Family free-play interaction: the role of the patient in the family interaction.
Baldwin, C P; Baldwin, A L; Cole, R E; Kokes, R F
1982-01-01
We have discussed the salient features of the family interaction in the free-play situation: the high rate of interaction with the child and general predominance of parental initiations in the parent-child interaction, the high correlation among all dyads on warmth. This led to the selection of three variables for study: rate of patient-child interaction, proportion of parental initiations to the child, and family warmth. There are major age changes: rate and proportion both decline with age. The patient's rate of interaction with the child and his proportion of interaction is lower than the spouse's rate. This holds for the 4- and 10-year-olds separately. We have tried to account for its reversal in the 7-year-old sample. Nonpsychotic patients have a higher rate of interaction, higher proportion of interactions, and higher family warmth than psychotics. Affectivity shows no relationship to these variables. Patients with a low global assessment score have lower rates, lower proportion, and less warmth than patients with a higher score. Patients who have been recently hospitalized have a lower rate of interactions with their sons than those who have been hospitalized longer.
Ford, Michael T; Wiggins, Bryan K
2012-07-01
Interactions between occupational-level physical hazards and cognitive ability and skill requirements were examined as predictors of injury incidence rates as reported by the U. S. Bureau of Labor Statistics. Based on ratings provided in the Occupational Information Network (O*NET) database, results across 563 occupations indicate that physical hazards at the occupational level were strongly related to injury incidence rates. Also, as expected, the physical hazard-injury rate relationship was stronger among occupations with high cognitive ability and skill requirements. In addition, there was an unexpected main effect such that occupations with high cognitive ability and skill requirements had lower injury rates even after controlling for physical hazards. The main effect of cognitive ability and skill requirements, combined with the interaction with physical hazards, resulted in unexpectedly high injury rates for low-ability and low-skill occupations with low physical hazard levels. Substantive and methodological explanations for these interactions and their theoretical and practical implications are offered. Results suggest that organizations and occupational health and safety researchers and practitioners should consider the occupational level of analysis and interactions between physical hazards and cognitive requirements in future research and practice when attempting to understand and prevent injuries.
ERIC Educational Resources Information Center
Dalton, William B.
A study was conducted to test four hypotheses: (1) There are differences in the total number of interactions that a teacher has with pupils whom she has rated differently. (2) The teacher interacts more directly with those pupils she rates low than with those she rates high. (3) The teacher interacts more indirectly fewer times with those pupils…
Instructor Reputation: An Expectancy Relationship Involving Student Ratings and Achievement.
ERIC Educational Resources Information Center
Perry, Raymond P.
1979-01-01
Instructor expressiveness and lecture content were combined with instructor reputation in a 2 X 2 X 2 factorial design to assess interaction effects. Results indicated that reputation interacted with expressiveness but not content, in which students rated positive, high-expressive instructors more favorably than negative, high-expressive…
Where Have All the Interactions Gone? Estimating the Coverage of Two-Hybrid Protein Interaction Maps
Huang, Hailiang; Jedynak, Bruno M; Bader, Joel S
2007-01-01
Yeast two-hybrid screens are an important method for mapping pairwise physical interactions between proteins. The fraction of interactions detected in independent screens can be very small, and an outstanding challenge is to determine the reason for the low overlap. Low overlap can arise from either a high false-discovery rate (interaction sets have low overlap because each set is contaminated by a large number of stochastic false-positive interactions) or a high false-negative rate (interaction sets have low overlap because each misses many true interactions). We extend capture–recapture theory to provide the first unified model for false-positive and false-negative rates for two-hybrid screens. Analysis of yeast, worm, and fly data indicates that 25% to 45% of the reported interactions are likely false positives. Membrane proteins have higher false-discovery rates on average, and signal transduction proteins have lower rates. The overall false-negative rate ranges from 75% for worm to 90% for fly, which arises from a roughly 50% false-negative rate due to statistical undersampling and a 55% to 85% false-negative rate due to proteins that appear to be systematically lost from the assays. Finally, statistical model selection conclusively rejects the Erdös-Rényi network model in favor of the power law model for yeast and the truncated power law for worm and fly degree distributions. Much as genome sequencing coverage estimates were essential for planning the human genome sequencing project, the coverage estimates developed here will be valuable for guiding future proteomic screens. All software and datasets are available in Datasets S1 and S2, Figures S1–S5, and Tables S1−S6, and are also available from our Web site, http://www.baderzone.org. PMID:18039026
Hunter-Gatherer Inter-Band Interaction Rates: Implications for Cumulative Culture
Hill, Kim R.; Wood, Brian M.; Baggio, Jacopo; Hurtado, A. Magdalena; Boyd, Robert T.
2014-01-01
Our species exhibits spectacular success due to cumulative culture. While cognitive evolution of social learning mechanisms may be partially responsible for adaptive human culture, features of early human social structure may also play a role by increasing the number potential models from which to learn innovations. We present interview data on interactions between same-sex adult dyads of Ache and Hadza hunter-gatherers living in multiple distinct residential bands (20 Ache bands; 42 Hadza bands; 1201 dyads) throughout a tribal home range. Results show high probabilities (5%–29% per year) of cultural and cooperative interactions between randomly chosen adults. Multiple regression suggests that ritual relationships increase interaction rates more than kinship, and that affinal kin interact more often than dyads with no relationship. These may be important features of human sociality. Finally, yearly interaction rates along with survival data allow us to estimate expected lifetime partners for a variety of social activities, and compare those to chimpanzees. Hadza and Ache men are estimated to observe over 300 men making tools in a lifetime, whereas male chimpanzees interact with only about 20 other males in a lifetime. High intergroup interaction rates in ancestral humans may have promoted the evolution of cumulative culture. PMID:25047714
Hunter-gatherer inter-band interaction rates: implications for cumulative culture.
Hill, Kim R; Wood, Brian M; Baggio, Jacopo; Hurtado, A Magdalena; Boyd, Robert T
2014-01-01
Our species exhibits spectacular success due to cumulative culture. While cognitive evolution of social learning mechanisms may be partially responsible for adaptive human culture, features of early human social structure may also play a role by increasing the number potential models from which to learn innovations. We present interview data on interactions between same-sex adult dyads of Ache and Hadza hunter-gatherers living in multiple distinct residential bands (20 Ache bands; 42 Hadza bands; 1201 dyads) throughout a tribal home range. Results show high probabilities (5%-29% per year) of cultural and cooperative interactions between randomly chosen adults. Multiple regression suggests that ritual relationships increase interaction rates more than kinship, and that affinal kin interact more often than dyads with no relationship. These may be important features of human sociality. Finally, yearly interaction rates along with survival data allow us to estimate expected lifetime partners for a variety of social activities, and compare those to chimpanzees. Hadza and Ache men are estimated to observe over 300 men making tools in a lifetime, whereas male chimpanzees interact with only about 20 other males in a lifetime. High intergroup interaction rates in ancestral humans may have promoted the evolution of cumulative culture.
NASA Astrophysics Data System (ADS)
Lai, Kwang-Chang; Lee, Fei-Fan; Lee, Feng-Shiuh; Lin, Guey-Lin; Liu, Tsung-Che; Yang, Yi
2016-07-01
The neutrino mass hierarchy is one of the neutrino fundamental properties yet to be determined. We introduce a method to determine neutrino mass hierarchy by comparing the interaction rate of neutral current (NC) interactions, ν(bar nu) + p → ν(bar nu) + p, and inverse beta decays (IBD), bar nue + p → n + e+, of supernova neutrinos in scintillation detectors. Neutrino flavor conversions inside the supernova are sensitive to neutrino mass hierarchy. Due to Mikheyev-Smirnov-Wolfenstein effects, the full swapping of bar nue flux with the bar nux (x = μ, τ) one occurs in the inverted hierarchy, while such a swapping does not occur in the normal hierarchy. As a result, more high energy IBD events occur in the detector for the inverted hierarchy than the high energy IBD events in the normal hierarchy. By comparing IBD interaction rate with the mass hierarchy independent NC interaction rate, one can determine the neutrino mass hierarchy.
Body-object interaction ratings for 1,618 monosyllabic nouns.
Tillotson, Sherri M; Siakaluk, Paul D; Pexman, Penny M
2008-11-01
Body-object interaction (BOI) assesses the ease with which a human body can physically interact with a word's referent. Recent research has shown that BOI influences visual word recognition processes in such a way that responses to high-BOI words (e.g., couch) are faster and less error prone than responses to low-BOI words (e.g., cliff). Importantly, the high-BOI words and the low-BOI words that were used in those studies were matched on imageability. In the present study, we collected BOI ratings for a large set of words. BOI ratings, on a 1-7 scale, were obtained for 1,618 monosyllabic nouns. These ratings allowed us to test the generalizability of BOI effects to a large set of items, and they should be useful to researchers who are interested in manipulating or controlling for the effects of BOI. The body-object interaction ratings for this study may be downloaded from the Psychonomic Society's Archive of Norms, Stimuli, and Data, www.psychonomic.org/archive.
High rate of adaptation of mammalian proteins that interact with Plasmodium and related parasites
Telis, Natalie; Petrov, Dmitri A.
2017-01-01
Plasmodium parasites, along with their Piroplasm relatives, have caused malaria-like illnesses in terrestrial mammals for millions of years. Several Plasmodium-protective alleles have recently evolved in human populations, but little is known about host adaptation to blood parasites over deeper evolutionary timescales. In this work, we analyze mammalian adaptation in ~500 Plasmodium- or Piroplasm- interacting proteins (PPIPs) manually curated from the scientific literature. We show that (i) PPIPs are enriched for both immune functions and pleiotropy with other pathogens, and (ii) the rate of adaptation across mammals is significantly elevated in PPIPs, compared to carefully matched control proteins. PPIPs with high pathogen pleiotropy show the strongest signatures of adaptation, but this pattern is fully explained by their immune enrichment. Several pieces of evidence suggest that blood parasites specifically have imposed selection on PPIPs. First, even non-immune PPIPs that lack interactions with other pathogens have adapted at twice the rate of matched controls. Second, PPIP adaptation is linked to high expression in the liver, a critical organ in the parasite life cycle. Finally, our detailed investigation of alpha-spectrin, a major red blood cell membrane protein, shows that domains with particularly high rates of adaptation are those known to interact specifically with P. falciparum. Overall, we show that host proteins that interact with Plasmodium and Piroplasm parasites have experienced elevated rates of adaptation across mammals, and provide evidence that some of this adaptation has likely been driven by blood parasites. PMID:28957326
Interaction of repetitively pulsed high energy laser radiation with matter
NASA Astrophysics Data System (ADS)
Hugenschmidt, M.
1986-05-01
Laser target interaction processes and methods of improving the overall energy balance are discussed. This can be achieved with high repetition rate pulsed lasers even for initially highly reflecting materials, such as metals. Experiments were performed using a pulsed CO2 laser at mean powers up to 2 KW and repetition rates up to 100 Hz. The rates of temperature rise of aluminum for example are increased by more than a factor of 3 as compared to cw-radiation of comparable power density. Similar improvements are found for the overall absorptivities, that are increased by more than an order of magnitude.
ERIC Educational Resources Information Center
Helmerhorst, Katrien O. W.; Riksen-Walraven, J. Marianne; Vermeer, Harriet J.; Fukkink, Ruben G.; Tavecchio, Louis W. C.
2014-01-01
Research Findings: High-quality caregiver-child interactions constitute the core of high-quality child care for young children. This article describes the background and development of the Caregiver Interaction Profile (CIP) scales to rate 6 key skills of caregivers for interacting with 0-to 4-year-old children in child care centers: sensitive…
Vella, Elizabeth J; Kamarck, Thomas W; Shiffman, Saul
2008-03-01
This study sought to determine the role of hostility in moderating the effects of positive social interactions on ambulatory blood pressure (ABP). Participants (341 adults) completed the Cook-Medley Hostility Scale and underwent ABP monitoring, assessed every 45 min during waking hours across 6 days. An electronic diary measuring mood and social interactions was completed at each ABP assessment. The dependent variables from the ABP monitor included systolic blood pressure, diastolic blood pressure, and heart rate. Different patterns of ambulatory diastolic blood pressure (ADBP) responding to social interactions perceived as intimate or supportive among high- versus low-hostile individuals were observed. Higher intimacy ratings were linked to reductions in ADBP among low-hostile but not high-hostile individuals. Conversely, high-hostile, but not low-hostile, individuals showed increases in ADBP to situations rated high in social support. Although findings for ambulatory systolic blood pressure were nonsignificant, the pattern of results was similar to ADBP. Hostile individuals may find offers of support stressful and may fail to benefit from intimacy during daily life. The pathogenic effects of hostility may be mediated in part by responses to social interactions, both positive and negative. (c) 2008 APA, all rights reserved
High speed hydrogen/graphite interaction
NASA Technical Reports Server (NTRS)
Kelly, A. J.; Hamman, R.; Sharma, O. P.; Harrje, D. T.
1974-01-01
Various aspects of a research program on high speed hydrogen/graphite interaction are presented. Major areas discussed are: (1) theoretical predictions of hydrogen/graphite erosion rates; (2) high temperature, nonequilibrium hydrogen flow in a nozzle; and (3) molecular beam studies of hydrogen/graphite erosion.
Duncan, Larissa G.; Coatsworth, J. Douglas; Gayles, Jochebed G.; Geier, Mary H.; Greenberg, Mark T.
2015-01-01
Research on mindful parenting, an extension of mindfulness to the interpersonal domain of parent-child relationships, has been limited by its reliance on self-report assessment. The current study is the first to examine whether observational indices of parent-youth interactions differentiate between high and low levels of self-reported mindful parenting. The Iowa Family Interaction Rating Scales (IFIRS) were used to code interactions between mothers and their 7th grade youth. Mothers drawn from the top and bottom quartiles (n = 375) of a larger distribution of self-reported interpersonal mindfulness in parenting (N = 804) represented clearly defined high and low mindful parenting groups. Discriminant function analysis (DFA) was used to analyze how well six composite IFIRS observational rating variables (e.g., parental warmth, consistent discipline) discriminated between high and low self-reports of mindful parenting. DFA results were cross-validated, with statistically significant canonical correlations found for both subsamples (p < .05). Subsequent independent samples t-tests revealed that group means were significantly different on all six IFIRS composite ratings. Confirmation of the relations between self-report mindful parenting and the observational ratings was also provided through hierarchical regression analyses conducted with a continuous predictor of mindful parenting using the full sample. Thus, the present study provides preliminary evidence for a link between self-reported mindful parenting and observed interactions between parents and youth. PMID:25844494
Bonding Pictures: Affective Ratings Are Specifically Associated to Loneliness But Not to Empathy
Silva, Heraldo D.; Campagnoli, Rafaela R.; Mota, Bruna Eugênia F.; Araújo, Cássia Regina V.; Álvares, Roberta Sônia R.; Mocaiber, Izabela; Rocha-Rego, Vanessa; Volchan, Eliane; Souza, Gabriela G. L.
2017-01-01
Responding to pro-social cues plays an important adaptive role in humans. Our aims were (i) to create a catalog of bonding and matched-control pictures to compare the emotional reports of valence and arousal with the International Affective Picture System (IAPS) pictures; (ii) to verify sex influence on the valence and arousal of bonding and matched-control pictures; (iii) to investigate if empathy and loneliness traits exert a specific influence on emotional reports for the bonding pictures. To provide a finer tool for social interaction studies, the present work defined two new sets of pictures consisting of “interacting dyads” (Bonding: N = 70) and matched controls “non-interacting dyads” (Controls: N = 70). The dyads could be either a child and an adult, or two children. Participants (N = 283, 182 women) were divided in 10 groups for the experimental sessions. The task was to rate the hedonic valence and emotional arousal of bonding and controls; and of pleasant, neutral, and unpleasant pictures from the IAPS. Effects of social-related traits, empathy and loneliness, on affective ratings were tested. Participants rated bonding pictures as more pleasant and arousing than control ones. Ratings did not differentiate bonding from IAPS pleasant pictures. Control pictures showed lower ratings than pleasant but higher ratings than neutral IAPS pictures. Women rated bonding and control pictures as more positive than men. There was no sex difference for arousal ratings. High empathic participants rated bonding and control pictures higher than low empathic participants. Also, they rated pleasant IAPS pictures more positive and arousing; and unpleasant pictures more negative and arousing than the less empathic ones. Loneliness trait, on the other hand, affected very specifically the ratings of bonding pictures; lonelier participants rated them less pleasant and less arousing than less lonely. Loneliness trait did not modulate ratings of other categories. In conclusion, high empathy seems related to emotional strength in general, while high loneliness seems to weaken the engagement in social interaction cues. PMID:28740473
Bonding Pictures: Affective Ratings Are Specifically Associated to Loneliness But Not to Empathy.
Silva, Heraldo D; Campagnoli, Rafaela R; Mota, Bruna Eugênia F; Araújo, Cássia Regina V; Álvares, Roberta Sônia R; Mocaiber, Izabela; Rocha-Rego, Vanessa; Volchan, Eliane; Souza, Gabriela G L
2017-01-01
Responding to pro-social cues plays an important adaptive role in humans. Our aims were (i) to create a catalog of bonding and matched-control pictures to compare the emotional reports of valence and arousal with the International Affective Picture System (IAPS) pictures; (ii) to verify sex influence on the valence and arousal of bonding and matched-control pictures; (iii) to investigate if empathy and loneliness traits exert a specific influence on emotional reports for the bonding pictures. To provide a finer tool for social interaction studies, the present work defined two new sets of pictures consisting of "interacting dyads" (Bonding: N = 70) and matched controls "non-interacting dyads" (Controls: N = 70). The dyads could be either a child and an adult, or two children. Participants ( N = 283, 182 women) were divided in 10 groups for the experimental sessions. The task was to rate the hedonic valence and emotional arousal of bonding and controls; and of pleasant, neutral, and unpleasant pictures from the IAPS. Effects of social-related traits, empathy and loneliness, on affective ratings were tested. Participants rated bonding pictures as more pleasant and arousing than control ones. Ratings did not differentiate bonding from IAPS pleasant pictures. Control pictures showed lower ratings than pleasant but higher ratings than neutral IAPS pictures. Women rated bonding and control pictures as more positive than men. There was no sex difference for arousal ratings. High empathic participants rated bonding and control pictures higher than low empathic participants. Also, they rated pleasant IAPS pictures more positive and arousing; and unpleasant pictures more negative and arousing than the less empathic ones. Loneliness trait, on the other hand, affected very specifically the ratings of bonding pictures; lonelier participants rated them less pleasant and less arousing than less lonely. Loneliness trait did not modulate ratings of other categories. In conclusion, high empathy seems related to emotional strength in general, while high loneliness seems to weaken the engagement in social interaction cues.
ERIC Educational Resources Information Center
Siakaluk, Paul D.; Pexman, Penny M.; Aguilera, Laura; Owen, William J.; Sears, Christopher R.
2008-01-01
We examined the effects of sensorimotor experience in two visual word recognition tasks. Body-object interaction (BOI) ratings were collected for a large set of words. These ratings assess perceptions of the ease with which a human body can physically interact with a word's referent. A set of high BOI words (e.g., "mask") and a set of low BOI…
Crossley, Jim; Eiser, Christine; Davies, Helena A
2005-08-01
Only a patient and his or her family can judge many of the most important aspects of the doctor-patient interaction. This study evaluates the feasibility and reliability of children and their families assessing the quality of paediatricians' interactions using a rating instrument developed specifically for this purpose. A reliability analysis using generalisability theory on the ratings from 352 doctor-patient interactions across different speciality clinics. Ratings were normally distributed. They were highest for 'overall' performance, and lowest for giving time to discuss the families' agenda. An appropriate sample of adults' ratings provided a reliable score (G = 0.7 with 15 raters), but children's ratings were too idiosyncratic to be reproducible (G = 0.36 with 15 raters). CONCLUSIONS AND FURTHER WORK: Accompanying adults can provide reliable ratings of doctors' interactions with children. Because an adult is usually present at the consultation their ratings provide a highly feasible and authentic approach. Sampling doctors' interactions from different clinics and with patients of both genders provides a universal picture of performance. The method is ideal to measure performance for in-training assessment or revalidation. Further work is in progress to evaluate the educational impact of feeding ratings back to the doctors being assessed, and their use in a range of clinical contexts.
Durand, Casey P
2013-01-01
Statistical interactions are a common component of data analysis across a broad range of scientific disciplines. However, the statistical power to detect interactions is often undesirably low. One solution is to elevate the Type 1 error rate so that important interactions are not missed in a low power situation. To date, no study has quantified the effects of this practice on power in a linear regression model. A Monte Carlo simulation study was performed. A continuous dependent variable was specified, along with three types of interactions: continuous variable by continuous variable; continuous by dichotomous; and dichotomous by dichotomous. For each of the three scenarios, the interaction effect sizes, sample sizes, and Type 1 error rate were varied, resulting in a total of 240 unique simulations. In general, power to detect the interaction effect was either so low or so high at α = 0.05 that raising the Type 1 error rate only served to increase the probability of including a spurious interaction in the model. A small number of scenarios were identified in which an elevated Type 1 error rate may be justified. Routinely elevating Type 1 error rate when testing interaction effects is not an advisable practice. Researchers are best served by positing interaction effects a priori and accounting for them when conducting sample size calculations.
Interaction of Repetitively Pulsed High Energy Laser Radiation With Matter
NASA Astrophysics Data System (ADS)
Hugenschmidt, Manfred
1986-10-01
The paper is concerned with laser target interaction processes involving new methods of improving the overall energy balance. As expected theoretically, this can be achieved with high repetition rate pulsed lasers even for initially highly reflecting materials, such as metals. Experiments were performed by using a pulsed CO2 laser at mean powers up to 2 kW and repetition rates up to 100 Hz. The rates of temperature rise of aluminium for example were thereby increased by lore than a factor of 3 as compared to cw-radiation of comparable power density. Similar improvements were found for the overall absorptivities that were increased by this method by more than an order of magnitude.
Hincapié-Palacio, Doracelly; Ospina-Giraldo, Juan; Gómez-Arias, Rubén D; Uyi-Afuwape, Anthony; Chowell-Puente, Gerardo
2010-02-01
The study was aimed at comparing measles and rubella disease elimination levels in a homogeneous and heterogeneous population according to socioeconomic status with interactions amongst low- and high-income individuals and diversity in the average number of contacts amongst them. Effective reproductive rate simulations were deduced from a susceptibleinfected- recovered (SIR) mathematical model according to different immunisation rates using measles (1980 and 2005) and rubella (1998 and 2005) incidence data from Latin-America and the Caribbean. Low- and high-income individuals' social interaction and their average number of contacts were analysed by bipartite random network analysis. MAPLE 12 (Maplesoft Inc, Ontario Canada) software was used for making the simulations. The progress made in eliminating both diseases between both periods of time was reproduced in the socially-homogeneous population. Measles (2005) would be eliminated in high- and low-income groups; however, it would only be achieved in rubella (2005) if there were a high immunity rate amongst the low-income group. If the average number of contacts were varied, then rubella would not be eliminated, even with a 95 % immunity rate. Monitoring the elimination level in diseases like measles and rubella requires that socio-economic status be considered as well as the population's interaction pattern. Special attention should be paid to communities having diversity in their average number of contacts occurring in confined spaces such as displaced communities, prisons, educational establishments, or hospitals.
Penne, A; Ten Brug, A; Munde, V; van der Putten, A; Vlaskamp, C; Maes, B
2012-02-01
Multisensory storytelling (MSST) is an individualised activity for people with profound intellectual and multiple disabilities (PIMD) in which a story is being told with an emphasis on sensory experiences and social interaction. MSST is a promising approach, but needs more empirical research evidence. In general, there is a lack of research about staff interaction during specific activities with people with PIMD. In the present study, we explored the possibility to describe staff interactive style during MSST making use of a global coding instrument. Twenty dyads of a person with PIMD and a professional caregiver participated in an observation study. The caregivers received training in MSST and told a multisensory story to their client once a week, for a period of 10 weeks. The first, fifth and last session were recorded on video. Staff interactive style was coded using an adapted version of the Maternal Behavior Rating Scale, with a consensus rating procedure. Professional caregivers scored moderately on the Maternal Behavior Rating Scale. Repeated measures analyses showed no change in time. We did not find a relationship between staff interactive style and client or staff characteristics. The Maternal Behavior Rating Scale contributes to our understanding of staff interactive style during activities with people with PIMD. Specifically for MSST, the moderate scores on the interactive style dimensions were unexpected, because the individualised MSST activity created an optimal situation for high-quality interaction with people with PIMD. Because the interactive style did not improve through the repetition of the activity either, these results might point to a need for staff training in achieving high-quality interaction during activities like MSST. © 2011 The Authors. Journal of Intellectual Disability Research © 2011 Blackwell Publishing Ltd.
Enkelmann, Hwee Chong; Bishop, George D; Tong, Eddie M W; Diong, Siew Maan; Why, Yong Peng; Khader, Majeed; Ang, Jansen
2005-05-01
This study tested the hypotheses that ambulatory heart rate and blood pressure would be higher for individuals high but not low in hostility when they experienced negative affect or social stress and that this interaction would be stronger for Indians compared with other Singapore ethnic groups. Ambulatory blood pressure monitoring was done on 108 male Singapore patrol officers as they went about their daily duties. After each BP measurement participants completed a computerized questionnaire including items on emotional experience. Individuals high in hostility showed higher systolic blood pressure when reporting negative affect whereas this was not true for those low in hostility. Ethnic differences were obtained such that Indians showed an increase in mean arterial pressure when angered whereas MAP was negatively related to anger for Malays and unrelated for Chinese. Also a three-way interaction between ethnicity, hostility, and social stress indicated that hostility and social stress interacted in their effects on DBP for Indian participants but not for Chinese or Malays. Finally, a three-way interaction was obtained between ethnicity, hostility and negative affect for heart rate in which heart rate increased with increasing levels of negative affect for Chinese high in hostility and Malays low in hostility but decreased with increasing negative affect for all other participants. These data are consistent with higher CHD rates among individuals high in hostility and also provide additional evidence on ethnic differences in cardiovascular reactivity in Singapore.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steinberg, Adam M.; Driscoll, James F.
2010-07-15
Temporally resolved measurements of turbulence-flame interaction were used to experimentally determine relationships for the strain-rate and curvature stretch-rate exerted on a premixed flame surface. These relationships include a series of transfer functions that are analogous to, but not equal to, stretch-efficiency functions. The measurements were obtained by applying high-repetition-rate particle image velocimetry in a turbulent slot Bunsen flame and were able to resolve the range of turbulent scales that cause flame surface straining and wrinkling. Fluid control masses were tracked in a Lagrangian manner as they interacted with the flame surface. From each interaction, the spatially and temporally filtered subgridmore » strain-rate and curvature stretch-rate were measured. By analyzing the statistics of thousands of turbulence-flame interactions, relationships for the strain-rate and curvature stretch-rate were determined that are appropriate for Large Eddy Simulation. It was found that the strain-rate exerted on the flame during these interactions was better correlated with the strength of the subgrid fluid-dynamic strain-rate field than with previously used characteristic strain-rates. Furthermore, stretch-efficiency functions developed from simplified vortex-flame interactions significantly over-predict the measurements. Hence, the proposed relationship relates the strain-rate on the flame to the filtered subgrid fluid-dynamic strain-rate field during real turbulence-flame interactions using an empirically determined Strain-Rate Transfer function. It was found that the curvature stretch-rate did not locally balance the strain-rate as has been proposed in previous models. A geometric relationship was found to exist between the subgrid flame surface wrinkling factor and subgrid curvature stretch-rate, which could be expressed using an empirically determined wrinkling factor transfer function. Curve fits to the measured relationships are provided that could be implemented in numerical simulations of turbulent premixed combustion. (author)« less
ERIC Educational Resources Information Center
Phirangee, Krystle
2016-01-01
Despite the growth of its popularity in recent years, online learning has demonstrated high dropout rates compared to dropout rates in traditional face-to-face courses. Prior research attributes attrition to the physical isolation of students from one another and the lack of interaction between and among them--factors which foster feelings of…
Age-period-cohort analysis of suicides among Japanese 1950-2003: a Bayesian cohort model analysis.
Ooe, Yosuke; Ohno, Yuko; Nakamura, Takashi
2009-07-01
The suicide rate in Japan is one of the highest in the world and presents us with a considerable challenge. Demographic statistics show that the number of suicides is on the rise, and at roughly 30,000 people per year have committed suicide since 1998. Suicide trends are not only related to economic boom and bust but also to certain generations and age groups. During the 1950s, there was a remarkably high suicide rate among people in their 20s, and this cohort was identical to that of the middle-age generation in the 1980s. It is important to separately understand both the trend of suicide rates and the numbers analyzed to determine the different factors that influence suicide. These include age, time period, cohort, interaction between age and time period, and changes in population composition. We performed an age-period-cohort analysis of annual trends of suicide rates by age group in Japan using a Bayesian cohort model. With the help of the Nakamura method, we have been able to break down the effects of age, time period, cohort, and the age-by-period interaction. The cohort comprised of people born in the 1930s demonstrated a relatively high suicide rate. Men currently in their 50s also belong to a high suicide rate cohort. Regarding the period effect, business cycles and by-period interaction effect, it became apparent that the high suicide rate among young adults in their early 20s around 1960 was slowing, especially among men. Instead, there was an obvious recent trend for men in their late 50s to have the highest suicide rate. This study confirmed that age-period-cohort analysis can describe these trends of suicide mortality of the Japanese.
Kuwaiti, Ahmed Al
2015-01-01
This study aims at investigating the effect of response rate and class size interaction on students' evaluation of instructors and the courses offered at heath science colleges in Saudi Arabia. A retrospective study design was adapted to ascertain Course Evaluation Surveys (CES) conducted at the health science colleges of the University of Dammam [UOD] in the academic year 2013-2014. Accordingly, the CES data which was downloaded from an exclusive online application 'UDQUEST' which includes 337 different courses and 15,264 surveys were utilized in this study. Two-way analysis of variance was utilized to test whether there is any significant interaction between the class size and the response rate on the students' evaluation of courses and instructors. The study showed that high response rate is required for student evaluation of instructors at Health Science colleges when the class size is small whereas a medium response rate is required for students' evaluation of courses. On the other hand, when the class size is medium, a medium or high response rate is needed for students' evaluation of both instructors and courses. The results of this study recommend that the administrators of the health science colleges to be aware of the interpretation of students' evaluations of courses and instructors. The study also suggests that the interaction between response rate and class size is a very important factor that needs to be taken into consideration while interpreting the findings of the students' evaluation of instructors and courses.
Coriton, Bruno; Frank, Jonathan H.
2016-02-16
In turbulent flows, the interaction between vorticity, ω, and strain rate, s, is considered a primary mechanism for the transfer of energy from large to small scales through vortex stretching. The ω-s coupling in turbulent jet flames is investigated using tomographic particle image velocimetry (TPIV). TPIV provides a direct measurement of the three-dimensional velocity field from which ω and s are determined. The effects of combustion and mean shear on the ω-s interaction are investigated in turbulent partially premixed methane/air jet flames with high and low probabilities of localized extinction as well as in a non-reacting isothermal air jet withmore » Reynolds number of approximately 13,000. Results show that combustion causes structures of high vorticity and strain rate to agglomerate in highly correlated, elongated layers that span the height of the probe volume. In the non-reacting jet, these structures have a more varied morphology, greater fragmentation, and are not as well correlated. The enhanced spatiotemporal correlation of vorticity and strain rate in the stable flame results in stronger ω-s interaction characterized by increased enstrophy and strain-rate production rates via vortex stretching and straining, respectively. The probability of preferential local alignment between ω and the eigenvector of the intermediate principal strain rate, s 2, which is intrinsic to the ω-s coupling in turbulent flows, is larger in the flames and increases with the flame stability. The larger mean shear in the flame imposes a preferential orientation of ω and s 2 tangential to the shear layer. The extensive and compressive principal strain rates, s 1 and s 3, respectively, are preferentially oriented at approximately 45° with respect to the jet axis. As a result, the production rates of strain and vorticity tend to be dominated by instances in which ω is parallel to the s 1¯-s 2¯ plane and orthogonal to s 3¯.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lai, Kwang-Chang; Leung Center for Cosmology and Particle Astrophysics; Lee, Fei-Fan
2016-07-22
The neutrino mass hierarchy is one of the neutrino fundamental properties yet to be determined. We introduce a method to determine neutrino mass hierarchy by comparing the interaction rate of neutral current (NC) interactions, ν(ν-bar)+p→ν(ν-bar)+p, and inverse beta decays (IBD), ν-bar{sub e}+p→n+e{sup +}, of supernova neutrinos in scintillation detectors. Neutrino flavor conversions inside the supernova are sensitive to neutrino mass hierarchy. Due to Mikheyev-Smirnov-Wolfenstein effects, the full swapping of ν-bar{sub e} flux with the ν-bar{sub x} (x=μ, τ) one occurs in the inverted hierarchy, while such a swapping does not occur in the normal hierarchy. As a result, more highmore » energy IBD events occur in the detector for the inverted hierarchy than the high energy IBD events in the normal hierarchy. By comparing IBD interaction rate with the mass hierarchy independent NC interaction rate, one can determine the neutrino mass hierarchy.« less
ERIC Educational Resources Information Center
Liberatore, Matthew
2017-01-01
Textbooks are experiencing a 21st century makeover. The author has created a web-based electronic textbook, Material and Energy Balances zyBook, that records students' interactions. Animations and question sets create interactive and scaffolded content. The interactive format is adopted successfully in other engineering disciplines and is now…
López-Hoffman, Laura; Anten, Niels P R; Martínez-Ramos, Miguel; Ackerly, David D
2007-01-01
We have studied the interactive effects of salinity and light on Avicennia germinans mangrove seedlings in greenhouse and field experiments. We hypothesized that net photosynthesis, growth, and survivorship rates should increase more with an increase in light availability for plants growing at low salinity than for those growing at high salinity. This hypothesis was supported by our results for net photosynthesis and growth. Net daily photosynthesis did increase more with increasing light for low-salinity plants than for high-salinity plants. Stomatal conductance, leaf-level transpiration, and internal CO(2) concentrations were lower at high than at low salinity. At high light, the ratio of leaf respiration to assimilation was 2.5 times greater at high than at low salinity. Stomatal limitations and increased respiratory costs may explain why, at high salinity, seedlings did not respond to increased light availability with increased net photosynthesis. Seedling mass and growth rates increased more with increasing light availability at low than at high salinity. Ratios of root mass to leaf mass were higher at high salinity, suggesting that either water or nutrient limitations may have limited seedling growth at high salinity in response to increasing light. The interactive effects of salinity and light on seedling size and growth rates observed in the greenhouse were robust in the field, despite the presence of other factors in the field--such as inundation, nutrient gradients, and herbivory. In the field, seedling survivorship was higher at low than at high salinity and increased with light availability. Interestingly, the positive effect of light on seedling survivorship was stronger at high salinity, indicating that growth and survivorship rates are decoupled. In general, this study demonstrates that environmental effects at the leaf-level also influence whole plant growth in mangroves.
Xiao Chen; Deborah Page-Dumroese; Ruiheng Lv; Weiwei Wang; Guolei Li; Yong Liu
2014-01-01
Thinning alters litter quality and microclimate under forests. Both of these two changes after thinning induce alterations of litter decomposition rates and nutrient cycling. However, a possible interaction between these two changes remains unclear. We placed two types of litter (LN, low N concentration litter; HN, high N concentration litter) in a Chinese pine (Pinus...
Relaxation of a High-Energy Quasiparticle in a One-Dimensional Bose Gas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, Shina; Glazman, Leonid I.; Pustilnik, Michael
2010-08-27
We evaluate the relaxation rate of high-energy quasiparticles in a weakly interacting one-dimensional Bose gas. Unlike in higher dimensions, the rate is a nonmonotonic function of temperature, with a maximum at the crossover to the state of suppressed density fluctuations. At the maximum, the relaxation rate may significantly exceed its zero-temperature value. We also find the dependence of the differential inelastic scattering rate on the transferred energy. This rate yields information about temperature dependence of local pair correlations.
New physics with ultra-high-energy neutrinos
Marfatia, D.; McKay, D. W.; Weiler, T. J.
2015-07-03
Now that PeV neutrinos have been discovered by IceCube, we optimistically entertain the possibility that neutrinos with energy above 100PeV exist. Here, we evaluate the dependence of event rates of such neutrinos on the neutrino-nucleon cross section at observatories that detect particles, atmospheric fluorescence, or Cherenkov radiation, initiated by neutrino interactions. We consider how (i)a simple scaling of the total standard model neutrino-nucleon cross section, (ii) a new elastic neutral current interaction, and (iii) anew completely inelastic interaction, individually impact event rates.
Siakaluk, Paul D; Pexman, Penny M; Aguilera, Laura; Owen, William J; Sears, Christopher R
2008-01-01
We examined the effects of sensorimotor experience in two visual word recognition tasks. Body-object interaction (BOI) ratings were collected for a large set of words. These ratings assess perceptions of the ease with which a human body can physically interact with a word's referent. A set of high BOI words (e.g., mask) and a set of low BOI words (e.g., ship) were created, matched on imageability and concreteness. Facilitatory BOI effects were observed in lexical decision and phonological lexical decision tasks: responses were faster for high BOI words than for low BOI words. We discuss how our findings may be accounted for by (a) semantic feedback within the visual word recognition system, and (b) an embodied view of cognition (e.g., Barsalou's perceptual symbol systems theory), which proposes that semantic knowledge is grounded in sensorimotor interactions with the environment.
Bonds, Matthew H.; Rohani, Pejman
2010-01-01
Patterns of morbidity and mortality around the globe are determined by interactions between infectious diseases and systematic human socioeconomic processes. The most obvious of these patterns is that the greatest burdens of infectious diseases are found among the poor, who lack the basic resources for disease prevention and treatment. Yet, it is becoming increasingly clear that many infectious diseases are themselves causes of poverty owing to their effects on labour productivity. A particularly subtle phenomenon that receives little attention in the epidemiology literature and is especially important for poor communities is the role of the birth rate as an important direct cause of high disease burdens. Because of their high rates of transmission and life-long immunity, the persistence of many child diseases such as measles relies on high rates of reproduction as their source of susceptible individuals. Thus, there are significant direct health benefits of lower fertility rates, which are further enhanced by interactions with economic processes. Indeed, fertility, poverty and disease all interact with each other in important and predictable ways that can be built into traditional disease ecology models. We present such a model here that provides insights into the long-term effect of policy interventions. For example, because of indirect income effects, herd immunity may be acquired with lower vaccine coverage than previously thought. Reductions in the disease burden can also occur through lower fertility. Our model thus provides a disease ecology framework that is useful for the analysis of demographic transitions. PMID:19740924
NASA Astrophysics Data System (ADS)
Iwata, Natsumi; Nagatomo, Hideo; Fukuda, Yuji; Matsui, Ryutaro; Kishimoto, Yasuaki
2016-06-01
Interaction between media composed of clusters and high intensity lasers in the radiation dominant regime, i.e., intensity of 10 22 - 23 W / cm 2 , is studied based on the particle-in-cell simulation that includes the radiation reaction. By introducing target materials that have the same total mass but different internal structures, i.e., uniform plasma and cluster media with different cluster radii, we investigate the effect of the internal structure on the interaction dynamics, high energy radiation emission, and its reaction. Intense radiation emission is found in the cluster media where electrons exhibit non-ballistic motions suffering from strong accelerations by both the penetrated laser field and charge separation field of clusters. As a result, the clustered structure increases the energy conversion into high energy radiations significantly at the expense of the conversion into particles, while the total absorption rate into radiation and particles remains unchanged from the absorption rate into particles in the case without radiation reaction. The maximum ion energy achieved in the interaction with cluster media is found to be decreased through the radiation reaction to electrons into the same level with that achieved in the interaction with the uniform plasma. The clustered structure thus enhances high energy radiation emission rather than the ion acceleration in the considered intensity regime.
ERIC Educational Resources Information Center
Daempfle, Peter A.
2004-01-01
Explores the empirical evidence that explains the increasing attrition rates of first year college science, math, and engineering (SME) majors. Results suggest that the interaction of instructional factors, differing high school and college faculty expectations for entering SME undergraduates, and epistemological considerations contribute to…
ERIC Educational Resources Information Center
Hawkins, Abigail; Graham, Charles R.; Sudweeks, Richard R.; Barbour, Michael K.
2013-01-01
This study examined the relationship between students' perceptions of teacher-student interaction and academic performance at an asynchronous, self-paced, statewide virtual high school. Academic performance was measured by grade awarded and course completion. There were 2269 students who responded to an 18-item survey designed to measure student…
Wang, Congmin; Zheng, Junjie; Cui, Guokai; Luo, Xiaoyan; Guo, Yan; Li, Haoran
2013-02-11
A strategy to improve SO(2) capture through tuning the electronegativity of the interaction site in ILs has been presented. Two types of imidazolium ionic liquids that include less electronegative sulfur or carbon sites were used for the capture of SO(2), which exhibit extremely highly available capacity, rapid absorption rate and excellent reversibility.
Den Hartog, Deanne N; Belschak, Frank D
2012-01-01
Two multisource studies address the interactive effects of personal and contextual variables on employees' proactive behavior. In line with previous work, we find positive main effects of transformational leadership, role breadth self-efficacy, and job autonomy on employee proactive behavior (personal initiative in Study 1 and prosocial proactive behavior in Study 2). As expected, a 3-way interaction qualifies these main effects: In situations of high autonomy, transformational leadership relates positively to proactive behavior for individuals high (but not low) on self-efficacy. Vice versa, in situations low on job autonomy, transformational leadership relates positively to proactive behavior for individuals low (but not high) on self-efficacy. This pattern is found both for self-ratings and peer-ratings of employees' proactive behavior in Study 1 and for supervisor ratings of such behavior in Study 2.
Interactive-rate Motion Planning for Concentric Tube Robots.
Torres, Luis G; Baykal, Cenk; Alterovitz, Ron
2014-05-01
Concentric tube robots may enable new, safer minimally invasive surgical procedures by moving along curved paths to reach difficult-to-reach sites in a patient's anatomy. Operating these devices is challenging due to their complex, unintuitive kinematics and the need to avoid sensitive structures in the anatomy. In this paper, we present a motion planning method that computes collision-free motion plans for concentric tube robots at interactive rates. Our method's high speed enables a user to continuously and freely move the robot's tip while the motion planner ensures that the robot's shaft does not collide with any anatomical obstacles. Our approach uses a highly accurate mechanical model of tube interactions, which is important since small movements of the tip position may require large changes in the shape of the device's shaft. Our motion planner achieves its high speed and accuracy by combining offline precomputation of a collision-free roadmap with online position control. We demonstrate our interactive planner in a simulated neurosurgical scenario where a user guides the robot's tip through the environment while the robot automatically avoids collisions with the anatomical obstacles.
NASA Astrophysics Data System (ADS)
Reidenbach, L. B.; Hurd, C. L.; Kubler, J.; Fernandez, P. A.; Leal, P. P.; Noisette, F.; Revill, A. T.; McGraw, C. M.
2016-02-01
Ocean acidification, caused by the increased absorption of carbon dioxide in the ocean, changes the carbon chemistry in the seawater, decreases pH, and alters the chemical speciation of some nitrogenous compounds, such as ammonium. The green macroalgae Ulva spp. are intertidal species that occur worldwide. Ocean acidification may alter the growth response of Ulva sp. to increased nutrients by altering the photosynthetic and nutrient physiology of the algae as well as the bioavailability of nutrients. To determine if there is an interactive effect between ocean acidification and nutrient enrichment Ulva sp. were grown in the lab in a cross of three pCO2 levels under ambient and enriched ammonium concentrations. We predicted that the growth rates of Ulva sp. in ammonium enriched treatments would be enhanced by increased pCO2 relative to those in ambient ammonium concentrations. While growth rate, relative electron transport rates, and chlorophyll content were enhanced by enriched ammonium, there was no interactive effect of high pCO2 and ammonium enrichment. Ammonium uptake rates and ammonium pools were not affected by the pH and ammonium interaction, but nitrate reductase activity increased in the high pCO2, high ammonium treatments. Increased pCO2 has been found to increase Ulva sp. growth rates under some conditions, but this was not the case in this set of experiments. To make realistic predictions of Ulva sp. abundances into the future, based on better understanding of their physiology, ocean acidification experiments should include additional environmental variables such as light intensity and macronutrient supplies that may simultaneously be affected by climate change.
Miranda, Ricardo J; Nunes, José de Anchieta C C; Mariano-Neto, Eduardo; Sippo, James Z; Barros, Francisco
2018-07-01
Understanding how invasive species affect key ecological interactions and ecosystem processes is imperative for the management of invasions. We evaluated the effects of invasive corals (Tubastraea spp.) on fish trophic interactions in an Atlantic coral reef. Remote underwater video cameras were used to examine fish foraging activity (bite rates and food preferences) on invasive cover levels. Using a model selection approach, we found that fish feeding rates declined with increased invasive cover. For Roving Herbivores (RH) and Sessile Invertivores (SI), an abrupt reduction of fish feeding rates corresponded with higher invasive cover, while feeding rates of Territorial Herbivores (TH) and Mobile Invertivores (MI) decreased linearly with cover increase. Additionally, some fish trophic groups, such as RH, SI and Omnivores (OM), had lower densities in reef sections with high invasive cover. These findings demonstrate that invasive corals negatively impact fish-benthic interactions, and could potentially alter existing trophic relationships in reef ecosystems. Copyright © 2018 Elsevier Ltd. All rights reserved.
Quantified Energy Dissipation Rates in the Terrestrial Bow Shock. 2; Waves and Dissipation
NASA Technical Reports Server (NTRS)
Wilson, L. B., III; Sibeck, D. G.; Breneman, A. W.; Le Contel, O.; Cully, C.; Turner, D. L.; Angelopoulos, V.; Malaspina, D. M.
2014-01-01
We present the first quantified measure of the energy dissipation rates, due to wave-particle interactions, in the transition region of the Earth's collision-less bow shock using data from the Time History of Events and Macro-Scale Interactions during Sub-Storms spacecraft. Our results show that wave-particle interactions can regulate the global structure and dominate the energy dissipation of collision-less shocks. In every bow shock crossing examined, we observed both low-frequency (less than 10 hertz) and high-frequency (approximately or greater than10 hertz) electromagnetic waves throughout the entire transition region and into the magnetosheath. The low-frequency waves were consistent with magnetosonic-whistler waves. The high-frequency waves were combinations of ion-acoustic waves, electron cyclotron drift instability driven waves, electrostatic solitary waves, and whistler mode waves. The high-frequency waves had the following: (1) peak amplitudes exceeding delta B approximately equal to 10 nanoteslas and delta E approximately equal to 300 millivolts per meter, though more typical values were delta B approximately equal to 0.1-1.0 nanoteslas and delta E approximately equal to 10-50 millivolts per meter (2) Poynting fluxes in excess of 2000 microWm(sup -2) (micro-waves per square meter) (typical values were approximately 1-10 microWm(sup -2) (micro-waves per square meter); (3) resistivities greater than 9000 omega meters; and (4) associated energy dissipation rates greater than 10 microWm(sup -3) (micro-waves per cubic meter). The dissipation rates due to wave-particle interactions exceeded rates necessary to explain the increase in entropy across the shock ramps for approximately 90 percent of the wave burst durations. For approximately 22 percent of these times, the wave-particle interactions needed to only be less than or equal to 0.1 percent efficient to balance the nonlinear wave steepening that produced the shock waves. These results show that wave-particle interactions have the capacity to regulate the global structure and dominate the energy dissipation of collision-less shocks.
The high-rate data challenge: computing for the CBM experiment
NASA Astrophysics Data System (ADS)
Friese, V.;
2017-10-01
The Compressed Baryonic Matter experiment (CBM) is a next-generation heavy-ion experiment to be operated at the FAIR facility, currently under construction in Darmstadt, Germany. A key feature of CBM is very high interaction rate, exceeding those of contemporary nuclear collision experiments by several orders of magnitude. Such interaction rates forbid a conventional, hardware-triggered readout; instead, experiment data will be freely streaming from self-triggered front-end electronics. In order to reduce the huge raw data volume to a recordable rate, data will be selected exclusively on CPU, which necessitates partial event reconstruction in real-time. Consequently, the traditional segregation of online and offline software vanishes; an integrated on- and offline data processing concept is called for. In this paper, we will report on concepts and developments for computing for CBM as well as on the status of preparations for its first physics run.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scipioni Bertoli, Umberto; Guss, Gabe; Wu, Sheldon
We report detailed understanding of the complex melt pool physics plays a vital role in predicting optimal processing regimes in laser powder bed fusion additive manufacturing. In this work, we use high framerate video recording of Selective Laser Melting (SLM) to provide useful insight on the laser-powder interaction and melt pool evolution of 316 L powder layers, while also serving as a novel instrument to quantify cooling rates of the melt pool. The experiment was performed using two powder types – one gas- and one water-atomized – to further clarify how morphological and chemical differences between these two feedstock materialsmore » influence the laser melting process. Finally, experimentally determined cooling rates are compared with values obtained through computer simulation, and the relationship between cooling rate and grain cell size is compared with data previously published in the literature.« less
Scipioni Bertoli, Umberto; Guss, Gabe; Wu, Sheldon; ...
2017-09-21
We report detailed understanding of the complex melt pool physics plays a vital role in predicting optimal processing regimes in laser powder bed fusion additive manufacturing. In this work, we use high framerate video recording of Selective Laser Melting (SLM) to provide useful insight on the laser-powder interaction and melt pool evolution of 316 L powder layers, while also serving as a novel instrument to quantify cooling rates of the melt pool. The experiment was performed using two powder types – one gas- and one water-atomized – to further clarify how morphological and chemical differences between these two feedstock materialsmore » influence the laser melting process. Finally, experimentally determined cooling rates are compared with values obtained through computer simulation, and the relationship between cooling rate and grain cell size is compared with data previously published in the literature.« less
Stahlschmidt, Zachary R; Jodrey, Alicia D; Luoma, Rachel L
2015-09-01
The field of comparative physiology has a rich history of elegantly examining the effects of individual environmental factors on performance traits linked to fitness (e.g., thermal performance curves for locomotion). However, animals live in complex environments wherein multiple environmental factors co-vary. Thus, we investigated the independent and interactive effects of temperature and energy intake on the growth and metabolic rate of juvenile corn snakes (Pantherophis guttatus) in the context of shifts in complex environments. Unlike previous studies that imposed constant or fluctuating temperature regimes, we manipulated the availability of preferred thermal microclimates (control vs. relatively warm regimes) for eight weeks and allowed snakes to behaviorally thermoregulate among microclimates. By also controlling for energy intake, we demonstrate an interactive effect of temperature and energy on growth-relevant temperature shifts had no effect on snakes' growth when energy intake was low and a positive effect on growth when energy intake was high. Thus, acclimation to relatively warm thermal options can result in increased rates of growth when food is abundant in a taxon in which body size confers fitness advantages. Temperature and energy also interactively influenced metabolic rate-snakes in the warmer temperature regime exhibited reduced metabolic rate (O2 consumption rate at 25 °C and 30 °C) if they had relatively high energy intake. Although we advocate for continued investigation into the effects of complex environments on other traits, our results indicate that warming may actually benefit important life history traits in some taxa and that metabolic shifts may underlie thermal acclimation. Copyright © 2015 Elsevier Inc. All rights reserved.
Appropriate and Inappropriate Instructional Behaviors for International Training.
ERIC Educational Resources Information Center
Burba, Fengjiao Ji; Petrosko, Joseph M.; Boyle, Mike A.
2001-01-01
Teacher behaviors were rated by 102 students from the United States, 142 from Asian cultures, and 73 from Western cultures (Canada, Europe). U.S. students rated clarity, enthusiasm, interaction, and spatial-behavioral communication more highly than Eastern students did. Western students rated all but spatial-behavioral communication more highly…
Social structure of collared peccaries (Pecari tajacu): does relatedness matter?
Biondo, Cibele; Izar, Patrícia; Miyaki, Cristina Y; Bussab, Vera S R
2014-11-01
Relatedness is considered an important factor in shaping social structure as the association among kin might facilitate cooperation via inclusive fitness benefits. We addressed here the influence of relatedness on the social structure of a Neotropical ungulate, the collared peccary (Pecari tajacu). As peccaries are highly social and cooperative, live in stable cohesive herds and show certain degree of female philopatry and high mean relatedness within herds, we hypothesized that kin would be spatially closer and display more amicable and less agonistic interactions than non-kin. We recorded spatial association patterns and rates of interactions of two captive groups. Pairwise relatedness was calculated based on microsatellite data. As predicted, we found that kin were spatially closer than non-kin, which suggests that relatedness is a good predictor of spatial association in peccaries. However, relatedness did not predict the rates of social interactions. Although our results indirectly indicate some role of sex, age and familiarity, further studies are needed to clarify the factors that shape the rates of interactions in collared peccaries. This article is part of a Special Issue entitled: Neotropical Behaviour. Copyright © 2014 Elsevier B.V. All rights reserved.
Stern, Steven E; Chobany, Chelsea M; Beam, Alexander A; Hoover, Brittany N; Hull, Thomas T; Linsenbigler, Melissa; Makdad-Light, Courtney; Rubright, Courtney N
2017-01-01
We have previously demonstrated that when speech generating devices (SGD) are used as assistive technologies, they are preferred over the users' natural voices. We sought to examine whether using SGDs would affect listener's perceptions of hirability of people with complex communication needs. In a series of three experiments, participants rated videotaped actors, one using SGD and the other using their natural, mildly dysarthric voice, on (a) a measurement of perceptions of speaker credibility, strength, and informedness and (b) measurements of hirability for jobs coded in terms of skill, verbal ability, and interactivity. Experiment 1 examined hirability for jobs varying in terms of skill and verbal ability. Experiment 2 was a replication that examined hirability for jobs varying in terms of interactivity. Experiment 3 examined jobs in terms of skill and specific mode of interaction (face-to-face, telephone, computer-mediated). Actors were rated more favorably when using SGD than their own voices. Actors using SGD were also rated more favorably for highly skilled and highly verbal jobs. This preference for SGDs over mildly dysarthric voice was also found for jobs entailing computer-mediated-communication, particularly skillful jobs.
Micromechanics of shear localization in granular rocks - effect of temperature
NASA Astrophysics Data System (ADS)
Kanaya, T.; Hirth, G.
2017-12-01
We conducted detailed microscopy on porous sandstones deformed to varying axial strains in the low-temperature, brittle faulting regime and high-temperature, semibrittle faulting regime. This study is aimed to test the hypothsis that macroscopic faulting results from the interaction of distributed microfractures in granular rocks, and to assess how elevated temperature influences these shear loalization processes. We determined the ratio of fracture length vs. spacing for distributed microfractures (away from macroscopic faults) and compared it with fracture mechanics models of crack interaction. At low temperature, both tensile and shear microfractures obtain the critical geometry for crack-tip interaction. Both modes of microfractures occur at initial yielding and continue to lengthen with strain, in which many tensile microfractures propagate across grains. In contrast, at high temperature, only shear microfractures continue to lengthen with strain and reach the critical geometry; almost all tensile microfracutures arrest at grain boundaries. In addition, using the observed microfracture lengths and stresses, we determined the energy release rate (including interaction effects) for the longest shear microfractues characterized. These microfractures show length and stress consistent with Griffith criteria. At low temperature, shear fractures show energy release rate far greater than fracture energy, consistent with the observed dynamic failure. In contrast, at high temperature, shear microfractures show energy release rate similar to fracture energy, consistent with observed stable failire. Taken toghether, our resutls show that the linkage of shear microfracture is far more important for shear localization (macroscopic faulting) in granular rocks than in non-porous rocks. The interaction of both tentile and shear microfractures is important at low temperature, whereas that of teneile fracture is less improtant at high temperature. In addition, structure (desnity distirbution and orientation) of microfractures within the fault tip region is being investigated.
Aberrant Salience, Self-Concept Clarity, and Interview-Rated Psychotic-Like Experiences
Cicero, David C.; Docherty, Anna R.; Becker, Theresa M.; Martin, Elizabeth A.; Kerns, John G.
2014-01-01
Many social-cognitive models of psychotic-like symptoms posit a role for self-concept and aberrant salience. Previous work has shown that the interaction between aberrant salience and self-concept clarity is associated with self-reported psychotic-like experiences. In the current research with two structured interviews, the interaction between aberrant salience and self-concept clarity was found to be associated withinterview-rated psychotic-like experiences. The interaction was associated withpsychotic-like experiences composite scores, delusional ideation, grandiosity, and perceptual anomalies. In all cases, self-concept clarity was negatively associated with psychotic-like experiences at high levels of aberrant salience, but unassociated with psychotic-like experiences at low levels of aberrant salience. The interaction was specific to positive psychotic-like experiences and not present for negative or disorganized ratings. The interaction was not mediated by self-esteem levels. These results provide further evidence that aberrant salience and self-concept clarity play an important role in the generation of psychotic-like experiences. PMID:25102085
Genotype by temperature interactions in the metabolic rate of the Glanville fritillary butterfly.
Niitepõld, Kristjan
2010-04-01
Metabolic rate is a highly plastic trait. Here I examine factors that influence the metabolic rate of the Glanville fritillary butterfly (Melitaea cinxia) in pupae and resting and flying adults. Body mass and temperature had consistent positive effects on metabolic rate in pupae and resting adults but not in flying adults. There was also a consistent nonlinear effect of the time of the day, which was strongest in pupae and weakest in flying adults. Flight metabolic rate was strongly affected by an interaction between the phosphoglucose isomerase (Pgi) genotype and temperature. Over a broad range of measurement temperatures, heterozygous individuals at a single nucleotide polymorphism (SNP) in Pgi had higher peak metabolic rate in flight, but at high temperatures homozygous individuals performed better. The two genotypes did not differ in resting metabolic rate, suggesting that the heterozygotes do not pay an additional energetic cost for their higher flight capacity. Mass-independent resting and flight metabolic rates were at best weakly correlated at the individual level, and therefore, unlike in many vertebrates, resting metabolic rate does not serve as a useful surrogate of the metabolic capacity of this butterfly.
AGT M235T genotype/anxiety interaction and gender in the HyperGEN study.
Knox, Sarah S; Guo, Xinxin; Zhang, Yuqing; Weidner, G; Williams, Scott; Ellison, R Curtis
2010-10-13
Both anxiety and elevated heart rate (HR) have been implicated in the development of hypertension. The HyperGen cohort, consisting of siblings with severe and mild hypertension, an age-matched random sample of persons from the same base populations, and unmedicated adult offspring of the hypertensive siblings (N = 1,002 men and 987 women), was analyzed for an association of the angiotenisinogen AGTM235T genotype (TT, MT, MM) with an endophenotype, heart rate (HR) in high and low anxious groups. The interaction of AGTM genotype with anxiety, which has been independently associated with hypertension, was investigated adjusting for age, hypertension status, smoking, alcohol consumption, beta blocker medication, body mass index, physical activity and hours of television viewing (sedentary life style). Although there was no main effect of genotype on HR in men or women, high anxious men with the TT genotype had high HR, whereas high anxious men with the MM genotype had low HR. In women, HR was inversely associated with anxiety but there was no interaction with genotype. The results suggest that high anxiety in men with the TT genotype may increase risk for hypertension whereas the MM genotype may be protective in high anxious men. This type of gene x environment interaction may be one reason why genome wide association studies sometimes fail to replicate. The locus may be important only in combination with certain environmental factors.
Jet Interactions in a Feedback-Free Fluidic Oscillator in the Transition Region
NASA Astrophysics Data System (ADS)
Tomac, Mehmet; Gregory, James
2013-11-01
The details of the jet interactions and oscillation mechanism of a feedback-free type fluidic oscillator are studied in this work. Flow rate-frequency measurements indicate the existence of three distinct operating regimes: low flow rate, transition, and high flow rate regions. This study presents results from the transition regime, extracted by using refractive index-matched particle image velocimetry (PIV). A newly-developed sensor configuration for frequency measurements in the refractive index-matched fluid and a phase-averaging method that minimizes jitter will be discussed. Experimental results indicate that the interactions of the two jets create three main vortices in the mixing chamber. One vortex vanishes and forms depending on the oscillation phase and plays a key role in the oscillation mechanism. The other two vortices sustain their existence throughout the oscillation cycle; however, both continuously change their size and strength. The resulting complex flow field with self-sustained oscillations is a result of the combination of many interesting phenomena such as jet interactions and bifurcations, viscous effects, vortex-shear layer interactions, vortex-wall interactions, instabilities, and saddle point creations.
2016-05-24
experimental data. However, the time and length scales, and energy deposition rates in the canonical laboratory flames that have been studied over the...is to obtain high-fidelity experimental data critically needed to validate research codes at relevant conditions, and to develop systematic and...validated with experimental data. However, the time and length scales, and energy deposition rates in the canonical laboratory flames that have been
Developmental changes in perceptions of attractiveness: a role of experience?
Cooper, Philip A; Geldart, Sybil S; Mondloch, Catherine J; Maurer, Daphne
2006-09-01
In three experiments, we traced the development of the adult pattern of judgments of attractiveness for faces that have been altered to have internal features in low, average, or high positions. Twelve-year-olds and adults demonstrated identical patterns of results: they rated faces with features in an average location as significantly more attractive than faces with either low or high features. Although both 4-year-olds and 9-year-olds rated faces with high features as least attractive, unlike adults and 12-year-olds, they rated faces with low and average features as equally attractive. Three-year-olds with high levels of peer interaction, but not those with low levels of peer interaction, chose faces with low features as significantly more attractive than those with high-placed features, possibly as a result of their increased experience with the proportions of the faces of peers. Overall, the pattern of results is consistent with the hypothesis that experience influences perceptions of attractiveness, with the proportions of the faces participants see in their everyday lives influencing their perceptions of attractiveness.
NASA Astrophysics Data System (ADS)
Kang, Jin Woo; Chung, Ik Kyo
2018-04-01
Environmental challenges such as ocean acidification and eutrophication influence the physiology of kelp species. We investigated their interactive effects on Saccharina japonica (Laminariales, Phaeophyta) under two pH conditions [Low, 7.50; High (control), 8.10] and three NH4 +concentrations (Low, 4; Medium, 60; High, 120 μM). The degree of variation of pH values in the culture medium and inhibition rate of photosynthetic oxygen evolution by acetazolamide were affected by pH treatments. Relative growth rates, carbon, nitrogen, and the C:N ratio in tissue samples were influenced by higher concentrations of NH4 + . Rates of photosynthetic oxygen evolution were enhanced under elevated CO2 or NH4 +conditions, independently, but these two factors did not show an interactive effect. However, rates of NH4 +uptake were influenced by the interactive effect of increased CO2 under elevated NH4 +treatment. Although ocean acidification and eutrophication states had an impact on physiological performance, chlorophyll fluorescence was not affected by those conditions. Our results indicated that the physiological reactions by this alga were influenced to some extent by a rise in the levels of CO2 and NH4 + . Therefore, we expect that the biomass accumulation of S. japonica may well increase under future scenarios of ocean acidification and eutrophication.
Antibody-Unfolding and Metastable-State Binding in Force Spectroscopy and Recognition Imaging
Kaur, Parminder; Qiang-Fu; Fuhrmann, Alexander; Ros, Robert; Kutner, Linda Obenauer; Schneeweis, Lumelle A.; Navoa, Ryman; Steger, Kirby; Xie, Lei; Yonan, Christopher; Abraham, Ralph; Grace, Michael J.; Lindsay, Stuart
2011-01-01
Force spectroscopy and recognition imaging are important techniques for characterizing and mapping molecular interactions. In both cases, an antibody is pulled away from its target in times that are much less than the normal residence time of the antibody on its target. The distribution of pulling lengths in force spectroscopy shows the development of additional peaks at high loading rates, indicating that part of the antibody frequently unfolds. This propensity to unfold is reversible, indicating that exposure to high loading rates induces a structural transition to a metastable state. Weakened interactions of the antibody in this metastable state could account for reduced specificity in recognition imaging where the loading rates are always high. The much weaker interaction between the partially unfolded antibody and target, while still specific (as shown by control experiments), results in unbinding on millisecond timescales, giving rise to rapid switching noise in the recognition images. At the lower loading rates used in force spectroscopy, we still find discrepancies between the binding kinetics determined by force spectroscopy and those determined by surface plasmon resonance—possibly a consequence of the short tethers used in recognition imaging. Recognition imaging is nonetheless a powerful tool for interpreting complex atomic force microscopy images, so long as specificity is calibrated in situ, and not inferred from equilibrium binding kinetics. PMID:21190677
ERIC Educational Resources Information Center
St. Pierre, Susan; And Others
This study attempts to determine whether families with a son rated by his teacher as either "high" or "low" on classroom adjustment (behavior indicative of social maturity and achievement motivation) could be differentiated on the basis of their communicative patterns. It was questioned if significant differences existed in the amount of positive…
Laser-driven interactions and resultant instabilities in materials with high dielectric constant
NASA Astrophysics Data System (ADS)
Rajpoot, Moolchandra; Dixit, Sanjay
2015-07-01
An analytical investigation of nonlinear interactions resulting in parametric amplification of acoustic wave is made by obtaining the dispersion relation using hydrodynamic model of inhomogeneous plasma by applying large static field at an arbitrary angle with the pump wave. The investigation shows that many early studies have neglected dependence of dielectric constant on deformation of materials but deformation of materials does infect depends on the dielectric constant of medium. Thus we have assumed to high dielectric material like BaTiO3 which resulted in substantially high growth rate of threshold electric field which opens a new dimension to study nonlinear interactions and instabilities.
Precision and recall estimates for two-hybrid screens
Huang, Hailiang; Bader, Joel S.
2009-01-01
Motivation: Yeast two-hybrid screens are an important method to map pairwise protein interactions. This method can generate spurious interactions (false discoveries), and true interactions can be missed (false negatives). Previously, we reported a capture–recapture estimator for bait-specific precision and recall. Here, we present an improved method that better accounts for heterogeneity in bait-specific error rates. Result: For yeast, worm and fly screens, we estimate the overall false discovery rates (FDRs) to be 9.9%, 13.2% and 17.0% and the false negative rates (FNRs) to be 51%, 42% and 28%. Bait-specific FDRs and the estimated protein degrees are then used to identify protein categories that yield more (or fewer) false positive interactions and more (or fewer) interaction partners. While membrane proteins have been suggested to have elevated FDRs, the current analysis suggests that intrinsic membrane proteins may actually have reduced FDRs. Hydrophobicity is positively correlated with decreased error rates and fewer interaction partners. These methods will be useful for future two-hybrid screens, which could use ultra-high-throughput sequencing for deeper sampling of interacting bait–prey pairs. Availability: All software (C source) and datasets are available as supplemental files and at http://www.baderzone.org under the Lesser GPL v. 3 license. Contact: joel.bader@jhu.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:19091773
NASA Technical Reports Server (NTRS)
Fennelly, A. J.
1981-01-01
The TH epsilon mu formalism, used in analyzing equivalence principle experiments of metric and nonmetric gravity theories, is adapted to the description of the electroweak interaction using the Weinberg-Salam unified SU(2) x U(1) model. The use of the TH epsilon mu formalism is thereby extended to the weak interactions, showing how the gravitational field affects W sub mu (+ or -1) and Z sub mu (0) boson propagation and the rates of interactions mediated by them. The possibility of a similar extension to the strong interactions via SU(5) grand unified theories is briefly discussed. Also, using the effects of the potentials on the baryon and lepton wave functions, the effects of gravity on transition mediated in high-A atoms which are electromagnetically forbidden. Three possible experiments to test the equivalence principle in the presence of the weak interactions, which are technologically feasible, are then briefly outline: (1) K-capture by the FE nucleus (counting the emitted X-ray); (2) forbidden absorption transitions in high-A atoms' vapor; and (3) counting the relative Beta-decay rates in a suitable alpha-beta decay chain, assuming the strong interactions obey the equivalence principle.
European Science Notes Information Bulletin Reports on Current European/Middle Eastern Science,
1989-07-01
behavior at high rates of strain, and composite materials at high rates of strain. ESNIB 89-07 International Conference on Interaction of Steels with... drug mole-armacology,. ture will be the sterility, energy and mass transfer, shearcults possess N-alkyl functions, usually in saturated struc- tures...tnerapcutic agents. This is usually cell densities and high metabolically active cells, the achieved by N-dcalklyating the parent drug molecule to
Interactive-rate Motion Planning for Concentric Tube Robots
Torres, Luis G.; Baykal, Cenk; Alterovitz, Ron
2014-01-01
Concentric tube robots may enable new, safer minimally invasive surgical procedures by moving along curved paths to reach difficult-to-reach sites in a patient’s anatomy. Operating these devices is challenging due to their complex, unintuitive kinematics and the need to avoid sensitive structures in the anatomy. In this paper, we present a motion planning method that computes collision-free motion plans for concentric tube robots at interactive rates. Our method’s high speed enables a user to continuously and freely move the robot’s tip while the motion planner ensures that the robot’s shaft does not collide with any anatomical obstacles. Our approach uses a highly accurate mechanical model of tube interactions, which is important since small movements of the tip position may require large changes in the shape of the device’s shaft. Our motion planner achieves its high speed and accuracy by combining offline precomputation of a collision-free roadmap with online position control. We demonstrate our interactive planner in a simulated neurosurgical scenario where a user guides the robot’s tip through the environment while the robot automatically avoids collisions with the anatomical obstacles. PMID:25436176
Pauly, Matthew D.; Lyons, Daniel M.; Fitzsimmons, William J.
2017-01-01
ABSTRACT Lethal mutagenesis is a broad-spectrum antiviral strategy that employs mutagenic nucleoside analogs to exploit the high mutation rate and low mutational tolerance of many RNA viruses. Studies of mutagen-resistant viruses have identified determinants of replicative fidelity and the importance of mutation rate to viral population dynamics. We have previously demonstrated the effective lethal mutagenesis of influenza A virus using three nucleoside analogs as well as the virus’s high genetic barrier to mutagen resistance. Here, we investigate the mutagen-resistant phenotypes of mutations that were enriched in drug-treated populations. We find that PB1 T123A has higher replicative fitness than the wild type, PR8, and maintains its level of genome production during 5-fluorouracil (2,4-dihydroxy-5-fluoropyrimidine) treatment. Surprisingly, this mutagen-resistant variant also has an increased baseline rate of C-to-U and G-to-A mutations. A second drug-selected mutation, PA T97I, interacts epistatically with PB1 T123A to mediate high-level mutagen resistance, predominantly by limiting the inhibitory effect of nucleosides on polymerase activity. Consistent with the importance of epistatic interactions in the influenza virus polymerase, our data suggest that nucleoside analog resistance and replication fidelity are strain dependent. Two previously identified ribavirin {1-[(2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-1H-1,2,4-triazole-3-carboxamide} resistance mutations, PB1 V43I and PB1 D27N, do not confer drug resistance in the PR8 background, and the PR8-PB1 V43I polymerase exhibits a normal baseline mutation rate. Our results highlight the genetic complexity of the influenza A virus polymerase and demonstrate that increased replicative capacity is a mechanism by which an RNA virus can counter the negative effects of elevated mutation rates. IMPORTANCE RNA viruses exist as genetically diverse populations. This standing genetic diversity gives them the potential to adapt rapidly, evolve resistance to antiviral therapeutics, and evade immune responses. Viral mutants with altered mutation rates or mutational tolerance have provided insights into how genetic diversity arises and how it affects the behavior of RNA viruses. To this end, we identified variants within the polymerase complex of influenza virus that are able to tolerate drug-mediated increases in viral mutation rates. We find that drug resistance is highly dependent on interactions among mutations in the polymerase complex. In contrast to other viruses, influenza virus counters the effect of higher mutation rates primarily by maintaining high levels of genome replication. These findings suggest the importance of maintaining large population sizes for viruses with high mutation rates and show that multiple proteins can affect both mutation rate and genome synthesis. PMID:28815216
Phenomenology of ultrahigh energy neutrino interactions and fluxes
NASA Astrophysics Data System (ADS)
Hussain, Shahid
There are several models that predict the existence of high and ultrahigh energy (UHE) neutrinos; neutrinos that have amazingly high energies---energies above 10 15 eV. No man-made machines, existing or planned, can produce any particles of this high energies. It is the energies of these neutrinos that make them very interesting for the particle physics and astrophysics community; these neutrinos can be a unique tool to study the unknown regimes of energy, space, and time. Consequently, there is intense experimental activity focused on the detection of these neutrinos; no UHE neutrinos have been detected by these experiments so far. However, most of the UHE neutrino flux models predict that the fluxes of these neutrinos might be too small to be detected by the current detectors. Therefore, more powerful detectors are being built and we are at the beginning of a new and exciting era in neutrino astronomy. The interactions and fluxes of UHE neutrinos both are unknown experimentally. Our focus here is to explore, by numerically calculating observable signals from these neutrinos, different scenarios that can arise by the inter play of UHE neutrino interaction and flux models. Given several AGN and cosmogenic neutrino flux models, we look at two possibilities for neutrino interactions: (i) Neutrinos have standard model weak interactions at ultrahigh energies. (ii) neutrino interactions are enhanced around a TeV mass-scale, as implied by low scale gravity models with extra dimensions. The standard model weak and low scale gravity enhanced neutrino-nucleon interactions of UHE neutrinos both produce observable signals. In standard model, the charged current neutrino-nucleon interactions give muons, taus, and particle showers, and the neutral current interactions give particle showers. In low scale gravity, the micro black hole formation (and its subsequent decay) and the graviton exchange both give particle showers. Muons, taus, and the showers can be detected by the optical Cherenkov radiation they produce; showers can also be detected by the coherent radio Cherenkov signal they produce which is much powerful than their optical Cherenkov signal. We give the formalism for calculating muon, tau, and shower rates for the optical (ICECUBE- like) and the shower rates for the radio (RICE-like) Cherenkov detectors. Our focus is on simulation of the radio signal from neutrino-initiated showers and calculation of the expected neutrino-initiated shower rates for RICE. Finally, given the calculated rates for muons, taus, and showers, we discuss what we can say about the models for UHE neutrino fluxes and interactions.
NASA Astrophysics Data System (ADS)
Middlebrooks, John C.
2004-07-01
Interactions among the multiple channels of a cochlear prosthesis limit the number of channels of information that can be transmitted to the brain. This study explored the influence on channel interactions of electrical pulse rates and temporal offsets between channels. Anesthetized guinea pigs were implanted with 2-channel scala-tympani electrode arrays, and spike activity was recorded from the auditory cortex. Channel interactions were quantified as the reduction of the threshold for pulse-train stimulation of the apical channel by sub-threshold stimulation of the basal channel. Pulse rates were 254 or 4069 pulses per second (pps) per channel. Maximum threshold reductions averaged 9.6 dB when channels were stimulated simultaneously. Among nonsimultaneous conditions, threshold reductions at the 254-pps rate were entirely eliminated by a 1966-μs inter-channel offset. When offsets were only 41 to 123 μs, however, maximum threshold shifts averaged 3.1 dB, which was comparable to the dynamic ranges of cortical neurons in this experimental preparation. Threshold reductions at 4069 pps averaged up to 1.3 dB greater than at 254 pps, which raises some concern in regard to high-pulse-rate speech processors. Thresholds for various paired-pulse stimuli, pulse rates, and pulse-train durations were measured to test possible mechanisms of temporal integration.
Binding Rate Constants Reveal Distinct Features of Disordered Protein Domains.
Dogan, Jakob; Jonasson, Josefin; Andersson, Eva; Jemth, Per
2015-08-04
Intrinsically disordered proteins (IDPs) are abundant in the proteome and involved in key cellular functions. However, experimental data about the binding kinetics of IDPs as a function of different environmental conditions are scarce. We have performed an extensive characterization of the ionic strength dependence of the interaction between the molten globular nuclear co-activator binding domain (NCBD) of CREB binding protein and five different protein ligands, including the intrinsically disordered activation domain of p160 transcriptional co-activators (SRC1, TIF2, ACTR), the p53 transactivation domain, and the folded pointed domain (PNT) of transcription factor ETS-2. Direct comparisons of the binding rate constants under identical conditions show that the association rate constant, kon, for interactions between NCBD and disordered protein domains is high at low salt concentrations (90-350 × 10(6) M(-1) s(-1) at 4 °C) but is reduced significantly (10-30-fold) with an increasing ionic strength and reaches a plateau around physiological ionic strength. In contrast, the kon for the interaction between NCBD and the folded PNT domain is only 7 × 10(6) M(-1) s(-1) (4 °C and low salt) and displays weak ionic strength dependence, which could reflect a distinctly different association that relies less on electrostatic interactions. Furthermore, the basal rate constant (in the absence of electrostatic interactions) is high for the NCBD interactions, exceeding those typically observed for folded proteins. One likely interpretation is that disordered proteins have a large number of possible collisions leading to a productive on-pathway encounter complex, while folded proteins are more restricted in terms of orientation. Our results highlight the importance of electrostatic interactions in binding involving IDPs and emphasize the significance of including ionic strength as a factor in studies that compare the binding properties of IDPs to those of ordered proteins.
Fair, Alecia Malin; Monahan, Patrick O; Russell, Kathleen; Zhao, Qianqian; Champion, Victoria L
2012-01-01
To test the interaction of perceived risk and benefits and how they impact stage of mammography readiness and adherence. Cross-sectional study. Community gathering centers and healthcare clinics across Indiana. 299 African American women who had not had a mammogram in more than 18 months. In-person interviews were used to collect data on sociodemographics, health belief variables, and stage of readiness to undertake mammography screening. Four categories were created to measure the combined magnitude of high or low levels of perceived risk and benefit, with health belief variables linked to modified mammography screening behavior. Perceived risks and benefits, stage of readiness, and mammography adherence. The lowest rate of mammography adherence was in women with a high perceived risk and low perceived benefit toward mammography adherence (26%). The highest rate of adherence was in women with a high perceived benefit and low perceived risk (46%). Differences in mammography adherence were statistically significant between the groups (p = 0.009). The interaction of high perceived risk and low perceived benefits impacted readiness to undergo screening mammography. Reducing disparities in breast cancer diagnosis and survival requires timely and efficient mammography adherence. African American medically underserved women with high perceived risk and low perceived benefits exhibited a reluctance to move forward with mammography adherence. Interventions are needed to increase the perception of mammography benefit and to subsequently reduce breast cancer mortality rates in that population.
Kasai, Yasuhiro; Shizuku, Hideki; Takagi, Yasuomi; Warashina, Masaki; Taira, Kazunari
2002-01-01
Exploitation of ribozymes in a practical setting requires high catalytic activity and strong specificity. The hammerhead ribozyme R32 has considerable potential in this regard since it has very high catalytic activity. In this study, we have examined how R32 recognizes and cleaves a specific substrate, focusing on the mechanism behind the specificity. Comparing rates of cleavage of a substrate in a mixture that included the correct substrate and various substrates with point mutations, we found that R32 cleaved the correct substrate specifically and at a high rate. To clarify the source of this strong specificity, we quantified the weak interactions between R32 and various truncated substrates, using truncated substrates as competitive inhibitors since they were not readily cleaved during kinetic measurements of cleavage of the correct substrate, S11. We found that the strong specificity of the cleavage reaction was due to a closed form of R32 with a hairpin structure. The self-complementary structure within R32 enabled the ribozyme to discriminate between the correct substrate and a mismatched substrate. Since this hairpin motif did not increase the Km (it did not inhibit the binding interaction) or decrease the kcat (it did not decrease the cleavage rate), this kind of hairpin structure might be useful for the design of new ribozymes with strong specificity and high activity. PMID:12034825
Strong electromagnetic pulses generated in laser-matter interactions with 10TW-class fs laser
NASA Astrophysics Data System (ADS)
Rączka, Piotr; Rosiński, Marcin; Zaraś-Szydłowska, Agnieszka; Wołowski, Jerzy; Badziak, Jan
2018-01-01
The results of an experiment on the generation of electromagnetic pulses (EMP) in the interaction of 10TW fs pulses with thick (mm scale) and thin foil (μm scale) targets are described. Such pulses, with frequencies in the GHz range, may pose a threat to safe and reliable operation of high-power, high-intensity laser facilities. The main point of the experiment is to investigate the fine temporal structure of such pulses using an oscilloscope capable of measurements at very high sampling rate. It is found that the amazing reproducibility of such pulses is confirmed at this high sampling rate. Furthermore, the differences between the EMP signals generated from thick and thin foil targets are clearly seen, which indicates that besides electric polarization of the target and the target neutralization current there may be other factors essential for the EMP emission.
AGT M235T Genotype/Anxiety Interaction and Gender in the HyperGEN Study
Knox, Sarah S.; Guo, Xinxin; Zhang, Yuqing; Weidner, G.; Williams, Scott; Ellison, R. Curtis
2010-01-01
Background Both anxiety and elevated heart rate (HR) have been implicated in the development of hypertension. The HyperGen cohort, consisting of siblings with severe and mild hypertension, an age-matched random sample of persons from the same base populations, and unmedicated adult offspring of the hypertensive siblings (N = 1,002 men and 987 women), was analyzed for an association of the angiotenisinogen AGTM235T genotype (TT, MT, MM) with an endophenotype, heart rate (HR) in high and low anxious groups. Methodology The interaction of AGTM genotype with anxiety, which has been independently associated with hypertension, was investigated adjusting for age, hypertension status, smoking, alcohol consumption, beta blocker medication, body mass index, physical activity and hours of television viewing (sedentary life style). Principal Findings Although there was no main effect of genotype on HR in men or women, high anxious men with the TT genotype had high HR, whereas high anxious men with the MM genotype had low HR. In women, HR was inversely associated with anxiety but there was no interaction with genotype. Conclusion/Significance The results suggest that high anxiety in men with the TT genotype may increase risk for hypertension whereas the MM genotype may be protective in high anxious men. This type of gene x environment interaction may be one reason why genome wide association studies sometimes fail to replicate. The locus may be important only in combination with certain environmental factors. PMID:20967221
Feller, Bob E; Kellis, James T; Cascão-Pereira, Luis G; Robertson, Channing R; Frank, Curtis W
2010-12-21
This study examines the influence of electrostatic interactions on enzyme surface diffusion and the contribution of diffusion to interfacial biocatalysis. Surface diffusion, adsorption, and reaction were investigated on an immobilized bovine serum albumin (BSA) multilayer substrate over a range of solution ionic strength values. Interfacial charge of the enzyme and substrate surface was maintained by performing the measurements at a fixed pH; therefore, electrostatic interactions were manipulated by changing the ionic strength. The interfacial processes were investigated using a combination of techniques: fluorescence recovery after photobleaching, surface plasmon resonance, and surface plasmon fluorescence spectroscopy. We used an enzyme charge ladder with a net charge ranging from -2 to +4 with respect to the parent to systematically probe the contribution of electrostatics in interfacial enzyme biocatalysis on a charged substrate. The correlation between reaction rate and adsorption was determined for each charge variant within the ladder, each of which displayed a maximum rate at an intermediate surface concentration. Both the maximum reaction rate and adsorption value at which this maximum rate occurs increased in magnitude for the more positive variants. In addition, the specific enzyme activity increased as the level of adsorption decreased, and for the lowest adsorption values, the specific enzyme activity was enhanced compared to the trend at higher surface concentrations. At a fixed level of adsorption, the specific enzyme activity increased with positive enzyme charge; however, this effect offers diminishing returns as the enzyme becomes more highly charged. We examined the effect of electrostatic interactions on surface diffusion. As the binding affinity was reduced by increasing the solution ionic strength, thus weakening electrostatic interaction, the rate of surface diffusion increased considerably. The enhancement in specific activity achieved at the lowest adsorption values is explained by the substantial rise in surface diffusion at high ionic strength due to decreased interactions with the surface. Overall, knowledge of the electrostatic interactions can be used to control surface parameters such as surface concentration and surface diffusion, which intimately correlate with surface biocatalysis. We propose that the maximum reaction rate results from a balance between adsorption and surface diffusion. The above finding suggests enzyme engineering and process design strategies for improving interfacial biocatalysis in industrial, pharmaceutical, and food applications.
Novak, Sebastian; Cremer, Sylvia
2015-05-07
Entomopathogenic fungi are potent biocontrol agents that are widely used against insect pests, many of which are social insects. Nevertheless, theoretical investigations of their particular life history are scarce. We develop a model that takes into account the main distinguishing features between traditionally studied diseases and obligate killing pathogens, like the (biocontrol-relevant) insect-pathogenic fungi Metarhizium and Beauveria. First, obligate killing entomopathogenic fungi produce new infectious particles (conidiospores) only after host death and not yet on the living host. Second, the killing rates of entomopathogenic fungi depend strongly on the initial exposure dosage, thus we explicitly consider the pathogen load of individual hosts. Further, we make the model applicable not only to solitary host species, but also to group living species by incorporating social interactions between hosts, like the collective disease defences of insect societies. Our results identify the optimal killing rate for the pathogen that minimises its invasion threshold. Furthermore, we find that the rate of contact between hosts has an ambivalent effect: dense interaction networks between individuals are considered to facilitate disease outbreaks because of increased pathogen transmission. In social insects, this is compensated by their collective disease defences, i.e., social immunity. For the type of pathogens considered here, we show that even without social immunity, high contact rates between live individuals dilute the pathogen in the host colony and hence can reduce individual pathogen loads below disease-causing levels. Copyright © 2015 Elsevier Ltd. All rights reserved.
Impacts of rainfall and inflow on rill formation and erosion processes on steep hillslopes
NASA Astrophysics Data System (ADS)
Tian, Pei; Xu, Xinyi; Pan, Chengzhong; Hsu, Kuolin; Yang, Tiantian
2017-05-01
Limited information has isolated the impacts of rainfall on rill formation and erosion on steep hillslopes where upslope inflow simultaneously exists. Field simulation experiments were conducted on steep hillslopes (26°) under rainfall (60 mm h-1), inflow (6, 12, 18, 24, 30, 36 L min-1 m-1), and combination of rainfall and inflow to explore the impacts of rainfall on rill formation, and the interaction between rainfall and inflow on soil erosion. Rainfall decreased soil infiltration rate (10%-26%) mainly due to soil crust by raindrop impact. Rainfall strengthened rill formation, which behaved in the increment in rill width (5%-26%), length (4%-22%), and depth (3%-22%), but this increment decreased as inflow rates increased. Additionally, the contribution of rainfall on rill formation was most significant at the initial stage, followed by the final stage and active period of rill development. Rainfall increased rill erosion (8%-80%) and interrill erosion (36%-64%), but it played a dominant role in increasing interrill erosion under relatively high inflow rates. The most sensitive hydrodynamic parameter to soil erosion was shear stress and stream power under inflow and 'inflow + rainfall' conditions, respectively. For the lowest inflow rate, the reduction in soil loss by interaction between rainfall and inflow accounted for 20% of total soil loss, indicating a negative interaction. However, such interaction became positive with increasing inflow rates. The contribution rate to rill erosion by the interaction was greater than that of interrill erosion under relatively low inflow rates. Our results provide a better understanding of hillslope soil erosion mechanism.
Martoïa, F; Dumont, P J J; Orgéas, L; Belgacem, M N; Putaux, J-L
2016-02-14
In this study, we characterized and modeled the rheology of TEMPO-oxidized cellulose nanofibril (NFC) aqueous suspensions with electrostatically stabilized and unflocculated nanofibrous structures. These colloidal suspensions of slender and wavy nanofibers exhibited a yield stress and a shear thinning behavior at low and high shear rates, respectively. Both the shear yield stress and the consistency of these suspensions were power-law functions of the NFC volume fraction. We developed an original multiscale model for the prediction of the rheology of these suspensions. At the nanoscale, the suspensions were described as concentrated systems where NFCs interacted with the Newtonian suspending fluid through Brownian motion and long range fluid-NFC hydrodynamic interactions, as well as with each other through short range hydrodynamic and repulsive colloidal interaction forces. These forces were estimated using both the experimental results and 3D networks of NFCs that were numerically generated to mimic the nanostructures of NFC suspensions under shear flow. They were in good agreement with theoretical and measured forces for model colloidal systems. The model showed the primary role played by short range hydrodynamic and colloidal interactions on the rheology of NFC suspensions. At low shear rates, the origin of the yield stress of NFC suspensions was attributed to the combined contribution of repulsive colloidal interactions and the topology of the entangled NFC networks in the suspensions. At high shear rates, both concurrent colloidal and short (in some cases long) range hydrodynamic interactions could be at the origin of the shear thinning behavior of NFC suspensions.
A COMPARATIVE STUDY OF KNOTS OF STAR FORMATION IN INTERACTING VERSUS SPIRAL GALAXIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Beverly J.; Olmsted, Susan; Jones, Keith
2016-03-15
Interacting galaxies are known to have higher global rates of star formation on average than normal galaxies, relative to their stellar masses. Using UV and IR photometry combined with new and published Hα images, we have compared the star formation rates (SFRs) of ∼700 star forming complexes in 46 nearby interacting galaxy pairs with those of regions in 39 normal spiral galaxies. The interacting galaxies have proportionally more regions with high SFRs than the spirals. The most extreme regions in the interacting systems lie at the intersections of spiral/tidal structures, where gas is expected to pile up and trigger starmore » formation. Published Hubble Space Telescope images show unusually large and luminous star clusters in the highest luminosity regions. The SFRs of the clumps correlate with measures of the dust attenuation, consistent with the idea that regions with more interstellar gas have more star formation. For the clumps with the highest SFRs, the apparent dust attenuation is consistent with the Calzetti starburst dust attenuation law. This suggests that the high luminosity regions are dominated by a central group of young stars surrounded by a shell of clumpy interstellar gas. In contrast, the lower luminosity clumps are bright in the UV relative to Hα, suggesting either a high differential attenuation between the ionized gas and the stars, or a post-starburst population bright in the UV but faded in Hα. The fraction of the global light of the galaxies in the clumps is higher on average for the interacting galaxies than for the spirals. Thus either star formation in interacting galaxies is “clumpier” on average, or the star forming regions in interacting galaxies are more luminous, dustier, or younger on average.« less
The mathematical limits of genetic prediction for complex chronic disease.
Keyes, Katherine M; Smith, George Davey; Koenen, Karestan C; Galea, Sandro
2015-06-01
Attempts at predicting individual risk of disease based on common germline genetic variation have largely been disappointing. The present paper formalises why genetic prediction at the individual level is and will continue to have limited utility given the aetiological architecture of most common complex diseases. Data were simulated on one million populations with 10 000 individuals in each populations with varying prevalences of a genetic risk factor, an interacting environmental factor and the background rate of disease. The determinant risk ratio and risk difference magnitude for the association between a gene variant and disease is a function of the prevalence of the interacting factors that activate the gene, and the background rate of disease. The risk ratio and total excess cases due to the genetic factor increase as the prevalence of interacting factors increase, and decrease as the background rate of disease increases. Germline genetic variations have high predictive capacity for individual disease only under conditions of high heritability of particular genetic sequences, plausible only under rare variant hypotheses. Under a model of common germline genetic variants that interact with other genes and/or environmental factors in order to cause disease, the predictive capacity of common genetic variants is determined by the prevalence of the factors that interact with the variant and the background rate. A focus on estimating genetic associations for the purpose of prediction without explicitly grounding such work in an understanding of modifiable (including environmentally influenced) factors will be limited in its ability to yield important insights about the risk of disease. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Gal, Eynat; Lamash, Liron; Bauminger-Zviely, Nirit; Zancanaro, Massimo; Weiss, Patrice L Tamar
2016-01-01
Children with high-functioning Autism Spectrum Disorder (HFASD) have major difficulties in social communication skills, which may impact their performance and participation in everyday life. The goal of this study was to examine whether the StoryTable, an intervention paradigm based on a collaborative narrative, multitouch tabletop interface, enhanced social interaction for children with HFASD, and to determine whether the acquired abilities were transferred to behaviors during other tasks. Fourteen boys with HFASD, aged 7-12 years, participated in a 3-week, 11-session intervention. Social interactions during two nonintervention tasks were videotaped at three points in time, one prior to the intervention (pre), a second immediately following the intervention (post) and a third three weeks after the intervention (follow-up). The video-recorded files were coded using the Friendship Observation Scale to ascertain the frequencies of positive and negative social interactions and collaborative play. Differences in these behaviors were tested for significance using nonparametric statistical tests. There were significantly higher rates of positive social interactions and collaborative play, and lower rates of negative social interactions following the intervention suggesting generalization of the social skills learned during the intervention. Improvement was maintained when tested three weeks later. These findings provide support for the use of collaborative technology-based interventions within educational settings to enhance social interaction of children with HFASD.
2005-08-31
conditions; with X-ray radiography for erosion rate measurements. A vortex combustor was also designed to simulate propellant product species and to...DATES COVERED Interim Progress Report, August 1, 2004 to July 31, 2005 4. TITLE AND SUBTITLE Fundamental Understanding of Propellant /Nozzle...nozzle erosion by solid- propellant combustion products. Several processes can affect the nozzle erosion rate at high pressure and temperature
Turbulence-flame interactions in DNS of a laboratory high Karlovitz premixed turbulent jet flame
NASA Astrophysics Data System (ADS)
Wang, Haiou; Hawkes, Evatt R.; Chen, Jacqueline H.
2016-09-01
In the present work, direct numerical simulation (DNS) of a laboratory premixed turbulent jet flame was performed to study turbulence-flame interactions. The turbulent flame features moderate Reynolds number and high Karlovitz number (Ka). The orientations of the flame normal vector n, the vorticity vector ω and the principal strain rate eigenvectors ei are examined. The in-plane and out-of-plane angles are introduced to quantify the vector orientations, which also measure the flame geometry and the vortical structures. A general observation is that the distributions of these angles are more isotropic downstream as the flame and the flow become more developed. The out-of-plane angle of the flame normal vector, β, is a key parameter in developing the correction of 2D measurements to estimate the corresponding 3D quantities. The DNS results show that the correction factor is unity at the inlet and approaches its theoretical value of an isotropic distribution downstream. The alignment characteristics of n, ω and ei, which reflect the interactions of turbulence and flame, are also studied. Similar to a passive scalar gradient in non-reacting flows, the flame normal has a tendency to align with the most compressive strain rate, e3, in the flame, indicating that turbulence contributes to the production of scalar gradient. The vorticity dynamics are examined via the vortex stretching term, which was found to be the predominant source of vorticity generation balanced by dissipation, in the enstrophy transport equation. It is found that although the vorticity preferentially aligns with the intermediate strain rate, e2, the contribution of the most extensive strain rate, e1, to vortex stretching is comparable with that of the intermediate strain rate, e2. This is because the eigenvalue of the most extensive strain rate, λ1, is always large and positive. It is confirmed that the vorticity vector is preferentially positioned along the flame tangential plane, contributing to the dominance of cylindrical curvature of the flame front. Finally, the effect of heat release on the turbulence-flame interactions is examined. It is found that heat release has only limited impact on the statistics due to the minor role played by the strain rate induced by heat release rate in the current high Ka flame.
Jamner, L D; Shapiro, D; Goldstein, I B; Hug, R
1991-01-01
Ambulatory blood pressure and heart rate responses were obtained in 33 male paramedics during a 24-hour work shift to examine the effects of episodes of occupational stress on cardiovascular reactivity and subjective reports of stress. The aim of this study was to determine how individual differences in cynical hostility and defensiveness interacted with situational demands to affect cardiovascular responses in a natural setting. Defensiveness was found to interact significantly with cynical hostility in predicting subjects' heart rate responses in different work contexts. Specifically, in a hospital setting involving interpersonal conflict, subjects who were high in both defensiveness and hostility showed heart rate responses approximately 10 bpm higher than subjects who were high in hostility but low in defensiveness. The same pattern of relationships was obtained for diastolic blood pressure. High and low hostile subjects were also found to differ from each other in their daily mean levels of ambulatory blood pressure during awake and sleep periods. These findings obtained in a natural setting lend further support to the significance of cynical hostility for cardiovascular reactivity. The results for defensiveness suggest the need for further research on the role of conflicting attitudes in the pathophysiology of cardiovascular diseases.
The interaction of drug use, sex work, and HIV among transgender women.
Hoffman, Beth R
2014-06-01
Transgender women have a higher prevalence of drug use, HIV, drug use, and sex work than the general population. This article explores the interaction of these variables and discusses how sex work and drug use behaviors contribute to the high rates of HIV. A model predicting HIV rates with sex work and drug use as well as these behaviors in the transgender woman's social network is presented. Challenges to intervening with transgender women, as well as suggestions and criteria for successful interventions, are discussed.
Zheng, Bin; Lu, Amy; Hardesty, Lara A; Sumkin, Jules H; Hakim, Christiane M; Ganott, Marie A; Gur, David
2006-01-01
The purpose of this study was to develop and test a method for selecting "visually similar" regions of interest depicting breast masses from a reference library to be used in an interactive computer-aided diagnosis (CAD) environment. A reference library including 1000 malignant mass regions and 2000 benign and CAD-generated false-positive regions was established. When a suspicious mass region is identified, the scheme segments the region and searches for similar regions from the reference library using a multifeature based k-nearest neighbor (KNN) algorithm. To improve selection of reference images, we added an interactive step. All actual masses in the reference library were subjectively rated on a scale from 1 to 9 as to their "visual margins speculations". When an observer identifies a suspected mass region during a case interpretation he/she first rates the margins and the computerized search is then limited only to regions rated as having similar levels of spiculation (within +/-1 scale difference). In an observer preference study including 85 test regions, two sets of the six "similar" reference regions selected by the KNN with and without the interactive step were displayed side by side with each test region. Four radiologists and five nonclinician observers selected the more appropriate ("similar") reference set in a two alternative forced choice preference experiment. All four radiologists and five nonclinician observers preferred the sets of regions selected by the interactive method with an average frequency of 76.8% and 74.6%, respectively. The overall preference for the interactive method was highly significant (p < 0.001). The study demonstrated that a simple interactive approach that includes subjectively perceived ratings of one feature alone namely, a rating of margin "spiculation," could substantially improve the selection of "visually similar" reference images.
NASA Astrophysics Data System (ADS)
Johnson, Maggie D.; Comeau, Steeve; Lantz, Coulson A.; Smith, Jennifer E.
2017-12-01
Turf algal assemblages are ubiquitous primary producers on coral reefs, but little is known about the response of this diverse group to ocean acidification (OA) across different temperatures. We tested the hypothesis that CO2 influences the functional response of epilithic and endolithic turf assemblages to increasing temperature. Replicate carbonate plugs covered by turf were collected from the reef and exposed to ambient and high pCO2 (1000 µatm) conditions for 3 weeks. Each pCO2 treatment was replicated across six temperatures (24.0-31.5 °C) that spanned the full seasonal temperature range on a fringing reef in Moorea, French Polynesia, and included one warming treatment (3 °C above daily average temperatures). Temperature and CO2 enrichment had complex, and sometimes interactive, effects on turf metabolism and growth. Photosynthetic and respiration rates were enhanced by increasing temperature, with an interactive effect of CO2 enrichment. Photosynthetic rates were amplified by high CO2 in the warmest temperatures, while the increase in respiration rates with temperature were enhanced under ambient CO2. Epilithic turf growth rates were not affected by temperature, but increased in response to CO2 enrichment. We found that CO2 and temperature interactively affected the endolithic assemblage, with the highest growth rates under CO2 enrichment, but only at the warmest temperatures. These results demonstrate how OA may influence algal physiology and growth across a range of ecologically relevant temperatures, and indicate that the effects of CO2 enrichment on coral-reef turf assemblages can be temperature dependent. The complex effects of CO2 enrichment and temperature across a suite of algal responses illustrates the importance of incorporating multiple stressors into global change experiments.
Qian, Zuoming; Covarrubias, Andrés; Grindal, Alexander W; Akens, Margarete K; Lilge, Lothar; Marjoribanks, Robin S
2016-06-01
High-repetition-rate burst-mode ultrafast-laser ablation and disruption of biological tissues depends on interaction of each pulse with the sample, but under those particular conditions which persist from previous pulses. This work characterizes and compares the dynamics of absorption and scattering of a 133-MHz repetition-rate, burst-mode ultrafast-pulse laser, in agar hydrogel targets and distilled water. The differences in energy partition are quantified, pulse-by-pulse, using a time-resolving integrating-sphere-based device. These measurements reveal that high-repetition-rate burst-mode ultrafast-laser ablation is a highly dynamical process affected by the persistence of ionization, dissipation of plasma plume, neutral material flow, tissue tensile strength, and the hydrodynamic oscillation of cavitation bubbles.
[Autoaggression and pulse rate--a longitudinal study].
Rohmann, U H; Elbing, U; Hartmann, H
1988-12-01
This article presents a model of autoaggressive behavior in which a distinction is made between determining and maintaining factors. Specific environmental, in particular social, and organismic variables are linked to them. The two types of variables interact, thus causing or maintaining autoaggressive behavior. A theory of autoaggression must therefore rely on multicausal/multimodal explanations. A connection between autoaggression and a high level of arousal suggests itself. In this single-case longitudinal study a comparison was made between heart rate and frequency of autoaggressive behavior. High heart rates were found to be correlated with low frequencies of autoaggressive behavior and vice versa. Decreasing autoaggressive behavior was coupled with increasing muscle relaxation and increasing motor activity. However, abnormally high heart rates were associated with both low and high levels of motor activity.
Quality control methodology for high-throughput protein-protein interaction screening.
Vazquez, Alexei; Rual, Jean-François; Venkatesan, Kavitha
2011-01-01
Protein-protein interactions are key to many aspects of the cell, including its cytoskeletal structure, the signaling processes in which it is involved, or its metabolism. Failure to form protein complexes or signaling cascades may sometimes translate into pathologic conditions such as cancer or neurodegenerative diseases. The set of all protein interactions between the proteins encoded by an organism constitutes its protein interaction network, representing a scaffold for biological function. Knowing the protein interaction network of an organism, combined with other sources of biological information, can unravel fundamental biological circuits and may help better understand the molecular basics of human diseases. The protein interaction network of an organism can be mapped by combining data obtained from both low-throughput screens, i.e., "one gene at a time" experiments and high-throughput screens, i.e., screens designed to interrogate large sets of proteins at once. In either case, quality controls are required to deal with the inherent imperfect nature of experimental assays. In this chapter, we discuss experimental and statistical methodologies to quantify error rates in high-throughput protein-protein interactions screens.
Cham, Heining; West, Stephen G.; Ma, Yue; Aiken, Leona S.
2012-01-01
A Monte Carlo simulation was conducted to investigate the robustness of four latent variable interaction modeling approaches (Constrained Product Indicator [CPI], Generalized Appended Product Indicator [GAPI], Unconstrained Product Indicator [UPI], and Latent Moderated Structural Equations [LMS]) under high degrees of non-normality of the observed exogenous variables. Results showed that the CPI and LMS approaches yielded biased estimates of the interaction effect when the exogenous variables were highly non-normal. When the violation of non-normality was not severe (normal; symmetric with excess kurtosis < 1), the LMS approach yielded the most efficient estimates of the latent interaction effect with the highest statistical power. In highly non-normal conditions, the GAPI and UPI approaches with ML estimation yielded unbiased latent interaction effect estimates, with acceptable actual Type-I error rates for both the Wald and likelihood ratio tests of interaction effect at N ≥ 500. An empirical example illustrated the use of the four approaches in testing a latent variable interaction between academic self-efficacy and positive family role models in the prediction of academic performance. PMID:23457417
Ntiri, Eric Siaw; Calatayud, Paul-Andre; Van Den Berg, Johnnie; Schulthess, Fritz; Le Ru, Bruno Pierre
2016-01-01
Competition or facilitation characterises intra- and interspecific interactions within communities of species that utilize the same resources. Temperature is an important factor influencing those interactions and eventual outcomes. The noctuid stemborers, Busseola fusca and Sesamia calamistis and the crambid Chilo partellus attack maize in sub-Saharan Africa. They often occur as a community of interacting species in the same field and plant at all elevations. The influence of temperature on the intra- and interspecific interactions among larvae of these species, was studied using potted maize plants exposed to varying temperatures in a greenhouse and artificial stems kept at different constant temperatures (15°C, 20°C, 25°C and 30°C) in an incubator. The experiments involved single- and multi-species infestation treatments. Survival and relative growth rates of each species were assessed. Both intra- and interspecific competitions were observed among all three species. Interspecific competition was stronger between the noctuids and the crambid than between the two noctuids. Temperature affected both survival and relative growth rates of the three species. Particularly at high temperatures, C. partellus was superior in interspecific interactions shown by higher larval survival and relative growth rates. In contrast, low temperatures favoured survival of B. fusca and S. calamistis but affected the relative growth rates of all three species. Survival and relative growth rates of B. fusca and S. calamistis in interspecific interactions did not differ significantly across temperatures. Temperature increase caused by future climate change is likely to confer an advantage on C. partellus over the noctuids in the utilization of resources (crops). PMID:26859748
Ntiri, Eric Siaw; Calatayud, Paul-Andre; Van Den Berg, Johnnie; Schulthess, Fritz; Le Ru, Bruno Pierre
2016-01-01
Competition or facilitation characterises intra- and interspecific interactions within communities of species that utilize the same resources. Temperature is an important factor influencing those interactions and eventual outcomes. The noctuid stemborers, Busseola fusca and Sesamia calamistis and the crambid Chilo partellus attack maize in sub-Saharan Africa. They often occur as a community of interacting species in the same field and plant at all elevations. The influence of temperature on the intra- and interspecific interactions among larvae of these species, was studied using potted maize plants exposed to varying temperatures in a greenhouse and artificial stems kept at different constant temperatures (15°C, 20°C, 25°C and 30°C) in an incubator. The experiments involved single- and multi-species infestation treatments. Survival and relative growth rates of each species were assessed. Both intra- and interspecific competitions were observed among all three species. Interspecific competition was stronger between the noctuids and the crambid than between the two noctuids. Temperature affected both survival and relative growth rates of the three species. Particularly at high temperatures, C. partellus was superior in interspecific interactions shown by higher larval survival and relative growth rates. In contrast, low temperatures favoured survival of B. fusca and S. calamistis but affected the relative growth rates of all three species. Survival and relative growth rates of B. fusca and S. calamistis in interspecific interactions did not differ significantly across temperatures. Temperature increase caused by future climate change is likely to confer an advantage on C. partellus over the noctuids in the utilization of resources (crops).
Machining and grinding: High rate deformation in practice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Follansbee, P.S.
1993-04-01
Machining and grinding are well-established material-working operations involving highly non-uniform deformation and failure processes. A typical machining operation is characterized by uncertain boundary conditions (e.g.,surface interactions), three-dimensional stress states, large strains, high strain rates, non-uniform temperatures, highly localized deformations, and failure by both nominally ductile and brittle mechanisms. While machining and grinding are thought to be dominated by empiricism, even a cursory inspection leads one to the conclusion that this results more from necessity arising out of the complicated and highly interdisciplinary nature of the processes than from the lack thereof. With these conditions in mind, the purpose of thismore » paper is to outline the current understanding of strain rate effects in metals.« less
Machining and grinding: High rate deformation in practice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Follansbee, P.S.
1993-01-01
Machining and grinding are well-established material-working operations involving highly non-uniform deformation and failure processes. A typical machining operation is characterized by uncertain boundary conditions (e.g.,surface interactions), three-dimensional stress states, large strains, high strain rates, non-uniform temperatures, highly localized deformations, and failure by both nominally ductile and brittle mechanisms. While machining and grinding are thought to be dominated by empiricism, even a cursory inspection leads one to the conclusion that this results more from necessity arising out of the complicated and highly interdisciplinary nature of the processes than from the lack thereof. With these conditions in mind, the purpose of thismore » paper is to outline the current understanding of strain rate effects in metals.« less
STELLAR ENCOUNTER RATE IN GALACTIC GLOBULAR CLUSTERS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bahramian, Arash; Heinke, Craig O.; Sivakoff, Gregory R.
2013-04-01
The high stellar densities in the cores of globular clusters cause significant stellar interactions. These stellar interactions can produce close binary mass-transferring systems involving compact objects and their progeny, such as X-ray binaries and radio millisecond pulsars. Comparing the numbers of these systems and interaction rates in different clusters drives our understanding of how cluster parameters affect the production of close binaries. In this paper we estimate stellar encounter rates ({Gamma}) for 124 Galactic globular clusters based on observational data as opposed to the methods previously employed, which assumed 'King-model' profiles for all clusters. By deprojecting cluster surface brightness profilesmore » to estimate luminosity density profiles, we treat 'King-model' and 'core-collapsed' clusters in the same way. In addition, we use Monte Carlo simulations to investigate the effects of uncertainties in various observational parameters (distance, reddening, surface brightness) on {Gamma}, producing the first catalog of globular cluster stellar encounter rates with estimated errors. Comparing our results with published observations of likely products of stellar interactions (numbers of X-ray binaries, numbers of radio millisecond pulsars, and {gamma}-ray luminosity) we find both clear correlations and some differences with published results.« less
"Hot-wire" microfluidic flowmeter based on a microfiber coupler.
Yan, Shao-Cheng; Liu, Zeng-Yong; Li, Cheng; Ge, Shi-Jun; Xu, Fei; Lu, Yan-Qing
2016-12-15
Using an optical microfiber coupler (MC), we present a microfluidic platform for strong direct or indirect light-liquid interaction by wrapping a MC around a functionalized capillary. The light propagating in the MC and the liquid flowing in the capillary can be combined and divorced smoothly, keeping a long-distance interaction without the conflict of input and output coupling. Using this approach, we experimentally demonstrate a "hot-wire" microfluidic flowmeter based on a gold-integrated helical MC device. The microfluid inside the glass channel takes away the heat, then cools the MC and shifts the resonant wavelength. Due to the long-distance interaction and high temperature sensitivity, the proposed microfluidic flowmeter shows an ultrahigh flow rate sensitivity of 2.183 nm/(μl/s) at a flow rate of 1 μl/s. The minimum detectable change of the flow rate is around 9 nl/s at 1 μl/s.
NASA Astrophysics Data System (ADS)
Wei, Jing; Liang, Yan; Zhang, Xinyi; Simon, George P.; Zhao, Dongyuan; Zhang, Jin; Jiang, Sanping; Wang, Huanting
2015-03-01
The synthesis of mesoporous carbon nanospheres (MCNs), especially with diameters below 200 nm remains a great challenge due to weak interactions between the carbon precursors and soft templates, as well as the uncontrollable cross-linking rate of carbon precursors. Herein, we demonstrate a simple acid-assisted, hydrothermal synthesis approach to synthesizing such uniform MCNs with well controlled diameters ranging from 20 to 150 nm under highly acidic conditions (2 M HCl). Both the carbon precursor and the template are partly protonated under such conditions and show additional Coulombic interactions with chloride ions (acts as mediators). This kind of enhanced interaction is similar to that of the ``I+X-S+'' mechanism in the synthesis of mesoporous metal oxide, which can effectively retard the cross-linking rate of resol molecules and avoid macroscopic phase separation during the hydrothermal synthesis. Due to their uniform spherical morphology, small diameter, and high surface areas, MCNs can be modified with Fe and N species via impregnation of cheap precursors (ferric nitrate and dicyandiamide), which are further converted into nonprecious electrocatalysts for oxygen reduction reactions. The resulting Fe-N/MCNs exhibit high catalytic activities, long-term stability and improved methanol tolerance under alkaline conditions, which can be potentially used in direct methanol fuel cells and metal-air batteries.The synthesis of mesoporous carbon nanospheres (MCNs), especially with diameters below 200 nm remains a great challenge due to weak interactions between the carbon precursors and soft templates, as well as the uncontrollable cross-linking rate of carbon precursors. Herein, we demonstrate a simple acid-assisted, hydrothermal synthesis approach to synthesizing such uniform MCNs with well controlled diameters ranging from 20 to 150 nm under highly acidic conditions (2 M HCl). Both the carbon precursor and the template are partly protonated under such conditions and show additional Coulombic interactions with chloride ions (acts as mediators). This kind of enhanced interaction is similar to that of the ``I+X-S+'' mechanism in the synthesis of mesoporous metal oxide, which can effectively retard the cross-linking rate of resol molecules and avoid macroscopic phase separation during the hydrothermal synthesis. Due to their uniform spherical morphology, small diameter, and high surface areas, MCNs can be modified with Fe and N species via impregnation of cheap precursors (ferric nitrate and dicyandiamide), which are further converted into nonprecious electrocatalysts for oxygen reduction reactions. The resulting Fe-N/MCNs exhibit high catalytic activities, long-term stability and improved methanol tolerance under alkaline conditions, which can be potentially used in direct methanol fuel cells and metal-air batteries. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr00331h
Sola, F J; Josens, R
2016-08-01
Liquid sugar baits are well accepted by the Argentine ant Linepithema humile and are suitable for the chemical control of this invasive species. We evaluated how sugar concentrations affect the foraging behavior of L. humile individuals. We quantified feeding variables for individual foragers (ingested load, feeding time and solution intake rate) when feeding on sucrose solutions of different concentrations, as well as post-feeding interactions with nestmates. Solutions of intermediate sucrose concentrations (10-30%) were the most consumed and had the highest intake rates, whereas solutions of high sucrose concentrations (60 and 70%) resulted in extended feeding times, low intake rates and ants having smaller crop loads. In terms of post-feeding interactions, individuals fed solutions of intermediate sucrose concentrations (20%) had the highest probability of conducting trophallaxis and the smallest latency to drop exposure (i.e. lowest time delay). Trophallaxis duration increased with increasing sucrose concentrations. Behavioral motor displays, including contacts with head jerking and walking with a gaster waggle, were lowest for individuals that ingested the more dilute sucrose solution (5%). These behaviors have been previously suggested to act as a communication channel for the activation and/or recruitment of nestmates. We show here that sucrose concentration affects feeding dynamics and modulates decision making related to individual behavior and social interactions of foragers. Our results indicate that intermediate sucrose concentrations (ca. 20%), appear to be most appropriate for toxic baits because they promote rapid foraging cycles, a high crop load per individual, and a high degree of stimulation for recruitment.
Rhenium-Oxygen Interactions at High Temperatures
NASA Technical Reports Server (NTRS)
Jacobson, Nathan S.; Myers, Dwight L.; Zhu, Dongming; Humphrey, Donald
2000-01-01
The reaction of pure rhenium metal with dilute oxygen/argon mixtures was studied from 600 to 1400 C. Temperature, oxygen pressure, and flow rates were systematically varied to determine the rate-controlling steps. At lower temperatures the oxygen/rhenium chemical reaction is rate limiting; at higher temperatures gas-phase diffusion of oxygen through the static boundary layer is rate limiting. At all temperatures post-reaction microstructures indicate preferential attack along certain crystallographic planes and defects.
Callas, Peter W; Bertsch, Tania F; Caputo, Michael P; Flynn, Brian S; Doheny-Farina, Stephen; Ricci, Michael A
2004-01-01
Interactive videoconferencing may be an effective way for medical students on remote rotations to attend teaching sessions at the main campus. To compare medical student evaluations of lectures for those attending in person and those attending through interactive videoconferencing. Lecture evaluations were completed by medical students on University of Vermont College of Medicine clinical clerkship rotations. Students on clerkships at rural sites attended lectures using our telemedicine network. Responses from in-person and remote attendees were compared. Evaluation forms for 110 lectures were received from 648 in-person and 255 remote attendees. All evaluation items were rated "good" or "excellent" by at least 95% of in-person attendees. Over 90% of remote attendees rated nontelemedicine evaluation items, such as appropriateness of lecture topic for students, as good or excellent. Ratings of telemedicine-specific questions, such as ability to hear the lecturer, were lower. Level of satisfaction was high for most aspects of remote lecture attendance, although not quite as high as for in-person attendance. Improved technical reliability would likely increase remote attendee satisfaction. Overall, lecture attendance using videoconferencing was found to be an acceptable alternative to travel for medical students in rural clerkships.
Responsiveness of Child Care Providers in Interactions With Toddlers and Preschoolers.
Girolametto, Luigi; Weitzman, Elaine
2002-10-01
This exploratory study investigated the responsive language input of 26 child care providers to young children enrolled in community child care centers. Three subtypes of responsive interaction strategies were rated and compared across two age groups (toddlers, preschoolers) and two naturalistic contexts (book reading, play dough activity). The toddlers were between 17 and 33 months of age and the preschoolers were between 30 and 53 months of age. Caregiver-child interactions were rated using the Teacher Interaction and Language Rating Scale (Girolametto, Weitzman, & Greenberg, 2000) to provide information about the frequency of responsive language strategies. Caregivers used similar levels of child-centered and interaction-promoting strategies with both age groups, but used more labelling with toddlers and more topic extensions with preschoolers. The context of the interaction exerted a systematic influence on the caregivers' use of responsive strategies, with the play dough activity providing the most responsive input overall. There was a strong positive relationship between all three subtypes of caregivers' responsiveness and variation in the preschoolers' language productivity. In contrast, only interaction-promoting strategies were positively related to measures of the toddlers' language productivity. The results of this study suggest that caregivers' responsiveness in group interactions is highly dependent on the context of the interaction and, to a lesser extent, on the language abilities of the children. Future research is required to determine if inservice training can enhance levels of responsiveness and accelerate language learning in young children in group care.
NASA Astrophysics Data System (ADS)
Ishida, Shunichi; Imai, Yohsuke; Ichikawa, Yuki; Nix, Stephanie; Matsunaga, Daiki; Omori, Toshihiro; Ishikawa, Takuji
2016-01-01
We developed a numerical model of the behavior of a red blood cell infected by Plasmodium falciparum malaria on a wall in shear flow. The fluid and solid mechanics of an infected red blood cell (Pf-IRBC) were coupled with the biochemical interaction of ligand-receptor bindings. We used the boundary element method for fluid mechanics, the finite element method for membrane mechanics, and the Monte Carlo method for ligand-receptor interactions. We simulated the behavior of a Pf-IRBC in shear flow, focusing on the effects of bond type. For slip bonds, the Pf-IRBC exhibited firm adhesion, tumbling motion, and tank-treading motion, depending on the applied shear rate. The behavior of catch bonds resembled that of slip bonds, except for a 'catch' state at high shear stress. When the reactive compliance decreased to a value in the order of ? nm, both the slip and catch bonds behaved like an ideal bond. Such bonds do not respond to the force applied to the bond, and the velocity is stabilized at a high shear rate. Finally, we compared the numerical results with previous experiments for A4- and ItG-infected cells. We found that the interaction between PfEMP1 and ICAM-1 could be a nearly ideal bond, with a dissociation rate ranging from ? to ?.
ERIC Educational Resources Information Center
Petrites, Taralynn Wells
2017-01-01
This quantitative correlational study included an investigation of potential factors effecting high attrition rates in postsecondary online courses. Online learner-instructor interaction was examined by assessing instructor response times (RTs), student satisfaction, and final course grades at an online two-year postsecondary institution. A sample…
ERIC Educational Resources Information Center
Mariano, Darren G.
2012-01-01
Online social interactions differ from face to face interactions and lack the non-verbal cues leading a learner to procrastinate, decreased motivation, feelings of isolation and high drop out rates. Existing research illustrates a need for social awareness information in online education, and this research studied the impact of the visual presence…
Investigating the Added Value of Interactivity and Serious Gaming for Educational TV
ERIC Educational Resources Information Center
Bellotti, F.; Berta, R.; De Gloria, A.; Ozolina, A.
2011-01-01
TV is a medium with high penetration rates and has been suited to deliver informal education in several aspects since years. Thus, interactive TV may play a significant role in the current Life-Long Learning challenges, provided that meaningful applications are implemented. In this research work, we have explored the added value of interactivity…
Keren, Ilai N; Menalled, Fabian D; Weaver, David K; Robison-Cox, James F
2015-01-01
Worldwide, the landscape homogeneity of extensive monocultures that characterizes conventional agriculture has resulted in the development of specialized and interacting multitrophic pest complexes. While integrated pest management emphasizes the need to consider the ecological context where multiple species coexist, management recommendations are often based on single-species tactics. This approach may not provide satisfactory solutions when confronted with the complex interactions occurring between organisms at the same or different trophic levels. Replacement of the single-species management model with more sophisticated, multi-species programs requires an understanding of the direct and indirect interactions occurring between the crop and all categories of pests. We evaluated a modeling framework to make multi-pest management decisions taking into account direct and indirect interactions among species belonging to different trophic levels. We adopted a Bayesian decision theory approach in combination with path analysis to evaluate interactions between Bromus tectorum (downy brome, cheatgrass) and Cephus cinctus (wheat stem sawfly) in wheat (Triticum aestivum) systems. We assessed their joint responses to weed management tactics, seeding rates, and cultivar tolerance to insect stem boring or competition. Our results indicated that C. cinctus oviposition behavior varied as a function of B. tectorum pressure. Crop responses were more readily explained by the joint effects of management tactics on both categories of pests and their interactions than just by the direct impact of any particular management scheme on yield. In accordance, a C. cinctus tolerant variety should be planted at a low seeding rate under high insect pressure. However as B. tectorum levels increase, the C. cinctus tolerant variety should be replaced by a competitive and drought tolerant cultivar at high seeding rates despite C. cinctus infestation. This study exemplifies the necessity of accounting for direct and indirect biological interactions occurring within agroecosystems and propagating this information from the statistical analysis stage to the management stage.
Carey, Nicholas; Harianto, Januar; Byrne, Maria
2016-04-15
Body size and temperature are the major factors explaining metabolic rate, and the additional factor of pH is a major driver at the biochemical level. These three factors have frequently been found to interact, complicating the formulation of broad models predicting metabolic rates and hence ecological functioning. In this first study of the effects of warming and ocean acidification, and their potential interaction, on metabolic rate across a broad range in body size (two to three orders of magnitude difference in body mass), we addressed the impact of climate change on the sea urchin ITALIC! Heliocidaris erythrogrammain context with climate projections for southeast Australia, an ocean warming hotspot. Urchins were gradually introduced to two temperatures (18 and 23°C) and two pH levels (7.5 and 8.0), at which they were maintained for 2 months. Identical experimental trials separated by several weeks validated the fact that a new physiological steady state had been reached, otherwise known as acclimation. The relationship between body size, temperature and acidification on the metabolic rate of ITALIC! H. erythrogrammawas strikingly stable. Both stressors caused increases in metabolic rate: 20% for temperature and 19% for pH. Combined effects were additive: a 44% increase in metabolism. Body size had a highly stable relationship with metabolic rate regardless of temperature or pH. None of these diverse drivers of metabolism interacted or modulated the effects of the others, highlighting the partitioned nature of how each influences metabolic rate, and the importance of achieving a full acclimation state. Despite these increases in energetic demand there was very limited capacity for compensatory modulating of feeding rate; food consumption increased only in the very smallest specimens, and only in response to temperature, and not pH. Our data show that warming, acidification and body size all substantially affect metabolism and are highly consistent and partitioned in their effects, and for ITALIC! H. erythrogramma, near-future climate change will incur a substantial energetic cost. © 2016. Published by The Company of Biologists Ltd.
NASA Astrophysics Data System (ADS)
Choi, Se Bin; Park, Jae Yong; Moon, Ji Young; Lee, Joon Sang
2018-06-01
In this study, we analyzed the rheological characteristics of double emulsions by using a three-dimensional lattice Boltzmann model. Numerical simulations indicate that interactions between multiple interfaces play a vital role in determining the shear stress on interfaces and affect deformations, which influence the relative viscosity of double emulsions. The large shear stress induced by droplets in contact increases the relative viscosity for high volume fractions. The double emulsions also show shear-thinning behavior, which corresponds with the Carreau model. The interfacial interference between the core and the deforming shell cause the relative viscosity to increase with increasing core-droplet radius. Finally, we investigated the dependence of the double-emulsion viscosity on the core-droplet viscosity. At high shear rates, the relative viscosity increases with increasing core-droplet viscosity. However, the trend is opposite at low shear rates, which results from the high inward flow (Marangoni flow) at low core-droplet viscosity.
Long lifetimes of ultrahot particles in interacting Fermi systems
NASA Astrophysics Data System (ADS)
Bard, M.; Protopopov, I. V.; Mirlin, A. D.
2018-05-01
The energy dependence of the relaxation rate of hot electrons due to interaction with the Fermi sea is studied. We consider 2D and 3D systems, quasi-1D quantum wires with multiple transverse bands, as well as single-channel 1D wires. Our analysis includes both spinful and spin-polarized setups, with short-range and Coulomb interactions. We show that, quite generally, the relaxation rate is a nonmonotonic function of the electron energy and decays as a power law at high energies. In other words, ultrahot electrons regain their coherence with increasing energy. Such a behavior was observed in a recent experiment on multiband quantum wires, J. Reiner et al., Phys. Rev. X 7, 021016 (2017)., 10.1103/PhysRevX.7.021016
Fountain, Toby; Melvin, Richard G; Ikonen, Suvi; Ruokolainen, Annukka; Woestmann, Luisa; Hietakangas, Ville; Hanski, Ilkka
2016-05-15
Flying insects have the highest known mass-specific demand for oxygen, which makes it likely that reduced availability of oxygen might limit sustained flight, either instead of or in addition to the limitation due to metabolite resources. The Glanville fritillary butterfly (Melitaea cinxia) occurs as a large metapopulation in which adult butterflies frequently disperse between small local populations. Here, we examine how the interaction between oxygen availability and fuel use affects flight performance in the Glanville fritillary. Individuals were flown under either normoxic (21 kPa O2) or hypoxic (10 kPa O2) conditions and their flight metabolism was measured. To determine resource use, levels of circulating glucose, trehalose and whole-body triglyceride were recorded after flight. Flight performance was significantly reduced in hypoxic conditions. When flown under normoxic conditions, we observed a positive correlation among individuals between post-flight circulating trehalose levels and flight metabolic rate, suggesting that low levels of circulating trehalose constrains flight metabolism. To test this hypothesis experimentally, we measured the flight metabolic rate of individuals injected with a trehalase inhibitor. In support of the hypothesis, experimental butterflies showed significantly reduced flight metabolic rate, but not resting metabolic rate, in comparison to control individuals. By contrast, under hypoxia there was no relationship between trehalose and flight metabolic rate. Additionally, in this case, flight metabolic rate was reduced in spite of circulating trehalose levels that were high enough to support high flight metabolic rate under normoxic conditions. These results demonstrate a significant interaction between oxygen and energy availability for the control of flight performance. © 2016. Published by The Company of Biologists Ltd.
Friedman, E; Voet, H; Reznikov, D; Dagoni, I; Roth, Z
2011-05-01
Reduced conception rate during the hot summer and subsequent autumn is a well-documented phenomenon. Evaporative cooling systems greatly increase milk production but only slightly improve reproductive performance; hence, additional approaches to improving fertility during the hot season are required. The purpose of the present study was to examine whether the combination of an efficient cooling system and hormonal manipulation (GnRH+PGF(2α)) might improve fertility during the summer and autumn. The experiment was conducted from July to December in 2 commercial herds in Israel and included 382 healthy Holstein cows. Cows (50 to 60 d in milk) were hormonally treated to induce 3 consecutive 9-d follicular waves, with GnRH administration followed by PGF(2α) injection 7 d later. Both control (n=187) and treated (n=195) cows were inseminated following estrus, and pregnancy was determined by palpation 45 d post-insemination. Data revealed an interaction between treatment and primiparous cows, reflected by a 16% increase in conception rate [odds ratio (OR) 2.32, 95% confidence interval (CI): 0.96-5.61] and 14% increase in pregnancy rate at 120 d in milk (OR 3.16, 95% CI: 0.93-10.47). Interaction between treatment and high body condition score was reflected by a 14% increase in pregnancy rate at 90 d in milk (OR 3.02, 95% CI: 1.14-7.96). About 60% of the treated cows expressed estrus at the expected time (normal response within 5 d following the third PGF(2α) injection); the remaining 40% that manifested estrus later (late response) had higher milk yield and lower body condition score. Additional analyses indicated that treatment interacted with normal response to raise conception rates and pregnancy rates of primiparous cows and cows with high body condition score. On the other hand, treatment by late-response interaction lowered conception rate during the summer. Implementation of such hormonal treatment in combination with an efficient cooling system may improve reproductive performance of dairy cows during the summer and subsequent autumn. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
National Rules for Drug–Drug Interactions: Are They Appropriate for Tertiary Hospitals?
2016-01-01
The application of appropriate rules for drug–drug interactions (DDIs) could substantially reduce the number of adverse drug events. However, current implementations of such rules in tertiary hospitals are problematic as physicians are receiving too many alerts, causing high override rates and alert fatigue. We investigated the potential impact of Korean national DDI rules in a drug utilization review program in terms of their severity coverage and the clinical efficiency of how physicians respond to them. Using lists of high-priority DDIs developed with the support of the U.S. government, we evaluated 706 contraindicated DDI pairs released in May 2015. We evaluated clinical log data from one tertiary hospital and prescription data from two other tertiary hospitals. The measured parameters were national DDI rule coverage for high-priority DDIs, alert override rate, and number of prescription pairs. The coverage rates of national DDI rules were 80% and 3.0% at the class and drug levels, respectively. The analysis of the system log data showed an overall override rate of 79.6%. Only 0.3% of all of the alerts (n = 66) were high-priority DDI rules. These showed a lower override rate of 51.5%, which was much lower than for the overall DDI rules. We also found 342 and 80 unmatched high-priority DDI pairs which were absent in national rules in inpatient orders from the other two hospitals. The national DDI rules are not complete in terms of their coverage of severe DDIs. They also lack clinical efficiency in tertiary settings, suggesting improved systematic approaches are needed. PMID:27822925
Interaction dynamics of temporal and spatial separated cavitation bubbles in water
NASA Astrophysics Data System (ADS)
Tinne, N.; Ripken, T.; Lubatschowski, H.
2010-02-01
The LASIK procedure is a well established laser based treatment in ophthalmology. Nowadays it includes a cutting of the corneal tissue bases on ultra short pulses which are focused below the tissue surface to create an optical breakdown and hence a dissection of the tissue. The energy of the laser pulse is absorbed by non-linear processes that result in an expansion of a cavitation bubble and rupturing of the tissue. Due to a reduction of the duration of treatment the current development of ultra short laser systems points to higher repetition rates. This in turn results in a probable interaction between different cavitation bubbles of adjacent optical breakdowns. While the interaction of one single laser pulse with biological tissue is analyzed reasonably well experimentally and theoretically, the interaction of several spatial and temporal following pulses is scarcely determined yet. We present a high-speed photography analysis of cavitation bubble interaction for two spatial separated laser-induced optical breakdowns varying the laser pulse energy as well as the spatial distance. Depending on a change of these parameters different kinds of interactions such as a flattening and deformation of bubble shape, asymmetric water streams and jet formation were observed. The results of this research can be used to comprehend and optimize the cutting effect of ultra short pulse laser systems with high repetition rates (> 1 MHz).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steinberg, Adam M.; Driscoll, James F.
2009-12-15
The dynamical processes of flame surface straining and wrinkling that occur as turbulence interacts with a premixed flame were measured using cinema-stereoscopic PIV (CS-PIV) and orthogonal-plane cinema-stereoscopic PIV (OPCS-PIV). These diagnostics provided temporally resolved measurements of turbulence-flame interaction at frame rates of up to 3 kHz and spatial resolutions as small as 280{mu} m. Previous descriptions of flame straining and wrinkling have typically been derived based on a canonical interaction between a pair of counter-rotating vortices and a planar flame surface. However, it was found that this configuration did not properly represent real turbulence-flame interaction. Interactions resembling the canonical configurationmore » were observed in less than 10% of the recorded frames. Instead, straining and wrinkling were generally caused more geometrically complex turbulence, consisting of large groups of structures that could be multiply curved and intertwined. The effect of the interaction was highly dependent on the interaction geometry. Furthermore, even when the turbulence did exist in the canonical geometry, the straining and wrinkling of the flame surface were not well characterized by the vortical structures. A new mechanistic description of the turbulence-flame interaction was therefore identified and confirmed by the measurements. In this description, flame surface straining is caused by coherent structures of fluid-dynamic strain-rate (strain-rate structures). The role of vortical structures is to curve existing flame surface, creating wrinkles. By simultaneously considering both forms of turbulent structure, turbulence-flame interactions in both the canonical configuration and more complex geometries could be understood. (author)« less
Riehle, M; Mehl, S; Lincoln, T M
2018-04-17
We tested whether people with schizophrenia and prominent expressive negative symptoms (ENS) show reduced facial expressions in face-to-face social interactions and whether this expressive reduction explains negative social evaluations of these persons. We compared participants with schizophrenia with high ENS (n = 18) with participants with schizophrenia with low ENS (n = 30) and with healthy controls (n = 39). Participants engaged in an affiliative role-play that was coded for the frequency of positive and negative facial expression and rated for social performance skills and willingness for future interactions with the respective role-play partner. Participants with schizophrenia with high ENS showed significantly fewer positive facial expressions than those with low ENS and controls and were also rated significantly lower on social performance skills and willingness for future interactions. Participants with schizophrenia with low ENS did not differ from controls on these measures. The group difference in willingness for future interactions was significantly and independently mediated by the reduced positive facial expressions and social performance skills. Reduced facial expressiveness in schizophrenia is specifically related to ENS and has negative social consequences. These findings highlight the need to develop aetiological models and targeted interventions for ENS and its social consequences. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Social Engagement with Peers and Stereotypic Behavior of Children with Autism
ERIC Educational Resources Information Center
Lee, SoHyun; Odom, Samuel L.; Loftin, Rachel
2007-01-01
In this study, the authors examined the relationship between engagement in social interaction with peers and stereotypic behavior. Three children with autism with relatively high rates of stereotypic behavior and low rates of social engagement with peers participated in the study. Two typically developing peers learned to direct social initiations…
Relations Among Student Attention Behaviors, Teacher Practices, and Beginning Word Reading Skill
Sáez, Leilani; Folsom, Jessica Sidler; Al Otaiba, Stephanie; Schatschneider, Christopher
2011-01-01
The role of student attention for predicting kindergarten word reading was investigated among 432 students. Using SWAN behavior rating scores, we conducted an exploratory factor analysis, which yielded three distinct factors that reflected selective attention. In this study, we focused on the role of one of these factors, which we labeled attention-memory behaviors, for predicting reading performance. Teacher ratings of attention predicted word reading above and beyond the contribution of phonological awareness and vocabulary knowledge. In addition, the relations between four teacher practices and attention ratings for predicting reading performance were examined. Using HLM, significant interactions between student attention and teacher practices observed during literacy instruction were found. In general, as ratings of attention improved, better kindergarten word reading performance was associated with high levels of classroom behavior management. However, by mid-year, better word reading performance was not associated with high levels of teacher task- orienting. A significant three-way interaction was also found among attention, individualized instruction, and teacher task re-directions. The role of regulating kindergarten student attention to support beginning word reading skill development is discussed. PMID:22207616
Relations among student attention behaviors, teacher practices, and beginning word reading skill.
Sáez, Leilani; Folsom, Jessica Sidler; Al Otaiba, Stephanie; Schatschneider, Christopher
2012-01-01
The role of student attention for predicting kindergarten word reading was investigated among 432 students. Using Strengths and Weaknesses of ADHD Symptoms and Normal Behavior Rating Scale behavior rating scores, the authors conducted an exploratory factor analysis, which yielded three distinct factors that reflected selective attention. In this study, the authors focused on the role of one of these factors, which they labeled attention-memory, for predicting reading performance. Teacher ratings of attention-memory predicted word reading above and beyond the contribution of phonological awareness and vocabulary knowledge. In addition, the relations between four teacher practices and attention ratings for predicting reading performance were examined. Using hierarchical linear modeling, the authors found significant interactions between student attention and teacher practices observed during literacy instruction. In general, as ratings of attention improved, better kindergarten word reading performance was associated with high levels of classroom behavior management. However, better word reading performance was not associated with high levels of teacher task orienting. A significant three-way interaction was also found among attention, individualized instruction, and teacher task redirections. The role of regulating kindergarten student attention to support beginning word reading skill development is discussed.
Effect of interactions with the chaperonin cavity on protein folding and misfolding†
Sirur, Anshul; Knott, Michael; Best, Robert B.
2015-01-01
Recent experimental and computational results have suggested that attractive interactions between a chaperonin and an enclosed substrate can have an important effect on the protein folding rate: it appears that folding may even be slower inside the cavity than under unconfined conditions, in contrast to what we would expect from excluded volume effects on the unfolded state. Here we examine systematically the dependence of the protein stability and folding rate on the strength of such attractive interactions between the chaperonin and substrate, by using molecular simulations of model protein systems in an idealised attractive cavity. Interestingly, we find a maximum in stability, and a rate which indeed slows down at high attraction strengths. We have developed a simple phenomenological model which can explain the variations in folding rate and stability due to differing effects on the free energies of the unfolded state, folded state, and transition state; changes in the diffusion coefficient along the folding coordinate are relatively small, at least for our simplified model. In order to investigate a possible role for these attractive interactions in folding, we have studied a recently developed model for misfolding in multidomain proteins. We find that, while encapsulation in repulsive cavities greatly increases the fraction of misfolded protein, sufficiently strong attractive protein-cavity interactions can strongly reduce the fraction of proteins reaching misfolded traps. PMID:24077053
Thrush, Simon F; Hewitt, Judi E; Lohrer, Andrew M; Chiaroni, Luca D
2013-01-01
Interaction between the diversity of local communities and the degree of connectivity between them has the potential to influence local recovery rates and thus profoundly affect community dynamics in the face of the cumulative impacts that occur across regions. Although such complex interactions have been modeled, field experiments in natural ecosystems to investigate the importance of interactions between local and regional processes are rare, especially so in coastal marine seafloor habitats subjected to many types of disturbance. We conducted a defaunation experiment at eight subtidal sites, incorporating manipulation of habitat structure, to test the relative importance of local habitat features and colonist supply in influencing macrobenthic community recovery rate. Our sites varied in community composition, habitat characteristics, and hydrodynamic conditions, and we conducted the experiment in two phases, exposing defaunated plots to colonists during periods of either high or low larval colonist supply. In both phases of the experiment, five months after disturbance, we were able to develop models that explained a large proportion of variation in community recovery rate between sites. Our results emphasize that the connectivity to the regional species pool influences recovery rate, and although local habitat effects were important, the strength of these effects was affected by broader-scale site characteristics and connectivity. Empirical evidence that cross-scale interactions are important in disturbance-recovery dynamics emphasizes the complex dynamics underlying seafloor community responses to cumulative disturbance.
NASA Technical Reports Server (NTRS)
Karp, A.
1980-01-01
A low-cost, narrowband, millimeter wave space communications TWT design was studied. Cold test interaction structure scale models were investigated and analyses were undertaken to predict the electrical and thermal response of the hypothetical 200 W TWT at 42 GHz and 21 kV beam voltage. An intentionally narrow instantaneous bandwidth (1%, with the possibility of electronic tuning of the center frequency over several percent) was sought with a highly dispersive, high impedance "forward wave' interaction structure based on a ladder (for economy in fabrication) and nonspace harmonic interaction, for a high gain rate and a short, economically focused tube. The "TunneLadder' interaction structure devised combines ladder properties with accommodation for a pencil beam. Except for the impedance and bandwidth, there is much in common with the millimeter wave helix TWTs which provided the ideal of diamond support rods. The benefits of these are enhanced in the TunneLadder case because of spatial separation of beam interception and RF current heating.
Iwao, Yasunori; Kimura, Shin-Ichiro; Ishida, Masayuki; Mise, Ryohei; Yamada, Masaki; Namiki, Noriyuki; Noguchi, Shuji; Itai, Shigeru
2015-01-01
The manufacture of highly drug-loaded fine globular granules eventually applied for orally disintegrating tablets has been investigated using a unique multi-functional rotor processor with acetaminophen, which was used as a model drug substance. Experimental design and statistical analysis were used to evaluate potential relationships between three key operating parameters (i.e., the binder flow rate, atomization pressure and rotating speed) and a series of associated micromeritics (i.e., granule mean size, proportion of fine particles (106-212 µm), flowability, roundness and water content). The results of multiple linear regression analysis revealed several trends, including (1) the binder flow rate and atomization pressure had significant positive and negative effects on the granule mean size value, Carr's flowability index, granular roundness and water content, respectively; (2) the proportion of fine particles was positively affected by the product of interaction between the binder flow rate and atomization pressure; and (3) the granular roundness was negatively and positively affected by the product of interactions between the binder flow rate and the atomization pressure, and the binder flow rate and rotating speed, respectively. The results of this study led to the identification of optimal operating conditions for the preparation of granules, and could therefore be used to provide important information for the development of processes for the manufacture of highly drug-loaded fine globular granules.
A systems model for immune cell interactions unravels the mechanism of inflammation in human skin.
Valeyev, Najl V; Hundhausen, Christian; Umezawa, Yoshinori; Kotov, Nikolay V; Williams, Gareth; Clop, Alex; Ainali, Crysanthi; Ouzounis, Christos; Tsoka, Sophia; Nestle, Frank O
2010-12-02
Inflammation is characterized by altered cytokine levels produced by cell populations in a highly interdependent manner. To elucidate the mechanism of an inflammatory reaction, we have developed a mathematical model for immune cell interactions via the specific, dose-dependent cytokine production rates of cell populations. The model describes the criteria required for normal and pathological immune system responses and suggests that alterations in the cytokine production rates can lead to various stable levels which manifest themselves in different disease phenotypes. The model predicts that pairs of interacting immune cell populations can maintain homeostatic and elevated extracellular cytokine concentration levels, enabling them to operate as an immune system switch. The concept described here is developed in the context of psoriasis, an immune-mediated disease, but it can also offer mechanistic insights into other inflammatory pathologies as it explains how interactions between immune cell populations can lead to disease phenotypes.
NASA Technical Reports Server (NTRS)
Chinitz, W.
1986-01-01
A computationally-viable model describing the interaction between fluid-mechanical turbulence and finite-rate combustion reactions, principally in high-speed flows was developed. Chemical kinetic mechanisms, complete and global, were developed describing the finite rate reaction of fuels of interest to NASA. These fuels included principally hydrogen and silane, although a limited amount of work involved hydrocarbon fuels as well.
Contribution to irradiation creep arising from gas-driven bubbles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woo, C.H.; Garner, F.A.
1998-03-01
In a previous paper the relationship was defined between void swelling and irradiation creep arising from the interaction of the SIPA and SIG creep-driven deformation and swelling-driven deformation was highly interactive in nature, and that the two contributions could not be independently calculated and then considered as directly additive. This model could be used to explain the recent experimental observation that the creep-swelling coupling coefficient was not a constant as previously assumed, but declined continuously as the swelling rate increased. Such a model thereby explained the creep-disappearance and creep-damping anomalies observed in conditions where significant void swelling occurred before substantialmore » creep deformation developed. At lower irradiation temperatures and high helium/hydrogen generation rates, such as found in light water cooled reactors and some fusion concepts, gas-filled cavities that have not yet exceeded the critical radius for bubble-void conversion should also exert an influence on irradiation creep. In this paper the original concept is adapted to include such conditions, and its predictions then compared with available data. It is shown that a measurable increase in the creep rate is expected compared to the rate found in low gas-generating environments. The creep rate is directly related to the gas generation rate and thereby to the neutron flux and spectrum.« less
Hartley, Sigan L; Papp, Lauren M; Blumenstock, Shari M; Floyd, Frank; Goetz, Greta L
2016-09-01
The vulnerability-stress-adaptation model guided this examination of the impact of daily fluctuations in the symptoms and co-occurring behavior problems of children with autism spectrum disorder (ASD) on parents' couple problem-solving interactions in natural settings and as these interactions spontaneously occur. A 14-day daily diary was completed by mothers and fathers in 176 families who had a child with ASD. On each day of the diary, parents separately reported on the child with ASD's daily level of symptoms and co-occurring behavior problems and the topic and level of negative affect in their most meaningful or important daily couple problem-solving interaction. Multilevel modeling was used to account for the within-person, within-couple nested structure of the data. Results indicated that many parents are resilient to experiencing a day with a high level of child ASD symptoms and co-occurring behavior problems and do not report more negative couple problem-solving interactions. However, household income, level of parental broader autism phenotype, and presence of multiple children with special care needs served as vulnerability factors in that they were related to a higher overall rating of negative affect in couple interactions and moderated the impact of reporting a day with a high level of child ASD symptoms and co-occurring behavior problems on next-day ratings of negative couple problem-solving interactions. The magnitude of these effects was small. Understanding mechanisms that support adaptive couple interactions in parents of children with ASD is critical for promoting best outcomes. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Hartley, Sigan L.; Papp, Lauren M.; Blumenstock, Shari; Floyd, Frank; Goetz, Greta L.
2016-01-01
The vulnerability-stress-adaptation model guided this examination of the impact of daily fluctuations in the symptoms and co-occurring behavior problems of children with autism spectrum disorder (ASD) on parents’ couple problem-solving interactions in natural settings and as these interactions spontaneously occur. A 14-day daily diary was completed by mothers and fathers in 176 families who had a child with ASD. On each day of the diary, parents separately reported on the child with ASD's daily level of symptoms and co-occurring behavior problems and the topic and level of negative affect in their most meaningful or important daily couple problem-solving interaction. Multilevel modeling was used to account for the within-person, within-couple nested structure of the data. Results indicated that many parents are resilient to experiencing a day with a high level of child ASD symptoms and co-occurring behavior problems and do not report more negative couple problem-solving interactions. However, household income, level of parental broader autism phenotype, and presence of multiple children with special care needs served as vulnerability factors in that they were related to a higher overall rating of negative affect in couple interactions and moderated the impact of reporting a day with a high level of child ASD symptoms and co-occurring behavior problems on next-day ratings of negative couple problem-solving interactions. The magnitude of these effects was small. Understanding mechanisms that support adaptive couple interactions in parents of children with ASD is critical for promoting best outcomes. PMID:27336179
Schizophrenic Patients' Perceptions of Stress, Expressed Emotion, and Sensitivity To Criticism
Cutting, Linda P.; Aakre, Jennifer M.; Docherty, Nancy M.
2006-01-01
This study was designed to get an “insider's view” of expressed emotion (EE) from the perspective of schizophrenic patients. Thirty-two patient and “influential other” pairs participated in the study. Patients' perceptions of EE attitudes in influential others were examined to determine whether they corresponded with actual EE ratings. Patients also rated how “stressed” they felt when interacting with their influential others, and patients' general sensitivity to criticism (STC) was assessed. As predicted, patients' perceptions of critical attitudes were related to actual EE ratings of criticism, although patients' perceptions of emotional overinvolvement (EOI) were not related to EOI ratings. Patients reported feeling more stressed when interacting with high-EE influential others, supporting an “EE as stressor” hypothesis. Finally, patients' STC influenced the level of stress they reported. PMID:16731686
Falvo, D; Tippy, P
1988-06-01
A study investigated the degree to which residents' communication of specific information about medications and follow-up appointments had an impact on patient recall, satisfaction, and adherence. Twenty-nine interactions between patients and residents were taped and analyzed by two trained observers. Patients were interviewed immediately after their interactions with residents to assess their ability to recall instructions and to assess their levels of satisfaction with the visit. Patients' overall global satisfaction with their interactions was highly correlated with their ratings of resident information giving (Pearson r = .90, P less than .001). Patients who expressed higher levels of satisfaction also had higher recall rates (Pearson r = .39, P less than .01), although overall patient recall rate was only slightly above 50 percent. Observers' analysis of residents giving information reveals a mean performance rating of 40 percent. Only 31 percent of patients returned for their follow-up appointments. The study suggests that information itself may not be so important in determining patient satisfaction as are patients' perceptions that physicians attempt to give them information. Such information may, however, have greater impact on patient adherence with physician recommendations.
Eccentric black hole mergers forming in globular clusters
NASA Astrophysics Data System (ADS)
Samsing, Johan
2018-05-01
We derive the probability for a newly formed binary black hole (BBH) to undergo an eccentric gravitational wave (GW) merger during binary-single interactions inside a stellar cluster. By integrating over the hardening interactions such a BBH must undergo before ejection, we find that the observable rate of BBH mergers with eccentricity >0.1 at 10 Hz relative to the rate of circular mergers can be as high as ˜5 % for a typical globular cluster (GC). This further suggests that BBH mergers forming through GW captures in binary-single interactions, eccentric or not, are likely to constitute ˜10 % of the total BBH merger rate from GCs. Such GW capture mergers can only be probed with an N -body code that includes general relativistic corrections, which explains why recent Newtonian cluster studies have not been able to resolve this population. Finally, we show that the relative rate of eccentric BBH mergers depends on the compactness of their host cluster, suggesting that an observed eccentricity distribution can be used to probe the origin of BBH mergers.
[Fertility and health in Mexico].
Urbina-Fuentes, M; Echánove-Fernández, E
1989-01-01
Fertility, health, and family planning are not independent factors, but rather involve a series of biological and social mechanisms in close interaction with one another. The impact that a high fertility rate has on health is reflected mainly in a rise in the rates of maternal and child mortality. Similarly, fertility has a greater negative effect upon the health of groups characterized by high reproductive risk, high parity, short intergenesic intervals, and unwanted pregnancies. On the other hand, family planning -and specifically the use of contraceptive methods-helps to achieve a lowering of the fertility rate and also has a positive effect on maternal-child health. This situation can be observed in the case of Mexico, where fertility rates and tendencies, as well as maternal and child mortality, have been reduced during the past decade.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Katsouleas, Thomas C.; Sahai, Aakash A.
2016-08-08
There were two goals for this funded project: 1. Studies of plasma wakefields for high repetition-rate plasma collider, and 2. Theoretical study of laser-plasma proton and ion acceleration. For goal 1, an analytical model was developed to determine the ion-motion resulting from the interaction of non-linear “blow-out” wakefields excited by beam-plasma and laser-plasma interactions. This is key to understanding the state of the plasma at timescales of 1 picosecond to a few 10s of picoseconds behind the driver-energy pulse. More information can be found in the document. For goal 2, we analytically and computationally analyzed the longitudinal instabilities of themore » laser-plasma interactions at the critical layer. Specifically, the process of “Doppler-shifted Ponderomotive bunching” is significant to eliminate the very high-energy spread and understand the importance of chirping the laser pulse frequency. We intend to publish the results of the mixing process in 2-D. We intend to publish Chirp-induced transparency. More information can be found in the document.« less
Research methods of plasma stream interaction with heat-resistant materials
NASA Astrophysics Data System (ADS)
Tyuftyaev, A. S.; Gadzhiev, M. Kh; Sargsyan, M. A.; Chinnov, V. F.; Demirov, N. A.; Kavyrshin, D. I.; Ageev, A. G.; Khromov, M. A.
2016-11-01
An experimental automated system was designed and constructed for studying the parameters and characteristics of non-stationary interacting system high-enthalpy-plasma stream-investigated sample: enthalpy of plasma in the incident stream; speed and temperature of plasma stream; temperature of electrons and heavy particles, ionic composition and their spatial distribution; heat flux incident on the sample (kW/cm2); surface temperature of the sample; ablation of the sample material, and others. Measurements of achievable plasma heat flux levels are carried out by calorimetry of plasma streams incident on the surface of multisection copper calorimeter. Determination of acceleration characteristics for profiled plasma torch nozzle, as well as the gas flow rate is produced by measuring the total pressure using the Pitot tube. Video visualization of interacting system is carried out using synchronized high-speed cameras. Micropyrometry of the selected zone on the sample surface is carried out by high-speed, three-wavelength pyrometer. To measure the rate of mass loss of the sample, in addition to the weighing method of evaluation the methods of laser knife and two-position stereoscopy are used. Plasma and sample emission characteristics are performed with two separate spectrometers.
Rodríguez-Medina, Jairo; Martín-Antón, Luis J; Carbonero, Miguel A; Ovejero, Anastasio
2016-01-01
Autism Spectrum Disorder (ASD) is characterized by difficulties with social interaction and communication, which manifest at school especially in less structured situations such as recess. Recess provides opportunities for relationship with peers in a natural context, for which students with ASD may not be equipped with the necessary skills to use without support. Using a single-case design, we evaluated an intervention applied in recess to improve the social interaction skills of a student with high-functioning ASD mediated by his peers without ASD, in second grade of elementary school. This intervention includes different strategies to initiate the peers without ASD, using direct instruction, modeling, and social reinforcement carried out in the recess setting. After 14 sessions, changes were observed in the rates of initiating and responding to interactions, and a negative trend in the percentage of time that the student maintained low-intensity interactions or was alone. Teachers and family perceived improvements in social skills, more peer acceptance, and increase in the frequency and duration of social interactions. This intervention can help teachers to apply research-based practices to improve some social interaction skills in high-functioning students with autism in inclusive school environments.
Lam, Winnie W M; Chan, Keith C C
2012-04-01
Protein molecules interact with each other in protein complexes to perform many vital functions, and different computational techniques have been developed to identify protein complexes in protein-protein interaction (PPI) networks. These techniques are developed to search for subgraphs of high connectivity in PPI networks under the assumption that the proteins in a protein complex are highly interconnected. While these techniques have been shown to be quite effective, it is also possible that the matching rate between the protein complexes they discover and those that are previously determined experimentally be relatively low and the "false-alarm" rate can be relatively high. This is especially the case when the assumption of proteins in protein complexes being more highly interconnected be relatively invalid. To increase the matching rate and reduce the false-alarm rate, we have developed a technique that can work effectively without having to make this assumption. The name of the technique called protein complex identification by discovering functional interdependence (PCIFI) searches for protein complexes in PPI networks by taking into consideration both the functional interdependence relationship between protein molecules and the network topology of the network. The PCIFI works in several steps. The first step is to construct a multiple-function protein network graph by labeling each vertex with one or more of the molecular functions it performs. The second step is to filter out protein interactions between protein pairs that are not functionally interdependent of each other in the statistical sense. The third step is to make use of an information-theoretic measure to determine the strength of the functional interdependence between all remaining interacting protein pairs. Finally, the last step is to try to form protein complexes based on the measure of the strength of functional interdependence and the connectivity between proteins. For performance evaluation, PCIFI was used to identify protein complexes in real PPI network data and the protein complexes it found were matched against those that were previously known in MIPS. The results show that PCIFI can be an effective technique for the identification of protein complexes. The protein complexes it found can match more known protein complexes with a smaller false-alarm rate and can provide useful insights into the understanding of the functional interdependence relationships between proteins in protein complexes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sadat, M E; Patel, Ronak; Sookoor, Jason
2014-09-01
In this work, the effect of nanoparticle confinement on the magnetic relaxation of iron oxide (Fe3O4) nanoparticles (NP) was investigated by measuring the hyperthermia heating behavior in high frequency alternating magnetic field. Three different Fe3O4 nanoparticle systems having distinct nanoparticle configurations were studied in terms of magnetic hyperthermia heating rate and DC magnetization. All magnetic nanoparticle (MNP) systems were constructed using equivalent ~10nm diameter NP that were structured differently in terms of configuration, physical confinement, and interparticle spacing. The spatial confinement was achieved by embedding the Fe3O4 nanoparticles in the matrices of the polystyrene spheres of 100 nm, while themore » unconfined was the free Fe3O4 nanoparticles well-dispersed in the liquid via PAA surface coating. Assuming the identical core MNPs in each system, the heating behavior was analyzed in terms of particle freedom (or confinement), interparticle spacing, and magnetic coupling (or dipole-dipole interaction). DC magnetization data were correlated to the heating behavior with different material properties. Analysis of DC magnetization measurements showed deviation from classical Langevin behavior near saturation due to dipole interaction modification of the MNPs resulting in a high magnetic anisotropy. It was found that the Specific Absorption Rate (SAR) of the unconfined nanoparticle systems were significantly higher than those of confined (the MNPs embedded in the polystyrene matrix). This increase of SAR was found to be attributable to high Néel relaxation rate and hysteresis loss of the unconfined MNPs. It was also found that the dipole-dipole interactions can significantly reduce the global magnetic response of the MNPs and thereby decrease the SAR of the nanoparticle systems.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elmegreen, Bruce G.; Kaufman, Michele; Bournaud, Frédéric
CO observations of the interacting galaxies IC 2163 and NGC 2207 are combined with HI, H α , and 24 μ m observations to study the star formation rate (SFR) surface density as a function of the gas surface density. More than half of the high-SFR regions are HI dominated. When compared to other galaxies, these HI-dominated regions have excess SFRs relative to their molecular gas surface densities but normal SFRs relative to their total gas surface densities. The HI-dominated regions are mostly located in the outer part of NGC 2207 where the HI velocity dispersion is high, 40–50 kmmore » s{sup −1}. We suggest that the star-forming clouds in these regions have envelopes at lower densities than normal, making them predominantly atomic, and cores at higher densities than normal because of the high turbulent Mach numbers. This is consistent with theoretical predictions of a flattening in the density probability distribution function for compressive, high Mach number turbulence.« less
Van Etten, Megan L.; Tate, Jennifer A.; Anderson, Sandra H.; Kelly, Dave; Ladley, Jenny J.; Merrett, Merilyn F.; Peterson, Paul G.; Robertson, Alastair W.
2015-01-01
Background and Aims Interactions between species are especially sensitive to environmental changes. The interaction between plants and pollinators is of particular interest given the potential current global decline in pollinators. Reduced pollinator services can be compensated for in some plant species by self-pollination. However, if inbreeding depression is high, selfed progeny could die prior to reaching adulthood, leading to cryptic recruitment failure. Methods To examine this scenario, pollinator abundance, pollen limitation, selfing rates and inbreeding depression were examined in 12 populations of varying disturbance levels in Sophora microphylla (Fabaceae), an endemic New Zealand tree species. Key Results High pollen limitation was found in all populations (average of 58 % reduction in seed production, nine populations), together with high selfing rates (61 % of offspring selfed, six populations) and high inbreeding depression (selfed offspring 86 % less fit, six populations). Pollen limitation was associated with lower visitation rates by the two endemic bird pollinators. Conclusions The results suggest that for these populations, over half of the seeds produced are genetically doomed. This reduction in the fitness of progeny due to reduced pollinator service is probably important to population dynamics of other New Zealand species. More broadly, the results suggest that measures of seed production or seedling densities may be a gross overestimate of the effective offspring production. This could lead to cryptic recruitment failure, i.e. a decline in successful reproduction despite high progeny production. Given the global extent of pollinator declines, cryptic recruitment failure may be widespread. PMID:26229065
ERIC Educational Resources Information Center
Collins, Terri Lane Sutherland
2010-01-01
The prevalence rates of children being diagnosed with autism spectrum disorder (ASD) continue to rise at alarming rates. Recent figures suggest that approximately 1 in 90 children have an ASD. Children with ASD have significant deficits that affect communication skills and social interaction. Children with ASD may also engage in high levels of…
Consumer-mediated recycling and cascading trophic interactions.
Leroux, Shawn J; Loreau, Michel
2010-07-01
Cascading trophic interactions mediated by consumers are complex phenomena, which encompass many direct and indirect effects. Nonetheless, most experiments and theory on the topic focus uniquely on the indirect, positive effects of predators on producers via regulation of herbivores. Empirical research in aquatic ecosystems, however, demonstrate that the indirect, positive effects of consumer-mediated recycling on primary producer stocks may be larger than the effects of herbivore regulation, particularly when predators have access to alternative prey. We derive an ecosystem model with both recipient- and donor-controlled trophic relationships to test the conditions of four hypotheses generated from recent empirical work on the role of consumer-mediated recycling in cascading trophic interactions. Our model predicts that predator regulation of herbivores will have larger, positive effects on producers than consumer-mediated recycling in most cases but that consumer-mediated recycling does generally have a positive effect on producer stocks. We demonstrate that herbivore recycling will have larger effects on producer biomass than predator recycling when turnover rates and recycling efficiencies are high and predators prefer local prey. In addition, predictions suggest that consumer-mediated recycling has the largest effects on primary producers when predators prefer allochthonous prey and predator attack rates are high. Finally, our model predicts that consumer-mediated recycling effects may not be largest when external nutrient loading is low. Our model predictions highlight predator and prey feeding relationships, turnover rates, and external nutrient loading rates as key determinants of the strength of cascading trophic interactions. We show that existing hypotheses from specific empirical systems do not occur under all conditions, which further exacerbates the need to consider a broad suite of mechanisms when investigating trophic cascades.
Student and Teacher Perceptions of Their Middle and High Schools' Sense of Community.
ERIC Educational Resources Information Center
Schulte, Laura E.; Shanahan, Steven; Anderson, Thomas D.; Sides, James
2003-01-01
Investigates sense of community at Midwestern school district's middle and high schools. Finds, for example, that regardless of school level, teachers rated "teacher to student" interactions and relationships significantly more positively than did students. Recommends schools' sense of community be enhanced by integrating opportunities for…
Pitchford, Nicola J.; Kamchedzera, Elizabeth; Hubber, Paula J.; Chigeda, Antonie L.
2018-01-01
Interactive apps delivered on touch-screen tablets can be effective at supporting the acquisition of basic skills in mainstream primary school children. This technology may also be beneficial for children with Special Educational Needs and Disabilities (SEND) as it can promote high levels of engagement with the learning task and an inclusive learning environment. However, few studies have measured extent of learning for SEND pupils when using interactive apps, so it has yet to be determined if this technology is effective at raising attainment for these pupils. We report the first observational study of a group of 33 pupils with SEND from two primary schools in Malawi that are implementing a new digital technology intervention which uses touch-screen tablets to deliver interactive apps designed to teach basic mathematical skills. The apps contain topics that align to the national curriculum. To assess learning gains, rate of progress (minutes per topic) for each pupil was determined by calculating the average time taken to complete a topic. Progress rate was then correlated with teacher ratings of extent of disability and independent ratings of pupil engagement with the apps. Results showed SEND pupils could interact with the apps and all pupils passed at least one topic. Average progress rate for SEND pupils was twice as long as mainstream peers. Stepwise regression revealed extent of disability significantly predicted progress rate. Further exploratory correlations revealed pupils with moderate to severe difficulties with hearing and/or language made slower progress through the apps than those with greater functionality in these two domains because the use of verbal instructions within the apps limited their capacity to learn. This original quantitative analysis demonstrates that interactive apps can raise learning standards in pupils with SEND but may have limited utility for pupils with severe difficulties. Software modifications are needed to address specific areas of difficulty preventing pupils from progressing. PMID:29559940
Ramstedt, B; Slotte, J P
1999-01-01
In this study we have synthesized sphingomyelins (SM) and phosphatidylcholines (PC) with amide-linked or sn-2 linked acyl chains with lengths from 14 to 24 carbons. The purpose was to examine how the chain length and degree of unsaturation affected the interaction of cholesterol with these phospholipids in model membrane systems. Monolayers of saturated SMs and PCs with acyl chain lengths above 14 carbons were condensed and displayed a high collapse pressure ( approximately 70 mN/m). Monolayers of N-14:0-SM and 1(16:0)-2(14:0)-PC had a much lower collapse pressure (58-60 mN/m) and monounsaturated SMs collapsed at approximately 50 mN/m. The relative interaction of cholesterol with these phospholipids was determined at 22 degreesC by measuring the rate of cholesterol desorption from mixed monolayers (50 mol % cholesterol; 20 mN/m) to beta-cyclodextrin in the subphase (1.7 mM). The rate of cholesterol desorption was lower from saturated SM monolayers than from chain-matched PC monolayers. In SM monolayers, the rate of cholesterol desorption was very slow for all N-linked chains, whereas for PC monolayers we could observe higher desorption rates from monolayers of longer PCs. These results show that cholesterol interacts favorably with SMs (low rate of desorption), whereas its interaction (or miscibility) with long chain PCs is weaker. Introduction of a single cis-unsaturation in the N-linked acyl chain of SMs led to faster rates of cholesterol desorption as compared with saturated SMs. The exception was monolayers of N-22:1-SM and N-24:1-SM from which cholesterol desorbed almost as slowly as from the corresponding saturated SM monolayers. The results of this study suggest that cholesterol is most likely capable of interacting with all physiologically relevant (including long-chain) SMs present in the plasma membrane of cells. PMID:9929492
Pitchford, Nicola J; Kamchedzera, Elizabeth; Hubber, Paula J; Chigeda, Antonie L
2018-01-01
Interactive apps delivered on touch-screen tablets can be effective at supporting the acquisition of basic skills in mainstream primary school children. This technology may also be beneficial for children with Special Educational Needs and Disabilities (SEND) as it can promote high levels of engagement with the learning task and an inclusive learning environment. However, few studies have measured extent of learning for SEND pupils when using interactive apps, so it has yet to be determined if this technology is effective at raising attainment for these pupils. We report the first observational study of a group of 33 pupils with SEND from two primary schools in Malawi that are implementing a new digital technology intervention which uses touch-screen tablets to deliver interactive apps designed to teach basic mathematical skills. The apps contain topics that align to the national curriculum. To assess learning gains, rate of progress (minutes per topic) for each pupil was determined by calculating the average time taken to complete a topic. Progress rate was then correlated with teacher ratings of extent of disability and independent ratings of pupil engagement with the apps. Results showed SEND pupils could interact with the apps and all pupils passed at least one topic. Average progress rate for SEND pupils was twice as long as mainstream peers. Stepwise regression revealed extent of disability significantly predicted progress rate. Further exploratory correlations revealed pupils with moderate to severe difficulties with hearing and/or language made slower progress through the apps than those with greater functionality in these two domains because the use of verbal instructions within the apps limited their capacity to learn. This original quantitative analysis demonstrates that interactive apps can raise learning standards in pupils with SEND but may have limited utility for pupils with severe difficulties. Software modifications are needed to address specific areas of difficulty preventing pupils from progressing.
Interactive Dynamic Volume Illumination with Refraction and Caustics.
Magnus, Jens G; Bruckner, Stefan
2018-01-01
In recent years, significant progress has been made in developing high-quality interactive methods for realistic volume illumination. However, refraction - despite being an important aspect of light propagation in participating media - has so far only received little attention. In this paper, we present a novel approach for refractive volume illumination including caustics capable of interactive frame rates. By interleaving light and viewing ray propagation, our technique avoids memory-intensive storage of illumination information and does not require any precomputation. It is fully dynamic and all parameters such as light position and transfer function can be modified interactively without a performance penalty.
Influence of load interactions on crack growth as related to state of stress and crack closure
NASA Technical Reports Server (NTRS)
Telesman, J.
1985-01-01
Fatigue crack propagation (FCP) after an application of a low-high loading sequence was investigated as a function of specimen thickness and crack closure. No load interaction effects were detected for specimens in a predominant plane strain state. However, for the plane stress specimens, initially high FCP rates after transition to a higher stress intensity range were observed. The difference in observed behavior was explained by examining the effect of the resulting closure stress intensity values on the effective stress intensity range.
NASA Astrophysics Data System (ADS)
Zhong, Xiao; Sun, Peide; Song, Yingqi; Wang, Ruyi; Fang, Zhiguo
2010-11-01
Based on the fully coupled activated sludge model (FCASM), the novel model Tubificidae -Fully Coupled Activated Sludge Model-hydraulic (T-FCASM-Hydro), has been developed in our previous work. T-FCASM-Hydro not only describe the interactive system between Tubificidae and functional microorganisms for the sludge reduction and nutrient removal simultaneously, but also considere the interaction between biological and hydraulic field, After calibration and validation of T-FCASM-Hydro at Zhuji Feida-hongyu Wastewater treatment plant (WWTP) in Zhejiang province, T-FCASM-Hydro was applied for determining optimal operating condition in the WWTP. Simulation results showed that nitrogen and phosphorus could be removed efficiently, and the efficiency of NH4+-N removal enhanced with increase of DO concentration. At a certain low level of DO concentration in the aerobic stage, shortcut nitrification-denitrification dominated in the process of denitrification in the novel system. However, overhigh agitation (>6 mgṡL-1) could result in the unfavorable feeding behavior of Tubificidae because of the strong flow disturbance, which might lead to low rate of sludge reduction. High sludge reduction rate and high removal rate of nitrogen and phosphorus could be obtained in the new-style oxidation ditch when DO concentration at the aerobic stage with Tubificidae was maintained at 3.6 gṡm-3.
NASA Astrophysics Data System (ADS)
Quan, Guo-zheng; Zhan, Zong-yang; Wang, Tong; Xia, Yu-feng
2017-01-01
The response of true stress to strain rate, temperature and strain is a complex three-dimensional (3D) issue, and the accurate description of such constitutive relationships significantly contributes to the optimum process design. To obtain the true stress-strain data of ultra-high-strength steel, BR1500HS, a series of isothermal hot tensile tests were conducted in a wide temperature range of 973-1,123 K and a strain rate range of 0.01-10 s-1 on a Gleeble 3800 testing machine. Then the constitutive relationships were modeled by an optimally constructed and well-trained backpropagation artificial neural network (BP-ANN). The evaluation of BP-ANN model revealed that it has admirable performance in characterizing and predicting the flow behaviors of BR1500HS. A comparison on improved Arrhenius-type constitutive equation and BP-ANN model shows that the latter has higher accuracy. Consequently, the developed BP-ANN model was used to predict abundant stress-strain data beyond the limited experimental conditions. Then a 3D continuous interaction space for temperature, strain rate, strain and stress was constructed based on these predicted data. The developed 3D continuous interaction space for hot working parameters contributes to fully revealing the intrinsic relationships of BR1500HS steel.
NASA Astrophysics Data System (ADS)
Arula, Timo; Laur, Kerli; Simm, Mart; Ojaveer, Henn
2015-12-01
High individual growth and mortality rates of herring Clupea harengus membras and goby Pomatoschistus spp. larvae were observed in the estuarine habitat of the Gulf of Riga, Baltic Sea. Both instantaneous mortality (0.76-1.05) as well as growth rate (0.41-0.82 mm day-1) of larval herring were amongst highest observed elsewhere previously. Mortality rates of goby larvae were also high (0.57-1.05), while first ever data on growth rates were provided in this study (0.23-0.35 mm day-1). Our study also evidenced that higher growth rate of marine fish larvae did not result in lower mortalities. We suggest that high growth and mortality rates primarily resulted from a rapidly increasing and high (>18 °C) water temperature that masked potential food-web effects. The explanation for observed patterns lies in the interactive manner temperature contributed: i) facilitating prey production, which supported high growth rate and decreased mortalities; ii) exceeding physiological thermal optimum of larvae, which resulted in decreased growth rate and generally high mortalities. Our investigation suggests that the projected climate warming may have significant effect on early life history stages of the dominating marine fish species inhabiting shallow estuaries.
Parent-adolescent conflict interactions and adolescent alcohol use.
Chaplin, Tara M; Sinha, Rajita; Simmons, Jessica A; Healy, Stephen M; Mayes, Linda C; Hommer, Rebecca E; Crowley, Michael J
2012-05-01
One important factor in adolescents' development of problem alcohol use is their family environment. Yet, the mechanisms that relate parenting to youth alcohol use are not well characterized. This study employed a naturalistic laboratory-based approach to observe parenting behaviors (support, structure, criticism) and adolescents' physiological and emotional responses to parent-adolescent interactions to examine associations with adolescent alcohol use. Fifty eight 10-16year olds and their parents completed a 10minute Parent Adolescent Interaction Task (PAIT) in which they discussed a mutually highly-rated conflict topic. Parental support, structure, and criticism were coded from the interaction. Adolescents' heart rate (HR), blood pressure (BP), reported emotions, and salivary cortisol were assessed before, during, and after the interaction. Findings indicated that lower parental structure and support were associated with youth's greater diastolic BP and anger arousal in response to the PAIT. Furthermore, higher HR, systolic BP, and cortisol responses to the interaction were associated with youth's alcohol use. Findings suggest that heightened emotional and physiological responses to parent-adolescent conflict interactions in youth may be one pathway by which parenting is associated with adolescent alcohol use and risk for abuse. Copyright © 2011 Elsevier Ltd. All rights reserved.
Forrest, Jessica R K; Chisholm, Sarah P M
2017-02-01
Warm temperatures are required for insect flight. Consequently, warming could benefit many high-latitude and high-altitude insects by increasing opportunities for foraging or oviposition. However, warming can also alter species interactions, including interactions with natural enemies, making the net effect of rising temperatures on population growth rate difficult to predict. We investigated the temperature-dependence of nesting activity and lifetime reproductive output over 3 yr in subalpine populations of a pollen-specialist bee, Osmia iridis. Rates of nest provisioning increased with ambient temperatures and with availability of floral resources, as expected. However, warmer conditions did not increase lifetime reproductive output. Lifetime offspring production was best explained by rates of brood parasitism (by the wasp Sapyga), which increased with temperature. Direct observations of bee and parasite activity suggest that although activity of both species is favored by warmer temperatures, bees can be active at lower ambient temperatures, while wasps are active only at higher temperatures. Thus, direct benefits to the bees of warmer temperatures were nullified by indirect costs associated with increased parasite activity. To date, most studies of climate-change effects on pollinators have focused on changing interactions between pollinators and their floral host-plants (i.e., bottom-up processes). Our results suggest that natural enemies (i.e., top-down forces) can play a key role in pollinator population regulation and should not be overlooked in forecasts of pollinator responses to climate change. © 2016 by the Ecological Society of America.
Signatures of Earth-scattering in the direct detection of Dark Matter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kavanagh, Bradley J.; Catena, Riccardo; Kouvaris, Chris, E-mail: bkavanagh@lpthe.jussieu.fr, E-mail: catena@chalmers.se, E-mail: kouvaris@cp3.sdu.dk
Direct detection experiments search for the interactions of Dark Matter (DM) particles with nuclei in terrestrial detectors. But if these interactions are sufficiently strong, DM particles may scatter in the Earth, affecting their distribution in the lab. We present a new analytic calculation of this 'Earth-scattering' effect in the regime where DM particles scatter at most once before reaching the detector. We perform the calculation self-consistently, taking into account not only those particles which are scattered away from the detector, but also those particles which are deflected towards the detector. Taking into account a realistic model of the Earth andmore » allowing for a range of DM-nucleon interactions, we present the EARTHSHADOW code, which we make publicly available, for calculating the DM velocity distribution after Earth-scattering. Focusing on low-mass DM, we find that Earth-scattering reduces the direct detection rate at certain detector locations while increasing the rate in others. The Earth's rotation induces a daily modulation in the rate, which we find to be highly sensitive to the detector latitude and to the form of the DM-nucleon interaction. These distinctive signatures would allow us to unambiguously detect DM and perhaps even identify its interactions in regions of the parameter space within the reach of current and future experiments.« less
Tree phylogenetic diversity promotes host-parasitoid interactions.
Staab, Michael; Bruelheide, Helge; Durka, Walter; Michalski, Stefan; Purschke, Oliver; Zhu, Chao-Dong; Klein, Alexandra-Maria
2016-07-13
Evidence from grassland experiments suggests that a plant community's phylogenetic diversity (PD) is a strong predictor of ecosystem processes, even stronger than species richness per se This has, however, never been extended to species-rich forests and host-parasitoid interactions. We used cavity-nesting Hymenoptera and their parasitoids collected in a subtropical forest as a model system to test whether hosts, parasitoids, and their interactions are influenced by tree PD and a comprehensive set of environmental variables, including tree species richness. Parasitism rate and parasitoid abundance were positively correlated with tree PD. All variables describing parasitoids decreased with elevation, and were, except parasitism rate, dependent on host abundance. Quantitative descriptors of host-parasitoid networks were independent of the environment. Our study indicates that host-parasitoid interactions in species-rich forests are related to the PD of the tree community, which influences parasitism rates through parasitoid abundance. We show that effects of tree community PD are much stronger than effects of tree species richness, can cascade to high trophic levels, and promote trophic interactions. As during habitat modification phylogenetic information is usually lost non-randomly, even species-rich habitats may not be able to continuously provide the ecosystem process parasitism if the evolutionarily most distinct plant lineages vanish. © 2016 The Author(s).
Huang, Ching-Yuan; Weng, Rhay-Hung; Chen, Yi-Ting
2016-08-01
This study aims to ascertain the relationship between transformational leadership, interpersonal interaction and mentoring functions among new staff nurses. Mentoring functions could improve the job performance of new nurses, provide them with support and thus reduce their turnover rate. A cross-sectional study was employed. A questionnaire survey was carried out to collect data among a sample of new nurses from three hospitals in Taiwan. After gathering a total of 306 valid surveys, multiple regression analysis was applied to test the hypothesis. Inspirational motivation, idealised influence and individualised consideration had positive correlations with the overall mentoring function, but intellectual stimulation showed a positive association only with career development function. Perceived similarity and interaction frequency also had positive correlations with mentoring functions. When the shift overlap rate exceeded 80%, mentoring function showed a negative result. The transformational leadership of mentors would improve the mentoring functions among new staff nurses. Perceived similarity and interaction frequency between mentees and mentors also had positive correlations with mentoring functions. It is crucial for hospitals to redesign their leadership training and motivation programmes to enhance the transformational leadership of mentors. Furthermore, nursing managers should promote interaction between new staff nurses and their mentors; however, the shift overlap rate should not be too high. © 2016 John Wiley & Sons Ltd.
Process optimization of an auger pyrolyzer with heat carrier using response surface methodology.
Brown, J N; Brown, R C
2012-01-01
A 1 kg/h auger reactor utilizing mechanical mixing of steel shot heat carrier was used to pyrolyze red oak wood biomass. Response surface methodology was employed using a circumscribed central composite design of experiments to optimize the system. Factors investigated were: heat carrier inlet temperature and mass flow rate, rotational speed of screws in the reactor, and volumetric flow rate of sweep gas. Conditions for maximum bio-oil and minimum char yields were high flow rate of sweep gas (3.5 standard L/min), high heat carrier temperature (∼600 °C), high auger speeds (63 RPM) and high heat carrier mass flow rates (18 kg/h). Regression models for bio-oil and char yields are described including identification of a novel interaction effect between heat carrier mass flow rate and auger speed. Results suggest that auger reactors, which are rarely described in literature, are well suited for bio-oil production. The reactor achieved liquid yields greater than 73 wt.%. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Penoyre, Zephyr; Haiman, Zoltán
2018-01-01
In symmetric gravitating systems experiencing rapid mass-loss, particle orbits change almost instantaneously, which can lead to the development of a sharply contoured density profile, including singular caustics for collisionless systems. This framework can be used to model a variety of dynamical systems, such as accretion discs following a massive black hole merger and dwarf galaxies following violent early star formation feedback. Particle interactions in the high-density peaks seem a promising source of observable signatures of these mass-loss events (i.e. a possible EM counterpart for black hole mergers or strong gamma-ray emission from dark matter annihilation around young galaxies), because the interaction rate depends on the square of the density. We study post-mass-loss density profiles, both analytic and numerical, in idealized cases and present arguments and methods to extend to any general system. An analytic derivation is presented for particles on Keplerian orbits responding to a drop in the central mass. We argue that this case, with initially circular orbits, gives the most sharply contoured profile possible. We find that despite the presence of a set of singular caustics, the total particle interaction rate is reduced compared to the unperturbed system; this is a result of the overall expansion of the system dominating over the steep caustics. Finally, we argue that this result holds more generally, and the loss of central mass decreases the particle interaction rate in any physical system.
Measurement of Charged Current Coherent Pion Production by Neutrinos on Carbon at MINER$$\
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mislivec, Aaron Robert
Neutrino-nucleus coherent pion production is a rare neutrino scattering process where the squared four-momentum transferred to the nucleus is small, a lepton and pion are produced in the forward direction, and the nucleus remains in its initial state. This process is an important background in neutrino oscillation experiments. Measurements of coherent pion production are needed to constrain models which are used to predict coherent pion production in oscillation experiments. This thesis reports measurements of νµ and νµ charged current coherent pion production on carbon for neutrino energies in the range 2 < Eν < 20 GeV. The measurements were mademore » using data from MINERνA, which is a dedicated neutrino-nucleus scattering experiment that uses a fi scintillator tracking detector in the high-intensity NuMI neutrino beam at Fermilab. Coherent interactions were isolated from the data using only model-independent signatures of the reaction, which are a forward muon and pion, no evidence of nuclear breakup, and small four-momentum transfer to the nucleus. The measurements were compared to the coherent pion production model used by oscillation experiments. The data and model agree in the total interaction rate and are similar in the dependence of the interaction rate on the squared four- momentum transferred from the neutrino. The data and model disagree significantly in the pion kinematics. The measured νµ and νµ interaction rates are consistent, which supports model predictions that the neutrino and antineutrino interaction rates are equal.« less
O'Connor, Lauren J; Kahn, Lewis P; Walkden-Brown, Stephen W
2008-08-17
A factorial experiment (3 x 4 x 2 x 3) was conducted in programmable incubators to investigate interaction between the effects of rainfall amount, rainfall distribution and evaporation rate on development of Haemonchus contortus to L3. Sheep faeces containing H. contortus eggs were incubated on sterilised soil under variable temperatures typical of summer in the Northern Tablelands of NSW, Australia. Simulated rainfall was applied in 1 of 3 amounts (12, 24 or 32 mm) and 4 distributions (a single event on the day after deposition, or the same total amount split in 2, 3 or 4 equal events over 2, 3 or 4 days, respectively). Samples were incubated at either a Low or High rate of evaporation (Low: 2.1-3.4 mm/day and High: 3.8-6.1 mm/day), and faeces and soil were destructively sampled at 4, 7 and 14 days post-deposition. Recovery of L3 from the soil (extra-pellet L3) increased over time (up to 0.52% at day 14) and with each increment of rainfall (12 mm: <0.01%; 24 mm: 0.10%; 32 mm: 0.45%) but was reduced under the High evaporation rate (0.01%) compared with the Low evaporation rate (0.31%). All rainfall amounts yielded significantly different recoveries of L3 under Low evaporation rates but there was no difference between the 12 and 24 mm treatments under the High evaporation rate. The distribution of simulated rainfall did not significantly affect recovery of infective larvae. Faecal moisture content was positively associated with L3 recovery, as was the ratio of cumulative precipitation and cumulative evaporation (P/E), particularly when measured in the first 4 days post-deposition. The results show that evaporation rate plays a significant role in regulating the influence of rainfall amount on the success of L3 transmission.
Tinne, Nadine; Kaune, Brigitte; Krüger, Alexander; Ripken, Tammo
2014-01-01
The emerging use of femtosecond lasers with high repetition rates in the MHz regime together with limited scan speed implies possible mutual optical and dynamical interaction effects of the individual cutting spots. In order to get more insight into the dynamics a time-resolved photographic analysis of the interaction of cavitation bubbles is presented. Particularly, we investigated the influence of fs-laser pulses and their resulting bubble dynamics with various spatial as well as temporal separations. Different time courses of characteristic interaction effects between the cavitation bubbles were observed depending on pulse energy and spatio-temporal pulse separation. These ranged from merely no interaction to the phenomena of strong water jet formation. Afterwards, the mechanisms are discussed regarding their impact on the medical application of effective tissue cutting lateral to the laser beam direction with best possible axial precision: the mechanical forces of photodisruption as well as the occurring water jet should have low axial extend and a preferably lateral priority. Furthermore, the overall efficiency of energy conversion into controlled mechanical impact should be maximized compared to the transmitted pulse energy and unwanted long range mechanical side effects, e.g. shock waves, axial jet components. In conclusion, these experimental results are of great importance for the prospective optimization of the ophthalmic surgical process with high-repetition rate fs-lasers. PMID:25502697
Pediatric trainees' engagement in the online nutrition curriculum: preliminary results.
Lewis, Kadriye O; Frank, Graeme R; Nagel, Rollin; Turner, Teri L; Ferrell, Cynthia L; Sangvai, Shilpa G; Donthi, Rajesh; Mahan, John D
2014-09-16
The Pediatric Nutrition Series (PNS) consists of ten online, interactive modules and supplementary educational materials that have utilized web-based multimedia technologies to offer nutrition education for pediatric trainees and practicing physicians. The purpose of the study was to evaluate pediatric trainees' engagement, knowledge acquisition, and satisfaction with nutrition modules delivered online in interactive and non-interactive formats. From December 2010 through August 2011, pediatric trainees from seventy-three (73) different U.S. programs completed online nutrition modules designed to develop residents' knowledge of counseling around and management of nutritional issues in children. Data were analyzed using SPSS version 19. Both descriptive and inferential statistics were used in comparing interactive versus non-interactive modules. Pretest/posttest and module evaluations measured knowledge acquisition and satisfaction. Three hundred and twenty-two (322) pediatric trainees completed one or more of six modules for a total of four hundred and forty-two (442) accessions. All trainees who completed at least one module were included in the study. Two-way analyses of variance (ANOVA) with repeated measures (pre/posttest by interactive/non-interactive format) indicated significant knowledge gains from pretest to posttest (p < 0.002 for all six modules). Comparisons between interactive and non-interactive formats for Module 1 (N = 85 interactive, N = 95 non-interactive) and Module 5 (N = 5 interactive, N = 16 non-interactive) indicated a parallel improvement from the pretest to posttest, with the interactive format significantly higher than the non-interactive modules (p < .05). Both qualitative and quantitative data from module evaluations demonstrated that satisfaction with modules was high. However, there were lower ratings for whether learning objectives were met with Module 6 (p < 0.03) and lecturer rating (p < 0.004) compared to Module 1. Qualitative data also showed that completion of the interactive modules resulted in higher resident satisfaction. This initial assessment of the PNS modules shows that technology-mediated delivery of a nutrition curriculum in residency programs has great potential for providing rich learning environments for trainees while maintaining a high level of participant satisfaction.
Plant defences limit herbivore population growth by changing predator-prey interactions.
Kersch-Becker, Mônica F; Kessler, André; Thaler, Jennifer S
2017-09-13
Plant quality and predators are important factors affecting herbivore population growth, but how they interact to regulate herbivore populations is not well understood. We manipulated jasmonate-induced plant resistance, exposure to the natural predator community and herbivore density to test how these factors jointly and independently affect herbivore population growth. On low-resistance plants, the predator community was diverse and abundant, promoting high predator consumption rates. On high-resistance plants, the predator community was less diverse and abundant, resulting in low predator consumption rate. Plant resistance only directly regulated aphid population growth on predator-excluded plants. When predators were present, plant resistance indirectly regulated herbivore population growth by changing the impact of predators on the herbivorous prey. A possible mechanism for the interaction between plant resistance and predation is that methyl salicylate, a herbivore-induced plant volatile attractive to predators, was more strongly induced in low-resistance plants. Increased plant resistance reduced predator attractant lures, preventing predators from locating their prey. Low-resistance plants may regulate herbivore populations via predators by providing reliable information on prey availability and increasing the effectiveness of predators. © 2017 The Author(s).
Yang, Xiaoliang; Wang, Zihua; Xiang, Zhichu; Li, Dan; Hu, Zhiyuan; Cui, Wei; Geng, Lingling; Fang, Qiaojun
2017-04-01
A high level of HER2 expression in breast cancer correlates with a higher tumor growth rate, high metastatic potential, and a poor long-term patient survival rate. Pertuzumab, a human monoclonal antibody, can reduce the effect of HER2 overexpression by preventing HER2 dimerization. In this study, a combination protocol of molecular dynamics modeling and MM/GBSA binding free energy calculations was applied to design peptides that interact with HER2 based on the HER2/pertuzumab crystal structure. Based on a β hairpin in pertuzumab from Glu46 to Lys65-which plays a key role in interacting with HER2-mutations were carried out in silico to improve the binding free energy of the hairpin that interacts with the Phe256-Lys314 of the HER2 protein. Combined the use of one-bead-one-compound library screening, among all the mutations, a peptide (58F63Y) with the lowest binding free energy was confirmed experimentally to have the highest affinity, and it may be used as a new probe in diagnosing and treating HER2-positive breast cancer.
High-speed AFM for scanning the architecture of living cells
NASA Astrophysics Data System (ADS)
Li, Jing; Deng, Zhifeng; Chen, Daixie; Ao, Zhuo; Sun, Quanmei; Feng, Jiantao; Yin, Bohua; Han, Li; Han, Dong
2013-08-01
We address the modelling of tip-cell membrane interactions under high speed atomic force microscopy. Using a home-made device with a scanning area of 100 × 100 μm2, in situ imaging of living cells is successfully performed under loading rates from 1 to 50 Hz, intending to enable detailed descriptions of physiological processes in living samples.We address the modelling of tip-cell membrane interactions under high speed atomic force microscopy. Using a home-made device with a scanning area of 100 × 100 μm2, in situ imaging of living cells is successfully performed under loading rates from 1 to 50 Hz, intending to enable detailed descriptions of physiological processes in living samples. Electronic supplementary information (ESI) available: Movie of the real-time change of inner surface within fresh blood vessel. The movie was captured at a speed of 30 Hz in the range of 80 μm × 80 μm. See DOI: 10.1039/c3nr01464a
You, Zhu-Hong; Li, Shuai; Gao, Xin; Luo, Xin; Ji, Zhen
2014-01-01
Protein-protein interactions are the basis of biological functions, and studying these interactions on a molecular level is of crucial importance for understanding the functionality of a living cell. During the past decade, biosensors have emerged as an important tool for the high-throughput identification of proteins and their interactions. However, the high-throughput experimental methods for identifying PPIs are both time-consuming and expensive. On the other hand, high-throughput PPI data are often associated with high false-positive and high false-negative rates. Targeting at these problems, we propose a method for PPI detection by integrating biosensor-based PPI data with a novel computational model. This method was developed based on the algorithm of extreme learning machine combined with a novel representation of protein sequence descriptor. When performed on the large-scale human protein interaction dataset, the proposed method achieved 84.8% prediction accuracy with 84.08% sensitivity at the specificity of 85.53%. We conducted more extensive experiments to compare the proposed method with the state-of-the-art techniques, support vector machine. The achieved results demonstrate that our approach is very promising for detecting new PPIs, and it can be a helpful supplement for biosensor-based PPI data detection.
Structural Determinants of Sleeping Beauty Transposase Activity
Abrusán, György; Yant, Stephen R; Szilágyi, András; Marsh, Joseph A; Mátés, Lajos; Izsvák, Zsuzsanna; Barabás, Orsolya; Ivics, Zoltán
2016-01-01
Transposases are important tools in genome engineering, and there is considerable interest in engineering more efficient ones. Here, we seek to understand the factors determining their activity using the Sleeping Beauty transposase. Recent work suggests that protein coevolutionary information can be used to classify groups of physically connected, coevolving residues into elements called “sectors”, which have proven useful for understanding the folding, allosteric interactions, and enzymatic activity of proteins. Using extensive mutagenesis data, protein modeling and analysis of folding energies, we show that (i) The Sleeping Beauty transposase contains two sectors, which span across conserved domains, and are enriched in DNA-binding residues, indicating that the DNA binding and endonuclease functions of the transposase coevolve; (ii) Sector residues are highly sensitive to mutations, and most mutations of these residues strongly reduce transposition rate; (iii) Mutations with a strong effect on free energy of folding in the DDE domain of the transposase significantly reduce transposition rate. (iv) Mutations that influence DNA and protein-protein interactions generally reduce transposition rate, although most hyperactive mutants are also located on the protein surface, including residues with protein-protein interactions. This suggests that hyperactivity results from the modification of protein interactions, rather than the stabilization of protein fold. PMID:27401040
Kimura, Atsushi; Wada, Yuji; Kamada, Akiko; Masuda, Tomohiro; Okamoto, Masako; Goto, Sho-ichi; Tsuzuki, Daisuke; Cai, Dongsheng; Oka, Takashi; Dan, Ippeita
2010-10-01
We aimed to explore the interactive effects of the accessibility of information and the degree of carbon footprint score on consumers' value judgments of food products. Participants (n=151, undergraduate students in Japan) rated their maximum willingness to pay (WTP) for four food products varying in information accessibility (active-search or read-only conditions) and in carbon footprint values (low, middle, high, or non-display) provided. We also assessed further effects of information accessibly and carbon footprint value on other product attributes utilizing the subjective estimation of taste, quality, healthiness, and environmental friendliness. Results of the experiment demonstrated an interactive effect of information accessibility and the degree of carbon emission on consumer valuation of carbon footprint-labeled food. The carbon footprint value had a stronger impact on participants' WTP in the active-search condition than in the read-only condition. Similar to WTP, the results of the subjective ratings for product qualities also exhibited an interactive effect of the two factors on the rating of environmental friendliness for products. These results imply that the perceived environmental friendliness inferable from a carbon footprint label contributes to creating value for a food product.
Cramm, Jane Murray; Nieboer, Anna Petra
2015-09-15
Although widespread problems in patient-professional interaction and insufficient support of patients' self-management abilities have been recognized, research investigating the relationships among care quality, productive interaction, and self-management abilities to maintain overall well-being is lacking. Furthermore, studies have revealed differences in these characteristics among certain groups (e.g., less-educated and older patients). This longitudinal study thus aimed to identify relationships among background characteristics, quality of care, productivity of patient-professional interaction, and self-management abilities to maintain overall well-being in chronically ill patients participating in 18 Dutch disease management programs. This longitudinal study included patients participating in 18 Dutch disease management programs. Surveys were administered in 2011 (T1; n = 2191 (out of 4693), 47 % response rate) and 2012 (T2: n = 1722 (out of 4350), 40 % response rate). A total of 1279 patients completed questionnaires at both timepoints (T1 and T2) (27 % response rate). Self-management abilities to maintain well-being were measured using the short (18-item) version of the Self-Management Ability Scale (SMAS-S), patients' perceptions of the productivity of interactions with health care professionals were assessed with the relational coordination instrument and the short (11-item) version of the Patient Assessment of Chronic Illness Care (PACIC-S) was used to assess patients' perceptions of the quality of chronic care delivery. Perceived and objective quality of care and the productivity of patient-professional interaction were found to be related to patients' self-management abilities to maintain overall well-being. These abilities were related negatively to and significantly predicted by low educational level, single status, and older age, despite the mediating role of productive interaction in their relationship with patients' perceptions of care quality. These findings suggest that patient-professional interaction is not yet sufficiently productive to successfully protect against the deterioration of self-management abilities in some groups of chronically ill patients, although such interaction and high-quality care are important factors in such protection. Improvement of the quality of chronic care delivery should thus always be accompanied by investment in high-quality communication and patient-professional relationships.
Mapping strain rate dependence of dislocation-defect interactions by atomistic simulations
Fan, Yue; Osetskiy, Yuri N.; Yip, Sidney; Yildiz, Bilge
2013-01-01
Probing the mechanisms of defect–defect interactions at strain rates lower than 106 s−1 is an unresolved challenge to date to molecular dynamics (MD) techniques. Here we propose an original atomistic approach based on transition state theory and the concept of a strain-dependent effective activation barrier that is capable of simulating the kinetics of dislocation–defect interactions at virtually any strain rate, exemplified within 10−7 to 107 s−1. We apply this approach to the problem of an edge dislocation colliding with a cluster of self-interstitial atoms (SIAs) under shear deformation. Using an activation–relaxation algorithm [Kushima A, et al. (2009) J Chem Phys 130:224504], we uncover a unique strain-rate–dependent trigger mechanism that allows the SIA cluster to be absorbed during the process, leading to dislocation climb. Guided by this finding, we determine the activation barrier of the trigger mechanism as a function of shear strain, and use that in a coarse-graining rate equation formulation for constructing a mechanism map in the phase space of strain rate and temperature. Our predictions of a crossover from a defect recovery at the low strain-rate regime to defect absorption behavior in the high strain-rate regime are validated against our own independent, direct MD simulations at 105 to 107 s−1. Implications of the present approach for probing molecular-level mechanisms in strain-rate regimes previously considered inaccessible to atomistic simulations are discussed. PMID:24114271
Shock-wave proton acceleration from a hydrogen gas jet
NASA Astrophysics Data System (ADS)
Cook, Nathan; Pogorelsky, Igor; Polyanskiy, Mikhail; Babzien, Marcus; Tresca, Olivier; Maharjan, Chakra; Shkolnikov, Peter; Yakimenko, Vitaly
2013-04-01
Typical laser acceleration experiments probe the interaction of intense linearly-polarized solid state laser pulses with dense metal targets. This interaction generates strong electric fields via Transverse Normal Sheath Acceleration and can accelerate protons to high peak energies but with a large thermal spectrum. Recently, the advancement of high pressure amplified CO2 laser technology has allowed for the creation of intense (10^16 Wcm^2) pulses at λ˜10 μm. These pulses may interact with reproducible, high rep. rate gas jet targets and still produce plasmas of critical density (nc˜10^19 cm-3), leading to the transference of laser energy via radiation pressure. This acceleration mode has the advantage of producing narrow energy spectra while scaling well with pulse intensity. We observe the interaction of an intense CO2 laser pulse with an overdense hydrogen gas jet. Using two pulse optical probing in conjunction with interferometry, we are able to obtain density profiles of the plasma. Proton energy spectra are obtained using a magnetic spectrometer and scintillating screen.
Cabasse, Amélie; Machinet, Guillaume; Dubrouil, Antoine; Cormier, Eric; Constant, Eric
2012-11-15
High-repetition-rate sources are very attractive for high-order harmonic generation (HHG). However, due to their pulse characteristics (low energy, long duration), those systems require a tight focusing geometry to achieve the necessary intensity to generate harmonics. In this Letter, we investigate theoretically and experimentally the optimization of HHG in this geometry, to maximize the extreme UV (XUV) photon flux and improve the conversion efficiency. We analyze the influence of atomic gas media (Ar, Kr, or Xe), gas pressure, and interaction geometries (a gas jet and a finite and a semi-infinite gas cell). Numerical simulations allow us to define optimal conditions for HHG in this tight focusing regime and to observe the signature of on-axis phase matching. These conditions are implemented experimentally using a high-repetition-rate Yb-doped fiber laser system. We achieve optimization of emission with a recorded XUV photon flux of 4.5×10(12) photons/s generated in Xe at 100 kHz repetition rate.
O'Keefe, Natalie; Lindell, Annukka K
2013-11-01
People with autism spectrum disorder (ASD) show superior performance for tasks requiring detail-focused processing. Atypical neural connectivity and reduced interhemispheric communication are posited to underlie this cognitive advantage. Given recent conceptualization of autism as a continuum, we sought to investigate whether people with normal but high levels of autism like traits (AQ) also exhibit reduced hemispheric interaction. Sixty right-handed participants completed the AQ questionnaire (Baron-Cohen, Wheelwright, Skinner, Martin, & Clubley, 2001) and a lateralised letter matching task that assessed unilateral and bilateral performance in response to simple (physical) and complex (identity) matches. Whereas people with low self-rated AQ scores showed a bilateral advantage for the more complex task, indicating normal interhemispheric interaction, people in the high AQ group failed to show a bilateral gain for the computationally demanding stimuli. This finding of disrupted interhemispheric interaction converges with a dimensional conceptualisation of ASD, suggesting that the structural anomalies of ASD extend to non-autistic individuals with high levels of autism traits. Copyright © 2013 Elsevier Inc. All rights reserved.
Hydromagmatic and peperitic interactions: A new experimental approach.
NASA Astrophysics Data System (ADS)
Downey, W. S.; Spieler, O.; Kunzmann, T.; Mastin, L.; Dingwell, D. B.; Shaw, C. J.
2007-12-01
Hydromagmatic interactions in general and the formation of peperites in particular, are poorly understood. We have designed and tested a new series of experiments to analyze the formation of fine hydromagmatic basaltic ash, and the processes occurring during magma/wet-sediment interaction. This study evaluates the mechanism of "turbulent shedding", (Mastin, 2007) where fine hydromagmatic ash is produced by the removal of quenched glassy rinds on clast surfaces that are rapidly deforming within turbulent transport. During magma/wet-sediment interactions the rapid heat transfer rate can lead to oscillations in the vapor film, and its possible collapse to generate a vapor explosion, between the two media producing either fluidal or brecciated textures of the silicate. In these experiment 0.5 kg of basaltic melt is generated in an internally heated autoclave at temperatures of up to 1300 (º)C and ejected via gas pressure into a low pressure tank. The autoclave can be pressurized to 50 MPa and is designed to eject the melt directly into water, wet sediments or water spray. The later technique is commonly used by powder metallurgists to produce micron-sized fragments of metallic glass, and is the desired technique to aid in the production of fine-ash via "turbulent shedding". Two molybdenum wound furnaces are used to produce the melt while a third Kanthal-wound furnace is used to control the temperature at the ejection orifice. Six thermocouples are used to control the furnaces and to record the thermal gradient throughout the setup. Pressure transducers in the high and low pressure section record the expansion volume due thermal interaction. The autoclave is separated from the low pressure tank with a diaphragm to prevent water from entering the high temperature zone. The goal of these experiments is to give insight into the role of hydrodynamic process during magma/water interaction and in the generation of peperites. The first experiments have resulted in the formation of Pelee's hairs and tears reflecting the high strain rates accompanying melt ejection. Post-experiment, grain size and surface area analysis of the hydromagmatic clasts is in progress to quantify the thermal interaction area, the influence of the turbulence and the heat transfer rate on magma-water mixing. The sediments will be impregnated with epoxy to yield textural insights for comparison with field descriptions of peperites.
Statistical theory of nucleation in the presence of uncharacterized impurities
NASA Astrophysics Data System (ADS)
Sear, Richard P.
2004-08-01
First order phase transitions proceed via nucleation. The rate of nucleation varies exponentially with the free-energy barrier to nucleation, and so is highly sensitive to variations in this barrier. In practice, very few systems are absolutely pure, there are typically some impurities present which are rather poorly characterized. These interact with the nucleus, causing the barrier to vary, and so must be taken into account. Here the impurity-nucleus interactions are modelled by random variables. The rate then has the same form as the partition function of Derrida’s random energy model, and as in this model there is a regime in which the behavior is non-self-averaging. Non-self-averaging nucleation is nucleation with a rate that varies significantly from one realization of the random variables to another. In experiment this corresponds to variation in the nucleation rate from one sample to another. General analytic expressions are obtained for the crossover from a self-averaging to a non-self-averaging rate of nucleation.
High-speed photography of plasma during excimer laser-tissue interaction.
Murray, Andrea K; Dickinson, Mark R
2004-08-07
During high fluence laser-tissue interaction, ablation of tissue occurs, debris is removed from the ablation site and is then ejected at high velocity. This debris may be observed as a combination of luminous plasma and non-luminous plume, both of which have the potential to shield the ablation site. This study examined the role of ablation debris in shielding the tissue and determined its effects on the ablation rate over a range of laser pulse energies, pulse repetition rates and pulse numbers for dentine; the velocity differences between hard and soft tissues were also examined. High-speed photography was carried out at up to 1 x 10(8) frames per second. A maximum velocity of 2.58 +/- 0.52 x 10(4) m s(-1) was recorded for dentine debris within the first 10 ns following ejection. The maximum duration of tissue shielding due to a single pulse, determined by attenuation of a probe beam, was found to be approximately 7 ms, approximately 80 micros of which was due to luminous plasma and the remainder due to the non-luminous plume.
Interacting and self-organized two-level states in tunnel barriers
NASA Technical Reports Server (NTRS)
Pesenson, L.; Robertazzi, R. P.; Buhrman, R. A.; Cypher, S. R.; Hunt, B. D.
1991-01-01
The excess low-frequency 1/f noise and discrete two-level resistance fluctuations (TLFs) were studied in small-area NbN-MgO-NbN tunnel junctions with a high, low-temperature density of active defects. Strong and evolving interactions between large TLFs indicate that these fluctuations result from the self-organization of interacting defect elements. In the low-T tunneling regime, an unusual slowing down of the rates and a decrease in amplitude with increasing T is sometimes observed indicative of a thermally induced change in the self-organized two-level state.
Temperature Dependence of the Thermal Conductivity of a Trapped Dipolar Bose-Condensed Gas
NASA Astrophysics Data System (ADS)
Yavari, H.
2018-02-01
The thermal conductivity of a trapped dipolar Bose condensed gas is calculated as a function of temperature in the framework of linear response theory. The contributions of the interactions between condensed and noncondensed atoms and between noncondensed atoms in the presence of both contact and dipole-dipole interactions are taken into account to the thermal relaxation time, by evaluating the self-energies of the system in the Beliaev approximation. We will show that above the Bose-Einstein condensation temperature ( T > T BEC ) in the absence of dipole-dipole interaction, the temperature dependence of the thermal conductivity reduces to that of an ideal Bose gas. In a trapped Bose-condensed gas for temperature interval k B T << n 0 g B , E p << k B T ( n 0 is the condensed density and g B is the strength of the contact interaction), the relaxation rates due to dipolar and contact interactions between condensed and noncondensed atoms change as {τ}_{dd12}^{-1}∝ {e}^{-E/{k}_BT} and τ c12 ∝ T -5, respectively, and the contact interaction plays the dominant role in the temperature dependence of the thermal conductivity, which leads to the T -3 behavior of the thermal conductivity. In the low-temperature limit, k B T << n 0 g B , E p >> k B T, since the relaxation rate {τ}_{c12}^{-1} is independent of temperature and the relaxation rate due to dipolar interaction goes to zero exponentially, the T 2 temperature behavior for the thermal conductivity comes from the thermal mean velocity of the particles. We will also show that in the high-temperature limit ( k B T > n 0 g B ) and low momenta, the relaxation rates {τ}_{c12}^{-1} and {τ}_{dd12}^{-1} change linearly with temperature for both dipolar and contact interactions and the thermal conductivity scales linearly with temperature.
Rodríguez-Medina, Jairo; Martín-Antón, Luis J.; Carbonero, Miguel A.; Ovejero, Anastasio
2016-01-01
Autism Spectrum Disorder (ASD) is characterized by difficulties with social interaction and communication, which manifest at school especially in less structured situations such as recess. Recess provides opportunities for relationship with peers in a natural context, for which students with ASD may not be equipped with the necessary skills to use without support. Using a single-case design, we evaluated an intervention applied in recess to improve the social interaction skills of a student with high-functioning ASD mediated by his peers without ASD, in second grade of elementary school. This intervention includes different strategies to initiate the peers without ASD, using direct instruction, modeling, and social reinforcement carried out in the recess setting. After 14 sessions, changes were observed in the rates of initiating and responding to interactions, and a negative trend in the percentage of time that the student maintained low-intensity interactions or was alone. Teachers and family perceived improvements in social skills, more peer acceptance, and increase in the frequency and duration of social interactions. This intervention can help teachers to apply research-based practices to improve some social interaction skills in high-functioning students with autism in inclusive school environments. PMID:28066303
Abbas, Syed Ali; Ding, Jiang; Wu, Sheng Hui; Fang, Jason; Boopathi, Karunakara Moorthy; Mohapatra, Anisha; Lee, Li Wei; Wang, Pen-Cheng; Chang, Chien-Cheng; Chu, Chih Wei
2017-12-26
In this paper we describe a modified (AEG/CH) coated separator for Li-S batteries in which the shuttling phenomenon of the lithium polysulfides is restrained through two types of interactions: activated expanded graphite (AEG) flakes interacted physically with the lithium polysulfides, while chitosan (CH), used to bind the AEG flakes on the separator, interacted chemically through its abundance of amino and hydroxyl functional groups. Moreover, the AEG flakes facilitated ionic and electronic transfer during the redox reaction. Live H-cell discharging experiments revealed that the modified separator was effective at curbing polysulfide shuttling; moreover, X-ray photoelectron spectroscopy analysis of the cycled separator confirmed the presence of lithium polysulfides in the AEG/CH matrix. Using this dual functional interaction approach, the lifetime of the pure sulfur-based cathode was extended to 3000 cycles at 1C-rate (1C = 1670 mA/g), decreasing the decay rate to 0.021% per cycle, a value that is among the best reported to date. A flexible battery based on this modified separator exhibited stable performance and could turn on multiple light-emitting diodes. Such modified membranes with good mechanical strength, high electronic conductivity, and anti-self-discharging shield appear to be a scalable solution for future high-energy battery systems.
NASA Astrophysics Data System (ADS)
Gilford, J.; Falconer, R. E.; Wade, R.; Scott-Brown, K. C.
2014-09-01
Interactive Virtual Environments (VEs) have the potential to increase student interest in soil science. Accordingly a bespoke 'soil atlas' was created using Java3D as an interactive 3D VE, to show soil information in the context of (and as affected by) the over-lying landscape. To display the below-ground soil characteristics, four sets of artistic illustrations were produced, each set showing the effects of soil organic-matter density and water content on fungal density, to determine potential for visualisations and interactivity in stimulating interest in soil and soil illustrations, interest being an important factor in facilitating learning. The illustrations were created using 3D modelling packages, and a wide range of styles were produced. This allowed a preliminary study of the relative merits of different artistic styles, scientific-credibility, scale, abstraction and 'realism' (e.g. photo-realism or realism of forms), and any relationship between these and the level of interest indicated by the study participants in the soil visualisations and VE. The study found significant differences in mean interest ratings for different soil illustration styles, as well as in the perception of scientific-credibility of these styles, albeit for both measures there was considerable difference of attitude between participants about particular styles. There was also found to be a highly significant positive correlation between participants rating styles highly for interest and highly for scientific-credibility. There was furthermore a particularly high interest rating among participants for seeing temporal soil processes illustrated/animated, suggesting this as a particularly promising method for further stimulating interest in soil illustrations and soil itself.
Which is the Ideal Breast Size?: Some Social Clues for Plastic Surgeons.
Raposio, Edoardo; Belgrano, Valerio; Santi, PierLuigi; Chiorri, Carlo
2016-03-01
To provide plastic surgeons with more detailed information as to factors affecting the perception of female attractiveness, the present study was aimed to investigate whether the interaction effect of breast and body size on ratings of female attractiveness is moderated by sociodemographic variables and whether ratings of shapeliness diverge from those of attractiveness.A community sample of 958 Italian participants rated the attractiveness and the shapeliness of 15 stimuli (5 breast sizes × 3 body sizes) in which frontal, 3/4, and profile views of the head and torso of a faceless woman were jointly shown.Bigger breast sizes obtained the highest attractiveness ratings, but the breast-by-body size interaction was also significant. Evidence was found of a moderator role of sex, marital status, and age. When the effects of breast and body size and their interaction had been ruled out, sex differences were at best very slight and limited to very specific combinations of breast and body sizes. Ratings of attractiveness and shapeliness were highly correlated and did not significantly differ.Results suggest that to address women's psychological needs, concerns, and expectations about their appearance, plastic surgeons should not simply focus on breast size but should carefully consider the 'big picture': the body in its entirety.
Roter, Debra L; Erby, Lori H; Larson, Susan; Ellington, Lee
2007-10-01
Health literacy deficits affect half the American patient population and are linked to poor health, ineffective disease management and high rates of hospitalization. Restricted literacy has also been linked with less satisfying medical visits and communication difficulties, particularly in terms of the interpersonal and informational aspects of care. Despite growing attention to these issues by researchers and policy makers, few studies have attempted to conceptualize and assess those aspects of dialogue that challenge persons with low literacy skills, i.e., the oral literacy demand within medical encounters. The current study uses videotapes and transcripts of 152 prenatal and cancer pretest genetic counseling sessions recorded with simulated clients to develop a conceptual framework to explore oral literacy demand and its consequences for medical interaction and related outcomes. Ninety-six prenatal and 81 cancer genetic counselors-broadly representative of the US National Society of Genetic Counselors-participated in the study. Key elements of the conceptual framework used to define oral literacy demand include: (1) use of unfamiliar technical terms; (2) general language complexity, reflected in the application of Microsoft Word grammar summary statistics to session transcripts; and, (3) structural characteristics of dialogue, including pacing, density, and interactivity. Genetic counselor outcomes include self-ratings of session satisfaction, informativeness, and development of rapport. The simulated clients rated their satisfaction with session communication, the counselor's effective use of nonverbal skills, and the counselor's affective demeanor during the session. Sessions with greater overall technical term use were longer and used more complex language reflected in readability indices and multi-syllabic vocabulary (measures averaging p<.05). Sessions with a high proportionate use of technical terms were characterized by shorter visits, high readability demand, slow speech speed, fewer and more dense counselor speaking turns and low interactivity (p<.05). The higher the use of technical terms, and the more dense and less interactive the dialogue, the less satisfied the simulated clients were and the lower their ratings were of counselors' nonverbal effectiveness and affective demeanor (all relationships p<.05). Counselors' self-ratings of informativeness were also inversely related to use of technical terms (p<.05). Just as print material can be made more reader-friendly and effective following established guidelines, the medical dialogue may also be made more patient-centered and meaningful by having providers monitor their vocabulary and language, as well as the structural characteristics of interaction, thereby lowering the literacy demand of routine medical dialogue. These consequences are important for all patients but may be even more so for patients with restricted literacy.
Chronic Inhibition, Self-Control and Eating Behavior: Test of a ‘Resource Depletion’ Model
Hagger, Martin S.; Panetta, Giulia; Leung, Chung-Ming; Wong, Ging Ging; Wang, John C. K.; Chan, Derwin K. C.; Keatley, David A.; Chatzisarantis, Nikos L. D.
2013-01-01
The current research tested the hypothesis that individuals engaged in long-term efforts to limit food intake (e.g., individuals with high eating restraint) would have reduced capacity to regulate eating when self-control resources are limited. In the current research, body mass index (BMI) was used as a proxy for eating restraint based on the assumption that individuals with high BMI would have elevated levels of chronic eating restraint. A preliminary study (Study 1) aimed to provide evidence for the assumed relationship between eating restraint and BMI. Participants (N = 72) categorized into high or normal-range BMI groups completed the eating restraint scale. Consistent with the hypothesis, results revealed significantly higher scores on the weight fluctuation and concern for dieting subscales of the restraint scale among participants in the high BMI group compared to the normal-range BMI group. The main study (Study 2) aimed to test the hypothesized interactive effect of BMI and diminished self-control resources on eating behavior. Participants (N = 83) classified as having high or normal-range BMI were randomly allocated to receive a challenging counting task that depleted self-control resources (ego-depletion condition) or a non-depleting control task (no depletion condition). Participants then engaged in a second task in which required tasting and rating tempting cookies and candies. Amount of food consumed during the taste-and-rate task constituted the behavioral dependent measure. Regression analyses revealed a significant interaction effect of these variables on amount of food eaten in the taste-and-rate task. Individuals with high BMI had reduced capacity to regulate eating under conditions of self-control resource depletion as predicted. The interactive effects of BMI and self-control resource depletion on eating behavior were independent of trait self-control. Results extend knowledge of the role of self-control in regulating eating behavior and provide support for a limited-resource model of self-control. PMID:24146942
Additive effects in high-voltage layered-oxide cells: A statistics of mixtures approach
Sahore, Ritu; Peebles, Cameron; Abraham, Daniel P.; ...
2017-07-20
Li 1.03(Ni 0.5Mn 0.3Co 0.2) 0.97O 2 (NMC)-based coin cells containing the electrolyte additives vinylene carbonate (VC) and tris(trimethylsilyl)phosphite (TMSPi) in the range of 0-2 wt% were cycled between 3.0 and 4.4 V. The changes in capacity at rates of C/10 and C/1 and resistance at 60% state of charge were found to follow linear-with-time kinetic rate laws. Further, the C/10 capacity and resistance data were amenable to modeling by a statistics of mixtures approach. Applying physical meaning to the terms in the empirical models indicated that the interactions between the electrolyte and additives were not simple. For example, theremore » were strong, synergistic interactions between VC and TMSPi affecting C/10 capacity loss, as expected, but there were other, more subtle interactions between the electrolyte components. In conclusion, the interactions between these components controlled the C/10 capacity decline and resistance increase.« less
Transitioning Communication Education to an Interactive Online Module Format.
Williams, Kristine; Abd-Hamid, Nor Hashidah; Perkhounkova, Yelena
2017-07-01
The Changing Talk intervention improves nursing home staff communication by reducing elderspeak. To facilitate dissemination, interactive online modules were created, maintaining the original content. This article reports on the process of transitioning and the results of pilot testing the modules. Interactive online modules were developed, pilot tested, and the evaluated in comparison to outcomes from the classroom format training. Online participants (N = 9) demonstrated pre to posttest knowledge gain (scores improved from M = 82.4% to M = 91.2%). Rating of a staff-resident interaction showed improved recognition of elderspeak and person-centered communication after training. Online and original participants reported similar intentions to use learned skills and rated the program highly. Evidence-based interventions can be translated from traditional classroom to online format maintaining effects on increasing staff knowledge and intentions to use learned skills in practice. However, the modules should be tested in a larger and more representative sample. J Contin Educ Nurs. 2017;48(7):320-328. Copyright 2017, SLACK Incorporated.
Frequency Dependence of Electron Spin-lattice Relaxation for Semiquinones in Alcohol Solutions
Elajaili, Hanan B.; Biller, Joshua R.; Eaton, Sandra S.; Eaton, Gareth R.
2014-01-01
The spin-lattice relaxation rates at 293 K for three anionic semiquinones (2,5-di-t-butyl-1,4-benzosemiquinone, 2,6-di-t-butyl-1,4-benzosemiquinone, and 2,3,5,6-tetramethoxy-1,4-benzosemiquinone) were studied at up to 8 frequencies between 250 MHz and 34 GHz in ethanol or methanol solution containing high concentrations of OH-. The relaxation rates are about a factor of 2 faster at lower frequencies than at 9 or 34 GHz. However, in perdeuterated alcohols the relaxation rates exhibit little frequency dependence, which demonstrates that the dominant frequency-dependent contribution to relaxation is modulation of dipolar interactions with solvent nuclei. The relaxation rates were modeled as the sum of two frequency-independent contributions (spin rotation and a local mode) and two frequency-dependent contributions (modulation of dipolar interaction with solvent nuclei and a much smaller contribution from modulation of g anisotropy). The correlation time for modulation of the interaction with solvent nuclei is longer than the tumbling correlation time of the semiquinone and is consistent with hydrogen bonding of the alcohol to the oxygen atoms of the semiquinones. PMID:25261741
Dependence of weak interaction rates on the nuclear composition during stellar core collapse
NASA Astrophysics Data System (ADS)
Furusawa, Shun; Nagakura, Hiroki; Sumiyoshi, Kohsuke; Kato, Chinami; Yamada, Shoichi
2017-02-01
We investigate the influences of the nuclear composition on the weak interaction rates of heavy nuclei during the core collapse of massive stars. The nuclear abundances in nuclear statistical equilibrium (NSE) are calculated by some equation of state (EOS) models including in-medium effects on nuclear masses. We systematically examine the sensitivities of electron capture and neutrino-nucleus scattering on heavy nuclei to the nuclear shell effects and the single-nucleus approximation. We find that the washout of the shell effect at high temperatures brings significant change to weak rates by smoothing the nuclear abundance distribution: the electron capture rate decreases by ˜20 % in the early phase and increases by ˜40 % in the late phase at most, while the cross section for neutrino-nucleus scattering is reduced by ˜15 % . This is because the open-shell nuclei become abundant instead of those with closed neutron shells as the shell effects disappear. We also find that the single-nucleus description based on the average values leads to underestimations of weak rates. Electron captures and neutrino coherent scattering on heavy nuclei are reduced by ˜80 % in the early phase and by ˜5 % in the late phase, respectively. These results indicate that NSE like EOS accounting for shell washout is indispensable for the reliable estimation of weak interaction rates in simulations of core-collapse supernovae.
Quality of Work Life: Rural Teachers' Perceptions.
ERIC Educational Resources Information Center
Haughey, Margaret L.; Murphy, Peter J.
1983-01-01
A questionnaire mailed to 528 teachers in rural British Columbia sought opinions on their conditions of work, professional autonomy, and interactions with students and administrators. Responses suggest policy changes to reduce high rate of teacher turnover. (JW)
Wei, Jing; Liang, Yan; Zhang, Xinyi; Simon, George P; Zhao, Dongyuan; Zhang, Jin; Jiang, Sanping; Wang, Huanting
2015-04-14
The synthesis of mesoporous carbon nanospheres (MCNs), especially with diameters below 200 nm remains a great challenge due to weak interactions between the carbon precursors and soft templates, as well as the uncontrollable cross-linking rate of carbon precursors. Herein, we demonstrate a simple acid-assisted, hydrothermal synthesis approach to synthesizing such uniform MCNs with well controlled diameters ranging from 20 to 150 nm under highly acidic conditions (2 M HCl). Both the carbon precursor and the template are partly protonated under such conditions and show additional Coulombic interactions with chloride ions (acts as mediators). This kind of enhanced interaction is similar to that of the "I(+)X(-)S(+)" mechanism in the synthesis of mesoporous metal oxide, which can effectively retard the cross-linking rate of resol molecules and avoid macroscopic phase separation during the hydrothermal synthesis. Due to their uniform spherical morphology, small diameter, and high surface areas, MCNs can be modified with Fe and N species via impregnation of cheap precursors (ferric nitrate and dicyandiamide), which are further converted into nonprecious electrocatalysts for oxygen reduction reactions. The resulting Fe-N/MCNs exhibit high catalytic activities, long-term stability and improved methanol tolerance under alkaline conditions, which can be potentially used in direct methanol fuel cells and metal-air batteries.
Wilfert, L; Jiggins, F M
2010-07-01
Host-parasite coevolution is considered to be an important factor in maintaining genetic variation in resistance to pathogens. Drosophila melanogaster is naturally infected by the sigma virus, a vertically transmitted and host-specific pathogen. In fly populations, there is a large amount of genetic variation in the transmission rate from parent to offspring, much of which is caused by major-effect resistance polymorphisms. We have found that there are similarly high levels of genetic variation in the rate of paternal transmission among 95 different isolates of the virus as in the host. However, when we examined a transmission-blocking gene in the host, we found that it was effective across virus isolates. Therefore, the high levels of genetic variation observed in this system do not appear to be maintained because of coevolution resulting from interactions between this host gene and parasite genes.
Correlation between safety assessments in the driver-car interaction design process.
Broström, Robert; Bengtsson, Peter; Axelsson, Jakob
2011-05-01
With the functional revolution in modern cars, evaluation methods to be used in all phases of driver-car interaction design have gained importance. It is crucial for car manufacturers to discover and solve safety issues early in the interaction design process. A current problem is thus to find a correlation between the formative methods that are used during development and the summative methods that are used when the product has reached the customer. This paper investigates the correlation between efficiency metrics from summative and formative evaluations, where the results of two studies on sound and navigation system tasks are compared. The first, an analysis of the J.D. Power and Associates APEAL survey, consists of answers given by about two thousand customers. The second, an expert evaluation study, was done by six evaluators who assessed the layouts by task completion time, TLX and Nielsen heuristics. The results show a high degree of correlation between the studies in terms of task efficiency, i.e. between customer ratings and task completion time, and customer ratings and TLX. However, no correlation was observed between Nielsen heuristics and customer ratings, task completion time or TLX. The results of the studies introduce a possibility to develop a usability evaluation framework that includes both formative and summative approaches, as the results show a high degree of consistency between the different methodologies. Hence, combining a quantitative approach with the expert evaluation method, such as task completion time, should be more useful for driver-car interaction design. Copyright © 2010 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Modelling food and population dynamics in honey bee colonies.
Khoury, David S; Barron, Andrew B; Myerscough, Mary R
2013-01-01
Honey bees (Apis mellifera) are increasingly in demand as pollinators for various key agricultural food crops, but globally honey bee populations are in decline, and honey bee colony failure rates have increased. This scenario highlights a need to understand the conditions in which colonies flourish and in which colonies fail. To aid this investigation we present a compartment model of bee population dynamics to explore how food availability and bee death rates interact to determine colony growth and development. Our model uses simple differential equations to represent the transitions of eggs laid by the queen to brood, then hive bees and finally forager bees, and the process of social inhibition that regulates the rate at which hive bees begin to forage. We assume that food availability can influence both the number of brood successfully reared to adulthood and the rate at which bees transition from hive duties to foraging. The model predicts complex interactions between food availability and forager death rates in shaping colony fate. Low death rates and high food availability results in stable bee populations at equilibrium (with population size strongly determined by forager death rate) but consistently increasing food reserves. At higher death rates food stores in a colony settle at a finite equilibrium reflecting the balance of food collection and food use. When forager death rates exceed a critical threshold the colony fails but residual food remains. Our model presents a simple mathematical framework for exploring the interactions of food and forager mortality on colony fate, and provides the mathematical basis for more involved simulation models of hive performance.
Morrow, Allison; Downey, Christina A
2013-12-01
Cyber-bullying (where victims are targeted via online social networking or other electronic means) has gained increased attention in research and the broadcast media, but previous research has not investigated attribution of blame in such cyber-bullying events. This experiment hypothesized that participants would assign higher ratings of blame to bullying perpetrators when the bullying situations were depicted as having highly foreseeable outcomes (vs. unforeseeable outcomes), and as occurring in school (vs. online). In addition, a significant interaction was predicted between outcome foreseeability and bullying situation, with highly foreseeable in-school events being rated as the most predictable and attributable to the bully's actions. One-hundred sixty-three participants completed surveys containing demographic items, items regarding their past experiences of victimization, and one of four randomly-assigned vignettes detailing a bullying situation (which participants rated). While hypotheses regarding outcome foreseeability were supported, no cyber-bullying vs. in-school main effects (or corresponding interaction effects) were detected. Implications for future research and practice, as well as study limitations, are discussed. © 2013 The Scandinavian Psychological Associations.
Spin decoherence of InAs surface electrons by transition metal ions
NASA Astrophysics Data System (ADS)
Zhang, Yao; Soghomonian, V.; Heremans, J. J.
2018-04-01
Spin interactions between a two-dimensional electron system at the InAs surface and transition metal ions, Fe3 +, Co2 +, and Ni2 +, deposited on the InAs surface, are probed by antilocalization measurements. The spin-dependent quantum interference phenomena underlying the quantum transport phenomenon of antilocalization render the technique sensitive to the spin states of the transition metal ions on the surface. The experiments yield data on the magnitude and temperature dependence of the electrons' inelastic scattering rates, spin-orbit scattering rates, and magnetic spin-flip rates as influenced by Fe3 +, Co2 +, and Ni2 +. A high magnetic spin-flip rate is shown to mask the effects of spin-orbit interaction, while the spin-flip rate is shown to scale with the effective magnetic moment of the surface species. The spin-flip rates and their dependence on temperature yield information about the spin states of the transition metal ions at the surface, and in the case of Co2 + suggest either a spin transition or formation of a spin-glass system.
Precision Measurement of the Beryllium-7 Solar Neutrino Interaction Rate in Borexino
NASA Astrophysics Data System (ADS)
Saldanha, Richard Nigel
Solar neutrinos, since their first detection nearly forty years ago, have revealed valuable information regarding the source of energy production in the Sun, and have demonstrated that neutrino oscillations are well described by the Large Mixing Angle (LMA) oscillation parameters with matter interactions due to the Mikheyev-Smirnov-Wolfenstein (MSW) effect. This thesis presents a precision measurement of the 7Be solar neutrino interaction rate within Borexino, an underground liquid scintillator detector that is designed to measure solar neutrino interactions through neutrino-electron elastic scattering. The thesis includes a detailed description of the analysis techniques developed and used for this measurement as well as an evaluation of the relevant systematic uncertainties that affect the precision of the result. The rate of neutrino-electron elastic scattering from 0.862 MeV 7Be neutrinos is determined to be 45.4 +/- 1.6 (stat) +/- 1.5 (sys) counts/day/100 ton. Due to extensive detector calibrations and improved analysis methods, the systematic uncertainty in the interaction rate has been reduced by more than a factor of two from the previous evaluation. In the no-oscillation hypothesis, the interaction rate corresponds to a 0.862 MeV 7Be electron neutrino flux of (2.75 +/- 0.13) x 10 9 cm-2 sec-1. Including the predicted neutrino flux from the Standard Solar Model yields an electron neutrino survival probability of Pee 0.51 +/- 0.07 and rules out the no-oscillation hypothesis at 5.1sigma The LMA-MSW neutrino oscillation model predicts a transition in the solar Pee value between low (< 1 MeV) and high (> 10 MeV) energies which has not yet been experimentally confirmed. This result, in conjunction with the Standard Solar Model, represents the most precise measurement of the electron neutrino survival probability for solar neutrinos at sub-MeV energies.
The Role of Proanthocyanidins Complex in Structure and Nutrition Interaction in Alfalfa Forage
Jonker, Arjan; Yu, Peiqiang
2016-01-01
Alfalfa (Medicago sativa L.) is one of the main forages grown in the world. Alfalfa is a winter hardy, drought tolerant, N-fixing legume with a good longevity, high yield, high nutrient levels, high digestibility, unique structural to non-structural components ratio, high dry matter intake, and high animal productivity per hectare. However, its main limitation is its excessively rapid initial rate of protein degradation in the rumen, which results in pasture bloat and inefficient use of protein with consequent excessive excretions of nitrogen into the environment. Proanthocyanidins are secondary plant metabolites that can bind with protein and thereby reduce the rate and extent of ruminal protein degradation. However, these secondary metabolites do not accumulate in alfalfa. This review aims to firstly describe the events involved in the rapid release of protein from alfalfa and its effect on ruminant nutrition, environmental pollution, and pasture bloat; secondly, to describe occurrence, structure, functions and benefits of moderate amounts of proanthocyanidin; and finally, to describe the development of alfalfa which accumulates moderate amounts of proanthocyanidins. The emphasis of this review focuses on the role of proanthocyanidins compounds in structure and nutrition interaction in ruminant livestock systems. PMID:27223279
The Role of Proanthocyanidins Complex in Structure and Nutrition Interaction in Alfalfa Forage.
Jonker, Arjan; Yu, Peiqiang
2016-05-23
Alfalfa (Medicago sativa L.) is one of the main forages grown in the world. Alfalfa is a winter hardy, drought tolerant, N-fixing legume with a good longevity, high yield, high nutrient levels, high digestibility, unique structural to non-structural components ratio, high dry matter intake, and high animal productivity per hectare. However, its main limitation is its excessively rapid initial rate of protein degradation in the rumen, which results in pasture bloat and inefficient use of protein with consequent excessive excretions of nitrogen into the environment. Proanthocyanidins are secondary plant metabolites that can bind with protein and thereby reduce the rate and extent of ruminal protein degradation. However, these secondary metabolites do not accumulate in alfalfa. This review aims to firstly describe the events involved in the rapid release of protein from alfalfa and its effect on ruminant nutrition, environmental pollution, and pasture bloat; secondly, to describe occurrence, structure, functions and benefits of moderate amounts of proanthocyanidin; and finally, to describe the development of alfalfa which accumulates moderate amounts of proanthocyanidins. The emphasis of this review focuses on the role of proanthocyanidins compounds in structure and nutrition interaction in ruminant livestock systems.
Interaction of arch type and footwear on running mechanics.
Butler, Robert J; Davis, Irene S; Hamill, Joseph
2006-12-01
Running shoes are designed to accommodate various arch types to reduce the risk of lower extremity injuries sustained during running. Yet little is known about the biomechanical changes of running in the recommended footwear that may allow for a reduction in injuries. To evaluate the effects of motion control and cushion trainer shoes on running mechanics in low- and high-arched runners. Controlled laboratory study. Twenty high-arched and 20 low-arched recreational runners (>10 miles per week) were recruited for the study. Three-dimensional kinematic and kinetics were collected as subjects ran at 3.5 ms(-1) +/- 5% along a 25-m runway. The motion control shoe evaluated was the New Balance 1122, and the cushioning shoe evaluated was the New Balance 1022. Repeated-measures analyses of variance were used to determine if low- and high-arched runners responded differently to motion control and cushion trainer shoes. A significant interaction was observed in the instantaneous loading rate such that the low-arched runners had a lower instantaneous loading rate in the motion control condition, and the high-arched runners had a lower instantaneous loading rate in the cushion trainer condition. Significant main effects for shoe were observed for peak positive tibial acceleration, peak-to-peak tibial acceleration, mean loading rate, peak eversion, and eversion excursion. These results suggest that motion control shoes control rearfoot motion better than do cushion trainer shoes. In addition, cushion trainer shoes attenuate shock better than motion control shoes do. However, with the exception of instantaneous loading rate, these benefits do not differ between arch type. Running footwear recommendations should be based on an individual's running mechanics. If a mechanical analysis is not available, footwear recommendations can be based empirically on the individual's arch type.
Lateral distribution of muons in IceCube cosmic ray events
NASA Astrophysics Data System (ADS)
Abbasi, R.; Abdou, Y.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Altmann, D.; Andeen, K.; Auffenberg, J.; Bai, X.; Baker, M.; Barwick, S. W.; Baum, V.; Bay, R.; Beattie, K.; Beatty, J. J.; Bechet, S.; Becker Tjus, J.; Becker, K.-H.; Bell, M.; Benabderrahmane, M. L.; BenZvi, S.; Berdermann, J.; Berghaus, P.; Berley, D.; Bernardini, E.; Bertrand, D.; Besson, D. Z.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohm, C.; Bose, D.; Böser, S.; Botner, O.; Brayeur, L.; Brown, A. M.; Bruijn, R.; Brunner, J.; Buitink, S.; Carson, M.; Casey, J.; Casier, M.; Chirkin, D.; Christy, B.; Clevermann, F.; Cohen, S.; Cowen, D. F.; Cruz Silva, A. H.; Danninger, M.; Daughhetee, J.; Davis, J. C.; De Clercq, C.; Descamps, F.; Desiati, P.; de Vries-Uiterweerd, G.; DeYoung, T.; Díaz-Vélez, J. C.; Dreyer, J.; Dumm, J. P.; Dunkman, M.; Eagan, R.; Eisch, J.; Ellsworth, R. W.; Engdegård, O.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Fedynitch, A.; Feintzeig, J.; Feusels, T.; Filimonov, K.; Finley, C.; Fischer-Wasels, T.; Flis, S.; Franckowiak, A.; Franke, R.; Frantzen, K.; Fuchs, T.; Gaisser, T. K.; Gallagher, J.; Gerhardt, L.; Gladstone, L.; Glüsenkamp, T.; Goldschmidt, A.; Goodman, J. A.; Góra, D.; Grant, D.; Groß, A.; Grullon, S.; Gurtner, M.; Ha, C.; Haj Ismail, A.; Hallgren, A.; Halzen, F.; Hanson, K.; Heereman, D.; Heimann, P.; Heinen, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Homeier, A.; Hoshina, K.; Huelsnitz, W.; Hulth, P. O.; Hultqvist, K.; Hussain, S.; Ishihara, A.; Jacobi, E.; Jacobsen, J.; Japaridze, G. S.; Jlelati, O.; Kappes, A.; Karg, T.; Karle, A.; Kiryluk, J.; Kislat, F.; Kläs, J.; Klein, S. R.; Köhne, J.-H.; Kohnen, G.; Kolanoski, H.; Köpke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Krasberg, M.; Kroll, G.; Kunnen, J.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Laihem, K.; Landsman, H.; Larson, M. J.; Lauer, R.; Lesiak-Bzdak, M.; Lünemann, J.; Madsen, J.; Maruyama, R.; Mase, K.; Matis, H. S.; McNally, F.; Meagher, K.; Merck, M.; Mészáros, P.; Meures, T.; Miarecki, S.; Middell, E.; Milke, N.; Miller, J.; Mohrmann, L.; Montaruli, T.; Morse, R.; Movit, S. M.; Nahnhauer, R.; Naumann, U.; Nowicki, S. C.; Nygren, D. R.; Obertacke, A.; Odrowski, S.; Olivas, A.; Olivo, M.; O'Murchadha, A.; Panknin, S.; Paul, L.; Pepper, J. A.; Pérez de los Heros, C.; Pieloth, D.; Pirk, N.; Posselt, J.; Price, P. B.; Przybylski, G. T.; Rädel, L.; Rawlins, K.; Redl, P.; Resconi, E.; Rhode, W.; Ribordy, M.; Richman, M.; Riedel, B.; Rodrigues, J. P.; Rothmaier, F.; Rott, C.; Ruhe, T.; Ruzybayev, B.; Ryckbosch, D.; Saba, S. M.; Salameh, T.; Sander, H.-G.; Santander, M.; Sarkar, S.; Schatto, K.; Scheel, M.; Scheriau, F.; Schmidt, T.; Schmitz, M.; Schoenen, S.; Schöneberg, S.; Schönherr, L.; Schönwald, A.; Schukraft, A.; Schulte, L.; Schulz, O.; Seckel, D.; Seo, S. H.; Sestayo, Y.; Seunarine, S.; Smith, M. W. E.; Soiron, M.; Soldin, D.; Spiczak, G. M.; Spiering, C.; Stamatikos, M.; Stanev, T.; Stasik, A.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Strahler, E. A.; Ström, R.; Sullivan, G. W.; Taavola, H.; Taboada, I.; Tamburro, A.; Ter-Antonyan, S.; Tilav, S.; Toale, P. A.; Toscano, S.; Usner, M.; van der Drift, D.; van Eijndhoven, N.; Van Overloop, A.; van Santen, J.; Vehring, M.; Voge, M.; Walck, C.; Waldenmaier, T.; Wallraff, M.; Walter, M.; Wasserman, R.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whitehorn, N.; Wiebe, K.; Wiebusch, C. H.; Williams, D. R.; Wissing, H.; Wolf, M.; Wood, T. R.; Woschnagg, K.; Xu, C.; Xu, D. L.; Xu, X. W.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zarzhitsky, P.; Ziemann, J.; Zilles, A.; Zoll, M.
2013-01-01
In cosmic ray air showers, the muon lateral separation from the center of the shower is a measure of the transverse momentum that the muon parent acquired in the cosmic ray interaction. IceCube has observed cosmic ray interactions that produce muons laterally separated by up to 400 m from the shower core, a factor of 6 larger distance than previous measurements. These muons originate in high pT (>2GeV/c) interactions from the incident cosmic ray, or high-energy secondary interactions. The separation distribution shows a transition to a power law at large values, indicating the presence of a hard pT component that can be described by perturbative quantum chromodynamics. However, the rates and the zenith angle distributions of these events are not well reproduced with the cosmic ray models tested here, even those that include charm interactions. This discrepancy may be explained by a larger fraction of kaons and charmed particles than is currently incorporated in the simulations.
Copernicus ultraviolet spectra of OB supergiants with strong stellar winds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hutchings, J.B.
1976-03-01
Spectral scans at approximately 0.2 A resolution have been obtained in the far-ultraviolet of eight stars which have high mass-loss rates from stellar winds. The P Cygni characteristics of the line profiles appear to vary inversely as the mass flow rate, and in P Cygni itself the C III lambda 1175 line shows no velocity shift, or emission. It is suggested that higher mass flow rates occur through a denser, slower moving envelope in which collisional interactions are important. (auth)
Gene-by-Environment Interactions in Pancreatic Cancer: Implications for Prevention
Jansen, Rick J.; Tan, Xiang-Lin; Petersen, Gloria M.
2015-01-01
Pancreatic cancer (PC) has been estimated to have higher incidence and correspondingly higher mortality rates in more developed regions worldwide. Overall, the age-adjusted incidence rate is 4.9/105 and age-adjusted mortality rate is at 4.8/105. We review here our current knowledge of modifiable risk factors (cigarette smoking, obesity, diet, and alcohol) for PC, genetic variants implicated by genome-wide association studies, possible genetic interactions with risk factors, and prevention strategies to provide future research directions that may further our understanding of this complex disease. Cigarette smoking is consistently associated with a two-fold increased PC risk. PC associations with dietary intake have been largely inconsistent, with the potential exception of certain unsaturated fatty acids decreasing risk and well-done red meat or meat mutagens increasing risk. There is strong evidence to support that obesity (and related measures) increase risk of PC. Only the heaviest alcohol drinkers seem to be at an increased risk of PC. Currently, key prevention strategies include avoiding tobacco and excessive alcohol consumption and adopting a healthy lifestyle. Screening technologies and PC chemoprevention are likely to become more sophisticated, but may only apply to those at high risk. Risk stratification may be improved by taking into account gene environment interactions. Research on these modifiable risk factors is key to reducing the incidence of PC and understanding who in the population can be considered high risk. PMID:26029010
Osada, Naoki; Akashi, Hiroshi
2012-01-01
Accelerated rates of mitochondrial protein evolution have been proposed to reflect Darwinian coadaptation for efficient energy production for mammalian flight and brain activity. However, several features of mammalian mtDNA (absence of recombination, small effective population size, and high mutation rate) promote genome degradation through the accumulation of weakly deleterious mutations. Here, we present evidence for "compensatory" adaptive substitutions in nuclear DNA- (nDNA) encoded mitochondrial proteins to prevent fitness decline in primate mitochondrial protein complexes. We show that high mutation rate and small effective population size, key features of primate mitochondrial genomes, can accelerate compensatory adaptive evolution in nDNA-encoded genes. We combine phylogenetic information and the 3D structure of the cytochrome c oxidase (COX) complex to test for accelerated compensatory changes among interacting sites. Physical interactions among mtDNA- and nDNA-encoded components are critical in COX evolution; amino acids in close physical proximity in the 3D structure show a strong tendency for correlated evolution among lineages. Only nuclear-encoded components of COX show evidence for positive selection and adaptive nDNA-encoded changes tend to follow mtDNA-encoded amino acid changes at nearby sites in the 3D structure. This bias in the temporal order of substitutions supports compensatory weak selection as a major factor in accelerated primate COX evolution.
Ryan, Sadie J; Jones, James H; Dobson, Andrew P
2013-01-01
Catastrophic declines in African great ape populations due to disease outbreaks have been reported in recent years, yet we rarely hear of similar disease impacts for the more solitary Asian great apes, or for smaller primates. We used an age-structured model of different primate social systems to illustrate that interactions between social structure and demography create 'dynamic constraints' on the pathogens that can establish and persist in primate host species with different social systems. We showed that this varies by disease transmission mode. Sexually transmitted infections (STIs) require high rates of transmissibility to persist within a primate population. In particular, for a unimale social system, STIs require extremely high rates of transmissibility for persistence, and remain at extremely low prevalence in small primates, but this is less constrained in longer-lived, larger-bodied primates. In contrast, aerosol transmitted infections (ATIs) spread and persist at high prevalence in medium and large primates with moderate transmissibility;, establishment and persistence in small-bodied primates require higher relative rates of transmissibility. Intragroup contact structure - the social network - creates different constraints for different transmission modes, and our model underscores the importance of intragroup contacts on infection prior to intergroup movement in a structured population. When alpha males dominate sexual encounters, the resulting disease transmission dynamics differ from when social interactions are dominated by mother-infant grooming events, for example. This has important repercussions for pathogen spread across populations. Our framework reveals essential social and demographic characteristics of primates that predispose them to different disease risks that will be important for disease management and conservation planning for protected primate populations.
ten Brink, Hanna; Mazumdar, Abul Kalam Azad; Huddart, Joseph; Persson, Lennart; Cameron, Tom C
2015-03-01
Coexistence of predators that share the same prey is common. This is still the case in size-structured predator communities where predators consume prey species of different sizes (interspecific prey responses) or consume different size classes of the same species of prey (intraspecific prey responses). A mechanism has recently been proposed to explain coexistence between predators that differ in size but share the same prey species, emergent facilitation, which is dependent on strong intraspecific responses from one or more prey species. Under emergent facilitation, predators can depend on each other for invasion, persistence or success in a size-structured prey community. Experimental evidence for intraspecific size-structured responses in prey populations remains rare, and further questions remain about direct interactions between predators that could prevent or limit any positive effects between predators [e.g. intraguild predation (IGP)]. Here, we provide a community-wide experiment on emergent facilitation including natural predators. We investigate both the direct interactions between two predators that differ in body size (fish vs. invertebrate predator), and the indirect interaction between them via their shared prey community (zooplankton). Our evidence supports the most likely expectation of interactions between differently sized predators that IGP rates are high, and interspecific interactions in the shared prey community dominate the response to predation (i.e. predator-mediated competition). The question of whether emergent facilitation occurs frequently in nature requires more empirical and theoretical attention, specifically to address the likelihood that its pre-conditions may co-occur with high rates of IGP. © 2014 The Authors. Journal of Animal Ecology © 2014 British Ecological Society.
Housing Shortages in Urban Regions: Aggressive Interactions at Tree Hollows in Forest Remnants
Davis, Adrian; Major, Richard E.; Taylor, Charlotte E.
2013-01-01
Urbanisation typically results in a reduction of hollow-bearing trees and an increase in the density of particularly species, potentially resulting in an increased level of competition as cavity-nesting species compete for a limited resource. To improve understanding of hollow usage between urban cavity-nesting species in Australia, particularly parrots, we investigated how the hollow-using assemblage, visitation rate, diversity and number of interactions varied between hollows within urban remnant forest and continuous forest. Motion-activated video cameras were installed, via roped access to the canopy, and hollow usage was monitored at 61 hollows over a two-year period. Tree hollows within urban remnants had a significantly different assemblage of visitors to those in continuous forest as well as a higher rate of visitation than hollows within continuous forest, with the rainbow lorikeet making significantly more visitations than any other taxa. Hollows within urban remnants were characterised by significantly higher usage rates and significantly more aggressive interactions than hollows within continuous forest, with parrots responsible for almost all interactions. Within urban remnants, high rates of hollow visitation and both interspecific and intraspecific interactions observed at tree hollows suggest the number of available optimal hollows may be limiting. Understanding the usage of urban remnant hollows by wildlife, as well as the role of parrots as a potential flagship for the conservation of tree-hollows, is vital to prevent a decrease in the diversity of urban fauna, particularly as other less competitive species risk being outcompeted by abundant native species. PMID:23555657
Lindström, Ida; Dogan, Jakob
2017-08-15
A significant fraction of the eukaryotic proteome consists of proteins that are either partially or completely disordered under native-like conditions. Intrinsically disordered proteins (IDPs) are common in protein-protein interactions and are involved in numerous cellular processes. Although many proteins have been identified as disordered, much less is known about the binding mechanisms of the coupled binding and folding reactions involving IDPs. Here we have analyzed the rate-limiting transition state for binding between the TAZ1 domain of CREB binding protein and the intrinsically disordered transactivation domain of STAT2 (TAD-STAT2) by site-directed mutagenesis and kinetic experiments (Φ-value analysis) and found that the native protein-protein binding interface is not formed at the transition state for binding. Instead, native hydrophobic binding interactions form late, after the rate-limiting barrier has been crossed. The association rate constant in the absence of electrostatic enhancement was determined to be rather high. This is consistent with the Φ-value analysis, which showed that there are few or no obligatory native contacts. Also, linear free energy relationships clearly demonstrate that native interactions are cooperatively formed, a scenario that has usually been observed for proteins that fold according to the so-called nucleation-condensation mechanism. Thus, native hydrophobic binding interactions at the rate-limiting transition state for association between TAD-STAT2 and TAZ1 are not a requirement, which is generally in agreement with previous findings on other IDP systems and might be a common mechanism for IDPs.
Gremer, Jennifer R; Kimball, Sarah; Keck, Katie R; Huxman, Travis E; Angert, Amy L; Venable, D Lawrence
2013-10-01
A functional approach to investigating competitive interactions can provide a mechanistic understanding of processes driving population dynamics, community assembly, and the maintenance of biodiversity. In Sonoran Desert annual plants, a trade-off between relative growth rate (RGR) and water-use efficiency (WUE) contributes to species differences in population dynamics that promote long-term coexistence. Traits underlying this trade-off explain variation in demographic responses to precipitation as well as life history and phenological patterns. Here, we ask how these traits mediate competitive interactions. • We conducted competition trials for three species occupying different positions along the RGR-WUE trade-off axis and compared the effects of competition at high and low soil moisture. We compared competitive effect (ability to suppress neighbors) and competitive response (ability to withstand competition from neighbors) among species. • The RGR-WUE trade-off predicted shifts in competitive responses at different soil moistures. The high-RGR species was more resistant to competition in high water conditions, while the opposite was true for the high-WUE species. The intermediate RGR species tended to have the strongest impact on all neighbors, so competitive effects did not scale directly with differences in RGR and WUE among competitors. • Our results reveal mechanisms underlying long-term variation in fitness: high-RGR species perform better in years with large, frequent rain events and can better withstand competition under wetter conditions. The opposite is true for high-WUE species. Such resource-dependent responses strongly influence community dynamics and can promote coexistence in variable environments.
Lyness, Karen S; Judiesch, Michael K
2008-07-01
The present study was the first cross-national examination of whether managers who were perceived to be high in work-life balance were expected to be more or less likely to advance in their careers than were less balanced, more work-focused managers. Using self ratings, peer ratings, and supervisor ratings of 9,627 managers in 33 countries, the authors examined within-source and multisource relationships with multilevel analyses. The authors generally found that managers who were rated higher in work-life balance were rated higher in career advancement potential than were managers who were rated lower in work-life balance. However, national gender egalitarianism, measured with Project GLOBE scores, moderated relationships based on supervisor and self ratings, with stronger positive relationships in low egalitarian cultures. The authors also found 3-way interactions of work-life balance ratings, ratee gender, and gender egalitarianism in multisource analyses in which self balance ratings predicted supervisor and peer ratings of advancement potential. Work-life balance ratings were positively related to advancement potential ratings for women in high egalitarian cultures and men in low gender egalitarian cultures, but relationships were nonsignificant for men in high egalitarian cultures and women in low egalitarian cultures.
Adult Support and Substance Use among Homeless Youths Who Attend High School
ERIC Educational Resources Information Center
Ferguson, Kristin M.; Xie, Bin
2012-01-01
Background: Despite high rates of substance use among homeless youths, little is known about the interaction of substance-use risk and protective factors. Further, limited research exists on substance use by school-attending homeless youths, as extant studies have relied on street- and shelter-based samples. Objective: The purpose of this study…
Wang, Lei; Zhang, Yiman; McBean, Coray L.; ...
2017-01-18
Herein we highlight the significance of nanoscale attachment modality as an important determinant of observed electrochemical performance. Specifically, controlled loading ratios of multi-walled carbon nanotubes (MWNTs) have been successfully anchored onto the surfaces of a unique “flower-like” Li 4Ti 5O 12 (LTO) micro-scale sphere motif, for the first time, using a number of different and distinctive preparative approaches, including (i) a sonication method, (ii) an in situ direct-deposition approach, (iii) a covalent attachment protocol, as well as (iv) a π-π interaction strategy. In terms of structural characterization, the composites generated by physical sonication as well as non-covalent π-π interactions retainedmore » the intrinsic hierarchical “flower-like” morphology and exhibited a similar crystallinity profile as compared with that of pure LTO. By comparison, the composite prepared by an in situ direct deposition approach yielded not only a fragmented LTO structure, likely due to the possible interfering presence of the MWNTs themselves during the relevant hydrothermal reaction, but also a larger crystallite size, owing to the higher annealing temperature associated with its preparation. Finally, the composite created via covalent attachment was covered with an amorphous insulating linker, which probably led to a decreased contact area between the LTO and the MWNTs and hence, a lower crystallinity in the resulting composite. In addition electrode tests suggested that the composite generated by π-π interactions out-performed the other three analogous heterostructures, due to a smaller charge transfer resistance as well as a faster Li-ion diffusion. In particular, the LTO-MWNT composite, produced by π-π interactions, exhibited a reproducibly high rate capability as well as a reliably solid cycling stability, delivering 132 mA h g -1 at 50 C, after 100 discharge/charge cycles, including 40 cycles at a high (>20 C) rate. To conclude, such data denote the highest electrochemical performance measured to date as compared with any LTO-carbon nanotube-based composite materials previously reported, under high discharge rate conditions, and tangibly underscore the correlation between preparative methodology and the resulting performance metrics.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Lei; Zhang, Yiman; McBean, Coray L.
Herein we highlight the significance of nanoscale attachment modality as an important determinant of observed electrochemical performance. Specifically, controlled loading ratios of multi-walled carbon nanotubes (MWNTs) have been successfully anchored onto the surfaces of a unique “flower-like” Li 4Ti 5O 12 (LTO) micro-scale sphere motif, for the first time, using a number of different and distinctive preparative approaches, including (i) a sonication method, (ii) an in situ direct-deposition approach, (iii) a covalent attachment protocol, as well as (iv) a π-π interaction strategy. In terms of structural characterization, the composites generated by physical sonication as well as non-covalent π-π interactions retainedmore » the intrinsic hierarchical “flower-like” morphology and exhibited a similar crystallinity profile as compared with that of pure LTO. By comparison, the composite prepared by an in situ direct deposition approach yielded not only a fragmented LTO structure, likely due to the possible interfering presence of the MWNTs themselves during the relevant hydrothermal reaction, but also a larger crystallite size, owing to the higher annealing temperature associated with its preparation. Finally, the composite created via covalent attachment was covered with an amorphous insulating linker, which probably led to a decreased contact area between the LTO and the MWNTs and hence, a lower crystallinity in the resulting composite. In addition electrode tests suggested that the composite generated by π-π interactions out-performed the other three analogous heterostructures, due to a smaller charge transfer resistance as well as a faster Li-ion diffusion. In particular, the LTO-MWNT composite, produced by π-π interactions, exhibited a reproducibly high rate capability as well as a reliably solid cycling stability, delivering 132 mA h g -1 at 50 C, after 100 discharge/charge cycles, including 40 cycles at a high (>20 C) rate. To conclude, such data denote the highest electrochemical performance measured to date as compared with any LTO-carbon nanotube-based composite materials previously reported, under high discharge rate conditions, and tangibly underscore the correlation between preparative methodology and the resulting performance metrics.« less
Šarić, Željko; Xu, Xuecai; Duan, Li; Babić, Darko
2018-06-20
This study intended to investigate the interactions between accident rate and traffic signs in state roads located in Croatia, and accommodate the heterogeneity attributed to unobserved factors. The data from 130 state roads between 2012 and 2016 were collected from Traffic Accident Database System maintained by the Republic of Croatia Ministry of the Interior. To address the heterogeneity, a panel quantile regression model was proposed, in which quantile regression model offers a more complete view and a highly comprehensive analysis of the relationship between accident rate and traffic signs, while the panel data model accommodates the heterogeneity attributed to unobserved factors. Results revealed that (1) low visibility of material damage (MD) and death or injured (DI) increased the accident rate; (2) the number of mandatory signs and the number of warning signs were more likely to reduce the accident rate; (3)average speed limit and the number of invalid traffic signs per km exhibited a high accident rate. To our knowledge, it's the first attempt to analyze the interactions between accident consequences and traffic signs by employing a panel quantile regression model; by involving the visibility, the present study demonstrates that the low visibility causes a relatively higher risk of MD and DI; It is noteworthy that average speed limit corresponds with accident rate positively; The number of mandatory signs and the number of warning signs are more likely to reduce the accident rate; The number of invalid traffic signs per km are significant for accident rate, thus regular maintenance should be kept for a safer roadway environment.
Allmendinger, Andrea; Mueller, Robert; Huwyler, Joerg; Mahler, Hanns-Christian; Fischer, Stefan
2015-10-01
Differences in filtration behavior of concentrated protein formulations were observed during aseptic drug product manufacturing of biologics dependent on formulation composition. The present study investigates filtration forces of monoclonal antibody formulations in a small-scale set-up using polyvinylidene difluoride (PVDF) or polyethersulfone (PES) filters. Different factors like formulation composition and protein concentration related to differences in viscosity, as well as different filtration rates were evaluated. The present study showed that filtration behavior was influenced by the presence or absence of a surfactant in the formulation, which defines the interaction between filter membrane and surface active formulation components. This can lead to a change in filter resistance (PES filter) independent on the buffer system used. Filtration behavior was additionally defined by rheological non-Newtonian flow behavior. The data showed that high shear rates resulting from small pore sizes and filtration pressure up to 1.0 bar led to shear-thinning behavior for highly concentrated protein formulations. Differences in non-Newtonian behavior were attributed to ionic strength related to differences in repulsive and attractive interactions. The present study showed that the interplay of formulation composition, filter material, and filtration rate can explain differences in filtration behavior/filtration flux observed for highly concentrated protein formulations thus guiding filter selection. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.
Mapping transcription factor interactome networks using HaloTag protein arrays.
Yazaki, Junshi; Galli, Mary; Kim, Alice Y; Nito, Kazumasa; Aleman, Fernando; Chang, Katherine N; Carvunis, Anne-Ruxandra; Quan, Rosa; Nguyen, Hien; Song, Liang; Alvarez, José M; Huang, Shao-Shan Carol; Chen, Huaming; Ramachandran, Niroshan; Altmann, Stefan; Gutiérrez, Rodrigo A; Hill, David E; Schroeder, Julian I; Chory, Joanne; LaBaer, Joshua; Vidal, Marc; Braun, Pascal; Ecker, Joseph R
2016-07-19
Protein microarrays enable investigation of diverse biochemical properties for thousands of proteins in a single experiment, an unparalleled capacity. Using a high-density system called HaloTag nucleic acid programmable protein array (HaloTag-NAPPA), we created high-density protein arrays comprising 12,000 Arabidopsis ORFs. We used these arrays to query protein-protein interactions for a set of 38 transcription factors and transcriptional regulators (TFs) that function in diverse plant hormone regulatory pathways. The resulting transcription factor interactome network, TF-NAPPA, contains thousands of novel interactions. Validation in a benchmarked in vitro pull-down assay revealed that a random subset of TF-NAPPA validated at the same rate of 64% as a positive reference set of literature-curated interactions. Moreover, using a bimolecular fluorescence complementation (BiFC) assay, we confirmed in planta several interactions of biological interest and determined the interaction localizations for seven pairs. The application of HaloTag-NAPPA technology to plant hormone signaling pathways allowed the identification of many novel transcription factor-protein interactions and led to the development of a proteome-wide plant hormone TF interactome network.
Development of the US3D Code for Advanced Compressible and Reacting Flow Simulations
NASA Technical Reports Server (NTRS)
Candler, Graham V.; Johnson, Heath B.; Nompelis, Ioannis; Subbareddy, Pramod K.; Drayna, Travis W.; Gidzak, Vladimyr; Barnhardt, Michael D.
2015-01-01
Aerothermodynamics and hypersonic flows involve complex multi-disciplinary physics, including finite-rate gas-phase kinetics, finite-rate internal energy relaxation, gas-surface interactions with finite-rate oxidation and sublimation, transition to turbulence, large-scale unsteadiness, shock-boundary layer interactions, fluid-structure interactions, and thermal protection system ablation and thermal response. Many of the flows have a large range of length and time scales, requiring large computational grids, implicit time integration, and large solution run times. The University of Minnesota NASA US3D code was designed for the simulation of these complex, highly-coupled flows. It has many of the features of the well-established DPLR code, but uses unstructured grids and has many advanced numerical capabilities and physical models for multi-physics problems. The main capabilities of the code are described, the physical modeling approaches are discussed, the different types of numerical flux functions and time integration approaches are outlined, and the parallelization strategy is overviewed. Comparisons between US3D and the NASA DPLR code are presented, and several advanced simulations are presented to illustrate some of novel features of the code.
Cooperative polymerization of α-helices induced by macromolecular architecture
NASA Astrophysics Data System (ADS)
Baumgartner, Ryan; Fu, Hailin; Song, Ziyuan; Lin, Yao; Cheng, Jianjun
2017-07-01
Catalysis observed in enzymatic processes and protein polymerizations often relies on the use of supramolecular interactions and the organization of functional elements in order to gain control over the spatial and temporal elements of fundamental cellular processes. Harnessing these cooperative interactions to catalyse reactions in synthetic systems, however, remains challenging due to the difficulty in creating structurally controlled macromolecules. Here, we report a polypeptide-based macromolecule with spatially organized α-helices that can catalyse its own formation. The system consists of a linear polymeric scaffold containing a high density of initiating groups from which polypeptides are grown, forming a brush polymer. The folding of polypeptide side chains into α-helices dramatically enhances the polymerization rate due to cooperative interactions of macrodipoles between neighbouring α-helices. The parameters that affect the rate are elucidated by a two-stage kinetic model using principles from nucleation-controlled protein polymerizations; the key difference being the irreversible nature of this polymerization.
Effects of Bacillus subtilis endospore surface reactivity on the rate of forsterite dissolution
NASA Astrophysics Data System (ADS)
Harrold, Z.; Gorman-Lewis, D.
2013-12-01
Primary mineral dissolution products, such as silica (Si), calcium (Ca) and magnesium (Mg), play an important role in numerous biologic and geochemical cycles including microbial metabolism, plant growth and secondary mineral precipitation. The flux of these and other dissolution products into the environment is largely controlled by the rate of primary silicate mineral dissolution. Bacteria, a ubiquitous component in water-rock systems, are known to facilitate mineral dissolution and may play a substantial role in determining the overall flux of dissolution products into the environment. Bacterial cell walls are complex and highly reactive organic surfaces that can affect mineral dissolution rates directly through microbe-mineral adsorption or indirectly by complexing dissolution products. The effect of bacterial surface adsorption on chemical weathering rates may even outweigh the influence of active processes in environments where a high proportion of cells are metabolically dormant or cell metabolism is slow. Complications associated with eliminating or accounting for ongoing metabolic processes in long-term dissolution studies have made it challenging to isolate the influence of cell wall interactions on mineral dissolution rates. We utilized Bacillus subtilis endospores, a robust and metabolically dormant cell type, to isolate and quantify the effects of bacterial surface reactivity on forsterite (Mg2SiO4) dissolution rates. We measured the influence of both direct and indirect microbe-mineral interactions on forsterite dissolution. Indirect pathways were isolated using dialysis tubing to prevent mineral-microbe contact while allowing free exchange of dissolved mineral products and endospore-ion adsorption. Homogenous experimental assays allowed both direct microbe-mineral and indirect microbe-ion interactions to affect forsterite dissolution rates. Dissolution rates were calculated based on silica concentrations and zero-order dissolution kinetics. Additional analyses including Mg concentrations, microprobe and BET analyses support mineral dissolution rate calculations and stoichiometry considerations. All experimental assays containing endospores show increased forsterite dissolution rates relative to abiotic controls. Forsterite dissolution rates increased by approximately one order of magnitude in dialysis bound, biotic experiments relative to abiotic assays. Homogenous biotic assays exhibited a more complex dissolution rate profile that changes over time. All microbially mediated forsterite dissolution rates returned to abiotic control rates after 10 to 15 days of incubation. This shift in dissolution rate likely corresponds to maximum endospore surface adsorption capacity. The Bacillus subtilis endospore surface serves as a first-order proxy for studying the effect of metabolizing microbe surfaces on silicate dissolution rates. Comparisons with published abiotic, microbial, and organic acid mediated forsterite dissolution rates will provide insight on the importance of bacterial surfaces in primary mineral dissolution processes.
Buffet induced structural/flight-control system interaction of the X-29A aircraft
NASA Technical Reports Server (NTRS)
Voracek, David F.; Clarke, Robert
1991-01-01
High angle-of-attack flight regime research is currently being conducted for modern fighter aircraft at the NASA Ames Research Center's Dryden Flight Research Facility. This flight regime provides enhanced maneuverability to fighter pilots in combat situations. Flight research data are being acquired to compare and validate advanced computational fluid dynamic solutions and wind-tunnel models. High angle-of-attack flight creates unique aerodynamic phenomena including wing rock and buffet on the airframe. These phenomena increase the level of excitation of the structural modes, especially on the vertical and horizontal stabilizers. With high gain digital flight-control systems, this structural response may result in an aeroservoelastic interaction. A structural interaction on the X-29A aircraft was observed during high angle-of-attack flight testing. The roll and yaw rate gyros sensed the aircraft's structural modes at 11, 13, and 16 Hz. The rate gyro output signals were then amplified through the flight-control laws and sent as commands to the flaperons and rudder. The flight data indicated that as the angle of attack increased, the amplitude of the buffet on the vertical stabilizer increased, which resulted in more excitation to the structural modes. The flight-control system sensors and command signals showed this increase in modal power at the structural frequencies up to a 30 degree angle-of-attack. Beyond a 30 degree angle-of-attack, the vertical stabilizer response, the feedback sensor amplitude, and control surface command signal amplitude remained relatively constant. Data are presented that show the increased modal power in the aircraft structural accelerometers, the feedback sensors, and the command signals as a function of angle of attack. This structural interaction is traced from the aerodynamic buffet to the flight-control surfaces.
Interactions between physicians and pharmaceutical sales representatives in Saudi Arabia.
Alosaimi, Fahad Dakheel; Alkaabba, Abdulaziz; Qadi, Mahdi; Albahlal, Abdullah; Alabdulkarim, Yasir; Alabduljabbar, Mohammad; Alqahtani, Faisal
2013-01-01
Interaction between physicians and pharmaceutical sales representative (PR) is a major component of the promotional activities by pharmaceutical companies. The lack of studies examining the magnitude of this interaction in Saudi Arabia is evident. The objective of this study is to estimate the magnitude and associated characteristics of physician-PR interaction. A cross-sectional study was conducted among physicians working in the different regions of Saudi Arabia between March and July of 2012. A cross-sectional study was undertaken between March and July of 2012 in the different regions of Saudi Arabia. A self-administrated questionnaire was developed and handed to all participants, both in paper and electronic formats. A total of 663 participants completed the questionnaire. The participation rate was 66.3% (663/1000). The majority of the participants (72.9%) reported interaction with PRs. This was lower among residents/interns compared to higher ranking employees (55.6% vs 83.6%, P < .001). Approximately half (48.3%) of the interactions occurred at a rate of more than once a month. A majority of the participants (72.1%) occasionally accepted gifts such as stationery (57%), drug samples (54%), meals (38%), and sponsorship of educational activities (30%). The following characteristics were independently associated with physician-PR interaction: non-Saudi nationals, a higher monthly income, Western medical education, working in a private hospital, being a specialist or registrar (rather than resident or intern), working on certain specialties (such as psychiatry and family medicine), and having limited number of patients with high socioeconomic status. Although lower than seen in many parts of the world, a high prevalence of physician-PR inter.action in Saudi hospitals is reported. Delineating associated characteristics may assist with future interventions. Further research should focus on ethical, clinical, prescription, and economic impact of interaction as well as determining the best strategy to reduce negative impact.
Beauchaine, Theodore P; Klein, Daniel N; Crowell, Sheila E; Derbidge, Christina; Gatzke-Kopp, Lisa
2009-01-01
Although antisocial personality disorder (ASPD) is more common among males and borderline PD (BPD) is more common among females, some authors have suggested that the two disorders reflect multifinal outcomes of a single etiology. This assertion is based on several overlapping symptoms and features, including trait impulsivity, emotional lability, high rates of depression and suicide, and a high likelihood of childhood abuse and/or neglect. Furthermore, rates of ASPD are elevated in the first degree relatives of those with BPD, and concurrent comorbidity rates for the two disorders are high. In this article, we present a common model of antisocial and borderline personality development. We begin by reviewing issues and problems with diagnosing and studying PDs in children and adolescents. Next, we discuss dopaminergic and serotonergic mechanisms of trait impulsivity as predisposing vulnerabilities to ASPD and BPD. Finally, we extend shared risk models for ASPD and BPD by specifying genetic loci that may confer differential vulnerability to impulsive aggression and mood dysregulation among males and impulsive self-injury and mood dysregulation among females. Although the precise mechanisms of these sex-moderated genetic vulnerabilities remain poorly understood, they appear to interact with environmental risk factors including adverse rearing environments to potentiate the development of ASPD and BPD.
The power of power: electrokinetic control of PAH interactions with exfoliated graphite.
Qin, Jinyi; Moustafa, Ahmed; Harms, Hauke; El-Din, Mohamed Gamal; Wick, Lukas Y
2015-05-15
Exfoliated graphite (EG) exhibits exceptional sorption capacity for petroleum and dissolved hydrocarbons owing to its highly hydrophobic surface and wide pore size distribution. The high price of preparing EG, however, restricts its application. Methods which increase the rate or extent of sorption to EG even further are thus longed for. Here, we assess the effects of weak direct current (DC) fields on the sorption of the polycyclic aromatic hydrocarbon phenanthrene (PHE) to EG. DC applied to an ionic solution in a solid matrix invokes electroosmotic flow (EOF), i.e., the surface charge-induced movement of the solution. EG was exposed to weak DC fields in the presence of dissolved PHE to test if EOF increases transport of PHE to poorly accessible sorption sites. DC fields increased PHE sorption rates in EG sevenfold and reduced the desorption rate of sorbed PHE by >99%. EOF thus appeared to be highly effective in translocating PHE into pores, which contribute most of the sorption sites, but are difficult to access in the absence of EOF by molecular diffusion only. The observed 'power of power' may be used to kinetically regulate the interaction of sorbates with EG or other porous sorbents in environmental (bio-) technology. Copyright © 2015 Elsevier B.V. All rights reserved.
Patil, Ashwini; Nakamura, Haruki
2007-01-01
Hubs are highly connected proteins in a protein-protein interaction network. Previous work has implicated disordered domains and high surface charge as the properties significant in the ability of hubs to bind multiple proteins. While conformational flexibility of disordered domains plays an important role in the binding ability of large hubs, high surface charge is the dominant property in small hubs. In this study, we further investigate the role of the high surface charge in the binding ability of small hubs in the absence of disordered domains. Using multipole expansion, we find that the charges are highly distributed over the hub surfaces. Residue enrichment studies show that the charged residues in hubs are more prevalent on the exposed surface, with the exception of Arg, which is predominantly found at the interface, as compared to non-hubs. This suggests that the charged residues act primarily from the exposed surface rather than the interface to affect the binding ability of small hubs. They do this through (i) enhanced intra-molecular electrostatic interactions to lower the desolvation penalty, (ii) indirect long – range intermolecular interactions with charged residues on the partner proteins for better complementarity and electrostatic steering, and (iii) increased solubility for enhanced diffusion-controlled rate of binding. Along with Arg, we also find a high prevalence of polar residues Tyr, Gln and His and the hydrophobic residue Met at the interfaces of hubs, all of which have the ability to form multiple types of interactions, indicating that the interfaces of hubs are optimized to participate in multiple interactions. PMID:27857564
Patil, Ashwini; Nakamura, Haruki
2007-01-01
Hubs are highly connected proteins in a protein-protein interaction network. Previous work has implicated disordered domains and high surface charge as the properties significant in the ability of hubs to bind multiple proteins. While conformational flexibility of disordered domains plays an important role in the binding ability of large hubs, high surface charge is the dominant property in small hubs. In this study, we further investigate the role of the high surface charge in the binding ability of small hubs in the absence of disordered domains. Using multipole expansion, we find that the charges are highly distributed over the hub surfaces. Residue enrichment studies show that the charged residues in hubs are more prevalent on the exposed surface, with the exception of Arg, which is predominantly found at the interface, as compared to non-hubs. This suggests that the charged residues act primarily from the exposed surface rather than the interface to affect the binding ability of small hubs. They do this through (i) enhanced intra-molecular electrostatic interactions to lower the desolvation penalty, (ii) indirect long - range intermolecular interactions with charged residues on the partner proteins for better complementarity and electrostatic steering, and (iii) increased solubility for enhanced diffusion-controlled rate of binding. Along with Arg, we also find a high prevalence of polar residues Tyr, Gln and His and the hydrophobic residue Met at the interfaces of hubs, all of which have the ability to form multiple types of interactions, indicating that the interfaces of hubs are optimized to participate in multiple interactions.
Schoener, Cody A; Curtis-Fisk, Jaime L; Rogers, True L; Tate, Michael P
2016-10-01
Ethylcellulose is commonly dissolved in a solvent or formed into an aqueous dispersion and sprayed onto various dosage forms to form a barrier membrane to provide controlled release in pharmaceutical formulations. Due to the variety of solvents utilized in the pharmaceutical industry and the importance solvent can play on film formation and film strength it is critical to understand how solvent can influence these parameters. To systematically study a variety of solvent blends and how these solvent blends influence ethylcellulose film formation, physical and mechanical film properties and solution properties such as clarity and viscosity. Using high throughput capabilities and evaporation rate modeling, thirty-one different solvent blends composed of ethanol, isopropanol, acetone, methanol, and/or water were formulated, analyzed for viscosity and clarity, and narrowed down to four solvent blends. Brookfield viscosity, film casting, mechanical film testing and water permeation were also completed. High throughput analysis identified isopropanol/water, ethanol, ethanol/water and methanol/acetone/water as solvent blends with unique clarity and viscosity values. Evaporation rate modeling further rank ordered these candidates from excellent to poor interaction with ethylcellulose. Isopropanol/water was identified as the most suitable solvent blend for ethylcellulose due to azeotrope formation during evaporation, which resulted in a solvent-rich phase allowing the ethylcellulose polymer chains to remain maximally extended during film formation. Consequently, the highest clarity and most ductile films were formed. Employing high throughput capabilities paired with evaporation rate modeling allowed strong predictions between solvent interaction with ethylcellulose and mechanical film properties.
Interactions for pollinator visitation and their consequences for reproduction in a plant community
NASA Astrophysics Data System (ADS)
Hegland, Stein Joar; Totland, Ørjan
2012-08-01
Competition and facilitation in species interactions attract much attention in ecology, but their relative importance has seldom been evaluated in a community context. We assessed competitive and facilitative interactions for pollinator visitation among co-flowering species in a plant community, investigated the subsequent consequences for plant reproduction, and investigated whether effects could be trait-based. We removed the flowers of two species attractive to pollinators, in two separate experiments and assessed the effects on pollinator visitation rates and components of reproductive success in 11 co-flowering focal herb species. Overall, most focal species appear not to interact with the removal species with respect to pollinator visitation and subsequent reproduction (neutral interactions). Three focal species in the community had significantly higher reproductive responses (fruit production and seed weight) in the presence of the attractive removal species (facilitative interactions), but species interaction effects were less pronounced in species' flower visitation rates. A community-wide meta-analysis demonstrated that the two experiments did not have a significant effect on either facilitation or competition, and that there was no overall correlation between effect sizes for visitation and reproduction. Based on species-specific responses, it seems likely that floral traits such as similar flower colors contribute to interspecific facilitation of pollinator visitation and, in particular, that high pollinator dependence for plant reproduction, and associated pollen limitation, may contribute to subsequent interaction effects on reproduction in the focal species.
Hooda, Seema; Metzler-Zebeli, Barbara U; Vasanthan, Thavaratnam; Zijlstra, Ruurd T
2011-09-01
Relative contributions of two functional properties, viscosity and fermentability of dietary fibre, on apparent ileal digestibility (AID), apparent total tract digestibility (ATTD), digesta passage rate, N retention and SCFA concentration have not been established. Thus, eight ileal-cannulated pigs randomised in a double 4 × 4 Latin square were fed four diets based on maize starch and casein supplemented with 5 % of actual fibre in a 2 × 2 factorial arrangement: low-fermentable, low-viscous cellulose (CEL); low-fermentable, high-viscous carboxymethylcellulose (CMC); high-fermentable, low-viscous oat β-glucan (LBG); high-fermentable, high-viscous oat β-glucan (HBG). Viscosity and fermentability interacted to affect (P < 0·001) digesta viscosity and AID and ATTD of nutrients. These properties tended to interact to affect (P < 0·10) digesta passage rate and butyrate. Pigs fed the CMC diet had the lowest (P < 0·05) digesta passage rate and the highest (P < 0·001) AID of energy, crude protein and DM, and ATTD of energy and DM. Post-ileal DM digestibility was highest (P < 0·001) for pigs fed the CEL and HBG diets. Post-ileal DM digestibility had a negative, curvilinear relationship with the AID of energy and crude protein (R2 0·85 and 0·72, respectively; P < 0·001). Digesta viscosity had a less strong relationship with the AID of energy and crude protein (R2 0·45 and 0·36, respectively; P < 0·001). In conclusion, high-viscous, low-fermentable dietary fibre increases the proportion of a diet that is digested in the small intestine by reducing digesta passage rate.
What Do High-Risk Patients Value? Perspectives on a Care Management Program.
Ganguli, Ishani; Orav, E John; Weil, Eric; Ferris, Timothy G; Vogeli, Christine
2018-01-01
There is growing interest in coordinating care for high-risk patients through care management programs despite inconsistent results on cost reduction. Early evidence suggests patient-centered benefits, but we know little about how participants engage with the programs and what aspects they value. To explore care management program participants' awareness and perceived utility of program offerings. Cross-sectional telephone survey administered December 2015-January 2016. Patients enrolled in a Boston-area primary care-based care management program. Our main outcome was the number of topics in which patients reported having "very helpful" interactions with their care team in the past year. We analyzed awareness of one's care manager as an intermediate outcome, and then as a primary predictor of the main outcome, along with patient demographics, years in the program, attitudes, and worries as secondary predictors. The survey response rate was 45.8% (n = 1220); non-respondents were similar to respondents. More respondents reported worrying about family (72.8%) or financial issues (52.5%) than about their own health (41.6%). Seventy-four percent reported care manager awareness, particularly women (OR 1.33, 95% CI 1.01-1.77) and those with more years in the program (OR 1.16, 95% CI 1.03-1.30). While interaction rates ranged from 19.8% to 72.4% across topics, 81.3% rated at least one interaction as very helpful. Those who were aware of their care manager reported very helpful interactions on more topics (OR 2.77, 95% CI 2.15-3.56), as did women (OR 1.25, 95% CI 1.00-1.55), younger respondents (OR 0.98 for older age, 95% CI 0.97-0.99), and those with higher risk scores (OR 1.04, 95% CI 1.02-1.06), preference for deferring treatment decisions to doctors (OR 2.00, 95% CI 1.60-2.50), and reported control over their health (OR 1.67, 95% CI 1.33-2.10). High-risk patients reported helpful interactions with their care team around medical and social determinants of health, particularly those who knew their care manager. Promoting care manager awareness may help participants make better use of the program.
The 'dark side' of social capital: trust and self-rated health in European countries.
Campos-Matos, Inês; Subramanian, S V; Kawachi, Ichiro
2016-02-01
Generalized interpersonal trust (as an indicator of social capital) has been linked to health status at both the individual and ecological level. We sought to examine how changes in contextual and individual trust are associated with changes in self-rated health in the European Social Surveys 2002-12. A multilevel analysis using a variance components model was performed on 203 452 individuals nested within 145 country cohorts covering 35 countries. Conditional on sociodemographic covariates, we sought to examine the association between self-rated health and individual trust, country average trust and a cross-level interaction between the two. Although individual trust perceptions were significantly correlated with self-rated health [OR = 0.95, 95% confidence interval (0.94-0.96)], country-level trust was not associated [OR = 1.12, 95% confidence interval (0.95-1.32)]. There was, however, a strong crosslevel interaction between contextual and individual trust (P < 0.001), such that individuals with high interpersonal trust reported better health in contexts in which other individuals expressed high average interpersonal trust. Conversely, low trust individuals reported worse health in high trust contexts. Our findings suggest that contexts with increasing average trust can be harmful for low trust individuals, which might reflect the negative impact that social capital can have in certain groups. These findings suggest that contextual trust has a complex role in explaining health inequalities and individual self-rated health. © The Author 2015. Published by Oxford University Press on behalf of the European Public Health Association. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, Chun Mei; Chen, Chao; Sun, Yan; Gou, Bing Cong; Shao, Bin
2015-04-01
The Rayleigh-Ritz variational method with multiconfiguration interaction wave functions is used to obtain the energies of high-lying multi-excited quartet states 1 s 22 s2 pnl and 1 s 22 p 2 nl 4Pe,o ( n ≥ 2) in B-like neon, including the mass polarization and relativistic corrections. The fine structure and hyperfine structure of the excited quartet states for this system are investigated. Configuration structures of the high-lying multi-excited series are further identified by relativistic corrections and fine structure splittings. The transition rates and wavelengths are also calculated. Calculated wavelengths include the quantum electrodynamic effects. The results are compared with other theoretical and experimental data in the literature.
Behavioral variability in an evolutionary theory of behavior dynamics.
Popa, Andrei; McDowell, J J
2016-03-01
McDowell's evolutionary theory of behavior dynamics (McDowell, 2004) instantiates populations of behaviors (abstractly represented by integers) that evolve under the selection pressure of the environment in the form of positive reinforcement. Each generation gives rise to the next via low-level Darwinian processes of selection, recombination, and mutation. The emergent patterns can be analyzed and compared to those produced by biological organisms. The purpose of this project was to explore the effects of high mutation rates on behavioral variability in environments that arranged different reinforcer rates and magnitudes. Behavioral variability increased with the rate of mutation. High reinforcer rates and magnitudes reduced these effects; low reinforcer rates and magnitudes augmented them. These results are in agreement with live-organism research on behavioral variability. Various combinations of mutation rates, reinforcer rates, and reinforcer magnitudes produced similar high-level outcomes (equifinality). These findings suggest that the independent variables that describe an experimental condition interact; that is, they do not influence behavior independently. These conclusions have implications for the interpretation of high levels of variability, mathematical undermatching, and the matching theory. The last part of the discussion centers on a potential biological counterpart for the rate of mutation, namely spontaneous fluctuations in the brain's default mode network. © 2016 Society for the Experimental Analysis of Behavior.
Lin, Xiaotong; Liu, Mei; Chen, Xue-wen
2009-04-29
Protein-protein interactions play vital roles in nearly all cellular processes and are involved in the construction of biological pathways such as metabolic and signal transduction pathways. Although large-scale experiments have enabled the discovery of thousands of previously unknown linkages among proteins in many organisms, the high-throughput interaction data is often associated with high error rates. Since protein interaction networks have been utilized in numerous biological inferences, the inclusive experimental errors inevitably affect the quality of such prediction. Thus, it is essential to assess the quality of the protein interaction data. In this paper, a novel Bayesian network-based integrative framework is proposed to assess the reliability of protein-protein interactions. We develop a cross-species in silico model that assigns likelihood scores to individual protein pairs based on the information entirely extracted from model organisms. Our proposed approach integrates multiple microarray datasets and novel features derived from gene ontology. Furthermore, the confidence scores for cross-species protein mappings are explicitly incorporated into our model. Applying our model to predict protein interactions in the human genome, we are able to achieve 80% in sensitivity and 70% in specificity. Finally, we assess the overall quality of the experimentally determined yeast protein-protein interaction dataset. We observe that the more high-throughput experiments confirming an interaction, the higher the likelihood score, which confirms the effectiveness of our approach. This study demonstrates that model organisms certainly provide important information for protein-protein interaction inference and assessment. The proposed method is able to assess not only the overall quality of an interaction dataset, but also the quality of individual protein-protein interactions. We expect the method to continually improve as more high quality interaction data from more model organisms becomes available and is readily scalable to a genome-wide application.
NASA Astrophysics Data System (ADS)
Chambers, Jessica; McGarry, Joseph; Ahmed, Kareem
2015-11-01
Detonation is a high energetic mode of pressure gain combustion. Detonation combustion exploits the pressure rise to augment high flow momentum and thermodynamic cycle efficiencies. The driving mechanism of deflagrated flame acceleration to detonation is turbulence generation and induction. A fluidic jet is an innovative method for the production of turbulence intensities and flame acceleration. Compared to traditional obstacles, the jet reduces the pressure losses and heat soak effects while providing turbulence generation control. The investigation characterizes the turbulent flame-flow interactions. The focus of the study is on classifying the turbulent flame dynamics and the temporal evolution of turbulent flame regime. The turbulent flame-flow interactions are experimentally studied using a LEGO Detonation facility. Advanced high-speed laser diagnostics, particle image velocimetry (PIV), planar laser induced florescence (PLIF), and Schlieren imaging are used in analyzing the physics of the interaction and flame acceleration. Higher turbulence induction is observed within the turbulent flame after contact with the jet, leading to increased flame burning rates. The interaction with the fluidic jet results in turbulent flame transition from the thin reaction zones to the broken reaction regime.
Investigation of automated and interactive crack measurement systems : final report, May 27, 2008.
DOT National Transportation Integrated Search
2008-05-27
Currently adopted manual distress surveys involve a high degree of subjectivity, low production rates, and exposure to hazardous conditions. FDOT has acquired and validated a multi-functional survey vehicle (MPSV). However, when an automated crack di...
Color and emotion: effects of hue, saturation, and brightness.
Wilms, Lisa; Oberfeld, Daniel
2017-06-13
Previous studies on emotional effects of color often failed to control all the three perceptual dimensions of color: hue, saturation, and brightness. Here, we presented a three-dimensional space of chromatic colors by independently varying hue (blue, green, red), saturation (low, medium, high), and brightness (dark, medium, bright) in a factorial design. The 27 chromatic colors, plus 3 brightness-matched achromatic colors, were presented via an LED display. Participants (N = 62) viewed each color for 30 s and then rated their current emotional state (valence and arousal). Skin conductance and heart rate were measured continuously. The emotion ratings showed that saturated and bright colors were associated with higher arousal. The hue also had a significant effect on arousal, which increased from blue and green to red. The ratings of valence were the highest for saturated and bright colors, and also depended on the hue. Several interaction effects of the three color dimensions were observed for both arousal and valence. For instance, the valence ratings were higher for blue than for the remaining hues, but only for highly saturated colors. Saturated and bright colors caused significantly stronger skin conductance responses. Achromatic colors resulted in a short-term deceleration in the heart rate, while chromatic colors caused an acceleration. The results confirm that color stimuli have effects on the emotional state of the observer. These effects are not only determined by the hue of a color, as is often assumed, but by all the three color dimensions as well as their interactions.
Wide variation and patterns of physicians' responses to drug-drug interaction alerts.
Cho, Insook; Lee, Yura; Lee, Jae-Ho; Bates, David W
2018-05-08
Providing physicians with alerts about potentially harmful drug-drug interactions (DDIs) is only moderately effective due to high alert override rates. To understand high override behavior on DDI alerts, we investigated how physicians respond to DDIs and their behavior patterns and variations. Retrospective system log data analysis and records review (sampling 2% of total overrides). A large tertiary academic hospital. About 560 physicians and their override responses to DDI alerts generated from 1 September to 31 December 2014. Not applicable. DDI alert frequency and override rate. We found significant variation in both the number of alerts and override rates at the levels of physicians, departments and drug-class pairs. Physician-level variations were wider for residents than for faculty staff (number of alerts: t = 254.17, P = 0.011; override rates: t = -4.77, P < 0.0001). Using the number of alerts and their override rate, we classified physicians into four groups: inexperienced incautious users, inexperienced cautious users, experienced cautious users and experienced incautious users. Medical department influenced both alert numbers and override rates. Nearly 90% of the overrides involved only five drug-class combinations, which had a wide range of appropriateness in the chart review. The variations at drug-class levels suggest issues with system design and the DDI rules. Department-level variation may be best addressed at the department level, and the rest of the variation appears related to individual physician responses, suggesting the need for interventions at an individual level.
An Investigation of Drug-Drug Interaction Alert Overrides at a Pediatric Hospital.
Humphrey, Kate; Jorina, Maria; Harper, Marvin; Dodson, Brenda; Kim, Seung-Yeon; Ozonoff, Al
2018-05-01
Drug-drug interactions (DDIs) can result in patient harm. DDI alerts are intended to help prevent harm; when the majority of alerts presented to providers are being overridden, their value is diminished. Our objective was to evaluate the overall rates of DDI alert overrides and how rates varied by specialty, clinician type, and patient complexity. A retrospective study of DDI alert overrides that occurred during 2012 and 2013 within the inpatient setting described at the medication-, hospital-, provider-, and patient encounter-specific levels was performed at an urban, quaternary-care, pediatric hospital. There were >41 000 DDI alerts presented to clinicians; ∼90% were overridden. The 5 DDI pairs that were most frequently presented and overridden included the following: potassium chloride-spironolactone, methadone-ondansetron, ketorolac-ibuprofen, cyclosporine-fluconazole, and potassium chloride-enalapril, each with an alert override rate of ≥0.89. Override rates across provider groups ranged between 0.84 and 0.97. In general, patients with high complexity had a higher frequency of alert overrides, but the rates of alert overrides for each DDI pairing did not differ significantly. High rates of DDI alert overrides occur across medications, provider groups, and patient encounters. Methods to decrease DDI alerts which are likely to be overridden exist, but it is also clear that more robust and intelligent tools are needed. Characteristics exist at the medication, hospital, provider, and patient levels that can be used to help specialize and enhance information transmission. Copyright © 2018 by the American Academy of Pediatrics.
NASA Astrophysics Data System (ADS)
Olmos, José M.; Astiz, Miguel Á.
2018-04-01
In order to properly study the high-speed traffic safety on a high-pier viaduct subject to episodes of lateral turbulent winds, an efficient dynamic interaction train-bridge-wind model has been developed and experimentally validated. This model considers the full wheel and rail profiles, the friction between these two bodies in contact, and the piers P-Delta effect. The model has been used to determine the critical train and wind velocities from which the trains cannot travel safely over the O'Eixo Bridge. The dynamic simulations carried out and the results obtained in the time domain show that traffic safety rates exceed the allowed limits for turbulent winds with mean velocities at the deck higher than 25 m/s.
Tran, Tam T; Janssens, Lizanne; Dinh, Khuong V; Op de Beeck, Lin; Stoks, Robby
2016-07-01
How evolution may mitigate the effects of global warming and pesticide exposure on predator-prey interactions is directly relevant for vector control. Using a space-for-time substitution approach, we addressed how 4°C warming and exposure to the pesticide endosulfan shape the predation on Culex pipiens mosquitoes by damselfly predators from replicated low- and high-latitude populations. Although warming was only lethal for the mosquitoes, it reduced predation rates on these prey. Possibly, under warming escape speeds of the mosquitoes increased more than the attack efficiency of the predators. Endosulfan imposed mortality and induced behavioral changes (including increased filtering and thrashing and a positional shift away from the bottom) in mosquito larvae. Although the pesticide was only lethal for the mosquitoes, it reduced predation rates by the low-latitude predators. This can be explained by the combination of the evolution of a faster life history and associated higher vulnerabilities to the pesticide (in terms of growth rate and lowered foraging activity) in the low-latitude predators and pesticide-induced survival selection in the mosquitoes. Our results suggest that predation rates on mosquitoes at the high latitude will be reduced under warming unless predators evolve toward the current low-latitude phenotype or low-latitude predators move poleward.
NASA Astrophysics Data System (ADS)
Leenaers, A.; Van den Berghe, S.; Koonen, E.; Kuzminov, V.; Detavernier, C.
2015-03-01
In the framework of the SELENIUM project two full size flat fuel plates were produced with respectively Si and ZrN coated U(Mo) particles and irradiated in the BR2 reactor at SCK•CEN. Non-destructive analysis of the plates showed that the fuel swelling profiles of both SELENIUM plates were very similar to each other and none of the plates showed signs of pillowing or excessive swelling at the end of irradiation at the highest power position (local maximum 70% 235U). The microstructural analysis showed that the Si coated fuel has less interaction phase formation at low burn-up but at the highest burn-ups, defects start to develop on the IL-matrix interface. The ZrN coated fuel, shows a virtual absence of reaction between the U(Mo) and the Al, up to high fission densities after which the interaction layer formation starts and defects develop in the matrix near the U(Mo) particles. It was found and is confirmed by the SELENIUM (Surface Engineering of Low ENrIched Uranium-Molybdenum) experiment that there are two phenomena at play that need to be controlled: the formation of an interaction layer and swelling of the fuel. As the interaction layer formation occurs at the U(Mo)-matrix interface, applying a diffusion barrier (coating) at that interface should prevent the interaction between U(Mo) and the matrix. The U(Mo) swelling, observed to proceed at an accelerating rate with respect to fission density accumulation, is governed by linear solid state swelling and fission gas bubble swelling due to recrystallization of the fuel. The examination of the SELENIUM fuel plates clearly show that for the U(Mo) dispersion fuel to be qualified, the swelling rate at high burn-up needs to be reduced.
Numerical Simulation of Hydrogen Air Supersonic Coaxial Jet
NASA Astrophysics Data System (ADS)
Dharavath, Malsur; Manna, Pulinbehari; Chakraborty, Debasis
2017-10-01
In the present study, the turbulent structure of coaxial supersonic H2-air jet is explored numerically by solving three dimensional RANS equations along with two equation k-ɛ turbulence model. Grid independence of the solution is demonstrated by estimating the error distribution using Grid Convergence Index. Distributions of flow parameters in different planes are analyzed to explain the mixing and combustion characteristics of high speed coaxial jets. The flow field is seen mostly diffusive in nature and hydrogen diffusion is confined to core region of the jet. Both single step laminar finite rate chemistry and turbulent reacting calculation employing EDM combustion model are performed to find the effect of turbulence-chemistry interaction in the flow field. Laminar reaction predicts higher H2 mol fraction compared to turbulent reaction because of lower reaction rate caused by turbulence chemistry interaction. Profiles of major species and temperature match well with experimental data at different axial locations; although, the computed profiles show a narrower shape in the far field region. These results demonstrate that standard two equation class turbulence model with single step kinetics based turbulence chemistry interaction can describe H2-air reaction adequately in high speed flows.
Need for Affiliation as a Motivational Add-On for Leadership Behaviors and Managerial Success
Steinmann, Barbara; Ötting, Sonja K.; Maier, Günter W.
2016-01-01
In a sample of 70 leader-follower dyads, this study examines the separate and interactive effects of the leaders’ implicit needs for power, achievement, and affiliation on leadership behaviors and outcomes. Results show that whereas the need for achievement was marginally associated with follower-rated passive leadership, the need for affiliation was significantly related to ratings of the leaders’ concern for the needs of their followers. Analyzing motive combinations in terms of interactive effects and accounting for the growing evidence on the value of affiliative concerns in leadership, we assumed the need for affiliation would channel the interplay among the needs for power and achievement in such a way that the leaders would become more effective in leading others. As expected, based on high need for achievement, the followers were more satisfied with their jobs and with their leaders and perceived more transformational leadership behavior if power-motivated leaders equally had a high need for affiliation. Moreover, the leaders indicated higher career success when this was the case. However, in indicators of followers’ performance, the three-way interaction among the needs for power, achievement, and affiliation did not account for additional variance. PMID:28066295
Golub, Mari; Hogrefe, Casey
2014-03-01
Monoamine oxidase A (MAOA) gene polymorphisms resulting in high and low transcription rates are associated with individual differences in reward efficacy and response inhibition. Iron deficiency (ID) is the most frequent single-nutrient deficiency worldwide, and prenatal ID has recently been shown to carry a risk for lower mental development scores in infants. In this study, a potential interaction of MAOA genotype and prenatal ID was studied in young male rhesus monkeys. Cognitive tasks, including problem solving, responsiveness to reward and attention, were used to characterize the potential interaction of these two fetal risks. ID was induced by feeding rhesus monkey dams an iron-deficient (10 ppm, ID) or an iron-sufficient (100 ppm, IS) diet during gestation (n = 10/group). Subgroups of the ID and IS diet offspring had low-MAOA or high-MAOA transcription rate polymorphisms. ID combined with low-MAOA genotype showed distinctive effects on reward preference and problem solving while ID in hi-MAOA juveniles modified response inhibition. Given the incidence of ID and MAOA polymorphisms in humans, this interaction could be a significant determinant of cognitive performance.
Need for Affiliation as a Motivational Add-On for Leadership Behaviors and Managerial Success.
Steinmann, Barbara; Ötting, Sonja K; Maier, Günter W
2016-01-01
In a sample of 70 leader-follower dyads, this study examines the separate and interactive effects of the leaders' implicit needs for power, achievement, and affiliation on leadership behaviors and outcomes. Results show that whereas the need for achievement was marginally associated with follower-rated passive leadership, the need for affiliation was significantly related to ratings of the leaders' concern for the needs of their followers. Analyzing motive combinations in terms of interactive effects and accounting for the growing evidence on the value of affiliative concerns in leadership, we assumed the need for affiliation would channel the interplay among the needs for power and achievement in such a way that the leaders would become more effective in leading others. As expected, based on high need for achievement, the followers were more satisfied with their jobs and with their leaders and perceived more transformational leadership behavior if power-motivated leaders equally had a high need for affiliation. Moreover, the leaders indicated higher career success when this was the case. However, in indicators of followers' performance, the three-way interaction among the needs for power, achievement, and affiliation did not account for additional variance.
Hage, David S.
2017-01-01
BACKGROUND The interactions between biochemical and chemical agents in the body are important in many clinical processes. Affinity chromatography and high-performance affinity chromatography (HPAC), in which a column contains an immobilized biologically-related binding agent, are two methods that can be used to study these interactions. CONTENT This review looks at various approaches that can be used in affinity chromatography and HPAC to characterize the strength or rate of a biological interaction, the number and types of sites that are involved in this process, and the interactions between multiple solutes for the same binding agent. A number of applications for these methods are examined, with an emphasis on recent developments and high-performance affinity methods. These applications include the use of these techniques for fundamental studies of biological interactions, high-throughput screening of drugs, work with modified proteins, tools for personalized medicine, and studies of drug-drug competition for a common binding agent. SUMMARY The wide range of formats and detection methods that can be used with affinity chromatography and HPAC for examining biological interactions makes these tools attractive for various clinical and pharmaceutical applications. Future directions in the development of small-scale columns and the coupling of these methods with other techniques, such as mass spectrometry or other separation methods, should continue to increase the flexibility and ease with which these approaches can be used in work involving clinical or pharmaceutical samples. PMID:28396561
Kim, Chur; Kim, Dohyun; Cheong, YeonJoon; Kwon, Dohyeon; Choi, Sun Young; Jeong, Hwanseong; Cha, Sang Jun; Lee, Jeong-Woo; Yeom, Dong-Il; Rotermund, Fabian; Kim, Jungwon
2015-10-05
We show the implementation of fiber-pigtailed, evanescent-field-interacting, single-walled carbon nanotube (CNT)-based saturable absorbers (SAs) using standard planar lightwave circuit (PLC) fabrication processes. The implemented PLC-CNT-SA device is employed to realize self-starting, high-repetition-rate, all-fiber ring oscillators at telecommunication wavelength. We demonstrate all-fiber Er ring lasers operating at 303-MHz (soliton regime) and 274-MHz (stretched-pulse regime) repetition-rates. The 303-MHz (274-MHz) laser centered at 1555 nm (1550 nm) provides 7.5 nm (19 nm) spectral bandwidth. After extra-cavity amplilfication, the amplified pulse train of the 303-MHz (274-MHz) laser delivers 209 fs (178 fs) pulses. To our knowledge, this corresponds to the highest repetition-rates achieved for femtosecond lasers employing evanescent-field-interacting SAs. The demonstrated SA fabrication method, which is based on well-established PLC processes, also shows a potential way for mass-producible and lower-cost waveguide-type SA devices suitable for all-fiber and waveguide lasers.
Postpartum depression, suicidality, and mother-infant interactions.
Paris, Ruth; Bolton, Rendelle E; Weinberg, M Katherine
2009-10-01
To date, few studies have examined suicidality in women with postpartum depression. Reports of suicidal ideation in postpartum women have varied (Lindahl et al. Arch Womens Ment Health 8:77-87, 2005), and no known studies have examined the relationship between suicidality and mother-infant interactions. This study utilizes baseline data from a multi-method evaluation of a home-based psychotherapy for women with postpartum depression and their infants to examine the phenomenon of suicidality and its relationship to maternal mood, perceptions, and mother-infant interactions. Overall, women in this clinical sample (n = 32) had wide ranging levels of suicidal thinking. When divided into low and high groups, the mothers with high suicidality experienced greater mood disturbances, cognitive distortions, and severity of postpartum symptomotology. They also had lower maternal self-esteem, more negative perceptions of the mother-infant relationship, and greater parenting stress. During observer-rated mother-infant interactions, women with high suicidality were less sensitive and responsive to their infants' cues, and their infants demonstrated less positive affect and involvement with their mothers. Implications for clinical practice and future research directions are discussed.
Proton acceleration by multi-terawatt interaction with a near-critical density hydrogen jet
NASA Astrophysics Data System (ADS)
Goers, Andy; Feder, Linus; Hine, George; Salehi, Fatholah; Woodbury, Daniel; Su, J. J.; Papadopoulos, Dennis; Zigler, Arie; Milchberg, Howard
2016-10-01
We investigate the high intensity laser interaction with thin, near critical density plasmas as a means of efficient acceleration of MeV protons. A promising mechanism is magnetic vortex acceleration, where the ponderomotive force of a tightly focused laser pulse drives a relativistic electron current which generates a strong azimuthal magnetic field. The rapid expansion of this azimuthal magnetic field at the back side of the target can accelerate plasma ions to MeV scale energies. Compared to typical ion acceleration experiments utilizing a laser- thin solid foil interaction, magnetic vortex acceleration in near critical density plasma may be realized in a high density gas jet, making it attractive for applications requiring high repetition rates. We present preliminary experiments studying laser-plasma interaction and proton acceleration in a thin (< 200 μm) near-critical density hydrogen gas jet delivering electron densities 1020 -1021 cm-3 . This research was funded by the United States Department of Energy and the Defense Advanced Research Projects Agency (DARPA) under Contract Number W911-NF-15-C-0217, issued by the Army Research Office.
Feyertag, Felix; Chakraborty, Sandip
2017-01-01
Abstract The proteins of any organism evolve at disparate rates. A long list of factors affecting rates of protein evolution have been identified. However, the relative importance of each factor in determining rates of protein evolution remains unresolved. The prevailing view is that evolutionary rates are dominantly determined by gene expression, and that other factors such as network centrality have only a marginal effect, if any. However, this view is largely based on analyses in yeasts, and accurately measuring the importance of the determinants of rates of protein evolution is complicated by the fact that the different factors are often correlated with each other, and by the relatively poor quality of available functional genomics data sets. Here, we use correlation, partial correlation and principal component regression analyses to measure the contributions of several factors to the variability of the rates of evolution of human proteins. For this purpose, we analyzed the entire human protein–protein interaction data set and the human signal transduction network—a network data set of exceptionally high quality, obtained by manual curation, which is expected to be virtually free from false positives. In contrast with the prevailing view, we observe that network centrality (measured as the number of physical and nonphysical interactions, betweenness, and closeness) has a considerable impact on rates of protein evolution. Surprisingly, the impact of centrality on rates of protein evolution seems to be comparable, or even superior according to some analyses, to that of gene expression. Our observations seem to be independent of potentially confounding factors and from the limitations (biases and errors) of interactomic data sets. PMID:28854629
Alvarez-Ponce, David; Feyertag, Felix; Chakraborty, Sandip
2017-06-01
The proteins of any organism evolve at disparate rates. A long list of factors affecting rates of protein evolution have been identified. However, the relative importance of each factor in determining rates of protein evolution remains unresolved. The prevailing view is that evolutionary rates are dominantly determined by gene expression, and that other factors such as network centrality have only a marginal effect, if any. However, this view is largely based on analyses in yeasts, and accurately measuring the importance of the determinants of rates of protein evolution is complicated by the fact that the different factors are often correlated with each other, and by the relatively poor quality of available functional genomics data sets. Here, we use correlation, partial correlation and principal component regression analyses to measure the contributions of several factors to the variability of the rates of evolution of human proteins. For this purpose, we analyzed the entire human protein-protein interaction data set and the human signal transduction network-a network data set of exceptionally high quality, obtained by manual curation, which is expected to be virtually free from false positives. In contrast with the prevailing view, we observe that network centrality (measured as the number of physical and nonphysical interactions, betweenness, and closeness) has a considerable impact on rates of protein evolution. Surprisingly, the impact of centrality on rates of protein evolution seems to be comparable, or even superior according to some analyses, to that of gene expression. Our observations seem to be independent of potentially confounding factors and from the limitations (biases and errors) of interactomic data sets. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Dibbelt, S; Schaidhammer, M; Fleischer, C; Greitemann, B
2010-10-01
A body of evidence suggests that good interaction is crucial for high-quality medical practice and that it has a considerable impact on treatment outcomes. Less is known about the role and significance of doctor-patient interaction in rehabilitation. The study's aim was to capture perceived quality of doctor-patient interaction in rehabilitation by a rating instrument (P.A.INT-Questionnaire) and to examine the relationship between perceived quality of interaction and long-term treatment outcomes. Referring to the approach of Bensing (1990) and Rogers (1972) we defined "quality of interaction" in terms of 3 dimensions: (1) affective behaviour, i. e., empathy, positive regard and coherence; (2) instrumental behaviour: providing and collecting information, structuring and reinforcement; (3) participation and involvement of patients. 2 parallel versions of the Questionnaire were developed for patients and physicians. 7 rehabilitation clinics in north-western Germany participated in the multi-centre study. 61 doctors and their 470 patients evaluated both their shared dialogues upon admission, discharge and at least one ward round. Furthermore, patients rated their health status on admission (t0), discharge (t1) and 6 months after discharge (t2) using the IRES-3 (Indicators of Rehabilitation Status Questionnaire Version 3). (1) Comparisons of patient and physician evaluations on admission revealed the following: Affective quality of contact (empathy and coherence) was rated positively and without discrepancies by both patients and physicians. On the other hand, instrumental behaviour (information and structuring) was rated less positively by patients than by physicians. (2) Patients who rated the dialogue on admission more positively showed stronger treatment effects with respect to pain, to anxiety and depression 6 months after discharge. Also disability days decreased about 40% stronger in the group of positive raters. (3) Patient ratings of quality of interaction showed low but significant correlations with patient-related aspects like coping with disease, health-related knowledge and former positive experiences with physicians. A stepwise regression analysis revealed that interaction quality seems to contribute to enhanced treatment results independently of patients' competences. Our results suggest a positive relationship between perceived interaction quality as defined by the P.A.INT-Questionnaire and treatment effects 6 months after discharge. Comparisons of patient and physician evaluations showed that physicians seem to be successful in building relationships on the affective level but less successful on the instrumental level (i. e., information, structuring and reinforcement). Our data underline the importance of interaction quality for the success of rehabilitation and thus the importance of specific skills such as providing and collecting information, recognizing patients' concerns and goals as well as reinforcement of health-related action. This is especially important when knowledge of disease and coping with disease on patients' side is poor. Interaction quality seems to contribute to better treatment results independently of patients' competences. © Georg Thieme Verlag KG Stuttgart · New York.
Friction and wear of several compressor gas-path seal movements
NASA Technical Reports Server (NTRS)
Bill, R. C.; Wisander, D. W.
1978-01-01
Rub interaction experiments were conducted on a series of sintered and plasma sprayed compressor gas path seal materials in contact with Ti-6Al-4V blade tip and knife edge rotors. The most rub tolerant materials investigated were sintered Nichrome and plasma sprayed nickel 25 percent graphite. The effectiveness of providing a compliant substrate for dense seal material coatings was also demonstrated. In general, it was observed that rotor wear and high frictional energy generation rates accompanied smearing or surface densification of the materials investigated. The onset of smearing was sensitive to rub interaction parameters and seal geometry. Two complementary models were proposed to account for the smearing trends. One is based on thermal effects, the other on particulate escape effects. They were shown to be consistent with the experimental evidence at hand, and together they predict that smearing, with the onset of high energy rub conditions, is favored when incursion rates (radial motion) are low, incursion depths are high, the seal geometry is of a knife-edge character, and the seal particle size is small.
Hot Spots in a Network of Functional Sites
Ozbek, Pemra; Soner, Seren; Haliloglu, Turkan
2013-01-01
It is of significant interest to understand how proteins interact, which holds the key phenomenon in biological functions. Using dynamic fluctuations in high frequency modes, we show that the Gaussian Network Model (GNM) predicts hot spot residues with success rates ranging between S 8–58%, C 84–95%, P 5–19% and A 81–92% on unbound structures and S 8–51%, C 97–99%, P 14–50%, A 94–97% on complex structures for sensitivity, specificity, precision and accuracy, respectively. High specificity and accuracy rates with a single property on unbound protein structures suggest that hot spots are predefined in the dynamics of unbound structures and forming the binding core of interfaces, whereas the prediction of other functional residues with similar dynamic behavior explains the lower precision values. The latter is demonstrated with the case studies; ubiquitin, hen egg-white lysozyme and M2 proton channel. The dynamic fluctuations suggest a pseudo network of residues with high frequency fluctuations, which could be plausible for the mechanism of biological interactions and allosteric regulation. PMID:24023934
The influence of interspecific interactions on species range expansion rates
Svenning, Jens-Christian; Gravel, Dominique; Holt, Robert D.; Schurr, Frank M.; Thuiller, Wilfried; Münkemüller, Tamara; Schiffers, Katja H.; Dullinger, Stefan; Edwards, Thomas C.; Hickler, Thomas; Higgins, Steven I.; Nabel, Julia E.M.S.; Pagel, Jörn; Normand, Signe
2014-01-01
Ongoing and predicted global change makes understanding and predicting species’ range shifts an urgent scientific priority. Here, we provide a synthetic perspective on the so far poorly understood effects of interspecific interactions on range expansion rates. We present theoretical foundations for how interspecific interactions may modulate range expansion rates, consider examples from empirical studies of biological invasions and natural range expansions as well as process-based simulations, and discuss how interspecific interactions can be more broadly represented in process-based, spatiotemporally explicit range forecasts. Theory tells us that interspecific interactions affect expansion rates via alteration of local population growth rates and spatial displacement rates, but also via effects on other demographic parameters. The best empirical evidence for interspecific effects on expansion rates comes from studies of biological invasions. Notably, invasion studies indicate that competitive dominance and release from specialized enemies can enhance expansion rates. Studies of natural range expansions especially point to the potential for competition from resident species to reduce expansion rates. Overall, it is clear that interspecific interactions may have important consequences for range dynamics, but also that their effects have received too little attention to robustly generalize on their importance. We then discuss how interspecific interactions effects can be more widely incorporated in dynamic modeling of range expansions. Importantly, models must describe spatiotemporal variation in both local population dynamics and dispersal. Finally, we derive the following guidelines for when it is particularly important to explicitly represent interspecific interactions in dynamic range expansion forecasts: if most interacting species show correlated spatial or temporal trends in their effects on the target species, if the number of interacting species is low, and if the abundance of one or more strongly interacting species is not closely linked to the abundance of the target species.
The influence of interspecific interactions on species range expansion rates.
Svenning, Jens-Christian; Gravel, Dominique; Holt, Robert D; Schurr, Frank M; Thuiller, Wilfried; Münkemüller, Tamara; Schiffers, Katja H; Dullinger, Stefan; Edwards, Thomas C; Hickler, Thomas; Higgins, Steven I; Nabel, Julia E M S; Pagel, Jörn; Normand, Signe
2014-12-01
Ongoing and predicted global change makes understanding and predicting species' range shifts an urgent scientific priority. Here, we provide a synthetic perspective on the so far poorly understood effects of interspecific interactions on range expansion rates. We present theoretical foundations for how interspecific interactions may modulate range expansion rates, consider examples from empirical studies of biological invasions and natural range expansions as well as process-based simulations, and discuss how interspecific interactions can be more broadly represented in process-based, spatiotemporally explicit range forecasts. Theory tells us that interspecific interactions affect expansion rates via alteration of local population growth rates and spatial displacement rates, but also via effects on other demographic parameters. The best empirical evidence for interspecific effects on expansion rates comes from studies of biological invasions. Notably, invasion studies indicate that competitive dominance and release from specialized enemies can enhance expansion rates. Studies of natural range expansions especially point to the potential for competition from resident species to reduce expansion rates. Overall, it is clear that interspecific interactions may have important consequences for range dynamics, but also that their effects have received too little attention to robustly generalize on their importance. We then discuss how interspecific interactions effects can be more widely incorporated in dynamic modeling of range expansions. Importantly, models must describe spatiotemporal variation in both local population dynamics and dispersal. Finally, we derive the following guidelines for when it is particularly important to explicitly represent interspecific interactions in dynamic range expansion forecasts: if most interacting species show correlated spatial or temporal trends in their effects on the target species, if the number of interacting species is low, and if the abundance of one or more strongly interacting species is not closely linked to the abundance of the target species.
The influence of interspecific interactions on species range expansion rates
Svenning, Jens-Christian; Gravel, Dominique; Holt, Robert D.; Schurr, Frank M.; Thuiller, Wilfried; Münkemüller, Tamara; Schiffers, Katja H.; Dullinger, Stefan; Edwards, Thomas C.; Hickler, Thomas; Higgins, Steven I.; Nabel, Julia E. M. S.; Pagel, Jörn; Normand, Signe
2014-01-01
Ongoing and predicted global change makes understanding and predicting species’ range shifts an urgent scientific priority. Here, we provide a synthetic perspective on the so far poorly understood effects of interspecific interactions on range expansion rates. We present theoretical foundations for how interspecific interactions may modulate range expansion rates, consider examples from empirical studies of biological invasions and natural range expansions as well as process-based simulations, and discuss how interspecific interactions can be more broadly represented in process-based, spatiotemporally explicit range forecasts. Theory tells us that interspecific interactions affect expansion rates via alteration of local population growth rates and spatial displacement rates, but also via effects on other demographic parameters. The best empirical evidence for interspecific effects on expansion rates comes from studies of biological invasions. Notably, invasion studies indicate that competitive dominance and release from specialized enemies can enhance expansion rates. Studies of natural range expansions especially point to the potential for competition from resident species to reduce expansion rates. Overall, it is clear that interspecific interactions may have important consequences for range dynamics, but also that their effects have received too little attention to robustly generalize on their importance. We then discuss how interspecific interactions effects can be more widely incorporated in dynamic modeling of range expansions. Importantly, models must describe spatiotemporal variation in both local population dynamics and dispersal. Finally, we derive the following guidelines for when it is particularly important to explicitly represent interspecific interactions in dynamic range expansion forecasts: if most interacting species show correlated spatial or temporal trends in their effects on the target species, if the number of interacting species is low, and if the abundance of one or more strongly interacting species is not closely linked to the abundance of the target species. PMID:25722537
NASA Astrophysics Data System (ADS)
Champeaux, J.-P.; Moretto-Capelle, P.; Cafarelli, P.; Deville, C.; Sence, M.; Casta, R.
2014-06-01
The physical interactions of polycyclic aromatic hydrocarbons (PAHs) with stellar particular radiation are key to understanding the life cycle of PAHs, their abundance and their role in the complex astrochemistry of the interstellar medium. In this context, we present experimental results on the ionization/fragmentation of isolated coronene by a 100-keV proton, reproducing interactions between stellar winds and PAH molecules in the star's environment. In particular, we show, without ambiguity, that such ionization/fragmentation induces intense dehydrogenation processes for which the loss of even numbers of hydrogen atoms and the detection of CH_2+ cations as a possible H2 precursor strongly suggest the formation of H2 neutral molecules along a scenario revealed by a quantum chemical calculation. We have evaluated the H2 emission cross-section from the coronene/proton interaction at 100 and 1.6 keV to be 2.97 × 10-16 and 3.3 × 10-16 cm2, respectively. A qualitative discussion on the formation rate of H2 in the HD 44179 Red Rectangle (RR) nebula leads to the conclusion that such processes could be very efficient, especially inside planetary nebulae rich in PAH molecules interacting with high proton mass-loss rate stars (such as post-asymptotic giant branch stars) or high velocity jets produced by an accretion disc.
ERIC Educational Resources Information Center
Rizvi, Rubina Fatima
2017-01-01
Despite high Electronic Health Record (EHR) system adoption rates by hospital and office-based practices, many users remain highly dissatisfied with the current state of EHRs. Sub-optimal EHR usability as a result of insufficient incorporation of User-Centered Design (UCD) approach during System Development Life Cycle process (SDLC) is considered…
Analysis of high speed flow, thermal and structural interactions
NASA Technical Reports Server (NTRS)
Thornton, Earl A.
1994-01-01
Research for this grant focused on the following tasks: (1) the prediction of severe, localized aerodynamic heating for complex, high speed flows; (2) finite element adaptive refinement methodology for multi-disciplinary analyses; (3) the prediction of thermoviscoplastic structural response with rate-dependent effects and large deformations; (4) thermoviscoplastic constitutive models for metals; and (5) coolant flow/structural heat transfer analyses.
Irina Ćalić; Jennifer Koch; David Carey; Charles Addo-Quaye; John E. Carlson; David B. Neale
2017-01-01
Background: The American Beech tree (Fagus grandifolia Ehrh.), native to eastern North America, is ecologically important and provides high quality wood products. This species is susceptible to beech bark disease (BBD) and is facing high rates of mortality in North America. The disease occurs from an interaction between the woolly beech scale...
NASA Astrophysics Data System (ADS)
Tu, Yiyou; Qian, Huan; Zhou, Xuefeng; Jiang, Jianqing
2014-04-01
In the current study, the effect of Sc addition on the interaction of concurrent precipitation and recrystallization in commercial AA3003 aluminum alloy was investigated using optical microscopy, scanning electron microscopy, and transmission electron microscopy. In case of AA3003 alloy, which was cold rolled to a true strain of 2.20 and heated at a heating rate of 150 K/s, the onset of precipitation and ending of recrystallization are signified by the critical temperature, T C ~740 K (467 °C). There is a change in the shape of the recrystallized grains from pancake-like to equiaxed shape, as the annealing temperature increases greater than T C. In case of AA3003 alloy microalloyed with 0.4 wt pct of Sc, the high no. density precipitation of coherent Al3Sc precipitates always occurs before recrystallization because of the small nucleation barrier and high rate of decomposition. This leads to extremely coarse pancake-like recrystallization grains with high fraction of low-angle grain boundaries in the entire annealing temperature range, even at a high brazing temperature of 883 K (610 °C).
Graphene mode-lockers for fiber lasers functioned with evanescent field interaction
NASA Astrophysics Data System (ADS)
Song, Yong-Won; Jang, Sung-Yeon; Han, Won-Suk; Bae, Mi-Kyung
2010-02-01
Employing graphene as an intracavity passive power modulating element, we demonstrate the efficient laser pulsation in high pulse-energy regime with evanescent field interaction between the propagating light and graphene layer. Graphene is prepared by the solution based reduction of graphene oxide, and dispersed homogeneously into the water for spray onto an all-fiber substrate, side-polished fiber. With the intracavity power up to 21.41 dBm, we ensure the robust high-energy operation without any thermal damage of graphene. Resultant output pulses have center wavelength, spectral width, and repetition rate of 1561.6 nm, 1.96 nm, and 6.99 MHz, respectively.
Network pharmacology: reigning in drug attrition?
Alian, Osama M; Shah, Minjel; Mohammad, Momin; Mohammad, Ramzi M
2013-06-01
In the process of drug development, there has been an exceptionally high attrition rate in oncological compounds entering late phases of testing. This has seen a concurrent reduction in approved NCEs (new chemical entities) reaching patients. Network pharmacology has become a valuable tool in understanding the fine details of drug-target interactions as well as painting a more practical picture of phenotype relationships to patients and drugs. By utilizing all the tools achieved through molecular medicine and combining it with high throughput data analysis, interactions and mechanisms can be elucidated and treatments reasonably tailored to patients expressing specific phenotypes (or genotypes) of disease, essentially reigning in the phenomenon of drug attrition.
Perturbations to trophic interactions and the stability of complex food webs
O'Gorman, Eoin J.; Emmerson, Mark C.
2009-01-01
The pattern of predator–prey interactions is thought to be a key determinant of ecosystem processes and stability. Complex ecological networks are characterized by distributions of interaction strengths that are highly skewed, with many weak and few strong interactors present. Theory suggests that this pattern promotes stability as weak interactors dampen the destabilizing potential of strong interactors. Here, we present an experimental test of this hypothesis and provide empirical evidence that the loss of weak interactors can destabilize communities in nature. We ranked 10 marine consumer species by the strength of their trophic interactions. We removed the strongest and weakest of these interactors from experimental food webs containing >100 species. Extinction of strong interactors produced a dramatic trophic cascade and reduced the temporal stability of key ecosystem process rates, community diversity and resistance to changes in community composition. Loss of weak interactors also proved damaging for our experimental ecosystems, leading to reductions in the temporal and spatial stability of ecosystem process rates, community diversity, and resistance. These results highlight the importance of conserving species to maintain the stabilizing pattern of trophic interactions in nature, even if they are perceived to have weak effects in the system. PMID:19666606
Predicting rates of interspecific interaction from phylogenetic trees.
Nuismer, Scott L; Harmon, Luke J
2015-01-01
Integrating phylogenetic information can potentially improve our ability to explain species' traits, patterns of community assembly, the network structure of communities, and ecosystem function. In this study, we use mathematical models to explore the ecological and evolutionary factors that modulate the explanatory power of phylogenetic information for communities of species that interact within a single trophic level. We find that phylogenetic relationships among species can influence trait evolution and rates of interaction among species, but only under particular models of species interaction. For example, when interactions within communities are mediated by a mechanism of phenotype matching, phylogenetic trees make specific predictions about trait evolution and rates of interaction. In contrast, if interactions within a community depend on a mechanism of phenotype differences, phylogenetic information has little, if any, predictive power for trait evolution and interaction rate. Together, these results make clear and testable predictions for when and how evolutionary history is expected to influence contemporary rates of species interaction. © 2014 John Wiley & Sons Ltd/CNRS.
Triangular arbitrage as an interaction among foreign exchange rates
NASA Astrophysics Data System (ADS)
Aiba, Yukihiro; Hatano, Naomichi; Takayasu, Hideki; Marumo, Kouhei; Shimizu, Tokiko
2002-07-01
We first show that there are in fact triangular arbitrage opportunities in the spot foreign exchange markets, analyzing the time dependence of the yen-dollar rate, the dollar-euro rate and the yen-euro rate. Next, we propose a model of foreign exchange rates with an interaction. The model includes effects of triangular arbitrage transactions as an interaction among three rates. The model explains the actual data of the multiple foreign exchange rates well.
Interactive distributed hardware-accelerated LOD-sprite terrain rendering with stable frame rates
NASA Astrophysics Data System (ADS)
Swan, J. E., II; Arango, Jesus; Nakshatrala, Bala K.
2002-03-01
A stable frame rate is important for interactive rendering systems. Image-based modeling and rendering (IBMR) techniques, which model parts of the scene with image sprites, are a promising technique for interactive systems because they allow the sprite to be manipulated instead of the underlying scene geometry. However, with IBMR techniques a frequent problem is an unstable frame rate, because generating an image sprite (with 3D rendering) is time-consuming relative to manipulating the sprite (with 2D image resampling). This paper describes one solution to this problem, by distributing an IBMR technique into a collection of cooperating threads and executable programs across two computers. The particular IBMR technique distributed here is the LOD-Sprite algorithm. This technique uses a multiple level-of-detail (LOD) scene representation. It first renders a keyframe from a high-LOD representation, and then caches the frame as an image sprite. It renders subsequent spriteframes by texture-mapping the cached image sprite into a lower-LOD representation. We describe a distributed architecture and implementation of LOD-Sprite, in the context of terrain rendering, which takes advantage of graphics hardware. We present timing results which indicate we have achieved a stable frame rate. In addition to LOD-Sprite, our distribution method holds promise for other IBMR techniques.
Interactive effects of stress reactivity and usual stress on adolescents cardiovascular health
USDA-ARS?s Scientific Manuscript database
Adolescents experience stressful situations at high rates during school. Psychological stress is associated with the progression of cardiovascular disease (CVD). The diathesis-stress model suggests that youth experiencing the greatest cumulative stress are at greatest risk for developing antecedents...
Comparison of deep inelastic scattering with photoproduction interactions at HERA
NASA Astrophysics Data System (ADS)
Aid, S.; Andreev, V.; Andrieu, B.; Appuhn, R.-D.; Arpagaus, M.; Babaev, A.; Bähr, J.; Bán, J.; Ban, Y.; Baranov, P.; Barrelet, E.; Barschke, R.; Bartel, W.; Barth, M.; Bassler, U.; Beck, H. P.; Behrend, H.-J.; Belousov, A.; Berger, Ch.; Bernardi, G.; Bernet, R.; Bertrand-Coremans, G.; Besançon, M.; Beyer, R.; Biddulph, P.; Bispham, P.; Bizot, J. C.; Blobel, V.; Borras, K.; Botterweck, F.; Boudry, V.; Bourov, S.; Braemer, A.; Brasse, F.; Braunschweig, W.; Brisson, V.; Bruncko, D.; Brune, C.; Buchholz, R.; Büngener, L.; Bürger, J.; Büsser, F. W.; Buniatian, A.; Burke, S.; Burton, M. J.; Buschhorn, G.; Campbell, A. J.; Carli, T.; Charles, F.; Charlet, M.; Clarke, D.; Clegg, A. B.; Clerbaux, B.; Contreras, J. G.; Cormack, C.; Coughlan, J. A.; Courau, A.; Coutures, Ch.; Cozzika, G.; Criegee, L.; Cussans, D. G.; Cvach, J.; Dagoret, S.; Dainton, J. B.; Dau, W. D.; Daum, K.; David, M.; Davis, C. L.; Delcourt, B.; Del Buono, L.; De Roeck, A.; De Wolf, E. A.; Dixon, P.; Di Nezza, P.; Dollfus, C.; Dowell, J. D.; Dreis, H. B.; Droutskoi, A.; Duboc, J.; Düllmann, D.; Dünger, O.; Duhm, H.; Ebert, J.; Ebert, T. R.; Eckerlin, G.; Efremenko, V.; Egli, S.; Ehrlichmann, H.; Eichenberger, S.; Eichler, R.; Eisele, F.; Eisenhandler, E.; Ellison, R. J.; Elsen, E.; Erdmann, M.; Erdmann, W.; Evrard, E.; Favart, L.; Fedotov, A.; Feeken, D.; Felst, R.; Feltesse, J.; Ferencei, J.; Ferrarotto, F.; Flamm, K.; Fleischer, M.; Flieser, M.; Flügge, G.; Fomenko, A.; Fominykh, B.; Forbush, M.; Formánek, J.; Foster, J. M.; Franke, G.; Fretwurst, E.; Gabathuler, E.; Gabathuler, K.; Garvey, J.; Gayler, J.; Gebauer, M.; Gellrich, A.; Genzel, H.; Gerhards, R.; Glazov, A.; Goerlach, U.; Goerlich, L.; Gogitidze, N.; Goldberg, M.; Goldner, D.; Gonzalez-Pineiro, B.; Gorelov, I.; Goritchev, P.; Grab, C.; Grässler, H.; Grässler, R.; Greenshaw, T.; Griffiths, R.; Grindhammer, G.; Gruber, A.; Gruber, C.; Haack, J.; Haidt, D.; Hajduk, L.; Hamon, O.; Hampel, M.; Hapke, M.; Haynes, W. J.; Heatherington, J.; Heinzelmann, G.; Henderson, R. C. W.; Henschel, H.; Herynek, I.; Hess, M. F.; Hildesheim, W.; Hill, P.; Hiller, K. H.; Hilton, C. D.; Hladký, J.; Hoeger, K. C.; Höppner, M.; Horisberger, R.; Hudgson, V. L.; Huet, Ph.; Hütte, M.; Hufnagel, H.; Ibbotson, M.; Itterbeck, H.; Jabiol, M.-A.; Jacholkowska, A.; Jacobsson, C.; Jaffre, M.; Janoth, J.; Jansen, T.; Jönsson, L.; Johnson, D. P.; Johnson, L.; Jung, H.; Kalmus, P. I. P.; Kant, D.; Kaschowitz, R.; Kasselmann, P.; Kathage, U.; Katzy, J.; Kaufmann, H. H.; Kazarian, S.; Kenyon, I. R.; Kermiche, S.; Keuker, C.; Kiesling, C.; Klein, M.; Kleinwort, C.; Knies, G.; Ko, W.; Köhler, T.; Köhne, J. H.; Kolanoski, H.; Kole, F.; Kolya, S. D.; Korbel, V.; Korn, M.; Kostka, P.; Kotelnikov, S. K.; Krämerkämper, T.; Krasny, M. W.; Krehbiel, H.; Krücker, D.; Krüger, U.; Krüner-Marquis, U.; Küster, H.; Kuhlen, M.; Kurča, T.; Kurzhöfer, J.; Kuznik, B.; Lacour, D.; Laforge, B.; Lamarche, F.; Lander, R.; Landon, M. P. J.; Lange, W.; Lanius, P.; Laporte, J.-F.; Lebedev, A.; Lehner, F.; Leverenz, C.; Levonian, S.; Ley, Ch.; Lindström, G.; Link, J.; Linsel, F.; Lipinski, J.; List, B.; Lobo, G.; Loch, P.; Lohmander, H.; Lomas, J. W.; Lopez, G. C.; Lubimov, V.; Lüke, D.; Magnussen, N.; Malinovski, E.; Mani, S.; Maraček, R.; Marage, P.; Marks, J.; Marshall, R.; Martens, J.; Martin, G.; Martin, R.; Martyn, H.-U.; Martyniak, J.; Masson, S.; Mavroidis, T.; Maxfield, S. J.; McMahon, S. J.; Mehta, A.; Meier, K.; Mercer, D.; Merz, T.; Meyer, A.; Meyer, C. A.; Meyer, H.; Meyer, J.; Meyer, P.-O.; Migliori, A.; Mikocki, S.; Milstead, D.; Moreau, F.; Morris, J. V.; Mroczko, E.; Müller, G.; Müller, K.; Murín, P.; Nagovizin, V.; Nahnhauer, R.; Naroska, B.; Naumann, Th.; Newman, P. R.; Newton, D.; Neyret, D.; Nguyen, H. K.; Nicholls, T. C.; Niebergall, F.; Niebuhr, C.; Niedzballa, Ch.; Nisius, R.; Nowak, G.; Noyes, G. W.; Nyberg-Werther, M.; Oakden, M.; Oberlack, H.; Obrock, U.; Olsson, J. E.; Ozerov, D.; Palmen, P.; Panaro, E.; Panitch, A.; Pascaud, C.; Patel, G. D.; Pawletta, H.; Peppel, E.; Perez, E.; Phillips, J. P.; Pichler, Ch.; Pieuchot, A.; Pitzl, D.; Pope, G.; Prell, S.; Prosi, R.; Rabbertz, K.; Rädel, G.; Raupach, F.; Reimer, P.; Reinshagen, S.; Ribarics, P.; Rick, H.; Riech, V.; Riedlberger, J.; Riess, S.; Rietz, M.; Rizvi, E.; Robertson, S. M.; Robmann, P.; Roloff, H. E.; Roosen, R.; Rosenbauer, K.; Rostovtsev, A.; Rouse, F.; Royon, C.; Rüter, K.; Rusakov, S.; Rybicki, K.; Rylko, R.; Sahlmann, N.; Sankey, D. P. C.; Schacht, P.; Schiek, S.; Schleif, S.; Schleper, P.; von Schlippe, W.; Schmidt, D.; Schmidt, G.; Schöning, A.; Schröder, V.; Schuhmann, E.; Schwab, B.; Sciacca, G.; Sefkow, F.; Seidel, M.; Sell, R.; Semenov, A.; Shekelyan, V.; Sheviakov, I.; Shtarkov, L. N.; Siegmon, G.; Siewert, U.; Sirois, Y.; Skillicorn, I. O.; Smirnov, P.; Smith, J. R.; Solochenko, V.; Soloviev, Y.; Spiekermann, J.; Spielman, S.; Spitzer, H.; Starosta, R.; Steenbock, M.; Steffen, P.; Steinberg, R.; Stella, B.; Stephens, K.; Stier, J.; Stiewe, J.; Stößlein, U.; Stolze, K.; Strachota, J.; Straumann, U.; Struczinski, W.; Sutton, J. P.; Tapprogge, S.; Tchernyshov, V.; Theissen, J.; Thiebaux, C.; Thompson, G.; Truöl, P.; Turnau, J.; Tutas, J.; Uelkes, P.; Usik, A.; Valkár, S.; Valkárová, A.; Vallée, C.; Vandenplas, D.; Van Esch, P.; Van Mechelen, P.; Vartapetian, A.; Vazdik, Y.; Verrecchia, P.; Villet, G.; Wacker, K.; Wagener, A.; Wagener, M.; Walther, A.; Waugh, B.; Weber, G.; Weber, M.; Wegener, D.; Wegner, A.; Wellisch, H. P.; West, L. R.; Willard, S.; Winde, M.; Winter, G.-G.; Wittek, C.; Wright, A. E.; Wünsch, E.; Wulff, N.; Yiou, T. P.; Žáček, J.; Zarbock, D.; Zhang, Z.; Zhokin, A.; Zimmer, M.; Zimmermann, W.; Zomer, F.; Zsembery, J.; Zuber, K.; zurNedden, M.; H1 Collaboration
1995-02-01
Photon-proton ( γp) interactions with Q 2 < 10 -2 GeV 2 and deep-inelastic scattering ( γ ∗p ) interactions with photon virtualities Q 2 > 5 GeV 2 are studied at the high energy electron-proton collider HERA. The transverse energy flow and relative rates of large rapidity gap events are compared in the two event samples. The observed similarity between γp and γ ∗p interactions can be understood in a picture where the photon develops as a hadronic object. The transverse energy density measured in the central region of the collision, at η ∗ = 0 in the γ ∗p centre of mass frame, is compared with data from hadron-hadron interactions as function of the CMS energy of the collision.
Creep-Fatigue Interaction Testing
NASA Technical Reports Server (NTRS)
Halford, Gary R.
2001-01-01
Fatigue fives in metals are nominally time independent below 0.5 T(sub Melt). At higher temperatures, fatigue lives are altered due to time-dependent, thermally activated creep. Conversely, creep rates are altered by super. imposed fatigue loading. Creep and fatigue generally interact synergistically to reduce material lifetime. Their interaction, therefore, is of importance to structural durability of high-temperature structures such as nuclear reactors, reusable rocket engines, gas turbine engines, terrestrial steam turbines, pressure vessel and piping components, casting dies, molds for plastics, and pollution control devices. Safety and lifecycle costs force designers to quantify these interactions. Analytical and experimental approaches to creep-fatigue began in the era following World War II. In this article experimental and life prediction approaches are reviewed for assessing creep-fatigue interactions of metallic materials. Mechanistic models are also discussed briefly.
Dynamic and interaction of fs-laser induced cavitation bubbles for analyzing the cutting effect
NASA Astrophysics Data System (ADS)
Tinne, N.; Schumacher, S.; Nuzzo, V.; Ripken, T.; Lubatschowski, H.
2009-07-01
A prominent laser based treatment in ophthalmology is the LASIK procedure which nowadays includes a cutting of the corneal tissue based on ultra short pulses. Focusing an ultra short laser pulse below the surface of biological tissue an optical breakdown is caused and hence a dissection is obtained. The laser energy of the laser pulses is absorbed by nonlinear processes. As a result a cavitation bubble expands and ruptures the tissue. Hence positioning of several optical breakdowns side by side generates an incision. Due to a reduction of the duration of the treatment the current development of ultra short laser systems points to higher repetition rates in the range of hundreds of KHz or even MHz instead of tens of kHz. This in turn results in a probable occurrence of interaction between different optical breakdowns and respectively cavitation bubbles of adjacent optical breakdowns. While the interaction of one single laser pulse with biological tissue is analyzed reasonably well experimentally and theoretically, the interaction of several spatial and temporal following pulses is scarcely determined yet. Thus the aim of this study is to analyse the dynamic and interaction of two cavitation bubbles by using high speed photography. The applied laser pulse energy, the energy ratio and the spot distance between different cavitation bubbles were varied. Depending on a change of these parameters different kinds of interactions such as a flattening and deformation of bubble shape or jet formation are observed. Based on these results a further research seems to be inevitable to comprehend and optimize the cutting effect of ultra short pulse laser systems with high (> 1 MHz) repetition rates.
High-energy tail distributions and resonant wave particle interaction
NASA Technical Reports Server (NTRS)
Leubner, M. P.
1983-01-01
High-energy tail distributions (k distributions) are used as an alternative to a bi-Lorentzian distribution to study the influence of energetic protons on the right- and left-hand cyclotron modes in a hot two-temperature plasma. Although the parameters are chosen to be in a range appropriate to solar wind or magnetospheric configurations, the results apply not only to specific space plasmas. The presence of energetic particles significantly alters the behavior of the electromagnetic ion cyclotron modes, leading to a wide range of unstable frequencies and increased growth rates. From the strongly enhanced growth rates it can be concluded that high-energy tail distributions should not show major temperature anisotropies, which is consistent with observations.
NASA Astrophysics Data System (ADS)
Gnilitskyi, Iaroslav; Gruzdev, Vitaly; Bulgakova, Nadezhda M.; Mocek, Tomáš; Orazi, Leonardo
2016-10-01
Silicon is one of the most abundant materials which is used in many areas of modern research and technology. A variety of those applications require surface nanopatterning with minimum structure defects. However, the high-quality nanostructuring of large areas of silicon surface at industrially acceptable speed is still a challenge. Here, we report a rapid formation of highly regular laser-induced periodic surface structures (HR-LIPSS) in the regime of strong ablation by infrared femtosecond laser pulses at sub-MHz repetition rate. Parameters of the laser-surface interactions and obtained experimental results suggest an important role of electrostatically assisted bond softening in initiating the HR-LIPSS formation.
UV-B induction of the E3 ligase ARIADNE12 depends on CONSTITUTIVELY PHOTOMORPHOGENIC 1
Xie, Lisi; Lang-Mladek, Christina; Richter, Julia; Nigam, Neha; Hauser, Marie-Theres
2015-01-01
The UV-B inducible ARIADNE12 (ARI12) gene of Arabidopsis thaliana is a member of the RING-between-RING (RBR) family of E3 ubiquitin ligases for which a novel ubiquitination mechanism was identified in mammalian homologs. This RING-HECT hybrid mechanism needs a conserved cysteine which is replaced by serine in ARI12 and might affect the E3 ubiquitin ligase activity. We have shown that under photomorphogenic UV-B, ARI12 is a downstream target of the classical ultraviolet B (UV-B) UV RESISTANCE LOCUS 8 (UVR8) pathway. However, under high fluence rate of UV-B ARI12 was induced independently of UVR8 and the UV-A/blue light and red/far-red photoreceptors. A key component of several light signaling pathways is CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1). Upon UV-B COP1 is trapped in the nucleus through interaction with UVR8 permitting the activation of genes that regulate the biosynthesis of UV-B protective metabolites and growth adaptations. To clarify the role of COP1 in the regulation of ARI12 mRNA expression and ARI12 protein stability, localization and interaction with COP1 was assessed with and without UV-B. We found that COP1 controls ARI12 in white light, low and high fluence rate of UV-B. Furthermore we show that ARI12 is indeed an E3 ubiquitin ligase which is mono-ubiquitinated, a prerequisite for the RING-HECT hybrid mechanism. Finally, genetic analyses with transgenes expressing a genomic pmARI12:ARI12-GFP construct confirm the epistatic interaction between COP1 and ARI12 in growth responses to high fluence rate UV-B. PMID:25817546
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Ningbo, E-mail: curl-zhao@163.com; Wang, Xin, E-mail: 394041230@qq.com; Qin, Lei, E-mail: qinlei30@126.com
Hyaluronan (HA), the simplest glycosaminoglycan and a major component of the extracellular matrix, exists in various tissues. It is involved in some critical biological procedures, including cellular signaling, cell adhesion and proliferation, and cell differentiation. The effect of molecular weight (MW) and concentration of HA on cell proliferation and differentiation was controversial. In this study, we investigated the effect of MW and concentration of HA on the proliferation and osteogenic differentiation of rabbit bone marrow-derived stem cells in vitro. Results showed that high MW HA decreased the cell adhesion rate in a concentration-dependant manner. The cell adhesion rate was decreased bymore » increasing MW of HA. Cell proliferation was significantly enhanced by low MW HA (P < 0.05). The factorial analysis indicated that MW and concentration had an interactive effect on the cell adhesion rate and cell proliferation (P < 0.05). High MW HA increased the mRNA expressions of ALP, RUNX-2 and OCN. The higher the MW was, the higher the mRNA expressions were. The factorial analysis indicated that MW and concentration had an interactive effect on ALP mRNA expression (P < 0.05). HA of higher MW and higher concentration promoted bone formation. These findings provide some useful information in understanding the mechanism underlying the effect of MW and concentration of HA on cell proliferation and differentiation. - Highlights: • Effect of hyaluronan on cell proliferation and differentiation is evaluated in vitro. • Hyaluronan of low molecular weight increases cell proliferation. • Hyaluronan of high molecular weight promotes cell osteogenic differentiation. • Molecular weight and concentration of hyaluronan show interactive effect.« less
Song, Yeong-Jun; Lim, Jiseun; Park, Woong-Sub; Sohn, Haesook; Lee, Moo-Sik; Shin, Dong-Hoon; Kim, Chun-Bae; Kim, Hwasung; Oh, Gyung-Jae; Ki, Moran
2015-01-01
We previously observed 80.7% seropositivity and a significant interaction between gender and hepatitis A virus (HAV) vaccine type (Havrix vs. Epaxal) on the seropositivity approximately 11 months after single-dose HAV vaccinations in Korean young adults. Our objective was to evaluate seropositivity approximately 2 years after a single-dose HAV vaccination and the influence of demographic characteristics on seropositivity, including the interaction between gender and vaccine type. Seronegative medical school students were randomly vaccinated with Havrix or Epaxal. Based on a total serum anti-HAV antibody titer cutoff of 20 IU/mL, 338 participants (76.0%) of the 445 vaccinees were seropositive 20-25 months after a single-dose HAV vaccination. The seropositive rates were similar after vaccination with Havrix (77.0%) and Epaxal (74.9%). Univariate analysis indicated that female (p = 0.052) and less obese (p < 0.001) participants had a higher seropositive rate, whereas other characteristics such as age, alcohol use, smoking history, vaccine type, and follow-up duration were not associated with seropositivity. Multivariate analysis indicated that women (p = 0.026) and participants with moderate alcohol use (p < 0.001) showed significantly higher seropositive rates than men and participants with no or low alcohol use, respectively. The seropositive rates after vaccination with Havrix and Epaxal were 70.9% and 67.5% in men and 87.7% and 91.3% in women, respectively (p for interaction = 0.304). Compared with the seropositive rate approximately 11 months after vaccination, the seropositive rate decreased substantially only in men in the Havrix group (11.0% points), and consequently, the interaction between gender and vaccine type disappeared while seropositivity remained high (87.7% and 91.3% in Havrix and Epaxal groups, respectively) among women approximately 2 years after vaccination. Further studies are needed to assess whether the seropositive rate would be maintained in all groups more than 2 years after a single-dose HAV vaccination.
Sources of genetic and phenotypic variance in fertilization rates and larval traits in a sea urchin.
Evans, Jonathan P; García-González, Francisco; Marshall, Dustin J
2007-12-01
In nonresource based mating systems females are thought to derive indirect genetic benefits by mating with high-quality males. Such benefits can be due either to the intrinsic genetic quality of sires or to beneficial interactions between maternal and paternal haplotypes. Animals with external fertilization and no parental care offer unrivaled opportunities to address these hypotheses. With these systems, cross-classified breeding designs and in vitro fertilization can be used to disentangle sources of genetic and environmental variance in offspring fitness. Here, we employ these approaches in the Australian sea urchin Heliocidaris erythrogramma and explore how sire-dam identities influence fertilization rates, embryo viability (survival to hatching), and metamorphosis, as well as the interrelationships between these potential fitness traits. We show that fertilization is influenced by a combination of strong maternal effects and intrinsic male effects. Our subsequent analysis of embryo viability, however, revealed a highly significant interaction between parental genotypes, indicating that partial incompatibilities can severely limit offspring survival at this life-history stage. Importantly, we detected no significant relationship between fertilization rates and embryo viability. This finding suggests that fertilization rates should not be inferred from hatching rates, which is commonly practiced in species in which it is not possible to estimate fertilization at conception. Finally, we detected significant additive genetic variance due to sires in rates of juvenile metamorphosis, and a positive correlation between fertilization rates and metamorphosis. This latter finding indicates that the performance of a male's ejaculate in noncompetitive IVF trials predicts heritable offspring traits, although the fitness implications of variance in rates of spontaneous juvenile metamorphosis have yet to be determined.
Wu, Zhong; Huang, Xiao-Lei; Wang, Zhong-Li; Xu, Ji-Jing; Wang, Heng-Guo; Zhang, Xin-Bo
2014-01-01
Supercapacitors, as one of alternative energy devices, have been characterized by the rapid rate of charging and discharging, and high power density. But they are now challenged to achieve their potential energy density that is related to specific capacitance. Thus it is extremely important to make such materials with high specific capacitances. In this report, we have gained homogenous Ni(OH)2 on graphene by efficiently using of a facile and effective electrostatic induced stretch growth method. The electrostatic interaction triggers advantageous change in morphology and the ordered stacking of Ni(OH)2 nanosheets on graphene also enhances the crystallization of Ni(OH)2. When the as-prepared Ni(OH)2/graphene composite is applied to supercapacitors, they show superior electrochemical properties including high specific capacitance (1503 F g−1 at 2 mV s−1) and excellent cycling stability up to 6000 cycles even at a high scan rate of 50 mV s−1. PMID:24413283
Virtual social interactions in social anxiety--the impact of sex, gaze, and interpersonal distance.
Wieser, Matthias J; Pauli, Paul; Grosseibl, Miriam; Molzow, Ina; Mühlberger, Andreas
2010-10-01
In social interactions, interpersonal distance between interaction partners plays an important role in determining the status of the relationship. Interpersonal distance is an important nonverbal behavior, and is used to regulate personal space in a complex interplay with other nonverbal behaviors such as eye gaze. In social anxiety, studies regarding the impact of interpersonal distance on within-situation avoidance behavior are so far rare. Thus the present study aimed to scrutinize the relationship between gaze direction, sex, interpersonal distance, and social anxiety in social interactions. Social interactions were modeled in a virtual-reality (VR) environment, where 20 low and 19 high socially anxious women were confronted with approaching male and female characters, who stopped in front of the participant, either some distance away or close to them, and displayed either a direct or an averted gaze. Gaze and head movements, as well as heart rate, were measured as indices of avoidance behavior and fear reactions. High socially anxious participants showed a complex pattern of avoidance behavior: when the avatar was standing farther away, high socially anxious women avoided gaze contact with male avatars showing a direct gaze. Furthermore, they showed avoidance behavior (backward head movements) in response to male avatars showing a direct gaze, regardless of the interpersonal distance. Overall, the current study proved that VR social interactions might be a very useful tool for investigating avoidance behavior of socially anxious individuals in highly controlled situations. This might also be the first step in using VR social interactions in clinical protocols for the therapy of social anxiety disorder.
How do marital status, work effort, and wage rates interact?
Ahituv, Avner; Lerman, Robert I
2007-08-01
How marital status interacts with men's earnings is an important analytic and policy issue, especially in the context of debates in the United States over programs that encourage healthy marriage. This paper generates new findings about the earnings-marriage relationship by estimating the linkages among flows into and out of marriage, work effort, and wage rates. The estimates are based on National Longitudinal Survey of Youth panel data, covering 23 years of marital and labor market outcomes, and control for unobserved heterogeneity. We estimate marriage effects on hours worked (our proxy for work effort) and on wage rates for all men and for black and low-skilled men separately. The estimates reveal that entering marriage raises hours worked quickly and substantially but that marriage's effect on wage rates takes place more slowly while men continue in marriage. Together; the stimulus to hours worked and wage rates generates an 18%-19% increase in earnings, with about one-third to one-half of the marriage earnings premium attributable to higher work effort. At the same time, higher wage rates and hours worked encourage men to marry and to stay married. Thus, being married and having high earnings reinforce each other over time.
Aitken, Madison; Henry, Shanelle; Andrade, Brendan F
2017-10-16
Children with disruptive behavior (DB) are a heterogeneous group who exhibit several characteristics that may contribute to poor social functioning. The present study identified profiles of reactive aggression, proactive aggression, callous-unemotional (CU) traits, and prosocial behavior in a sample of children with DB. Associations with social functioning (social interaction, social status) were then examined, along with sex differences in profile membership. Parent ratings of 304 clinic-referred children ages 6-12 years with DB were analyzed using latent profile analysis. Five profiles were identified: 1) Moderate prosocial behavior, reactive aggression, and CU, and low proactive aggression (labelled Moderate); 2) Relatively high prosocial behavior and low reactive and proactive aggression and CU traits (Prosocial); 3) High prosocial behavior and reactive aggression, moderate proactive aggression, and low-moderate CU (Reactive-Prosocial); 4) Low prosocial behavior, high CU, high-moderate reactive aggression, and low-moderate proactive aggression (Reactive-CU); and 5) Low prosocial behavior and high reactive and proactive aggression and CU (Aggressive-CU). Profiles characterized by CU traits, reactive aggression, and low prosocial behavior were associated with the most problematic parent-rated social interaction and social status. The results highlight the need to differentiate profiles of psychopathology in children with DB to better address factors most associated with social functioning.
Lovell, Geoff P; Ansari, Walid El; Parker, John K
2010-01-01
Many individuals do not engage in sufficient physical activity due to low perceived benefits and high perceived barriers to exercise. Given the increasing incidence of obesity and obesity related health disorders, this topic requires further exploration. We used the Exercise Benefits/Barriers Scale to assess perceived benefit and barrier intensities to exercise in 200 non-exercising female university students (mean age 19.3 years, SD = 1.06) in the UK. Although our participants were selected because they self reported themselves to be non-exercising, however they reported significantly higher perceived benefits from exercise than perceived barriers to exercise [t(199) = 6.18, p < 0.001], and their perceived benefit/barrier ratio was 1.33. The greatest perceived benefit from exercise was physical performance followed by the benefits of psychological outlook, preventive health, life enhancement, and then social interaction. Physical performance was rated significantly higher than all other benefits. Psychological outlook and preventive health were not rated significantly different, although both were significantly higher than life enhancement and social interaction. Life enhancement was also rated significantly higher than social interaction. The greatest perceived barrier to exercise was physical exertion, which was rated significantly higher than time expenditure, exercise milieu, and family discouragement barriers. Implications from this investigation for the design of physical activity programmes include the importance, for females, of a perception of high benefit/barrier ratio that could be conducive to participation in exercise. Applied interventions need to assist female students to ‘disengage’ from or overcome any perceived ‘unpleasantness’ of physical exertion during physical activity (decrease their perceived barriers), and to further highlight the multiple health and other benefits of regular exercising (increase their perceived benefits). PMID:20617003
Lovell, Geoff P; El Ansari, Walid; Parker, John K
2010-03-01
Many individuals do not engage in sufficient physical activity due to low perceived benefits and high perceived barriers to exercise. Given the increasing incidence of obesity and obesity related health disorders, this topic requires further exploration. We used the Exercise Benefits/Barriers Scale to assess perceived benefit and barrier intensities to exercise in 200 non-exercising female university students (mean age 19.3 years, SD = 1.06) in the UK. Although our participants were selected because they self reported themselves to be non-exercising, however they reported significantly higher perceived benefits from exercise than perceived barriers to exercise [t(199) = 6.18, p < 0.001], and their perceived benefit/barrier ratio was 1.33. The greatest perceived benefit from exercise was physical performance followed by the benefits of psychological outlook, preventive health, life enhancement, and then social interaction. Physical performance was rated significantly higher than all other benefits. Psychological outlook and preventive health were not rated significantly different, although both were significantly higher than life enhancement and social interaction. Life enhancement was also rated significantly higher than social interaction. The greatest perceived barrier to exercise was physical exertion, which was rated significantly higher than time expenditure, exercise milieu, and family discouragement barriers. Implications from this investigation for the design of physical activity programmes include the importance, for females, of a perception of high benefit/barrier ratio that could be conducive to participation in exercise. Applied interventions need to assist female students to 'disengage' from or overcome any perceived 'unpleasantness' of physical exertion during physical activity (decrease their perceived barriers), and to further highlight the multiple health and other benefits of regular exercising (increase their perceived benefits).
On the rates of type Ia supernovae originating from white dwarf collisions in quadruple star systems
NASA Astrophysics Data System (ADS)
Hamers, Adrian S.
2018-04-01
We consider the evolution of stellar hierarchical quadruple systems in the 2+2 (two binaries orbiting each other's barycentre) and 3+1 (triple orbited by a fourth star) configurations. In our simulations, we take into account the effects of secular dynamical evolution, stellar evolution, tidal evolution and encounters with passing stars. We focus on type Ia supernovae (SNe Ia) driven by collisions of carbon-oxygen (CO) white dwarfs (WDs). Such collisions can arise from several channels: (1) collisions due to extremely high eccentricities induced by secular evolution, (2) collisions following a dynamical instability of the system, and (3) collisions driven by semisecular evolution. The systems considered here have initially wide inner orbits, with initial semilatus recti larger than 12 {au}, implying no interaction if the orbits were isolated. However, taking into account dynamical evolution, we find that ≈0.4 (≈0.6) of 2+2 (3+1) systems interact. In particular, Roche Lobe overflow can be triggered possibly in highly eccentric orbits, dynamical instability can ensue due to mass-loss-driven orbital expansion or secular evolution, or a semisecular regime can be entered. We compute the delay-time distributions (DTDs) of collision-induced SNe Ia, and find that they are flatter compared to the observed DTD. Moreover, our combined SNe Ia rates are (3.7± 0.7) × 10^{-6} M_⊙^{-1} and (1.3± 0.2) × 10^{-6} M_⊙^{-1} for 2+2 and 3+1 systems, respectively, three orders of magnitude lower compared to the observed rate, of order 10^{-3} M_⊙^{-1}. The low rates can be ascribed to interactions before the stars evolve to CO WDs. However, our results are lower limits given that we considered a subset of quadruple systems.
On the rates of Type Ia supernovae originating from white dwarf collisions in quadruple star systems
NASA Astrophysics Data System (ADS)
Hamers, Adrian S.
2018-07-01
We consider the evolution of stellar hierarchical quadruple systems in the 2+2 (two binaries orbiting each other's barycentre) and 3+1 (triple orbited by a fourth star) configurations. In our simulations, we take into account the effects of secular dynamical evolution, stellar evolution, tidal evolution, and encounters with passing stars. We focus on Type Ia supernovae (SNe Ia) driven by collisions of carbon-oxygen (CO) white dwarfs (WDs). Such collisions can arise from several channels: (1) collisions due to extremely high eccentricities induced by secular evolution, (2) collisions following a dynamical instability of the system, and (3) collisions driven by semisecular evolution. The systems considered here have initially wide inner orbits, with initial semilatus recti larger than 12 au, implying no interaction if the orbits were isolated. However, taking into account dynamical evolution, we find that ≈0.4 (≈0.6) of 2+2 (3+1) systems interact. In particular, Roche lobe overflow can be triggered possibly in highly eccentric orbits, dynamical instability can ensue due to mass-loss-driven orbital expansion or secular evolution, or a semisecular regime can be entered. We compute the delay-time distributions (DTDs) of collision-induced SNe Ia, and find that they are flatter compared to the observed DTD. Moreover, our combined SNe Ia rates are (3.7± 0.7) × 10^{-6} M_{⊙}^{-1} and (1.3± 0.2) × 10^{-6} M_{⊙}^{-1} for 2+2 and 3+1 systems, respectively, three orders of magnitude lower compared to the observed rate, of the order of 10^{-3} M_{⊙}^{-1}. The low rates can be ascribed to interactions before the stars evolve to CO WDs. However, our results are lower limits given that we considered a subset of quadruple systems.
High-speed optical 3D sensing and its applications
NASA Astrophysics Data System (ADS)
Watanabe, Yoshihiro
2016-12-01
This paper reviews high-speed optical 3D sensing technologies for obtaining the 3D shape of a target using a camera. The focusing speed is from 100 to 1000 fps, exceeding normal camera frame rates, which are typically 30 fps. In particular, contactless, active, and real-time systems are introduced. Also, three example applications of this type of sensing technology are introduced, including surface reconstruction from time-sequential depth images, high-speed 3D user interaction, and high-speed digital archiving.
NASA Astrophysics Data System (ADS)
Haghighi, Erfan; Or, Dani
2015-11-01
Bluff-body obstacles interacting with turbulent airflows are common in many natural and engineering applications (from desert pavement and shrubs over natural surfaces to cylindrical elements in compact heat exchangers). Even with obstacles of simple geometry, their interactions within turbulent airflows result in a complex and unsteady flow field that affects surface drag partitioning and transport of scalars from adjacent evaporating surfaces. Observations of spatio-temporal thermal patterns on evaporating porous surfaces adjacent to bluff-body obstacles depict well-defined and persistent zonation of evaporation rates that were used to construct a simple mechanistic model for surface-turbulence interactions. Results from evaporative drying of sand surfaces with isolated cylindrical elements (bluff bodies) subjected to constant turbulent airflows were in good agreement with model predictions for localized exchange rates. Experimental and theoretical results show persistent enhancement of evaporative fluxes from bluff-rough surfaces relative to smooth flat surfaces under similar conditions. The enhancement is attributed to formation of vortices that induce a thinner boundary layer over part of the interacting surface footprint. For a practical range of air velocities (0.5-4.0 m/s), low-aspect ratio cylindrical bluff elements placed on evaporating sand surfaces enhanced evaporative mass losses (relative to a flat surface) by up to 300% for high density of elements and high wind velocity, similar to observations reported in the literature. Concepts from drag partitioning were used to generalize the model and upscale predictions to evaporation from surfaces with multiple obstacles for potential applications to natural bluff-rough surfaces.
Endendijk, Joyce J; De Bruijn, Anouk T C E; Van Bakel, Hedwig J A; Wijnen, Hennie A A; Pop, Victor J M; Van Baar, Anneloes L
2017-09-01
The role of mother-infant interaction quality is studied in the relation between prenatal maternal emotional symptoms and child behavioral problems. Healthy pregnant, Dutch women (N = 96, M = 31.6, SD = 3.3) were allocated to the "exposed group" (n = 46), consisting of mothers with high levels of prenatal feelings of anxiety and depression, or the "low-exposed group" (n = 50), consisting of mothers with normal levels of depressive or anxious symptoms during pregnancy. When the children (49 girls, 47 boys) were 23 to 60 months of age (M = 39.0, SD = 9.6), parents completed the Child Behavior Checklist (T.M. Achenbach & L.A. Rescorla, ), and mother-child interaction quality during a home visit was rated using the Emotional Availability Scales. There were no differences in mother-child interaction quality between the prenatally exposed and low-exposed groups. Girls exposed to high prenatal emotional symptoms showed more internalizing problems, if maternal interaction quality was less optimal. No significant effects were found for boys. © 2017 Michigan Association for Infant Mental Health.
Cohen, D E; Angelico, M; Carey, M C
1990-01-01
Using complementary physical-chemical methods including turbidimetry, quasielastic light scattering, gel filtration, and phase analysis, we examined the interactions between dilute concentrations of the common bile salt, taurochenodeoxycholate (TCDC), and uni- and multilamellar vesicles (MLVs) composed of defined molecular species of lecithin (L) and varying contents of cholesterol (Ch). Dissolution rates of MLVs with micellar TCDC, as assessed by turbidimetry, were more rapid with vesicles composed of sn-1 palmitoyl species, typical of biliary L, compared with those composed of the more hydrophobic sn-1 stearoyl species. Incorporation of Ch retarded MLV dissolution rates in proportion to the Ch content, and only at high Ch contents were dissolution rates appreciably influenced by the sn-2 fatty acid composition of L. When MLVs contained Ch in amounts characteristic of intracellular membranes (Ch/L approximately 0.1), the dissolution rates of the individual L species by TCDC accurately predicted the steady state L composition of human bile. TCDC interacted with small unilamellar L/Ch vesicles (SUVs) at concentrations well below, as well as appreciably above, its critical micellar concentration. In accordance with the TCDC-egg yolk L-H2O phase diagram, perimicellar concentrations of TCDC interacted with SUVs to form aggregates that were approximately twice the size of the SUVs. These were consistent with the formation of a dispersed hexagonal (rod-like) phase, which co-existed with aqueous bile salt (BS) monomers and either micellar or unilamellar SUV phases. Micellar TCDC completely solubilized SUVs as mixed micelles, putatively via this transient hexagonal phase. With modest Ch-supersaturation, dissolution was followed by the reemergence of a new vesicle population that coexisted metastably with mixed micelles. With high Ch supersaturation, TCDC extracted L and Ch molecules from SUVs in different proportions to form Ch-supersaturated mixed micelles and Ch-enriched SUVs, in accordance with the metastable phase diagram. These experiments are consistent with the hypothesis that sn-1 palmitoyl L species are subselected for bile, in part, by physical-chemical interactions of intracellular BS concentrations with Ch-poor membranes and that the subsequent evolution of Ch-rich vesicles and Ch-saturated mixed micelles occurs via a transitional hexagonal (rod) phase. These liquid-crystalline states are likely to be transient in Ch-unsaturated biles, but may persist in Ch-supersaturated human biles because of their high Ch contents which retard or inhibit these phase transitions.
Sphagnum Mosses - Masters of Efficient N-Uptake while Avoiding Intoxication
Fritz, Christian; Lamers, Leon P. M.; Riaz, Muhammad; van den Berg, Leon J. L.; Elzenga, Theo J. T. M.
2014-01-01
Peat forming Sphagnum mosses are able to prevent the dominance of vascular plants under ombrotrophic conditions by efficiently scavenging atmospherically deposited nitrogen (N). N-uptake kinetics of these mosses are therefore expected to play a key role in differential N availability, plant competition, and carbon sequestration in Sphagnum peatlands. The interacting effects of rain N concentration and exposure time on moss N-uptake rates are, however, poorly understood. We investigated the effects of N-concentration (1, 5, 10, 50, 100, 500 µM), N-form (15N - ammonium or nitrate) and exposure time (0.5, 2, 72 h) on uptake kinetics for Sphagnum magellanicum from a pristine bog in Patagonia (Argentina) and from a Dutch bog exposed to decades of N-pollution. Uptake rates for ammonium were higher than for nitrate, and N-binding at adsorption sites was negligible. During the first 0.5 h, N-uptake followed saturation kinetics revealing a high affinity (Km 3.5–6.5 µM). Ammonium was taken up 8 times faster than nitrate, whereas over 72 hours this was only 2 times. Uptake rates decreased drastically with increasing exposure times, which implies that many short-term N-uptake experiments in literature may well have overestimated long-term uptake rates and ecosystem retention. Sphagnum from the polluted site (i.e. long-term N exposure) showed lower uptake rates than mosses from the pristine site, indicating an adaptive response. Sphagnum therefore appears to be highly efficient in using short N pulses (e.g. rainfall in pristine areas). This strategy has important ecological and evolutionary implications: at high N input rates, the risk of N-toxicity seems to be reduced by lower uptake rates of Sphagnum, at the expense of its long-term filter capacity and related competitive advantage over vascular plants. As shown by our conceptual model, interacting effects of N-deposition and climate change (changes in rainfall) will seriously alter the functioning of Sphagnum peatlands. PMID:24416125
Sphagnum mosses--masters of efficient N-uptake while avoiding intoxication.
Fritz, Christian; Lamers, Leon P M; Riaz, Muhammad; van den Berg, Leon J L; Elzenga, Theo J T M
2014-01-01
Peat forming Sphagnum mosses are able to prevent the dominance of vascular plants under ombrotrophic conditions by efficiently scavenging atmospherically deposited nitrogen (N). N-uptake kinetics of these mosses are therefore expected to play a key role in differential N availability, plant competition, and carbon sequestration in Sphagnum peatlands. The interacting effects of rain N concentration and exposure time on moss N-uptake rates are, however, poorly understood. We investigated the effects of N-concentration (1, 5, 10, 50, 100, 500 µM), N-form ((15)N-ammonium or nitrate) and exposure time (0.5, 2, 72 h) on uptake kinetics for Sphagnum magellanicum from a pristine bog in Patagonia (Argentina) and from a Dutch bog exposed to decades of N-pollution. Uptake rates for ammonium were higher than for nitrate, and N-binding at adsorption sites was negligible. During the first 0.5 h, N-uptake followed saturation kinetics revealing a high affinity (Km 3.5-6.5 µM). Ammonium was taken up 8 times faster than nitrate, whereas over 72 hours this was only 2 times. Uptake rates decreased drastically with increasing exposure times, which implies that many short-term N-uptake experiments in literature may well have overestimated long-term uptake rates and ecosystem retention. Sphagnum from the polluted site (i.e. long-term N exposure) showed lower uptake rates than mosses from the pristine site, indicating an adaptive response. Sphagnum therefore appears to be highly efficient in using short N pulses (e.g. rainfall in pristine areas). This strategy has important ecological and evolutionary implications: at high N input rates, the risk of N-toxicity seems to be reduced by lower uptake rates of Sphagnum, at the expense of its long-term filter capacity and related competitive advantage over vascular plants. As shown by our conceptual model, interacting effects of N-deposition and climate change (changes in rainfall) will seriously alter the functioning of Sphagnum peatlands.
Effect of interactions between vehicles and pedestrians on fuel consumption and emissions
NASA Astrophysics Data System (ADS)
Li, Xiang; Sun, Jian-Qiao
2014-12-01
This paper presents a study of variations of fuel consumption and emissions of vehicles due to random street crossings of pedestrians. The pedestrian and vehicle movement models as well as the interaction model between the two entities are presented. Extensive numerical simulations of single and multiple cars are carried out to investigate the traffic flow rate, vehicle average speed, fuel consumption, CO, HC and NOx emissions. Generally more noncompliant road-crossings of pedestrians lead to higher level of fuel consumptions and emissions of vehicles, and the traffic situation can be improved by imposing higher vehicle speed limit to some extent. Different traffic characteristics in low and high vehicle density regions are studied. The traffic flow is more influenced by crossing pedestrians in the low vehicle density region, while in the high vehicle density region, the interactions among vehicles dominate. The main contribution of this paper lies in the qualitative analysis of the impact of the interactions between pedestrians and vehicles on the traffic, its energy economy and emissions.
Specificity in transition state binding: the Pauling model revisited.
Amyes, Tina L; Richard, John P
2013-03-26
Linus Pauling proposed that the large rate accelerations for enzymes are caused by the high specificity of the protein catalyst for binding the reaction transition state. The observation that stable analogues of the transition states for enzymatic reactions often act as tight-binding inhibitors provided early support for this simple and elegant proposal. We review experimental results that support the proposal that Pauling's model provides a satisfactory explanation for the rate accelerations for many heterolytic enzymatic reactions through high-energy reaction intermediates, such as proton transfer and decarboxylation. Specificity in transition state binding is obtained when the total intrinsic binding energy of the substrate is significantly larger than the binding energy observed at the Michaelis complex. The results of recent studies that aimed to characterize the specificity in binding of the enolate oxygen at the transition state for the 1,3-isomerization reaction catalyzed by ketosteroid isomerase are reviewed. Interactions between pig heart succinyl-coenzyme A:3-oxoacid coenzyme A transferase (SCOT) and the nonreacting portions of coenzyme A (CoA) are responsible for a rate increase of 3 × 10(12)-fold, which is close to the estimated total 5 × 10(13)-fold enzymatic rate acceleration. Studies that partition the interactions between SCOT and CoA into their contributing parts are reviewed. Interactions of the protein with the substrate phosphodianion group provide an ~12 kcal/mol stabilization of the transition state for the reactions catalyzed by triosephosphate isomerase, orotidine 5'-monophosphate decarboxylase, and α-glycerol phosphate dehydrogenase. The interactions of these enzymes with the substrate piece phosphite dianion provide a 6-8 kcal/mol stabilization of the transition state for reaction of the appropriate truncated substrate. Enzyme activation by phosphite dianion reflects the higher dianion affinity for binding to the enzyme-transition state complex compared with that of the free enzyme. Evidence is presented that supports a model in which the binding energy of the phosphite dianion piece, or the phosphodianion group of the whole substrate, is utilized to drive an enzyme conformational change from an inactive open form E(O) to an active closed form E(C), by closure of a phosphodianion gripper loop. Members of the enolase and haloalkanoic acid dehalogenase superfamilies use variable capping domains to interact with nonreacting portions of the substrate and sequester the substrate from interaction with bulk solvent. Interactions of this capping domain with the phenyl group of mandelate have been shown to activate mandelate racemase for catalysis of deprotonation of α-carbonyl carbon. We propose that an important function of these capping domains is to utilize the binding interactions with nonreacting portions of the substrate to activate the enzyme for catalysis.
Specificity in Transition State Binding: The Pauling Model Revisited
Amyes, Tina L.; Richard, John P.
2013-01-01
Linus Pauling proposed that the large rate accelerations for enzymes are due to the high specificity of the protein catalyst for binding the reaction transition state. The observation that stable analogs of the transition states for enzymatic reactions often act as tight-binding binding inhibitors provided early support for this simple and elegant proposal. We review experimental results which support the proposal that Pauling’s model provides a satisfactory explanation for the rate accelerations for many heterolytic enzymatic reactions through high energy reaction intermediates, such as proton transfer and decarboxylation. Specificity in transition state binding is obtained when the total intrinsic binding energy of the substrate is significantly larger than the binding energy observed at the Michaelis complex. The results of recent studies to characterize the specificity in binding of the enolate oxygen at the transition state for the 1,3-isomerization reaction catalyzed by ketosteroid isomerase are reviewed. Interactions between pig heart succinyl-CoA:3-oxoacid coenzyme A transferase (SCOT) and the nonreacting portions of CoA are responsible for a rate increase of 3 × 1012-fold, which is close to the estimated total 5 × 1013-fold enzymatic rate acceleration. Studies that partition the interactions between SCOT and CoA into their contributing parts are reviewed. Interactions of the protein with the substrate phosphodianion group provide a ca. 12 kcal/mol stabilization of the transition state for the reactions catalyzed by triosephosphate isomerase, orotidine 5′-monophosphate decarboxylase and α-glycerol phosphate dehydrogenase. The interactions of these enzymes with the substrate piece phosphite dianion provide a 6 – 8 kcal/mol stabilization of the transition state for reaction of the appropriate truncated substrate. Enzyme activation by phosphite dianion reflects the higher dianion affinity for binding to the enzyme-transition state complex compared with the free enzyme. Evidence is presented that supports a model in which the binding energy of the phosphite dianion piece, or the phosphodianion group of the whole substrate, is utilized to drive an enzyme conformational change from an inactive open form EO to an active closed form EC, by closure of a phosphodianion gripper loop. Members of the enolase and haloalkanoic acid dehalogenase superfamilies use variable capping domains to interact with nonreacting portions of the substrate and sequester the substrate from interaction with bulk solvent. Interactions of this capping domain with the phenyl group of mandelate have been shown to activate mandelate racemase for catalysis of deprotonation of α-carbonyl carbon. We propose that an important function of these capping domains is to utilize the binding interactions with nonreacting portions of the substrate to activate the enzyme for catalysis. PMID:23327224
Martinez, Jeannette C; Caprio, Michael A; Friedenberg, Nicholas A
2018-02-09
It has long been recognized that pest population dynamics can affect the durability of a pesticide, but dose remains the primary component of insect resistance management (IRM). For transgenic pesticidal traits such as Bt (Bacillus thuringiensis Berliner (Bacillales: Bacillaceae)), dose (measured as the mortality of susceptibles caused by a toxin) is a relatively fixed characteristic and often falls below the standard definition of high dose. Hence, it is important to understand how pest population dynamics modify durability and what targets they present for IRM. We used a deterministic model of a generic arthropod pest to examine how timing and strength of density dependence interacted with population growth rate and Bt mortality to affect time to resistance. As in previous studies, durability typically reached a minimum at intermediate doses. However, high population growth rates could eliminate benefits of high dose. The timing of density dependence had a more subtle effect. If density dependence operated simultaneously with Bt mortality, durability was insensitive to its strengths. However, if density dependence was driven by postselection densities, decreasing its strength could increase durability. The strength of density dependence could affect durability of both single traits and pyramids, but its influence depended on the timing of density dependence and size of the refuge. Our findings suggest the utility of a broader definition of high dose, one that incorporates population-dynamic context. That maximum growth rates and timing and strength of interactions causing density dependent mortality can all affect durability, also highlights the need for ecologically integrated approaches to IRM research. © The Author(s) 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Detrimental Effects of “Stretch” Goals in Specialty Substance Use Disorder Treatment Organizations
Lemoine, G. James; Blum, Terry C.; Roman, Paul M.
2016-01-01
Background “Stretch” goals, a rarely examined concept that represents seemingly impossible, highly ambitious organizational goals ostensibly established to fill performance gaps and motivate employees, are examined within a sample of substance use disorder (SUD) treatment centers in the United States in terms of their prevalence and effects on organizational behavior. Stretch goals are defined as “seemingly impossible” goals intended to motivate employees to achieve high performance. In light of the high level of environmental change and unpredictability faced by SUD treatment centers in recent decades, we theorize that stretch goals would be both common and often detrimental (in terms of capacity utilization rate and efficiency) in these settings. Methods In a longitudinal analysis of data from leaders of a representative U. S. national sample of 219 SUD treatment centers characterized by entrepreneurial management structures, we examined the prevalence of stretch goals and their impact on key outcome variables of capacity utilization rate and efficiency. Results Widespread adoption of stretch goals was found, with 43% of our sample falling within the stretch category. Stretch goals had a negative main effect on capacity utilization rate as compared to less ambitious challenging goals. Stretch and prior performance interacted to further predict capacity utilization rate, whereas stretch and slack resource availability interacted to predict center efficiency. Discussion Although stretch goals are frequently used in the SUD treatment industry, we find them mostly detrimental to performance. Stretch goals may enhance the efficiency of treatment centers with prior limited resource availability, but they are negatively associated with capacity utilization, especially in centers with a record of already strong performance. Despite the high prevalence of such goals and positive values centered on aspirational behavior, these results strongly suggest caution in such goal setting in SUD treatment centers. PMID:26976811
Automatable Measurement of Gas Exchange Rate in Streams: Oxygen-Carbon Method
NASA Astrophysics Data System (ADS)
Pennington, R.; Haggerty, R.; Argerich, A.; Wondzell, S. M.
2015-12-01
Gas exchange rates between streams and the atmosphere are critically important to measurement of in-stream ecologic processes, as well as fate and transport of hazardous pollutants such as mercury and PCBs. Methods to estimate gas exchange rates include empirical relations to hydraulics, and direct injection of a tracer gas such as propane or SF6. Empirical relations are inconsistent and inaccurate, particularly for lower order, high-roughness streams. Gas injections are labor-intensive, and measured gas exchange rates are difficult to extrapolate in time since they change with discharge and stream geometry. We propose a novel method for calculation of gas exchange rates utilizing O2, pCO2, pH, and temperature data. Measurements, which can be automated using data loggers and probes, are made on the upstream and downstream end of the study reach. Gas exchange rates are then calculated from a solution to the transport equations for oxygen and dissolved inorganic carbon. Field tests in steep, low order, high roughness streams of the HJ Andrews Experimental Forest indicate the method to be viable along stream reaches with high downstream gas concentration gradients and high rates of gas transfer velocity. Automated and continuous collection of oxygen and carbonate chemistry data is increasingly common, thus the method may be used to estimate gas exchange rates through time, and is well suited for interactivity with databases.
Turpyn, Caitlin C.; Hansen, Amysue; Jacangelo, Juliana; Chaplin, Tara M.
2015-01-01
How are emotional processes associated with the increased rates of substance use and psychological disorders commonly observed during adolescence? An index of emotion-related physiological arousal—cortisol reactivity—and subjective emotion regulation have both been independently linked to substance use and psychological difficulties among youth. The current study (N = 134 adolescents) sought to elucidate the interactive effects of cortisol reactivity following a stressful parent–child interaction task and self-reported emotion regulation ability on adolescents’ substance use and externalizing and internalizing behavior problems. Results revealed that adolescents with low levels of cortisol reactivity and high emotion regulation difficulties were more likely to use substances, and also had the highest parent-reported symptoms of oppositional defiant disorder. With respect to internalizing symptoms, high emotion-related physiological reactivity coupled with high emotion regulation difficulties were associated with higher self-reported major depression symptoms among youth. Findings reveal that different profiles of HPA axis arousal and emotion regulation are associated with substance use and symptoms of psychopathology among adolescents. PMID:27330232
Adoptive and Nonadoptive Mother–Child Behavioral Interaction: A Comparative Study at 4 Years of Age
Suwalsky, Joan T. D.; Padilla, Christina M.; Yuen, Cynthia X.; Horn, E. Parham; Bradley, Alexandra L.; Putnick, Diane L.; Bornstein, Marc H.
2016-01-01
Comparable samples of low-risk adopted and nonadopted children and mothers were observed during 3 tasks at age 4 years. Quality of mother-child interactions, child level of functioning in 4 domains, and maternal parenting satisfaction and social support were assessed. Adopted children were as competent as nonadopted children on measures of developmental functioning. Both groups of mothers expressed high satisfaction and support as parents. However, ratings of child, maternal, and dyadic behavior when interacting were all lower for adoptive dyads than for nonadoptive dyads, and adoptive dyads with boys accounted for the maternal and dyadic group differences. PMID:27134518
NASA Technical Reports Server (NTRS)
Kriegler, F. J.; Gordon, M. F.; Mclaughlin, R. H.; Marshall, R. E.
1975-01-01
The MIDAS (Multivariate Interactive Digital Analysis System) processor is a high-speed processor designed to process multispectral scanner data (from Landsat, EOS, aircraft, etc.) quickly and cost-effectively to meet the requirements of users of remote sensor data, especially from very large areas. MIDAS consists of a fast multipipeline preprocessor and classifier, an interactive color display and color printer, and a medium scale computer system for analysis and control. The system is designed to process data having as many as 16 spectral bands per picture element at rates of 200,000 picture elements per second into as many as 17 classes using a maximum likelihood decision rule.
23Na NUCLEAR MAGNETIC RESONANCE RELAXATION STUDIES OF SODIUM ION INTERACTION WITH SOLUBLE RNA*
James, Thomas L.; Noggle, Joseph H.
1969-01-01
Interactions between 23Na+ and soluble RNA in aqueous solution are studied with the use of 23Na nuclear magnetic resonance. At low concentrations of NaCl, the interactions obey a simple equilibrium model with a formation constant log (Kf)3 = 2.8 ± 0.3. The relaxation rate of the bound sodium is found to be T1B-1 = 222 ± 19 sec-1 compared to that of free sodium T1F-1 = 17.5 sec-1. At high NaCl concentrations, the system deviates from the model, possibly owing to aggregation of the soluble RNA. PMID:5256995
Samson, Tali; Shvartzman, Pesach
2017-06-23
Exposure to the death and dying of others is an anxiety-provoking condition that can contribute to psychological stress. However, the results of empirical studies that evaluated work-related outcomes among physicians and nurses with repeated exposure to dying patients are not consistent. Our aim was to evaluate whether a high level of exposure to death and dying (LED) can increase the risk for poor professional quality of life (ProQoL) in most healthcare workers, but it can also improve ProQoL in a subset of healthcare workers with specific characteristics. We employed a cross-sectional survey designed to better understand the role of LED as a predictor of ProQoL among healthcare workers. Comparison of physicians and nurses with high LED (home-based palliative care units) with a matched group of physicians and nurses with low LED (primary care units) and evaluation of possible interaction effects among LED, death anxiety (DA), and engagement as predictors of ProQoL. The final sample included 110 questionnaires from the high-LED group (response rate = 39%) and 131 from the low-LED (response rate = 24%) group. Workers with high LED reported an increased level of compassion satisfaction (CS) and low to moderate levels of burnout (BU) and secondary traumatic stress (STS), with no significant differences with respect to other healthcare providers. Although levels of CS, STS, and BU did not differ between groups, a univariate MANOVA revealed that the interaction effect of LED × Engagement reduced levels of CS and that the interaction effect of LED × DA increased STS among workers with high LED. LED was significantly correlated with ProQoL among healthcare workers with high LED due to the reported interaction effect. These findings imply, for the first time, that there is a possible correlation between engagement and the risk for poor ProQoL among workers with high LED. Further research is essential to gain a better understanding of this issue.
Effects of combination lipid therapy in type 2 diabetes mellitus.
Ginsberg, Henry N; Elam, Marshall B; Lovato, Laura C; Crouse, John R; Leiter, Lawrence A; Linz, Peter; Friedewald, William T; Buse, John B; Gerstein, Hertzel C; Probstfield, Jeffrey; Grimm, Richard H; Ismail-Beigi, Faramarz; Bigger, J Thomas; Goff, David C; Cushman, William C; Simons-Morton, Denise G; Byington, Robert P
2010-04-29
We investigated whether combination therapy with a statin plus a fibrate, as compared with statin monotherapy, would reduce the risk of cardiovascular disease in patients with type 2 diabetes mellitus who were at high risk for cardiovascular disease. We randomly assigned 5518 patients with type 2 diabetes who were being treated with open-label simvastatin to receive either masked fenofibrate or placebo. The primary outcome was the first occurrence of nonfatal myocardial infarction, nonfatal stroke, or death from cardiovascular causes. The mean follow-up was 4.7 years. The annual rate of the primary outcome was 2.2% in the fenofibrate group and 2.4% in the placebo group (hazard ratio in the fenofibrate group, 0.92; 95% confidence interval [CI], 0.79 to 1.08; P=0.32). There were also no significant differences between the two study groups with respect to any secondary outcome. Annual rates of death were 1.5% in the fenofibrate group and 1.6% in the placebo group (hazard ratio, 0.91; 95% CI, 0.75 to 1.10; P=0.33). Prespecified subgroup analyses suggested heterogeneity in treatment effect according to sex, with a benefit for men and possible harm for women (P=0.01 for interaction), and a possible interaction according to lipid subgroup, with a possible benefit for patients with both a high baseline triglyceride level and a low baseline level of high-density lipoprotein cholesterol (P=0.057 for interaction). The combination of fenofibrate and simvastatin did not reduce the rate of fatal cardiovascular events, nonfatal myocardial infarction, or nonfatal stroke, as compared with simvastatin alone. These results do not support the routine use of combination therapy with fenofibrate and simvastatin to reduce cardiovascular risk in the majority of high-risk patients with type 2 diabetes. (ClinicalTrials.gov number, NCT00000620.) 2010 Massachusetts Medical Society
An examination of responses to surveys among Filipino-Australian migrants.
Maneze, Della; Everett, Bronwyn; DiGiacomo, Michelle; Davidson, Patricia M; Salamonson, Yenna
2016-11-18
Background Surveys are frequently used to collect data. Although paper surveys are commonly used, online surveys are gaining in popularity, with the inclusion of open-ended questions (OEQs) allowing respondents to freely express their views. Little is known about how Filipino-Australian migrants respond to surveys. There is some concern about the usefulness of OEQs administered to culturally and linguistically diverse migrants, who may have limited capacity to articulate their thoughts in writing. Aim To examine the responses of Filipino-Australian migrants to a survey. Discussion A total of 552 respondents were recruited, of whom 428 (78%) completed the questionnaire online. The overall response rate to the OEQs was 69%, with higher completion rates among those given a paper-based questionnaire and those with university educations. Conclusion Filipino migrants with functional English language skills responded well to the online survey. Paper-based administration elicited more OEQ responses, which is attributed to greater interaction between participants and researchers. Those with university educations may have more capacity to express themselves in English and were therefore more likely to complete the OEQs. Implications for practice The high response rate obtained in this study suggests that among Filipino-Australian migrants who rated their English language skills and educational level highly, the translation of OEQs may not be necessary. This has important implications for resources in research. Face-to-face interaction between participants and researchers is an important strategy for increasing the rates of response to OEQs.
Diminished heart rate complexity in adolescent girls: a sign of vulnerability to anxiety disorders?
Fiol-Veny, Aina; De la Torre-Luque, Alejandro; Balle, Maria; Bornas, Xavier
2018-07-01
Diminished heart rate variability has been found to be associated with high anxiety symptomatology. Since adolescence is the period of onset for many anxiety disorders, this study aimed to determine sex- and anxiety-related differences in heart rate variability and complexity in adolescents. We created four groups according to sex and anxiety symptomatology: high-anxiety girls (n = 24) and boys (n = 25), and low-anxiety girls (n = 22) and boys (n = 24) and recorded their cardiac function while they performed regular school activities. A series of two-way (sex and anxiety) MANOVAs were performed on time domain variability, frequency domain variability, and non-linear complexity. We obtained no multivariate interaction effects between sex and anxiety, but highly anxious participants had lower heart rate variability than the low-anxiety group. Regarding sex, girls showed lower heart rate variability and complexity than boys. The results suggest that adolescent girls have a less flexible cardiac system that could be a marker of the girls' vulnerability to developing anxiety disorders.
Beauchaine, Theodore P.; Klein, Daniel N.; Crowell, Sheila E.; Derbidge, Christina; Gatzke-Kopp, Lisa
2009-01-01
Although antisocial personality disorder (ASPD) is more common among males and borderline personality disorder (BPD) is more common among females, some (e.g., Paris, 1997) have suggested that the two disorders reflect multifinal outcomes of a single etiology. This assertion is based on several overlapping symptoms and features, including trait impulsivity, emotional lability, high rates of depression and suicide, and a high likelihood of childhood abuse and/or neglect. Furthermore, rates of ASPD are elevated in the first degree relatives of those with BPD, and concurrent comorbidity rates for the two disorders are high. In this article, we present a common model of antisocial and borderline personality development. We begin by reviewing issues and problems with diagnosing and studying personality disorders in children and adolescents. Next, we discuss dopaminergic and serotonergic mechanisms of trait impulsivity as predisposing vulnerabilities to ASPD and BPD. Finally, we extend shared risk models for ASPD and BPD by specifying genetic loci that may confer differential vulnerability to impulsive aggression and mood dysregulation among males and impulsive self-injury and mood dysregulation among females. Although the precise mechanisms of these sex-moderated genetic vulnerabilities remain poorly understood, they appear to interact with environmental risk factors including adverse rearing environments to potentiate the development of ASPD and BPD. PMID:19583882
Lord, J C
2001-04-01
Diatomaceous earth (DE) is a desiccant insecticide and most efficacious in low humidity. It acts on insect cuticle by absorbing lipids, and perhaps by cuticular abrasion. Beauveria bassiana (Balsamo) Vuillemin, an entomopathogenic fungus, is most efficacious in high humidity and has a complex interaction with cuticular lipids. Interaction between these materials may enhance insect control performance. Assays with stored-grain beetles were conducted with B. bassiana at rates of 11, 33, 100, and 300 mg of conidia per kilogram of grain with and without single rates of DE that killed 10% or less of the target beetles. The assays revealed synergism in effects on adult Rhyzopertha dominica (F.) and Oryzaephilus surinamensis (L.) at all doses. There was statistically significant synergism for adult Cryptolestes ferrugineus (Stephens) and larval R. dominica but at only one B. bassiana rate for each target. Both amorphous silicon dioxide, a sorptive dust, and diamond dust, an abrasive, showed synergistic interaction with B. bassiana on adult R. dominica. These results may provide a basis for a least-toxic approach to control of stored-product beetles and for efficacy-enhancing formulation of entomopathogenic fungi.
Theoretical estimation of Photons flow rate Production in quark gluon interaction at high energies
NASA Astrophysics Data System (ADS)
Al-Agealy, Hadi J. M.; Hamza Hussein, Hyder; Mustafa Hussein, Saba
2018-05-01
photons emitted from higher energetic collisions in quark-gluon system have been theoretical studied depending on color quantum theory. A simple model for photons emission at quark-gluon system have been investigated. In this model, we use a quantum consideration which enhances to describing the quark system. The photons current rate are estimation for two system at different fugacity coefficient. We discussion the behavior of photons rate and quark gluon system properties in different photons energies with Boltzmann model. The photons rate depending on anisotropic coefficient : strong constant, photons energy, color number, fugacity parameter, thermal energy and critical energy of system are also discussed.
NASA Technical Reports Server (NTRS)
Paglietti, A.
1982-01-01
At high strain rates the heat produced by plastic deformation can give rise to a rate dependent response even if the material has rate independent constitutive equations. This effect has to be evaluated when interpreting a material test, or else it could erroneously be ascribed to viscosity. A general thermodynamic theory of tensile testing of elastic-plastic materials is given in this paper; it is valid for large strain at finite strain rates. It enables discovery of the parameters governing the thermodynamic strain rate effect, provides a method for proper interpretation of the results of the tests of dynamic plasticity, and suggests a way of planning experiments in order to detect the real contribution of viscosity.
Metabolic rates are significantly lower in abyssal Holothuroidea than in shallow-water Holothuroidea
van Oevelen, Dick
2018-01-01
Recent analyses of metabolic rates in fishes, echinoderms, crustaceans and cephalopods have concluded that bathymetric declines in temperature- and mass-normalized metabolic rate do not result from resource-limitation (e.g. oxygen or food/chemical energy), decreasing temperature or increasing hydrostatic pressure. Instead, based on contrasting bathymetric patterns reported in the metabolic rates of visual and non-visual taxa, declining metabolic rate with depth is proposed to result from relaxation of selection for high locomotory capacity in visual predators as light diminishes. Here, we present metabolic rates of Holothuroidea, a non-visual benthic and benthopelagic echinoderm class, determined in situ at abyssal depths (greater than 4000 m depth). Mean temperature- and mass-normalized metabolic rate did not differ significantly between shallow-water (less than 200 m depth) and bathyal (200–4000 m depth) holothurians, but was significantly lower in abyssal (greater than 4000 m depth) holothurians than in shallow-water holothurians. These results support the dominance of the visual interactions hypothesis at bathyal depths, but indicate that ecological or evolutionary pressures other than biotic visual interactions contribute to bathymetric variation in holothurian metabolic rates. Multiple nonlinear regression assuming power or exponential models indicates that in situ hydrostatic pressure and/or food/chemical energy availability are responsible for variation in holothurian metabolic rates. Consequently, these results have implications for modelling deep-sea energetics and processes. PMID:29892403
Caffeine, creatine, GRIN2A and Parkinson's disease progression.
Simon, David K; Wu, Cai; Tilley, Barbara C; Lohmann, Katja; Klein, Christine; Payami, Haydeh; Wills, Anne-Marie; Aminoff, Michael J; Bainbridge, Jacquelyn; Dewey, Richard; Hauser, Robert A; Schaake, Susen; Schneider, Jay S; Sharma, Saloni; Singer, Carlos; Tanner, Caroline M; Truong, Daniel; Wei, Peng; Wong, Pei Shieen; Yang, Tianzhong
2017-04-15
Caffeine is neuroprotective in animal models of Parkinson's disease (PD) and caffeine intake is inversely associated with the risk of PD. This association may be influenced by the genotype of GRIN2A, which encodes an NMDA-glutamate-receptor subunit. In two placebo-controlled studies, we detected no association of caffeine intake with the rate of clinical progression of PD, except among subjects taking creatine, for whom higher caffeine intake was associated with more rapid progression. We now have analyzed data from 420 subjects for whom DNA samples and caffeine intake data were available from a placebo-controlled study of creatine in PD. The GRIN2A genotype was not associated with the rate of clinical progression of PD in the placebo group. However, there was a 4-way interaction between GRIN2A genotype, caffeine, creatine and the time since baseline. Among subjects in the creatine group with high levels of caffeine intake, but not among those with low caffeine intake, the GRIN2A T allele was associated with more rapid progression (p=0.03). These data indicate that the deleterious interaction between caffeine and creatine with respect to rate of progression of PD is influenced by GRIN2A genotype. This example of a genetic factor interacting with environmental factors illustrates the complexity of gene-environment interactions in the progression of PD. Copyright © 2017 Elsevier B.V. All rights reserved.
Cone, Katherine; Lanpher, Janell; Kinens, Abigail; Richard, Philomena; Couture, Sarah; Brackin, Rebecca; Payne, Emily; Harrington, Kylee; Rice, Kenner C; Stevenson, Glenn W
2018-05-01
Although delta/mu receptor interactions vary as a function of behavioral endpoint, there have been no assessments of these interactions using assays of pain-depressed responding. This is the first report of delta/mu interactions using an assay of pain-depressed behavior. A mult-cycle FR10 operant schedule was utilized in the presence of (nociception) and in the absence of (rate suppression) a lactic acid inflammatory pain-like manipulation. SNC80 and methadone were used as selective/high efficacy delta and mu agonists, respectively. Both SNC80 and methadone alone produced a dose-dependent restoration of pain-depressed responding and dose-dependent response rate suppression. Three fixed ratio mixtures, based on the relative potencies of the drugs in the nociception assay, also produced dose-dependent antinociception and sedation. Isobolographic analysis indicated that all three mixtures produced supra-additive antinociceptive effects and simply additive sedation effects. The therapeutic index (TI) inversely varied as a function of amount of SNC80 in the mixture, such that lower amounts of SNC80 produced a higher TI, and larger amounts produced a lower TI. Compared to literature using standard pain-elicited assays, the orderly relationship between SNC80 and TI reported here may be a unique function of assessing pain-depressed behavior.
UVB exposure does not accelerate rates of litter decomposition in a semiarid riparian ecosystem
USDA-ARS?s Scientific Manuscript database
Aboveground litter decomposition is controlled mainly by substrate quality and climate factors across terrestrial ecosystems, but photodegradation from exposure to high-intensity ultraviolet-B (UVB) radiation may also be important in arid and semi-arid environments. We investigated the interactive e...
HIGH TEMPERATURE INTERACTIONS BETWEEN RESIDUAL OIL ASH AND DISPERSED KAOLINITE POWDERS
The potential use of sorbents to manage ultrafine ash aerosol emissions from residual oil combustion was investigated using a downfired 82-kW-rated laboratory-scale refractory-lined combustor. The major constituents were vanadium (V), iron (Fe), nickel, (Ni) and zinc (Zn). Of the...
Delinquent Tendencies and Participation in an Organized Sports Program
ERIC Educational Resources Information Center
Yiannakis, Andrew
1976-01-01
In testing the hypotheses of relationship between failure to complete an athletic program and a delinquent psychosocial profile, it was concluded that interaction of a delinquent disposition with structured pressures in an organized sports program may have been the cause of high dropout rate. (JD)
Zhang, Xinyu; Zhong, Lin; Romero-Severson, Ethan; Alam, Shah Jamal; Henry, Christopher J; Volz, Erik M; Koopman, James S
2012-11-01
A deterministic compartmental model was explored that relaxed the unrealistic assumption in most HIV transmission models that behaviors of individuals are constant over time. A simple model was formulated to better explain the effects observed. Individuals had a high and a low contact rate and went back and forth between them. This episodic risk behavior interacted with the short period of high transmissibility during acute HIV infection to cause dramatic increases in prevalence as the differences between high and low contact rates increased and as the duration of high risk better matched the duration of acute HIV infection. These same changes caused a considerable increase in the fraction of all transmissions that occurred during acute infection. These strong changes occurred despite a constant total number of contacts and a constant total transmission potential from acute infection. Two phenomena played a strong role in generating these effects. First, people were infected more often during their high contact rate phase and they remained with high contact rates during the highly contagious acute infection stage. Second, when individuals with previously low contact rates moved into an episodic high-risk period, they were more likely to be susceptible and thus provided more high contact rate susceptible individuals who could get infected. These phenomena make test and treat control strategies less effective and could cause some behavioral interventions to increase transmission. Signature effects on genetic patterns between HIV strains could make it possible to determine whether these episodic risk effects are acting in a population.
Toshiba TDF-500 High Resolution Viewing And Analysis System
NASA Astrophysics Data System (ADS)
Roberts, Barry; Kakegawa, M.; Nishikawa, M.; Oikawa, D.
1988-06-01
A high resolution, operator interactive, medical viewing and analysis system has been developed by Toshiba and Bio-Imaging Research. This system provides many advanced features including high resolution displays, a very large image memory and advanced image processing capability. In particular, the system provides CRT frame buffers capable of update in one frame period, an array processor capable of image processing at operator interactive speeds, and a memory system capable of updating multiple frame buffers at frame rates whilst supporting multiple array processors. The display system provides 1024 x 1536 display resolution at 40Hz frame and 80Hz field rates. In particular, the ability to provide whole or partial update of the screen at the scanning rate is a key feature. This allows multiple viewports or windows in the display buffer with both fixed and cine capability. To support image processing features such as windowing, pan, zoom, minification, filtering, ROI analysis, multiplanar and 3D reconstruction, a high performance CPU is integrated into the system. This CPU is an array processor capable of up to 400 million instructions per second. To support the multiple viewer and array processors' instantaneous high memory bandwidth requirement, an ultra fast memory system is used. This memory system has a bandwidth capability of 400MB/sec and a total capacity of 256MB. This bandwidth is more than adequate to support several high resolution CRT's and also the fast processing unit. This fully integrated approach allows effective real time image processing. The integrated design of viewing system, memory system and array processor are key to the imaging system. It is the intention to describe the architecture of the image system in this paper.
Kohay, Hagay; Sarisozen, Can; Sawant, Rupa; Jhaveri, Aditi; Torchilin, Vladimir P; Mishael, Yael G
2017-06-01
A novel drug delivery system for doxorubicin (DOX), based on organic-inorganic composites was developed. DOX was incorporated in micelles (M-DOX) of polyethylene glycol-phosphatidylethanolamine (PEG-PE) which in turn were adsorbed by the clay, montmorillonite (MMT). The nano-structures of the PEG-PE/MMT composites of LOW and HIGH polymer loadings were characterized by XRD, TGA, FTIR, size (DLS) and zeta measurements. These measurements suggest that for the LOW composite a single layer of polymer intercalates in the clay platelets and the polymer only partially covers the external surface, while for the HIGH composite two layers of polymer intercalate and a bilayer may form on the external surface. These nanostructures have a direct effect on formulation stability and on the rate of DOX release. The release rate was reversely correlated with the degree of DOX interaction with the clay and followed the sequence: M-DOX>HIGH formulation>LOW formulation>DOX/MMT. Despite the slower release from the HIGH formulation, its cytotoxicity effect on sensitive cells was as high as the "free" DOX. Surprisingly, the LOW formulation, with the slowest release, demonstrated the highest cytotoxicity in the case of Adriamycin (ADR) resistant cells. Confocal microscopy images and association tests provided an insight into the contribution of formulation-cell interactions vs. the contribution of DOX release rate. Internalization of the formulations was suggested as a mechanism that increases DOX efficiency, particularly in the ADR resistant cell line. The employment of organic-inorganic hybrid materials as drug delivery systems, has not reached its full potential, however, its functionality as an efficient tunable release system was demonstrated. DOX PEG-PE/clay formulations were design as an efficient drug delivery system. The main aim was to develop PEG-PE/clay formulations of different structures based on various PEG-PE/clay ratios in order to achieve tunable release rates, to control the external surface characteristics and formulation stability. The formulations showed significantly higher toxicity in comparison to "free" DOX, explained by formulation internalization. For each cell line tested, sensitive and ADR resistant, a different formulation structure was found most efficient. The potential of PEG-PE/clay-DOX formulations to improve DOX administration efficacy was demonstrated and should be further explored and implemented for other cancer drugs and cells. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
2011-01-01
Background Intersectionality theory, a way of understanding social inequalities by race, gender, class, and sexuality that emphasizes their mutually constitutive natures, possesses potential to uncover and explicate previously unknown health inequalities. In this paper, the intersectionality principles of "directionality," "simultaneity," "multiplicativity," and "multiple jeopardy" are applied to inequalities in self-rated health by race, gender, class, and sexual orientation in a Canadian sample. Methods The Canadian Community Health Survey 2.1 (N = 90,310) provided nationally representative data that enabled binary logistic regression modeling on fair/poor self-rated health in two analytical stages. The additive stage involved regressing self-rated health on race, gender, class, and sexual orientation singly and then as a set. The intersectional stage involved consideration of two-way and three-way interaction terms between the inequality variables added to the full additive model created in the previous stage. Results From an additive perspective, poor self-rated health outcomes were reported by respondents claiming Aboriginal, Asian, or South Asian affiliations, lower class respondents, and bisexual respondents. However, each axis of inequality interacted significantly with at least one other: multiple jeopardy pertained to poor homosexuals and to South Asian women who were at unexpectedly high risks of fair/poor self-rated health and mitigating effects were experienced by poor women and by poor Asian Canadians who were less likely than expected to report fair/poor health. Conclusions Although a variety of intersections between race, gender, class, and sexual orientation were associated with especially high risks of fair/poor self-rated health, they were not all consistent with the predictions of intersectionality theory. I conclude that an intersectionality theory well suited for explicating health inequalities in Canada should be capable of accommodating axis intersections of multiple kinds and qualities. PMID:21241506
Interactive effects of emotional and restrained eating on responses to chocolate and affect.
Macht, Michael; Mueller, Jochen
2007-12-01
To examine differences and interactions between emotional and restrained-eating healthy adults (56 women, 53 men) were classified into emotional or restrained eaters, and persons scoring high or low on both dimensions. Participants tasted different types of chocolate (with 30, 70, 85, or 99% cocoa content) and completed questionnaires on affect and attitudes towards chocolate. Emotional eaters reported increased craving for and increased consumption of chocolate, whereas restrained eaters experienced chocolate-related guilt. However, restrained eaters rated plain chocolate (70% and 85% cocoa) as more pleasant than other groups. Persons scoring high on both dimensions showed heightened negative affect and may be prone to disturbances of eating and affect.
Siddiqui, Aleem M; Moses, Jeffrey; Hong, Kyung-Han; Lai, Chien-Jen; Kärtner, Franz X
2010-06-15
We show that an enhancement cavity seeded at the full repetition rate of the pump laser can automatically reshape small-signal gain across the interacting pulses in an optical parametric chirped-pulse amplifier for close-to-optimal operation, significantly increasing both the gain bandwidth and the conversion efficiency, in addition to boosting gain for high-repetition-rate amplification. Applied to a degenerate amplifier, the technique can provide an octave-spanning gain bandwidth.
Neghme, Constanza; Santamaría, Luís; Calviño-Cancela, María
2017-01-01
The accelerating rate of vertebrate extinctions and population declines threatens to disrupt important ecological interactions, altering key ecosystem processes such as animal seed dispersal. The study of highly specialized mutualistic interactions is crucial to predict the consequences of population declines and extinctions. Islands offer unique opportunities to study highly specialized interactions, as they often have naturally depauperated faunas and are experiencing high rates of human-driven extinctions. In this study, we assess the effect of seed dispersal on seedling recruitment of Ephedra fragilis (Ephedraceae) on a Mediterranean island ecosystem. We used field data and stochastic simulation modeling to estimate seed fate and recruitment patterns of this pioneer shrub typical of arid and semiarid areas, and to estimate the dependence of recruitment on the lizard Podarcis lilfordi (Lacertidae), its only known seed disperser. Ephedra fragilis recruitment highly depended on lizards: lizards produced 3.8 times more newly-emerged seedlings than non-dispersed seeds and no seedlings from undispersed seeds survived the study period. Seed dispersal by lizards was mostly to open sites, which was key for the increased success observed, while undispersed seeds, falling under mother plants, suffered higher predation and lower seedling emergence and survival. The ability of this pioneer shrub to get established in open ground is crucial for vegetation colonization and restoration, especially on degraded lands affected by desertification, where they act as nurse plants for other species. Lizards are key in this process, which has important consequences for community structure and ecosystem functioning.
Santamaría, Luís; Calviño-Cancela, María
2017-01-01
The accelerating rate of vertebrate extinctions and population declines threatens to disrupt important ecological interactions, altering key ecosystem processes such as animal seed dispersal. The study of highly specialized mutualistic interactions is crucial to predict the consequences of population declines and extinctions. Islands offer unique opportunities to study highly specialized interactions, as they often have naturally depauperated faunas and are experiencing high rates of human-driven extinctions. In this study, we assess the effect of seed dispersal on seedling recruitment of Ephedra fragilis (Ephedraceae) on a Mediterranean island ecosystem. We used field data and stochastic simulation modeling to estimate seed fate and recruitment patterns of this pioneer shrub typical of arid and semiarid areas, and to estimate the dependence of recruitment on the lizard Podarcis lilfordi (Lacertidae), its only known seed disperser. Ephedra fragilis recruitment highly depended on lizards: lizards produced 3.8 times more newly-emerged seedlings than non-dispersed seeds and no seedlings from undispersed seeds survived the study period. Seed dispersal by lizards was mostly to open sites, which was key for the increased success observed, while undispersed seeds, falling under mother plants, suffered higher predation and lower seedling emergence and survival. The ability of this pioneer shrub to get established in open ground is crucial for vegetation colonization and restoration, especially on degraded lands affected by desertification, where they act as nurse plants for other species. Lizards are key in this process, which has important consequences for community structure and ecosystem functioning. PMID:28827820
NASA Astrophysics Data System (ADS)
Hardiyanto, M.; Ermawaty, I. R.
2018-01-01
We present an experimental of muan-hadron tunneling chain investigation with new methods of Thx DUO2 nano structure based on Josephson’s tunneling and Abrikosov-Balseiro-Russel (ABR) formulation with quantum quadrupole interacting with a strongly localized high gyro-magnetic optical field as encountered in high-resolution near-field optical microscopy for 1.2 nano meter lambda-function. The strong gradients of these localized gyro-magnetic fields suggest that higher-order multipolar interactions will affect the standard magnetic quadrupole transition rates in 1.8 x 103 currie/mm fuel energy in nuclear moderator pool and selection rules with quatum dot. For muan-hadron absorption in Josephson’s tunnelling quantum quadrupole in the strong confinement limit we calculated the inter band of gyro-magnetic quadrupole absorption rate and the associated selection rules. Founded that the magnetic quadrupole absorption rate is comparable with the absorption rate calculated in the gyro-magneticdipole approximation of ThxDUO2 nano material structure. This implies that near-field optical techniques can extend the range of spectroscopic measurements for 545 MHz at quantum gyro-magnetic field until 561 MHz deployment quantum field at B around 455-485 tesla beyond the standard dipole approximation. However, we also show that spatial resolution could be improved by the selective excitation of ABR formulation in quantum quadrupole transitions.
Star Formation in Merging Galaxies Using FIRE
NASA Astrophysics Data System (ADS)
Perez, Adrianna; Hung, Chao-Ling; Naiman, Jill; Moreno, Jorge; Hopkins, Philip
2018-01-01
Galaxy interactions and mergers are efficient mechanisms to birth stars at rates that are significantly higher than found in our Milky Way galaxy. The Kennicut-Schmidt (KS) relation is an empirical relationship between the star-forming rate and gas surface densities of galaxies (Schmidt 1959; Kennicutt 1998). Although most galaxies follow the KS relation, the high levels of star formation in galaxy mergers places them outside of this otherwise tight relationship. The goal of this research is to analyze the gas content and star formation of simulated merging galaxies. Our work utilizes the Feedback In Realistic Environments (FIRE) model (Hopkins et al., 2014). The FIRE project is a high-resolution cosmological simulation that resolves star-forming regions and incorporates stellar feedback in a physically realistic way. In this work, we have noticed a significant increase in the star formation rate at first and second passage, when the two black holes of each galaxy approach one other. Next, we will analyze spatially resolved star-forming regions over the course of the interacting system. Then, we can study when and how the rates that gas converts into stars deviate from the standard KS. These analyses will provide important insights into the physical mechanisms that regulate star formation of normal and merging galaxies and valuable theoretical predictions that can be used to compare with current and future observations from ALMA or the James Webb Space Telescope.
Bounds on Energy Absorption and Prethermalization in Quantum Systems with Long-Range Interactions
NASA Astrophysics Data System (ADS)
Ho, Wen Wei; Protopopov, Ivan; Abanin, Dmitry A.
2018-05-01
Long-range interacting systems such as nitrogen vacancy centers in diamond and trapped ions serve as experimental setups to probe a range of nonequilibrium many-body phenomena. In particular, via driving, various effective Hamiltonians with physics potentially quite distinct from short-range systems can be realized. In this Letter, we derive general rigorous bounds on the linear response energy absorption rates of periodically driven systems of spins or fermions with long-range interactions that are sign changing and fall off as 1 /rα with α >d /2 . We show that the disorder averaged energy absorption rate at high temperatures decays exponentially with the driving frequency. This strongly suggests the presence of a prethermal plateau in which dynamics is governed by an effective, static Hamiltonian for long times, and we provide numerical evidence to support such a statement. Our results are relevant for understanding timescales of heating and new dynamical regimes described by effective Hamiltonians in such long-range systems.
Unsteady Analysis of Turbine Main Flow Coupled with Secondary Air Flow
NASA Technical Reports Server (NTRS)
Hah, Chunill
2006-01-01
Two numerical approaches are used to model the interaction between the turbine main gas flow and the wheelspace cavity seal flow. The 3-D, unsteady Reynolds-averaged Navier-Stokes equations are solved with a CFD code based on a structured grid to study the interaction between the turbine main gas flow and the wheelspace cavity seal flow. A CFD code based on an unstructured grid is used to solve detailed flow feature in the cavity seal which has a complex geometry. The numerical results confirm various observations from earlier experimental studies under similar flow conditions. When the flow rate through the rim cavity seal is increased, the ingestion of the main turbine flow into the rim seal area decreases drastically. However, a small amount of main gas flow is ingested to the rim seal area even with very high level of seal flow rate. This is due to the complex nature of 3-D, unsteady flow interaction near the hub of the turbine stage.
Muhtadie, Luma; Zhou, Qing; Eisenberg, Nancy; Wang, Yun
2013-08-01
The additive and interactive relations of parenting styles (authoritative and authoritarian parenting) and child temperament (anger/frustration, sadness, and effortful control) to children's internalizing problems were examined in a 3.8-year longitudinal study of 425 Chinese children (aged 6-9 years) from Beijing. At Wave 1, parents self-reported on their parenting styles, and parents and teachers rated child temperament. At Wave 2, parents, teachers, and children rated children's internalizing problems. Structural equation modeling indicated that the main effect of authoritative parenting and the interactions of Authoritarian Parenting × Effortful Control and Authoritative Parenting × Anger/Frustration (parents' reports only) prospectively and uniquely predicted internalizing problems. The above results did not vary by child sex and remained significant after controlling for co-occurring externalizing problems. These findings suggest that (a) children with low effortful control may be particularly susceptible to the adverse effect of authoritarian parenting and (b) the benefit of authoritative parenting may be especially important for children with high anger/frustration.
Regional constraints to biological nitrogen fixation in post-fire forest communities
Yelenik, Stephanie; Perakis, Steven S.; Hibbs, David
2013-01-01
Biological nitrogen fixation (BNF) is a key ecological process that can restore nitrogen (N) lost in wildfire and shape the pace and pattern of post-fire forest recovery. To date, there is limited information on how climate and soil fertility interact to influence different pathways of BNF in early forest succession. We studied asymbiotic (forest floor and soil) and symbiotic (the shrub Ceanothus integerrimus) BNF rates across six sites in the Klamath National Forest, California, USA. We used combined gradient and experimental phosphorus (P) fertilization studies to explore cross-site variation in BNF rates and then related these rates to abiotic and biotic variables. We estimate that our measured BNF rates 22 years after wildfire (6.1–12.1 kg N·ha-1·yr-1) are unlikely to fully replace wildfire N losses. We found that asymbiotic BNF is P limited, although this is not the case for symbiotic BNF in Ceanothus. In contrast, Ceanothus BNF is largely driven by competition from other vegetation: in high-productivity sites with high potential evapotranspiration (Et), shrub biomass is suppressed as tree biomass increases. Because shrub biomass governed cross-site variation in Ceanothus BNF, this competitive interaction led to lower BNF in sites with high productivity and Et. Overall, these results suggest that the effects of nutrients play a larger role in driving asymbiotic than symbiotic fixation across our post-fire sites. However, because symbiotic BNF is 8–90x greater than asymbiotic BNF, it is interspecific plant competition that governs overall BNF inputs in these forests.
Analysis of cholera toxin-ganglioside interactions by flow cytometry.
Lauer, Sabine; Goldstein, Byron; Nolan, Rhiannon L; Nolan, John P
2002-02-12
Cholera toxin entry into mammalian cells is mediated by binding of the pentameric B subunit (CTB) to ganglioside GM(1) in the cell membrane. We used flow cytometry to quantitatively measure in real time the interactions of fluorescently labeled pentameric cholera toxin B-subunit (FITC-CTB) with its ganglioside receptor on microsphere-supported phospholipid membranes. A model that describes the multiple steps of this mode of recognition was developed to guide our flow cytometric experiments and extract relevant equilibrium and kinetic rate constants. In contrast to previous studies, our approach takes into account receptor cross-linking, an important feature for multivalent interactions. From equilibrium measurements, we determined an equilibrium binding constant for a single subunit of FITC-CTB binding monovalently to GM(1) presented in bilayers of approximately 8 x 10(7) M(-1) while that for binding to soluble GM(1)-pentasaccharide was found to be approximately 4 x 10(6) M(-1). From kinetic measurements, we determined the rate constant for dissociation of a single site of FITC-CTB from microsphere-supported bilayers to be (3.21 +/- 0.03) x 10(-3) s(-1), and the rate of association of a site on FITC-CTB in solution to a GM(1) in the bilayer to be (2.8 +/- 0.4) x 10(4) M(-1) s(-1). These values yield a lower estimate for the equilibrium binding constant of approximately 1 x 10(7) M(-1). We determined the equilibrium surface cross-linking constant [(1.1 +/- 0.1) x 10(-12) cm(2)] and from this value and the value for the rate constant for dissociation derived a value of approximately 3.5 x 10(-15) cm(2) s(-1) for the forward rate constant for cross-linking. We also compared the interaction of the receptor binding B-subunit with that of the whole toxin (A- and B-subunits). Our results show that the whole toxin binds with approximately 100-fold higher avidity than the pentameric B-subunit alone which is most likely due to the additional interaction of the A(2)-subunit with the membrane surface. Interaction of cholera toxin B-subunit and whole cholera toxin with gangliosides other than GM(1) revealed specific binding only to GD1(b) and asialo-GM(1). These interactions, however, are marked by low avidity and require high receptor concentrations to be observed.
Towards Inferring Protein Interactions: Challenges and Solutions
NASA Astrophysics Data System (ADS)
Zhang, Ya; Zha, Hongyuan; Chu, Chao-Hsien; Ji, Xiang
2006-12-01
Discovering interacting proteins has been an essential part of functional genomics. However, existing experimental techniques only uncover a small portion of any interactome. Furthermore, these data often have a very high false rate. By conceptualizing the interactions at domain level, we provide a more abstract representation of interactome, which also facilitates the discovery of unobserved protein-protein interactions. Although several domain-based approaches have been proposed to predict protein-protein interactions, they usually assume that domain interactions are independent on each other for the convenience of computational modeling. A new framework to predict protein interactions is proposed in this paper, where no assumption is made about domain interactions. Protein interactions may be the result of multiple domain interactions which are dependent on each other. A conjunctive norm form representation is used to capture the relationships between protein interactions and domain interactions. The problem of interaction inference is then modeled as a constraint satisfiability problem and solved via linear programing. Experimental results on a combined yeast data set have demonstrated the robustness and the accuracy of the proposed algorithm. Moreover, we also map some predicted interacting domains to three-dimensional structures of protein complexes to show the validity of our predictions.
NASA Astrophysics Data System (ADS)
Tinne, N.; Ripken, T.; Lubatschowski, H.; Heisterkamp, A.
2011-07-01
A today well-known laser based treatment in ophthalmology is the LASIK procedure which nowadays includes cutting of the corneal tissue with ultra-short laser pulses. Instead of disposing a microkeratome for cutting a corneal flap, a focused ultra-short laser pulse is scanned below the surface of biological tissue causing the effect of an optical breakdown and hence obtaining a dissection. Inside the tissue, the energy of the laser pulses is absorbed by non-linear processes; as a result a cavitation bubble expands and ruptures the tissue. Hence, positioning of several optical breakdowns side by side generates an incision. Due to a reduction of the amount of laser energy, with a moderate duration of treatment at the same time, the current development of ultra-short pulse laser systems points to higher repetition rates in the range of even Megahertz instead of tens or hundreds of Kilohertz. In turn, this results in a pulse overlap and therefor a probable occurrence of interaction between different optical breakdowns and respectively cavitation bubbles of adjacent optical breakdowns. While the interaction of one single laser pulse with biological tissue is analyzed reasonably well experimentally and theoretically, the interaction of several spatial and temporal following pulses is scarcely determined yet. Thus, the aim of this study is to analyse the dynamic and interaction of two cavitation bubbles by using high speed photography. The applied laser pulse energy, the energy ratio and the spot distance between different cavitation bubbles were varied. Depending on a change of these parameters different kinds of interactions such as a flattening and deformation of bubble shape or jet formation are observed. The effects will be discussed regarding the medical ophthalmic application of fs-lasers. Based on these results a further research seems to be inevitable to comprehend and optimize the cutting effect of ultra-short pulse laser systems with high (> 500 kHz) repetition rates.
Interactions of task and subject variables among continuous performance tests.
Denney, Colin B; Rapport, Mark D; Chung, Kyong-Mee
2005-04-01
Contemporary models of working memory suggest that target paradigm (TP) and target density (TD) should interact as influences on error rates derived from continuous performance tests (CPTs). The present study evaluated this hypothesis empirically in a typically developing, ethnically diverse sample of children. The extent to which scores based on different combinations of these task parameters showed different patterns of relationship to age, intelligence, and gender was also assessed. Four continuous performance tests were derived by combining two target paradigms (AX and repeated letter target stimuli) with two levels of target density (8.3% and 33%). Variations in mean omission (OE) and commission (CE) error rates were examined within and across combinations of TP and TD. In addition, a nested series of structural equation models was utilized to examine patterns of relationship among error rates, age, intelligence, and gender. Target paradigm and target density interacted as influences on error rates. Increasing density resulted in higher OE and CE rates for the AX paradigm. In contrast, the high density condition yielded a decline in OE rates accompanied by a small increase in CEs using the repeated letter CPT. Target paradigms were also distinguishable on the basis of age when using OEs as the performance measure, whereas combinations of age and intelligence distinguished between density levels but not target paradigms using CEs as the dependent measure. Different combinations of target paradigm and target density appear to yield scores that are conceptually and psychometrically distinguishable. Consequently, developmentally appropriate interpretation of error rates across tasks may require (a) careful analysis of working memory and attentional resources required for successful performance, and (b) normative data bases that are differently stratified with respect to combinations of age and intelligence.
Palandri, James L.; Kharaka, Yousif K.
2004-01-01
Geochemical reaction path modeling is useful for rapidly assessing the extent of water-aqueous-gas interactions both in natural systems and in industrial processes. Modeling of some systems, such as those at low temperature with relatively high hydrologic flow rates, or those perturbed by the subsurface injection of industrial waste such as CO2 or H2S, must account for the relatively slow kinetics of mineral-gas-water interactions. We have therefore compiled parameters conforming to a general Arrhenius-type rate equation, for over 70 minerals, including phases from all the major classes of silicates, most carbonates, and many other non-silicates. The compiled dissolution rate constants range from -0.21 log moles m-2 s-1 for halite, to -17.44 log moles m-2 s-1 for kyanite, for conditions far from equilibrium, at 25 ?C, and pH near neutral. These data have been added to a computer code that simulates an infinitely well-stirred batch reactor, allowing computation of mass transfer as a function of time. Actual equilibration rates are expected to be much slower than those predicted by the selected computer code, primarily because actual geochemical processes commonly involve flow through porous or fractured media, wherein the development of concentration gradients in the aqueous phase near mineral surfaces, which results in decreased absolute chemical affinity and slower reaction rates. Further differences between observed and computed reaction rates may occur because of variables beyond the scope of most geochemical simulators, such as variation in grain size, aquifer heterogeneity, preferred fluid flow paths, primary and secondary mineral coatings, and secondary minerals that may lead to decreased porosity and clogged pore throats.
NASA Astrophysics Data System (ADS)
Aurisano, A.; Backhouse, C.; Hatcher, R.; Mayer, N.; Musser, J.; Patterson, R.; Schroeter, R.; Sousa, A.
2015-12-01
The NOνA experiment is a two-detector, long-baseline neutrino experiment operating in the recently upgraded NuMI muon neutrino beam. Simulating neutrino interactions and backgrounds requires many steps including: the simulation of the neutrino beam flux using FLUKA and the FLUGG interface; cosmic ray generation using CRY; neutrino interaction modeling using GENIE; and a simulation of the energy deposited in the detector using GEANT4. To shorten generation time, the modeling of detector-specific aspects, such as photon transport, detector and electronics noise, and readout electronics, employs custom, parameterized simulation applications. We will describe the NOνA simulation chain, and present details on the techniques used in modeling photon transport near the ends of cells, and in developing a novel data-driven noise simulation. Due to the high intensity of the NuMI beam, the Near Detector samples a high rate of muons originating in the surrounding rock. In addition, due to its location on the surface at Ash River, MN, the Far Detector collects a large rate (˜ 140 kHz) of cosmic muons. We will discuss the methods used in NOνA for overlaying rock muons and cosmic ray muons with simulated neutrino interactions and show how realistically the final simulation reproduces the preliminary NOνA data.
Aurisano, A.; Backhouse, C.; Hatcher, R.; ...
2015-12-23
The NO vA experiment is a two-detector, long-baseline neutrino experiment operating in the recently upgraded NuMI muon neutrino beam. Simulating neutrino interactions and backgrounds requires many steps including: the simulation of the neutrino beam flux using FLUKA and the FLUGG interface, cosmic ray generation using CRY, neutrino interaction modeling using GENIE, and a simulation of the energy deposited in the detector using GEANT4. To shorten generation time, the modeling of detector-specific aspects, such as photon transport, detector and electronics noise, and readout electronics, employs custom, parameterized simulation applications. We will describe the NO vA simulation chain, and present details onmore » the techniques used in modeling photon transport near the ends of cells, and in developing a novel data-driven noise simulation. Due to the high intensity of the NuMI beam, the Near Detector samples a high rate of muons originating in the surrounding rock. In addition, due to its location on the surface at Ash River, MN, the Far Detector collects a large rate ((˜) 140 kHz) of cosmic muons. Furthermore, we will discuss the methods used in NO vA for overlaying rock muons and cosmic ray muons with simulated neutrino interactions and show how realistically the final simulation reproduces the preliminary NO vA data.« less
The Feasibility and Acceptability of "Arise": An Online Substance Abuse Relapse Prevention Program.
Sanchez, Rebecca Polley; Bartel, Chelsea M
2015-04-01
The purpose of this study was to test the feasibility and acceptability of a novel online adolescent substance abuse relapse prevention tool, "Arise" (3C Institute, Cary, NC). The program uses an innovative platform including interactive instructional segments and skill-building games to help adolescents learn and practice coping skills training strategies. We conducted a pilot test with nine adolescents in substance abuse treatment (44 percent female) and a feasibility test with treatment providers (n=8; 50 percent female). Adolescents interacted with the program via a secure Web site for approximately 30 minutes for each of two instructional units. Treatment providers reviewed the same material at their own pace. All participants completed a questionnaire with items assessing usability, acceptability, understanding, and subjective experience of the program. Regarding feasibility, recruitment of this population within the study constraints proved challenging, but participant retention in the trial was high (no attrition). Adolescents and treatment providers completed the program with no reported problems, and overall we were able to collect data as planned. Regarding acceptability, the program received strong ratings from both adolescents and providers, who found the prototype informative, engaging, and appealing. Both groups strongly recommended continuing development. We were able to deliver the intervention as intended, and acceptability ratings were high, demonstrating the feasibility and acceptability of online delivery of engaging interactive interventions. This study contributes to our understanding of how interactive technologies, including games, can be used to modify behavior in substance abuse treatment and other health areas.
Zapién-Campos, Román; Olmedo-Álvarez, Gabriela; Santillán, Moisés
2015-01-01
Most of the studies in Ecology have been devoted to analyzing the effects the environment has on individuals, populations, and communities, thus neglecting the effects of biotic interactions on the system dynamics. In the present work we study the structure of bacterial communities in the oligotrophic shallow water system of Churince, Cuatro Cienegas, Mexico. Since the physicochemical conditions of this water system are homogeneous and quite stable in time, it is an excellent candidate to study how biotic factors influence the structure of bacterial communities. In a previous study, the binary antagonistic interactions of 78 bacterial strains, isolated from Churince, were experimentally determined. We employ these data to develop a computer algorithm to simulate growth experiments in a cellular grid representing the pond. Remarkably, in our model, the dynamics of all the simulated bacterial populations is determined solely by antagonistic interactions. Our results indicate that all bacterial strains (even those that are antagonized by many other bacteria) survive in the long term, and that the underlying mechanism is the formation of bacterial community patches. Patches corresponding to less antagonistic and highly susceptible strains are consistently isolated from the highly-antagonistic bacterial colonies by patches of neutral strains. These results concur with the observed features of the bacterial community structure previously reported. Finally, we study how our findings depend on factors like initial population size, differential population growth rates, homogeneous population death rates, and enhanced bacterial diffusion. PMID:26052318
Restriction of therapy mainly explains lower thrombolysis rates in reduced stroke service levels.
Gumbinger, Christoph; Reuter, Björn; Hacke, Werner; Sauer, Tamara; Bruder, Ingo; Diehm, Curt; Wiethölter, Horst; Schoser, Karin; Daffertshofer, Michael; Neumaier, Stephan; Drewitz, Elke; Rode, Susanne; Kern, Rolf; Hennerici, Michael G; Stock, Christian; Ringleb, Peter
2016-05-24
To assess the influence of preexisting disabilities, age, and stroke service level on standardized IV thrombolysis (IVT) rates in acute ischemic stroke (AIS). We investigated standardized IVT rates in a retrospective registry-based study in 36,901 patients with AIS from the federal German state Baden-Wuerttemberg over a 5-year period. Patients admitted within 4.5 hours after stroke onset were selected. Factors associated with IVT rates (patient-level factors and stroke service level) were assessed using robust Poisson regression modeling. Interactions between factors were considered to estimate risk-adjusted mortality rates and potential IVT rates by service level (with stroke centers as benchmark). Overall, 10,499 patients (28.5%) received IVT. The IVT rate declined with service level from 44.0% (stroke center) to 13.1% (hospitals without stroke unit [SU]). Especially patients >80 years of age and with preexisting disabilities had a lower chance of being treated with IVT at lower stroke service levels. Interactions between stroke service level and age group, preexisting disabilities, and stroke severity (all p < 0.0001) were observed. High IVT rates seemed not to increase mortality. Estimated potential IVT rates ranged between 41.9% and 44.6% depending on stroke service level. Differences in IVT rates among stroke service levels were mainly explained by differences administering IVT to older patients and patients with preexisting disabilities. This indicates considerable further potential to increase IVT rates. Our findings support guideline recommendations to admit acute stroke patients to SUs. © 2016 American Academy of Neurology.
Artifact interactions retard technological improvement: An empirical study
Magee, Christopher L.
2017-01-01
Empirical research has shown performance improvement of many different technological domains occurs exponentially but with widely varying improvement rates. What causes some technologies to improve faster than others do? Previous quantitative modeling research has identified artifact interactions, where a design change in one component influences others, as an important determinant of improvement rates. The models predict that improvement rate for a domain is proportional to the inverse of the domain’s interaction parameter. However, no empirical research has previously studied and tested the dependence of improvement rates on artifact interactions. A challenge to testing the dependence is that any method for measuring interactions has to be applicable to a wide variety of technologies. Here we propose a novel patent-based method that is both technology domain-agnostic and less costly than alternative methods. We use textual content from patent sets in 27 domains to find the influence of interactions on improvement rates. Qualitative analysis identified six specific keywords that signal artifact interactions. Patent sets from each domain were then examined to determine the total count of these 6 keywords in each domain, giving an estimate of artifact interactions in each domain. It is found that improvement rates are positively correlated with the inverse of the total count of keywords with Pearson correlation coefficient of +0.56 with a p-value of 0.002. The results agree with model predictions, and provide, for the first time, empirical evidence that artifact interactions have a retarding effect on improvement rates of technological domains. PMID:28777798
High pressure-assisted encapsulation of vitamin D2 in reassembled casein micelles
NASA Astrophysics Data System (ADS)
Menéndez-Aguirre, O.; Stuetz, W.; Grune, T.; Kessler, A.; Weiss, J.; Hinrichs, J.
2011-03-01
For the encapsulation of vitamin D2, native casein micelles and vitamin D2 with or without additional Ca2+-Pi were treated at 600 MPa and 37 °C for 60 min. The pressure release rate was set at 20 or 600 MPa/min. Vitamin D2 was quantified by reversed-phase high-performance liquid chromatography, and physical properties of the micelles were analysed by photon correlation spectroscopy. The results demonstrate that simultaneous application of Ca2+-Pi and high pressure treatment with a fast release rate significantly increased loading of vitamin D2 per casein by 6.9-fold. The addition of Ca2+-Pi enhanced micelle aggregation and the vitamin was entrapped within the formed aggregates. However, high pressure treatment without Ca2+-Pi with a slow pressure release rate revealed similar results, increasing vitamin D2 per casein by 6.7-fold. The vitamin D2 loading in reassembled casein micelles is supposed to be due to hydrophobic interactions between the hydrophobic domains of the micelles.
Regimes of high-energy shock emission from the Be star/pulsar system PSR 1259-63
NASA Technical Reports Server (NTRS)
Tavani, Marco; Arons, Jonathan; Kaspi, Victoria M.
1994-01-01
PSR B1259-63 is a 47 ms radio pulsar in a wide, eccentric orbit with a Be star. We study the shock interaction between the pulsar and the companion's mass outflow and investigate the time evolution of radiative shock regimes. We find that for small values of the Be star's mass-loss rate, inverse-Compton scattering is likely to dominate the shock emission. Alternately, for a large mass-loss rate, synchrotron emission will dominate. Multifrequency X-ray and gamma-ray observations near periastron can distinguish between these cases and yield unique constraints on the pulsar and Be star winds. The PSR B1259-63 system provides a unique laboratory to study the time-dependent interaction of a pulsar wind with the circumbinary material from its companion star.
Mapping of cosmic radiation dose in Croatia.
Poje, M; Vuković, B; Radolić, V; Miklavčić, I; Faj, D; Varga Pajtler, M; Planinić, J
2012-01-01
The Earth is continually bombarded by high-energy particles coming from the outer space and the sun. These particles, termed cosmic radiation, interact with nuclei of atmospheric constituents and decrease in intensity with depth in the atmosphere. Measurements of photon and gamma radiation, performed with a Radiameter at 1 m above the ground, indicated dose rates of 50-100 nSv/h. The neutron dose rate was measured with the CR-39 track etch detector calibrated by the CERN-EU high-energy Reference Field (CERF) facility. Correlation between neutron dose rates and altitudes at 36 sites was examined in order to obtain a significant positive correlation coefficient; the resulting linear regression enabled estimation of a neutron dose at particular altitude. The measured neutron dose rate in Osijek (altitude of 89 m, latitude of 45.31° N) was 110 nSv/h. Copyright © 2011 Elsevier Ltd. All rights reserved.
Prokhorov, Alexander V; Kelder, Steven H; Shegog, Ross; Murray, Nancy; Peters, Ronald; Agurcia-Parker, Carolyn; Cinciripini, Paul M; de Moor, Carl; Conroy, Jennifer L; Hudmon, Karen Suchanek; Ford, Kentya H; Marani, Salma
2008-09-01
Few studies have examined the long-term efficacy of computer-based smoking prevention and cessation programs. We analyzed the long-term impact of A Smoking Prevention Interactive Experience (ASPIRE), a theoretically sound computer-based smoking prevention and cessation curriculum for high school students. Sixteen predominantly minority, inner-city high schools were randomly assigned to receive the ASPIRE curriculum or standard care (receipt of the National Cancer Institute's Clearing the Air self-help booklet). A total of 1160 students, 1098 of whom were nonsmokers and 62 smokers at baseline, were included. At 18-month follow-up, among baseline nonsmokers, smoking initiation rates were significantly lower in the ASPIRE condition (1.9% vs. 5.8%, p < .05). Students receiving ASPIRE also demonstrated significantly higher decisional balance against smoking and decreased temptations to smoke. Differences between groups in self-efficacy and resistance skills were not significant. There was a nonsignificant trend toward improved smoking cessation with ASPIRE, but low recruitment of smokers precluded conclusions with respect to cessation. ASPIRE demonstrated the potential for an interactive multimedia program to promote smoking prevention. Further studies are required to determine ASPIRE's effects on cessation.
de Jong, Simon B
2014-01-01
Recent studies have indicated that it is important to investigate the interaction between task interdependence and task autonomy because this interaction can affect team effectiveness. However, only a limited number of studies have been conducted and those studies focused solely on the team level of analysis. Moreover, there has also been a dearth of theoretical development. Therefore, this study develops and tests an alternative theoretical perspective in an attempt to understand if, and if so why, this interaction is important at the individual level of analysis. Based on interdependence theory and power-dependence theory, we expected that highly task-interdependent individuals who reported high task autonomy would be more powerful and better performers. In contrast, we expected that similarly high task-interdependent individuals who reported less task autonomy would be less powerful and would be weaker performers. These expectations were supported by multi-level and bootstrapping analyses performed on a multi-source dataset (self-, peer-, manager-ratings) comprised of 182 employees drawn from 37 teams. More specifically, the interaction between task interdependence and task autonomy was γ =.128, p <.05 for power and γ =.166, p <.05 for individual performance. The 95% bootstrap interval ranged from .0038 to .0686.
Cannibalism by damselflies increases with rising temperature
Kirk, Devin; Shea, Dylan
2017-01-01
Trophic interactions are likely to change under climate warming. These interactions can be altered directly by changing consumption rates, or indirectly by altering growth rates and size asymmetries among individuals that in turn affect feeding. Understanding these processes is particularly important for intraspecific interactions, as direct and indirect changes may exacerbate antagonistic interactions. We examined the effect of temperature on activity rate, growth and intraspecific size asymmetries, and how these temperature dependencies affected cannibalism in Lestes congener, a damselfly with marked intraspecific variation in size. Temperature increased activity rates and exacerbated differences in body size by increasing growth rates. Increased activity and changes in body size interacted to increase cannibalism at higher temperatures. We argue that our results are likely to be general to species with life-history stages that vary in their temperature dependencies, and that the effects of climate change on communities may depend on the temperature dependencies of intraspecific interactions. PMID:28515331
Cannibalism by damselflies increases with rising temperature.
Start, Denon; Kirk, Devin; Shea, Dylan; Gilbert, Benjamin
2017-05-01
Trophic interactions are likely to change under climate warming. These interactions can be altered directly by changing consumption rates, or indirectly by altering growth rates and size asymmetries among individuals that in turn affect feeding. Understanding these processes is particularly important for intraspecific interactions, as direct and indirect changes may exacerbate antagonistic interactions. We examined the effect of temperature on activity rate, growth and intraspecific size asymmetries, and how these temperature dependencies affected cannibalism in Lestes congener , a damselfly with marked intraspecific variation in size. Temperature increased activity rates and exacerbated differences in body size by increasing growth rates. Increased activity and changes in body size interacted to increase cannibalism at higher temperatures. We argue that our results are likely to be general to species with life-history stages that vary in their temperature dependencies, and that the effects of climate change on communities may depend on the temperature dependencies of intraspecific interactions. © 2017 The Author(s).
Pulse-shape discrimination between electron and nuclear recoils in a NaI(Tl) crystal
NASA Astrophysics Data System (ADS)
Lee, H. S.; Adhikari, G.; Adhikari, P.; Choi, S.; Hahn, I. S.; Jeon, E. J.; Joo, H. W.; Kang, W. G.; Kim, G. B.; Kim, H. J.; Kim, H. O.; Kim, K. W.; Kim, N. Y.; Kim, S. K.; Kim, Y. D.; Kim, Y. H.; Lee, J. H.; Lee, M. H.; Leonard, D. S.; Li, J.; Oh, S. Y.; Olsen, S. L.; Park, H. K.; Park, H. S.; Park, K. S.; Shim, J. H.; So, J. H.
2015-08-01
We report on the response of a high light-output NaI(Tl) crystal to nuclear recoils induced by neutrons from an Am-Be source and compare the results with the response to electron recoils produced by Compton-scattered 662 keV γ-rays from a 137Cs source. The measured pulse-shape discrimination (PSD) power of the NaI(Tl) crystal is found to be significantly improved because of the high light output of the NaI(Tl) detector. We quantify the PSD power with a quality factor and estimate the sensitivity to the interaction rate for weakly interacting massive particles (WIMPs) with nucleons, and the result is compared with the annual modulation amplitude observed by the DAMA/LIBRA experiment. The sensitivity to spin-independent WIMP-nucleon interactions based on 100 kg·year of data from NaI detectors is estimated with simulated experiments, using the standard halo model.
Gabsi, Faten; Schäffer, Andreas; Preuss, Thomas G
2014-07-01
Population responses to chemical stress exposure are influenced by nonchemical, environmental processes such as species interactions. A realistic quantification of chemical toxicity to populations calls for the use of methodologies that integrate these multiple stress effects. The authors used an individual-based model for Daphnia magna as a virtual laboratory to determine the influence of ecological interactions on population sensitivity to chemicals with different modes of action on individuals. In the model, hypothetical chemical toxicity targeted different vital individual-level processes: reproduction, survival, feeding rate, or somatic growth rate. As for species interactions, predatory and competition effects on daphnid populations were implemented following a worst-case approach. The population abundance was simulated at different food levels and exposure scenarios, assuming exposure to chemical stress solely or in combination with either competition or predation. The chemical always targeted one vital endpoint. Equal toxicity-inhibition levels differently affected the population abundance with and without species interactions. In addition, population responses to chemicals were highly sensitive to the environmental stressor (predator or competitor) and to the food level. Results show that population resilience cannot be attributed to chemical stress only. Accounting for the relevant ecological interactions would reduce uncertainties when extrapolating effects of chemicals from individuals to the population level. Validated population models should be used for a more realistic risk assessment of chemicals. © 2014 SETAC.
Warming has a greater effect than elevated CO2 on predator-prey interactions in coral reef fish.
Allan, Bridie J M; Domenici, Paolo; Watson, Sue Ann; Munday, Philip L; McCormick, Mark I
2017-06-28
Ocean acidification and warming, driven by anthropogenic CO 2 emissions, are considered to be among the greatest threats facing marine organisms. While each stressor in isolation has been studied extensively, there has been less focus on their combined effects, which could impact key ecological processes. We tested the independent and combined effects of short-term exposure to elevated CO 2 and temperature on the predator-prey interactions of a common pair of coral reef fishes ( Pomacentrus wardi and its predator, Pseudochromis fuscus ). We found that predator success increased following independent exposure to high temperature and elevated CO 2 Overall, high temperature had an overwhelming effect on the escape behaviour of the prey compared with the combined exposure to elevated CO 2 and high temperature or the independent effect of elevated CO 2 Exposure to high temperatures led to an increase in attack and predation rates. By contrast, we observed little influence of elevated CO 2 on the behaviour of the predator, suggesting that the attack behaviour of P. fuscus was robust to this environmental change. This is the first study to address how the kinematics and swimming performance at the basis of predator-prey interactions may change in response to concurrent exposure to elevated CO 2 and high temperatures and represents an important step to forecasting the responses of interacting species to climate change. © 2017 The Author(s).
Factor structure of the Liebowitz Social Anxiety Scale for Children and Adolescents.
Storch, Eric A; Masia-Warner, Carrie; Heidgerken, Amanda D; Fisher, Paige H; Pincus, Donna B; Liebowitz, Michael R
2006-01-01
The purpose of this study was to evaluate the factor structure of the Liebowitz Social Anxiety Scale for Children and Adolescents (LSAS-CA). The LSAS-CA was administered to 225 children and adolescents as a component of various clinical studies. In addition, other measures of psychopathology and impairment were administered to a subgroup of the sample. Confirmatory factor analyses of the social interaction and performance subscales for the anxiety and avoidance ratings yielded poor fit indices. Exploratory factor analysis supported a two-factor solution with a higher order factor for the LSAS-CA anxiety and avoidance ratings. Based on item content, factors were named Social and School Performance. The internal consistency of the factors was high and the convergent and divergent validity was supported vis-à-vis correlations with measures of depression and social anxiety, and clinician ratings of impairment and functioning. Findings suggest that the anxiety and avoidance ratings are best explained by a two-factor solution that measures social anxiety and avoidance in social and school performance interactions. This factor structure appears to be a reliable and valid framework for assessing childhood social phobia.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blennow, Mattias; Herrero-Garcia, Juan; Schwetz, Thomas, E-mail: emb@kth.se, E-mail: juhg@kth.se, E-mail: schwetz@fysik.su.se
We show that a positive signal in a dark matter (DM) direct detection experiment can be used to place a lower bound on the DM capture rate in the Sun, independent of the DM halo. For a given particle physics model and DM mass we obtain a lower bound on the capture rate independent of the local DM density, velocity distribution, galactic escape velocity, as well as the scattering cross section. We illustrate this lower bound on the capture rate by assuming that upcoming direct detection experiments will soon obtain a significant signal. When comparing the lower bound on themore » capture rate with limits on the high-energy neutrino flux from the Sun from neutrino telescopes, we can place upper limits on the branching fraction of DM annihilation channels leading to neutrinos. With current data from IceCube and Super-Kamiokande non-trivial limits can be obtained for spin-dependent interactions and direct annihilations into neutrinos. In some cases also annihilations into ττ or b b start getting constrained. For spin-independent interactions current constraints are weak, but they may become interesting for data from future neutrino telescopes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blennow, Mattias; Herrero-Garcia, Juan; Schwetz, Thomas
We show that a positive signal in a dark matter (DM) direct detection experiment can be used to place a lower bound on the DM capture rate in the Sun, independent of the DM halo. For a given particle physics model and DM mass we obtain a lower bound on the capture rate independent of the local DM density, velocity distribution, galactic escape velocity, as well as the scattering cross section. We illustrate this lower bound on the capture rate by assuming that upcoming direct detection experiments will soon obtain a significant signal. When comparing the lower bound on themore » capture rate with limits on the high-energy neutrino flux from the Sun from neutrino telescopes, we can place upper limits on the branching fraction of DM annihilation channels leading to neutrinos. With current data from IceCube and Super-Kamiokande non-trivial limits can be obtained for spin-dependent interactions and direct annihilations into neutrinos. In some cases also annihilations into ττ or bb start getting constrained. For spin-independent interactions current constraints are weak, but they may become interesting for data from future neutrino telescopes.« less
[Psychiatric polypharmacy: hazard through drug-drug-interaction and possibilities for prevention].
Hahn, M; Braus, D F
2012-09-01
Psychiatric diseases and comorbidity have increased over the past years. Commonly used psychotropic drugs contain a high risk of drug interactions and adverse drug events (ADE). With a frequency of 10-12% psychotropic drugs are, among all pharmaceuticals, the most common cause of hospitalisation due to ADE. During a hospital stay the application of psychotropic drugs can also lead to adverse drug events--sometimes due to drug interactions. Currently, ADEs and drug interactions are the most frequent cause of death for in-patients (18% of all causes of death) with an overall mortality of 0.95%. As studies have shown, hospitals as well as insurers could save a considerable amount of resources by implementing a system with on-ward pharmacists, hereby reducing ADE and re-hospitalisation rates. In recent studies a large amount of current ADEs were rated as preventable. Patient impairment due to ADE is leading to an increase in liability cases with an expected 5% increase of compensation payments in 2011. To evaluate these ADE-related cases, a pharmaceutical assessment should be included in the expert trials, especially since a lack of awareness of medication errors is prevalent. When aiming towards a successful drug therapy, physicians must also consider that cheaper substances may often have an unfavourable drug interaction profile.
Effect of shock interactions on mixing layer between co-flowing supersonic flows in a confined duct
NASA Astrophysics Data System (ADS)
Rao, S. M. V.; Asano, S.; Imani, I.; Saito, T.
2018-03-01
Experiments are conducted to observe the effect of shock interactions on a mixing layer generated between two supersonic streams of Mach number M _{1} = 1.76 and M _{2} = 1.36 in a confined duct. The development of this mixing layer within the duct is observed using high-speed schlieren and static pressure measurements. Two-dimensional, compressible Reynolds averaged Navier-Stokes equations are solved using the k-ω SST turbulence model in Fluent. Further, adverse pressure gradients are imposed by placing inserts of small (<7% of duct height) but finite (> boundary layer thickness) thickness on the walls of the test section. The unmatched pressures cause the mixing layer to bend and lead to the formation of shock structures that interact with the mixing layer. The mixing layer growth rate is found to increase after the shock interaction (nearly doubles). The strongest shock is observed when a wedge insert is placed in the M _{2} flow. This shock interacts with the mixing layer exciting flow modes that produce sinusoidal flapping structures which enhance the mixing layer growth rate to the maximum (by 1.75 times). Shock fluctuations are characterized, and it is observed that the maximum amplitude occurs when a wedge insert is placed in the M _{2} flow.
"It's All Human Error!": When a School Science Experiment Fails
ERIC Educational Resources Information Center
Viechnicki, Gail Brendel; Kuipers, Joel
2006-01-01
This paper traces the sophisticated negotiations to re-inscribe the authority of Nature when a school science experiment fails during the enactment of a highly rated science curriculum unit. Drawing on transcriptions from classroom videotapes, we identify and describe four primary patterns of interaction that characterize this process, arguing…
Heterosexual social competence, anxiety, avoidance and self-judged physical attractiveness.
Mitchell, K R; Orr, F E
1976-10-01
The relationship between self-judged physical attractiveness and opposite-sex behavior was examined as part of a large survey on the interaction patterns of 963 college students. The findings suggest that a self-rated negative physical image is related to significantly high levels of heterosexual difficulties.
Practitioner Perspective: Assessing Child-Care Quality with a Telephone Interview.
ERIC Educational Resources Information Center
Ponder, Karen W.
2001-01-01
Discusses findings that child care quality can be measured effectively and efficiently through telephone interview. Notes that interview items were more highly correlated to the materials composite than to the interaction composite of the Environment Ratings Scales. Describes situations where on-site observation is necessary. Suggests that one…
Towards an Operational Definition of Clinical Competency in Pharmacy
2015-01-01
Objective. To estimate the inter-rater reliability and accuracy of ratings of competence in student pharmacist/patient clinical interactions as depicted in videotaped simulations and to compare expert panelist and typical preceptor ratings of those interactions. Methods. This study used a multifactorial experimental design to estimate inter-rater reliability and accuracy of preceptors’ assessment of student performance in clinical simulations. The study protocol used nine 5-10 minute video vignettes portraying different levels of competency in student performance in simulated clinical interactions. Intra-Class Correlation (ICC) was used to calculate inter-rater reliability and Fisher exact test was used to compare differences in distribution of scores between expert and nonexpert assessments. Results. Preceptors (n=42) across 5 states assessed the simulated performances. Intra-Class Correlation estimates were higher for 3 nonrandomized video simulations compared to the 6 randomized simulations. Preceptors more readily identified high and low student performances compared to satisfactory performances. In nearly two-thirds of the rating opportunities, a higher proportion of expert panelists than preceptors rated the student performance correctly (18 of 27 scenarios). Conclusion. Valid and reliable assessments are critically important because they affect student grades and formative student feedback. Study results indicate the need for pharmacy preceptor training in performance assessment. The process demonstrated in this study can be used to establish minimum preceptor benchmarks for future national training programs. PMID:26089563
Mineralization and nitrification patterns at eight northeastern USA forested research sites
Ross, D.S.; Lawrence, G.B.; Fredriksen, G.
2004-01-01
Nitrogen transformation rates in eight northeastern US research sites were measured in soil samples taken in the early season of 2000 and the late season of 2001. Net mineralization and nitrification rates were determined on Oa or A horizon samples by two different sampling methods - intact cores and repeated measurements on composite samples taken from around the cores. Net rates in the composite samples (n=30) showed three different temporal patterns: high net nitrification with minimal NH4+ accumulation, high net nitrification and high NH4+ accumulation, and minimal net nitrification and moderate NH4+ accumulation. The 4-week net rates in intact cores were about half that of the rates from the composite samples but were well related (R2 > 0.70). Composite samples from sites that exhibited high net nitrification were incubated with acetylene and net nitrification was completely stopped, suggesting an autotrophic pathway. Gross mineralization and nitrification (2000 only) rates were estimated using the isotope dilution technique. Gross rates of nitrification and consumption in intact cores were relatively low. Gross rates of mineralization and net rates of nitrification were both related to the soil C/N ratio, with higher rates generally occurring in sites containing Acer saccharum as a dominant or co-dominant species. The comparison of methods suggests that all provide a similar hierarchy of potential rates but that the degree of net nitrification is strongly influenced by the degree of sample disturbance. Differences between sites appear to be related to an interaction of soil (C/N) and vegetation (A. saccharum contribution) characteristics. ?? 2003 Elsevier B.V. All rights reserved.
Temperament and Parenting during the First Year of Life Predict Future Child Conduct Problems
Lahey, Benjamin B.; Van Hulle, Carol A.; Keenan, Kate; Rathouz, Paul J.; D’Onofrio, Brian M.; Rodgers, Joseph Lee; Waldman, Irwin D.
2010-01-01
Predictive associations between parenting and temperament during the first year of life and child conduct problems were assessed longitudinally in 1,863 offspring of a representative sample of women. Maternal ratings of infant fussiness, activity level, predictability, and positive affect each independently predicted maternal ratings of conduct problems during ages 4–13 years. Furthermore, a significant interaction indicated that infants who were both low in fussiness and high in predictability were at very low risk for future conduct problems. Fussiness was a stronger predictor of conduct problems in boys whereas fearfulness was a stronger predictor in girls. Conduct problems also were robustly predicted by low levels of early mother-report cognitive stimulation. Interviewer-rated maternal responsiveness was a robust predictor of conduct problems, but only among infants low in fearfulness. Spanking during infancy predicted slightly more severe conduct problems, but the prediction was moderated by infant fussiness and positive affect. Thus, individual differences in risk for mother-rated conduct problems across childhood are already partly evident in maternal ratings of temperament during the first year of life and are predicted by early parenting and parenting-by-temperament interactions. PMID:18568397
Unified description of the slip phenomena in sheared polymer films: A molecular dynamics study
NASA Astrophysics Data System (ADS)
Priezjev, Nikolai
2010-03-01
The dynamic behavior of the slip length in shear flow of polymer melts past atomically smooth surfaces is investigated using MD simulations. The polymer melt was modeled as a collection of FENE-LJ bead-spring chains. We consider shear flow conditions at low pressures and weak wall-fluid interaction energy so that fluid velocity profiles are linear throughout the channel at all shear rates examined. In agreement with earlier studies we confirm that for shear- thinning fluids the slip length passes through a local minimum at low shear rates and then increases rapidly at higher shear rates. We found that the rate dependence of the slip length depends on the lattice orientation at high shear rates. The MD results show that the ratio of slip length to viscosity follows a master curve when plotted as a function of a single variable that depends on the structure factor, contact density and temperature of the first fluid layer near the solid wall. The universal dependence of the slip length holds for a number of parameters of the interface: fluid density and structure (chain length), wall-fluid interaction energy, wall density, lattice orientation, thermal or solid walls.
MeV proton acceleration at kHz repetition rate from ultra-intense laser liquid interaction
NASA Astrophysics Data System (ADS)
Morrison, John T.; Feister, Scott; Frische, Kyle D.; Austin, Drake R.; Ngirmang, Gregory K.; Murphy, Neil R.; Orban, Chris; Chowdhury, Enam A.; Roquemore, W. M.
2018-02-01
Laser acceleration of ions to ≳MeV energies has been achieved on a variety of Petawatt laser systems, raising the prospect of ion beam applications using compact ultra-intense laser technology. However, translation from proof-of-concept laser experiment into real-world application requires MeV-scale ion energies and an appreciable repetition rate (>Hz). We demonstrate, for the first time, proton acceleration up to 2 MeV energies at a kHz repetition rate using a milli-joule-class short-pulse laser system. In these experiments, 5 mJ of ultrashort-pulse laser energy is delivered at an intensity near 5× {10}18 {{W}} {cm}}-2 onto a thin-sheet, liquid-density target. Key to this effort is a flowing liquid ethylene glycol target formed in vacuum with thicknesses down to 400 nm and full recovery at 70 μs, suggesting its potential use at ≫kHz rate. Novel detectors and experimental methods tailored to high-repetition-rate ion acceleration by lasers were essential to this study and are described. In addition, particle-in-cell simulations of the laser-plasma interaction show good agreement with experimental observations.
Elucidating the mechanism of protein water channels by molecular dynamics simulations
NASA Astrophysics Data System (ADS)
Grubmuller, Helmut
2004-03-01
Aquaporins are highly selective water channels. Molecular dynamics simulations of multiple water permeation events correctly predict the measured rate and explain at the atomic level why these membrane channels are so efficient, while blocking other small molecules, ions, and even protons. High efficiency is achieved through a carefully tailored balance of hydrogen bonds that the protein substitutes for the bulk interactions; selectivity is achieved mainly by electrostatic barriers.
Subnanosecond measurements of detonation fronts in solid high explosives
NASA Astrophysics Data System (ADS)
Sheffield, S. A.; Bloomquist, D. D.; Tarver, C. M.
1984-04-01
Detonation fronts in solid high explosives have been examined through measurements of particle velocity histories resulting from the interaction of a detonation wave with a thin metal foil backed by a water window. Using a high time resolution velocity-interferometer system, experiments were conducted on three explosives—a TATB (1,3,5-triamino-trinitrobenzene)-based explosive called PBX-9502, TNT (2,4,6-Trinitrotoluene), and CP (2-{5-cyanotetrazolato} pentaamminecobalt {III} perchlorate). In all cases, detonation-front rise times were found to be less than the 300 ps resolution of the interferometer system. The thermodynamic state in the front of the detonation wave was estimated to be near the unreacted state determined from an extrapolation of low-pressure unreacted Hugoniot data for both TNT and PBX-9502 explosives. Computer calculations based on an ignition and growth model of a Zeldovich-von Neumann-Doering (ZND) detonation wave show good agreement with the measurements. By using the unreacted Hugoniot and a JWL equation of state for the reaction products, we estimated the initial reaction rate in the high explosive after the detonation wave front interacted with the foil to be 40 μs-1 for CP, 60 μs-1 for TNT, and 80 μs-1 for PBX-9502. The shape of the profiles indicates the reaction rate decreases as reaction proceeds.
De Coninck, Dieter I M; De Schamphelaere, Karel A C; Jansen, Mieke; De Meester, Luc; Janssen, Colin R
2013-04-15
Natural and chemical stressors occur simultaneously in the aquatic environment. Their combined effects on biota are usually difficult to predict from their individual effects due to interactions between the different stressors. Several recent studies have suggested that synergistic effects of multiple stressors on organisms may be more common at high compared to low overall levels of stress. In this study, we used a three-way full factorial design to investigate whether interactive effects between a natural stressor, the bacterial parasite Pasteuria ramosa, and a chemical stressor, the insecticide carbaryl, were different between two genetically distinct clones of Daphnia magna that strongly differ in their sensitivity to carbaryl. Interactive effects on various life-history and physiological endpoints were assessed as significant deviations from the reference Independent Action (IA) model, which was implemented by testing the significance of the two-way carbaryl×parasite interaction term in two-way ANOVA's on log-transformed observational data for each clone separately. Interactive effects (and thus significant deviations from IA) were detected in both the carbaryl-sensitive clone (on survival, early reproduction and growth) and in the non-sensitive clone (on growth, electron transport activity and prophenoloxidase activity). No interactions were found for maturation rate, filtration rate, and energy reserve fractions (carbohydrate, protein, lipid). Furthermore, only antagonistic interactions were detected in the non-sensitive clone, while only synergistic interactions were observed in the carbaryl sensitive clone. Our data clearly show that there are genetically determined differences in the interactive effects following combined exposure to carbaryl and Pasteuria in D. magna. Copyright © 2013 Elsevier B.V. All rights reserved.
Dispersion Forces and the Molecular Origin of Internal Friction in Protein.
Sashi, Pulikallu; Ramakrishna, Dasari; Bhuyan, Abani K
2016-08-23
Internal friction in macromolecules is one of the curious phenomena that control conformational changes and reaction rates. It is held here that dispersion interactions and London-van der Waals forces between nonbonded atoms are major contributors to internal friction. To demonstrate this, the flipping motion of aromatic rings of F10 and Y97 amino acid residues of cytochrome c has been studied in glycerol/water mixtures by cross relaxation-suppressed exchange nuclear magnetic resonance spectroscopy. The ring-flip rate is highly overdamped by glycerol, but this is not due to the effect of protein-solvent interactions on the Brownian dynamics of the protein, because glycerol cannot penetrate into the protein to slow the internal collective motions. Sound velocity in the protein under matching solvent conditions shows that glycerol exerts its effect by rather smothering the protein interior to produce reduced molecular compressibility and root-mean-square volume fluctuation (δVRMS), implying an increased number of dispersion interactions of nonbonded atoms. Hence, δVRMS can be used as a proxy for internal friction. By using the ansatz that internal friction is related to nonbonded interactions by the equation f(n) = f0 + f1n + f2n(2) + ..., where the variable n is the extent of nonbonded interactions with fi coefficients, the barrier to aromatic ring rotation is found to be flat. Also interesting is the appearance of a turnover region in the δVRMS dependence of the ring-flip rate, suggesting anomalous internal diffusion. We conclude that cohesive forces among nonbonded atoms are major contributors to the molecular origin of internal friction.
Thermodynamic analysis of the interaction of factor VIII with von Willebrand factor.
Dimitrov, Jordan D; Christophe, Olivier D; Kang, Jonghoon; Repessé, Yohann; Delignat, Sandrine; Kaveri, Srinivas V; Lacroix-Desmazes, Sébastien
2012-05-22
Factor VIII (FVIII) is a glycoprotein that plays an important role in the intrinsic pathway of coagulation. In circulation, FVIII is protected upon binding to von Willebrand factor (VWF), a chaperone molecule that regulates its half-life, distribution, and activity. Despite the biological significance of this interaction, its molecular mechanisms are not fully characterized. We determined the equilibrium and activation thermodynamics of the interaction between FVIII and VWF. The equilibrium affinity determined by surface plasmon resonance was temperature-dependent with a value of 0.8 nM at 35 °C. The FVIII-VWF interaction was characterized by very fast association (8.56 × 10(6) M(-1) s(-1)) and fast dissociation (6.89 × 10(-3) s(-1)) rates. Both the equilibrium association and association rate constants, but not the dissociation rate constant, were dependent on temperature. Binding of FVIII to VWF was characterized by favorable changes in the equilibrium and activation entropy (TΔS° = 89.4 kJ/mol, and -TΔS(++) = -8.9 kJ/mol) and unfavorable changes in the equilibrium and activation enthalpy (ΔH° = 39.1 kJ/mol, and ΔH(++) = 44.1 kJ/mol), yielding a negative change in the equilibrium Gibbs energy. Binding of FVIII to VWF in solid-phase assays demonstrated a high sensitivity to acidic pH and a sensitivity to ionic strength. Our data indicate that the interaction between FVIII and VWF is mediated mainly by electrostatic forces, and that it is not accompanied by entropic constraints, suggesting the absence of conformational adaptation but the presence of rigid "pre-optimized" binding surfaces.
Kochanska, Grazyna; Kim, Sanghag
2012-01-01
Background Research has shown that interactions between young children’s temperament and the quality of care they receive predict the emergence of positive and negative socioemotional developmental outcomes. This multi-method study addresses such interactions, using observed and mother-rated measures of difficult temperament, children’s committed, self-regulated compliance and externalizing problems, and mothers’ responsiveness in a low-income sample. Methods In 186 30-month-old children, difficult temperament was observed in the laboratory (as poor effortful control and high anger proneness), and rated by mothers. Mothers’ responsiveness was observed in lengthy naturalistic interactions at 30 and 33 months. At 40 months, children’s committed compliance and externalizing behavior problems were assessed using observations and several well-established maternal report instruments. Results Parallel significant interactions between child difficult temperament and maternal responsiveness were found across both observed and mother-rated measures of temperament. For difficult children, responsiveness had a significant effect such that those children were more compliant and had fewer externalizing problems when they received responsive care, but were less compliant and had more behavior problems when they received unresponsive care. For children with easy temperaments, maternal responsiveness and developmental outcomes were unrelated. All significant interactions reflected the diathesis-stress model. There was no evidence of differential susceptibility, perhaps due to the pervasive stress present in the ecology of the studied families. Conclusions Those findings add to the growing body of evidence that for temperamentally difficult children, unresponsive parenting exacerbates risks for behavior problems, but responsive parenting can effectively buffer risks conferred by temperament. PMID:23057713
NASA Technical Reports Server (NTRS)
Wilson, L. B., III; Sibeck, D. G.; Breneman, A.W.; Le Contel, O.; Cully, C.; Turner, D. L.; Angelopoulos, V.; Malaspina, D. M.
2014-01-01
We present a detailed outline and discussion of the analysis techniques used to compare the relevance of different energy dissipation mechanisms at collisionless shock waves. We show that the low-frequency, quasi-static fields contribute less to ohmic energy dissipation, (-j · E ) (minus current density times measured electric field), than their high-frequency counterparts. In fact, we found that high-frequency, large-amplitude (greater than 100 millivolts per meter and/or greater than 1 nanotesla) waves are ubiquitous in the transition region of collisionless shocks. We quantitatively show that their fields, through wave-particle interactions, cause enough energy dissipation to regulate the global structure of collisionless shocks. The purpose of this paper, part one of two, is to outline and describe in detail the background, analysis techniques, and theoretical motivation for our new results presented in the companion paper. The companion paper presents the results of our quantitative energy dissipation rate estimates and discusses the implications. Together, the two manuscripts present the first study quantifying the contribution that high-frequency waves provide, through wave-particle interactions, to the total energy dissipation budget of collisionless shock waves.
The threshold of vapor channel formation in water induced by pulsed CO2 laser
NASA Astrophysics Data System (ADS)
Guo, Wenqing; Zhang, Xianzeng; Zhan, Zhenlin; Xie, Shusen
2012-12-01
Water plays an important role in laser ablation. There are two main interpretations of laser-water interaction: hydrokinetic effect and vapor phenomenon. The two explanations are reasonable in some way, but they can't explain the mechanism of laser-water interaction completely. In this study, the dynamic process of vapor channel formation induced by pulsed CO2 laser in static water layer was monitored by high-speed camera. The wavelength of pulsed CO2 laser is 10.64 um, and pulse repetition rate is 60 Hz. The laser power ranged from 1 to 7 W with a step of 0.5 W. The frame rate of high-speed camera used in the experiment was 80025 fps. Based on high-speed camera pictures, the dynamic process of vapor channel formation was examined, and the threshold of vapor channel formation, pulsation period, the volume, the maximum depth and corresponding width of vapor channel were determined. The results showed that the threshold of vapor channel formation was about 2.5 W. Moreover, pulsation period, the maximum depth and corresponding width of vapor channel increased with the increasing of the laser power.
NASA Astrophysics Data System (ADS)
Sankar, K. Vijaya; Lee, S. C.; Seo, Y.; Ray, C.; Liu, S.; Kundu, A.; Jun, S. C.
2018-01-01
One-dimensional (1D) nanostructure exhibits excellent electrochemical performance because of their unique physico-chemical properties like fast electron transfer, good rate capability, and cyclic stability. In the present study, Co3(PO4)2 1D nanograsses are grown on Ni foam using a simple and eco-friendly hydrothermal technique with different reaction times. The open space with uniform nanograsses displays a high areal capacitance, rate capability, energy density, and cyclic stability due to the nanostructure enhancing fast ion and material interactions. Ex-situ microscope images confirm the dependence of structural stability on the reaction time, and the nanograsses promoted ion interaction through material. Further, the reproducibility of the electrochemical performance confirms the binder-free Co3(PO4)2 1D nanograsses to be a suitable high-performance cathode material for application to hybrid supercapacitor. Finally, the assembled hybrid supercapacitor exhibits a high energy density (26.66 Wh kg-1 at 750 W kg-1) and longer lifetimes (80% retained capacitance after 6000 cycles). Our results suggests that the Co3(PO4)2 1D nanograss design have a great promise for application to hybrid supercapacitor.
Rhodes, F; Wolitski, R J
1990-01-01
A study was conducted with 261 community residents, college students, and intravenous drug users to investigate perceived effectiveness of fear appeals in AIDS education posters. Experimental posters with high-fear pictures portraying severe consequences of AIDS and low-fear posters that were neutral regarding disease severity were evaluated in terms of their perceived effectiveness in motivating people to use condoms. Posters also contained written messages communicating high and low levels of personal vulnerability and response efficacy. High-severity/fear posters were rated as significantly more effective than low-severity/fear posters (p less than .0001), but response efficacy and personal vulnerability were significant only in interaction with other variables (p less than .01). Age, gender, ethnicity, and group membership did not, in general, influence rated effectiveness. However, group membership and age were significant as interactions with severity/fear level and response efficacy, respectively (p less than .01). Subjects showed no differential preference for posters portraying individuals whose ethnicity was the same as their own. Findings confirmed previous research supporting the effectiveness of fear appeals and suggest that fear-oriented appeals may be effective in promoting changes in community norms and motivating individuals to adopt AIDS risk-reduction strategies.
Pedestal cleaning for high laser pulse contrast ratio with a 100 TW class laser system.
Fourmaux, S; Payeur, S; Buffechoux, S; Lassonde, P; St-Pierre, C; Martin, F; Kieffer, J C
2011-04-25
Laser matter interaction at relativistic intensities using 100 TW class laser systems or higher is becoming more and more widespread. One of the critical issues of such laser systems is to let the laser pulse interact at high intensity with the solid target and avoid any pre-plasma. Thus, a high Laser Pulse Contrast Ratio (LPCR) parameter is of prime importance. We present the LPCR characterization of a high repetition 100 TW class laser system. We demonstrate that the generated Amplified Spontaneous Emission (ASE) degrades the overall LPCR performance. We propose a simple way to clean the pulse after the first amplification stage by introducing a solid state saturable absorber which results in a LPCR improvement to better than 10(10) with only a 30% energy loss at a 10 Hz repetition rate. We finally correlated this cleaning method with experimental results.
Motoca, Luci M; Williams, Sandra; Silverman, Wendy K
2012-01-01
The present study used a cross-sectional design to examine the relations among youth anxiety symptoms, positive and negative peer interactions, and social skills. Also examined was the mediating role of social skills in the relations between youth anxiety symptoms and positive and negative peer interactions. Youth sex and age were examined as moderators. The sample consisted of 397 children and adolescents (M = 10.11 years; 53.4% boys; 74.8% Hispanic Latino) referred to an anxiety disorders clinic. Anxiety symptoms, positive and negative peer interactions, and social skills were assessed using youth and parent ratings. Structural equation modeling results indicated that for youth ratings only, youth anxiety symptoms were negatively related to positive peer interactions controlling for primary social phobia and comorbid depressive disorders. For both youth and parent ratings, youth anxiety symptoms were positively related to negative peer interactions and negatively related to social skills. Also for both youth and parent ratings, social skills mediated the relations between youth anxiety symptoms and positive and negative peer interactions. For parent ratings only, the effects of youth anxiety symptoms and social skills on peer interactions were significantly moderated by youth age. Youth sex was not a significant moderator using youth and parent ratings. Findings suggest that difficulties with social skills and peer interactions are problematic features of youth referred for anxiety problems. Findings highlight the need to improve understanding of anxiety symptoms, social skills, and peer interactions in this population.
Motoca, Luci M.; Williams, Sandra; Silverman, Wendy K.
2012-01-01
Objective The present study used a cross-sectional design to examine the relations among youth anxiety symptoms, positive and negative peer interactions, and social skills. Also examined was the mediating role of social skills in the relations between youth anxiety symptoms and positive and negative peer interactions. Youth sex and age were examined as moderators. Method The sample consisted of 397 children and adolescents (M = 10.11 years; 53.4% boys; 74.8% Hispanic Latino) referred to an anxiety disorders clinic. Anxiety symptoms, positive and negative peer interactions, and social skills were assessed using youth and parent ratings. Results Structural equation modeling results indicated that for youth ratings only, youth anxiety symptoms were negatively related to positive peer interactions controlling for primary social phobia and comorbid depressive disorders. For both youth and parent ratings, youth anxiety symptoms were positively related to negative peer interactions and negatively related to social skills. Also for both youth and parent ratings, social skills mediated the relations between youth anxiety symptoms and positive and negative peer interactions. For parent ratings only, the effects of youth anxiety symptoms and social skills on peer interactions were significantly moderated by youth age. Youth sex was not a significant moderator using youth and parent ratings. Conclusions Findings suggest difficulties with social skills and peer interactions are problematic features of youth referred for anxiety problems. Findings highlight the need to improve understanding of anxiety symptoms, social skills, and peer interactions in this population. PMID:22471319
NASA Astrophysics Data System (ADS)
Zhao, Yuanyuan; Jiang, Guoliang; Hu, Jiandong; Hu, Fengjiang; Wei, Jianguang; Shi, Liang
2010-10-01
In the immunology, there are two important types of biomolecular interaction: antigens-antibodies and receptors-ligands. Monitoring the response rate and affinity of biomolecular interaction can help analyze the protein function, drug discover, genomics and proteomics research. Moreover the association rate constant and dissociation rate constant of receptors-ligands are the important parameters for the study of signal transmission between cells. Recent advances in bioanalyzer instruments have greatly simplified the measurement of the kinetics of molecular interactions. Non-destructive and real-time monitoring the response to evaluate the parameters between antigens and antibodies can be performed by using optical surface plasmon resonance (SPR) biosensor technology. This technology provides a quantitative analysis that is carried out rapidly with label-free high-throughput detection using the binding curves of antigens-antibodies. Consequently, the kinetic parameters of interaction between antigens and antibodies can be obtained. This article presents a low cost integrated SPR-based bioanalyzer (HPSPR-6000) designed by ourselves. This bioanalyzer is mainly composed of a biosensor TSPR1K23, a touch-screen monitor, a microprocessor PIC24F128, a microflow cell with three channels, a clamp and a photoelectric conversion device. To obtain the kinetic parameters, sensorgrams may be modeled using one of several binding models provided with BIAevaluation software 3.0, SensiQ or Autolab. This allows calculation of the association rate constant (ka) and the dissociation rate constant (kd). The ratio of ka to kd can be used to estimate the equilibrium constant. Another kind is the analysis software OriginPro, which can process the obtained data by nonlinear fitting and then get some correlative parameters, but it can't be embedded into the bioanalyzer, so the bioanalyzer don't support the use of OriginPro. This paper proposes a novel method to evaluate the kinetic parameters of biomolecular interaction by using Newton Iteration Method and Least Squares Method. First, the pseudo first order kinetic model of biomolecular interaction was established. Then the data of molecular interaction of HBsAg and HBsAb was obtained by bioanalyzer. Finally, we used the optical SPR bioanalyzer software which was written by ourselves to make nonlinear fit about the association and dissociation curves. The correlation coefficient R-squared is 0.99229 and 0.99593, respectively. Furthermore, the kinetic parameters and affinity constants were evaluated using the obtained data from the fitting results.
Development of an Observational Procedure for Assessment of Parent-Child Interaction.
ERIC Educational Resources Information Center
Cunningham, Jo Lynn; Boger, Robert P.
The feasibility of using an observational rating schedule to elicit information about parent-child interaction was studied. The Parent-Child Interaction Rating Procedure (P-CIRP), focusing specifically on parent-child interaction with a structured teaching task, was developed for this purpose. The interaction setting is teaching the child simple…
Indirect effects and traditional trophic cascades: a test involving wolves, coyotes, and pronghorn.
Berger, Kim Murray; Gese, Eric M; Berger, Joel
2008-03-01
The traditional trophic cascades model is based on consumer resource interactions at each link in a food chain. However, trophic-level interactions, such as mesocarnivore release resulting from intraguild predation, may also be important mediators of cascades. From September 2001 to August 2004, we used spatial and seasonal heterogeneity in wolf distribution and abundance in the southern Greater Yellowstone Ecosystem to evaluate whether mesopredator release of coyotes (Canis latrans), resulting from the extirpation of wolves (Canis lupus), accounts for high rates of coyote predation on pronghorn (Antilocapra americana) fawns observed in some areas. Results of this ecological perturbation in wolf densities, coyote densities, and pronghorn neonatal survival at wolf-free and wolf-abundant sites support the existence of a species-level trophic cascade. That wolves precipitated a trophic cascade was evidenced by fawn survival rates that were four-fold higher at sites used by wolves. A negative correlation between coyote and wolf densities supports the hypothesis that interspecific interactions between the two species facilitated the difference in fawn survival. Whereas densities of resident coyotes were similar between wolf-free and wolf-abundant sites, the abundance of transient coyotes was significantly lower in areas used by wolves. Thus, differential effects of wolves on solitary coyotes may be an important mechanism by which wolves limit coyote densities. Our results support the hypothesis that mesopredator release of coyotes contributes to high rates of coyote predation on pronghorn fawns, and demonstrate the importance of alternative food web pathways in structuring the dynamics of terrestrial systems.
NASA Astrophysics Data System (ADS)
Li, G.; Campbell, D. A.
2015-10-01
Among marine phytoplankton groups, diatoms span the widest range of cell size, with resulting effects upon their nitrogen uptake, photosynthesis and growth responses to light. We grew two strains of marine centric diatoms, the small Thalassiosira pseudonana and the larger T. punctigera in high and low nitrogen media, across a range of growth light levels. Nitrogen and total proteins per cell decreased with increasing growth light in both species when grown under low nitrogen media. Surprisingly, low nitrogen increased the cellular allocation to RUBISCO and the rate of electron transport away from Photosystem II for the smaller diatom under low growth light, and for the larger diatom across the range of growth lights. Low nitrogen decreased the growth rate of the smaller diatom, particularly under higher light, but stimulated the growth rate of the larger diatom. Our results show that the high nitrogen in common growth media favours the growth rate of a small diatom but inhibits growth of a larger species.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Avery, H.W.
1988-08-01
Juvenile slider turtles (Trachemys scripta) were used in laboratory experiments to determine the effects of dietary protein and ambient temperature on growth rates, food consumption rates, digestion rates and digestive efficiencies, in order to better understand how the interactive roles these environmental factors may potentially influence body sizes and growth rates of individuals among wild slider turtle populations. Changes in plastron length, carapace length and body mass were significantly greater for Trachemys scripta eating 25% and 40% crude protein diets than for those eating 10% crude protein. Those consuming 10% crude protein showed significant decreases in all measurements of bodymore » size over a 13 wk period. These data suggest that dietary protein may be an important nutritional component to the growth of juvenile slider turtles, and that elevated thermal conditions, combined with a high dietary protein availability, may in part explain the exceedingly high growth rates of slider turtles attained in certain wild populations. 63 refs., 11 figs., 6 tabs.« less
Abortion in Vietnam: measurements, puzzles, and concerns.
Goodkind, D
1994-01-01
This report summarizes current knowledge about abortion in Vietnam, drawing upon government statistics, survey data, and fieldwork undertaken by the author in Vietnam throughout 1993 and part of 1994. The official total abortion rate in Vietnam in 1992 was about 2.5 per woman, the highest in Asia and worrisome for a country with a still-high total fertility rate of 3.7 children per woman. Vietnamese provinces exhibited substantial variation in both the rate of abortion and the type of procedures performed. Among the hypotheses explored to explain Vietnam's high rate of abortion are the borrowing of family planning strategies from other poor socialist states where abortion is common; current antinatal population policies that interact with a lack of contraceptive alternatives; and a rise in pregnancies among young and unmarried women in the wake of recent free-market reforms. Because family-size preferences are still declining, abortion rates may continue to increase unless the incidence of unwanted pregnancy can be reduced, a goal that Vietnamese population specialists are seeking to achieve.
Hydrodynamic interaction of swimming organisms in an inertial regime
NASA Astrophysics Data System (ADS)
Li, Gaojin; Ostace, Anca; Ardekani, Arezoo M.
2016-11-01
We numerically investigate the hydrodynamic interaction of swimming organisms at small to intermediate Reynolds number regimes, i.e., Re˜O (0.1 -100 ) , where inertial effects are important. The hydrodynamic interaction of swimming organisms in this regime is significantly different from the Stokes regime for microorganisms, as well as the high Reynolds number flows for fish and birds, which involves strong flow separation and detached vortex structures. Using an archetypal swimmer model, called a "squirmer," we find that the inertial effects change the contact time and dispersion dynamics of a pair of pusher swimmers, and trigger hydrodynamic attraction for two pullers. These results are potentially important in investigating predator-prey interactions, sexual reproduction, and the encounter rate of marine organisms such as copepods, ctenophora, and larvae.
Gamma rays from clumpy wind-jet interactions in high-mass microquasars
NASA Astrophysics Data System (ADS)
de la Cita, V. M.; del Palacio, S.; Bosch-Ramon, V.; Paredes-Fortuny, X.; Romero, G. E.; Khangulyan, D.
2017-07-01
Context. The stellar winds of the massive stars in high-mass microquasars are thought to be inhomogeneous. The interaction of these inhomogeneities, or clumps, with the jets of these objects may be a major factor in gamma-ray production. Aims: Our goal is to characterize a typical scenario of clump-jet interaction, and calculate the contribution of these interactions to the gamma-ray emission from these systems. Methods: We use axisymmetric, relativistic hydrodynamical simulations to model the emitting flow in a typical clump-jet interaction. Using the simulation results we perform a numerical calculation of the high-energy emission from one of these interactions. The radiative calculations are performed for relativistic electrons locally accelerated at the jet shock, and the synchrotron and inverse Compton radiation spectra are computed for different stages of the shocked clump evolution. We also explore different parameter values, such as viewing angle and magnetic field strength. The results derived from one clump-jet interaction are generalized phenomenologically to multiple interactions under different wind models, estimating the clump-jet interaction rates, and the resulting luminosities in the GeV range. Results: If particles are efficiently accelerated in clump-jet interactions, the apparent gamma-ray luminosity through inverse Compton scattering with the stellar photons can be significant even for rather strong magnetic fields and thus efficient synchrotron cooling. Moreover, despite the standing nature or slow motion of the jet shocks for most of the interaction stage, Doppler boosting in the postshock flow is relevant even for mildly relativistic jets. Conclusions: For clump-to-average wind density contrasts greater than or equal to ten, clump-jet interactions could be bright enough to match the observed GeV luminosity in Cyg X-1 and Cyg X-3 when a jet is present in these sources, with required non-thermal-to-total available power fractions greater than 0.01 and 0.1, respectively.
Rahmati, Nazanin Fatemeh; Koocheki, Arash; Varidi, Mehdi; Kadkhodaee, Rassoul
2018-03-01
Thermodynamic compatibility and probable interactions between Speckled Sugar been protein (SSBP) and xanthan gum for production of multilayer O/W emulsion (30% oil) were investigated. Different interactions were observed between SSBP and xanthan at different pH (3-7) including electrostatic interactions and hydrogen bonding. These interactions were predominant at pH 3. When low xanthan gum concentration (0.1%) was used, phase separation and complex coacervation observed at this pH (negative effect of interactions). However, at pH 5, only 0.1% xanthan was enough to drastically reduce non-dissolved protein and its precipitation which normally occurs at this pH. In addition, incompatibility or segregative phase behavior which normally occurs when protein and polysaccharide have same charges was not observed (positive effects of interactions). Protein-gum interactions influenced emulsion properties (zeta potential, particle size, PDI, rheology, emulsion capacity, heat stability and creaming rate). Interactions had considerable influence on emulsion shelf life and produced completely stable emulsions at all pH values. Results confirmed that SSBP-xanthan gum mixture has a high potential for production of multilayer emulsions.
DeJager, Nathan R.; Rohweder, Jason; Miranda, Brian R.; Sturtevant, Brian R.; Fox, Timothy J.; Romanski, Mark C.
2017-01-01
Loss of top predators may contribute to high ungulate population densities and chronic over-browsing of forest ecosystems. However, spatial and temporal variability in the strength of interactions between predators and ungulates occurs over scales that are much shorter than the scales over which forest communities change, making it difficult to characterize trophic cascades in forest ecosystems. We applied the LANDIS-II forest succession model and a recently developed ungulate browsing extension to model how the moose population could interact with the forest ecosystem of Isle Royale National Park, USA, under three different wolf predation scenarios. We contrasted a 100-yr future without wolves (no predation) with two predation scenarios (weak, long-term average predation rates and strong, higher than average rates). Increasing predation rates led to lower peak moose population densities, lower biomass removal rates, and higher estimates of forage availability and landscape carrying capacity, especially during the first 40 yr of simulations. Thereafter, moose population density was similar for all predation scenarios, but available forage biomass and the carrying capacity of the landscape continued to diverge among predation scenarios. Changes in total aboveground live biomass and species composition were most pronounced in the no predation and weak predation scenarios. Consistent with smaller-scale studies, high browsing rates led to reductions in the biomass of heavily browsed Populus tremuloides, Betula papyrifera, and Abies balsamea, and increases in the biomass of unbrowsed Picea glauca and Picea mariana, especially after the simulation year 2050, when existing boreal hardwood stands at Isle Royale are projected to senesce. As a consequence, lower predation rates corresponded with a landscape that progressively shifted toward dominance by Picea glauca and Picea mariana, and lacking available forage biomass. Consistencies with previously documented small-scale successional shifts, and population estimates and trends that approximate those from this and other boreal forests that support moose provide some confidence that these dynamics represent a trophic cascade and therefore provide an important baseline against which to evaluate long-term and large-scale effects of alternative predator management strategies on ungulate populations and forest succession.
Chagas, Andrezza C.; McPhie, Peter; San, Hong; Narum, David; Reiter, Karine; Tokomasu, Fuyuki; Brayner, Fabio A.; Alves, Luiz C.; Ribeiro, José M. C.; Calvo, Eric
2014-01-01
Background Among the several challenges faced by bloodsucking arthropods, the vertebrate hemostatic response against blood loss represents an important barrier to efficient blood feeding. Here we report the first inhibitor of collagen-induced platelet aggregation derived from the salivary glands of a black fly (Simulium nigrimanum), named Simplagrin. Methods and Findings Simplagrin was expressed in mammalian cells and purified by affinity-and size-exclusion chromatography. Light-scattering studies showed that Simplagrin has an elongated monomeric form with a hydrodynamic radius of 5.6 nm. Simplagrin binds to collagen (type I-VI) with high affinity (2–15 nM), and this interaction does not involve any significant conformational change as determined by circular dichroism spectroscopy. Simplagrin-collagen interaction is both entropically and enthalpically driven with a large negative ΔG, indicating that this interaction is favorable and occurs spontaneously. Simplagrin specifically inhibits von Willebrand factor interaction with collagen type III and completely blocks platelet adhesion to collagen under flow conditions at high shear rates; however, Simplagrin failed to block glycoprotein VI and Iα2β1 interaction to collagen. Simplagrin binds to RGQOGVMGF peptide with an affinity (KD 11 nM) similar to that of Simplagrin for collagen. Furthermore, Simplagrin prevents laser-induced carotid thrombus formation in vivo without significant bleeding in mice and could be useful as an antithrombotic agent in thrombosis related disease. Conclusion Our results support the orthology of the Aegyptin clade in bloodsucking Nematocera and the hypothesis of a faster evolutionary rate of salivary function of proteins from blood feeding arthropods. PMID:24921659
Crocker, D.E.; Kofahl, N.; Fellers, G.D.; Gates, N.B.; Houser, D.S.
2007-01-01
We measured water flux and energy expenditure in free-ranging Point Reyes mountain beavers Aplodontia rufa phaea by using the doubly labeled water method. Previous laboratory investigations have suggested weak urinary concentrating ability, high rates of water flux, and low basal metabolic rates in this species. However, free-ranging measurements from hygric mammals are rare, and it is not known how these features interact in the environment. Rates of water flux (210 ?? 32 mL d-1) and field metabolic rates (1,488 ?? 486 kJ d-1) were 159% and 265%, respectively, of values predicted by allometric equations for similar-sized herbivores. Mountain beavers can likely meet their water needs through metabolic water production and preformed water in food and thus remain in water balance without access to free water. Arginine-vasopressin levels were strongly correlated with rates of water flux and plasma urea : creatinine ratios, suggesting an important role for this hormone in regulating urinary water loss in mountain beavers. High field metabolic rates may result from cool burrow temperatures that are well below lower critical temperatures measured in previous laboratory studies and suggest that thermoregulation costs may strongly influence field energetics and water flux in semifossorial mammals. ?? 2007 by The University of Chicago. All rights reserved.
Masking release for words in amplitude-modulated noise as a function of modulation rate and task
Buss, Emily; Whittle, Lisa N.; Grose, John H.; Hall, Joseph W.
2009-01-01
For normal-hearing listeners, masked speech recognition can improve with the introduction of masker amplitude modulation. The present experiments tested the hypothesis that this masking release is due in part to an interaction between the temporal distribution of cues necessary to perform the task and the probability of those cues temporally coinciding with masker modulation minima. Stimuli were monosyllabic words masked by speech-shaped noise, and masker modulation was introduced via multiplication with a raised sinusoid of 2.5–40 Hz. Tasks included detection, three-alternative forced-choice identification, and open-set identification. Overall, there was more masking release associated with the closed than the open-set tasks. The best rate of modulation also differed as a function of task; whereas low modulation rates were associated with best performance for the detection and three-alternative identification tasks, performance improved with modulation rate in the open-set task. This task-by-rate interaction was also observed when amplitude-modulated speech was presented in a steady masker, and for low- and high-pass filtered speech presented in modulated noise. These results were interpreted as showing that the optimal rate of amplitude modulation depends on the temporal distribution of speech cues and the information required to perform a particular task. PMID:19603883
Social contact patterns can buffer costs of forgetting in the evolution of cooperation.
Stevens, Jeffrey R; Woike, Jan K; Schooler, Lael J; Lindner, Stefan; Pachur, Thorsten
2018-06-13
Analyses of the evolution of cooperation often rely on two simplifying assumptions: (i) individuals interact equally frequently with all social network members and (ii) they accurately remember each partner's past cooperation or defection. Here, we examine how more realistic, skewed patterns of contact-in which individuals interact primarily with only a subset of their network's members-influence cooperation. In addition, we test whether skewed contact patterns can counteract the decrease in cooperation caused by memory errors (i.e. forgetting). Finally, we compare two types of memory error that vary in whether forgotten interactions are replaced with random actions or with actions from previous encounters. We use evolutionary simulations of repeated prisoner's dilemma games that vary agents' contact patterns, forgetting rates and types of memory error. We find that highly skewed contact patterns foster cooperation and also buffer the detrimental effects of forgetting. The type of memory error used also influences cooperation rates. Our findings reveal previously neglected but important roles of contact pattern, type of memory error and the interaction of contact pattern and memory on cooperation. Although cognitive limitations may constrain the evolution of cooperation, social contact patterns can counteract some of these constraints. © 2018 The Author(s).
NASA Astrophysics Data System (ADS)
Ablyazimov, T.; Abuhoza, A.; Adak, R. P.; Adamczyk, M.; Agarwal, K.; Aggarwal, M. M.; Ahammed, Z.; Ahmad, F.; Ahmad, N.; Ahmad, S.; Akindinov, A.; Akishin, P.; Akishina, E.; Akishina, T.; Akishina, V.; Akram, A.; Al-Turany, M.; Alekseev, I.; Alexandrov, E.; Alexandrov, I.; Amar-Youcef, S.; Anđelić, M.; Andreeva, O.; Andrei, C.; Andronic, A.; Anisimov, Yu.; Appelshäuser, H.; Argintaru, D.; Atkin, E.; Avdeev, S.; Averbeck, R.; Azmi, M. D.; Baban, V.; Bach, M.; Badura, E.; Bähr, S.; Balog, T.; Balzer, M.; Bao, E.; Baranova, N.; Barczyk, T.; Bartoş, D.; Bashir, S.; Baszczyk, M.; Batenkov, O.; Baublis, V.; Baznat, M.; Becker, J.; Becker, K.-H.; Belogurov, S.; Belyakov, D.; Bendarouach, J.; Berceanu, I.; Bercuci, A.; Berdnikov, A.; Berdnikov, Y.; Berendes, R.; Berezin, G.; Bergmann, C.; Bertini, D.; Bertini, O.; Beşliu, C.; Bezshyyko, O.; Bhaduri, P. P.; Bhasin, A.; Bhati, A. K.; Bhattacharjee, B.; Bhattacharyya, A.; Bhattacharyya, T. K.; Biswas, S.; Blank, T.; Blau, D.; Blinov, V.; Blume, C.; Bocharov, Yu.; Book, J.; Breitner, T.; Brüning, U.; Brzychczyk, J.; Bubak, A.; Büsching, H.; Bus, T.; Butuzov, V.; Bychkov, A.; Byszuk, A.; Cai, Xu; Cãlin, M.; Cao, Ping; Caragheorgheopol, G.; Carević, I.; Cătănescu, V.; Chakrabarti, A.; Chattopadhyay, S.; Chaus, A.; Chen, Hongfang; Chen, LuYao; Cheng, Jianping; Chepurnov, V.; Cherif, H.; Chernogorov, A.; Ciobanu, M. I.; Claus, G.; Constantin, F.; Csanád, M.; D'Ascenzo, N.; Das, Supriya; Das, Susovan; de Cuveland, J.; Debnath, B.; Dementiev, D.; Deng, Wendi; Deng, Zhi; Deppe, H.; Deppner, I.; Derenovskaya, O.; Deveaux, C. A.; Deveaux, M.; Dey, K.; Dey, M.; Dillenseger, P.; Dobyrn, V.; Doering, D.; Dong, Sheng; Dorokhov, A.; Dreschmann, M.; Drozd, A.; Dubey, A. K.; Dubnichka, S.; Dubnichkova, Z.; Dürr, M.; Dutka, L.; Dželalija, M.; Elsha, V. V.; Emschermann, D.; Engel, H.; Eremin, V.; Eşanu, T.; Eschke, J.; Eschweiler, D.; Fan, Huanhuan; Fan, Xingming; Farooq, M.; Fateev, O.; Feng, Shengqin; Figuli, S. P. D.; Filozova, I.; Finogeev, D.; Fischer, P.; Flemming, H.; Förtsch, J.; Frankenfeld, U.; Friese, V.; Friske, E.; Fröhlich, I.; Frühauf, J.; Gajda, J.; Galatyuk, T.; Gangopadhyay, G.; García Chávez, C.; Gebelein, J.; Ghosh, P.; Ghosh, S. K.; Gläßel, S.; Goffe, M.; Golinka-Bezshyyko, L.; Golovatyuk, V.; Golovnya, S.; Golovtsov, V.; Golubeva, M.; Golubkov, D.; Gómez Ramírez, A.; Gorbunov, S.; Gorokhov, S.; Gottschalk, D.; Gryboś, P.; Grzeszczuk, A.; Guber, F.; Gudima, K.; Gumiński, M.; Gupta, A.; Gusakov, Yu.; Han, Dong; Hartmann, H.; He, Shue; Hehner, J.; Heine, N.; Herghelegiu, A.; Herrmann, N.; Heß, B.; Heuser, J. M.; Himmi, A.; Höhne, C.; Holzmann, R.; Hu, Dongdong; Huang, Guangming; Huang, Xinjie; Hutter, D.; Ierusalimov, A.; Ilgenfritz, E.-M.; Irfan, M.; Ivanischev, D.; Ivanov, M.; Ivanov, P.; Ivanov, Valery; Ivanov, Victor; Ivanov, Vladimir; Ivashkin, A.; Jaaskelainen, K.; Jahan, H.; Jain, V.; Jakovlev, V.; Janson, T.; Jiang, Di; Jipa, A.; Kadenko, I.; Kähler, P.; Kämpfer, B.; Kalinin, V.; Kallunkathariyil, J.; Kampert, K.-H.; Kaptur, E.; Karabowicz, R.; Karavichev, O.; Karavicheva, T.; Karmanov, D.; Karnaukhov, V.; Karpechev, E.; Kasiński, K.; Kasprowicz, G.; Kaur, M.; Kazantsev, A.; Kebschull, U.; Kekelidze, G.; Khan, M. M.; Khan, S. A.; Khanzadeev, A.; Khasanov, F.; Khvorostukhin, A.; Kirakosyan, V.; Kirejczyk, M.; Kiryakov, A.; Kiš, M.; Kisel, I.; Kisel, P.; Kiselev, S.; Kiss, T.; Klaus, P.; Kłeczek, R.; Klein-Bösing, Ch.; Kleipa, V.; Klochkov, V.; Kmon, P.; Koch, K.; Kochenda, L.; Koczoń, P.; Koenig, W.; Kohn, M.; Kolb, B. W.; Kolosova, A.; Komkov, B.; Korolev, M.; Korolko, I.; Kotte, R.; Kovalchuk, A.; Kowalski, S.; Koziel, M.; Kozlov, G.; Kozlov, V.; Kramarenko, V.; Kravtsov, P.; Krebs, E.; Kreidl, C.; Kres, I.; Kresan, D.; Kretschmar, G.; Krieger, M.; Kryanev, A. V.; Kryshen, E.; Kuc, M.; Kucewicz, W.; Kucher, V.; Kudin, L.; Kugler, A.; Kumar, Ajit; Kumar, Ashwini; Kumar, L.; Kunkel, J.; Kurepin, A.; Kurepin, N.; Kurilkin, A.; Kurilkin, P.; Kushpil, V.; Kuznetsov, S.; Kyva, V.; Ladygin, V.; Lara, C.; Larionov, P.; Laso García, A.; Lavrik, E.; Lazanu, I.; Lebedev, A.; Lebedev, S.; Lebedeva, E.; Lehnert, J.; Lehrbach, J.; Leifels, Y.; Lemke, F.; Li, Cheng; Li, Qiyan; Li, Xin; Li, Yuanjing; Lindenstruth, V.; Linnik, B.; Liu, Feng; Lobanov, I.; Lobanova, E.; Löchner, S.; Loizeau, P.-A.; Lone, S. A.; Lucio Martínez, J. A.; Luo, Xiaofeng; Lymanets, A.; Lyu, Pengfei; Maevskaya, A.; Mahajan, S.; Mahapatra, D. P.; Mahmoud, T.; Maj, P.; Majka, Z.; Malakhov, A.; Malankin, E.; Malkevich, D.; Malyatina, O.; Malygina, H.; Mandal, M. M.; Mandal, S.; Manko, V.; Manz, S.; Marin Garcia, A. M.; Markert, J.; Masciocchi, S.; Matulewicz, T.; Meder, L.; Merkin, M.; Mialkovski, V.; Michel, J.; Miftakhov, N.; Mik, L.; Mikhailov, K.; Mikhaylov, V.; Milanović, B.; Militsija, V.; Miskowiec, D.; Momot, I.; Morhardt, T.; Morozov, S.; Müller, W. F. J.; Müntz, C.; Mukherjee, S.; Muñoz Castillo, C. E.; Murin, Yu.; Najman, R.; Nandi, C.; Nandy, E.; Naumann, L.; Nayak, T.; Nedosekin, A.; Negi, V. S.; Niebur, W.; Nikulin, V.; Normanov, D.; Oancea, A.; Oh, Kunsu; Onishchuk, Yu.; Ososkov, G.; Otfinowski, P.; Ovcharenko, E.; Pal, S.; Panasenko, I.; Panda, N. R.; Parzhitskiy, S.; Patel, V.; Pauly, C.; Penschuck, M.; Peshekhonov, D.; Peshekhonov, V.; Petráček, V.; Petri, M.; Petriş, M.; Petrovici, A.; Petrovici, M.; Petrovskiy, A.; Petukhov, O.; Pfeifer, D.; Piasecki, K.; Pieper, J.; Pietraszko, J.; Płaneta, R.; Plotnikov, V.; Plujko, V.; Pluta, J.; Pop, A.; Pospisil, V.; Poźniak, K.; Prakash, A.; Prasad, S. K.; Prokudin, M.; Pshenichnov, I.; Pugach, M.; Pugatch, V.; Querchfeld, S.; Rabtsun, S.; Radulescu, L.; Raha, S.; Rami, F.; Raniwala, R.; Raniwala, S.; Raportirenko, A.; Rautenberg, J.; Rauza, J.; Ray, R.; Razin, S.; Reichelt, P.; Reinecke, S.; Reinefeld, A.; Reshetin, A.; Ristea, C.; Ristea, O.; Rodriguez Rodriguez, A.; Roether, F.; Romaniuk, R.; Rost, A.; Rostchin, E.; Rostovtseva, I.; Roy, Amitava; Roy, Ankhi; Rożynek, J.; Ryabov, Yu.; Sadovsky, A.; Sahoo, R.; Sahu, P. K.; Sahu, S. K.; Saini, J.; Samanta, S.; Sambyal, S. S.; Samsonov, V.; Sánchez Rosado, J.; Sander, O.; Sarangi, S.; Satława, T.; Sau, S.; Saveliev, V.; Schatral, S.; Schiaua, C.; Schintke, F.; Schmidt, C. J.; Schmidt, H. R.; Schmidt, K.; Scholten, J.; Schweda, K.; Seck, F.; Seddiki, S.; Selyuzhenkov, I.; Semennikov, A.; Senger, A.; Senger, P.; Shabanov, A.; Shabunov, A.; Shao, Ming; Sheremetiev, A. D.; Shi, Shusu; Shumeiko, N.; Shumikhin, V.; Sibiryak, I.; Sikora, B.; Simakov, A.; Simon, C.; Simons, C.; Singaraju, R. N.; Singh, A. K.; Singh, B. K.; Singh, C. P.; Singhal, V.; Singla, M.; Sitzmann, P.; Siwek-Wilczyńska, K.; Škoda, L.; Skwira-Chalot, I.; Som, I.; Song, Guofeng; Song, Jihye; Sosin, Z.; Soyk, D.; Staszel, P.; Strikhanov, M.; Strohauer, S.; Stroth, J.; Sturm, C.; Sultanov, R.; Sun, Yongjie; Svirida, D.; Svoboda, O.; Szabó, A.; Szczygieł, R.; Talukdar, R.; Tang, Zebo; Tanha, M.; Tarasiuk, J.; Tarassenkova, O.; Târzilă, M.-G.; Teklishyn, M.; Tischler, T.; Tlustý, P.; Tölyhi, T.; Toia, A.; Topil'skaya, N.; Träger, M.; Tripathy, S.; Tsakov, I.; Tsyupa, Yu.; Turowiecki, A.; Tuturas, N. G.; Uhlig, F.; Usenko, E.; Valin, I.; Varga, D.; Vassiliev, I.; Vasylyev, O.; Verbitskaya, E.; Verhoeven, W.; Veshikov, A.; Visinka, R.; Viyogi, Y. P.; Volkov, S.; Volochniuk, A.; Vorobiev, A.; Voronin, Aleksey; Voronin, Alexander; Vovchenko, V.; Vznuzdaev, M.; Wang, Dong; Wang, Xi-Wei; Wang, Yaping; Wang, Yi; Weber, M.; Wendisch, C.; Wessels, J. P.; Wiebusch, M.; Wiechula, J.; Wielanek, D.; Wieloch, A.; Wilms, A.; Winckler, N.; Winter, M.; Wiśniewski, K.; Wolf, Gy.; Won, Sanguk; Wu, Ke-Jun; Wüstenfeld, J.; Xiang, Changzhou; Xu, Nu; Yang, Junfeng; Yang, Rongxing; Yin, Zhongbao; Yoo, In-Kwon; Yuldashev, B.; Yushmanov, I.; Zabołotny, W.; Zaitsev, Yu.; Zamiatin, N. I.; Zanevsky, Yu.; Zhalov, M.; Zhang, Yifei; Zhang, Yu; Zhao, Lei; Zheng, Jiajun; Zheng, Sheng; Zhou, Daicui; Zhou, Jing; Zhu, Xianglei; Zinchenko, A.; Zipper, W.; Żoładź, M.; Zrelov, P.; Zryuev, V.; Zumbruch, P.; Zyzak, M.
2017-03-01
Substantial experimental and theoretical efforts worldwide are devoted to explore the phase diagram of strongly interacting matter. At LHC and top RHIC energies, QCD matter is studied at very high temperatures and nearly vanishing net-baryon densities. There is evidence that a Quark-Gluon-Plasma (QGP) was created at experiments at RHIC and LHC. The transition from the QGP back to the hadron gas is found to be a smooth cross over. For larger net-baryon densities and lower temperatures, it is expected that the QCD phase diagram exhibits a rich structure, such as a first-order phase transition between hadronic and partonic matter which terminates in a critical point, or exotic phases like quarkyonic matter. The discovery of these landmarks would be a breakthrough in our understanding of the strong interaction and is therefore in the focus of various high-energy heavy-ion research programs. The Compressed Baryonic Matter (CBM) experiment at FAIR will play a unique role in the exploration of the QCD phase diagram in the region of high net-baryon densities, because it is designed to run at unprecedented interaction rates. High-rate operation is the key prerequisite for high-precision measurements of multi-differential observables and of rare diagnostic probes which are sensitive to the dense phase of the nuclear fireball. The goal of the CBM experiment at SIS100 (√{s_{NN}}= 2.7-4.9 GeV) is to discover fundamental properties of QCD matter: the phase structure at large baryon-chemical potentials ( μ_B > 500 MeV), effects of chiral symmetry, and the equation of state at high density as it is expected to occur in the core of neutron stars. In this article, we review the motivation for and the physics programme of CBM, including activities before the start of data taking in 2024, in the context of the worldwide efforts to explore high-density QCD matter.
Xie, Xiuqiang; Chen, Shuangqiang; Sun, Bing; Wang, Chengyin; Wang, Guoxiu
2015-09-07
Low-cost and sustainable sodium-ion batteries are regarded as a promising technology for large-scale energy storage and conversion. The development of high-rate anode materials is highly desirable for sodium-ion batteries. The optimization of mass transport and electron transfer is crucial in the discovery of electrode materials with good high-rate performances. Herein, we report the synthesis of 3 D interconnected SnO2 /graphene aerogels with a hierarchically porous structure as anode materials for sodium-ion batteries. The unique 3 D architecture was prepared by a facile in situ process, during which cross-linked 3 D conductive graphene networks with macro-/meso-sized hierarchical pores were formed and SnO2 nanoparticles were dispersed uniformly on the graphene surface simultaneously. Such a 3 D functional architecture not only facilitates the electrode-electrolyte interaction but also provides an efficient electron pathway within the graphene networks. When applied as anode materials in sodium-ion batteries, the as-prepared SnO2 /graphene aerogel exhibited high reversible capacity, improved cycling performance compared to SnO2 , and promising high-rate capability. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Familial expressed emotion: outcome and course of Israeli patients with schizophrenia.
Marom, Sofi; Munitz, Hanan; Jones, Peter B; Weizman, Abraham; Hermesh, Haggai
2002-01-01
We investigated the validity of expressed emotion (EE) in Israel. The study sample consisted of 108 patients with schizophrenia and 15 with schizoaffective disorder, and their key relatives. EE was rated with the Five Minute Speech Sample (FMSS). Patient households were categorized by EE and its two components: criticism and emotional overinvolvement. Patients were rated with the Brief Psychiatric Rating Scale (BPRS) at admission, at discharge, and 6 months after discharge. Readmissions were determined over a 9-month period. High EE and particularly high criticism were significantly associated with poorer outcome (higher rate of and earlier readmissions, and higher BPRS score at followup) and worse illness course (higher annual number of prior psychiatric hospital admissions). Odds ratios between high EE and high criticism and readmission were 2.6 and 3.5, respectively. The strongest predictor of earlier readmission was the interaction of high criticism x poor compliance with medication. The results converge to further confirm the notion that familial EE is a valid crosscultural predictor of the clinical course of schizophrenia. Moreover, EE has predictive power in very chronic samples. Criticism appears to be the crucial EE component linked with short-term outcome. Treatment aimed at reducing high criticism is warranted. The FMSS appears to have predictive validity.
Two-Way Selection for Growth Rate in the Common Carp (CYPRINUS CARPIO L.)
Moav, R.; Wohlfarth, G.
1976-01-01
The domesticated European carp was subjected to a two-way selection for growth rate. Five generations of mass selection for faster growth rate did not yield any response, but subsequent selection between groups (families) resulted in considerable progress while maintaining a large genetic variance. Selection for slow growth rate yielded relatively strong response for the first three generations. Random-bred control lines suffered from strong inbreeding depression and when two lines were crossed, the F1 showed a high degree of heterosis. Selection was performed on pond-raised fish, but growth rate was also tested in cages. A strong pond-cage genetic interaction was found. A theoretical explanation was suggested involving overdominance for fast growth rate and amplification through competition of intra-group but not inter-group variation. PMID:1248737
Ultra-High Foraging Rates of Harbor Porpoises Make Them Vulnerable to Anthropogenic Disturbance.
Wisniewska, Danuta Maria; Johnson, Mark; Teilmann, Jonas; Rojano-Doñate, Laia; Shearer, Jeanne; Sveegaard, Signe; Miller, Lee A; Siebert, Ursula; Madsen, Peter Teglberg
2016-06-06
The question of how individuals acquire and allocate resources to maximize fitness is central in evolutionary ecology. Basic information on prey selection, search effort, and capture rates are critical for understanding a predator's role in its ecosystem and for predicting its response to natural and anthropogenic disturbance. Yet, for most marine species, foraging interactions cannot be observed directly. The high costs of thermoregulation in water require that small marine mammals have elevated energy intakes compared to similar-sized terrestrial mammals [1]. The combination of high food requirements and their position at the apex of most marine food webs may make small marine mammals particularly vulnerable to changes within the ecosystem [2-4], but the lack of detailed information about their foraging behavior often precludes an informed conservation effort. Here, we use high-resolution movement and prey echo recording tags on five wild harbor porpoises to examine foraging interactions in one of the most metabolically challenged cetacean species. We report that porpoises forage nearly continuously day and night, attempting to capture up to 550 small (3-10 cm) fish prey per hour with a remarkable prey capture success rate of >90%. Porpoises therefore target fish that are smaller than those of commercial interest, but must forage almost continually to meet their metabolic demands with such small prey, leaving little margin for compensation. Thus, for these "aquatic shrews," even a moderate level of anthropogenic disturbance in the busy shallow waters they share with humans may have severe fitness consequences at individual and population levels. Copyright © 2016 Elsevier Ltd. All rights reserved.
Borges, Nattai R; Reaburn, Peter R; Doering, Thomas M; Argus, Christos K; Driller, Matthew W
2017-04-01
This study aimed at examining the autonomic cardiovascular modulation in well-trained masters and young cyclists following high-intensity interval training (HIT). Nine masters (age 55.6 ± 5.0 years) and eight young cyclists (age 25.9 ± 3.0 years) completed a HIT protocol of 6 x 30 sec at 175% of peak power output, with 4.5-min' rest between efforts. Immediately following HIT, heart rate and R-R intervals were monitored for 30-min during passive supine recovery. Autonomic modulation was examined by i) heart rate recovery in the first 60-sec of recovery (HRR 60 ); ii) the time constant of the 30-min heart rate recovery curve (HRRτ); iii) the time course of the root mean square for successive 30-sec R-R interval (RMSSD 30 ); and iv) time and frequency domain analyses of subsequent 5-min R-R interval segments. No significant between-group differences were observed for HRR 60 (P = 0.096) or HRR τ (P = 0.617). However, a significant interaction effect was found for RMSSD 30 (P = 0.021), with the master cyclists showing higher RMSSD 30 values following HIT. Similar results were observed in the time and frequency domain analyses with significant interaction effects found for the natural logarithm of the RMSSD (P = 0.008), normalised low-frequency power (P = 0.016) and natural logarithm of high-frequency power (P = 0.012). Following high-intensity interval training, master cyclists demonstrated greater post-exercise parasympathetic reactivation compared to young cyclists, indicating that physical training at older ages has significant effects on autonomic function.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kazakevich, G.; Johnson, R.; Lebedev, V.
A simplified analytical model of the resonant interaction of the beam of Larmor electrons drifting in the crossed constant fields of a magnetron with a synchronous wave providing a phase grouping of the drifting charge was developed to optimize the parameters of an rf resonant injected signal driving the magnetrons for management of phase and power of rf sources with a rate required for superconducting high-current accelerators. The model, which considers the impact of the rf resonant signal injected into the magnetron on the operation of the injection-locked tube, substantiates the recently developed method of fast power control of magnetronsmore » in the range up to 10 dB at the highest generation efficiency, with low noise, precise stability of the carrier frequency, and the possibility of wideband phase control. Experiments with continuous wave 2.45 GHz, 1 kW microwave oven magnetrons have verified the correspondence of the behavior of these tubes to the analytical model. A proof of the principle of the novel method of power control in magnetrons, based on the developed model, was demonstrated in the experiments. The method is attractive for high-current superconducting rf accelerators. This study also discusses vector methods of power control with the rates required for superconducting accelerators, the impact of the rf resonant signal injected into the magnetron on the rate of phase control of the injection-locked tubes, and a conceptual scheme of the magnetron transmitter with highest efficiency for high-current accelerators.« less
Kazakevich, G.; Johnson, R.; Lebedev, V.; ...
2018-06-14
A simplified analytical model of the resonant interaction of the beam of Larmor electrons drifting in the crossed constant fields of a magnetron with a synchronous wave providing a phase grouping of the drifting charge was developed to optimize the parameters of an rf resonant injected signal driving the magnetrons for management of phase and power of rf sources with a rate required for superconducting high-current accelerators. The model, which considers the impact of the rf resonant signal injected into the magnetron on the operation of the injection-locked tube, substantiates the recently developed method of fast power control of magnetronsmore » in the range up to 10 dB at the highest generation efficiency, with low noise, precise stability of the carrier frequency, and the possibility of wideband phase control. Experiments with continuous wave 2.45 GHz, 1 kW microwave oven magnetrons have verified the correspondence of the behavior of these tubes to the analytical model. A proof of the principle of the novel method of power control in magnetrons, based on the developed model, was demonstrated in the experiments. The method is attractive for high-current superconducting rf accelerators. This study also discusses vector methods of power control with the rates required for superconducting accelerators, the impact of the rf resonant signal injected into the magnetron on the rate of phase control of the injection-locked tubes, and a conceptual scheme of the magnetron transmitter with highest efficiency for high-current accelerators.« less
Evaluating the ISDN line to deliver interactive multimedia experiences
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michaels, D.K.
1994-05-06
We will use the 128 kilobit/sec ISDN connection from the Lawrence Livermore National Laboratory to the Livermore High School Math Learning Center to provide students there with interactive multimedia educational experiences. These experiences may consist of tutorials, exercises, and interactive puzzles to teach students` course material. We will determine if it is possible to store the multimedia files at LLNL and deliver them to the student machines via FTP as they are needed. An evaluation of the effect of the ISDN data rate is a substantial component of our research and suggestions on how to best use the ISDN linemore » in this capacity will be given.« less
Non-standard neutrino interactions in the mu–tau sector
Mocioiu, Irina; Wright, Warren
2015-04-01
We discuss neutrino mass hierarchy implications arising from the effects of non-standard neutrino interactions on muon rates in high statistics atmospheric neutrino oscillation experiments like IceCube DeepCore. We concentrate on the mu–tau sector, which is presently the least constrained. It is shown that the magnitude of the effects depends strongly on the sign of the ϵμτ parameter describing this non-standard interaction. A simple analytic model is used to understand the parameter space where differences between the two signs are maximized. We discuss how this effect is partially degenerate with changing the neutrino mass hierarchy, as well as how this degeneracymore » could be lifted.« less
Compton interaction of free electrons with intense low frequency radiation
NASA Technical Reports Server (NTRS)
Illarionov, A. F.; Kompaneyets, D. A.
1978-01-01
Electron behavior in an intense low frequency radiation field, with induced Compton scattering as the primary mechanism of interaction, is investigated. Evolution of the electron energy spectrum is studied, and the equilibrium spectrum of relativistic electrons in a radiation field with high brightness temperature is found. The induced radiation pressure and heating rate of an electron gas are calculated. The direction of the induced pressure depends on the radiation spectrum. The form of spectrum, under the induced force can accelerate electrons to superrelativistic energies is found.
Merger driven star-formation activity in Cl J1449+0856 at z=1.99 as seen by ALMA and JVLA
NASA Astrophysics Data System (ADS)
Coogan, R. T.; Daddi, E.; Sargent, M. T.; Strazzullo, V.; Valentino, F.; Gobat, R.; Magdis, G.; Bethermin, M.; Pannella, M.; Onodera, M.; Liu, D.; Cimatti, A.; Dannerbauer, H.; Carollo, M.; Renzini, A.; Tremou, E.
2018-06-01
We use ALMA and JVLA observations of the galaxy cluster Cl J1449+0856 at z=1.99, in order to study how dust-obscured star-formation, ISM content and AGN activity are linked to environment and galaxy interactions during the crucial phase of high-z cluster assembly. We present detections of multiple transitions of 12CO, as well as dust continuum emission detections from 11 galaxies in the core of Cl J1449+0856. We measure the gas excitation properties, star-formation rates, gas consumption timescales and gas-to-stellar mass ratios for the galaxies. We find evidence for a large fraction of galaxies with highly-excited molecular gas, contributing >50% to the total SFR in the cluster core. We compare these results with expectations for field galaxies, and conclude that environmental influences have strongly enhanced the fraction of excited galaxies in this cluster. We find a dearth of molecular gas in the galaxies' gas reservoirs, implying a high star-formation efficiency (SFE) in the cluster core, and find short gas depletion timescales τdep<0.1-0.4 Gyrs for all galaxies. Interestingly, we do not see evidence for increased specific star-formation rates (sSFRs) in the cluster galaxies, despite their high SFEs and gas excitations. We find evidence for a large number of mergers in the cluster core, contributing a large fraction of the core's total star-formation compared with expectations in the field. We conclude that the environmental impact on the galaxy excitations is linked to the high rate of galaxy mergers, interactions and active galactic nuclei in the cluster core.
Limpens, J; Granath, G; Gunnarsson, U; Aerts, R; Bayley, S; Bragazza, L; Bubier, J; Buttler, A; van den Berg, L J L; Francez, A-J; Gerdol, R; Grosvernier, P; Heijmans, M M P D; Hoosbeek, M R; Hotes, S; Ilomets, M; Leith, I; Mitchell, E A D; Moore, T; Nilsson, M B; Nordbakken, J-F; Rochefort, L; Rydin, H; Sheppard, L J; Thormann, M; Wiedermann, M M; Williams, B L; Xu, B
2011-07-01
Peatlands in the northern hemisphere have accumulated more atmospheric carbon (C) during the Holocene than any other terrestrial ecosystem, making peatlands long-term C sinks of global importance. Projected increases in nitrogen (N) deposition and temperature make future accumulation rates uncertain. Here, we assessed the impact of N deposition on peatland C sequestration potential by investigating the effects of experimental N addition on Sphagnum moss. We employed meta-regressions to the results of 107 field experiments, accounting for sampling dependence in the data. We found that high N loading (comprising N application rate, experiment duration, background N deposition) depressed Sphagnum production relative to untreated controls. The interactive effects of presence of competitive vascular plants and high tissue N concentrations indicated intensified biotic interactions and altered nutrient stochiometry as mechanisms underlying the detrimental N effects. Importantly, a higher summer temperature (mean for July) and increased annual precipitation intensified the negative effects of N. The temperature effect was comparable to an experimental application of almost 4 g N m(-2) yr(-1) for each 1°C increase. Our results indicate that current rates of N deposition in a warmer environment will strongly inhibit C sequestration by Sphagnum-dominated vegetation. © 2011 The Authors. New Phytologist © 2011 New Phytologist Trust.
Osinga, Ronald; Derksen-Hooijberg, Marlous; Wijgerde, Tim; Verreth, Johan A J
2017-06-15
Rates of dark respiration and net photosynthesis were measured for six replicate clonal fragments of the stony coral Galaxea fascicularis (Linnaeus 1767), which were incubated under 12 different combinations of dissolved oxygen (20%, 100% and 150% saturation), dissolved carbon dioxide (9.5 and 19.1 µmol l -1 ) and water flow (1-1.6 versus 4-13 cm s -1 ) in a repeated measures design. Dark respiration was enhanced by increased flow and increased oxygen saturation in an interactive way, which relates to improved oxygen influx into the coral tissue. Oxygen saturation did not influence net photosynthesis: neither hypoxia nor hyperoxia affected net photosynthesis, irrespective of flow and pH, which suggests that hyperoxia does not induce high rates of photorespiration in this coral. Flow and pH had a synergistic effect on net photosynthesis: at high flow, a decrease in pH stimulated net photosynthesis by 14%. These results indicate that for this individual of G. fascicularis , increased uptake of carbon dioxide rather than increased efflux of oxygen explains the beneficial effect of water flow on photosynthesis. Rates of net photosynthesis measured in this study are among the highest ever recorded for scleractinian corals and confirm a strong scope for growth. © 2017. Published by The Company of Biologists Ltd.
Development of living cell force sensors for the interrogation of cell surface interactions
NASA Astrophysics Data System (ADS)
Brown, Scott Chang
The measurement of cell surface interactions, or cell interaction forces, are critical for the early diagnosis and prevention of disease, the design of targeted drug and gene delivery vehicles, the development of next-generation implant materials, and much more. However, the technologies and devices that are currently available are highly limited with respect to the dynamic force range over which they can measure cell-cell or cell-substratum interactions, and with their ability to adequately mimic biologically relevant systems. Consequently, research efforts that involve cell surface interactions have been limited. In this dissertation, existing tools for research at the nanoscale (i.e., atomic force microscopy microcantilevers) are modified to develop living cell force sensors that allow for the highly sensitive measurement of cell-mediated interactions over the entire range of forces expected in biotechnology (and nano-biotechnology) research (from a single to millions of receptor-ligand bonds). Several force sensor motifs have been developed that can be used to measure interactions using single adherent cells, single suspension culture cell, and cell monolayers (tissues) over a wide range of interaction conditions (e.g., approach velocity, shear rate, contact time) using a conventional atomic force microscope. This new tool has been applied to study the pathogenesis of spontaneous pneumothorax and the interaction of cells with 14 man-made interfaces. Consequently, a new hypothesis of the interactions that manifest spontaneous pneumothorax has been developed. Additionally, these findings have the potential to lead to the development of tools for data mining materials and surfaces for unique cell interactions that could have an immense societal impact.
Design principles and optimal performance for molecular motors under realistic constraints
NASA Astrophysics Data System (ADS)
Tu, Yuhai; Cao, Yuansheng
2018-02-01
The performance of a molecular motor, characterized by its power output and energy efficiency, is investigated in the motor design space spanned by the stepping rate function and the motor-track interaction potential. Analytic results and simulations show that a gating mechanism that restricts forward stepping in a narrow window in configuration space is needed for generating high power at physiologically relevant loads. By deriving general thermodynamics laws for nonequilibrium motors, we find that the maximum torque (force) at stall is less than its theoretical limit for any realistic motor-track interactions due to speed fluctuations. Our study reveals a tradeoff for the motor-track interaction: while a strong interaction generates a high power output for forward steps, it also leads to a higher probability of wasteful spontaneous back steps. Our analysis and simulations show that this tradeoff sets a fundamental limit to the maximum motor efficiency in the presence of spontaneous back steps, i.e., loose-coupling. Balancing this tradeoff leads to an optimal design of the motor-track interaction for achieving a maximum efficiency close to 1 for realistic motors that are not perfectly coupled with the energy source. Comparison with existing data and suggestions for future experiments are discussed.
Kroeker, Kristy J; Sanford, Eric; Jellison, Brittany M; Gaylord, Brian
2014-06-01
The influence of environmental change on species interactions will affect population dynamics and community structure in the future, but our current understanding of the outcomes of species interactions in a high-CO2 world is limited. Here, we draw upon emerging experimental research examining the effects of ocean acidification on coastal molluscs to provide hypotheses of the potential impacts of high-CO2 on predator-prey interactions. Coastal molluscs, such as oysters, mussels, and snails, allocate energy among defenses, growth, and reproduction. Ocean acidification increases the energetic costs of physiological processes such as acid-base regulation and calcification. Impacted molluscs can display complex and divergent patterns of energy allocation to defenses and growth that may influence predator-prey interactions; these include changes in shell properties, body size, tissue mass, immune function, or reproductive output. Ocean acidification has also been shown to induce complex changes in chemoreception, behavior, and inducible defenses, including altered cue detection and predator avoidance behaviors. Each of these responses may ultimately alter the susceptibility of coastal molluscs to predation through effects on predator handling time, satiation, and search time. While many of these effects may manifest as increases in per capita predation rates on coastal molluscs, the ultimate outcome of predator-prey interactions will also depend on how ocean acidification affects the specified predators, which also exhibit complex responses to ocean acidification. Changes in predator-prey interactions could have profound and unexplored consequences for the population dynamics of coastal molluscs in a high-CO2 ocean. © 2014 Marine Biological Laboratory.
Mehta, R K
2015-02-01
Obesity and stress are independently associated with decrements in neuromuscular functions. The present study examined the interplay of obesity and stress on neuromuscular fatigue and associated heart rate variability (HRV). Forty-eight non-obese (18.5
On the rate of black hole binary mergers in galactic nuclei due to dynamical hardening
NASA Astrophysics Data System (ADS)
Leigh, N. W. C.; Geller, A. M.; McKernan, B.; Ford, K. E. S.; Mac Low, M.-M.; Bellovary, J.; Haiman, Z.; Lyra, W.; Samsing, J.; O'Dowd, M.; Kocsis, B.; Endlich, S.
2018-03-01
We assess the contribution of dynamical hardening by direct three-body scattering interactions to the rate of stellar-mass black hole binary (BHB) mergers in galactic nuclei. We derive an analytic model for the single-binary encounter rate in a nucleus with spherical and disc components hosting a super-massive black hole (SMBH). We determine the total number of encounters NGW needed to harden a BHB to the point that inspiral due to gravitational wave emission occurs before the next three-body scattering event. This is done independently for both the spherical and disc components. Using a Monte Carlo approach, we refine our calculations for NGW to include gravitational wave emission between scattering events. For astrophysically plausible models, we find that typically NGW ≲ 10. We find two separate regimes for the efficient dynamical hardening of BHBs: (1) spherical star clusters with high central densities, low-velocity dispersions, and no significant Keplerian component and (2) migration traps in discs around SMBHs lacking any significant spherical stellar component in the vicinity of the migration trap, which is expected due to effective orbital inclination reduction of any spherical population by the disc. We also find a weak correlation between the ratio of the second-order velocity moment to velocity dispersion in galactic nuclei and the rate of BHB mergers, where this ratio is a proxy for the ratio between the rotation- and dispersion-supported components. Because discs enforce planar interactions that are efficient in hardening BHBs, particularly in migration traps, they have high merger rates that can contribute significantly to the rate of BHB mergers detected by the advanced Laser Interferometer Gravitational-Wave Observatory.
Kashiwagi, Masayo; Tamiya, Nanako; Murata, Masako
2015-08-01
The purpose of the present study was to identify characteristics of visiting nurse agencies (VNA) in Japan with high home death rates by a prefecture-wide survey. A cross-sectional study of visiting nurse agencies (n = 101) in Ibaraki Prefecture, Japan, was completed. Data included the basic characteristics of each VNA, the type of services provided, level of coordination with other service providers, total number of VNA patients who died per year and place of death and contractual relationship with home-care supporting clinics providing end-of-life care services in the home 24 h a day. The VNA characteristics were analyzed by logistic regression, using the home death rate per VNA as a dependent variable. A total 69 agencies, excluding those that did not report number of deaths (n = 14) and those without deaths during the year (n = 6), were analyzed. The median home death rate of the 69 VNA was 29.8%. The results of logistic regression analysis showed that higher home death rate was significantly associated with lack of attachment to a hospital, existence of a contractual relationship with home-care supporting clinics and existence of an interactive information exchange through telephone/face-to-face communication with attending physicians. In order to increase the home death rate of people using VNA, policymakers must consider establishing home-based service systems within the community that can provide home end-of-life care services 24 h a day, and support the interactive exchange of information between the visiting nurse and the attending physician. © 2014 The Authors. Geriatrics & Gerontology International published by Wiley Publishing Asia Pty Ltd on behalf of Japanese Geriatrics Society.
Duarte, Cristian; López, Jorge; Benítez, Samanta; Manríquez, Patricio H; Navarro, Jorge M; Bonta, Cesar C; Torres, Rodrigo; Quijón, Pedro
2016-02-01
The effects of global stressors on a species may be mediated by the stressors' impact on coexisting taxa. For instance, herbivore-algae interactions may change due to alterations in algal nutritional quality resulting from high CO2 levels associated with ocean acidification (OA). We approached this issue by assessing the indirect effects of OA on the trophic interactions between the amphipod Orchestoidea tuberculata and the brown alga Durvillaea antarctica, two prominent species of the South-east Pacific coast. We predicted that amphipod feeding behavior and performance (growth rate) will be affected by changes in the palatability of the algae exposed to high levels (1000 ppm) of CO2. We exposed algae to current and predicted (OA) atmospheric CO2 levels and then measured their nutritive quality and amphipod preference in choice trials. We also assessed consumption rates separately in no-choice trials, and measured amphipod absorption efficiency and growth rates. Protein and organic contents of the algae decreased in acidified conditions and amphipods showed low preference for these algae. However, in the no-choice trials we recorded higher grazing rates on algae exposed to OA. Although amphipod absorption efficiency was lower on these algae, growth rates did not differ between treatments, which suggests the occurrence of compensatory feeding. Our results suggest that changes in algal nutritional value in response to OA induce changes in algal palatability and these in turn affect consumers' food preference and performance. Indirect effects of global stressors like OA can be equally or more important than the direct effects predicted in the literature.
NASA Astrophysics Data System (ADS)
Cao, Linlin; Watanabe, Satoshi; Imanishi, Toshiki; Yoshimura, Hiroaki; Furukawa, Akinori
2013-08-01
As a high specific speed pump, the contra-rotating axial flow pump distinguishes itself in a rear rotor rotating in the opposite direction of the front rotor, which remarkably contributes to the energy conversion, the reduction of the pump size, better hydraulic and cavitation performances. However, with two rotors rotating reversely, the significant interaction between blade rows was observed in our prototype contra-rotating rotors, which highly affected the pump performance compared with the conventional axial flow pumps. Consequently, a new type of rear rotor was designed by the rotational speed optimization methodology with some additional considerations, aiming at better cavitation performance, the reduction of blade rows interaction and the secondary flow suppression. The new rear rotor showed a satisfactory performance at the design flow rate but an unfavorable positive slope of the head — flow rate curve in the partial flow rate range less than 40% of the design flow rate, which should be avoided for the reliability of pump-pipe systems. In the present research, to understand the internal flow field of new rear rotor and its relation to the performances at the partial flow rates, the velocity distributions at the inlets and outlets of the rotors are firstly investigated. Then, the boundary layer flows on rotor surfaces, which clearly reflect the secondary flow inside the rotors, are analyzed through the limiting streamline observations using the multi-color oil-film method. Finally, the unsteady numerical simulations are carried out to understand the complicated internal flow structures in the rotors.
Variable synaptic strengths controls the firing rate distribution in feedforward neural networks.
Ly, Cheng; Marsat, Gary
2018-02-01
Heterogeneity of firing rate statistics is known to have severe consequences on neural coding. Recent experimental recordings in weakly electric fish indicate that the distribution-width of superficial pyramidal cell firing rates (trial- and time-averaged) in the electrosensory lateral line lobe (ELL) depends on the stimulus, and also that network inputs can mediate changes in the firing rate distribution across the population. We previously developed theoretical methods to understand how two attributes (synaptic and intrinsic heterogeneity) interact and alter the firing rate distribution in a population of integrate-and-fire neurons with random recurrent coupling. Inspired by our experimental data, we extend these theoretical results to a delayed feedforward spiking network that qualitatively capture the changes of firing rate heterogeneity observed in in-vivo recordings. We demonstrate how heterogeneous neural attributes alter firing rate heterogeneity, accounting for the effect with various sensory stimuli. The model predicts how the strength of the effective network connectivity is related to intrinsic heterogeneity in such delayed feedforward networks: the strength of the feedforward input is positively correlated with excitability (threshold value for spiking) when firing rate heterogeneity is low and is negatively correlated with excitability with high firing rate heterogeneity. We also show how our theory can be used to predict effective neural architecture. We demonstrate that neural attributes do not interact in a simple manner but rather in a complex stimulus-dependent fashion to control neural heterogeneity and discuss how it can ultimately shape population codes.
Voncken, M J; Dijk, K F L
2013-02-01
Socially anxious individuals (SAs) not only fear social rejection, accumulating studies show that SAs are indeed judged as less likeable after social interaction with others. This study investigates if SAs already make a more negative impression on others in the very first seconds of contact. The study further investigates the development of likeability and the role of self-disclosure herein in two sequential social interactions: first after an unstructured waiting room situation and next after a 'getting acquainted' conversation. Results showed that high SAs (n = 24) elicited a more negative first impression than low SAs (n = 22). Also, although high SAs improved from the first to the second task, they were rated as less likeable after both interactions. The level of self-disclosure behaviour was the strongest predictor for the development of likeability during the sequential social tasks. The absence of an interaction between group and self-disclosure in predicting the development of likeability suggests that this is true for both groups. Thus, high SAs can improve their negative first impression if they are able to increase their self-disclosure behaviour. However, SAs showed a decreased level of self-disclosure behaviour during both social interactions. Targeting self-disclosure behaviour may improve the negative impression SAs elicit in others.
Nordin, Susanna; McKee, Kevin; Wallinder, Maria; von Koch, Lena; Wijk, Helle; Elf, Marie
2017-12-01
The physical environment is of particular importance for supporting activities and interactions among older people living in residential care facilities (RCFs) who spend most of their time inside the facility. More knowledge is needed regarding the complex relationships between older people and environmental aspects in long-term care. The present study aimed to explore how the physical environment influences resident activities and interactions at two RCFs by using a mixed-method approach. Environmental assessments were conducted via the Swedish version of the Sheffield Care Environment Assessment Matrix (S-SCEAM), and resident activities, interactions and locations were assessed through an adapted version of the Dementia Care Mapping (DCM). The Observed Emotion Rating Scale (OERS) was used to assess residents' affective states. Field notes and walk-along interviews were also used. Findings indicate that the design of the physical environment influenced the residents' activities and interactions. Private apartments and dining areas showed high environmental quality at both RCFs, whereas the overall layout had lower quality. Safety was highly supported. Despite high environmental quality in general, several factors restricted resident activities. To optimise care for older people, the design process must clearly focus on accessible environments that provide options for residents to use the facility independently. © 2016 The Authors. Scandinavian Journal of Caring Sciences published by John Wiley & Sons Ltd on behalf of Nordic College of Caring Science.
Physics of rotation: problems and challenges
NASA Astrophysics Data System (ADS)
Maeder, Andre; Meynet, Georges
2015-01-01
We examine some debated points in current discussions about rotating stars: the shape, the gravity darkening, the critical velocities, the mass loss rates, the hydrodynamical instabilities, the internal mixing and N-enrichments. The study of rotational mixing requires high quality data and careful analysis. From recent studies where such conditions are fulfilled, rotational mixing is well confirmed. Magnetic coupling with stellar winds may produce an apparent contradiction, i.e. stars with a low rotation and a high N-enrichment. We point out that it rather confirms the large role of shears in differentially rotating stars for the transport processes. New models of interacting binaries also show how shears and mixing may be enhanced in close binaries which are either spun up or down by tidal interactions.
Tangential blowing for control of strong normal shock - Boundary layer interactions on inlet ramps
NASA Technical Reports Server (NTRS)
Schwendemann, M. F.; Sanders, B. W.
1982-01-01
The use of tangential blowing from a row of holes in an aft facing step is found to provide good control of the ramp boundary layer, normal shock interaction on a fixed geometry inlet over a wide range of inlet mass flow ratios. Ramp Mach numbers of 1.36 and 1.96 are investigated. The blowing geometry is found to have a significant effect on system performance at the highest Mach number. The use of high-temperature air in the blowing system, however, has only a slight effect on performance. The required blowing rates are significantly high for the most severe test conditions. In addition, the required blowing coefficient is found to be proportional to the normal shock pressure rise.
Nonuniform flow in soft glasses of colloidal rods
NASA Astrophysics Data System (ADS)
Dhont, J. K. G.; Kang, K.; Kriegs, H.; Danko, O.; Marakis, J.; Vlassopoulos, D.
2017-04-01
Despite our reasonably advanced understanding of the dynamics and flow of glasses made of spherical colloids, the role of shape, i.e., the respective behavior of glasses formed by rodlike, particles is virtually unexplored. Recently, long, thin and highly charged rods (fd-virus particles) were found to vitrify in aqueous suspensions at low ionic strength [Phys. Rev. Lett. 110, 015901 (2013), 10.1103/PhysRevLett.110.015901]. The glass transition of these long-ranged repulsive rods occurs at a concentration far above the isotropic-nematic coexistence region and is characterized by the unique arrest of both the dynamics of domains that constitute the chiral-nematic orientational texture, as well as individual rods inside the domains. Hence, two relevant length scales exist: the domain size of a few hundreds of microns, and the rod-cage size of a few microns, inside the domains. We show that the unique dual dynamic arrest and the existing of two widely separated length scales imparts an unprecedented, highly heterogeneous flow behavior with three distinct signatures. Beyond a weak stress plateau at very small shear rates that characterizes the glass, the kinetic arrest of the domain dynamics gives rise to internal fracture, as a result of domain-domain interactions, as well as wall partial slip. It is shown that, on increasing the shear rate, the fractured plug flow changes to a shear-banded flow profile due to the stress response of the kinetically arrested aligned rods within the domains. Shear-gradient banding occurs due to the strong thinning of the uniform chiral-nematic phase within the domains, i.e., complying with the classic shear-banding scenario, giving rise to a stress plateau in the flow curve. Finally, a linear (uniform) velocity profile is found at the highest shear rates. Vorticity banding is also observed at intermediate and high shear rates. These results point to the crucial role of particle shape in tailoring the flow properties of dense colloidal suspensions. Moreover, they strongly support the argument that the origin of shear banding in soft-particle glasses with long-ranged repulsive interactions is fundamentally different from that of hard-particle glasses with short-ranged repulsive interactions.
Barry, Michael T.; Rusconi, Roberto; Guasto, Jeffrey S.; Stocker, Roman
2015-01-01
Fluid flow, ubiquitous in natural and man-made environments, has the potential to profoundly impact the transport of microorganisms, including phytoplankton in aquatic habitats and bioreactors. Yet, the effect of ambient flow on the swimming behaviour of phytoplankton has remained poorly understood, largely owing to the difficulty of observing cell–flow interactions at the microscale. Here, we present microfluidic experiments where we tracked individual cells for four species of motile phytoplankton exposed to a spatially non-uniform fluid shear rate, characteristic of many flows in natural and artificial environments. We observed that medium-to-high mean shear rates (1–25 s−1) produce heterogeneous cell concentrations in the form of regions of accumulation and regions of depletion. The location of these regions relative to the flow depends on the cells' propulsion mechanism, body shape and flagellar arrangement, as captured by an effective aspect ratio. Species having a large effective aspect ratio accumulated in the high-shear regions, owing to shear-induced alignment of the swimming orientation with the fluid streamlines. Species having an effective aspect ratio close to unity exhibited little preferential accumulation at low-to-moderate flow rates, but strongly accumulated in the low-shear regions under high flow conditions, potentially owing to an active, behavioural response of cells to shear. These observations demonstrate that ambient fluid flow can strongly affect the motility and spatial distribution of phytoplankton and highlight the rich dynamics emerging from the interaction between motility, morphology and flow. PMID:26538558
A New Approach to Reach Latino Populations in Rural and Urban Settings
NASA Astrophysics Data System (ADS)
Morris, P.; Garcia, A.; Galindo, C.; Obot, V.; Allen, J.; Reiff, P.; Sumners, C.; Garcia, J.; Garza, O.
2004-12-01
Current statistics indicate that Latino populations have lower high school and college graduation rates than Anglos or African Americans. If Latinos do not pursue baccalaureate and higher degrees, then this group will be left behind as technological advances increasingly drive our society. The drop out rate affects not only the individuals, families, communities, and society from many different aspects, including financial independence, but also loss of potential contributing members of society in science, engineering, etc. Houston, an urban area, with a Latino population of 39% and Brownsville, a rural area represented by 84% Latinos, are two Texas areas where universities, schools, museums, and NASA are reaching out to increase science skills and graduation rates. Many Houston families have the opportunity to be introduced to different options, but Brownsville families do not have the same opportunities as the area lacks a strong industrial and technological base. We have developed programs to improve the space and Earth science knowledge base by providing summer science enrichment programs for K-12 students, family events, exposing high school students to college opportunities, and training high school and college students to serve as mentors to their peers. The peer mentors lead many of the outreach venues, interacting with the public with demonstrations and interactive science activities. In addition, we have developed a series of teacher workshops and modules on integrated science and mathematics. The teacher workshops are designed to provide the teachers with a wealth of integrated examples for classroom use.
NASA Astrophysics Data System (ADS)
Zhou, Gan; An, Xin; Pu, Allen; Psaltis, Demetri; Mok, Fai H.
1999-11-01
The holographic disc is a high capacity, disk-based data storage device that can provide the performance for next generation mass data storage needs. With a projected capacity approaching 1 terabit on a single 12 cm platter, the holographic disc has the potential to become a highly efficient storage hardware for data warehousing applications. The high readout rate of holographic disc makes it especially suitable for generating multiple, high bandwidth data streams such as required for network server computers. Multimedia applications such as interactive video and HDTV can also potentially benefit from the high capacity and fast data access of holographic memory.
Wang, Haomin; Wang, Le; Xu, Xiaoji G.
2016-01-01
Scattering-type scanning near-field optical microscopy (s-SNOM) allows spectroscopic imaging with spatial resolution below the diffraction limit. With suitable light sources, s-SNOM is instrumental in numerous discoveries at the nanoscale. So far, the light sources have been limited to continuous wave or high-repetition-rate pulsed lasers. Low-repetition-rate pulsed sources cannot be used, due to the limitation of the lock-in detection mechanism that is required for current s-SNOM techniques. Here, we report a near-field signal extraction method that enables low-repetition-rate pulsed light sources. The method correlates scattering signals from pulses with the mechanical phases of the oscillating s-SNOM probe to obtain near-field signal, by-passing the apparent restriction imposed by the Nyquist–Shannon sampling theorem on the repetition rate. The method shall enable s-SNOM with low-repetition-rate pulses with high-peak-powers, such as femtosecond laser amplifiers, to facilitate investigations of strong light–matter interactions and nonlinear processes at the nanoscale. PMID:27748360
Global risk of big earthquakes has not recently increased.
Shearer, Peter M; Stark, Philip B
2012-01-17
The recent elevated rate of large earthquakes has fueled concern that the underlying global rate of earthquake activity has increased, which would have important implications for assessments of seismic hazard and our understanding of how faults interact. We examine the timing of large (magnitude M≥7) earthquakes from 1900 to the present, after removing local clustering related to aftershocks. The global rate of M≥8 earthquakes has been at a record high roughly since 2004, but rates have been almost as high before, and the rate of smaller earthquakes is close to its historical average. Some features of the global catalog are improbable in retrospect, but so are some features of most random sequences--if the features are selected after looking at the data. For a variety of magnitude cutoffs and three statistical tests, the global catalog, with local clusters removed, is not distinguishable from a homogeneous Poisson process. Moreover, no plausible physical mechanism predicts real changes in the underlying global rate of large events. Together these facts suggest that the global risk of large earthquakes is no higher today than it has been in the past.
Global risk of big earthquakes has not recently increased
Shearer, Peter M.; Stark, Philip B.
2012-01-01
The recent elevated rate of large earthquakes has fueled concern that the underlying global rate of earthquake activity has increased, which would have important implications for assessments of seismic hazard and our understanding of how faults interact. We examine the timing of large (magnitude M≥7) earthquakes from 1900 to the present, after removing local clustering related to aftershocks. The global rate of M≥8 earthquakes has been at a record high roughly since 2004, but rates have been almost as high before, and the rate of smaller earthquakes is close to its historical average. Some features of the global catalog are improbable in retrospect, but so are some features of most random sequences—if the features are selected after looking at the data. For a variety of magnitude cutoffs and three statistical tests, the global catalog, with local clusters removed, is not distinguishable from a homogeneous Poisson process. Moreover, no plausible physical mechanism predicts real changes in the underlying global rate of large events. Together these facts suggest that the global risk of large earthquakes is no higher today than it has been in the past. PMID:22184228
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mou, Daixiang; Kaminski, Adam; Gu, Genda
Here, we use high-resolution angle-resolved photoemission spectroscopy to study the resonant, collective excitation mode in the superconducting state of Bi2212. By collecting very high-quality data we found noteworthy features in the self-energy in the antinodal region, where the interaction of electrons with the mode is the strongest. This interaction leads to a pronounced peak in the scattering rate and we demonstrate that this feature is directly responsible for the well-known peak-dip-hump structure in cuprates. By studying how the weight of this peak changes with temperature we unequivocally demonstrate that interaction of electrons with the resonant mode in cuprates vanishes atmore » T c and is very much localized in the momentum space close to the antinode. These findings present a consistent picture of line shape and self-energy signatures of the electron-boson coupling in cuprates and resolve long-standing controversy surrounding this issue. The momentum dependence of the strength of electron-mode interaction enables development of quantitative theory of this phenomenon in cuprates.« less
Mou, Daixiang; Kaminski, Adam; Gu, Genda
2017-05-01
Here, we use high-resolution angle-resolved photoemission spectroscopy to study the resonant, collective excitation mode in the superconducting state of Bi2212. By collecting very high-quality data we found noteworthy features in the self-energy in the antinodal region, where the interaction of electrons with the mode is the strongest. This interaction leads to a pronounced peak in the scattering rate and we demonstrate that this feature is directly responsible for the well-known peak-dip-hump structure in cuprates. By studying how the weight of this peak changes with temperature we unequivocally demonstrate that interaction of electrons with the resonant mode in cuprates vanishes atmore » T c and is very much localized in the momentum space close to the antinode. These findings present a consistent picture of line shape and self-energy signatures of the electron-boson coupling in cuprates and resolve long-standing controversy surrounding this issue. The momentum dependence of the strength of electron-mode interaction enables development of quantitative theory of this phenomenon in cuprates.« less
NASA Astrophysics Data System (ADS)
Kuetemeyer, K.; Baumgart, J.; Lubatschowski, H.; Heisterkamp, A.
2009-11-01
Femtosecond laser based nanosurgery of biological tissue is usually done in two different regimes. Depending on the application, low kHz repetition rates above the optical breakdown threshold or high MHz repetition rates in the low-density plasma regime are used. In contrast to the well understood optical breakdown, mechanisms leading to dissection below this threshold are not well known due to the complexity of chemical effects with high numbers of interacting molecules. Furthermore, the laser repetition rate may influence their efficiency. In this paper, we present our study on low-density plasma effects in biological tissue depending on repetition rate by static exposure of porcine corneal stroma to femtosecond pulses. We observed a continuous increase of the laser-induced damage with decreasing repetition rate over two orders of magnitude at constant numbers of applied laser pulses or constant laser pulse energies. Therefore, low repetition rates in the kHz regime are advantageous to minimize the total delivered energy to biological tissue during femtosecond laser irradiation. However, due to frequent excessive damage in this regime directly above the threshold, MHz repetition rates are preferable to create nanometer-sized cuts in the low-density plasma regime.
When is hardwood cable logging economical?
Chris B. LeDoux
1985-01-01
Using cable logging to harvest eastern hardwood logs on steep terrain can result in low production rates and high costs per unit of wood produced. Logging managers can improve productivity and profitability by knowing how the interaction of site-specific variables and cable logging equipment affect costs and revenues. Data from selected field studies and forest model...
The Relationship between Teacher Satisfaction and Frequency of Interaction with Site Administration
ERIC Educational Resources Information Center
Schwartz, Adam G.
2012-01-01
The primary determinant of student achievement is the quality of the classroom teacher. Some teachers are naturally talented, but the majority of teachers become effective through classroom experience. Unfortunately, the teaching profession experiences a high rate of turnover; many teachers leave before reaching the peak of their effectiveness. If…
Quality of Care Attributions to Employed Versus Stay-at-Home Mothers
ERIC Educational Resources Information Center
Shpancer, Noam; Melick, Katherine M.; Sayre, Pamela S.; Spivey, Aria T.
2006-01-01
The present study was designed to find whether evaluations of maternal competence are linked to mothers' employment status and the quality of maternal care. Participants rated videotaped vignettes, depicting either high-quality or low-quality mother-infant interactions, on various dimensions of care quality. The videotaped mothers were described…
Adjustment and Other Factors Related to High School Aged Students Identified as Hearing Impaired
ERIC Educational Resources Information Center
Milano, Charlene; Upshire, Tara; Scarazzo, Sara; Schade, Benjamin P.; Larwin, Karen H.
2016-01-01
Healthy social, emotional and cognitive development of deaf children depends upon complex interactions between the many individual and environmental factors associated with deafness. Deaf children and adolescents have been reported to possess greater rates of mental health problems than hearing children and adolescents. Dysfunction in one or more…
Using Social Media to Improve Student-Instructor Communication in an Online Learning Environment
ERIC Educational Resources Information Center
Guo, Rong; Shen, Yide; Li, Lei
2018-01-01
The lack of effective faculty-student interaction has been identified as a main contributor to the high dropout rate in online education. For this paper, the authors conducted an empirical study using a social networking tool, specifically Facebook, to improve student-instructor communication and student performance in an online learning…
Effect of an Interactive Component on Students' Conceptual Understanding of Hypothesis Testing
ERIC Educational Resources Information Center
Inkpen, Sarah Anne
2016-01-01
The Premier Technical College of Qatar (PTC-Q) has seen high failure rates among students taking a college statistics course. The students are English as a foreign language (EFL) learners in business studies and health sciences. Course delivery has involved conventional content/ curriculum-centered instruction with minimal to no interactive…
Nonequilibrium regolith thickness in the Ouachita Mountains
Jonathan D. Phillips; Daniel A. Marion; Kenneth Luckow; Kristin R. Adams
2005-01-01
Interpretations of regolith and soil thickness in the context of landscape evolution are typically based on the notion that thickness is controlled by the interaction of weathering rates and erosion and tuned to topography. On slideslopes of the Quachita Mountains, Arkansas, however, there is a high degree of local spatial varibilty that is largely unrelated to...
ERIC Educational Resources Information Center
Zvoch, Keith
2006-01-01
Data from a large school district in the southwestern United States were analyzed to investigate relations between student and school characteristics and high school freshman dropout patterns. Application of a multilevel logistic regression model to student dropout data revealed evidence of school-to-school differences in student dropout rates and…
Changes in Motor Strategies across Age Performing a Longswing on the High Bar
ERIC Educational Resources Information Center
Busquets, Albert; Marina, Michel; Angulo-Barroso, Rosa
2013-01-01
Purpose: Improvements in motor performance and coordination may be impacted by the interaction of practice and organismic constraints. It has been proposed that these aspects of motor learning are achieved at a different time rate: first, during placement of the events (performance), and second, segmental spatiotemporal relationships…
ERIC Educational Resources Information Center
Moore, Jensen
2014-01-01
This study examined student success, failure, withdrawal, and satisfaction in online public relations courses based on instructor-student interaction, student-student interaction, and instructor presence. Student passing rates, D/F rates, withdrawal rates, and evaluations of instruction were compiled from fifty-one online PR courses run over the…
An automated method for finding molecular complexes in large protein interaction networks
Bader, Gary D; Hogue, Christopher WV
2003-01-01
Background Recent advances in proteomics technologies such as two-hybrid, phage display and mass spectrometry have enabled us to create a detailed map of biomolecular interaction networks. Initial mapping efforts have already produced a wealth of data. As the size of the interaction set increases, databases and computational methods will be required to store, visualize and analyze the information in order to effectively aid in knowledge discovery. Results This paper describes a novel graph theoretic clustering algorithm, "Molecular Complex Detection" (MCODE), that detects densely connected regions in large protein-protein interaction networks that may represent molecular complexes. The method is based on vertex weighting by local neighborhood density and outward traversal from a locally dense seed protein to isolate the dense regions according to given parameters. The algorithm has the advantage over other graph clustering methods of having a directed mode that allows fine-tuning of clusters of interest without considering the rest of the network and allows examination of cluster interconnectivity, which is relevant for protein networks. Protein interaction and complex information from the yeast Saccharomyces cerevisiae was used for evaluation. Conclusion Dense regions of protein interaction networks can be found, based solely on connectivity data, many of which correspond to known protein complexes. The algorithm is not affected by a known high rate of false positives in data from high-throughput interaction techniques. The program is available from . PMID:12525261
Metabolic networks in motion: 13C-based flux analysis
Sauer, Uwe
2006-01-01
Many properties of complex networks cannot be understood from monitoring the components—not even when comprehensively monitoring all protein or metabolite concentrations—unless such information is connected and integrated through mathematical models. The reason is that static component concentrations, albeit extremely informative, do not contain functional information per se. The functional behavior of a network emerges only through the nonlinear gene, protein, and metabolite interactions across multiple metabolic and regulatory layers. I argue here that intracellular reaction rates are the functional end points of these interactions in metabolic networks, hence are highly relevant for systems biology. Methods for experimental determination of metabolic fluxes differ fundamentally from component concentration measurements; that is, intracellular reaction rates cannot be detected directly, but must be estimated through computer model-based interpretation of stable isotope patterns in products of metabolism. PMID:17102807
Radiogenic and muon-induced backgrounds in the LUX dark matter detector
NASA Astrophysics Data System (ADS)
Akerib, D. S.; Araújo, H. M.; Bai, X.; Bailey, A. J.; Balajthy, J.; Bernard, E.; Bernstein, A.; Bradley, A.; Byram, D.; Cahn, S. B.; Carmona-Benitez, M. C.; Chan, C.; Chapman, J. J.; Chiller, A. A.; Chiller, C.; Coffey, T.; Currie, A.; de Viveiros, L.; Dobi, A.; Dobson, J.; Druszkiewicz, E.; Edwards, B.; Faham, C. H.; Fiorucci, S.; Flores, C.; Gaitskell, R. J.; Gehman, V. M.; Ghag, C.; Gibson, K. R.; Gilchriese, M. G. D.; Hall, C.; Hertel, S. A.; Horn, M.; Huang, D. Q.; Ihm, M.; Jacobsen, R. G.; Kazkaz, K.; Knoche, R.; Larsen, N. A.; Lee, C.; Lindote, A.; Lopes, M. I.; Malling, D. C.; Mannino, R.; McKinsey, D. N.; Mei, D.-M.; Mock, J.; Moongweluwan, M.; Morad, J.; Murphy, A. St. J.; Nehrkorn, C.; Nelson, H.; Neves, F.; Ott, R. A.; Pangilinan, M.; Parker, P. D.; Pease, E. K.; Pech, K.; Phelps, P.; Reichhart, L.; Shutt, T.; Silva, C.; Solovov, V. N.; Sorensen, P.; O'Sullivan, K.; Sumner, T. J.; Szydagis, M.; Taylor, D.; Tennyson, B.; Tiedt, D. R.; Tripathi, M.; Uvarov, S.; Verbus, J. R.; Walsh, N.; Webb, R.; White, J. T.; Witherell, M. S.; Wolfs, F. L. H.; Woods, M.; Zhang, C.
2015-03-01
The Large Underground Xenon (LUX) dark matter experiment aims to detect rare low-energy interactions from Weakly Interacting Massive Particles (WIMPs). The radiogenic backgrounds in the LUX detector have been measured and compared with Monte Carlo simulation. Measurements of LUX high-energy data have provided direct constraints on all background sources contributing to the background model. The expected background rate from the background model for the 85.3 day WIMP search run is (2.6 ±0.2stat ±0.4sys) ×10-3 events keVee-1 kg-1day-1 in a 118 kg fiducial volume. The observed background rate is (3.6 ±0.4stat) ×10-3 events keVee-1 kg-1day-1 , consistent with model projections. The expectation for the radiogenic background in a subsequent one-year run is presented.
Anitproton-matter interactions in antiproton applications
NASA Technical Reports Server (NTRS)
Morgan, David L., Jr.
1990-01-01
By virtue of the highly energetic particles released when they annihilate in matter, antiprotons have a variety of potentially important applications. Among others, these include remote 3-D density and composition imaging of the human body and also of thick, dense materials, cancer therapy, and spacecraft propulsion. Except for spacecraft propulsion, the required numbers of low energy antiprotons can be produced, stored, and transported through reliance on current or near term technology. Paramount to these applications and to fundamental research involving antiprotons is knowledge of how antiprotons interact with matter. The basic annihilation process is fairly well understood, but the antiproton annihilation and energy loss rates in matter depend in complex ways on a number of atomic processes. The rates, and the corresponding cross sections, were measured or are accurately predictable only for limited combinations of antiproton kinetic energy and material species.
Sublethal streptomycin concentrations and lytic bacteriophage together promote resistance evolution.
Cairns, Johannes; Becks, Lutz; Jalasvuori, Matti; Hiltunen, Teppo
2017-01-19
Sub-minimum inhibiting concentrations (sub-MICs) of antibiotics frequently occur in natural environments owing to wide-spread antibiotic leakage by human action. Even though the concentrations are very low, these sub-MICs have recently been shown to alter bacterial populations by selecting for antibiotic resistance and increasing the rate of adaptive evolution. However, studies are lacking on how these effects reverberate into key ecological interactions, such as bacteria-phage interactions. Previously, co-selection of bacteria by phages and antibiotic concentrations exceeding MICs has been hypothesized to decrease the rate of resistance evolution because of fitness costs associated with resistance mutations. By contrast, here we show that sub-MICs of the antibiotic streptomycin (Sm) increased the rate of phage resistance evolution, as well as causing extinction of the phage. Notably, Sm and the phage in combination also enhanced the evolution of Sm resistance compared with Sm alone. These observations demonstrate the potential of sub-MICs of antibiotics to impact key ecological interactions in microbial communities with evolutionary outcomes that can radically differ from those associated with high concentrations. Our findings also contribute to the understanding of ecological and evolutionary factors essential for the management of the antibiotic resistance problem.This article is part of the themed issue 'Human influences on evolution, and the ecological and societal consequences'. © 2016 The Author(s).
Sublethal streptomycin concentrations and lytic bacteriophage together promote resistance evolution
2017-01-01
Sub-minimum inhibiting concentrations (sub-MICs) of antibiotics frequently occur in natural environments owing to wide-spread antibiotic leakage by human action. Even though the concentrations are very low, these sub-MICs have recently been shown to alter bacterial populations by selecting for antibiotic resistance and increasing the rate of adaptive evolution. However, studies are lacking on how these effects reverberate into key ecological interactions, such as bacteria–phage interactions. Previously, co-selection of bacteria by phages and antibiotic concentrations exceeding MICs has been hypothesized to decrease the rate of resistance evolution because of fitness costs associated with resistance mutations. By contrast, here we show that sub-MICs of the antibiotic streptomycin (Sm) increased the rate of phage resistance evolution, as well as causing extinction of the phage. Notably, Sm and the phage in combination also enhanced the evolution of Sm resistance compared with Sm alone. These observations demonstrate the potential of sub-MICs of antibiotics to impact key ecological interactions in microbial communities with evolutionary outcomes that can radically differ from those associated with high concentrations. Our findings also contribute to the understanding of ecological and evolutionary factors essential for the management of the antibiotic resistance problem. This article is part of the themed issue ‘Human influences on evolution, and the ecological and societal consequences’. PMID:27920385
Chang, Chih-Hao
2013-01-01
Abstract Remarkable changes in cardiorespiratory interactions are frequently experienced by Chan meditation practitioners following years of practice. This study compares the results of our study on cardiorespiratory interactions for novice (control group) and experienced (experimental group) Chan meditation practitioners. The effectual co-action between the cardiac and respiratory systems was evaluated by the degree of cardiorespiratory phase synchronization (CRPS). In addition, an adaptive-frequency-range (AFR) scheme to reliably quantify heart rate variability (HRV) was developed for assessing the regulation of sympathetic–parasympathetic activity and the efficiency of pulmonary gas exchange. The enhanced HRV method, named HRVAFR, can resolve the issue of overestimating HRV under the condition of slow respiration rates, which is frequently encountered in studies on Chan meditation practitioners. In the comparison of the three data sets collected from the two groups, our findings resulted in innovative hypotheses to interpret the extraordinary process of the rejuvenation of cardiorespiratory functions through long-term Dharma-Chan meditation practice. Particularly, advanced practitioners exhibit a continuously high degree of cardiorespiratory phase synchronization, even during rapid breathing. Based on our post-experimental interview with advanced practitioners, the activation of inner Chakra energy, during the course of Chan-detachment practice, frequently induces perceptible physiological-mental reformation, including an efficient mechanism for regulating cardiorespiratory interactions. PMID:23323597
Chang, Chih-Hao; Lo, Pei-Chen
2013-04-01
Remarkable changes in cardiorespiratory interactions are frequently experienced by Chan meditation practitioners following years of practice. This study compares the results of our study on cardiorespiratory interactions for novice (control group) and experienced (experimental group) Chan meditation practitioners. The effectual co-action between the cardiac and respiratory systems was evaluated by the degree of cardiorespiratory phase synchronization (CRPS). In addition, an adaptive-frequency-range (AFR) scheme to reliably quantify heart rate variability (HRV) was developed for assessing the regulation of sympathetic-parasympathetic activity and the efficiency of pulmonary gas exchange. The enhanced HRV method, named HRVAFR, can resolve the issue of overestimating HRV under the condition of slow respiration rates, which is frequently encountered in studies on Chan meditation practitioners. In the comparison of the three data sets collected from the two groups, our findings resulted in innovative hypotheses to interpret the extraordinary process of the rejuvenation of cardiorespiratory functions through long-term Dharma-Chan meditation practice. Particularly, advanced practitioners exhibit a continuously high degree of cardiorespiratory phase synchronization, even during rapid breathing. Based on our post-experimental interview with advanced practitioners, the activation of inner Chakra energy, during the course of Chan-detachment practice, frequently induces perceptible physiological-mental reformation, including an efficient mechanism for regulating cardiorespiratory interactions.
Internal friction controls the speed of protein folding from a compact configuration.
Pabit, Suzette A; Roder, Heinrich; Hagen, Stephen J
2004-10-05
Several studies have found millisecond protein folding reactions to be controlled by the viscosity of the solvent: Reducing the viscosity allows folding to accelerate. In the limit of very low solvent viscosity, however, one expects a different behavior. Internal interactions, occurring within the solvent-excluded interior of a compact molecule, should impose a solvent-independent upper limit to folding speed once the bulk diffusional motions become sufficiently rapid. Why has this not been observed? We have studied the effect of solvent viscosity on the folding of cytochrome c from a highly compact, late-stage intermediate configuration. Although the folding rate accelerates as the viscosity declines, it tends toward a finite limiting value approximately 10(5) s(-1) as the viscosity tends toward zero. This limiting rate is independent of the cosolutes used to adjust solvent friction. Therefore, interactions within the interior of a compact denatured polypeptide can limit the folding rate, but the limiting time scale is very fast. It is only observable when the solvent-controlled stages of folding are exceedingly rapid or else absent. Interestingly, we find a very strong temperature dependence in these "internal friction"-controlled dynamics, indicating a large energy scale for the interactions that govern reconfiguration within compact, near-native states of a protein.
DOE Office of Scientific and Technical Information (OSTI.GOV)
I. M. Robertson; A. Beaudoin; J. Lambros
2004-01-05
OAK-135 Development and validation of constitutive models for polycrystalline materials subjected to high strain rate loading over a range of temperatures are needed to predict the response of engineering materials to in-service type conditions (foreign object damage, high-strain rate forging, high-speed sheet forming, deformation behavior during forming, response to extreme conditions, etc.). To account accurately for the complex effects that can occur during extreme and variable loading conditions, requires significant and detailed computational and modeling efforts. These efforts must be closely coupled with precise and targeted experimental measurements that not only verify the predictions of the models, but also providemore » input about the fundamental processes responsible for the macroscopic response. Achieving this coupling between modeling and experimentation is the guiding principle of this program. Specifically, this program seeks to bridge the length scale between discrete dislocation interactions with grain boundaries and continuum models for polycrystalline plasticity. Achieving this goal requires incorporating these complex dislocation-interface interactions into the well-defined behavior of single crystals. Despite the widespread study of metal plasticity, this aspect is not well understood for simple loading conditions, let alone extreme ones. Our experimental approach includes determining the high-strain rate response as a function of strain and temperature with post-mortem characterization of the microstructure, quasi-static testing of pre-deformed material, and direct observation of the dislocation behavior during reloading by using the in situ transmission electron microscope deformation technique. These experiments will provide the basis for development and validation of physically-based constitutive models, which will include dislocation-grain boundary interactions for polycrystalline systems. One aspect of the program will involve the dire ct observation of specific mechanisms of micro-plasticity, as these will indicate the boundary value problem that should be addressed. This focus on the pre-yield region in the quasi-static effort (the elasto-plastic transition) is also a tractable one from an experimental and modeling viewpoint. In addition, our approach will minimize the need to fit model parameters to experimental data to obtain convergence. These are critical steps to reach the primary objective of simulating and modeling material performance under extreme loading conditions. In this annual report, we describe the progress made in the first year of this program.« less
NASA Astrophysics Data System (ADS)
Camarlinghi, N.; Sportelli, G.; Battistoni, G.; Belcari, N.; Cecchetti, M.; Cirrone, G. A. P.; Cuttone, G.; Ferretti, S.; Kraan, A.; Retico, A.; Romano, F.; Sala, P.; Straub, K.; Tramontana, A.; Del Guerra, A.; Rosso, V.
2014-04-01
Ion therapy allows the delivery of highly conformal dose taking advantage of the sharp depth-dose distribution at the Bragg-peak. However, patient positioning errors and anatomical uncertainties can cause dose distortions. To exploit the full potential of ion therapy, an accurate monitoring system of the ion range is needed. Among the proposed methods to monitor the ion range, Positron Emission Tomography (PET) has proven to be the most mature technique, allowing to reconstruct the β+ activity generated in the patient by the nuclear interaction of the ions, that can be acquired during or after the treatment. Taking advantages of the spatial correlation between positron emitters created along the ions path and the dose distribution, it is possible to reconstruct the ion range. Due to the high single rates generated during the beam extraction, the acquisition of the β+ activity is typically performed after the irradiation (cyclotron) or in between the synchrotron spills. Indeed the single photon rate can be one or more orders of magnitude higher than normal for cyclotron. Therefore, acquiring the activity during the beam irradiation requires a detector with a very short dead time. In this work, the DoPET detector, capable of sustaining the high event rate generated during the cyclotron irradiation, is presented. The capability of the system to acquire data during and after the irradiation will be demonstrated by showing the reconstructed activity for different PMMA irradiations performed using clinical dose rates and the 62 MeV proton beam at the CATANA-LNS-INFN. The reconstructed activity widths will be compared with the results obtained by simulating the proton beam interaction with the FLUKA Monte Carlo. The presented data are in good agreement with the FLUKA Monte Carlo.
The Effect of Sex on Heart Rate Variability at High Altitude.
Boos, Christopher John; Vincent, Emma; Mellor, Adrian; O'Hara, John; Newman, Caroline; Cruttenden, Richard; Scott, Phylip; Cooke, Mark; Matu, Jamie; Woods, David Richard
2017-12-01
There is evidence suggesting that high altitude (HA) exposure leads to a fall in heart rate variability (HRV) that is linked to the development of acute mountain sickness (AMS). The effects of sex on changes in HRV at HA and its relationship to AMS are unknown. HRV (5-min single-lead ECG) was measured in 63 healthy adults (41 men and 22 women) 18-56 yr of age at sea level (SL) and during a HA trek at 3619, 4600, and 5140 m, respectively. The main effects of altitude (SL, 3619 m, 4600 m, and 5140 m) and sex (men vs women) and their potential interaction were assessed using a factorial repeated-measures ANOVA. Logistic regression analyses were performed to assess the ability of HRV to predict AMS. Men and women were of similar age (31.2 ± 9.3 vs 31.7 ± 7.5 yr), ethnicity, and body and mass index. There was main effect for altitude on heart rate, SD of normal-to-normal (NN) intervals (SDNN), root mean square of successive differences (RMSSD), number of pairs of successive NN differing by >50 ms (NN50), NN50/total number of NN, very low-frequency power, low-frequency (LF) power, high-frequency (HF) power, and total power (TP). The most consistent effect on post hoc analysis was reduction in these HRV measures between 3619 and 5140 m at HA. Heart rate was significantly lower and SDNN, RMSSD, LF power, HF power, and TP were higher in men compared with women at HA. There was no interaction between sex and altitude for any of the HRV indices measured. HRV was not predictive of AMS development. Increasing HA leads to a reduction in HRV. Significant differences between men and women emerge at HA. HRV was not predictive of AMS.
Webb, Haley J; Thomas, Rae; McGregor, Leanne; Avdagic, Elbina; Zimmer-Gembeck, Melanie J
2017-01-01
Although many interventions for child externalizing behavior report promising outcomes for families, high attrition prior to program completion remains a problem. Many programs report dropout rates of 50% or higher. In this trial we sought to reduce attrition and improve outcomes by augmenting a well-known evidence-based intervention, Parent-Child Interaction Therapy (PCIT), with a 3-session individual motivational enhancement component. Participants were 192 Australian caregivers (91.7% female; M age = 34.4 years) and their children (33.3% female; M age = 4.4 years). Families (51% referred from child welfare or health services for risk of maltreatment) were assigned to PCIT or a supported waitlist, with families assigned to PCIT receiving either standard PCIT (S/PCIT) or motivation-enhanced PCIT (M/PCIT), depending on their time of entry to the study. Waitlist families received phone calls every week for 12 weeks. Parents in M/PCIT reported more readiness to change their behavior from preassessment to after the motivation sessions. Also, parents who reported high, rather than low, motivation at preassessment did have a lower attrition rate, and there was some evidence that enhancing motivation was protective of premature attrition to the extent that caregivers achieved a high degree of change in motivation. Yet comparison of attrition rates and survival analyses revealed no difference between M/PCIT and S/PCIT in retention rate. Finally, there were greater reductions in externalizing and internalizing child behavior problems and parental stress among families in S/PCIT and M/PCIT compared with waitlist, and there was generally no significant difference between the two treatment conditions.
Factors affecting the strength of multipass low-alloy steel weld metal
NASA Technical Reports Server (NTRS)
Krantz, B. M.
1972-01-01
The mechanical properties of multipass high-strength steel weld metals depend upon several factors, among the most important being: (1) The interaction between the alloy composition and weld metal cooling rate which determines the as-deposited microstructure; and (2) the thermal effects of subsequent passes on each underlying pass which alter the original microstructure. The bulk properties of a multipass weld are therefore governed by both the initial microstructure of each weld pass and its subsequent thermal history. Data obtained for a high strength low alloy steel weld metal confirmed that a simple correlation exists between mechanical properties and welding conditions if the latter are in turn correlated as weld cooling rate.
Nachar, Nadim; Lavoie, Marc E; Marchand, André; O'Connor, Kieron P; Guay, Stéphane
2014-09-30
Individuals with posttraumatic stress disorder (PTSD) commonly make efforts to avoid trauma-oriented conversations with their significant others, which may interfere with the natural recovery process. Trauma-oriented conversations can be experienced as physiologically arousing, depending on the intensity of PTSD symptoms and perceptions of social support. In the current investigation, changes in heart rate responses to a trauma-oriented social interaction with a significant other were assessed. Perceived supportive and unsupportive or negative social interactions were examined as moderators of the association between heart rate changes to this context and intensity of PTSD symptoms. A total of 46 individuals with PTSD completed diagnostic interviews and self-report measures of symptoms and perceived supportive and negative social interactions during a trauma-oriented social interaction with a significant other. Heart rate was continuously measured during this interaction. Results showed that engagement in a trauma-oriented social interaction was predictive of elevations in heart rate that positively correlated with intensity of PTSD symptoms. The moderation hypothesis was partially supported. In addition, perceived negative social interactions positively correlated with elevations in heart rate. These findings can inform social intervention efforts for individuals with PTSD. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Aglioti, Salvatore Maria; Liuzza, Marco Tullio
2017-01-01
Trust towards unrelated individuals is often conditioned by information about previous social interactions that can be derived from either personal or vicarious experience (e.g., reputation). Intergroup stereotypes can be operationalized as expectations about other groups’ traits/attitudes/behaviors that heavily influence our behavioral predictions when interacting with them. In this study we investigated the role of perceived social dimensions of the Stereotype Content Model (SCM)–Warmth (W) and Competence (C)—in affecting trusting behavior towards different European national group members during the Trust Game. Given the well-known role of ideological attitudes in regulating stereotypes, we also measured individual differences in right-wing authoritarianism (RWA). In Experiment 1, we designed an online survey to study one-shot intergroup trust decisions by employing putative members of the European Union states which were also rated along SCM dimensions. We found that low-RWA participants’ trusting behavior was driven by perceived warmth (i.e., the dimension signaling the benevolence of social intentions) when interacting with low-C groups. In Experiment 2, we investigated the dynamics of trust in a multiple-round version of the European Trust Game. We found that in low-RWA participants trusting behavior decreased over time when interacting with high-W groups (i.e., expected to reciprocate trust), but did not change when interacting with low-W groups (i.e., expected not to reciprocate trust). Moreover, we found that high-RWA participants’ trusting behavior decreased when facing low-W groups but not high-W ones. This suggests that low-RWA individuals employ reputational priors but are also permeable to external evidence when learning about others’ trustworthiness. In contrast, high-RWA individuals kept relying on stereotypes despite contextual information. These results confirm the pivotal role played by reputational priors triggered by perceived warmth in shaping social interactions. PMID:29284019
Ponsi, Giorgia; Panasiti, Maria Serena; Aglioti, Salvatore Maria; Liuzza, Marco Tullio
2017-01-01
Trust towards unrelated individuals is often conditioned by information about previous social interactions that can be derived from either personal or vicarious experience (e.g., reputation). Intergroup stereotypes can be operationalized as expectations about other groups' traits/attitudes/behaviors that heavily influence our behavioral predictions when interacting with them. In this study we investigated the role of perceived social dimensions of the Stereotype Content Model (SCM)-Warmth (W) and Competence (C)-in affecting trusting behavior towards different European national group members during the Trust Game. Given the well-known role of ideological attitudes in regulating stereotypes, we also measured individual differences in right-wing authoritarianism (RWA). In Experiment 1, we designed an online survey to study one-shot intergroup trust decisions by employing putative members of the European Union states which were also rated along SCM dimensions. We found that low-RWA participants' trusting behavior was driven by perceived warmth (i.e., the dimension signaling the benevolence of social intentions) when interacting with low-C groups. In Experiment 2, we investigated the dynamics of trust in a multiple-round version of the European Trust Game. We found that in low-RWA participants trusting behavior decreased over time when interacting with high-W groups (i.e., expected to reciprocate trust), but did not change when interacting with low-W groups (i.e., expected not to reciprocate trust). Moreover, we found that high-RWA participants' trusting behavior decreased when facing low-W groups but not high-W ones. This suggests that low-RWA individuals employ reputational priors but are also permeable to external evidence when learning about others' trustworthiness. In contrast, high-RWA individuals kept relying on stereotypes despite contextual information. These results confirm the pivotal role played by reputational priors triggered by perceived warmth in shaping social interactions.
Medenwald, Daniel; Swenne, Cees A; Loppnow, Harald; Kors, Jan A; Pietzner, Diana; Tiller, Daniel; Thiery, Joachim; Nuding, Sebastian; Greiser, Karin H; Haerting, Johannes; Werdan, Karl; Kluttig, Alexander
2017-01-01
To determine the interaction between HRV and inflammation and their association with cardiovascular/all-cause mortality in the general population. Subjects of the CARLA study (n = 1671; 778 women, 893 men, 45-83 years of age) were observed for an average follow-up period of 8.8 years (226 deaths, 70 cardiovascular deaths). Heart rate variability parameters were calculated from 5-min segments of 20-min resting electrocardiograms. High-sensitivity C-reactive protein (hsCRP), interleukin-6 (IL-6), and soluble tumour necrosis factor-alpha receptor type 1 (sTNF-R1) were measured as inflammation parameters. The HRV parameters determined included the standard deviation of normal-to-normal intervals (SDNN), the root-mean-square of successive normal-interval differences (RMSSD), the low- and high-frequency (HF) power, the ratio of both, and non-linear parameters [Poincaré plot (SD1, SD2, SD1/SD2), short-term detrended fluctuation analysis]. We estimated hazard ratios by using covariate-adjusted Cox regression for cardiovascular and all-cause mortality incorporating an interaction term of HRV/inflammation parameters. Relative excess risk due to interactions (RERIs) were computed. We found an interaction effect of sTNF-R1 with SDNN (RERI: 0.5; 99% confidence interval (CI): 0.1-1.0), and a weaker effect with RMSSD (RERI: 0.4; 99% CI: 0.0-0.9) and HF (RERI: 0.4; 99% CI: 0.0-0.9) with respect to cardiovascular mortality on an additive scale after covariate adjustment. Neither IL-6 nor hsCRP showed a significant interaction with the HRV parameters. A change in TNF-α levels or the autonomic nervous system influences the mortality risk through both entities simultaneously. Thus, TNF-α and HRV need to be considered when predicating mortality. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2016. For permissions please email: journals.permissions@oup.com.
Tidal dwarf galaxies in cosmological simulations
NASA Astrophysics Data System (ADS)
Ploeckinger, Sylvia; Sharma, Kuldeep; Schaye, Joop; Crain, Robert A.; Schaller, Matthieu; Barber, Christopher
2018-02-01
The formation and evolution of gravitationally bound, star forming substructures in tidal tails of interacting galaxies, called tidal dwarf galaxies (TDG), has been studied, until now, only in idealized simulations of individual pairs of interacting galaxies for pre-determined orbits, mass ratios and gas fractions. Here, we present the first identification of TDG candidates in fully cosmological simulations, specifically the high-resolution simulations of the EAGLE suite. The finite resolution of the simulation limits their ability to predict the exact formation rate and survival time-scale of TDGs, but we show that gravitationally bound baryonic structures in tidal arms already form in current state-of-the-art cosmological simulations. In this case, the orbital parameter, disc orientations as well as stellar and gas masses and the specific angular momentum of the TDG forming galaxies are a direct consequence of cosmic structure formation. We identify TDG candidates in a wide range of environments, such as multiple galaxy mergers, clumpy high-redshift (up to z = 2) galaxies, high-speed encounters and tidal interactions with gas-poor galaxies. We present selection methods, the properties of the identified TDG candidates and a road map for more quantitative analyses using future high-resolution simulations.
NASA Astrophysics Data System (ADS)
Sinha, Neeraj; Zambon, Andrea; Ott, James; Demagistris, Michael
2015-06-01
Driven by the continuing rapid advances in high-performance computing, multi-dimensional high-fidelity modeling is an increasingly reliable predictive tool capable of providing valuable physical insight into complex post-detonation reacting flow fields. Utilizing a series of test cases featuring blast waves interacting with combustible dispersed clouds in a small-scale test setup under well-controlled conditions, the predictive capabilities of a state-of-the-art code are demonstrated and validated. Leveraging physics-based, first principle models and solving large system of equations on highly-resolved grids, the combined effects of finite-rate/multi-phase chemical processes (including thermal ignition), turbulent mixing and shock interactions are captured across the spectrum of relevant time-scales and length scales. Since many scales of motion are generated in a post-detonation environment, even if the initial ambient conditions are quiescent, turbulent mixing plays a major role in the fireball afterburning as well as in dispersion, mixing, ignition and burn-out of combustible clouds in its vicinity. Validating these capabilities at the small scale is critical to establish a reliable predictive tool applicable to more complex and large-scale geometries of practical interest.
Li, Ang; Lim, Tong Seng; Shi, Hui; Yin, Jing; Tan, Swee Jin; Li, Zhengjun; Low, Boon Chuan; Tan, Kevin Shyong Wei; Lim, Chwee Teck
2011-01-01
Cytoadherence or sequestration is essential for the pathogenesis of the most virulent human malaria species, Plasmodium falciparum (P. falciparum). Similar to leukocyte-endothelium interaction in response to inflammation, cytoadherence of P. falciparum infected red blood cells (IRBCs) to endothelium occurs under physiological shear stresses in blood vessels and involves an array of molecule complexes which cooperate to form stable binding. Here, we applied single-molecule force spectroscopy technique to quantify the dynamic force spectra and characterize the intrinsic kinetic parameters for specific ligand-receptor interactions involving two endothelial receptor proteins: thrombospondin (TSP) and CD36. It was shown that CD36 mediated interaction was much more stable than that mediated by TSP at single molecule level, although TSP-IRBC interaction appeared stronger than CD36-IRBC interaction in the high pulling rate regime. This suggests that TSP-mediated interaction may initiate cell adhesion by capturing the fast flowing IRBCs whereas CD36 functions as the ‘holder’ for providing stable binding. PMID:21437286
Taylor, Edwin W; Leite, Cleo A C; Sartori, Marina R; Wang, Tobias; Abe, Augusto S; Crossley, Dane A
2014-03-01
Heart rate in vertebrates is controlled by activity in the autonomic nervous system. In spontaneously active or experimentally prepared animals, inhibitory parasympathetic control is predominant and is responsible for instantaneous changes in heart rate, such as occur at the first air breath following a period of apnoea in discontinuous breathers like inactive reptiles or species that surface to air breathe after a period of submersion. Parasympathetic control, exerted via fast-conducting, myelinated efferent fibres in the vagus nerve, is also responsible for beat-to-beat changes in heart rate such as the high frequency components observed in spectral analysis of heart rate variability. These include respiratory modulation of the heartbeat that can generate cardiorespiratory synchrony in fish and respiratory sinus arrhythmia in mammals. Both may increase the effectiveness of respiratory gas exchange. Although the central interactions generating respiratory modulation of the heartbeat seem to be highly conserved through vertebrate phylogeny, they are different in kind and location, and in most species are as yet little understood. The heart in vertebrate embryos possesses both muscarinic cholinergic and β-adrenergic receptors very early in development. Adrenergic control by circulating catecholamines seems important throughout development. However, innervation of the cardiac receptors is delayed and first evidence of a functional cholinergic tonus on the heart, exerted via the vagus nerve, is often seen shortly before or immediately after hatching or birth, suggesting that it may be coordinated with the onset of central respiratory rhythmicity and subsequent breathing.
Effects of phenotypic plasticity on pathogen transmission in the field in a Lepidoptera-NPV system.
Reeson, A F; Wilson, K; Cory, J S; Hankard, P; Weeks, J M; Goulson, D; Hails, R S
2000-08-01
In models of insect-pathogen interactions, the transmission parameter (ν) is the term that describes the efficiency with which pathogens are transmitted between hosts. There are two components to the transmission parameter, namely the rate at which the host encounters pathogens (contact rate) and the rate at which contact between host and pathogen results in infection (host susceptibility). Here it is shown that in larvae of Spodoptera exempta (Lepidoptera: Noctuidae), in which rearing density triggers the expression of one of two alternative phenotypes, the high-density morph is associated with an increase in larval activity. This response is likely to result in an increase in the contact rate between hosts and pathogens. Rearing density is also known to affect susceptibility of S. exempta to pathogens, with the high-density morph showing increased resistance to a baculovirus. In order to determine whether density-dependent differences observed in the laboratory might affect transmission in the wild, a field trial was carried out to estimate the transmission parameter for S. exempta and its nuclear polyhedrosis virus (NPV). The transmission parameter was found to be significantly higher among larvae reared in isolation than among those reared in crowds. Models of insect-pathogen interactions, in which the transmission parameter is assumed to be constant, will therefore not fully describe the S. exempta-NPV system. The finding that crowding can influence transmission in this way has major implications for both the long-term population dynamics and the invasion dynamics of insect-pathogen systems.
Pandey, Preetanshu; Levins, Christopher; Pafiakis, Steve; Zacour, Brian; Bindra, Dilbir S; Trinh, Jade; Buckley, David; Gour, Shruti; Sharif, Shasad; Stamato, Howard
2018-07-01
The objective of this study was to improve the disintegration and dissolution characteristics of a highly water-soluble tablet matrix by altering the manufacturing process. A high disintegration time along with high dependence of the disintegration time on tablet hardness was observed for a high drug loading (70% w/w) API when formulated using a high-shear wet granulation (HSWG) process. Keeping the formulation composition mostly constant, a fluid-bed granulation (FBG) process was explored as an alternate granulation method using a 2 (4-1) fractional factorial design with two center points. FBG batches (10 batches) were manufactured using varying disingtegrant amount, spray rate, inlet temperature (T) and atomization air pressure. The resultant final blend particle size was affected significantly by spray rate (p = .0009), inlet T (p = .0062), atomization air pressure (p = .0134) and the interaction effect between inlet T*spray rate (p = .0241). The compactibility of the final blend was affected significantly by disintegrant amount (p < .0001), atomization air pressure (p = .0013) and spray rate (p = .05). It was observed that the fluid-bed batches gave significantly lower disintegration times than the HSWG batches, and mercury intrusion porosimetry data revealed that this was caused by the higher internal pore structure of tablets manufactured using the FBG batches.
The Feasibility and Acceptability of “Arise”: An Online Substance Abuse Relapse Prevention Program
Bartel, Chelsea M.
2015-01-01
Abstract Objective: The purpose of this study was to test the feasibility and acceptability of a novel online adolescent substance abuse relapse prevention tool, “Arise” (3C Institute, Cary, NC). The program uses an innovative platform including interactive instructional segments and skill-building games to help adolescents learn and practice coping skills training strategies. Materials and Methods: We conducted a pilot test with nine adolescents in substance abuse treatment (44 percent female) and a feasibility test with treatment providers (n=8; 50 percent female). Adolescents interacted with the program via a secure Web site for approximately 30 minutes for each of two instructional units. Treatment providers reviewed the same material at their own pace. All participants completed a questionnaire with items assessing usability, acceptability, understanding, and subjective experience of the program. Results: Regarding feasibility, recruitment of this population within the study constraints proved challenging, but participant retention in the trial was high (no attrition). Adolescents and treatment providers completed the program with no reported problems, and overall we were able to collect data as planned. Regarding acceptability, the program received strong ratings from both adolescents and providers, who found the prototype informative, engaging, and appealing. Both groups strongly recommended continuing development. Conclusions: We were able to deliver the intervention as intended, and acceptability ratings were high, demonstrating the feasibility and acceptability of online delivery of engaging interactive interventions. This study contributes to our understanding of how interactive technologies, including games, can be used to modify behavior in substance abuse treatment and other health areas. PMID:26181807
Tsuruta, S; Lourenco, D A L; Misztal, I; Lawlor, T J
2015-08-01
The objective of this study was to investigate genotype by environment interactions for culling rates and milk production in large and small dairy herds in 3 US regions, using genotypes, pedigree, and phenotypes. Single nucleotide polymorphism (SNP) marker variances were also estimated in these different environments. Culling rates including cow mortality were based on 6 Dairy Herd Improvement termination codes reported by dairy producers. Separate data sets for culling rates and 305-d milk yield were created for large and small dairy herds in the US regions of the Southeast (SE), Southwest (SW), and Northeast (NE) for the first 3 lactation cows that calved between 1999 and 2008. Genomic information from 42,503 SNP markers on 34,506 bulls was included in the analysis to predict genomic estimated breeding value (GEBV) of culling rates and 305-d milk yield with a single-step genomic BLUP using a bivariate threshold-linear model. Cow replacement rates in large SE and NE herds were higher. Heritability estimates of culling rates ranged from 0.03 to 0.11, but the differences were small between large and small herds and among the 3 US regions. Genetic correlations between culling rates and 305-d milk yield were medium to high for cows sold for poor production and reproduction problems. Correlations of GEBV for culling rates among the 3 US regions ranged from 0.34 to 0.92 and were lower between the SW and the other regions, especially in small herds. Correlations of GEBV between large and small herds ranged from 0.44 to 0.90 and were lower in the SW. These results indicate genotype by environment interactions of cow culling rate between the US regions and between large and small herds. Correlations of top 30 SNP marker effects for culling rates between 2 US regions ranged from 0.64 to 0.98 and were higher than those of more SNP marker effects except for a culling reason "sold for dairy purpose." Those correlations between large and small herds ranged from 0.67 to 0.98. High correlations of top SNP marker effects on culling reasons between the US regions and between large and small herds suggest that major markers can be useful for selection in different environments. The SNP variance shown in a marker gene segment on chromosome 14 was strongly associated with milk production in large and small herds in the NE but not in the SE and SW. Marker genes on chromosome 14 also showed a strong association with cow culling rates due to poor production and mortality in large herds in the NE. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Zielke, Olaf; Arrowsmith, Ramon
2010-05-01
Slip-rates along individual faults may differ as a function of measurement time scale. Short-term slip-rates may be higher than the long term rate and vice versa. For example, vertical slip-rates along the Wasatch Fault, Utah are 1.7+/-0.5 mm/yr since 6ka, <0.6 mm/yr since 130ka, and 0.5-0.7 mm/yr since 10Ma (Friedrich et al., 2003). Following conventional earthquake recurrence models like the characteristic earthquake model, this observation implies that the driving strain accumulation rates may have changed over the respective time scales as well. While potential explanations for such slip-rate variations may be found for example in the reorganization of plate tectonic motion or mantle flow dynamics, causing changes in the crustal velocity field over long spatial wavelengths, no single geophysical explanation exists. Temporal changes in earthquake rate (i.e., event clustering) due to elastic interactions within a complex fault system may present an alternative explanation that requires neither variations in strain accumulation rate or nor changes in fault constitutive behavior for frictional sliding. In the presented study, we explore this scenario and investigate how fault geometric complexity, fault segmentation and fault (segment) interaction affect the seismic behavior and slip-rate along individual faults while keeping tectonic stressing-rate and frictional behavior constant in time. For that, we used FIMozFric--a physics-based numerical earthquake simulator, based on Okada's (1992) formulations for internal displacements and strains due to shear and tensile faults in a half-space. Faults are divided into a large number of equal-sized fault patches which communicate via elastic interaction, allowing implementation of geometrically complex, non-planar faults. Each patch has assigned a static and dynamic friction coefficient. The difference between those values is a function of depth--corresponding to the temperature-dependence of velocity-weakening that is observed in laboratory friction experiments and expressed in an [a-b] term in Rate-State-Friction (RSF) theory. Patches in the seismic zone are incrementally loaded during the interseismic phase. An earthquake initiates if shear stress along at least one (seismic) patch exceeds its static frictional strength and may grow in size due to elastic interaction with other fault patches (static stress transfer). Aside from investigating slip-rate variations due to the elastic interactions within a fault system with this tool, we want to show how such modeling results can be very useful in exploring the physics underlying the patterns that the paleoseismology sees and that those methods (simulation and observations) can be merged, with both making important contributions. Using FIMozFric, we generated synthetic seismic records for a large number of fault geometries and structural scenarios to investigate along-fault slip accumulation patterns and the variability of slip at a point. Our simulations show that fault geometric complexity and the accompanied fault interactions and multi-fault ruptures may cause temporal deviations from the average fault slip-rate, in other words phases of earthquake clustering or relative quiescence. Slip-rates along faults within an interacting fault system may change even when the loading function (stressing rate) remains constant and the magnitude of slip rate change is suggested to be proportional to the magnitude of fault interaction. Thus, spatially isolated and structurally mature faults are expected to experience less slip-rate changes than strongly interacting and less mature faults. The magnitude of slip-rate change may serve as a proxy for the magnitude of fault interaction and vice versa.
Heyworth, L; Kleinman, K; Oddleifson, S; Bernstein, L; Frampton, J; Lehrer, M; Salvato, K; Weiss, T W; Simon, S R; Connelly, M
2014-05-01
Guidelines recommend screening for osteoporosis with bone mineral density (BMD) testing in menopausal women, particularly those with additional risk factors for fracture. Many eligible women remain unscreened. This randomized study demonstrates that a single outreach interactive voice response phone call improves rates of BMD screening among high-risk women age 50-64. Osteoporotic fractures are a major cause of disability and mortality. Guidelines recommend screening with BMD for menopausal women, particularly those with additional risk factors for fracture. However, many women remain unscreened. We examined whether telephonic interactive voice response (IVR) or patient mailing could increase rates of BMD testing in high risk, menopausal women. We studied 4,685 women age 50-64 years within a not-for-profit health plan in the United States. All women had risk factors for developing osteoporosis and no prior BMD testing or treatment for osteoporosis. Patients were randomly allocated to usual care, usual care plus IVR, or usual care plus mailed educational materials. To avoid contamination, patients within a single primary care physician practice were randomized to receive the same intervention. The primary endpoint was BMD testing at 12 months. Secondary outcomes included BMD testing at 6 months and medication use at 12 months. Mean age was 57 years. Baseline demographic and clinical characteristics were similar across the three study groups. In adjusted analyses, the incidence of BMD screening was 24.6% in the IVR group compared with 18.6% in the usual care group (P < 0.001). There was no difference between the patient mailing group and the usual care group (P = 0.3). In this large community-based randomized trial of high risk, menopausal women age 50-64, IVR, but not patient mailing, improved rates of BMD screening. IVR remains a viable strategy to incorporate in population screening interventions.
Performance of a large size triple GEM detector at high particle rate for the CBM Experiment at FAIR
NASA Astrophysics Data System (ADS)
Adak, Rama Prasad; Kumar, Ajit; Dubey, Anand Kumar; Chattopadhyay, Subhasis; Das, Supriya; Raha, Sibaji; Samanta, Subhasis; Saini, Jogender
2017-02-01
In CBM Experiment at FAIR, dimuons will be detected by a Muon Chamber (MUCH) consisting of segmented absorbers of varying widths and tracking chambers sandwiched between the absorber-pairs. In this fixed target heavy-ion collision experiment, operating at highest interaction rate of 10 MHz for Au+Au collision, the inner region of the 1st detector will face a particle rate of 1 MHz/cm2. To operate at such a high particle density, GEM technology based detectors have been selected for the first two stations of MUCH. We have reported earlier the performance of several small-size GEM detector prototypes built at VECC for use in MUCH. In this work, we report on a large GEM prototype tested with proton beam of momentum 2.36 GeV/c at COSY-Jülich Germany. The detector was read out using nXYTER operated in self-triggering mode. An efficiency higher than 96% at ΔVGEM = 375.2 V was achieved. The variation of efficiency with the rate of incoming protons has been found to vary within 2% when tested up to a maximum rate of 2.8 MHz/cm2. The gain was found to be stable at high particle rate with a maximum variation of ∼9%.
Marchell, Richard; Locatis, Craig; Burges, Gene; Maisiak, Richard; Liu, Wei-Li; Ackerman, Michael
2017-03-01
There is little teledermatology research directly comparing remote methods, even less research with two in-person dermatologist agreement providing a baseline for comparing remote methods, and no research using high definition video as a live interactive method. To compare in-person consultations with store-and-forward and live interactive methods, the latter having two levels of image quality. A controlled study was conducted where patients were examined in-person, by high definition video, and by store-and-forward methods. The order patients experienced methods and residents assigned methods rotated, although an attending always saw patients in-person. The type of high definition video employed, lower resolution compressed or higher resolution uncompressed, was alternated between clinics. Primary and differential diagnoses, biopsy recommendations, and diagnostic and biopsy confidence ratings were recorded. Concordance and confidence were significantly better for in-person versus remote methods and biopsy recommendations were lower. Store-and-forward and higher resolution uncompressed video results were similar and better than those for lower resolution compressed video. Dermatology residents took store-and-forward photos and their quality was likely superior to those normally taken in practice. There were variations in expertise between the attending and second and third year residents. The superiority of in-person consultations suggests the tendencies to order more biopsies or still see patients in-person are often justified in teledermatology and that high resolution uncompressed video can close the resolution gap between store-and-forward and live interactive methods.
Impacts of warming revealed by linking resource growth rates with consumer functional responses.
West, Derek C; Post, David M
2016-05-01
Warming global temperatures are driving changes in species distributions, growth and timing, but much uncertainty remains regarding how climate change will alter species interactions. Consumer-Resource interactions in particular can be strongly impacted by changes to the relative performance of interacting species. While consumers generally gain an advantage over their resources with increasing temperatures, nonlinearities can change this relation near temperature extremes. We use an experimental approach to determine how temperature changes between 5 and 30 °C will alter the growth of the algae Scenedesmus obliquus and the functional responses of the small-bodied Daphnia ambigua and the larger Daphnia pulicaria. The impact of warming generally followed expectations, making both Daphnia species more effective grazers, with the increase in feeding rates outpacing the increases in algal growth rate. At the extremes of our temperature range, however, warming resulted in a decrease in Daphnia grazing effectiveness. Between 25 and 30 °C, both species of Daphnia experienced a precipitous drop in feeding rates, while algal growth rates remained high, increasing the likelihood of algal blooms in warming summer temperatures. Daphnia pulicaria performed significantly better at cold temperatures than D. ambigua, but by 20 °C, there was no significant difference between the two species, and at 25 °C, D. ambigua outperformed D. pulicaria. Warming summer temperatures will favour the smaller D. ambigua, but only over a narrow temperature range, and warming beyond 25 °C could open D. ambigua to invasion from tropical species. By fitting our results to temperature-dependent functions, we develop a temperature- and density-dependent model, which produces a metric of grazing effectiveness, quantifying the grazer density necessary to halt algal growth. This approach should prove useful for tracking the transient dynamics of other density-dependent consumer-resource interactions, such as agricultural pests and biological-control agents. © 2016 The Authors. Journal of Animal Ecology © 2016 British Ecological Society.
Slater, Garett P.; Rajamohan, Arun; Yocum, George D.; Greenlee, Kendra J.; Bowsher, Julia H.
2017-01-01
ABSTRACT In holometabolous insects, larval nutrition affects adult body size, a life history trait with a profound influence on performance and fitness. Individual nutritional components of larval diets are often complex and may interact with one another, necessitating the use of a geometric framework for elucidating nutritional effects. In the honey bee, Apis mellifera, nurse bees provision food to developing larvae, directly moderating growth rates and caste development. However, the eusocial nature of honey bees makes nutritional studies challenging, because diet components cannot be systematically manipulated in the hive. Using in vitro rearing, we investigated the roles and interactions between carbohydrate and protein content on larval survival, growth, and development in A. mellifera. We applied a geometric framework to determine how these two nutritional components interact across nine artificial diets. Honey bees successfully completed larval development under a wide range of protein and carbohydrate contents, with the medium protein (∼5%) diet having the highest survival. Protein and carbohydrate both had significant and non-linear effects on growth rate, with the highest growth rates observed on a medium-protein, low-carbohydrate diet. Diet composition did not have a statistically significant effect on development time. These results confirm previous findings that protein and carbohydrate content affect the growth of A. mellifera larvae. However, this study identified an interaction between carbohydrate and protein content that indicates a low-protein, high-carb diet has a negative effect on larval growth and survival. These results imply that worker recruitment in the hive would decline under low protein conditions, even when nectar abundance or honey stores are sufficient. PMID:28396492
Matsue, Yuya; Shiraishi, Atsushi; Kagiyama, Nobuyuki; Yoshida, Kazuki; Kume, Teruyoshi; Okura, Hiroyuki; Suzuki, Makoto; Matsumura, Akihiko; Yoshida, Kiyoshi; Hashimoto, Yuji
2016-12-01
Although intravenous diuretics have been mainstay drugs in patients with acute heart failure (AHF), they have been suggested to have some deleterious effects on prognosis. We postulated that renal function may modify their deleterious effects in AHF patients. The study population consisted of 1094 AHF patients from three hospitals. Renal dysfunction (RD) was defined as estimated glomerular filtration rate (eGFR) <60 mL/min/1.73 m 2 on admission, and the cohort was divided into a high-dose furosemide (≥100 mg/48 h) and low-dose furosemide group according to the amount of intravenous furosemide used within 48 h from admission. In the whole cohort, in-hospital mortality rate was higher in the high-dose furosemide group than the low-dose furosemide group (12.5 vs. 6.6 %, respectively, P = 0.001). However, this difference in the in-hospital mortality rates was significant only in the RD subgroup (15.6 vs. 7.0 %, respectively, P < 0.001), and not in the non-RD subgroup (2.5 vs. 5.9 %, respectively, P = 0.384). Propensity score-matched analysis was performed to evaluate the impact of high-dose furosemide on prognosis. After propensity score matching, high-dose furosemide was not associated with in-hospital mortality (OR 1.25, 95 % CI 0.73-2.16, P = 0.408). However, there was a qualitative difference in OR for in-hospital mortality between AHF with RD (OR 1.77, 95 % CI 0.96-3.28, P = 0.068) and without RD (OR 0.23, 95 % CI 0.05-1.10, P = 0.064), and there was a significant interaction between eGFR and prognostic impact of high-dose furosemide (P for OR interaction = 0.013). An inverse relationship was observed between eGFR and OR for in-hospital death in the group treated with high-dose furosemide (decreasing OR with better eGFR). The deleterious effect of diuretics was significantly modified with renal function in AHF. This association may be one reason for poorer prognosis of AHF patients complicated with renal impairment.
The neural correlates of emotion alignment in social interaction.
Prehn, Kristin; Korn, Christoph W; Bajbouj, Malek; Klann-Delius, Gisela; Menninghaus, Winfried; Jacobs, Arthur M; Heekeren, Hauke R
2015-03-01
Talking about emotion and sharing emotional experiences is a key component of human interaction. Specifically, individuals often consider the reactions of other people when evaluating the meaning and impact of an emotional stimulus. It has not yet been investigated, however, how emotional arousal ratings and physiological responses elicited by affective stimuli are influenced by the rating of an interaction partner. In the present study, pairs of participants were asked to rate and communicate the degree of their emotional arousal while viewing affective pictures. Strikingly, participants adjusted their arousal ratings to match up with their interaction partner. In anticipation of the affective picture, the interaction partner's arousal ratings correlated positively with activity in anterior insula and prefrontal cortex. During picture presentation, social influence was reflected in the ventral striatum, that is, activity in the ventral striatum correlated negatively with the interaction partner's ratings. Results of the study show that emotional alignment through the influence of another person's communicated experience has to be considered as a complex phenomenon integrating different components including emotion anticipation and conformity. © The Author (2014). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.
Social Anxiety and Social Support in Romantic Relationships.
Porter, Eliora; Chambless, Dianne L
2017-05-01
Little is known about the quality of socially anxious individuals' romantic relationships. In the present study, we examine associations between social anxiety and social support in such relationships. In Study 1, we collected self-report data on social anxiety symptoms and received, provided, and perceived social support from 343 undergraduates and their romantic partners. One year later couples were contacted to determine whether they were still in this relationship. Results indicated that men's social anxiety at Time 1 predicted higher rates of breakup at Time 2. Men's and women's perceived support, as well as men's provided support, were also significantly predictive of breakup. Social anxiety did not interact with any of the support variables to predict breakup. In Study 2, a subset of undergraduate couples with a partner high (n=27) or low (n=27) in social anxiety completed two 10-minute, lab-based, video-recorded social support tasks. Both partners rated their received or provided social support following the interaction, and trained observers also coded for support behaviors. Results showed that socially anxious individuals received less support from their partners during the interaction according to participant but not observer report. High and lower social anxiety couples did not differ in terms of the target's provision of support. Taken together, results suggest that social anxiety is associated with difficulties even in the context of established romantic relationships. Clinical implications are discussed. Copyright © 2016. Published by Elsevier Ltd.
Lilies at the limit: Variation in plant-pollinator interactions across an elevational range.
Theobald, Elli J; Gabrielyan, Hrach; HilleRisLambers, Janneke
2016-02-01
Many studies assume climatic factors are paramount in determining species' distributions, however, biotic interactions may also play a role. For example, pollinators may limit species' ranges if floral abundance or floral attractiveness is reduced at range margins, thus causing lower pollinator visitation and reduced reproductive output. To test if pollinators influence the altitudinal distribution of Erythronium montanum (Liliaceae) at Mount Rainier National Park, we asked whether (1) seed production in this species relies on pollinators, (2) seed production and pollen limitation is greatest at range limits, and (3) pollinator visitation rates (either overall or by individual taxonomic groups) reflect patterns of seed production and pollen limitation. From this three-year study, we established that this plant does rely on pollinators for fruit set and we found that pollen limitation trended toward being higher at the upper range limit in some years, but not consistently year to year. Insect visitation rates did not mirror spatial patterns of pollen limitation, but annually variable pollinator composition suggested differential importance of some pollinator taxonomic groups (specifically, bumblebees may be better pollinators than syrphid flies). Overall, these results suggest that while pollinators are critical for the reproductive success of this high mountain wildflower, plant-pollinator interactions do not obviously drive the distribution of this species. Nonetheless, high spatio-temporal variability in range-wide plant-pollinator dynamics may complicate responses to climate change. © 2016 Botanical Society of America.
Josephides, Dimitris N; Sajjadi, Shahriar
2015-01-27
Glass capillary based microfluidic devices are able to create extremely uniform droplets, when formed under the dripping regime, at low setup costs due to their ease of manufacture. However, as they are rarely parallelized, simple methods to increase droplet production from a single device are sought. Surfactants used to stabilize drops in such systems often limit the maximum flow rate that highly uniform drops can be produced due to the lowering interfacial tension causing jetting. In this paper we show that by simple design changes we can limit the interactions of surfactants and maximize uniform droplet production. Three flow-focused configurations are explored: a standard glass capillary device (consisting of a single round capillary inserted into a square capillary), a nozzle fed device, and a surfactant shielding device (both consisting of two round capillaries inserted into either end of a square capillary). In principle, the maximum productivity of uniform droplets is achieved if surfactants are not present. It was found that surfactants in the standard device greatly inhibit droplet production by means of interfacial tension lowering and tip-streaming phenomena. In the nozzle fed configuration, surfactant interactions were greatly limited, yielding flow rates comparable to, but lower than, a surfactant-free system. In the surfactant shielding configuration, flow rates were equal to that of a surfactant-free system and could make uniform droplets at rates an order of magnitude above the standard surfactant system.
ERIC Educational Resources Information Center
Wan, Ming Wai; Brooks, Ami; Green, Jonathan; Abel, Kathryn; Elmadih, Alya
2017-01-01
This study investigated the psychometrics of a recently developed global rating measure of videotaped parent-infant interaction, the "Manchester Assessment of Caregiver-Infant Interaction" (MACI), in a normative sample. Inter-rater reliability, stability over time, and convergent and discriminant validity were tested. Six-minute play…
COMPARE/Radiology, an interactive Web-based radiology teaching program evaluation of user response.
Wagner, Matthias; Heckemann, Rolf A; Nömayr, Anton; Greess, Holger; Bautz, Werner A; Grunewald, Markus
2005-06-01
The aim of this study is to assess user benefits of COMPARE/Radiology, a highly interactive World Wide Web-based training program for radiology, as perceived by its users. COMPARE/Radiology (http://www.idr.med.uni-erlangen.de/compare.htm), an interactive training program based on 244 teaching cases, was created by the authors and made publicly available on the Internet. An anonymous survey was conducted among users to investigate the composition of the program's user base and assess the acceptance of the training program. In parallel, Web access data were collected and analyzed using descriptive statistics. The group of responding users (n = 1370) consisted of 201 preclinical medical students (14.7%), 314 clinical medical students (22.9%), 359 residents in radiology (26.2%), and 205 users of other professions (14.9%). A majority of respondents (1230; 89%) rated the interactivity of COMPARE/Radiology as good or excellent. Many respondents use COMPARE/Radiology for self-study (971; 70%) and for teaching others (600; 43%). Web access statistics show an increase in number of site visits from 1248 in December 2002 to 4651 in April 2004. Users appreciate the benefits of COMPARE/Radiology. The interactive instructional design was rated positively by responding users. The popularity of the site is growing, evidenced by the number of network accesses during the observation period.
Dark matter in the Sun: scattering off electrons vs nucleons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garani, Raghuveer; Palomares-Ruiz, Sergio, E-mail: garani@th.physik.uni-bonn.de, E-mail: sergiopr@ific.uv.es
The annihilation of dark matter (DM) particles accumulated in the Sun could produce a flux of neutrinos, which is potentially detectable with neutrino detectors/telescopes and the DM elastic scattering cross section can be constrained. Although the process of DM capture in astrophysical objects like the Sun is commonly assumed to be due to interactions only with nucleons, there are scenarios in which tree-level DM couplings to quarks are absent, and even if loop-induced interactions with nucleons are allowed, scatterings off electrons could be the dominant capture mechanism. We consider this possibility and study in detail all the ingredients necessary tomore » compute the neutrino production rates from DM annihilations in the Sun (capture, annihilation and evaporation rates) for velocity-independent and isotropic, velocity-dependent and isotropic and momentum-dependent scattering cross sections for DM interactions with electrons and compare them with the results obtained for the case of interactions with nucleons. Moreover, we improve the usual calculations in a number of ways and provide analytical expressions in three appendices. Interestingly, we find that the evaporation mass in the case of interactions with electrons could be below the GeV range, depending on the high-velocity tail of the DM distribution in the Sun, which would open a new mass window for searching for this type of scenarios.« less
CARMA: Software for continuous affect rating and media annotation
Girard, Jeffrey M
2017-01-01
CARMA is a media annotation program that collects continuous ratings while displaying audio and video files. It is designed to be highly user-friendly and easily customizable. Based on Gottman and Levenson's affect rating dial, CARMA enables researchers and study participants to provide moment-by-moment ratings of multimedia files using a computer mouse or keyboard. The rating scale can be configured on a number of parameters including the labels for its upper and lower bounds, its numerical range, and its visual representation. Annotations can be displayed alongside the multimedia file and saved for easy import into statistical analysis software. CARMA provides a tool for researchers in affective computing, human-computer interaction, and the social sciences who need to capture the unfolding of subjective experience and observable behavior over time. PMID:29308198
Laser-driven ion acceleration at BELLA
NASA Astrophysics Data System (ADS)
Bin, Jianhui; Steinke, Sven; Ji, Qing; Nakamura, Kei; Treffert, Franziska; Bulanov, Stepan; Roth, Markus; Toth, Csaba; Schroeder, Carl; Esarey, Eric; Schenkel, Thomas; Leemans, Wim
2017-10-01
BELLA is a high repetiton rate PW laser and we used it for high intensity laser plasma acceleration experiments. The BELLA-i program is focused on relativistic laser plasma interaction such as laser driven ion acceleration, aiming at establishing an unique collaborative research facility providing beam time to selected external groups for fundamental physics and advanced applications. Here we present our first parameter study of ion acceleration driven by the BELLA-PW laser with truly high repetition rate. The laser repetition rate of 1Hz allows for scanning the laser pulse duration, relative focus location and target thickness for the first time at laser peak powers of above 1 PW. Furthermore, the long focal length geometry of the experiment (f ∖65) and hence, large focus size provided ion beams of reduced divergence and unprecedented charge density. This work was supported by the Director, Office of Science, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.
Interactions between Patients, Providers, and Health Systems and Technical Quality of Care
Yelin, Edward; Yazdany, Jinoos; Tonner, Chris; Trupin, Laura; Criswell, Lindsey A.; Katz, Patricia; Schmajuk, Gabriela
2014-01-01
Objectives Prior studies have established disparities by race/ethnicity and socioeconomic status (SES) in the kind, quantity, and technical quality of SLE care and outcomes. In this study we evaluate whether disparities exist in assessments of interactions with health care providers and health plans and whether such interactions affect the technical quality of SLE care. Methods Data derive from the Lupus Outcomes Study (LOS). Principal data collection is an annual structured phone interview including items from the Consumer Assessment of Health Plans and Interpersonal Processes of Care Scale measuring dimensions of health care interactions. We use general estimating equations to assess whether disparities exist by race/ethnicity and SES in being in the lowest quartile of ratings of such interactions and whether ratings in the lowest quartile of interactions are associated with technical quality of care after adjustment for sociodemographic and disease characteristics. Results In the 2012 LOS interview, there were 793 respondents, of whom 640 had ≥1 visits to their principal SLE provider. Non-white race/ethnicity and education were not associated with low ratings on any dimension of provider or system interaction; poverty was associated only with low ratings of health plan interactions. After adjustment for demographics, SLE status, and health care variables, ratings in the lowest quartile on all dimensions were associated with significantly lower technical quality of care. Conclusions Ratings in the lowest quartile on all dimensions of interactions with providers and the health care system were associated with lower technical quality of care, potentially resulting in poorer SLE outcomes. PMID:25132660
Interactions between patients, providers, and health systems and technical quality of care.
Yelin, Edward; Yazdany, Jinoos; Tonner, Chris; Trupin, Laura; Criswell, Lindsey A; Katz, Patricia; Schmajuk, Gabriela
2015-03-01
Prior studies have established disparities by race/ethnicity and socioeconomic status (SES) in the kind, quantity, and technical quality of systemic lupus erythematosus (SLE) care and outcomes. In this study we evaluate whether disparities exist in assessments of interactions with health care providers and health plans and whether such interactions affect the technical quality of SLE care. Data derive from the Lupus Outcomes Study (LOS). Principal data collection is an annual structured phone interview including items from the Consumer Assessment of Health Plans and Interpersonal Processes of Care Scale measuring dimensions of health care interactions. We use general estimating equations to assess whether disparities exist by race/ethnicity and SES in being in the lowest quartile of ratings of such interactions and whether ratings in the lowest quartile of interactions are associated with technical quality of care after adjustment for sociodemographic and disease characteristics. In the 2012 LOS interview, there were 793 respondents, of whom 640 had ≥1 visit to their principal SLE provider. Nonwhite race/ethnicity and education were not associated with low ratings on any dimension of provider or system interaction; poverty was associated only with low ratings of health plan interactions. After adjustment for demographics, SLE status, and health care variables, ratings in the lowest quartile on all dimensions were associated with significantly lower technical quality of care. Ratings in the lowest quartile on all dimensions of interactions with providers and the health care system were associated with lower technical quality of care, potentially resulting in poorer SLE outcomes. Copyright © 2015 by the American College of Rheumatology.
Emergence of clustering in an acquaintance model without homophily
NASA Astrophysics Data System (ADS)
Bhat, Uttam; Krapivsky, P. L.; Redner, S.
2014-11-01
We introduce an agent-based acquaintance model in which social links are created by processes in which there is no explicit homophily. In spite of the homogeneous nature of the social interactions, highly-clustered social networks can arise. The crucial feature of our model is that of variable transitive interactions. Namely, when an agent introduces two unconnected friends, the rate at which a connection actually occurs between them depends on the number of their mutual acquaintances. As this transitive interaction rate is varied, the social network undergoes a dramatic clustering transition. Close to the transition, the network consists of a collection of well-defined communities. As a function of time, the network can also undergo an incomplete gelation transition, in which the gel, or giant cluster, does not constitute the entire network, even at infinite time. Some of the clustering properties of our model also arise, but in a more gradual manner, in Facebook networks. Finally, we discuss a more realistic variant of our original model in which network realizations can be constructed that quantitatively match Facebook networks.
Muhtadie, Luma; Zhou, Qing; Eisenberg, Nancy; Wang, Yun
2012-01-01
The additive and interactive relations of parenting styles (authoritative and authoritarian parenting) and child temperament (anger/frustration, sadness, and effortful control) to children’s internalizing problems were examined in a 3.8-year longitudinal study of 425 Chinese children (6 – 9 years) from Beijing. At Wave 1, parents self-reported on their parenting styles, and parents and teachers rated child temperament. At Wave 2, parents, teachers, and children rated children’s internalizing problems. Structural equation modeling indicated that the main effect of authoritative parenting, and the interactions of authoritarian parenting × effortful control and authoritative parenting × anger/frustration (parents’ reports only) prospectively and uniquely predicted internalizing problems. The above results did not vary by child sex and remained significant after controlling for co-occurring externalizing problems. These findings suggest that: a) children with low effortful control may be particularly susceptible to the adverse effect of authoritarian parenting, and b) the benefit of authoritative parenting may be especially important for children with high anger/frustration. PMID:23880383
Larson, Chad A; Passy, Sophia I
2013-03-01
The accumulation of new and taxonomically diverse species is a marked feature of community development, but the role of the environment in this process is not well understood. To address this problem, we subjected periphyton in laboratory streams to low (10-cm · s(-1)), high (30-cm · s(-1)), and variable (9- to 32-cm · s(-1)) current velocity and low- versus high-nutrient inputs. We examined how current velocity and resource supply constrained (i) the rates of species accumulation, a measure of temporal beta-diversity, and (ii) the rates of diversification of higher taxonomic categories, defined here as the rate of higher taxon richness increase with the increase of species richness. Temporal biofilm dynamics were controlled by a strong nutrient-current interaction. Nutrients accelerated the rates of accumulation of new species, when flow velocity was not too stressful. Species were more taxonomically diverse under variable than under low-flow conditions, indicating that flow heterogeneity increased the niche diversity in the high-nutrient treatments. Conversely, the lower diversification rates under high- than under low-nutrient conditions at low velocity are explained with finer resource partitioning among species, belonging to a limited number of related genera. The overall low rates of diversification in high-current treatments suggest that the ability to withstand current stress was conserved within closely related species. Temporal heterogeneity of disturbance has been shown to promote species richness, but here we further demonstrate that it also affects two other components of biodiversity, i.e., temporal beta-diversity and diversification rate. Therefore, management efforts for preserving the inherent temporal heterogeneity of natural ecosystems will have detectable positive effects on biodiversity.
2013-01-01
The accumulation of new and taxonomically diverse species is a marked feature of community development, but the role of the environment in this process is not well understood. To address this problem, we subjected periphyton in laboratory streams to low (10-cm · s−1), high (30-cm · s−1), and variable (9- to 32-cm · s−1) current velocity and low- versus high-nutrient inputs. We examined how current velocity and resource supply constrained (i) the rates of species accumulation, a measure of temporal beta-diversity, and (ii) the rates of diversification of higher taxonomic categories, defined here as the rate of higher taxon richness increase with the increase of species richness. Temporal biofilm dynamics were controlled by a strong nutrient-current interaction. Nutrients accelerated the rates of accumulation of new species, when flow velocity was not too stressful. Species were more taxonomically diverse under variable than under low-flow conditions, indicating that flow heterogeneity increased the niche diversity in the high-nutrient treatments. Conversely, the lower diversification rates under high- than under low-nutrient conditions at low velocity are explained with finer resource partitioning among species, belonging to a limited number of related genera. The overall low rates of diversification in high-current treatments suggest that the ability to withstand current stress was conserved within closely related species. Temporal heterogeneity of disturbance has been shown to promote species richness, but here we further demonstrate that it also affects two other components of biodiversity, i.e., temporal beta-diversity and diversification rate. Therefore, management efforts for preserving the inherent temporal heterogeneity of natural ecosystems will have detectable positive effects on biodiversity. PMID:23335757
Where does work stress come from? A generalizability analysis of stress in police officers.
Lucas, Todd; Weidner, Nathan; Janisse, James
2012-01-01
Differences among workers and workplace stressors both contribute to perceiving work as stressful. However, the relative importance of these sources to work stress is not well delineated. Moreover, the extent to which work stress additionally reflects unique matches between specific workers and particular job stressors is also unclear. In this study, we use generalizability theory to specify and compare sources of variance in stress associated with police work. US police officers (N = 115) provided ratings of 60 stressors commonly associated with policing duties. Primary and secondary stress appraisal ratings reflected differences among officers in tendencies to generally perceive work stressors as stressful (14-15% officer effect), and also agreement among officers in viewing some stressors as more stressful than others (18-19% stressor effect). However, ratings especially reflected distinct pairings of officers and stressors (38-41% interaction effect). Additional analyses revealed individual differences and stressor characteristics associated with each variance component, including an officer × stressor interaction - compared to officers low in neuroticism, highly neurotic officers provided lower primary appraisal ratings of stressors generally seen as not serious, and also higher primary appraisal ratings of stressors that were seen as serious. We discuss implications of the current approach for the continued study of stress at work.
Gaseous hydrogen-induced cracking of Ti-5Al-2.5Sn.
NASA Technical Reports Server (NTRS)
Williams, D. P.; Nelson, H. G.
1972-01-01
Study of the kinetics of hydrogen-induced cracking in the Ti-5Al-2.5Sn titanium alloy, which has a structure of acicular alpha platelets in a beta matrix. The crack-growth rate at low stress-intensity levels was found to be exponentially dependent on stress intensity but essentially independent of temperature. The crack-growth rate at intermediate stress-intensity levels was found to be independent of stress intensity but dependent on temperature in such a way that crack-growth rate was controlled by a thermally activated mechanism having an activation energy of 5500 cal/mole and varied as the square root of the hydrogen pressure. The crack-growth rate at stress-intensity levels very near the fracture toughness is presumed to be independent of environment. The results are interpreted to suggest that crack growth at high stress intensities is controlled by normal, bulk failure mechanisms such as void coalescence and the like. At intermediate stress-intensity levels the transport of hydrogen to some interaction site along the alpha-beta boundary is the rate-controlling mechanism. The crack-growth behavior at low stress intensities suggests that the hydrogen interacts at this site to produce a strain-induced hydride which, in turn, induces crack growth by restricting plastic flow at the crack tip.
1982-12-28
molecular beam-surface scattering, high pressure microreactor , heterogeneous catalysis. :116. AmTRAC? ’CAuI1ae 4111, 8ee 1 111 It oesey -1lP d ify by...Crystallography.. . ..... ....................... 4 11. Design and Construction of a High Pressure Catalvtic Microreactor ... microreactor has been designed and constructed. This micro- reactor will be a useful adjunct to the molecular beam machine since in the former overall
Prevalence rates for depression by industry: a claims database analysis.
Wulsin, Lawson; Alterman, Toni; Timothy Bushnell, P; Li, Jia; Shen, Rui
2014-11-01
To estimate and interpret differences in depression prevalence rates among industries, using a large, group medical claims database. Depression cases were identified by ICD-9 diagnosis code in a population of 214,413 individuals employed during 2002-2005 by employers based in western Pennsylvania. Data were provided by Highmark, Inc. (Pittsburgh and Camp Hill, PA). Rates were adjusted for age, gender, and employee share of health care costs. National industry measures of psychological distress, work stress, and physical activity at work were also compiled from other data sources. Rates for clinical depression in 55 industries ranged from 6.9 to 16.2 %, (population rate = 10.45 %). Industries with the highest rates tended to be those which, on the national level, require frequent or difficult interactions with the public or clients, and have high levels of stress and low levels of physical activity. Additional research is needed to help identify industries with relatively high rates of depression in other regions and on the national level, and to determine whether these differences are due in part to specific work stress exposures and physical inactivity at work. Claims database analyses may provide a cost-effective way to identify priorities for depression treatment and prevention in the workplace.
Yamaguchi, Sho; Yoshimura, Atsushi; Yasuda, Yu; Mori, Airi; Tanaka, Hiroshi; Takahashi, Takashi; Kitajima, Ken; Sato, Chihiro
2017-07-04
A new sialic acid (Sia)-containing glycopolymer-a fluorescent probe with high-density disialic acid (diSia) on the surface of polysaccharide dextran (diSia-Dex)-was synthesized as a key molecule to regulate the Sia recognition lectins, Siglecs, that are involved in the immune system. According to our original methods, diSia was synthesized by α-selective sialylation, and a dextran template possessing terminal acetylenes and amino groups was prepared. A diSia and a fluorescent molecule were subsequently introduced to surface-modified dextran by Hüisgen reaction and amidation, respectively. The modulatory activity of Siglec7 was evaluated by using synthetic probes. DiSia-Dex showed high binding avidity toward Siglec7, with a K D value of 5.87×10 -10 m, and a high inhibitory activity for the interaction between Siglec7 and a ligand (GD3), with a IC 50 value of 1.0 nm. Notably, diSia-Dex was able to release Siglec7 from the pre-existing Siglec7-GD3 complex, possibly due to its unique properties of a slow dissociation rate and a high association rate. Together, these data show that diSia-Dex can be widely applicable as a modulator of Siglec7 functions. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Joly, Bertrand; Perriot, Jean; d'Athis, Philippe; Chazard, Emmanuel; Brousse, Georges; Quantin, Catherine
2017-01-01
The aim of this study was to identify factors associated with the results of smoking cessation attempts. Data were collected in Clermont-Ferrand from a smoking cessation clinic between 1999 and 2009 (1,361 patients). Smoking cessation was considered a success when patients were abstinent 6 months after the beginning of cessation. Multivariate logistic regression was used to investigate the association between abstinence and different factors. The significant factors were a history of depression (ORadjusted = 0.57, p = 0.003), state of depression at the initial consultation (ORa = 0.64, p = 0.005), other psychoactive substances (ORa = 0.52, p<0.0001), heart, lung and Ear-Nose-Throat diseases (ORa = 0.65, p = 0.005), age (ORa = 1.04, p<0.0001), the Richmond test (p<0.0001; when the patient's motivation went from insufficient to moderate, the frequency of abstinence was twice as high) and the Prochaska algorithm (p<0.0001; when the patient went from the 'pre-contemplation' to the 'contemplation' level, the frequency of success was four times higher). A high score in the Richmond test had a greater impact on success with increasing age (significant interaction: p = 0.01). In exclusive smokers, the contemplation level in the Prochaska algorithm was enough to obtain a satisfactory abstinence rate (65.5%) whereas among consumers of other psychoactive substances, it was necessary to reach the preparation level in the Prochaska algorithm to achieve a success rate greater than 50% (significant interaction: p = 0.02). The psychological preparation of the smoker plays a critical role. The management of smoking cessation must be personalized, especially for consumers of other psychoactive substances and/or smokers with a history of depression.
Spek, J W; Bannink, A; Gort, G; Hendriks, W H; Dijkstra, J
2013-09-01
Dietary protein and salt affect the concentration of milk urea nitrogen (MUN; mg of N/dL) and the relationship between MUN and excretion of urea nitrogen in urine (UUN; g of N/d) of dairy cattle. The aim of the present study was to examine the effects of dietary protein and sodium chloride (NaCl) intake separately, and their interaction, on MUN and UUN, on the relationship between UUN and MUN, on renal recycling of urea, and on urea transfer to the gastrointestinal tract. Twelve second-parity cows (body weight of 645±37 kg, 146±29 d in milk, and a milk production of 34.0±3.28 kg/d), of which 8 were previously fitted with a rumen cannula, were fitted with catheters in the urine bladder and jugular vein. The experiment had a split-plot arrangement with dietary crude protein (CP) content as the main plot factor [116 and 154 g of CP/kg of dry matter (DM)] and dietary NaCl content as the subplot factor (3.1 and 13.5 g of Na/kg of DM). Cows were fed at 95% of the average ad libitum feed intake of cows receiving the low protein diets. Average MUN and UUN were, respectively, 3.90 mg of N/dL and 45 g of N/d higher for the high protein diets compared with the low protein diets. Compared with the low NaCl diets, MUN was, on average, 1.74 mg of N/dL lower for the high NaCl diets, whereas UUN was unaffected. We found no interaction between dietary content of protein and NaCl on performance characteristics or on MUN, UUN, urine production, and renal clearance characteristics. The creatinine clearance rate was not affected by dietary content of protein and NaCl. Urea transfer to the gastrointestinal tract, expressed as a fraction of plasma urea entry rate, was negatively related to dietary protein, whereas it was not affected by dietary NaCl content. We found no interaction between dietary protein and NaCl content on plasma urea entry rate and gastrointestinal urea entry rate or their ratio. The relationship between MUN and UUN was significantly affected by the class variable dietary NaCl content: UUN=-17.7±7.24 + 10.09±1.016 × MUN + 2.26±0.729 × MUN (for high NaCl); R(2)=0.85. Removal of the MUN × NaCl interaction term lowered the coefficient of determination from 0.85 to 0.77. In conclusion, dietary protein content is positively related to MUN and UUN, whereas dietary NaCl content is negatively correlated to MUN but NaCl content is not related to UUN. We found no interaction between dietary protein and NaCl content on performance, MUN, UUN, or renal urea recycling, nor on plasma urea entry rate and urea transfer to the gastrointestinal tract. For a proper interpretation of the relationship between MUN and UUN, the effect of dietary NaCl should be taken into account, but we found no evidence that the effect of dietary NaCl on MUN is dependent on dietary protein content. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Influence of environmental factors on college alcohol drinking patterns.
Bani, Ridouan; Hameed, Rasheed; Szymanowski, Steve; Greenwood, Priscilla; Kribs-Zaleta, Christopher M; Mubayi, Anuj
2013-01-01
Alcohol abuse is a major problem, especially among students on and around college campuses. We use the mathematical framework of [16] and study the role of environmental factors on the long term dynamics of an alcohol drinking population. Sensitivity and uncertainty analyses are carried out on the relevant functions (for example, on the drinking reproduction number and the extinction time of moderate and heavy drinking because of interventions) to understand the impact of environmental interventions on the distributions of drinkers. The reproduction number helps determine whether or not the high-risk alcohol drinking behavior will spread and become persistent in the population, whereas extinction time of high-risk drinking measures the effectiveness of control programs. We found that the reproduction number is most sensitive to social interactions, while the time to extinction of high-risk drinkers is significantly sensitive to the intervention programs that reduce initiation, and the college drop-out rate. The results also suggest that in a population, higher rates of intervention programs in low-risk environments (more than intervention rates in high-risk environments) are needed to reduce heavy drinking in the population.
The role of quench rate in colloidal gels.
Royall, C Patrick; Malins, Alex
2012-01-01
Interactions between colloidal particles have hitherto usually been fixed by the suspension composition. Recent experimental developments now enable the control of interactions in situ. Here we use Brownian dynamics simulations to investigate the effect of controlling interactions upon gelation, by "quenching" the system from an equilibrium fluid to a gel. We find that, contrary to the normal case of an instantaneous quench, where the local structure of the gel is highly disordered, controlled quenching results in a gel with a much higher degree of local order. Under sufficiently slow quenching, local crystallisation is found, which is strongly enhanced when a monodisperse system is used. The higher the degree of local order, the smaller the mean squared displacement, indicating an enhancement of gel stability.
Cao, HuanHuan; Zhang, YuHang; Zhao, Jia; Zhu, Liucun; Wang, Yi; Li, JiaRui; Feng, Yuan-Ming; Zhang, Ning
2017-01-01
Ebola hemorrhagic fever (EHF) is caused by Ebola virus (EBOV). It is reported that human could be infected by EBOV with a high fatality rate. However, association factors between EBOV and host still tend to be ambiguous. According to the "guilt by association" (GBA) principle, proteins interacting with each other are very likely to function similarly or the same. Based on this assumption, we tried to obtain EBOV infection-related human genes in a protein-protein interaction network using Dijkstra algorithm. We hope it could contribute to the discovery of novel effective treatments. Finally, 15 genes were selected as potential EBOV infection-related human genes. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Effects of drilling parameters in numerical simulation to the bone temperature elevation
NASA Astrophysics Data System (ADS)
Akhbar, Mohd Faizal Ali; Malik, Mukhtar; Yusoff, Ahmad Razlan
2018-04-01
Drilling into the bone can produce significant amount of heat which can cause bone necrosis. Understanding the drilling parameters influence to the heat generation is necessary to prevent thermal necrosis to the bone. The aim of this study is to investigate the influence of drilling parameters on bone temperature elevation. Drilling simulations of various combinations of drill bit diameter, rotational speed and feed rate were performed using finite element software DEFORM-3D. Full-factorial design of experiments (DOE) and two way analysis of variance (ANOVA) were utilised to examine the effect of drilling parameters and their interaction influence on the bone temperature. The maximum bone temperature elevation of 58% was demonstrated within the range in this study. Feed rate was found to be the main parameter to influence the bone temperature elevation during the drilling process followed by drill diameter and rotational speed. The interaction between drill bit diameter and feed rate was found to be significantly influence the bone temperature. It is discovered that the use of low rotational speed, small drill bit diameter and high feed rate are able to minimize the elevation of bone temperature for safer surgical operations.
Experimental studies of transpiration cooling with shock interaction in hypersonic flow, part B
NASA Technical Reports Server (NTRS)
Holden, Michael S.
1994-01-01
This report describes the result of experimental studies conducted to examine the effects of the impingement of an oblique shock on the flowfield and surface characteristics of a transpiration-cooled wall in turbulent hypersonic flow. The principal objective of this work was to determine whether the interaction between the oblique shock and the low-momentum region of the transpiration-cooled boundary layer created a highly distorted flowfield and resulted in a significant reduction in the cooling effectiveness of the transpiration-cooled surface. As a part of this program, we also sought to determine the effectiveness of transpiration cooling with nitrogen and helium injectants for a wide range of blowing rates under constant-pressure conditions in the absence of shock interaction. This experimental program was conducted in the Calspan 48-Inch Shock Tunnel at nominal Mach numbers of 6 and 8, for a Reynolds number of 7.5 x 10(exp 6). For these test conditions, we obtained fully turbulent boundary layers upstream of the interaction regions over the transpiration-cooled segment of the flat plate. The experimental program was conducted in two phases. In the first phase, we examined the effects of mass-addition level and coolant properties on the cooling effectiveness of transpiration-cooled surfaces in the absence of shock interaction. In the second phase of the program, we examined the effects of oblique shock impingement on the flowfield and surface characteristics of a transpiration-cooled surface. The studies were conducted for a range of shock strengths with nitrogen and helium coolants to examine how the distribution of heat transfer and pressure and the characteristics of the flowfield in the interaction region varied with shock strength and the level of mass addition from the transpiration-cooled section of the model. The effects of the distribution of the blowing rate along the interaction regions were also examined for a range of blowing rates through the transpiration-cooled panels. The regions of shockwave/boundary layer interaction examined in these studies were induced by oblique shocks generated with a sharp, flat plate, inclined to the freestream at angles of 5 degrees, 7.5 degrees, and 10 degrees. It was found that, in the absence of an incident shock, transpiration cooling was a very effective method for reducing both the heat transfer and the skin friction loads on the surface. The helium coolant was found to be significantly more effective than nitrogen, because of its low molecular weight and high specific heat. The studies of shock-wave/transpiration-cooled surface interaction demonstrated that the interaction region between the incident shock and the low-momentum transpiration-cooled boundary layer did not result in a significant increase in the size of attached or separated interaction regions, and did not result in significant flowfield distortions above the interaction region. The increase in heating downstream of the shock-impingement point could easily be reduced to the values without shock impingement by a relatively small increase in the transpiration cooling in this region. Surprisingly, this increase in cooling rate did not result in a significant increase in size of the region ahead of the incident shock or create a significantly enlarged interaction region with a resultant increase in the distortion level in the inviscid flow. Thus, transpiration cooling appears to be a very effective technique to cool the internal surfaces of scramjet engines, where shocks in the engine would induce large local increases in wall heating and create viscous/inviscid interactions that could significantly disturb the smooth flow through the combustor. However, if hydrogen is used as the coolant, burning upstream of shock impingement might result in localized hot spots. Clearly, further research is needed in this area.
Product interactions and feedback in diffusion-controlled reactions
NASA Astrophysics Data System (ADS)
Roa, Rafael; Siegl, Toni; Kim, Won Kyu; Dzubiella, Joachim
2018-02-01
Steric or attractive interactions among reactants or between reactants and inert crowders can substantially influence the total rate of a diffusion-influenced reaction in the liquid phase. However, the role of the product species, which has typically different physical properties than the reactant species, has been disregarded so far. Here we study the effects of reactant-product and product-product interactions as well as asymmetric diffusion properties on the rate of diffusion-controlled reactions in the classical Smoluchowski-setup for chemical transformations at a perfect catalytic sphere. For this, we solve the diffusion equation with appropriate boundary conditions coupled by a mean-field approach on the second virial level to account for the particle interactions. We find that all particle spatial distributions and the total rate can change significantly, depending on the diffusion and interaction properties of the accumulated products. Complex competing and self-regulating (homeostatic) or self-amplifying effects are observed for the system, leading to both decrease and increase in the rates, as the presence of interacting products feeds back to the reactant flux and thus the rate with which the products are generated.
Mills, M G
1993-12-01
Differences in the social systems and behaviour of two potentially important hosts of rabies, the African wild dog and the spotted hyaena, may lead to differences in the epizootiology of the disease in the two species. Wild dogs are highly social animals in which pack members are in constant physical contact with each other, but in which inter-pack interactions are rare. Spotted hyaenas are more flexible in their social systems and behaviour. Clan members interact less frequently than do wild dogs, but inter-clan contact rates may be high in high density populations. Rabies transmission within wild dog packs should be rapid, but rare between packs. In spotted hyaenas rabies transmission between clan members may partially depend on the social status of the animals involved and between packs on the density of hyaenas in the area.