensity and flux–flux diagrams clearly demonstrate that the source evolution follows a well-organized underlying scheme. They reveal unique information about the hard X-ray emission processes and connections between them.« less
Manigrasso, Maurizio; Vitali, Matteo; Protano, Carmela; Avino, Pasquale
2017-11-15
Aerosol number size distributions, PM mass concentrations, alveolar deposited surface areas (ADSAs) and VOC concentrations were measured in a model room when aerosol was emitted by sources frequently encountered in indoor environments. Both combustion and non-combustion sources were considered. The most intense aerosol emission occurred when combustion sources were active (as high as 4.1×10 7 particlescm -3 for two meat grilling sessions; the first with exhaust ventilation, the second without). An intense spike generation of nucleation particles occurred when appliances equipped with brush electric motors were operating (as high as 10 6 particlescm -3 on switching on an electric drill). Average UFP increments over the background value were highest for electric appliances (5-12%) and lowest for combustion sources (as low as -24% for tobacco cigarette smoke). In contrast, average increments in ADSA were highest for combustion sources (as high as 3.2×10 3 μm 2 cm -3 for meat grilling without exhaust ventilation) and lowest for electric appliances (20-90μm 2 cm -3 ). The health relevance of such particles is associated to their ability to penetrate cellular structures and elicit inflammatory effects mediated through oxidative stress in a way dependent on their surface area. The highest VOC concentrations were measured (PID probe) for cigarette smoke (8ppm) and spray air freshener (10ppm). The highest PM mass concentration (PM 1 ) was measured for citronella candle burning (as high as 7.6mgm -3 ). Copyright © 2017 Elsevier B.V. All rights reserved.
The nocturnal acoustical intensity of the intensive care environment: an observational study.
Delaney, Lori J; Currie, Marian J; Huang, Hsin-Chia Carol; Lopez, Violeta; Litton, Edward; Van Haren, Frank
2017-01-01
The intensive care unit (ICU) environment exposes patients to noise levels that may result in substantial sleep disruption. There is a need to accurately describe the intensity pattern and source of noise in the ICU in order to develop effective sound abatement strategies. The objectives of this study were to determine nocturnal noise levels and their variability and the related sources of noise within an Australian tertiary ICU. An observational cross-sectional study was conducted in a 24-bed open-plan ICU. Sound levels were recorded overnight during three nights at 5-s epochs using Extech (SDL 600) sound monitors. Noise sources were concurrently logged by two research assistants. The mean recorded ambient noise level in the ICU was 52.85 decibels (dB) (standard deviation (SD) 5.89), with a maximum noise recording at 98.3 dB (A). All recorded measurements exceeded the WHO recommendations. Noise variability per minute ranged from 9.9 to 44 dB (A), with peak noise levels >70 dB (A) occurring 10 times/hour (SD 11.4). Staff were identified as the most common source accounting for 35% of all noise. Mean noise levels in single-patient rooms compared with open-bed areas were 53.5 vs 53 dB ( p = 0.37), respectively. Mean noise levels exceeded those recommended by the WHO resulting in an acoustical intensity of 193 times greater than the recommended and demonstrated a high degree of unpredictable variability, with the primary noise sources coming from staff conversations. The lack of protective effects of single rooms and the contributing effects that staffs have on noise levels are important factors when considering sound abatement strategies.
Pappas, D.S.
1987-07-31
The apparatus of this invention may comprise a system for generating laser radiation from a high-energy neutron source. The neutron source is a tokamak fusion reactor generating a long pulse of high-energy neutrons and having a temperature and magnetic field effective to generate a neutron flux of at least 10/sup 15/ neutrons/cm/sup 2//center dot/s. Conversion means are provided adjacent the fusion reactor at a location operable for converting the high-energy neutrons to an energy source with an intensity and energy effective to excite a preselected lasing medium. A lasing medium is spaced about and responsive to the energy source to generate a population inversion effective to support laser oscillations for generating output radiation. 2 figs., 2 tabs.
K-line spectra from tungsten heated by an intense pulsed electron beam.
Pereira, N R; Weber, B V; Apruzese, J P; Mosher, D; Schumer, J W; Seely, J F; Szabo, C I; Boyer, C N; Stephanakis, S J; Hudson, L T
2010-10-01
The plasma-filled rod-pinch diode (PFRP) is an intense source of x-rays ideal for radiography of dense objects. In the PRFP megavoltage electrons from a pulsed discharge concentrate at the pointed end of a 1 mm diameter tapered tungsten rod. Ionization of this plasma might increase the energy of tungsten's Kα(1) fluorescence line, at 59.3182 keV, enough for the difference to be observed by a high-resolution Cauchois transmission crystal spectrograph. When the PFRP's intense hard bremsstrahlung is suppressed by the proper shielding, such an instrument gives excellent fluorescence spectra, albeit with as yet insufficient resolution to see any effect of tungsten's ionization. Higher resolution is possible with various straightforward upgrades that are feasible thanks to the radiation's high intensity.
Sterilizing effects of high-intensity airborne sonic and ultrasonic waves.
Pisano, M A; Boucher, M G; Alcamo, I E
1966-09-01
The lethal effects of high-intensity airborne sonic (9.9 kc/sec) and ultrasonic waves (30.4 kc/sec) on spores of Bacillus subtilis var. niger ATCC 9372 were determined. The spores, which were deposited on filter-paper strips, were exposed to sound waves for periods varying from 1 to 8 hr, at a temperature of 40 C and a relative humidity of 40%. Significant reductions in the viable counts of spores exposed to airborne sonic or ultrasonic irradiations were obtained. The antibacterial activity of airborne sound waves varied with the sound intensity level, the period of irradiation, and the distance of the sample from the sound source. At similar intensity levels, the amplitude of motion of the sound waves appeared to be a factor in acoustic sterilization.
The study of helicon plasma source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miao Tingting; Shang Yong; Graduate University of Chinese Academy of Sciences, Beijing 100049
2010-02-15
Helicon plasma source is known as efficient generator of uniform and high density plasma. A helicon plasma source was developed for investigation of plasma neutralization and plasma lens in the Institute of Modern Physics in China. In this paper, the characteristics of helicon plasma have been studied by using Langmuir four-probe and a high argon plasma density up to 3.9x10{sup 13} cm{sup -3} have been achieved with the Nagoya type III antenna at the conditions of the magnetic intensity of 200 G, working gas pressure of 2.8x10{sup -3} Pa, and rf power of 1200 W with a frequency of 27.12more » MHz. In the experiment, the important phenomena have been found: for a given magnetic induction intensity, the plasma density became greater with the increase in rf power and tended to saturation, and the helicon mode appeared at the rf power between 200 and 400 W.« less
Next Generation Driver for Attosecond and Laser-plasma Physics.
Rivas, D E; Borot, A; Cardenas, D E; Marcus, G; Gu, X; Herrmann, D; Xu, J; Tan, J; Kormin, D; Ma, G; Dallari, W; Tsakiris, G D; Földes, I B; Chou, S-W; Weidman, M; Bergues, B; Wittmann, T; Schröder, H; Tzallas, P; Charalambidis, D; Razskazovskaya, O; Pervak, V; Krausz, F; Veisz, L
2017-07-12
The observation and manipulation of electron dynamics in matter call for attosecond light pulses, routinely available from high-order harmonic generation driven by few-femtosecond lasers. However, the energy limitation of these lasers supports only weak sources and correspondingly linear attosecond studies. Here we report on an optical parametric synthesizer designed for nonlinear attosecond optics and relativistic laser-plasma physics. This synthesizer uniquely combines ultra-relativistic focused intensities of about 10 20 W/cm 2 with a pulse duration of sub-two carrier-wave cycles. The coherent combination of two sequentially amplified and complementary spectral ranges yields sub-5-fs pulses with multi-TW peak power. The application of this source allows the generation of a broad spectral continuum at 100-eV photon energy in gases as well as high-order harmonics in relativistic plasmas. Unprecedented spatio-temporal confinement of light now permits the investigation of electric-field-driven electron phenomena in the relativistic regime and ultimately the rise of next-generation intense isolated attosecond sources.
Urban snow indicates pollution originating from road traffic.
Kuoppamäki, Kirsi; Setälä, Heikki; Rantalainen, Anna-Lea; Kotze, D Johan
2014-12-01
Traffic is a major source of pollutants in cities. In this well-replicated study we analysed a broad array of contaminants in snowpacks along roads of different traffic intensities. The majority of pollutants showed a similar pattern with respect to traffic intensity: pH and conductivity as well as concentrations of PAHs, total suspended solids, phosphorus and most heavy metals were higher next to high intensity roads compared to low intensity roads. These pollutant levels also decreased considerably up to 5 m distance from the roads. Furthermore, apart from nitrogen, these variables increased in concentration from control sites in urban forest patches to road bank sites next to roads of low, intermediate and high traffic intensities. The deposition pattern of various traffic-derived pollutants--whether gaseous or particle-bound--was the same. Such information can be useful for the purposes of managing pollutants in urban areas. Copyright © 2014 Elsevier Ltd. All rights reserved.
Low-intensity red and infrared laser effects at high fluences on Escherichia coli cultures
Barboza, L.L.; Campos, V.M.A.; Magalhães, L.A.G.; Paoli, F.; Fonseca, A.S.
2015-01-01
Semiconductor laser devices are readily available and practical radiation sources providing wavelength tenability and high monochromaticity. Low-intensity red and near-infrared lasers are considered safe for use in clinical applications. However, adverse effects can occur via free radical generation, and the biological effects of these lasers from unusually high fluences or high doses have not yet been evaluated. Here, we evaluated the survival, filamentation induction and morphology of Escherichia coli cells deficient in repair of oxidative DNA lesions when exposed to low-intensity red and infrared lasers at unusually high fluences. Cultures of wild-type (AB1157), endonuclease III-deficient (JW1625-1), and endonuclease IV-deficient (JW2146-1) E. coli, in exponential and stationary growth phases, were exposed to red and infrared lasers (0, 250, 500, and 1000 J/cm2) to evaluate their survival rates, filamentation phenotype induction and cell morphologies. The results showed that low-intensity red and infrared lasers at high fluences are lethal, induce a filamentation phenotype, and alter the morphology of the E. coli cells. Low-intensity red and infrared lasers have potential to induce adverse effects on cells, whether used at unusually high fluences, or at high doses. Hence, there is a need to reinforce the importance of accurate dosimetry in therapeutic protocols. PMID:26445339
Low Intensity Low Temperature (LILT) measurements and coefficients on new photovoltaic structures
NASA Technical Reports Server (NTRS)
Schelman, David A.; Jenkins, Philip P.; Brinker, David J.; Appelbaum, Joseph
1995-01-01
Past NASA missions to Mars, Jupiter, and the outer planets were powered by radioisotope thermal generators (RTG's). Although these devices proved to be reliable, their high cost and highly toxic radioactive heat source has made them far less desirable for future planetary missions. This has resulted in a renewed search for alternate energy sources, some of them being photovoltaic (PV) and thermophotovoltaic (TPV). Both of these alternate energy sources convert light/thermal energy directly into electricity. In order to create a viable PV and TPV data base for planetary mission planners and cell designers, we have compiled low temperature low intensity (LILT) I-V data on single junction and multi-junction high efficiency solar cells. The cells tested here represent the latest photovoltaic technology. Using this LILT data to calculate dI(sub SC)/dT, dV(sub OC)/dT, dFF/dT, and also as a function of intensity, an accurate prediction of cell performance under the AMO spectrum can be determined. When combined with QUantum efficiency at Low Temperature (QULT) data, one can further enhance the data by adding spectral variations to the measurements. This paper presents an overview of LILT measurements and is only intended to be used as a guideline for material selection and performance predictions. As single junction and multi-junction cell technologies emerge, new test data must be collected. Cell materials included are Si, GaAs/Ge, GainP/GaAs/Ge, InP, InGaAs/InP, InP/InGaAs/InP, and GainP. Temperatures range as low as -175 C and intensities range from 1 sun to .02 suns.
Low Intensity Low Temperature (LILT) Measurements and Coefficients on New Photovoltaic Structures
NASA Technical Reports Server (NTRS)
Scheiman, David A.; Jenkins, Phillip P.; Brinker, David J.; Appelbaum, Joseph
1995-01-01
Past NASA missions to Mars, Jupiter and the outer planets were powered by radioisotope thermal generators (RTGs). Although these devices proved to be reliable, their high cost and highly toxic radioactive heat source has made them far less desirable for future planetary missions. This has resulted in a renewed search for alternate energy sources, some of them being photovoltaics (PV) and thermophotovoltaics (TPV). Both of these alternate energy sources convert light/thermal energy directly into electricity. In order to create a viable PV data base for planetary mission planners and cell designers, we have compiled low intensity low temperature (LILT) I-V data on single junction and multi-junction high efficiency solar cells. The cells tested here represent the latest photovoltaic technology. Using this LILT data to calculate Short Circuit Current (I(sub sc)), Open Circuit Voltage (V(sub os)), and Fill Factor (FF) as a function of temperature and intensity, an accurate prediction of cell performance under the AM0 spectrum can be determined. When combined with QUantum efficiency at Low Temperature (QULT) data, one can further enhance the data by adding spectral variations to the measurements. This paper presents an overview of LILT measurements and is only intended to be used as a guideline for material selection and performance predictions. As single junction and multi-junction cell technologies emerge, new test data must be collected. Cell materials included are Si, GaAs/Ge, GaInP/GaAs/GaAs, InP, InGaAs/InP, InP/InGaAs/InP, and GaInP. Temperatures range down to as low as -180 C and intensities range from 1 sun down to 0.02 suns. The coefficients presented in this paper represent experimental results and are intended to provide the user with approximate numbers.
NASA Astrophysics Data System (ADS)
Antonelli, M.; Di Fraia, M.; Tallaire, A.; Achard, J.; Carrato, S.; Menk, R. H.; Cautero, G.; Giuressi, D.; Jark, W. H.; Biasiol, G.; Ganbold, T.; Oliver, K.; Callegari, C.; Coreno, M.; De Sio, A.; Pace, E.
2012-10-01
New generation Synchrotron Radiation (SR) sources and Free Electron Lasers (FEL) require novel concepts of beam diagnostics to keep photon beams under surveillance, asking for simultaneous position and intensity monitoring. To deal with high power load and short time pulses provided by these sources, novel materials and methods are needed for the next generation BPMs. Diamond is a promising material for the production of semitransparent in situ X-ray BPMs withstanding the high dose rates of SR rings and high energy FELs. We report on the development of freestanding, single crystal CVD diamond detectors. Performances in both low and radio frequency SR beam monitoring are presented. For the former, sensitivity deviation was found to be approximately 2%; a 0.05% relative precision in the intensity measurements and a 0.1-μm precision in the position encoding have been estimated. For the latter, single-shot characterizations revealed sub-nanosecond rise-times and spatial precisions below 6 μm, which allowed bunch-by-bunch monitoring in multi-bunch operation. Preliminary measurements at the Fermi FEL have been performed with this detector, extracting quantitative intensity and position information for FEL pulses (~ 100 fs, energy 12 ÷ 60 eV), with a long-term spatial precision of about 85 μm results on FEL radiation damages are also reported. Due to their direct, low-energy band gap, InGaAs quantum well devices too may be used as fast detectors for photons ranging from visible to X-ray. Results are reported which show the capability of a novel InGaAs/InAlAs device to detect intensity and position of 100-fs-wide laser pulses.
The Los Alamos Neutron Science Center Spallation Neutron Sources
NASA Astrophysics Data System (ADS)
Nowicki, Suzanne F.; Wender, Stephen A.; Mocko, Michael
The Los Alamos Neutron Science Center (LANSCE) provides the scientific community with intense sources of neutrons, which can be used to perform experiments supporting civilian and national security research. These measurements include nuclear physics experiments for the defense program, basic science, and the radiation effect programs. This paper focuses on the radiation effects program, which involves mostly accelerated testing of semiconductor parts. When cosmic rays strike the earth's atmosphere, they cause nuclear reactions with elements in the air and produce a wide range of energetic particles. Because neutrons are uncharged, they can reach aircraft altitudes and sea level. These neutrons are thought to be the most important threat to semiconductor devices and integrated circuits. The best way to determine the failure rate due to these neutrons is to measure the failure rate in a neutron source that has the same spectrum as those produced by cosmic rays. Los Alamos has a high-energy and a low-energy neutron source for semiconductor testing. Both are driven by the 800-MeV proton beam from the LANSCE accelerator. The high-energy neutron source at the Weapons Neutron Research (WNR) facility uses a bare target that is designed to produce fast neutrons with energies from 100 keV to almost 800 MeV. The measured neutron energy distribution from WNR is very similar to that of the cosmic-ray-induced neutrons in the atmosphere. However, the flux provided at the WNR facility is typically 5×107 times more intense than the flux of the cosmic-ray-induced neutrons. This intense neutron flux allows testing at greatly accelerated rates. An irradiation test of less than an hour is equivalent to many years of neutron exposure due to cosmic-ray neutrons. The low-energy neutron source is located at the Lujan Neutron Scattering Center. It is based on a moderated source that provides useful neutrons from subthermal energies to ∼100 keV. The characteristics of these sources, and ongoing industry program are described in this paper.
James Clerk Maxwell Prize Address: High Intensity Laser Propagation and Interactions
NASA Astrophysics Data System (ADS)
Sprangle, Phillip
2013-10-01
High intensity laser radiation sources cover a wide range of parameters, e.g., peak powers from tera to peta watts, pulse lengths from pico to femto seconds, repetition rates ranging from kilo to mega hertz and average powers of many tens of watts. This talk will cover, among other things, some of the unique physical processes which result when high intensity laser radiation interacts with gases and plasmas. One of the interesting topics to be discussed is the propagation of these laser pulses in a turbulent atmosphere which results in a multitude of coupled linear and nonlinear processes including filamentation and scintillation. Phase conjugation techniques to reduce the effects of atmospheric turbulence (scintillation) will be described. This talk will also discuss a range of potential applications of these high intensity lasers, including: electron acceleration in spatially periodic and tapered plasma channels, detection of radioactive material using electromagnetic signatures, atmospheric lasing of N2 molecules, as well as incoherent and coherent x-ray generation mechanisms. Research supported by NRL, ONR and UMD.
Abbey, Brian; Dilanian, Ruben A.; Darmanin, Connie; Ryan, Rebecca A.; Putkunz, Corey T.; Martin, Andrew V.; Wood, David; Streltsov, Victor; Jones, Michael W. M.; Gaffney, Naylyn; Hofmann, Felix; Williams, Garth J.; Boutet, Sébastien; Messerschmidt, Marc; Seibert, M. Marvin; Williams, Sophie; Curwood, Evan; Balaur, Eugeniu; Peele, Andrew G.; Nugent, Keith A.; Quiney, Harry M.
2016-01-01
X-ray free-electron lasers (XFELs) deliver x-ray pulses with a coherent flux that is approximately eight orders of magnitude greater than that available from a modern third-generation synchrotron source. The power density of an XFEL pulse may be so high that it can modify the electronic properties of a sample on a femtosecond time scale. Exploration of the interaction of intense coherent x-ray pulses and matter is both of intrinsic scientific interest and of critical importance to the interpretation of experiments that probe the structures of materials using high-brightness femtosecond XFEL pulses. We report observations of the diffraction of extremely intense 32-fs nanofocused x-ray pulses by a powder sample of crystalline C60. We find that the diffraction pattern at the highest available incident power significantly differs from the one obtained using either third-generation synchrotron sources or XFEL sources operating at low output power and does not correspond to the diffraction pattern expected from any known phase of crystalline C60. We interpret these data as evidence of a long-range, coherent dynamic electronic distortion that is driven by the interaction of the periodic array of C60 molecular targets with intense x-ray pulses of femtosecond duration. PMID:27626076
NASA Astrophysics Data System (ADS)
Schächter, L.; Stiebing, K. E.; Dobrescu, S.; Badescu-Singureanu, Al. I.; Schmidt, L.; Hohn, O.; Runkel, S.
1999-02-01
A new approach of the possibility to significantly increase the high charge state ion beams delivered by electron cyclotron resonance (ECR) ion sources by using metal-dielectric (MD) structures characterized by high secondary electron emission properties is presented. The intensities of argon ion beams extracted from the 14 GHz electron cyclotron resonance ion source of the Institut für Kernphysik (IKF) der Johann Wolfgang Goethe-Universität in Frankfurt/Main were measured when a 26 mm diam disk of a specially treated MD structure (Al-Al2O3) was introduced axially close to the ECR plasma. The Ar beam intensities and charge-state distributions obtained with this disk are compared to measurements with disks of iron and pure aluminum at the same position relative to the plasma. All measurements were performed with the disk at the plasma chamber potential. The results with the MD structure show a net shift of the beam intensity towards higher charge states as compared with the other disk materials. Enhancement factors of the beam current of up to 10 (for Ar12+) when using a MD disk compared to the output when using an aluminum disk and up to 40 (for Ar11+) when using an iron disk were measured.
The Impact of Environmental Light Intensity on Experimental Tumor Growth.
Suckow, Mark A; Wolter, William R; Duffield, Giles E
2017-09-01
Cancer research requires for consistent models that minimize environmental variables. Within the typical laboratory animal housing facility, animals may be exposed to varying intensities of light as a result of cage type, cage position, light source, and other factors; however, studies evaluating the differential effect of light intensity during the light phase on tumor growth are lacking. The effect of cage face light intensity, as determined by cage rack position was evaluated with two tumor models using the C57Bl/6NHsd mouse and transplantable B16F10 melanoma cells or Lewis lung carcinoma (LLC) cells. Animals were housed in individually-ventilated cages placed at the top, middle, or bottom of the rack in a diagonal pattern so that the top cage was closest to the ceiling light source, and cage face light intensity was measured. Following a two-week acclimation period at the assigned cage position, animals were subcutaneously administered either 1.3×10 6 B16F10 melanoma cells or 2.5×10 5 Lewis lung carcinoma cells. Weights of excised tumors were measured following euthanasia 18 days (melanoma) or 21 days (LCC) after tumor cell administration. Cage face light intensity was significantly different depending on the location of the cage, with cages closest to the light source have the greatest intensity. Mean tumor weights were significantly less (p<0.001 for melanoma; p≤0.01 for LCC) in middle light intensity mice compared to high and low light intensity mice. The environmental light intensity to which experimental animals are exposed may vary markedly with cage location and can significantly influence experimental tumor growth, thus supporting the idea that light intensity should be controlled as an experimental variable for animals used in cancer research. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.
Pan, Jui-Wen; Tu, Sheng-Han
2012-05-20
A cost-effective, high-throughput, and high-yield method for the efficiency enhancement of an optical mouse lighting module is proposed. We integrated imprinting technology and free-form surface design to obtain a lighting module with high illumination efficiency and uniform intensity distribution. The imprinting technique can increase the light extraction efficiency and modulate the intensity distribution of light-emitting diodes. A modulated light source was utilized to add a compact free-form surface element to create a lighting module with 95% uniformity and 80% optical efficiency.
High Intensity Laser Power Beaming Architecture for Space and Terrestrial Missions
NASA Technical Reports Server (NTRS)
Nayfeh, Taysir; Fast, Brian; Raible, Daniel; Dinca, Dragos; Tollis, Nick; Jalics, Andrew
2011-01-01
High Intensity Laser Power Beaming (HILPB) has been developed as a technique to achieve Wireless Power Transmission (WPT) for both space and terrestrial applications. In this paper, the system architecture and hardware results for a terrestrial application of HILPB are presented. These results demonstrate continuous conversion of high intensity optical energy at near-IR wavelengths directly to electrical energy at output power levels as high as 6.24 W from the single cell 0.8 cm2 aperture receiver. These results are scalable, and may be realized by implementing receiver arraying and utilizing higher power source lasers. This type of system would enable long range optical refueling of electric platforms, such as MUAV s, airships, robotic exploration missions and provide power to spacecraft platforms which may utilize it to drive electric means of propulsion.
Choudhry, Priya
2016-01-01
Counting cells and colonies is an integral part of high-throughput screens and quantitative cellular assays. Due to its subjective and time-intensive nature, manual counting has hindered the adoption of cellular assays such as tumor spheroid formation in high-throughput screens. The objective of this study was to develop an automated method for quick and reliable counting of cells and colonies from digital images. For this purpose, I developed an ImageJ macro Cell Colony Edge and a CellProfiler Pipeline Cell Colony Counting, and compared them to other open-source digital methods and manual counts. The ImageJ macro Cell Colony Edge is valuable in counting cells and colonies, and measuring their area, volume, morphology, and intensity. In this study, I demonstrate that Cell Colony Edge is superior to other open-source methods, in speed, accuracy and applicability to diverse cellular assays. It can fulfill the need to automate colony/cell counting in high-throughput screens, colony forming assays, and cellular assays. PMID:26848849
Noise level in a neonatal intensive care unit in Santa Marta - Colombia.
Garrido Galindo, Angélica Patricia; Camargo Caicedo, Yiniva; Velez-Pereira, Andres M
2017-09-30
The environment of neonatal intensive care units is influenced by numerous sources of noise emission, which contribute to raise the noise levels, and may cause hearing impairment and other physiological and psychological changes on the newborn, as well as problems with care staff. To evaluate the level and sources of noise in the neonatal intensive care unit. Sampled for 20 consecutive days every 60 seconds in A-weighting curves and fast mode with a Type I sound level meter. Recorded the average, maximum and minimum, and the 10th, 50th and 90th percentiles. The values are integrated into hours and work shift, and studied by analysis of variance. The sources were characterized in thirds of octaves. The average level was 64.00 ±3.62 dB(A), with maximum of 76.04 ±5.73 dB(A), minimum of 54.84 ±2.61dB(A), and background noise of 57.95 ±2.83 dB(A). We found four sources with levels between 16.8-63.3 dB(A). Statistical analysis showed significant differences between the hours and work shift, with higher values in the early hours of the day. The values presented exceed the standards suggested by several organizations. The sources identified and measured recorded high values in low frequencies.
NASA Astrophysics Data System (ADS)
Kuptsov, G. V.; Petrov, V. V.; Petrov, V. A.; Laptev, A. V.; Kirpichnikov, A. V.; Pestryakov, E. V.
2018-04-01
The source of instabilities in the multidisk diode-pumped high power Yb:YAG laser amplifier with cryogenic closed-loop cooling in the laser amplification channel of the high-intensity laser system with 1 kHz repetition rate was determined. Dissected copper mounts were designed and used to suppress instabilities and to achieve repeatability of the system. The equilibrium temperature dependency of the active elements on average power was measured. The seed laser for the multidisk amplifier was numerically simulated and designed to allow one to increase pulses output energy after the amplifier up to 500 mJ.
NASA Astrophysics Data System (ADS)
Watari, T.; Matsukado, K.; Sekine, T.; Takeuchi, Y.; Hatano, Y.; Yoshimura, R.; Satoh, N.; Nishihara, K.; Takagi, M.; Kawashima, T.
2016-03-01
We propose novel neutron source using high-intensity laser based on the cluster fusion scheme. We developed DPSSL-pumped high-repetition-rate 20-TW laser system and solid nanoparticle target for neutron generation demonstration. In our neutron generation experiment, high-energy deuterons were generated from coulomb explosion of CD solid- nanoparticles and neutrons were generated by DD fusion reaction. Efficient and stable neutron generation was obtained by irradiating an intense femtosecond laser pulse of >2×1018 W/cm2. A yield of ∼105 neutrons per shot was stably observed during 0.1-1 Hz continuous operation.
Combining harmonic generation and laser chirping to achieve high spectral density in Compton sources
Terzić, Balša; Reeves, Cody; Krafft, Geoffrey A.
2016-04-25
Recently various laser-chirping schemes have been investigated with the goal of reducing or eliminating ponderomotive line broadening in Compton or Thomson scattering occurring at high laser intensities. Moreover, as a next level of detail in the spectrum calculations, we have calculated the line smoothing and broadening expected due to incident beam energy spread within a one-dimensional plane wave model for the incident laser pulse, both for compensated (chirped) and unchirped cases. The scattered compensated distributions are treatable analytically within three models for the envelope of the incident laser pulses: Gaussian, Lorentzian, or hyperbolic secant. We use the new results tomore » demonstrate that the laser chirping in Compton sources at high laser intensities: (i) enables the use of higher order harmonics, thereby reducing the required electron beam energies; and (ii) increases the photon yield in a small frequency band beyond that possible with the fundamental without chirping. We found that this combination of chirping and higher harmonics can lead to substantial savings in the design, construction and operational costs of the new Compton sources. This is of particular importance to the widely popular laser-plasma accelerator based Compton sources, as the improvement in their beam quality enters the regime where chirping is most effective.« less
Tom Gallagher; Bob Shaffer; Bob Rummer
2008-01-01
As a routine wood source for a pulp mill, recent studies have shown that intensively managed, short-rotation hardwood plantations are not cost effective. The objective of this study was to determine if these plantations may be cost effective as "green" inventory, replacing some portion of high cost remote woodyard inventory. Three southeastern U.S. pulp mills...
Development of an 18 GHz superconducting electron cyclotron resonance ion source at RCNP.
Yorita, Tetsuhiko; Hatanaka, Kichiji; Fukuda, Mitsuhiro; Kibayashi, Mitsuru; Morinobu, Shunpei; Okamura, Hiroyuki; Tamii, Atsushi
2008-02-01
An 18 GHz superconducting electron cyclotron resonance ion source has recently been developed and installed in order to extend the variety and the intensity of ions at the RCNP coupled cyclotron facility. Production of several ions such as O, N, Ar, Kr, etc., is now under development and some of them have already been used for user experiments. For example, highly charged heavy ion beams like (86)Kr(21+,23+) and intense (16)O(5+,6+) and (15)N(6+) ion beams have been provided for experiments. The metal ion from volatile compounds method for boron ions has been developed as well.
Physical models and primary design of reactor based slow positron source at CMRR
NASA Astrophysics Data System (ADS)
Wang, Guanbo; Li, Rundong; Qian, Dazhi; Yang, Xin
2018-07-01
Slow positron facilities are widely used in material science. A high intensity slow positron source is now at the design stage based on the China Mianyang Research Reactor (CMRR). This paper describes the physical models and our primary design. We use different computer programs or mathematical formula to simulate different physical process, and validate them by proper experiments. Considering the feasibility, we propose a primary design, containing a cadmium shield, a honeycomb arranged W tubes assembly, electrical lenses, and a solenoid. It is planned to be vertically inserted in the Si-doping channel. And the beam intensity is expected to be 5 ×109
A compact tunable polarized X-ray source based on laser-plasma helical undulators
Luo, J.; Chen, M.; Zeng, M.; Vieira, J.; Yu, L. L.; Weng, S. M.; Silva, L. O.; Jaroszynski, D. A.; Sheng, Z. M.; Zhang, J.
2016-01-01
Laser wakefield accelerators have great potential as the basis for next generation compact radiation sources because of their extremely high accelerating gradients. However, X-ray radiation from such devices still lacks tunability, especially of the intensity and polarization distributions. Here we propose a tunable polarized radiation source based on a helical plasma undulator in a plasma channel guided wakefield accelerator. When a laser pulse is initially incident with a skew angle relative to the channel axis, the laser and accelerated electrons experience collective spiral motions, which leads to elliptically polarized synchrotron-like radiation with flexible tunability on radiation intensity, spectra and polarization. We demonstrate that a radiation source with millimeter size and peak brilliance of 2 × 1019 photons/s/mm2/mrad2/0.1% bandwidth can be made with moderate laser and electron beam parameters. This brilliance is comparable with third generation synchrotron radiation facilities running at similar photon energies, suggesting that laser plasma based radiation sources are promising for advanced applications. PMID:27377126
Multi-keV X-ray area source intensity at SGII laser facility
NASA Astrophysics Data System (ADS)
Wang, Rui-rong; An, Hong-hai; Xie, Zhi-yong; Wang, Wei
2018-05-01
Experiments for investigating the feasibility of multi-keV backlighters for several different metallic foil targets were performed at the Shenguang II (SGII) laser facility in China. Emission spectra in the energy range of 1.65-7.0 keV were measured with an elliptically bent crystal spectrometer, and the X-ray source size was measured with a pinhole camera. The X-ray intensity near 4.75 keV and the X-ray source size for titanium targets at different laser intensity irradiances were studied. By adjusting the total laser energy at a fixed focal spot size, laser intensity in the range of 1.5-5.0 × 1015 W/cm2, was achieved. The results show that the line emission intensity near 4.75 keV and the X-ray source size are dependent on the laser intensity and increase as the laser intensity increases. However, an observed "peak" in the X-ray intensity near 4.75 keV occurs at an irradiance of 4.0 × 1015 W/cm2. For the employed experimental conditions, it was confirmed that the laser intensity could play a significant role in the development of an efficient multi-keV X-ray source. The experimental results for titanium indicate that the production of a large (˜350 μm in diameter) intense backlighter source of multi-keV X-rays is feasible at the SGII facility.
High-power THz to IR emission by femtosecond laser irradiation of random 2D metallic nanostructures.
Zhang, Liangliang; Mu, Kaijun; Zhou, Yunsong; Wang, Hai; Zhang, Cunlin; Zhang, X-C
2015-07-24
Terahertz (THz) spectroscopic sensing and imaging has identified its potentials in a number of areas such as standoff security screening at portals, explosive detection at battle fields, bio-medical research, and so on. With these needs, the development of an intense and broadband THz source has been a focus of THz research. In this work, we report an intense (~10 mW) and ultra-broadband (~150 THz) THz to infrared (IR) source with a Gaussian wavefront, emitted from nano-pore-structured metallic thin films with femtosecond laser pulse excitation. The underlying mechanism has been proposed as thermal radiation. In addition, an intense coherent THz signal was generated through the optical rectification process simultaneously with the strong thermal signal. This unique feature opens up new avenues in biomedical research.
NASA Astrophysics Data System (ADS)
Loisel, G.; Lake, P.; Gard, P.; Dunham, G.; Nielsen-Weber, L.; Wu, M.; Norris, E.
2016-11-01
At Sandia National Laboratories, the x-ray generator Manson source model 5 was upgraded from 10 to 25 kV. The purpose of the upgrade is to drive higher characteristics photon energies with higher throughput. In this work we present characterization studies for the source size and the x-ray intensity when varying the source voltage for a series of K-, L-, and M-shell lines emitted from Al, Y, and Au elements composing the anode. We used a 2-pinhole camera to measure the source size and an energy dispersive detector to monitor the spectral content and intensity of the x-ray source. As the voltage increases, the source size is significantly reduced and line intensity is increased for the three materials. We can take advantage of the smaller source size and higher source throughput to effectively calibrate the suite of Z Pulsed Power Facility crystal spectrometers.
Proton shock acceleration using a high contrast high intensity laser
NASA Astrophysics Data System (ADS)
Gauthier, Maxence; Roedel, Christian; Kim, Jongjin; Aurand, Bastian; Curry, Chandra; Goede, Sebastian; Propp, Adrienne; Goyon, Clement; Pak, Art; Kerr, Shaun; Ramakrishna, Bhuvanesh; Ruby, John; William, Jackson; Glenzer, Siegfried
2015-11-01
Laser-driven proton acceleration is a field of intense research due to the interesting characteristics of this novel particle source including high brightness, high maximum energy, high laminarity, and short duration. Although the ion beam characteristics are promising for many future applications, such as in the medical field or hybrid accelerators, the ion beam generated using TNSA, the acceleration mechanism commonly achieved, still need to be significantly improved. Several new alternative mechanisms have been proposed such as collisionless shock acceleration (CSA) in order to produce a mono-energetic ion beam favorable for those applications. We report the first results of an experiment performed with the TITAN laser system (JLF, LLNL) dedicated to the study of CSA using a high intensity (5x1019W/cm2) high contrast ps laser pulse focused on 55 μm thick CH and CD targets. We show that the proton spectrum generated during the interaction exhibits high-energy mono-energetic features along the laser axis, characteristic of a shock mechanism.
NASA Astrophysics Data System (ADS)
Harada, Tomoya; Satake, Kenji; Furumura, Takashi
2016-04-01
With the object of estimating seismic intensity, the Earthquakes Research Institute (ERI) of the University of Tokyo performed questionnaire surveys for the significant (destructive or large/great) earthquakes from 1943 to 1988 (Kayano, 1990, BERI). In these surveys, Kawasumi (1943)'s 12-class seismic intensity scale similar to the Modified Mercalli scale (MM-scale) was used. Survey results for earthquakes after 1950 were well investigated and published (e.g. Kayano and Komaki, 1977, BERI; Kayano and Sato, 1975, BERI), but the survey results for earthquakes in the 1940s have not been published and original documents of the surveys was missing. Recently, the original sheets of the surveys for the five earthquakes in the 1940s with more than 1,000 casualties were discovered in the ERI warehouse, although they are incomplete (Tsumura et al, 2010). They are from the 1943 Tottori (M 7.2), 1944 Tonankai (M 7.9), 1945 Mikawa (M 6.8), 1946 Nankai (M 8.0), and 1948 Fukui (M 7.1) earthquakes. In this study, we examined original questionnaire and summary sheets for the 1944 Tonankai, 1945 Mikawa, and 1946 Nanaki earthquakes, and estimated the distributions of seismic intensity, various kinds of damage, and human behaviors in detail. Numbers of the survey points for the 1944, 1945, and 1946 event are 287, 145, and 1,014, respectively. The numbers for the 1944 and 1945 earthquakes are much fewer than that of the 1946 event, because they occurred during the last years of World War II. The 1944 seismic intensities in the prefectures near the source region (Aichi, Mie, Shizuoka, and Gifu Pref.) tend to be high. However, the 1944 intensities are also high and damage is serious at the Suwa Lake shore in Nagano Pref. which is about 240 km far from the source region because seismic waves are amplified dramatically in the thick sediment in the Suwa Basin. Seismic intensities of the 1945 Mikawa earthquake near the source region in Aichi Pref. were very high (X-XI). However, the intensities rapidly decrease with the epicenter distance, and show relatively low numbers (IV-VI) outside Aichi Pref. because the 1945 earthquake was a shallow crust earthquake with moderate size (M 6.8). The maximum seismic intensity of the 1946 Nankai earthquake estimated from the damage of Japanese-style wooden houses reach X-XI near the source-rupture area such as in Shikoku Island and Wakayama and Okayama Prefectures. The damage of wooden houses was more serious in the plains and basins of populated cities than that in the mountainous regions. The estimated seismic intensities from other damage (bridges, stone walls, underground pipes, etc.) also exceed X. Acknowledgement: This study was supported by the MEXT's "New disaster mitigation research project on Mega thrust earthquakes around Nankai/Ryukyu subduction zones".
NASA Astrophysics Data System (ADS)
Crippa, M.; Canonaco, F.; Lanz, V. A.; Äijälä, M.; Allan, J. D.; Carbone, S.; Capes, G.; Dall'Osto, M.; Day, D. A.; DeCarlo, P. F.; Di Marco, C. F.; Ehn, M.; Eriksson, A.; Freney, E.; Hildebrandt Ruiz, L.; Hillamo, R.; Jimenez, J.-L.; Junninen, H.; Kiendler-Scharr, A.; Kortelainen, A.-M.; Kulmala, M.; Mensah, A. A.; Mohr, C.; Nemitz, E.; O'Dowd, C.; Ovadnevaite, J.; Pandis, S. N.; Petäjä, T.; Poulain, L.; Saarikoski, S.; Sellegri, K.; Swietlicki, E.; Tiitta, P.; Worsnop, D. R.; Baltensperger, U.; Prévôt, A. S. H.
2013-09-01
Organic aerosols (OA) represent one of the major constituents of submicron particulate matter (PM1) and comprise a huge variety of compounds emitted by different sources. Three intensive measurement field campaigns to investigate the aerosol chemical composition all over Europe were carried out within the framework of EUCAARI and the intensive campaigns of EMEP during 2008 (May-June and September-October) and 2009 (February-March). In this paper we focus on the identification of the main organic aerosol sources and we propose a standardized methodology to perform source apportionment using positive matrix factorization (PMF) with the multilinear engine (ME-2) on Aerodyne aerosol mass spectrometer (AMS) data. Our source apportionment procedure is tested and applied on 25 datasets accounting for urban, rural, remote and high altitude sites and therefore it is likely suitable for the treatment of AMS-related ambient datasets. For most of the sites, four organic components are retrieved, improving significantly previous source apportionment results where only a separation in primary and secondary OA sources was possible. Our solutions include two primary OA sources, i.e. hydrocarbon-like OA (HOA) and biomass burning OA (BBOA) and two secondary OA components, i.e. semi-volatile oxygenated OA (SV-OOA) and low-volatility oxygenated OA (LV-OOA). For specific sites cooking-related (COA) and marine-related sources (MSA) are also separated. Finally, our work provides a large overview of organic aerosol sources in Europe and an interesting set of highly time resolved data for modeling evaluation purposes.
Miniaturized High-Speed Modulated X-Ray Source
NASA Technical Reports Server (NTRS)
Gendreau, Keith C. (Inventor); Arzoumanian, Zaven (Inventor); Kenyon, Steven J. (Inventor); Spartana, Nick Salvatore (Inventor)
2015-01-01
A miniaturized high-speed modulated X-ray source (MXS) device and a method for rapidly and arbitrarily varying with time the output X-ray photon intensities and energies. The MXS device includes an ultraviolet emitter that emits ultraviolet light, a photocathode operably coupled to the ultraviolet light-emitting diode that emits electrons, an electron multiplier operably coupled to the photocathode that multiplies incident electrons, and an anode operably coupled to the electron multiplier that is configured to produce X-rays. The method for modulating MXS includes modulating an intensity of an ultraviolet emitter to emit ultraviolet light, generating electrons in response to the ultraviolet light, multiplying the electrons to become more electrons, and producing X-rays by an anode that includes a target material configured to produce X-rays in response to impact of the more electrons.
Synthesis of high luminescent carbon nanoparticles
NASA Astrophysics Data System (ADS)
Gvozdyuk, Alina A.; Petrova, Polina S.; Goryacheva, Irina Y.; Sukhorukov, Gleb B.
2017-03-01
In this article we report an effective and simple method for synthesis of high luminescent carbon nanodots (CDs). In our work as a carbon source sodium dextran sulfate (DS) was used because it is harmless, its analogs are used in medicine as antithrombotic compounds and blood substitutes after hemorrhage. was used as a substrate We investigated the influence of temperature parameters of hydrothermal synthesis on the photoluminescence (PL) intensity and position of emission maxima. We discovered that the PL intensity can be tuned by changing of synthesis temperature and CD concentration.
Odorici, F; Malferrari, L; Montanari, A; Rizzoli, R; Mascali, D; Castro, G; Celona, L; Gammino, S; Neri, L
2016-02-01
Different electron guns based on cold- or hot-cathode technologies have been developed since 2009 at INFN for operating within ECR plasma chambers as sources of auxiliary electrons, with the aim of boosting the source performances by means of a higher plasma lifetime and density. Their application to microwave discharge ion sources, where plasma is not confined, has required an improvement of the gun design, in order to "screen" the cathode from the plasma particles. Experimental tests carried out on a plasma reactor show a boost of the plasma density, ranging from 10% to 90% when the electron guns are used, as explained by plasma diffusion models.
1987-07-01
OVER TIME The phosphor stability over time was studied by measuring the spectrum over an extended period of time. On each day the spectrum of the...intensity, it causes the display to change in order to keep the light intensity constant. For example, in one case , the high intensity room lights were...MC1445. This device has the capability of switching! from one video source to another in a very shoi t time, 20 ns. The MC1445 is used to switch from
Validation of luminescent source reconstruction using spectrally resolved bioluminescence images
NASA Astrophysics Data System (ADS)
Virostko, John M.; Powers, Alvin C.; Jansen, E. D.
2008-02-01
This study examines the accuracy of the Living Image® Software 3D Analysis Package (Xenogen, Alameda, CA) in reconstruction of light source depth and intensity. Constant intensity light sources were placed in an optically homogeneous medium (chicken breast). Spectrally filtered images were taken at 560, 580, 600, 620, 640, and 660 nanometers. The Living Image® Software 3D Analysis Package was employed to reconstruct source depth and intensity using these spectrally filtered images. For sources shallower than the mean free path of light there was proportionally higher inaccuracy in reconstruction. For sources deeper than the mean free path, the average error in depth and intensity reconstruction was less than 4% and 12%, respectively. The ability to distinguish multiple sources decreased with increasing source depth and typically required a spatial separation of twice the depth. The constant intensity light sources were also implanted in mice to examine the effect of optical inhomogeneity. The reconstruction accuracy suffered in inhomogeneous tissue with accuracy influenced by the choice of optical properties used in reconstruction.
Interferometric millimeter wave and THz wave doppler radar
Liao, Shaolin; Gopalsami, Nachappa; Bakhtiari, Sasan; Raptis, Apostolos C.; Elmer, Thomas
2015-08-11
A mixerless high frequency interferometric Doppler radar system and methods has been invented, numerically validated and experimentally tested. A continuous wave source, phase modulator (e.g., a continuously oscillating reference mirror) and intensity detector are utilized. The intensity detector measures the intensity of the combined reflected Doppler signal and the modulated reference beam. Rigorous mathematics formulas have been developed to extract bot amplitude and phase from the measured intensity signal. Software in Matlab has been developed and used to extract such amplitude and phase information from the experimental data. Both amplitude and phase are calculated and the Doppler frequency signature of the object is determined.
RXTE Observations of A1744-361: Correlated Spectral and Timing Behavior
NASA Technical Reports Server (NTRS)
Bhattacharyya, Sudip; Strohmayer, Tod E.; Swank, Jean H.; Markwardt, Craig B.
2007-01-01
We analyze Rossi X-ray Timing Explorer (RXTE) Proportional Counter Array (PCA) data of the transient low mass X-ray binary (LMXB) system A1744-361. We explore the X-ray intensity and spectral evolution of the source, perform timing analysis, and find that A1744-361 is a weak LMXB, that shows atoll behavior at high intensity states. The color-color diagram indicates that this LMXB was observed in a low intensity spectrally hard (low-hard) state and in a high intensity banana state. The low-hard state shows a horizontal pattern in the color-color diagram, and the previously reported dipper QPO appears only during this state. We also perform energy spectral analyses, and report the first detection of broad iron emission line and iron absorption edge from A1744-361.
Compact ECR ion source with permanent magnets for carbon therapy
NASA Astrophysics Data System (ADS)
Muramatsu, M.; Kitagawa, A.; Sakamoto, Y.; Sato, Y.; Yamada, S.; Ogawa, H.; Drentje, A. G.; Biri, S.; Yoshida, Y.
2004-05-01
Ion sources for the medical facilities should have the following characteristics of easy maintenance, low electric power, good stability, and long operation time without trouble (1 year or longer). For this, a 10 GHz compact electron cyclotron resonance ion source (ECRIS) with all permanent magnets was developed. The beam intensity and stability for C4+ were 280 e μA and better than 6% during 20 h with no adjustment of any source parameters. These results were acceptable for the medical requirements. Recently, many plans were proposed to construct the next generation cancer treatment facility. For such a facility we have designed an all permanent magnet ECRIS, in which a high magnetic field is chosen for increasing the beam intensity. The maximum mirror magnetic fields on the beam axis are 0.59 T at the extraction side and 0.87 T at the gas injection side, while the minimum B strength is 0.25 T. The source has a diameter of 32 cm and a length of 29.5 cm. Details of the design of this source and its background are described in this article.
Angular dependence of source-target-detector in active mode standoff infrared detection
NASA Astrophysics Data System (ADS)
Pacheco-Londoño, Leonardo C.; Castro-Suarez, John R.; Aparicio-Bolaños, Joaquín. A.; Hernández-Rivera, Samuel P.
2013-06-01
Active mode standoff measurement using infrared spectroscopy were carried out in which the angle between target and the source was varied from 0-70° with respect to the surface normal of substrates containing traces of highly energetic materials (explosives). The experiments were made using three infrared sources: a modulated source (Mod-FTIR), an unmodulated source (UnMod-FTIR) and a scanning quantum cascade laser (QCL), part of a dispersive mid infrared (MIR) spectrometer. The targets consisted of PENT 200 μg/cm2 deposited on aluminum plates placed at 1 m from the sources. The evaluation of the three modalities was aimed at verifying the influence of the highly collimated laser beam in the detection in comparison with the other sources. The Mod-FTIR performed better than QCL source in terms of the MIR signal intensity decrease with increasing angle.
Active Interrogation of Sensitive Nuclear Material Using Laser Driven Neutron Beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Favalli, Andrea; Roth, Markus
2015-05-01
An investigation of the viability of a laser-driven neutron source for active interrogation is reported. The need is for a fast, movable, operationally safe neutron source which is energy tunable and has high-intensity, directional neutron production. Reasons for the choice of neutrons and lasers are set forth. Results from the interrogation of an enriched U sample are shown.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maimone, F., E-mail: f.maimone@gsi.de; Tinschert, K.; Endermann, M.
In order to increase the intensity of the highly charged ions produced by the Electron Cyclotron Resonance Ion Sources (ECRISs), techniques like the frequency tuning and the afterglow mode have been developed and in this paper the effect on the ion production is shown for the first time when combining both techniques. Recent experimental results proved that the tuning of the operating frequency of the ECRIS is a promising technique to achieve higher ion currents of higher charge states. On the other hand, it is well known that the afterglow mode of the ECRIS operation can provide more intense pulsedmore » ion beams in comparison with the continuous wave (cw) operation. These two techniques can be combined by pulsing the variable frequency signal driving the traveling wave tube amplifier which provides the high microwave power to the ECRIS. In order to analyze the effect of these two combined techniques on the ion source performance, several experiments were carried out on the pulsed frequency tuned CAPRICE (Compacte source A Plusiers Résonances Ionisantes Cyclotron Electroniques)-type ECRIS. Different waveforms and pulse lengths have been investigated under different settings of the ion source. The results of the pulsed mode have been compared with those of cw operation.« less
Method for materials deposition by ablation transfer processing
Weiner, K.H.
1996-04-16
A method in which a thin layer of semiconducting, insulating, or metallic material is transferred by ablation from a source substrate, coated uniformly with a thin layer of said material, to a target substrate, where said material is desired, with a pulsed, high intensity, patternable beam of energy. The use of a patternable beam allows area-selective ablation from the source substrate resulting in additive deposition of the material onto the target substrate which may require a very low percentage of the area to be covered. Since material is placed only where it is required, material waste can be minimized by reusing the source substrate for depositions on multiple target substrates. Due to the use of a pulsed, high intensity energy source the target substrate remains at low temperature during the process, and thus low-temperature, low cost transparent glass or plastic can be used as the target substrate. The method can be carried out atmospheric pressures and at room temperatures, thus eliminating vacuum systems normally required in materials deposition processes. This invention has particular application in the flat panel display industry, as well as minimizing materials waste and associated costs. 1 fig.
Spatial variation in anthropogenic mortality induces a source-sink system in a hunted mesopredator.
Minnie, Liaan; Zalewski, Andrzej; Zalewska, Hanna; Kerley, Graham I H
2018-04-01
Lethal carnivore management is a prevailing strategy to reduce livestock predation. Intensity of lethal management varies according to land-use, where carnivores are more intensively hunted on farms relative to reserves. Variations in hunting intensity may result in the formation of a source-sink system where carnivores disperse from high-density to low-density areas. Few studies quantify dispersal between supposed sources and sinks-a fundamental requirement for source-sink systems. We used the black-backed jackal (Canis mesomelas) as a model to determine if heterogeneous anthropogenic mortality induces a source-sink system. We analysed 12 microsatellite loci from 554 individuals from lightly hunted and previously unhunted reserves, as well as heavily hunted livestock- and game farms. Bayesian genotype assignment showed that jackal populations displayed a hierarchical population structure. We identified two genetically distinct populations at the regional level and nine distinct subpopulations at the local level, with each cluster corresponding to distinct land-use types separated by various dispersal barriers. Migration, estimated using Bayesian multilocus genotyping, between reserves and farms was asymmetric and heterogeneous anthropogenic mortality induced source-sink dynamics via compensatory immigration. Additionally some heavily hunted populations also acted as source populations, exporting individuals to other heavily hunted populations. This indicates that heterogeneous anthropogenic mortality results in the formation of a complex series of interconnected sources and sinks. Thus, lethal management of mesopredators may not be an effective long-term strategy in reducing livestock predation, as dispersal and, more importantly, compensatory immigration may continue to affect population reduction efforts as long as dispersal from other areas persists.
Laura Falk McCarthy
2014-01-01
Wildfire intensity in the Southwestern United States has increased over the last decade corresponding with dense fuels and higher temperatures. For example, in New Mexico on the 2011 Las Conchas fire, intense fire and wind-driven fire behavior resulted in large areas of moderate and high severity burn (42 percent of burned area) with roughly 65,000 acres (26,300 ha)...
Optically-gated Non-latched High Gain Power Device
2008-11-21
parameters such as power conversion efficiency, dv/dt and di/dt stress on PSD and electromagnetic noise emission spectrum, which depend directly on the...4. EXPERIMENTAL STUDIES ON OTPT AND OPTICAL INTENSITY MODULATION OF OTPT PARAMETERS 33 4.1 Optical source, driver, and fiber details 33 4.2...off dynamics characterizations 36 4.5. Optical intensity modulation of OTPT parameters 37 5. EXPERIMENTAL STUDIES ON HYBRID OTPT-PSD AND OPTICAL
GINGA observations of Cygnus X-2.
NASA Astrophysics Data System (ADS)
Wijnands, R. A. D.; van der Klis, M.; Kuulkers, E.; Asai, K.; Hasinger, G.
1997-07-01
We have analysed all available X-ray data on the low-mass X-ray binary Cygnus X-2 obtained with the Ginga satellite. A detailed analysis of the spectral and fast timing behaviour of these 4 years of data provides new insights in the behaviour of this Z source. We confirm the previously observed recurrent patterns of behaviour in the X-ray colour-colour and hardness-intensity diagrams consisting of shifts and shape changes in the Z track. However, we find a continuous range of patterns rather than a discrete set. The source behaviour in the diagrams is correlated with overall intensity, which varied by a factor of 1.34 in the Ginga data. We find that when the overall intensity increases, the mean velocity and acceleration of the motion along the normal branch of the Z track increase, as well as the width of the normal branch in the hardness-intensity diagram. Contrary to previous results we find that, during different observations, when the source is at the same position in the normal branch of the Z track the rapid X-ray variability differs significantly. During the Kuulkers et al. (1996A&A...311..197K) ``medium'' level, a normal branch quasi-periodic oscillation is detected, which is not seen during the ``high'' overall intensity level. Also, during the high overall intensity level episodes the very-low frequency noise on the lower normal branch is very strong and steep, whereas during the medium overall intensity level episodes this noise component at the same position in the Z track is weak and less steep. The explanation of the different overall intensity levels with a precessing accretion disk is difficult to reconcile with our data. Furthermore, we found that the frequency of the horizontal branch quasi-periodic oscillation decreases when Cygnus X-2 enters the upper normal branch, giving a model dependent upper limit on the magnetic field strength at the magnetic equator of ~8.5x10^9^G. We also report five bursts, with durations between two and eight seconds, whose occurrence seems to be uncorrelated with location in the Z track, overall intensity level or orbital phase. The burst properties indicate that they are not regular type I bursts.
Versatile plasma ion source with an internal evaporator
NASA Astrophysics Data System (ADS)
Turek, M.; Prucnal, S.; Drozdziel, A.; Pyszniak, K.
2011-04-01
A novel construction of an ion source with an evaporator placed inside a plasma chamber is presented. The crucible is heated to high temperatures directly by arc discharge, which makes the ion source suitable for substances with high melting points. The compact ion source enables production of intense ion beams for wide spectrum of solid elements with typical separated beam currents of ˜100-150 μA for Al +, Mn +, As + (which corresponds to emission current densities of 15-25 mA/cm 2) for the extraction voltage of 25 kV. The ion source works for approximately 50-70 h at 100% duty cycle, which enables high ion dose implantation. The typical power consumption of the ion source is 350-400 W. The paper presents detailed experimental data (e.g. dependences of ion currents and anode voltages on discharge and filament currents and magnetic flux densities) for Cr, Fe, Al, As, Mn and In. The discussion is supported by results of Monte Carlo method based numerical simulation of ionisation in the ion source.
NASA Astrophysics Data System (ADS)
Zhao, H. W.; Lu, W.; Zhang, X. Z.; Feng, Y. C.; Guo, J. W.; Cao, Y.; Li, J. Y.; Guo, X. H.; Sha, S.; Sun, L. T.; Xie, D. Z.
2012-02-01
SECRAL (superconducting ECR ion source with advanced design in Lanzhou) ion source has been in routine operation for Heavy Ion Research Facility in Lanzhou (HIRFL) accelerator complex since May 2007. To further enhance the SECRAL performance in order to satisfy the increasing demand for intensive highly charged ion beams, 3-5 kW high power 24 GHz single frequency and 24 GHz +18 GHz double frequency with an aluminum plasma chamber were tested, and some exciting results were produced with quite a few new record highly charged ion beam intensities, such as 129Xe35+ of 64 eμA, 129Xe42+ of 3 eμA, 209Bi41+ of 50 eμA, 209Bi50+ of 4.3 eμA and 209Bi54+ of 0.2 eμA. In most cases SECRAL is operated at 18 GHz to deliver highly charged heavy ion beams for the HIRFL accelerator, only for those very high charge states and very heavy ion beams such as 209Bi36+ and 209Bi41+, SECRAL has been operated at 24 GHz. The total operation beam time provided by SECRAL up to July 2011 has exceeded 7720 hours. In this paper, the latest performance, development, and operation status of SECRAL ion source are presented. The latest results and reliable long-term operation for the HIRFL accelerator have demonstrated that SECRAL performance for production of highly charged heavy ion beams remains improving at higher RF power with optimized tuning.
Field mappers for laser material processing
NASA Astrophysics Data System (ADS)
Blair, Paul; Currie, Matthew; Trela, Natalia; Baker, Howard J.; Murphy, Eoin; Walker, Duncan; McBride, Roy
2016-03-01
The native shape of the single-mode laser beam used for high power material processing applications is circular with a Gaussian intensity profile. Manufacturers are now demanding the ability to transform the intensity profile and shape to be compatible with a new generation of advanced processing applications that require much higher precision and control. We describe the design, fabrication and application of a dual-optic, beam-shaping system for single-mode laser sources, that transforms a Gaussian laser beam by remapping - hence field mapping - the intensity profile to create a wide variety of spot shapes including discs, donuts, XY separable and rotationally symmetric. The pair of optics transform the intensity distribution and subsequently flatten the phase of the beam, with spot sizes and depth of focus close to that of a diffraction limited beam. The field mapping approach to beam-shaping is a refractive solution that does not add speckle to the beam, making it ideal for use with single mode laser sources, moving beyond the limits of conventional field mapping in terms of spot size and achievable shapes. We describe a manufacturing process for refractive optics in fused silica that uses a freeform direct-write process that is especially suited for the fabrication of this type of freeform optic. The beam-shaper described above was manufactured in conventional UV-fused silica using this process. The fabrication process generates a smooth surface (<1nm RMS), leading to laser damage thresholds of greater than 100J/cm2, which is well matched to high power laser sources. Experimental verification of the dual-optic filed mapper is presented.
Cross-correlation cosmography with intensity mapping of the neutral hydrogen 21 cm emission
NASA Astrophysics Data System (ADS)
Pourtsidou, A.; Bacon, D.; Crittenden, R.
2015-11-01
The cross-correlation of a foreground density field with two different background convergence fields can be used to measure cosmographic distance ratios and constrain dark energy parameters. We investigate the possibility of performing such measurements using a combination of optical galaxy surveys and neutral hydrogen (HI) intensity mapping surveys, with emphasis on the performance of the planned Square Kilometre Array (SKA). Using HI intensity mapping to probe the foreground density tracer field and/or the background source fields has the advantage of excellent redshift resolution and a longer lever arm achieved by using the lensing signal from high redshift background sources. Our results show that, for our best SKA-optical configuration of surveys, a constant equation of state for dark energy can be constrained to ≃8 % for a sky coverage fsky=0.5 and assuming a σ (ΩDE)=0.03 prior for the dark energy density parameter. We also show that using the cosmic microwave background as the second source plane is not competitive, even when considering a COrE-like satellite.
NASA Technical Reports Server (NTRS)
Anderson, David T.; Davis, Scott; Zwier, Timothy S.; Nesbitt, David J.
1996-01-01
A novel pulsed, slit supersonic discharge source is described for generating intense jet-cooled densities of radicals (greater than 10(exp 12)/cu cm) and molecular ions (greater than 10(exp 10)/cu cm) under long absorption path (80 cm), supersonically cooled conditions. The design confines the discharge region upstream of the supersonic expansion orifice to achieve efficient rotational cooling down to 30 K or less. The collisionally collimated velocity distribution in the slit discharge geometry yields sub-Doppler spectral linewidths, which for open-shell radicals reveals spin-rotation splittings and broadening due to nuclear hyperfine structure. Application of the slit source for high-resolution, direct IR laser absorption spectroscopy in discharges is demonstrated on species such as OH, H3O(+) and N2H(+).
Chen, Xiaoming; Lu, Yanhua; Hu, Hao; Tong, Lixin; Zhang, Lei; Yu, Yi; Wang, Juntao; Ren, Huaijin; Xu, Liu
2018-03-05
We present investigations into a narrow-linewidth, quasi-continuous-wave pulsed all-solid-state amplified spontaneous emission (ASE) source by use of a novel multiple-pass zigzag slab amplifier. The SE fluorescence emitted from a Nd:YAG slab active medium acts as the seed and is amplified back and forth 8 times through the same slab. Thanks to the angular multiplexing nature of the zigzag slab, high-intensity 1064-nm ASE output can be produced without unwanted self-lasing in this configuration. Experimentally, the output energy, optical conversion efficiency, pulse dynamics, spectral property, and beam quality of the ASE source are studied when the Nd:YAG slab end-pumped by two high-brightness laser diode arrays. The maximum single pulse energy of 347 mJ is generated with an optical efficiency of ~5.9% and a beam quality of 3.5/17 in the thickness/width direction of the slab. As expected, smooth pulses without relaxing spikes and continuous spectra are achieved. Moreover, the spectral width of the ASE source narrows versus the pump energy, getting a 3-dB linewidth of as narrow as 20 pm (i.e. 5.3 GHz). Via the sum frequency generation, high-intensity, smooth-pulse, and narrow-linewidth ASE sources are preferred for solving the major problem of saturation of the mesospheric sodium atoms and can create a much brighter sodium guide star to meet the needs of adaptive imaging applications in astronomy.
Computation of acoustic ressure fields produced in feline brain by high-intensity focused ultrasound
NASA Astrophysics Data System (ADS)
Omidi, Nazanin
In 1975, Dunn et al. (JASA 58:512-514) showed that a simple relation describes the ultrasonic threshold for cavitation-induced changes in the mammalian brain. The thresholds for tissue damage were estimated for a variety of acoustic parameters in exposed feline brain. The goal of this study was to improve the estimates for acoustic pressures and intensities present in vivo during those experimental exposures by estimating them using nonlinear rather than linear theory. In our current project, the acoustic pressure waveforms produced in the brains of anesthetized felines were numerically simulated for a spherically focused, nominally f1-transducer (focal length = 13 cm) at increasing values of the source pressure at frequencies of 1, 3, and 9 MHz. The corresponding focal intensities were correlated with the experimental data of Dunn et al. The focal pressure waveforms were also computed at the location of the true maximum. For low source pressures, the computed waveforms were the same as those determined using linear theory, and the focal intensities matched experimentally determined values. For higher source pressures, the focal pressure waveforms became increasingly distorted, with the compressional amplitude of the wave becoming greater, and the rarefactional amplitude becoming lower than the values calculated using linear theory. The implications of these results for clinical exposures are discussed.
Nagler, Bob; Aquila, Andrew; Boutet, Sebastien; ...
2017-10-20
The Linac Coherent Light Source (LCLS) is an X-ray source of unmatched brilliance, that is advancing many scientific fields at a rapid pace. The highest peak intensities that are routinely produced at LCLS take place at the Coherent X-ray Imaging (CXI) instrument, which can produce spotsize at the order of 100 nm, and such spotsizes and intensities are crucial for experiments ranging from coherent diffractive imaging, non-linear x-ray optics and high field physics, and single molecule imaging. Nevertheless, a full characterisation of this beam has up to now not been performed. In this paper we for the first time characterisemore » this nanofocused beam in both phase and intensity using a Ronchi Shearing Interferometric technique. The method is fast, in-situ, uses a straightforward optimization algoritm, and is insensitive to spatial jitter.« less
Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons
NASA Astrophysics Data System (ADS)
Xu, Tongjun; Shen, Baifei; Xu, Jiancai; Li, Shun; Yu, Yong; Li, Jinfeng; Lu, Xiaoming; Wang, Cheng; Wang, Xinliang; Liang, Xiaoyan; Leng, Yuxin; Li, Ruxin; Xu, Zhizhan
2016-03-01
Experimental generation of ultrashort MeV positron beams with high intensity and high density using a compact laser-driven setup is reported. A high-density gas jet is employed experimentally to generate MeV electrons with high charge; thus, a charge-neutralized MeV positron beam with high density is obtained during laser-accelerated electrons irradiating high-Z solid targets. It is a novel electron-positron source for the study of laboratory astrophysics. Meanwhile, the MeV positron beam is pulsed with an ultrashort duration of tens of femtoseconds and has a high peak intensity of 7.8 × 1021 s-1, thus allows specific studies of fast kinetics in millimeter-thick materials with a high time resolution and exhibits potential for applications in positron annihilation spectroscopy.
Nakatsutsumi, M; Sentoku, Y; Korzhimanov, A; Chen, S N; Buffechoux, S; Kon, A; Atherton, B; Audebert, P; Geissel, M; Hurd, L; Kimmel, M; Rambo, P; Schollmeier, M; Schwarz, J; Starodubtsev, M; Gremillet, L; Kodama, R; Fuchs, J
2018-01-18
High-intensity lasers interacting with solid foils produce copious numbers of relativistic electrons, which in turn create strong sheath electric fields around the target. The proton beams accelerated in such fields have remarkable properties, enabling ultrafast radiography of plasma phenomena or isochoric heating of dense materials. In view of longer-term multidisciplinary purposes (e.g., spallation neutron sources or cancer therapy), the current challenge is to achieve proton energies well in excess of 100 MeV, which is commonly thought to be possible by raising the on-target laser intensity. Here we present experimental and numerical results demonstrating that magnetostatic fields self-generated on the target surface may pose a fundamental limit to sheath-driven ion acceleration for high enough laser intensities. Those fields can be strong enough (~10 5 T at laser intensities ~10 21 W cm -2 ) to magnetize the sheath electrons and deflect protons off the accelerating region, hence degrading the maximum energy the latter can acquire.
Nakatsutsumi, M.; Sentoku, Y.; Korzhimanov, A.; ...
2018-01-18
High-intensity lasers interacting with solid foils produce copious numbers of relativistic electrons, which in turn create strong sheath electric fields around the target. The proton beams accelerated in such fields have remarkable properties, enabling ultrafast radiography of plasma phenomena or isochoric heating of dense materials. In view of longer-term multidisciplinary purposes (e.g., spallation neutron sources or cancer therapy), the current challenge is to achieve proton energies well in excess of 100 MeV, which is commonly thought to be possible by raising the on-target laser intensity. Here we present experimental and numerical results demonstrating that magnetostatic fields self-generated on the targetmore » surface may pose a fundamental limit to sheath-driven ion acceleration for high enough laser intensities. Those fields can be strong enough (~10 5 T at laser intensities ~10 21 W cm –2) to magnetize the sheath electrons and deflect protons off the accelerating region, hence degrading the maximum energy the latter can acquire.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakatsutsumi, M.; Sentoku, Y.; Korzhimanov, A.
High-intensity lasers interacting with solid foils produce copious numbers of relativistic electrons, which in turn create strong sheath electric fields around the target. The proton beams accelerated in such fields have remarkable properties, enabling ultrafast radiography of plasma phenomena or isochoric heating of dense materials. In view of longer-term multidisciplinary purposes (e.g., spallation neutron sources or cancer therapy), the current challenge is to achieve proton energies well in excess of 100 MeV, which is commonly thought to be possible by raising the on-target laser intensity. Here we present experimental and numerical results demonstrating that magnetostatic fields self-generated on the targetmore » surface may pose a fundamental limit to sheath-driven ion acceleration for high enough laser intensities. Those fields can be strong enough (~10 5 T at laser intensities ~10 21 W cm –2) to magnetize the sheath electrons and deflect protons off the accelerating region, hence degrading the maximum energy the latter can acquire.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loisel, G., E-mail: gploise@sandia.gov; Lake, P.; Gard, P.
2016-11-15
At Sandia National Laboratories, the x-ray generator Manson source model 5 was upgraded from 10 to 25 kV. The purpose of the upgrade is to drive higher characteristics photon energies with higher throughput. In this work we present characterization studies for the source size and the x-ray intensity when varying the source voltage for a series of K-, L-, and M-shell lines emitted from Al, Y, and Au elements composing the anode. We used a 2-pinhole camera to measure the source size and an energy dispersive detector to monitor the spectral content and intensity of the x-ray source. As themore » voltage increases, the source size is significantly reduced and line intensity is increased for the three materials. We can take advantage of the smaller source size and higher source throughput to effectively calibrate the suite of Z Pulsed Power Facility crystal spectrometers.« less
Beam experiments with the Grenoble test electron cyclotron resonance ion source at iThemba LABS.
Thomae, R; Conradie, J; Fourie, D; Mira, J; Nemulodi, F; Kuechler, D; Toivanen, V
2016-02-01
At iThemba Laboratory for Accelerator Based Sciences (iThemba LABS) an electron cyclotron ion source was installed and commissioned. This source is a copy of the Grenoble Test Source (GTS) for the production of highly charged ions. The source is similar to the GTS-LHC at CERN and named GTS2. A collaboration between the Accelerators and Beam Physics Group of CERN and the Accelerator and Engineering Department of iThemba LABS was proposed in which the development of high intensity argon and xenon beams is envisaged. In this paper, we present beam experiments with the GTS2 at iThemba LABS, in which the results of continuous wave and afterglow operation of xenon ion beams with oxygen as supporting gases are presented.
Bergueiro, J; Igarzabal, M; Sandin, J C Suarez; Somacal, H R; Vento, V Thatar; Huck, H; Valda, A A; Repetto, M; Kreiner, A J
2011-12-01
Several ion sources have been developed and an ion source test stand has been mounted for the first stage of a Tandem-Electrostatic-Quadrupole facility For Accelerator-Based Boron Neutron Capture Therapy. A first source, designed, fabricated and tested is a dual chamber, filament driven and magnetically compressed volume plasma proton ion source. A 4 mA beam has been accelerated and transported into the suppressed Faraday cup. Extensive simulations of the sources have been performed using both 2D and 3D self-consistent codes. Copyright © 2011 Elsevier Ltd. All rights reserved.
Demonstration of a long pulse X-ray source at the National Ignition Facility
NASA Astrophysics Data System (ADS)
May, M. J.; Opachich, Y. P.; Kemp, G. E.; Colvin, J. D.; Barrios, M. A.; Widmann, K. W.; Fournier, K. B.; Hohenberger, M.; Albert, F.; Regan, S. P.
2017-04-01
A long duration high fluence x-ray source has been developed at the National Ignition Facility (NIF). The target was a 14.4 mm tall, 4.1 mm diameter, epoxy walled, gas filled pipe. Approximately 1.34 MJ from the NIF laser was used to heat the mixture of (55:45) Kr:Xe at 1.2 atm (˜5.59 mg/cm3) to emit in a fairly isotropic radiant intensity of 400-600 GW/sr from the Ephoton = 3-7 keV spectral range for a duration of ≈ 14 ns. The HYDRA simulated radiant intensities were in reasonable agreement with experiments but deviated at late times.
2016-01-01
Ultraviolet light emitting diodes (UV LEDs) have become widespread in chemical research as highly efficient light sources for photochemistry and photopolymerization. However, in more complex experimental setups requiring highly concentrated light and highly spatially resolved patterning of the light, high-pressure mercury arc lamps are still widely used because they emit intense UV light from a compact arc volume that can be efficiently coupled into optical systems. Advances in the deposition and p-type doping of gallium nitride have recently permitted the manufacture of UV LEDs capable of replacing mercury arc lamps also in these applications. These UV LEDs exceed the spectral radiance of mercury lamps even at the intense I-line at 365 nm. Here we present the successful exchange of a high-pressure mercury arc lamp for a new generation UV LED as a light source in photolithographic chemistry and its use in the fabrication of high-density DNA microarrays. We show that the improved light radiance and efficiency of these LEDs offer substantial practical, economic and ecological advantages, including faster synthesis, lower hardware costs, very long lifetime, an >85-fold reduction in electricity consumption and the elimination of mercury waste and contamination. PMID:28066690
Hölz, K; Lietard, J; Somoza, M M
2017-01-03
Ultraviolet light emitting diodes (UV LEDs) have become widespread in chemical research as highly efficient light sources for photochemistry and photopolymerization. However, in more complex experimental setups requiring highly concentrated light and highly spatially resolved patterning of the light, high-pressure mercury arc lamps are still widely used because they emit intense UV light from a compact arc volume that can be efficiently coupled into optical systems. Advances in the deposition and p -type doping of gallium nitride have recently permitted the manufacture of UV LEDs capable of replacing mercury arc lamps also in these applications. These UV LEDs exceed the spectral radiance of mercury lamps even at the intense I-line at 365 nm. Here we present the successful exchange of a high-pressure mercury arc lamp for a new generation UV LED as a light source in photolithographic chemistry and its use in the fabrication of high-density DNA microarrays. We show that the improved light radiance and efficiency of these LEDs offer substantial practical, economic and ecological advantages, including faster synthesis, lower hardware costs, very long lifetime, an >85-fold reduction in electricity consumption and the elimination of mercury waste and contamination.
GPS Block 2R Time Standard Assembly (TSA) architecture
NASA Technical Reports Server (NTRS)
Baker, Anthony P.
1990-01-01
The underlying philosophy of the Global Positioning System (GPS) 2R Time Standard Assembly (TSA) architecture is to utilize two frequency sources, one fixed frequency reference source and one system frequency source, and to couple the system frequency source to the reference frequency source via a sample data loop. The system source is used to provide the basic clock frequency and timing for the space vehicle (SV) and it uses a voltage controlled crystal oscillator (VCXO) with high short term stability. The reference source is an atomic frequency standard (AFS) with high long term stability. The architecture can support any type of frequency standard. In the system design rubidium, cesium, and H2 masers outputting a canonical frequency were accommodated. The architecture is software intensive. All VCXO adjustments are digital and are calculated by a processor. They are applied to the VCXO via a digital to analog converter.
Optimizing laser produced plasmas for efficient extreme ultraviolet and soft X-ray light sources
NASA Astrophysics Data System (ADS)
Sizyuk, Tatyana; Hassanein, Ahmed
2014-08-01
Photon sources produced by laser beams with moderate laser intensities, up to 1014 W/cm2, are being developed for many industrial applications. The performance requirements for high volume manufacture devices necessitate extensive experimental research supported by theoretical plasma analysis and modeling predictions. We simulated laser produced plasma sources currently being developed for several applications such as extreme ultraviolet lithography using 13.5% ± 1% nm bandwidth, possibly beyond extreme ultraviolet lithography using 6.× nm wavelengths, and water-window microscopy utilizing 2.48 nm (La-α) and 2.88 nm (He-α) emission. We comprehensively modeled plasma evolution from solid/liquid tin, gadolinium, and nitrogen targets as three promising materials for the above described sources, respectively. Results of our analysis for plasma characteristics during the entire course of plasma evolution showed the dependence of source conversion efficiency (CE), i.e., laser energy to photons at the desired wavelength, on plasma electron density gradient. Our results showed that utilizing laser intensities which produce hotter plasma than the optimum emission temperatures allows increasing CE for all considered sources that, however, restricted by the reabsorption processes around the main emission region and this restriction is especially actual for the 6.× nm sources.
Noise level in a neonatal intensive care unit in Santa Marta - Colombia.
Garrido Galindo, Angélica Patricia; Velez-Pereira, Andres M
2017-01-01
Abstract Introduction: The environment of neonatal intensive care units is influenced by numerous sources of noise emission, which contribute to raise the noise levels, and may cause hearing impairment and other physiological and psychological changes on the newborn, as well as problems with care staff. Objective: To evaluate the level and sources of noise in the neonatal intensive care unit. Methods: Sampled for 20 consecutive days every 60 seconds in A-weighting curves and fast mode with a Type I sound level meter. Recorded the average, maximum and minimum, and the 10th, 50th and 90th percentiles. The values are integrated into hours and work shift, and studied by analysis of variance. The sources were characterized in thirds of octaves. Results: The average level was 64.00 ±3.62 dB(A), with maximum of 76.04 ±5.73 dB(A), minimum of 54.84 ±2.61dB(A), and background noise of 57.95 ±2.83 dB(A). We found four sources with levels between 16.8-63.3 dB(A). Statistical analysis showed significant differences between the hours and work shift, with higher values in the early hours of the day. Conclusion: The values presented exceed the standards suggested by several organizations. The sources identified and measured recorded high values in low frequencies. PMID:29213154
NASA Astrophysics Data System (ADS)
Lee, Jae-Chul; Kim, Wansun; Park, Hun-Kuk; Choi, Samjin
2017-03-01
This study investigates why a silver nanoparticle (SNP)-induced surface-enhanced Raman scattering (SERS) paper chip fabricated at low successive ionic layer absorption and reaction (SILAR) cycles leads to a high SERS enhancement factor (7 × 108) with an inferior nanostructure and without generating a hot spot effect. The multi-layered structure of SNPs on cellulose fibers, verified by magnified scanning electron microscopy (SEM) and analyzed by a computational simulation method, was hypothesized as the reason. The pattern of simulated local electric field distribution with respect to the number of SILAR cycles showed good agreement with the experimental Raman intensity, regardless of the wavelength of the excitation laser sources. The simulated enhancement factor at the 785-nm excitation laser source (2.8 × 109) was 2.5 times greater than the experimental enhancement factor (1.1 × 109). A 532-nm excitation laser source exhibited the highest maximum local electric field intensity (1.9 × 1011), particularly at the interparticle gap called a hot spot. The short wavelength led to a strong electric field intensity caused by strong electromagnetic coupling arising from the SNP-induced local surface plasmon resonance (LSPR) effects through high excitation energy. These findings suggest that our paper-based SILAR-fabricated SNP-induced LSPR model is valid for understanding SNP-induced LSPR effects.
NASA Astrophysics Data System (ADS)
Magazù, Salvatore; Mezei, Ferenc; Migliardo, Federica
2018-05-01
In a variety of applications of inelastic neutron scattering spectroscopy the goal is to single out the elastic scattering contribution from the total scattered spectrum as a function of momentum transfer and sample environment parameters. The elastic part of the spectrum is defined in such a case by the energy resolution of the spectrometer. Variable elastic energy resolution offers a way to distinguish between elastic and quasi-elastic intensities. Correlation spectroscopy lends itself as an efficient, high intensity approach for accomplishing this both at continuous and pulsed neutron sources. On the one hand, in beam modulation methods the Liouville theorem coupling between intensity and resolution is relaxed and time-of-flight velocity analysis of the neutron velocity distribution can be performed with 50 % duty factor exposure for all available resolutions. On the other hand, the (quasi)elastic part of the spectrum generally contains the major part of the integrated intensity at a given detector, and thus correlation spectroscopy can be applied with most favorable signal to statistical noise ratio. The novel spectrometer CORELLI at SNS is an example for this type of application of the correlation technique at a pulsed source. On a continuous neutron source a statistical chopper can be used for quasi-random time dependent beam modulation and the total time-of-flight of the neutron from the statistical chopper to detection is determined by the analysis of the correlation between the temporal fluctuation of the neutron detection rate and the statistical chopper beam modulation pattern. The correlation analysis can either be used for the determination of the incoming neutron velocity or for the scattered neutron velocity, depending of the position of the statistical chopper along the neutron trajectory. These two options are considered together with an evaluation of spectrometer performance compared to conventional spectroscopy, in particular for variable resolution elastic neutron scattering (RENS) studies of relaxation processes and the evolution of mean square displacements. A particular focus of our analysis is the unique feature of correlation spectroscopy of delivering high and resolution independent beam intensity, thus the same statistical chopper scan contains both high intensity and high resolution information at the same time, and can be evaluated both ways. This flexibility for variable resolution data handling represents an additional asset for correlation spectroscopy in variable resolution work. Changing the beam width for the same statistical chopper allows us to additionally trade resolution for intensity in two different experimental runs, similarly for conventional single slit chopper spectroscopy. The combination of these two approaches is a capability of particular value in neutron spectroscopy studies requiring variable energy resolution, such as the systematic study of quasi-elastic scattering and mean square displacement. Furthermore the statistical chopper approach is particularly advantageous for studying samples with low scattering intensity in the presence of a high, sample independent background.
Overview of Mono-Energetic Gamma-Ray Sources and Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hartemann, Fred; /LLNL, Livermore; Albert, Felicie
2012-06-25
Recent progress in accelerator physics and laser technology have enabled the development of a new class of tunable gamma-ray light sources based on Compton scattering between a high-brightness, relativistic electron beam and a high intensity laser pulse produced via chirped-pulse amplification (CPA). A precision, tunable Mono-Energetic Gamma-ray (MEGa-ray) source driven by a compact, high-gradient X-band linac is currently under development and construction at LLNL. High-brightness, relativistic electron bunches produced by an X-band linac designed in collaboration with SLAC NAL will interact with a Joule-class, 10 ps, diode-pumped CPA laser pulse to generate tunable {gamma}-rays in the 0.5-2.5 MeV photon energymore » range via Compton scattering. This MEGaray source will be used to excite nuclear resonance fluorescence in various isotopes. Applications include homeland security, stockpile science and surveillance, nuclear fuel assay, and waste imaging and assay. The source design, key parameters, and current status are presented, along with important applications, including nuclear resonance fluorescence.« less
Intense γ ray generated by refocusing laser pulse on wakefield accelerated electrons
NASA Astrophysics Data System (ADS)
Feng, Jie; Wang, Jinguang; Li, Yifei; Zhu, Changqing; Li, Minghua; He, Yuhang; Li, Dazhang; Wang, Weimin; Chen, Liming
2017-09-01
Ultrafast x/γ ray emission from the combination of laser wake-field acceleration and plasma mirror has been investigated as a promising Thomson scattering source. However, the photon energy and yield of radiation are limited to the intensity of reflected laser pulses. We use the 2D particle in cell simulation to demonstrate that a 75TW driven laser pulse can be refocused on the accelerated electron bunches through a hemispherical plasma mirror with a small f number of 0.25. The energetic electrons with the maximum energy about 350 MeV collide with the reflected laser pulse of a0 = 3.82 at the focal spot, producing high order multi-photon Thomson scattering, and resulting in the scattering spectrum which extends up to 21.2 MeV. Such a high energy γ ray source could be applied to photonuclear reaction and materials science.
[Energy saving and LED lamp lighting and human health].
Deĭnego, V N; Kaptsov, V A
2013-01-01
The appearance of new sources of high-intensity with large proportion of blue light in the spectrum revealed new risks of their influence on the function of the eye and human health, especially for children and teenagers. There is an urgent need to reconsider the research methods of vision hygiene in conditions of energy-saving and LED bulbs lighting. On the basis of a systematic approach and knowledge of the newly discovered photosensitive receptors there was built hierarchical model of the interaction of "light environment - the eye - the system of formation of visual images - the hormonal system of the person - his psycho-physiological state." This approach allowed us to develop a range of risk for the negative impact of spectrum on the functions of the eye and human health, as well as to formulate the hygiene requirements for energy-efficient high-intensity light sources.
A source to deliver mesoscopic particles for laser plasma studies
NASA Astrophysics Data System (ADS)
Gopal, R.; Kumar, R.; Anand, M.; Kulkarni, A.; Singh, D. P.; Krishnan, S. R.; Sharma, V.; Krishnamurthy, M.
2017-02-01
Intense ultrashort laser produced plasmas are a source for high brightness, short burst of X-rays, electrons, and high energy ions. Laser energy absorption and its disbursement strongly depend on the laser parameters and also on the initial size and shape of the target. The ability to change the shape, size, and material composition of the matter that absorbs light is of paramount importance not only from a fundamental physics point of view but also for potentially developing laser plasma sources tailored for specific applications. The idea of preparing mesoscopic particles of desired size/shape and suspending them in vacuum for laser plasma acceleration is a sparsely explored domain. In the following report we outline the development of a delivery mechanism of microparticles into an effusive jet in vacuum for laser plasma studies. We characterise the device in terms of particle density, particle size distribution, and duration of operation under conditions suitable for laser plasma studies. We also present the first results of x-ray emission from micro crystals of boric acid that extends to 100 keV even under relatively mild intensities of 1016 W/cm2.
Imaging method for monitoring delivery of high dose rate brachytherapy
Weisenberger, Andrew G; Majewski, Stanislaw
2012-10-23
A method for in-situ monitoring both the balloon/cavity and the radioactive source in brachytherapy treatment utilizing using at least one pair of miniature gamma cameras to acquire separate images of: 1) the radioactive source as it is moved in the tumor volume during brachytherapy; and 2) a relatively low intensity radiation source produced by either an injected radiopharmaceutical rendering cancerous tissue visible or from a radioactive solution filling a balloon surgically implanted into the cavity formed by the surgical resection of a tumor.
High-intensity positron microprobe at the Thomas Jefferson National Accelerator Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Golge, S., E-mail: serkan.golge@nasa.gov; Vlahovic, B.; Wojtsekhowski, B.
We present a conceptual design for a novel continuous wave electron-linac based high-intensity high-brightness slow-positron production source with a projected intensity on the order of 10{sup 10 }e{sup +}/s. Reaching this intensity in our design relies on the transport of positrons (T{sub +} below 600 keV) from the electron-positron pair production converter target to a low-radiation and low-temperature area for moderation in a high-efficiency cryogenic rare gas moderator, solid Ne. This design progressed through Monte Carlo optimizations of: electron/positron beam energies and converter target thickness, transport of the e{sup +} beam from the converter to the moderator, extraction of the e{sup +}more » beam from the magnetic channel, a synchronized raster system, and moderator efficiency calculations. For the extraction of e{sup +} from the magnetic channel, a magnetic field terminator plug prototype has been built and experimental results on the effectiveness of the prototype are presented. The dissipation of the heat away from the converter target and radiation protection measures are also discussed.« less
Laser-driven ultrafast antiproton beam
NASA Astrophysics Data System (ADS)
Li, Shun; Pei, Zhikun; Shen, Baifei; Xu, Jiancai; Zhang, Lingang; Zhang, Xiaomei; Xu, Tongjun; Yu, Yong; Bu, Zhigang
2018-02-01
Antiproton beam generation is investigated based on the ultra-intense femtosecond laser pulse by using two-dimensional particle-in-cell and Geant4 simulations. A high-flux proton beam with an energy of tens of GeV is generated in sequential radiation pressure and bubble regime and then shoots into a high-Z target for producing antiprotons. Both yield and energy of the antiproton beam increase almost linearly with the laser intensity. The generated antiproton beam has a short pulse duration of about 5 ps and its flux reaches 2 × 10 20 s - 1 at the laser intensity of 2.14 × 10 23 W / cm 2 . Compared to conventional methods, this new method based on the ultra-intense laser pulse is able to provide a compact, tunable, and ultrafast antiproton source, which is potentially useful for quark-gluon plasma study, all-optical antihydrogen generation, and so on.
Laboratory Investigations of Bidirectional Reflectance using the Photomultiplier Tube
NASA Astrophysics Data System (ADS)
Vides, C.; Nelson, R. M.; Boryta, M. D.; Manatt, K. S.
2016-12-01
The precise measurement of the intensity of a light source is fundamental data to observational sciences, such as spacecraft imaging and atomic particle detection. Photomultiplier tubes (PMT) have played an integral role in many diverse areas such as spacecraft remote sensing by indicating the physical properties of regolith on a planetary surface and particulate matter in an atmosphere. PMTs are essential in neutrino observatories by detecting Cherenkov radiation, the photons emitted when a neutrino interacts with a dielectric medium at highly relativistic velocities. The PMT utilizes the core principle of Albert Einstein's photoelectric effect, with the aid of secondary emission to multiply the electrons emitted from a primary photon. Traditionally, PMTs are used to measure the intensity of photons reflected from a surface. We designed a photometer such that we could measure the photoelectron current from two Hamamatsu R928 photomultiplier tubes, as amplified by Keithly 610 electrometers. The results provide insight into the behavior of photoelectrons, how temperature affects PMT output current, and the amplification electronics that form a basis for remote sensing measurements. We performed photometry with a maximum error of 1% by measuring the intensity of a coherent light source. The calibration procedure involved incrementing and decrementing the high voltage in steps of 50V on a high voltage power supply to locate the linear range within the Gaussian curve of light intensity as a function of high voltage to maximize the signal to noise. We have measured how the signal to noise ratio changes when transmittance was reduced and compared the performance of the PMTs. We measured the intensity as a function of polarization angle. We then measured the response change of the PMT as the reflectance of the incident surface changed. The data was reduced and analyzed using MATLAB. We corrected aliasing and fit the mathematical function of the photoelectron current in relation to high voltage and polarization. Our results have established the linear range of a photomultiplier tube. We have also shown how the signal to noise ratio increases as light intensity decreases. With these results, we can constrain the limits in which the PMT is a valuable tool for experimentation in the fields of physics and astronomy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Odorici, F., E-mail: fabrizio.odorici@bo.infn.it; Malferrari, L.; Montanari, A.
Different electron guns based on cold- or hot-cathode technologies have been developed since 2009 at INFN for operating within ECR plasma chambers as sources of auxiliary electrons, with the aim of boosting the source performances by means of a higher plasma lifetime and density. Their application to microwave discharge ion sources, where plasma is not confined, has required an improvement of the gun design, in order to “screen” the cathode from the plasma particles. Experimental tests carried out on a plasma reactor show a boost of the plasma density, ranging from 10% to 90% when the electron guns are used,more » as explained by plasma diffusion models.« less
Experimental Analysis of Pseudospark Sourced Electron Beam
NASA Astrophysics Data System (ADS)
Kumar, Niraj; Pal, U. N.; Verma, D. K.; Prajapati, J.; Kumar, M.; Meena, B. L.; Tyagi, M. S.; Srivastava, V.
2011-12-01
The pseudospark (PS) discharge has been shown to be a promising source of high brightness, high intensity electron beam pulses. The PS discharge sourced electron beam has potential applications in plasma filled microwave sources where normal material cathode cannot be used. Analysis of the electron beam profile has been done experimentally for different applied voltages. The investigation has been carried out at different axial and radial location inside the drift space in argon atmosphere. This paper represents experimentally found axial and radial variation of the beam current inside the drift tube of PS discharge based plasma cathode electron (PCE) gun. With the help of current density estimation the focusing and defocusing point of electron beam in axial direction can be analyzed.
NASA Astrophysics Data System (ADS)
Crippa, M.; Canonaco, F.; Lanz, V. A.; Äijälä, M.; Allan, J. D.; Carbone, S.; Capes, G.; Ceburnis, D.; Dall'Osto, M.; Day, D. A.; DeCarlo, P. F.; Ehn, M.; Eriksson, A.; Freney, E.; Hildebrandt Ruiz, L.; Hillamo, R.; Jimenez, J. L.; Junninen, H.; Kiendler-Scharr, A.; Kortelainen, A.-M.; Kulmala, M.; Laaksonen, A.; Mensah, A. A.; Mohr, C.; Nemitz, E.; O'Dowd, C.; Ovadnevaite, J.; Pandis, S. N.; Petäjä, T.; Poulain, L.; Saarikoski, S.; Sellegri, K.; Swietlicki, E.; Tiitta, P.; Worsnop, D. R.; Baltensperger, U.; Prévôt, A. S. H.
2014-06-01
Organic aerosols (OA) represent one of the major constituents of submicron particulate matter (PM1) and comprise a huge variety of compounds emitted by different sources. Three intensive measurement field campaigns to investigate the aerosol chemical composition all over Europe were carried out within the framework of the European Integrated Project on Aerosol Cloud Climate and Air Quality Interactions (EUCAARI) and the intensive campaigns of European Monitoring and Evaluation Programme (EMEP) during 2008 (May-June and September-October) and 2009 (February-March). In this paper we focus on the identification of the main organic aerosol sources and we define a standardized methodology to perform source apportionment using positive matrix factorization (PMF) with the multilinear engine (ME-2) on Aerodyne aerosol mass spectrometer (AMS) data. Our source apportionment procedure is tested and applied on 25 data sets accounting for two urban, several rural and remote and two high altitude sites; therefore it is likely suitable for the treatment of AMS-related ambient data sets. For most of the sites, four organic components are retrieved, improving significantly previous source apportionment results where only a separation in primary and secondary OA sources was possible. Generally, our solutions include two primary OA sources, i.e. hydrocarbon-like OA (HOA) and biomass burning OA (BBOA) and two secondary OA components, i.e. semi-volatile oxygenated OA (SV-OOA) and low-volatility oxygenated OA (LV-OOA). For specific sites cooking-related (COA) and marine-related sources (MSA) are also separated. Finally, our work provides a large overview of organic aerosol sources in Europe and an interesting set of highly time resolved data for modeling purposes.
Enhanced production of green tide algal biomass through additional carbon supply.
de Paula Silva, Pedro H; Paul, Nicholas A; de Nys, Rocky; Mata, Leonardo
2013-01-01
Intensive algal cultivation usually requires a high flux of dissolved inorganic carbon (Ci) to support productivity, particularly for high density algal cultures. Carbon dioxide (CO2) enrichment can be used to overcome Ci limitation and enhance productivity of algae in intensive culture, however, it is unclear whether algal species with the ability to utilise bicarbonate (HCO3 (-)) as a carbon source for photosynthesis will benefit from CO2 enrichment. This study quantified the HCO3 (-) affinity of three green tide algal species, Cladophora coelothrix, Cladophora patentiramea and Chaetomorpha linum, targeted for biomass and bioenergy production. Subsequently, we quantified productivity and carbon, nitrogen and ash content in response to CO2 enrichment. All three species had similar high pH compensation points (9.7-9.9), and grew at similar rates up to pH 9, demonstrating HCO3 (-) utilization. Algal cultures enriched with CO2 as a carbon source had 30% more total Ci available, supplying twenty five times more CO2 than the control. This higher Ci significantly enhanced the productivity of Cladophora coelothrix (26%), Chaetomorpha linum (24%) and to a lesser extent for Cladophora patentiramea (11%), compared to controls. We demonstrated that supplying carbon as CO2 can enhance the productivity of targeted green tide algal species under intensive culture, despite their clear ability to utilise HCO3 (-).
Exposure to Bisphenol A and Other Phenols in Neonatal Intensive Care Unit Premature Infants
Calafat, Antonia M.; Weuve, Jennifer; Ye, Xiaoyun; Jia, Lily T.; Hu, Howard; Ringer, Steven; Huttner, Ken; Hauser, Russ
2009-01-01
Objective We previously demonstrated that exposure to polyvinyl chloride plastic medical devices containing di(2-ethylhexyl) phthalate (DEHP) was associated with higher urinary concentrations of several DEHP metabolites in 54 premature infants in two neonatal intensive care units than in the general population. For 42 of these infants, we evaluated urinary concentrations of several phenols, including bisphenol A (BPA), in association with the use of the same medical devices. Measurements We measured the urinary concentrations of free and total (free plus conjugated) species of BPA, triclosan, benzophenone-3, methyl paraben, and propyl paraben. Results The percentage of BPA present as its conjugated species was > 90% in more than three-quarters of the premature infants. Intensity of use of products containing DEHP was strongly associated with BPA total concentrations but not with any other phenol. Adjusting for institution and sex, BPA total concentrations among infants in the group of high use of DEHP-containing products were 8.75 times as high as among infants in the low use group (p < 0.0001). Similarly, after adjusting for sex and DEHP-containing product use category, BPA total concentrations among infants in Institution A were 16.6 times as high as those among infants in Institution B (p < 0.0001). Conclusion BPA geometric mean urinary concentration (30.3 μg/L) among premature infants undergoing intensive therapeutic medical interventions was one order of magnitude higher than that among the general population. Conjugated species were the primary urinary metabolites of BPA, suggesting that premature infants have some capacity to metabolize BPA. The differences in exposure to BPA by intensity of use of DEHP-containing medical products highlight the need for further studies to determine the specific source(s) of exposure to BPA. PMID:19440505
Vertical intensity modulation for improved radiographic penetration and reduced exclusion zone
NASA Astrophysics Data System (ADS)
Bendahan, J.; Langeveld, W. G. J.; Bharadwaj, V.; Amann, J.; Limborg, C.; Nosochkov, Y.
2016-09-01
In the present work, a method to direct the X-ray beam in real time to the desired locations in the cargo to increase penetration and reduce exclusion zone is presented. Cargo scanners employ high energy X-rays to produce radiographic images of the cargo. Most new scanners employ dual-energy to produce, in addition to attenuation maps, atomic number information in order to facilitate the detection of contraband. The electron beam producing the bremsstrahlung X-ray beam is usually directed approximately to the center of the container, concentrating the highest X-ray intensity to that area. Other parts of the container are exposed to lower radiation levels due to the large drop-off of the bremsstrahlung radiation intensity as a function of angle, especially for high energies (>6 MV). This results in lower penetration in these areas, requiring higher power sources that increase the dose and exclusion zone. The capability to modulate the X-ray source intensity on a pulse-by-pulse basis to deliver only as much radiation as required to the cargo has been reported previously. This method is, however, controlled by the most attenuating part of the inspected slice, resulting in excessive radiation to other areas of the cargo. A method to direct a dual-energy beam has been developed to provide a more precisely controlled level of required radiation to highly attenuating areas. The present method is based on steering the dual-energy electron beam using magnetic components on a pulse-to-pulse basis to a fixed location on the X-ray production target, but incident at different angles so as to direct the maximum intensity of the produced bremsstrahlung to the desired locations. The details of the technique and subsystem and simulation results are presented.
Fecko, Christopher J; Munson, Katherine M; Saunders, Abbie; Sun, Guangxing; Begley, Tadhg P; Lis, John T; Webb, Watt W
2007-01-01
Crosslinking proteins to the nucleic acids they bind affords stable access to otherwise transient regulatory interactions. Photochemical crosslinking provides an attractive alternative to formaldehyde-based protocols, but irradiation with conventional UV sources typically yields inadequate product amounts. Crosslinking with pulsed UV lasers has been heralded as a revolutionary technique to increase photochemical yield, but this method had only been tested on a few protein-nucleic acid complexes. To test the generality of the yield enhancement, we have investigated the benefits of using approximately 150 fs UV pulses to crosslink TATA-binding protein, glucocorticoid receptor and heat shock factor to oligonucleotides in vitro. For these proteins, we find that the quantum yields (and saturating yields) for forming crosslinks using the high-peak intensity femtosecond laser do not improve on those obtained with low-intensity continuous wave (CW) UV sources. The photodamage to the oligonucleotides and proteins also has comparable quantum yields. Measurements of the photochemical reaction yields of several small molecules selected to model the crosslinking reactions also exhibit nearly linear dependences on UV intensity instead of the previously predicted quadratic dependence. Unfortunately, these results disprove earlier assertions that femtosecond pulsed laser sources provide significant advantages over CW radiation for protein-nucleic acid crosslinking.
Positive Life Experiences: A Qualitative, Cross-Sectional, Longitudinal Study of Gifted Graduates
ERIC Educational Resources Information Center
Peterson, Jean Sunde; Canady, Kate; Duncan, Nancy
2012-01-01
At the culmination of an 11-year qualitative, cross-sectional study of life events, 48 high-ability high school graduates fitting common stereotypes associated with giftedness completed an open-ended questionnaire, part of which focused on positive life experiences and sources of support. Findings included that intense investment in academics,…
Recent observations of Hercules X-1 with HEAO-1 and OSO-8
NASA Technical Reports Server (NTRS)
Pravdo, S. H.; Becker, R. H.; Bussard, R. W.; Boldt, E. A.; Holt, S. S.; Serlemitsos, P. J.; Swank, J. H.; Rothschild, R. E.
1979-01-01
HEAO 1 X-ray observations of Her X-1 near an onset of the high state are discussed. An X-ray light curve is determined which indicates that for about 0.5 day before the X-ray intensity turn-on there was 1.2-sec pulsed emission from the source at a level intermediate between the high- and low-state intensities. These results are taken as demonstrating the stability in the 35-day cycle when compared with previous observations. An inconclusive search for 58-keV line emission from Her X-1 is also reported.
High energy X-ray observations of the 38-second pulsar
NASA Technical Reports Server (NTRS)
Byrne, P. F.; Levine, A. M.; Bautz, M.; Howe, S. K.; Lang, F. L.; Primini, F. A.; Lewin, W. H. G.; Gruber, D. E.; Knight, F. K.; Nolan, P. L.
1981-01-01
The results of observations of the 38-second pulsar obtained at high X-ray energies (13-180 keV) with the UCSD/MIT instrument aboard HEAO 1 are reported. The results include a measurement of the source location, measurement of the pulse profile, and determination of the average intensity and spectrum during each of three time intervals spanning a baseline of 1 year. The total intensity of the pulsar is seen to vary on a 6-month time scale. The spectrum is hard but, like other X-ray pulsars, steepens at energies above 20 keV.
Barium-Dispenser Thermionic Cathode
NASA Technical Reports Server (NTRS)
Wintucky, Edwin G.; Green, M.; Feinleib, M.
1989-01-01
Improved reservoir cathode serves as intense source of electrons required for high-frequency and often high-output-power, linear-beam tubes, for which long operating lifetime important consideration. High emission-current densities obtained through use of emitting surface of relatively-low effective work function and narrow work-function distribution, consisting of coat of W/Os deposited by sputtering. Lower operating temperatures and enhanced electron emission consequently possible.
Personaltiy correlates of the joy of life.
Tolor, A
1978-07-01
Hypothesized that greater diversity of joy and more intense levels of joy would be associated with low hopelessness, high sensation seeking the perception of the world as just, and high sensitization as compared with high repression. It also was predicted that female Ss would score higher in sources of joy and in intensity as compared to males. One hundred and thirty-four college students were administered the Joy of Life Scale, Hopelessness Scale, Sensation Seeking Scale, Just World Scale, and Revised Repression-Sensitization Scale. The hypothesis was supported for sensation seeking in that High Sensation Seekers assigned significantly (p less than .05) higher mean intensity ratings to experiences that produced joy of life, than did Low Sensation Seekers. Contrary to expectation, there was a nonsignificant trend for sensitizers, when compared with repressors, to select fewer joy-related experiences and to evaluate these experiences as less joyful. The experiences that most often led to high levels of joy were those referrable to positive emotional events.
Brazing copper to dispersion-strengthened copper
NASA Astrophysics Data System (ADS)
Ryding, David G.; Allen, Douglas; Lee, Richard H.
1996-11-01
The advanced photon source is a state-of-the-art synchrotron light source that will produce intense x-ray beams, which will allow the study of smaller samples and faster reactions and processes at a greater level of detail than has ben possible to date. The beam is produced by using third- generation insertion devices in a 7-GeV electron/positron storage ring that is 1,104 meters in circumference. The heat load from these intense high-power devices is very high, and certain components must sustain total heat loads of 3 to 15 kW and heat fluxes of 30 W/mm$_2). Because the beams will cycle on and off many times, thermal shock and fatigue will be a problem. High heat flux impinging on a small area causes a large thermal gradient that results in high stress. GlidCop, a dispersion-strengthened copper, is the desired design material because of its high thermal conductivity and superior mechanical properties as compared to copper and its alloys. GlidCop is not amenable to joining by fusion welding, and brazing requires diligence because of high diffusivity. Brazing procedures were developed using optical and scanning electron microscopy.
A Challenging View of the 2015 Summer V404 Cyg Outburst at High Energy with INTEGRAL/SPI: The Finale
NASA Astrophysics Data System (ADS)
Jourdain, Elisabeth; Roques, Jean-Pierre; Rodi, James
2017-01-01
During its strong outburst of 2015 June/July, the X-ray transient V404 Cygni (=GS2023+338) was observed up to a level of 50 Crab in the hard X-ray domain. We focus here on a particularly intense episode preceeding a definitive decline of the source activity. We benefit from large signal-to-noise ratios to investigate the source spectral variability, on a timescale of five minutes. A hardness-intensity study of three broad bands reveals clearly different behaviors at low and high energy (below and above ˜100 keV). In particular, on two occasions, the source intensity varies by a factor of 3-4 in amplitude while keeping the same spectral shape. On the other hand, at the end of the major flare, the emission presents a clear anticorrelation between flux and hardness. These behaviors strongly suggest the presence of two spectral components related to emission processes varying in a largely independent way. The first component (E < 100-150 keV) is classically identified with a Comptonizing thermal electron population, and requires either an unusual seed photon population or a specific geometry with strong absorbing/reflecting material. The second component is modeled by a cutoff power-law, which could correspond to a second hotter Comptonizing population or another mechanism (synchrotron, non-thermal Comptonization...). In the framework of such a model, hardness-intensity and flux-flux diagrams clearly demonstrate that the source evolution follows a well-organized underlying scheme. They reveal unique information about the hard X-ray emission processes and connections between them. Based on observations with INTEGRAL, an ESA project with instruments and science data centre funded by ESA member states (especially the PI countries: Denmark, France, Germany, Italy, Spain, and Switzerland), Czech Republic, and Poland, with participation of Russia and USA.
NASA Astrophysics Data System (ADS)
Tuske, O.; Chauvin, N.; Delferriere, O.; Fils, J.; Gauthier, Y.
2018-05-01
The CEA at Saclay is in charge of developing and building the ion source and the low energy line of the proton linac of the FAIR (Facility for Antiproton and Ion Research) accelerator complex located at GSI (Darmstadt) in Germany. The FAIR facility will deliver stable and rare isotope beams covering a huge range of intensities and beam energies for experiments in the fields of atomic physics, plasma physics, nuclear physics, hadron physics, nuclear matter physics, material physics, and biophysics. A significant part of the experimental program at FAIR is dedicated to antiproton physics that requires an ultimate number 7 × 1010 cooled pbar/h. The high-intensity proton beam that is necessary for antiproton production will be delivered by a dedicated 75 mA/70 MeV proton linac. A 2.45 GHz microwave ion source will deliver a 100 mA H+ beam pulsed at 4 Hz with an energy of 95 keV. A 2 solenoids low energy beam transport line allows the injection of the proton beam into the radio frequency quadrupole (RFQ) within an acceptance of 0.3π mm mrad (norm. rms). An electrostatic chopper system located between the second solenoid and the RFQ is used to cut the beam macro-pulse from the source to inject 36 μs long beam pulses into the RFQ. At present time, a Ladder-RFQ is under construction at the University of Frankfurt. This article reports the first beam measurements obtained since mid of 2016. Proton beams have been extracted from the ECR ion source and analyzed just after the extraction column on a dedicated diagnostic chamber. Emittance measurements as well as extracted current and species proportion analysis have been performed in different configurations of ion source parameters, such as magnetic field profile, radio frequency power, gas injection, and puller electrode voltage.
The Los Alamos Neutron Science Center Spallation Neutron Sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nowicki, Suzanne F.; Wender, Stephen A.; Mocko, Michael
The Los Alamos Neutron Science Center (LANSCE) provides the scientific community with intense sources of neutrons, which can be used to perform experiments supporting civilian and national security research. These measurements include nuclear physics experiments for the defense program, basic science, and the radiation effect programs. This paper focuses on the radiation effects program, which involves mostly accelerated testing of semiconductor parts. When cosmic rays strike the earth's atmosphere, they cause nuclear reactions with elements in the air and produce a wide range of energetic particles. Because neutrons are uncharged, they can reach aircraft altitudes and sea level. These neutronsmore » are thought to be the most important threat to semiconductor devices and integrated circuits. The best way to determine the failure rate due to these neutrons is to measure the failure rate in a neutron source that has the same spectrum as those produced by cosmic rays. Los Alamos has a high-energy and a low-energy neutron source for semiconductor testing. Both are driven by the 800-MeV proton beam from the LANSCE accelerator. The high-energy neutron source at the Weapons Neutron Research (WNR) facility uses a bare target that is designed to produce fast neutrons with energies from 100 keV to almost 800 MeV. The measured neutron energy distribution from WNR is very similar to that of the cosmic-ray-induced neutrons in the atmosphere. However, the flux provided at the WNR facility is typically 5×107 times more intense than the flux of the cosmic-ray-induced neutrons. This intense neutron flux allows testing at greatly accelerated rates. An irradiation test of less than an hour is equivalent to many years of neutron exposure due to cosmic-ray neutrons. The low-energy neutron source is located at the Lujan Neutron Scattering Center. It is based on a moderated source that provides useful neutrons from subthermal energies to ~100 keV. The characteristics of these sources, and ongoing industry program are described in this paper.« less
The Los Alamos Neutron Science Center Spallation Neutron Sources
Nowicki, Suzanne F.; Wender, Stephen A.; Mocko, Michael
2017-10-26
The Los Alamos Neutron Science Center (LANSCE) provides the scientific community with intense sources of neutrons, which can be used to perform experiments supporting civilian and national security research. These measurements include nuclear physics experiments for the defense program, basic science, and the radiation effect programs. This paper focuses on the radiation effects program, which involves mostly accelerated testing of semiconductor parts. When cosmic rays strike the earth's atmosphere, they cause nuclear reactions with elements in the air and produce a wide range of energetic particles. Because neutrons are uncharged, they can reach aircraft altitudes and sea level. These neutronsmore » are thought to be the most important threat to semiconductor devices and integrated circuits. The best way to determine the failure rate due to these neutrons is to measure the failure rate in a neutron source that has the same spectrum as those produced by cosmic rays. Los Alamos has a high-energy and a low-energy neutron source for semiconductor testing. Both are driven by the 800-MeV proton beam from the LANSCE accelerator. The high-energy neutron source at the Weapons Neutron Research (WNR) facility uses a bare target that is designed to produce fast neutrons with energies from 100 keV to almost 800 MeV. The measured neutron energy distribution from WNR is very similar to that of the cosmic-ray-induced neutrons in the atmosphere. However, the flux provided at the WNR facility is typically 5×107 times more intense than the flux of the cosmic-ray-induced neutrons. This intense neutron flux allows testing at greatly accelerated rates. An irradiation test of less than an hour is equivalent to many years of neutron exposure due to cosmic-ray neutrons. The low-energy neutron source is located at the Lujan Neutron Scattering Center. It is based on a moderated source that provides useful neutrons from subthermal energies to ~100 keV. The characteristics of these sources, and ongoing industry program are described in this paper.« less
RELATIVISTIC THOMSON SCATTERING EXPERIMENT AT BNL - STATUS REPORT.
DOE Office of Scientific and Technical Information (OSTI.GOV)
POGORELSKY,I.V.; BEN ZVI,I.; KUSCHE,K.
2001-12-03
1.7 x 10{sup 8} x-ray photons per 3.5 ps pulse have been produced in Thomson scattering by focusing CO{sub 2} laser pulse on counter-propagating relativistic electron beam. We explore a possibility of further enhancement of process efficiency by propagating both beams in a plasma capillary. Conventional synchrotron light sources based on using giga-electron-volt electron synchrotron accelerators and magnetic wigglers generate x-ray radiation for versatile application in multi-disciplinary research. An intense laser beam causes relativistic electron oscillations similar to a wiggler. However, because the laser wavelength is thousand times shorter than a wiggler period, very moderate electron energy is needed tomore » produce hard x-rays via Thomson scattering. This allows using relatively compact mega-electron-volt linear accelerators instead of giga-electron-volt synchrotrons. Another important advantage of Thomson sources is a possibility to generate femtosecond x-ray pulses whereas conventional synchrotron sources have typically {approx}300 ps pulse duration. This promises to revolutionize x-ray research in chemistry, physics, and biology expanding it to ultra-fast processes. Thomson sources do not compete in repetition rate and average intensity with conventional light sources that operate at the megahertz frequency. However, Thomson sources have a potential to produce much higher photon numbers per pulse. This may allow developing a single shot exposure important for structural analysis of live biological objects. The BNL Thomson source is a user's experiment conducted at the Accelerator Test Facility since 1998 by an international collaboration in High Energy Physics. Since inception, the ATF source produces the record peak x-ray yield, intensity and brightness among other similar proof-of-principle demonstrations attempted elsewhere. Note that this result is achieved with a moderate laser power of 15 GW. A key to this achievement is in choosing right apparatus and efficient interaction geometry. We use a CO{sub 2} laser that delivers 10 times more photons per unit energy than the 1-{micro}m laser, a high-brightness linac, and the most energy-efficient backscattering interaction geometry. The purpose of this report is to give an update on new results obtained during this year and our near-term plans.« less
Investigation of applications for high-power, self-critical fissioning uranium plasma reactors
NASA Technical Reports Server (NTRS)
Rodgers, R. J.; Latham, T. S.; Krascella, N. L.
1976-01-01
Analytical studies were conducted to investigate potentially attractive applications for gaseous nuclear cavity reactors fueled by uranium hexafluoride and its decomposition products at temperatures of 2000 to 6000 K and total pressures of a few hundred atmospheres. Approximate operating conditions and performance levels for a class of nuclear reactors in which fission energy removal is accomplished principally by radiant heat transfer from the high temperature gaseous nuclear fuel to surrounding absorbing media were determined. The results show the radiant energy deposited in the absorbing media may be efficiently utilized in energy conversion system applications which include (1) a primary energy source for high thrust, high specific impulse space propulsion, (2) an energy source for highly efficient generation of electricity, and (3) a source of high intensity photon flux for heating working fluid gases for hydrogen production or MHD power extraction.
Studies on Beam Formation in an Atomic Beam Source
NASA Astrophysics Data System (ADS)
Nass, A.; Stancari, M.; Steffens, E.
2009-08-01
Atomic beam sources (ABS) are widely used workhorses producing polarized atomic beams for polarized gas targets and polarized ion sources. Although they have been used for decades the understanding of the beam formation processes is crude. Models were used more or less successfully to describe the measured intensity and beam parameters. ABS's are also foreseen for future experiments, such as PAX [1]. An increase of intensity at a high polarization would be beneficial. A direct simulation Monte-Carlo method (DSMC) [2] was used to describe the beam formation of a hydrogen or deuterium beam in an ABS. For the first time a simulation of a supersonic gas expansion on a molecular level for this application was performed. Beam profile and Time-of-Flight measurements confirmed the simulation results. Furthermore a new method of beam formation was tested, the Carrier Jet method [3], based on an expanded beam surrounded by an over-expanded carrier jet.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sidorov, A.; Dorf, M.; Zorin, V.
2008-02-15
Electron cyclotron resonance ion source with quasi-gas-dynamic regime of plasma confinement (ReGIS), constructed at the Institute of Applied Physics, Russia, provides opportunities for extracting intense and high-brightness multicharged ion beams. Despite the short plasma lifetime in a magnetic trap of a ReGIS, the degree of multiple ionization may be significantly enhanced by the increase in power and frequency of the applied microwave radiation. The present work is focused on studying the intense beam quality of this source by the pepper-pot method. A single beamlet emittance measured by the pepper-pot method was found to be {approx}70 {pi} mm mrad, and themore » total extracted beam current obtained at 14 kV extraction voltage was {approx}25 mA. The results of the numerical simulations of ion beam extraction are found to be in good agreement with experimental data.« less
Neutron skyshine from intense 14-MeV neutron source facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakamura, T.; Hayashi, K.; Takahashi, A.
1985-07-01
The dose distribution and the spectrum variation of neutrons due to the skyshine effect have been measured with the high-efficiency rem counter, the multisphere spectrometer, and the NE-213 scintillator in the environment surrounding an intense 14-MeV neutron source facility. The dose distribution and the energy spectra of neutrons around the facility used as a skyshine source have also been measured to enable the absolute evaluation of the skyshine effect. The skyshine effect was analyzed by two multigroup Monte Carlo codes, NIMSAC and MMCR-2, by two discrete ordinates S /sub n/ codes, ANISN and DOT3.5, and by the shield structure designmore » code for skyshine, SKYSHINE-II. The calculated results show good agreement with the measured results in absolute values. These experimental results should be useful as benchmark data for shyshine analysis and for shielding design of fusion facilities.« less
Sound produced by an oscillating arc in a high-pressure gas
NASA Astrophysics Data System (ADS)
Popov, Fedor K.; Shneider, Mikhail N.
2017-08-01
We suggest a simple theory to describe the sound generated by small periodic perturbations of a cylindrical arc in a dense gas. Theoretical analysis was done within the framework of the non-self-consistent channel arc model and supplemented with time-dependent gas dynamic equations. It is shown that an arc with power amplitude oscillations on the order of several percent is a source of sound whose intensity is comparable with external ultrasound sources used in experiments to increase the yield of nanoparticles in the high pressure arc systems for nanoparticle synthesis.
Radio polarization properties of quasars and active galaxies at high redshifts
NASA Astrophysics Data System (ADS)
Vernstrom, T.; Gaensler, B. M.; Vacca, V.; Farnes, J. S.; Haverkorn, M.; O'Sullivan, S. P.
2018-04-01
We present the largest ever sample of radio polarization properties for z > 4 sources, with 14 sources having significant polarization detections. Using wide-band data from the Karl G. Jansky Very Large Array, we obtained the rest-frame total intensity and polarization properties of 37 radio sources, nine of which have spectroscopic redshifts in the range 1 ≤ z ≤ 1.4, with the other 28 having spectroscopic redshifts in the range 3.5 ≤ z ≤ 6.21. Fits are performed for the Stokes I and fractional polarization spectra, and Faraday rotation measures are derived using rotation measure synthesis and QU fitting. Using archival data of 476 polarized sources, we compare high-redshift (z > 3) source properties to a 15 GHz rest-frame luminosity matched sample of low-redshift (z < 3) sources to investigate if the polarization properties of radio sources at high redshifts are intrinsically different than those at low redshift. We find a mean of the rotation measure absolute values, corrected for Galactic rotation, of 50 ± 22 rad m-2 for z > 3 sources and 57 ± 4 rad m-2 for z < 3. Although there is some indication of lower intrinsic rotation measures at high-z possibly due to higher depolarization from the high-density environments, using several statistical tests we detect no significant difference between low- and high-redshift sources. Larger samples are necessary to determine any true physical difference.
INTEGRAL/SPI data segmentation to retrieve source intensity variations
NASA Astrophysics Data System (ADS)
Bouchet, L.; Amestoy, P. R.; Buttari, A.; Rouet, F.-H.; Chauvin, M.
2013-07-01
Context. The INTEGRAL/SPI, X/γ-ray spectrometer (20 keV-8 MeV) is an instrument for which recovering source intensity variations is not straightforward and can constitute a difficulty for data analysis. In most cases, determining the source intensity changes between exposures is largely based on a priori information. Aims: We propose techniques that help to overcome the difficulty related to source intensity variations, which make this step more rational. In addition, the constructed "synthetic" light curves should permit us to obtain a sky model that describes the data better and optimizes the source signal-to-noise ratios. Methods: For this purpose, the time intensity variation of each source was modeled as a combination of piecewise segments of time during which a given source exhibits a constant intensity. To optimize the signal-to-noise ratios, the number of segments was minimized. We present a first method that takes advantage of previous time series that can be obtained from another instrument on-board the INTEGRAL observatory. A data segmentation algorithm was then used to synthesize the time series into segments. The second method no longer needs external light curves, but solely SPI raw data. For this, we developed a specific algorithm that involves the SPI transfer function. Results: The time segmentation algorithms that were developed solve a difficulty inherent to the SPI instrument, which is the intensity variations of sources between exposures, and it allows us to obtain more information about the sources' behavior. Based on observations with INTEGRAL, an ESA project with instruments and science data centre funded by ESA member states (especially the PI countries: Denmark, France, Germany, Italy, Spain, and Switzerland), Czech Republic and Poland with participation of Russia and the USA.
Gutser, R; Fantz, U; Wünderlich, D
2010-02-01
Cesium seeded sources for surface generated negative hydrogen ions are major components of neutral beam injection systems in future large-scale fusion experiments such as ITER. Stability and delivered current density depend highly on the cesium conditions during plasma-on and plasma-off phases of the ion source. The Monte Carlo code CSFLOW3D was used to study the transport of neutral and ionic cesium in both phases. Homogeneous and intense flows were obtained from two cesium sources in the expansion region of the ion source and from a dispenser array, which is located 10 cm in front of the converter surface.
Adaptive focus for deep tissue using diffuse backscatter
NASA Astrophysics Data System (ADS)
Kress, Jeremy; Pourrezaei, Kambiz
2014-02-01
A system integrating high density diffuse optical imaging with adaptive optics using MEMS for deep tissue interaction is presented. In this system, a laser source is scanned over a high density fiber bundle using Digital Micromirror Device (DMD) and channeled to a tissue phantom. Backscatter is then collected from the tissue phantom by a high density fiber array of different fiber type and channeled to CMOS sensor for image acquisition. Intensity focus is directly verified using a second CMOS sensor which measures intensity transmitted though the tissue phantom. A set of training patterns are displayed on the DMD and backscatter is numerically fit to the transmission intensity. After the training patterns are displayed, adaptive focus is performed using only the backscatter and fitting functions. Additionally, tissue reconstruction and prediction of interference focusing by photoacoustic and optical tomographic methods is discussed. Finally, potential NIR applications such as in-vivo adaptive neural photostimulation and cancer targeting are discussed.
Important questions asked by family members of intensive care unit patients.
Peigne, Vincent; Chaize, Marine; Falissard, Bruno; Kentish-Barnes, Nancy; Rusinova, Katerina; Megarbane, Bruno; Bele, Nicolas; Cariou, Alain; Fieux, Fabienne; Garrouste-Orgeas, Maite; Georges, Hugues; Jourdain, Merce; Kouatchet, Achille; Lautrette, Alexandre; Legriel, Stephane; Regnier, Bernard; Renault, Anne; Thirion, Marina; Timsit, Jean-Francois; Toledano, Dany; Chevret, Sylvie; Pochard, Frédéric; Schlemmer, Benoît; Azoulay, Elie
2011-06-01
Relatives often lack important information about intensive care unit patients. High-quality information is crucial to help relatives overcome the often considerable situational stress and to acquire the ability to participate in the decision-making process, most notably regarding the appropriate level of care. We aimed to develop a list of questions important for relatives of patients in the intensive care unit. This was a multicenter study. Questions asked by relatives of intensive care unit patients were collected from five different sources (literature, panel of 28 intensive care unit nurses and physicians, 1-wk survey of nurses and 1-wk survey of physicians in 14 intensive care units, and in-depth interviews with 14 families). After a qualitative analysis (framework approach and thematic analysis), questions were rated by 22 relatives and 14 intensive care unit physicians, and the ratings were analyzed using principal component analysis and hierarchical clustering. The five sources produced 2,135 questions. Removal of duplicates and redundancies left 443 questions, which were distributed among nine predefined domains using a framework approach ("diagnosis," "treatment," "prognosis," "comfort," "interaction," "communication," "family," "end of life," and "postintensive care unit management"). Thematic analysis in each domain led to the identification of 46 themes, which were reworded as 46 different questions. Ratings by relatives and physicians showed that 21 of these questions were particularly important for relatives of intensive care unit patients. This study increases knowledge about the informational needs of relatives of intensive care unit patients. This list of questions may prove valuable for both relatives and intensive care unit physicians as a tool for improving communication in the intensive care unit.
Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Tongjun; Shen, Baifei, E-mail: bfshen@mail.shcnc.ac.cn; Xu, Jiancai, E-mail: jcxu@siom.ac.cn
Experimental generation of ultrashort MeV positron beams with high intensity and high density using a compact laser-driven setup is reported. A high-density gas jet is employed experimentally to generate MeV electrons with high charge; thus, a charge-neutralized MeV positron beam with high density is obtained during laser-accelerated electrons irradiating high-Z solid targets. It is a novel electron–positron source for the study of laboratory astrophysics. Meanwhile, the MeV positron beam is pulsed with an ultrashort duration of tens of femtoseconds and has a high peak intensity of 7.8 × 10{sup 21} s{sup −1}, thus allows specific studies of fast kinetics in millimeter-thick materials withmore » a high time resolution and exhibits potential for applications in positron annihilation spectroscopy.« less
Beam experiments with the Grenoble test electron cyclotron resonance ion source at iThemba LABS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomae, R., E-mail: rthomae@tlabs.ac.za; Conradie, J.; Fourie, D.
2016-02-15
At iThemba Laboratory for Accelerator Based Sciences (iThemba LABS) an electron cyclotron ion source was installed and commissioned. This source is a copy of the Grenoble Test Source (GTS) for the production of highly charged ions. The source is similar to the GTS-LHC at CERN and named GTS2. A collaboration between the Accelerators and Beam Physics Group of CERN and the Accelerator and Engineering Department of iThemba LABS was proposed in which the development of high intensity argon and xenon beams is envisaged. In this paper, we present beam experiments with the GTS2 at iThemba LABS, in which the resultsmore » of continuous wave and afterglow operation of xenon ion beams with oxygen as supporting gases are presented.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zemcov, M.; Cooray, A.; Bock, J.
We have observed four massive galaxy clusters with the SPIRE instrument on the Herschel Space Observatory and measure a deficit of surface brightness within their central region after removing detected sources. We simulate the effects of instrumental sensitivity and resolution, the source population, and the lensing effect of the clusters to estimate the shape and amplitude of the deficit. The amplitude of the central deficit is a strong function of the surface density and flux distribution of the background sources. We find that for the current best fitting faint end number counts, and excellent lensing models, the most likely amplitudemore » of the central deficit is the full intensity of the cosmic infrared background (CIB). Our measurement leads to a lower limit to the integrated total intensity of the CIB of I{sub 250{mu}m}>0.69{sub -0.03}{sup +0.03}(stat.){sub -0.06}{sup +0.11}(sys.) MJy sr{sup -1}, with more CIB possible from both low-redshift sources and from sources within the target clusters. It should be possible to observe this effect in existing high angular resolution data at other wavelengths where the CIB is bright, which would allow tests of models of the faint source component of the CIB.« less
Ecological prognosis near intensive acoustic sources
NASA Astrophysics Data System (ADS)
Kostarev, Stanislav A.; Makhortykh, Sergey A.; Rybak, Samuil A.
2002-11-01
The problem of a wave-field excitation in a ground from a quasiperiodic source, placed on the ground surface or on some depth in soil is investigated. The ecological situation in this case in many respects is determined by quality of the raised vibrations and noise forecast. In the present work the distributed source is modeled by the set of statistically linked compact sources on the surface or in the ground. Changes of parameters of the media along an axis and horizontal heterogeneity of environment are taken into account. Both analytical and numerical approaches are developed. The latter are included in the software package VibraCalc, allowing to calculate distribution of the elastic waves field in a ground from quasilinear sources. Accurate evaluation of vibration levels in buildings from high-intensity underground sources is fulfilled by modeling of the wave propagation in dissipative inhomogeneous elastic media. The model takes into account both bulk (longitudinal and shear) and surface Rayleigh waves. For the verification of the used approach a series of measurements was carried out near the experimental part of monorail road designed in Moscow. Both calculation and measurement results are presented in the paper.
Ecological prognosis near intensive acoustic sources
NASA Astrophysics Data System (ADS)
Kostarev, Stanislav A.; Makhortykh, Sergey A.; Rybak, Samuil A.
2003-04-01
The problem of a wave field excitation in a ground from a quasi-periodic source, placed on the ground surface or at some depth in soil is investigated. The ecological situation in this case in many respects is determined by quality of the raised vibrations and noise forecast. In the present work the distributed source is modeled by the set of statistically linked compact sources on the surface or in the ground. Changes of parameters of the media along an axis and horizontal heterogeneity of environment are taken into account. Both analytical and numerical approaches are developed. The last are included in software package VibraCalc, allowing to calculate distribution of the elastic waves field in a ground from quasilinear sources. Accurate evaluation of vibration levels in buildings from high intensity under ground sources is fulfilled by modeling of the wave propagation in dissipative inhomogeneous elastic media. The model takes into account both bulk (longitudinal and shear) and surface Rayleigh waves. For the verification of used approach a series of measurements was carried out near the experimental part of monorail road designed in Moscow. Both calculation and measurements results are presented in the paper.
Generalized expression for optical source fields
NASA Astrophysics Data System (ADS)
Kamacıoğlu, Canan; Baykal, Yahya
2012-09-01
A generalized optical beam expression is developed that presents the majority of the existing optical source fields such as Bessel, Laguerre-Gaussian, dark hollow, bottle, super Gaussian, Lorentz, super-Lorentz, flat-topped, Hermite-sinusoidal-Gaussian, sinusoidal-Gaussian, annular, Gauss-Legendre, vortex, also their higher order modes with their truncated, elegant and elliptical versions. Source intensity profiles derived from the generalized optical source beam fields are checked to match the intensity profiles of many individual known beam types. Source intensities for several interesting beam combinations are presented. Our generalized optical source beam field expression can be used to examine both the source characteristics and the propagation properties of many different optical beams in a single formulation.
Constraining nuclear photon strength functions by the decay properties of photo-excited states
NASA Astrophysics Data System (ADS)
Isaak, J.; Savran, D.; Krtička, M.; Ahmed, M. W.; Beller, J.; Fiori, E.; Glorius, J.; Kelley, J. H.; Löher, B.; Pietralla, N.; Romig, C.; Rusev, G.; Scheck, M.; Schnorrenberger, L.; Silva, J.; Sonnabend, K.; Tonchev, A. P.; Tornow, W.; Weller, H. R.; Zweidinger, M.
2013-12-01
A new approach for constraining the low-energy part of the electric dipole Photon Strength Function (E1-PSF) is presented. Experiments at the Darmstadt High-Intensity Photon Setup and the High Intensity γ→-Ray Source have been performed to investigate the decay properties of 130Te between 5.50 and 8.15 MeV excitation energy. In particular, the average γ-ray branching ratio to the ground state and the population intensity of low-lying excited states have been studied. A comparison to the statistical model shows that the latter is sensitive to the low-energy behavior of the E1-PSF, while the average ground state branching ratio cannot be described by the statistical model in the energy range between 5.5 and 6.5 MeV.
NASA Technical Reports Server (NTRS)
1993-01-01
Research on food growth for long duration spacecraft has resulted in a light source for growing plants indoors known as Qbeam, a solid state light source consisting of a control unit and lamp. The light source, manufactured by Quantum Devices, Inc., is not very hot, although it generates high intensity radiation. When Ron Ignatius, an industrial partner of WCSAR, realized that terrestrial plant research lighting was not energy efficient enough for space use, he and WCSAR began to experiment with light emitting diodes. A line of LED products was developed, and QDI was formed to market the technology. An LED-based cancer treatment device is currently under development.
Carbon and water fluxes from ponderosa pine forests disturbed by wildfire and thinning.
Dore, S; Kolb, T E; Montes-Helu, M; Eckert, S E; Sullivan, B W; Hungate, B A; Kaye, J P; Hart, S C; Koch, G W; Finkral, A
2010-04-01
Disturbances alter ecosystem carbon dynamics, often by reducing carbon uptake and stocks. We compared the impact of two types of disturbances that represent the most likely future conditions of currently dense ponderosa pine forests of the southwestern United States: (1) high-intensity fire and (2) thinning, designed to reduce fire intensity. High-severity fire had a larger impact on ecosystem carbon uptake and storage than thinning. Total ecosystem carbon was 42% lower at the intensely burned site, 10 years after burning, than at the undisturbed site. Eddy covariance measurements over two years showed that the burned site was a net annual source of carbon to the atmosphere whereas the undisturbed site was a sink. Net primary production (NPP), evapotranspiration (ET), and water use efficiency were lower at the burned site than at the undisturbed site. In contrast, thinning decreased total ecosystem carbon by 18%, and changed the site from a carbon sink to a source in the first posttreatment year. Thinning also decreased ET, reduced the limitation of drought on carbon uptake during summer, and did not change water use efficiency. Both disturbances reduced ecosystem carbon uptake by decreasing gross primary production (55% by burning, 30% by thinning) more than total ecosystem respiration (TER; 33-47% by burning, 18% by thinning), and increased the contribution of soil carbon dioxide efflux to TER. The relationship between TER and temperature was not affected by either disturbance. Efforts to accurately estimate regional carbon budgets should consider impacts on carbon dynamics of both large disturbances, such as high-intensity fire, and the partial disturbance of thinning that is often used to prevent intense burning. Our results show that thinned forests of ponderosa pine in the southwestern United States are a desirable alternative to intensively burned forests to maintain carbon stocks and primary production.
ON COMPUTING UPPER LIMITS TO SOURCE INTENSITIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kashyap, Vinay L.; Siemiginowska, Aneta; Van Dyk, David A.
2010-08-10
A common problem in astrophysics is determining how bright a source could be and still not be detected in an observation. Despite the simplicity with which the problem can be stated, the solution involves complicated statistical issues that require careful analysis. In contrast to the more familiar confidence bound, this concept has never been formally analyzed, leading to a great variety of often ad hoc solutions. Here we formulate and describe the problem in a self-consistent manner. Detection significance is usually defined by the acceptable proportion of false positives (background fluctuations that are claimed as detections, or Type I error),more » and we invoke the complementary concept of false negatives (real sources that go undetected, or Type II error), based on the statistical power of a test, to compute an upper limit to the detectable source intensity. To determine the minimum intensity that a source must have for it to be detected, we first define a detection threshold and then compute the probabilities of detecting sources of various intensities at the given threshold. The intensity that corresponds to the specified Type II error probability defines that minimum intensity and is identified as the upper limit. Thus, an upper limit is a characteristic of the detection procedure rather than the strength of any particular source. It should not be confused with confidence intervals or other estimates of source intensity. This is particularly important given the large number of catalogs that are being generated from increasingly sensitive surveys. We discuss, with examples, the differences between these upper limits and confidence bounds. Both measures are useful quantities that should be reported in order to extract the most science from catalogs, though they answer different statistical questions: an upper bound describes an inference range on the source intensity, while an upper limit calibrates the detection process. We provide a recipe for computing upper limits that applies to all detection algorithms.« less
Spectral control of high harmonics from relativistic plasmas using bicircular fields
NASA Astrophysics Data System (ADS)
Chen, Zi-Yu
2018-04-01
We introduce two-color counterrotating circularly polarized laser fields as a way to spectrally control high harmonic generation (HHG) from relativistic plasma mirrors. Through particle-in-cell simulations, we show that only a selected group of harmonic orders can appear owing to the symmetry of the laser fields and the related conservation laws. By adjusting the intensity ratio of the two driving field components, we demonstrate the overall HHG efficiency, the relative intensity of allowed neighboring harmonic orders, and that the polarization state of the harmonic source can be tuned. The HHG efficiency of this scheme can be as high as that driven by a linearly polarized laser field.
Cusp and LLBL as Sources of the Isolated Dayside Auroral Feature During Northward IMF
NASA Technical Reports Server (NTRS)
Chang, S.; Gallagher, D. L.; Spann, J. F., Jr.; Mende, S.; Greenwald, R.; Newell, P. T.
2004-01-01
An intense dayside proton aurora was observed by IMAGE FUV for an extensive period of northward interplanetary magnetic field (IMF) on 17 and 18 September, 2000. This aurora partially coincided with the auroral oval and intruded farther poleward into the polar cap, and it showed longitudinal motions in response to IMF $B-y$ variation. Intense magnetosheath-like electron and ion precipitations have been simultaneously detected by DMSP above the poleward portion of the high-latitude dayside aurora. They resemble the typical plasmas observed in the low-altitude cusp. However, less intense electrons and more intense energetic ions were detected over the equatorward part of the aurora. These plasmas are closer to the low-latitude boundary layer (LLBL) plasmas. Under strongly northward IMF, global ionospheric convection derived from SuperDARN radar measurements showed a 4-cell pattern with sunward convection in the middle of the dayside polar cap and the dayside aurora corresponded to two different convection cells. This result further supports two source regions for the aurora. The cusp proton aurora is on open magnetic field lines convecting sunward whereas the LLBL proton aurora is on closed field lines convecting antisunward. These IMAGE, DMSP and SuperDARN observations reveal the structure and dynamics of the aurora and provide strong evidence for magnetic merging occurring at the high-latitude magnetopause poleward from the cusp. This merging process was very likely quasi-stationary.
Saclay Compact Accelerator-driven Neutron Sources (SCANS)
NASA Astrophysics Data System (ADS)
Marchix, A.; Letourneau, A.; Tran, HN; Chauvin, N.; Menelle, A.; Ott, F.; Schwindling, J.
2018-06-01
For next decade, the European neutron scattering community will face of important changes, as many facilities will close, strictly fission-based sources. This statement mainly concerns France with the planned closure of Orphee and ILL. At CEA-Saclay, the project SONATE has been launched in order to provide a high intensity neutron source in Saclay site, this project is based on Compact Accelerator-driven Neutron Sources technology coupled to high-intensity beams. The goal of SONATE is to develop a 50 kW target, aiming to produce at least a neutron yield of 1013 s-1 in pulse mode with a peak current of 100 mA. We have investigated in this document the best combinations of beam/target which would lead to this substantial neutron yields. Further investigations and tests have to be carry out, especially due to sparse data on thick target and such low-energy beams considered in this document. An intermediate step to the SONATE project is under test and development, called IPHI-NEUTRON, which would lead to provide a small-size neutron facility mainly devoted to neutron imagery for industry. This step is based on the existing 3 MeV proton beam, named IPHI. Best target candidates are Lithium and Beryllium, leading respectively to a neutron yield of about 2.1013 s-1 and 4.1012 s-1.
Visual Aspects of the Electric Environment. NECA Electrical Design Guidelines.
ERIC Educational Resources Information Center
National Electrical Contractors Association, Washington, DC.
New design opportunities afforded by modern high-intensity light sources, and the many ways of integrating package air-conditioners with the design of buildings, are discussed. A guide to unitary air-conditioners and heat pumps is included. (RK)
Liquid lithium target as a high intensity, high energy neutron source
Parkin, Don M.; Dudey, Norman D.
1976-01-01
This invention provides a target jet for charged particles. In one embodiment the charged particles are high energy deuterons that bombard the target jet to produce high intensity, high energy neutrons. To this end, deuterons in a vacuum container bombard an endlessly circulating, free-falling, sheet-shaped, copiously flowing, liquid lithium jet that gushes by gravity from a rectangular cross-section vent on the inside of the container means to form a moving web in contact with the inside wall of the vacuum container. The neutrons are produced via break-up of the beam in the target by stripping, spallation and compound nuclear reactions in which the projectiles (deuterons) interact with the target (Li) to produce excited nuclei, which then "boil off" or evaporate a neutron.
Determining the Intensity of a Point-Like Source Observed on the Background of AN Extended Source
NASA Astrophysics Data System (ADS)
Kornienko, Y. V.; Skuratovskiy, S. I.
2014-12-01
The problem of determining the time dependence of intensity of a point-like source in case of atmospheric blur is formulated and solved by using the Bayesian statistical approach. A pointlike source is supposed to be observed on the background of an extended source with constant in time though unknown brightness. The equation system for optimal statistical estimation of the sequence of intensity values in observation moments is obtained. The problem is particularly relevant for studying gravitational mirages which appear while observing a quasar through the gravitational field of a far galaxy.
Riley, Sean P; Covington, Kyle; Landry, Michel D; McCallum, Christine; Engelhard, Chalee; Cook, Chad E
2016-01-01
This study aimed to compare selectivity characteristics among institution characteristics to determine differences by institutional funding source (public vs. private) or research activity level (research vs. non-research). This study included information provided by the Commission on Accreditation in Physical Therapy Education (CAPTE) and the Federation of State Boards of Physical Therapy. Data were extracted from all students who graduated in 2011 from accredited physical therapy programs in the United States. The public and private designations of the institutions were extracted directly from the classifications from the 'CAPTE annual accreditation report,' and high and low research activity was determined based on Carnegie classifications. The institutions were classified into four groups: public/research intensive, public/non-research intensive, private/research intensive, and private/non-research intensive. Descriptive and comparison analyses with post hoc testing were performed to determine whether there were statistically significant differences among the four groups. Although there were statistically significant baseline grade point average differences among the four categorized groups, there were no significant differences in licensure pass rates or for any of the selectivity variables of interest. Selectivity characteristics did not differ by institutional funding source (public vs. private) or research activity level (research vs. non-research). This suggests that the concerns about reduced selectivity among physiotherapy programs, specifically the types that are experiencing the largest proliferation, appear less warranted.
Exotic X-ray Sources from Intermediate Energy Electron Beams
NASA Astrophysics Data System (ADS)
Chouffani, K.; Wells, D.; Harmon, F.; Jones, J. L.; Lancaster, G.
2003-08-01
High intensity x-ray beams are used in a wide variety of applications in solid-state physics, medicine, biology and material sciences. Synchrotron radiation (SR) is currently the primary, high-quality x-ray source that satisfies both brilliance and tunability. The high cost, large size and low x-ray energies of SR facilities, however, are serious limitations. Alternatively, "novel" x-ray sources are now possible due to new small linear accelerator (LINAC) technology, such as improved beam emittance, low background, sub-Picosecond beam pulses, high beam stability and higher repetition rate. These sources all stem from processes that produce Radiation from relativistic Electron beams in (crystalline) Periodic Structures (REPS), or the periodic "structure" of laser light. REPS x-ray sources are serious candidates for bright, compact, portable, monochromatic, and tunable x-ray sources with varying degrees of polarization and coherence. Despite the discovery and early research into these sources over the past 25 years, these sources are still in their infancy. Experimental and theoretical research are still urgently needed to answer fundamental questions about the practical and ultimate limits of their brightness, mono-chromaticity etc. We present experimental results and theoretical comparisons for three exotic REPS sources. These are Laser-Compton Scattering (LCS), Channeling Radiation (CR) and Parametric X-Radiation (PXR).
Accelerator and Fusion Research Division. Annual report, October 1978-September 1979
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1980-03-01
Topics covered include: Super HILAC and Bevalac operations; high intensity uranium beams line item; advanced high charge state ion source; 184-inch synchrocyclotron; VENUS project; positron-electron project; high field superconducting accelerator magnets; beam cooling; accelerator theory; induction linac drivers; RF linacs and storage rings; theory; neutral beam systems development; experimental atomic physics; neutral beam plasma research; plasma theory; and the Tormac project. (GHT)
Rudakov, M L
2000-01-01
Method of secondary sources (method of integral equations) was applied to calculate specific absorbed intensity in hands of operators working at non-shielded high-frequency (27.12 Mhz) welding devices. The authors present calculations for "female" and "male" hand sizes, give recommendations on lower level of specific absorption.
Kolmogorov, A; Atoian, G; Davydenko, V; Ivanov, A; Ritter, J; Stupishin, N; Zelenski, A
2014-02-01
The RHIC polarized H(-) ion source had been successfully upgraded to higher intensity and polarization by using a very high brightness fast atomic beam source developed at BINP, Novosibirsk. In this source the proton beam is extracted by a four-grid multi-aperture ion optical system and neutralized in the H2 gas cell downstream from the grids. The proton beam is extracted from plasma emitter with a low transverse ion temperature of ∼0.2 eV which is formed by plasma jet expansion from the arc plasma generator. The multi-hole grids are spherically shaped to produce "geometrical" beam focusing. Proton beam formation and transport of atomic beam were experimentally studied at test bench.
A high-temperature single-photon source from nanowire quantum dots.
Tribu, Adrien; Sallen, Gregory; Aichele, Thomas; André, Régis; Poizat, Jean-Philippe; Bougerol, Catherine; Tatarenko, Serge; Kheng, Kuntheak
2008-12-01
We present a high-temperature single-photon source based on a quantum dot inside a nanowire. The nanowires were grown by molecular beam epitaxy in the vapor-liquid-solid growth mode. We utilize a two-step process that allows a thin, defect-free ZnSe nanowire to grow on top of a broader, cone-shaped nanowire. Quantum dots are formed by incorporating a narrow zone of CdSe into the nanowire. We observe intense and highly polarized photoluminescence even from a single emitter. Efficient photon antibunching is observed up to 220 K, while conserving a normalized antibunching dip of at most 36%. This is the highest reported temperature for single-photon emission from a nonblinking quantum-dot source and principally allows compact and cheap operation by using Peltier cooling.
Development of electron beam ion source for nanoprocess using highly charged ions
NASA Astrophysics Data System (ADS)
Sakurai, Makoto; Nakajima, Fumiharu; Fukumoto, Takunori; Nakamura, Nobuyuki; Ohtani, Shunsuke; Mashiko, Shinro; Sakaue, Hiroyuki
2005-07-01
Highly charged ion is useful to produce nanostructure on various materials, and is key tool to realize single ion implantation technique. On such demands for the application to nanotechnology, we have designed an electron bean ion source. The design stresses on the volume of drift tubes where highly charged ions are confined and the efficiency of ion extraction from the drift tube through collector electrode in order to obtain intense ion beam as much as possible. The ion source uses a discrete superconducting magnet cooled by a closed-cycle refrigerator in order to reduce the running costs and to simplify the operating procedures. The electrodes of electron gun, drift tubes, and collector are enclosed in ultrahigh vacuum tube that is inserted into the bore of the magnet system.
High field terahertz pulse generation from plasma wakefield driven by tailored laser pulses
NASA Astrophysics Data System (ADS)
Chen, Zi-Yu
2013-06-01
A scheme to generate high field terahertz (THz) pulses by using tailored laser pulses interaction with a gas target is proposed. The laser wakefield based THz source is emitted from the asymmetric laser shape induced plasma transverse transient net currents. Particle-in-cell simulations show that THz emission with electric filed strength over 1 GV/cm can be obtained with incident laser at 1×1019 W/cm2 level, and the corresponding energy conversion efficiency is more than 10-4. The intensity scaling holds up to high field strengths. Such a source also has a broad tunability range in amplitude, frequency spectra, and temporal shape.
An alternate approach to the production of radioisotopes for nuclear medicine applications
NASA Astrophysics Data System (ADS)
D'Auria, John M.; Keller, Roderich; Ladouceur, Keith; Lapi, Suzanne E.; Ruth, Thomas J.; Schmor, Paul
2013-03-01
There is a growing need for the production of radioisotopes for both diagnostic and therapeutic medical applications. Radioisotopes that are produced using the (n,γ) or (γ,n) reactions, however, typically result in samples with low specific activity (radioactivity/gram) due to the high abundance of target material of the same element. One method to effectively remove the isotopic impurity is electro-magnetic mass separation. An Ion Source Test Facility has been constructed at TRIUMF to develop high-intensity, high-efficiency, reliable ion sources for purification of radioactive isotopes, particularly those used in nuclear medicine. In progress studies are presented.
An alternate approach to the production of radioisotopes for nuclear medicine applications.
D'Auria, John M; Keller, Roderich; Ladouceur, Keith; Lapi, Suzanne E; Ruth, Thomas J; Schmor, Paul
2013-03-01
There is a growing need for the production of radioisotopes for both diagnostic and therapeutic medical applications. Radioisotopes that are produced using the (n,γ) or (γ,n) reactions, however, typically result in samples with low specific activity (radioactivity∕gram) due to the high abundance of target material of the same element. One method to effectively remove the isotopic impurity is electro-magnetic mass separation. An Ion Source Test Facility has been constructed at TRIUMF to develop high-intensity, high-efficiency, reliable ion sources for purification of radioactive isotopes, particularly those used in nuclear medicine. In progress studies are presented.
High pressure single-crystal micro X-ray diffraction analysis with GSE_ADA/RSV software
NASA Astrophysics Data System (ADS)
Dera, Przemyslaw; Zhuravlev, Kirill; Prakapenka, Vitali; Rivers, Mark L.; Finkelstein, Gregory J.; Grubor-Urosevic, Ognjen; Tschauner, Oliver; Clark, Simon M.; Downs, Robert T.
2013-08-01
GSE_ADA/RSV is a free software package for custom analysis of single-crystal micro X-ray diffraction (SCμXRD) data, developed with particular emphasis on data from samples enclosed in diamond anvil cells and subject to high pressure conditions. The package has been in extensive use at the high pressure beamlines of Advanced Photon Source (APS), Argonne National Laboratory and Advanced Light Source (ALS), Lawrence Berkeley National Laboratory. The software is optimized for processing of wide-rotation images and includes a variety of peak intensity corrections and peak filtering features, which are custom-designed to make processing of high pressure SCμXRD easier and more reliable.
Opportunities for Neutrino Physics at the Spallation Neutron Source: A White Paper
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bolozdynya, A.; Cavanna, F.; Efremenko, Y.
2012-11-01
The Spallation Neutron Source (SNS) at Oak Ridge National Laboratory, Tennessee, provides an intense flux of neutrinos in the few tens-of-MeV range, with a sharply-pulsed timing structure that is beneficial for background rejection. In this document, the product of a workshop at the SNS in May 2012, we describe this free, high-quality stopped-pion neutrino source and outline various physics that could be done using it. We describe without prioritization some specific experimental configurations that could address these physics topics.
NASA Astrophysics Data System (ADS)
Feng, Di; Yang, Xingpeng; Jin, Guofan; Yan, Yingbai; Fan, Shoushan
2006-01-01
Liquid crystal displays (LCDs) with edge-lit backlight systems offer several advantages, such as low energy consuming, low weight, and high uniformity of intensity, over traditional cathode-ray tube displays, and make them ideal for many applications including monitors in notebook personal computers, screens for TV, and many portable information terminals, such as mobile phones, personal digital assistants, etc. To satisfy market requirements for mobile and personal display panels, it is more and more necessary to modify the backlight system and make it thinner, lighter, and brighter all at once. In this paper, we have proposed a new integrated LGP based on periodic and aperiodic microprism structures by using polymethyl methacrylate material, which can be designed to control the illumination angle, and to get high uniformity of intensity. So the backlight system will be simplified to use only light sources and one LGP without using other optical sheets, such as reflection sheet, diffusion sheet and prism sheets. By using optimizing program and ray tracing method, the designed LGPs can achieve a uniformity of intensity better than 86%, and get a peak illumination angle from +400 to -200, without requiring other optical sheets. We have designed a backlight system with only one LED light source and one LGP, and other LGP design examples with different sizes (1.8 inches and 14.1 inches) and different light source (LED or CCFL), are performed also.
Who purchases cigarettes from cheaper sources in China? Findings from the ITC China Survey
Yao, Tingting; Huang, Jidong; Sung, Hai-Yen; Ong, Michael K.; Mao, Zhengzhong; Jiang, Yuan; Fong, Geoffrey T.; Max, Wendy
2014-01-01
Objective The availability of cigarettes from cheaper sources constitutes a major challenge to public health throughout the world, including China, because it may counteract price-based tobacco control policies. The goal of this study was to identify factors associated with purchasing cigarettes from cheaper sources among adult smokers in China. Methods Data were analyzed from Waves 1–3 of the International Tobacco Control China Survey, conducted in 2006–2009 among adult smokers in six cities in China (N=7,980). One survey question asked, “In the last six months, have you purchased cheaper cigarettes than you can get from local stores for economic reasons?” We examined whether sociodemographic factors and smoking intensity were associated with purchasing cigarettes from cheaper sources using the general estimating equations (GEE) model. Sociodemographic factors considered were gender, age, marital status, monthly household income, education, employment status, and city of residence. Results 15.6% of smokers reported purchasing cigarettes from cheaper sources. After controlling for other covariates, the associations of the behavior of purchasing cigarettes from cheaper sources with age (AOR=1.49, 95% CI=1.17–3.92 for age 18–24 compared to age 55+) and with income (AOR=2.93, 95%CI=2.27–3.79 for low income compared to high income) were statistically significant, but there was no statistically significant relationship with smoking intensity. Conclusions Our findings indicate that young and low income smokers are more likely than older and high income smokers to purchase cigarettes from cheaper sources in China. Tobacco control policies that reduce the availability of cigarettes from cheaper sources could have an impact on reducing cigarette consumption among young and low income smokers in China. PMID:24078076
Who purchases cigarettes from cheaper sources in China? Findings from the ITC China Survey.
Yao, Tingting; Huang, Jidong; Sung, Hai-Yen; Ong, Michael K; Mao, Zhengzhong; Jiang, Yuan; Fong, Geoffrey T; Max, Wendy
2014-03-01
The availability of cigarettes from cheaper sources constitutes a major challenge to public health throughout the world, including China, because it may counteract price-based tobacco control policies. The goal of this study was to identify factors associated with purchasing cigarettes from cheaper sources among adult smokers in China. Data were analysed from Waves 1 to 3 of the International Tobacco Control China Survey conducted in 2006-2009 among adult smokers in six cities in China (N=7980). One survey question asked, "In the last 6 months, have you purchased cheaper cigarettes than you can get from local stores for economic reasons?" We examined whether sociodemographic factors and smoking intensity were associated with purchasing cigarettes from cheaper sources using the general estimating equations model. Sociodemographic factors considered were gender, age, marital status, monthly household income, education, employment status and city of residence. 15.6% of smokers reported purchasing cigarettes from cheaper sources. After controlling for other covariates, the associations of the behaviour of purchasing cigarettes from cheaper sources with age (adjusted OR (AOR)=1.49, 95% CI 1.17 to 3.92 for age 18-24 compared with age 55+) and with income (AOR=2.93, 95% CI 2.27 to 3.79 for low income compared with high income) were statistically significant, but there was no statistically significant relationship with smoking intensity. Our findings indicate that young and low-income smokers are more likely than older and high-income smokers to purchase cigarettes from cheaper sources in China. Tobacco control policies that reduce the availability of cigarettes from cheaper sources could have an impact on reducing cigarette consumption among young and low-income smokers in China.
NASA Astrophysics Data System (ADS)
Zaitsev, D. V.; Tkachenko, E. M.; Bykovskaya, E. F.
2017-11-01
Intensive evaporation of a thin liquid film, moving in a flat micro-/minichannel under the action of gas flow is very promising for the use in cooling systems of modern semiconductor devices with localized heat sources of high intensity. In this work, using the high-speed visualization, the effect of the formation of dry spots on heat transfer in a locally heated liquid film shear-driven in a channel was investigated. It was found that the maximum intensity of heat removal from the heater is achieved in the mode, when the film flow continuity is broken. During the experiment the total area of dry spots increases with increasing heat flux and heater temperature, but when the heater reaches a certain temperature (≈100°C), the total area begins to decrease. However, the length of contact line increases with increasing heat flux and reaches a maximum in the pre-crisis regime. Intensive evaporation in the region of the contact line may explain the achievement of high heat fluxes in the shear-driven liquid film.
High-intensity positron microprobe at Jefferson Lab
Golge, Serkan; Vlahovic, Branislav; Wojtsekhowski, Bogdan B.
2014-06-19
We present a conceptual design for a novel continuous wave electron-linac based high-intensity slow-positron production source with a projected intensity on the order of 10 10 e +/s. Reaching this intensity in our design relies on the transport of positrons (T + below 600 keV) from the electron-positron pair production converter target to a low-radiation and low-temperature area for moderation in a high-efficiency cryogenic rare gas moderator, solid Ne. The performance of the integrated beamline has been verified through computational studies. The computational results include Monte Carlo calculations of the optimized electron/positron beam energies, converter target thickness, synchronized raster system,more » transport of the beam from the converter target to the moderator, extraction of the beam from the channel, and moderation efficiency calculations. For the extraction of positrons from the magnetic channel a magnetic field terminator plug prototype has been built and experimental data on the effectiveness of this prototype are presented. The dissipation of the heat away from the converter target and radiation protection measures are also discussed.« less
NASA Astrophysics Data System (ADS)
Neuhoff, John G.
2003-04-01
Increasing acoustic intensity is a primary cue to looming auditory motion. Perceptual overestimation of increasing intensity could provide an evolutionary selective advantage by specifying that an approaching sound source is closer than actual, thus affording advanced warning and more time than expected to prepare for the arrival of the source. Here, multiple lines of converging evidence for this evolutionary hypothesis are presented. First, it is shown that intensity change specifying accelerating source approach changes in loudness more than equivalent intensity change specifying decelerating source approach. Second, consistent with evolutionary hunter-gatherer theories of sex-specific spatial abilities, it is shown that females have a significantly larger bias for rising intensity than males. Third, using functional magnetic resonance imaging in conjunction with approaching and receding auditory motion, it is shown that approaching sources preferentially activate a specific neural network responsible for attention allocation, motor planning, and translating perception into action. Finally, it is shown that rhesus monkeys also exhibit a rising intensity bias by orienting longer to looming tones than to receding tones. Together these results illustrate an adaptive perceptual bias that has evolved because it provides a selective advantage in processing looming acoustic sources. [Work supported by NSF and CDC.
Radiance limits of ceramic phosphors under high excitation fluxes
NASA Astrophysics Data System (ADS)
Lenef, Alan; Kelso, John; Zheng, Yi; Tchoul, Maxim
2013-09-01
Ceramic phosphors, excited by high radiance pump sources, offer considerable potential for high radiance conversion. Interestingly, thermodynamic arguments suggest that the radiance of the luminescent spot can even exceed that of the incoming light source. In practice, however, thermal quenching and (non-thermal) optical saturation limit the maximum attainable radiance of the luminescent source. We present experimental data for Ce:YAG and Ce:GdYAG ceramics in which these limits have been investigated. High excitation fluxes are achieved using laser pumping. Optical pumping intensities exceeding 100W/mm2 have been shown to produce only modest efficiency depreciation at low overall pump powers because of the short Ce3+ lifetime, although additional limitations exist. When pump powers are higher, heat-transfer bottlenecks within the ceramic and heat-sink interfaces limit maximum pump intensities. We find that surface temperatures of these laser-pumped ceramics can reach well over 150°C, causing thermal-quenching losses. We also find that in some cases, the loss of quantum efficiency with increasing temperature can cause a thermal run-away effect, resulting in a rapid loss in converted light, possibly over-heating the sample or surrounding structures. While one can still obtain radiances on the order of many W/mm2/sr, temperature quenching effects ultimately limit converted light radiance. Finally, we use the diffusion-approximation radiation transport models and rate equation models to simulate some of these nonlinear optical pumping and heating effects in high-scattering ceramics.
NASA Astrophysics Data System (ADS)
Compant La Fontaine, A.; Courtois, C.; Lefebvre, E.; Bourgade, J. L.; Landoas, O.; Thorp, K.; Stoeckl, C.
2013-12-01
The interaction of a high intensity laser pulse on the preplasma of a high-Z solid target produced by the pulse's pedestal generates high-energy electrons. These electrons subsequently penetrate inside the solid target and produce bremsstrahlung photons, generating an x-ray source which can be used for photonuclear studies or to radiograph high area density objects. The source characteristics are compared for targets with thin (20 μm) and thick (100 μm) Au foils on the Omega EP laser at Laboratory for Laser Energetics. Simulations using the particle-in-cell code CALDER show that for a 20 μm thickness Au target, electrons perform multiple round-trips in the target under the effect of the laser ponderomotive potential and the target electrostatic potential. These relativistic electrons have random transverse displacements, with respect to the target normal, attributed to electrostatic fluctuation fields. As a result, the x-ray spot size is increased by a factor 2 for thin target compared to thick targets, in agreement with experimental results. In addition, the computed doses agree with the measured ones provided that electron recirculation in the thin target is taken into account. A dose increase by a factor 1.7 is then computed by allowing for recirculation. In the 100 μm target case, on the other hand, this effect is found to be negligible.
NASA Astrophysics Data System (ADS)
Peach, Ken; Ekdahl, Carl
2014-02-01
Particle beam radiography, which uses a variety of particle probes (neutrons, protons, electrons, gammas and potentially other particles) to study the structure of materials and objects noninvasively, is reviewed, largely from an accelerator perspective, although the use of cosmic rays (mainly muons but potentially also high-energy neutrinos) is briefly reviewed. Tomography is a form of radiography which uses multiple views to reconstruct a three-dimensional density map of an object. There is a very wide range of applications of radiography and tomography, from medicine to engineering and security, and advances in instrumentation, specifically the development of electronic detectors, allow rapid analysis of the resultant radiographs. Flash radiography is a diagnostic technique for large high-explosive-driven hydrodynamic experiments that is used at many laboratories. The bremsstrahlung radiation pulse from an intense relativistic electron beam incident onto a high-Z target is the source of these radiographs. The challenge is to provide radiation sources intense enough to penetrate hundreds of g/cm2 of material, in pulses short enough to stop the motion of high-speed hydrodynamic shocks, and with source spots small enough to resolve fine details. The challenge has been met with a wide variety of accelerator technologies, including pulsed-power-driven diodes, air-core pulsed betatrons and high-current linear induction accelerators. Accelerator technology has also evolved to accommodate the experimenters' continuing quest for multiple images in time and space. Linear induction accelerators have had a major role in these advances, especially in providing multiple-time radiographs of the largest hydrodynamic experiments.
Xu, Shenlai
2009-04-01
A landscape index LI is proposed to evaluate the intensity of the daytime surface urban heat island (SUHI) effect at a local scale. Three aspects of this landscape index are crucial: the source landscape, the sink landscape, and the contribution of source and sink landscapes to the intensity of the SUHI. Source and sink landscape types are identified using the thermo-band of Landsat 7 with a spatial resolution of 60 m, along with appropriate threshold values for the Normalized Difference Vegetation Index, Modified Normalized Difference Water Index, and Normalized Difference Built-up Index. The landscape index was defined as the ratio of the contributions of the source and sink landscapes to the intensity of the SUHI. The intensity of the daytime SUHI is assessed with the help of the landscape index. Our analysis indicates the landscape index can be used to evaluate and compare the intensity of the daytime SUHI for different areas.
Bacteriological water quality of Tulpehocken Creek basin, Berks and Lebanon Counties, Pennsylvania
Barker, James L.
1978-01-01
A four month intensive study of the bacteriological quality of water in the Tulpehocken Creek basin indicates that (1) the streams locally contain high densities of bacteria indicative of fecal contamination, (2) nonpoint waste sources, particularly livestock, are the dominant influence in the excessive bacteriological-indicator counts observed, and (3) retention time of water in the proposed Blue Marsh Lake is believed sufficient to reduce bacteria densities to acceptable levels except following intense rainfall and runoff events during normally low flow periods.
Pulse Power Compression by Cutting a Dense Z-Pinch with a Laser Beam
NASA Astrophysics Data System (ADS)
Winterberg, F.
1999-07-01
A thin cut made through a z-pinch by an intense laser beam can become a magnetically insulated diode crossed by an intense ion beam. For larger cuts, the gap is crossed by an intense relativistic electron beam, stopped by magnetic bremsstrahlung resulting in a pointlike intense x-ray source. In either case, the impedance of the pinch discharge is increased, with the power delivered rising in the same pro-portion. A magnetically insulated cut is advantageous for three reasons: First, with the ion current com-parable to the Alfvèn ion current, the pinch instabilities are reduced. Second, with the energy deposit-ed into fast ions, a non-Maxwellian velocity distribution is established increasing<σ ν> value for nuclear fusion reactions taking place in the pinch discharge. Third, in a high density z-pinch plasma, the intense ion beam can launch a thermonuclear detonation wave propagating along the pinch discharge channel. For larger cuts the soft x-rays produced by magnetic bremsstrahlung can be used to drive a thermonuclear hohlraum target. Finally, the proposed pulse power compression scheme permits to use a cheap low power d.c. source charging a magnetic storage coil delivering the magnetically stored energy to the pinch discharge load by an exploding wire opening switch.
A mirror for lab-based quasi-monochromatic parallel x-rays
NASA Astrophysics Data System (ADS)
Nguyen, Thanhhai; Lu, Xun; Lee, Chang Jun; Jung, Jin-Ho; Jin, Gye-Hwan; Kim, Sung Youb; Jeon, Insu
2014-09-01
A multilayered parabolic mirror with six W/Al bilayers was designed and fabricated to generate monochromatic parallel x-rays using a lab-based x-ray source. Using this mirror, curved bright bands were obtained in x-ray images as reflected x-rays. The parallelism of the reflected x-rays was investigated using the shape of the bands. The intensity and monochromatic characteristics of the reflected x-rays were evaluated through measurements of the x-ray spectra in the band. High intensity, nearly monochromatic, and parallel x-rays, which can be used for high resolution x-ray microscopes and local radiation therapy systems, were obtained.
NASA Astrophysics Data System (ADS)
Luo, B.; Bu, X.; Liu, S.; Gong, J.
2017-12-01
Coronal holes are sources of high-speed steams (HSS) of solar wind. When coronal holes appear at mid/low latitudes on the Sun, consequential HSSs may impact Earth and cause recurrent geospace environment disturbances, such as geomagnetic storms, relativistic electron enhancements at the geosynchronous orbit, and thermosphere density enhancements. Thus, it is of interests for space weather forecasters to predict when (arrival times), how long (time durations), and how severe (intensities) HSSs may impact Earth when they notice coronal holes on the sun and are anticipating their geoeffectiveness. In this study, relationship between coronal holes and high speed streams will be statistically investigated. Several coronal hole parameters, including passage times of solar central meridian, coronal hole longitudinal widths, intensities reflected by mean brightness, are derived using Solar Dynamics Observatory (SDO)/Atmospheric Imaging Assembly (AIA) images for years 2011 to 2016. These parameters will be correlated with in-situ solar wind measurements measured at the L1 point by the ACE spacecraft, which can give some results that are useful for space weather forecaster in predicting the arrival times, durations, and intensities of coronal hole high-speed streams in about 3 days advance.
Chang, Yun Sil; Hwang, Jong Hee; Kwon, Hyuk Nam; Choi, Chang Won; Ko, Sun Young; Park, Won Soon; Shin, Son Moon
2005-01-01
High intensity light emitting diodes (LEDs) are being studied as possible light sources for the phototherapy of neonatal jaundice, as they can emit high intensity light of narrow wavelength band in the blue region of the visible light spectrum corresponding to the spectrum of maximal bilirubin absorption. We developed a prototype blue gallium nitride LED phototherapy unit with high intensity, and compared its efficacy to commercially used halogen quartz phototherapy device by measuring both in vitro and in vivo bilirubin photodegradation. The prototype device with two focused arrays, each with 500 blue LEDs, generated greater irradiance than the conventional device tested. The LED device showed a significantly higher efficacy of bilirubin photodegradation than the conventional phototherapy in both in vitro experiment using microhematocrit tubes (44±7% vs. 35±2%) and in vivo experiment using Gunn rats (30±9% vs. 16±8%). We conclude that high intensity blue LED device was much more effective than conventional phototherapy of both in vitro and in vivo bilirubin photodegradation. Further studies will be necessary to prove its clinical efficacy. PMID:15716604
U2 8 + -intensity record applying a H2 -gas stripper cell
NASA Astrophysics Data System (ADS)
Barth, Winfried; Adonin, Aleksey; Düllmann, Christoph E.; Heilmann, Manuel; Hollinger, Ralph; Jäger, Egon; Khuyagbaatar, Jadambaa; Krier, Joerg; Scharrer, Paul; Vormann, Hartmut; Yakushev, Alexander
2015-04-01
To meet the Facility for Antiproton and Ion Research science requirements higher beam intensity has to be achieved in the present GSI-accelerator complex. For this an advanced upgrade program for the UNILAC is ongoing. Stripping is a key technology for all heavy ion accelerators. For this an extensive research and development program was carried out to optimize for high brilliance heavy ion operation. After upgrade of the supersonic N2 -gas jet (2007), implementation of high current foil stripping (2011) and preliminary investigation of H2 -gas jet operation (2012), recently (2014) a new H2 -gas cell using a pulsed gas regime synchronized with arrival of the beam pulse has been developed. An obviously enhanced stripper gas density as well as a simultaneously reduced gas load for the pumping system result in an increased stripping efficiency, while the beam emittance remains the same. A new record intensity (7.8 emA) for 238U2 8 + beams at 1.4 MeV /u has been achieved applying the pulsed high density H2 stripper target to a high intensity 238U4 + beam from the VARIS ion source with a newly developed extraction system. The experimental results are presented in detail.
Preliminary results from the heavy ions in space experiment
NASA Technical Reports Server (NTRS)
Adams, James H., Jr.; Beahm, Lorraine P.; Tylka, Allan J.
1992-01-01
The Heavy Ions In Space (HIIS) experiment has two primary objectives: (1) to measure the elemental composition of ultraheavy galactic cosmic rays, beginning in the tin-barium region of the periodic table; and (2) to study heavy ions which arrive at LDEF below the geomagnetic cutoff, either because they are not fully stripped of electrons or because their source is within the magnetosphere. Both of these objectives have practical as well as astrophysical consequences. In particular, the high atomic number of the ultraheavy galactic cosmic rays puts them among the most intensely ionizing particles in Nature. They are therefore capable of upsetting electronic components normally considered immune to such effects. The below cutoff heavy ions are intensely ionizing because of their low velocity. They can be a significant source of microelectronic anomalies in low inclination orbits, where Earth's magnetic field protects satellites from most particles from interplanetary space. The HIIS results will lead to significantly improved estimates of the intensely ionizing radiation environment.
Decoy-state quantum key distribution with more than three types of photon intensity pulses
NASA Astrophysics Data System (ADS)
Chau, H. F.
2018-04-01
The decoy-state method closes source security loopholes in quantum key distribution (QKD) using a laser source. In this method, accurate estimates of the detection rates of vacuum and single-photon events plus the error rate of single-photon events are needed to give a good enough lower bound of the secret key rate. Nonetheless, the current estimation method for these detection and error rates, which uses three types of photon intensities, is accurate up to about 1 % relative error. Here I report an experimentally feasible way that greatly improves these estimates and hence increases the one-way key rate of the BB84 QKD protocol with unbiased bases selection by at least 20% on average in realistic settings. The major tricks are the use of more than three types of photon intensities plus the fact that estimating bounds of the above detection and error rates is numerically stable, although these bounds are related to the inversion of a high condition number matrix.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Semenov, V. A.
2009-06-12
Pulse recirculation has been successfully demonstrated with the interaction laser system of LLNL's Thomson-Radiated Extreme X-ray (T-REX) source. The recirculation increased twenty-eight times the intensity of the light coming out of the laser system, demonstrating the capability of increasing the gamma-ray flux emitted by T-REX. The technical approach demonstrated could conceivably increase the average gamma-ray flux output by up to a hundred times.
Radiobiological study by using laser-driven proton beams
NASA Astrophysics Data System (ADS)
Yogo, A.; Sato, K.; Nishikino, M.; Mori, M.; Teshima, T.; Numasaki, H.; Murakami, M.; Demizu, Y.; Akagi, S.; Nagayama, S.; Ogura, K.; Sagisaka, A.; Orimo, S.; Nishiuchi, M.; Pirozhkov, A. S.; Ikegami, M.; Tampo, M.; Sakaki, H.; Suzuki, M.; Daito, I.; Oishi, Y.; Sugiyama, H.; Kiriyama, H.; Okada, H.; Kanazawa, S.; Kondo, S.; Shimomura, T.; Nakai, Y.; Tanoue, M.; Sugiyama, H.; Sasao, H.; Wakai, D.; Kawachi, T.; Nishimura, H.; Bolton, P. R.; Daido, H.
2009-07-01
Particle acceleration driven by high-intensity laser systems is widely attracting interest as a potential alternative to conventional ion acceleration, including ion accelerator applications to tumor therapy. Recent works have shown that a high intensity laser pulse can produce single proton bunches of a high current and a short pulse duration. This unique feature of laser-ion acceleration can lead to progress in the development of novel ion sources. However, there has been no experimental study of the biological effects of laser-driven ion beams. We describe in this report the first demonstrated irradiation effect of laser-accelerated protons on human lung cancer cells. In-vitro A549 cells are irradiated with a proton dose of 20 Gy, resulting in a distinct formation of γ-H2AX foci as an indicator of DNA double-strand breaks. This is a pioneering result that points to future investigations of the radiobiological effects of laser-driven ion beams. The laser-driven ion beam is apotential excitation source for time-resolved determination of hydroxyl (OH) radical yield, which will explore relationship between the fundamental chemical reactions of radiation effects and consequent biological processes.
A high repetition rate transverse beam profile diagnostic for laser-plasma proton sources
NASA Astrophysics Data System (ADS)
Dover, Nicholas; Nishiuchi, Mamiko; Sakaki, Hironao; Kando, Masaki; Nishitani, Keita
2016-10-01
The recently upgraded J-KAREN-P laser can provide PW peak power and intensities approaching 1022 Wcm-2 at 0.1 Hz. Scaling of sheath acceleration to such high intensities predicts generation of protons to near 100 MeV, but changes in electron heating mechanisms may affect the emitted proton beam properties, such as divergence and pointing. High repetition rate simultaneous measurement of the transverse proton distribution and energy spectrum are therefore key to understanding and optimising the source. Recently plastic scintillators have been used to measure online proton beam transverse profiles, removing the need for time consuming post-processing. We are therefore developing a scintillator based transverse proton beam profile diagnostic for use in ion acceleration experiments using the J-KAREN-P laser. Differential filtering provides a coarse energy spectrum measurement, and time-gating allows differentiation of protons from other radiation. We will discuss the design and implementation of the diagnostic, as well as proof-of-principle results from initial experiments on the J-KAREN-P system demonstrating the measurement of sheath accelerated proton beams up to 20 MeV.
Enhanced Production of Green Tide Algal Biomass through Additional Carbon Supply
de Paula Silva, Pedro H.; Paul, Nicholas A.; de Nys, Rocky; Mata, Leonardo
2013-01-01
Intensive algal cultivation usually requires a high flux of dissolved inorganic carbon (Ci) to support productivity, particularly for high density algal cultures. Carbon dioxide (CO2) enrichment can be used to overcome Ci limitation and enhance productivity of algae in intensive culture, however, it is unclear whether algal species with the ability to utilise bicarbonate (HCO3 −) as a carbon source for photosynthesis will benefit from CO2 enrichment. This study quantified the HCO3 − affinity of three green tide algal species, Cladophora coelothrix, Cladophora patentiramea and Chaetomorpha linum, targeted for biomass and bioenergy production. Subsequently, we quantified productivity and carbon, nitrogen and ash content in response to CO2 enrichment. All three species had similar high pH compensation points (9.7–9.9), and grew at similar rates up to pH 9, demonstrating HCO3 − utilization. Algal cultures enriched with CO2 as a carbon source had 30% more total Ci available, supplying twenty five times more CO2 than the control. This higher Ci significantly enhanced the productivity of Cladophora coelothrix (26%), Chaetomorpha linum (24%) and to a lesser extent for Cladophora patentiramea (11%), compared to controls. We demonstrated that supplying carbon as CO2 can enhance the productivity of targeted green tide algal species under intensive culture, despite their clear ability to utilise HCO3 −. PMID:24324672
Broadband near-field infrared spectroscopy with a high temperature plasma light source.
Lahneman, D J; Huffman, T J; Xu, Peng; Wang, S L; Grogan, T; Qazilbash, M M
2017-08-21
Scattering-type scanning near-field optical microscopy (S-SNOM) has enormous potential as a spectroscopy tool in the infrared spectral range where it can probe phonon resonances and carrier dynamics at the nanometer lengths scales. However, its applicability is limited by the lack of practical and affordable table-top light sources emitting intense broadband infrared radiation in the 100 cm -1 to 2,500 cm -1 spectral range. This paper introduces a high temperature plasma light source that is both ultra-broadband and has much more radiant power in the infrared spectral range than conventional, table-top thermal light sources such as the globar. We implement this plasma lamp in our near-field optical spectroscopy set up and demonstrate its capability as a broadband infrared nano-spectroscopy light source by obtaining near-field infrared amplitude and phase spectra of the phonon resonances of SiO 2 and SrTiO 3 .
NASA Astrophysics Data System (ADS)
Lasheen, A.; Argyropoulos, T.; Bohl, T.; Esteban Müller, J. F.; Timko, H.; Shaposhnikova, E.
2018-03-01
Microwave instability in the Super Proton Synchrotron (SPS) at CERN is one of the main limitations to reach the requirements for the High Luminosity-LHC project (increased beam intensity by a factor 2). To identify the impedance source responsible of the instability, beam measurements were carried out to probe the SPS impedance. The method presented in this paper relies on measurements of the unstable spectra of single bunches, injected in the SPS with the rf voltage switched off. The modulation of the bunch profile gives information about the main impedance sources driving microwave instability, and is compared to particle simulations using the SPS impedance model to identify the most important contributions. This allowed us to identify the vacuum flanges as the main impedance source for microwave instability in the SPS, and to evaluate possible missing impedance sources.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, D.; Krasheninnikov, S. I.; Luan, S. X.
The generation of super-high energetic electrons influenced by pre-plasma in relativistic intensity laser–matter interaction is studied in a one-dimensional slab approximation with particle-in-cell simulations. Different pre-plasma scale lengths and laser intensities are considered, showing an increase in both particle number and cut-off kinetic energy of electrons with the increase of pre-plasma scale length and laser intensity, the cut-off kinetic energy greatly exceeding the corresponding laser ponderomotive energy. A two-stage electron acceleration model is proposed to explain the underlying physics. The first stage is attributed to the synergetic acceleration by longitudinal electric field and counter-propagating laser pulses, and a scaling lawmore » is obtained with efficiency depending on the pre-plasma scale length and laser intensity. These electrons pre-accelerated in the first stage could build up an intense electrostatic potential barrier with maximal value several times as large as the initial electron kinetic energy. Some of the energetic electrons could be further accelerated by reflection off the electrostatic potential barrier, with their finial kinetic energies significantly higher than the values pre-accelerated in the first stage.« less
Wu, D.; Krasheninnikov, S. I.; Luan, S. X.; ...
2016-10-03
The generation of super-high energetic electrons influenced by pre-plasma in relativistic intensity laser–matter interaction is studied in a one-dimensional slab approximation with particle-in-cell simulations. Different pre-plasma scale lengths and laser intensities are considered, showing an increase in both particle number and cut-off kinetic energy of electrons with the increase of pre-plasma scale length and laser intensity, the cut-off kinetic energy greatly exceeding the corresponding laser ponderomotive energy. A two-stage electron acceleration model is proposed to explain the underlying physics. The first stage is attributed to the synergetic acceleration by longitudinal electric field and counter-propagating laser pulses, and a scaling lawmore » is obtained with efficiency depending on the pre-plasma scale length and laser intensity. These electrons pre-accelerated in the first stage could build up an intense electrostatic potential barrier with maximal value several times as large as the initial electron kinetic energy. Some of the energetic electrons could be further accelerated by reflection off the electrostatic potential barrier, with their finial kinetic energies significantly higher than the values pre-accelerated in the first stage.« less
Recent Development of IMP LECR3 Ion Source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Z.M.; Zhao, H.W.; Li, J.Y.
2005-03-15
18GHz microwave has been fed to the LECR3 ion source to produce intense highly charged ion beams although this ion source was designed for 14.5GHz. Then 1.1 emA Ar8+ and 325 e{mu}A Ar11+ were obtained at 18GHz. During the source running for atomic physics experiment, some higher charge state ion beams such as Ar17+ and Ar18+ were detected and have been validated by atomic physics method. Furthermore, a few special gases, e.g. SiH4 and SF6, were tested on LECR3 ion source to produce required ion beams to satisfy the requirements of atomic physics experiments.
Atmospheric Pressure Ionization Using a High Voltage Target Compared to Electrospray Ionization.
Lubin, Arnaud; Bajic, Steve; Cabooter, Deirdre; Augustijns, Patrick; Cuyckens, Filip
2017-02-01
A new atmospheric pressure ionization (API) source, viz. UniSpray, was evaluated for mass spectrometry (MS) analysis of pharmaceutical compounds by head-to-head comparison with electrospray ionization (ESI) on the same high-resolution MS system. The atmospheric pressure ionization source is composed of a grounded nebulizer spraying onto a high voltage, cylindrical stainless steel target. Molecules are ionized in a similar fashion to electrospray ionization, predominantly producing protonated or deprotonated species. Adduct formation (e.g., proton and sodium adducts) and in-source fragmentation is shown to be almost identical between the two sources. The performance of the new API source was compared with electrospray by infusion of a mix of 22 pharmaceutical compounds with a wide variety of functional groups and physico-chemical properties (molecular weight, logP, and pKa) in more than 100 different conditions (mobile phase strength, solvents, pH, and flow rate). The new API source shows an intensity gain of a factor 2.2 compared with ESI considering all conditions on all compounds tested. Finally, some hypotheses on the ionization mechanism, similarities, and differences with ESI, are discussed. Graphical Abstract ᅟ.
Atmospheric Pressure Ionization Using a High Voltage Target Compared to Electrospray Ionization
NASA Astrophysics Data System (ADS)
Lubin, Arnaud; Bajic, Steve; Cabooter, Deirdre; Augustijns, Patrick; Cuyckens, Filip
2017-02-01
A new atmospheric pressure ionization (API) source, viz. UniSpray, was evaluated for mass spectrometry (MS) analysis of pharmaceutical compounds by head-to-head comparison with electrospray ionization (ESI) on the same high-resolution MS system. The atmospheric pressure ionization source is composed of a grounded nebulizer spraying onto a high voltage, cylindrical stainless steel target. Molecules are ionized in a similar fashion to electrospray ionization, predominantly producing protonated or deprotonated species. Adduct formation (e.g., proton and sodium adducts) and in-source fragmentation is shown to be almost identical between the two sources. The performance of the new API source was compared with electrospray by infusion of a mix of 22 pharmaceutical compounds with a wide variety of functional groups and physico-chemical properties (molecular weight, logP, and pKa) in more than 100 different conditions (mobile phase strength, solvents, pH, and flow rate). The new API source shows an intensity gain of a factor 2.2 compared with ESI considering all conditions on all compounds tested. Finally, some hypotheses on the ionization mechanism, similarities, and differences with ESI, are discussed.
Investigation of the γ-decay behavior of 52Cr with the γ 3 setup at HIγS
NASA Astrophysics Data System (ADS)
Wilhelmy, J.; Erbacher, P.; Gayer, U.; Isaak, J.; Löher, B.; Müscher, M.; Pickstone, S. G.; Pietralla, N.; Ries, P.; Romig, C.; Savran, D.; Spieker, M.; Tornow, W.; Werner, V.; Zilges, A.; Zweidinger, M.
2018-02-01
The γ-ray strength function is an important input parameter for the calculation of nucleosynthesis processes. To study the dipole response in more detail, the γ-decay behavior of the fp shell nucleus 52Cr was investigated with the high-efficiency γ 3 setup at the High Intensity γ-ray Source facility at TUNL in Durham, USA. The highly intense quasi mono-energetic γ-ray beam allows for excitations selective in multipolarity (J=1 and J=2) and energy. The γ 3 setup is a multi-detector array consisting of HPGe and LaBr3 detectors with high efficiency and enables the measurement of γ-γ coincidences. Experimental results of 52Cr will be presented and discussed in this contribution.
JBioWH: an open-source Java framework for bioinformatics data integration
Vera, Roberto; Perez-Riverol, Yasset; Perez, Sonia; Ligeti, Balázs; Kertész-Farkas, Attila; Pongor, Sándor
2013-01-01
The Java BioWareHouse (JBioWH) project is an open-source platform-independent programming framework that allows a user to build his/her own integrated database from the most popular data sources. JBioWH can be used for intensive querying of multiple data sources and the creation of streamlined task-specific data sets on local PCs. JBioWH is based on a MySQL relational database scheme and includes JAVA API parser functions for retrieving data from 20 public databases (e.g. NCBI, KEGG, etc.). It also includes a client desktop application for (non-programmer) users to query data. In addition, JBioWH can be tailored for use in specific circumstances, including the handling of massive queries for high-throughput analyses or CPU intensive calculations. The framework is provided with complete documentation and application examples and it can be downloaded from the Project Web site at http://code.google.com/p/jbiowh. A MySQL server is available for demonstration purposes at hydrax.icgeb.trieste.it:3307. Database URL: http://code.google.com/p/jbiowh PMID:23846595
JBioWH: an open-source Java framework for bioinformatics data integration.
Vera, Roberto; Perez-Riverol, Yasset; Perez, Sonia; Ligeti, Balázs; Kertész-Farkas, Attila; Pongor, Sándor
2013-01-01
The Java BioWareHouse (JBioWH) project is an open-source platform-independent programming framework that allows a user to build his/her own integrated database from the most popular data sources. JBioWH can be used for intensive querying of multiple data sources and the creation of streamlined task-specific data sets on local PCs. JBioWH is based on a MySQL relational database scheme and includes JAVA API parser functions for retrieving data from 20 public databases (e.g. NCBI, KEGG, etc.). It also includes a client desktop application for (non-programmer) users to query data. In addition, JBioWH can be tailored for use in specific circumstances, including the handling of massive queries for high-throughput analyses or CPU intensive calculations. The framework is provided with complete documentation and application examples and it can be downloaded from the Project Web site at http://code.google.com/p/jbiowh. A MySQL server is available for demonstration purposes at hydrax.icgeb.trieste.it:3307. Database URL: http://code.google.com/p/jbiowh.
Intense XUV (Extreme Ultraviolet) Radiation Sources.
1985-07-31
Light Sources for High ................ .29 . Resolution XUV and VUV Spectroscopy; Appendix F:’High Resolution Spectra of Laser Pl -asma Light...34."" ."."".". "," .. .". .’ Laser (1.06juMm) iol 3 Target Intensit vrV Pls htN Ta disk 3 - I O WlCnr 4. K 2.2 ns 80100209 > 1~ C 1010 109 0 40 80 120 160 200 240...acknowledges support from SERC (UK). 1. Carroll, P.K., Kennedy, E.T. and O’Sullivan, G., 1980, App. Opt. 19, 1454. 2. Nagel, D.J., Brown, C.M., Peckerar
How Simbol-X Will Reveal the Most Obscured High Energy Sources of our Galaxy
NASA Astrophysics Data System (ADS)
Chaty, S.
2009-05-01
The INTEGRAL satellite has revealed a major population of supergiant High Mass X-ray Binaries in our Galaxy, revolutionizing our understanding of binary systems and their evolution. This population, constituted of a compact object orbiting around a supergiant star, have unusual properties, either being extremely absorbed, or exhibiting very short flares. I will first describe the characteristics of these sources, that only intensive multi-wavelength observations have led us to disentangle, before showing that Simbol-X, thanks to its energy range and sensitivity, will allow us to go further in the understanding of these supergiant HMXBs.
Fast optical source for quantum key distribution based on semiconductor optical amplifiers.
Jofre, M; Gardelein, A; Anzolin, G; Amaya, W; Capmany, J; Ursin, R; Peñate, L; Lopez, D; San Juan, J L; Carrasco, J A; Garcia, F; Torcal-Milla, F J; Sanchez-Brea, L M; Bernabeu, E; Perdigues, J M; Jennewein, T; Torres, J P; Mitchell, M W; Pruneri, V
2011-02-28
A novel integrated optical source capable of emitting faint pulses with different polarization states and with different intensity levels at 100 MHz has been developed. The source relies on a single laser diode followed by four semiconductor optical amplifiers and thin film polarizers, connected through a fiber network. The use of a single laser ensures high level of indistinguishability in time and spectrum of the pulses for the four different polarizations and three different levels of intensity. The applicability of the source is demonstrated in the lab through a free space quantum key distribution experiment which makes use of the decoy state BB84 protocol. We achieved a lower bound secure key rate of the order of 3.64 Mbps and a quantum bit error ratio as low as 1.14×10⁻² while the lower bound secure key rate became 187 bps for an equivalent attenuation of 35 dB. To our knowledge, this is the fastest polarization encoded QKD system which has been reported so far. The performance, reduced size, low power consumption and the fact that the components used can be space qualified make the source particularly suitable for secure satellite communication.
Kilpatrick, W.D.
1959-04-21
A source is presented for producing high intensity pulses of ions with precise time control of pulse initiation. The approach taken is to have one of the electrodes in the source occluded with the gas to be ionized. A trigger electrode is disposed adjacent to the gas filled electrode and is pulsed with a voltage to release the gas. The other structure of the source includes an apertured anode disposed between two cathodes, the gas filled electrode and another electrode. At the same time the gas is released a low voltage pulse is applied between the anode and cathodes to establish an ionizing arc discharge. An electrode adjacent to the arc withdraws the ions.
Production of large resonant plasma volumes in microwave electron cyclotron resonance ion sources
Alton, Gerald D.
1998-01-01
Microwave injection methods for enhancing the performance of existing electron cyclotron resonance (ECR) ion sources. The methods are based on the use of high-power diverse frequency microwaves, including variable-frequency, multiple-discrete-frequency, and broadband microwaves. The methods effect large resonant "volume" ECR regions in the ion sources. The creation of these large ECR plasma volumes permits coupling of more microwave power into the plasma, resulting in the heating of a much larger electron population to higher energies, the effect of which is to produce higher charge state distributions and much higher intensities within a particular charge state than possible in present ECR ion sources.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Colvin, Jeffrey D.
This project had two major goals. Final Goal: obtain spectrally resolved, absolutely calibrated x-ray emission data from uniquely uniform mm-scale near-critical-density high-Z plasmas not in local thermodynamic equilibrium (LTE) to benchmark modern detailed atomic physics models. Scientific significance: advance understanding of non-LTE atomic physics. Intermediate Goal: develop new nano-fabrication techniques to make suitable laser targets that form the required highly uniform non-LTE plasmas when illuminated by high-intensity laser light. Scientific significance: advance understanding of nano-science. The new knowledge will allow us to make x-ray sources that are bright at the photon energies of most interest for testing radiation hardening technologies,more » the spectral energy range where current x-ray sources are weak. All project goals were met.« less
Study of opto-acoustic communication between air and underwater carrier
NASA Astrophysics Data System (ADS)
Zong, Si-Guang; Liu, Tao; Cao, Jing; He, Qi-Yi
2018-02-01
How to solve the communication problem to the underwater target has turned into one of the subjects that the militarists of all over the world commonly concern. Laser-induced acoustic signal is a new approach for underwater acoustic source, which has much virtue such as high intensity, short pulse and broad frequency. The paper studies the opto-acoustic communication method. The acoustic signal characteristic of laser-induced breakdown is studied and corresponding theory model is systemically analyzed. The opto-acoustic communication experimental measure investigation is formed with the high power laser, water tank and high frequency hydrophone. The characteristic of acoustic signal is analyzed, such as intensity and frequency. This makes a stride for pursing the feasibility of laser-acoustic underwater communication.
NASA Astrophysics Data System (ADS)
Ozaki, Nobuhiko; Kanehira, Shingo; Hayashi, Yuma; Ohkouchi, Shunsuke; Ikeda, Naoki; Sugimoto, Yoshimasa; Hogg, Richard A.
2017-11-01
We obtained a high-intensity and broadband emission centered at 1 μm from InGaAs quantum three-dimensional (3D) structures grown on a GaAs substrate using molecular beam epitaxy. An InGaAs thin layer grown on GaAs with a thickness close to the critical layer thickness is normally affected by strain as a result of the lattice mismatch and introduced misfit dislocations. However, under certain growth conditions for the In concentration and growth temperature, the growth mode of the InGaAs layer can be transformed from two-dimensional to 3D growth. We found the optimal conditions to obtain a broadband emission from 3D structures with a high intensity and controlled center wavelength at 1 μm. This method offers an alternative approach for fabricating a broadband near-infrared light source for telecommunication and medical imaging systems such as for optical coherence tomography.
NASA Astrophysics Data System (ADS)
Arifin, A.; Lusiana; Yunus, Muhammad; Dewang, Syamsir
2018-03-01
This research discusses the light intensity sensor based on plastic optical fiber. This light intensity sensor is made of plastic optical fiber consisting of two types, namely which is cladding and without cladding. Plastic optical fiber used multi-mode step-index type made of polymethyl metacrylate (PMMA). The infrared LED emits light into the optical fiber of the plastic and is subsequently received by the phototransistor to be converted to an electric voltage. The sensor configuration is made with three models: straight configuration, U configuration and gamma configuration with cladding and without cladding. The measured light source uses a 30 Watt high power LED with a light intensity of 0 to 10 Klux. The measured light intensity will affect the propagation of light inside the optical fiber sensor. The greater the intensity of the measured light, the greater the output voltage that is read on the computer. The results showed that the best optical fiber sensor characteristics were obtained in U configuration. Sensors with U-configuration without cladding had the best sensitivity and resolution values of 0.0307 volts/Klux and 0.0326 Klux. The advantages of this measuring light intensity based on the plastic optical fiber instrument are simple, easy-to-make operational systems, low cost, high sensitivity and resolution.
[Research on stormwater runoff quality of mountain city by source area monitoring].
Li, Li-Qing; Shan, Bao-Qing; Zhao, Jian-Wei; Guo, Shu-Gang; Gao, Yong
2012-10-01
Stormwater runoff samples were collected from 10 source areas in Mountain City, Chongqing, during five rain events in an attempt to investigate the characteristics of runoff quality and influencing factors. The outcomes are expected to offer practical guidance of sources control of urban runoff pollution. The results indicated that the stormwater runoff of Mountain City presented a strong first flush for almost all events and constituents. The runoff quality indices were also influenced by the rainfall intensity. The concentration of TSS, COD, TN and TP decreased as the rainfall intensity increased. The concentrations of COD and TP in stormwater runoff were highly correlated with TSS concentrations. Suspended solid matter were not only the main pollutant of stormwater runoff but also served as the vehicle for transport of organic matter and phosphorus. Organic matter and phosphorus in stormwatrer runoff were mainly bound to particles, whereas nitrogen was predominantly dissolved, with ammonia and nitrate. A significant difference of stormwater runoff quality was observed among the ten monitored source areas. The highest magnitude of urban stormwater runoff pollution was expected in the commercial area and the first trunk road, followed by the minor road, residential area, parking lot and roof. Urban surface function, traffic volume, population density, and street sweeping practice are the main factors determining spatial differentiation of urban surface runoff quality. Commercial area, the first trunk road and residential area with high population density are the critical sources areas of urban stormwater runoff pollution.
NASA Astrophysics Data System (ADS)
Martins Pereira, Guilherme; Teinilä, Kimmo; Custódio, Danilo; Gomes Santos, Aldenor; Xian, Huang; Hillamo, Risto; Alves, Célia A.; Bittencourt de Andrade, Jailson; Olímpio da Rocha, Gisele; Kumar, Prashant; Balasubramanian, Rajasekhar; de Fátima Andrade, Maria; de Castro Vasconcellos, Pérola
2017-10-01
São Paulo in Brazil has relatively relaxed regulations for ambient air pollution standards and often experiences high air pollution levels due to emissions of particulate pollutants from local sources and long-range transport of air masses impacted by biomass burning. In order to evaluate the sources of particulate air pollution and related health risks, a year-round sampling was done at the University of São Paulo campus (20 m a.g.l.), a green area near an important expressway. The sampling was performed for PM2. 5 ( ≤ 2. 5 µm) and PM10 ( ≤ 10 µm) in 2014 through intensive (everyday sampling in wintertime) and extensive campaigns (once a week for the whole year) with 24 h of sampling. This year was characterized by having lower average precipitation compared to meteorological data, and high-pollution episodes were observed all year round, with a significant increase in pollution level in the intensive campaign, which was performed during wintertime. Different chemical constituents, such as carbonaceous species, polycyclic aromatic hydrocarbons (PAHs) and derivatives, water-soluble ions, and biomass burning tracers were identified in order to evaluate health risks and to apportion sources. The species such as PAHs, inorganic and organic ions, and monosaccharides were determined using chromatographic techniques and carbonaceous species using thermal-optical analysis. Trace elements were determined using inductively coupled plasma mass spectrometry. The risks associated with particulate matter exposure based on PAH concentrations were also assessed, along with indexes such as the benzo[a]pyrene equivalent (BaPE) and lung cancer risk (LCR). High BaPE and LCR were observed in most of the samples, rising to critical values in the wintertime. Also, biomass burning tracers and PAHs were higher in this season, while secondarily formed ions presented low variation throughout the year. Meanwhile, vehicular tracer species were also higher in the intensive campaign, suggesting the influence of lower dispersion conditions in that period. Source apportionment was performed using positive matrix factorization (PMF), which indicated five different factors: road dust, industrial emissions, vehicular exhaust, biomass burning and secondary processes. The results highlighted the contribution of vehicular emissions and the significant input from biomass combustion in wintertime, suggesting that most of the particulate matter is due to local sources, in addition to the influence of pre-harvest sugarcane burning.
The MIT/OSO 7 catalog of X-ray sources - Intensities, spectra, and long-term variability
NASA Technical Reports Server (NTRS)
Markert, T. H.; Laird, F. N.; Clark, G. W.; Hearn, D. R.; Sprott, G. F.; Li, F. K.; Bradt, H. V.; Lewin, W. H. G.; Schnopper, H. W.; Winkler, P. F.
1979-01-01
This paper is a summary of the observations of the cosmic X-ray sky performed by the MIT 1-40-keV X-ray detectors on OSO 7 between October 1971 and May 1973. Specifically, mean intensities or upper limits of all third Uhuru or OSO 7 cataloged sources (185 sources) in the 3-10-keV range are computed. For those sources for which a statistically significant (greater than 20) intensity was found in the 3-10-keV band (138 sources), further intensity determinations were made in the 1-15-keV, 1-6-keV, and 15-40-keV energy bands. Graphs and other simple techniques are provided to aid the user in converting the observed counting rates to convenient units and in determining spectral parameters. Long-term light curves (counting rates in one or more energy bands as a function of time) are plotted for 86 of the brighter sources.
Piestrup, Melvin A.; Boyers, David G.; Pincus, Cary
1991-01-01
A high-intensity, inexpensive X-ray source for X-ray lithography for the production of integrated circuits. Foil stacks are bombarded with a high-energy electron beam of 25 to 250 MeV to produce a flux of soft X-rays of 500 eV to 3 keV. Methods of increasing the total X-ray power and making the cross section of the X-ray beam uniform are described. Methods of obtaining the desired X-ray-beam field size, optimum frequency spectrum and elminating the neutron flux are all described. A method of obtaining a plurality of station operation is also described which makes the process more efficient and economical. The satisfying of these issues makes transition radiation an exellent moderate-priced X-ray source for lithography.
Pappas, Daniel S.
1989-01-01
Apparatus is provided for generating energy in the form of laser radiation. A tokamak fusion reactor is provided for generating a long, or continuous, pulse of high-energy neutrons. The tokamak design provides a temperature and a magnetic field which is effective to generate a neutron flux of at least 10.sup.15 neutrons/cm.sup.2.s. A conversion medium receives neutrons from the tokamak and converts the high-energy neutrons to an energy source with an intensity and an energy effective to excite a preselected lasing medium. The energy source typically comprises fission fragments, alpha particles, and radiation from a fission event. A lasing medium is provided which is responsive to the energy source to generate a population inversion which is effective to support laser oscillations for generating output radiation.
NASA Astrophysics Data System (ADS)
Zakharov, S. V.; Zakharov, V. S.; Choi, P.; Krukovskiy, A. Y.; Novikov, V. G.; Solomyannaya, A. D.; Berezin, A. V.; Vorontsov, A. S.; Markov, M. B.; Parot'kin, S. V.
2011-04-01
In the specifications for EUV sources, high EUV power at IF for lithography HVM and very high brightness for actinic mask and in-situ inspections are required. In practice, the non-equilibrium plasma dynamics and self-absorption of radiation limit the in-band radiance of the plasma and the usable radiation power of a conventional single unit EUV source. A new generation of the computational code Z* is currently developed under international collaboration in the frames of FP7 IAPP project FIRE for modelling of multi-physics phenomena in radiation plasma sources, particularly for EUVL. The radiation plasma dynamics, the spectral effects of self-absorption in LPP and DPP and resulting Conversion Efficiencies are considered. The generation of fast electrons, ions and neutrals is discussed. Conditions for the enhanced radiance of highly ionized plasma in the presence of fast electrons are evaluated. The modelling results are guiding a new generation of EUV sources being developed at Nano-UV, based on spatial/temporal multiplexing of individual high brightness units, to deliver the requisite brightness and power for both lithography HVM and actinic metrology applications.
Rimes, Katharine A; Wingrove, Janet; Moss-Morris, Rona; Chalder, Trudie
2014-11-01
Cognitive behavioural interventions are effective in the treatment of chronic fatigue, chronic fatigue syndrome (sometimes known as ME or CFS/ME) and irritable bowel syndrome (IBS). Such interventions are increasingly being provided not only in specialist settings but in primary care settings such as Improving Access to Psychological Therapies (IAPT) services. There are no existing competences for the delivery of "low-intensity" or "high-intensity" cognitive behavioural interventions for these conditions. To develop "high-intensity" and "low-intensity" competences for cognitive behavioural interventions for chronic fatigue, CFS/ME and IBS. The initial draft drew on a variety of sources including treatment manuals and other information from randomized controlled trials. Therapists with experience in providing cognitive behavioural interventions for CF, CFS/ME and IBS in research and clinical settings were consulted on the initial draft competences and their suggestions for minor amendments were incorporated into the final versions. Feedback from experienced therapists was positive. Therapists providing low intensity interventions reported that the competences were also helpful in highlighting training needs. These sets of competences should facilitate the training and supervision of therapists providing cognitive behavioural interventions for chronic fatigue, CFS/ME and IBS. The competences are available online (see table of contents for this issue: http://journals.cambridge.org/jid_BCP) or on request from the first author.
NASA Astrophysics Data System (ADS)
Clemett, Ceri D.; Martin, Philip N.; Hill, Cassie; Threadgold, James R.; Maddock, Robert C.; Campbell, Ben; O'Malley, John; Woolf, Richard S.; Phlips, Bernard F.; Hutcheson, Anthony L.; Wulf, Eric A.; Zier, Jacob C.; Jackson, Stuart L.; Commisso, Robert J.; Schumer, Joseph W.
2015-04-01
Active interrogation is a method used to enhance the likelihood of detection of shielded special nuclear material (SNM); an external source of radiation is used to interrogate a target and to stimulate fission within any SNM present. Radiation produced by the fission process can be detected and used to infer the presence of the SNM. The Atomic Weapons Establishment (AWE) and the Naval Research Laboratory (NRL) have carried out a joint experimental study into the use of single pulse, high-intensity sources of bremsstrahlung x-rays and D(γb, n)H photoneutrons in an active interrogation system. The source was operated in both x-ray-only and mixed x-ray/photoneutron modes, and was used to irradiate a depleted uranium (DU) target which was enclosed by up to 150 g·cm - 2 of steel shielding. Resulting radiation signatures were measured by a suite of over 80 detectors and the data used to characterise detectable fission signatures as a function of the areal mass of the shielding. This paper describes the work carried out and discusses data collected with 3He proportional counters, NaI(Tl) scintillators and Eljen EJ-309 liquid scintillators. Results with the x-ray-only source demonstrate detection ( > 3\\sigmab) of the DU target through a minimum of 113 g·cm - 2 of steel, dropping to 85 g·cm- 2 when using a mixed x-ray/photoneutron source. The 3He proportional counters demonstrate detection ( > 3\\sigmab) of the DU target through the maximum 149. 7 g·cm - 2 steel shielding deployed for both photon and mixed x-ray/photoneutron sources.
Detection of a Novel Mechanism of Acousto-Optic Modulation of Incoherent Light
Jarrett, Christopher W.; Caskey, Charles F.; Gore, John C.
2014-01-01
A novel form of acoustic modulation of light from an incoherent source has been detected in water as well as in turbid media. We demonstrate that patterns of modulated light intensity appear to propagate as the optical shadow of the density variations caused by ultrasound within an illuminated ultrasonic focal zone. This pattern differs from previous reports of acousto-optical interactions that produce diffraction effects that rely on phase shifts and changes in light directions caused by the acoustic modulation. Moreover, previous studies of acousto-optic interactions have mainly reported the effects of sound on coherent light sources via photon tagging, and/or the production of diffraction phenomena from phase effects that give rise to discrete sidebands. We aimed to assess whether the effects of ultrasound modulation of the intensity of light from an incoherent light source could be detected directly, and how the acoustically modulated (AOM) light signal depended on experimental parameters. Our observations suggest that ultrasound at moderate intensities can induce sufficiently large density variations within a uniform medium to cause measurable modulation of the intensity of an incoherent light source by absorption. Light passing through a region of high intensity ultrasound then produces a pattern that is the projection of the density variations within the region of their interaction. The patterns exhibit distinct maxima and minima that are observed at locations much different from those predicted by Raman-Nath, Bragg, or other diffraction theory. The observed patterns scaled appropriately with the geometrical magnification and sound wavelength. We conclude that these observed patterns are simple projections of the ultrasound induced density changes which cause spatial and temporal variations of the optical absorption within the illuminated sound field. These effects potentially provide a novel method for visualizing sound fields and may assist the interpretation of other hybrid imaging methods. PMID:25105880
Source of polarised deuterons. (JINR accelerator complex)
NASA Astrophysics Data System (ADS)
Fimushkin, V. V.; Belov, A. S.; Kovalenko, A. D.; Kutuzova, L. V.; Prokofichev, Yu. V.; Shimanskiy, S. S.; Vadeev, V. P.
2008-08-01
The proposed project assumes the development of a universal high-intensity source of polarized deuterons (protons) using a charge-exchange plasma ionizer. The design output current of the source will be up to 10mA for ↑ D+(↑ H+) and polarization will be up to 90% of the maximal vector (±1) and tensor (+1,-2) polarization. The project is based on the equipment which was supplied within the framework of an agreement between JINR and IUCF (Bloomington, USA). The project will be realized in close cooperation with INR (Moscow, Russia). The source will be installed in the linac hall (LU-20) and polarization of beams will be measured at the output of LU-20. The main purpose of the project is to increase the intensity of the accelerated polarized beams at the JINR Accelerator Complex up to 1010 d/pulse. Calculations and first accelerator runs have shown that the depolarization resonances are absent for the deuteron beam in the entire energy range of the NUCLOTRON. The source could be transformed into a source of polarized negative ions if necessary. The period of reliable operation without participation of the personnel should be within 1000 hours. The project should be implemented within two to two and a half years from the start of funding.
Numerical Simulation of the Large-Scale North American Monsoon Water Sources
NASA Technical Reports Server (NTRS)
Bosilovich, Michael G.; Sud, Yogesh C.; Schubert, Siegfried D.; Walker, Gregory K.
2002-01-01
A general circulation model (GCM) that includes water vapor tracer (WVT) diagnostics is used to delineate the dominant sources of water vapor for precipitation during the North American monsoon. A 15-year model simulation carried out with one-degree horizontal resolution and time varying sea surface temperature is able to produce reasonable large-scale features of the monsoon precipitation. Within the core of the Mexican monsoon, continental sources provide much of the water for precipitation. Away from the Mexican monsoon (eastern Mexico and Texas), continental sources generally decrease with monsoon onset. Tropical Atlantic Ocean sources of water gain influence in the southern Great Plains states where the total precipitation decreases during the monsoon onset. Pacific ocean sources do contribute to the monsoon, but tend to be weaker after onset. Evaluating the development of the monsoons, soil water and surface evaporation prior to monsoon onset do not correlate with the eventual monsoon intensity. However, the most intense monsoons do use more local sources of water than the least intense monsoons, but only after the onset. This suggests that precipitation recycling is an important factor in monsoon intensity.
NASA Astrophysics Data System (ADS)
Baum, R. L.; Coe, J. A.; Kean, J. W.; Jones, E. S.; Godt, J.
2015-12-01
Heavy rainfall during 9 - 13 September 2013 induced about 1100 debris flows in the foothills and mountains of the northern Colorado Front Range. Weathered bedrock was partially exposed in the basal surfaces of many of the shallow source areas at depths ranging from 0.2 to 5 m. Typical values of saturated hydraulic conductivity of soils and regolith units mapped in the source areas range from about 10-4 - 10-6 m/s, with a median value of 2.8 x 10-5 m/s based on number of source areas in each map unit. Rainfall intensities varied spatially and temporally, from 0 to 2.5 x 10-5 m/s (90 mm/hour), with two periods of relatively heavy rainfall on September 12 - 13. The distribution of debris flows appears to correlate with total storm rainfall, and reported times of greatest landslide activity coincide with times of heaviest rainfall. Process-based models of rainfall infiltration and slope stability (TRIGRS) representing the observed ranges of regolith depth, hydraulic conductivity, and rainfall intensity, provide additional insights about the timing and distribution of debris flows from this storm. For example, small debris flows from shallower source areas (<2 m) occurred late on September 11 and in the early morning of September 12, whereas large debris flows from deeper (3 - 5 m) source areas in the western part of the affected area occurred late on September 12. Timing of these flows can be understood in terms of the time required for pore pressure rise depending on regolith depth and rainfall intensity. The variable hydraulic properties combined with variable regolith depth and slope angles account for much of the observed range in timing in areas of similar rainfall intensity and duration. Modeling indicates that the greatest and most rapid pore pressure rise likely occurred in areas of highest rainfall intensity and amount. This is consistent with the largest numbers of debris flows occurring on steep canyon walls in areas of high total storm rainfall.
High intensity high charge state ion beam production with an evaporative cooling magnet ECRIS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, W., E-mail: luwang@impcas.ac.cn; Qian, C.; Sun, L. T.
2016-02-15
LECR4 (Lanzhou ECR ion source No. 4) is a room temperature electron cyclotron resonance ion source, designed to produce high current, high charge state ion beams for the SSC-LINAC injector (a new injector for sector separated cyclotron) at the Institute of Modern Physics. LECR4 also serves as a PoP machine for the application of evaporative cooling technology in accelerator field. To achieve those goals, LECR4 ECR ion source has been optimized for the operation at 18 GHz. During 2014, LECR4 ion source was commissioned at 18 GHz microwave of 1.6 kW. To further study the influence of injection stage tomore » the production of medium and high charge state ion beams, in March 2015, the injection stage with pumping system was installed, and some optimum results were produced, such as 560 eμA of O{sup 7+}, 620 eμA of Ar{sup 11+}, 430 eμA of Ar{sup 12+}, 430 eμA of Xe{sup 20+}, and so on. The comparison will be discussed in the paper.« less
Nonlinear Delta-f Simulations of Collective Effects in Intense Charged Particle Beams
NASA Astrophysics Data System (ADS)
Qin, Hong
2002-11-01
A nonlinear delta-f particle simulation method based on the Vlasov-Maxwell equations has been recently developed to study collective processes in high-intensity beams, where space-charge and magnetic self-field effects play a critical role in determining the nonlinear beam dynamics. Implemented in the Beam Equilibrium, Stability and Transport (BEST) code, the nonlinear delta-f method provides a low-noise and self-consistent tool for simulating collective interactions and nonlinear dynamics of high-intensity beams in modern and next- generation accelerators and storage rings, such as the Spallation Neutron Source, and heavy ion fusion drivers. Simulation results for the electron-proton two-stream instability in the Proton Storage Ring (PSR) experiment at Los Alamos National Laboratory agree well with experimental observations. Large-scale parallel simulations have also been carried out for the ion-electron two-stream instability in the very high-intensity heavy ion beams envisioned for heavy ion fusion applications. In both cases, the simulation results indicate that the dominant two-stream instability has a dipole-mode (hose-like) structure and can be stabilized by a modest axial momentum spread of the beam particles of less than 0.25collective processes in high-intensity beams, such as anisotropy-driven instabilities, collective eigenmode excitations for perturbations about stable beam equilibria, and the Darwin model for fully electromagnetic perturbations will also be discussed.
RCNP Project on Polarized {sup 3}He Ion Sources - From Optical Pumping to Cryogenic Method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tanaka, M.; Inomata, T.; Takahashi, Y.
2009-08-04
A polarized {sup 3}He ion source has been developed at RCNP for intermediate and high energy spin physics. Though we started with an OPPIS (Optical Pumping Polarized Ion Source), it could not provide highly polarized {sup 3}He beam because of fundamental difficulties. Subsequently to this unhappy result, we examined novel types of the polarized {sup 3}He ion source, i.e., EPPIS (Electron Pumping Polarized Ion Source), and ECRPIS (ECR Polarized Ion Source) experimentally or theoretically, respectively. However, attainable {sup 3}He polarization degrees and beam intensities were still insufficient for practical use. A few years later, we proposed a new idea formore » the polarized {sup 3}He ion source, SEPIS (Spin Exchange Polarized Ion Source) which is based on enhanced spin-exchange cross sections at low incident energies for {sup 3}He{sup +}+Rb, and its feasibility was experimentally examined.Recently, we started a project on polarized {sup 3}He gas generated by the brute force method with low temperature (approx4 mK) and strong magnetic field (approx17 T), and rapid melting of highly polarized solid {sup 3}He followed by gasification. When this project will be successful, highly polarized {sup 3}He gas will hopefully be used for a new type of the polarized {sup 3}He ion source.« less
NASA Astrophysics Data System (ADS)
Caliri, C.; Romano, F. P.; Mascali, D.; Gammino, S.; Musumarra, A.; Castro, G.; Celona, L.; Neri, L.; Altana, C.
2013-10-01
Electron Cyclotron Resonance Ion Sources (ECRIS) are based on ECR heated plasmas emitting high fluxes of X-rays. Here we illustrate a pilot study of the X-ray emission from a compact plasma-trap in which an off-resonance microwave-plasma interaction has been attempted, highlighting a possible Bernstein-Waves based heating mechanism. EBWs-heating is obtained via the inner plasma EM-to-ES wave conversion and enables to reach densities much larger than the cut-off ones. At LNS-INFN, an innovative diagnostic technique based on the design of a Pinhole Camera (PHC) coupled to a CCD device for X-ray Imaging of the plasma (XRI) has been developed, in order to integrate X-ray traditional diagnostics (XRS). The complementary use of electrostatic probes measurements and X-ray diagnostics enabled us to gain knowledge about the high energy electrons density and temperature and about the spatial structure of the source. The combination of the experimental data with appropriate modeling of the plasma-source allowed to estimate the X-ray emission intensity in different energy domains (ranging from EUV up to Hard X-rays). The use of ECRIS as X-ray source for multidisciplinary applications, is now a concrete perspective due to the intense fluxes produced by the new plasma heating mechanism.
New opportunities in quasi elastic neutron scattering spectroscopy
NASA Astrophysics Data System (ADS)
Mezei, F.; Russina, M.
2001-07-01
The high energy resolution usually required in quasi elastic neutron scattering (QENS) spectroscopy is commonly achieved by the use of cold neutrons. This is one of the important research areas where the majority of current work is done on instruments on continuous reactor sources. One particular reason for this is the capability of continuous source time-of-flight spectrometers to use instrumental parameters optimally adapted for best data collection efficiency in each experiment. These parameters include the pulse repetition rate and the length of the pulses to achieve optimal balance between resolution and intensity. In addition, the disc chopper systems used provide perfect symmetrical line shapes with no tails and low background. Recent development of a set of novel techniques enhance the efficiency of cold neutron spectroscopy on existing and future spallation sources in a dramatic fashion. These techniques involve the use of extended pulse length, high intensity coupled moderators, disc chopper systems and advanced neutron optical beam delivery, and they will enable Lujan center at Los Alamos to surpass the best existing reactor instruments in time-of-flight QENS work by more than on order of magnitude in terms of beam flux on the sample. Other applications of the same techniques will allow us to combine advantages of backscattering spectroscopy on continuous and pulsed sources in order to deliver μeV resolution in a very broad energy transfer range.
Bright perspectives for nuclear photonics
NASA Astrophysics Data System (ADS)
Thirolf, P. G.; Habs, D.
2014-05-01
With the advent of new high-power, short-pulse laser facilities in combination with novel technologies for the production of highly brilliant, intense γ beams (like, e.g., Extreme Light Infrastructure - Nuclear Physics (ELI-NP) in Bucharest, MEGaRay in Livermore or a planned upgrade of the HIγS facility at Duke University), unprecedented perspectives will open up in the coming years for photonuclear physics both in basic sciences as in various fields of applications. Ultra-high sensitivity will be enabled by an envisaged increase of the γ-beam spectral density from the presently typical 102γ/eVs to about 104γ/eVs, thus enabling a new quality of nuclear photonics [1], assisted by new γ-optical elements [2]. Photonuclear reactions with highly brilliant γ beams will allow to produce radioisotopes for nuclear medicine with much higher specific activity and/or more economically than with conventional methods. This will open the door for completely new clinical applications of radioisotopes [3]. The isotopic, state-selective sensitivity of the well-established technique of nuclear resonance fluorescence (NRF) will be boosted by the drastically reduced energy bandwidth (<0.1%) of the novel γ beams. Together with a much higher intensity of these beams, this will pave the road towards a γ-beam based non-invasive tomography and microscopy, assisting the management of nuclear materials, such as radioactive waste management, the detection of nuclear fissile material in the recycling process or the detection of clandestine fissile materials. Moreover, also secondary sources like low-energy, pulsed, polarized neutron beams of high intensity and high brilliance [4] or a new type of positron source with significantly increased brilliance, for the first time fully polarized [5], can be realized and lead to new applications in solid state physics or material sciences.
Microstructured snow targets for high energy quasi-monoenergetic proton acceleration
NASA Astrophysics Data System (ADS)
Schleifer, E.; Nahum, E.; Eisenmann, S.; Botton, M.; Baspaly, A.; Pomerantz, I.; Abricht, F.; Branzel, J.; Priebe, G.; Steinke, S.; Andreev, A.; Schnuerer, M.; Sandner, W.; Gordon, D.; Sprangle, P.; Ledingham, K. W. D.; Zigler, A.
2013-05-01
Compact size sources of high energy protons (50-200MeV) are expected to be key technology in a wide range of scientific applications 1-8. One promising approach is the Target Normal Sheath Acceleration (TNSA) scheme 9,10, holding record level of 67MeV protons generated by a peta-Watt laser 11. In general, laser intensity exceeding 1018 W/cm2 is required to produce MeV level protons. Another approach is the Break-Out Afterburner (BOA) scheme which is a more efficient acceleration scheme but requires an extremely clean pulse with contrast ratio of above 10-10. Increasing the energy of the accelerated protons using modest energy laser sources is a very attractive task nowadays. Recently, nano-scale targets were used to accelerate ions 12,13 but no significant enhancement of the accelerated proton energy was measured. Here we report on the generation of up to 20MeV by a modest (5TW) laser system interacting with a microstructured snow target deposited on a Sapphire substrate. This scheme relax also the requirement of high contrast ratio between the pulse and the pre-pulse, where the latter produces the highly structured plasma essential for the interaction process. The plasma near the tip of the snow target is subject to locally enhanced laser intensity with high spatial gradients, and enhanced charge separation is obtained. Electrostatic fields of extremely high intensities are produced, and protons are accelerated to MeV-level energies. PIC simulations of this targets reproduce the experimentally measured energy scaling and predict the generation of 150 MeV protons from laser power of 100TW laser system18.
Spes: An intense source of Neutron-Rich Radioactive Beams at Legnaro
NASA Astrophysics Data System (ADS)
Andrighetto, A.; Manzolaro, M.; Corradetti, S.; Scarpa, D.; Monetti, A.; Rossignoli, M.; Ballan, M.; Borgna, F.; D'Agostini, F.; Gramegna, F.; Prete, G.; Meneghetti, G.; Ferrari, M.; Zenoni, A.
2018-02-01
The Isotope Separation On-Line (ISOL) method for the production of Radioactive Ion Beams (RIB) is attracting significant interest in the worldwide nuclear physics community. Within this context the SPES (Selective Production of Exotic Species) RIB facility is now under construction at INFN LNL (Istituto Nazionale di Fisica Nucleare Laboratori Nazionali di Legnaro). This technique is established as one of the main techniques for high intensity and high quality beams production. The SPES facility will produce n-rich isotopes by means of a 40 MeV proton beam, emitted by a cyclotron, impinging on a uranium carbide multi-foil fission target. The aim of this work is to describe the most important results obtained by the study of the on-line behavior of the SPES production target assembly. This target system will produce RIBs at a rate of about 1013 fissions per second, it will be able to dissipate a total power of up to 10 kW, and it is planned to work continuously for 2 week-runs of irradiation. ISOL beams of 24 different elements will be produced, therefore a target and ion source development is ongoing to ensure a great variety of produced isotopes and to improve the beam intensity and purity.
NASA Astrophysics Data System (ADS)
Kropivnitskaya, Yelena; Tiampo, Kristy F.; Qin, Jinhui; Bauer, Michael A.
2017-06-01
Earthquake intensity is one of the key components of the decision-making process for disaster response and emergency services. Accurate and rapid intensity calculations can help to reduce total loss and the number of casualties after an earthquake. Modern intensity assessment procedures handle a variety of information sources, which can be divided into two main categories. The first type of data is that derived from physical sensors, such as seismographs and accelerometers, while the second type consists of data obtained from social sensors, such as witness observations of the consequences of the earthquake itself. Estimation approaches using additional data sources or that combine sources from both data types tend to increase intensity uncertainty due to human factors and inadequate procedures for temporal and spatial estimation, resulting in precision errors in both time and space. Here we present a processing approach for the real-time analysis of streams of data from both source types. The physical sensor data is acquired from the U.S. Geological Survey (USGS) seismic network in California and the social sensor data is based on Twitter user observations. First, empirical relationships between tweet rate and observed Modified Mercalli Intensity (MMI) are developed using data from the M6.0 South Napa, CAF earthquake that occurred on August 24, 2014. Second, the streams of both data types are analyzed together in simulated real-time to produce one intensity map. The second implementation is based on IBM InfoSphere Streams, a cloud platform for real-time analytics of big data. To handle large processing workloads for data from various sources, it is deployed and run on a cloud-based cluster of virtual machines. We compare the quality and evolution of intensity maps from different data sources over 10-min time intervals immediately following the earthquake. Results from the joint analysis shows that it provides more complete coverage, with better accuracy and higher resolution over a larger area than either data source alone.
The Mistreated Teacher: A National Study
ERIC Educational Resources Information Center
Blase, Joseph; Blase, Jo; Du, Fengning
2008-01-01
Purpose: This study seeks to identify 172 American elementary, middle, and high school teachers' perceptions of the major sources and intensity of the experience of mistreatment by a principal, the effects of such mistreatment, how these perceptions varied by demographic variables, teachers' coping skills, and teachers' perceptions of contributing…
Metal and nutrient dynamics on an aged intensive green roof.
Speak, A F; Rothwell, J J; Lindley, S J; Smith, C L
2014-01-01
Runoff and rainfall quality was compared between an aged intensive green roof and an adjacent conventional roof surface. Nutrient concentrations in the runoff were generally below Environmental Quality Standard (EQS) values and the green roof exhibited NO3(-) retention. Cu, Pb and Zn concentrations were in excess of EQS values for the protection of surface water. Green roof runoff was also significantly higher in Fe and Pb than on the bare roof and in rainfall. Input-output fluxes revealed the green roof to be a potential source of Pb. High concentrations of Pb within the green roof soil and bare roof dusts provide a potential source of Pb in runoff. The origin of the Pb is likely from historic urban atmospheric deposition. Aged green roofs may therefore act as a source of legacy metal pollution. This needs to be considered when constructing green roofs with the aim of improving pollution remediation. Copyright © 2013 Elsevier Ltd. All rights reserved.
Sources of listening anxiety in learning English as a foreign language.
Chang, Anna Ching-Shyang
2008-02-01
In this study of college students' listening anxiety in learning English in a classroom context, participants were 160 students (47 men and 113 women) ages 18 to 19 years. To address their listening anxiety, participants were chosen from students enrolling in a required listening course. A listening questionnaire was used to assess learners' anxiety about spoken English, its intensity, and the main sources of listening anxiety. Overall, participants showed moderately high intensity of anxiety in listening to spoken English, but were more anxious in testing than in general situations. In contrast to previous research on the nature of spoken English as the main source of listening anxiety, this study found that low confidence in comprehending spoken English, taking English listening courses as a requirement, and worrying about test difficulty were the three main factors contributing to participants' listening anxiety in a classroom context. Participants' learning profiles both in the classroom and outside the class yielded data which provides suggestions for reducing anxiety.
Supergiant fast X-ray transients with Swift: Spectroscopic and temporal properties
NASA Astrophysics Data System (ADS)
Romano, P.; Mangano, V.; Ducci, L.; Esposito, P.; Farinelli, R.; Ceccobello, C.; Vercellone, S.; Burrows, D. N.; Kennea, J. A.; Krimm, H. A.; Gehrels, N.
2012-12-01
Supergiant fast X-ray transients (SFXTs) are a class of high-mass X-ray binaries with possible counterparts in the high energy gamma rays. The Swift SFXT Project1 has conducted a systematic investigation of the properties of SFTXs on timescales ranging from minutes to years and in several intensity states (from bright flares, to intermediate intensity states, and down to almost quiescence). We also performed broad-band spectroscopy of outbursts, and intensity-selected spectroscopy outside of outbursts. We demonstrated that while the brightest phase of the outburst only lasts a few hours, further activity is observed at lower fluxes for a remarkably longer time, up to weeks. Furthermore, we assessed the fraction of the time these sources spend in each phase, and their duty cycle of inactivity. We present the most recent results from our investigation. The spectroscopic and, most importantly, timing properties of SFXTs we have uncovered with Swift will serve as a guide in search for the high energy emission from these enigmatic objects.
NASA Astrophysics Data System (ADS)
Ma, Xibo; Tian, Jie; Zhang, Bo; Zhang, Xing; Xue, Zhenwen; Dong, Di; Han, Dong
2011-03-01
Among many optical molecular imaging modalities, bioluminescence imaging (BLI) has more and more wide application in tumor detection and evaluation of pharmacodynamics, toxicity, pharmacokinetics because of its noninvasive molecular and cellular level detection ability, high sensitivity and low cost in comparison with other imaging technologies. However, BLI can not present the accurate location and intensity of the inner bioluminescence sources such as in the bone, liver or lung etc. Bioluminescent tomography (BLT) shows its advantage in determining the bioluminescence source distribution inside a small animal or phantom. Considering the deficiency of two-dimensional imaging modality, we developed three-dimensional tomography to reconstruct the information of the bioluminescence source distribution in transgenic mOC-Luc mice bone with the boundary measured data. In this paper, to study the osteocalcin (OC) accumulation in transgenic mOC-Luc mice bone, a BLT reconstruction method based on multilevel adaptive finite element (FEM) algorithm was used for localizing and quantifying multi bioluminescence sources. Optical and anatomical information of the tissues are incorporated as a priori knowledge in this method, which can reduce the ill-posedness of BLT. The data was acquired by the dual modality BLT and Micro CT prototype system that was developed by us. Through temperature control and absolute intensity calibration, a relative accurate intensity can be calculated. The location of the OC accumulation was reconstructed, which was coherent with the principle of bone differentiation. This result also was testified by ex vivo experiment in the black 96-plate well using the BLI system and the chemiluminescence apparatus.
Role of fat metabolism in exercise.
Askew, E W
1984-07-01
Fat and carbohydrate are the two major energy sources used during exercise. Either source can predominate, depending upon the duration and intensity of exercise, degree of prior physical conditioning, and the composition of the diet consumed in the days prior to a bout of exercise. Fatty acid oxidation can contribute 50 to 60 per cent of the energy expenditure during a bout of low intensity exercise of long duration. Strenuous submaximal exercise requiring 65 to 80 per cent of VO2 max will utilize less fat (10 to 45 per cent of the energy expended). Exercise training is accompanied by metabolic adaptations that occur in skeletal muscle and adipose tissue and that facilitate a greater delivery and oxidation of fatty acids during exercise. The trained state is characterized by an increased flux of fatty acids through smaller pools of adipose tissue energy. This is reflected by smaller, more metabolically active adipose cells in smaller adipose tissue depots. Peak blood concentrations of free fatty acids and ketone bodies are lower during and following exercise in trained individuals, probably due to increased capacity of the skeletal musculature to oxidize these energy sources. Trained individuals oxidize more fat and less carbohydrate than untrained subjects when performing submaximal work of the same absolute intensity. This increased capacity to utilize energy from fat conserves crucial muscle and liver glycogen stores and can contribute to increased endurance. Further benefits of the enhanced lipid metabolism accompanying chronic aerobic exercise training are decreased cardiac risk factors. Exercise training results in lower blood cholesterol and triglycerides and increased high density lipoprotein cholesterol. High-fat diets are not recommended because of their association with atherosclerotic heart disease. Recent evidence suggests that low-fat high-carbohydrate diets may increase blood triglycerides and reduce high density lipoproteins. This suggests that the chronic ingestion of diets that are extreme in their composition of either fat or carbohydrate should be approached with caution in health-conscious athletes, as well as in sedentary individuals.
Acne phototherapy using UV-free high-intensity narrow-band blue light: a three-center clinical study
NASA Astrophysics Data System (ADS)
Shalita, Alan R.; Harth, Yoram; Elman, Monica; Slatkine, Michael; Talpalariu, Gerry; Rosenberg, Yitzhak; Korman, Avner; Klein, Arieh
2001-05-01
Propionibacterium. acnes is a Gram positive, microaerophilic bacterium which takes a part in the pathogenesis of inflammatory acne. P. acnes is capable to produce high amounts endogenic porphyrins with no need of any trigger molecules. Light in the violet-blue range (407-420 nm) has been shown to exhibit a phototoxic effect on Propionibacterium acnes when irradiated in vitro. The purpose of our study was to test the clinical effects of a high intensity narrowband blue light source on papulo pustular acne. A total of 35 patients in 3 centers were treated twice a week with a high intensity metal halide lamp illuminating the entire face (20x20 cm2) or the back with visible light in the 407-420 nm range at an intensity of 90 mW/cm2 (CureLight Ltd.) for a total of 4 weeks. UV is totally cut off. In each treatment the patient was exposed to light for 8-15 minutes. After 8 treatments, 80% of the patients with mild to moderate papulo-pustular acne showed significant improvement at reducing the numbers of non- inflammatory, inflammatory and total facial lesions. Inflammatory lesion count decrease by a mean of 68%. No side effects to the treatment were noticed. In conclusion, full face or back illumination with the high intensity pure blue light we used exhibits a rapid significant decrease in acne lesions counts in 8 biweekly treatments.
Halfon, S; Arenshtam, A; Kijel, D; Paul, M; Weissman, L; Berkovits, D; Eliyahu, I; Feinberg, G; Kreisel, A; Mardor, I; Shimel, G; Shor, A; Silverman, I; Tessler, M
2015-12-01
A free surface liquid-lithium jet target is operating routinely at Soreq Applied Research Accelerator Facility (SARAF), bombarded with a ~1.91 MeV, ~1.2 mA continuous-wave narrow proton beam. The experiments demonstrate the liquid lithium target (LiLiT) capability to constitute an intense source of epithermal neutrons, for Accelerator based Boron Neutron Capture Therapy (BNCT). The target dissipates extremely high ion beam power densities (>3 kW/cm(2), >0.5 MW/cm(3)) for long periods of time, while maintaining stable conditions and localized residual activity. LiLiT generates ~3×10(10) n/s, which is more than one order of magnitude larger than conventional (7)Li(p,n)-based near threshold neutron sources. A shield and moderator assembly for BNCT, with LiLiT irradiated with protons at 1.91 MeV, was designed based on Monte Carlo (MCNP) simulations of BNCT-doses produced in a phantom. According to these simulations it was found that a ~15 mA near threshold proton current will apply the therapeutic doses in ~1h treatment duration. According to our present results, such high current beams can be dissipated in a liquid-lithium target, hence the target design is readily applicable for accelerator-based BNCT. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhou, Feifan; Yamaguchi, Munehiko; Qin, Xiaohao
2016-07-01
This paper investigates the possible sources of errors associated with tropical cyclone (TC) tracks forecasted using the Global/Regional Assimilation and Prediction System (GRAPES). The GRAPES forecasts were made for 16 landfalling TCs in the western North Pacific basin during the 2008 and 2009 seasons, with a forecast length of 72 hours, and using the default initial conditions ("initials", hereafter), which are from the NCEP-FNL dataset, as well as ECMWF initials. The forecasts are compared with ECMWF forecasts. The results show that in most TCs, the GRAPES forecasts are improved when using the ECMWF initials compared with the default initials. Compared with the ECMWF initials, the default initials produce lower intensity TCs and a lower intensity subtropical high, but a higher intensity South Asia high and monsoon trough, as well as a higher temperature but lower specific humidity at the TC center. Replacement of the geopotential height and wind fields with the ECMWF initials in and around the TC center at the initial time was found to be the most efficient way to improve the forecasts. In addition, TCs that showed the greatest improvement in forecast accuracy usually had the largest initial uncertainties in TC intensity and were usually in the intensifying phase. The results demonstrate the importance of the initial intensity for TC track forecasts made using GRAPES, and indicate the model is better in describing the intensifying phase than the decaying phase of TCs. Finally, the limit of the improvement indicates that the model error associated with GRAPES forecasts may be the main cause of poor forecasts of landfalling TCs. Thus, further examinations of the model errors are required.
Intensity distribution of the x ray source for the AXAF VETA-I mirror test
NASA Technical Reports Server (NTRS)
Zhao, Ping; Kellogg, Edwin M.; Schwartz, Daniel A.; Shao, Yibo; Fulton, M. Ann
1992-01-01
The X-ray generator for the AXAF VETA-I mirror test is an electron impact X-ray source with various anode materials. The source sizes of different anodes and their intensity distributions were measured with a pinhole camera before the VETA-I test. The pinhole camera consists of a 30 micrometers diameter pinhole for imaging the source and a Microchannel Plate Imaging Detector with 25 micrometers FWHM spatial resolution for detecting and recording the image. The camera has a magnification factor of 8.79, which enables measuring the detailed spatial structure of the source. The spot size, the intensity distribution, and the flux level of each source were measured with different operating parameters. During the VETA-I test, microscope pictures were taken for each used anode immediately after it was brought out of the source chamber. The source sizes and the intensity distribution structures are clearly shown in the pictures. They are compared and agree with the results from the pinhole camera measurements. This paper presents the results of the above measurements. The results show that under operating conditions characteristic of the VETA-I test, all the source sizes have a FWHM of less than 0.45 mm. For a source of this size at 528 meters away, the angular size to VETA is less than 0.17 arcsec which is small compared to the on ground VETA angular resolution (0.5 arcsec, required and 0.22 arcsec, measured). Even so, the results show the intensity distributions of the sources have complicated structures. These results were crucial for the VETA data analysis and for obtaining the on ground and predicted in orbit VETA Point Response Function.
Tunable all-optical quasimonochromatic thomson x-ray source in the nonlinear regime.
Khrennikov, K; Wenz, J; Buck, A; Xu, J; Heigoldt, M; Veisz, L; Karsch, S
2015-05-15
We present an all-laser-driven, energy-tunable, and quasimonochromatic x-ray source based on Thomson scattering from laser-wakefield-accelerated electrons. One part of the laser beam was used to drive a few-fs bunch of quasimonoenergetic electrons, while the remainder was backscattered off the bunch at weakly relativistic intensity. When the electron energy was tuned from 17-50 MeV, narrow x-ray spectra peaking at 5-42 keV were recorded with high resolution, revealing nonlinear features. We present a large set of measurements showing the stability and practicality of our source.
Space-Borne Observations of Intense Gamma-Ray Flashes (TGFs) Above Thunderstorms
NASA Technical Reports Server (NTRS)
Fishman, Gerald J.
2011-01-01
Intense millisecond flashes of MeV photons have been observed with space-borne detectors. These terrestrial gamma-ray flashes (TGFs) were discovered with the Burst and Transient Source Experiment (BATSE) aboard the Compton Gamma- Ray Observatory (CGRO) in the early 1990s. They are now being observed with several other instruments, including the Gamma-ray Burst Monitor (GBM) detectors on the Fermi Gamma-ray Space Telescope. Although Fermi-GBM was designed and optimized for the observation of cosmic gamma-ray bursts (GRBs), it has unprecedented capabilities for these TGF observations. On several occasions, intense beams of high-energy electrons and positrons have been observed at the geomagnetic conjugate points of TGFs.
NASA Astrophysics Data System (ADS)
Morgenstern, Uwe; Daughney, Christopher J.
2012-08-01
SummaryWe identified natural baseline groundwater quality and impacts caused by land use intensification by relating groundwater chemistry with water age. Tritium, the most direct tracer for groundwater dating, including the time of water passage through the unsaturated zone, was overwhelmed over the recent decades by contamination from bomb-tritium from nuclear weapons testing in the early 1960s. In the Southern Hemisphere, this situation has changed now with the fading of the bomb-tritium, and tritium has become a tool for accurate groundwater dating. Tritium dating will become efficient also in the Northern Hemisphere over the next decade. Plotting hydrochemistry and field parameters versus groundwater age allowed us to identify those parameters that have increasing concentrations with age and are therefore from geological sources. These indicators for natural groundwater evolution are: Na, HCO3, SiO2, F, PO4, the redox-sensitive elements and compounds Fe, Mn, NH4, CH4, and pH and conductivity. In young groundwater that was recharged after the intensification of agriculture, nitrate, sulphate, CFC-11 and CFC-12, and pesticides are the most representative indicators for the impact of land-use intensification on groundwater quality, with 66% of the sites showing such an impact. Elevated concentrations of nitrate in oxic groundwater allowed us to reconstruct the timing and magnitude of the impact of land-use intensification on groundwater which in New Zealand occurred in two stages. Old pristine groundwater reflects the natural baseline quality. A transition to slightly elevated concentration due to low-intensity land-use was observed in groundwater recharged since around 1880. A sharp increase in nitrate and other agrochemicals due to high-intensity agriculture was observed in groundwater recharged since 1955. The threshold concentrations that distinguish natural baseline quality water from low-intensity land-use water, and low-intensity from high intensity land-use water, are 0.25 and 2.5 mg/L NO3-N, respectively. The change in groundwater quality from pristine baseline to low-intensity impact around 1880 coincides with the start of the meat export industry. The change in groundwater quality from low to high intensity landuse impact around 1955 coincides with the start of industrialised agriculture. No elevated levels of phosphate, a main compound in agricultural fertilisers and, together with nitrogen, a trigger of algae blooms in lakes, were found in young groundwater. This implies that fertiliser phosphate from non-point sources is still retained in the soil and has not yet reached the saturated groundwater systems. The source of elevated PO4, observed only in old groundwater, is therefore due purely to natural geochemical factors.
The intensive DT neutron generator of TU Dresden
NASA Astrophysics Data System (ADS)
Klix, Axel; DÖring, Toralf; Domula, Alexander; Zuber, Kai
2018-01-01
TU Dresden operates an accelerator-based intensive DT neutron generator. Experimental activities comprise investigation into material activation and decay, neutron and photon transport in matter and R&D work on radiation detectors for harsh environments. The intense DT neutron generator is capable to produce a maximum of 1012 n/s. The neutron source is a solid-type water-cooled tritium target based on a titanium matrix on a copper carrier. The neutron yield at a typical deuteron beam current of 1 mA is of the order of 1011 n/s in 4Π. A pneumatic sample transport system is available for short-time irradiations and connected to wo high-purity germanium detector spectrometers for the measurement of induced activities. The overall design of the experimental hall with the neutron generator allows a flexible setup of experiments including the possibility of investigating larger structures and cooled samples or samples at high temperatures.
Extended observations of higher than 7-keV X-rays from Centaurus X-3 by the OSO-7 satellite
NASA Technical Reports Server (NTRS)
Baity, W. A.; Ulmer, M. P.; Wheaton, W. A.; Peterson, L. E.
1974-01-01
The UCSD X-ray telescope on board OSO-7 provided 43 days of continuous coverage of the variable X-ray source Cen X-3 at energies above 7 keV during December 1971 and January 1972. We detected the 4.8-sec pulsation period, the 2.087-day eclipse cycle, and an apparently nonperiodic, low-intensity state lasting more than 12 days. Spectra obtained over the 7-30 keV range during noneclipsed high-intensity states are steeper than those previously reported. Large changes, which may be characterized by a number spectral index alpha varying between 3.0 plus or minus 0.2 and 2.0 plus or minus 0.3, or by exponential spectra with kT varying from 6 plus or minus 2 to 13 plus or minus 3 keV, occur at different high-intensity states.
Carbon neutral electricity production by Synechocystis sp. PCC6803 in a microbial fuel cell.
Madiraju, Kartik S; Lyew, Darwin; Kok, Robert; Raghavan, Vijaya
2012-04-01
The aim of this work was to illustrate the use of photosynthetic microbes in a microbial fuel cell to produce electricity without the requirement of an external carbon source. This research here describes the use of a cyanobacterium Synechocystis PCC6803, to produce electricity without any net CO(2) production in a two-chambered MFC. Conditions for optimum electricity production were determined through standardizing operating parameters. A maximum power density of 6.7mWm(-3)(anode chamber volume) was achieved under high intensity lighting (10,000lux). Light intensity and wavelength directly affected electricity production, indicating the pivotal role played by photosynthesis. The maximum removal of CO(2) was 625mmolm(-3) over 20h under high intensity light. The results presented here will contribute to the understanding of how cyanobacteria can be exploited for the direct conversion of CO(2) to electric current. Copyright © 2012 Elsevier Ltd. All rights reserved.
Exploring the dusty star-formation in the early Universe using intensity mapping
NASA Astrophysics Data System (ADS)
Lagache, Guilaine
2018-05-01
In the last decade, it has become clear that the dust-enshrouded star formation contributes significantly to early galaxy evolution. Detection of dust is therefore essential in determining the properties of galaxies in the high-redshift universe. This requires observations at the (sub-)millimeter wavelengths. Unfortunately, sensitivity and background confusion of single dish observations on the one hand, and mapping efficiency of interferometers on the other hand, pose unique challenges to observers. One promising route to overcome these difficulties is intensity mapping of fluctuations which exploits the confusion-limited regime and measures the collective light emission from all sources, including unresolved faint galaxies. We discuss in this contribution how 2D and 3D intensity mapping can measure the dusty star formation at high redshift, through the Cosmic Infrared Background (2D) and [CII] fine structure transition (3D) anisotropies.
Production of highly charged ion beams with SECRALa)
NASA Astrophysics Data System (ADS)
Sun, L. T.; Zhao, H. W.; Lu, W.; Zhang, X. Z.; Feng, Y. C.; Li, J. Y.; Cao, Y.; Guo, X. H.; Ma, H. Y.; Zhao, H. Y.; Shang, Y.; Ma, B. H.; Wang, H.; Li, X. X.; Jin, T.; Xie, D. Z.
2010-02-01
Superconducting electron cyclotron resonance ion source with advanced design in Lanzhou (SECRAL) is an all-superconducting-magnet electron cyclotron resonance ion source (ECRIS) for the production of intense highly charged ion beams to meet the requirements of the Heavy Ion Research Facility in Lanzhou (HIRFL). To further enhance the performance of SECRAL, an aluminum chamber has been installed inside a 1.5 mm thick Ta liner used for the reduction of x-ray irradiation at the high voltage insulator. With double-frequency (18+14.5 GHz) heating and at maximum total microwave power of 2.0 kW, SECRAL has successfully produced quite a few very highly charged Xe ion beams, such as 10 e μA of Xe37+, 1 e μA of Xe43+, and 0.16 e μA of Ne-like Xe44+. To further explore the capability of the SECRAL in the production of highly charged heavy metal ion beams, a first test run on bismuth has been carried out recently. The main goal is to produce an intense Bi31+ beam for HIRFL accelerator and to have a feel how well the SECRAL can do in the production of very highly charged Bi beams. During the test, though at microwave power less than 3 kW, more than 150 e μA of Bi31+, 22 e μA of Bi41+, and 1.5 e μA of Bi50+ have been produced. All of these results have again demonstrated the great capability of the SECRAL source. This article will present the detailed results and brief discussions to the production of highly charged ion beams with SECRAL.
Inductive voltage adder advanced hydrodynamic radiographic technology demonstration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mazarakis, M.G.; Poukey, J.W.; Maenchen
This paper presents the design, results, and analysis of a high-brightness electron beam technology demonstration experiment completed at Sandia National Laboratories, performed in collaboration with Los Alamos National Laboratory. The anticipated electron beam parameters were: 12 MeV, 35-40 kA, 0.5-mm rms radius, and 40-ns full width half maximum (FWHM) pulse duration. This beam, on an optimum thickness tantalum converter, should produce a very intense x-ray source of {approximately} 1.5-mm spot size and 1 kR dose @ 1 m. The accelerator utilized was SABRE, a pulsed inductive voltage adder, and the electron source was a magnetically immersed foilless electron diode. Formore » these experiments, SABRE was modified to high-impedance negative-polarity operation. A new 100-ohm magnetically insulated transmission line cathode electrode was designed and constructed; the cavities were rotated 180{degrees} poloidally to invert the central electrode polarity to negative; and only one of the two pulse forming lines per cavity was energized. A twenty- to thirty-Tesla solenoidal magnet insulated the diode and contained the beam at its extremely small size. These experiments were designed to demonstrate high electron currents in submillimeter radius beams resulting in a high-brightness high-intensity flash x-ray source for high-resolution thick-object hydrodynamic radiography. The SABRE facility high-impedance performance was less than what was hoped. The modifications resulted in a lower amplitude (9 MV), narrower-than-anticipated triangular voltage pulse, which limited the dose to {approximately} 20% of the expected value. In addition, halo and ion-hose instabilities increased the electron beam spot size to > 1.5 mm. Subsequent, more detailed calculations explain these reduced output parameters. An accelerator designed (versus retrofit) for this purpose would provide the desired voltage and pulse shape.« less
Strong terahertz field generation, detection, and application
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Ki-Yong
2016-05-22
This report describes the generation and detection of high-power, broadband terahertz (THz) radiation with using femtosecond terawatt (TW) laser systems. In particular, this focuses on two-color laser mixing in gases as a scalable THz source, addressing both microscopic and macroscopic effects governing its output THz yield and radiation profile. This also includes the characterization of extremely broad THz spectra extending from microwaves to infrared frequencies. Experimentally, my group has generated high-energy (tens of microjoule), intense (>8 MV/cm), and broadband (0.01~60 THz) THz radiation in two-color laser mixing in air. Such an intense THz field can be utilized to study THz-drivenmore » extremely nonlinear phenomena in a university laboratory.« less
Strong terahertz field generation, detection, and application
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Ki-Yong
2016-05-15
This report describes the generation and detection of high-power, broadband terahertz (THz) radiation with using femtosecond terawatt (TW) laser systems. In particular, this focuses on two-color laser mixing in gases as a scalable THz source, addressing both microscopic and macroscopic effects governing its output THz yield and radiation profile. This also includes the characterization of extremely broad THz spectra extending from microwaves to infrared frequencies. Experimentally, my group has generated high-energy (tens of microjoule), intense (>8 MV/cm), and broadband (0.01~60 THz) THz radiation in two-color laser mixing in air. Such an intense THz field can be utilized to study THz-drivenmore » extremely nonlinear phenomena in a university laboratory.« less
Aaron E. Maxwell; Adam C. Riley; Paul Kinder
2013-01-01
Remote sensing has many applications in forestry. Light detection and ranging (LiDAR) and high resolution aerial photography have been investigated as means to extract forest data, such as biomass, timber volume, stand dynamics, and gap characteristics. LiDAR return intensity data are often overlooked as a source of input raster data for thematic map creation. We...
Source of coherent short wavelength radiation
Villa, Francesco
1990-01-01
An apparatus for producing coherent radiation ranging from X-rays to the far ultraviolet (i.e., 1 Kev to 10 eV) utilizing the Compton scattering effect. A photon beam from a laser is scattered on a high energy electron bunch from a pulse power linac. The short wavelength radiation produced by such scattering has sufficient intensity and spatial coherence for use in high resolution applications such as microscopy.
NASA Astrophysics Data System (ADS)
Audebert, P.
2007-11-01
In the last few years, intense research has been conducted on laser-accelerated ion sources and their applications. These sources have exceptional properties, i.e. high brightness and high spectral cut-off, high directionality and laminarity, short burst duration. We have shown that for proton energies >10 MeV, the transverse and longitudinal emittance are respectively <0.004 mm-mrad and <10-4 eV-s, i.e. at least 100-fold and may be as much as 10^4-fold better than conventional accelerators beams. Thanks to these properties, these sources allow for example point-projection radiography with unprecedented resolution. We will show example of such time and space-resolved radiography of fast evolving fields, either of associated with the expansion of a plasma in vacuum [*] or with the propagation of a ICF-relevant laser beam in an underdense plasma. These proton sources also open new opportunities for ion beam generation and control, and could stimulate development of compact ion accelerators for many applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shanks, Katherine S.; Philipp, Hugh T.; Weiss, Joel T.
Experiments at storage ring light sources as well as at next-generation light sources increasingly require detectors capable of high dynamic range operation, combining low-noise detection of single photons with large pixel well depth. XFEL sources in particular provide pulse intensities sufficiently high that a purely photon-counting approach is impractical. The High Dynamic Range Pixel Array Detector (HDR-PAD) project aims to provide a dynamic range extending from single-photon sensitivity to 10{sup 6} photons/pixel in a single XFEL pulse while maintaining the ability to tolerate a sustained flux of 10{sup 11} ph/s/pixel at a storage ring source. Achieving these goals involves themore » development of fast pixel front-end electronics as well as, in the XFEL case, leveraging the delayed charge collection due to plasma effects in the sensor. A first prototype of essential electronic components of the HDR-PAD readout ASIC, exploring different options for the pixel front-end, has been fabricated. Here, the HDR-PAD concept and preliminary design will be described.« less
NASA Astrophysics Data System (ADS)
Ueno, Akira; Ikegami, Kiyoshi; Kondo, Yasuhiro
2004-05-01
A Cs-free negative hydrogen (H-) ion source driven by pulsed arc plasma with a LaB6 filament is being operated for the beam tests of the Japan Proton Accelerator Research Complex (J-PARC) linac. A peak H- current of 38 mA, which exceeds the requirement of the J-PARC first stage, is stably extracted from the ion source with a beam duty factor of 0.9% (360 μs×25 Hz) by principally optimizing the surface condition and shape of the plasma electrode. The sufficiently small emittance of the beam was confirmed by high transmission efficiency (around 90%) through the following 324 MHz 3 MeV J-PARC radio frequency quadrupole linac (M. Ikegami et al., Proc. 2003 Part. Accel. Conf. 2003, p. 1509). The process of the optimization, which confirms the validity of hypothesis that H- ions are produced by surface reaction on a Mo plasma electrode dominantly in the ion source, is presented.
NASA Astrophysics Data System (ADS)
Sasaki, Akira; Sunahara, Atushi; Furukawa, Hiroyuki; Nishihara, Katsunobu; Nishikawa, Takeshi; Koike, Fumihiro
2016-03-01
Laser-produced plasma (LPP) extreme ultraviolet (EUV) light sources have been intensively investigated due to potential application to next-generation semiconductor technology. Current studies focus on the atomic processes and hydrodynamics of plasmas to develop shorter wavelength sources at λ = 6.x nm as well as to improve the conversion efficiency (CE) of λ = 13.5 nm sources. This paper examines the atomic processes of mid-z elements, which are potential candidates for λ = 6.x nm source using n=3-3 transitions. Furthermore, a method to calculate the hydrodynamics of the plasmas in terms of the initial interaction between a relatively weak prepulse laser is presented.
Krzemińska, Izabela; Piasecka, Agata; Nosalewicz, Artur; Simionato, Diana; Wawrzykowski, Jacek
2015-11-01
Chlorella protothecoides is a valuable source of lipids that may be used for biodiesel production. The present work shows analysis of the potential of photoheterotrophic cultivation of C. protothecoides under various light intensities aiming to identify the conditions with maximal biomass and lipid content. An increase in light intensity was associated with an increased specific growth rate and a shortened doubling time. Also, the relative total lipid content increased from 24.8% to 37.5% with increase of light intensity. The composition of fatty acid methyl esters was affected by light intensity with the C16-18 fatty acids increased from 76.97% to 90.24% of total fatty acids. However, the content of linolenic acids decreased with the increase of the culture irradiance. These studies indicate that cultures irradiated with high light intensities achieve the minimal specifications for biodiesel quality on linolenic acids and thus are suitable for biodiesel production. Copyright © 2015 Elsevier Ltd. All rights reserved.
Ultrasound: biological effects and industrial hygiene concerns.
Wiernicki, C; Karoly, W J
1985-09-01
Due to the increased use of high intensity ultrasonic devices, there is now a greater risk of worker exposure to ultrasonic radiation than there was in the past. Exposure to high power ultrasound may produce adverse biological effects. High power ultrasound, characterized by high intensity outputs at frequencies of 20-100 kHz, has a wide range of applications throughout industry. Future applications may involve equipment with higher energy outputs. Contact ultrasound, i.e., no airspace between the energy source and the biological tissue, is significantly more hazardous than exposure to airborne ultrasound because air transmits less than one percent of the energy. This paper discusses biological effects associated with overexposure to ultrasound, exposure standards proposed for airborne and contact ultrasound, industrial hygiene controls that can be employed to minimize exposure, and the instrumentation that is required for evaluating exposures.
Management and climate change in coastal Oregon forests: The Panther Creek Watershed as a case study
The highly productive forests of the Oregon Coast Range Mountains have been intensively harvested for many decades, and recent interest has emerged in the potential for removing harvest residue as a source of renewable woody biomass energy. However, the long-term consequences of ...
Some More Simple Laser Experiments for the Undergraduate Laboratory
ERIC Educational Resources Information Center
Yap, F. Y.
1969-01-01
Describes three elementary optics experiments using a laser instead of conventional light sources. Experiments illustrate the Fresnel-Arago law, elliptical polarization, double refraction and polarization in calcite, and interference by a Fresnel biprism. Because of the high intensity of the laser beam, these experiments lend themselves very well…
NASA Astrophysics Data System (ADS)
Yang, Xue; Brunetti, Enrico; Jaroszynski, Dino A.
2018-04-01
High-charge electron beams produced by laser-wakefield accelerators are potentially novel, scalable sources of high-power terahertz radiation suitable for applications requiring high-intensity fields. When an intense laser pulse propagates in underdense plasma, it can generate femtosecond duration, self-injected picocoulomb electron bunches that accelerate on-axis to energies from 10s of MeV to several GeV, depending on laser intensity and plasma density. The process leading to the formation of the accelerating structure also generates non-injected, sub-picosecond duration, 1–2 MeV nanocoulomb electron beams emitted obliquely into a hollow cone around the laser propagation axis. These wide-angle beams are stable and depend weakly on laser and plasma parameters. Here we perform simulations to characterise the coherent transition radiation emitted by these beams if passed through a thin metal foil, or directly at the plasma–vacuum interface, showing that coherent terahertz radiation with 10s μJ to mJ-level energy can be produced with an optical to terahertz conversion efficiency up to 10‑4–10‑3.
Preliminary Results on Luminaire Designs for Hybrid Solar Lighting Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Earl, D.D.
2001-06-15
We report on the design of two hybrid lighting luminaires that blend light from a fiber optic end-emitted solar source with electric T8 fluorescent lamps. Both designs involve the retrofit of a commercially-available recessed fluorescent luminaire with minimal reductions in the original luminaire's optical efficiency. Two methods for high-angle dispersion of fiber optic end-emitted solar light are described and the resulting spatial intensity distributions, simulated using ZEMAX, are compared with standard cylindrical fluorescent tubes. Differences in spatial intensity distribution are qualitatively characterized and potential design improvements discussed.
Intense Ly-alpha emission from Uranus
NASA Technical Reports Server (NTRS)
Durrance, S. T.; Moos, H. W.
1982-01-01
The existence of intense atomic hydrogen Ly-alpha emission from Uranus is demonstrated here by utilizing the monochromatic imaging capabilities of the International Ultraviolet Explorer (IUE) spectrograph. Observations show increased emission in the vicinity of Uranus superimposed on the geocoronal/interplanetary background. If resonant scattering of solar Ly-alpha is the source of the 1.6 + or - 0.4 kR disk averaged brightness, then very high column densities of atomic H above the absorbing methane are required. Precipitation of trapped charged particles, i.e., aurora, could explain the emissions. This would imply a planetary magnetic field.
Infrasound induced instability by modulation of condensation process in the atmosphere.
Naugolnykh, Konstantin; Rybak, Samuil
2008-12-01
A sound wave in supersaturated water vapor can modulate both the process of heat release caused by condensation, and subsequently, as a result, the resonance interaction of sound with the modulated heat release provides sound amplification. High-intensity atmospheric perturbations such as cyclones and thunderstorms generate infrasound, which is detectable at large distances from the source. The wave-condensation instability can lead to variation in the level of infrasound radiation by a developing cyclone, and this can be as a precursor of these intense atmospheric events.
A Penning sputter ion source with very low energy spread
NASA Astrophysics Data System (ADS)
Nouri, Z.; Li, R.; Holt, R. A.; Rosner, S. D.
2010-03-01
We have developed a version of the Frankfurt Penning ion source that produces ion beams with very low energy spreads of ˜3 eV, while operating in a new discharge mode characterized by very high pressure, low voltage, and high current. The extracted ions also comprise substantial metastable and doubly charged species. Detailed studies of the operating parameters of the source showed that careful adjustment of the magnetic field and gas pressure is critical to achieving optimum performance. We used a laser-fluorescence method of energy analysis to characterize the properties of the extracted ion beam with a resolving power of 1×10 4, and to measure the absolute ion beam energy to an accuracy of 4 eV in order to provide some insight into the distribution of plasma potential within the ion source. This characterization method is widely applicable to accelerator beams, though not universal. The low energy spread, coupled with the ability to produce intense ion beams from almost any gas or conducting solid, make this source very useful for high-resolution spectroscopic measurements on fast-ion beams.
Ion beam development for the needs of the JYFL nuclear physics programme.
Koivisto, H; Suominen, P; Ropponen, T; Ropponen, J; Koponen, T; Savonen, M; Toivanen, V; Wu, X; Machicoane, G; Stetson, J; Zavodszky, P; Doleans, M; Spädtke, P; Vondrasek, R; Tarvainen, O
2008-02-01
The increased requirements towards the use of higher ion beam intensities motivated us to initiate the project to improve the overall transmission of the K130 cyclotron facility. With the facility the transport efficiency decreases rapidly as a function of total beam intensity extracted from the JYFL ECR ion sources. According to statistics, the total transmission efficiency is of the order of 10% for low beam intensities (I(total)< or =0.7 mA) and only about 2% for high beam intensities (I(total)>1.5 mA). Requirements towards the use of new metal ion beams for the nuclear physics experiments have also increased. The miniature oven used for the production of metal ion beams at the JYFL is not able to reach the temperature needed for the requested metal ion beams. In order to fulfill these requirements intensive development work has been performed. An inductively and a resistively heated oven has successfully been developed and both are capable of reaching temperatures of about 2000 degrees C. In addition, sputtering technique has been tested. GEANT4 simulations have been started in order to better understand the processes involved with the bremsstrahlung, which gives an extra heat load to cryostat in the case of superconducting ECR ion source. Parallel with this work, a new advanced ECR heating simulation program has been developed. In this article we present the latest results of the above-mentioned projects.
Wang, Xiaoyan; Yu, Jialuo; Wu, Xiaqing; Fu, Junqing; Kang, Qi; Shen, Dazhong; Li, Jinhua; Chen, Lingxin
2016-07-15
A novel molecular imprinting-based turn-on ratiometric fluorescence sensor was constructed via a facile sol-gel polymerization for detection of 2,4-dichlorophenoxyacetic acid (2,4-D) on the basis of photoinduced electron transfer (PET) by using nitrobenzoxadiazole (NBD) as detection signal source and quantum dots (QDs) as reference signal source. With the presence and increase of 2,4-D, the amine groups on the surface of QDs@SiO2 could bind with 2,4-D and thereby the NBD fluorescence intensities could be significantly enhanced since the PET process was inhibited, while the QDs maintained constant intensities. Accordingly, the ratio of the dual-emission intensities of green NBD and red QDs could be utilized for turn-on fluorescent detection of 2,4-D, along with continuous color changes from orange-red to green readily observed by the naked eye. The as-prepared fluorescence sensor obtained high sensitivity with a low detection limit of 0.14μM within 5min, and distinguished recognition selectivity for 2,4-D over its analogs. Moreover, the sensor was successfully applied to determine 2,4-D in real water samples, and high recoveries at three spiking levels of 2,4-D ranged from 95.0% to 110.1% with precisions below 4.5%. The simple, rapid and reliable visual sensing strategy would not only provide potential applications for high selective ultratrace analysis of complicated matrices, but also greatly enrich the research connotations of molecularly imprinted sensors. Copyright © 2016 Elsevier B.V. All rights reserved.
Fernández-Camacho, R; Brito Cabeza, I; Aroba, J; Gómez-Bravo, F; Rodríguez, S; de la Rosa, J
2015-04-15
This study focuses on correlations between total number concentrations, road traffic emissions and noise levels in an urban area in the southwest of Spain during the winter and summer of 2009. The high temporal correlation between sound pressure levels, traffic intensity, particle number concentrations related to traffic, black carbon and NOx concentrations suggests that noise is linked to traffic emissions as a main source of pollution in urban areas. First, the association of these different variables was studied using PreFuRGe, a computational tool based on data mining and fuzzy logic. The results showed a clear association between noise levels and road-traffic intensity for non-extremely high wind speed levels. This behaviour points, therefore, to vehicular emissions being the main source of urban noise. An analysis for estimating the total number concentration from noise levels is also proposed in the study. The high linearity observed between particle number concentrations linked to traffic and noise levels with road traffic intensity can be used to calculate traffic related particle number concentrations experimentally. At low wind speeds, there are increases in noise levels of 1 dB for every 100 vehicles in circulation. This is equivalent to 2000 cm(-3) per vehicle in winter and 500 cm(-3) in summer. At high wind speeds, wind speed could be taken into account. This methodology allows low cost sensors to be used as a proxy for total number concentration monitoring in urban air quality networks. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Hugenschmidt, C.; Mayer, J.; Schreckenbach, K.
2010-04-01
Positron annihilation induced Auger electron spectroscopy (PAES) enables almost background free, non-destructive surface analysis with high surface selectivity. The Auger-spectrometer at the high intense positron source NEPOMUC now allows to record positron annihilation induced Auger spectra within a short data acquisition time of 10-80 minutes. With a new hemispherical electron energy analyzer and due to the exceptional peak to noise ratio, we succeeded to measure Auger-transitions such as the M2,3V V double peak of nickel with high energy resolution. The relative Auger-electron intensities are obtained by the analysis of the recorded positron annihilation induced Auger spectra for the surfaces of Fe, Ni, Cu, Pd and Au. It is demonstrated, that high-resolution PAES allows to determine experimentally the relative surface core annihilation probability of various atomic levels.
[The problems of assessment of the high noise impact on the experts of the Air Force].
Zinkin, V N; Sheshegov, P M
2012-01-01
Air Force specialists are exposed to high intensity noise levels exceeded the maximum permissible levels. Infrasound as a productive factor in accordance with the general technical requirements (OTT) Air Force-86 is not included in the list of standardized factors. The adverse acoustic environment makes the risk of occupational (sensorineural deafness) and professionally-related diseases of the nervous and cardiovascular systems. The system of physical fitness for military service in the Air Force and serving in the Air Force with high-intensity sources of noise, the system of treatment and preventive measures for adverse effects of noise and the procedure for examination of persons with diseases caused by the influence of noise are needed to be reviewed in accordance with the existing state legislative frameworks.
Cross, Jon B.; Cremers, David A.
1988-01-01
Laser sustained discharge apparatus for the production of intense beams of high kinetic energy atomic species. A portion of the plasma resulting from a laser sustained continuous optical discharge which generates energetic atomic species from a gaseous source thereof is expanded through a nozzle into a region of low pressure. The expanded plasma contains a significant concentration of the high kinetic energy atomic species which may be used to investigate the interaction of surfaces therewith. In particular, O-atoms having velocities in excess of 3.5 km/s can be generated for the purpose of studying their interaction with materials in order to develop protective materials for spacecraft which are exposed to such energetic O-atoms during operation in low earth orbit.
Cross, J.B.; Cremers, D.A.
1986-01-10
Laser sustained discharge apparatus for the production of intense beams of high kinetic energy atomic species is described. A portion of the plasma resulting from a laser sustained continuous optical discharge which generates energetic atomic species from a gaseous source thereof is expanded through a nozzle into a region of low pressure. The expanded plasma contains a significant concentration of the high kinetic energy atomic species which may be used to investigate the interaction of surfaces therewith. In particular, O-atoms having velocities in excess of 3.5 km/s can be generated for the purpose of studying their interaction with materials in order to develop protective materials for spacecraft which are exposed to such energetic O-atoms during operation in low earth orbit.
Production of large resonant plasma volumes in microwave electron cyclotron resonance ion sources
Alton, G.D.
1998-11-24
Microwave injection methods are disclosed for enhancing the performance of existing electron cyclotron resonance (ECR) ion sources. The methods are based on the use of high-power diverse frequency microwaves, including variable-frequency, multiple-discrete-frequency, and broadband microwaves. The methods effect large resonant ``volume`` ECR regions in the ion sources. The creation of these large ECR plasma volumes permits coupling of more microwave power into the plasma, resulting in the heating of a much larger electron population to higher energies, the effect of which is to produce higher charge state distributions and much higher intensities within a particular charge state than possible in present ECR ion sources. 5 figs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kanesue, Takeshi; Ikeda, Shunsuke
A laser ion source is a promising candidate as an ion source for heavy ion inertial fusion (HIF), where a pulsed ultra-intense and low-charged heavy ion beam is required. It is a key development for a laser ion source to transport laser-produced plasma with a magnetic field to achieve a high current beam. The effect of a tapered magnetic field on laser produced plasma is demonstrated by comparing the results with a straight solenoid magnet. The magnetic field of interest is a wider aperture on a target side and narrower aperture on an extraction side. Furthermore, based on the experimentallymore » obtained results, the performance of a scaled laser ion source for HIF was estimated.« less
Generation and transfer of single photons on a photonic crystal chip.
Englund, Dirk; Faraon, Andrei; Zhang, Bingyang; Yamamoto, Yoshihisa; Vucković, Jelena
2007-04-30
We present a basic building block of a quantum network consisting of a quantum dot coupled to a source cavity, which in turn is coupled to a target cavity via a waveguide. The single photon emission from the high-Q/V source cavity is characterized by twelve-fold spontaneous emission (SE) rate enhancement, SE coupling efficiency beta ~ 0.98 into the source cavity mode, and mean wavepacket indistinguishability of ~67%. Single photons are efficiently transferred into the target cavity via the waveguide, with a target/source field intensity ratio of 0.12 +/- 0.01. This system shows great promise as a building block of future on-chip quantum information processing systems.
Effects of wildfire on source-water quality and aquatic ecosystems, Colorado Front Range
Writer, Jeffrey H.; McCleskey, R. Blaine; Murphy, Sheila F.; Stone, Mike; Collins, Adrian; Thoms, Martin C.
2012-01-01
Watershed erosion can dramatically increase after wildfire, but limited research has evaluated the corresponding influence on source-water quality. This study evaluated the effects of the Fourmile Canyon wildfire (Colorado Front Range, USA) on source-water quality and aquatic ecosystems using high- frequency sampling. Dissolved organic carbon (DOC) and nutrient loads in stream water were evaluated for a one-year period during different types of runoff events, including spring snowmelt, and both frontal and summer convective storms. DOC export from the burned watershed did not increase relative to the unburned watershed during spring snowmelt, but substantial increases in DOC export were observed during summer convective storms. Elevated nutrient export from the burned watershed was observed during spring snowmelt and summer convective storms, which increased the primary productivity of stream biofilms. Wildfire effects on source-water quality were shown to be substantial following high-intensity storms, with the potential to affect drinking-water treatment processes.
Gallardo, J J; Navas, J; Alcántara, R; Fernández-Lorenzo, C; Aguilar, T; Martín-Calleja, J
2012-06-01
This paper presents a non-conventional methodology and an instrumental system to measure the effect of temperature on the photovoltaic properties of solar cells. The system enables the direct measurement of the evolution of open-circuit voltage and short-circuit current intensity in relation to a continuously decreasing temperature. The system uses a high-intensity white light-emitting diode light source with low emissions of radiation in the infrared region of the electromagnetic spectrum, resulting in a reduced heating of the photovoltaic devices by the irradiation source itself. To check the goodness of the system and the methodology designed, several measurements were performed with monocrystalline silicon solar cells, dye-sensitized solar cells, and thin-film amorphous silicon solar cells, showing similar tendencies to those reported in the literature.
Zhang Hua; Kuan, Wang; Song, Jian; Zhang, Yong; Huang, Ming; Huang, Jian; Zhu, Jing; Huang, Shan; Wang, Meng
2016-03-01
This paper used excitation-emission matrix spectroscopy (EEMs) to probe the fluorescence properties of dissolved organic matter (DOM) in the overlying water with different dissolved oxygen (DO) conditions, investigating the relationship between protein-like fluorescence intensity and total nitrogen concentration. The resulting fluorescence spectra revealed three protein-like components (high-excitation wavelength tyrosine, low-excitation wavelength tyrosine, low-excitation wavelength tryptophan) and two fulvic-like components (ultraviolet fulvic-like components, visible fulvic-like components) in the overlying water. Moreover, the protein-like components were dominant in the overlying water's DOM. The fluorescence intensity of the protein-like components decreased significantly after aeration. Two of the protein-like components--the low-excitation wavelength tyrosine and the low-excitation wavelength tryptophan--were more susceptible to degradation by microorganisms within the degradable organic matter with respect to the high-excitation wavelength tyrosine. In contrast, the ultraviolet and visible fulvic-like fluorescence intensity increased along with increasing DO concentration, indicating that the fulvic-like components were part of the refractory organics. The fluorescence indices of the DOM in the overlying water were between 1.65-1.80, suggesting that the sources of the DOM were related to terrigenous sediments and microbial metabolic processes, with the primary source being the contribution from microbial metabolism. The fluorescence indices increased along with DO growth, which showed that microbial biomass and microbial activity gradually increased with increasing DO while microbial metabolism also improved, which also increased the biogenic components in the overlying water. The fluorescence intensity of the high-excitation wavelength tyrosine peak A showed a good linear relationship with the total nitrogen concentration at higher DO concentrations of 2.5, 3.5, and 5.5 mg x L(-1), with r2 being 0.956, 0.946, and 0.953, respectively. This study demonstrated that excitation-emission matrix spectroscopy can distinguish the transformation characteristics of the DOM and identify the linear relationship between the fluorescence intensity of the high-excitation wavelength tyrosine peak A and total nitrogen concentration, thus providing a quick and effective technique and theoretical support for river water monitoring and water restoration.
Response in thermal neutrons intensity on the activation of seismic processes
NASA Astrophysics Data System (ADS)
Antonova, Valentina; Chubenko, Alexandr; Kryukov, Sergey; Lutsenko, Vadim
2017-04-01
Results of study of thermal and high-energy neutrons intensity during the activation of seismic activity are presented. Installations are located close to the fault of the earth's crust at the high-altitude station of cosmic rays (3340 m above sea level, 20 km from Almaty) in the mountains of Northern Tien-Shan. High correlation and similarity of responses to changes of space and geophysical conditions in the absence of seismic activity are obtained between data of thermal neutron detectors and data of the standard neutron monitor, recording the intensity of high-energy particles. These results confirm the genetic connection of thermal neutrons at the Earth's surface with high-energy neutrons of the galactic origin and suggest same sources of disturbances of their flux. However, observations and analysis of experimental data during the activation of seismic activity showed the frequent breakdown of the correlation between the intensity of thermal and high-energy neutrons and the absence of similarity between variations during these periods. We suppose that the cause of this phenomenon is the additional thermal neutron flux of the lithospheric origin, which appears under these conditions. Method of separating of thermal neutron intensity variations of the lithospheric origin from neutrons variations generated in the atmosphere is proposed. We used this method for analysis of variations of thermal neutrons intensity during earthquakes (with intensity ≥ 3b) in the vicinity of Almaty which took place in 2006-2015. The increase of thermal neutrons flux of the lithospheric origin during of seismic processes activation was observed for 60% of events. However, before the earthquake the increase of thermal neutron flux is only observed for 25-30% of events. It is shown that the amplitude of the additional thermal neutron flux from the Earth's crust is equal to 5-7% of the background level.
NASA Astrophysics Data System (ADS)
Olurin, Oluwaseun Tolutope
2017-12-01
Interpretation of high resolution aeromagnetic data of Ilesha and its environs within the basement complex of the geological setting of Southwestern Nigeria was carried out in the study. The study area is delimited by geographic latitudes 7°30'-8°00'N and longitudes 4°30'-5°00'E. This investigation was carried out using Euler deconvolution on filtered digitised total magnetic data (Sheet Number 243) to delineate geological structures within the area under consideration. The digitised airborne magnetic data acquired in 2009 were obtained from the archives of the Nigeria Geological Survey Agency (NGSA). The airborne magnetic data were filtered, processed and enhanced; the resultant data were subjected to qualitative and quantitative magnetic interpretation, geometry and depth weighting analyses across the study area using Euler deconvolution filter control file in Oasis Montag software. Total magnetic intensity distribution in the field ranged from -77.7 to 139.7 nT. Total magnetic field intensities reveal high-magnitude magnetic intensity values (high-amplitude anomaly) and magnetic low intensities (low-amplitude magnetic anomaly) in the area under consideration. The study area is characterised with high intensity correlated with lithological variation in the basement. The sharp contrast is enhanced due to the sharp contrast in magnetic intensity between the magnetic susceptibilities of the crystalline and sedimentary rocks. The reduced-to-equator (RTE) map is characterised by high frequencies, short wavelengths, small size, weak intensity, sharp low amplitude and nearly irregular shaped anomalies, which may due to near-surface sources, such as shallow geologic units and cultural features. Euler deconvolution solution indicates a generally undulating basement, with a depth ranging from -500 to 1000 m. The Euler deconvolution results show that the basement relief is generally gentle and flat, lying within the basement terrain.
High-precision source location of the 1978 November 19 gamma-ray burst
NASA Technical Reports Server (NTRS)
Cline, T. L.; Desai, U. D.; Teegarden, B. J.; Pizzichini, G.; Evans, W. D.; Klebesadel, R. W.; Laros, J. G.; Barat, C.; Hurley, K.; Niel, M.
1981-01-01
The celestial source location of the November 19, 1978, intense gamma ray burst has been determined from data obtained with the interplanetary gamma-ray sensor network by means of long-baseline wave front timing instruments. Each of the instruments was designed for studying events with observable spectra of approximately greater than 100 keV, and each provides accurate event profile timing in the several millisecond range. The data analysis includes the following: the triangulated region is centered at (gamma, delta) 1950 = (1h16m32s, -28 deg 53 arcmin), at -84 deg galactic latitude, where the star density is very low and the obscuration negligible. The gamma-ray burst source region, consistent with that of a highly polarized radio source described by Hjellming and Ewald (1981), may assist in the source modeling and may facilitate the understanding of the source process. A marginally identifiable X-ray source was also found by an Einstein Observatory investigation. It is concluded that the burst contains redshifted positron annihilation and nuclear first-excited iron lines, which is consistent with a neutron star origin.
Romano, P Q; Conlon, S C; Smith, E C
2013-01-01
Nonlinear structural intensity (NSI) and nonlinear structural surface intensity (NSSI) based damage detection techniques were improved and extended to metal and composite airframe structures. In this study, the measurement of NSI maps at sub-harmonic frequencies was completed to provide enhanced understanding of the energy flow characteristics associated with the damage induced contact acoustic nonlinearity mechanism. Important results include NSI source localization visualization at ultra-subharmonic (nf/2) frequencies, and damage detection results utilizing structural surface intensity in the nonlinear domain. A detection metric relying on modulated wave spectroscopy was developed and implemented using the NSSI feature. The data fusion of the intensity formulation provided a distinct advantage, as both the single interrogation frequency NSSI and its modulated wave extension (NSSI-MW) exhibited considerably higher sensitivities to damage than using single-sensor (strain or acceleration) nonlinear detection metrics. The active intensity based techniques were also extended to composite materials, and results show both NSSI and NSSI-MW can be used to detect damage in the bond line of an integrally stiffened composite plate structure with high sensitivity. Initial damage detection measurements made on an OH-58 tailboom (Penn State Applied Research Laboratory, State College, PA) indicate the techniques can be transitioned to complex airframe structures achieving high detection sensitivities with minimal sensors and actuators.
Tertiary particle physics with ELI: from challenge to chance (Conference Presentation)
NASA Astrophysics Data System (ADS)
Drska, Ladislav
2017-05-01
nteraction of high-intensity laser pulses with solid state targets results in generation of intense pulses of secondary particles via electromagnetic interaction : electrons, ions, hard x-rays. The beams of these particles can be used to produce various types of third-generation particles, beyond electromagnetic also other types of fundamental interactions can be involved in this process [1]. As the most interesting tertiary particles could be mentioned positrons, neutron, muons. This paper shall extend our previous analysis of this topic [2]: it discusses selected technical problems of design and realization of applicable sources of these particles and presents some more elaborated proposals for potential meaningful / hopefuly realistic exploitations of this technology. (1)Tertiary Sources (TS) : First Development Steps. This part of the presentation includes the topics as follows: (11) Pulsed positron sources: Verified solutions of laser-driven positron sources [3] [4] [5], development towards applicable facilities. Some unconventional concepts of application of lasers for positron production [6]. Techniques for realization of low/very-low energy positrons. (12) Taylored neutron sources [7]: Neutron sources with demanded space distribution, strongly beamed and isotropic solutions [8] [9]. Neutron generation with taylored energy distribution. Problem of the direct production of neutrons with very low energy [10] [11]. (13) Potential muon sources: Proof-of-principle laser experiment on electron / photon driven muon production [12] [13]. Study of the possibility of effective generation of surface muons. Problems of the production of muons with very low energy. (2) Fundamental & Applied Physics with TS: This part of the talk presents the themes: (21) Diagnostic potential of TS: Lepton emission as a signature of processes in extreme systems. Passive and active diagnostics using positrons, problems of detection and evaluation. Potential diagnostic applications of muons. Concrete application study: muon tomography. (22) Antilepton gravity studies [14]: Possibility of antimattter gravity research using positronium and muonium [15] [16]. Lepton / antilepton gravity studiesactive with relativistic particle beams [17]. First-phase practical application : positron production for filling (commertial) particle traps, development base for multiple microtrap systems. (23) Hidden world searching [18] : Potential laser-based production / detection of selected dark mattter particles - axions, hidden photons [19] [20]. Search for hidden particles in nuclear decay processes [21]. Potential application output: intense positronium source. Conclusion: The extensive feasibility study confirms the potential of ELI to contribute to the solution of Grand Challenge Problems of physics. Laser-produced tertiary particles will play important role in this effort. : References [1] L.Drska et al.: Physics of Extreme Systems. Course ATHENS CTU18, Prague 12 - 19 Nov., 2016. http://vega.fjfi.cvut.cz/docs/athens2016/ [2] L.Drska : Lepton Diagnostics and Antimatter Physics. In: SPIE Optics+Optoelectronics, Prague, April 13 - 16, 2015 . [3] H. Chen et al.: Scaling the Yield of Laser-Driven Electron-Positron Jets to Laboratory Astrophysics Applications. Rep. LLNL-JRNL-665381, Dec. 11, 2014. [4] E Liang et al.: High e+ / e- Ratio Dense Pair Creation with 1022 W.cm-2 Laser Irradiating Solid Targets. Scientific Reports, Sept. 14, 2015. www.nature.com/scientificreports [5] G. Sarri et al.: Spectral and Spatial Characterization of Laser-driven Positron Beams. Plasma Phys. Control. Fusion 59 (2017) 014015. [6] B. Schoch: A Method to Produce Intense Positron Beams via Electro Pair Production on Electrons. arXiv:1607.03847v1 [physics.acc-ph] [7] I. Pomerantz: Laser Generation of Neutrons: Science and Applications. In: ELI-NP Summer School, Magurele, Sept. 21 - 25, 2015. http://www.eli-np.ro/2015-summer-school/presentations/23.09/Pomerantz_Eli-NP-Summer-school-2015.pdf [8] V.P. Kovalev: Secondary Radiation of Electron Accelerators (in Russian). Atomizdat 1969. [9] M. Lebois et al.: Development of a Kinematically Focused Neutron Source with p(Li7,n)Be7 Inverse Reaction. Nucl. Instr. Meth. Phys. Res. A 735 (2014), 145. [10] D. Habs et al.: Neutron Halo Isomers in Stable Nuclei and their Possible Application for the Production of Low Energy, Pulsed, Polarized Neutron Beams of High Intensity and High Brilliance. Appl. Phys B103 (2011),485. [11] T. Masuda et al.: A New Method of Creating High/Intensity Neutron Source. arXiv:1604.02818v1[nucl-ex] [12] A.I. Titov et al.: Dimuon Production by Laser-wakefield Accelerated Electrons. Phys. Rev. ST Accel. Beams 12 (2009) 111301. [13] W. Dreesen et al.: Detection of Petawatt Laser-Induced Muon Source for Rapid High-Gamma Material Detection. DOE/NV/25946-2262. [14] F. Castelli: Positronium and Fundamental Physics: What Next ? In: What Next, Florence 2015. [15] G. Dufour et al. : Prospects for Studies of the Free Fall and Gravitation Quantum States of Antimatter. Advances in High Energy Physics 2015 (2015) 379642. [16] D.M. Kaplan et al.. Antimatter Gravity with Muonium. IIT-CAPP-16-1. arXiv:1601.07222v2 [physics.ins-det] [17] T. Kalaydzhyan: Gravitational Mass of Positron from LEP Synchrotron Losses. arXiv:1508.04377v3 [hep-ph] [18] J. Alexander et al.: Dark Sector 2016 Workshop: Community Report. arXiv:1608.08632[hep-ph] [19] M.A. Wahud et al.: Axion-like Particle Production in a Laser-Induced Dynamical Spacertime. arXiv:1612.07743v1 [hep-ph] [20] V. Kozhuharov et al: New Projects on Dark Photon Search. arXiv:1610.04389v1 [hep-ex] [21] A.J. Krasznahorkay et al.: Observation of Anomalous Internal Pair Creation in Be8: A Possible Signature of a Light, Neutral Boson. arXiv:1504.01527v1 [nucl-ex
Han, Qiang; Yu, Xing Xiu; Wang, Wei; Xu, Miao Miao; Ren, Rui; Zhang, Jia Peng
2017-04-18
Taking Hujiashan small watershed as the study area, based on the classified result of Landsat TM/ETM images of 2005, 2010 and 2015, combined with long-term field observation data, and used the export coefficient model, our study explored the effect of small watershed management project on temporal and spatial variation of total nitrogen (TN) load of non-point source pollution under the support of GIS technology. The results indicated that, due to the implementation of slope modification project, the area of cultivated land was significantly increased, while forest and bareland were decreased. The load of non-point source TN increased from 63208 kg in 2005 to 72778 kg in 2010, but reduced to 46876 kg in 2015. The contribution rate from residential areas was higher, the average contribution rate of the three periods was 53.5%, but it showed a decreasing trend year by year. The contribution rate of land use types was 45%, which showed an increasing trend year by year. The contribution rate of livestock was always low. From the spatial distribution, TN loading intensity was changed obviously after the terracing project. High load intensity zone was mainly concentrated on the slope of 5°-15° before terracing project. Nevertheless, high load intensity zone was concentrated on the slope of 15°-35° after terracing project, and 5°-8° had become a low load strength area. The TN load intensity changed little with time on the slope of 0°-8°, and it increased first and then decreased on the slope above 8°. With the treatment of sewage, garbage and livestock manure in rural areas, the output of nitrogen in the living and livestock breeding were significantly reduced. Due to the implementation of the project, the cultivated land area increased by 31%.
Importance of 'blue' photon levels for lettuce seedlings grown under red-light-emitting diodes
NASA Technical Reports Server (NTRS)
Hoenecke, M. E.; Bula, R. J.; Tibbitts, T. W.
1992-01-01
Light-emitting diodes (LEDs) with high-intensity output are being studied as a photosynthetic light source for plants. High-output LEDs have peak emission at approximately 660 nm concentrated in a waveband of +/- 30 nm. Lettuce (Lactuca sativa Grand Rapids') seedlings developed extended hypocotyls and elongated cotyledons when grown under these LEDs as a sole source of irradiance. This extension and elongation was prevented when the red LED radiation was supplemented with more than 15 micromoles m-2 s-1 of 400- to 500-nm photons from blue fluorescent lamps. Blue radiation effects were independent of the photon level of the red radiation.
Shipping Science Worldwide with Open Source Containers
NASA Astrophysics Data System (ADS)
Molineaux, J. P.; McLaughlin, B. D.; Pilone, D.; Plofchan, P. G.; Murphy, K. J.
2014-12-01
Scientific applications often present difficult web-hosting needs. Their compute- and data-intensive nature, as well as an increasing need for high-availability and distribution, combine to create a challenging set of hosting requirements. In the past year, advancements in container-based virtualization and related tooling have offered new lightweight and flexible ways to accommodate diverse applications with all the isolation and portability benefits of traditional virtualization. This session will introduce and demonstrate an open-source, single-interface, Platform-as-a-Serivce (PaaS) that empowers application developers to seamlessly leverage geographically distributed, public and private compute resources to achieve highly-available, performant hosting for scientific applications.
Note: A pulsed laser ion source for linear induction accelerators
NASA Astrophysics Data System (ADS)
Zhang, H.; Zhang, K.; Shen, Y.; Jiang, X.; Dong, P.; Liu, Y.; Wang, Y.; Chen, D.; Pan, H.; Wang, W.; Jiang, W.; Long, J.; Xia, L.; Shi, J.; Zhang, L.; Deng, J.
2015-01-01
We have developed a high-current laser ion source for induction accelerators. A copper target was irradiated by a frequency-quadrupled Nd:YAG laser (266 nm) with relatively low intensities of 108 W/cm2. The laser-produced plasma supplied a large number of Cu+ ions (˜1012 ions/pulse) during several microseconds. Emission spectra of the plasma were observed and the calculated electron temperature was about 1 eV. An induction voltage adder extracted high-current ion beams over 0.5 A/cm2 from a plasma-prefilled gap. The normalized beam emittance measured by a pepper-pot method was smaller than 1 π mm mrad.
High-resolution x-ray tomography using laboratory sources
NASA Astrophysics Data System (ADS)
Tkachuk, Andrei; Feser, Michael; Cui, Hongtao; Duewer, Fred; Chang, Hauyee; Yun, Wenbing
2006-08-01
X-ray computed tomography (XCT) is a powerful nondestructive 3D imaging technique, which enables the visualization of the three dimensional structure of complex, optically opaque samples. High resolution XCT using Fresnel zone plate lenses has been confined in the past to synchrotron radiation centers due to the need for a bright and intense source of x-rays. This confinement severely limits the availability and accessibility of x-ray microscopes and the wide proliferation of this methodology. We are describing a sub-50nm resolution XCT system operating at 8 keV in absorption and Zernike phase contrast mode based on a commercially available laboratory x-ray source. The system utilizes high-efficiency Fresnel zone plates with an outermost zone width of 35 nm and 700 nm structure height resulting in a current spatial resolution better than 50 nm. In addition to the technical description of the system and specifications, we present application examples in the semiconductor field.
Chan, B
2015-01-01
Background Functional improvements have been seen in stroke patients who have received an increased intensity of physiotherapy. This requires additional costs in the form of increased physiotherapist time. Objectives The objective of this economic analysis is to determine the cost-effectiveness of increasing the intensity of physiotherapy (duration and/or frequency) during inpatient rehabilitation after stroke, from the perspective of the Ontario Ministry of Health and Long-term Care. Data Sources The inputs for our economic evaluation were extracted from articles published in peer-reviewed journals and from reports from government sources or the Canadian Stroke Network. Where published data were not available, we sought expert opinion and used inputs based on the experts' estimates. Review Methods The primary outcome we considered was cost per quality-adjusted life-year (QALY). We also evaluated functional strength training because of its similarities to physiotherapy. We used a 2-state Markov model to evaluate the cost-effectiveness of functional strength training and increased physiotherapy intensity for stroke inpatient rehabilitation. The model had a lifetime timeframe with a 5% annual discount rate. We then used sensitivity analyses to evaluate uncertainty in the model inputs. Results We found that functional strength training and higher-intensity physiotherapy resulted in lower costs and improved outcomes over a lifetime. However, our sensitivity analyses revealed high levels of uncertainty in the model inputs, and therefore in the results. Limitations There is a high level of uncertainty in this analysis due to the uncertainty in model inputs, with some of the major inputs based on expert panel consensus or expert opinion. In addition, the utility outcomes were based on a clinical study conducted in the United Kingdom (i.e., 1 study only, and not in an Ontario or Canadian setting). Conclusions Functional strength training and higher-intensity physiotherapy may result in lower costs and improved health outcomes. However, these results should be interpreted with caution. PMID:26366241
Simulation of summer ozone episodes in Southeast Louisiana during 2006-2015
NASA Astrophysics Data System (ADS)
Guo, H.; Zhang, H.
2017-12-01
Southeast Louisiana experiences high ozone (O3) events due to immense emissions from industrial and urban sources and unique meteorology conditions of high temperatures, intensive solar radiation and land-sea breeze circulation. The Community Multi-scale Air Quality (CMAQ) model with modified photochemical mechanism is used to investigate the contributions of regional transport to ozone (O3) and its precursors to Southeast Louisiana in summer months from 2006 to 2015. The meteorological and CMAQ model performance are validated. Spatial and temporal variations of O3 are investigated during summer episodes in 10 years. Contributions of different source types and regions to 1 hour O3 are also quantified. Changes in the contributions of different source types and regions are also obtained to help design intelligent control measures.
Piestrup, M.A.; Boyers, D.G.; Pincus, C.
1991-12-31
A high-intensity, inexpensive X-ray source for X-ray lithography for the production of integrated circuits is disclosed. Foil stacks are bombarded with a high-energy electron beam of 25 to 250 MeV to produce a flux of soft X-rays of 500 eV to 3 keV. Methods of increasing the total X-ray power and making the cross section of the X-ray beam uniform are described. Methods of obtaining the desired X-ray-beam field size, optimum frequency spectrum and eliminating the neutron flux are all described. A method of obtaining a plurality of station operation is also described which makes the process more efficient and economical. The satisfying of these issues makes transition radiation an excellent moderate-priced X-ray source for lithography. 26 figures.
Understanding space charge and controlling beam loss in high intensity synchrotrons
NASA Astrophysics Data System (ADS)
Cousineau, Sarah M.
Future high intensity synchrotrons will require unprecedented control of beam loss in order to comply with radiation safety regulations and to allow for safe, hands-on maintenance of machine hardware. A major cause of beam loss in high intensity synchrotrons is the space charge force of the beam, which can lead to beam halo and emittance dilution. This dissertation presents a comprehensive study of space charge effects in high intensity synchrotron beams. Experimental measurements taken at the Proton Storage Ring (PSR) in Los Alamos National Laboratory and detailed simulations of the experiments are used to identify and characterize resonances that affect these beams. The collective motion of the beam is extensively studied and is shown to be more relevant than the single particle dynamics in describing the resonance response. The emittance evolution of the PSR beam and methods for reducing the space-charge-induced emittance growth are addressed. In a separate study, the emittance evolution of an intense space charge beam is experimentally measured at the Cooler Injector Synchrotron (CIS) at Indiana University. This dissertation also investigates the sophisticated two-stage collimation system of the future Spallation Neutron Source (SNS) high intensity accumulator ring. A realistic Monte-Carlo collimation simulation is developed and used to optimize the SNS ring collimation system parameters. The finalized parameters and predicted beam loss distribution around the ring are presented. The collimators will additionally be used in conjunction with a set of fast kickers to remove the beam from the gap region before the rise of the extraction magnets. The gap cleaning process is optimized and the cleaning efficiency versus momentum spread of the beam is examined.
Possibilities for Nuclear Photo-Science with Intense Lasers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barty, C J; Hartemann, F V; McNabb, D P
2006-06-26
The interaction of intense laser light with relativistic electrons can produce unique sources of high-energy x rays and gamma rays via Thomson scattering. ''Thomson-Radiated Extreme X-ray'' (T-REX) sources with peak photon brightness (photons per unit time per unit bandwidth per unit solid angle per unit area) that exceed that available from world's largest synchrotrons by more than 15 orders of magnitude are possible from optimally designed systems. Such sources offer the potential for development of ''nuclear photo-science'' applications in which the primary photon-atom interaction is with the nucleons and not the valence electrons. Applications include isotope-specific detection and imaging ofmore » materials, inverse density radiography, transmutation of nuclear waste and fundamental studies of nuclear structure. Because Thomson scattering cross sections are small, < 1 barn, the output from a T-REX source is optimized when the laser spot size and the electron spot size are minimized and when the electron and laser pulse durations are similar and short compared to the transit time through the focal region. The principle limitation to increased x-ray or gamma-ray brightness is ability to focus the electron beam. The effects of space charge on electron beam focus decrease approximately linearly with electron beam energy. For this reason, T-REX brightness increases rapidly as a function of the electron beam energy. As illustrated in Figure 1, above 100 keV these sources are unique in their ability to produce bright, narrow-beam, tunable, narrow-band gamma rays. New, intense, short-pulse, laser technologies for advanced T-REX sources are currently being developed at LLNL. The construction of a {approx}1 MeV-class machine with this technology is underway and will be used to excite nuclear resonance fluorescence in variety of materials. Nuclear resonance fluorescent spectra are unique signatures of each isotope and provide an ideal mechanism for identification of nuclear materials. With TREX it is possible to use NRF to provide high spatial resolution (micron scale) images of the isotopic distribution of all materials in a given object. Because of the high energy of the photons, imaging through dense and/or thick objects is possible. This technology will have applicability in many arenas including the survey of cargo for the presence of clandestine nuclear materials. It is also possible to address the more general radiographic challenge of imaging low-density objects that are shielded or placed behind high density objects. In this case, it is the NRF cross section and not the electron density of the material that provides contrast. Extensions of T-REX technology will be dependent upon the evolution of short pulse laser technology to high average powers. Concepts for sources that would produce 10's of kWs of gamma-rays by utilizing MW-class average-power, diode-pumped, short pulse lasers and energy recovery LINAC technology have been developed.« less
Development and characterization of a high-reliability, extended-lifetime H- ion source
NASA Astrophysics Data System (ADS)
Becerra, Gabriel; Barrows, Preston; Sherman, Joseph
2015-11-01
Phoenix Nuclear Labs (PNL) has designed and constructed a long-lifetime, negative hydrogen (H-) ion source, in partnership with Fermilab for an ion beam injector servicing future Intensity Frontier particle accelerators. The specifications for the low-energy beam transport (LEBT) section are 5-10 mA of continuous H- ion current at 30 keV with <0.2 π-mm-mrad emittance. Existing ion sources at Fermilab rely on plasma-facing electrodes, limiting their lifetime to a few hundred hours, while requiring relatively high gas loads on downstream components. PNL's design features an electron cyclotron resonance (ECR) microwave plasma driver which has been extensively developed in positive ion source systems, having demonstrated 1000+ hours of operation and >99% continuous uptime at PNL. Positive ions and hyperthermal neutrals drift toward a low-work-function surface, where a fraction is converted into H- hydrogen ions, which are subsequently extracted into a low-energy beam using electrostatic lenses. A magnetic filter preferentially removes high-energy electrons emitted by the source plasma, in order to mitigate H- ion destruction via electron-impact detachment. The design of the source subsystems and preliminary diagnostic results will be presented.
Towards highest peak intensities for ultra-short MeV-range ion bunches
NASA Astrophysics Data System (ADS)
Busold, Simon; Schumacher, Dennis; Brabetz, Christian; Jahn, Diana; Kroll, Florian; Deppert, Oliver; Schramm, Ulrich; Cowan, Thomas E.; Blažević, Abel; Bagnoud, Vincent; Roth, Markus
2015-07-01
A laser-driven, multi-MeV-range ion beamline has been installed at the GSI Helmholtz center for heavy ion research. The high-power laser PHELIX drives the very short (picosecond) ion acceleration on μm scale, with energies ranging up to 28.4 MeV for protons in a continuous spectrum. The necessary beam shaping behind the source is accomplished by applying magnetic ion lenses like solenoids and quadrupoles and a radiofrequency cavity. Based on the unique beam properties from the laser-driven source, high-current single bunches could be produced and characterized in a recent experiment: At a central energy of 7.8 MeV, up to 5 × 108 protons could be re-focused in time to a FWHM bunch length of τ = (462 ± 40) ps via phase focusing. The bunches show a moderate energy spread between 10% and 15% (ΔE/E0 at FWHM) and are available at 6 m distance to the source und thus separated from the harsh laser-matter interaction environment. These successful experiments represent the basis for developing novel laser-driven ion beamlines and accessing highest peak intensities for ultra-short MeV-range ion bunches.
Towards highest peak intensities for ultra-short MeV-range ion bunches
Busold, Simon; Schumacher, Dennis; Brabetz, Christian; Jahn, Diana; Kroll, Florian; Deppert, Oliver; Schramm, Ulrich; Cowan, Thomas E.; Blažević, Abel; Bagnoud, Vincent; Roth, Markus
2015-01-01
A laser-driven, multi-MeV-range ion beamline has been installed at the GSI Helmholtz center for heavy ion research. The high-power laser PHELIX drives the very short (picosecond) ion acceleration on μm scale, with energies ranging up to 28.4 MeV for protons in a continuous spectrum. The necessary beam shaping behind the source is accomplished by applying magnetic ion lenses like solenoids and quadrupoles and a radiofrequency cavity. Based on the unique beam properties from the laser-driven source, high-current single bunches could be produced and characterized in a recent experiment: At a central energy of 7.8 MeV, up to 5 × 108 protons could be re-focused in time to a FWHM bunch length of τ = (462 ± 40) ps via phase focusing. The bunches show a moderate energy spread between 10% and 15% (ΔE/E0 at FWHM) and are available at 6 m distance to the source und thus separated from the harsh laser-matter interaction environment. These successful experiments represent the basis for developing novel laser-driven ion beamlines and accessing highest peak intensities for ultra-short MeV-range ion bunches. PMID:26212024
Nonlinear derating of high-intensity focused ultrasound beams using Gaussian modal sums.
Dibaji, Seyed Ahmad Reza; Banerjee, Rupak K; Soneson, Joshua E; Myers, Matthew R
2013-11-01
A method is introduced for using measurements made in water of the nonlinear acoustic pressure field produced by a high-intensity focused ultrasound transducer to compute the acoustic pressure and temperature rise in a tissue medium. The acoustic pressure harmonics generated by nonlinear propagation are represented as a sum of modes having a Gaussian functional dependence in the radial direction. While the method is derived in the context of Gaussian beams, final results are applicable to general transducer profiles. The focal acoustic pressure is obtained by solving an evolution equation in the axial variable. The nonlinear term in the evolution equation for tissue is modeled using modal amplitudes measured in water and suitably reduced using a combination of "source derating" (experiments in water performed at a lower source acoustic pressure than in tissue) and "endpoint derating" (amplitudes reduced at the target location). Numerical experiments showed that, with proper combinations of source derating and endpoint derating, direct simulations of acoustic pressure and temperature in tissue could be reproduced by derating within 5% error. Advantages of the derating approach presented include applicability over a wide range of gains, ease of computation (a single numerical quadrature is required), and readily obtained temperature estimates from the water measurements.
Frank, Alan M.; Edwards, William R.
1983-01-01
A long-lifetime light source with sufficiently low intensity to be used for reading a map or other writing at nighttime, while not obscuring the user's normal night vision. This light source includes a diode electrically connected in series with a small power source and a lens properly positioned to focus at least a portion of the light produced by the diode.
Kovalev, S; Green, B; Golz, T; Maehrlein, S; Stojanovic, N; Fisher, A S; Kampfrath, T; Gensch, M
2017-03-01
Understanding dynamics on ultrafast timescales enables unique and new insights into important processes in the materials and life sciences. In this respect, the fundamental pump-probe approach based on ultra-short photon pulses aims at the creation of stroboscopic movies. Performing such experiments at one of the many recently established accelerator-based 4th-generation light sources such as free-electron lasers or superradiant THz sources allows an enormous widening of the accessible parameter space for the excitation and/or probing light pulses. Compared to table-top devices, critical issues of this type of experiment are fluctuations of the timing between the accelerator and external laser systems and intensity instabilities of the accelerator-based photon sources. Existing solutions have so far been only demonstrated at low repetition rates and/or achieved a limited dynamic range in comparison to table-top experiments, while the 4th generation of accelerator-based light sources is based on superconducting radio-frequency technology, which enables operation at MHz or even GHz repetition rates. In this article, we present the successful demonstration of ultra-fast accelerator-laser pump-probe experiments performed at an unprecedentedly high repetition rate in the few-hundred-kHz regime and with a currently achievable optimal time resolution of 13 fs (rms). Our scheme, based on the pulse-resolved detection of multiple beam parameters relevant for the experiment, allows us to achieve an excellent sensitivity in real-world ultra-fast experiments, as demonstrated for the example of THz-field-driven coherent spin precession.
Klose, Andrew; Ycas, Gabriel; Maser, Daniel L; Diddams, Scott A
2014-11-17
A source of ultrashort pulses of light in the 2 μm region was constructed using supercontinuum broadening from an erbium mode-locked laser. The output spectrum spanned 1000 nm to 2200 nm with an average power of 250 mW. A pulse width of 39 fs for part of the spectrum in the 2000 nm region, corresponding to less than six optical cycles, was achieved. A heterodyne measurement of the free-running mode-locked laser with a narrow-linewidth continuous wave laser resulted in a near shot noise-limited beat note with a signal-to-noise ratio of 45 dB in a 10 kHz resolution bandwidth. The relative intensity noise of the broadband system was investigated over the entire supercontinuum, and the integrated relative intensity noise of the 2000 nm portion of the spectrum was 1.7 × 10(-3). The long-term stability of the system was characterized, and intensity fluctuations in the spectrum were found to be highly correlated throughout the supercontinuum. Spectroscopic limitations due to the laser noise characteristics are discussed.
Design of a New Acceleration System for High-Current Pulsed Proton Beams from an ECR Source
NASA Astrophysics Data System (ADS)
Cooper, Andrew L.; Pogrebnyak, Ivan; Surbrook, Jason T.; Kelly, Keegan J.; Carlin, Bret P.; Champagne, Arthur E.; Clegg, Thomas B.
2014-03-01
A primary objective for accelerators at TUNL's Laboratory for Experimental Nuclear Astrophysics (LENA) is to maximize target beam intensity to ensure a high rate of nuclear events during each experiment. Average proton target currents of several mA are needed from LENA's electron cyclotron resonance (ECR) ion source because nuclear cross sections decrease substantially at energies of interest <200 keV. We seek to suppress undesired continuous environmental background by pulsing the beam and detecting events only during beam pulses. To improve beam intensity and transport, we installed a more powerful, stable microwave system for the ECR plasma, and will install a new acceleration system. This system will: reduce defocusing effects of the beam's internal space charge; provide better vacuum with a high gas conductance accelerating column; suppress bremsstrahlung X-rays produced when backstreaming electrons strike internal acceleration tube structures; and provide better heat dissipation by using deionized water to provide the current drain needed to establish the accelerating tube's voltage gradient. Details of beam optical modeling calculations, proposed accelerating tube design, and initial beam pulsing tests will be described. Work supported in part by USDOE Office of HE and Nuclear Physics.
Intensity-invariant coding in the auditory system.
Barbour, Dennis L
2011-11-01
The auditory system faithfully represents sufficient details from sound sources such that downstream cognitive processes are capable of acting upon this information effectively even in the face of signal uncertainty, degradation or interference. This robust sound source representation leads to an invariance in perception vital for animals to interact effectively with their environment. Due to unique nonlinearities in the cochlea, sound representations early in the auditory system exhibit a large amount of variability as a function of stimulus intensity. In other words, changes in stimulus intensity, such as for sound sources at differing distances, create a unique challenge for the auditory system to encode sounds invariantly across the intensity dimension. This challenge and some strategies available to sensory systems to eliminate intensity as an encoding variable are discussed, with a special emphasis upon sound encoding. Copyright © 2011 Elsevier Ltd. All rights reserved.
Sengsayadeth, Salyka; Savani, Bipin N.; Blaise, Didier; Malard, Florent; Nagler, Arnon; Mohty, Mohamad
2015-01-01
Acute myeloid leukemia is the most common indication for an allogeneic hematopoietic cell transplant. The introduction of reduced intensity conditioning has expanded the recipient pool for transplantation, which has importantly made transplant an option for the more commonly affected older age groups. Reduced intensity conditioning allogeneic transplantation is currently the standard of care for patients with intermediate or high-risk acute myeloid leukemia and is now most often employed in older patients and those with medical comorbidities. Despite being curative for a significant proportion of patients, post-transplant relapse remains a challenge in the reduced intensity conditioning setting. Herein we discuss the studies that demonstrate the feasibility of reduced intensity conditioning allogeneic transplants, compare the outcomes of reduced intensity conditioning versus chemotherapy and conventional myeloablative conditioning regimens, describe the optimal donor and stem cell source, and consider the impact of post-remission consolidation, comorbidities, center experience, and more intensive (reduced toxicity conditioning) regimens on outcomes. Additionally, we discuss the need for further prospective studies to optimize transplant outcomes. PMID:26130513
Seismic Hazard and Risk Assessments for Beijing-Tianjin-Tangshan, China, Area
Xie, F.; Wang, Z.; Liu, J.
2011-01-01
Seismic hazard and risk in the Beijing-Tianjin-Tangshan, China, area were estimated from 500-year intensity observations. First, we digitized the intensity observations (maps) using ArcGIS with a cell size of 0.1 ?? 0.1??. Second, we performed a statistical analysis on the digitized intensity data, determined an average b value (0.39), and derived the intensity-frequency relationship (hazard curve) for each cell. Finally, based on a Poisson model for earthquake occurrence, we calculated seismic risk in terms of a probability of I ??? 7, 8, or 9 in 50 years. We also calculated the corresponding 10 percent probability of exceedance of these intensities in 50 years. The advantages of assessing seismic hazard and risk from intensity records are that (1) fewer assumptions (i. e., earthquake source and ground motion attenuation) are made, and (2) site-effect is included. Our study shows that the area has high seismic hazard and risk. Our study also suggests that current design peak ground acceleration or intensity for the area may not be adequate. ?? 2010 Birkh??user / Springer Basel AG.
NASA Astrophysics Data System (ADS)
Ma, Suodong; Pan, Qiao; Shen, Weimin
2016-09-01
As one kind of light source simulation devices, spectrally tunable light sources are able to generate specific spectral shape and radiant intensity outputs according to different application requirements, which have urgent demands in many fields of the national economy and the national defense industry. Compared with the LED-type spectrally tunable light source, the one based on a DMD-convex grating Offner configuration has advantages of high spectral resolution, strong digital controllability, high spectrum synthesis accuracy, etc. As a key link of the above type light source to achieve target spectrum outputs, spectrum synthesis algorithm based on spectrum matching is therefore very important. An improved spectrum synthesis algorithm based on linear least square initialization and Levenberg-Marquardt iterative optimization is proposed in this paper on the basis of in-depth study of the spectrum matching principle. The effectiveness of the proposed method is verified by a series of simulations and experimental works.
High power parallel ultrashort pulse laser processing
NASA Astrophysics Data System (ADS)
Gillner, Arnold; Gretzki, Patrick; Büsing, Lasse
2016-03-01
The class of ultra-short-pulse (USP) laser sources are used, whenever high precession and high quality material processing is demanded. These laser sources deliver pulse duration in the range of ps to fs and are characterized with high peak intensities leading to a direct vaporization of the material with a minimum thermal damage. With the availability of industrial laser source with an average power of up to 1000W, the main challenge consist of the effective energy distribution and disposition. Using lasers with high repetition rates in the MHz region can cause thermal issues like overheating, melt production and low ablation quality. In this paper, we will discuss different approaches for multibeam processing for utilization of high pulse energies. The combination of diffractive optics and conventional galvometer scanner can be used for high throughput laser ablation, but are limited in the optical qualities. We will show which applications can benefit from this hybrid optic and which improvements in productivity are expected. In addition, the optical limitations of the system will be compiled, in order to evaluate the suitability of this approach for any given application.
Bilbao, Aivett; Gibbons, Bryson C.; Slysz, Gordon W.; ...
2017-11-06
We present that the mass accuracy and peak intensity of ions detected by mass spectrometry (MS) measurements are essential to facilitate compound identification and quantitation. However, high concentration species can yield erroneous results if their ion intensities reach beyond the limits of the detection system, leading to distorted and non-ideal detector response (e.g. saturation), and largely precluding the calculation of accurate m/z and intensity values. Here we present an open source computational method to correct peaks above a defined intensity (saturated) threshold determined by the MS instrumentation such as the analog-to-digital converters or time-to-digital converters used in conjunction with time-of-flightmore » MS. Here, in this method, the isotopic envelope for each observed ion above the saturation threshold is compared to its expected theoretical isotopic distribution. The most intense isotopic peak for which saturation does not occur is then utilized to re-calculate the precursor m/z and correct the intensity, resulting in both higher mass accuracy and greater dynamic range. The benefits of this approach were evaluated with proteomic and lipidomic datasets of varying complexities. After correcting the high concentration species, reduced mass errors and enhanced dynamic range were observed for both simple and complex omic samples. Specifically, the mass error dropped by more than 50% in most cases for highly saturated species and dynamic range increased by 1–2 orders of magnitude for peptides in a blood serum sample.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bilbao, Aivett; Gibbons, Bryson C.; Slysz, Gordon W.
The mass accuracy and peak intensity of ions detected by mass spectrometry (MS) measurements are essential to facilitate compound identification and quantitation. However, high concentration species can easily cause problems if their ion intensities reach beyond the limits of the detection system, leading to distorted and non-ideal detector response (e.g. saturation), and largely precluding the calculation of accurate m/z and intensity values. Here we present an open source computational method to correct peaks above a defined intensity (saturated) threshold determined by the MS instrumentation such as the analog-to-digital converters or time-to-digital converters used in conjunction with time-of-flight MS. In thismore » method, the isotopic envelope for each observed ion above the saturation threshold is compared to its expected theoretical isotopic distribution. The most intense isotopic peak for which saturation does not occur is then utilized to re-calculate the precursor m/z and correct the intensity, resulting in both higher mass accuracy and greater dynamic range. The benefits of this approach were evaluated with proteomic and lipidomic datasets of varying complexities. After correcting the high concentration species, reduced mass errors and enhanced dynamic range were observed for both simple and complex omic samples. Specifically, the mass error dropped by more than 50% in most cases with highly saturated species and dynamic range increased by 1-2 orders of magnitude for peptides in a blood serum sample.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bilbao, Aivett; Gibbons, Bryson C.; Slysz, Gordon W.
We present that the mass accuracy and peak intensity of ions detected by mass spectrometry (MS) measurements are essential to facilitate compound identification and quantitation. However, high concentration species can yield erroneous results if their ion intensities reach beyond the limits of the detection system, leading to distorted and non-ideal detector response (e.g. saturation), and largely precluding the calculation of accurate m/z and intensity values. Here we present an open source computational method to correct peaks above a defined intensity (saturated) threshold determined by the MS instrumentation such as the analog-to-digital converters or time-to-digital converters used in conjunction with time-of-flightmore » MS. Here, in this method, the isotopic envelope for each observed ion above the saturation threshold is compared to its expected theoretical isotopic distribution. The most intense isotopic peak for which saturation does not occur is then utilized to re-calculate the precursor m/z and correct the intensity, resulting in both higher mass accuracy and greater dynamic range. The benefits of this approach were evaluated with proteomic and lipidomic datasets of varying complexities. After correcting the high concentration species, reduced mass errors and enhanced dynamic range were observed for both simple and complex omic samples. Specifically, the mass error dropped by more than 50% in most cases for highly saturated species and dynamic range increased by 1–2 orders of magnitude for peptides in a blood serum sample.« less
THE Q/U IMAGING EXPERIMENT: POLARIZATION MEASUREMENTS OF RADIO SOURCES AT 43 AND 95 GHz
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huffenberger, K. M.; Araujo, D.; Zwart, J. T. L.
2015-06-10
We present polarization measurements of extragalactic radio sources observed during the cosmic microwave background polarization survey of the Q/U Imaging Experiment (QUIET), operating at 43 GHz (Q-band) and 95 GHz (W-band). We examine sources selected at 20 GHz from the public, >40 mJy catalog of the Australia Telescope (AT20G) survey. There are ∼480 such sources within QUIET’s four low-foreground survey patches, including the nearby radio galaxies Centaurus A and Pictor A. The median error on our polarized flux density measurements is 30–40 mJy per Stokes parameter. At signal-to-noise ratio > 3 significance, we detect linear polarization for seven sources inmore » Q-band and six in W-band; only 1.3 ± 1.1 detections per frequency band are expected by chance. For sources without a detection of polarized emission, we find that half of the sources have polarization amplitudes below 90 mJy (Q-band) and 106 mJy (W-band), at 95% confidence. Finally, we compare our polarization measurements to intensity and polarization measurements of the same sources from the literature. For the four sources with WMAP and Planck intensity measurements >1 Jy, the polarization fractions are above 1% in both QUIET bands. At high significance, we compute polarization fractions as much as 10%–20% for some sources, but the effects of source variability may cut that level in half for contemporaneous comparisons. Our results indicate that simple models—ones that scale a fixed polarization fraction with frequency—are inadequate to model the behavior of these sources and their contributions to polarization maps.« less
A New Network-Based Approach for the Earthquake Early Warning
NASA Astrophysics Data System (ADS)
Alessandro, C.; Zollo, A.; Colombelli, S.; Elia, L.
2017-12-01
Here we propose a new method which allows for issuing an early warning based upon the real-time mapping of the Potential Damage Zone (PDZ), e.g. the epicentral area where the peak ground velocity is expected to exceed the damaging or strong shaking levels with no assumption about the earthquake rupture extent and spatial variability of ground motion. The system includes the techniques for a refined estimation of the main source parameters (earthquake location and magnitude) and for an accurate prediction of the expected ground shaking level. The system processes the 3-component, real-time ground acceleration and velocity data streams at each station. For stations providing high quality data, the characteristic P-wave period (τc) and the P-wave displacement, velocity and acceleration amplitudes (Pd, Pv and Pa) are jointly measured on a progressively expanded P-wave time window. The evolutionary estimate of these parameters at stations around the source allow to predict the geometry and extent of PDZ, but also of the lower shaking intensity regions at larger epicentral distances. This is done by correlating the measured P-wave amplitude with the Peak Ground Velocity (PGV) and Instrumental Intensity (IMM) and by interpolating the measured and predicted P-wave amplitude at a dense spatial grid, including the nodes of the accelerometer/velocimeter array deployed in the earthquake source area. Depending of the network density and spatial source coverage, this method naturally accounts for effects related to the earthquake rupture extent (e.g. source directivity) and spatial variability of strong ground motion related to crustal wave propagation and site amplification. We have tested this system by a retrospective analysis of three earthquakes: 2016 Italy 6.5 Mw, 2008 Iwate-Miyagi 6.9 Mw and 2011 Tohoku 9.0 Mw. Source parameters characterization are stable and reliable, also the intensity map shows extended source effects consistent with kinematic fracture models of evets.
NASA Astrophysics Data System (ADS)
Meng, L.; Zhou, L.; Liu, J.
2013-12-01
Abstract: The April 20, 2013 Ms 7.0 earthquake in Lushan city, Sichuan province of China occurred as the result of east-west oriented reverse-type motion on a north-south striking fault. The source location suggests the event occurred on the Southern part of Longmenshan fault at a depth of 13km. The Lushan earthquake caused a great of loss of property and 196 deaths. The maximum intensity is up to VIII to IX at Boxing and Lushan city, which are located in the meizoseismal area. In this study, we analyzed the dynamic source process and calculated source spectral parameters, estimated the strong ground motion in the near-fault field based on the Brune's circle model at first. A dynamical composite source model (DCSM) has been developed further to simulate the near-fault strong ground motion with associated fault rupture properties at Boxing and Lushan city, respectively. The results indicate that the frictional undershoot behavior in the dynamic source process of Lushan earthquake, which is actually different from the overshoot activity of the Wenchuan earthquake. Based on the simulated results of the near-fault strong ground motion, described the intensity distribution of the Lushan earthquake field. The simulated intensity indicated that, the maximum intensity value is IX, and region with and above VII almost 16,000km2, which is consistence with observation intensity published online by China Earthquake Administration (CEA) on April 25. Moreover, the numerical modeling developed in this study has great application in the strong ground motion prediction and intensity estimation for the earthquake rescue purpose. In fact, the estimation methods based on the empirical relationship and numerical modeling developed in this study has great application in the strong ground motion prediction for the earthquake source process understand purpose. Keywords: Lushan, Ms7.0 earthquake; near-fault strong ground motion; DCSM; simulated intensity
NASA Astrophysics Data System (ADS)
Wang, H.; Chen, K.; Wu, Z.; Guan, X.
2017-12-01
In recent years, with the prominent of water environment problem and the relative increase of point source pollution governance, especially the agricultural non-point source pollution problem caused by the extensive use of fertilizers and pesticides has become increasingly aroused people's concern and attention. In order to reveal the quantitative relationship between agriculture water and fertilizer and non-point source pollution, on the basis of elm field experiment and combined with agricultural drainage irrigation model, the agricultural irrigation water and the relationship between fertilizer and fertilization scheme and non-point source pollution were analyzed and calculated by field emission intensity index. The results show that the variation of displacement varies greatly under different irrigation conditions. When the irrigation water increased from 22cm to 42cm, the irrigation water increased by 20 cm while the field displacement increased by 11.92 cm, about 66.22% of the added value of irrigation water. Then the irrigation water increased from 42 to 68, irrigation water increased 26 cm, and the field displacement increased by 22.48 cm, accounting for 86.46% of irrigation water. So there is an "inflection point" between the irrigation water amount and field displacement amount. The load intensity increases with the increase of irrigation water and shows a significant power correlation. Under the different irrigation condition, the increase amplitude of load intensity with the increase of irrigation water is different. When the irrigation water is smaller, the load intensity increase relatively less, and when the irrigation water increased to about 42 cm, the load intensity will increase considerably. In addition, there was a positive correlation between the fertilization and load intensity. The load intensity had obvious difference in different fertilization modes even with same fertilization level, in which the fertilizer field unit load intensity increased the most in July. The results provide some basis for the field control and management of agricultural non-point source pollution.
Super-atmospheric pressure chemical ionization mass spectrometry.
Chen, Lee Chuin; Rahman, Md Matiur; Hiraoka, Kenzo
2013-03-01
Super-atmospheric pressure chemical ionization (APCI) mass spectrometry was performed using a commercial mass spectrometer by pressurizing the ion source with compressed air up to 7 atm. Similar to typical APCI source, reactant ions in the experiment were generated with corona discharge using a needle electrode. Although a higher needle potential was necessary to initiate the corona discharge, discharge current and detected ion signal were stable at all tested pressures. A Roots booster pump with variable pumping speed was installed between the evacuation port of the mass spectrometer and the original rough pumps to maintain a same pressure in the first pumping stage of the mass spectrometer regardless of ion source pressure. Measurement of gaseous methamphetamine and research department explosive showed an increase in ion intensity with the ion source pressure until an optimum pressure at around 4-5 atm. Beyond 5 atm, the ion intensity decreased with further increase of pressure, likely due to greater ion losses inside the ion transport capillary. For benzene, it was found that besides molecular ion and protonated species, ion due to [M + 2H](+) which was not so common in APCI, was also observed with high ion abundance under super-atmospheric pressure condition. Copyright © 2013 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Shamanin, V. I.; Stepanov, A. V.; Rysbaev, K. Zh.
2018-04-01
The ion Br-diode in which plasma is generated under the action of a negative pre-pulse voltage is presented. Preliminary plasma formation allows the energy released in the diode during a positive voltage pulse to be increased. The high-energy ion beam parameters are investigated for the magnetic field induction changing from 0.8Bcr to 1.7Bcr.
Implications of the focal beam profile in serial femtosecond crystallography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galli, Lorenzo; Chapman, Henry N.; Metcalf, Peter
The photon density profile of an X-ray free-electron laser (XFEL) beam at the focal position is a critical parameter for serial femtosecond crystallography (SFX), but is difficult to measure because of the destructive power of the beam. A novel high intensity radiation induced phasing method (HIRIP) has been proposed as a general experimental approach for protein structure determination, but has proved to be sensitive to variations of the X-ray intensity, with uniform incident fluence desired for best performance. Here we show that experimental SFX data collected at the nano-focus chamber of the Coherent X-ray Imaging end-station at the Linac Coherentmore » Light Source using crystals with a limited size distribution suggests an average profile of the X-ray beam that has a large variation of intensity. We propose a new method to improve the quality of high fluence data for HI-RIP, by identifying and removing diffraction patterns from crystals exposed to the low intensity region of the beam. The method requires crystals of average size comparable to the width of the focal spot.« less
NASA Astrophysics Data System (ADS)
Parker, J. D.; Harada, M.; Hattori, K.; Iwaki, S.; Kabuki, S.; Kishimoto, Y.; Kubo, H.; Kurosawa, S.; Matsuoka, Y.; Miuchi, K.; Mizumoto, T.; Nishimura, H.; Oku, T.; Sawano, T.; Shinohara, T.; Suzuki, J.-I.; Takada, A.; Tanimori, T.; Ueno, K.; Ikeno, M.; Tanaka, M.; Uchida, T.
2014-04-01
The realization of high-intensity, pulsed spallation neutron sources such as J-PARC in Japan and SNS in the US has brought time-of-flight (TOF) based neutron techniques to the fore and spurred the development of new detector technologies. When combined with high-resolution imaging, TOF-based methods become powerful tools for direct imaging of material properties, including crystal structure/internal strain, isotopic/temperature distributions, and internal and external magnetic fields. To carry out such measurements in the high-intensities and high gamma backgrounds found at spallation sources, we have developed a new time-resolved neutron imaging detector employing a micro-pattern gaseous detector known as the micro-pixel chamber (μPIC) coupled with a field-programmable-gate-array-based data acquisition system. The detector combines 100μm-level (σ) spatial and sub-μs time resolutions with low gamma sensitivity of less than 10-12 and a rate capability on the order of Mcps (mega-counts-per-second). Here, we demonstrate the application of our detector to TOF-based techniques with examples of Bragg-edge transmission and neutron resonance transmission imaging (with computed tomography) carried out at J-PARC. We also consider the direct imaging of magnetic fields with our detector using polarized neutrons.
High on/off ratio nanosecond laser pulses for a triggered single-photon source
NASA Astrophysics Data System (ADS)
Jin, Gang; Liu, Bei; He, Jun; Wang, Junmin
2016-07-01
An 852 nm nanosecond laser pulse chain with a high on/off ratio is generated by chopping a continuous-wave laser beam using a Mach-Zehnder-type electro-optic intensity modulator (MZ-EOIM). The detailed dependence of the MZ-EOIM’s on/off ratio on various parameters is characterized. By optimizing the incident beam polarization and stabilizing the MZ-EOIM temperature, a static on/off ratio of 12600:1 is achieved. The dynamic on/off ratios versus the pulse repetition rate and the pulse duty cycle are measured and discussed. The high-on/off-ratio nanosecond pulsed laser system was used in a triggered single-photon source based on a trapped single cesium atom, which reveals clear antibunching.
Electron acceleration and high harmonic generation by relativistic surface plasmons
NASA Astrophysics Data System (ADS)
Cantono, Giada; Luca Fedeli Team; Andrea Sgattoni Team; Andrea Macchi Team; Tiberio Ceccotti Team
2016-10-01
Intense, short laser pulses with ultra-high contrast allow resonant surface plasmons (SPs) excitation on solid wavelength-scale grating targets, opening the way to the extension of Plasmonics in the relativistic regime and the manipulation of intense electromagnetic fields to develop new short, energetic, laser-synchronized radiation sources. Recent theoretical and experimental studies have explored the role of SP excitation in increasing the laser-target coupling and enhancing ion acceleration, high-order harmonic generation and surface electron acceleration. Here we present our results on SP driven electron acceleration from grating targets at ultra-high laser intensities (I = 5 ×1019 W/cm2, τ = 25 fs). When the resonant condition for SP excitation is fulfilled, electrons are emitted in a narrow cone along the target surface, with a total charge of about 100 pC and energy spectra peaked around 5 MeV. Distinguishing features of the resonant process were investigated by varying the incidence angle, grating type and with the support of 3D PIC simulations, which closely reproduced the experimental data. Open challenges and further measurements on high-order harmonic generation in presence of a relativistic SP will also be discussed.
Recent progress in plasma modelling at INFN-LNS
NASA Astrophysics Data System (ADS)
Neri, L.; Castro, G.; Torrisi, G.; Galatà, A.; Mascali, D.; Celona, L.; Gammino, S.
2016-02-01
At Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali del Sud (INFN-LNS), the development of intense ion and proton sources has been supported by a great deal of work on the modelling of microwave generated plasmas for many years. First, a stationary version of the particle-in-cell code was developed for plasma modelling starting from an iterative strategy adopted for the space charge dominated beam transport simulations. Electromagnetic properties of the plasma and full-waves simulations are now affordable for non-homogenous and non-isotropic magnetized plasma via "cold" approximation. The effects of Coulomb collisions on plasma particles dynamics was implemented with the Langevin formalism, instead of simply applying the Spitzer 90° collisions through a Monte Carlo technique. A wide database of different cross sections related to reactions occurring in a hydrogen plasma was implemented. The next step consists of merging such a variety of approaches for retrieving an "as-a-whole" picture of plasma dynamics in ion sources. The preliminary results will be summarized in the paper for a microwave discharge ion source designed for intense and high quality proton beams production, proton source for European Spallation Source project. Even if the realization of a predictive software including the complete processes involved in plasma formation is still rather far, a better comprehension of the source behavior is possible and so the simulations may support the optimization phase.
Recent progress in plasma modelling at INFN-LNS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neri, L., E-mail: neri@lns.infn.it; Castro, G.; Mascali, D.
2016-02-15
At Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali del Sud (INFN-LNS), the development of intense ion and proton sources has been supported by a great deal of work on the modelling of microwave generated plasmas for many years. First, a stationary version of the particle-in-cell code was developed for plasma modelling starting from an iterative strategy adopted for the space charge dominated beam transport simulations. Electromagnetic properties of the plasma and full-waves simulations are now affordable for non-homogenous and non-isotropic magnetized plasma via “cold” approximation. The effects of Coulomb collisions on plasma particles dynamics was implemented with the Langevinmore » formalism, instead of simply applying the Spitzer 90° collisions through a Monte Carlo technique. A wide database of different cross sections related to reactions occurring in a hydrogen plasma was implemented. The next step consists of merging such a variety of approaches for retrieving an “as-a-whole” picture of plasma dynamics in ion sources. The preliminary results will be summarized in the paper for a microwave discharge ion source designed for intense and high quality proton beams production, proton source for European Spallation Source project. Even if the realization of a predictive software including the complete processes involved in plasma formation is still rather far, a better comprehension of the source behavior is possible and so the simulations may support the optimization phase.« less
NASA Astrophysics Data System (ADS)
Kurniawati, F. N.; Mahajoeno, E.; Sunarto; Sari, S. L. A.
2017-07-01
One source of alternative energy substitute for petroleum raw materials is renewable vegetable oils known as biodiesel. Biodiesel can be produced from microalgae, since it was more efficient and environmentally friendly. Scenedesmus dimorphus (Turpin) Kützing was developed as a source of biodiesel since it had potential of high lipid production. The aims of this research were to know the rate of growth of Scenedesmus dimorphus in different lighting and the optimimum light intensity for biomass and lipid production. This research used a completely randomized design consisting of 3 treatments with 3 replications. Treatments in this research were the light intensity, i.e. 7,500, 10,000, and 12,500 lux. Scenedesmus dimorphus was grew in Bold’s Basal Medium (BBM). Parameters observed in this research were the cell number, biomass and lipid production of S. dimorphus. Data were analyzed by ANOVA followed by DMRT 5%. The results showed that the optimum growth rate of S. dimorphus was in the intensity of 12,500 lux that was 100.80 x 106 cells.ml-1. The optimum production of biomass and lipids was in treatment 12,500 lux i.e; 1.1407 g.L-1 and 0.2520 g.L-1 (22.28% dry weight).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Ya-Hui; Hsieh, Min-Shiu; Yu, Hsiu-Shan
It is often believed that intense flares preferentially originate from the large-size active regions (ARs) with strong magnetic fields and complex magnetic configurations. This work investigates the dependence of flare activity on the AR properties and clarifies the influence of AR magnetic parameters on the flare productivity, based on two data sets of daily sunspot and flare information as well as the GOES soft X-ray measurements and HMI vector magnetograms. By considering the evolution of magnetic complexity, we find that flare behaviors are quite different in the short- and long-lived complex ARs and the ARs with more complex magnetic configurationsmore » are likely to host more impulsive and intense flares. Furthermore, we investigate several magnetic quantities and perform the two-sample Kolmogorov–Smirnov test to examine the similarity/difference between two populations in different types of ARs. Our results demonstrate that the total source field strength on the photosphere has a good correlation with the flare activity in complex ARs. It is noted that intense flares tend to occur at the regions of strong source field in combination with an intermediate field-weighted shear angle. This result implies that the magnetic free energy provided by a complex AR could be high enough to trigger a flare eruption even with a moderate magnetic shear on the photosphere. We thus suggest that the magnetic free energy represented by the source field rather than the photospheric magnetic complexity is a better quantity to characterize the flare productivity of an AR, especially for the occurrence of intense flares.« less
Performance of 'energy efficient' compact fluorescent lamps.
Yuen, Gloria S-C; Sproul, Alistair B; Dain, Stephen J
2010-03-01
Compact fluorescent lamps (CFLs) have been heralded as highly energy efficient replacements for incandescent light globes, however, there is some public dissatisfaction with the light output and colour of CFLs. Independent examination of the claims made has not been made. Compliance with the interim Australian/New Zealand Standard has not been established by any independent authority. While the total light output (luminous flux) may meet certain standards, luminous intensity distributions of some designs do differ significantly from the incandescent sources that they are intended to replace. Luminous intensity distribution, luminous flux and spectral energy distribution of CFLs claimed to be equivalent to 75 W incandescent globes and 75 W incandescent globes (pearl and clear) were measured. Luminous flux, luminous efficacy, colour rendering index, correlated colour temperature, wattage and power factor were then calculated and compared with claims made by manufacturers and requirements of the standards. The sources generally complied with the requirements for luminous flux, luminous efficacy, colour rendering index and correlated colour temperature. The claim of 75 W equivalence, which is not regulated in Australia and New Zealand, is justified less than half the time. Luminous intensity distributions of biaxial CFLs are distinctly different from the incandescent lamps they purport to replace. CFLs generally comply with the standards set. The basis on which equivalent wattages are claimed needs to be included in the Australian and New Zealand standard because this is the measure most likely to be relied on by the public. Due to the differences in luminous intensity distribution, CFLs may not necessarily be a direct replacement for incandescent sources without some consideration.
Frank, A.M.; Edwards, W.R.
1983-10-11
A long-lifetime light source with sufficiently low intensity to be used for reading a map or other writing at nighttime, while not obscuring the user's normal night vision is disclosed. This light source includes a diode electrically connected in series with a small power source and a lens properly positioned to focus at least a portion of the light produced by the diode. 1 fig.
Frank, A.M.; Edwards, W.R.
1982-03-23
A long-lifetime light source is discussed with sufficiently low intensity to be used for reading a map or other writing at nightime, while not obscuring the user's normal night vision. This light source includes a diode electrically connected in series with a small power source and a lens properly positioned to focus at least a portion of the light produced by the diode.
Maxfield, Lynn; Palaparthi, Anil; Titze, Ingo
2017-03-01
The traditional source-filter theory of voice production describes a linear relationship between the source (glottal flow pulse) and the filter (vocal tract). Such a linear relationship does not allow for nor explain how changes in the filter may impact the stability and regularity of the source. The objective of this experiment was to examine what effect unpredictable changes to vocal tract dimensions could have on fo stability and individual harmonic intensities in situations in which low frequency harmonics cross formants in a fundamental frequency glide. To determine these effects, eight human subjects (five male, three female) were recorded producing fo glides while their vocal tracts were artificially lengthened by a section of vinyl tubing inserted into the mouth. It was hypothesized that if the source and filter operated as a purely linear system, harmonic intensities would increase and decrease at nearly the same rates as they passed through a formant bandwidth, resulting in a relatively symmetric peak on an intensity-time contour. Additionally, fo stability should not be predictably perturbed by formant/harmonic crossings in a linear system. Acoustic analysis of these recordings, however, revealed that harmonic intensity peaks were asymmetric in 76% of cases, and that 85% of fo instabilities aligned with a crossing of one of the first four harmonics with the first three formants. These results provide further evidence that nonlinear dynamics in the source-filter relationship can impact fo stability as well as harmonic intensities as harmonics cross through formant bandwidths. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.