Sample records for high km values

  1. Spatial variations in the frequency-magnitude distribution of earthquakes at Mount Pinatubo volcano

    USGS Publications Warehouse

    Sanchez, J.J.; McNutt, S.R.; Power, J.A.; Wyss, M.

    2004-01-01

    The frequency-magnitude distribution of earthquakes measured by the b-value is mapped in two and three dimensions at Mount Pinatubo, Philippines, to a depth of 14 km below the summit. We analyzed 1406 well-located earthquakes with magnitudes MD ???0.73, recorded from late June through August 1991, using the maximum likelihood method. We found that b-values are higher than normal (b = 1.0) and range between b = 1.0 and b = 1.8. The computed b-values are lower in the areas adjacent to and west-southwest of the vent, whereas two prominent regions of anomalously high b-values (b ??? 1.7) are resolved, one located 2 km northeast of the vent between 0 and 4 km depth and a second located 5 km southeast of the vent below 8 km depth. The statistical differences between selected regions of low and high b-values are established at the 99% confidence level. The high b-value anomalies are spatially well correlated with low-velocity anomalies derived from earlier P-wave travel-time tomography studies. Our dataset was not suitable for analyzing changes in b-values as a function of time. We infer that the high b-value anomalies around Mount Pinatubo are regions of increased crack density, and/or high pore pressure, related to the presence of nearby magma bodies.

  2. Spatial variations in the frequency-magnitude distribution of earthquakes at Soufriere Hills Volcano, Montserrat, West Indies

    USGS Publications Warehouse

    Power, J.A.; Wyss, M.; Latchman, J.L.

    1998-01-01

    The frequency-magnitude distribution of earthquakes measured by the b-value is determined as a function of space beneath Soufriere Hills Volcano, Montserrat, from data recorded between August 1, 1995 and March 31, 1996. A volume of anomalously high b-values (b > 3.0) with a 1.5 km radius is imaged at depths of 0 and 1.5 km beneath English's Crater and Chance's Peak. This high b-value anomaly extends southwest to Gage's Soufriere. At depths greater than 2.5 km volumes of comparatively low b-values (b-1) are found beneath St. George's Hill, Windy Hill, and below 2.5 km depth and to the south of English's Crater. We speculate the depth of high b-value anomalies under volcanoes may be a function of silica content, modified by some additional factors, with the most siliceous having these volumes that are highly fractured or contain high pore pressure at the shallowest depths. Copyright 1998 by the American Geophysical Union.

  3. b-value distribution in and around Mt. Tarumae, Japan

    NASA Astrophysics Data System (ADS)

    Chiba, K.

    2017-12-01

    Mt. Tarumae is an active volcano located in southeastern Shikotsu caldera, Hokkaido, Japan. Recently, crustal expansion occurred in 1999-2000 and 2013 near the summit of Mt. Tarumae, with a M5.6 earthquake recorded west of the summit on 8 July 2014. In this study, I determined hypocenter distributions and then performed b-value analysis for the period between 1 August 2014 and 12 August 2016 to improve our understanding of the magma system geometry beneath the summit of Mt. Tarumae. Hypocenters are mainly distributed in two regions: 3 - 5 km west of Mt. Tarumae, and beneath the volcano. I then determined b-value distributions. Regions with relatively high b-values ( 1.3) are located at depths of -0.5 to 2.0 km beneath the summit and at depths greater than 6.0 km in the northwestern part at about 1.5 - 3.0 km from the summit, while a region with relatively low b-values ( 0.6) is located at depths of 2.0 - 6.0 km beneath the summit. Compared the b-value distributions with other geophysical observations, it was found that the high b-value region from -0.5 to 2.0 km depth corresponds to regions of lower resistivity, positive self-potential anomaly, and an inflation source observed in 1999-2000. It is thus inferred that this region is generated by crustal heterogeneity, a decrease in effective normal stress, and change of a frictional property due to the development of faults and fissures, and the circulation of hydrothermal fluids. On the other hand, the inflation source observed in 2013 was located near the boundary between the low b-value region beneath the summit and the deeper high b-value region in the northwestern part at about 1.5 - 3.0 km from the summit. Studies of other volcanoes suggest that such a high-b-value region likely corresponds to a magma chamber. From the deeper high b-value region estimated in this study, I am able to point out that the magma chamber is located to depths greater than 6.0 km in the northwestern part at about 1.5 - 3.0 km from the summit. Thus, these findings contribute to our understanding of the magma plumbing system beneath the summit of Mt. Tarumae.

  4. Anomalously high b-values in the South Flank of Kilauea volcano, Hawaii: Evidence for the distribution of magma below Kilauea's East rift zone

    USGS Publications Warehouse

    Wyss, M.; Klein, F.; Nagamine, K.; Wiemer, S.

    2001-01-01

    The pattern of b-value of the frequency-magnitude relation, or mean magnitude, varies little in the Kaoiki-Hilea area of Hawaii, and the b-values are normal, with b = 0.8 in the top 10 km and somewhat lower values below that depth. We interpret the Kaoiki-Hilea area as relatively stable, normal Hawaiian crust. In contrast, the b-values beneath Kilauea's South Flank are anomalously high (b = 1.3-1.7) at depths between 4 and 8 km, with the highest values near the East Rift zone, but extending 5-8 km away from the rift. Also, the anomalously high b-values vary along strike, parallel to the rift zone. The highest b-values are observed near Hiiaka and Pauahi craters at the bend in the rift, the next highest are near Makaopuhi and also near Puu Kaliu. The mildest anomalies occur adjacent to the central section of the rift. The locations of the three major and two minor b-value anomalies correspond to places where shallow magma reservoirs have been proposed based on analyses of seismicity, geodetic data and differentiated lava chemistry. The existence of the magma reservoirs is also supported by magnetic anomalies, which may be areas of dike concentration, and self-potential anomalies, which are areas of thermal upwelling above a hot source. The simplest explanation of these anomalously high b-values is that they are due to the presence of active magma bodies beneath the East Rift zone at depths down to 8 km. In other volcanoes, anomalously high b-values correlate with volumes adjacent to active magma chambers. This supports a model of a magma body beneath the East Rift zone, which may widen and thin along strike, and which may reach 8 km depth and extend from Kilauea's summit to a distance of at least 40 km down rift. The anomalously high b-values at the center of the South Flank, several kilometers away from the rift, may be explained by unusually high pore pressure throughout the South Flank, or by anomalously strong heterogeneity due to extensive cracking, or by both phenomena. The major b-value anomalies are located SSE of their parent reservoirs, in the direction of motion of the flank, suggesting that magma reservoirs leave an imprint in the mobile flank. We hypothesize that the extensive cracking may have been acquired when the anomalous parts of the South Flank, now several kilometers distant from the rift zone, were generated at the rift zone near persistent reservoirs. Since their generation, these volumes may have moved seaward, away from the rift, but earthquakes occurring in them still use the preexisting complex crack distribution. Along the decollement plane at 10 km depth, the b-values are exceptionally low (b = 0.5), suggesting faulting in a more homogeneous medium. ?? 2001 Elsevier Science B.V. All rights reserved.

  5. Baseline climatology of extremely high vertical wind shears' values over Europe based on ERA-Interim reanalysis

    NASA Astrophysics Data System (ADS)

    Palarz, Angelika; Celiński-Mysław, Daniel

    2017-04-01

    The dominant role in the development of deep convection is played by kinematic and thermodynamic conditions, as well as atmospheric circulation, land cover and local relief. Severe thunderstorms are considerably more likely to form in environments with large values of convective available potential energy (CAPE) and significant magnitude of vertical wind shears (VWSs). According to the most recent research, the tropospheric wind shears have an important influence on intensity, longevity and organisation of the primary convective systems - bow echoes, squall lines and supercell thunderstorms. This study, in turn, examines the role of wind structure in controlling the spatial and temporal variability of VWSs over Europe. Considering the importance of the kinematic conditions for the convective systems formation, research is limited exclusively to 0-1 km, 0-3 km and 0-6 km wind shears. In order to compute the VWS' values, the data derived from ERA-Interim reanalysis for the period 1981-2015 was applied. It consisted of U and V wind components with 12-hourly sampling and horizontal resolution of 0.75×0.75°. The VWS' values were calculated as wind difference between two levels - this entails that the hodograph's shape was not considered (e.g. Clark 2013, Pucik et. al 2015). We have analysed both VWS' mean values (MN) and frequency of VWSs exceeding assumed thresholds (FQ). Taking into account previous studies (e.g. Rasmussen & Blanchard 1998, Schneider et al. 2006, Schaumann & Przybylinski 2012), the thresholds for extremely high values of vertical wind shears were set at 10 m/s for 0-1 km shear, 15 m/s for 0-3 km shear and 18 m/s for 0-6 km shear. Both MN and FQ values were characterised by strong temporal variability, as well as significant spatial differentiation over the research area. A clear diurnal cycle was identified in the case of 0-1 km shear, while seasonal variability was typical for 0-3 km and 0-6 km shears. Regardless of the season, 0-1 km shear reached higher MN and FQ values at 00 UTC than at 12 UTC. Moreover, its spatial distribution showed distinct differences linked to the underlying surface type. Surface energy budget seems to be an important factor contributing to the diurnal and spatial variability of VWSs - it generates the formation of local air circulation leading to modification of the wind direction and speed in the boundary layer. For 0-3 km and 0-6 km shears, a noticeable spatial differentiation between land and sea areas was not recognised. The significantly higher MN and FQ values over the land were found exclusively in the case of 0-3 km shear during the winter, particularly over the Mediterranean region. In the middle troposphere, the VWS' fluctuations (0-3 and 0-6 km shears) are primarily determined by the seasonal changes in atmospheric circulation patterns over the research area.

  6. Diverse strategies for ion regulation in fish collected from the ion-poor, acidic Rio Negro.

    PubMed

    Gonzalez, R J; Wilson, R W; Wood, C M; Patrick, M L; Val, A L

    2002-01-01

    We measured unidirectional ion fluxes of fish collected directly from the Rio Negro, an extremely dilute, acidic blackwater tributary of the Amazon. Kinetic analysis of Na(+) uptake revealed that most species had fairly similar J(max) values, ranging from 1,150 to 1,750 nmol g(-1) h(-1), while K(m) values varied to a greater extent. Three species had K(m) values <33 micromol L(-1), while the rest had K(m) values >or=110 micromol L(-1). Because of the extremely low Na(+) concentration of Rio Negro water, the differences in K(m) values yield very different rates of Na(+) uptake. However, regardless of the rate of Na(+) uptake, measurements of Na(+) efflux show that Na(+) balance was maintained at very low Na(+) levels (<50 micromol L(-1)) by most species. Unlike other species with high K(m) values, the catfish Corydoras julii maintained high rates of Na(+) uptake in dilute waters by having a J(max) value at least 100% higher than the other species. Corydoras julii also demonstrated the ability to modulate kinetic parameters in response to changes in water chemistry. After 2 wk in 2 mmol L(-1) NaCl, J(max) fell >50%, and K(m) dropped about 70%. The unusual acclimatory drop in K(m) may represent a mechanism to ensure high rates of Na(+) uptake on return to dilute water. As well as being tolerant of extremely dilute waters, Rio Negro fish generally were fairly tolerant of low pH. Still, there were significant differences in sensitivity to pH among the species on the basis of degree of stimulation of Na(+) efflux at low pH. There were also differences in sensitivity to low pH of Na(+) uptake, and two species maintained significant rates of uptake even at pH 3.5. When fish were exposed to low pH in Rio Negro water instead of deionized water (with the same concentrations of major ions), the effects of low pH were reduced. This suggests that high concentrations of dissolved organic molecules in the water, which give it its dark tea color, may interact with the branchial epithelium in some protective manner.

  7. A survey of the kinetic parameters of class C beta-lactamases. Penicillins.

    PubMed Central

    Galleni, M; Frère, J M

    1988-01-01

    The interaction between six class C beta-lactamases and various penicillins has been studied. All the enzymes behaved in a very uniform manner. Benzylpenicillin exhibited relatively low kcat. values (14-75 s-1) but low values of Km resulted in high catalytic efficiencies [kcat./Km = 10 X 10(6)-75 X 10(6) M-1.s-1]. The kcat. values for ampicillin were 10-100-fold lower. Carbenicillin, oxacillin cloxacillin and methicillin were very poor substrates, exhibiting kcat. values between 1 x 10(-3) and 0.1 s-1. The Km values were correspondingly small. It could safely be hypothesized that, with all the tested substrates, deacylation was rate-limiting, resulting in acyl-enzyme accumulation. PMID:3264154

  8. Seismic velocity and attenuation structures in the Earth's inner core

    NASA Astrophysics Data System (ADS)

    Yu, Wen-Che

    2007-12-01

    I study seismic velocity and attenuation structures in the top 400 km of the Earth's inner core along equatorial paths, velocity-attenuation relationship, and seismic anisotropy in the top of the inner core beneath Africa. Seismic observations exhibit "east-west" hemispheric differences in seismic velocity, attenuation, and anisotropy. Joint modeling of the PKiKP-PKIKP and PKPbc-PKIKP phases is used to constrain seismic velocity and attenuation structures in the top 400 km of the inner core for the eastern and western hemispheres. The velocity and attenuation models for the western hemisphere are simple, having a constant velocity gradient and a Q value of 600 in the top 400 km of the inner core. The velocity and attenuation models for the eastern hemisphere appear complex. The velocity model for the eastern hemisphere has a small velocity gradient in the top 235 km, a steeper velocity gradient at the depth range of 235 - 375 km, and a gradient similar to PREM in the deeper portion of the inner core. The attenuation model for the eastern hemisphere has a Q value of 300 in the top 300 km and a Q value of 600 in the deeper portion of the inner core. The study of velocity-attenuation relationship reveals that inner core is anisotropic in both velocity and attenuation, and the direction of high attenuation corresponding to that of high velocity. I hypothesize that the hexagonal close packed (hcp) iron crystal is anisotropic in attenuation, with the axis of high attenuation corresponding to that of high velocity. Anisotropy in the top of the inner core beneath Africa is complex. Beneath eastern Africa, the thickness of the isotropic upper inner core is about 0 km. Beneath central and western Africa, the thickness of the isotropic upper inner core increases from 20 to 50 km. The velocity increase across the isotropic upper inner core and anisotropic lower inner core boundary is sharp, laterally varying from 1.6% - 2.2%. The attenuation model has a Q value of 600 for the isotropic upper inner core and 150 to 400 for the anisotropic lower inner core.

  9. Crustal and uppermost mantle S-wave velocity below the East European Craton in northern Poland from the inversion of ambient-noise records

    NASA Astrophysics Data System (ADS)

    Lepore, Simone; Polkowski, Marcin; Grad, Marek

    2018-02-01

    The P-wave velocities (V p) within the East European Craton in Poland are well known through several seismic experiments which permitted to build a high-resolution 3D model down to 60 km depth. However, these seismic data do not provide sufficient information about the S-wave velocities (V s). For this reason, this paper presents the values of lithospheric V s and P-wave-to-S-wave velocity ratios (V p/V s) calculated from the ambient noise recorded during 2014 at "13 BB star" seismic array (13 stations, 78 midpoints) located in northern Poland. The 3D V p model in the area of the array consists of six sedimentary layers having total thickness within 3-7 km and V p in the range 1.85.3 km/s, a three-layer crystalline crust of total thickness 40 km and V p within 6.15-7.15 km/s, and the uppermost mantle, where V p is about 8.25 km/s. The V s and V p/V s values are calculated by the inversion of the surface-wave dispersion curves extracted from the noise cross correlation between all the station pairs. Due to the strong velocity differences among the layers, several modes are recognized in the 0.021 Hz frequency band: therefore, multimodal Monte Carlo inversions are applied. The calculated V s and V p/V s values in the sedimentary cover range within 0.992.66 km/s and 1.751.97 as expected. In the upper crust, the V s value (3.48 ± 0.10 km/s) is very low compared to the starting value of 3.75 ± 0.10 km/s. Consequently, the V p/V s value is very large (1.81 ± 0.03). To explain that the calculated values are compared with the ones for other old cratonic areas.

  10. The influence of model grid resolution on estimation of national scale nitrogen deposition and exceedance of critical levels

    NASA Astrophysics Data System (ADS)

    Dore, A. J.; Kryza, M.; Hall, J. R.; Hallsworth, S.; Keller, V. J. D.; Vieno, M.; Sutton, M. A.

    2011-12-01

    The Fine Resolution Atmospheric Multi-pollutant Exchange model (FRAME) has been applied to model the spatial distribution of nitrogen deposition and air concentration over the UK at a 1 km spatial resolution. The modelled deposition and concentration data were gridded at resolutions of 1 km, 5 km and 50 km to test the sensitivity of calculations of the exceedance of critical loads for nitrogen deposition to the deposition data resolution. The modelled concentrations of NO2 were validated by comparison with measurements from the rural sites in the national monitoring network and were found to achieve better agreement with the high resolution 1 km data. High resolution plots were found to represent a more physically realistic distribution of nitrogen air concentrations and deposition resulting from use of 1 km resolution precipitation and emissions data as compared to 5 km resolution data. Summary statistics for national scale exceedance of the critical load for nitrogen deposition were not highly sensitive to the grid resolution of the deposition data but did show greater area exceedance with coarser grid resolution due to spatial averaging of high nitrogen deposition hot spots. Local scale deposition at individual Sites of Special Scientific Interest and high precipitation upland sites was sensitive to choice of grid resolution of deposition data. Use of high resolution data tended to generate lower deposition values in sink areas for nitrogen dry deposition (Sites of Scientific Interest) and higher values in high precipitation upland areas. In areas with generally low exceedance (Scotland) and for certain vegetation types (montane), the exceedance statistics were more sensitive to model data resolution.

  11. The influence of model grid resolution on estimation of national scale nitrogen deposition and exceedance of critical loads

    NASA Astrophysics Data System (ADS)

    Dore, A. J.; Kryza, M.; Hall, J. R.; Hallsworth, S.; Keller, V. J. D.; Vieno, M.; Sutton, M. A.

    2012-05-01

    The Fine Resolution Atmospheric Multi-pollutant Exchange model (FRAME) was applied to model the spatial distribution of reactive nitrogen deposition and air concentration over the United Kingdom at a 1 km spatial resolution. The modelled deposition and concentration data were gridded at resolutions of 1 km, 5 km and 50 km to test the sensitivity of calculations of the exceedance of critical loads for nitrogen deposition to the deposition data resolution. The modelled concentrations of NO2 were validated by comparison with measurements from the rural sites in the national monitoring network and were found to achieve better agreement with the high resolution 1 km data. High resolution plots were found to represent a more physically realistic distribution of reactive nitrogen air concentrations and deposition resulting from use of 1 km resolution precipitation and emissions data as compared to 5 km resolution data. Summary statistics for national scale exceedance of the critical load for nitrogen deposition were not highly sensitive to the grid resolution of the deposition data but did show greater area exceedance with coarser grid resolution due to spatial averaging of high nitrogen deposition hot spots. Local scale deposition at individual Sites of Special Scientific Interest and high precipitation upland sites was sensitive to choice of grid resolution of deposition data. Use of high resolution data tended to generate lower deposition values in sink areas for nitrogen dry deposition (Sites of Scientific Interest) and higher values in high precipitation upland areas. In areas with generally low exceedance (Scotland) and for certain vegetation types (montane), the exceedance statistics were more sensitive to model data resolution.

  12. 3-D Vp/Vs Ratio Distribution in the Geothermal Reservoir at Basel, Switzerland, from Microseismic Data

    NASA Astrophysics Data System (ADS)

    Kummerow, J.; Reshetnikov, A.; Häring, M.; Asanuma, H.

    2012-12-01

    Thousands of microseismic events occurred during and after the stimulation of the 4.5km deep Basel 1 well at the Deep Heat Mining Project in Basel, Switzerland, in December 2006. The located seismicity extends about 1km in vertical direction and also 1km in NNW-SSE direction, consistent with the orientation of the maximum horizontal stress. In this study, we analyze 2100 events with magnitudes Mw>0.0, which were recorded by six borehole seismometers between December 2, 2006, and June 7, 2007. We first identify event multiplets based on waveform similarity and apply an automatic, iterative arrival time optimization to calculate high-precision P and S time picks for the multiplet events. Local estimates of the Vp/Vs ratio in the stimulated Basel geothermal reservoir are then obtained from the slope of the demeaned differential S versus P arrival times. The average value of Vp/Vs=1.70 is close to the characteristic reservoir value of 1.72, which was determined independently from sonic log measurements. Also, in the vicinity of the borehole, the depth distribution of Vp/Vs correlates well with the low-pass filtered sonic log data: Vp/Vs values are less than 1.70 at the top of the seismicity cloud at <3.9km depth, close to average at 4.0-4.4km depth, and exceed the value of 1.75 at larger depth (4.4-4.6km), consistent with the sonic log data. Furthermore, we observe a correlation of anomalous Vp/Vs values with zones of enhanced seismic reflectivity which were resolved by microseismic reflection imaging. Away from the borehole, increased Vp/Vs ratios also seem to correlate with domains of high event density, possibly indicating fluid migration paths.

  13. Kinetics of acyl transfer reactions in organic media catalysed by Candida antarctica lipase B.

    PubMed

    Martinelle, M; Hult, K

    1995-09-06

    The acyl transfer reactions catalysed by Candida antartica lipase B in organic media followed a bi-bi ping-pong mechanism, with competitive substrate inhibition by the alcohols used as acyl acceptors. The effect of organic solvents on Vm and Km was investigated. The Vm values in acetonitrile was 40-50% of those in heptane. High Km values in acetonitrile compared to those in heptane could partly be explained by an increased solvation of the substrates in acetonitrile. Substrate solvation caused a 10-fold change in substrate specificity, defined as (Vm/Km)ethyl octanoate/(Vm/Km)octanoic acid, going from heptane to acetonitrile. Deacylation was the rate determining step for the acyl transfer in heptane with vinyl- and ethyl octanoate as acyl donors and (R)-2-octanol as acyl acceptor. With 1-octanol, a rate determining deacylation step in heptane was indicated using the same acyl donors. Using 1-octanol as acceptor in heptane, S-ethyl thiooctanoate had a 25- to 30-fold lower Vm/Km value and vinyl octanoate a 4-fold higher Vm/Km value than that for ethyl octanoate. The difference showed to be a Km effect for vinyl octanoate and mainly a Km effect for S-ethyl thiooctanoate. The Vm values of the esterification of octanoic acid with different alcohols was 10-30-times lower than those for the corresponding transesterification of ethyl octanoate. The low activity could be explained by a low pH around the enzyme caused by the acid or a withdrawing of active enzyme by nonproductive binding by the acid.

  14. Upper mantle electrical conductivity for seven subcontinental regions of the Earth

    USGS Publications Warehouse

    Campbell, W.H.; Schiffmacher, E.R.

    1988-01-01

    Spherical harmonic analysis coefficients of the external and internal parts of the quiet-day geomagnetic field variations (Sq) separated for the 7 continental regions of the observatories have been used to determine conductivity profiles to depths of about 600 km by the Schmucker equivalent substitute conductor method. The profiles give evidence of increases in conductivity between about 150 and 350 km depth, then a general increase in conductivity thereafter. For South America we found a high conductivity at shallow depths. The European profile showed a highly conducting layer near 125 km. At the greater depths, Europe, Australia and South America had the lowest values of conductivity. North America and east Asia had intermediate values whereas the African and central Asian profiles both showed the conductivities rising rapidly beyond 450 km depth. The regional differences indicate that there may be considerable lateral heterogeneity of electrical conductivity in the Earth's upper mantle. -Authors

  15. SAGE II measurements of early Pinatubo aerosols

    NASA Technical Reports Server (NTRS)

    Mccormick, M. P.; Veiga, R. E.

    1992-01-01

    SAGE II satellite measurements of the Mt. Pinatubo eruption cloud in the stratosphere during June, July, and early August 1991 show that aerosols in the tropics reached as high as 29 km altitude with most of the cloud between 20 and 25 km. The most optically thick portions of the cloud covered latitudes from 10 deg S to 30 deg N during the early part of this period. By late July, high stratospheric optical depths were observed to at least 70 deg N, with the high values north of about 30 deg N from layers below 20 km. High pressure systems in both hemispheres were observed to be correlated with the movement of volcanic material at 21 km into the westerly jet stream at high southern latitudes and similarly to high northern latitudes at 16 km. By August, the entire Southern Hemisphere had experienced a 10-fold increase in optical depth relative to early July due to layers above 20 km. Initial mass calculations using SAGE II data place the aerosol produced from this eruption at 20 to 30 megatons, well above the 12 megatons produced by El Chichon.

  16. Regional difference in small-scale heterogeneities in the crust and upper mantle in Japan derived by the analysis of high-frequency P-wave

    NASA Astrophysics Data System (ADS)

    Takemura, S.; Furumura, T.

    2010-12-01

    In order to understand distribution properties of small-scale heterogeneities in the crust and upper mantle structure, we analyze three-component seismograms recorded by Hi-net in Japan. We examined relative strength of the P-wave in the transverse (T) component and its change as a function of frequency and propagation distances, which is strongly relating to the strength of seismic wave scattering in the lithosphere. We analyzed 53,220 Hi-net record from 310 shallow (h<30km) crustal earthquakes with MJMA =2.0-5.3. The three-component seismograms are firstly applied by band-pass filter with pass band frequency of f=1-2, 2-4, 4-8, 8-16, 16-32 Hz and then the Hilbert transform is used to synthesize envelope of each component. Then, the energy partition (EP) of P wave in the T component relative to total P-wave energy is evaluated around the P wave in 3-sec time window. The estimated EP value is almost constant 0.2 in high-frequencies (8-16 Hz) at shorter distance, while it is 0.07 in low-frequencies (1-2 Hz). We found clearly frequency-change property of EP value. But at larger distance over 150 km, EP values gradually increase with increasing distance. In high-frequencies (8-16, 16-32 Hz), especially EP values asymptotically reach from 0.2 to 0.33, equi-partitioning of P-wave energy into three components. This may because Pn-phase dominates in larger hypocentral distances. In order to examine difference in the EP in each area of Japan which would be relating to the strength of crustal heterogeneities in each area we divided the area of Japan into three regions, fore-arc side of Tohoku, back-arc side of Tohoku and Chugoku-Shikoku area. The difference in EP value in each area is clearly found in the high-frequency (4-8 Hz) band, where larger EP (0.2) was obtained at back-arc side of Tohoku relative to smaller EP (0.1) at fore-arc side of Tohoku and Chugoku-Shikoku. This is consistent with the results of Carcole and Sato (2009) who estimated the strength of crustal heterogeneities based on the multi lapse time-window analysis. In order to clarify the cause of such regional difference of EP, we conduct 3-D FDM simulations using stochastic random media. The model covers a zone 204.8 km by 204.8 km by 64.0 km descretized with 0.1 km in horizontal direction and 0.05 km in vertical direction. The small-scale heterogeneity in the lithosphere is constructed by velocity fluctuation from average velocity. The fluctuation is characterized by von Karman-type ACF with the correlation length a, the rms value e and decay order k. We assume average background velocities of P-wave and S-wave are VP = 5.8 km and VS = 3.36 km, respectively. We employ an explosive point source into the model. The FDM simulations were conducted on the Earth Simulator at JAMSTEC. We conducted a number of FDM simulation using different model parameters of stochastic random media for different e (= 0.03, 0.05, 0.07, 0.09) and fixed a and k (a = 5km, k = 0.5). The simulation results confirm EP value increases linearly with increasing e. We also found that larger EP obtained in the back-arc side of Tohoku can be explained by 4% larger e relative to those of other regions.

  17. A quantitative analysis of global intermediate and deep seismicity

    NASA Astrophysics Data System (ADS)

    Ruscic, Marija; Becker, Dirk; Le Pourhiet, Laetitita; Agard, Philippe; Meier, Thomas

    2017-04-01

    The seismic activity in subduction zones around the world shows a large spatial variabilty with some regions exhibiting strong seismic activity down to depths of almost 700km while in other places seismicity terminates at depths of about 200 or 300 km. Also the decay of the number of seismic events or of the seismic moment with depth is more pronounced in some regions than in others. The same is true for the variability of the ratio of large to small events (the b-value of the Gutenberg-Richter relation) that is varying with depth. These observations are often linked to parameters of the downgoing plate like age or subduction velocity. In this study we investigate a subset of subduction zones utilizing the revised ISC catalogue of intermediate and deep seismicity to determine statistical parameters well suited to describe properties of intermediate deep and deep events. The seismicity is separated into three depth intervals from 50-175km, 175-400km and >400km based on the depth at which the plate contact decouples, the observed nearly exponential decay of the event rate with depth and the supposed depth of phase transition at 410 km depth where also an increase of the event number with depth is observed. For estimation of the b-value and the exponential decay with depth, a restriction of the investigated time interval to the period after 1997 produced significantly better results indicating a globally homogeneous magnitude scale with the magnitude of completeness of about Mw 5. On a global scale the b-value decreases with depth from values of about 1 at 50-175km to values of slightly below 0.8 for events below 400km. Also, there is a slight increase of the b-value with the age of the subducting plate. These changes in the b-value with depth and with age may indicate a varying fragmentation of the slab. With respect to the ratio of the seismic moment between deeper and shallower parts of the subduction zones a dependence on the age is apparent with older slabs exhibiting higher ratios indicating stronger hydration of older slabs and consequently stronger seismic activity at depth in older and thicker slabs. Furthermore, older slabs show the tendency to larger b-values. This indicates stronger fragmentation of older slabs favoring smaller events. Between 50 km and 300 km depth, seismicity in subduction zones decays nearly exponentially with depth. However, the majority of subduction zones show between about 60 km and 100 km lower seismic activity than expected by an exponential decay. This observation correlates well with findings from petrological studies that rocks are rarely scraped off from the downgoing plate at these depths indicating low seismic coupling and low stresses at the plate interface in a depth range below the seismogenic zone and above 100 km depth were dehydration reactions become virulent. Interestingly, the percentage of this deficit becomes larger with plate age for event frequency (reduced number of events), but decreases for moment release (events have larger magnitudes). It is observed that the forearc high is located above the plate interface with reduced seismic coupling. The forearc high is thus an indication of upward directed return flow along the seismically decoupled plate interface. In addition, it is found that the topography of the forearc high is larger above shallow dipping slabs. A correlation of the depth dependent seismic behavior with the subduction or trench velocity is not observed for the investigated subduction zones. Plate age seems to be the dominating factor for properties of intermediate deep and deep seismicity.

  18. Retrieval of O2(1Σ) and O2(1Δ) volume emission rates in the mesosphere and lower thermosphere using SCIAMACHY MLT limb scans

    NASA Astrophysics Data System (ADS)

    Zarboo, Amirmahdi; Bender, Stefan; Burrows, John P.; Orphal, Johannes; Sinnhuber, Miriam

    2018-01-01

    We present the retrieved volume emission rates (VERs) from the airglow of both the daytime and twilight O2(1Σ) band and O2(1Δ) band emissions in the mesosphere and lower thermosphere (MLT). The SCanning Imaging Absorption SpectroMeter for Atmospheric CHartographY (SCIAMACHY) onboard the European Space Agency Envisat satellite observes upwelling radiances in limb-viewing geometry during its special MLT mode over the range 50-150 km. In this study we use the limb observations in the visible (595-811 nm) and near-infrared (1200-1360 nm) bands. We have investigated the daily mean latitudinal distributions and the time series of the retrieved VER in the altitude range from 53 to 149 km. The maximal observed VERs of O2(1Δ) during daytime are typically 1 to 2 orders of magnitude larger than those of O2(1Σ). The latter peaks at around 90 km, whereas the O2(1Δ) emissivity decreases with altitude, with the largest values at the lower edge of the observations (about 53 km). The VER values in the upper mesosphere (above 80 km) are found to depend on the position of the sun, with pronounced high values occurring during summer for O2(1Δ). O2(1Σ) emissions show additional high values at polar latitudes during winter and spring. These additional high values are presumably related to the downwelling of atomic oxygen after large sudden stratospheric warmings (SSWs). Accurate measurements of the O2(1Σ) and O2(1Δ) airglow, provided that the mechanism of their production is understood, yield valuable information about both the chemistry and dynamics in the MLT. For example, they can be used to infer the amounts and distribution of ozone, solar heating rates, and temperature in the MLT.

  19. Twilight ozone measurement by solar occultation from AE 5

    NASA Technical Reports Server (NTRS)

    Guenther, B.; Heath, D.; Dasgupta, R.

    1977-01-01

    The BUV on AE 5 was used for a solar occultation measurement of atmospheric ozone. An observation was carried out during the morning twilight near 5 deg N, December 17, 1976, at the fixed wavelength of 255.5 nm, and a profile between 49 and 82 km was obtained. The number densities determined by this measurement were 3.7 x 10 to the 10th cu cm at 50 km, 5.1 x 10 to the 9th at 60 km, 3.9 x 10 to the 8th at 70 km, and 3.0 x 10 to the 7th at 80 km. No evidence of a high altitude secondary maximum was found. These concentrations are between a factor of 4 and 20 smaller than those midnight results reported from a Copernicus measurement, and similar to the values from the Krueger-Minzer Mid-latitude Model above 55 km. These values may be as much as a factor of 2 less than the Krueger-Minzer model below 50.

  20. Picos de Europa National and Regional parks (Northern Spain): the karst underground landscape

    NASA Astrophysics Data System (ADS)

    Ballesteros, Daniel; Jiménez-Sánchez, Montserrat; Rodríguez-Rodríguez, Laura; José Domínguez-Cuesta, María; Meléndez-Asensio, Mónica; García-Sansegundo, Joaquín

    2015-04-01

    Karst caves represent an environmental with a high value from the Geoheritage and Geodiversity points of view given by hidden underground landscape practically reserved to the speleologists. Nevertheless, cave surveys, 3d models of caves and DEMs, and pictures can be used to approach the endokarst geoheritage characterization. The Picos de Europa National and Regional parks include the 14% of World's Deepest Caves (>1 km depth); moreover these parks shows a high environmental value related with seven protection figures: Biosphere Reserve, Special Protection Area, the Site of Community Importance, and four Natural Monument. The aim of this work is to present the Geoheritage values of the underground landscape of the Picos de Europa National and Regional parks. These parks involve several alpine karst massifs up to 700 km2 and 2,600 m asl, as the Picos de Europa mountains (declared Global Geosite by its geomorphological interest), the Mampodre Massif, and the Peñas Pintas and Yordas peaks (sited in Riaño dam area). The alpine karst involves a large underground landscape formed by more than 3,700 epigenic caves with 403 km of conduits. The 95 % of the cave conduits are located in the Picos de Europa mountains and correspond to caves up to 18.9 km length and 1.6 km depth; the 5 % of cave conduits are sited in other small karst areas and include caves up to 1.5 km length and 200 m depth. The karst caves present high natural, scientific and cultural values. The natural value corresponds to the singularity and the spectacular vertical development of the caves and a very high Geodiversity of cave features. The karst shows a high concentration of deep caves (81 caves deeper than 500 m) that is twice higher than the concentration of other karst areas, as Arabika Massif (Western Caucasus). The natural value is mainly related to the presence of geomorphological and hydrogeological features, highlighting high vadose canyons and shafts, old phreatic and epiphreatic conduits, few fluvial deposits, some speleothems (dripstone, flowstone), few ice caves, many underground streams, and karst springs. The scientific value corresponds to the cave records related to the regional evolution of the Cantabrian Range. The scientific studies evidence that the caves are originated prior to, at least, the Middle Pleistocene, in relation to mountain uplift, glaciations, fluvial incision, and the erosion of the alpine lithological seriesthat were above the karst. The cultural value is related with the specific uses of the cavities by shepherds and speleologists, and the singularity of cave names. The uses include traditional customs, as the livestock farming, the water collection, the elaboration of five types of cheese with Certificated of Origin, and sport uses by speleologists from many countries of Europe. The educative values are low due to the limitations of access inside the caves, although two caves are touristic and the entrance of some caves can be used to explain vadose shafts, relations between caves and glaciers and rivers or the underground water flow. GEOCAVE project (MAGRAMA-580/12 OAPN)

  1. Prediction of Tibial Rotation Pathologies Using Particle Swarm Optimization and K-Means Algorithms.

    PubMed

    Sari, Murat; Tuna, Can; Akogul, Serkan

    2018-03-28

    The aim of this article is to investigate pathological subjects from a population through different physical factors. To achieve this, particle swarm optimization (PSO) and K-means (KM) clustering algorithms have been combined (PSO-KM). Datasets provided by the literature were divided into three clusters based on age and weight parameters and each one of right tibial external rotation (RTER), right tibial internal rotation (RTIR), left tibial external rotation (LTER), and left tibial internal rotation (LTIR) values were divided into three types as Type 1, Type 2 and Type 3 (Type 2 is non-pathological (normal) and the other two types are pathological (abnormal)), respectively. The rotation values of every subject in any cluster were noted. Then the algorithm was run and the produced values were also considered. The values of the produced algorithm, the PSO-KM, have been compared with the real values. The hybrid PSO-KM algorithm has been very successful on the optimal clustering of the tibial rotation types through the physical criteria. In this investigation, Type 2 (pathological subjects) is of especially high predictability and the PSO-KM algorithm has been very successful as an operation system for clustering and optimizing the tibial motion data assessments. These research findings are expected to be very useful for health providers, such as physiotherapists, orthopedists, and so on, in which this consequence may help clinicians to appropriately designing proper treatment schedules for patients.

  2. New evidence for the serpentinization of the Palaeozoic basement of southeastern Sicily from joint 3-D seismic velocity and attenuation tomography

    NASA Astrophysics Data System (ADS)

    Giampiccolo, E.; Brancato, A.; Manuella, F. C.; Carbone, S.; Gresta, S.; Scribano, V.

    2017-12-01

    In this study, we derived the first 3-D P-wave seismic attenuation images (QP) as well as new 3-D VP and VP/VS models for the crust in southeastern Sicily. We used a large data set of local seismic events occurring in the time span 1994-2013. The results of this tomographic study have important implications on the seismic behaviour of the region. Based on velocity and attenuation images, we identified distinct volumes characterized by different fluid content, which correlate well with seismicity distribution. Moreover, the obtained velocity and attenuation tomographies help us to provide a more complete picture of the crustal structure of the area. High VP, high QP and high VP/VS values have been obtained in the crustal basement, below a depth of 8 km, and may be interpreted as due to the presence of serpentinized peridotites. Accordingly, the new model for the degree of serpentinization, retrieved from VP values, shows that the basement has an average serpentinization value of 96 ± 3 vol.% at 8 km, decreasing to 44 ± 5 vol.% at about 18-20 km.

  3. The added value of stochastic spatial disaggregation for short-term rainfall forecasts currently available in Canada

    NASA Astrophysics Data System (ADS)

    Gagnon, Patrick; Rousseau, Alain N.; Charron, Dominique; Fortin, Vincent; Audet, René

    2017-11-01

    Several businesses and industries rely on rainfall forecasts to support their day-to-day operations. To deal with the uncertainty associated with rainfall forecast, some meteorological organisations have developed products, such as ensemble forecasts. However, due to the intensive computational requirements of ensemble forecasts, the spatial resolution remains coarse. For example, Environment and Climate Change Canada's (ECCC) Global Ensemble Prediction System (GEPS) data is freely available on a 1-degree grid (about 100 km), while those of the so-called High Resolution Deterministic Prediction System (HRDPS) are available on a 2.5-km grid (about 40 times finer). Potential users are then left with the option of using either a high-resolution rainfall forecast without uncertainty estimation and/or an ensemble with a spectrum of plausible rainfall values, but at a coarser spatial scale. The objective of this study was to evaluate the added value of coupling the Gibbs Sampling Disaggregation Model (GSDM) with ECCC products to provide accurate, precise and consistent rainfall estimates at a fine spatial resolution (10-km) within a forecast framework (6-h). For 30, 6-h, rainfall events occurring within a 40,000-km2 area (Québec, Canada), results show that, using 100-km aggregated reference rainfall depths as input, statistics of the rainfall fields generated by GSDM were close to those of the 10-km reference field. However, in forecast mode, GSDM outcomes inherit of the ECCC forecast biases, resulting in a poor performance when GEPS data were used as input, mainly due to the inherent rainfall depth distribution of the latter product. Better performance was achieved when the Regional Deterministic Prediction System (RDPS), available on a 10-km grid and aggregated at 100-km, was used as input to GSDM. Nevertheless, most of the analyzed ensemble forecasts were weakly consistent. Some areas of improvement are identified herein.

  4. U.S. Standard Atmosphere, 1976

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Part 1 gives the basis for computation of the main tables of atmospheric properties, including values of physical constants, conversion factors, and definitions of derived properties, including values of physical constants, conversion factors, and definitions of derived properties. Part 2 describes the model and data used up to 85 km, in the first section; and the model and data used above 85 km in the second section. The theoretical basis of the high altitude model is given in an appendix. Part 3 contains information on minor constituents in the troposphere, stratosphere, and mesosphere. The main tables of atmospheric properties to 1000 km are given in Part 4. The international system of metric units is used.

  5. GRAM 88 - 4D GLOBAL REFERENCE ATMOSPHERE MODEL-1988

    NASA Technical Reports Server (NTRS)

    Johnson, D. L.

    1994-01-01

    The Four-D Global Reference Atmosphere program was developed from an empirical atmospheric model which generates values for pressure, density, temperature, and winds from surface level to orbital altitudes. This program can generate altitude profiles of atmospheric parameters along any simulated trajectory through the atmosphere. The program was developed for design applications in the Space Shuttle program, such as the simulation of external tank re-entry trajectories. Other potential applications are global circulation and diffusion studies; also the generation of profiles for comparison with other atmospheric measurement techniques such as satellite measured temperature profiles and infrasonic measurement of wind profiles. GRAM-88 is the latest version of the software GRAM. The software GRAM-88 contains a number of changes that have improved the model statistics, in particular, the small scale density perturbation statistics. It also corrected a low latitude grid problem as well as the SCIDAT data base. Furthermore, GRAM-88 now uses the U.S. Standard Atmosphere 1976 as a comparison standard rather than the US62 used in other versions. The program is an amalgamation of two empirical atmospheric models for the low (25km) and the high (90km) atmosphere, with a newly developed latitude-longitude dependent model for the middle atmosphere. The Jacchia (1970) model simulates the high atmospheric region above 115km. The Jacchia program sections are in separate subroutines so that other thermosphericexospheric models could easily be adapted if required for special applications. The improved code eliminated the calculation of geostrophic winds above 125 km altitude from the model. The atmospheric region between 30km and 90km is simulated by a latitude-longitude dependent empirical model modification of the latitude dependent empirical model of Groves (1971). A fairing technique between 90km and 115km accomplished a smooth transition between the modified Groves values and the Jacchia values. Below 25km the atmospheric parameters are computed by the 4-D worldwide atmospheric model of Spiegler and Fowler (1972). This data set is not included. GRAM-88 incorporates a hydrostatic/gas law check in the 0-30 km altitude range to flag and change any bad data points. Between 5km and 30km, an interpolation scheme is used between the 4-D results and the modified Groves values. The output parameters consist of components for: (1) latitude, longitude, and altitude dependent monthly and annual means, (2) quasi-biennial oscillations (QBO), and (3) random perturbations to partially simulate the variability due to synoptic, diurnal, planetary wave, and gravity wave variations. Quasi-biennial and random variation perturbations are computed from parameters determined by various empirical studies and are added to the monthly mean values. The GRAM-88 program is for batch execution on the IBM 3084. It is written in STANDARD FORTRAN 77 under the MVS/XA operating system. The IBM DISPLA graphics routines are necessary for graphical output. The program was developed in 1988.

  6. Seismicity associated with magmatism, faulting and hydrothermal circulation at Aluto Volcano, Main Ethiopian Rift

    NASA Astrophysics Data System (ADS)

    Wilks, Matthew; Kendall, J.-Michael; Nowacki, Andy; Biggs, Juliet; Wookey, James; Birhanu, Yelebe; Ayele, Atalay; Bedada, Tulu

    2017-06-01

    The silicic volcanic centres of the Main Ethiopian Rift (MER) play a central role in facilitating continental rifting. Many of these volcanoes host geothermal resources and are located in heavily populated regions. InSAR studies have shown several are deforming, but regional seismic networks have detected little seismicity. A local network of 12 seismometers was deployed at Aluto Volcano from 2012 to 2014, and detected 2142 earthquakes within a 24-month period. We locate the events using a 1D velocity model that exploits a regional model and information from geothermal boreholes and calculate local magnitudes, b-values and focal mechanisms. Event depths generally range from the near surface to 15 km with most of the seismicity clustering in the upper 2 km. A significant amount of seismicity follows the Artu Jawa Fault Zone, which trends in alignment with the Wonji Fault Belt, NNE-SSW and is consistent with previous studies of strain localisation in the MER. Focal mechanisms are mostly normal in style, with the mean T-axes congruent to the orientation of extension in the rift at this latitude. Some show relatively small left-lateral strike-slip components and are likely associated with the reactivation of NE-ENE structures at the southern tip of the Aluto-Gedemsa segment. Events range from - 0.40 to 2.98 in magnitude and we calculate an overall b-value of 1.40 ± 0.14. This relatively elevated value suggests fluid-induced seismicity that is particularly evident in the shallow hydrothermal reservoir and above it. Subdividing our observations according to depth identifies distinct regions beneath the volcanic edifice: a shallow zone (- 2-0 km) of high seismicity and high b-values that corresponds to the hydrothermal system and is influenced by a high fluid saturation and circulation; a relatively aseismic zone (0-2 km) with low b-values that is impermeable to ascending volatiles; a region of increased fluid-induced seismicity (2-9 km) that is driven by magmatic intrusion from below and a deeper zone (below 9 km) that is interpreted as a partially crystalline, magmatic mush. These observations indicate that both the magmatic and hydrothermal systems of Aluto volcano are seismically active and highlight the need for dedicated seismic monitoring at volcanoes in the MER.

  7. 1 km fog and low stratus detection using pan-sharpened MSG SEVIRI data

    NASA Astrophysics Data System (ADS)

    Schulz, H. M.; Thies, B.; Cermak, J.; Bendix, J.

    2012-06-01

    In this paper a new technique for the detection of fog and low stratus in 1 km resolution from MSG SEVIRI data is presented. The method relies on the pan-sharpening of 3 km narrow-band channels using the 1 km high-resolution visible (HRV) channel. As solar and thermal channels had to be sharpened for the technique, a new approach based on an existing pan-sharpening method was developed using local regressions. A fog and low stratus detection scheme originally developed for 3 km SEVIRI data was used as the basis to derive 1 km resolution fog and low stratus masks from the sharpened channels. The sharpened channels and the fog and low stratus masks based on them were evaluated visually and by various statistical measures. The sharpened channels deviate only slightly from reference images regarding their pixel values as well as spatial features. The 1 km fog and low stratus masks are therefore deemed of high quality. They contain many details, especially where fog is restricted by complex terrain in its extent, that cannot be detected in the 3 km resolution.

  8. 1 km fog and low stratus detection using pan-sharpened MSG SEVIRI data

    NASA Astrophysics Data System (ADS)

    Schulz, H. M.; Thies, B.; Cermak, J.; Bendix, J.

    2012-10-01

    In this paper a new technique for the detection of fog and low stratus in 1 km resolution from MSG SEVIRI data is presented. The method relies on the pan-sharpening of 3 km narrow-band channels using the 1 km high-resolution visible (HRV) channel. As solar and thermal channels had to be sharpened for the technique, a new approach based on an existing pan-sharpening method was developed using local regressions. A fog and low stratus detection scheme originally developed for 3 km SEVIRI data was used as the basis to derive 1 km resolution fog and low stratus masks from the sharpened channels. The sharpened channels and the fog and low stratus masks based on them were evaluated visually and by various statistical measures. The sharpened channels deviate only slightly from reference images regarding their pixel values as well as spatial features. The 1 km fog and low stratus masks are therefore deemed of high quality. They contain many details, especially where fog is restricted by complex terrain in its extent, that cannot be detected in the 3 km resolution.

  9. Seismic properties of Leg 195 serpentinites and their geophysical implications

    USGS Publications Warehouse

    Courtier, Anna M.; Hart, David J.; Christensen, Nikolas I.; Shinohara, Masanao; Salisbury, Matthew H.; Richter, Carl

    2006-01-01

    Knowledge of seismic velocities is necessary to constrain the lithologies encountered in seismic studies. We measured the seismic velocities, both compressional and shear wave, of clasts recovered during Ocean Drilling Program Leg 195 from a serpentine mud volcano, the South Chamorro Seamount. The compressional wave velocities of these clasts vary from a lower value of 5.5 km/s to an upper value of 6.1 km/s at a confining stress of 200 MPa. The shear wave velocities vary from a lower value of 2.8 km/s to an upper value of 3.3 km/s at a confining stress of 200 MPa. The densities of the samples vary from 2548 to 2701 kg/m3. These velocities and densities are representative of the highly serpentinized harzburgite and dunite mineralogy of the clasts. Velocities from a seismic study of the Izu-Bonin forearc wedge were used to calculate the degree of serpentinization in the forearc wedge. The seismic velocities of the forearc wedge are higher than the velocities of the clasts recovered from the South Chamorro Seamount, suggesting that the clasts are more serpentinized than the forearc wedge.

  10. Seasonal variations of NO and O3 at altitudes of 18.3 and 21.3 km

    NASA Technical Reports Server (NTRS)

    Loewenstein, M.; Savage, H. F.; Whitten, R. C.

    1975-01-01

    Nitric oxide and ozone concentrations have been measured in situ from a high-altitude research aircraft. Data which show the variations of NO and O3 with the time of year are presented for altitudes of 18.3 and 21.3 km. The extreme values of the observed NO concentrations at 21.3 km are 1.2 billion per cu cm in summer and 0.2 billion per cu cm in winter. At 18.3 km the extreme values are 1.6 billion per cu cm in summer and 0.1 billion per cu cm in winter. The smoothed NO seasonal data show a variation of about a factor of 2.5 at 21.3 km and a factor of 4 at 18.3 km. The ozone data show the generally expected magnitude and seasonal variation. We have used a photochemical model employing the measured ozone concentrations, the mean solar zenith angle, and seasonal HNO3 data reported by others to predict the seasonal NO variation at 20 km. The result is a summer-to-winter NO ratio of 2.5 which is in fair agreement with the observed ratios.

  11. Impact Craters: Size-Dependent Degration Rates

    NASA Astrophysics Data System (ADS)

    Ravi, S.; Mahanti, P.; Meyer, H. M.; Robinson, M. S.

    2017-12-01

    From superposition relations, Shoemaker and Hackman (1) devised the lunar geologic timescale with Copernican and Eratosthenian as the most recent periods. Classifying craters into the two periods is key to understanding impactor flux and regolith maturation rates over the last 3 Ga. Both Copernican and Eratosthenian craters exhibit crisp morphologies (sharp rims, steep slopes), however, only the former exhibit high reflectance rays and ejecta (1). Based on the Optical Maturity Parameter (OMAT; 2), Grier et al. (3) classified 50 fresh craters (D >20 km) into 3 categories - young (OMAT >0.22), intermediate, and old (OMAT <0.16). In our previous work, Copernican craters (D > 10) were identified (4) from a catalogue of 11,875 craters (5). In this work; we compare two size ranges (D: 5 km - 10 km and 10 km to 15 km) of 177 Copernican craters based on the average OMAT, measured near the crater rim (3). OMAT is measured at the crater rim (as opposed to further away from the crater) to minimize the influence of spatial variation of OMAT (6) in our investigation. We found that OMAT values are typically lower for smaller craters (5km < D < 10km) in comparison to larger craters (10km < D < 15km). However, when compared against morphological freshness (as determined by d/D for simpler craters), the smaller craters were fresher (higher d/D value). Since the OMAT value decreases with age, craters with higher d/D value (morphologically fresher) should have higher OMAT, but this is not the case. We propose that quicker loss of OMAT (over time) for smaller craters compared to decrease in d/D with crater ageing, is responsible for the observed decreased OMAT for smaller craters. (1) Shoemaker and Hackman, 1962 (2) Lucey et al., 2000 (3) Grier et al., 2001 (4) Ravi et al., 2016 (5) Reinhold et al., 2015 (6) Mahanti et al., 2016

  12. Seismic High Attenuation Beneath Southern New England Indicates High Asthenospheric Temperature and No Melt

    NASA Astrophysics Data System (ADS)

    Dong, M. T.; Menke, W. H.

    2017-12-01

    Seismic attenuation exhibits strong geographic variability in northeastern North America, with the highest values associated with the previously-recognized Northern Appalachian Anomaly (NAA) in southern New England. The shear wave quality factor at 100 km depth is 14s<25, the ratio of P-wave and S-wave quality factors is QP/Qs=1.2±0.03, and the frequency dependence parameter is α=0.39±0.025. The high values of Qp/Qs and α are compatible with laboratory measurements of unmelted rock and incompatible with widespread melting. The low Qs (high shear attenuation) implies high mantle temperatures ( 1550-1650°C) at 100 km depth (assuming no melt). Small-scale variations in attenuation suggests structural heterogeneity within the NAA, possibly due to lithospheric delamination caused by directional asthenospheric flow.

  13. GRAM-86 - FOUR DIMENSIONAL GLOBAL REFERENCE ATMOSPHERE MODEL

    NASA Technical Reports Server (NTRS)

    Johnson, D.

    1994-01-01

    The Four-D Global Reference Atmosphere program was developed from an empirical atmospheric model which generates values for pressure, density, temperature, and winds from surface level to orbital altitudes. This program can be used to generate altitude profiles of atmospheric parameters along any simulated trajectory through the atmosphere. The program was developed for design applications in the Space Shuttle program, such as the simulation of external tank re-entry trajectories. Other potential applications would be global circulation and diffusion studies, and generating profiles for comparison with other atmospheric measurement techniques, such as satellite measured temperature profiles and infrasonic measurement of wind profiles. The program is an amalgamation of two empirical atmospheric models for the low (25km) and the high (90km) atmosphere, with a newly developed latitude-longitude dependent model for the middle atmosphere. The high atmospheric region above 115km is simulated entirely by the Jacchia (1970) model. The Jacchia program sections are in separate subroutines so that other thermosphericexospheric models could easily be adapted if required for special applications. The atmospheric region between 30km and 90km is simulated by a latitude-longitude dependent empirical model modification of the latitude dependent empirical model of Groves (1971). Between 90km and 115km a smooth transition between the modified Groves values and the Jacchia values is accomplished by a fairing technique. Below 25km the atmospheric parameters are computed by the 4-D worldwide atmospheric model of Spiegler and Fowler (1972). This data set is not included. Between 25km and 30km an interpolation scheme is used between the 4-D results and the modified Groves values. The output parameters consist of components for: (1) latitude, longitude, and altitude dependent monthly and annual means, (2) quasi-biennial oscillations (QBO), and (3) random perturbations to partially simulate the variability due to synoptic, diurnal, planetary wave, and gravity wave variations. Quasi-biennial and random variation perturbations are computed from parameters determined by various empirical studies and are added to the monthly mean values. The UNIVAC version of GRAM is written in UNIVAC FORTRAN and has been implemented on a UNIVAC 1110 under control of EXEC 8 with a central memory requirement of approximately 30K of 36 bit words. The GRAM program was developed in 1976 and GRAM-86 was released in 1986. The monthly data files were last updated in 1986. The DEC VAX version of GRAM is written in FORTRAN 77 and has been implemented on a DEC VAX 11/780 under control of VMS 4.X with a central memory requirement of approximately 100K of 8 bit bytes. The GRAM program was originally developed in 1976 and later converted to the VAX in 1986 (GRAM-86). The monthly data files were last updated in 1986.

  14. Bank Erosion Vulnerability Zonation (BEVZ) -A Proposed Method of Preparing Bank Erosion Zonation and Its Application on the River Haora, Tripura, India

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, Shreya; de, Sunil Kumar

    2014-05-01

    In the present paper an attempt has been made to propose RS-GIS based method for erosion vulnerability zonation for the entire river based on simple techniques that requires very less field investigation. This method consist of 8 parameters, such as, rainfall erosivity, lithological factor, bank slope, meander index, river gradient, soil erosivity, vegetation cover and anthropogenic impact. Meteorological data, GSI maps, LISS III (30m resolution), SRTM DEM (56m resolution) and Google Images have been used to determine rainfall erosivity, lithological factor, bank slope, meander index, river gradient, vegetation cover and anthropogenic impact; Soil map of the NBSSLP, India has been used for assessing Soil Erosivity index. By integrating the individual values of those six parameters (the 1st two parameters are remained constant for this particular study area) a bank erosion vulnerability zonation map of the River Haora, Tripura, India (23°37' - 23°53'N and 91°15'-91°37'E) has been prepared. The values have been compared with the existing BEHI-NBS method of 60 spots and also with field data of 30 cross sections (covering the 60 spots) taken along 51 km stretch of the river in Indian Territory and found that the estimated values are matching with the existing method as well as with field data. The whole stretch has been divided into 5 hazard zones, i.e. Very High, High, Moderate, Low and Very Low Hazard Zones and they are covering 5.66 km, 16.81 km, 40.82km, 29.67 km and 9.04 km respectively. KEY WORDS: Bank erosion, Bank Erosion Hazard Index (BEHI), Near Bank Stress (NBS), Erosivity, Bank Erosion Vulnerability Zonation.

  15. Extreme-event geoelectric hazard maps: Chapter 9

    USGS Publications Warehouse

    Love, Jeffrey J.; Bedrosian, Paul A.

    2018-01-01

    Maps of geoelectric amplitude covering about half the continental United States are presented that will be exceeded, on average, once per century in response to an extreme-intensity geomagnetic disturbance. These maps are constructed using an empirical parameterization of induction: convolving latitude-dependent statistical maps of extreme-value geomagnetic disturbances, obtained from decades of 1-minute magnetic observatory data, with local estimates of Earth-surface impedance obtained at discrete geographic sites from magnetotelluric surveys. Geoelectric amplitudes are estimated for geomagnetic waveforms having a 240-s (and 1200-s) sinusoidal period and amplitudes over 10 min (1 h) that exceed a once-per-century threshold. As a result of the combination of geographic differences in geomagnetic variation and Earth-surface impedance, once-per-century geoelectric amplitudes span more than two orders of magnitude and are a highly granular function of location. Specifically for north-south 240-s induction, once-per-century geoelectric amplitudes across large parts of the United States have a median value of 0.34 V/km; for east-west variation, they have a median value of 0.23 V/km. In Northern Minnesota, amplitudes exceed 14.00 V/km for north-south geomagnetic variation (23.34 V/km for east-west variation), while just over 100 km away, amplitudes are only 0.08 V/km (0.02 V/km). At some sites in the northern-central United States, once-per-century geoelectric amplitudes exceed the 2 V/km realized in Québec during the March 1989 storm.

  16. Undergraduate Research Program in Atmospheric Science: Houston Ozone Studies

    NASA Astrophysics Data System (ADS)

    Morris, P. A.; Balimuttajjo, M.; Damon, D.; Herridge, A.; Hromis, A. G.; Litwin, D.; Wright, J. M.

    2011-12-01

    The Minority University Consortium for Earth and Space Sciences (MUCESS) composed of the University of Houston-Downtown (UHD), Medgar Evers College (City University of New York), South Carolina State University, is an undergraduate atmospheric science program funded by NSF. The program's goal is to increase the participation of minority universities in STEM activities and careers by providing students with the knowledge and skills needed to perform weather balloon launches, interpret ozone and temperature variations in the troposphere and stratosphere. Ozone profiles up to 30 km altitude are obtained via an instrument payload attached to a weather balloon. The payload instrumentation consists of an EN-SCI ECC ozonesonde and an iMET radiosonde. The data is transmitted to a base station in real time and includes pressure, temperature, humidity, and GPS coordinates This presentation is directed towards comparing our 2011 Houston data to data that either UHD or the University of Houston (UH) has collected. Our launches are primarily on Sunday, and UH's on Friday. Our primary objective is to identify ground level ozone variations on Sunday and compare with weekday levels as tropospheric ozone is largely controlled by anthropogenic activities. Ozone levels vary depending on the time of year, temperature, rain, wind direction, chemical plant activities, private and commercial traffic patterns.etc. Our limited Friday launches, supported by UH data, indicate that ground level ozone is generally elevated in contrast to Sunday data, For example, our Friday July 2011 launch detected elevated low-altitude ozone levels with ground level ozone levels of 42 nb that increased to 46 nb from 500 m to 1 km. Other peaks are at 2.7 km (44 nb) and 6km (41 nb), decreasing to 17 nb at the tropopause (12 km). Overall, Sunday low altitude ozone levels are generally lower. Our Sunday ground level ozone data ranges from a low of 25 nb on July 11 to a high of 50 nb on August 1. A combination of wind direction and industrial output variations are likely responsible for the these differences. On July 11, ozone levels decrease slightly from the ground-level values up to 2 km. Above this altitude, significant fluctuations in ozone values ranging from 20 to 40nb occur from 2 to 7 km. These fluctuations inversely correlate with humidity. Relative humidity of 20% corresponding to high ozone and 60% humidity values for low ozone. This probably reflects dilution of ozone with water vapor. In contrast, on August 1 ozone values decrease abruptly at 800 meters to 35 nb with only minor fluctuations with increasing altitude to the tropopause. For both days, the change from ground-level ozone values to the higher altitude patterns correlates with a slight temperature inversion. The Stratospheric ozone also shows a significant contrast on the two days. At 22 km altitude an ozone value of 150 nb is seen on August 1 cf the more typical 110 nb on July 11. The high value seen on August 1 is coincident with a major solar flare. These variations are typical of the range of stratospheric ozone levels seen throughout the year and may be attributable to short-term fluctuations in solar activity.

  17. Black Sea impact on its west-coast land surface temperature

    NASA Astrophysics Data System (ADS)

    Cheval, Sorin; Constantin, Sorin

    2018-03-01

    This study investigates the Black Sea influence on the thermal characteristics of its western hinterland based on satellite imagery acquired by the Moderate Resolution Imaging Spectroradiometer (MODIS). The marine impact on the land surface temperature (LST) values is detected at daily, seasonal and annual time scales, and a strong linkage with the land cover is demonstrated. The remote sensing products used within the study supply LST data with complete areal coverage during clear sky conditions at 1-km spatial resolution, which is appropriate for climate studies. The sea influence is significant up to 4-5 km, by daytime, while the nighttime influence is very strong in the first 1-2 km, and it gradually decreases westward. Excepting the winter, the daytime temperature increases towards the plateau with the distance from the sea, e.g. with a gradient of 0.9 °C/km in the first 5 km in spring or with 0.7 °C/km in summer. By nighttime, the sea water usually remains warmer than the contiguous land triggering higher LST values in the immediate proximity of the coastline in all seasons, e.g. mean summer LST is 19.0 °C for the 1-km buffer, 16.6 °C for the 5-km buffer and 16.0 °C for the 10-km buffer. The results confirm a strong relationship between the land cover and thermal regime in the western hinterland of the Black Sea coast. The satellite-derived LST and air temperature values recorded at the meteorological stations are highly correlated for similar locations, but the marine influence propagates differently, pledging for distinct analysis. Identified anomalies in the general observed trends are investigated in correlation with sea surface temperature dynamics in the coastal area.

  18. Survival analysis of the high energy channel of BATSE

    NASA Astrophysics Data System (ADS)

    Balázs, L. G.; Bagoly, Z.; Horváth, I.; Mészáros, A.

    2004-06-01

    We used Kaplan-Meier (KM) survival analysis to study the true distribution of high energy (F4) fluences on BATSE. The measured values were divided into two classes: A. if F4 exceeded the 3σ of the noise level we accepted the measured value as 'true event'. B. We treated 3σ as an upper bound if F4 did not exceeded it and identified those data as 'censored'. KM analysis were made for short (t90 < 2 s) and long (t90 > 2 s) bursts, separately. Comparison of the calculated probability distribution functions of the two groups indicated about an order of magnitude difference in the > 300 keV part of the energies released.

  19. Contrasting aerosol refractive index and hygroscopicity in the inflow and outflow of deep convective storms: Analysis of airborne data from DC3

    NASA Astrophysics Data System (ADS)

    Sorooshian, Armin; Shingler, T.; Crosbie, E.; Barth, M. C.; Homeyer, C. R.; Campuzano-Jost, P.; Day, D. A.; Jimenez, J. L.; Thornhill, K. L.; Ziemba, L. D.; Blake, D. R.; Fried, A.

    2017-04-01

    We examine three case studies during the Deep Convective Clouds and Chemistry (DC3) field experiment when storm inflow and outflow air were sampled for aerosol subsaturated hygroscopicity and the real part of refractive index (n) with a Differential Aerosol Sizing and Hygroscopicity Probe (DASH-SP) on the NASA DC-8. Relative to inflow aerosol particles, outflow particles were more hygroscopic (by 0.03 based on the estimated κ parameter) in one of the three storms examined. Two of three "control" flights with no storm convection reveal higher κ values, albeit by only 0.02, at high altitude (> 8 km) versus < 4 km. Entrainment modeling shows that measured κ values in the outflow of the three storm flights are higher than predicted values (by 0.03-0.11) based on knowledge of κ values from the inflow and clear air adjacent to the storms. This suggests that other process(es) contributed to hygroscopicity enhancements such as secondary aerosol formation via aqueous-phase chemistry. Values of n were higher in the outflow of two of the three storm flights, reaching as high as 1.54. More statistically significant differences were observed in control flights (no storms) where n decreased from 1.50-1.52 (< 4 km) to 1.49-1.50 (> 8 km). Chemical data show that enhanced hygroscopicity was coincident with lower organic mass fractions, higher sulfate mass fractions, and higher O:C ratios of organic aerosol. Refractive index did not correlate as well with available chemical data. Deep convection is shown to alter aerosol radiative properties, which has implications for aerosol effects on climate.

  20. Cone structure and focusing of VLF and LF electromagnetic waves at high altitudes in the ionosphere

    NASA Technical Reports Server (NTRS)

    Alpert, Ya. L.; Green, J. L.

    1994-01-01

    The frequency and angle dependencies of the electric field radiated by an electric dipole E = E(sub 0) cos omega(t) are studied through numerical calculations of absolute value of E in the VLF and LF frequency bands where F is less than or equal 0.02 to 0.05 f(sub b) in a model ionosphere over an altitude region of 800-6000 km where the wave frequency and electron gyrofrequency varies between F approximately 4-500 kHz and f(sub b) is approximately equal (1.1 to 0.2) MHz respectively. It is found that the amplitudes of the electric field have large maxima in four regions: close to the direction of the Earth magnetic field line B(sub 0) (it is called the axis field E(sub 0), in the Storey E(sub St), reversed Storey E(sub RevSt), and resonance E(sub Res) cones. The maximal values of E(sub 0), E(sub Res), and E(sub RevSt) are the most pronounced close to the lower hybrid frequency, F approximately F(sub L). The flux of the electric field is concentrated in very narrow regions, with the apex angles of the cones Delta-B is approximately (0.1-1) deg. The enhancement and focusing of the electric field increases with altitude starting at Z greater than 800 km. At Z greater than or equal to 1000 up to 6000 km, the relative value of absolute value of E, in comparison with its value at Z = 800 km is about (10(exp 2) to 10(exp 4)) times larger. Thus the flux of VLF and LF electromagnetic waves generated at high altitudes in the Earth's ionosphere are trapped into very narrow conical beams similar to laser beams.

  1. Trimethylamine-N-oxide counteracts urea effects on rabbit muscle lactate dehydrogenase function: a test of the counteraction hypothesis.

    PubMed Central

    Baskakov, I; Wang, A; Bolen, D W

    1998-01-01

    Trimethylamine-N-oxide (TMAO) in the cells of sharks and rays is believed to counteract the deleterious effects of the high intracellular concentrations of urea in these animals. It has been hypothesized that TMAO has the generic ability to counteract the effects of urea on protein structure and function, regardless of whether that protein actually evolved in the presence of these two solutes. Rabbit muscle lactate dehydrogenase (LDH) did not evolve in the presence of either solute, and it is used here to test the validity of the counteraction hypothesis. With pyruvate as substrate, results show that its Km and the combined Km of pyruvate and NADH are increased by urea, decreased by TMAO, and in 1:1 and 2:1 mixtures of urea:TMAO the Km values are essentially equivalent to the Km values obtained in the absence of the two solutes. In contrast, values of k(cat) and the Km for NADH as a substrate are unperturbed by urea, TMAO, or urea:TMAO mixtures. All of these effects are consistent with TMAO counteraction of the effects of urea on LDH kinetic parameters, supporting the premise that counteraction is a property of the solvent system and is independent of the evolutionary history of the protein. PMID:9591690

  2. Assessing and mapping spatial associations among oral cancer mortality rates, concentrations of heavy metals in soil, and land use types based on multiple scale data.

    PubMed

    Lin, Wei-Chih; Lin, Yu-Pin; Wang, Yung-Chieh; Chang, Tsun-Kuo; Chiang, Li-Chi

    2014-02-21

    In this study, a deconvolution procedure was used to create a variogram of oral cancer (OC) rates. Based on the variogram, area-to-point (ATP) Poisson kriging and p-field simulation were used to downscale and simulate, respectively, the OC rate data for Taiwan from the district scale to a 1 km × 1 km grid scale. Local cluster analysis (LCA) of OC mortality rates was then performed to identify OC mortality rate hot spots based on the downscaled and the p-field-simulated OC mortality maps. The relationship between OC mortality and land use was studied by overlapping the maps of the downscaled OC mortality, the LCA results, and the land uses. One thousand simulations were performed to quantify local and spatial uncertainties in the LCA to identify OC mortality hot spots. The scatter plots and Spearman's rank correlation yielded the relationship between OC mortality and concentrations of the seven metals in the 1 km cell grid. The correlation analysis results for the 1 km scale revealed a weak correlation between OC mortality rate and concentrations of the seven studied heavy metals in soil. Accordingly, the heavy metal concentrations in soil are not major determinants of OC mortality rates at the 1 km scale at which soils were sampled. The LCA statistical results for local indicator of spatial association (LISA) revealed that the sites with high probability of high-high (high value surrounded by high values) OC mortality at the 1 km grid scale were clustered in southern, eastern, and mid-western Taiwan. The number of such sites was also significantly higher on agricultural land and in urban regions than on land with other uses. The proposed approach can be used to downscale and evaluate uncertainty in mortality data from a coarse scale to a fine scale at which useful additional information can be obtained for assessing and managing land use and risk.

  3. Seismic structure of the Slave craton crust

    NASA Astrophysics Data System (ADS)

    Barantseva, O.; Vinnik, L. P.; Farra, V.; van der Hilst, R. D.; Artemieva, I. M.; Montagner, J. P.

    2017-12-01

    We present P- and S-receiver functions for 20 stations along a 200-km-long NNW-SSE seismological profile across the Slave craton, and estimate the average crustal Vp/Vs ratio which is indicative of rock composition. We observe high Vp/Vs ratio ( 1.85-2.00) for the bulk crust and elevated Vp values at a depth range from 20-30 km to 40 km. High Vp values (>7.0 km/s) suggest mafic composition of the lower crust. In case of dry lower crustal rocks, the Vp/Vs ratio is expected to range from 1.6 to 1.8, which is lower than the observed values of 1.9-2.0. Laboratory studies show that Vp/Vs 1.9-2.0 can be explained by the presence of numerous cracks saturated with an incompressible fluid. Our results are at odds with the structure of the cratonic crust in many regions worldwide, and may suggest a unique geodynamic evolution of the Slave crust. Possible explanations for the observed crustal structure include the presence of an underplated mafic material, possibly related to intraplate magmatism or paleosubduction. Receiver functions are highly sensitive to the change of acoustic impedance and S-wave velocities, but do not resolve the internal seismic structure with a high precision. We extend our study of the crustal structure by using ambient noise tomography (ANT). We measure Rayleigh wave dispersion from Green's functions that are estimated from one-year noise cross-correlation (NCF). The phase velocity maps are inverted for 1D wave speed profiles which are then combined to form 2D and 3D models of the crust of the Slave Province. The combined results of RF analyses and ANT are interpreted in terms of crustal structure, composition, and evolution.

  4. Enhancing the spatial coverage of a regional high-quality hydraulic conductivity dataset with estimates made from domestic water-well specific-capacity tests

    NASA Astrophysics Data System (ADS)

    Priebe, Elizabeth H.; Neville, C. J.; Rudolph, D. L.

    2018-03-01

    The spatial coverage of hydraulic conductivity ( K) values for large-scale groundwater investigations is often poor because of the high costs associated with hydraulic testing and the large areas under investigation. Domestic water wells are ubiquitous and their well logs represent an untapped resource of information that includes mandatory specific-capacity tests, from which K can be estimated. These specific-capacity tests are routinely conducted at such low pumping rates that well losses are normally insignificant. In this study, a simple and practical approach to augmenting high-quality K values with reconnaissance-level K values from water-well specific-capacity tests is assessed. The integration of lesser quality K values from specific-capacity tests with a high-quality K data set is assessed through comparisons at two different scales: study-area-wide (a 600-km2 area in Ontario, Canada) and in a single geological formation within a portion of the broader study area (200 km2). Results of the comparisons demonstrate that reconnaissance-level K estimates from specific-capacity tests approximate the ranges and distributions of the high-quality K values. Sufficient detail about the physical basis and assumptions that are invoked in the development of the approach are presented here so that it can be applied with confidence by practitioners seeking to enhance their spatial coverage of K values with specific-capacity tests.

  5. Extreme-event geoelectric hazard maps

    NASA Astrophysics Data System (ADS)

    Love, J. J.; Bedrosian, P.

    2017-12-01

    Maps covering about half of the continental United States are presented of geoelectric field amplitude that will be exceeded, on average, once per century in response to extreme-intensity geomagnetic disturbance. These maps are constructed using an empirical parameterization of induction: convolving latitude-dependent statistical maps of extreme-value geomagnetic disturbance, obtained from decades of 1-minute magnetic observatory data, with local estimates of Earth-surface impedance, obtained at discrete geographic sites from magnetotelluric surveys. Geoelectric amplitudes are estimated for geomagnetic waveforms having 240-s (and 1200-s) sinusoidal period and amplitudes over 10 minutes (1-hr) that exceed a once-per-century threshold. As a result of the combination of geographic differences in geomagnetic variation and Earth-surface impedance, once-per-century geoelectric amplitudes span more than two orders of magnitude and are a highly granular function of location. Specifically: for north-south 240-s induction, once-per-century geoelectric amplitudes across large parts of the United States have a median value of 0.34 V/km; for east-west variation, they have a median value of 0.23 V/km. In Northern Minnesota, amplitudes exceed 14.00 V/km for north-south geomagnetic variation (23.34 V/km for east-west variation), while just over 100 km away, amplitudes are only 0.08 V/km (0.02 V/km). At some sites in the Northern Central United States, once-per-century geoelectric amplitudes exceed the 2 V/km realized in Quebec during the March 1989 storm. These hazard maps are incomplete over large parts of the United States, including major population centers in the southern United States, due to a lack of publically available impedance data.

  6. High-speed data encryption over 25 km of fiber by two-mode coherent-state quantum cryptography.

    PubMed

    Corndorf, Eric; Barbosa, Geraldo; Liang, Chuang; Yuen, Horace P; Kumar, Prem

    2003-11-01

    We demonstrate high-speed (250 Mbps) data encryption over 25 km of telecommunication fiber by use of coherent states. For the parameter values used in the experiment, the demonstration is secure against individual ciphertext-only eavesdropping attacks near the transmitter with ideal detection equipment. Whereas other quantum-cryptographic schemes require the use of fragile quantum states and ultrasensitive detection equipment, our protocol is loss tolerant, uses off-the-shelf components, and is optically amplifiable.

  7. Subalkaline andesite from Valu Fa Ridge, a back-arc spreading center in southern Lau Basin: petrogenesis, comparative chemistry, and tectonic implications

    USGS Publications Warehouse

    Vallier, T.L.; Jenner, G.A.; Frey, F.A.; Gill, J.B.; Davis, A.S.; Volpe, A.M.; Hawkins, J.W.; Morris, J.D.; Cawood, Peter A.; Morton, J.L.; Scholl, D. W.; Rautenschlein, M.; White, W.M.; Williams, Ross W.; Stevenson, A.J.; White, L.D.

    1991-01-01

    Tholeiitic andesite was dredged from two sites on Valu Fa Ridge (VFR), a back-arc spreading center in Lau Basin. Valu Fa Ridge, at least 200 km long, is located 40-50 km west of the active Tofua Volcanic Arc (TVA) axis and lies about 150 km above the subducted oceanic plate. One or more magma chambers, traced discontinuously for about 100 km along the ridge axis, lie 3-4 km beneath the ridge. The mostly aphyric and glassy lavas had high volatile contents, as shown by the abundance and large sizes of vesicles. An extensive fractionation history is inferred from the high SiO2 contents and FeO* MgO ratios. Chemical data show that the VFR lavas have both volcanic arc and back-arc basin affinities. The volcanic arc characteristics are: (1) relatively high abundances of most alkali and alkaline earth elements; (2) low abundances of high field strength elements Nb and Ta; (3) high U/Th ratios; (4) similar radiogenic isotope ratios in VFR and TVA lavas, in particular the enrichment of 87Sr 86Sr relative to 206Pb 204Pb; (5) high 238U 230Th, 230Th 232Th, and 226Ra 230Th activity ratios; and (6) high ratios of Rb/Cs, Ba/Nb, and Ba/La. Other chemical characteristics suggest that the VFR lavas are related to MORB-type back-arc basin lavas. For example, VFR lavas have (1) lower 87Sr 86Sr ratios and higher 143Nd 144Nd ratios than most lavas from the TVA, except samples from Ata Island, and are similar to many Lau Basin lavas; (2) lower Sr/REE, Rb/Zr, and Ba/Zr ratios than in arc lavas; and (3) higher Ti, Fe, and V, and higher Ti/V ratios than arc lavas generally and TVA lavas specifically. Most characteristics of VFR lavas can be explained by mixing depleted mantle with either small amounts of sediment and fluids from the subducting slab and/or an older fragment of volcanic arc lithosphere. The eruption of subalkaline andesite with some arc affinities along a back-arc spreading ridge is not unique. Collision of the Louisville and Tonga ridges probably activated back-arc extension that ultimately led to the creation and growth of Valu Fa Ridge. Some ophiolitic fragments in circum-Pacific and circum-Tethyan allochthonous terranes, presently interpreted to have originated in volcanic arcs, may instead be fragments of lithosphere that formed during early stages of seafloor spreading in a back-arc basin. ?? 1991.

  8. Sonic-boom ground-pressure measurements from Apollo 15

    NASA Technical Reports Server (NTRS)

    Hilton, D. A.; Henderson, H. R.; Mckinney, R.

    1972-01-01

    Sonic boom pressure signatures recorded during the launch and reentry phases of the Apollo 15 mission are presented. The measurements were obtained along the vehicle ground track at 87 km and 970 km downrange from the launch site during ascent; and at 500 km, 55.6 km, and 12.9 km from the splashdown point during reentry. Tracings of the measured signatures are included along with values of the overpressure, impulse, time duration, and rise times. Also included are brief descriptions of the launch and recovery test areas in which the measurements were obtained, the sonic boom instrumentation deployment, flight profiles and operating conditions for the launch vehicle and spacecraft, surface weather information at the measuring sites, and high altitude weather information for the general measurement areas.

  9. Seismic High Attenuation Region Observed Beneath Southern New England From Teleseismic Body Wave Spectra: Evidence for High Asthenospheric Temperature Without Melt

    NASA Astrophysics Data System (ADS)

    Dong, Mingduo T.; Menke, William H.

    2017-11-01

    Seismic attenuation exhibits strong geographic variability in northeastern North America, with the highest values associated with the previously recognized Northern Appalachian Anomaly (NAA) in southern New England. The shear wave quality factor at 100 km depth is 14 < QS < 25, the ratio of P wave and S wave quality factors is QP/QS = 1.2 ± 0.03 (95%), and the frequency dependence parameter is α = 0.39 ± 0.025 (95%). The high values of QP/QS and α are compatible with laboratory measurements of unmelted rock and, in the case of α, incompatible with widespread melting. The low QS implies high mantle temperatures ( 1,550-1,650°C) at 100 km depth (assuming no melt). Small-scale variations in attenuation suggest structural heterogeneity within the NAA, possibly due to lithospheric delamination caused by asthenospheric flow.

  10. Hot Alps (Invited)

    NASA Astrophysics Data System (ADS)

    Speranza, F.; Minelli, L.; Pignatelli, A.; Gilardi, M.

    2013-12-01

    Although it is frequently assumed that crust of Alpine orogens is hot due to the occurrence of thick and young (hence radiogenic) crust, evidence on the thermal ranking of orogens is contradictory. Heat flow measurements from shallow wells (depth ≤ 1 km) in the Alps yield a relatively cold thermal regime of 50-80 mW/m2, but data are likely biased by meteoric cold-water circulation. Here we report on the spectral analysis of the aeromagnetic residuals of northern Italy to derive the Curie point depth (CPD), assumed to represent the 600°C isotherm depth. Airborne magnetics were acquired on whole Italy during the 1970s by the national oil company AGIP (now Eni). Data were gathered by several surveys carried out at 1000-13,300 feet (300-4000 m) altitude, with flight line spacing of 2-10 km. Surveys of the Alps and Po Plain (northern Italy) were obtained both with a line spacing of 5 km (and 5 km tie lines), at an altitude of 4000-5000 and 13,300 feet, respectively. To evaluate CPDs we used the centroid method (routinely adopted in recent CPD studies on East Asia and central-southern Europe) on 72 square windows of 100-110 km edge, with a 50% degree of superposition. CPDs vary between 16 and 38 km (22 km on average) in the Po Plain, located south of the Alps and representing the Adriatic-African foreland area. Conversely, the Alps yield very shallow CPDs, ranging between 6 and 15 km (10 km on average). CPDs fall systematically above local Moho depths, implying that magnetic source bottoms documented in this study do not represent a lithological boundary over non-magnetic peridotitic mantle, but can be safely associated with CPDs and the 600°C isotherm. CPDs from the Po Plain are in rough agreement with reported heat flow values of 25-60 mW/m2, and imply and average thermal conductivity (k) of the Po Plain crust of 1.5 W/m°K, at the lower bound of k values measured and inferred for the crust. Conversely, the average 10 km CPD documented in the Alps translates into heat flow values ranging from 90 to 150 mW/m2, if k values of 1.5 to 2.5 W/m°K (respectively) are assumed (the latter is average k value of the crust assumed for other world provinces, such as California). A ~150 mW/m2 heat flow value turns out to be similar to that observed in Tuscany and the Tyrrhenian Sea back-arc basin, as well as to values documented for active rifts and young oceans. Di Stefano et al. (2009) documented P wave velocities around 8 km/sec in the upper mantle of the Alps, suggesting the lack of shallow asthenosphere. Thus high heat flow of the Alps must be produced by radiogenic crust, instead of asthenospheric upwelling. A 600°C isotherm at ~10 km depth implies widespread melting at mid-lower crustal depths, considering the 60 km crustal thickness of the Alps. This is consistent with the very low P-wave velocities observed at 20-40 km depth beneath the chain by Di Stefano et al. (2009). When extrapolated to other orogens of the geological past, the thermal regime of the Alps may explain the extensive occurrence of intrusives exposed in eroded pre-Alpine orogens and cratons. Reference: Di Stefano, R., et al. (2009), J. Geophys. Res., 114, doi:10.1029/2008JB005641.

  11. Crustal Thickness Beneath Libya and the Origin of Partial Melt Beneath AS Sawda Volcanic Province From Receiver Function Constraints

    NASA Astrophysics Data System (ADS)

    Lemnifi, Awad A.; Elshaafi, Abdelsalam; Browning, John; Aouad, Nassib S.; El Ebaidi, Saad K.; Liu, Kelly K.; Gudmundsson, Agust

    2017-12-01

    This study investigates crustal thickness and properties within the Libyan region. Results obtained from 15 seismic stations belonging to the Libyan Center for Remote Sensing and Space Science are reported, in addition to 3 seismic stations publically available, using receiver functions. The results show crustal thicknesses ranging from 24 km to 36 km (with uncertainties ranging between ±0.10 km and ±0.90 km). More specifically, crustal thickness ranges from 32 km to 36 km in the southern portion of the Libyan territory then becomes thinner, between 24 km and 30 km, in the coastal areas of Libya and thinnest, between 24 km and 28 km, in the Sirt Basin. The observed high Vp/Vs value of 1.91 at one station located at the AS Sawda Volcanic Province in central Libya indicates the presence of either partial melt or an abnormally warm area. This finding suggests that magma reservoirs beneath the Libyan territory may still be partially molten and active, thereby posing significant earthquake and volcanic risks. The hypothesis of an active magma source is further demonstrated though the presence of asthenospheric upwelling and extension of the Sirt Basin. This study provides a new calculation of unconsolidated sediment layers by using the arrival time of the P to S converted phases. The results show sediments thicknesses of 0.4 km to 3.7 km, with the Vp/Vs values ranging from 2.2 to 4.8. The variations in crustal thickness throughout the region are correlated with surface elevation and Bouguer gravity anomalies, which suggest that they are isostatically compensated.

  12. Air pollutants and toxic emissions of various mileage motorcycles for ECE driving cycles

    NASA Astrophysics Data System (ADS)

    Tsai, Jiun-Horng; Huang, Pei-Hsiu; Chiang, Hung-Lung

    2017-03-01

    Motorcycles were selected to determine their fuel consumption and exhaust emissions following ECE driving cycles. Exhaust constituents including CO2, CO, NOx, total hydrocarbons (THC) and hydrocarbon species (27 paraffins, 9 olefins, 16 aromatics and 15 carbonyls) were investigated for this work. The age of 10- 90% of the selected motorcycles ranged from 2.5 to 12.4 years, and their mileage ranged from 5400 to 39,300 km. CO emission ranged from 1.4 to 6.4 g/km (median value: 2.98 g/km), THC from 0.41 to 1.54 g/km (median value: 0.98 g/km), NOx from 0.16 to 0.28 g/km (median value: 0.21 g/km), CO2 from 58.9 to 62.2 g/km (median value: 60.5 g/km) and fuel consumption from 30.7 to 36.4 km/L (median value: 33.4 km/L), corresponding to the percentage cumulative data from 10 to 90% of the selected motorcycles. Results indicated that the motorcycle exhaust emission and fuel consumption depended on their mileage and ages. An increase in mileage of 1000 km resulted in an increase of 103 mg for CO emission and 14.7 mg for hydrocarbon emission and a reduction of 1.52 mg NOx emission and 0.11 km per liter fuel consumption. For various VOC groups, a mileage increase of 1000 km corresponding to the increased exhaust emission of paraffins was 6.71 mg, olefins 1.90 mg, aromatics 7.04 mg, carbonyls 0.283 mg and 67 VOC species 15.9 mg. Fuel consumption and emissions of CO and hydrocarbon increased in motorcycles over the guaranteed mileage of 15,000 km.

  13. Vertical Distribution of NO, NO(2), and HNO(3) as Derived from Stratospheric Absorption Infrared Spectra.

    PubMed

    Fontanella, J C; Girard, A; Gramont, L; Louisnard, N

    1975-04-01

    This paper is devoted to the results concerning NO, NO(2), and HNO(3) obtained during airborne experiments performed in June-July 1973 on Concorde 001. The altitude of flight was about 16 km. Results concerning NO are, within the accuracy of measurement, in agreement with results of a previousspectrometric balloonborne experiment conducted jointly by IASB and ONERA (14 May 1973). Nitric oxide is concentrated in stratospheric layers clearly above the flight altitude. Integrated amount of NO along the optical path is (4 +/- 1.5) x 10(16) mol cm(-2) for a solar elevation varying from +2 degrees above the horizontal plane to -1 degrees . A value of 6 x 10(8) mol cm(-3) may be given as an upper limit for the local concentration at the flight altitude. Thereis no significant difference in the integrated amount observed at sunset and sunrise. Measured value of NO(2) local concentration at 15.5 km is (1.1 +/- 0.2) x 10(9) mol cm(-3), in sunset conditions. This value is not greatly modified between 15 km and 30 km. Measured value of HNO(3). This value increases with altitude between 15 km and 20 km. The local concentration is maximum at 20 km. The measured value is (2 +/- 1) x 10(10) mol cm(-3) at 20 km. It seems that local concentration decreases rapidly above 20 km.

  14. Receiver Function Study of the Crustal Structure Beneath the Northern Andes (colombia)

    NASA Astrophysics Data System (ADS)

    Poveda, E.; Monsalve, G.; Vargas-Jimenez, C. A.

    2013-05-01

    We have investigated crustal thickness beneath the Northern Andes with the teleseismic receiver function technique. We used teleseismic data recorded by an array of 18 broadband stations deployed by the Colombian Seismological Network, and operated by the Colombian Geological Survey. We used the primary P-to-S conversion and crustal reverberations to estimate crustal thickness and average Vp/Vs ratio; using Wadati diagrams, we also calculated the mean crustal Vp/Vs ratio around stations to further constrain the crustal thickness estimation. In northern Colombia, near the Caribbean coast, the estimated crustal thickness ranges from 25 to 30 km; in the Middle Magdalena Valley, crustal thickness is around 40 km; beneath the northern Central Cordillera, the Moho depth is nearly 40 km; at the Ecuador-Colombia border, beneath the western flank of the Andes, the estimated thickness is about 46 km. Receiver functions at a station at the craton in South East Colombia, near the foothills of the Eastern Cordillera, clearly indicate the presence of the Moho discontinuity at a depth near 36 km. The greatest values of crustal thickness occur beneath a plateau (Altiplano Cundiboyacense) on the Eastern Cordillera, near the location of Bogota, with values around 58 km. Receiver functions in the volcanic areas of the south-western Colombian Andes do not show a systematic signal from the Moho, indicating abrupt changes in Moho geometry. Signals at stations on the Eastern Cordillera near Bogota reveal a highly complex crustal structure, with a combination of sedimentary layers up to 9 km thick, dipping interfaces, low velocity layers, anisotropy and/or lateral heterogeneity that still remain to be evaluated. This complexity obeys to the location of these stations at a region of a highly deformed fold and thrust belt.

  15. Imaging b-value depth variations within the Cocos and Rivera plates at the Mexican subduction zone

    NASA Astrophysics Data System (ADS)

    Rodríguez-Pérez, Quetzalcoatl; Zuñiga, F. Ramón

    2018-06-01

    By a systematic mapping of the b-value along profiles perpendicular to the Mexican Wadati-Benioff zone, we obtained important characteristics pertaining the stress state and faulting style related to the subduction process. To this purpose, we used data from the earthquake catalog reported by the Servicio Sismologico Nacional (1988-2016). We investigate depth variations of the b-value for the Cocos and Rivera under North American plates interface, by a detailed analysis of 15 cross-sections. The obtained b-value profiles vary from 0.50 to 2.50, which nevertheless appear related to the faulting style and stress state. By comparing the locations and focal mechanism of the largest events with the b-values of the surrounding regions, our analysis corroborates the dependence of the b-value on the faulting style. Thrust events occur in regions of low and high b-value at depths <50 km. Normal-faulting events occur mainly in high b-value regions at all shallow (Z < 30 km) and intermediate depths (Z > 30 km), in agreement with global studies. These results support the hypothesis that differential stress processes may be behind the occurrence of the different faulting style. On the contrary, by analyzing the mean b-values for both types of faulting mechanism at each of the cross-sections, we found a significantly lower mean b-value related to normal faulting for those regions where the 8 (Mw 8.2) and 19 (Mw 7.1) September 2017 earthquakes occur. These results lead us to conclude that those regions experienced an increased stress state prone to the occurrence of normal-intraplate events. We also compare the b-value distribution with Vp and Q tomography studies obtaining a good correlation between them. We found evidence to relate b-value variations with subduction processes such as stress state due to tectonic and flexural conditions, and to a lesser extent to material heterogeneity and fluid dehydration.

  16. Observations of metal concentrations in E-region sporadic thin layers using incoherent-scatter radar

    NASA Astrophysics Data System (ADS)

    Suzuki, Nobuhiro

    This thesis has used incoherent-scatter radar data from the facility at Sondrestrom, Greenland to determine the ion mass values inside thin sporadic-E layers in the lower ionosphere. Metallic positively-charged ions of meteoric origin are deposited in the earth's upper atmosphere over a height range of about 85-120 km. Electric fields and neutral-gas (eg N2, O, O2) winds at high latitudes may produce convergent ion dynamics that results in the re-distribution of the background altitude distribution of the ions to form thin (1-3 km) high-density layers that are detectable with radar. A large database of experimental radar observations has been processed to determine ion mass values inside these thin ion layers. The range resolution of the radar was 600 meters that permitted mass determinations at several altitude steps within the layers. Near the lower edge of the layers the ion mass values were in the range 20-25 amu while at the top portion of the layers the mass values were generally in the range 30-40 amu. The numerical values are consistent with in-situ mass spectrometer data obtained by other researchers that suggest these layers are mainly composed of a mixture or Mg +, Si+, and Fe + ions. The small tendency for heavier ions to reside at the top portion of the layers is consistent with theory. The results have also found new evidence for the existence of complex-shaped multiple layers; the examples studied suggest similar ion mass values in different layers that in some cases are separated in altitude by several km.

  17. Observations of temporal change of nighttime cloud cover from Himawari 8 and ground-based sky camera over Chiba, Japan

    NASA Astrophysics Data System (ADS)

    Lagrosas, N.; Gacal, G. F. B.; Kuze, H.

    2017-12-01

    Detection of nighttime cloud from Himawari 8 is implemented using the difference of digital numbers from bands 13 (10.4µm) and 7 (3.9µm). The digital number difference of -1.39x104 can be used as a threshold to separate clouds from clear sky conditions. To look at observations from the ground over Chiba, a digital camera (Canon Powershot A2300) is used to take images of the sky every 5 minutes at an exposure time of 5s at the Center for Environmental Remote Sensing, Chiba University. From these images, cloud cover values are obtained using threshold algorithm (Gacal, et al, 2016). Ten minute nighttime cloud cover values from these two datasets are compared and analyzed from 29 May to 05 June 2017 (20:00-03:00 JST). When compared with lidar data, the camera can detect thick high level clouds up to 10km. The results show that during clear sky conditions (02-03 June), both camera and satellite cloud cover values show 0% cloud cover. During cloudy conditions (05-06 June), the camera shows almost 100% cloud cover while satellite cloud cover values range from 60 to 100%. These low values can be attributed to the presence of low-level thin clouds ( 2km above the ground) as observed from National Institute for Environmental Studies lidar located inside Chiba University. This difference of cloud cover values shows that the camera can produce accurate cloud cover values of low level clouds that are sometimes not detected by satellites. The opposite occurs when high level clouds are present (01-02 June). Derived satellite cloud cover shows almost 100% during the whole night while ground-based camera shows cloud cover values that range from 10 to 100% during the same time interval. The fluctuating values can be attributed to the presence of thin clouds located at around 6km from the ground and the presence of low level clouds ( 1km). Since the camera relies on the reflected city lights, it is possible that the high level thin clouds are not observed by the camera but is observed by the satellite. Also, this condition constitutes layers of clouds that are not observed by each camera. The results of this study show that one instrument can be used to correct each other to provide better cloud cover values. These corrections is dependent on the height and thickness of the clouds. No correction is necessary when the sky is clear.

  18. Timing performance of a self-cancelling turn-signal mechanism in motorcycles based on the ATMega328P microcontroller

    NASA Astrophysics Data System (ADS)

    Nurbuwat, Adzin Kondo; Eryandi, Kholid Yusuf; Estriyanto, Yuyun; Widiastuti, Indah; Pambudi, Nugroho Agung

    2018-02-01

    The objective of this study is to measure the time performance of a self-cancelling turn signal mechanism based on the In this study the performance of self-cancelling turn signal based on ATMega328P microcontroller is measured at low speed and high speed treatment on motorcycles commonly used in Indonesia. Time performance measurements were made by comparing the self-cancelling turn signal based on ATMega328P microcontroller with standard motor turn time. Measurements of time at low speed treatment were performed at a speed range of 15 km / h, 20 km / h, 25 km / h on the U-turn test trajectory. The angle of the turning angle of the potentiometer is determined at 3°. The limit of steering wheel turning angle at the potentiometer is set at 3°. For high-speed treatment is 30 km / h, 40 km / h, 50km / h, and 60 km / h, on the L-turn test track with a tilt angle (roll angle) read by the L3G4200D gyroscope sensor. Each speed test is repeated 3 replications. Standard time is a reference for self-cancelling turn signal performance. The standard time obtained is 15.68 s, 11.96 s, 9.34 s at low speed and 4.63 s, 4.06 s, 3.61 s, 3.13 s at high speed. The time test of self-cancelling turn signal shows 16.10 s, 12.42 s, 10.24 s at the low speed and 5.18, 4.51, 3.73, 3.21 at the high speed. At a speed of 15 km / h occurs the instability of motion turns motorcycle so that testing is more difficult. Small time deviations indicate the tool works well. The largest time deviation value is 0.9 seconds at low speed and 0.55 seconds at high speed. The conclusion at low velocity of the highest deviation value occurred at the speed of 25 km / h test due to the movement of slope with inclination has started to happen which resulted in slow reading of steering movement. At higher speeds the time slows down due to rapid sensor readings on the tilt when turning fast at ever higher speeds. The timing performance of self-cancelling turn signal decreases as the motorcycle turning characteristics move from the turn using the steering angle to using a tilt angle based on speed, or vice versa.

  19. Metabolism of ethylbenzene by human liver microsomes and recombinant human cytochrome P450s (CYP).

    PubMed

    Sams, Craig; Loizou, George D; Cocker, John; Lennard, Martin S

    2004-03-07

    The enzyme kinetics of the initial hydroxylation of ethylbenzene to form 1-phenylethanol were determined in human liver microsomes. The individual cytochrome P450 (CYP) forms catalysing this reaction were identified using selective inhibitors and recombinant preparations of hepatic CYPs. Production of 1-phenylethanol in hepatic microsomes exhibited biphasic kinetics with a high affinity, low Km, component (mean Km = 8 microM; V(max) = 689 pmol/min/mg protein; n = 6 livers) and a low affinity, high Km, component (Km = 391 microM; V(max) = 3039 pmol/min/mg protein; n = 6). The high-affinity component was inhibited 79%-95% (mean 86%) by diethyldithiocarbamate, and recombinant CYP2E1 was shown to metabolise ethylbenzene with low Km (35 microM), but also low (max) (7 pmol/min/pmol P450), indicating that this isoform catalysed the high-affinity component. Recombinant CYP1A2 and CYP2B6 exhibited high V(max) (88 and 71 pmol/min/pmol P450, respectively) and high Km (502 and 219 microM, respectively), suggesting their involvement in catalysing the low-affinity component. This study has demonstrated that CYP2E1 is the major enzyme responsible for high-affinity side chain hydroxylation of ethylbenzene in human liver microsomes. Activity of this enzyme in the population is highly variable due to induction or inhibition by physiological factors, chemicals in the diet or some pharmaceuticals. This variability can be incorporated into the risk assessment process to improve the setting of occupational exposure limits and guidance values for biological monitoring.

  20. Examination about the Spatial Representation of PM2.5 Obtained from Limited Stations Using a Network Observation

    NASA Astrophysics Data System (ADS)

    Shi, X.; Zhao, C.

    2017-12-01

    Haze aerosol pollution has been a focus issue in China, and its characteristics is highly demanded. With limited observation sites, aerosol properties obtained from a single site is frequently used to represent the haze condition over a large domain, such as tens of kilometers. This could result in high uncertainties in the haze characteristics due to their spatial variation. Using a network observation from November 2015 to February 2016 over an urban city in North China with high spatial resolution, this study examines the spatial representation of ground site observations. A method is first developed to determine the representative area of measurements from limited stations. The key idea of this method is to determine the spatial variability of particulate matter with diameters less than 2.5 μm (PM2.5) concentration using a variance function in 2km x 2km grids. Based on the high spatial resolution (0.5km x 0.5km) measurements of PM2.5, the grids in which PM2.5 have high correlations and weak value differences are determined as the representation area of measurements at these grids. Note that the size representation area is not exactly a circle region. It shows that the size representation are for the study region and study period ranges from 0.25 km2 to 16.25 km2. The representation area varies with locations. For the 20 km x 20 km study region, 10 station observations would have a good representation of the PM2.5 observations obtained from current 169 stations at the four-month time scale.

  1. The CMB Topography Beneath Cook Inlet And Alaskan Kenai Peninsula

    NASA Astrophysics Data System (ADS)

    Wu, W.; Ni, S.

    2009-05-01

    It has long been known that the PcP-to-P amplitude ratios demonstrate strong scatter in some regions. Rost and Revenaugh studied PcP amplitudes which sample the core-mantle boundary (CMB) beneath the Alaskan Kenai peninsula and the Cook inlet and found a ˜1° region on the CMB with very large PcP/P amplitude ratios. For some events, the ratios are several tens times larger than the theoretical ratios. After analyzing different possible mechanisms, they concluded the CMB topography is the major cause of the high amplitude ratios, but they did not give an quantitative topography model because of the lack of short period synthetic waveforms tools. We generate short period PcP synthetics using representation theorems and study the PcP phases theoretically for a core-mantle boundary (CMB) with single sinusoidal topography. After testing different combinations of the sinusoid wavelength L and amplitude H, we conclude that a dent in CMB with diameter of L=300km and height H=1˜2km best fits the observed data and can partly explain the high amplitude ratios. The PcP reflected from the CMB dip with L=300km and H=2km will be amplified by 2˜3 times which is smaller than the value the observed data needed. We primarily have three causes to determine L=300km and H=1˜2km. First, a dip with L=300km and H=1˜2km will focus the PcP significantly in a ˜1° region on the CMB which is consistent with the observed data. Certainly, the northern limit of the region is not clear, therefore more data are needed to constraint the northern limit and give a more reliable model. Second, there are not obvious travel time anomalies coupled with the high ratios in the observed PcP and our synthetic travel time anomalies are just about 0.4s too. Lastly, the strong similarities of P and PcP for some simple events excludes such large value of H. A dip with larger L and corresponding H surly produces stronger focusing effect, for example, a dip with L= 300km and H=3km will amplifies the PcP by 4˜5 times, but the waveform will be distorted seriously, contradictory to the similarity of P and PcP. So we speculate that the topography and other causes are combined to produce the high amplitude ratios together.

  2. Drug oxygenation activities mediated by liver microsomal flavin-containing monooxygenases 1 and 3 in humans, monkeys, rats, and minipigs.

    PubMed

    Yamazaki, Miho; Shimizu, Makiko; Uno, Yasuhiro; Yamazaki, Hiroshi

    2014-07-15

    Liver microsomal flavin-containing monooxygenases (FMO, EC 1.14.13.8) 1 and 3 were functionally characterized in terms of expression levels and molecular catalytic capacities in human, cynomolgus monkey, rat, and minipig livers. Liver microsomal FMO3 in humans and monkeys and FMO1 and FMO3 in rats and minipigs could be determined immunochemically with commercially available anti-human FMO3 peptide antibodies or rat FMO1 peptide antibodies. With respect to FMO-dependent N-oxygenation of benzydamine and tozasertib and S-oxygenation of methimazole and sulindac sulfide activities, rat and minipig liver microsomes had high maximum velocity values (Vmax) and high catalytic efficiency (Vmax/Km, Michaelis constant) compared with those for human or monkey liver microsomes. Apparent Km values for recombinantly expressed rat FMO3-mediated N- and S-oxygenations were approximately 10-100-fold those of rat FMO1, although these enzymes had similar Vmax values. The mean catalytic efficiencies (Vmax/Km, 1.4 and 0.4 min(-1)μM(-1), respectively) of recombinant human and monkey FMO3 were higher than those of FMO1, whereas Vmax/Km values for rat and minipig FMO3 were low compared with those of FMO1. Minipig liver microsomal FMO1 efficiently catalyzed N- and S-oxygenation reactions; in addition, the minipig liver microsomal FMO1 concentration was higher than the levels in rats, humans, and monkeys. These results suggest that liver microsomal FMO1 could contribute to the relatively high FMO-mediated drug N- and S-oxygenation activities in rat and minipig liver microsomes and that lower expression of FMO1 in human and monkey livers could be a determinant factor for species differences in liver drug N- and S-oxygenation activities between experimental animals and humans. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Ozone profile measurements of McMurdo Station, Antarctica, during the spring of 1987

    NASA Technical Reports Server (NTRS)

    Hofmann, D. J.; Harder, J. W.; Rosen, J. M.; Hereford, J. V.; Carpenter, J. R.

    1989-01-01

    Ozone and temperature profiles were measured in 50 balloon flights at McMurdo Station (78 deg S) during the spring of 1987. Compared to similar data obtained in 1986, stratospheric temperatures were lower and the spring time Antarctic ozone reduction was greater in magnitude, extended to higher altitude, and proceeded at a higher rate in 1987. Ozone partial pressures reached values as low as 3 nbar (as compared to about 10 nbar in 1986) in the 16- to 18-km region in early and late October, down from about 150 nbar in late August. These low values suggest essentially complete removal of ozone in this region. The upper boundary of the depletion region was observed to be 2-3 km higher than in 1986, extending to altitudes as high as 24 km in mid-September. When averaged over September, the ozone mixing ratio at 18 km decayed with a half-life of only 12.4 days, as compared to about 28 days in 1986. Adiabatic vertical motions over 1- to 2-km intervals between 12 and 20 km with consequent ozone reductions were observed in association with the formation of nacreous clouds, indicating these to be rare events on a local scale probably associated with mountain lee waves.

  4. Added value of high-resolution regional climate model over the Bohai Sea and Yellow Sea areas

    NASA Astrophysics Data System (ADS)

    Li, Delei; von Storch, Hans; Geyer, Beate

    2016-04-01

    Added value from dynamical downscaling has long been a crucial and debatable issue in regional climate studies. A 34 year (1979-2012) high-resolution (7 km grid) atmospheric hindcast over the Bohai Sea and the Yellow Sea (BYS) has been performed using COSMO-CLM (CCLM) forced by ERA-Interim reanalysis data (ERA-I). The accuracy of CCLM in surface wind reproduction and the added value of dynamical downscaling to ERA-I have been investigated through comparisons with the satellite data (including QuikSCAT Level2B 12.5 km version 3 (L2B12v3) swath data and MODIS images) and in situ observations, with adoption of quantitative metrics and qualitative assessment methods. The results revealed that CCLM has a reliable ability to reproduce the regional wind characteristics over the BYS areas. Over marine areas, added value to ERA-I has been detected in the coastal areas with complex coastlines and orography. CCLM was better able to represent light and moderate winds but has even more added value for strong winds relative to ERA-I. Over land areas, the high-resolution CCLM hindcast can add value to ERA-I in reproducing wind intensities and direction, wind probability distribution and extreme winds mainly at mountain areas. With respect to atmospheric processes, CCLM outperforms ERA-I in resolving detailed temporal and spatial structures for phenomena of a typhoon and of a coastal atmospheric front; CCLM generates some orography related phenomena such as a vortex street which is not captured by ERA-I. These added values demonstrate the utility of the 7-km-resolution CCLM for regional and local climate studies and applications. The simulation was constrained with adoption of spectral nudging method. The results may be different when simulations are considered, which are not constrained by spectral nudging.

  5. In-situ measurements of nitric oxide in the high latitude upper stratosphere

    NASA Technical Reports Server (NTRS)

    Horvath, J. J.; Frederick, J. E.

    1985-01-01

    The vertical profiles of nitric acid were measured over Poker Flat, Alaska, in August 1984 and January and February 1985 using a rocket-launched parachute-deployed chemiluminescence sensor. Results for the altitude range 35-45 km indicate a large seasonal variation, with wintertime mixing ratios being a factor of two above summer values. The winter profiles contain sharp positive vertical gradients persisting through the highest altitudes observed. Above the stratopause, the mixing ratio observed in February increases rapidly and between 52 and 53 km reaches 148.9 ppbv, an order of magnitude greater than typical mid-latitude values measured with this instrument. Such behavior is consistent with the idea that nitric oxide produced at greater altitudes reaches the high-latitude upper stratosphere or lower mesosphere in winter. The results support the existence of a vertical coupling between diverse regions of the atmosphere in the high-latitude winter.

  6. The structure of Greater Caucasus in scales of sedimentary cover and crust, based on restored structural sections, which were obtained from study of fold-related strain

    NASA Astrophysics Data System (ADS)

    Yakovlev, Fedor

    2015-04-01

    Geological setting. Greater Caucasus (GC) belongs to a linear branch of the Alpine belt (Crimea, Caucasus, Kopet-Dag) which is not arc-like as the Alps. The main stripe of the Alpine deformations in GC occupies space about 1000 x 50 km between the Scythian plate and the Transcaucasian massif. Folded structure prevails and it is accompanied by almost total absence of thrust in a hinterland and by limited thrusts in forelands. The Paleozoic basement outcrops only in a northern half of this linear structure, occupying about 1/8 part of GC. Alpine sedimentary cover (J1 - Pg2) has 10-15 km thickness of flysch-like sequences of sands, argillites, limestones. These sediments formed numerous folds of 0.1 - 1.0 km width. Because each fold has information about strain, the existence of so rich material allows to restore geometry of a sedimentary cover from soil to its top. Method. Three regions were studied due based on 24 detailed structural sections of 510 km total actual length. Two kind of isometric objects of different scale were established: domains and structural cells. There were domains as associations of 2-5 folds; sections were split on 505 one. In these domains, three parameters of morphology were measured as elements of strain ellipsoid (ellipse): dip of axial plain, dip of envelope plain, value of shortening as interlimb angle [1, 2, 3]. It was possible to restore actual state of domain to its pre-folded state (from ellipse to circle) by sequence of three kinematic operations: by rotation to horizontal position of envelope plain, by horizontal simple shear to vertical axial plain and by vertical flattening (pure shear). Pre-folded state of whole section is forming by aggregation of pre-folded states of domains. "Structural cells" were formed by aggregation of 5-10 domains in each cell for correct measuring of shortening value in scale of whole sedimentary cover; there were 78 for three regions. "Stratigraphic models" from bottom to top of cover for each cell were found based on famous (outcropped) column and on some interpolations. It allow to find vertical positions (depth) of section lines inside models. Initial thickness of cover was reformed to new post-folded thickness and knowledge of section line depth allow to find a depth of cover bottom and virtual heigth position of cover top (uplift amplitude). Results. North-Western Caucasus (NWC) was studied on 250x50 km stripe in 11 sections and 42 cells [1]. Initial thickness of sedimentary cover was 13 km (7.3÷17.3 km). Shortening value for structural cells deviated from small (-10%, 2%) at pericline part to 15-67% and it has 35% in average. Actual depth of basement top (soil of sedimentary cover ) was -13 km (-2.2÷-31.7 km). Three sectors along strike of NWC were found: with central depression at pericline (-19, -23 km), with sinking of south part of structure (-27, -32 km) and with central depression again on East (-25 km). Amplitude of erosion has reasonable distribution on NWC: from small in average at pericline (3 km) to high value at center (15 km) with smaller values on edges of sections. Average value was 8.9 km (+0÷+22.2 km). Chiaur tectonic zone in South Ossetia (ChZ) and two zones in South-Eastern Caucasus - Tfan Zone (TZ) and Shakhdag zone (ShZ) have formed together the other part of Caucasus [3]. Initial and actual depths of sedimentary cover have had close values -15 (-21) km, -10 (-10) km, -13 (-12) km. Southern part of structure (ChZ) has had considerable actual subsidence of basement top (-13.6÷-26.3 km). The shortening values were found as 57% in average for ChZ (with deviations 46÷67%), 55% for TZ (36÷67%), 49% for ShZ (37÷62%). Amplitudes of erosion were calculated as 16 km for ChZ (10÷22), 19 km for TZ (12÷24), 10 km for ShZ (7÷12). On the southern border of GC, depths of basement top were found as -8 km for Trans-Caucasian massif (stable block) and -19 km for adjacent cell of ChZ (GC). It means that: 1) value of shortening of sedimentary cover of ChZ 57% is equal to shortening of basement, 2) regional detachment and thrusts in GC above basement cannot exist. Based on these data, calculation of vertical movements of former Moho (-40 km for beginning of J1) shows that actual position of these rocks may has depth about 110 km [3]. It means that considerable part of crust rocks should became "mantle" in density and this kind of rocks transformation is inescapable condition of folding formation for structure of GC. 1. Yakovlev F.L. // Izvestiya, Physics of the Solid Earth. 2009. 45. 11. 1023-1034. 2. Yakovlev F.L. // Comptes Rendus Geoscience. 2012. 344 (3-4). 125-137. 3. Yakovlev F.L. // Bulletin of "KRAESC". Earth Sciences. 2012. 1 (19). 191-214. (in Russian)

  7. A New Cloud and Aerosol Layer Detection Method Based on Micropulse Lidar Measurements

    NASA Astrophysics Data System (ADS)

    Wang, Q.; Zhao, C.; Wang, Y.; Li, Z.; Wang, Z.; Liu, D.

    2014-12-01

    A new algorithm is developed to detect aerosols and clouds based on micropulse lidar (MPL) measurements. In this method, a semi-discretization processing (SDP) technique is first used to inhibit the impact of increasing noise with distance, then a value distribution equalization (VDE) method is introduced to reduce the magnitude of signal variations with distance. Combined with empirical threshold values, clouds and aerosols are detected and separated. This method can detect clouds and aerosols with high accuracy, although classification of aerosols and clouds is sensitive to the thresholds selected. Compared with the existing Atmospheric Radiation Measurement (ARM) program lidar-based cloud product, the new method detects more high clouds. The algorithm was applied to a year of observations at both the U.S. Southern Great Plains (SGP) and China Taihu site. At SGP, the cloud frequency shows a clear seasonal variation with maximum values in winter and spring, and shows bi-modal vertical distributions with maximum frequency at around 3-6 km and 8-12 km. The annual averaged cloud frequency is about 50%. By contrast, the cloud frequency at Taihu shows no clear seasonal variation and the maximum frequency is at around 1 km. The annual averaged cloud frequency is about 15% higher than that at SGP.

  8. A record of more than 500,000 years of large-volume travertine formation in the southwestern United States and links between paleohydrology, paleoclimate, and landscape evolution

    NASA Astrophysics Data System (ADS)

    Priewisch, A.; Crossey, L. J.; Embid, E.; Karlstrom, K. E.; Polyak, V.; Asmerom, Y.; Ricketts, J. W.

    2011-12-01

    CO2 springs and associated travertine deposits offer a unique tool to better understand Cenozoic paleohydrology and paleoclimate in the context of geomorphic and neotectonic evolution of the southwestern United States. Travertine accumulations represent places of persistent and significant mantle CO2 degassing in high discharge spring systems that are found along faults and above magmatic systems. They complement speleothem records from the same regions in that they can provide better links to the surface geomorphic and neotectonic systems. New Mexico and Arizona host several exceptionally well-preserved, large-volume travertine deposits that extend from 10 - 60 km2, with thicknesses ranging from 15 to more than 60 m. Precise U-series and stable isotope analyses are underway for large travertine platforms at Mesa del Oro, NM (~27 km2), Riley North and South Mesa, NM (~60 km2), Mesa Aparejo/Belen Quarries, NM (~13 km2), and Springerville, AZ (~30 km2). New ages for the travertine deposits at Mesa del Oro are 56 ka, 253 ka, 361 ka, and more than 500 ka. The travertine deposits at Riley North and South Mesa are older than 500 ka and 207/287 ka, respectively. At Mesa Aparejo, travertine ages are 312 ka and more than 500 ka. U/Th dates from Springerville, AZ show that major travertine accumulations occurred over several time intervals: 36-100 ka, 200-280 ka and 300-350 ka. Stable isotope analyses overlap substantially, exhibiting high δ13C values, +2.0% to +8.3%, and δ18O values that range from -13.5% to -4%. High δ13C values are interpreted to be caused by rapid CO2 degassing while the range of δ18O values is interpreted to represent changing water temperatures and mixing trends of groundwater. U-series data show that travertine deposition at all of these localities overlapped temporally and that major aggradation and high volume deposition was not steady, but occurred episodically at 36-100, 200-280, and 300-380 ka. Times of high accumulation rates are interpreted as times of high groundwater flow and hence as a proxy for regional paleohydrology/paleoclimate controls while the locations of the travertine occurrences (along faults of the Jemez lineament and Rio Grande rift) reflect more local CO2-discharge (tectonic) controls. These travertine occurrences are important indicators of the extent of past natural CO2 leakage that can inform carbon sequestration models both in areas of modern CO2 gas fields (Springerville) and at sites of potential paleo-gas fields. The travertine platforms now occupy positions high in the landscape (inverted topography) and also provide data on the scales and timing of regional landscape denudation.

  9. Impact of Lightning and Convection on Reactive Nitrogen in the Tropical Free Troposphere

    NASA Technical Reports Server (NTRS)

    Kawakami, S.; Kondo, Y.; Koike, M.; Nakajima, H.; Gregory, G. L.; Sachse, G. W.; Newell, R. E.; Browell, E. V.; Blake, D. R.; Rodriquez, J. M.; hide

    1997-01-01

    Latitudinal distributions of NO, NO(y), O3, CO, CH3I, and H2O mixing ratios at 8.9-12 km were obtained between 30deg N and 1deg S by DC-8 aircraft measurements made in February 1994 during Pacific Exploratory Mission-West B (PEM-West B). Very low NO(y), mixing ratios with a median value of 51 parts per trillion by volume (pptv) were observed at 9.5-12 km at 1deg N-14deg N during two flights made within 3 days. A very low median O3 mixing ratio of 19 parts per billion by volume (ppbv) and high mixing ratios of H2O and CH3I were simultaneously observed, suggesting that the low NO(y), values were probably due to the convective transport of air from the tropical marine boundary layer to this altitude. The median NO(y)/O3 ratio being a factor of 2 smaller than in the air masses in the tropical marine boundary layer might suggest the possibility that the heterogeneous removal of HNO3 during convective transport further reduced NO(y) levels. In addition to the measurements between 9.5 and 12 km, low values of NO(y) and O3 were observed between 4 and 12 km at 1deg N. Divergent wind fields at 200 and 1000 hPa and infrared (IR) cloud images show that there was large scale convection (greater than 1000 km x 1000 km) in the northeast of New Guinea Island centered around Odeg S and 150deg E as part of systematic convective activity of the Intertropical Convergence Zone (ITCZ) and the South Pacific Convergence Zone (SPCZ). This type of large scale convection could have transported air with low levels of NO(y) and O3 to the middle and upper troposphere over a wide area in the tropics. On the other hand, NO mixing ratios of 50-200 pptv and high NQ,/NOY ratios of 0.4-0.6 were observed at 9.5 km between 4deg S and 10deg S. High H2O Mixing ratios of 600-1200 parts per million by volume (ppmv) and low CO mixing ratios of 65 ppbv observed in the air mass indicated that the high NO values were probably due to NO production by lightning. Satellite observations showed relatively frequent lightning flashes over the New Guinea Island for 3 days prior to the aircraft measurements. These results are considered to be consistent with the idea that, in general, marine convection is not accompanied by lightning activity, whereas convection over land is. Because of the large areal extent of the influences from these processes, the convective transport of low NO(y) air and NO production by lightning should play critical roles in controlling the abundance of reactive nitrogen in the equatorial region.

  10. Three-dimensional P-wave velocity structure derived from local earthquakes at the Katmai group of volcanoes, Alaska

    USGS Publications Warehouse

    Jolly, A.D.; Moran, S.C.; McNutt, S.R.; Stone, D.B.

    2007-01-01

    The three-dimensional P-wave velocity structure beneath the Katmai group of volcanoes is determined by inversion of more than 10,000 rays from over 1000 earthquakes recorded on a local 18 station short-period network between September 1996 and May 2001. The inversion is well constrained from sea level to about 6??km below sea level and encompasses all of the Katmai volcanoes; Martin, Mageik, Trident, Griggs, Novarupta, Snowy, and Katmai caldera. The inversion reduced the average RMS travel-time error from 0.22??s for locations from the standard one-dimensional model to 0.13??s for the best three-dimensional model. The final model, from the 6th inversion step, reveals a prominent low velocity zone (3.6-5.0??km/s) centered at Katmai Pass and extending from Mageik to Trident volcanoes. The anomaly has values about 20-25% slower than velocities outboard of the region (5.0-6.5??km/s). Moderately low velocities (4.5-6.0??km/s) are observed along the volcanic axis between Martin and Katmai Caldera. Griggs volcano, located about 10??km behind (northwest of) the volcanic axis, has unremarkable velocities (5.0-5.7??km/s) compared to non-volcanic regions. The highest velocities are observed between Snowy and Griggs volcanoes (5.5-6.5??km/s). Relocated hypocenters for the best 3-D model are shifted significantly relative to the standard model with clusters of seismicity at Martin volcano shifting systematically deeper by about 1??km to depths of 0 to 4??km below sea level. Hypocenters for the Katmai Caldera are more tightly clustered, relocating beneath the 1912 scarp walls. The relocated hypocenters allow us to compare spatial frequency-size distributions (b-values) using one-dimensional and three-dimensional models. We find that the distribution of b is significantly changed for Martin volcano, which was characterized by variable values (0.8 < b < 2.0) with standard locations and more uniform values (0.8 < b < 1.2) after relocation. Other seismic clusters at Mageik (1.2 < b < 2.2), Trident (0.5 < b < 1.5) and Katmai Caldera (0.8 < b < 1.8) had stable b-values indicating the robustness of the observations. The strong high b-value region at Mageik volcano is mainly associated with an earthquake swarm in October, 1996 that possibly indicates a shallow intrusion or influx of gas. The new velocity and spatial b-value results, in conjunction with prior gravity (Bouguer anomalies up to - 40??mgal) and interferometry (several cm uplift) data, provide strong evidence in favor of partially molten rock at shallow depths beneath the Mageik-Katmai-Novarupta region. Moderately low velocities beneath Martin and Katmai suggest that old, mostly solidified intrusions exist beneath these volcanoes. Higher relative velocities beneath the Griggs and Snowy vents suggest that no magma is resident in the shallow crust beneath these volcanoes. ?? 2006 Elsevier B.V.

  11. Low-loss Kagome hollow-core fibers operating from the near- to the mid-IR.

    PubMed

    Wheeler, N V; Bradley, T D; Hayes, J R; Gouveia, M A; Liang, S; Chen, Y; Sandoghchi, S R; Abokhamis Mousavi, S M; Poletti, F; Petrovich, M N; Richardson, D J

    2017-07-01

    We report the fabrication and characterization of Kagome hollow-core antiresonant fibers, which combine low attenuation (as measured at ∼30  cm bend diameter) with a wide operating bandwidth and high modal purity. Record low attenuation values are reported: 12.3 dB/km, 13.9 dB/km, and 9.6 dB/km in three different fibers optimized for operation at 1 μm, 1.55 μm, and 2.5 μm, respectively. These fibers are excellent candidates for ultra-high power delivery at key laser wavelengths including 1.064 μm and 2.94 μm, as well as for applications in gas-based sensing and nonlinear optics.

  12. Regional-Scale High-Latitude Extreme Geoelectric Fields Pertaining to Geomagnetically Induced Currents

    NASA Technical Reports Server (NTRS)

    Pulkkinen, Antti; Bernabeu, Emanuel; Eichner, Jan; Viljanen, Ari; Ngwira, Chigomezyo

    2015-01-01

    Motivated by the needs of the high-voltage power transmission industry, we use data from the high-latitude IMAGE magnetometer array to study characteristics of extreme geoelectric fields at regional scales. We use 10-s resolution data for years 1993-2013, and the fields are characterized using average horizontal geoelectric field amplitudes taken over station groups that span about 500-km distance. We show that geoelectric field structures associated with localized extremes at single stations can be greatly different from structures associated with regionally uniform geoelectric fields, which are well represented by spatial averages over single stations. Visual extrapolation and rigorous extreme value analysis of spatially averaged fields indicate that the expected range for 1-in-100-year extreme events are 3-8 V/km and 3.4-7.1 V/km, respectively. The Quebec reference ground model is used in the calculations.

  13. IUE high resolution spectrophotometry of H Ly alpha emission from the local interstellar medium

    NASA Technical Reports Server (NTRS)

    Clarke, J. T.; Bowyer, S.; Fahr, H. J.; Lay, G.

    1984-01-01

    IUE high dispersion spectra of resonantly scattered solar Ly alpha emission from H moving into the solar system with the local interstellar wind are reported which are based on observations conducted in April 1981 and April 1983. A heliocentric velocity of -29 + or - 5 km/s has been observed from the ISW component along with a surface brightness which has decreased from about 1000 to 800 Rayleighs over the two-year interval. A preliminary derivation of the velocity of the ISM at large distances from the sun yields a value of 25.6 + or - 5 km/s.

  14. Velocity distribution of women's 30-km cross-country skiing during Olympic Games from 2002-2014.

    PubMed

    Erdmann, Wlodzimierz S; Dancewicz-Nosko, Dorota; Giovanis, Vasilios

    2017-12-01

    Within several investigated endurance sport disciplines the distribution of load of the best competitors has a manner of evenly or slightly rising velocity values. Unfortunately many other competitors have usually diminishing values or when they are very poor they have evenly values. The aim of this study was to investigate distribution of velocity within 30-km cross-country female skiers. Cross-country skiing runs were investigated of Olympic Games 2002-2014 (Salt Lake City, Turin, Vancouver, Sochi). At every race two 15 km or three 10 km loops of the same vertical profile were taken into account. The competitors were divided onto: A - winners, B - medallists, C - competitors who obtained places 4 to 10 at the finish line (medium runners), D - competitors who obtained places 11 to 30 at the finish line (poor runners). Velocity data presented on the web pages of several institutions were utilized. The competitors had their velocity distributed in a manner with usually diminishing values. While comparing velocity of sequential loops with the mean velocity the difference for the poor runners reached the value of almost 6 %, which was too high. There was significant (usually negative) correlation coefficient between values of velocity deviation for the first and second loops and the mean value of velocity for the entire distance for the better runners and mixed, i.e. positive and negative values for the poorer runners. It was postulated investigations of velocity distribution should be introduced in coaching in order to inform competitors about their running. This advise is especially important for the poorer runners. Up to now cross country skiers run for themselves. It should be discussed whether the tactics used by road and track runners, i.e. running with pace makers, can be introduced in cross country skiing. Also the use of a drone during training can be used in order to maintain proper pace.

  15. Cl/B ratio of geothermal fluid around Slamet Volcano, Jawa Tengah, Indonesia

    NASA Astrophysics Data System (ADS)

    Harijoko, Agung; Juhri, Saefudin

    2017-12-01

    Geothermal manifestations occurred in four areas surrounding Slamet Volcano, such as Guci, Baturraden, Paguyangan, and Bantarkawung. These areas are located of about 7.5 km, 8 km, 25 km and 33 km from the summit of Slamet volcano, respectively. We analyzed the chemical composition of cold and hot hater in order to understand the genesis and hydrological the relationship of the hot springs. The plot on HCO3-Cl-SO4 ternary diagram classified the hot water into four water types i.e. chloride-bicarbonate water (Bantarkawung), chloride water (Paguyangan), sulfate-chloride water (Baturraden), and bicarbonate water (Guci). The Cl/B ratio values indicate that the southern part of the Slamet volcano (Baturaden) hot springs have high Cl/B ratio compared to that of the northern hot springs (Guci area). While the hot springs in the western part (Paguyangan and Bantarkawung) are classified into high and low Cl/B ratio. This indicates that the hot springs in Paguyangan and Bantarkawung are the outflow of Baturraden and Guci.

  16. Stratospheric ozone profile and total ozone trends derived from the SAGE I and SAGE II data

    NASA Technical Reports Server (NTRS)

    Mccormick, M. P.; Veiga, Robert E.; Chu, William P.

    1992-01-01

    Global trends in both stratospheric column ozone and as a function of altitude are derived on the basis of SAGE I/II ozone data from the period 1979-1991. A statistical model containing quasi-biennial, seasonal, and semiannual oscillations, a linear component, and a first-order autoregressive noise process was fit to the time series of SAGE I/II monthly zonal mean data. The linear trend in column ozone above 17-km altitude, averaged between 65 deg S and 65 deg N, is -0.30 +/-0.19 percent/yr, or -3.6 percent over the time period February 1979 through April 1991. The data show that the column trend above 17 km is nearly zero in the tropics and increases towards the high latitudes with values of -0.6 percent/yr at 60 deg S and -0.35 percent/yr at 60 deg N. Both these results are in agreement with the recent TOMS results. The profile trend analyses show that the column ozone losses are occurring below 25 km, with most of the loss coming from the region between 17 and 20 km. Negative trend values on the order of -2 percent/yr are found at 17 km in midlatitudes.

  17. Exploring spatial patterns of vulnerability for diverse biodiversity descriptors in regional conservation planning.

    PubMed

    Vimal, Ruppert; Pluvinet, Pascal; Sacca, Céline; Mazagol, Pierre-Olivier; Etlicher, Bernard; Thompson, John D

    2012-03-01

    In this study, we developed a multi-criteria assessment of spatial variability of the vulnerability of three different biodiversity descriptors: sites of high conservation interest by virtue of the presence of rare or remarkable species, extensive areas of high ecological integrity, and landscape diversity in grid cells across an entire region. We assessed vulnerability in relation to (a) direct threats in and around sites to a distance of 2 km associated with intensive agriculture, building and road infrastructure and (b) indirect effects of human population density on a wider scale (50 km). The different combinations of biodiversity and threat indicators allowed us to set differential priorities for biodiversity conservation and assess their spatial variation. For example, with this method we identified sites and grid cells which combined high biodiversity with either high threat values or low threat values for the three different biodiversity indicators. In these two classes the priorities for conservation planning will be different, reduce threat values in the former and restrain any increase in the latter. We also identified low priority sites (low biodiversity with either high or low threats). This procedure thus allows for the integration of a spatial ranking of vulnerability into priority setting for regional conservation planning. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Seismological evidence for a sub-volcanic arc mantle wedge beneath the Denali volcanic gap, Alaska

    USGS Publications Warehouse

    McNamara, D.E.; Pasyanos, M.E.

    2002-01-01

    Arc volcanism in Alaska is strongly correlated with the 100 km depth contour of the western Aluetian Wadati-Benioff zone. Above the eastern portion of the Wadati-Benioff zone however, there is a distinct lack of volcanism (the Denali volcanic gap). We observe high Poisson's ratio values (0.29-0.33) over the entire length of the Alaskan subduction zone mantle wedge based on regional variations of Pn and Sn velocities. High Poisson's ratios at this depth (40-70 km), adjacent to the subducting slab, are attributed to melting of mantle-wedge peridotites, caused by fluids liberated from the subducting oceanic crust and sediments. Observations of high values of Poisson's ratio, beneath the Denali volcanic gap suggest that the mantle wedge contains melted material that is unable to reach the surface. We suggest that its inability to migrate through the overlying crust is due to increased compression in the crust at the northern apex of the curved Denali fault.

  19. Assessing soil erosion risk using RUSLE through a GIS open source desktop and web application.

    PubMed

    Duarte, L; Teodoro, A C; Gonçalves, J A; Soares, D; Cunha, M

    2016-06-01

    Soil erosion is a serious environmental problem. An estimation of the expected soil loss by water-caused erosion can be calculated considering the Revised Universal Soil Loss Equation (RUSLE). Geographical Information Systems (GIS) provide different tools to create categorical maps of soil erosion risk which help to study the risk assessment of soil loss. The objective of this study was to develop a GIS open source application (in QGIS), using the RUSLE methodology for estimating erosion rate at the watershed scale (desktop application) and provide the same application via web access (web application). The applications developed allow one to generate all the maps necessary to evaluate the soil erosion risk. Several libraries and algorithms from SEXTANTE were used to develop these applications. These applications were tested in Montalegre municipality (Portugal). The maps involved in RUSLE method-soil erosivity factor, soil erodibility factor, topographic factor, cover management factor, and support practices-were created. The estimated mean value of the soil loss obtained was 220 ton km(-2) year(-1) ranged from 0.27 to 1283 ton km(-2) year(-1). The results indicated that most of the study area (80 %) is characterized by very low soil erosion level (<321 ton km(-2) year(-1)) and in 4 % of the studied area the soil erosion was higher than 962 ton km(-2) year(-1). It was also concluded that areas with high slope values and bare soil are related with high level of erosion and the higher the P and C values, the higher the soil erosion percentage. The RUSLE web and the desktop application are freely available.

  20. Variation of coda wave attenuation in the Alborz region and central Iran

    NASA Astrophysics Data System (ADS)

    Rahimi, H.; Motaghi, K.; Mukhopadhyay, S.; Hamzehloo, H.

    2010-06-01

    More than 340 earthquakes recorded by the Institute of Geophysics, University of Tehran (IGUT) short period stations from 1996 to 2004 were analysed to estimate the S-coda attenuation in the Alborz region, the northern part of the Alpine-Himalayan orogen in western Asia, and in central Iran, which is the foreland of this orogen. The coda quality factor, Qc, was estimated using the single backscattering model in frequency bands of 1-25 Hz. In this research, lateral and depth variation of Qc in the Alborz region and central Iran are studied. It is observed that in the Alborz region there is absence of significant lateral variation in Qc. The average frequency relation for this region is Qc = 79 +/- 2f1.07+/-0.08. Two anomalous high-attenuation areas in central Iran are recognized around the stations LAS and RAZ. The average frequency relation for central Iran excluding the values of these two stations is Qc = 94 +/- 2f0.97+/-0.12. To investigate the attenuation variation with depth, Qc value was calculated for 14 lapse times (25, 30, 35,... 90s) for two data sets having epicentral distance range R < 100 km (data set 1) and 100 < R < 200 km (data set 2) in each area. It is observed that Qc increases with depth. However, the rate of increase of Qc with depth is not uniform in our study area. Beneath central Iran the rate of increase of Qc is greater at depths less than 100 km compared to that at larger depths indicating the existence of a high attenuation anomalous structure under the lithosphere of central Iran. In addition, below ~180 km, the Qc value does not vary much with depth under both study areas, indicating the presence of a transparent mantle under them.

  1. Visibility characteristics and the impacts of air pollutants and meteorological conditions over Shanghai, China.

    PubMed

    Xue, Dan; Li, Chengfan; Liu, Qian

    2015-06-01

    In China, visibility condition has become an important issue that concerns both society and the scientific community. In order to study visibility characteristics and its influencing factors, visibility data, air pollutants, and meteorological data during the year 2013 were obtained over Shanghai. The temporal variation of atmospheric visibility was analyzed. The mean value of daily visibility of Shanghai was 19.1 km. Visibility exhibited an obvious seasonal cycle. The maximum and minimum visibility occurred in September and December with the values of 27.5 and 7.7 km, respectively. The relationships between the visibility and air pollutant data were calculated. The visibility had negative correlation with NO2, CO, PM2.5, PM10, and SO2 and weak positive correlation with O3. Meteorological data were clustered into four groups to reveal the joint contribution of meteorological variables to the daily average visibility. Usually, under the meteorological condition of high temperature and wind speed, the visibility of Shanghai reached about 25 km, while visibility decreased to 16 km under the weather type of low wind speed and temperature and high relative humid. Principle component analysis was also applied to identify the main cause of visibility variance. The results showed that the low visibility over Shanghai was mainly due to the high air pollution concentrations associated with low wind speed, which explained the total variance of 44.99 %. These results provide new knowledge for better understanding the variations of visibility and have direct implications to supply sound policy on visibility improvement in Shanghai.

  2. Receiver function images of the central Chugoku region in the Japanese islands using Hi-net data

    NASA Astrophysics Data System (ADS)

    Ramesh, D. S.; Wakatsu, H. K.; Watada, S.; Yuan, X.

    2005-04-01

    Crustal configuration of the central Chugoku region with disposition of the Philippine Sea Plate (PHS) in this area are investigated through the receiver function approach using short-period Hi-net data. Images of the upper mantle discontinuities are also obtained. Restituted short-period receiver functions bring out discernible variations in average composition of the crust and its thickness in the study region. The Vp/ Vs values in the study area are generally high, reaching values in excess of 1.85 at a few places. The central part of the study region showing the highest Vp/ Vs values is coincidentally a subregion of least seismicity, possibly bestowed with special subsurface structure. Migrated receiver function images, both Ps and Pps images, unambiguously trace the NW subducting PHS taking a steeper plunge in the northwest part of the Chugoku region reaching depths of 70 km from its low dip disposition in the southeast. An excellent correlation of the subducting PHS with the hypocenters is also seen. We demonstrate that short-period data after restitution and application of appropriate low pass filters can indeed detect presence of the global 410-km and 660-km discontinuities and map their disposition reasonably well. Our migrated receiver functions image the deflections in the 410-km and 660-km discontinuities in an anti-correlated fashion on expected lines of Clapeyron slope predictions induced by subduction of the Pacific plate (PAC) beneath Japanese islands, though PAC itself is feebly traced but shows good correlation with slab seismicity.

  3. Spatial variations in isostatic compensation mechanisms of the Ninetyeast Ridge and their tectonic significance

    NASA Astrophysics Data System (ADS)

    Sreejith, K. M.; Krishna, K. S.

    2013-10-01

    Ninetyeast Ridge (NER), one of the longest linear volcanic features on the Earth, offers an excellent opportunity of understanding the isostatic response to the interactions of mantle plume with the migrating mid-ocean ridge. Bathymetry, geoid, and gravity (shipborne and satellite) data along 72 closely spaced transects and 17 overlapping grids on the NER are analyzed and modeled to determine the effective elastic thickness (Te) beneath the entire ridge. The results of 2-D and 3-D flexural modeling of the NER show large spatial variations in Te values ranging from 4 to 35 km, suggesting that the ridge was compensated along its length by different isostatic mechanisms. The southern (south of 22°S latitude) and northern (north of 2°N latitude) parts of the NER have Te values of >10 and >23 km, respectively, revealing that the southern part was emplaced on a lithosphere of intermediate strength possibly on flank of the Indian plate, whereas the northern part was emplaced in an intraplate setting. In contrast, in the central part of the NER (between latitudes 22°S and 2°N), highly variable Te values (4-22 km) are estimated. The scattered Te values in the central NER suggest that this part may have evolved due to the occurrence of frequent ridge jumps caused by the interaction of Kerguelen hot spot with rapid northward migration of the Wharton spreading ridge. Residual Mantle Bouguer Anomaly (RMBA) map of the NER and adjacent basins reveals that the entire length of the NER is associated with a significant negative anomaly up to 200 mGal, indicating the presence of thickened crust or less dense mantle beneath the ridge. 3-D crustal thickness map of the NER, generated by inversion of the RMBA data, shows a thick crust ranging from 15 to 19 km. The present study clearly shows that NER possesses a highly segmented isostatic pattern with the occurrence of subcrustal underplating or subsurface loading.

  4. Determination of ionospheric electron content from the Faraday rotation of geostationary satellite signals.

    NASA Technical Reports Server (NTRS)

    Titheridge, J. E.

    1972-01-01

    Observation that calculations of the integrated electron content up to the height of the satellite, using a wide range of model ionospheres (with a peak at 300 km) could be up to four times the value deduced from Faraday rotation measurements. However, using a fixed mean field height of 400 km, the observed Faraday rotation gives the electron content up to a height h sub F of 2000 km with an accuracy of plus or minus 3%. For observations at different magnetic and geographic latitudes, and geostationary satellites at different longitudes, the optimum value of h sub F varies by only plus or minus 200 km. Nighttime increases in the height of the ionosphere have little effect on h sub F, but increase the mean field height to about 470 km. Using a fixed value of 420 km, with h sub F = 2000 km, gives an accuracy of plus or minus 5% under most conditions.

  5. Mercury methylation in high and low-sulphate impacted wetland ponds within the prairie pothole region of North America.

    PubMed

    Hoggarth, Cameron G J; Hall, Britt D; Mitchell, Carl P J

    2015-10-01

    Using enriched stable (201)Hg injections into intact sediment cores, we provide the first reported Hg methylation potential rate constants (km) in prairie wetland ponds (0.016-0.17 d(-1)). Our km values were similar to other freshwater wetlands and did not differ in ponds categorized with high compared to low surface water concentrations of sulphate. Sites with high sulphate had higher proportions of methylmercury (MeHg) in sediment (2.9 ± 1.6% vs. 1.0 ± 0.3%) and higher surface water MeHg concentrations (1.96 ± 1.90 ng L(-1)vs. 0.56 ± 0.55 ng L(-1)). Sediment-porewater partitioning coefficients were small, and likely due to high ionic activity. Our work suggests while km measurements are useful for understanding mercury cycling processes, they are less important than surface water MeHg concentrations for assessing MeHg risks to biota. Significant differences in MeHg concentrations between sites with high and low sulphate concentrations may also inform management decisions concerning wetland remediation and creation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Reference models for thermospheric NO

    NASA Technical Reports Server (NTRS)

    Barth, C. A.

    1989-01-01

    Nitric oxide has been measured with an ultraviolet spectrometer on the polar-orbiting satellite Solar Mesosphere Explorer (SME) for the period January 1982 to August 1986. The nitric oxide database contains densities at all latitudes sorted into 5 degree bins and at altitudes between 100 and 140 km sorted into 3.3 km-bins. The largest densities occur at latitudes in the auroral zones where the density varies as a function of geomagnetic activity. Variations of a factor of 10 occur between times of intense activity and quiet times. At low latitudes, the nitric oxide density at 110 km varies from a mean value of 3 times 10(exp 7) molecules per cubic cm in January 1982 to a mean value of 4 times 10(exp 6) molecules per cubic cm during solar minimum conditions in 1986. In addition, the low-latitude nitric oxide density varies plus or minus 50 percent with a period of 27 days during times of high solar activity.

  7. Natural communities of the central Appalachian red spruce ecosystem and their conservation significance

    Treesearch

    Elizabeth A. Byers

    2010-01-01

    Natural communities within the red spruce ecosystem of the central Appalachians are characterized by exceptionally high biodiversity and conservation value. This ecosystem stretches in a southwest - northeast trending band for 250 km along the high elevations of the Allegheny Mountains, from Greenbrier County, WV to Garrett County, MD.

  8. Seismic Intensity, PGA and PGV for the South Napa Earthquake, August 24, 2014

    NASA Astrophysics Data System (ADS)

    Chen, S.; Pickering, A.; Mooney, W. D.; Crewdson, E.

    2014-12-01

    Numerous studies have investigated the statistical relationship between Modified Mercalli Intensity (MMI) and peak ground acceleration (PGA) and peak ground velocity (PGV). The Mw 6.0 South Napa (California) earthquake of August 24, 2014 provides valuable data to examine these relationships for both urban and rural environments within northern California. The finite fault model (D. Dreger, 2014) indicates that the fault rupture propagated predominantly NNW and up-dip from a 11-km-deep hypocenter. The epicentral location was 8 km SSW of downtown Napa. Recorded PGA north of the epicenter is as high as 600 cm/s2 and PGV locally reaches 80 cm/s. Field studies by two teams of investigators were conducted on August 24-26 and September 8-11, 2014 to assign MMI values at 108 sites. The highest MMI values are strongly localized along the NNW-SSE rupture trend north of the epicenter. Parts of the city of Napa and some communities several km farther north on Dry Creek Road were found to have experienced shaking intensities of MMI VII to VIII. The observed effects include houses moved off their foundations, chimney collapse or damage, cracked foundations and/or interior walls, broken windows, and the lateral displacement of heavy furniture. Communities to the east and west of this zone of high seismic intensity reported significantly lower values of MMI, typically IV and V even at distances as close as 10 km from the mapped surface rupture. In comparison with previous estimates by Wald et al. (1999) and Dangkua and Cramer (2011), we find that MMI III-VIII uniformly correspond to significantly larger (>150%) PGA and PGV values, as reported by the Center for Engineering Strong Motion Data (2014). We attribute this observation to two primary factors: (1) improved earthquake engineering in the post-Loma Prieta earthquake era that has led to building construction, both new and retrofitted, that is more resistant to earthquake strong ground motions; and (2) a frequency band relevant to these MMI estimates that contains less energy than that leading to the PGA or PGV values. The latter would primarily be a source effect.

  9. SAGE 1 and SAM 2 measurements of 1 micron aerosol extinction in the free troposphere

    NASA Technical Reports Server (NTRS)

    Kent, G. S.; Farrukh, U. O.; Wang, P. H.; Deepak, A.

    1988-01-01

    The SAGE 1 and SAM 2 satellite sensors were designed to measure, with global coverage, the 1 micron extinction produced by the stratospheric aerosol. In the absence of high altitude cloud, similar measurements may be made for the free tropospheric aerosol. Median extinction values in the Northern Hemisphere, for altitudes between 5 and 10 km, are found to be one-half to one order of magnitude greater than values at corresponding latitudes in the Southern Hemisphere. In addition, a seasonal increase by a factor of 1.5 yields 2 is observed in both hemispheres in local spring and summer. Following major volcanic eruptions, a long-lived enhancement of the aerosol extinction is observed for altitudes above 5 km.

  10. Complexities of plinian fall deposition at vent: An example from the 1912 Novarupta eruption (Alaska)

    USGS Publications Warehouse

    Fierstein, J.; Houghton, Bruce F.; Wilson, C.J.N.; Hildreth, W.

    1997-01-01

    An extremely proximal ejecta ring, with exposures to within 100 m of vent, was deposited during later-stage plinian fall activity during the 1912 Novarupta eruption in Alaska. One bed in the ejecta ring (bed S) contains predominantly andesitic clasts which serve to delineate the striking contrast in thinning rates along dispersal axis of the ejecta ring [Pyle bt values of 70 m (bed S alone) or 190 m (whole ejecta ring)] and the coeval dacitic plinian fall deposits [Pyle bt, values of 4 km (proximal) and 37 km (medial-distal)]. The locally deposited andesitic and dacitic clasts of the ejecta ring are interpreted as products of an irregular 'collar' of low-fountaining ejecta partially sheathing the core of higher-velocity dacitic ejecta that fed the stable, convecting 23-km-high column. The presence of such an extremely proximal accumulation of ejecta appears to be a feature common to several other historic eruptions that generated widespread fall deposits. This feature in part accounts for conflicts between measured and calculated values for thickness maxima in plinian fall deposits and suggests that modifications may be required of existing models for plinian eruption columns.

  11. The added value of convection permitting simulations of extreme precipitation events over the eastern Mediterranean

    NASA Astrophysics Data System (ADS)

    Zittis, G.; Bruggeman, A.; Camera, C.; Hadjinicolaou, P.; Lelieveld, J.

    2017-07-01

    Climate change is expected to substantially influence precipitation amounts and distribution. To improve simulations of extreme rainfall events, we analyzed the performance of different convection and microphysics parameterizations of the WRF (Weather Research and Forecasting) model at very high horizontal resolutions (12, 4 and 1 km). Our study focused on the eastern Mediterranean climate change hot-spot. Five extreme rainfall events over Cyprus were identified from observations and were dynamically downscaled from the ERA-Interim (EI) dataset with WRF. We applied an objective ranking scheme, using a 1-km gridded observational dataset over Cyprus and six different performance metrics, to investigate the skill of the WRF configurations. We evaluated the rainfall timing and amounts for the different resolutions, and discussed the observational uncertainty over the particular extreme events by comparing three gridded precipitation datasets (E-OBS, APHRODITE and CHIRPS). Simulations with WRF capture rainfall over the eastern Mediterranean reasonably well for three of the five selected extreme events. For these three cases, the WRF simulations improved the ERA-Interim data, which strongly underestimate the rainfall extremes over Cyprus. The best model performance is obtained for the January 1989 event, simulated with an average bias of 4% and a modified Nash-Sutcliff of 0.72 for the 5-member ensemble of the 1-km simulations. We found overall added value for the convection-permitting simulations, especially over regions of high-elevation. Interestingly, for some cases the intermediate 4-km nest was found to outperform the 1-km simulations for low-elevation coastal parts of Cyprus. Finally, we identified significant and inconsistent discrepancies between the three, state of the art, gridded precipitation datasets for the tested events, highlighting the observational uncertainty in the region.

  12. Electric structure of the Copahue Volcano (Neuquén Province, Argentina), from magnetotelluric soundings: 1D and 2D modellings

    NASA Astrophysics Data System (ADS)

    Mamaní, M. J.; Borzotta, E.; Venencia, J. E.; Maidana, A.; Moyano, C. E.; Castiglione, B.

    2000-05-01

    Four magnetotelluric soundings were carried out in 1993 in the region of the Copahue active volcano located at the border between Chile and Argentina (37°45'S, 71°18'W). Three soundings were located inside the caldera of the ancient stratovolcano (east of Copahue) and the fourth outside it. The soundings inside the caldera were situated at about 6, 11, and 14 km from the volcano. Digital data were obtained covering the range of periods from 1 sec to 10,000 sec using induction coils and a flux-gate magnetometer to obtain the magnetic data and Cu-SO 4Cu electrodes for electric field measurements. The apparent resistivity curves corresponding to principal directions were analyzed in conjunction with the geological background in order to eliminate distortion — which is very important in this hot volcanic region. Then, 1D modellings were performed using the "normal" curves — i.e., curves without distortions. Using the apparent resistivity curves with distortions, 2D modelling was also performed along a profile perpendicular to the regional tectonic trend suggested by MT soundings into the caldera. Results show low resistivity values of about 3-15 Ωm between 9 km to 20 km depth in the crust, suggesting high temperatures, with minimum values of about 700°C with partially melted zones in the upper crust between 9 km to 20 km depth under the caldera. The presence of a possible sulphide-carbonaceous layer (SC layer) in the upper basement could play an important role in lowering the electrical resistivities because of its high electronic conductivity.

  13. 3-D lithospheric structure and regional/residual Bouguer anomalies in the Arabia-Eurasia collision (Iran)

    NASA Astrophysics Data System (ADS)

    Jiménez-Munt, I.; Fernãndez, M.; Saura, E.; Vergés, J.; Garcia-Castellanos, D.

    2012-09-01

    The aim of this work is to propose a first-order estimate of the crustal and lithospheric mantle geometry of the Arabia-Eurasia collision zone and to separate the measured Bouguer anomaly into its regional and local components. The crustal and lithospheric mantle structure is calculated from the geoid height and elevation data combined with thermal analysis. Our results show that Moho depth varies from ˜42 km at the Mesopotamian-Persian Gulf foreland basin to ˜60 km below the High Zagros. The lithosphere is thicker beneath the foreland basin (˜200 km) and thinner underneath the High Zagros and Central Iran (˜140 km). Most of this lithospheric mantle thinning is accommodated under the Zagros mountain belt coinciding with the suture between two different mantle domains on the Sanandaj-Sirjan Zone. The regional gravity field is obtained by calculating the gravimetric response of the 3-D crustal and lithospheric mantle structure obtained by combining elevation and geoid data. The calculated regional Bouguer anomaly differs noticeably from those obtained by filtering or just isostatic methods. The residual gravity anomaly, obtained by subtraction of the regional components to the measured field, is analyzed in terms of the dominating upper crustal structures. Deep basins and areas with salt deposits are characterized by negative values (˜-20 mGal), whereas the positive values are related to igneous and ophiolite complexes and shallow basement depths (˜20 mGal).

  14. Reuyl Crater Dust Avalanches

    NASA Image and Video Library

    2002-06-04

    The rugged, arcuate rim of the 90 km crater Reuyl dominates this NASA Mars Odyssey image. Reuyl crater is at the southern edge of a region known to be blanketed in thick dust based on its high albedo brightness and low thermal inertia values.

  15. Human and rat liver phenol sulfotransferase: structure-activity relationships for phenolic substrates.

    PubMed

    Campbell, N R; Van Loon, J A; Sundaram, R S; Ames, M M; Hansch, C; Weinshilboum, R

    1987-12-01

    Phenol sulfotransferase (PST) catalyzes the sulfate conjugation of many phenolic drugs. Human liver contains thermostable (TS) and thermolabile forms of PST. Ion exchange chromatography shows that two isozymes of TS PST (peaks I and II) are present in human liver preparations. Rat liver contains four forms of PST that can be separated by ion exchange chromatography. Quantitative structure-activity relationship (QSAR) analysis was used to study phenolic substrates for both human and rat liver PST. Thirty-six substituted phenols were tested as substrates for partially purified human liver TS PST peak I. QSAR analysis resulted in derivation of the following equation: log 1/Km = 0.92 (+/- 0.18)log P - 1.48 (+/- 0.38)MR'4 - 0.64 (+/- 0.41)MR3 + 1.04 (+/- 0.63)MR2 + 0.67(+/- 0.44) sigma- + 4.03 (+/- 0.42). In this equation Km is the Michaelis constant, P is the octanol-water partition coefficient, MR is the molar refractivity of substituents at the 2-, 3-, and 4-positions, and sigma- is the Hammett constant. Values of log 1/Km calculated with this equation were highly correlated with log 1/Km values (r = 0.950) that were observed experimentally. Nine phenols were also tested as substrates for partially purified human liver TS PST peak II. Log 1/Km values for these compounds were significantly correlated for the two isozymes of TS PST (r = 0.992, p less than 0.001). QSAR analysis was also used to derive equations that described the behavior of phenolic substrates for rat liver PST forms I and II. These equations differed substantially from the equation derived for compounds tested with human liver TS PST peak I. Therefore, the characteristics of the active sites of human liver TS PST peak I and rat liver PST forms I and II appear to differ. Application of these equations may make it possible to predict Km values of phenolic substrates for human liver TS PST and for rat liver PST forms I and II.

  16. Spatial variations in effective elastic thickness in the Western Pacific Ocean and their implications for Mesozoic volcanism

    NASA Astrophysics Data System (ADS)

    Kalnins, L. M.; Watts, A. B.

    2009-08-01

    We have used free-air gravity anomaly and bathymetric data, together with a moving window admittance technique, to determine the spatial variation in oceanic elastic thickness, Te, in the Western Pacific ocean. Synthetic tests using representative seamounts show that Te can be recovered to an accuracy of ± 5 km for plates up to 30 km thick, with increased accuracy of ± 3 km for Te ≤ 20 km. The Western Pacific has a T e range of 0-50 km, with a mean of 9.4 km and a standard deviation of 6.8 km. The T e structure of the region is dominated by relatively high Te over the Hawaiian-Emperor Seamount Chain, intermediate values over the Marshall Islands, Gilbert Ridge, and Marcus-Wake Guyots, and low values over the Line Islands, Mid-Pacific Mountains, Caroline Islands, Shatsky Rise, Hess Rise, and Musician Seamounts. Plots of Te at sites with radiometric ages suggest that Te is to first order controlled by the age of the lithosphere at the time of loading. In areas that backtrack into the South Pacific Isotopic and Thermal Anomaly (SOPITA), Te may be as low as the depth to the 180 ± 120 °C isotherm at least locally. In the northern part of the study area including the Hawaiian-Emperor Seamount Chain, Te correlates with the depth to 310 ± 120 °C. These best-fitting isotherms imply peak rates of volcanism during 100-120 Ma (Early Cretaceous) and 140-150 Ma (Late Jurassic). The corresponding addition of 8 × 10 6 km 3 and 4 × 10 6 km 3 of volcanic material to the surface of the oceanic crust would result in long-term sea-level rises of 20 m and 10 m respectively. The Late Jurassic volcanic event, like the later Early Cretaceous event, appears to have influenced the tectonic evolution of the Pacific plate convergent boundaries, resulting in increased volcanism and orogenesis.

  17. The Mackenzie River magnetic anomaly, Yukon and Northwest Territories, Canada-Evidence for Early Proterozoic magmatic arc crust at the edge of the North American craton

    USGS Publications Warehouse

    Pilkington, M.; Saltus, R.W.

    2009-01-01

    We characterize the nature of the source of the high-amplitude, long-wavelength, Mackenzie River magnetic anomaly (MRA), Yukon and Northwest Territories, Canada, based on magnetic field data collected at three different altitudes: 300??m, 3.5??km and 400??km. The MRA is the largest amplitude (13??nT) satellite magnetic anomaly over Canada. Within the extent of the MRA, source depth estimates (8-12??km) from Euler deconvolution of low-altitude aeromagnetic data show coincidence with basement depths interpreted from reflection seismic data. Inversion of high-altitude (3.5??km) aeromagnetic data produces an average magnetization of 2.5??A/m within a 15- to 35-km deep layer, a value typical of magmatic arc complexes. Early Proterozoic magmatic arc rocks have been sampled to the southeast of the MRA, within the Fort Simpson magnetic anomaly. The MRA is one of several broad-scale magnetic highs that occur along the inboard margin of the Cordillera in Canada and Alaska, which are coincident with geometric changes in the thrust front transition from the mobile belt to stable cratonic North America. The inferred early Proterozoic magmatic arc complex along the western edge of the North American craton likely influenced later tectonic evolution, by acting as a buttress along the inboard margin of the Cordilleran fold-and-thrust belt. Crown Copyright ?? 2008.

  18. A new cloud and aerosol layer detection method based on micropulse lidar measurements

    NASA Astrophysics Data System (ADS)

    Zhao, Chuanfeng; Wang, Yuzhao; Wang, Qianqian; Li, Zhanqing; Wang, Zhien; Liu, Dong

    2014-06-01

    This paper introduces a new algorithm to detect aerosols and clouds based on micropulse lidar measurements. A semidiscretization processing technique is first used to inhibit the impact of increasing noise with distance. The value distribution equalization method which reduces the magnitude of signal variations with distance is then introduced. Combined with empirical threshold values, we determine if the signal waves indicate clouds or aerosols. This method can separate clouds and aerosols with high accuracy, although differentiation between aerosols and clouds are subject to more uncertainties depending on the thresholds selected. Compared with the existing Atmospheric Radiation Measurement program lidar-based cloud product, the new method appears more reliable and detects more clouds with high bases. The algorithm is applied to a year of observations at both the U.S. Southern Great Plains (SGP) and China Taihu sites. At the SGP site, the cloud frequency shows a clear seasonal variation with maximum values in winter and spring and shows bimodal vertical distributions with maximum occurrences at around 3-6 km and 8-12 km. The annual averaged cloud frequency is about 50%. The dominant clouds are stratiform in winter and convective in summer. By contrast, the cloud frequency at the Taihu site shows no clear seasonal variation and the maximum occurrence is at around 1 km. The annual averaged cloud frequency is about 15% higher than that at the SGP site. A seasonal analysis of cloud base occurrence frequency suggests that stratiform clouds dominate at the Taihu site.

  19. Analysis of type II and type III solar radio bursts

    NASA Astrophysics Data System (ADS)

    Wijesekera, J. V.; Jayaratne, K. P. S. C.; Adassuriya, J.

    2018-04-01

    Solar radio burst is an arrangement of a frequency space that variation with time. Most of radio burst can be identified in low frequency range such as below 200 MHz and depending on frequencies. Solar radio bursts were the first phenomenon identified in the field of radio astronomy field. Solar radio frequency range is from 70 MHz to 2.2 GHz. Most of the radio burst can be identified in a low frequency range such as below 200 MHz. Properties of low-frequency radio were analyzed this research. There are two types of solar radio bursts were analyzed, named as type II and type III radio bursts. Exponential decay type could be seen in type II, and a linear could be indicated in type III solar radio bursts. The results of the drift rate graphs show the values of each chosen solar radio burst. High drift rate values can be seen in type III solar flares whereas low to medium drift rate values can be seen in type II solar flares. In the second part of the research the Newkirk model electron density model was used to estimate the drift velocities of the solar radio bursts. Although the special origin of the solar radio burst is not known clearly we assumed. The chosen solar radio bursts were originated within the solar radius of 0.9 - 1.3 range from the photosphere. We used power low in the form of (x) = A × 10‑bx were that the electron density related to the height of the solar atmosphere. The calculation of the plasma velocity of each solar radio burst was done using the electron density model and drift rates. Therefore velocity of chosen type II solar radio bursts indicates low velocities. The values are 233.2499 Km s‑1, 815.9522 Km s‑1 and 369.5425 Km s‑1. Velocity of chosen type III solar radio bursts were 1443.058 Km s‑1and 1205.05Km s ‑1.

  20. Retrieval of temperature profiles from CHAMP for climate monitoring: intercomparison with Envisat MIPAS and GOMOS and different atmospheric analyses

    NASA Astrophysics Data System (ADS)

    Gobiet, A.; Kirchengast, G.; Manney, G. L.; Borsche, M.; Retscher, C.; Stiller, G.

    2007-02-01

    This study describes and evaluates a Global Navigation Satellite System (GNSS) radio occultation (RO) retrieval scheme particularly aimed at delivering bias-free atmospheric parameters for climate monitoring and research. The focus of the retrieval is on the sensible use of a priori information for careful high-altitude initialisation in order to maximise the usable altitude range. The RO retrieval scheme has been meanwhile applied to more than five years of data (September 2001 to November 2006) from the German CHAllenging Minisatellite Payload for geoscientific research (CHAMP) satellite. In this study it was validated against various correlative datasets including the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) and the Global Ozone Monitoring for Occultation of Stars (GOMOS) sensors on Envisat, five different atmospheric analyses, and the operational CHAMP retrieval product from GeoForschungsZentrum (GFZ) Potsdam. In the global mean within 10 to 30 km altitude we find that the present validation observationally constrains the potential RO temperature bias to be <0.2 K. Latitudinally resolved analyses show biases to be observationally constrained to <0.2-0.5 K up to 35 km in most cases, and up to 30 km in any case, even if severely biased (about 10 K or more) a priori information is used in the high altitude initialisation of the retrieval. No evidence is found for the 10-35 km altitude range of RO bias sources other than those potentially propagated downward from initialisation, indicating that the widely quoted RO promise of "unbiasedness and long-term stability due to intrinsic self-calibration" can indeed be realized given care in the data processing to strictly limit structural uncertainty. The results demonstrate that an adequate high-altitude initialisation technique is crucial for accurate stratospheric RO retrievals and that still common methods of initialising the involved hydrostatic integral with an upper boundary temperature or pressure value derived from meteorological analyses is prone to introduce biases from the initialisation data to the retrieved temperatures down to below 25 km. Above 30 to 35 km, GNSS RO delivers a considerable amount of observed information up to around 40 km, which is particularly interesting for numerical weather prediction (NWP) systems, where direct assimilation of non-initialized (a priori-free) observed RO bending angles is thus the method of choice. The results underline the value of RO for climate applications.

  1. Retrieval of temperature profiles from CHAMP for climate monitoring: intercomparison with Envisat MIPAS and GOMOS and different atmospheric analyses

    NASA Astrophysics Data System (ADS)

    Gobiet, A.; Kirchengast, G.; Manney, G. L.; Borsche, M.; Retscher, C.; Stiller, G.

    2007-07-01

    This study describes and evaluates a Global Navigation Satellite System (GNSS) radio occultation (RO) retrieval scheme particularly aimed at delivering bias-free atmospheric parameters for climate monitoring and research. The focus of the retrieval is on the sensible use of a priori information for careful high-altitude initialisation in order to maximise the usable altitude range. The RO retrieval scheme has been meanwhile applied to more than five years of data (September 2001 to present) from the German CHAllenging Minisatellite Payload for geoscientific research (CHAMP) satellite. In this study it was validated against various correlative datasets including the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) and the Global Ozone Monitoring for Occultation of Stars (GOMOS) sensors on Envisat, five different atmospheric analyses, and the operational CHAMP retrieval product from GeoForschungsZentrum (GFZ) Potsdam. In the global mean within 10 to 30 km altitude we find that the present validation observationally constrains the potential RO temperature bias to be <0.2 K. Latitudinally resolved analyses show biases to be observationally constrained to <0.2-0.5 K up to 35 km in most cases, and up to 30 km in any case, even if severely biased (about 10 K or more) a priori information is used in the high altitude initialisation of the retrieval. No evidence is found for the 10-35 km altitude range of residual RO bias sources other than those potentially propagated downward from initialisation, indicating that the widely quoted RO promise of "unbiasedness and long-term stability due to intrinsic self-calibration" can indeed be realised given care in the data processing to strictly limit structural uncertainty. The results thus reinforce that adequate high-altitude initialisation is crucial for accurate stratospheric RO retrievals. The common method of initialising, at some altitude in the upper stratosphere, the hydrostatic integral with an upper boundary temperature or pressure value derived from meteorological analyses is prone to introduce biases from the upper boundary down to below 25 km. Also above 30 to 35 km, GNSS RO delivers a considerable amount of observed information up to around 40 km, which is particularly interesting for numerical weather prediction (NWP) systems, where direct assimilation of non-initialised observed RO bending angles (free of a priori) is thus the method of choice. The results underline the value of RO for climate applications.

  2. Assessment of Data Assimilation with the Prototype High Resolution Rapid Refresh for Alaska (HRRRAK)

    NASA Technical Reports Server (NTRS)

    Harrison, Kayla; Morton, Don; Zavodsky, Brad; Chou, Shih

    2012-01-01

    The Arctic Region Supercomputing Center has been running a quasi-operational prototype of a High Resolution Rapid Refresh for Alaska (HRRRAK) at 3km resolution, initialized by the 13km Rapid Refresh (RR). Although the RR assimilates a broad range of observations into its analyses, experiments with the HRRRAK suggest that there may be added value in assimilating observations into the 3km initial conditions, downscaled from the 13km RR analyses. The NASA Short-term Prediction Research and Transition (SPoRT) group has been using assimilated data from the Atmospheric Infrared Sounder (AIRS) in WRF and WRF-Var simulations since 2004 with promising results. The sounder is aboard NASA s Aqua satellite, and provides vertical profiles of temperature and humidity. The Gridpoint Statistical Interpolation (GSI) system is then used to assimilate these vertical profiles into WRF forecasts. In this work, we assess the use of AIRS data in combination with other global data assimilation products on non-assimilated HRRRAK case studies. Two separate weather events will be assessed to qualitatively and quantitatively assess the impacts of AIRS data on HRRRAK forecasts.

  3. Cloning and functional characterization of the high-affinity K+ transporter HAK1 of pepper.

    PubMed

    Martínez-Cordero, M Angeles; Martínez, Vicente; Rubio, Francisco

    2004-10-01

    High-affinity K+ uptake in plants plays a crucial role in K+ nutrition and different systems have been postulated to contribute to the high-affinity K+ uptake. The results presented here with pepper (Capsicum annum) demonstrate that a HAK1-type transporter greatly contributes to the high-affinity K+ uptake observed in roots. Pepper plants starved of K+ for 3 d showed high-affinity K+ uptake (Km of 6 microM K+) that was very sensitive to NH and their roots expressed a high-affinity K+ transporter, CaHAK1, which clusters in group I of the KT/HAK/KUP family of transporters. When expressed in yeast ( Saccharomyces cerevisiae ), CaHAK1 mediated high-affinity K+ and Rb+ uptake with Km values of 3.3 and 1.9 microM, respectively. Rb+ uptake was competitively inhibited by micromolar concentrations of NH and Cs+, and by millimolar concentrations of Na+.

  4. Inorganic and organic carbon spatial variability in the Congo River during high waters (December 2013)

    NASA Astrophysics Data System (ADS)

    Borges, Alberto V.; Bouillon, Steven; Teodoru, Cristian; Leporcq, Bruno; Descy, Jean-Pïerre; Darchambeau, François

    2014-05-01

    Rivers are important components of the global carbon cycle, as they transport terrestrial organic matter from the land to the sea, and emit CO2 to the atmosphere. In particular, tropical systems that account for 60% of global freshwater discharge to the oceans. In contrast with south American rivers, very little information is available for African rivers on their carbon flows and stocks, in particular the Congo river, the second largest river in the World in terms of freshwater discharge (1457 km3 yr-1) and in terms of drainage basin (3.75 106 km2) located the second largest tropical forest in the World. Here, we report a data-set of continuous (every minute) records of the partial pressure of CO2 (pCO2) (total of 10,000 records), and discrete samples of particulate (POC) and dissolved (DOC) organic carbon (total of 75 samples) in the mainstem and major tributaries of the Congo river, along the 1700 km stretch from Kisangani to Kinshasa (total river length = 4374 km), during the high water period (December 2013). The pCO2 dynamic range was high ranging from minimum values of 2000 ppm in white waters tributaries (higher turbidity, conductivity and O2, lower DOC), up to maximal values of 18,000 ppm in blackwaters tributaries (lower turbidity, conductivity and O2, higher DOC). In the mainstem, very strong horizontal (cross-section) gradients were imposed by the presence of blackwaters close to the riverbanks and the presence of whitewaters in the middle of the river. In the mainstem, a distinct horizontal (longitudinal) pattern was observed with pCO2 increasing, and conductivity and turbidity decreasing downstream.

  5. Ultrasonic P- and S-Wave Attenuation and Petrophysical Properties of Deccan Flood Basalts, India, as Revealed by Borehole Studies

    NASA Astrophysics Data System (ADS)

    Vedanti, Nimisha; Malkoti, Ajay; Pandey, O. P.; Shrivastava, J. P.

    2018-03-01

    Petrophysical properties and ultrasonic P- and S-wave attenuation measurements on 35 Deccan basalt core specimens, recovered from Killari borehole site in western India, provide unique reference data-sets for a lesser studied Deccan Volcanic Province. These samples represent 338-m-thick basaltic column, consisting four lava flows each of Ambenali and Poladpur Formations, belonging to Wai Subgroup of the Deccan volcanic sequence. These basalt samples are found to be iron-rich (average FeOT: 13.4 wt%), but relatively poor in silica content (average SiO2: 47.8 wt%). The saturated massive basalt cores are characterized by a mean density of 2.91 g/cm3 (range 2.80-3.01 g/cm3) and mean P- and S-wave velocities of 5.89 km/s (range 5.01-6.50 km/s) and 3.43 km/s (range 2.84-3.69 km/s), respectively. In comparison, saturated vesicular basalt cores show a wide range in density (2.40-2.79 g/cm3) as well as P-wave (3.28-4.78 km/s) and S-wave (1.70-2.95 km/s) velocities. Based on the present study, the Deccan volcanic sequence can be assigned a weighted mean density of 2.74 g/cm3 and a low V p and V s of 5.00 and 3.00 km/s, respectively. Such low velocities in Deccan basalts can be attributed mainly to the presence of fine-grained glassy material, high iron contents, and hydrothermally altered secondary mineral products, besides higher porosity in vesicular samples. The measured Q values in saturated massive basalt cores vary enormously (Q p: 33-1960 and Q s: 35-506), while saturated vesicular basalt samples exhibit somewhat lesser variation in Q p (6-46) as well as Q s (5-49). In general, high-porosity rocks exhibit high attenuation, but we observed the high value of attenuation in some of the massive basalt core samples also. In such cases, energy loss is mainly due to the presence of fine-grained glassy material as well as secondary alteration products like chlorophaeite, that could contribute to intrinsic attenuation. Dominance of weekly bound secondary minerals might also be responsible for the generation of microcracks, which may generate squirt flow in saturated samples. Hence, we argue that the Deccan basalts attenuate seismic energy significantly, where its composition plays a major role.

  6. Retrieval of sodium number density profiles in the mesosphere and lower thermosphere from SCIAMACHY limb emission measurements

    NASA Astrophysics Data System (ADS)

    Langowski, M. P.; von Savigny, C.; Burrows, J. P.; Rozanov, V. V.; Dunker, T.; Hoppe, U.-P.; Sinnhuber, M.; Aikin, A. C.

    2015-07-01

    An algorithm has been developed for the retrieval of sodium atom (Na) number density on a latitude and altitude grid from SCIAMACHY limb measurements of the Na resonance fluorescence. The results are obtained between 50 and 150 km altitude and the resulting global seasonal variations of Na are analysed. The retrieval approach is adapted from that used for the retrieval of magnesium atom (Mg) and magnesium ion (Mg+) number density profiles recently reported by Langowski et al. (2014). Monthly mean values of Na are presented as a function of altitude and latitude. This data set was retrieved from the 4 years of spectroscopic limb data of the SCIAMACHY mesosphere and lower thermosphere (MLT) measurement mode. The Na layer has a nearly constant altitude of 90-93 km for all latitudes and seasons, and has a full width at half maximum of 5-15 km. Small but substantial seasonal variations in Na are identified for latitudes less than 40°, where the maximum Na number densities are 3000-4000 atoms cm-3. At mid to high latitudes a clear seasonal variation with a winter maximum of up to 6000 atoms cm-3 is observed. The high latitudes, which are only measured in the Summer Hemisphere, have lower number densities with peak densities being approximately 1000 Na atoms cm-3. The full width at half maximum of the peak varies strongly at high latitudes and is 5 km near the polar summer mesopause, while it exceeds 10 km at lower latitudes. In summer the Na atom concentration at high latitudes and at altitudes below 88 km is significantly smaller than that at mid latitudes. The results are compared with other observations and models and there is overall a good agreement with these.

  7. Predictable waves of sequential forest degradation and biodiversity loss spreading from an African city

    PubMed Central

    Burgess, Neil D.; Milledge, Simon A. H.; Bulling, Mark T.; Fisher, Brendan; Smart, James C. R.; Clarke, G. Philip; Mhoro, Boniface E.; Lewis, Simon L.

    2010-01-01

    Tropical forest degradation emits carbon at a rate of ~0.5 Pg·y−1, reduces biodiversity, and facilitates forest clearance. Understanding degradation drivers and patterns is therefore crucial to managing forests to mitigate climate change and reduce biodiversity loss. Putative patterns of degradation affecting forest stocks, carbon, and biodiversity have variously been described previously, but these have not been quantitatively assessed together or tested systematically. Economic theory predicts a systematic allocation of land to its highest use value in response to distance from centers of demand. We tested this theory to see if forest exploitation would expand through time and space as concentric waves, with each wave targeting lower value products. We used forest data along a transect from 10 to 220 km from Dar es Salaam (DES), Tanzania, collected at two points in time (1991 and 2005). Our predictions were confirmed: high-value logging expanded 9 km·y−1, and an inner wave of lower value charcoal production 2 km·y−1. This resource utilization is shown to reduce the public goods of carbon storage and species richness, which significantly increased with each kilometer from DES [carbon, 0.2 Mg·ha−1; 0.1 species per sample area (0.4 ha)]. Our study suggests that tropical forest degradation can be modeled and predicted, with its attendant loss of some public goods. In sub-Saharan Africa, an area experiencing the highest rate of urban migration worldwide, coupled with a high dependence on forest-based resources, predicting the spatiotemporal patterns of degradation can inform policies designed to extract resources without unsustainably reducing carbon storage and biodiversity. PMID:20679200

  8. Preliminary study of crust-upper mantle structure of the Tibetan Plateau by using broadband teleseismic body waveforms

    NASA Astrophysics Data System (ADS)

    Zhu, Lu-Pei; Zeng, Rong-Sheng; Wu, Francis T.; Owens, Thomas J.; Randall, George E.

    1993-05-01

    As part of a joint Sino-U.S. research project to study the deep structure of the Tibetan Plateau, 11 broadband digital seismic recorders were deployed on the Plateau for one year of passive seismic recording. In this report we use teleseimic P waveforms to study the seismic velocity structure of crust and upper mantle under three stations by receiver function inversion. The receiver function is obtained by first rotating two horizontal components of seismic records into radial and tangential components and then deconvolving the vertical component from them. The receiver function depends only on the structure near the station because the source and path effects have been removed by the deconvolution. To suppress noise, receiver functions calculated from events clustered in a small range of back-azimuths and epicentral distances are stacked. Using a matrix formalism describing the propagation of elastic waves in laterally homogeneous stratified medium, a synthetic receiver function and differential receiver functions for the parameters in each layer can be calculated to establish a linearized inversion for one-dimensional velocity structure. Preliminary results of three stations, Wen-quan, Golmud and Xigatze (Coded as WNDO, TUNL and XIGA), located in central, northern and southern Plateau are given in this paper. The receiver functions of all three stations show clear P-S converted phases. The time delays of these converted phases relative to direct P arrivals are: WNDO 7.9s (for NE direction) and 8.3s (for SE direction), TUNL 8.2s, XIGA 9.0s. Such long time delays indicate the great thickness of crust under the Plateau. The differences between receiver function of these three station shows the tectonic difference between southern and north-central Plateau. The waveforms of the receiver functions for WNDO and TUNL are very simple, while the receiver function of XIGA has an additional midcrustal converted phase. The S wave velocity structures at these three stations are estimated from inversions of the receiver function. The crustal shear wave velocities at WNDO and TUNL are vertically homogeneous, with value between 3.5 3.6 km/s down to Moho. This value in the lower crust is lower than the normal value for the lower crust of continents, which is consistent with the observed strong Sn attenuation in this region. The velocity structure at XIGA shows a velocity discontinuity at depth of 20 km and high velocity value of 4.0 km/s in the midcrust between 20 30 km depth. Similar results are obtained from a DSS profile in southern Tibet. The velocity under XIGA decreases below a depth of 30 km, reaching the lowest value of 3.2 km/s between 50 55 km. depth. This may imply that the Indian crust underthrusts the low part of Tibetan crust in the southern Plateau, forming a “double crust”. The crustal thickness at each of these sites is: WNDO, 68 km; TUNL, 70 km; XI-GA, 80 km.

  9. The Precambrian crustal structure of East Africa

    NASA Astrophysics Data System (ADS)

    Young, A. J.; Tugume, F.; Nyblade, A.; Julia, J.; Mulibo, G.

    2011-12-01

    We present new results on crustal structure from East Africa from analyzing P wave receiver functions. The data for this study come from temporary AfricaArray broadband seismic stations deployed between 2007 and 2011 in Uganda, Tanzania and Zambia. Receiver functions have been computed using an iterative deconvolution method. Crustal structure has been imaged using the H-k stacking method and by jointly inverting the receiver functions and surface wave phase and group velocities. The results show remarkably uniform crust throughout the Archean and Proterozoic terrains that comprise the Precambrian tectonic framework of the region. Crustal thickness for most terrains is between 37 and 40 km, and Poisson's ratio is between 0.25 and 0.27. Results from the joint inversion yield average crustal Vs values of 3.6 to 3.7 km/s. For most terrains, a thin (1-5 km) thick high velocity (Vs>4.0 km/s) is found at the base of the crust.

  10. In situ stratospheric measurements of HNO3 and HCl near 30 km using the balloon-borne laser in situ sensor tunable diode laser spectrometer

    NASA Technical Reports Server (NTRS)

    May, R. D.; Webster, C. R.

    1989-01-01

    In situ stratospheric measurements of the concentrations of the reservoir species HNO3 and HCl made during two flights of the high-resolution (0.0005/cm) balloon-borne laser in situ sensor instrument from Palestine, Texas, are reported. A measured HNO3 volume mixing ratio of 4.3 parts per billion by volume (ppbv) at 31 km altitude is about 1 ppbv larger than previously reported measurements at 32 deg N. An HCl mixing ratio of 1.6 ppbv at 29 km is in agreement with values obtained from earlier remote sensing techniques within the experimental uncertainties. Upper limits at 31 km of 0.4 ppbv for H2O2 and 0.2 ppbv for HOCl are also derived from analyses of spectra recorded near 1252/cm.

  11. Curie point depth in the SW Caribbean using the radially averaged spectra of magnetic anomalies

    NASA Astrophysics Data System (ADS)

    Salazar, Juan M.; Vargas, Carlos A.; Leon, Hermann

    2017-01-01

    We have estimated the Curie Point Depth (CPD) using the average radial power spectrum in a tectonically complex area located in the SW Caribbean basin. Data analyzed came from the World Digital Magnetic Anomaly Map, and three methods have been used to compare results and evaluate uncertainties: Centroid, Spectral Peak, and Forward Modeling. Results show a match along the three methods, suggesting that the CPD values in the area ranging between 6 km and 50 km. The results share the following characteristics: A) High values (> 30 km) are in continental regions; B) There is a trend of maximum CPD values along the SW-NE direction, starting from the Central Cordillera in Colombia to the Maracaibo Lake in Venezuela; C) There is a maximum CPD at the Sierra Nevada de Santa Marta (Colombia) as well as between Costa Rica - Nicaragua and Nicaragua - Honduras borders. The lowest CPD values (< 20 km) are associated with the coastal regions and offshore. We also tested results by estimating the geothermal gradient and comparing measured observations of the study area. Our results suggest at least five thermal terrains in the SW Caribbean Basin: A) The area that is comprising the Venezuela Basin, the Beata Ridge and the Colombia Basin up to longitude parallel to the Providencia Throat. B) The area that includes zones to the north of the Cocos Ridge and Panam Basin up to the trench. C) The orogenic region of the northern Andes and including areas of the Santa Marta Massif. D) The continental sector that encompasses Nicaragua, northern Costa Rica and eastern of Honduras. E) Corresponds to areas of the northern Venezuela and Colombia, NW of Colombia, the Panamanian territory and the transition zones between the Upper and Lower Nicaragua Rise.

  12. Orbital parameters of the multiple system EM Boo

    NASA Astrophysics Data System (ADS)

    Özkardeş, B.; Bakış, H.; Bakış, V.

    2018-02-01

    EM Boo is a relatively bright (V = 8.98 mag.) and short orbital period (P⁓2.45 days) binary star member of the multiple system WDS J14485+2445AB. There is neither photometric nor spectroscopic study of the system in the literature. In this work, we obtained spectroscopic orbital parameters of the system from new high resolution spectroscopic observations made with échelle spectrograph attached to UBT60 telescope of Akdeniz University. The spectroscopic solution yielded the values K1 = 100.7±2.6 km/s, K2 = 120.1±2.6 km/s and Vγ = -14.6±3.1 km/s, and thus the mass ratio of the system q = 0.838±0.064.

  13. The slab thickness of the mid-latitude ionosphere.

    NASA Technical Reports Server (NTRS)

    Titheridge, J. E.

    1973-01-01

    The thickness of the peak of the ionosphere depends primarily on the temperature T sub n of the neutral gas, and corresponds approximately to an alpha-Chapman layer at a temperature of 0.87T sub n. The overall slab thickness, as given by Faraday rotation measurements, is then tau = 0.22T sub n + 7 km. Expansion of the topside ionosphere, and changes in the E- and F1-regions increase tau by about 20 km during the day in summer. Near solar minimum, tau is increased by a lowering of the O(+)/H(+) transition height; if the neutral temperature T sub n is estimated, this height can be obtained from observed values of tau. Hourly values of slab thickness were determined over a period of 6 yr at 34 and 42 S. Near solar maximum the nighttime values were about 260 km in all seasons. The corresponding neutral temperatures agree with satellite drag values; they show a semiannual variation of 14% and a seasonal change of 5%. Daytime values of tau were about 230 km in winter and 320 km in summer, implying a seasonal change of 30% in T sub n.

  14. Km and kcat. values for [6,6,7,7-2H]7,8(6H)-dihydropterin and 2,6-diamino-5-iminopyrimidin-4-one with dihydropteridine reductase.

    PubMed Central

    Armarego, W L; Randles, D; Taguchi, H

    1983-01-01

    The Km and kcat. values for [6,6,7,7-2H]7,8(6H)-dihydropterin and 2,6-diamino-5-iminopyrimidin-4-one were determined for dihydropteridine reductase (EC 1.6.99.10) from two sources. The parameters of the pterin are of the same order as those of the most effective substrates of dihydropteridine reductase. The Km values of the pterin are one order of magnitude smaller than those of the pyrimidinone, although the kcat. values are of the same order. PMID:6870836

  15. Clumped Isotope Thermometry Reveals Variations in Soil Carbonate Seasonal Biases Over >4 km of Relief in the Semi-Arid Andes of Central Chile

    NASA Astrophysics Data System (ADS)

    Burgener, L. K.; Huntington, K. W.; Hoke, G. D.; Schauer, A. J.; Ringham, M. C.; Latorre Hidalgo, C.; Díaz, F.

    2015-12-01

    The application of carbonate clumped isotope thermometry to soil carbonates has the potential to shed new light on questions regarding terrestrial paleoclimate. In order to better utilize this paleoclimate tool, outstanding questions regarding seasonal biases in soil carbonate formation and the relationship between soil carbonate formation temperatures (T(Δ47)) and surface temperatures must be resolved. We address these questions by comparing C, O, and clumped isotope data from Holocene/modern soil carbonates to modern meteorological data. The data were collected along a 170 km transect with >4 km of relief in central Chile (~30°S). Previous studies have suggested that soil carbonates should record a warm season bias and form in isotopic equilibrium with soil water and soil CO2. We identify two discrete climate zones separated by the local winter snow line (~3200 m). Below this boundary, precipitation falls as rain and soil carbonate T(Δ47) values at depths >40 cm resemble summer soil temperatures; at higher elevations, precipitation falls as snow and T(Δ47) values resemble mean annual soil temperatures. Soil carbonates from the highest sample site (4700 m), which is devoid of vegetation and located near perennial snow fields, yield anomalous δ18O, δ13C, and T(Δ47) values, indicative of kinetic isotope effects that we attribute to cryogenic carbonate formation. Our results suggest that soil carbonates from depths <40 cm are affected by large, high frequency variations in temperature and precipitation, and should not be used as paleotemperature proxies. These findings (1) highlight the role of soil moisture in modulating soil carbonate formation and the resulting T(Δ47) values, (2) underscore the importance of understanding past soil moisture conditions when attempting to reconstruct paleotemperatures using carbonate clumped isotope thermometry, and (3) suggest that soil carbonates from high elevation or high latitude sites may form under non-equilibrium conditions.

  16. Structure of the midcontinent basement. Topography, gravity, seismic, and remote sensing

    NASA Technical Reports Server (NTRS)

    Guinness, E. A.; Strebeck, J. W.; Arvidson, R. E.; Scholz, K.; Davies, G. F.

    1981-01-01

    Some 600,000 discrete Bouguer gravity estimates of the continental United States were spatially filtered to produce a continuous tone image. The filtered data were also digitally painted in color coded form onto a shaded relief map. The resultant image is a colored shaded relief map where the hue and saturation of a given image element is controlled by the value of the Bouguer anomaly. Major structural features (e.g., midcontinent gravity high) are readily discernible in these data, as are a number of subtle and previously unrecognized features. A linear gravity low that is approximately 120 to 150 km wide extends from southeastern Nebraska, at a break in the midcontinent gravity high, through the Ozark Plateau, and across the Mississippi embayment. The low is also aligned with the Lewis and Clark lineament (Montana to Washington), forming a linear feature of approximately 2800 km in length. In southeastern Missouri the gravity low has an amplitude of 30 milligals, a value that is too high to be explained by simple valley fill by sedimentary rocks.

  17. All Tied Up.

    ERIC Educational Resources Information Center

    Bishara, Monica

    1990-01-01

    Shows how high school students used foam carpet padding to create forms for still-life drawing. Discusses learning to progress from simple-line drawing to a three-dimensional image. Identifies the drawing of shadows, and extreme light and dark values, as points that need to be emphasized repeatedly. (KM)

  18. Downscaling with a nested regional climate model in near-surface fields over the contiguous United States

    NASA Astrophysics Data System (ADS)

    Wang, Jiali; Kotamarthi, Veerabhadra R.

    2014-07-01

    The Weather Research and Forecasting (WRF) model is used for dynamic downscaling of 2.5-degree National Centers for Environmental Prediction-U.S. Department of Energy Reanalysis II (NCEP-R2) data for 1980-2010 at 12 km resolution over most of North America. The model's performance for surface air temperature and precipitation is evaluated by comparison with high-resolution observational data sets. The model's ability to add value is investigated by comparison with NCEP-R2 data and a 50 km regional climate simulation. The causes for major model bias are studied through additional sensitivity experiments with various model setup/integration approaches and physics representations. The WRF captures the main features of the spatial patterns and annual cycles of air temperature and precipitation over most of the contiguous United States. However, simulated air temperatures over the south central region and precipitation over the Great Plains and the Southwest have significant biases. Allowing longer spin-up time, reducing the nudging strength, or replacing the WRF Single-Moment six-class microphysics with Morrison microphysics reduces the bias over some subregions. However, replacing the Grell-Devenyi cumulus parameterization with Kain-Fritsch shows no improvement. The 12 km simulation does add value above the NCEP-R2 data and the 50 km simulation over mountainous and coastal zones.

  19. Detailed seismic velocity structure beneath the Hokkaido corner, NE Japan: Collision process of the forearc sliver

    NASA Astrophysics Data System (ADS)

    Kita, S.; Hasegawa, A.; Okada, T.; Nakajima, J.; Matsuzawa, T.; Katsumata, K.

    2010-12-01

    1. Introduction In south-eastern Hokkaido, the Kuril forearc sliver is colliding with the northeastern Japan arc due to the oblique subduction of the Pacific plate. This collision causes the formation of the Hidaka mountain range since the late Miocene (Kimura, 1986) and delamination of the lower-crust materials of the Kuril forearc sliver, which would be expected to descend into the mantle wedge below (e.g., Ito 2000; Ito and Iwasaki, 2002). In this study, we precisely investigated the three-dimensional seismic velocity structure beneath the Hokkaido corner to examine the collision of two forearcs in this area by using both of data from a dense temporary seismic network deployed in this area (Katsumata et al. [2006]) and those from the Kiban observation network, which covers the entire Japanese Islands with a station separation of 15-20 km. 2. Data and method The double-difference tomography method (Zhang and Thurber, 2003; 2006) was applied to a large number of arrival time data of 201,527 for P-waves and 150,963 for S-waves that were recorded at 125 stations from 10,971 earthquakes that occurred from 1999 to 2010. Grid intervals were set at 10 km in the along-arc direction, 12.5 km perpendicular to it, and 5-10 km in the vertical direction. 3. Results and discussion Inhomogeneous seismic velocity structure was clearly imaged in the Hokkaido corner at depths of 0-120 km. A high-velocity anomaly of P- and S- waves with a volume of 20 km x 90 km x 35km was detected just beneath the main zone of the Hidaka metamorphic belt at depths of 0-35 km. This high-velocity anomaly is continuously distributed from the depths of the mantle wedge to the surface. The western edge of the anomaly exactly corresponds to the Hidaka main thrust (HMT) at the surface. The highest velocity value in the anomaly corresponds to those of the uppermost mantle material (e.g. peridotite). The location of them at depths of 0-35km is also consistent with that of the Horoman-Peridotite belt, which is located at the southwestern edge of the main zone of the Hidaka metamorphic belt.On the other hand, a low-velocity anomaly of P- and S- waves with a volume of 80 km x 100 km x 50 km is distributed to the west of the Hidaka metamorphic belt at depths of 35-90km. This low-velocity anomaly seems to be continuously distributed from the continental crust of the NE Japan forearc. The velocity values of this low-V anomaly correspond to those of crustal materials, which is consistent with results of the tomographic study of Kita et al. [2010, EPSL] and Takanami et al. [1982]. Comparison with the results of seismic reflection surveys of Ito [2000] shows that the boundary between anomalous high-velocity mantle materials and low-velocity continental crustal materials just beneath the Hidaka main thrust (HMT) presently obtained is exactly consistent with the locations of reflection planes of their study. Moreover, our study also suggests that the anomalous low-velocity crustal materials at the mantle wedge depth appears to belong to the NE Japan forearc crust, which does not support the expectation of the previous studies that the delaminated lower-crust materials of the Kuril forearc sliver descends into the mantle wedge due to the collision.

  20. Deep drilling at the Siljan Ring impact structure: oxygen-isotope geochemistry of granite

    USGS Publications Warehouse

    Komor, S.C.; Valley, J.W.

    1990-01-01

    The Siljan Ring is a 362-Ma-old impact structure formed in 1700-Ma-old I-type granites. A 6.8-km-deep borehole provides a vertical profile through granites and isolated horizontal diabase sills. Fluid-inclusion thermometry, and oxygen-isotope compositions of vein quartz, granite, diabase, impact melt, and pseudotachylite, reveal a complex history of fluid activity in the Siljan Ring, much of which can be related to the meteorite impact. In granites from the deep borehole, ??18O values of matrix quartz increase with depth from near 8.0 at the surface to 9.5??? at 5760 m depth. In contrast, feldspar ??18O values decrease with depth from near 10 at the surface to 7.1??? at 5760 m, forming a pattern opposite to the one defined by quartz isotopic compositions. Values of ??18O for surface granites outside the impact structure are distinct from those in near-surface samples from the deep borehole. In the deep borehole, feldspar coloration varies from brick-red at the surface to white at 5760 m, and the abundances of crack-healing calcite and other secondary minerals decrease over the same interval. Superimposed on the overall decrease in alteration intensity with depth are localized fracture zones at 4662, 5415, and 6044 m depth that contain altered granites, and which provided pathways for deep penetration of surface water. The antithetic variation of quartz and feldspar ??18O values, which can be correlated with mineralogical evidence of alteration, provides evidence for interaction between rocks and impact-heated fluids (100-300?? C) in the upper 2 km of the pluton. Penetration of water to depths below 2 km was restricted by a general decrease in impact-fracturing with depth, and by a 60-m-thick diabase sill at 1500 m depth that may have been an aquitard. At depths below 4 km in the pluton, where water/rock ratios were low, oxygen isotopic compositions preserve evidence for limited high-temperature (>500?? C) exchange between alkali feldspar and fluids. The high-temperature exchange may have been a post-impact event involving impact-heated fluids, or a post-magmatic event. ?? 1990 Springer-Verlag.

  1. Cloud overlapping parameter obtained from CloudSat/CALIPSO dataset and its application in AGCM with McICA scheme

    NASA Astrophysics Data System (ADS)

    Jing, Xianwen; Zhang, Hua; Peng, Jie; Li, Jiangnan; Barker, Howard W.

    2016-03-01

    Vertical decorrelation length (Lcf) as used to determine overlap of cloudy layers in GCMs was obtained from CloudSat/CALIPSO measurements, made between 2007 and 2010, and analyzed in terms of monthly means. Global distributions of Lcf were produced for several cross-sectional lengths. Results show that: Lcf over the tropical convective regions typically exceeds 2 km and shift meridionally with season; the smallest Lcf (< 1 km) tends to occur in regions dominated by marine stratiform clouds; Lcf for mid-to-high latitude continents of the Northern Hemisphere (NH) ranges from 5-6 km during winter to 2-3 km during summer; and there are marked differences between continental and oceanic values of Lcf in the mid-latitudes of the NH. These monthly-gridded, observationally-based values of Lcf data were then used by the Monte Carlo Independent Column Approximation (McICA) radiation routines within the Beijing Climate Center's GCM (BCC_AGCM2.0.1). Additionally, the GCM was run with two other descriptions of Lcf: one varied with latitude only, and the other was simply 2 km everywhere all the time. It is shown that using the observationally-based Lcf in the GCM led to local and seasonal changes in total cloud fraction and shortwave (longwave) cloud radiative effects that serve mostly to reduce model biases. This indicates that usage of Lcf that vary according to location and time has the potential to improve climate simulations.

  2. Optical Maturity on the Walls of Lunar Craters

    NASA Astrophysics Data System (ADS)

    Sim, C. K.; Kim, S.; Lucey, P. G.; Garrick-Bethell, I.; Baek, G.; Choi, Y. J.

    2016-12-01

    Recent studies have found that the optical maturity (OMAT) and mean grain size of the lunar regolith have latitude dependences, probably because of the reduced flux of space-weathering agents at high latitudes. Here we extend our previous work (Jeong et al.) to the inner walls of lunar impact craters, dividing the wall into four quadrants. We consider the 1,872 craters whose diameter is between 5 km and 120 km in the Lunar Impact Crater Database 2015 from the LPI. We adopt the topography-corrected OMAT data from the Kaguya/MI observations. We find that at high latitudes, the equator-facing walls have generally smaller (more mature) OMAT values than the pole-facing walls. This is consistent with the global latitudinal dependence of the OMAT and values previously found. The overall mean value curve of [OMAT(E) - OMAT(W)] has a minimum and maximum near longitudes -60° and +60°, respectively. This is thought to be due to the shielding of solar wind particles during the Moon's passage through the Earth's magneto-tail. Because micrometeoroids are not affected by the magnetosphere passage, the longitudinal effect unambiguously discriminates between micrometeoroid and solar wind effects.

  3. Spatial Distribution of b-value of the Copahue volcano during 2012-2014 eruptive period: Relationship between magmatic and hydrothermal system

    NASA Astrophysics Data System (ADS)

    Lazo, Jonathan; Basualto, Daniel; Bengoa, Cintia; Cardona, Carlos; Franco, Luis; Gil-Cruz, Fernando; Hernández, Erasmo; Lara, Luis; Lundgren, Paul; Medina, Roxana; Morales, Sergio; Peña, Paola; Quijada, Jonathan; Samsonov, Sergey; San Martin, Juan; Valderrama, Oscar

    2015-04-01

    Temporal and spatial variations of b-value have been interpreted as regional stress changes on active tectonic zones or magma ascent and/or hydrothermal fluids mobilization that could affect to active volcanic arc. Increasing of fluids pressure, medium heterogeneities or temperature changes would be the cause of these variations. The Copahue volcano is a shield strato-volcano that has been edified on the western margin of the Caviahue Caldera, located in the international border between Chile and Argentina, which contain an important geothermic field and is located at a horse-tail structure of the Liquiñe-Ofqui Fault Zone. The pre-fracture nature of its basement, as well as an extensive geothermic field, would be producing very complex conditions to fluids movement that could be exploring to use the 'b' value of the recorded seismicity between 2012 and 2014. Based in the database of VT seismic events, we used 2.073 events to calculate the b-value to obtain the 2D and 3D distribution maps. Results showed two anomalous zones: the first one located 9 Km to NE of the active crater, 3-6 Km depth, with high b-values (>1.2) that is associated with a very high production rate of small earthquakes that could suggest a brittle zone, located in the active geothermal field. The second zone, showed a low b-values (~ 0.7), located to east of the volcano edifice at <3 Km depth, associated to a zone where were generated larger magnitude events, suggesting a zone with more stress accumulation that well correlated with the deformation center detected by InSAR measurements. This zone could be interpreted as the magmatic source that interacts with the shallow hydrothermal system. Thus, in a very complex setting as a volcano sitting on top of a geothermal system, the b-value offers a tool to understand the distribution of the seismic sources and hence a physical constrain for the coupled magmatic/hydrothermal system.

  4. Effective elastic thickness along the conjugate passive margins of India, Madagascar and Antarctica: A re-evaluation using the Hermite multitaper Bouguer coherence application

    NASA Astrophysics Data System (ADS)

    Ratheesh-Kumar, R. T.; Xiao, Wenjiao

    2018-05-01

    Gondwana correlation studies had rationally positioned the western continental margin of India (WCMI) against the eastern continental margin of Madagascar (ECMM), and the eastern continental margin of India (ECMI) against the eastern Antarctica continental margin (EACM). This contribution computes the effective elastic thickness (Te) of the lithospheres of these once-conjugated continental margins using the multitaper Bouguer coherence method. The results reveal significantly low strength values (Te ∼ 2 km) in the central segment of the WCMI that correlate with consistently low Te values (2-3 km) obtained throughout the entire marginal length of the ECMM. This result is consistent with the previous Te estimates of these margins, and confirms the idea that the low-Te segments in the central part of the WCMI and along the ECMM represents paleo-rift inception points of the lithospheric margins that was thermally and mechanically weakened by the combined action of the Marion hotspot and lithospheric extension during the rifting. The uniformly low-Te value (∼2 km) along the EACM indicates a mechanically weak lithospheric margin, probably due to considerable stretching of the lithosphere, considering the fact that this margin remained almost stationary throughout its rift history. In contrast, the ECMI has comparatively high-Te variations (5-11 km) that lack any correlation with the regional tectonic setting. Using gravity forward and inversion applications, we find a leading order of influence of sediment load on the flexural properties of this marginal lithosphere. The study concludes that the thick pile of the Bengal Fan sediments in the ECMI masks and has erased the signal of the original load-induced topography, and its gravity effect has biased the long-wavelength part of the observed gravity signal. The hence uncorrelated flat topography and deep lithospheric flexure together contribute a bias in the flexure modeling, which likely accounts a relatively high Te estimate.

  5. Q-values and Attenuation of the Shallow Crust Under Uturuncu Volcano, Bolivia

    NASA Astrophysics Data System (ADS)

    Mcfarlin, H. L.; McNutt, S. R.; Thompson, G.

    2017-12-01

    Uturuncu Volcano, located in the Altiplano-Puna region of the central Andes, near the border of Bolivia and Chile, has been shown to be inflating at a rate of 1-2 cm/yr over an area that is about 70 km wide. The PLUTONS project deployed 28 broadband seismometers around Uturuncu from April 2009 to October 2012. Several thousand shallow (depth < 20 km) local earthquakes were recorded. Attenuation of seismic waves along travel paths for these local crustal earthquakes can be measured by calculating Q-values, which we have performed using the method of single station spectral ratios by Frankel (1982). Large scatter in the Q-values for various distances and travel times appear to be a function of variations in source depth, focal mechanism, and back azimuth. Preliminary Q-values were calculated for azimuths in 30° increments in sectors around each station. Estimates for Q range from about 60 to 700, with many showing a low Q in the direction of the summit from each station. This suggests that the volcanic pile is more highly attenuating than the surrounding crust.

  6. Geomagnetism during solar cycle 23: Characteristics.

    PubMed

    Zerbo, Jean-Louis; Amory-Mazaudier, Christine; Ouattara, Frédéric

    2013-05-01

    On the basis of more than 48 years of morphological analysis of yearly and monthly values of the sunspot number, the aa index, the solar wind speed and interplanetary magnetic field, we point out the particularities of geomagnetic activity during the period 1996-2009. We especially investigate the last cycle 23 and the long minimum which followed it. During this period, the lowest values of the yearly averaged IMF (3 nT) and yearly averaged solar wind speed (364 km/s) are recorded in 1996, and 2009 respectively. The year 2003 shows itself particular by recording the highest value of the averaged solar wind (568 km/s), associated to the highest value of the yearly averaged aa index (37 nT). We also find that observations during the year 2003 seem to be related to several coronal holes which are known to generate high-speed wind stream. From the long time (more than one century) study of solar variability, the present period is similar to the beginning of twentieth century. We especially present the morphological features of solar cycle 23 which is followed by a deep solar minimum.

  7. Aftershocks of the 13 May 1993 Shumagin Alaska earthquake

    USGS Publications Warehouse

    Lu, Zhong; Wyss, Max; Tytgat, Guy; McNutt, Steve; Stihler, Scott

    1994-01-01

    The 13 May 1993 Ms 6.9 Shumagin earthquake had an aftershock sequence of 247 earthquakes with magnitudes greater than or equal to 1.5 by 1 June 1993. Of these aftershocks, 79 were located by using S-P travel times at the only two stations within 570 km of the mainshock epicenter. The rupture area inferred from the aftershocks is about 600 km2 and we estimate for the mainshock a mean fault displacement of 1.0 m and a 28 bar stress drop. The magnitude-frequency plots give a b-value for the aftershock sequence of about 0.4, which is low compared to the background value of approximately 0.8. The decay of the aftershock sequence followed the modified Omori law with a p-value of 0.79, which is also lower than the typical values of about 1.1 observed in Alaska. Both of these facts can be interpreted as indicating relatively high ambient stress in the Shumagin seismic gap and the possibility that the 13 May earthquake was a foreshock to a larger gap-filling event to occur within the next few years.

  8. THE IMPORTANCE OF OBTAINING INFORMATION ON THE SPECIFIC CONTENT OF TISSUE ENZYMES METABOLIZING ORGANOPHOSPHORUS PESTICIDES, PRIOR TO DETERMINE VMAX, KM VALUES FOR USE IN PBPK MODELS

    EPA Science Inventory

    Physiological pharmacokinetic/pharmacodynamic models require Vmax, Km values for the metabolism of OPs by tissue enzymes. Current literature values cannot be easily used in OP PBPK models (i.e., parathion and chlorpyrifos) because standard methodologies were not used in their ...

  9. THE IMPORTANCE OF OBTAINING INFORMATION ON THE SPECIFIC CONTENT OF TISSUE ENZYMES METABOLIZING ORGANOPHOSPHORUS PESTICIDES, PRIOR TO DETERMINING VMAX, KM VALUES FOR USE IN PBPK MODELS

    EPA Science Inventory

    Physiological pharmacokinetic\\pharmacodynamic models require Vmax, Km values for the metabolism of OPs by tissue enzymes. Current literature values cannot be easily used in OP PBPK models (i.e., parathion and chlorpyrifos) because standard methodologies were not used in their ...

  10. Application of OMI NO2 for Regional Air Quality Model Evaluation

    NASA Astrophysics Data System (ADS)

    Holloway, T.; Bickford, E.; Oberman, J.; Scotty, E.; Clifton, O. E.

    2012-12-01

    To support the application of satellite data for air quality analysis, we examine how column NO2 measurements from the Ozone Monitoring Instrument (OMI) aboard the NASA Aura satellite relate to ground-based and model estimates of NO2 and related species. Daily variability, monthly mean values, and spatial gradients in OMI NO2 from the Netherlands Royal Meteorological Institute (KNMI) are compared to ground-based measurements of NO2 from the EPA Air Quality System (AQS) database. Satellite data is gridded to two resolutions typical of regional air quality models - 36 km x 36 km over the continental U.S., and 12 km x 12 km over the Upper Midwestern U.S. Gridding is performed using the Wisconsin Horizontal Interpolation Program for Satellites (WHIPS), a publicly available software to support gridding of satellite data to model grids. Comparing daily OMI retrievals (13:45 daytime local overpass time) with ground-based measurements (13:00), we find January and July 2007 correlation coefficients (r-values) generally positive, with values higher in the winter (January) than summer (July) for most sites. Incidences of anti-correlation or low-correlation are evaluated with model simulations from the U.S. EPA Community Multiscale Air Quality Model version 4.7 (CMAQ). OMI NO2 is also used to evaluate CMAQ output, and to compare performance metrics for CMAQ relative to AQS measurements. We compare simulated NO2 across both the U.S. and Midwest study domains with both OMI NO2 (total column CMAQ values, weighted with the averaging kernel) and with ground-based observations (lowest model layer CMAQ values). 2007 CMAQ simulations employ emissions from the Lake Michigan Air Directors Consortium (LADCO) and meteorology from the Weather Research and Forecasting (WRF) model. Over most of the U.S., CMAQ is too high in January relative to OMI NO2, but too low in January relative to AQS NO2. In contrast, CMAQ is too low in July relative to OMI NO2, but too high relative to AQS NO2. These biases are used to evaluate emission sources (and the importance of missing sources, such as lightning NOx), and to explain model performance for related secondary species, especially nitrate aerosol and ozone.

  11. High concentrations of lead and barium in hair of the rural population caused by water pollution in the Thar Jath oilfields in South Sudan.

    PubMed

    Pragst, Fritz; Stieglitz, Klaus; Runge, Hella; Runow, Klaus-Dietrich; Quig, David; Osborne, Robert; Runge, Christian; Ariki, John

    2017-05-01

    In the oil fields of Thar Jath, South Sudan, increasing salinity of drinking water was observed together with human incompatibilities and rise in livestock mortalities. Hair analysis was used to characterize the toxic exposure of the population. Hair samples of volunteers from four communities with different distance from the center of the oil field (Koch 23km, n=24; Leer 50km, n=26; Nyal 110km, n=21; and Rumbek 220km, n=25) were analyzed for altogether 39 elements by inductively coupled plasma-mass spectrometry. Very high concentrations and a toxic health endangerment were assessed for lead and barium. The concentration of lead increased steadily with decreasing distance from the oil field from Rumbek (mean 2.8μg/g) to Koch (mean 18.7μg/g) and was there in the same range as in highly contaminated mining regions in Kosovo, China or Bolivia. The weighting materials in drilling muds barite (BaSO 4 ) and galena (PbS) were considered to be the sources of drinking water pollution and high hair values. The high concentrations of lead and barium in hair demonstrate clearly the health risk caused by harmful deposition of toxic industrial waste but cannot be used for diagnosis of a chronic intoxication of the individuals. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  12. The density of cometary protons upstream of Comet Halley's bow shock

    NASA Astrophysics Data System (ADS)

    Neugebauer, M.; Goldstein, B. E.; Balsiger, H.; Neubauer, F. M.; Schwenn, R.; Shelley, E. G.

    1989-02-01

    Cometary protons picked up by the solar wind were detected by the high energy range spectrometer of the Giotto ion mass spectrometer starting at a cometocentric distance of about 12 million km. On the average, the density of cometary protons varied approximately as the inverse square of the cometocentric distance, reaching a value of 0.11/cu cm just outside the bow shock. The data can be successfully fit to models that include substantial amounts of both slow (1 km/s) and fast (8 km/s or greater) H atoms beyond the bow shock. Large local variations in the density of picked-up protons can be explained on the basis of variations in the direction of the interplanetary magnetic field in upstream regions where pitch angle scattering was weak.

  13. Ozone isotope measurements in the stratosphere

    NASA Technical Reports Server (NTRS)

    Mauersberger, K.

    1987-01-01

    Mass spectrometer measurements of ozone made during two balloon flights included its heavy isotopes at mass 49 and 50. Both flights were flown during the day and during summer from Palestine, TX. At float altitudes above 42 km the enrichments in heavy ozone were 41 percent and 23 percent, respectively. The enrichment appears to be mass independent since, at high altitudes, both 49 and 50 show the same enhancement. During the descent the enrichment in heavy ozone decreased, faster during the first flight than during the second, reaching values between 15 and 20 percent above 30 km. Near and below this altitude another increase is observed. During a night flight, previously reported, an enhancement in heavy ozone of over 40 percent at 32 km was found, decreasing both toward higher and lower altitudes.

  14. Determining Cloud Parameters with the Curve-Of-Growth: Application Eta Car

    NASA Technical Reports Server (NTRS)

    Vieira, G. L.; Gull, T. R.; Bruhweiler, F.; Nielsen, K. E.; Verner, E. M.

    2004-01-01

    We have investigated the NUV part of the Eta Car spectrum, using data with high spatial and high spectral resolving power obtained with the HST/STIS under the Treasury Program. The NUV spectrum of Eta Car Shows a great contribution of absorption features from neutral and singly ionized elements along the line-of-sight. A large number of velocity systems have been observed. The two most prominent, with Doppler shifts corresponding to -146 and -513 km/s respectively, are shown to be useful for investigations of the gaseous environments responsible for the absorption. The -146 and the -513 km/s velocity systems display different characteristics regarding the ionization state and spectral line width, which suggest that they originate at different distances from the central object. We have investigated the absorption structures before the spectroscopic minimum, occurring during the summer of 2003, with a standard curve-of-growth. We have independently derived the column density and the b-value for the Fe II (-146 km/s) and Ti II (-513 km/s) velocity systems. The excitation temperature has been determined for the -146 km/s velocity system using the photo-ionization code \\textsc(cloudy). The -146 km/s velocity structure shows noticeable variation over the spectroscopic minimum. The sudden appearance and disappearance of Ti II and V II are astonishing. We have made an attempt to analyze these variations with the curve-of-growth method and will present preliminary results.

  15. Interpretation of nitric oxide profile observed in January 1992 over Kiruna

    NASA Astrophysics Data System (ADS)

    Kondo, Y.; Kawa, S. R.; Lary, D.; Sugita, T.; Douglass, Anne R.; Lutman, E.; Koike, M.; Deshler, T.

    1996-05-01

    NO mixing ratios measured from Kiruna (68°N, 20°E), Sweden, on January 22, 1992, revealed values much smaller than those observed at midlatitude near equinox and had a sharper vertical gradient around 25 km. Location of the measurements was close to the terminator and near the edge of the polar vortex, which is highly distorted from concentric flow by strong planetary wave activities. These conditions necessitate accurate calculation, properly taking into account the transport and photochemical processes, in order to quantitatively explain the observed NO profile. A three-dimensional chemistry and transport model (CTM) and a trajectory model (TM) were used to interpret the profile observations within their larger spatial, temporal, and chemical context. The NOy profile calculated by the CTM is in good agreement with that observed on January 31, 1992. In addition, model NOy profiles show small variabilities depending on latitudes, and they change little between January 22 and 31. The TM uses the observed NOy values. The NO values calculated by the CTM and TM agree with observations up to 27 km. Between 20 and 27 km the NO values calculated by the trajectory model including only gas phase chemistry are much larger than those including heterogeneous chemistry, indicating that NO mixing ratios were reduced significantly by heterogeneous chemistry on sulfuric acid aerosols. Very little sunlight to generate NOx from HNO3 was available, also causing the very low NO values. The good agreement between the observed and modeled NO profiles indicates that models can reproduce the photochemical and transport processes in the region where NO values have a sharp horizontal gradient. Moreover, CTM and TM model results show that even when the NOy gradients are weak, the model NO depends upon accurate calculation of the transport and insolation for several days.

  16. Research of autonomous celestial navigation based on new measurement model of stellar refraction

    NASA Astrophysics Data System (ADS)

    Yu, Cong; Tian, Hong; Zhang, Hui; Xu, Bo

    2014-09-01

    Autonomous celestial navigation based on stellar refraction has attracted widespread attention for its high accuracy and full autonomy.In this navigation method, establishment of accurate stellar refraction measurement model is the fundament and key issue to achieve high accuracy navigation. However, the existing measurement models are limited due to the uncertainty of atmospheric parameters. Temperature, pressure and other factors which affect the stellar refraction within the height of earth's stratosphere are researched, and the varying model of atmosphere with altitude is derived on the basis of standard atmospheric data. Furthermore, a novel measurement model of stellar refraction in a continuous range of altitudes from 20 km to 50 km is produced by modifying the fixed altitude (25 km) measurement model, and equation of state with the orbit perturbations is established, then a simulation is performed using the improved Extended Kalman Filter. The results show that the new model improves the navigation accuracy, which has a certain practical application value.

  17. Catalytical Properties of Free and Immobilized Aspergillus niger Tannase.

    PubMed

    Flores-Maltos, Abril; Rodríguez-Durán, Luis V; Renovato, Jacqueline; Contreras, Juan C; Rodríguez, Raúl; Aguilar, Cristóbal N

    2011-01-01

    A fungal tannase was produced, recovered, and immobilized by entrapment in calcium alginate beads. Catalytical properties of the immobilized enzyme were compared with those of the free one. Tannase was produced intracellularly by the xerophilic fungus Aspergillus niger GH1 in a submerged fermentation system. Enzyme was recovered by cell disruption and the crude extract was partially purified. The catalytical properties of free and immobilized tannase were evaluated using tannic acid and methyl gallate as substrates. K(M) and V(max) values for free enzyme were very similar for both substrates. But, after immobilization, K(M) and V(max) values increased drastically using tannic acid as substrate. These results indicated that immobilized tannase is a better biocatalyst than free enzyme for applications on liquid systems with high tannin content, such as bioremediation of tannery or olive-mill wastewater.

  18. Utilizing Machine Learning to Downscale SMAP L3_SM_P Brightness Temperatures in Iowa for Agricultural Applications

    NASA Astrophysics Data System (ADS)

    Chakrabarti, S.; Judge, J.; Bindlish, R.; Bongiovanni, T.; Jackson, T. J.

    2016-12-01

    The NASA Soil Moisture Active Passive (SMAP) mission provides global observations of brightness temperatures (TB) at 36km. For these observations to be relevant to studies in agricultural regions, the TB values need to be downscaled to finer resolutions. In this study, a machine learning algorithm is introduced for downscaling of TB from 36km to 9km. The algorithm uses image segmentation to cluster the study region based on meteorological and land cover similarity, followed by a support vector machine based regression that computes the value of the disaggregated TB at all pixels. High resolution remote sensing products such as land surface temperature, normalized difference vegetation index, enhanced vegetation index, precipitation, soil texture, and land-cover were used for downscaling. The algorithm was implemented in Iowa, United States, during the growing season from April to July 2015 when the SMAP L3-SM_AP TB product at 9 km was available for comparison. In addition, the downscaled estimates from the algorithm are compared with 9km TB obtained by resampling SMAP L1B_TB product at 36km. It was found that the downscaled TB were very similar to the SMAP-L3_SM _AP TB product, even for vegetated areas with a mean difference ≤ 5K. However, the standard deviation of the downscaled was lower by 7K than that of the AP product. The probability density functions of the downscaled TB were similar to the SMAP- TB. The results indicate that these downscaling algorithms may be used for downscaling TB using complex non-linear correlations on a grid without using active microwave observations.

  19. Oceanic broad multifault transform plate boundaries

    NASA Astrophysics Data System (ADS)

    Ligi, Marco; Bonatti, Enrico; Gasperini, Luca; Poliakov, Alexei N. B.

    2002-01-01

    Oceanic transform plate boundaries consist of a single, narrow (a few kilometers wide) strike-slip seismic zone offsetting two mid-ocean ridge segments. However, we define here a new class of oceanic transform boundaries, with broad complex multifault zones of deformation, similar to some continental strike-slip systems. Examples are the 750-km- long, 120-km-wide Andrew Bain transform on the Southwest Indian Ridge, and the Romanche transform, where the Mid-Atlantic Ridge is offset by a lens-shaped, ˜900-km- long, ˜100-km-wide sliver of deformed lithosphere bound by two major transform valleys. One of the valleys is seismically highly active and constitutes the present-day principal transform boundary. However, strike-slip seismic events also occur in the second valley and elsewhere in the deformed zone. Some of these events may be triggered by earthquakes from the principal boundary. Numerical modeling predicts the development of wide multiple transform boundaries when the age offset is above a threshold value of ˜30 m.y., i.e., in extra-long (>500 km) slow-slip transforms. Multiple boundaries develop so that strike-slip ruptures avoid very thick and strong lithosphere.

  20. European VLBI Network imaging of 6.7 GHz methanol masers

    NASA Astrophysics Data System (ADS)

    Bartkiewicz, A.; Szymczak, M.; van Langevelde, H. J.

    2016-03-01

    Context. Methanol masers at 6.7 GHz are well known tracers of high-mass star-forming regions. However, their origin is still not clearly understood. Aims: We aimed to determine the morphology and velocity structure for a large sample of the maser emission with generally lower peak flux densities than those in previous surveys. Methods: Using the European VLBI Network (EVN) we imaged the remaining sources from a sample of sources that were selected from the unbiased survey using the Torun 32 m dish. In this paper we report the results for 17 targets. Together they form a database of a total of 63 source images with high sensitivity (3σrms = 15-30 mJy beam-1), milliarcsecond angular resolution (6-10 mas) and very good spectral resolution (0.09 km s-1 or 0.18 km s-1) for detailed studies. Results: We studied in detail the properties of the maser clouds and calculated the mean and median values of the projected size (17.4 ± 1.2 au and 5.5 au, respectively) as well as the FWHM of the line (0.373 ± 0.011 km s-1 and 0.315 km s-1 for the mean and median values, respectively), testing whether it was consistent with Gaussian profile. We also found maser clouds with velocity gradients (71%) that ranged from 0.005 km s-1 au-1 to 0.210 km s-1 au-1. We tested the kinematic models to explain the observed structures of the 6.7 GHz emission. There were targets where the morphology supported the scenario of a rotating and expanding disk or a bipolar outflow. Comparing the interferometric and single-dish spectra we found that, typically, 50-70% of the flux was missing. This phenomena is not strongly related to the distance of the source. Conclusions: The EVN imaging reveals that in the complete sample of 63 sources the ring-like morphology appeared in 17% of sources, arcs were seen in a further 8%, and the structures were complex in 46% cases. The ultra-compact (UC) H II regions coincide in position in the sky for 13% of the sources. They are related both to extremely high and low luminosity masers from the sample. The catalogue of the complete sample is available via http://paulo.astro.uni.torun.pl/~pw/mmcat/

  1. The structure of 0- to 0.2-m.y.-old oceanic crust at 9°N on the East Pacific Rise from expanded spread profiles

    NASA Astrophysics Data System (ADS)

    Vera, E. E.; Mutter, J. C.; Buhl, P.; Orcutt, J. A.; Harding, A. J.; Kappus, M. E.; Detrick, R. S.; Brocher, T. M.

    1990-09-01

    We analyze four expanded spread profiles acquired at distances of 0, 2.1, 3.1, and 10 km (0-0.2 m.y.) from the axis of the East Pacific Rise between 9° and 10°N. Velocity-depth models for these profiles have been obtained by travel time inversion in the τ-p domain, and by x-t forward modeling using the WKBJ and the reflectivity methods. We observe refracted arrivals that allow us to determine directly the uppermost crustal velocity structure (layer 2A). At the seafloor we find very low Vp and VS/Vp values around 2.2 km/s and ≤ 0.43. In the topmost 100-200 m of the crust, Vp remains low (≤ 2.5 km/s) then rapidly increases to 5 km/s at ˜500 m below the seafloor. High attenuation values (Qp < 100) are suggested in the topmost ˜500 m of the crust. The layer 2-3 transition probably occurs within the dike unit, a few hundred meters above the dike-gabbro transition. This transition may mark the maximum depth of penetration by a cracking front and associated hydrothermal circulation in the axial region above the axial magma chamber (AMC). The on-axis profile shows arrivals that correspond to the bright AMC event seen in reflection lines within 2 km of the rise axis. The top of the AMC lies 1.6 km below the seafloor and consists of molten material where Vp ≈ 3 km/s and VS = 0. Immediately above the AMC, there is a zone of large negative velocity gradients where, on the average, Vp decreases from ˜6.3 to 3 km/s over a depth of approximately 250 m. Associated with the AMC there is a low velocity zone (LVZ) that extends to a distance no greater than 10 km away from the rise axis. At the top of the LVZ, sharp velocity contrasts are confined to within 2 km of the rise axis and are associated with molten material or material with a high percentage of melt which would be concentrated only in a thin zone at the apex of the LVZ, in the axial region where the AMC event is seen in reflection lines. Away from the axis, the transition to the LVZ is smoother, the top of the LVZ is deeper, and the LVZ is less pronounced. The bottom of the LVZ is probably located near the bottom of the crust and above the Moho. Moho arrivals are observed in the profiles at zero and at 10 km from the rise axis. Rather than a single discontinuity, these arrivals indicate an approximately 1-km-thick Moho transition zone.

  2. Hydrological Dynamics of Central America: Time-of-Emergence of the Global Warming Signal

    NASA Astrophysics Data System (ADS)

    Imbach, P. A.; Georgiou, S.; Calderer, L.; Coto, A.; Nakaegawa, T.; Chou, S. C.; Lyra, A. A.; Hidalgo, H. G.; Ciais, P.

    2016-12-01

    Central America is among the world's most vulnerable regions to climate variability and change. Country economies are highly dependent on the agricultural sector and over 40 million people's rural livelihoods directly depend on the use of natural resources. Future climate scenarios show a drier outlook (higher temperatures and lower precipitation) over a region where rural livelihoods are already compromised by water availability and climate variability. Previous efforts to validate modelling of the regional hydrology have been based on high resolution (1 km2) equilibrium models (Imbach et al., 2010) or using dynamic models (Variable Infiltration Capacity) with coarse climate forcing (0.5°) (Hidalgo et al., 2013; Maurer et al., 2009). We present here: (i) validation of the hydrological outputs from high-resolution simulations (10 km2) of a dynamic vegetation model (Orchidee), using 7 different sets of model input forcing data, with monthly runoff observations from 182 catchments across Central America; (ii) the first assessments of the region's hydrological variability using the historical simulations (iii) an estimation of the time of emergence of the climate change signal (under the SRES emission scenarios) on the water balance. We found model performance to be comparable with that from studies in other world regions (Yang et al. 2016) when forced with high resolution precipitation data (monthly values at 5 km2, Funk et al. (2015)) and the Climate Research Unit (CRU 3.2, Harris et al. (2014)) dataset of meteorological parameters. Validation results showed a Pearson correlation coefficient ≈ 0.6, general underestimation of runoff of ≈ 60% and variability close to observed values (ratio of standard deviations of ≈ 0.7). Maps of historical runoff are presented to show areas where high runoff variability follows high mean annual runoff, with opposite trends over the Caribbean. Future scenarios show large areas where future maximum water availability will always fall below minus-one standard deviation of the historical values by mid-century. Additionally, our results highlight the time horizon left to develop adaptation strategies to cope with future reductions in water availability.

  3. Three-dimensional inversion of regional P and S arrival times in the East Aleutians and sources of subduction zone gravity highs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abers, G.A.

    1994-03-10

    Free-air gravity highs over forearcs represent a large fraction of the power in the Earth`s anomalous field, yet their origin remains uncertain. Seismic velocities, as indicators of density, are estimated here as a means to compare the relative importance of upper plate sources for the gravity high with sources in the downgoing plate. P and S arrival times for local earthquakes, recorded by a seismic network in the eastern Aleutians, are inverted for three-dimensional velocity structure between the volcanic arc and the downgoing plate. A three-dimensional ray tracing scheme is used to invert the 7974 P and 6764 S arrivalsmore » for seismic velocities and hypocenters of 635 events. One-dimensional inversions show that station P residuals are systematically 0.25 - 0.5 s positive at stations 0-30 km north of the Aleutian volcanic arc, indicating slow material, while residuals at stations 10-30 km south of the arc are 0.1-0.25 s negative. Both features are explained in three-dimensional inversions by velocity variations at depths less than 25-35 km. Tests using a one-dimensional or a two-dimensional slab starting model show that below 100 km depth, velocities are poorly determined and trade off almost completely with hypocenters for earthquakes at these depths. The locations of forearc velocity highs, in the crust of the upper plate, correspond to the location of the gravity high between the trench and volcanic arc. Free-air anomalies, calculated from the three-dimensional velocity inversion result, match observed gravity for a linear density-velocity relationship between 0.1 and 0.3 (Mg m{sup {minus}3})/(km s{sup {minus}1}), when a 50-km-thick slab is included with a density of 0.055{+-}0.005 Mg m{sup {minus}3}. Values outside these ranges do not match the observed gravity. The slab alone contributes one third to one half of the total 75-150 mGal amplitude of the gravity high but predicts a high that is much broader than is observed.« less

  4. Anomalous top layer in the inner core beneath the eastern hemisphere

    NASA Astrophysics Data System (ADS)

    Yu, W.; Wen, L.; Niu, F.

    2003-12-01

    Recent studies reported hemispheric variations in seismic velocity and attenuation in the top of the inner core. It, however, remains unclear how the inner core hemisphericity extends deep in the inner core. Here, we analyze PKPbc-PKIKP and PKiKP-PKIKP waveforms collected from the Global Seismographic Network (GSN), regional recordings from the German Regional Seismic Network (GRSN) and Graefenberg (GRF) sampling along the equatorial path (the ray path whose ray angle is larger than 35o from the Earth's rotation axis). The observed global and regional PKPbc-PKIKP differential traveltimes and PKIKP/PKPbc amplitude ratios suggest a simple W2 model (Wen/Niu:2002) in the western hemisphere with a constant velocity gradient of 0.049(km/sec)/100km and a Q value of 600 in the top 400 km of the inner core. In the eastern hemisphere, the data require a change of velocity gradient and Q value at about 235 km below the inner core boundary (ICB). Based on forward modeling, we construct radial velocity and attenuation models in the eastern hemisphere which can explain both the PKiKP-PKIKP and PKPbc-PKIKP observations. The inner core in the eastern hemisphere has a flat velocity gradient extending to about 235 km below the ICB. We test two solutions for the velocity models in the deeper portion of the inner core, with one having a first-order discontinuity at 235 km below the ICB with a velocity jump of 0.07(km/sec) followed by the PREM gradient, and the other having a gradual velocity transition with 0.1(km/sec)/100km gradient extended from 235 km to 375 km below the ICB followed by the PREM gradient. The observed traveltimes exclude the sharp discontinuity velocity model, as it predicts a kink in differential traveltimes at distance of 151o-152o which is not observed in the global and regional datasets. The observed PKIKP/PKPbc amplitude ratios can be best explained by a step function of attenuation with a Q value of 250 at the top 300 km and a Q value of 600 at 300-400 km below the ICB. The top portion of the inner core in the eastern hemisphere is anomalous compared to the rest of the inner core, in having a flat velocity gradient, higher velocities and higher attenuation.

  5. Comparative kinetics and reciprocal inhibition of nitrate and nitrite uptake in roots of uninduced and induced barley (Hordeum vulgare L.) seedlings

    NASA Technical Reports Server (NTRS)

    Aslam, M.; Travis, R. L.; Huffaker, R. C.

    1992-01-01

    Nitrate and NO2- transport by roots of 8-day-old uninduced and induced intact barley (Hordeum vulgare L. var CM 72) seedlings were compared to kinetic patterns, reciprocal inhibition of the transport systems, and the effect of the inhibitor, p-hydroxymercuribenzoate. Net uptake of NO3- and NO2- was measured by following the depletion of the ions from the uptake solutions. The roots of uninduced seedlings possessed a low concentration, saturable, low Km, possibly a constitutive uptake system, and a linear system for both NO3- and NO2-. The low Km system followed Michaelis-Menten kinetics and approached saturation between 40 and 100 micromolar, whereas the linear system was detected between 100 and 500 micromolar. In roots of induced seedlings, rates for both NO3- and NO2- uptake followed Michaelis-Menten kinetics and approached saturation at about 200 micromolar. In induced roots, two kinetically identifiable transport systems were resolved for each anion. At the lower substrate concentrations, less than 10 micromolar, the apparent low Kms of NO3- and NO2- uptake were 7 and 9 micromolar, respectively, and were similar to those of the low Km system in uninduced roots. At substrate concentrations between 10 and 200 micromolar, the apparent high Km values of NO3- uptake ranged from 34 to 36 micromolar and of NO2- uptake ranged from 41 to 49 micromolar. A linear system was also found in induced seedlings at concentrations above 500 micromolar. Double reciprocal plots indicated that NO3- and NO2- inhibited the uptake of each other competitively in both uninduced and induced seedlings; however, Ki values showed that NO3- was a more effective inhibitor than NO2-. Nitrate and NO2- transport by both the low and high Km systems were greatly inhibited by p-hydroxymercuribenzoate, whereas the linear system was only slightly inhibited.

  6. Running energetics in the pronghorn antelope.

    PubMed

    Lindstedt, S L; Hokanson, J F; Wells, D J; Swain, S D; Hoppeler, H; Navarro, V

    1991-10-24

    The pronghorn antelope (Antilocapra americana) has an alleged top speed of 100 km h-1, second only to the cheetah (Acionyx jubatus) among land vertebrates, a possible response to predation in the exposed habitat of the North American prairie. Unlike cheetahs, however, pronghorn antelope are distance runners rather than sprinters, and can run 11 km in 10 min, an average speed of 65 km h-1. We measured maximum oxygen uptake in pronghorn antelope to distinguish between two potential explanations for this ability: either they have evolved a uniquely high muscular efficiency (low cost of transport) or they can supply oxygen to the muscles at unusually high levels. Because the cost of transport (energy per unit distance covered per unit body mass) varies as a predictable function of body mass among terrestrial vertebrates, we can calculate the predicted cost to maintain speeds of 65 and 100 km h-1 in an average 32-kg animal. The resulting range of predicted values, 3.2-5.1 ml O2 kg-1 s-1, far surpasses the predicted maximum aerobic capacity of a 32-kg mammal (1.5 ml O2 kg-1 s-1). We conclude that their performance is achieved by an extraordinary capacity to consume and process enough oxygen to support a predicted running speed greater than 20 ms-1 (70 km h-1), attained without unique respiratory-system structures.

  7. Seismic evidence for central Taiwan magnetic low and deep-crustal deformation caused by plate collision

    NASA Astrophysics Data System (ADS)

    Cheng, Win-Bin

    2018-01-01

    Crustal seismic velocity structure was determined for the northern Taiwan using seismic travel-time data to investigate the northeastern extension of the northern South China Sea's high-magnetic belt. In order to increase the model resolution, a joint analysis of gravity anomaly and seismic travel-time data have been conducted. A total of 3385 events had been used in the inversion that was collected by the Central Weather Bureau Seismological Network from 1990 to 2015. The main features of the obtained three-dimensional velocity model are: (1) a relatively high Vp zone with velocity greater than 6.5 km/s is observed in the middle to lower crust, (2) the high Vp zone generally parallels to the north-south structural trending of the Chuchih fault and Hsuehshan Range, (3) at 25 km depth-slice, the high Vp zone shows structural trends change from northeastward to northward in central Taiwan, where the values of high-magnetic anomalies are rapidly decreasing to low values. A combination of seismic, GPS, and structural interpretations suggests that the entire crust has been deformed and demagnetized in consequence of the collision between the Philippine Sea plate and the Asian continental margin. We suggest that the feature of sharp bending of the high Vp zone would migrate southwestward and cause further crustal deformation of the Peikang High in the future.

  8. Two-dimensional seismic image of the San Andreas Fault in the Northern Gabilan Range, central California: Evidence for fluids in the fault zone

    USGS Publications Warehouse

    Thurber, C.; Roecker, S.; Ellsworth, W.; Chen, Y.; Lutter, W.; Sessions, R.

    1997-01-01

    A joint inversion for two-dimensional P-wave velocity (Vp), P-to-S velocity ratio (Vp/Vs), and earthquake locations along the San Andreas fault (SAF) in central California reveals a complex relationship among seismicity, fault zone structure, and the surface fault trace. A zone of low Vp and high Vp/Vs lies beneath the SAF surface trace (SAFST), extending to a depth of about 6 km. Most of the seismic activity along the SAF occurs at depths of 3 to 7 km in a southwest-dipping zone that roughly intersects the SAFST, and lies near the southwest edge of the low Vp and high Vp/Vs zones. Tests indicate that models in which this seismic zone is significantly closer to vertical can be confidently rejected. A second high Vp/Vs zone extends to the northeast, apparently dipping beneath the Diablo Range. Another zone of seismicity underlies the northeast portion of this Vp/Vs high. The high Vp/Vs zones cut across areas of very different Vp values, indicating that the high Vp/Vs values are due to the presence of fluids, not just lithology. The close association between the zones of high Vp/Vs and seismicity suggests a direct involvement of fluids in the faulting process. Copyright 1997 by the American Geophysical Union.

  9. [Terrain gradient effect of ecosystem service value in middle reach of Yangtze River, China].

    PubMed

    Yang, Suo Hua; Hu, Shou Geng; Qu, Shi Jin

    2018-03-01

    Using land use data in the year 1995, 2005 and 2014, this study estimated the ecosystem service value (ESV) in each county located in the middle reach of Yangtze River and analyzed its spatiotemporal variation features and terrain gradient effects based on "the equivalent value per unit area of ecosystem services in China". The results showed that ESV in the middle reach of Yangtze River was generally higher in mountainous area but lower in plain region, with an obvious terrain gradient effect. Specifically, the relationship of the relief degree of land surface (RDLS) and the ESV showed significant logarithm function at county scale with a high curve fitting degree of 0.53. The ESV increased from 400.35×10 4 yuan·km -2 to 554.57×10 4 yuan·km -2 with the increasing RDLS (grade 1-5) in 2014. During 1995-2004, the ecosystem service value variation changed from decreasing to stable with the increases of the RDLS. With a perspective of ecosystem service values, the value of food production and waste treatment service value decreased with the increase of the RDLS, while the others increased in general, such as the production of raw materials and gas regulation service value, because of the influences of dynamic land use structure in varied topography and distinct dominant ecosystem services from different land types.

  10. Illitization and paleothermal regimes in the Middle Ordovician St. Peter Sandstone, Central Michigan Basin: K-Ar, Oxygen Isotope, and fluid inclusion data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Girard, J.P.; Barnes, D.A.

    1995-01-01

    Hydrocarbon reservoirs occur in the Middle Ordovician St. Peter Sandstone in the central Michigan basin at depths of 1.5-3.5 km and are diagenetically altered. Latest diagenetic cements include saddle dolomite, pervasive microcrystalline illite and chlorite, and quartz. A K-Ar and {sup 18}O/{sup 16}O study of the fine-grained authigenic illite in 25 samples from 16 wells covering a large area within the basin yields K-Ar ages ranging from 367 to 322 Ma and {delta}{sup 18}O values between 12.7 and 16.9% SMOW. The {delta}{sup 18}O values of diagenetic quartz overgrowths range from 15.2 to 18.9%. Fluid inclusion temperatures in the quartz cementmore » range from 70 to 170{degrees}C, reflecting multiple generations of diagenetic quartz and/or precipitation over most of the diagenetic history. Reequilibrated fluid inclusions in the saddle dolomite cement yield temperatures ranging from 90 to 150{degrees}C. A regionally significant episode of illitization occurred during the Late Devonian-Mississipian. Temperatures of illite formation are indirectly estimated to be in the range of 125-170{degrees}C and most paleodepths of illitization are between 2.8 and 3.2 km. These results imply that (1) illite formed from {sup 18}O-rich fluids, and (2) elevated geothermal gradients, i.e., greater than 34% C/km, existed in the Michigan basin in the late Paleozoic. The K-Ar ages and the {delta}{sup 18}O values are not correlated to present depths of the samples or paleodepths of illitization. Illites with young ages and low {delta}{sup 18}O values tend to be geographically distributed along the north-south branch of the buried Precambrian rift. The {delta}{sup 18}O values of the diagenetic quartz follow a similar trend. The spread of illite K-Ar ages and {delta}{sup 19}O values, and their geographic distribution, are best explained as reflecting abnormally high thermal regimes in the part of the basin located above the presumably highly fractured basement along the rift.« less

  11. Properties of the surface snow in Princess Elizabeth Land, East Antarctica - climate and non-climate dependent variability of the surface mass balance and stable water isotopic composition

    NASA Astrophysics Data System (ADS)

    Vladimirova, D.; Ekaykin, A.; Lipenkov, V.; Popov, S. V.; Petit, J. R.; Masson-Delmotte, V.

    2017-12-01

    Glaciological and meteorological observations conducted during the past four decades in Princess Elizabeth Land, East Antarctica, are compiled. The database is used to investigate spatial patterns of surface snow isotopic composition and surface mass balance, including detailed information near subglacial lake Vostok. We show diverse relationships between snow isotopic composition and surface temperature. In the most inland part (elevation 3200-3400 m a.s.l.), surface snow isotopic composition varies independently from surface temperature, and is closely related to the distance to the open water source (with a slope of 0.98±0.17 ‰ per 100 km). Surface mass balance values are higher along the ice sheet slope, and relatively evenly distributed inland. The minimum values of snow isotopic composition and surface mass balance are identified in an area XX km southwestward from Vostok station. The spatial distribution of deuterium excess delineates regions influenced by the Indian Ocean and Pacific Ocean air masses, with Vostok area being situated close to their boundary. Anomalously high deuterium excess values are observed near Dome A, suggesting high kinetic fractionation for its moisture source, or specifically high post-deposition artifacts. The dataset is available for further studies such as the assessment of skills of general circulation or regional atmospheric models, and the search for the oldest ice.

  12. The Associated Absorption Features in Quasar Spectra of the Sloan Digital Sky Survey. I. Mg II Absorption Doublets

    NASA Astrophysics Data System (ADS)

    Chen, Zhi-Fu; Huang, Wei-Rong; Pang, Ting-Ting; Huang, Hong-Yan; Pan, Da-Sheng; Yao, Min; Nong, Wei-Jing; Lu, Mei-Mei

    2018-03-01

    Using the SDSS spectra of quasars included in the DR7Q or DR12Q catalogs, we search for Mg II λλ2796, 2803 narrow absorption doublets in the spectra data around Mg II λ2798 emission lines. We obtain 17,316 Mg II doublets, within the redshift range of 0.3299 ≤ z abs ≤ 2.5663. We find that a velocity offset of υ r < 6000 km s‑1 is a safe boundary to constrain the vast majority of associated Mg II systems, although we find some doublets at υ r > 6000 km s‑1. If associated Mg II absorbers are defined by υ r < 6000 km s‑1, ∼33.3% of the absorbers are supposed to be contaminants of intervening systems. Removing the 33.3% contaminants, ∼4.5% of the quasars present at least one associated Mg II system with {W}{{r}}λ 2796≥slant 0.2 \\mathringA . The fraction of associated Mg II systems with high-velocity outflows correlates with the average luminosities of their central quasars, indicating a relationship between outflows and the quasar feedback power. The υ r distribution of the outflow Mg II absorbers is peaked at 1023 km s‑1, which is smaller than the corresponding value of the outflow C IV absorbers. The redshift number density evolution of absorbers (dn/dz) limited by υ r > ‑3000 km s‑1 differs from that of absorbers constrained by υ r > 2000 km s‑1. Absorbers limited by υ r > 2000 km s‑1 and higher values exhibit profiles similar to dn/dz. In addition, the dn/dz is smaller when absorbers are constrained with larger υ r . The distributions of equivalent widths, and the ratio of {W}rλ 2796/{W}rλ 2803, are the same for associated and intervening systems, and independent of quasar luminosity.

  13. Balloon-borne and aircraft infrared measurements of ethane (C2H6) in the upper troposphere and lower stratosphere

    NASA Technical Reports Server (NTRS)

    Goldman, A.; Murcray, F. J.; Murcray, D. G.; Rinsland, C. P.; Coffey, M. T.; Mankin, W. G.

    1984-01-01

    Quantitative infrared measurements of ethane (C2H6) in the upper troposphere and lower stratosphere are reported. The results have been obtained from the analysis of absorption features of the nu9 band at 12.2 microns, which have been identified in high-resolution balloon-borne and aircraft solar absorption spectra. The balloon-borne spectral data were recorded at sunset with the 0.02/cm resolution University of Denver interferometer system, from a float altitude of 33.5 km near Alamogordo, New Mexico, on March 23, 1981. The aircraft spectra were recorded at sunset in July 1978 with a 0.06/cm resolution interferometer aboard a jet aircraft at 12 km altitude, near 35 deg N, 96 deg W. The balloon analysis indicates the C2H6 mixing ratio decreased from 3.5 ppbv near 8.8 km to 0.91 ppbv near 12.1 km. The results are consistent with the column value obtained from the aircraft data.

  14. Effects of detrital influx in the Pennsylvanian Upper Freeport peat swamp

    USGS Publications Warehouse

    Ruppert, L.F.; Stanton, R.W.; Blaine, Cecil C.; Eble, C.F.; Dulong, F.T.

    1991-01-01

    Quartz cathodoluminescence properties and mineralogy of three sets of samples and vegetal and/ or miospore data from two sets of samples from the Upper Freeport coal bed, west-central Pennsylvania, show that detrital influence from a penecontemporaneous channel is limited to an area less than three km from the channel. The sets of samples examined include localities of the coal bed where (1) the coal is thin, split by partings, and near a penecontemporaneous fluvial channel, (2) the coal is relatively thick and located approximately three km from the channel, and (3) the coal is thick and located approximately 12 km from the channel. Samples from locality 1 (nearest the channel) have relatively high-ash yields (low-temperature ash average = 27.3% on a pyrite- and calcite-free basis) and high proportions of quartz and clay minerals. The quartz is primarily detrital, as determined by cathodoluminescent properties, and the ratio of kaolinite to illite is low. In addition, most of the plant remains and miospores indicate peat-forming plants that required low nutrient levels for growth. In contrast, samples from localities 2 and 3, from the more interior parts of the bed, contained predominantly authigenic quartz grains nd yielded low-temperature ash values of less than 14% on a pyrite- and calcite-free basis. The low-temperature ash contains low concentrations of quartz and clay minerals and the ratio of kaolinite to illite is relatively high. Although intact core was not available for paleobotanical analyses, another core collected within 1 km from locality 3 contained plant types interpreted to have required high nutrient levels for growth. These data indicate that mineral formation is dominated by authigenic processes in interior parts of the coal body. Some of the authigenic quartz may have been derived from herbaceous ferns as indicated by patterns in the palynological and paleobotanical data. In contrast, detrital processes appeared to be limited to in areas directly adjacent to the penecontemporaneous channel where the coal bed is high in ash, split by mineral-rich partings, and of little or no economic value. ?? 1991.

  15. Downscaling with a nested regional climate model in near-surface fields over the contiguous United States: WRF dynamical downscaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jiali; Kotamarthi, Veerabhadra R.

    The Weather Research and Forecasting (WRF) model is used for dynamic downscaling of 2.5 degree National Centers for Environmental Prediction-U.S. Department of Energy Reanalysis II (NCEP-R2) data for 1980-2010 at 12 km resolution over most of North America. The model's performance for surface air temperature and precipitation is evaluated by comparison with high-resolution observational data sets. The model's ability to add value is investigated by comparison with NCEP-R2 data and a 50 km regional climate simulation. The causes for major model bias are studied through additional sensitivity experiments with various model setup/integration approaches and physics representations. The WRF captures themore » main features of the spatial patterns and annual cycles of air temperature and precipitation over most of the contiguous United States. However, simulated air temperatures over the south central region and precipitation over the Great Plains and the Southwest have significant biases. Allowing longer spin-up time, reducing the nudging strength, or replacing the WRF Single-Moment 6-class microphysics with Morrison microphysics reduces the bias over some subregions. However, replacing the Grell-Devenyi cumulus parameterization with Kain-Fritsch shows no improvement. The 12 km simulation does add value above the NCEP-R2 data and the 50 km simulation over mountainous and coastal zones.« less

  16. Statistics of the tropopause inversion layer over Beijing

    NASA Astrophysics Data System (ADS)

    Bian, Jianchun; Chen, Hongbin

    2008-05-01

    High resolution radiosonde data from Beijing, China in 2002 are used to study the strong tropopause inversion layer (TIL) in the extratropical regions in eastern Asia. The analysis, based on the tropopause-based mean (TB-mean) method, shows that the TIL over Beijing has similar features as over other sites in the same latitude in Northern America. The reduced values of buoyancy frequency in 13 17 km altitude in winter-spring are attributed to the higher occurrence frequency of the secondary tropopause in this season. In the monthly mean temperature profile relative to the secondary tropopause, there also exists a TIL with somewhat enhanced static stability directly over the secondary sharp thermal tropopause, and a 4 km thickness layer with reduced values of buoyancy frequency just below the tropopause, which corresponds to the 13 17 km layer in the first TB-mean thermal profile. In the monthly mean temperature profile relative to the secondary tropopause, a TIL also exists but it is not as strong. For individual cases, a modified definition of the TIL, focusing on the super stability and the small distance from the tropopause, is introduced. The analysis shows that the lower boundary of the newly defined TIL is about 0.42 km above the tropopause, and that it is higher in winter and lower in summer; the thickness of the TIL is larger in winter-spring.

  17. Crustal thickness and Vp/Vs beneath the southeastern United States: Constraints from receiver function stacking

    NASA Astrophysics Data System (ADS)

    Yang, Q.; Gao, S. S.; Liu, K. H.

    2017-12-01

    To provide new constraints on crustal structure and evolution models beneath a collage of tectonic provinces in the southeastern United States, a total of 10,753 teleseismic receiver functions recorded by 125 USArray and other seismic stations are used to compute crustal thickness and Vp/Vs values. The resulting crustal thicknesses range from 25 km at the coast to 51 km beneath the peak of the southern Appalachians with an average of 36.2 km ± 5.5 km. The resulting crustal thicknesses correlate well with surface elevation and Bouguer gravity anomalies. Beneath the Atlantic Coastal Plain, the crustal thicknesses show a clear eastward thinning with a magnitude of 10 km, from about 40 km beneath the western margin to 30 km beneath the coast. The Vp/Vs values for the entire study area range from 1.71 to 1.90 with a mean value of 1.80 ± 0.04. The mean Vp/Vs value is 1.82±0.035 in the southern Appalachian Mountain. The slightly larger than normal crustal Vp/Vs for this area might be the result of significant erosion of the felsic upper crust over the past 300 million years. Alternatively, it could also suggest the existence of pervasive magmatic intrusion into the Appalachian crust. The Vp/Vs measurements in the Atlantic Coastal Plain increase toward the east, ranging from 1.75 to 1.82, probably indicating a gradual increase of mafic magmatic intrusion into thinner crust during the development of the passive continental margin.

  18. Three-dimensional velocity models of the Mount St. Helens magmatic system using the iMUSH active-source data set

    NASA Astrophysics Data System (ADS)

    Kiser, E.; Levander, A.; Zelt, C. A.; Palomeras, I.; Creager, K.; Ulberg, C. W.; Schmandt, B.; Hansen, S. M.; Harder, S. H.; Abers, G. A.; Crosbie, K.

    2017-12-01

    Building upon previously published 2D results, this presentation will show the first 3D velocity models down to the Moho using the iMUSH (imaging Magma Under St. Helens) active-source seismic data set. Direct P and S wave travel times from 23 borehole shots recorded at approximately 6000 seismograph locations are used to model Vp, Vs, and Vp/Vs over an area extending approximately 75 km from the edifice of Mount St. Helens and down to approximately 15 km depth. At shallow depths, results show several high and low velocity anomalies that correspond well with known geological features. These include the Chehalis Basin northwest of Mount St. Helens, and the Silver Star Mountain, Spirit Lake, and Spud Mountain plutons. Starting at 4 km depth, low velocities and high Vp/Vs values are observed near Mount St. Helens, which may be associated with shallow magmatic fluids. High Vp/Vs values are also observed beneath the Indian Heaven Volcanic Field southeast of Mount St. Helens. At the regional scale, high amplitude north/south trending low and high velocity features extend from the western margin of the resolved models to approximately 30 km west of Mount St. Helens. In general these high and low velocity features also correspond to high and low Vp/Vs anomalies, respectively. These results are in agreement with previous studies that conclude that the accreted terrane Siletzia is composed of multiple igneous bodies interspersed with sedimentary units in this region. Another regional feature of interest is a broad low Vp/Vs area between Mount St. Helens, Mount Adams, and Mount Rainier that spatially correlates with the Southern Washington Cascades Conductor, indicating a non-magmatic origin to this body at shallow and mid-crustal depths. In addition to these shallow results, preliminary 3D velocity models of the entire crust will be presented that utilize both direct and reflected seismic phases from the Moho and other mid-crustal discontinuities. These models will constrain the lateral extents of lower-crustal high and low velocity features observed in previous 2D results. This information will be critical for understanding the distribution of cumulate bodies, magma reservoirs, and accreted terranes in the lower crust, and how these features have affected recent volcanic activity in this region.

  19. Kinematic evolution of a regional-scale gravity-driven deepwater fold-and-thrust belt: The Lamu Basin case-history (East Africa)

    NASA Astrophysics Data System (ADS)

    Cruciani, F.; Barchi, M. R.; Koyi, H. A.; Porreca, M.

    2017-08-01

    The deepwater fold-and-thrust belts (DWFTBs) are geological structures recently explored thanks to advances in offshore seismic imaging by oil industry. In this study we present a kinematic analysis based on three balanced cross-sections of depth-converted, 2-D seismic profiles along the offshore Lamu Basin (East African passive margin). This margin is characterized by a regional-scale DWFTB (> 450 km long), which is the product of gravity-driven contraction on the shelf that exhibits complex structural styles and differing amount of shortening along strike. Net shortening is up to 48 km in the northern wider part of the fold-and-thrust belt (≈ 180 km), diminishing to < 15 km toward the south, where the belt is markedly narrower (≈ 50 km). The three balanced profiles show a shortening percentage around 20% (comparable with the maximum values documented in other gravity-driven DWFTBs), with a significant variability along dip: higher values are achieved in the outer (i.e. down-dip) portion of the system, dominated by basinward-verging, imbricate thrust sheets. Fold wavelength increases landward, where doubly-verging structures and symmetric detachment folds accommodate a lower amount of shortening. Similar to other cases, a linear and systematic relationship between sedimentary thickness and fold wavelength is observed. Reconstruction of the rate of shortening through time within a fold-and-thrust belt shows that after an early phase of slow activation (Late Cretaceous), > 95% of net shortening was produced in < 10 Myr (during Paleocene). During this acme phase, which followed a period of high sedimentation rate, thrusts were largely synchronous and the shortening rate reached a maximum value of 5 mm/yr. The kinematic evolution reconstructed in this study suggests that the structural evolution of gravity-driven fold-and-thrust belts differs from the accretionary wedges and the collisional fold-and-thrust belts, where thrusts propagate in-sequence and shortening is uniformly accommodated along dip.

  20. Permeability, transport, and metabolism of solutes in Caco-2 cell monolayers: a theoretical study.

    PubMed

    Sun, Huadong; Pang, K Sandy

    2008-01-01

    We explored the properties of a catenary model that includes the basolateral (B), apical (A), and cellular compartments via simulations under linear and nonlinear conditions to understand the asymmetric observations arising from transporters, enzymes, and permeability in Caco-2 cells. The efflux ratio (EfR; P(app,B-->A)/P(app,A-->B)), obtained from the effective permeability from the A-->B and B-->A direction under linear conditions, was unity for passively permeable drugs whose transport does not involve transporters; the value was unaffected by cellular binding or metabolism, but increased with apical efflux. Metabolism was asymmetric, showing lesser metabolite accrual for the B-->A than A-->B direction because of inherent differences in the volumes for A and B. Moreover, the net flux (total - passive permeation) due to saturable apical efflux, absorption, or metabolism showed nonconformity to simple Michaelis-Menten kinetics against C(D,0), the loading donor concentration. EfR values differed with saturable apical efflux and metabolism (>1), as well as apical absorption (EfRs <1), but approached unity with high passive diffusive clearance (CL(d)) and increasing C(D,0) at a higher degree of saturation of the process. The J(max) (apparent V(max) estimated for the carrier system) and K(m)(') [or the K(m)('') based on a modified equation with the Hill coefficient (beta)] estimates from the Eadie-Hofstee plot revealed spurious correlations with the assigned V(max) and K(m). The sampling time, CL(d), and parameter space of K(m) and V(max) strongly influenced both the correlation and accuracy of estimates. Improved correlation was found for compounds with high CL(d). These observations showed that the catenary model is appropriate in the description of transport and metabolic data in Caco-2 cells.

  1. Dynamics of rings around elongated bodies

    NASA Astrophysics Data System (ADS)

    Sicardy, Bruno; Leiva, Rodrigo; Ortiz, Jose Luis; Santos Sanz, Pablo; Renner, Stefan; El Moutamid, Maryame; Berard, Diane; Desmars, Josselin; Meza, Erick; Rossi, Gustavo; Braga-Ribas, Felipe; Camargo, Julio; Vieira-Martins, Roberto; Morales, Nicolas; Duffard, Rene; Colas, Francois; Maquet, Lucie; Bouley, Sylvain; Bath, Karl-Ludwig; Beisker, Wolfgang; Dauverge, Jean-Luc; Kretlow, Mike; Chariklo Occultations Team; Haumea Occultation Team

    2017-10-01

    Dense and narrow rings are encountered around small bodies like the Centaur object Chariklo, and possibly Chiron. The rings and central bodies can be studied in great details thanks to stellar occultations, which accuracies at the km-level. Here we present new results from three high-quality occultations by Chariklo observed in 2017. They provide new insights on the ring geometry and Chariklo's shape. Data are currently being analyzed, but preliminary results are consistent with a triaxial model for Chariklo, with semi-axes a>b>c, where (a-b) may reach values as large as 10-15 km, depending on the model.Such large values induce a strong coupling between the body and an initial collisional debris disk from which the rings emerged. This coupling stems from Lindblad resonances between the ring particle mean motion and Chariklo's spin rate. We find that the resonances clear the corotation zone (estimated to lie at about 215 km from Chariklo's center) in very short time scales (centuries) and pushes the material well beyond the 3/2 resonance - that lies at an estimated radius of 280 km, thus consistent with the radius of Chariklo's main ring C1R, 390 km.Other cases will be examined in view of multi-chord stellar occultations by Trans-Neptunian Objects successfully observed in 2017, as they provide constraints for the presence of material around these bodies. Results and dynamical implications will be presented.Part of this work has received funding from the European Research Council under the European Community's H2020 2014-2020 ERC grant Agreement n°669416 "Lucky Star"

  2. Vegetation Analysis and Land Use Land Cover Classification of Forest in Uttara Kannada District India Through Geo-Informatics Approach

    NASA Astrophysics Data System (ADS)

    Koppad, A. G.; Janagoudar, B. S.

    2017-05-01

    The study was conducted in Uttara Kannada districts during the year 2012-2014. The study area lies between 13.92° N to 15.52° N latitude and 74.08° E to 75.09° E longitude with an area of 10,215 km2. The Indian satellite IRS P6 LISS-III imageries were used to classify the land use land cover classes with ground truth data collected with GPS through supervised classification in ERDAS software. The land use and land cover classes identified were dense forest, horticulture plantation, sparse forest, forest plantation, open land and agriculture land. The dense forest covered an area of 63.32 % (6468.70 sq km) followed by agriculture 12.88 % (1315.31 sq. km), sparse forest 10.59 % (1081.37 sq. km), open land 6.09 % (622.37 sq. km), horticulture plantation and least was forest plantation (1.07 %). Settlement, stony land and water body together cover about 4.26 percent of the area. The study indicated that the aspect and altitude influenced the forest types and vegetation pattern. The NDVI map was prepared which indicated that healthy vegetation is represented by high NDVI values between 0.1 and 1. The non-vegetated features such as water bodies, settlement, and stony land indicated less than 0.1 values. The decrease in forest area in some places was due to anthropogenic activities. The thematic map of land use land cover classes was prepared using Arc GIS Software.

  3. Retrieval of sodium number density profiles in the mesosphere and lower thermosphere from SCIAMACHY limb emission measurements

    NASA Astrophysics Data System (ADS)

    Langowski, M. P.; von Savigny, C.; Burrows, J. P.; Rozanov, V. V.; Dunker, T.; Hoppe, U.-P.; Sinnhuber, M.; Aikin, A. C.

    2016-01-01

    An algorithm has been developed for the retrieval of sodium atom (Na) number density on a latitude and altitude grid from SCIAMACHY (SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY) limb measurements of the Na resonance fluorescence. The results are obtained between 50 and 150 km altitude and the resulting global seasonal variations of Na are analyzed. The retrieval approach is adapted from that used for the retrieval of magnesium atom (Mg) and magnesium ion (Mg+) number density profiles recently reported by Langowski et al. (2014). Monthly mean values of Na are presented as a function of altitude and latitude. This data set was retrieved from the 4 years of spectroscopic limb data of the SCIAMACHY mesosphere and lower thermosphere (MLT) measurement mode (mid-2008 to early 2012). The Na layer has a nearly constant peak altitude of 90-93 km for all latitudes and seasons, and has a full width at half maximum of 5-15 km. Small but significant seasonal variations in Na are identified for latitudes less than 40°, where the maximum Na number densities are 3000-4000 atoms cm-3. At middle to high latitudes a clear seasonal variation with a winter maximum of up to 6000 atoms cm-3 is observed. The high latitudes, which are only measured in the summer hemisphere, have lower number densities, with peak densities being approximately 1000 Na atoms cm-3. The full width at half maximum of the peak varies strongly at high latitudes and is 5 km near the polar summer mesopause, while it exceeds 10 km at lower latitudes. In summer the Na atom concentration at high latitudes and at altitudes below 88 km is significantly smaller than that at middle latitudes. The results are compared with other observations and models and there is overall a good agreement with these.

  4. Local time variations of the middle atmosphere of Venus: Solar-related structures

    NASA Astrophysics Data System (ADS)

    Zasova, L.; Khatountsev, I. V.; Ignatiev, N. I.; Moroz, V. I.

    Three-dimensional fields (latitude — altitude — local time) of temperature and aerosol in the upper clouds, obtained from the Venera-15 IR spectrometry data, were studied to search for the solar-related structures. The temperature variation at the isobaric levels vs. solar longitude was presented as a superposition of the cosines with periods of 1, 1/2, 1/3 and 1/4 Venusian days. At low latitudes the diurnal tidal component reaches a maximum above 0.2 mb (92km) level. At high latitudes it dominates at P> 50 mb (68 km) in the cold collar, being roughly twice as much as the semidiurnal one and passing through the maximum of 13 K at 400 mb (57 km). The semidiurnal tidal amplitude exceeds the diurnal one below 90 km (where its maximum locates near 83 km), and also in the upper clouds, above 58 km. At low latitudes the 1/3 days component predominates at 10 - 50 mb (68-76 km). In the upper clouds, where most of the solar energy, absorbed in the middle atmosphere, deposits, all four tidal components, including wavenumbers 3 and 4, have significant amplitudes. A position of the upper boundary of the clouds depends on local time in such a way that the lowest height of the clouds is observed in the morning at all selected latitude ranges. At low latitudes the highest position of the upper boundary of the clouds (at 1218 cm -1) is found at 8 - 9 PM, whereas the lowest one is near the morning terminator. At high latitudes the lowest position of the upper boundary of the clouds shifts towards the dayside being at 10:30 AM at 75° in the cold collar and the highest one shifts to 4 PM. The zonal mean altitude of the upper boundary of the clouds decreases from 69 km at 15° to 59 km at 75°. The diurnal tidal component has the highest amplitude in the cold collar (1.5 km). At low latitudes both amplitudes, diurnal and semidiurnal, reach the values 0.8 - 1 km.

  5. Regional geologic framework off northeastern United States

    USGS Publications Warehouse

    Schlee, J.; Behrendt, John C.; Grow, J.A.; Robb, James M.; Mattick, R.; Taylor, P.T.; Lawson, B.J.

    1976-01-01

    Six multichannel seismic-reflection profiles taken across the Atlantic continental margin Previous HitoffTop the northeastern United States show an excess of 14 km of presumed Mesozoic and younger sedimentary rocks in the Baltimore Canyon trough and 8 km in the Georges Bank basin. Beneath the continental rise, the sedimentary prism thickness exceeds 7 km south of New Jersey and Maryland, and it is 4.5 km thick south of Georges Bank. Stratigraphically, the continental slope--outer edge of the continental shelf is a transition zone of high-velocity sedimentary rock, probably carbonate, that covers deeply subsided basement. Acoustically, the sedimentary sequence beneath the shelf is divided into three units which are correlated speculatively with the Cenozoic, the Cretaceous, and the Jurassic-Triassic sections. These units thicken offshore, and some have increased seismic velocities farther offshore. The uppermost unit thickens from a fraction of a kilometer to slightly more than a kilometer in a seaward direction, and velocity values range from 1.7 to 2.2 km/sec. The middle unit thickens from a fraction of a kilometer to as much as 5 km (northern Baltimore Canyon trough), and seismic velocity ranges from 2.2 to 5.4 km/sec. The lowest unit thickens to a maximum of 9 km (northern Baltimore Canyon), and velocities span the 3.9 to 5.9-km/sec interval. The spatial separation of magnetic and gravity anomalies on line 2 (New Jersey) suggests that in the Baltimore Canyon region the magnetic-slope anomaly is due to edge effects and that the previously reported free-air and isostatic gravity anomalies over the outer shelf may be due in part to a lateral increase in sediment density (velocity) near the shelf edge. The East Coast magnetic anomaly and the free-air gravity high both coincide over the outer shelf edge on line 1 (Georges Bank) but are offset by 20 km from the ridge on the reflection profile. Because the magnetic-slope-anomaly wavelength is nearly 50 km across, a deep source is likely. In part, the positive free-air gravity anomaly likewise may represent the significant lateral density increase within the sedimentary section to ard the outer edge of the shelf.

  6. Scale dependency of regional climate modeling of current and future climate extremes in Germany

    NASA Astrophysics Data System (ADS)

    Tölle, Merja H.; Schefczyk, Lukas; Gutjahr, Oliver

    2017-11-01

    A warmer climate is projected for mid-Europe, with less precipitation in summer, but with intensified extremes of precipitation and near-surface temperature. However, the extent and magnitude of such changes are associated with creditable uncertainty because of the limitations of model resolution and parameterizations. Here, we present the results of convection-permitting regional climate model simulations for Germany integrated with the COSMO-CLM using a horizontal grid spacing of 1.3 km, and additional 4.5- and 7-km simulations with convection parameterized. Of particular interest is how the temperature and precipitation fields and their extremes depend on the horizontal resolution for current and future climate conditions. The spatial variability of precipitation increases with resolution because of more realistic orography and physical parameterizations, but values are overestimated in summer and over mountain ridges in all simulations compared to observations. The spatial variability of temperature is improved at a resolution of 1.3 km, but the results are cold-biased, especially in summer. The increase in resolution from 7/4.5 km to 1.3 km is accompanied by less future warming in summer by 1 ∘C. Modeled future precipitation extremes will be more severe, and temperature extremes will not exclusively increase with higher resolution. Although the differences between the resolutions considered (7/4.5 km and 1.3 km) are small, we find that the differences in the changes in extremes are large. High-resolution simulations require further studies, with effective parameterizations and tunings for different topographic regions. Impact models and assessment studies may benefit from such high-resolution model results, but should account for the impact of model resolution on model processes and climate change.

  7. Is EMG of the lower leg dependent on weekly running mileage?

    PubMed

    Baur, H; Hirschmüller, A; Müller, S; Cassel, M; Mayer, F

    2012-01-01

    Neuromuscular activity of the lower leg is dependent on the task performed, speed of movement and gender. Whether training volume influences neuromuscular activity is not known. The EMG of physically active persons differing in running mileage was analysed to investigate this. 55 volunteers were allocated to a low (LM: < 30 km), intermediate (IM: > 30 km & < 45 km) or high mileage (HM: > 45 km) group according to their weekly running volume. Neuromuscular activity of the lower leg was measured during running (3.33 m·s - 1). Mean amplitude values for preactivation, weight acceptance and push-off were calculated and normalised to the mean activity of the entire gait cycle.Higher activity in the gastrocnemius group was observed in weight acceptance in LM compared to IM (+30%) and HM (+25%) but lower activity was present in the push-off for LM compared to IM and HM. For the peroneal muscle, differences were present in the push-off where HM showed increased activity compared to IM (+24%) and LM (+60%). The tibial muscle revealed slightly lower activity during preactivation for the high mileage runners. Neuromuscular activity differs during stance between the high and intermediate group compared to low mileage runners. Slight adaptations in neuromuscular activation indicate a more target-oriented activation strategy possibly due to repetitive training in runners with higher weekly mileage. © Georg Thieme Verlag KG Stuttgart · New York.

  8. Agricultural drought assessment using remotely sensed data in Central America

    NASA Astrophysics Data System (ADS)

    Nguyen, S. T.; Chen, C. F.; Chen, C. R.

    2017-12-01

    Central America is one of the world's regions most vulnerable to negative effects of agricultural drought due to impacts of climate change. Famers in the region have been confronting risks of crop damages and production losses due to intense droughts throughout the growing seasons. Drought information is thus deemed vital for policymakers to assess their crop management strategies in tackling issues of food insecurity in the region. This study aimed to delineate drought-prone areas associated with cropped areas from eight-day MODIS data in 2016 using the commonly used temperature dryness vegetation index (TVDI), calculated based on the land surface temperature (LST) and enhanced vegetation index (EVI) data. The advantages of MODIS data for agricultural drought monitoring at a national/regional scale are that it has the spatial resolution (500 m-1 km) and relatively high temporal resolution of eight days, but the data are often contaminated by clouds. Detecting and reconstructing the data under cloud-affected areas are generally a challenging task without any robust methods up to date. In this study, we reconstructed the eight-day MODIS EVI and LST data for agricultural drought assessment using machine-learning approaches. The reconstructed data were then used for drought assessment. The TVDI results verified with the soil moisture active passive (SMAP) data showed that the correlation coefficient values (r) obtained for the apante season (December-March) were between -0.4 to -0.8, while the values for the primera season (April-August) and postrera season (September-November) were in ranges of 0 to -0.6 and -0.2 to -0.7, respectively. The larger area of very dry soil moisture was generally observed during the dry season (December-April) and declined in the rainy season (May-November). The cropping areas affected by severe and moderate droughts observed for the primera season were respectively 11,846 km2 and 60,557 km2, while the values for the postera season were 14,174 km2 and 56,809 km2, and those for the postera season were 16,532 km2 and 40,018 km2, respectively. This study could provide quantitative information on distributions of drought at an eight-day interval, which is important to assist officials to mitigate economic costs for vulnerable populations in drought-prone areas.

  9. [Reconstruction of urban land space based on minimum cumulative resistance model: a case study of Xintang Town, Guangzhou City].

    PubMed

    Zhong, Shi-Yu; Wu, Qing; Li, Yu; Cheng, Jin-Ping

    2012-11-01

    Based on the source-sink landscape theory and the principles of ecosystem services, the minimum cumulative resistance (MCR) model was modified, where the urban center construction land was taken as the expansion source, and the contribution rate of ecological land ecosystem services value was considered as the resistance coefficient. With the modified MCR, the urban spatial expansion process of Xintang Town, Guangzhou City was successfully simulated, and, based on the protection of ecological security pattern, the optimum path for reconstructing urban land space was put forward. The simulated urban spatial expansion short path in 1988-2008 was in accordance with the real situation. By the modified MCR, the urban space was divided into four zones of high, higher, medium, and low resistance, with the area of 80.84, 78.90, 24.26, and 61.88 km2, respectively. The expansion path of the urban space was along the route from low to medium and then to high resistance zones successively. The land suitable for eco-protection and construction had an area of 159.74 km2 and 86.14 km2, while the ecological conflict area (17.37 km2) was mainly located in higher and high resistance zones, being 10.38 and 6.99 km2, respectively. The modified MCR could not only effectively reflect the distribution area of urban land use and the conflict relationship between urban construction and ecological protection, but also reasonably judge the best developmental short path for urban spatial expansion.

  10. High-speed, bi-directional dual-core fiber transmission system for high-density, short-reach optical interconnects

    NASA Astrophysics Data System (ADS)

    Geng, Ying; Li, Shenping; Li, Ming-Jun; Sutton, Clifford G.; McCollum, Robert L.; McClure, Randy L.; Koklyushkin, Alexander V.; Matthews, Karen I.; Luther, James P.; Butler, Douglas L.

    2015-03-01

    A complete single mode dual-core fiber system for short-reach optical interconnects is fabricated and tested for high-speed data transmission. It includes dual-core fibers capable of bi-directional data transmission, dual-core simplex LC connectors, and fan-outs. The transmission system offers simplified bi-directional traffic engineering with integrated bidirectional transceivers and compact system design, utilizing simplex dual-core LC connectors that use half the space while increasing the bandwidth density by a factor of two. The fiber has two cores that are compatible with single mode fiber and conforms to the industry standard outer diameter of 125 μm. This reduces operational complexity by reducing the size and number of fibers, cables and connectors. Measured OTDR loss for both cores was 0.34 dB/km at 1310 nm and 0.19 dB/km at 1550 nm. Crosstalk for a piece of 5.8 km long dual-core fiber was measured to be below -75 dB at 1310 nm, and below -40 dB at 1550 nm. Both free-space optics fan-outs and tapered-fiber-coupler based MCF fan-outs were evaluated for the transmission system. Error-free and penalty-free 25 Gb/s bi-directional transmission performance was demonstrated for three different fiber lengths, 200 m, 2 km and 10 km, using the complete all-fiber-based system including connectors and fan-outs. This single mode, dual-core fiber transmission system adds complementary value to systems where additional increases in bandwidth density can come from wavelength division multiplexing and multiple bits per symbol.

  11. Crustal attenuation characteristics in western Turkey

    NASA Astrophysics Data System (ADS)

    Kurtulmuş, Tevfik Özgür; Akyol, Nihal

    2013-11-01

    We analysed 1764 records produced by 322 micro- and moderate-size local earthquakes in western Turkey to estimate crustal attenuation characteristics in the frequency range of 1.0 ≤ f ≤ 10 Hz. In the first step, we obtained non-parametric attenuation functions and they show that seismic recordings of transverse and radial S waves exhibit different characteristics at short and long hypocentral distances. Applying a two-step inversion, we parametrized Q( f ) and geometrical spreading exponent b( f ) for the entire distance range between 10 and 200 km and then we estimated separately Q and b values for short (10-70 km) and large (120-200 km) distance ranges. We could not observe significant frequency dependencies of b for short distance range, whereas the significant frequency dependence of b was observed for large distances. Low Q0 values (˜60) with strong frequency dependence of Q (˜1.4) for short distances suggest that scattering might be an important factor contributing to the attenuation of body waves in the region, which could be associated to a high degree of fracturing, fluid filled cracks, young volcanism and geothermal activity in the crust. Weak Q frequency dependence and higher Q0 values for large distances manifest more homogenous medium because of increasing pressure and enhanced healing of cracks with increasing temperature and depth. Q anisotropy was also observed for large hypocentral distance ranges.

  12. Evaluation of extreme ionospheric total electron content gradient associated with plasma bubbles for GNSS Ground-Based Augmentation System

    NASA Astrophysics Data System (ADS)

    Saito, S.; Yoshihara, T.

    2017-08-01

    Associated with plasma bubbles, extreme spatial gradients in ionospheric total electron content (TEC) were observed on 8 April 2008 at Ishigaki (24.3°N, 124.2°E, +19.6° magnetic latitude), Japan. The largest gradient was 3.38 TECU km-1 (total electron content unit, 1 TECU = 1016 el m-2), which is equivalent to an ionospheric delay gradient of 540 mm km-1 at the GPS L1 frequency (1.57542 GHz). This value is confirmed by using multiple estimating methods. The observed value exceeds the maximum ionospheric gradient that has ever been observed (412 mm km-1 or 2.59 TECU km-1) to be associated with a severe magnetic storm. It also exceeds the assumed maximum value (500 mm km-1 or 3.08 TECU km-1) which was used to validate the draft international standard for Global Navigation Satellite System (GNSS) Ground-Based Augmentation Systems (GBAS) to support Category II/III approaches and landings. The steepest part of this extreme gradient had a scale size of 5.3 km, and the front-normal velocities were estimated to be 71 m s-1 with a wavefront-normal direction of east-northeastward. The total width of the transition region from outside to inside the plasma bubble was estimated to be 35.3 km. The gradient of relatively small spatial scale size may fall between an aircraft and a GBAS ground subsystem and may be undetectable by both aircraft and ground.

  13. Topographic control on the nascent Mediterranean outflow

    NASA Astrophysics Data System (ADS)

    Gasser, M.; Pelegrí, J. L.; Nash, J. D.; Peters, H.; García-Lafuente, J.

    2011-12-01

    Data collected during a 12-day cruise in July 2009 served to examine the structure of the nascent Mediterranean Outflow Water (MOW) immediately west of the Espartel Sill, the westernmost sill in the Strait of Gibraltar. The MOW is characterized by high salinities (>37.0 and reaching 38.3) and high velocities (exceeding 1 m s-1 at 100 m above the seafloor), and follows a submerged valley along a 30 km stretch, the natural western extension of the strait. It is approx. 150 m thick and 10 km wide, and experiences a substantial drop from 420 to 530 m over a distance of some 3 km between two relatively flat regions. Measurements indicate that the nascent MOW behaves as a gravity current with nearly maximal traveling speed; if this condition is maintained, then the maximum MOW velocity would decrease slowly with distance from the Espartel Sill, remaining significantly high until the gravity current excess density is only a small fraction of its original value. The sharp pycnocline between the Mediterranean and the overlying North Atlantic Central waters is dynamically unstable, particularly where the flow interacts with the 100 m decrease in bottom depth. Here, subcritical gradient Richardson numbers coincide with the development of large interfacial undulations and billows. The very energetic downslope flow is likely responsible for the development of a narrow V-shaped channel downstream of the seafloor drop along the axis of the submerged valley, this probably being the very first erosional scour produced by the nascent MOW. The coincidence of subcritical gradient Richardson numbers with relatively high turbidity values above the channel flanks suggests it may be undergoing upstream erosion.

  14. The first armadillo repeat is involved in the recognition and regulation of beta-catenin phosphorylation by protein kinase CK1.

    PubMed

    Bustos, Victor H; Ferrarese, Anna; Venerando, Andrea; Marin, Oriano; Allende, Jorge E; Pinna, Lorenzo A

    2006-12-26

    Multiple phosphorylation of beta-catenin by glycogen synthase kinase 3 (GSK3) in the Wnt pathway is primed by CK1 through phosphorylation of Ser-45, which lacks a typical CK1 canonical sequence. Synthetic peptides encompassing amino acids 38-64 of beta-catenin are phosphorylated by CK1 on Ser-45 with low affinity (K(m) approximately 1 mM), whereas intact beta-catenin is phosphorylated at Ser-45 with very high affinity (K(m) approximately 200 nM). Peptides extended to include a putative CK1 docking motif (FXXXF) at 70-74 positions or a F74AA mutation in full-length beta-catenin had no significant effect on CK1 phosphorylation efficiency. beta-Catenin C-terminal deletion mutants up to residue 181 maintained their high affinity, whereas removal of the 131-181 fragment, corresponding to the first armadillo repeat, was deleterious, resulting in a 50-fold increase in K(m) value. Implication of the first armadillo repeat in beta-catenin targeting by CK1 is supported in that the Y142E mutation, which mimics phosphorylation of Tyr-142 by tyrosine kinases and promotes dissociation of beta-catenin from alpha-catenin, further improves CK1 phosphorylation efficiency, lowering the K(m) value to <50 nM, approximating the physiological concentration of beta-catenin. In contrast, alpha-catenin, which interacts with the N-terminal region of beta-catenin, prevents Ser-45 phosphorylation of CK1 in a dose-dependent manner. Our data show that the integrity of the N-terminal region and the first armadillo repeat are necessary and sufficient for high-affinity phosphorylation by CK1 of Ser-45. They also suggest that beta-catenin association with alpha-catenin and beta-catenin phosphorylation by CK1 at Ser-45 are mutually exclusive.

  15. Volcanic-aerosol-induced changes in stratospheric ozone following the eruption of Mount Pinatubo

    NASA Technical Reports Server (NTRS)

    Grant, W. B.; Browell, E. V.; Fishman, J.; Brackett, V. G.; Fenn, M. A.; Butler, C. F.; Nganga, D.; Minga, A.; Cros, B.; Mayor, S. D.

    1994-01-01

    Measurements of lower stratospheric ozone in the Tropics using electrochemical concentrations cell (ECC) sondes and the airborne UV Differential Absorption Lidar (DIAL) system after the eruption of Mt. Pinatubo are compared with the Stratospheric Aerosol and Gas Experiment 2 (SAGE 2) and ECC sonde measurements from below the eruption to determine what changes have occurred as a result. Aerosol data from the Advanced Very High Resolution Radiometer (AVHRR) and the visible and IR wavelengths of the lidar system are used to examine the relationship between aerosols and ozone changes. Ozone decreases of 30 percent at altitudes between 19 and 26 km, partial column (16-28 km) decreases of about 27 D.U., and slight increases (5.4 D.U.) between 28 and 31 km are found in comparison with SAGE 2 climatological values.

  16. Evaluation of 2 possible further developments of the UK in-flight radiation warning meter for SSTS

    NASA Technical Reports Server (NTRS)

    Wilson, I. J.; Eustace, R. C.

    1972-01-01

    A mass reduction of the moderator and the response to the nucleon flux, responsible for the tissue-star component of the total-dose equivalent rate using a high atomic number material, are discussed. Radiation situations at SST cruising altitudes (approximately 20 km) due to solar proton flares were simulated in the stratosphere and on the ground. Actual stratospheric situations due to galactic cosmic radiation with a limited range of quality factor values (2-4) were encountered during slow ascents by balloons to 36 km. Synthetic situations obtained from high and low energy acclerator radiations were used to obtain radiation distributions having a larger range of quality factor values (11/2-9) than experienced in the stratosphere. The measurements made in these simulations related to the directly ionizing, neutron and tissue-star components of dose-equivalent rate. Due to the restricted range of neutron spectra encountered in the stratosphere, a significant mass reduction of the moderator by 4 kg was made, with the moderator clad with cadmium or some other slow neutron absorber.

  17. Compression of regions in the global advanced very high resolution radiometer 1-km data set

    NASA Technical Reports Server (NTRS)

    Kess, Barbara L.; Steinwand, Daniel R.; Reichenbach, Stephen E.

    1994-01-01

    The global advanced very high resolution radiometer (AVHRR) 1-km data set is a 10-band image produced at USGS' EROS Data Center for the study of the world's land surfaces. The image contains masked regions for non-land areas which are identical in each band but vary between data sets. They comprise over 75 percent of this 9.7 gigabyte image. The mask is compressed once and stored separately from the land data which is compressed for each of the 10 bands. The mask is stored in a hierarchical format for multi-resolution decompression of geographic subwindows of the image. The land for each band is compressed by modifying a method that ignores fill values. This multi-spectral region compression efficiently compresses the region data and precludes fill values from interfering with land compression statistics. Results show that the masked regions in a one-byte test image (6.5 Gigabytes) compress to 0.2 percent of the 557,756,146 bytes they occupy in the original image, resulting in a compression ratio of 89.9 percent for the entire image.

  18. Seismic Observations From the Afar Rift Dynamics Project: Preliminary Results

    NASA Astrophysics Data System (ADS)

    Hammond, J. O.; Guidarelli, M.; Belachew, M.; Keir, D.; Ayele, A.; Ebinger, C.; Stuart, G.; Kendall, J.

    2008-12-01

    Following the 2005 Dabbahu rifting event in Afar, 9 broadband seismometers were installed around the active rift segment to study the microseismicity associated with this and subsequent dyking events. These recorded more than one year of continuous data. In March 2007, 41 stations were deployed throughout Afar and the adjacent rift flanks as part of a large multi-national, collaboration involving universities and organisations from the UK, US and Ethiopia. This abstract describes the crustal and upper mantle structure results of the first 19 months of data. Bulk crustal structure has been determined using the H-k stacking of receiver functions and thickness varies from ~45 km on the rift margins to ~16 km beneath the northeastern Afar stations. Estimates of Vp/Vs show normal continental crust values (1.7-1.8) on the rift margins, and very high values (2.0-2.2) in Afar. A study of seismic noise interferometry is in early stages, but inversions using 20 s Green's function estimates, with some control from regional surface waves, show evidence for thin crustal regions around the recently rifted Dabbahu segment. To improve our understanding of the physical and compositional properties of the crust and locate regions of high attenuation (an indicator of melt), we determine attenuation (Q) using t* values measured from spectra of P wave arrivals. We present whole path attenuation from source to receiver, which will provide a starting point for a future tomographic inversion. SKS-wave splitting results show sharp changes over small lateral distances (40° over <30 km), with fast directions overlying the Dabbahu segment aligning parallel with the recent diking. This supports ideas of melt dominated anisotropy beneath the Ethiopian rift. Seismic tomography inversions show that in the top 150 km low velocities mimic the trend of the seismicity in Afar. The low velocity anomalies extend from the main Ethiopian rift NE, towards Djibouti, and from Djibouti NW towards the Dabbahu segment. Outside of these linear regions the velocities are relatively fast. Below ~250 km the anomaly broadens to cover most of the Afar region with only the rift margins remaining fast. The seismic studies will be integrated with results from other areas of the consortium project (e.g., Magneto- tellurics, GPS, insar, gravity, petrology, geochemistry), enabling us to develop a greater understanding of rifting beneath an area of incipient oceanic spreading.

  19. Mercury Slovenian soils: High, medium and low sample density geochemical maps

    NASA Astrophysics Data System (ADS)

    Gosar, Mateja; Šajn, Robert; Teršič, Tamara

    2017-04-01

    Regional geochemical survey was conducted in whole territory of Slovenia (20273 km2). High, medium and low sample density surveys were compared. High sample density represented the regional geochemical data set supplemented by local high-density sampling data (irregular grid, n=2835). Medium-density soil sampling was performed in a 5 x 5 km grid (n=817) and low-density geochemical survey was conducted in a sampling grid 25 x 25 km (n=54). Mercury distribution in Slovenian soils was determined with models of mercury distribution in soil using all three data sets. A distinct Hg anomaly in western part of Slovenia is evident on all three models. It is a consequence of 500-years of mining and ore processing in the second largest mercury mine in the world, the Idrija mine. The determined mercury concentrations revealed an important difference between the western and the eastern parts of the country. For the medium scale geochemical mapping is the median value (0.151 mg /kg) for western Slovenia almost 2-fold higher than the median value (0.083 mg/kg) in eastern Slovenia. Besides the Hg median for the western part of Slovenia exceeds the Hg median for European soil by a factor of 4 (Gosar et al., 2016). Comparing these sample density surveys, it was shown that high sampling density allows the identification and characterization of anthropogenic influences on a local scale, while medium- and low-density sampling reveal general trends in the mercury spatial distribution, but are not appropriate for identifying local contamination in industrial regions and urban areas. The resolution of the pattern generated is the best when the high-density survey on a regional scale is supplemented with the geochemical data of the high-density surveys on a local scale. References: Gosar, M, Šajn, R, Teršič, T. Distribution pattern of mercury in the Slovenian soil: geochemical mapping based on multiple geochemical datasets. Journal of geochemical exploration, 2016, 167/38-48.

  20. Morphine-induced kinetic alterations of choline acetyltransferase of the rat caudate nucleus

    PubMed Central

    Datta, K.; Wajda, I. J.

    1972-01-01

    1. In order to explain the decrease of choline acetyltransferase (2.3.1.6.) activity observed in the caudate nucleus of morphine-treated rats, partially purified preparations of the enzyme were used in kinetic studies, with choline as substrate. 2. The apparent Michaelis constant for the enzyme obtained from normal rats was found to be 0·9 mM choline; this value doubled when the animals were killed one hour after a single injection of morphine (30 mg/kg). When the rats were injected daily for 4 or 15 days, and killed one hour after the last injection, the apparent Km value was 2·1 mM in each case. Prolonged daily treatment with morphine, followed by 48 h withdrawal, or by administration of 4 mg/kg of naloxone (given half an hour after the last injection of morphine) resulted in apparent Km values of 1·3-1·5 mM of choline, suggesting a gradual return to the lower, normal substrate requirement. Vmax changes were insignificant. 3. The effect of morphine added in vitro to different enzyme preparations was also studied. The Km values of 0·9 mM, in the enzyme isolated from normal rats, increased to 2·0 after incubation in vitro with 12·5 mM morphine. Similar increases were found in enzymes obtained from rats 48 h after the withdrawal of morphine or from rats injected with naloxone after prolonged morphine treatment. The high apparent Km values, found in enzyme obtained from animals killed one hour after the last dose of morphine, did not change upon incubation with 12·5 mM morphine. A similar pattern of Km changes was noticed after incubation with 25 mM acetylcholine. 4. An increase of 32% in acetylcholine (ACh) level was found in the caudate nucleus one hour after subcutaneous injection of 30 mg/kg of morphine. Return to normal values was observed when morphine was administered daily. After two to three weeks of daily treatment and subsequent withdrawal from morphine for 48 h, the levels of ACh were normal. If the daily treated rats were given naloxone within half an hour of the last injection of morphine, and killed 30 min later, the levels of ACh remained normal. 5. Fifty per cent inhibition of enzyme activity was observed upon in vitro incubation with 75 mM acetylcholine, or with 25 mM morphine. The same degree of inhibition was noticed when the enzyme was obtained from normal or from morphine-treated rats. PMID:5041452

  1. Radiotracer properties determined by high performance liquid chromatography: a potential tool for brain radiotracer discovery.

    PubMed

    Tavares, Adriana Alexandre S; Lewsey, James; Dewar, Deborah; Pimlott, Sally L

    2012-01-01

    Previously, development of novel brain radiotracers has largely relied on simple screening tools. Improved selection methods at the early stages of radiotracer discovery and an increased understanding of the relationships between in vitro physicochemical and in vivo radiotracer properties are needed. We investigated if high performance liquid chromatography (HPLC) methodologies could provide criteria for lead candidate selection by comparing HPLC measurements with radiotracer properties in humans. Ten molecules, previously used as radiotracers in humans, were analysed to obtain the following measures: partition coefficient (Log P); permeability (P(m)); percentage of plasma protein binding (%PPB); and membrane partition coefficient (K(m)). Relationships between brain entry measurements (Log P, P(m) and %PPB) and in vivo brain percentage injected dose (%ID); and K(m) and specific binding in vivo (BP(ND)) were investigated. Log P values obtained using in silico packages and flask methods were compared with Log P values obtained using HPLC. The modelled associations with %ID were stronger for %PPB (r(2)=0.65) and P(m) (r(2)=0.77) than for Log P (r(2)=0.47) while 86% of BP(ND) variance was explained by K(m). Log P values were variable dependant on the methodology used. Log P should not be relied upon as a predictor of blood-brain barrier penetration during brain radiotracer discovery. HPLC measurements of permeability, %PPB and membrane interactions may be potentially useful in predicting in vivo performance and hence allow evaluation and ranking of compound libraries for the selection of lead radiotracer candidates at early stages of radiotracer discovery. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Functional Characterization of Key Enzymes involved in l-Glutamate Synthesis and Degradation in the Thermotolerant and Methylotrophic Bacterium Bacillus methanolicus

    PubMed Central

    Krog, Anne; Heggeset, Tonje Marita Bjerkan; Ellingsen, Trond Erling

    2013-01-01

    Bacillus methanolicus wild-type strain MGA3 secretes 59 g/liter−1 of l-glutamate in fed-batch methanol cultivations at 50°C. We recently sequenced the MGA3 genome, and we here characterize key enzymes involved in l-glutamate synthesis and degradation. One glutamate dehydrogenase (GDH) that is encoded by yweB and two glutamate synthases (GOGATs) that are encoded by the gltAB operon and by gltA2 were found, in contrast to Bacillus subtilis, which has two different GDHs and only one GOGAT. B. methanolicus has a glutamine synthetase (GS) that is encoded by glnA and a 2-oxoglutarate dehydrogenase (OGDH) that is encoded by the odhAB operon. The yweB, gltA, gltB, and gltA2 gene products were purified and characterized biochemically in vitro. YweB has a low Km value for ammonium (10 mM) and a high Km value for l-glutamate (250 mM), and the Vmax value is 7-fold higher for l-glutamate synthesis than for the degradation reaction. GltA and GltA2 displayed similar Km values (1 to 1.4 mM) and Vmax values (4 U/mg) for both l-glutamate and 2-oxoglutarate as the substrates, and GltB had no effect on the catalytic activities of these enzymes in vitro. Complementation assays indicated that GltA and not GltA2 is dependent on GltB for GOGAT activity in vivo. To our knowledge, this is the first report describing the presence of two active GOGATs in a bacterium. In vivo experiments indicated that OGDH activity and, to some degree, GOGAT activity play important roles in regulating l-glutamate production in this organism. PMID:23811508

  3. Functional characterization of key enzymes involved in L-glutamate synthesis and degradation in the thermotolerant and methylotrophic bacterium Bacillus methanolicus.

    PubMed

    Krog, Anne; Heggeset, Tonje Marita Bjerkan; Ellingsen, Trond Erling; Brautaset, Trygve

    2013-09-01

    Bacillus methanolicus wild-type strain MGA3 secretes 59 g/liter(-1) of l-glutamate in fed-batch methanol cultivations at 50°C. We recently sequenced the MGA3 genome, and we here characterize key enzymes involved in l-glutamate synthesis and degradation. One glutamate dehydrogenase (GDH) that is encoded by yweB and two glutamate synthases (GOGATs) that are encoded by the gltAB operon and by gltA2 were found, in contrast to Bacillus subtilis, which has two different GDHs and only one GOGAT. B. methanolicus has a glutamine synthetase (GS) that is encoded by glnA and a 2-oxoglutarate dehydrogenase (OGDH) that is encoded by the odhAB operon. The yweB, gltA, gltB, and gltA2 gene products were purified and characterized biochemically in vitro. YweB has a low Km value for ammonium (10 mM) and a high Km value for l-glutamate (250 mM), and the Vmax value is 7-fold higher for l-glutamate synthesis than for the degradation reaction. GltA and GltA2 displayed similar Km values (1 to 1.4 mM) and Vmax values (4 U/mg) for both l-glutamate and 2-oxoglutarate as the substrates, and GltB had no effect on the catalytic activities of these enzymes in vitro. Complementation assays indicated that GltA and not GltA2 is dependent on GltB for GOGAT activity in vivo. To our knowledge, this is the first report describing the presence of two active GOGATs in a bacterium. In vivo experiments indicated that OGDH activity and, to some degree, GOGAT activity play important roles in regulating l-glutamate production in this organism.

  4. Extremely Low Ionospheric Peak Altitudes in the Polar-Hole Region

    NASA Technical Reports Server (NTRS)

    Benson, Robert F.; Grebowsky, Joseph M.

    1999-01-01

    Vertical electron-density (N (sub e)) profiles, deduced from newly-available ISIS-II digital ionospheric topside-sounder data, are used to investigate the "polar-hole" region within the winter, nighttime polar cap ionosphere during solar minimum. The hole region is located around 0200 MLT near the poleward side of the auroral oval. Earlier investigations had revealed very low N (sub e) values in this region (down to 200/cu cm near 300 km). In the present study, such low N, values (approx. 100/cu cm) were only found near the ISIS (International Satellite for Ionospheric Study)-II altitude of 1400 km. The peak ionospheric concentration below the spacecraft remained fairly constant (approx. 10 (exp 5)/cu cm across the hole region but the altitude of the peak dropped dramatically. This peak dropped, surprisingly, to the vicinity of 100 km. These observations suggest that the earlier satellite in situ measurements, interpreted as deep holes in the ionospheric F-region concentration, could have been made during conditions of an extreme decrease in the altitude of the ionospheric N (sub e) peak. The observations, in combination with other data, indicate that the absence of an F-layer peak may be a frequent occurrence at high latitudes.

  5. Chemical composition and distribution of lithium-rich brines in salar de Uyuni and nearby salars in southwestern Bolivia

    USGS Publications Warehouse

    Ericksen, G.E.; Vine, J.D.; Raul, Ballon A.

    1978-01-01

    Preliminary investigations at Salar de Uyuni and the nearby salars (salt pans) of Coipasa and Empexa in the southern part of the Bolivian Altiplano show the presence of widespread lithium-rich brines. Widely scattered brine samples from Salar de Uyuni, which has an area of about 9000 km2 and is the largest salt pan on earth, show lithium values ranging from 80 to 1500 ppm. High values of 300-700 ppm are most prevalent in an area of about 2500 km2 in the east-central and southeastern part of the salar. A few brine samples in small areas in Coipasa and Empexa Salars have values ranging from 170 to 580 ppm Li. All the brines are essentially saturated with halite and are moderately high in sulfate (5000-15,000 ppm SO4) but low in carbonate (<500 ppm HCO3). Potassium and magnesium values are relatively high, chiefly in the range of 2000-20,000 ppm, and the K Mg ratio is about 1:1. The Li K and Li Mg ratios are relatively constant at about 1:20. The crystalline saline material and brines in these salars are residual from a former large lake, Lago Minchin, that occupied much of the southern Bolivian Altiplano during late Pleistocene time, augmented by saline material carried to the salars by streams since final drying of this lake. Thermal springs associated with rhyolitic volcanic rocks of Quaternary age may have been a major source of the lithium. ?? 1978.

  6. Compressional reactivation of hyperextended domains on a rifted margin: a requirement for a reappraisal of traditional restoration procedures?

    NASA Astrophysics Data System (ADS)

    Cadenas Martínez, P.; Fernandez Viejo, G.; Pulgar, J. A.

    2017-12-01

    The North Iberian margin is an inverted hyperextended rifted margin that preserves the initial stages of compressional reactivation. Rift inheritance conditioned in a determinant way the contractional reactivation. The underthrusting of the hyperextended distal domains beneath the platform and the formation of an accretionary wedge at the toe of the slope focused most of the compression. The underthrusting gave place to the formation of a crustal root and the uplifting of the Cantabrian Mountains onshore. Meanwhile, the main rift basins within the continental platform were slightly inverted. Plate kinematic reconstructions and palinspatic restorations have provided different shortening values. Thereby, the amount of shortening linked with the Cenozoic compression is still unclear and a matter of debate on this area.In this work, we present a full cross-section at the central part of the North Iberian margin developed from the restoration of a high quality depth migrated seismic profile running from the continental platform to the Biscay abyssal plain. A shortening calculation gives an estimate of about 1 km within the Asturian Basin, in the continental platform, while in the accretionary wedge at the bottom of the slope, shortening values ranges between 12 km and 15 km. The limited values estimated within the Asturian Basin support the mild inversion observed within this basin, which preserves most of the extensional imprint. Within the abyssal plain, shortening values differ from previous estimations and cannot account for a high amount of compression in the upper crust. Deformation of the hyperextended crust and the exhumed mantle domains inherited from the rifting processes would have accommodated most of the compression. Restoration of these domains seems to be the key to decipher the structure and the tectonic evolution of the reactivated rifted margin but cannot be solved accurately using traditional restoration methods. This leads to a reappraisal of the traditional way of restoring compressional belt transects and particularly, when previous hyperextended domains within the rifted margins are involved.

  7. Influence of very-long-distance earthquakes on the ionosphere?

    NASA Astrophysics Data System (ADS)

    Liperovskaya, E. V.; Meister, C.-V.; Biagi, P.-F.; Liperovsky, V. A.; Rodkin, M. V.

    2009-04-01

    In the present work, variations of the critical frequency foF2 obtained every hour by the ionospheric sounding station Tashkent (41.3oN, 69.6oE) in the years 1964-1996 are considered. Mean values of data found at day-time between 11 LT and 16 LT are investigated. Disturbances of foF2 related to earthquakes are studied on the background of seasonal, geomagnetic, 11-years and 27-days solar variations. Normalized values F are used in the analysis, which are obtained excluding the seasonal run by subtracting the mean value of foF2 during the time interval of 14 days, from 7 days before the earthquake until seven days after the event, and dividing the result on its standard deviation. Days with high solar (Wolf number > 200) and geomagnetic (ΣKp > 25) disturbances are excluded from the analysis. Using the method of superposition of epoches it is concluded, that at the day of the earthquake the foF2 value decreases a) in case of earthquakes with magnitudes M > 6.5 at any place on the Earth, if the depth h of the epicentre satisfies h < 200 km, b) in connection with earthquakes with magnitudes 6.5 > M > 6.0 occurring in the Middle Asia region, if h < 70 km is satisfied, and c) in connection with earthquakes with magnitudes 6.0 > M > 5.5 appearing at a distance from Tashkent smaller than 1000 km if one has h < 70 km. In all investigated cases the reliability of the effect is larger than 95 %. The ratio of the number of earthquakes with a decrease of the foF2-value to the number of earthquakes where foF2 grows is about 2. The decrease of the foF2-value is also obtained some hours before and some hours - a day - after the event. Thus, one may assume that before an earthquake happening at a long distance, in the vicinity of the sounding station seismo-gravity waves with periods between half an hour and a few hours propagate through the earth's core. After long-distance earthquakes, seismic waves propagate in the vicinity of the sounding station. But in both cases, the radon emanation is activated. As a result of the increase of the radon concentration in the atmosphere, the value of foF2 decreases.

  8. Sunda-Banda Arc Transition: Marine Wide-Angle Seismic Modeling

    NASA Astrophysics Data System (ADS)

    Shulgin, A.; Planert, L.; Kopp, H.; Mueller, C.; Lueschen, E.; Engels, M.; Flueh, E.; Djajadihardja, Y.; Sindbad Working Group, T

    2008-12-01

    The Sunda-Banda Arc transition is the region of active convergence and collision of the Indo-Australian and Eurasian Plates. The style of subduction changes from an oceanic-island arc subduction to a continental- island arc collision. The character of the incoming plate varies from the rough topography of the Roo Rise, to the smooth seafloor of the Abyssal Plain off Bali, Sumbawa. Forearc structures include well-developed forearc basins and an accretionary prism/outer forearc high of variable size and shape. To quantify the variability of structure of the lower plate and the effects on the upper plate a refraction seismic survey was carried during cruise SO190-2. A total of 245 ocean bottom seismometers were deployed along 1020 nm of wide-angle seismic profiles in four major north-south oriented corridors. To assess the velocity structure we used a tomographic method which jointly inverts for refracted and reflected phases. The sedimentary layers of the models, obtained by the analysis of high-resolution MCS data (see Lueschen et al), were incorporated into the starting model. The obtained models exhibit strong changes of the incoming oceanic crust for the different portions of the margin: The westernmost profile off eastern Java shows a crustal thickness of more than 15 km, most likely related to the presence of an oceanic plateau. Profiles off Lombok reveal an oceanic crust of 8-9 km average thickness in the Argo Abyssal Plain. Crustal and upper mantle velocities are slightly decreased within an area of about 50-60 km seaward of the trench, indicating fracturing and related serpentinization due to bending of the oceanic crust and associated normal faulting. The outer forearc high is characterized by velocities of 2.5-5.5 km/s. For the Lombok Basin, the profiles show a sedimentary infill of up to 3.5 km thick and typical sediment velocities of 1.75-3.0 km/s. A reflector at 16 km depth and velocity values of 7.4-7.8 km/s beneath it suggest the presence of a shallow forearc mantle and a hydrated mantle wedge in this part of the margin. See in this session Planert et al.

  9. Excitation of Earth-ionosphere waveguide in the ELF and lower VLF bands by modulated ionospheric current

    NASA Astrophysics Data System (ADS)

    Field, E. C.; Bloom, R. M.

    1993-05-01

    In this report, the principal of reciprocity is used in conjunction with a full-wave propagation code to calculate ground-level fields excited by ionospheric currents modulated at frequencies between 50 and 100 Hz with HF heaters. Results show the dependence on source orientation, altitude, and dimension and therefore pertain to experiments using the HIPAS or HAARP ionospheric heaters. In the end-fire mode, the waveguide excitation efficiency of an ELF HED in the ionosphere is up to 20 dB greater than for a ground-based antenna, provided its altitude does not exceed 80 to 90 km. The highest efficiency occurs for a source altitude of around 70 km; if that altitude is raised to 100 km, the efficiency drops by about 20 dB in the day and 10 dB at night. That efficiency does not account for the greater conductivity modulation that might be achieved at altitudes greater than 70 km, however. The trade-off between the altitude dependencies of the excitation efficiency and maximum achievable modulation depends on the ERP of the HF heater, the optimum altitude increasing with increasing ERP. For HIPAS the best modulation altitude is around 70 km, whereas for HAARP there might be marginal value in modulating at attitudes as high as 100 km.

  10. Radar characteristics of cloud-to-ground lightning producing storms in Florida

    NASA Technical Reports Server (NTRS)

    Buechler, D. E.; Goodman, S. J.

    1991-01-01

    The interrelation between cloud-to-ground lightning, convective rainfall, and the environment in Central Florida storms is examined. The rain flux, storm area, and ground discharge rates are computed within the outlined area. Time-height cross sections of maximum dBZ values at each level for two storms are shown. The multicellular nature of these storms is readily apparent. The cloud-to-ground lightning activity occurs mainly where high reflectivity values (30-40 dBZ) extend above 7 km.

  11. A Comparison of Elemental Abundance Ratios in SEP Events in Fast and Slow Solar Wind Regions

    DTIC Science & Technology

    2009-07-24

    Ulysses values pertain only to SW with speeds of 700 to 800 km s-1, which occurs predominately at high ecliptic latitudes, so those SW ratios are...less likely to be source regions of the SEPs measured by EPACT in the ecliptic plane. Comparing only with the Bochsler et al. SW values, both the SEP...factors depend critically upon the magnetic obliquity of the shock. It is obvious that such processes and seed populations could vary substantially

  12. Energy cost of physical activities in 12-y-old girls: MET values and the influence of body weight.

    PubMed

    Spadano, J L; Must, A; Bandini, L G; Dallal, G E; Dietz, W H

    2003-12-01

    Few data exist on the energy cost of specific activities in children. The influence of body weight on the energy cost of activity when expressed as metabolic equivalents (METs) has not been vigorously explored. To provide MET data on five specific activities in 12-y-old girls and to test the hypothesis that measured MET values are independent of body weight. In 17 12-y-old girls, resting metabolic rate (RMR) and the energy expended while sitting, standing, walking on a flat treadmill at 3.2 and at 4.8 km/h, and walking on a treadmill at a 10% incline at 4.8 km/h were measured using indirect calorimetry. MET values were calculated by dividing the energy expenditure of an activity by the subject's RMR. The influence of body weight was assessed using simple linear regression. The observed METs were more consistent with published values for similar activities in adults than those offered for children. Body weight was a statistically significant predictor of the MET of all three walking activities, but not the MET of sitting or standing. Body weight explained 25% of the variance in the MET value for walking at 3.2 km/h, 39% for walking at 4.8 km/h, and 63% for walking at a 10% incline at 4.8 km/h. METs for the three walking activities were not independent of body weight. The use of average MET values to estimate the energy cost of these three activities would result in an underestimation of their energy cost in heavier girls and an overestimation in lighter girls. These results suggest that the estimation of total energy expenditure from activity diary, recall, and direct observation data using average MET values may be biased by body weight.

  13. Geomagnetism during solar cycle 23: Characteristics

    PubMed Central

    Zerbo, Jean-Louis; Amory-Mazaudier, Christine; Ouattara, Frédéric

    2012-01-01

    On the basis of more than 48 years of morphological analysis of yearly and monthly values of the sunspot number, the aa index, the solar wind speed and interplanetary magnetic field, we point out the particularities of geomagnetic activity during the period 1996–2009. We especially investigate the last cycle 23 and the long minimum which followed it. During this period, the lowest values of the yearly averaged IMF (3 nT) and yearly averaged solar wind speed (364 km/s) are recorded in 1996, and 2009 respectively. The year 2003 shows itself particular by recording the highest value of the averaged solar wind (568 km/s), associated to the highest value of the yearly averaged aa index (37 nT). We also find that observations during the year 2003 seem to be related to several coronal holes which are known to generate high-speed wind stream. From the long time (more than one century) study of solar variability, the present period is similar to the beginning of twentieth century. We especially present the morphological features of solar cycle 23 which is followed by a deep solar minimum. PMID:25685427

  14. Deuteration around the ultracompact HII region Monoceros R2

    NASA Astrophysics Data System (ADS)

    Treviño-Morales, S. P.; Pilleri, P.; Fuente, A.; Kramer, C.; Roueff, E.; González-García, M.; Cernicharo, J.; Gerin, M.; Goicoechea, J. R.; Pety, J.; Berné, O.; Ossenkopf, V.; Ginard, D.; García-Burillo, S.; Rizzo, J. R.; Viti, S.

    2014-09-01

    Context. The massive star-forming region Monoceros R2 (Mon R2) hosts the closest ultra-compact Hii region, where the photon-dominated region (PDR) between the ionized and molecular gas can be spatially resolved with current single-dish telescopes. Aims: We aim at studying the chemistry of deuterated molecules toward Mon R2 to determine the deuterium fractions around a high-UV irradiated PDR and investigate the chemistry of these species. Methods: We used the IRAM-30 m telescope to carry out an unbiased spectral survey toward two important positions (namely IF and MP2) in Mon R2 at 1, 2, and 3 mm. This spectral survey is the observational basis of our study of the deuteration in this massive star-forming region. Our high spectral resolution observations (~0.25-0.65 km s-1) allowed us to resolve the line profiles of the different species detected. Results: We found a rich chemistry of deuterated species at both positions of Mon R2, with detections of C2D, DCN, DNC, DCO+, D2CO, HDCO, NH2D, and N2D+ and their corresponding hydrogenated species and rarer isotopologs. The high spectral resolution of our observations allowed us to resolve three velocity components: the component at 10 km s-1 is detected at both positions and seems associated with the layer most exposed to the UV radiation from IRS 1; the component at 12 km s-1 is found toward the IF position and seems related to the foreground molecular gas; finally, a component at 8.5 km s-1 is only detected toward the MP2 position, most likely related to a low-UV irradiated PDR. We derived the column density of the deuterated species (together with their hydrogenated counterparts), and determined the deuterium fractions as Dfrac = [XD]/[XH]. The values of Dfrac are around 0.01 for all the observed species, except for HCO+ and N2H+, which have values 10 times lower. The values found in Mon R2 are similar to those measured in the Orion Bar, and are well explained with a pseudo-time-dependent gas-phase model in which deuteration occurs mainly via ion-molecule reactions with H2D+, CH2D+ and C2HD+. Finally, the [H13CN]/[HN13C] ratio is very high (~11) for the 10 km s-1 component, which also agree with our model predictions for an age of ~0.01 to a few 0.1 Myr. Conclusions: The deuterium chemistry is a good tool for studying the low-mass and high-mass star-forming regions. However, while low-mass star-forming regions seem well characterized with Dfrac(N2H+) or Dfrac(HCO+), a more complete chemical modeling is required to date massive star-forming regions. This is due to the higher gas temperature together with the rapid evolution of massive protostars. Appendices are available in electronic form at http://www.aanda.org

  15. Ensemble flood simulation for a small dam catchment in Japan using 10 and 2 km resolution nonhydrostatic model rainfalls

    NASA Astrophysics Data System (ADS)

    Kobayashi, Kenichiro; Otsuka, Shigenori; Apip; Saito, Kazuo

    2016-08-01

    This paper presents a study on short-term ensemble flood forecasting specifically for small dam catchments in Japan. Numerical ensemble simulations of rainfall from the Japan Meteorological Agency nonhydrostatic model (JMA-NHM) are used as the input data to a rainfall-runoff model for predicting river discharge into a dam. The ensemble weather simulations use a conventional 10 km and a high-resolution 2 km spatial resolutions. A distributed rainfall-runoff model is constructed for the Kasahori dam catchment (approx. 70 km2) and applied with the ensemble rainfalls. The results show that the hourly maximum and cumulative catchment-average rainfalls of the 2 km resolution JMA-NHM ensemble simulation are more appropriate than the 10 km resolution rainfalls. All the simulated inflows based on the 2 and 10 km rainfalls become larger than the flood discharge of 140 m3 s-1, a threshold value for flood control. The inflows with the 10 km resolution ensemble rainfall are all considerably smaller than the observations, while at least one simulated discharge out of 11 ensemble members with the 2 km resolution rainfalls reproduces the first peak of the inflow at the Kasahori dam with similar amplitude to observations, although there are spatiotemporal lags between simulation and observation. To take positional lags into account of the ensemble discharge simulation, the rainfall distribution in each ensemble member is shifted so that the catchment-averaged cumulative rainfall of the Kasahori dam maximizes. The runoff simulation with the position-shifted rainfalls shows much better results than the original ensemble discharge simulations.

  16. Scaling an in situ network for high resolution modeling during SMAPVEX15

    NASA Astrophysics Data System (ADS)

    Coopersmith, E. J.; Cosh, M. H.; Jacobs, J. M.; Jackson, T. J.; Crow, W. T.; Holifield Collins, C.; Goodrich, D. C.; Colliander, A.

    2015-12-01

    Among the greatest challenges within the field of soil moisture estimation is that of scaling sparse point measurements within a network to produce higher resolution map products. Large-scale field experiments present an ideal opportunity to develop methodologies for this scaling, by coupling in situ networks, temporary networks, and aerial mapping of soil moisture. During the Soil Moisture Active Passive Validation Experiments in 2015 (SMAPVEX15) in and around the USDA-ARS Walnut Gulch Experimental Watershed and LTAR site in southeastern Arizona, USA, a high density network of soil moisture stations was deployed across a sparse, permanent in situ network in coordination with intensive soil moisture sampling and an aircraft campaign. This watershed is also densely instrumented with precipitation gages (one gauge/0.57 km2) to monitor the North American Monsoon System, which dominates the hydrologic cycle during the summer months in this region. Using the precipitation and soil moisture time series values provided, a physically-based model is calibrated that will provide estimates at the 3km, 9km, and 36km scales. The results from this model will be compared with the point-scale gravimetric samples, aircraft-based sensor, and the satellite-based products retrieved from NASA's Soil Moisture Active Passive mission.

  17. Kinetic measurement of 2-aminopurine X cytosine and 2-aminopurine X thymine base pairs as a test of DNA polymerase fidelity mechanisms.

    PubMed Central

    Watanabe, S M; Goodman, M F

    1982-01-01

    Enzyme kinetic measurements are presented showing that Km rather than maximum velocity (Vmax) discrimination governs the frequency of forming 2-aminopurine X cytosine base mispairs by DNA polymerase alpha. An in vitro system is used in which incorporation of dTMP or dCMP occurs opposite a template 2-aminopurine, and values for Km and Vmax are obtained. Results from a previous study in which dTTP and dCTP were competing simultaneously for insertion opposite 2-aminopurine indicated that dTMP is inserted 22 times more frequently than dCMP. We now report that the ratio of Km values KCm/KTm = 25 +/- 6, which agrees quantitatively with the dTMP/dCMP incorporation ratio obtained previously. We also report that VCmax is indistinguishable from VTmax. These Km and Vmax data are consistent with predictions from a model, the Km discrimination model, in which replication fidelity is determined by free energy differences between matched and mismatched base pairs. Central to this model is the prediction that the ratio of Km values for insertion of correct and incorrect nucleotides specifies the insertion fidelity, and the maximum velocities of insertion are the same for both nucleotides. PMID:6959128

  18. Radio occultation studies of the Venus atmosphere with the Magellan spacecraft. 2: Results from the October 1991 experiments

    NASA Technical Reports Server (NTRS)

    Jenkins, Jon M.; Steffes, Paul G.; Hinson, David P.; Twicken, Joseph D.; Tyler, G. Leonard

    1994-01-01

    On October 5 and 6, 1991, three dual-frequency ingress radio occultation experiments were conducted at Venus during consecutive orbits of the Magellan spacecraft. The radio signals probed a region of the atmosphere near 65 deg N, with a solar zenith angle of 108 deg, reaching below 35 km at 3.6 cm, and below 34 km at 13 cm (above a mean radius of 6052 km). The high effective isotropic radiated power (EIRP) of the Magellan spacecraft and highly successful attitude maneuvers allowed these signals to probe deeper than any previous radio occultation experiment and also resulted in the most accurate thermal and sulfuric acid vapor abundance profiles ever obtained at Venus through radio occultation techniques. The performance of the spacecraft and the experiment design are discussed in an accompanying paper. Average electron density profiles retrieved from the data possess peaks between 2600 and 6000/cu cm, well below typical values of 10,000/cu cm retrieved in 1979 by Pioneer Venus at similar solar zenith angles. Other basic results include vertical profiles of temperature, pressure, and density in the neutral atmosphere, 13- and 3.6-cm absorpttivity, and H2SO4 (g) abundance below the main cloud layer. H2SO4 (g) becomes significant below 50 km, reaching peaks between 18 and 24 ppm near 39 km before dropping precipitously below 38 km. These sharp decreases confirm the thermal decomposition of sulfuric acid vapor below 39 km. Since the Venus atmosphere rotated approximately 10 deg between experiments, the data contain information about the horizontal variability of the atmosphere. All derived profiles exhibit significant variations from orbit to orbit, indicating the presence of dynamical processes between 33 and 200 km. In particular, the orbit-to-orbit variations in temperature and in H2SO4 (g) abundance appear to be correlated, suggesting that a common mechanism may be responsible for the observed spatial variations.

  19. First evidence for high anelastic attenuation beneath the Red Sea from Love wave analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hadiouche, Ouiza

    Attenuation coefficients of Love waves are determined for two seismic paths along the Red Sea. The attenuation coefficients are obtained using the multiple filter method for periods from 25 to 130 s along one path and from 40 to 130 s along the second one. The two sets of observations are in good agreement with anomalously high attenuation coefficients similar to those reported across a young part of the Pacific Ocean. Indeed, the values lie on average between 3.3 {plus minus} 0.6 and 1.1 {plus minus} 0.3 (10{sup {minus}4}km{sup {minus}1}) higher values being observed at shorter periods. In a secondmore » part of the paper, these apparent attenuation observations are interpreted in terms of a distribution of intrinsic absorption in the upper mantle. A frequency independent Q{sub {beta}} model is obtained using a trial-and-error method. The best fit to the data required a large and very low Q{sub {beta}} (30-50) zone below a depth of 50 km, underlying a thin and high Q{sub {beta}} (200-300) lid. These results are consistent with high heat flows and low velocities which characterize this tectonically active area, and corroborate the inference of anomalously high temperatures and low viscosity in the upper mantle beneath the Red Sea from recent seismological results.« less

  20. New methods of data calibration for high power-aperture lidar.

    PubMed

    Guan, Sai; Yang, Guotao; Chang, Qihai; Cheng, Xuewu; Yang, Yong; Gong, Shaohua; Wang, Jihong

    2013-03-25

    For high power-aperture lidar sounding of wide atmospheric dynamic ranges, as in middle-upper atmospheric probing, photomultiplier tubes' (PMT) pulse pile-up effects and signal-induced noise (SIN) complicates the extraction of information from lidar return signal, especially from metal layers' fluorescence signal. Pursuit for sophisticated description of metal layers' characteristics at far range (80~130km) with one PMT of high quantum efficiency (QE) and good SNR, contradicts the requirements for signals of wide linear dynamic range (i.e. from approximate 10(2) to 10(8) counts/s). In this article, Substantial improvements on experimental simulation of Lidar signals affected by PMT are reported to evaluate the PMTs' distortions in our High Power-Aperture Sodium LIDAR system. A new method for pile-up calibration is proposed by taking into account PMT and High Speed Data Acquisition Card as an Integrated Black-Box, as well as a new experimental method for identifying and removing SIN from the raw Lidar signals. Contradiction between the limited linear dynamic range of raw signal (55~80km) and requirements for wider acceptable linearity has been effectively solved, without complicating the current lidar system. Validity of these methods was demonstrated by applying calibrated data to retrieve atmospheric parameters (i.e. atmospheric density, temperature and sodium absolutely number density), in comparison with measurements of TIMED satellite and atmosphere model. Good agreements are obtained between results derived from calibrated signal and reference measurements where differences of atmosphere density, temperature are less than 5% in the stratosphere and less than 10K from 30km to mesosphere, respectively. Additionally, approximate 30% changes are shown in sodium concentration at its peak value. By means of the proposed methods to revert the true signal independent of detectors, authors approach a new balance between maintaining the linearity of adequate signal (20-110km) and guaranteeing good SNR (i.e. 10(4):1 around 90km) without debasing QE, in one single detecting channel. For the first time, PMT in photon-counting mode is independently applied to subtract reliable information of atmospheric parameters with wide acceptable linearity over an altitude range from stratosphere up to lower thermosphere (20-110km).

  1. Surface rupture and revised slip distribution on the Denali and Totschunda faults from the M 7.9 Denali fault earthquake

    NASA Astrophysics Data System (ADS)

    Haeussler, P. J.

    2003-12-01

    We revised the preliminary slip distribution (Science, 2003, v. 300, p. 1037ff) along the Denali and Totschunda faults after additional fieldwork this summer. Features of the surface trace had degraded in places due to melting of snow, permafrost, and soil. However, without snow cover, offset of fine-scale features was much clearer at many new localities. We were also able to add additional measurements on glaciers, where offset snow-filled crevasses could be observed. As a result, the revised slip distribution provides considerably more detail and a higher level of confidence than that inferred solely from measurements collected immediately after the earthquake. The primary features of the revised slip distribution are: 1) a broad plateau of roughly 5-m offsets extending from 70 to 170 km east of the epicenter along the central part of the Denali fault, 2) high-slip values of 6.5-8+ m between 170 and 212 km east of the epicenter, 3) the step up from the 5 m plateau to the higher is sharp, occurring over a lateral distance of one kilometer, 4) there are three new, and anomalously high, measurements of 7.2-8.2 m along a 7-km length of the fault within the plateau of 5-m slip values, 5) there was a maximum 3-m offset on the Totschunda fault, which is 0.9-m higher than previously measured; 6) A previously inferred region of high slip in the vicinity of the Trans Alaska Pipeline is less obvious or absent. However, slip in that area is higher than the region to the west of the Delta River, 7) In contrast to geodetic and seismologic slip models that infer low slip and moment release in a zone 100-160 km east of the epicenter, we find continuous surface offsets of about 5 m; 8) A drop to zero slip, previously inferred at the Totschunda-Denali junction appears to be a result of slip values obtained from transfer structures. The smallest robust measurements of lateral slip in the transition zone were about a meter. Denali Fault Earthquake Geology Working Group : T. Dawson, P. Haeussler, J. Lienkaemper, A. Matmon, D. Schwartz, H.Stenner, B. Sherrod (USGS), F. Cinti, P. Montone (INGV, Rome)

  2. In situ stratospheric measurements of CH4, (C-13)H4, N2O, and OC(O-18) using the BLISS tunable diode laser spectrometer

    NASA Technical Reports Server (NTRS)

    Webster, Christopher R.; May, Randy D.

    1992-01-01

    Simultaneous in situ measurements of stratospheric CH4, (C-13)H4, N2O, OC(O-18), pressure, and temperature have been made from Palestine, Texas (32 deg N) in September 1988 with the JPL Balloon-borne Laser In Situ Sensor. Measurements of CH4 and N2O in the altitude range 30-35 km agree well with other measurements, except for an anomalously high value for the N2O at 31 km. Measurements of CH4 support earlier observations of fold in the vertical profile. A ratio for stratospheric (C-13)H4/CH4 of 0.0105 +/- 0.0010 implies an enrichment of delta(C-13) = -45 +/- 92 parts per thousand over the PDB value, in agreement with previous measurements in the troposphere. A large mixing ratio of 1.9 +/- 0.2 ppmv for OC(O-18) is measured, corresponding to an enrichment of delta(O-18) = 280 +/- 50 parts per thousand for the (O-18) isotopic species over the SMOW value.

  3. Properties of the +70 kilometers per second cloud toward HD 203664

    NASA Technical Reports Server (NTRS)

    Sembach, Kenneth R.

    1995-01-01

    I present high-resolution International Ultraviolet Explorer (IUE) spectra of the ultraviolet absorption in an intermediate-velocity interstellar cloud (nu(sub LSR) approximately equal to +70 km/s) toward HD 203664. The combined, multiple IUE images result in spectra with S/N = 15-40 and resolutions of approximately 20-25 km/s. The intermediate-velocity cloud absorption is present in ultraviolet lines of C II, C II(sup *), C IV, N I, O I, Mg I, Mg II, Al II, Al III, Si II, Si III, Si IV, S II, Cr II, Mn II, Fe II, and Zn II. The relative abundances of low-ionization species suggest an electron density of 0.15-0.34/cu cm and a temperature of 5300-6100 K in the neutral and weakly ionized gas. Given the presence of high-ionization gas tracers such as Si IV and C IV, ionized portions of the cloud probably contribute to the relatively large values of n(sub e) derived from measurements of the lower ionization species. The high-ionization species in the cloud have an abundance ratio, N(C IV)/N(Si IV) approximately equal to 4.5, similar to that inferred for collisionally ionized cloud interfaces at temperatures near 10(exp 5) K along other sight lines. When referenced to sulfur, the abundances of most elements in the cloud are within a factor of 5 of their solar values, which suggests that the +70 km/s gas has a previous origin in the Galactic disk despite a recent determination by Little et al. that the cloud lies at a distance of 200-1500 pc below the Galactic plane. I have checked this result against a model of the ionization for the diffuse ionized gas layer of the Galaxy and find that this conclusion is essentially unchanged as long as the ionization parameter is low as implied by the abundances of adjoining ionization states of aluminum and silicon. The processes responsible for the production of highly ionized gas in the +70 km/s cloud appear to be able to account for the inferred dust grain destruction as well.

  4. The effect of pacing strategy on physiological, kinetic and performance variables during simulated rowing ergometer.

    PubMed

    Dimakopoulou, Eleni; Zacharogiannis, Elias; Chairopoulou, Chrysoula; Kaloupsis, Socratis; Platanou, Theodoros

    2017-02-21

    This study compared the effects of self selected (SSP), negative (NPS) and even (EPS) pacing strategy on performance time, kinetic and physiological variables in overall 2km rowing and in first and second 1km. Fifteen male rowers (15.37 ± 1.34 yrs) realized four tests: an incremental test on a rowing ergometer to determine their VO2peak and three experimental 2 km rowing race, where first 1km was manipulated. From SSP a negative pacing strategy, 4% slower than the mean velocity of SSP, and an even pacing strategy (EPS) with mean velocity of SSP, were developed. High stroke rate and better performance time was observed in SSP. Fstr and Fpeak decreased, whereas performance time increased, in SSP and EPS from first to second 1km.Unlike, performance time, stroke rate and Pst in NPS presented better values (p=0.001) with the exception of decreased stroke length (p=0.03). There was an increase in physiological responses in all pacing strategies from first to second 1km (p=0.001). Performance time, stroke rate and Fstr were better in SSP and EPS compared to NPS in first 1km (p=0.001). VE, VE/VO2, VCO2 were better in SSP and EPS compared to NPS (p=0.001) in both first and second 1km. Stroke length was smaller in SSP compared to NPS and EPS in second 1km (p=0.001). Self selected pacing (parabolic-shaped profile) allowed rowers to cover the 2 km distance in higher stroke rate and in shorter performance time compared to negative and even pacing strategies presenting same physiological responses.

  5. Cyanide removal by Chinese vegetation--quantification of the Michaelis-Menten kinetics.

    PubMed

    Yu, Xiaozhang; Zhou, Puhua; Zhou, Xishi; Liu, Yunda

    2005-07-01

    Little is known about metabolism rates of environmental chemicals by vegetation. A good model compound to study the variation of rates among plant species is cyanide. Vascular plants possess an enzyme system that detoxifies cyanide by converting it to the amino acid asparagine. Knowledge of the kinetic parameters, the half-saturation constant (Km) and the maximum metabolic capacity (vmax), is very useful for enzyme characterization and biochemical purposes. The goal of this study is to find the enzyme kinetics (K(M) and vmax) during cyanide metabolism in the presence of Chinese vegetation, to provide quantitative data for engineered phytoremediation, and to investigate the variation of metabolic rates of plants. Detached leaves (1.0 g fresh weight) from 12 species out of 9 families were kept in glass vessels with 100 mL of aqueous solution spiked with potassium cyanide at 23 degrees C for 28 h. Four different treatment concentrations of cyanide were used, ranging from 0.44 to 7.69 mg CN/L. The disappearance of cyanide from the aqueous solution was analyzed spectrophotometrically. Realistic values of the half-saturation constant (KM) and the maximum metabolic capacity (vmax) were estimated by a computer program using non-linear regression treatments. As a comparison, Lineweaver-Burk plots were also used to estimate the kinetic parameters. The values obtained for K(M) and vmax varied with plant species. Using non-linear regression treatments, values of vmax and K(M) were found in a range between 6.68 and 21.91 mg CN/kg/h and 0.90 to 3.15 mg CN/L, respectively. The highest vmax was by Chinese elder (Sambucus chinensis), followed by upright hedge-parsley (Torilis japonica). The lowest Vmax was demonstrated by the hybrid willow (Salix matssudana x alba). However, the highest K(M) was found in the water lily (Nymphea teragona), followed by the poplar (Populus deltoides Marsh). The lowest K(M) was demonstrated by corn (Zea mays L.). The values of vmax were normally distributed with a mean of 13 mg CN/kg/h. Significant removal of cyanide from aqueous solution was observed in the presence of plant materials without phytotoxicity, even at high doses of cyanide. This gives rise to the conclusion that the Chinese plant species used in this study are all able to efficiently metabolize cyanide, although with different maximum metabolic capacities. A second conclusion is that the variation of metabolism rates between species is small. All these plants had a similar K(M), indicating the same enzyme is active in all plants. Detoxification of cyanide with trees seems to be a feasible option for cleaning soils and water contaminated with cyanide. For phytoremediation projects, screening appropriate plant species adapted to local conditions should be seriously considered. More chemicals should be investigated to find common principles of the metabolism of environmental chemicals by plants.

  6. A solvent-isotope-effect study of proton transfer during catalysis by Escherichia coli (lacZ) beta-galactosidase.

    PubMed Central

    Selwood, T; Sinnott, M L

    1990-01-01

    1. Michaelis-Menten parameters for the hydrolysis of 4-nitrophenyl beta-D-galactopyranoside and 3,4-dinitrophenyl beta-D-galactopyranoside Escherichia coli (lacZ) beta-galactosidase were measured as a function of pH or pD (pL) in both 1H2O and 2H2O. 2. For hydrolysis of 4-nitrophenyl beta-D-galactopyranoside by Mg2(+)-free enzyme, V is pL-independent below pL 9, but the V/Km-pL profile is sigmoid, the pK values shifting from 7.6 +/- 0.1 in 1H2O to 8.2 +/- 0.1 in 2H2O, and solvent kinetic isotope effects are negligible, in accord with the proposal [Sinnott, Withers & Viratelle (1978) Biochem. J. 175, 539-546] that glycone-aglycone fission without acid catalysis governs both V and V/Km. 3. V for hydrolysis of 4-nitrophenyl beta-D-galactopyranoside by Mg2(+)-enzyme varies sigmoidally with pL, the pK value shifting from 9.19 +/- 0.09 to 9.70 +/- 0.07; V/Km shows both a low-pL fall, probably due to competition between Mg2+ and protons [Tenu, Viratelle, Garnier & Yon (1971) Eur. J. Biochem. 20, 363-370], and a high-pL fall, governed by a pK that shifts from 8.33 +/- 0.08 to 8.83 +/- 0.08. There is a negligible solvent kinetic isotope effect on V/Km, but one of 1.7 on V, which a linear proton inventory shows to arise from one transferred proton. 4. The variation of V and V/Km with pL is sigmoid for hydrolysis of 3,4-dinitrophenyl beta-D-galactopyranoside by Mg2(+)-enzyme, with pK values showing small shifts, from 8.78 +/- 0.09 to 8.65 +/- 0.08 and from 8.7 +/- 0.1 to 8.9 +/- 0.1 respectively. There is no solvent isotope effect on V or V/Km for 3,4-dinitrophenyl beta-D-galactopyranoside, despite hydrolysis of the galactosyl-enzyme intermediate governing V. 5. Identification of the 'conformation change' in the hydrolysis of aryl galactosides proposed by Sinnott & Souchard [(1973) Biochem. J. 133, 89-98] with the protolysis of the magnesium phenoxide arising from the action of enzyme-bound Mg2+ as an electrophilic catalyst rationalizes these data and also resolves the conflict between the proposals and the 18O kinetic-isotope-effect data reported by Rosenberg & Kirsch [(1981) Biochemistry 20, 3189-3196]. It should be noted that the actual Km values were determined to higher precision than can be estimated from the Figures in this paper.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:2114090

  7. A solvent-isotope-effect study of proton transfer during catalysis by Escherichia coli (lacZ) beta-galactosidase.

    PubMed

    Selwood, T; Sinnott, M L

    1990-06-01

    1. Michaelis-Menten parameters for the hydrolysis of 4-nitrophenyl beta-D-galactopyranoside and 3,4-dinitrophenyl beta-D-galactopyranoside Escherichia coli (lacZ) beta-galactosidase were measured as a function of pH or pD (pL) in both 1H2O and 2H2O. 2. For hydrolysis of 4-nitrophenyl beta-D-galactopyranoside by Mg2(+)-free enzyme, V is pL-independent below pL 9, but the V/Km-pL profile is sigmoid, the pK values shifting from 7.6 +/- 0.1 in 1H2O to 8.2 +/- 0.1 in 2H2O, and solvent kinetic isotope effects are negligible, in accord with the proposal [Sinnott, Withers & Viratelle (1978) Biochem. J. 175, 539-546] that glycone-aglycone fission without acid catalysis governs both V and V/Km. 3. V for hydrolysis of 4-nitrophenyl beta-D-galactopyranoside by Mg2(+)-enzyme varies sigmoidally with pL, the pK value shifting from 9.19 +/- 0.09 to 9.70 +/- 0.07; V/Km shows both a low-pL fall, probably due to competition between Mg2+ and protons [Tenu, Viratelle, Garnier & Yon (1971) Eur. J. Biochem. 20, 363-370], and a high-pL fall, governed by a pK that shifts from 8.33 +/- 0.08 to 8.83 +/- 0.08. There is a negligible solvent kinetic isotope effect on V/Km, but one of 1.7 on V, which a linear proton inventory shows to arise from one transferred proton. 4. The variation of V and V/Km with pL is sigmoid for hydrolysis of 3,4-dinitrophenyl beta-D-galactopyranoside by Mg2(+)-enzyme, with pK values showing small shifts, from 8.78 +/- 0.09 to 8.65 +/- 0.08 and from 8.7 +/- 0.1 to 8.9 +/- 0.1 respectively. There is no solvent isotope effect on V or V/Km for 3,4-dinitrophenyl beta-D-galactopyranoside, despite hydrolysis of the galactosyl-enzyme intermediate governing V. 5. Identification of the 'conformation change' in the hydrolysis of aryl galactosides proposed by Sinnott & Souchard [(1973) Biochem. J. 133, 89-98] with the protolysis of the magnesium phenoxide arising from the action of enzyme-bound Mg2+ as an electrophilic catalyst rationalizes these data and also resolves the conflict between the proposals and the 18O kinetic-isotope-effect data reported by Rosenberg & Kirsch [(1981) Biochemistry 20, 3189-3196]. It should be noted that the actual Km values were determined to higher precision than can be estimated from the Figures in this paper.(ABSTRACT TRUNCATED AT 400 WORDS)

  8. High-precision two-way optic-fiber time transfer using an improved time code.

    PubMed

    Wu, Guiling; Hu, Liang; Zhang, Hao; Chen, Jianping

    2014-11-01

    We present a novel high-precision two-way optic-fiber time transfer scheme. The Inter-Range Instrumentation Group (IRIG-B) time code is modified by increasing bit rate and defining new fields. The modified time code can be transmitted directly using commercial optical transceivers and is able to efficiently suppress the effect of the Rayleigh backscattering in the optical fiber. A dedicated codec (encoder and decoder) with low delay fluctuation is developed. The synchronization issue is addressed by adopting a mask technique and combinational logic circuit. Its delay fluctuation is less than 27 ps in terms of the standard deviation. The two-way optic-fiber time transfer using the improved codec scheme is verified experimentally over 2 m to100 km fiber links. The results show that the stability over 100 km fiber link is always less than 35 ps with the minimum value of about 2 ps at the averaging time around 1000 s. The uncertainty of time difference induced by the chromatic dispersion over 100 km is less than 22 ps.

  9. Application of Lidar Data to the Performance Evaluations of ...

    EPA Pesticide Factsheets

    The Tropospheric Ozone (O3) Lidar Network (TOLNet) provides time/height O3 measurements from near the surface to the top of the troposphere to describe in high-fidelity spatial-temporal distributions, which is uniquely useful to evaluate the temporal evolution of O3 profiles in air quality models. This presentation describes the application of the Lidar data to the performance evaluation of CMAQ simulated O3 vertical profiles during the summer, 2014. Two-way coupled WRF-CMAQ simulations with 12km and 4km domains centered over Boulder, Colorado were performed during this time period. The analysis on the time series of observed and modeled O3 mixing ratios at different vertical layers indicates that the model frequently underestimated the observed values, and the underestimation was amplified in the middle model layers (~1km above the ground). When the lightning strikes detected by the National Lightning Detection Network (NLDN) were analyzed along with the observed O3 time series, it was found that the daily maximum O3 mixing ratios correlated well with the lightning strikes in the vicinity of the Lidar station. The analysis on temporal vertical profiles of both observed and modeled O3 mixing ratios on episodic days suggests that the model resolutions (12km and 4km) do not make any significant difference for this analysis (at this specific location and simulation period), but high O3 levels in the middle layers were linked to lightning activity that occurred in t

  10. Knowledge Management in Consultancies and High-Tech Companies: A Social Systems Perspective

    ERIC Educational Resources Information Center

    Kasper, Helmut; Muhlbacher, Jurgen; Muller, Barbara

    2008-01-01

    In dealing with Knowledge Management (KM) literature, we have to diagnose three essential points: first, we have detected a lack of comprehensive theoretical models based on "grand theories", secondly, we have discovered an overemphasis of "good" values, like openness and trust, that help organisations to learn. And thirdly, we have to recognise…

  11. Vegetation Analysis and Land Use Land Cover Classification of Forest in Uttara Kannada District India Using Remote Sensign and GIS Techniques

    NASA Astrophysics Data System (ADS)

    Koppad, A. G.; Janagoudar, B. S.

    2017-10-01

    The study was conducted in Uttara Kannada districts during the year 2012-2014. The study area lies between 13.92° N to 15.52° N latitude and 74.08° E to 75.09° E longitude with an area of 10,215 km2. The Indian satellite IRS P6 LISS-III imageries were used to classify the land use land cover classes with ground truth data collected with GPS through supervised classification in ERDAS software. The land use and land cover classes identified were dense forest, horticulture plantation, sparse forest, forest plantation, open land and agriculture land. The dense forest covered an area of 63.32 % (6468.70 sq km) followed by agriculture 12.88 % (1315.31 sq. km), sparse forest 10.59 % (1081.37 sq. km), open land 6.09 % (622.37 sq. km), horticulture plantation and least was forest plantation (1.07 %). Settlement, stony land and water body together cover about 4.26 percent of the area. The study indicated that the aspect and altitude influenced the forest types and vegetation pattern. The NDVI map was prepared which indicated that healthy vegetation is represented by high NDVI values between 0.1 and 1. The non- vegetated features such as water bodies, settlement, and stony land indicated less than 0.1 values. The decrease in forest area in some places was due to anthropogenic activities. The thematic map of land use land cover classes was prepared using Arc GIS Software.

  12. Determination of the optimized single-layer ionospheric height for electron content measurements over China

    NASA Astrophysics Data System (ADS)

    Li, Min; Yuan, Yunbin; Zhang, Baocheng; Wang, Ningbo; Li, Zishen; Liu, Xifeng; Zhang, Xiao

    2018-02-01

    The ionosphere effective height (IEH) is a very important parameter in total electron content (TEC) measurements under the widely used single-layer model assumption. To overcome the requirement of a large amount of simultaneous vertical and slant ionospheric observations or dense "coinciding" pierce points data, a new approach comparing the converted vertical TEC (VTEC) value using mapping function based on a given IEH with the "ground truth" VTEC value provided by the combined International GNSS Service Global Ionospheric Maps is proposed for the determination of the optimal IEH. The optimal IEH in the Chinese region is determined using three different methods based on GNSS data. Based on the ionosonde data from three different locations in China, the altitude variation of the peak electron density (hmF2) is found to have clear diurnal, seasonal and latitudinal dependences, and the diurnal variation of hmF2 varies from approximately 210 to 520 km in Hainan. The determination of the optimal IEH employing the inverse method suggested by Birch et al. (Radio Sci 37, 2002. doi: 10.1029/2000rs002601) did not yield a consistent altitude in the Chinese region. Tests of the method minimizing the mapping function errors suggested by Nava et al. (Adv Space Res 39:1292-1297, 2007) indicate that the optimal IEH ranges from 400 to 600 km, and the height of 450 km is the most frequent IEH at both high and low solar activities. It is also confirmed that the IEH of 450-550 km is preferred for the Chinese region instead of the commonly adopted 350-450 km using the determination method of the optimal IEH proposed in this paper.

  13. Electromagnetic outline of the Solfatara-Pisciarelli hydrothermal system, Campi Flegrei (Southern Italy)

    NASA Astrophysics Data System (ADS)

    Troiano, Antonio; Giulia Di Giuseppe, Maria; Patella, Domenico; Troise, Claudia; De Natale, Giuseppe

    2014-05-01

    We describe the results from a combined CSAMT and MT survey carried out in the Solfatara-Pisciarelli area, located in the central part of the Campi Flegrei composite caldera, west of Naples, Southern Italy. The Solfatara-Pisciarelli area represents the most active zone within the CF area, in terms of hydrothermal manifestations and local seismicity. Since 1969, the caldera is experiencing ground deformation, seismicity and geochemical fluid changes, which are particularly evident in this area. A 1 km long, nearly W-E directed CSAMT-MT profile crossing the fumaroles field was carried out with the aim of deducting an EM model of the structural setting of the hydrothermal system in the first 3 km depth. An interpretation of the EM modelled section is given in this paper, taking advantage from already existing seismic, gravity and geochemical data in the same area. Three well distinct EM zones have been outlined. The first EM zone is a very shallow, electrically conductive body localized beneath the westernmost segment of the profile, which, within a short distance of about 100 m, dips westwards from near surface down to some hundred metres depth. Mostly accounting for the very low resistivity (1-10 Ωm) and the exceedingly high values of vP/vS (>4), this shallow zone has been ascribed to a water-saturated, high-pressurized geothermal reservoir. The second EM zone, which has been localized below the west-central portion of the EM transect, appears as a composite body made of a nearly vertical plumelike structure that escapes at about 2.25 km depth from the top edge of the east side of a presumably horizontal platelike body. The plumelike structure rises up to the free surface in correspondence of the fumaroles field, whereas the platelike structure deepens at least down to the 3 km of maximum EM exploration depth. The combined interpretation of resistivity, wave velocity, gravity and geochemical data indicates the plumelike portion is likely associated with a steam/gas-saturated column and the platelike portion to a high temperature (>300°C), over-pressurized, gas-saturated reservoir. Finally, the third EM zone, which has been localized beneath the eastern half of the EM transect, from about 1.2 km down to about 3 km of depth, is also characterized by the lowest resistivity values (1-10 Ωm). When jointly interpreted with seismic and gravity data, this feature can be associated to a hydrothermally mineralized, clay-rich body.

  14. Spatial interpolation of monthly mean air temperature data for Latvia

    NASA Astrophysics Data System (ADS)

    Aniskevich, Svetlana

    2016-04-01

    Temperature data with high spatial resolution are essential for appropriate and qualitative local characteristics analysis. Nowadays the surface observation station network in Latvia consists of 22 stations recording daily air temperature, thus in order to analyze very specific and local features in the spatial distribution of temperature values in the whole Latvia, a high quality spatial interpolation method is required. Until now inverse distance weighted interpolation was used for the interpolation of air temperature data at the meteorological and climatological service of the Latvian Environment, Geology and Meteorology Centre, and no additional topographical information was taken into account. This method made it almost impossible to reasonably assess the actual temperature gradient and distribution between the observation points. During this project a new interpolation method was applied and tested, considering auxiliary explanatory parameters. In order to spatially interpolate monthly mean temperature values, kriging with external drift was used over a grid of 1 km resolution, which contains parameters such as 5 km mean elevation, continentality, distance from the Gulf of Riga and the Baltic Sea, biggest lakes and rivers, population density. As the most appropriate of these parameters, based on a complex situation analysis, mean elevation and continentality was chosen. In order to validate interpolation results, several statistical indicators of the differences between predicted values and the values actually observed were used. Overall, the introduced model visually and statistically outperforms the previous interpolation method and provides a meteorologically reasonable result, taking into account factors that influence the spatial distribution of the monthly mean temperature.

  15. Stable Isotopes of Tilted Ignimbrite Calderas in Nevada

    NASA Astrophysics Data System (ADS)

    John, D. A.; Watts, K. E.; Hofstra, A. H.; Colgan, J. P.; Henry, C.; Bindeman, I. N.

    2013-12-01

    Mid-Tertiary calderas are exceptionally well exposed in tilted fault blocks of the northern Great Basin, facilitating detailed evolutionary models of their magmatic-hydrothermal systems. The 29.4 Ma Job Canyon caldera, the oldest of 3 overlapping calderas in the Stillwater Range, west-central Nevada, is tilted ~90° exposing a 10-km-thick section of the crust. Large parts of the >7 km-diameter caldera system, including >2 km thickness of intracaldera rhyolitic tuff, lower parts of an ~2 km thick sequence of post-caldera intermediate lavas, and the upper 500 m of the resurgent granodioritic IXL pluton, were pervasively altered to propylitic, argillic, and sericitic assemblages. Sparse quartz×calcite veins cut the tuff. δ18O values of altered whole rock samples range from +4.8 to -9.1‰ but are mostly -6 to -9‰ at paleodepths >2 km. Calculated magmatic δ18O and δD values range from +6.4 to 8.2‰ and ~-70‰, respectively. Calculated fluid compositions using temperatures from fluid inclusions and mineral assemblages are δ18OH2O=-9.5 to -15‰ and δDH2O=-125 to -135‰ (chlorite) and -70 to -80‰ (epidote). Chlorite-whole rock data suggest fluids that were derived from moderately 18O-exchanged meteoric water. Fault blocks in north-central Nevada expose a >5 km upper crustal cross section through the 12-17 x 20 km, 34 Ma Caetano caldera, including >3 km thickness intracaldera rhyolitic Caetano Tuff. Asymmetric caldera subsidence left a depression >1 km deep partly filled with a lake. Magma resurgence and emplacement of shallow granite porphyry plutons drove a hydrothermal system that altered >120 km2 of the caldera to depths >1.5 km. Alteration was focused in an early granite porphyry intrusion and surrounding upper Caetano Tuff and lacustrine sediments. Early pervasive quartz-kaolinite-pyrite alteration grades outward and downward into more restricted quartz-illite/smectite-pyrite alteration. Hematite, quartz, and barite veins and hydrothermal breccias cut early alteration. Whole rock δ18O values of kaolinite-altered tuff and intrusions are +1.7 to +4.7‰. Magmatic δ18O values of Caetano rocks calculated from zircon and major phenocrysts range narrowly from +10.0 to +10.5‰. Calculated fluid compositions from kaolinite are δ18OH2O=-3 to -7‰ and δDH2O=-148 to -160‰, and from quartz and barite veins are δ18OH2O=-4 to -11‰, indicating that hydrothermal fluids also were dominantly 18O-exchanged meteoric water. Compared to the Job Canyon caldera, δDH2O values for Caetano hydrothermal fluids are ~25‰ lower, suggesting that Caetano formed at an elevation about 1 km higher than Job Canyon along the crest of the Nevadaplano. Both calderas hosted vigorous hydrothermal systems driven by heat from magma resurgence that pervasively altered and exchanged 18O and D with 10s to 100s km3 of rock. However, significant assimilation of low-18O hydrothermally altered rocks is not apparent by the exclusively normal-δ18O values of Job Canyon, Caetano, and adjacent younger magmas. Neither caldera is strongly mineralized, probably in part due to low sulfur contents of the hydrothermal fluids. More acidic fluids at Caetano suggest a larger magmatic gas (HCl) input likely resulting from degassing of shallow resurgent magma into the caldera lake.

  16. Crustal tomographic imaging of a transitional continental rift: the Ethiopian rift

    NASA Astrophysics Data System (ADS)

    Daly, E.; Keir, D.; Ebinger, C. J.; Stuart, G. W.; Bastow, I. D.; Ayele, A.

    2008-03-01

    In this study we image crustal structure beneath a magmatic continental rift to understand the interplay between crustal stretching and magmatism during the late stages of continental rifting: the Main Ethiopian Rift (MER). The northern sector of this region marks the transition from continental rifting in the East African Rift to incipient seafloor spreading in the southern Red Sea and western Gulf of Aden. Our local tomographic inversion exploits 172 broad-band instruments covering an area of 250 × 350 km of the rift and adjacent plateaux. The instruments recorded a total of 2139 local earthquakes over a 16-month period. Several synthetic tests show that resolution is good between 12 and 25 km depth (below sea level), but some horizontal velocity smearing is evident along the axis of the Main Ethiopian Rift below 16 km. We present a 3-D P-wave velocity model of the mid-crust and present the first 3-D Vp/Vs model of the region. Our models show high P-wave velocities (6.5 km s-1) beneath the axis of the rift at a depth of 12-25 km. The presence of high Vp/Vs ratios (1.81-1.84) at the same depth range suggest that they are cooled mafic intrusions. The high Vp/Vs values, along with other geophysical evidence, suggest that dyking is pervasive beneath the axis of the rift from the mid-crustal depths to the surface and that some portion of partial melt may exist at lower crustal depths. Although the crustal stretching factor across the Main Ethiopian Rift is ~1.7, our results indicate that magma intrusion in narrow zones accommodates a large proportion of extensional strain, with similarities to slow-spreading mid-ocean ridge processes.

  17. Correlation between river slope and meandering variability (obtained by DGPS data) and morphotectonics for two Andean tributaries of the Amazon river: the case of Beni (Bolivia) and Napo (Ecuador-Peru) rivers.

    NASA Astrophysics Data System (ADS)

    Bourrel, L.; Darrozes, J.; Guyot, J.; Christophoul, F.; Bondoux, F.

    2007-05-01

    The Beni river drains a catchment area of 282 000 km2 of which 40 percent are located in the Cordillera of the Bolivian and Peruvian Andes, and the rest in the Amazonian plain : the studied reaches runs from Guanay (Andean Piedmont) to Riberalta (junction with Madre de Dios river) that represents a distance by the river of 1055 km. The Napo river starts in the Ecuadorian Andes and leaves Ecuador in Nuevo Rocafuerte (27 400 km2) and enters in Peru until its junction with the Amazon river : the studied section runs from Misahualli (Andean Piedmont) to this junction, that represents a distance by the river of 995 km. The GPS data were acquired using a mobile GPS embarked on a boat and 4 fixed bases located along the Beni river, 6 along the Napo river and the two rivers profile calculated from post-treated differential GPS solutions. For the Beni river, two sectors were identified: - the upstream sector (~230 km) between Guanay (414 m) and 50 km downstream Rurrenabaque (245 m) is located in Andean Piedmont, which consists in a series of thrusts associated with anticlines and synclines (the subandean zone), and presents slope values range between 135 cm/km and 10 cm/km and an average index of sinuosity (IS) of 1.29, - the downstream sector (~ 820 km) which runs in Amazonian plain (until Riberalta -165 m-), is characterized by an average slope of 8 cm/km and an average IS of 2.06 (this sector is much more homogeneous and the Beni river shows a meandering channel). For the Napo River, three sectors were identified: - the first sector (~140 km) between Misahualli (401 m) and Coca (265 m), is located in Andean Piedmont (subandean zone) and presents slope values range between 170 cm/km and 30 cm/km and an average IS of 1.6, - the second sector (~250 km) between Coca (when the Napo river enters in the Amazonian plain) and Nuevo Rocafuerte (190 m), presents slope values range between 30 cm/km and 20 cm/km and an average IS of 1.2, and a convex-up shape profile corresponding to the preserved part of the Pastaza-Napo Megafan, not yet affected by headwater erosion, - the third sector (~600 km) between Nuevo Rocafuerte and the confluence with the Amazon river (101 m), where the Napo river flows through the quaternary deposits of the Pastaza-Napo Megafan, presents slope values ranging from 20 to 10 cm/km and an average IS of 1.2, and is characterized by a more classical concave-up shape profile. Our main results established using DGPS data (an important difference between the slope and IS averages of the Napo and the Beni rivers in their Amazonian part, respectively ~20 cm/km and ~8 cm/km, ie a ratio ~2.5, 1.2 and 2.06, ie a ratio ~0.6) bring an additional explanation to the results obtained by the preceding authors, with balance methods, and confirm respectively the erosion and the sedimentation behaviour of the Napo and the Beni rivers.

  18. A High-Resolution Aerosol Retrieval Method for Urban Areas Using MISR Data

    NASA Astrophysics Data System (ADS)

    Moon, T.; Wang, Y.; Liu, Y.; Yu, B.

    2012-12-01

    Satellite-retrieved Aerosol Optical Depth (AOD) can provide a cost-effective way to monitor particulate air pollution without using expensive ground measurement sensors. One of the current state-of-the-art AOD retrieval method is NASA's Multi-angle Imaging SpectroRadiometer (MISR) operational algorithm, which has the spatial resolution of 17.6 km x 17.6 km. While the MISR baseline scheme already leads to exciting research opportunities to study particle compositions at regional scale, its spatial resolution is too coarse for analyzing urban areas where the AOD level has stronger spatial variations. We develop a novel high-resolution AOD retrieval algorithm that still uses MISR's radiance observations but has the resolution of 4.4km x 4.4km. We achieve the high resolution AOD retrieval by implementing a hierarchical Bayesian model and Monte-Carlo Markov Chain (MCMC) inference method. Our algorithm not only improves the spatial resolution, but also extends the coverage of AOD retrieval and provides with additional composition information of aerosol components that contribute to the AOD. We validate our method using the recent NASA's DISCOVER-AQ mission data, which contains the ground measured AOD values for Washington DC and Baltimore area. The validation result shows that, compared to the operational MISR retrievals, our scheme has 41.1% more AOD retrieval coverage for the DISCOVER-AQ data points and 24.2% improvement in mean-squared error (MSE) with respect to the AERONET ground measurements.

  19. On-road assessment of light duty vehicles in Delhi city: Emission factors of CO, CO2 and NOX

    NASA Astrophysics Data System (ADS)

    Jaiprakash; Habib, Gazala

    2018-02-01

    This study presents the technology based emission factors of gaseous pollutants (CO, CO2, and NOX) measured during on-road operation of nine passenger cars of diesel, gasoline, and compressed natural gas (CNG). The emissions from two 3-wheelers, and three 2-wheelers were measured by putting the vehicles on jacks and operating them according to Modified Indian Driving Cycle (MIDC) at no load condition. The emission factors observed in the present work were significantly higher than values reported from dynamometer study by Automotive Research Association of India (ARAI). Low CO (0.34 ± 0.08 g km-1) and high NOX (1.0 ± 0.4 g km-1) emission factors were observed for diesel passenger cars, oppositely high CO (2.2 ± 2.6 g km-1) and low NOX (1.0 ± 1.6 g km-1) emission factors were seen for gasoline powered cars. The after-treatment technology in diesel vehicles was effective in CO reduction. While the use of turbocharger in diesel vehicles to generate high combustion temperature and pressure produces more NOx, probably which may not be effectively controlled by after-treatment device. The after-treatment devices in gasoline powered Post-2010, Post-2005 vehicles can be acclaimed for reduced CO emissions compared to Post-2000 vehicles. This work presents a limited data set of emission factors from on-road operations of light duty vehicles, this limitation can be improved by further measurements of emissions from similar vehicles.

  20. Propagation of Stationary Planetary Waves in the Upper Atmosphere under Different Solar Activity

    NASA Astrophysics Data System (ADS)

    Koval, A. V.; Gavrilov, N. M.; Pogoreltsev, A. I.; Shevchuk, N. O.

    2018-03-01

    Numerical modeling of changes in the zonal circulation and amplitudes of stationary planetary waves are performed with an accounting for the impact of solar activity variations on the thermosphere. A thermospheric version of the Middle/Upper Atmosphere Model (MUAM) is used to calculate the circulation in the middle and upper atmosphere at altitudes up to 300 km from the Earth's surface. Different values of the solar radio emission flux in the thermosphere are specified at a wavelength of 10.7 cm to take into account the solar activity variations. The ionospheric conductivities and their variations in latitude, longitude, and time are taken into account. The calculations are done for the January-February period and the conditions of low, medium, and high solar activity. It was shown that, during high-activity periods, the zonal wind velocities increases at altitudes exceeding 150 km and decreases in the lower layers. The amplitudes of planetary waves at high solar activity with respect to the altitude above 120 km or below 100 km, respectively, are smaller or larger than those at low activity. These differences correspond to the calculated changes in the refractive index of the atmosphere for stationary planetary waves and the Eliassen-Palm flux. Changes in the conditions for the propagation and reflection of stationary planetary waves in the thermosphere may influence the variations in their amplitudes and the atmospheric circulation, including the lower altitudes of the middle atmosphere.

  1. The Role of Human Cytochrome P450 Enzymes in the Formation of 2-Hydroxymetronidazole: CYP2A6 is the High Affinity (Low Km) Catalyst

    PubMed Central

    Cohen-Wolkowiez, Michael; Sampson, Mario R.; Kearns, Gregory L.

    2013-01-01

    Despite metronidazole’s widespread clinical use since the 1960s, the specific enzymes involved in its biotransformation have not been previously identified. Hence, in vitro studies were conducted to identify and characterize the cytochrome P450 enzymes involved in the formation of the major metabolite, 2-hydroxymetronidazole. Formation of 2-hydroxymetronidazole in human liver microsomes was consistent with biphasic, Michaelis-Menten kinetics. Although several cDNA-expressed P450 enzymes catalyzed 2-hydroxymetronidazole formation at a supratherapeutic concentration of metronidazole (2000 μM), at a “therapeutic concentration” of 100 μM only CYPs 2A6, 3A4, 3A5, and 3A7 catalyzed metronidazole 2-hydroxylation at rates substantially greater than control vector, and CYP2A6 catalyzed 2-hydroxymetronidazole formation at rates 6-fold higher than the next most active enzyme. Kinetic studies with these recombinant enzymes revealed that CYP2A6 has a Km = 289 μM which is comparable to the Km for the high-affinity (low-Km) enzyme in human liver microsomes, whereas the Km values for the CYP3A enzymes corresponded with the low-affinity (high-Km) component. The sample-to-sample variation in 2-hydroxymetronidazole formation correlated significantly with CYP2A6 activity (r ≥ 0.970, P < 0.001) at substrate concentrations of 100 and 300 μM. Selective chemical inhibitors of CYP2A6 inhibited metronidazole 2-hydroxylation in a concentration-dependent manner and inhibitory antibodies against CYP2A6 virtually eliminated metronidazole 2-hydroxylation (>99%). Chemical and antibody inhibitors of other P450 enzymes had little or no effect on metronidazole 2-hydroxylation. These results suggest that CYP2A6 is the primary catalyst responsible for the 2-hydroxylation of metronidazole, a reaction that may function as a marker of CYP2A6 activity both in vitro and in vivo. PMID:23813797

  2. Solar flare induced D-region ionospheric perturbations evaluated from VLF measurements

    NASA Astrophysics Data System (ADS)

    Singh, Ashutosh K.; Singh, A. K.; Singh, Rajesh; Singh, R. P.

    2014-03-01

    The results of very low frequency (VLF) wave amplitude measurements carried out at the low latitude station Varanasi (geom. lat. 14∘55'N, long. 154∘E), India during solar flares are presented for the first time. The VLF waves (19.8 kHz) transmitted from the NWC-transmitter, Australia propagated in the Earth-ionosphere waveguide to long distances and were recorded at Varanasi. Data are analyzed and the reflection height H' and the sharpness factor β are evaluated. It is found that the reflection height decreases whereas sharpness factor increases with the increase of solar flare power. The H' is found to be higher and β smaller at low latitudes than the corresponding values at mid and high latitudes. The sunspot numbers were low during the considered period 2011-2012, being the rising phase of solar cycle 24 and as a result cosmic rays may impact the D-region ionosphere. The increased ionization from the flare lowers the effective reflecting height, H', of the D-region roughly in proportion to the logarithm of the X-ray flare intensity from a typical mid-day unperturbed value of about 71-72 km down to about 65 km for an X class flare. The sharpness ( β) of the lower edge of the D-region is also significantly increased by the flare but reaches a clear saturation value of about 0.48 km-1 for flares of magnitude greater than about X1 class.

  3. Magnetotelluric Investigations in Tuwa-Godhra Region, Gujarat (India)

    NASA Astrophysics Data System (ADS)

    Mohan, Kapil; Chaudhary, Peush; Kumar, G. Pavan; Kothyari, Girish Ch.; Choudhary, Virender; Nagar, Mehul; Patel, Pruthul; Gandhi, Drasti; Kushwaha, Dilip; Rastogi, B. K.

    2018-05-01

    Magnetotelluric (MT) data have been acquired at 40 locations in Tuwa and its surrounding region (200 km east of Ahmedabad and 15 km north-northwest of Godhra) in the Mainland Gujarat with an average station spacing of 1.5 km. MT impedance tensors have been estimated in the period range of 0.001-100 s. The data have been modeled using non-linear conjugate gradient scheme taking both apparent resistivity and phase into account. From the 2D models of the MT data, the weathered granite with Quaternary sediments (with resistivity of < 700 Ω m) have been inferred up to a depth of 500 m followed by Godhra granite (having resistivity up to 105 Ω m) with a thickness 6.5 km. The Aravalli supergroup has been inferred below Godhra granite. The Lunavada group of rocks have been inferred in the eastern part of the study area (having resistivity value ranging from 103 to 104 Ω m) separated from the Godhra granite by a contact zone. The comparatively very low-resistivity rocks (< 400 Ω m) of Udaipur formation followed by Paleoproterozoic carbonate rocks with fluid have been inferred below 8-10 km depth. The percolation of water from the surface through the contact zone of Lunavada and Champaner groups has been suggested. The presence of hot water springs in 10 km SW from the center of the study area (at the contact zone of Godhra granite and basalt) might be due to the western trending lithostratigraphic slope, hydrostatic pressure generated due to heat produced from interaction of water with the carbonate rocks at deeper depth and high subsurface temperature due to high geothermal gradient. The segmented nature of Himmatnagar Fault (HnF) is identified in the central portion of the study area.

  4. What Causes the High Apparent Speeds in Chromospheric and Transition Region Spicules on the Sun?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Pontieu, Bart; Martínez-Sykora, Juan; Chintzoglou, Georgios, E-mail: bdp@lmsal.com

    Spicules are the most ubuiquitous type of jets in the solar atmosphere. The advent of high-resolution imaging and spectroscopy from the Interface Region Imaging Spectrograph ( IRIS ) and ground-based observatories has revealed the presence of very high apparent motions of order 100–300 km s{sup −1} in spicules, as measured in the plane of the sky. However, line of sight measurements of such high speeds have been difficult to obtain, with values deduced from Doppler shifts in spectral lines typically of order 30–70 km s{sup −1}. In this work, we resolve this long-standing discrepancy using recent 2.5D radiative MHD simulations.more » This simulation has revealed a novel driving mechanism for spicules in which ambipolar diffusion resulting from ion-neutral interactions plays a key role. In our simulation, we often see that the upward propagation of magnetic waves and electrical currents from the low chromosphere into already existing spicules can lead to rapid heating when the currents are rapidly dissipated by ambipolar diffusion. The combination of rapid heating and the propagation of these currents at Alfvénic speeds in excess of 100 km s{sup −1} leads to the very rapid apparent motions, and often wholesale appearance, of spicules at chromospheric and transition region temperatures. In our simulation, the observed fast apparent motions in such jets are actually a signature of a heating front, and much higher than the mass flows, which are of order 30–70 km s{sup −1}. Our results can explain the behavior of transition region “network jets” and the very high apparent speeds reported for some chromospheric spicules.« less

  5. Catalytic properties of thermophilic lactate dehydrogenase and halophilic malate dehydrogenase at high temperature and low water activity.

    PubMed

    Hecht, K; Wrba, A; Jaenicke, R

    1989-07-15

    Thermophilic lactate dehydrogenases from Thermotoga maritima and Bacillus stearothermophilus are stable up to temperature limits close to the optimum growth temperature of their parent organisms. Their catalytic properties are anomalous in that Km shows a drastic increase with increasing temperature. At low temperatures, the effect levels off. Extreme halophilic malate dehydrogenase from Halobacterium marismortui exhibits a similar anomaly. Increasing salt concentration (NaCl) leads to an optimum curve for Km, oxaloacctate while Km, NADH remains constant. Previous claims that the activity of halophilic malate dehydrogenase shows a maximum at 1.25 M NaCl are caused by limiting substrate concentration; at substrate saturation, specific activity of halophilic malate dehydrogenase reaches a constant value at ionic strengths I greater than or equal to 1 M. Non-halophilic (mitochondrial) malate dehydrogenase shows Km characteristics similar to those observed for the halophilic enzyme. The drastic decrease in specific activity of the mitochondrial enzyme at elevated salt concentrations is caused by the salt-induced increase in rigidity of the enzyme, rather than gross structural changes.

  6. The life cycle assessment of alternative fuel chains for urban buses and trolleybuses.

    PubMed

    Kliucininkas, L; Matulevicius, J; Martuzevicius, D

    2012-05-30

    This paper describes a comparative analysis of public transport alternatives in the city of Kaunas, Lithuania. An LCA (Life Cycle Assessment) inventory analysis of fuel chains was undertaken using the midi urban bus and a similar type of trolleybus. The inventory analysis of fuel chains followed the guidelines provided by the ISO 14040 and ISO 14044 standards. The ReCiPe Life Cycle Impact Assessment (LCIA) methodology was used to quantify weighted damage originating from five alternative fuel chains. The compressed biogas fuel chain had the lowest weighted damage value, namely 45.7 mPt/km, whereas weighted damage values of the fuel chains based on electricity generation for trolleybuses were 60.6 mPt/km (for natural gas) and 78.9 mPt/km (for heavy fuel oil). The diesel and compressed natural gas fuel chains exhibited considerably higher damage values of 114.2 mPt/km and 132.6 mPt/km, respectively. The comparative life cycle assessment of fuel chains suggested that biogas-powered buses and electric trolleybuses can be considered as the best alternatives to use when modernizing the public transport fleet in Kaunas. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Spatial variations in soil and plant nitrogen levels caused by ammonia deposition near a cattle feedlot

    NASA Astrophysics Data System (ADS)

    Shen, Jianlin; Chen, Deli; Bai, Mei; Sun, Jianlei; Lam, Shu Kee; Mosier, Arvin; Liu, Xinliang; Li, Yong

    2018-03-01

    Cattle feedlots are significant ammonia (NH3) emission sources, and cause high NH3 deposition. This study was conducted to investigate the responses of soil mineral nitrogen (N), percent cover of plant species, leaf N content, and leaf δ15N to NH3 deposition around a 17,500-head cattle feedlot in Victoria, Australia. Soil samples were collected in May 2015 at 100-m intervals along eight downwind transects, and plant samples were collected in June 2015 from five sites at 50- to 300-m intervals along a grassland transect within 1 km downwind of the feedlot. NH3 deposition was also monitored at five sites within 1 km downwind of the feedlot. The estimated NH3-N deposition rates ranged from 2.9 kg N ha-1 yr-1 at 1 km from the feedlot to 203 kg N ha-1 yr-1 at 100 m from the feedlot. The soil mineral N content was high (22-98 mg kg-1, mainly nitrate), significantly decreased with increasing distance from the feedlot, and significantly increased with increasing NH3-N deposition. With increasing NH3-N deposition, the percent cover of the herb species Cymbonotus lawsonianus increased significantly, but that of the grass species Microlaena stipoides decreased significantly. The leaf total N contents of the grass and herb species were high (>4%), and were linearly, positively correlated with the NH3-N deposition rate. Leaf δ15N values were linearly, negatively correlated with the N deposition rate. These results indicate that the leaf N contents and δ15N values of C. lawsonianus and M. stipoides may be bioindicators of N deposition.

  8. Utilizing Yagi antennas in Lightning Mapping Array to detect low-power VHF signals

    NASA Astrophysics Data System (ADS)

    Tilles, J.; Thomas, R. J.; Edens, H. E.; Krehbiel, P. R.; Rison, W.

    2013-12-01

    The New Mexico Tech VHF Lightning Mapping Array (LMA) being operated at Langmuir Laboratory in central New Mexico is comprised of 22 time-of-arrival stations spanning an area approximately 60 km north-south and 45 km east-west. Nine stations are at high altitude (3.1-3.3 km GPS) over a 3 x 4 km area around the mountain-top Laboratory, and 13 are on the surrounding plains and the Rio Grande valley, at altitudes between 1.4 and 2.2 km. Each station utilizes a vertical half-wave dipole antenna having about 2 dBi gain at horizontal incidence and providing omnidirectional azimuthal coverage. In 2012, four additional stations utilizing higher gain (11 dBi) Yagi antennas were co-located at four of the surrounding sites within 10-15 km of the laboratory, each pointed over the laboratory area. The purpose was to test if directional antennas would improve detection of low-power sources in the laboratory vicinity, such as those associated with positive breakdown or weak precursor events. The test involved comparing the number and quality of radiation sources obtained by processing data from two sets of stations: first for a 17-station network in which all stations were omnidirectional, and then for the same network with Yagi-based measurements substituted in place of the omni measurements at the four co-located stations. For radiation events located in both datasets, the indicated source power values from Yagi stations were typically 5-10 dB greater than their omnidirectional counterpart for sources over or near the laboratory, consistent with the 9 dB difference in on-axis gain values. The difference decreased through zero and to negative values with increasing distance from the laboratory, confirming that it was due to the directionality of the Yagi antennas. It was expected that a network having Yagi antennas at all outlying stations would improve the network's detection of lower power sources in its central region. Rather, preliminary results show that there is no significant difference in the number of located sources, and that there is no significant difference in flash structure details for either positive or negative breakdown channels. This may be due to a need for more outlying Yagi stations, but could also be the case if in fact the close, high altitude stations are primarily responsible for detection of low power sources, i.e. detection of low power sources does not require or does not benefit much from outlying stations. Furthermore, the ability to detect low power sources may be fundamentally limited due to masking by strongly radiating negative breakdown. Work is continuing on analyzing the measurements.

  9. The Cretaceous Okhotsk-Chukotka Volcanic Belt (NE Russia): Geology, geochronology, magma output rates, and implications on the genesis of silicic LIPs

    NASA Astrophysics Data System (ADS)

    Tikhomirov, P. L.; Kalinina, E. A.; Moriguti, T.; Makishima, A.; Kobayashi, K.; Cherepanova, I. Yu.; Nakamura, E.

    2012-04-01

    The Cretaceous Okhotsk-Chukotka volcanic belt (OCVB) is a prominent subduction-related magmatic province, having the remarkably high proportion of silicic rocks (ca. 53% of the present-day crop area, and presumably over 70% of the total volcanic volume). Its estimated total extrusive volume ranges between 5.5 × 105 km3 (the most conservative estimate) and over 106 km3. This article presents a brief outline of the geology of OCVB, yet poorly described in international scientific literature, and results of a geochronological study on the northern part of the volcanic belt. On the base of new and published U-Pb and 40Ar/39Ar age determinations, a new chronological model is proposed. Our study indicates that the activity of the volcanic belt was highly discontinuous and comprised at least five main episodes at 106-98 Ma, 94-91 Ma, 89-87 Ma, 85.5-84 Ma, and 82-79 Ma. The new data allow a semi-quantitative estimate of the volcanic output rate for the observed part of the OCVB (area and volume approximately 105 km2 and 2.5 × 105 km3, respectively). The average extrusion rate for the entire lifetime of the volcanic belt ranges between 1.6 and 3.6 × 10- 5 km3yr- 1 km- 1, depending on the assumed average thickness of the volcanic pile; the optimal value is 2.6 × 10- 5 km3yr- 1 km- 1. Despite imprecise, such estimates infer the time-averaged volcanic productivity of the OCVB is similar to that of silicic LIPs and most active recent subduction-related volcanic areas of the Earth. However, the most extensive volcanic flare-ups at 89-87 and 85.5-84 Ma had higher rates of over 9.0 × 10- 5 km3yr- 1 km- 1. The main volumetric, temporal and compositional parameters of the OCVB are similar to those of silicic LIPs. This gives ground for discussion about the geodynamic setting of the latters, because the widely accepted definition of a LIP implies a strictly intraplate environment. Considering the genesis of the OCVB and other large provinces of silicic volcanism, we propose that residual thermal energy preserved in the continental crust after a previous major magmatic event may have been one of major reasons for high proportion of felsic rocks in a volcanic pile. In this scenario, underplating of mantle-derived basalts causes fast and extensive melting of still hot continental crust and generation of voluminous silicic magmas.

  10. Mars Global Reference Atmospheric Model (Mars-GRAM) and Database for Mission Design

    NASA Technical Reports Server (NTRS)

    Justus, C. G.; Duvall, Aleta; Johnson, D. L.

    2003-01-01

    Mars Global Reference Atmospheric Model (Mars-GRAM 2001) is an engineering-level Mars atmosphere model widely used for many Mars mission applications. From 0-80 km, it is based on NASA Ames Mars General Circulation Model, while above 80 km it is based on Mars Thermospheric General Circulation Model. Mars-GRAM 2001 and MGCM use surface topography from Mars Global Surveyor Mars Orbiting Laser Altimeter. Validation studies are described comparing Mars-GRAM with Mars Global Surveyor Radio Science and Thermal Emission Spectrometer data. RS data from 2480 profiles were used, covering latitudes 75 deg S to 72 deg N, surface to approximately 40 km, for seasons ranging from areocentric longitude of Sun (Ls) = 70-160 deg and 265-310 deg. RS data spanned a range of local times, mostly 0-9 hours and 18-24 hours. For interests in aerocapture and precision landing, comparisons concentrated on atmospheric density. At a fixed height of 20 km, RS density varied by about a factor of 2.5 over ranges of latitudes and Ls values observed. Evaluated at matching positions and times, these figures show average RSMars-GRAM density ratios were generally 1+/-)0.05, except at heights above approximately 25 km and latitudes above approximately 50 deg N. Average standard deviation of RSMars-GRAM density ratio was 6%. TES data were used covering surface to approximately 40 km, over more than a full Mars year (February, 1999 - June, 2001, just before start of a Mars global dust storm). Depending on season, TES data covered latitudes 85 deg S to 85 deg N. Most TES data were concentrated near local times 2 hours and 14 hours. Observed average TES/Mars-GRAM density ratios were generally 1+/-0.05, except at high altitudes (15-30 km, depending on season) and high latitudes (greater than 45 deg N), or at most altitudes in the southern hemisphere at Ls approximately 90 and 180 deg. Compared to TES averages for a given latitude and season, TES data had average density standard deviation about the mean of approximately 2.5% for all data, or approximately 1-4%, depending on time of day and dust optical depth. Average standard deviation of TES/Mars-GRAM density ratio was 8.9% for local time 2 hours and 7.1% for local time 14 hours. Thus standard deviation of observed TES/Mars-GRAM density ratio, evaluated at matching positions and times, is about three times the standard deviation of TES data about the TES mean value at a given position and season.

  11. Helium as a tracer for fluids released from Juan de Fuca lithosphere beneath the Cascadia forearc

    USGS Publications Warehouse

    McCrory, Patricia A.; Constantz, James E.; Hunt, Andrew G.; Blair, James Luke

    2016-01-01

    The ratio between helium isotopes (3He/4He) provides an excellent geochemical tracer for investigating the sources of fluids sampled at the Earth's surface. 3He/4He values observed in 25 mineral springs and wells above the Cascadia forearc document a significant component of mantle-derived helium above Juan de Fuca lithosphere, as well as variability in 3He enrichment across the forearc. Sample sites arcward of the forearc mantle corner (FMC) generally yield significantly higher ratios (1.2-4.0 RA) than those seaward of the corner (0.03-0.7 RA). The highest ratios in the Cascadia forearc coincide with slab depths (40-45 km) where metamorphic dehydration of young oceanic lithosphere is expected to release significant fluid and where tectonic tremor occurs, whereas little fluid is expected to be released from the slab depths (25-30 km) beneath sites seaward of the corner.Tremor (considered a marker for high fluid pressure) and high RA values in the forearc are spatially correlated. The Cascadia tremor band is centered on its FMC, and we tentatively postulate that hydrated forearc mantle beneath Cascadia deflects a significant portion of slab-derived fluids updip along the subduction interface, to vent in the vicinity of its corner. Furthermore, high RA values within the tremor band just arcward of the FMC, suggest that the innermost mantle wedge is relatively permeable.Conceptual models require: (1) a deep fluid source as a medium to transport primordial 3He; (2) conduits through the lithosphere which serve to speed fluid ascent to the surface before significant dilution from radiogenic 4He can occur; and (3) near lithostatic fluid pressure to keep conduits open. Our spatial correlation between high RA values and tectonic tremor provides independent evidence that tremor is associated with deep fluids, and it further suggests that high pore pressures associated with tremor may serve to keep fractures open for 3He migration through ductile upper mantle and lower crust.

  12. Dynamic and Thermodynamic Characteristics of a Microburst-Producing Storm in Colorado Determined from JAWS (Joint Airport Weather Studies) Dual-Doppler Data.

    DTIC Science & Technology

    1986-01-01

    amplitude gain function G, based 189 on the theoretical formulas derived by Testud and Chong (1983). GI is the amplitude gain for n = I (first order...theoretical formulas derived by Testud and Chong (1983). Values of kt, and AL are 0.1584 km and 0.0251 km respectively. For comparison, values of D...from Barnes (1973) scheme (D’) with Y=0.3 and R=2.5 km and theo:etical formulas derived by Testud and Chong (1983) for n=l (GI) and n=2 (G2). Fig. BI

  13. National Centers for Environmental Prediction

    Science.gov Websites

    OPERATIONAL 00Z, .... 12Z ... EXPERIMENTAL Daily Comparisons between GFS/GEFS control & ECMWF/ECMWF control 00Z T382/38km GFS, 00Z T190/70km GEFS control 12Z T1279/16km ECMWF, 12Z T639/30km ECMWF ensemble control Daily Values of 500 hPa Height AC, RMS, Talagrand & Outliers Mean of 14 GFS, 10 ECMWF and 16

  14. Discovery of sodium and potassium vapor in the atmosphere of the moon

    NASA Technical Reports Server (NTRS)

    Potter, A. E.; Morgan, T. H.

    1988-01-01

    A ground-based telescopic study of the lunar surface with high resolution spectroscopy has led to the discovery of sodium and potassium vapor 'atmospheres'. The scale height for the sodium atmosphere is 120 + or - 42 km, and for potassium 90 + or - 20 km; these values imply that the effective temperature of the two elements closely approximates that of the lunar surface. The sodium density at the south polar region is similar to that at the subsolar point, indicating widespread distribution of the vapor. The ratio of sodium to potassium densities, at 6 (+ or - 3):1, is close to the lunar surface ratio and suggests that the atmosphere originated in the vaporization of surface minerals.

  15. Excitation of earth-ionosphere waveguide in the ELF and lower VLF bands by modulated ionospheric current. Technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Field, E.C.; Bloom, R.M.

    1993-05-21

    In this report the authors use the principal of reciprocity in conjunction with a full-wave propagation code to calculate ground-level fields excited by ionospheric currents modulated at frequencies between 50 and 100 Hz with HF heaters. Their results show the dependence on source orientation, altitude, and dimension and therefore pertain to experiments using the HIPAS or HAARP ionospheric heaters. In the end-fire mode, the waveguide excitation efficiency of an ELF HED in the ionosphere is up to 20 dB greater than for a ground-based antenna, provided its altitude does not exceed 80-to-90 km. The highest efficiency occurs for a sourcemore » altitude of around 70 km; if that altitude is raised to 100 km, the efficiency drops by about 20 dB in the day and 10 dB at night. That efficiency does not account for the greater conductivity modulation that might be achieved at altitudes greater than 70 km, however. The trade-off between the altitude dependencies of the excitation efficiency and maximum achievable modulation depends on the ERP of the HF heater, the optimum altitude increasing with increasing ERP. For HIPAS the best modulation altitude is around 70 km, whereas for HAARP there might be marginal value in modulating at attitudes as high as 100 Km. Ionospheric modification, Ionospheric currents, Ionospheric heating.« less

  16. Reservoir-induced deformation and continental rheology in vicinity of Lake Mead, Nevada

    NASA Astrophysics Data System (ADS)

    Kaufmann, Georg; Amelung, Falk

    2000-07-01

    Lake Mead is a large reservoir in Nevada, formed by the construction of the 221-m-high Hoover Dam in the Black Canyon of the Colorado River. The lake encompasses an area of 635 km2, and the total volume of the reservoir is 35.5 km3. Filling started in February 1935. On the basis of a first-order leveling in 1935, several levelings were carried out to measure the deformation induced by the load of the reservoir. Subsidence in the central parts of the lake relative to the first leveling was around 120 mm (1941), 218 mm (1950), and 200 mm (1963). The subsidence pattern clearly shows relaxation of the underlying basement due to the water load of the lake, which ceased after 1950. Modeling of the relaxation process by means of layered, viscoelastic, compressible flat Earth models with a detailed representation of the spatial and temporal distribution of the water load shows that the thickness of the elastic crust underneath Lake Mead is 30±3 km. The data are also consistent with a 10-km-thick elastic upper crust and a 20-km-thick viscoelastic lower crust, with 1020 Pa s as a lower bound for its viscosity. The subcrust has an average viscosity of 1018±0.2 Pa s, a surprisingly low value. The leveling data constrain the viscosity profile down to ˜200 km depth.

  17. [The effect of "living high and training low" on serum CK, LDH and ALT of rowing athletes].

    PubMed

    Liu, Jian-Hong; Zhou, Zhi-Hong; Ou, Ming-Hao; Xie, Min-Hao; Wang, Kui; Shi, Yu-Qi

    2005-08-01

    To investigate the influence of living high-training low for 4 weeks on serum CK, LDH and ALT of rowing athletes. 20 rowing athletes were divided into two groups: the one (ten subjects) spent 8-10 h per night in a tabernacle which was simulated altitude of 2 500 m in normobaric hypoxia (HiLo group), the another (ten subjects) slept at near sea level (control group). During the periods of test, all athletes were trained at the same relative or at the same intensity of work in normoxia state. The serum CK, LDH and ALT were measured at before, during 2 weeks, 4 weeks and 2 weeks after "living high and training low". Baseline serum values for CK, LDH and ALT were not different between two groups (P > 0.05). The levels of CK, LDH of HiLo group were significantly increased (P < 0.05) than those of control group at 3 rd week, however, it was contrary at 5th and 7th week. After exercise of 2 km and 5 km, the values of LDH and CK at a moment notice and 30min postexercise test in HiLo group were significant lower than those in control group. These results indicate that living high-training low may reduce the muscle damage associated with endurance exercise.

  18. First assessment of water and carbon cycles in two tropical coastal rivers of south-west India: an isotopic approach.

    PubMed

    Tripti, M; Lambs, L; Otto, T; Gurumurthy, G P; Teisserenc, R; Moussa, I; Balakrishna, K; Probst, J L

    2013-08-15

    The contribution of tropical coastal rivers to the global carbon budget remains unmeasured, despite their high water dynamics, i.e. higher run-off with their basin characteristic of warm temperature. Two rivers draining the western part of the Western Ghats, the Swarna (length 80 km) and Nethravati (147 km) Rivers, were studied for water and carbon cycles. The stable isotope ratios of oxygen (δ(18) O values), hydrogen (δ(2) H values) and carbon (δ(13) C values) were used to understand the water circulation, the weathering processes and the carbon biogeochemical cycle. The river water samples were collected during the dry post-monsoonal season (November 2011). The δ(18) O and δ(2) H values of river water suggested that the monsoonal vapour source and its high recycling have a dominant role because of the orographical and tropical conditions. The absence of calcareous rocks has led to dissolved inorganic carbon (DIC) mainly originating from atmospheric/soil CO2 , via rock-weathering processes, and the low soil organic matter combined with high run-off intensity has led to low riverine dissolved organic carbon (DOC) contents. The δ(13) C values increase from upstream to downstream and decrease with increasing pCO2 . There is a positive relationship between the δ(13) CDIC values and the DOC concentrations in these two rivers that is contrary to that in most of the studied rivers of the world. The higher evapotranspiration supported by tropical conditions suggests that there are higher vapour recycling process in the Swarna and Nethravati basins as studied from the water δ(18) O and δ(2) H values. The basin characteristics of higher rainfall/run-off accompanied by warm temperature suggest that the δ(13) C value of riverine DIC is mainly controlled by the weathering of source rocks (silicates) with variation along the river course by CO2 degassing from the river water to the atmosphere and is less dominated by the oxidation of DOC. Copyright © 2013 John Wiley & Sons, Ltd.

  19. Early changes of the anemia phenomenon in male 100-km ultramarathoners.

    PubMed

    Chiu, Yu-Hui; Lai, Jiun-I; Wang, Shih-Hao; How, Chorng-Kuang; Li, Li-Hua; Kao, Wei-Fong; Yang, Chen-Chang; Chen, Ray-Jade

    2015-02-01

    Sports anemia is a widely observed phenomenon after prolonged running. There are various factors that contribute to sports anemia, including hemodilution, exercise-induced oxidative stress, iron deficiency, gastrointestinal bleeding, hematuria, and hemolysis resulting from foot-strike and/or from compression of contracting muscles on capillaries. Until now, there has been no published report that describes the overall hematological, urinary, and fecal consequences in Asian male ultramarathoners after a 100-km (62.5-mile) ultramarathon event. A total of 25 male runners were recruited into our study. Blood was drawn 1 week before, immediately after, and then 24 hours subsequent to the race. Hematological samples were analyzed for the anemia phenomenon. Additionally, urinary and fecal samples were collected before and after the race for detection of occult blood. The blood hemoglobin and erythropoietin values of the recruited runners showed a statistically significant rise in the immediate post-race values and a rapid drop in values at 24 hours post-race. Blood concentrations of red blood cells and hematocrit were significantly lower at 24 hours post-race compared with pre-race. The white blood cell count, interleukin-6, tumor necrosis factor-alpha, high-sensitivity C-reactive protein, and ferritin all showed significant increases both immediately after and 24 hours post-race compared with pre-race hematological values. There were immediate decreases of both haptoglobin and iron, as well as an increase of total iron-binding capacity levels in post-race blood tests. For both urinary and fecal samples, there was a statistically significant difference between the pre- and post-race results in occult blood. Running a 100-km ultramarathon will induce substantial sports anemia, and oxidative stress response, hemolysis, hematuria, and gastrointestinal bleeding are typical factors that contribute to its onset. Copyright © 2014. Published by Elsevier Taiwan.

  20. Rainfall Modification by Major Urban Areas: Observations from Spaceborne Rain Radar on the TRMM Satellite.

    NASA Astrophysics Data System (ADS)

    Shepherd, J. Marshall; Pierce, Harold; Negri, Andrew J.

    2002-07-01

    Data from the Tropical Rainfall Measuring Mission (TRMM) satellite's precipitation radar (PR) were employed to identify warm-season rainfall (1998-2000) patterns around Atlanta, Georgia; Montgomery, Alabama; Nashville, Tennessee; and San Antonio, Waco, and Dallas, Texas. Results reveal an average increase of about 28% in monthly rainfall rates within 30-60 km downwind of the metropolis, with a modest increase of 5.6% over the metropolis. Portions of the downwind area exhibit increases as high as 51%. The percentage changes are relative to an upwind control area. It was also found that maximum rainfall rates in the downwind impact area exceeded the mean value in the upwind control area by 48%-116%. The maximum value was generally found at an average distance of 39 km from the edge of the urban center or 64 km from the center of the city. Results are consistent with the Metropolitan Meteorological Experiment (METROMEX) studies of St. Louis, Missouri, almost two decades ago and with more recent studies near Atlanta. The study establishes the possibility of utilizing satellite-based rainfall estimates for examining rainfall modification by urban areas on global scales and over longer time periods. Such research has implications for weather forecasting, urban planning, water resource management, and understanding human impact on the environment and climate.

  1. Calibration of the local magnitude scale ( M L ) for Peru

    NASA Astrophysics Data System (ADS)

    Condori, Cristobal; Tavera, Hernando; Marotta, Giuliano Sant'Anna; Rocha, Marcelo Peres; França, George Sand

    2017-07-01

    We propose a local magnitude scale ( M L ) for Peru, based on the original Richter definition, using 210 seismic events between 2011 and 2014, recorded by 35 broadband stations of the National Seismic Network operated by the Geophysical Institute of Peru. In the solution model, we considered 1057 traces of maximum amplitude records on the vertical channel from simulated Wood-Anderson seismograms of shallow events (depths between 0 and 60 km) and hypocentral distances less than 600 km. The attenuation factor has been evaluated in terms of geometrical spreading and anelastic attenuation coefficients. The magnitude M L was defined as M L = L o g 10 A W A +1.5855 L o g 10( R/100)+0.0008( R-100)+3± S, where, A W A is the displacement amplitude in millimeters (Wood-Anderson), R is the hypocentral distance (km), and S is the station correction. The results obtained for M L have good correlation with the m b , M s and M w values reported the ISC and NEIC. The anelastic attenuation curve obtained has a similar behavior to that other highly seismic regions. Station corrections were determined for all stations during the regression analysis resulting in values ranging between -0.97 and +0.73, suggesting a strong influence of local site effects on amplitude.

  2. Effects of CYP2C19 Variants on Fluoxetine Metabolism in vitro.

    PubMed

    Fang, Ping; He, Jia-Yang; Han, Ai-Xia; Lan, Tian; Dai, Da-Peng; Cai, Jian-Ping; Hu, Guo-Xin

    2017-01-01

    CYP2C19 is an important member of the cytochrome P450 enzyme superfamily. We recently identified 31 CYP2C19 alleles in the Han Chinese population. The aim of this study was to assess the catalytic activities of these allelic isoforms and their effects on the metabolism of fluoxetine in vitro. The wild-type and 30 CYP2C19 variants were expressed in insect cells and each variant was characterized using fluoxetine as the substrate. Reactions were performed at 37°C with 20-1,000 µmol/L substrate for 30 min. By using ultra-high performance liquid chromatography-mass spectrometry to detect the products, the kinetic parameters Km, Vmax, and intrinsic clearance (Vmax/Km) of norfluoxetine were determined. Among the CYP2C19 variants tested, T130M showed similar intrinsic clearance (Vmax/Km) values with CYP2C19*1, while the intrinsic clearance values of other variants were significantly decreased (from 9.56 to 77.77%). In addition, CYP2C19*3 and *35FS could not be detected because they have no detectable enzyme activity. In China, the assessment of CYP2C19 variants in vitro offers valuable information relevant to the personalized medicine for CYP2C19-metabolized drug. © 2017 S. Karger AG, Basel.

  3. A North American regional reanalysis climatology of the Haines Index

    Treesearch

    Wei Lu; Joseph J. (Jay) Charney; Sharon Zhong; Xindi Bian; Shuhua Liu

    2011-01-01

    A warm-season (May through October) Haines Index climatology is derived using 32-km regional reanalysis temperature and humidity data from 1980 to 2007. We compute lapse rates, dewpoint depressions, Haines Index factors A and B, and values for each of the low-, mid- and high-elevation variants of the Haines Index. Statistical techniques are used to investigate the...

  4. A distance scale from the infrared magnitude/H I velocity-width relation. III - The expansion rate outside the local supercluster

    NASA Astrophysics Data System (ADS)

    Aaronson, M.; Mould, J.; Huchra, J.; Sullivan, W. T., III; Schommer, R. A.; Bothun, G. D.

    1980-07-01

    Infrared magnitudes and 21 cm H I velocity widths are presented for galaxies in the Pegasus I cluster (V ≍ 4000 km s-1), the Cancer cluster (V ≍ 4500 km s-1), cluster Zwicky 1400.4 ± 0949 (Z74-23) (V ≍ 6000 km s-1), and the Perseus supercluster (V ≍ 5500 km s-1). The data are used to determine redshift-independent distances from which values of the Hubble ratio can be derived. With a zero point based solely on the Sandage-Tammann distances to M3 1 and M33, the following results are obtained (zero-point error excluded): Pegasus I.--r = 42 ± 4 Mpc, V/r = 91 ± 8 km s-1 Mpc-1; Cancer.--r = = 49 ± 6 Mpc, V/r = 89 ± 11 km s-1 Mpc-1; Z74-23.--r = 6l ± 4 Mpc, V/r = 96 ± 7 km s-1 Mpc-1; Perseus supercluster.--r = 53 ± 2 Mpc, V/r = 104 ± 6 km s-1 Mpc-1; The closely similar value of the Hubble ratio found in the four independent samples suggests that the zero-point calibration in the IR/H I technique does not depend on environment. The difference between the mean of these Hubble ratios, V/r = 95 ± 4 km s-1 Mpc -1, and that measured for Virgo in Paper II, V/r = 65 ±4 km s-1 Mpc-1, is significant at a formal level of 5 σ. The simplest explanation of the discrepancy is to postulate a Local Group component of motion in the direction of Virgo. The resulting velocity perturbation is ΔV = 480 ± 75 km s-1. This value agrees well with recent observations of a dipole term in the 3 K microwave background, the only other anisotropy test for which a detection significance of 5 σ or more is claimed. We are thus led to a preliminary estimate for the value of the Hubble constant of H0 = 95 ± 4 km s-1 Mpc-1. If a zero point based on de Vaucouleurs's distances to M31 and M33 is adopted instead, all distances decrease by , and the Hubble constant increases by a similar amount. A variety of possible systematic errors which might affect the present conclusions are investigated, but we can find none that are relevant. In particular, because the galaxy samples are chosen from a cluster population which is generally all at the same distance, Malmquist bias does not occur. In fact, two of the clusters (Pegasus I and Z74-23) are sampled in both magnitude and velocity width to a level as deep as Virgo itself. Other observational data related to the value of H0 are examined, as are a number of previously used anisotropy tests, including color-luminosity relations, brightest cluster member(s), central surface brightnesses, and supernovae. We find that some of these tests support the present results, while contrary evidence is currently weak. A model in which Virgo gravitationally retards the Hubble flow of galaxies within the Local Supercluster provides a natural interpretation of our findings. A range of 1.5-3 in local density contrast then leads to a value of the density parameter Ω ≍ 0.7-0.2. The deceleration parameter q0 is then 0.35-0.1 for a simple Friedmann-type expanding universe.

  5. Ab initio calculation of infrared intensities for hydrogen peroxide

    NASA Technical Reports Server (NTRS)

    Rogers, J. D.; Hillman, J. J.

    1982-01-01

    Results of an ab initio SCF quantum mechanical study are used to derive estimates for the infrared intensities of the fundamental vibrations of hydrogen peroxide. Atomic polar tensors (APTs) were calculated on the basis of a 4-31G basis set, and used to derive absolute intensities for the vibrational transitions. Comparison of the APTs calculated for H2O2 with those previously obtained for H2O and CH3OH, and of the absolute intensities derived from the H2O2 APTs with those derived from APTs transferred from H2O and CH3OH, reveals the sets of values to differ by no more than a factor of two, supporting the validity of the theoretical calculation. Values of the infrared intensities obtained correspond to A1 = 14.5 km/mol, A2 = 0.91 km/mol, A3 = 0.058 km/mol, A4 = 123 km/mol, A5 = 46.2 km/mol, and A6 = 101 km/mol. Charge, charge flux and overlap contributions to the dipole moment derivatives are also computed.

  6. Ab initio calculation of infrared intensities for hydrogen peroxide

    NASA Astrophysics Data System (ADS)

    Rogers, J. D.; Hillman, J. J.

    1982-04-01

    Results of an ab initio SCF quantum mechanical study are used to derive estimates for the infrared intensities of the fundamental vibrations of hydrogen peroxide. Atomic polar tensors (APTs) were calculated on the basis of a 4-31G basis set, and used to derive absolute intensities for the vibrational transitions. Comparison of the APTs calculated for H2O2 with those previously obtained for H2O and CH3OH, and of the absolute intensities derived from the H2O2 APTs with those derived from APTs transferred from H2O and CH3OH, reveals the sets of values to differ by no more than a factor of two, supporting the validity of the theoretical calculation. Values of the infrared intensities obtained correspond to A1 = 14.5 km/mol, A2 = 0.91 km/mol, A3 = 0.058 km/mol, A4 = 123 km/mol, A5 = 46.2 km/mol, and A6 = 101 km/mol. Charge, charge flux and overlap contributions to the dipole moment derivatives are also computed.

  7. High-resolution regional climate model evaluation using variable-resolution CESM over California

    NASA Astrophysics Data System (ADS)

    Huang, X.; Rhoades, A.; Ullrich, P. A.; Zarzycki, C. M.

    2015-12-01

    Understanding the effect of climate change at regional scales remains a topic of intensive research. Though computational constraints remain a problem, high horizontal resolution is needed to represent topographic forcing, which is a significant driver of local climate variability. Although regional climate models (RCMs) have traditionally been used at these scales, variable-resolution global climate models (VRGCMs) have recently arisen as an alternative for studying regional weather and climate allowing two-way interaction between these domains without the need for nudging. In this study, the recently developed variable-resolution option within the Community Earth System Model (CESM) is assessed for long-term regional climate modeling over California. Our variable-resolution simulations will focus on relatively high resolutions for climate assessment, namely 28km and 14km regional resolution, which are much more typical for dynamically downscaled studies. For comparison with the more widely used RCM method, the Weather Research and Forecasting (WRF) model will be used for simulations at 27km and 9km. All simulations use the AMIP (Atmospheric Model Intercomparison Project) protocols. The time period is from 1979-01-01 to 2005-12-31 (UTC), and year 1979 was discarded as spin up time. The mean climatology across California's diverse climate zones, including temperature and precipitation, is analyzed and contrasted with the Weather Research and Forcasting (WRF) model (as a traditional RCM), regional reanalysis, gridded observational datasets and uniform high-resolution CESM at 0.25 degree with the finite volume (FV) dynamical core. The results show that variable-resolution CESM is competitive in representing regional climatology on both annual and seasonal time scales. This assessment adds value to the use of VRGCMs for projecting climate change over the coming century and improve our understanding of both past and future regional climate related to fine-scale processes. This assessment is also relevant for addressing the scale limitation of current RCMs or VRGCMs when next-generation model resolution increases to ~10km and beyond.

  8. An Experimental High-Resolution Forecast System During the Vancouver 2010 Winter Olympic and Paralympic Games

    NASA Astrophysics Data System (ADS)

    Mailhot, J.; Milbrandt, J. A.; Giguère, A.; McTaggart-Cowan, R.; Erfani, A.; Denis, B.; Glazer, A.; Vallée, M.

    2014-01-01

    Environment Canada ran an experimental numerical weather prediction (NWP) system during the Vancouver 2010 Winter Olympic and Paralympic Games, consisting of nested high-resolution (down to 1-km horizontal grid-spacing) configurations of the GEM-LAM model, with improved geophysical fields, cloud microphysics and radiative transfer schemes, and several new diagnostic products such as density of falling snow, visibility, and peak wind gust strength. The performance of this experimental NWP system has been evaluated in these winter conditions over complex terrain using the enhanced mesoscale observing network in place during the Olympics. As compared to the forecasts from the operational regional 15-km GEM model, objective verification generally indicated significant added value of the higher-resolution models for near-surface meteorological variables (wind speed, air temperature, and dewpoint temperature) with the 1-km model providing the best forecast accuracy. Appreciable errors were noted in all models for the forecasts of wind direction and humidity near the surface. Subjective assessment of several cases also indicated that the experimental Olympic system was skillful at forecasting meteorological phenomena at high-resolution, both spatially and temporally, and provided enhanced guidance to the Olympic forecasters in terms of better timing of precipitation phase change, squall line passage, wind flow channeling, and visibility reduction due to fog and snow.

  9. Biochemical properties of Na+/K(+)-ATPase in axonal growth cone particles isolated from fetal rat brain.

    PubMed

    Mercado, R; Hernández, J

    1994-08-01

    Axonal growth cones (AGC) isolated from fetal rat brain have an important specific activity of N+/K(+)-ATPase. Kinetic assays of the enzyme in AGC showed that Km values for ATP or K+ are similar to those reported for the adult brain enzyme. For Na+ the affinity (Km) was lower. Vmax for the three substrates was several times lower in AGC as compared to the adult value. We also observed two apparent inhibition constants of Na+/K(+)-ATPase by ouabain, one of low affinity, possibly corresponding to the alpha 1 isoform and another of high affinity which is different to that described for the alpha 2 isoform of the enzyme. These results support an important role for the sodium pump in the maintainance of volume and cationic balance in neuronal differentiating structures. The functional differences observed also suggest that the enzymatic complex of Na+/K(+)-ATPase in AGC is in a transitional state towards the adult configuration.

  10. Alum Innovative Exploration Project (Ram Power Inc.)

    DOE Data Explorer

    Miller, Clay

    2010-01-01

    Data generated from the Alum Innovative Exploration Project, one of several promising geothermal properties located in the middle to upper Miocene (~11-5 Ma, or million years BP) Silver Peak-Lone Mountain metamorphic core complex (SPCC) of the Walker Lane structural belt in Esmeralda County, west-central Nevada. The geothermal system at Alum is wholly concealed; its upper reaches discovered in the late 1970s during a regional thermal-gradient drilling campaign. The prospect boasts several shallow thermal-gradient (TG) boreholes with TG >75oC/km (and as high as 440oC/km) over 200-m intervals in the depth range 0-600 m. Possibly boiling water encountered at 239 m depth in one of these boreholes returned chemical- geothermometry values in the range 150-230oC. GeothermEx (2008) has estimated the electrical- generation capacity of the current Alum leasehold at 33 megawatts for 20 years; and the corresponding value for the broader thermal anomaly extending beyond the property at 73 megawatts for the same duration.

  11. Precipitable Water Vapour at the Canarian Observatories (Teide and Roque de los Muchachos) from routine GPS

    NASA Astrophysics Data System (ADS)

    Castro-Almazán, Julio A.; Muñoz-Tuñón, Casiana; García-Lorenzo, Begoña.; Pérez-Jordán, Gabriel; Varela, Antonia M.; Romero, Ignacio

    2016-07-01

    We are presenting two years (2012 and 2013) of preliminary statistical results of calibrated PWV values from the GPS geodesic antennas (LPAL and IZAN) at Teide and Roque de los Muchachos Observatories (OT and ORM), Canary Islands. To calibrate the PWV from both GPS antennas we have selected a set of simultaneous high vertical resolution radio-sounding profiles from the closest operational balloon station, Güímar (GUI-WMO 60018; ≍15 km distant from OT and ≍150 km from ORM). The calibrations showed a correlation of 0.994 and 0.970 for OT and ORM, respectively, with rmse of 0.44 and 0.70 mm. The calibrated PWV series brought median values of 3.5 mm at OT and 4.0 mm at ORM. The difference is explained by the 200 m of difference in height of the antennas (LPAL antenna is below the telescopes altitude). Twenty five percent of the time, PWV is less than 1.7 mm.

  12. Anomalous Near-Surface Low-Salinity Pulses off the Central Oregon Coast

    PubMed Central

    Mazzini, Piero L. F.; Risien, Craig M.; Barth, John A.; Pierce, Stephen D.; Erofeev, Anatoli; Dever, Edward P.; Kosro, P. Michael; Levine, Murray D.; Shearman, R. Kipp; Vardaro, Michael F.

    2015-01-01

    From mid-May to August 2011, extreme runoff in the Columbia River ranged from 14,000 to over 17,000 m3/s, more than two standard deviations above the mean for this period. The extreme runoff was the direct result of both melting of anomalously high snowpack and rainfall associated with the 2010–2011 La Niña. The effects of this increased freshwater discharge were observed off Newport, Oregon, 180 km south of the Columbia River mouth. Salinity values as low as 22, nine standard deviations below the climatological value for this period, were registered at the mid-shelf. Using a network of ocean observing sensors and platforms, it was possible to capture the onshore advection of the Columbia River plume from the mid-shelf, 20 km offshore, to the coast and eventually into Yaquina Bay (Newport) during a sustained wind reversal event. Increased freshwater delivery can influence coastal ocean ecosystems and delivery of offshore, river-influenced water may influence estuarine biogeochemistry. PMID:26607750

  13. Quantitative Comparison of Human Parainfluenza Virus Hemagglutinin-Neuraminidase Receptor Binding and Receptor Cleavage

    PubMed Central

    Tappert, Mary M.; Porterfield, J. Zachary; Mehta-D'Souza, Padmaja; Gulati, Shelly

    2013-01-01

    The human parainfluenza virus (hPIV) hemagglutinin-neuraminidase (HN) protein binds (H) oligosaccharide receptors that contain N-acetylneuraminic acid (Neu5Ac) and cleaves (N) Neu5Ac from these oligosaccharides. In order to determine if one of HN′s two functions is predominant, we measured the affinity of H for its ligands by a solid-phase binding assay with two glycoprotein substrates and by surface plasmon resonance with three monovalent glycans. We compared the dissociation constant (Kd) values from these experiments with previously determined Michaelis-Menten constants (Kms) for the enzyme activity. We found that glycoprotein substrates and monovalent glycans containing Neu5Acα2-3Galβ1-4GlcNAc bind HN with Kd values in the 10 to 100 μM range. Km values for HN were previously determined to be on the order of 1 mM (M. M. Tappert, D. F. Smith, and G. M. Air, J. Virol. 85:12146–12159, 2011). A Km value greater than the Kd value indicates that cleavage occurs faster than the dissociation of binding and will dominate under N-permissive conditions. We propose, therefore, that HN is a neuraminidase that can hold its substrate long enough to act as a binding protein. The N activity can therefore regulate binding by reducing virus-receptor interactions when the concentration of receptor is high. PMID:23740997

  14. Validation of Temperature Measurements from the Airborne Raman Ozone Temperature and Aerosol Lidar During SOLVE

    NASA Technical Reports Server (NTRS)

    Burris, John; McGee, Thomas; Hoegy, Walter; Lait, Leslie; Twigg, Laurence; Sumnicht, Grant; Heaps, William; Hostetler, Chris; Bui, T. Paul; Neuber, Roland; hide

    2001-01-01

    The Airborne Raman Ozone, Temperature and Aerosol Lidar (AROTEL) participated in the recent Sage III Ozone Loss and Validation Experiment (SOLVE) by providing profiles of aerosols, polar stratospheric clouds (PSCs), ozone and temperature with high vertical and horizontal resolution. Temperatures were derived from just above the aircraft to approximately 60 kilometers geometric altitude with a reported vertical resolution of between 0.5 and 1.5 km. The horizontal footprint varied from 4 to 70 km. This paper explores the measurement uncertainties associated with the temperature retrievals and makes comparisons with independent, coincident, measurements of temperature. Measurement uncertainties range from 0.1 K to approximately 4 K depending on altitude and integration time. Comparisons between AROTEL and balloon sonde temperatures retrieved under clear sky conditions using both Rayleigh and Raman scattered data showed AROTEL approximately 1 K colder than sonde values. Comparisons between AROTEL and the Meteorological Measurement System (MMS) on NASA's ER-2 show AROTEL being from 2-3 K colder for altitudes ranging from 14 to 18 km. Temperature comparisons between AROTEL and the United Kingdom Meteorological Office's model showed differences of approximately 1 K below approximately 25 km and a very strong cold bias of approximately 12 K at altitudes between 30 and 35 km.

  15. Three-dimensional fluid mapping and earthquake probabilities for induced seismicity sequences

    NASA Astrophysics Data System (ADS)

    Bachmann, C. E.; Wiemer, S.; Woessner, J.

    2010-12-01

    To stimulate the reservoir for a proposed enhanced geothermal system (EGS) project in the City of Basel, approximately 11500 m3 of water were injected at high pressures into a 5 km deep well between December 2nd and 8th, 2006. A six-sensor borehole array, installed by Geothermal Explorers Limited at depths between 50 and 2700 meters around the well to monitor the induced seismicity, recorded some 15000 events during the injection phase, more than 3500 of them locatable. The induced seismicity covers an area of about two square kilometers between 3 and 5 km depth. Water injection was stopped after a widely felt ML 3.4 event that occurred on December 8th. Here, we map in space and time statistical parameters that describe the seismicity, such as the magnitude of completeness, Mc the b- and a- value of the frequency-magnitude distribution and the local probability of large events. We find that the completeness level varies from Mc= 0.5 to Mc=0.8, where the lowest completeness is observed for the shallowest seismicity. Higher b-values are located close to the initiation point of the injection at the casing shoe. With time, and with the gradual expansion of the seismicity, the b-values decrease near the edges of the seismicity cloud. The b-values range from 1.0 to above 2.0; large events occur preferentially in regions of previously low b-value. The local earthquake probabilities for a larger (M3+) event determined from the local a- and b-value show a clear correlation with the occurrence of events in this magnitude range, suggesting that by mapping the local a- and b-values, large magnitude events could be forecasted with greater accuracy than possible when using bulk values only. There are several different hypotheses how to explain induced seismicity, including increasing pore pressure, temperature decrease, volume changes and chemical alterations of fraction surfaces. All of these are linked to the fluid migration within the rock. Previously, high b-values have been shown to correlate with the presence of magma and fluids in volcanic areas and subduction zones. Additionally, b-values have been shown to be inversely proportional to the applied shear stress. Our results indicate that often-stated assumption that induced sequences are showing a high b-value is too simplistic. Rather, anomalously high values close to the casing shoe are embedded in average values further away. These zones of high b-values experience the highest changes in pore pressure, we therefore suggest a correlation between b-values and pore pressure. Towards the rim of seismicity, we find lower b-values, close to typical tectonic values, indicating that the seismicity may not primarily be caused by fluid overpressure. Based on our results, we suggest that b-values are linked to fluid migration; zones with high b-values indicate preferential fluid flow directions, zones with low b-values suggest seismicity that is not directly linked to water flow.

  16. Landing on Enceladus: Mission Design Parameters and Techniques

    NASA Astrophysics Data System (ADS)

    Spilker, T. R.

    2006-12-01

    Since Cassini/Huygens mission results revealed the intriguing nature of Enceladus, scientists have discussed various ways to obtain more detailed information about the south-polar geysers and subsurface conditions that produce them. This includes potential science instruments and investigations, and also the kinds of spacecraft platforms that could deliver and support the instruments. The three most commonly discussed platforms are Saturn orbiters that perform multiple close Enceladus flybys, Enceladus orbiters, and landers (soft or hard). Some high-value science investigations, such as producing an accurate description of the gravity field to infer internal structure, are best done from an orbiter. Some, such as seismic investigations, can be done only with a landed package. Unlike larger satellites such as Europa and Ganymede, Enceladus's low mass yields low surface gravity (~0.11 m/s2), low orbital speeds (<200 m/s), and other mission design characteristics that make it a manageable destination for a practical, high-value lander mission. The main mission design challenge is deceleration from Enceladus approach to a direct landing approach or orbit insertion. A Hohmann transfer from Titan approaches Enceladus with a V- infinity of >4 km/s, most of which would have to be decelerated away propulsively - a sizeable, multi-stage task for current propulsion systems - if no gravity-assist pump-down is used. Preliminary conclusions from JPL mission designers suggest that a pump-down tour could reduce that V-infinity to 2 km/s or less, possibly as little as 1 km/s if a lengthy pump-down is tolerable (Strange, Russell, and Lam, 2006). Once in orbit, landing from a moderately stable, 100-km circular orbit can be accomplished with as little as 210 m/s delta-V, a relatively simple task for a simple propulsion system. Temporary use of marginally stable orbits could reduce that figure. Low surface gravity allows use of small, light thrusters and provides ample reaction time for landing control systems.

  17. Evolution of the stratospheric aerosol in the northern hemisphere following the June 1991 volcanic eruption of Mount Pinatubo: Role of tropospheric-stratospheric exchange and transport

    NASA Astrophysics Data System (ADS)

    Jónsson, Hafliòi H.; Wilson, James C.; Brock, Charles A.; Dye, J. E.; Ferry, G. V.; Chan, K. R.

    1996-01-01

    Since the eruption of Mount Pinatubo in June, 1991, measurements of particle size and concentration have intermittently been carried out from an ER-2 aircraft at altitudes of up to 21 km at midlatitudes and high latitudes in the northern hemisphere. They show the evolution and purge of the volcanic aerosol to be due to an interaction of aerosol mechanics with tropospheric-stratospheric exchange processes, transport, and mixing. During the first 5 months after the eruption the volcanic plume spread to higher latitudes in laminae and filaments, producing steep spatial gradients in the properties of the stratospheric aerosol. At the same time the concentration of newly formed particles in the plume rapidly decreased toward background values as a result of coagulation while particle size and aerosol surface area continued to increase. By December 1991, the particle number mixing ratios and aerosol surface area mixing ratios had become spatially uniform over a wide range of latitudes above 18 km. The surface area mixing ratios peaked in this region of the stratosphere at ˜35 times their background values in the winter of 1992. The corresponding condensed mass mixing ratio enhancement was by a factor of ˜200. After the winter of 1992, a gradual removal of the volcanic mass began and initially was dominated by sedimentation above 18 km. The aerosol surface area mixing ratio thus decreased by an order of magnitude over 2.5 years, and the aerosol volume, or condensed mass, mixing ratio decayed by an order of magnitude over approximately 1.7 years. Below 18 km, the purging of the Pinatubo aerosol at mid-latitudes appeared sporadic and disorderly and was strongly influenced by episodal rapid quasi-isentropic transport and dilution by tropical air of tropospheric origin having high condensation nuclei mixing ratios but low mixing ratios of aerosol surface area or condensed mass compared to the volcanic aerosol.

  18. A large-area, spatially continuous assessment of land cover map error and its impact on downstream analyses.

    PubMed

    Estes, Lyndon; Chen, Peng; Debats, Stephanie; Evans, Tom; Ferreira, Stefanus; Kuemmerle, Tobias; Ragazzo, Gabrielle; Sheffield, Justin; Wolf, Adam; Wood, Eric; Caylor, Kelly

    2018-01-01

    Land cover maps increasingly underlie research into socioeconomic and environmental patterns and processes, including global change. It is known that map errors impact our understanding of these phenomena, but quantifying these impacts is difficult because many areas lack adequate reference data. We used a highly accurate, high-resolution map of South African cropland to assess (1) the magnitude of error in several current generation land cover maps, and (2) how these errors propagate in downstream studies. We first quantified pixel-wise errors in the cropland classes of four widely used land cover maps at resolutions ranging from 1 to 100 km, and then calculated errors in several representative "downstream" (map-based) analyses, including assessments of vegetative carbon stocks, evapotranspiration, crop production, and household food security. We also evaluated maps' spatial accuracy based on how precisely they could be used to locate specific landscape features. We found that cropland maps can have substantial biases and poor accuracy at all resolutions (e.g., at 1 km resolution, up to ∼45% underestimates of cropland (bias) and nearly 50% mean absolute error (MAE, describing accuracy); at 100 km, up to 15% underestimates and nearly 20% MAE). National-scale maps derived from higher-resolution imagery were most accurate, followed by multi-map fusion products. Constraining mapped values to match survey statistics may be effective at minimizing bias (provided the statistics are accurate). Errors in downstream analyses could be substantially amplified or muted, depending on the values ascribed to cropland-adjacent covers (e.g., with forest as adjacent cover, carbon map error was 200%-500% greater than in input cropland maps, but ∼40% less for sparse cover types). The average locational error was 6 km (600%). These findings provide deeper insight into the causes and potential consequences of land cover map error, and suggest several recommendations for land cover map users. © 2017 John Wiley & Sons Ltd.

  19. Influence of air quality model resolution on uncertainty associated with health impacts

    NASA Astrophysics Data System (ADS)

    Thompson, T. M.; Selin, N. E.

    2012-10-01

    We use regional air quality modeling to evaluate the impact of model resolution on uncertainty associated with the human health benefits resulting from proposed air quality regulations. Using a regional photochemical model (CAMx), we ran a modeling episode with meteorological inputs simulating conditions as they occurred during August through September 2006 (a period representative of conditions leading to high ozone), and two emissions inventories (a 2006 base case and a 2018 proposed control scenario, both for Houston, Texas) at 36, 12, 4 and 2 km resolution. The base case model performance was evaluated for each resolution against daily maximum 8-h averaged ozone measured at monitoring stations. Results from each resolution were more similar to each other than they were to measured values. Population-weighted ozone concentrations were calculated for each resolution and applied to concentration response functions (with 95% confidence intervals) to estimate the health impacts of modeled ozone reduction from the base case to the control scenario. We found that estimated avoided mortalities were not significantly different between the 2, 4 and 12 km resolution runs, but the 36 km resolution may over-predict some potential health impacts. Given the cost/benefit analysis requirements motivated by Executive Order 12866 as it applies to the Clean Air Act, the uncertainty associated with human health impacts and therefore the results reported in this study, we conclude that health impacts calculated from population weighted ozone concentrations obtained using regional photochemical models at 36 km resolution fall within the range of values obtained using fine (12 km or finer) resolution modeling. However, in some cases, 36 km resolution may not be fine enough to statistically replicate the results achieved using 2, 4 or 12 km resolution. On average, when modeling at 36 km resolution, an estimated 5 deaths per week during the May through September ozone season are avoided because of ozone reductions resulting from the proposed emissions reductions (95% confidence interval was 2-8). When modeling at 2, 4 or 12 km finer scale resolution, on average 4 deaths are avoided due to the same reductions (95% confidence interval was 1-7). Study results show that ozone modeling at a resolution finer than 12 km is unlikely to reduce uncertainty in benefits analysis for this specific region. We suggest that 12 km resolution may be appropriate for uncertainty analyses of health impacts due to ozone control scenarios, in areas with similar chemistry, meteorology and population density, but that resolution requirements should be assessed on a case-by-case basis and revised as confidence intervals for concentration-response functions are updated.

  20. Vertical Structure and Optical Properties of Titans Aerosols from Radiance Measurements Made Inside and Outside the Atmosphere

    NASA Technical Reports Server (NTRS)

    Doose, Lyn R.; Karkoschka, Erich; Tomasko, Martin G.; Anderson, Carrie M.

    2017-01-01

    Prompted by the detection of stratospheric cloud layers by Cassini's Composite Infrared Spectrometer (CIRS; see Anderson, C.M., Samuelson, R.E. [2011]. Icarus 212, 762-778), we have re-examined the observations made by the Descent Imager/Spectral Radiometer (DISR) in the atmosphere of Titan together with two constraints from measurements made outside the atmosphere. No evidence of thin layers (<1 km) in the DISR image data sets is seen beyond the three previously reported layers at 21 km, 11 km, and 7 km by Karkoschka and Tomasko (Karkoschka, E., Tomasko, M.G. [2009]. Icarus 199, 442-448). On the other hand, there is evidence of a thicker layer centered at about 55 km. A rise in radiance gradients in the Downward-Looking Visible Spectrometer (DLVS) data below 55 km indicates an increase in the volume extinction coefficient near this altitude. To fit the geometric albedo measured from outside the atmosphere the decrease in the single scattering albedo of Titan's aerosols at high altitudes, noted in earlier studies of DISR data, must continue to much higher altitudes. The altitude of Titan's limb as a function of wavelength requires that the scale height of the aerosols decrease with altitude from the 65 km value seen in the DISR observations below 140 km to the 45 km value at higher altitudes. We compared the variation of radiance with nadir angle observed in the DISR images to improve our aerosol model. Our new aerosol model fits the altitude and wavelength variations of the observations at small and intermediate nadir angles but not for large nadir angles, indicating an effect that is not reproduced by our radiative transfer model. The volume extinction profiles are modeled by continuous functions except near the enhancement level near 55 km altitude. The wavelength dependence of the extinction optical depth is similar to earlier results at wavelengths from 500 to 700 nm, but is smaller at shorter wavelengths and larger toward longer wavelengths. A Hapke-like model is used for the ground reflectivity, and the variation of the Hapke single scattering albedo with wavelength is given. Fits to the visible spectrometers looking upward and downward are achieved except in the methane bands longward of 720 nm. This is possibly due to uncertainties in extrapolation of laboratory measurements from 1 km-am paths to much longer paths at lower pressures. It could also be due to changes in the single scattering phase functions at low altitudes, which strongly affect the path length through methane that the photons travel. We demonstrate the effects on the model fits by varying each model parameter individually in order to illustrate the sensitivity of our determination of each model parameter.

  1. Peroxyacetyl nitrate measurements during CITE 2 - Atmospheric distribution and precursor relationships

    NASA Technical Reports Server (NTRS)

    Singh, H. B.; Condon, E.; Vedder, J.; O'Hara, D.; Ridley, B. A.; Gandrud, B. W.; Shetter, J. D.; Beck, S. M.; Gregory, G. L.; Lebel, P. J.

    1990-01-01

    Results are reported from airborne PAN measurements obtained at altitudes 0-6 km over the continental U.S. and the eastern Pacific during the NASA Global Tropospheric Experiment Chemical Instrumentation Test and Evaluation 2 (CITE 2) in summer 1986. The CITE 2 flights and instrumentation are described, and the results are presented in extensive graphs and characterized in detail. It is shown that PAN is an important reactive N-containing species in the troposphere. Although the PAN mixing ratios were highly variable, in general high mixing ratios of 100-300 parts per trillion by volume (pptv) were found at 4-6 km, and very low ratios (5-20 pptv) were detected in the marine boundary layer. Good correlation was seen between the CITE 2 PAN values and those for O3, NO(y), NO(x), HNO3, C2H6, CO, and CFCl3.

  2. Depth variations of the 410 and 520 km-discontinuities beneath Asia and the Pacific from PP precursors

    NASA Astrophysics Data System (ADS)

    Schäfer, J.; Wölbern, I.; Rümpker, G.

    2009-06-01

    We investigate depth variations of the 410 and 520 km-discontinuities beneath Asia and the Pacific which serve as examples for a continental and an oceanic region, respectively. The depths are derived from travel-time differences between the PP-phase and its precursors that are reflected at the discontinuities. After accounting for differences in average crustal thickness, we find that the depth of the ‘410’ is rather uniform but larger than expected beneath both regions with a value of approximately 418 km. Signals from the ‘520’ are slightly less pronounced. However, while the average depth of the ‘520’ beneath Asia is about 519 km, we obtain a value of about 531.5 km for the Pacific. Here, the depression of the discontinuities can be explained in view of thermal anomalies in relation to mantle plumes. For Asia, however, the observations seem to require a more complex pattern of thermal anomalies possibly complemented by variations in chemical composition.

  3. Temperature and dust profiles in Martian dust storm conditions retrieved from Mars Climate Sounder measurements

    NASA Astrophysics Data System (ADS)

    Kleinboehl, A.; Kass, D. M.; Schofield, J. T.; McCleese, D. J.

    2013-12-01

    Mars Climate Sounder (MCS) is a mid- and far-infrared thermal emission radiometer on board the Mars Reconnaissance Orbiter. It measures radiances in limb and nadir/on-planet geometry from which vertical profiles of atmospheric temperature, water vapor, dust and condensates can be retrieved in an altitude range from 0 to 80 km and with a vertical resolution of ~5 km. Due to the limb geometry used as the MCS primary observation mode, retrievals in conditions with high aerosol loading are challenging. We have developed several modifications to the MCS retrieval algorithm that will facilitate profile retrievals in high-dust conditions. Key modifications include a retrieval option that uses a surface pressure climatology if a pressure retrieval is not possible in high dust conditions, an extension of aerosol retrievals to higher altitudes, and a correction to the surface temperature climatology. In conditions of a global dust storm, surface temperatures tend to be lower compared to standard conditions. Taking this into account using an adaptive value based on atmospheric opacity leads to improved fits to the radiances measured by MCS and improves the retrieval success rate. We present first results of these improved retrievals during the global dust storm in 2007. Based on the limb opacities observed during the storm, retrievals are typically possible above ~30 km altitude. Temperatures around 240 K are observed in the middle atmosphere at mid- and high southern latitudes after the onset of the storm. Dust appears to be nearly homogeneously mixed at lower altitudes. Significant dust opacities are detected at least up to 70 km altitude. During much of the storm, in particular at higher altitudes, the retrieved dust profiles closely resemble a Conrath-profile.

  4. Erythrocyte glucose-6-phosphate dehydrogenase from Brazilian opossum Didelphis marsupialis.

    PubMed

    Barretto, O C de O; Oshiro, M; Oliveira, R A G; Fedullo, J D L; Nonoyama, K

    2006-05-01

    In a comparative study of erythrocyte metabolism of vertebrates, the specific activity of glucose-6-phosphate dehydrogenase (G6PD) of the Brazilian opossum Didelphis marsupialis in a hemolysate was shown to be high, 207 +/- 38 IU g-1 Hb-1 min-1 at 37 degrees C, compared to the human erythrocyte activity of 12 +/- 2 IU g-1 Hb-1 min-1 at 37 degrees C. The apparent high specific activity of the mixture led us to investigate the physicochemical properties of the opossum enzyme. We report that reduced glutathione (GSH) in the erythrocytes was only 50% higher than in human erythrocytes, a value lower than expected from the high G6PD activity since GSH is maintained in a reduced state by G6PD activity. The molecular mass, determined by G-200 Sephadex column chromatography at pH 8.0, was 265 kDa, which is essentially the same as that of human G6PD (260 kDa). The Michaelis-Menten constants (Km: 55 microM) for glucose-6-phosphate and nicotinamide adenine dinucleotide phosphate (Km: 3.3 microM) were similar to those of the human enzyme (Km: 50-70 and Km: 2.9-4.4, respectively). A 450-fold purification of the opossum enzyme was achieved and the specific activity of the purified enzyme, 90 IU/mg protein, was actually lower than the 150 IU/mg protein observed for human G6PD. We conclude that G6PD after purification from the hemolysate of D. marsupialis does not have a high specific activity. Thus, it is quite probable that the red cell hyperactivity reported may be explained by increased synthesis of G6PD molecules per unit of hemoglobin or to reduced inactivation in the RBC hemolysate.

  5. Altitude effect on leaf wax carbon isotopic composition in humid tropical forests

    NASA Astrophysics Data System (ADS)

    Wu, Mong Sin; Feakins, Sarah J.; Martin, Roberta E.; Shenkin, Alexander; Bentley, Lisa Patrick; Blonder, Benjamin; Salinas, Norma; Asner, Gregory P.; Malhi, Yadvinder

    2017-06-01

    The carbon isotopic composition of plant leaf wax biomarkers is commonly used to reconstruct paleoenvironmental conditions. Adding to the limited calibration information available for modern tropical forests, we analyzed plant leaf and leaf wax carbon isotopic compositions in forest canopy trees across a highly biodiverse, 3.3 km elevation gradient on the eastern flank of the Andes Mountains. We sampled the dominant tree species and assessed their relative abundance in each tree community. In total, 405 sunlit canopy leaves were sampled across 129 species and nine forest plots along the elevation profile for bulk leaf and leaf wax n-alkane (C27-C33) concentration and carbon isotopic analyses (δ13C); a subset (76 individuals, 29 species, five forest plots) were additionally analyzed for n-alkanoic acid (C22-C32) concentrations and δ13C. δ13C values display trends of +0.87 ± 0.16‰ km-1 (95% CI, r2 = 0.96, p < 0.01) for bulk leaves and +1.45 ± 0.33‰ km-1 (95% CI, r2 = 0.94, p < 0.01) for C29n-alkane, the dominant chain length. These carbon isotopic gradients are defined in multi-species sample sets and corroborated in a widespread genus and several families, suggesting the biochemical response to environment is robust to taxonomic turnover. We calculate fractionations and compare to adiabatic gradients, environmental variables, leaf wax n-alkane concentrations, and sun/shade position to assess factors influencing foliar chemical response. For the 4 km forested elevation range of the Andes, 4-6‰ higher δ13C values are expected for upland versus lowland C3 plant bulk leaves and their n-alkyl lipids, and we expect this pattern to be a systematic feature of very wet tropical montane environments. This elevation dependency of δ13C values should inform interpretations of sedimentary archives, as 13C-enriched values may derive from C4 grasses, petrogenic inputs or upland C3 plants. Finally, we outline the potential for leaf wax carbon isotopes to trace biomarker sourcing within catchments and for paleoaltimetry.

  6. Total solar eclipse effects on VLF signals: Observations and modeling

    NASA Astrophysics Data System (ADS)

    Clilverd, Mark A.; Rodger, Craig J.; Thomson, Neil R.; Lichtenberger, János; Steinbach, Péter; Cannon, Paul; Angling, Matthew J.

    During the total solar eclipse observed in Europe on August 11, 1999, measurements were made of the amplitude and phase of four VLF transmitters in the frequency range 16-24 kHz. Five receiver sites were set up, and significant variations in phase and amplitude are reported for 17 paths, more than any previously during an eclipse. Distances from transmitter to receiver ranged from 90 to 14,510 km, although the majority were <2000 km. Typically, positive amplitude changes were observed throughout the whole eclipse period on path lengths <2000 km, while negative amplitude changes were observed on paths >10,000 km. Negative phase changes were observed on most paths, independent of path length. Although there was significant variation from path to path, the typical changes observed were ~3 dB and ~50°. The changes observed were modeled using the Long Wave Propagation Capability waveguide code. Maximum eclipse effects occurred when the Wait inverse scale height parameter β was 0.5 km-1 and the effective ionospheric height parameter H' was 79 km, compared with β=0.43km-1 and H'=71km for normal daytime conditions. The resulting changes in modeled amplitude and phase show good agreement with the majority of the observations. The modeling undertaken provides an interpretation of why previous estimates of height change during eclipses have shown such a range of values. A D region gas-chemistry model was compared with electron concentration estimates inferred from the observations made during the solar eclipse. Quiet-day H' and β parameters were used to define the initial ionospheric profile. The gas-chemistry model was then driven only by eclipse-related solar radiation levels. The calculated electron concentration values at 77 km altitude throughout the period of the solar eclipse show good agreement with the values determined from observations at all times, which suggests that a linear variation in electron production rate with solar ionizing radiation is reasonable. At times of minimum electron concentration the chemical model predicts that the D region profile would be parameterized by the same β and H' as the LWPC model values, and rocket profiles, during totality and can be considered a validation of the chemical processes defined within the model.

  7. Evaluating the Sensitivity of Glacial Isostatic Adjustment to a Hydrous Melt at 410 km Depth

    NASA Astrophysics Data System (ADS)

    Hill, A. M.; Milne, G. A.; Ranalli, G.

    2017-12-01

    We present a sensitivity analysis aimed at testing whether observables related to GIA can support or refute the existence of a low viscosity partial melt layer located above the mantle transition zone, as required by the so-called "Transition Zone Water Filter" model (Bercovici and Karato 2003). In total, 400 model runs were performed sampling a range of melt layer thicknesses (1, 10 & 20 km) and viscosities (1015 - 1019 Pas) as well as plausible viscosity values in the upper and lower mantle. Comparing model output of postglacial decay times and j2, 18 of the considered viscosity models were found to be compatible with all of the observational constraints. Amongst these, only three `background' upper and lower mantle viscosities are permitted regardless of the properties of the melt layer: an upper mantle value of 3×1020 Pas and lower mantle values of 1022, 3×1022 and 5×1022 Pas. Concerning the properties of the melt layer itself, a thin (1 km) layer may have any of the investigated viscosities (1015 to 1019 Pas). For thicker melt layers, the viscosity must be ≥1018 Pas (20 km) or ≥1017 Pas (10 km). Our results indicate clear parameter trade-offs between the properties of the melt layer and the background viscosity structure. Given that the observations permit several values of lower mantle viscosity, we conclude that tightening constraints on this parameter would be valuable for future investigation of the type presented here. Furthermore, while decay times from both locations considered in this investigation (Ångerman River, Sweden; Richmond Gulf, Canada) offer meaningful constraints on viscosity structure, the value for Richmond Gulf is significantly more uncertain and so increasing its precision would likely result in improved viscosity constraints.

  8. The Hack's law applied to young volcanic basin: the Tahiti case

    NASA Astrophysics Data System (ADS)

    Ye, F.; Sichoix, L.; Barriot, J.; Serafini, J.

    2010-12-01

    We study the channel morphology over the Tahiti island from the Hack’s law perspective. The Hack’s law is an empirical power relationship between basin drainage area and the length of its main channel. It had also been shown that drainage area becomes more elongate with increasing basin size. For typical continental basins, the exponent value lies between 0.47 for basins larger than 260,000 km2 and 0.7 for those spanning less than 20,720 km2 (Muller, 1973). In Tahiti, we extracted 27 principal basins ranging from 7 km2 to 90 km2 from a Digital Terrain Model of the island with a 5 m-resolution. We demonstrate that the Hack’s law still apply for such small basins (correlation coefficient R2=0.7) with an exponent value being approximately 0.5. It appears that the exponent value is influenced by the local geomorphic condition, and does not follow the previous study results (the exponent value decreases with increasing drainage area.) Our exponent value matches the result found w.r.t. debris-flow basins of China for drainage areas less than 100 km2 (Li et al., 2008). Otherwise, the young volcanic basins of Tahiti do not become longer and narrower with increasing basin size (R2=0.1). Besides, there is no correlation between the basin area and the basin convexity (R2=0). This means that there is no statistical change in basin shape with basin size. We present also the drainage area-slope relationship with respect to sediment or transport-limited processes. Key words: Hack’s law, channel morphology, DTM

  9. Moho depth and equivalent elastic thickness of the lithosphere over the Vema Channel: A new evidence of an aborted ridge

    NASA Astrophysics Data System (ADS)

    Constantino, Renata Regina; Costa, Iago Sousa Lima; Hackspacher, Peter Christian; de Souza, Iata Anderson

    2018-03-01

    We investigate the Vema Channel in terms of spatial variations of the elastic thickness (Te) in the frame of the thin plate flexure model using the convolutive method. The modeling of the Moho in terms of the thin plate flexure model is done by a least squares approximation of the Moho obtained from gravity inversion. The flexure is calculated by the convolution of the crustal load with the point-load flexure response curves. The RMS difference between the gravity and flexure Moho surfaces is minimized by varying the Te by inverse modeling. The result is a solution of the flexed crust that is in best agreement with the long-wavelength component of the gravity field. The flexure Moho depths vary between 12 and 18 km and agree well with those obtained from gravity inversion. The spatial variations of Te range from 2 to 30 km and have a good correlation with the geological interpretation for an aborted ridge near Vema Channel, called in this paper as the Vema Aborted Ridge (VAR). The occurring of seamounts appears to be correlated to a weak and deformed region. Attempts of crustal breakup are marked by high Te values (30 km) while lower values (3-12 km) are found for the suggested aborted ridge. The VAR is on Isochron of 93 Ma and shows symmetrical older along both sides of its axis. Asymmetric magnetic anomalies are found over the ridge and may be related to upper-extended continental crust broken by the Vema.

  10. Magnetotelluric investigations of the lithosphere beneath the central Rae craton, mainland Nunavut, Canada

    NASA Astrophysics Data System (ADS)

    Spratt, Jessica E.; Skulski, Thomas; Craven, James A.; Jones, Alan G.; Snyder, David B.; Kiyan, Duygu

    2014-03-01

    New magnetotelluric soundings at 64 locations throughout the central Rae craton on mainland Nunavut constrain 2-D resistivity models of the crust and lithospheric mantle beneath three regional transects. Responses determined from colocated broadband and long-period magnetotelluric recording instruments enabled resistivity imaging to depths of > 300 km. Strike analysis and distortion decomposition on all data reveal a regional trend of 45-53°, but locally the geoelectric strike angle varies laterally and with depth. The 2-D models reveal a resistive upper crust to depths of 15-35 km that is underlain by a conductive layer that appears to be discontinuous at or near major mapped geological boundaries. Surface projections of the conductive layer coincide with areas of high grade, Archean metasedimentary rocks. Tectonic burial of these rocks and thickening of the crust occurred during the Paleoproterozoic Arrowsmith (2.3 Ga) and Trans-Hudson orogenies (1.85 Ga). Overall, the uppermost mantle of the Rae craton shows resistivity values that range from 3000 Ω m in the northeast (beneath Baffin Island and the Melville Peninsula) to 10,000 Ω m beneath the central Rae craton, to >50,000 Ω m in the south near the Hearne Domain. Near-vertical zones of reduced resistivity are identified within the uppermost mantle lithosphere that may be related to areas affected by mantle melt or metasomatism associated with emplacement of Hudsonian granites. A regional decrease in resistivities to values of 500 Ω m at depths of 180-220 km, increasing to 300 km near the southern margin of the Rae craton, is interpreted as the lithosphere-asthenosphere boundary.

  11. Creating a seamless 1 km resolution daily land surface temperature dataset for urban and surrounding areas in the conterminous United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xiaoma; Zhou, Yuyu; Asrar, Ghassem R.

    High spatiotemporal land surface temperature (LST) datasets are increasingly needed in a variety of fields such as ecology, hydrology, meteorology, epidemiology, and energy systems. Moderate Resolution Imaging Spectroradiometer (MODIS) LST is one of such high spatiotemporal datasets that are widely used. But, it has large amount of missing values primarily because of clouds. Gapfilling the missing values is an important approach to create high spatiotemporal LST datasets. However current gapfilling methods have limitations in terms of accuracy and time required to assemble the data over large areas (e.g., national and continental levels). In this study, we developed a 3-step hybridmore » method by integrating a combination of daily merging, spatiotemporal gapfilling, and temporal interpolation methods, to create a high spatiotemporal LST dataset using the four daily LST observations from the two MODIS instruments on Terra and Aqua satellites. We applied this method in urban and surrounding areas for the conterminous U.S. in 2010. The evaluation of the gapfilled LST product indicates that its root mean squared error (RMSE) to be 3.3K for mid-daytime (1:30 pm) and 2.7K for mid-13 nighttime (1:30 am) observations. The method can be easily extended to other years and regions and is also applicable to other satellite products. This seamless daily (mid-daytime and mid-nighttime) LST product with 1 km spatial resolution is of great value for studying effects of urbanization (e.g., urban heat island) and the related impacts on people, ecosystems, energy systems and other infrastructure for cities.« less

  12. Active uptake of substance P carboxy-terminal heptapeptide (5-11) into rat brain and rabbit spinal cord slices.

    PubMed

    Nakata, Y; Kusaka, Y; Yajima, H; Segawa, T

    1981-12-01

    We previously reported that nerve terminals and glial cells lack an active uptake system capable of terminating transmitter action of substance P (SP). In the present study, we demonstrated the existence of an active uptake system for SP carboxy-terminal heptapeptide, (5-11)SP. When the slices from either rat brain or rabbit spinal cord were incubated with [3H](5-11)SP, the uptake of (5-11)SP into slices was observed. The uptake system has the properties of an active transport mechanism: it is dependent on temperature and sensitive to hypoosmotic treatment and is inhibited by ouabain and dinitrophenol (DNP). In the brain, (5-11)SP was accumulated by means of a high-affinity and a low-affinity uptake system. The Km and the Vmax values for the high-affinity system were 4.20 x 10(-8) M and 7.59 fmol/10 mg wet weight/min, respectively, whereas these values for the low-affinity system were 1.00 x 10(-6) M and 100 fmol/10 mg wet weight/min, respectively. In the spinal cord, there was only one uptake system, with a Km value of 2.16 x 10(-7) M and Vmax value of 26.2 fmol/10 mg wet weight/min. These results suggest that when SP is released from nerve terminals, it is hydrolysed into (5-11)SP before or after acting as a neurotransmitter, which is in turn accumulated into nerve terminals. Therefore, the uptake system may represent a possible mechanism for the inactivation of SP.

  13. The estimation of probable maximum precipitation: the case of Catalonia.

    PubMed

    Casas, M Carmen; Rodríguez, Raül; Nieto, Raquel; Redaño, Angel

    2008-12-01

    A brief overview of the different techniques used to estimate the probable maximum precipitation (PMP) is presented. As a particular case, the 1-day PMP over Catalonia has been calculated and mapped with a high spatial resolution. For this purpose, the annual maximum daily rainfall series from 145 pluviometric stations of the Instituto Nacional de Meteorología (Spanish Weather Service) in Catalonia have been analyzed. In order to obtain values of PMP, an enveloping frequency factor curve based on the actual rainfall data of stations in the region has been developed. This enveloping curve has been used to estimate 1-day PMP values of all the 145 stations. Applying the Cressman method, the spatial analysis of these values has been achieved. Monthly precipitation climatological data, obtained from the application of Geographic Information Systems techniques, have been used as the initial field for the analysis. The 1-day PMP at 1 km(2) spatial resolution over Catalonia has been objectively determined, varying from 200 to 550 mm. Structures with wavelength longer than approximately 35 km can be identified and, despite their general concordance, the obtained 1-day PMP spatial distribution shows remarkable differences compared to the annual mean precipitation arrangement over Catalonia.

  14. Large Volume 18O-depleted Rhyolitic Volcanism: the Bruneau-Jarbidge Volcanic Field, Idaho

    NASA Astrophysics Data System (ADS)

    Boroughs, S.; Wolff, J.; Bonnichsen, B.; Godchaux, M. M.; Larson, P. B.

    2003-12-01

    The Bruneau-Jarbidge (BJ) volcanic field is located in southern Idaho at the intersection of the western and eastern arms of the Snake River Plain. The BJ region is an oval structural basin of about 6000 km2, and is likely a system of nested caldera and collapse structures similar to, though larger than, the Yellowstone Volcanic Plateau. BJ rocks are high-temperature rhyolite tuffs, high-temperature rhyolite lavas, and volumetrically minor basalts. Exposed volumes of individual rhyolite units range up to greater than 500 km3. We have analyzed feldspar and, where present, quartz from 30 rhyolite units emplaced throughout the history of the BJ center. All, including the Cougar Point Tuff, are 18O depleted (δ 18OFSP = -1.3 to 3.7‰ ), while petrographically, temporally, and chemically similar lavas erupted along the nearby Owyhee Front have "normal" rhyolite magmatic δ 18O values of 7 - 9‰ . There is no evidence for significant modification of δ 18O values by post-eruptive alteration. No correlation exists between δ 18O and age, magmatic temperature, major element composition or trace element abundances among depleted BJ rhyolites. The BJ and WSRP rhyolites possess the geochemical characteristics (depressed Al, Ca, Eu, and Sr contents, high Ga/Al and K/Na) expected of liquids derived from shallow melting of calc-alkaline granitoids with residual plagioclase and orthopyroxene (Patino-Douce, Geology v.25 p.743-746, 1997). The classic Yellowstone low δ 18O rhyolites are post-caldera collapse lavas, but at BJ, both lavas and caldera-forming ignimbrites are strongly 18O-depleted. The total volume of low δ 18O rhyolite may be as high as 10,000 km3, requiring massive involvement of meteoric-hydrothermally altered crust in rhyolite petrogenesis. Regional hydrothermal modification of the crust under the thermal influence of the Yellowstone hotspot apparently preceded voluminous rhyolite generation at Bruneau-Jarbidge.

  15. An intercomparison of stratospheric gravity wave potential energy densities from METOP GPS radio occultation measurements and ECMWF model data

    NASA Astrophysics Data System (ADS)

    Rapp, Markus; Dörnbrack, Andreas; Kaifler, Bernd

    2018-02-01

    Temperature profiles based on radio occultation (RO) measurements with the operational European METOP satellites are used to derive monthly mean global distributions of stratospheric (20-40 km) gravity wave (GW) potential energy densities (EP) for the period July 2014-December 2016. In order to test whether the sampling and data quality of this data set is sufficient for scientific analysis, we investigate to what degree the METOP observations agree quantitatively with ECMWF operational analysis (IFS data) and reanalysis (ERA-Interim) data. A systematic comparison between corresponding monthly mean temperature fields determined for a latitude-longitude-altitude grid of 5° by 10° by 1 km is carried out. This yields very low systematic differences between RO and model data below 30 km (i.e., median temperature differences is between -0.2 and +0.3 K), which increases with height to yield median differences of +1.0 K at 34 km and +2.2 K at 40 km. Comparing EP values for three selected locations at which also ground-based lidar measurements are available yields excellent agreement between RO and IFS data below 35 km. ERA-Interim underestimates EP under conditions of strong local mountain wave forcing over northern Scandinavia which is apparently not resolved by the model. Above 35 km, RO values are consistently much larger than model values, which is likely caused by the model sponge layer, which damps small-scale fluctuations above ˜ 32 km altitude. Another reason is the well-known significant increase of noise in RO measurements above 35 km. The comparison between RO and lidar data reveals very good qualitative agreement in terms of the seasonal variation of EP, but RO values are consistently smaller than lidar values by about a factor of 2. This discrepancy is likely caused by the very different sampling characteristics of RO and lidar observations. Direct comparison of the global data set of RO and model EP fields shows large correlation coefficients (0.4-1.0) with a general degradation with increasing altitude. Concerning absolute differences between observed and modeled EP values, the median difference is relatively small at all altitudes (but increasing with altitude) with an exception between 20 and 25 km, where the median difference between RO and model data is increased and the corresponding variability is also found to be very large. The reason for this is identified as an artifact of the EP algorithm: this erroneously interprets the pronounced climatological feature of the tropical tropopause inversion layer (TTIL) as GW activity, hence yielding very large EP values in this area and also large differences between model and observations. This is because the RO data show a more pronounced TTIL than IFS and ERA-Interim. We suggest a correction for this effect based on an estimate of this artificial EP using monthly mean zonal mean temperature profiles. This correction may be recommended for application to data sets that can only be analyzed using a vertical background determination method such as the METOP data with relatively scarce sampling statistics. However, if the sampling statistics allows, our analysis also shows that in general a horizontal background determination is advantageous in that it better avoids contributions to EP that are not caused by gravity waves.

  16. Shallow lithological structure across the Dead Sea Transform derived from geophysical experiments

    USGS Publications Warehouse

    Stankiewicz, J.; Munoz, G.; Ritter, O.; Bedrosian, P.A.; Ryberg, T.; Weckmann, U.; Weber, M.

    2011-01-01

    In the framework of the DEad SEa Rift Transect (DESERT) project a 150 km magnetotelluric profile consisting of 154 sites was carried out across the Dead Sea Transform. The resistivity model presented shows conductive structures in the western section of the study area terminating abruptly at the Arava Fault. For a more detailed analysis we performed a joint interpretation of the resistivity model with a P wave velocity model from a partially coincident seismic experiment. The technique used is a statistical correlation of resistivity and velocity values in parameter space. Regions of high probability of a coexisting pair of values for the two parameters are mapped back into the spatial domain, illustrating the geographical location of lithological classes. In this study, four regions of enhanced probability have been identified, and are remapped as four lithological classes. This technique confirms the Arava Fault marks the boundary of a highly conductive lithological class down to a depth of ???3 km. That the fault acts as an impermeable barrier to fluid flow is unusual for large fault zone, which often exhibit a fault zone characterized by high conductivity and low seismic velocity. At greater depths it is possible to resolve the Precambrian basement into two classes characterized by vastly different resistivity values but similar seismic velocities. The boundary between these classes is approximately coincident with the Al Quweira Fault, with higher resistivities observed east of the fault. This is interpreted as evidence for the original deformation along the DST originally taking place at the Al Quweira Fault, before being shifted to the Arava Fault. 

  17. Ecological Risk Assessment of Land Use Change in the Poyang Lake Eco-economic Zone, China

    PubMed Central

    Xie, Hualin; Wang, Peng; Huang, Hongsheng

    2013-01-01

    Land use/land cover change has been attracting increasing attention in the field of global environmental change research because of its role in the social and ecological environment. To explore the ecological risk characteristics of land use change in the Poyang Lake Eco-economic Zone of China, an eco-risk index was established in this study by the combination of a landscape disturbance index with a landscape fragmentation index. Spatial distribution and gradient difference of land use eco-risk are analyzed by using the methods of spatial autocorrelation and semivariance. Results show that ecological risk in the study area has a positive correlation, and there is a decreasing trend with the increase of grain size both in 1995 and 2005. Because the area of high eco-risk value increased from 1995 to 2005, eco-environment quality declined slightly in the study area. There are distinct spatial changes in the concentrated areas with high land use eco-risk values from 1995 to 2005. The step length of spatial separation of land use eco-risk is comparatively long—58 km in 1995 and 11 km in 2005—respectively. There are still nonstructural factors affecting the quality of the regional ecological environment at some small-scales. Our research results can provide some useful information for land eco-management, eco-environmental harnessing and restoration. In the future, some measures should be put forward in the regions with high eco-risk value, which include strengthening land use management, avoiding unreasonable types of land use and reducing the degree of fragmentation and separation. PMID:23343986

  18. Simultaneous in situ electron temperature comparisons using Alouette 2 probe and plasma resonance data

    NASA Technical Reports Server (NTRS)

    Benson, R. F.

    1973-01-01

    The electron temperatures deduced from Alouette 2 diffuse resonance observations are compared with the temperature obtained from the Alouette 2 cylindrical electrostatic probe experiment using data from 5 mid-to-high latitude telemetry stations. The probe temperature is consistently higher than the diffuse resonance temperature. The average difference ranged from approximately 10% to 40% with the lower values occurring at the lowest altitudes sampled (near 500 km) and at high latitudes (dip latitude greater than 55 deg), and the larger values occurring at high altitudes and lower latitudes. The discrepancy appears to be of geophysical origin since it is dependent on the location of the data sample. The present observations support the view that the often observed radar backscatter - probe electron temperature discrepancy is also of geophysical origin.

  19. Particle and carbon dioxide emissions from passenger vehicles operating on unleaded petrol and LPG fuel.

    PubMed

    Ristovski, Z D; Jayaratne, E R; Morawska, L; Ayoko, G A; Lim, M

    2005-06-01

    A comprehensive study of the particle and carbon dioxide emissions from a fleet of six dedicated liquefied petroleum gas (LPG) powered and five unleaded petrol (ULP) powered new Ford Falcon Forte passenger vehicles was carried out on a chassis dynamometer at four different vehicle speeds--0 (idle), 40, 60, 80 and 100 km h(-1). Emission factors and their relative values between the two fuel types together with a statistical significance for any difference were estimated for each parameter. In general, LPG was found to be a 'cleaner' fuel, although in most cases, the differences were not statistically significant owing to the large variations between emissions from different vehicles. The particle number emission factors ranged from 10(11) to 10(13) km(-1) and was over 70% less with LPG compared to ULP. Corresponding differences in particle mass emission factor between the two fuels were small and ranged from the order of 10 microg km(-1) at 40 to about 1000 microg km(-1) at 100 km h(-1). The count median particle diameter (CMD) ranged from 20 to 35 nm and was larger with LPG than with ULP in all modes except the idle mode. Carbon dioxide emission factors ranged from about 300 to 400 g km(-1) at 40 km h(-1), falling with increasing speed to about 200 g km(-1) at 100 km h(-1). At all speeds, the values were 10% to 18% greater with ULP than with LPG.

  20. Formation of a paleothermal anomaly and disseminated gold deposits associated with the Bingham Canyon porphyry Cu-Au-Mo system, Utah

    USGS Publications Warehouse

    Cunningham, C.G.; Austin, G.W.; Naeser, C.W.; Rye, R.O.; Ballantyne, G.H.; Stamm, R.G.; Barker, C.E.

    2004-01-01

    The thermal history of the Oquirrh Mountains, Utah, indicates that hydrothermal fluids associated with emplacement of the 37 Ma Bingham Canyon porphyry Cu-Au-Mo deposit extended at least 10 km north of the Bingham pit. An associated paleothermal anomaly enclosed the Barneys Canyon and Melco disseminated gold deposits and several smaller gold deposits between them. Previous studies have shown the Barneys Canyon deposit is near the outer limit of an irregular distal Au-As geochemical halo, about 3 km beyond an intermediate Pb-Zn halo, and 7 km beyond a proximal pyrite halo centered on the Bingham porphyry copper deposit. The Melco deposit also lies near the outer limit of the Au-As halo. Analysis of several geothermometers from samples collected tip to 22 km north of the Bingham Canyon porphyry Cu-Au-Mo deposit indicate that most sedimentary rocks of the Oquirrh Mountains, including those at the gold deposits, have not been regionally heated beyond the "oil window" (less than about 150??C). For geologically reasonable heating durations, the maximum sustained temperature at Melco, 6 km north of the Bingham pit, and at Barneys Canyon, 7.5 km north of the pit, was between 100??C and 140??C, as indicated by combinations of conodont color alteration indices of 1.5 to 2, mean random solid bitumen reflectance of about 1.0 percent, lack of annealing of zircon fission tracks, and partial to complete annealing of apatite fission tracks. The pattern of reset apatite fission-track ages indicates that the gold deposits are located approximately on the 120??C isotherm of the 37 Ma paleothermal anomaly assuming a heating duration of about 106 years. The conodont data further constrain the duration of heating to between 5 ?? 104 and 106 years at approximately 120??C. The ??18O of quartzite host rocks generally increases from about 12.6 per mil at the porphyry to about 15.8 per mil approximately 11 km from the Bingham deposit. This change reflects interaction of interstitial clays in the quartzite with circulating meteoric water related to the Bingham Canyon porphyry system. The ??18O and ??13C values of limestone vary with respect to degree of recrystallization and proximity to open fractures. Recrystallized limestone at the Melco and Barneys Canyon gold deposits has the highest ??18O values (about 30???), whereas limestone adjacent to the porphyry copper deposit has the lowest values (about 10???). The high ??18O values for the recrystallized limestone at Barneys Canyon and Melco strongly suggest that mineralization was related to low temperature fluids with exceptionally high ??18OH2O values such as could be derived from water in a crater lake of an active volcano. The age of formation of the gold deposits has been interpreted to range from Jurassic to Eocene. The mineralized rocks at the Barneys Canyon and Melco deposits are likely the same age as the geochemically similar deposits that are present in north-striking, late faults that cut the Bingham Canyon porphyry. The patterns of apatite and zircon fission-track data, conodont color alteration indices, solid bitumen reflectivity, stable isotope data, and mineral zoning are consistent with the gold deposits being genetically related to formation of the 37 Ma Bingham porphyry deposit. We interpret the disseminated gold mineralization to be related to collapse of the Bingham Canyon hydrothermal system in which isotopically heavy, oxidizing, acidic waters, possibly from an internally draining acidic crater lake, mixed with and were entrained into reduced gold-bearing meteoric water fluids in the collapsing main-stage hydrothermal system. Most of this fluid mixing and cooling was probably located close to the hydrologic interface between the sedimentary basement rocks and overlying volcanic rocks. ??2004 by Economic Geology.

  1. Ten years of measured UV Index from the Spanish UVB Radiometric Network.

    PubMed

    Utrillas, M P; Marín, M J; Esteve, A R; Estellés, V; Gandía, S; Núnez, J A; Martínez-Lozano, J A

    2013-08-05

    An analysis is made of the UV Index (UVI) obtained from the ultraviolet erythemal solar radiation (UVER) data measured by the Spanish UVB Radiometric Network between the years 2000 and 2009. Previously, the daily UVI has been evaluated using two different criteria: (a) the value corresponding to solar noon; and (b) the daily maximum value. The mean percentage of agreement is 92% if we consider the cases for which the difference is zero or one UVI unit. These results are similar to those obtained in a previous work where only 2 years were analyzed. In all the stations the UVI reaches very high values (8-10) in spring-summer, and the very high and extreme (≥ 11) UVI values are more dependent on the continental effect than on the latitude effect. From the UVI values it is possible to classify the stations into four groups: Coastal stations, Continental stations (more than 200 km from the coast), Southern stations (Coastal stations but with similar values of UVI as the Continental ones due to their low latitude) and Canary Islands stations (1400 km southwest from the Iberian Peninsula thus lower latitude). The monthly mean maximum of UVI is reached in July due to the annual evolution of the total ozone column. This value corresponds, for a skin phototype II, to three times the minimal erythemal dose (MED) in an hour in a Coastal station, 3.5 MEDs in an hour measured in a Continental or Southern station and up five MEDs in an hour in the Izaña station (Canary Islands). The cumulative dose on a horizontal plane over an average year has been calculated for each station. More than 40% of the annual dose is received in summer, about 35% in spring, more than 11% in autumn and less than 10% in winter except for the stations in the Canary Islands where the difference between seasons is less significant. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Air quality over Europe and Iberian Peninsula for 2004 at high horizontal resolution: evaluation of the CALIOPE modelling system

    NASA Astrophysics Data System (ADS)

    Jorba, O.; Piot, M.; Pay, M. T.; Jiménez-Guerrero, P.; López, E.; Pérez, C.; Gassó, S.; Baldasano, J. M.

    2009-09-01

    In the frame of the CALIOPE project (Baldasano et al., 2008a), a high-resolution air quality forecasting system, WRF-ARW/HERMES/CMAQ/DREAM, is under development and applied to the European domain (12km x 12km, 1hr) as well as to the Iberian Peninsula domain (4km x 4km, 1hr) to provide air quality forecasts for Spain (http://www.bsc.es/caliope/). The simulation of such high-resolution model system is possible by its implementation on the MareNostrum supercomputer. To reassure potential users and reduce uncertainties, the model system must be evaluated to assess its performances in terms of air quality levels and dynamics reproducibility. The present contribution describes a thorough quantitative evaluation study performed for a reference year (2004). CALIOPE is a complex system that integrates a variety of environmental models. WRF-ARW provides high-resolution meteorological fields to the system. It is configured with 38 vertical layers reaching up to 50 hPa. Meteorological initial and boundary conditions are obtained from the NCEP final analysis data. The HERMES emission model (Baldasano et al., 2008b) computes the emissions for the Iberian Peninsula simulation at 4 km horizontal resolution every hour using a bottom-up approach. For the European domain, HERMES disaggregates the EMEP expert emission inventory for 2004. The CMAQ chemical transport model solves the physico-chemical processes in the system. The vertical resolution of CMAQ for gas-phase and aerosols has been increased from 8 to 15 layers in order to simulate vertical exchanges more accurately. Chemical boundary conditions are provided by the LMDz-INCA2 global climate-chemistry model (see Hauglustaine et al., 2004). Finally, the DREAM model simulates long-range transport of mineral dust over the domains under study. In order to evaluate the performances of the CALIOPE system, model simulations were compared with ground-based measurements from the EMEP and Spanish air quality networks. For the European domain, 45 stations have been used to evaluate NO2, 60 for O3, 39 for SO2, 25 for PM10 and 16 for PM2.5. On the other hand, the Iberian Peninsula domain has been evaluated against 75 NO2 stations, 84 O3 stations, 69 for SO2, and 46 for PM10. Such large number of observations allows us to provide a detailed discussion of the model skills over quite different geographical locations and meteorological situations. The model simulation for Europe satisfactorily reproduces O3 concentrations throughout the year with small errors: monthly MNGE values range from 13% to 24%, and MNBE values show a slight negative bias ranging from -15% to 0%. These values lie within the range defined by the US-EPA guidelines (MNGE: +/- 30-35%; MNBE: +/- 10-15%). The reproduction of SO2 concentrations is relatively correct but false peaks are reported (mean MNBE=22%). The simulated variation of particulate matter is reliable, with a mean correlation of 0.5. False peaks were reduced by use of an improved 8-bin aerosol description in the DREAM dust model, but mean aerosol levels are still underestimated. This problem is most probably related to uncertainties in our knowledge of the sources and in the description of organic aerosols. The nested high-resolution simulation of Spain (4 km) shows a very good agreement with observations for O3 (monthly MNGE range from 13 to 19%). Particulate matter results are in agreement with the European simulation, and a net improvement on nitrate and sulphate is observed in several stations in Spain. Such high-resolution simulation will allow analysing the small scale features observed over Spain. REFERENCES Baldasano J.M, P. Jiménez-Guerrero, O. Jorba, C. Pérez, E. López, P. Güereca, F. Martin, M. García-Vivanco, I. Palomino, X. Querol, M. Pandolfi, M.J. Sanz and J.J. Diéguez, 2008a: CALIOPE: An operational air quality forecasting system for the Iberian Peninsula, Balearic Islands and Canary Islands- First annual evaluation and ongoing developments. Adv. Sci. and Res., 2: 89-98. Baldasano J.M., L. P. Güereca, E. López, S. Gassó, P. Jimenez-Guerrero, 2008b: Development of a high-resolution (1 km x 1 km, 1 h) emission model for Spain: the High-Elective Resolution Modelling Emission System (HERMES). Atm. Environ., 42 (31): 7215-7233. Hauglustaine, D. A. and F. Hourdin and L. Jourdain and M.A. Filiberti and S. Walters and J. F. Lamarque and E. A. Holland, 2004: Interactive chemistry in the Laboratoire de Meteorologie Dynamique general circulation model: Description and background tropospheric chemistry evaluation. J. Geophys. Res., doi:10.1029/2003JD003,957.

  3. Sources, Load, Vertical Distribution, and Fate of Wintertime Aerosols North of Svalbard From Combined V4 CALIOP Data, Ground-Based IAOOS Lidar Observations and Trajectory Analysis

    NASA Astrophysics Data System (ADS)

    Di Biagio, C.; Pelon, J.; Ancellet, G.; Bazureau, A.; Mariage, V.

    2018-01-01

    We have analyzed aerosol properties at the regional scale over high Arctic north of Svalbard between October 2014 and June 2015 from version 4 (V4) CALIOP (Cloud and Aerosol Lidar with Orthogonal Polarization) spaceborne observations and compared results with surface lidar observations from IAOOS (Ice-Atmosphere-Ocean Observing System) platforms. CALIOP data indicate a maximum in aerosol occurrence at the end of winter attributed to low-level (0-2 km) and midtropospheric (2-5 km) particles identified in CALIOP V4 product as being mostly of dust origin. Another maximum was observed in October-December attributed to clean marine particles below 2 km and smoke and dust above. The 532 nm aerosol extinction was in the range 1-8 Mm-1 (0-2 km), 1-18 Mm-1 (2-5 km), and 0-6 Mm-1 (5-10 km), a factor 2 lower compared to values previously reported using CALIOP V3 data set. Aerosols are identified from trajectory analyses to originate mostly from Russia/Europe at all altitudes, and also North America above 2 km, and it is concluded that dust and clean marine types are most probably overrepresented in the analyzed CALIOP data set. It is proposed that most part of dust types are diamond dust, while part of clean marine are polluted species, as corroborated from colocated polarized lidar IAOOS observations. IAOOS observations allowed confirming the identified sensitivity of CALIOP with a particle backscatter coefficient of 0.001 km-1 sr-1 at 532 nm. For optically thicker layers CALIOP is shown to be a valuable tool to follow transport of aerosol layers in the Arctic and identify their possible modifications.

  4. Emissions of particle-phase polycyclic aromatic hydrocarbons (PAHs) in the Fu Gui-shan Tunnel of Nanjing, China

    NASA Astrophysics Data System (ADS)

    Chen, Fei; Hu, Wei; Zhong, Qin

    2013-04-01

    Real-world vehicle emission factors for PM10 (particulate matter with aerodynamic diameter smaller than 10 μm) and particle-phase polycyclic aromatic hydrocarbons (PAHs) from mixed vehicles were quantified in the Fu Gui-shan Tunnel of Nanjing during summer and winter of 2010. Concentrations of PM10 and sixteen particle phase polycyclic aromatic hydrocarbons (PAHs) in the entrance and exit of the tunnel were studied. The results showed that the four most abundant particular phase polycyclic aromatic hydrocarbons (PAHs) of motor vehicle were benzo[ghi]perylene, benzo[k]fluoranthene, benz[a]anthracene and benzo[a]pyrene. The emission factors for PM10 and particle-phase PAHs were 687 mg veh- 1 km- 1 and 18.853 mg veh- 1 km- 1 in summer, 714 mg veh- 1 km- 1 and 20.374 mg veh- 1 km- 1 in winter. Higher particle-phase PAH emission factors were found to be associated with a high proportion of diesel-fueled vehicles (DV). The estimated PM10 emission factor of gasoline-fueled vehicles (GV) was 513 mg veh- 1 km- 1 and the value for DV was 914 mg veh- 1 km- 1, while EFDV of particulate PAH (31.290 mg veh- 1 km- 1) was nearly 4 times higher than EFGV (9.310 mg veh- 1 km- 1). The five highest emission factors of diesel-fueled vehicles (DV) were benzo[ghi]perylene, benzo[k]fluoranthene, Indeno[1,2,3-cd]pyrene, benz[a]anthracene and benzo[a]pyrene, which was similarly found in the gasoline-fueled vehicles (GV). The sum of these five emission factors accounted for ~ 69% of the total particle-phase PAH of DV and ~ 67% of GV.

  5. High pressure system for 3-D study of elastic anisotropy

    NASA Astrophysics Data System (ADS)

    Lokajicek, T.; Pros, Z.; Klima, K.

    2003-04-01

    New high pressure system was designed for the study of elastic anisotropy of condensed matter under high confining pressure up to 700 MPa. Simultaneously could be measured dynamic and static parameters: a) dynamic parameters by ultrasonic sounding, b) static parameters by measuring of spherical sample deformation. The measurement is carried out on spherical samples diameter 50 +/- 0.01 mm. Higher value of confining pressure was reached due to the new construction of sample positioning unit. The positioning unit is equipped with two Portecap step motors, which are located inside the vessel and make possible to rotate with the sphere and couple of piezoceramic transducers. Sample deformation is measured in the same direction as ultrasonic signal travel time. Only electric leads connects inner part of high pressure vessel with surrounding environment. Experimental set up enables: - simultaneous P-wave ultrasonic sounding, - measurement of current sample deformation at sounding points, - measurement of current value of confining pressure and - measurement of current stress media temperature. Air driven high pressure pump Haskel is used to produce high value of confining pressure up to 700 MPa. Ultrasonic signals are recorded by digital scope Agilent 54562 with sampling frequency 100 MHz. Control and measuring software was developed under Agilent VEE software environment working under MS Win 2000 operating system. Measuring set up was tested by measurement of monomineral spherical samples of quartz and corundum. Both of them have trigonal symmetry. The measurement showed that the P-wave velocity range of quartz was between 5.7-7.0 km/sec. and velocity range of corundum was between 9.7-10.9 km/sec. High pressure resistant LVDT transducers Mesing together with Intronix electronic unit were used to monitor sample deformation. Sample deformation is monitored with the accuracy of 0.1 micron. All test measurements proved the good accuracy of the whole measuring set up. This project was supported by Grant Agency of the Czech Republic No.: 205/01/1430.

  6. SAGE III solar ozone measurements: Initial results

    NASA Technical Reports Server (NTRS)

    Wang, Hsiang-Jui; Cunnold, Derek M.; Trepte, Chip; Thomason, Larry W.; Zawodny, Joseph M.

    2006-01-01

    Results from two retrieval algorithms, o3-aer and o3-mlr , used for SAGE III solar occultation ozone measurements in the stratosphere and upper troposphere are compared. The main differences between these two retrieved (version 3.0) ozone are found at altitudes above 40 km and below 15 km. Compared to correlative measurements, the SAGE II type ozone retrievals (o3-aer) provide better precisions above 40 km and do not induce artificial hemispheric differences in upper stratospheric ozone. The multiple linear regression technique (o3_mlr), however, can yield slightly more accurate ozone (by a few percent) in the lower stratosphere and upper troposphere. By using SAGE III (version 3.0) ozone from both algorithms and in their preferred regions, the agreement between SAGE III and correlative measurements is shown to be approx.5% down to 17 km. Below 17 km SAGE III ozone values are systematically higher, by 10% at 13 km, and a small hemispheric difference (a few percent) appears. Compared to SAGE III and HALOE, SAGE II ozone has the best accuracy in the lowest few kilometers of the stratosphere. Estimated precision in SAGE III ozone is about 5% or better between 20 and 40 km and approx.10% at 50 km. The precision below 20 km is difficult to evaluate because of limited coincidences between SAGE III and sondes. SAGE III ozone values are systematically slightly larger (2-3%) than those from SAGE II but the profile shapes are remarkably similar for altitudes above 15 km. There is no evidence of any relative drift or time dependent differences between these two instruments for altitudes above 15-20 km.

  7. The role of CYP2D6 in primary and secondary oxidative metabolism of dextromethorphan: in vitro studies using human liver microsomes.

    PubMed Central

    Kerry, N L; Somogyi, A A; Bochner, F; Mikus, G

    1994-01-01

    1. The enzyme kinetics of dextromethorphan O-demethylation in liver microsomes from three extensive metabolisers (EM) with respect to CYP2D6 indicated high (Km1 2.2-9.4 microM) and low (Km2 55.5-307.3 microM) affinity sites whereas microsomes from two poor metabolisers (PM) indicated a single site (Km 560 and 157 microM). Similar differences were shown for 3-methoxymorphinan O-demethylation to 3-hydroxymorphinan (Km 6.9-9.6 microM in EM subjects; Km 307 and 213 microM in PM subjects). 2. Dextromethorphan O-demethylation was inhibited competitively by quinidine (Ki 0.1 microM), rac-perhexiline (Ki 0.4 microM), dextropropoxyphene (Ki 6 microM), rac-methadone (Ki 8 microM), and 3-methoxymorphinan (Ki 15 microM). These compounds were also potent inhibitors of 3-methoxymorphinan O-demethylation with IC50 values ranging from 0.02-12 microM. Anti-LKM1 serum inhibited both dextromethorphan and 3-methoxymorphinan O-demethylations in a titre-dependent manner. 3. The Michaelis-Menten constant for dextromethorphan N-demethylation to 3-methoxymorphinan (Km 632-977 microM) and dextrorphan N-demethylation to 3-hydroxymorphinan (Km 1571-4286 microM) did not differ between EM and PM microsomes. These N-demethylation reactions were not inhibited by quinidine and rac-methadone or LKM1 antibodies. 4. Dextromethorphan and 3-methoxymorphinan are metabolised by the same P450 isoform, CYP2D6, whereas the N-demethylation reactions are not carried out by CYP2D6. PMID:7826826

  8. Hydrostatic and non-hydrostatic simulations of dense waters cascading off a shelf: The East Greenland case

    NASA Astrophysics Data System (ADS)

    Magaldi, Marcello G.; Haine, Thomas W. N.

    2015-02-01

    The cascade of dense waters of the Southeast Greenland shelf during summer 2003 is investigated with two very high-resolution (0.5-km) simulations. The first simulation is non-hydrostatic. The second simulation is hydrostatic and about 3.75 times less expensive. Both simulations are compared to a 2-km hydrostatic run, about 31 times less expensive than the 0.5 km non-hydrostatic case. Time-averaged volume transport values for deep waters are insensitive to the changes in horizontal resolution and vertical momentum dynamics. By this metric, both lateral stirring and vertical shear instabilities associated with the cascading process are accurately parameterized by the turbulent schemes used at 2-km horizontal resolution. All runs compare well with observations and confirm that the cascade is mainly driven by cyclones which are linked to dense overflow boluses at depth. The passage of the cyclones is also associated with the generation of internal gravity waves (IGWs) near the shelf. Surface fields and kinetic energy spectra do not differ significantly between the runs for horizontal scales L > 30 km. Complex structures emerge and the spectra flatten at scales L < 30 km in the 0.5-km runs. In the non-hydrostatic case, additional energy is found in the vertical kinetic energy spectra at depth in the 2 km < L < 10 km range and with frequencies around 7 times the inertial frequency. This enhancement is missing in both hydrostatic runs and is here argued to be due to the different IGW evolution and propagation offshore. The different IGW behavior in the non-hydrostatic case has strong implications for the energetics: compared to the 2-km case, the baroclinic conversion term and vertical kinetic energy are about 1.4 and at least 34 times larger, respectively. This indicates that the energy transfer from the geostrophic eddy field to IGWs and their propagation away from the continental slope is not properly represented in the hydrostatic runs.

  9. Interstellar detection of the intersystem line Si II lambda 2335 toward zeta Ophiuchi

    NASA Technical Reports Server (NTRS)

    Cardelli, Jason A.; Sofia, Ulysses J.; Savage, Blair D.; Keenan, Francis P.; Dufton, Philip L.

    1994-01-01

    We report on the detection of the weak intersystem transistion of Si II lambda 2335 A in the sight line toward zeta Oph using the Ech-B mode (3.5 km/s resolution) of the Goddard High Resolution Spectrograph. The high-quality spectrum is characterized by an empirically measured signal-to-noise of 450, in excellent agreement with that expected from photon-statistics. The measured equivalent width of the Si II line is W(sub lambda) = 0.48 +/- 0.12 mA. Using the new experimental f-value of Calamai, Smith, and Bergeson, we find a Si II column density of 2.34 (+/- 0.58) x 10(exp 15) atoms/sq cm and (Si/H)(sub zeta Oph) = 1.78 (+/- 0.44) x 10(exp -6) for the principal absorbing component(s) at v(sub sun) approx. = -15 km/s. Analysis of the Si II lambda 1808 absorption over the same velocity range using the new experimental f-value of Bergeson & Lawler yields a column density (corrected for saturation) that is consistent within the weak line errors and confirms the relative accuracies of these new f-values. Furthermore, these results indicate that accurate abundances can now be derived for Si II, particularly from the weak Si II lambda 2335 A since it is free of saturation effects. For the zeta Oph v(sub sun) approx. = -15 km/s component(s), we find that greater than 95% of the available cosmic abundance (i.e. the 1989 meteoritic abundances of Anders & Grevesse) of Mg, Fe, and Si is 'missing' from the gas phase and is presumably locked up in the dust. These elements are present in the dust grains in ratios of Fe/Si approximately equals 0.9 and Mg/Si approximately equals 1.1, consistent with the ratio of their cosmic abundances. These ratios are in sharp contrast to more diffuse clouds like those seen toward the high-latitude halo star HD 93521 where in the dust Fe/Si approximately equals 1.8 and Mg/Si approximately equals 2.1.

  10. An Uncharacterized Member of the Ribokinase Family in Thermococcus kodakarensis Exhibits myo-Inositol Kinase Activity*

    PubMed Central

    Sato, Takaaki; Fujihashi, Masahiro; Miyamoto, Yukika; Kuwata, Keiko; Kusaka, Eriko; Fujita, Haruo; Miki, Kunio; Atomi, Haruyuki

    2013-01-01

    Here we performed structural and biochemical analyses on the TK2285 gene product, an uncharacterized protein annotated as a member of the ribokinase family, from the hyperthermophilic archaeon Thermococcus kodakarensis. The three-dimensional structure of the TK2285 protein resembled those of previously characterized members of the ribokinase family including ribokinase, adenosine kinase, and phosphofructokinase. Conserved residues characteristic of this protein family were located in a cleft of the TK2285 protein as in other members whose structures have been determined. We thus examined the kinase activity of the TK2285 protein toward various sugars recognized by well characterized ribokinase family members. Although activity with sugar phosphates and nucleosides was not detected, kinase activity was observed toward d-allose, d-lyxose, d-tagatose, d-talose, d-xylose, and d-xylulose. Kinetic analyses with the six sugar substrates revealed high Km values, suggesting that they were not the true physiological substrates. By examining activity toward amino sugars, sugar alcohols, and disaccharides, we found that the TK2285 protein exhibited prominent kinase activity toward myo-inositol. Kinetic analyses with myo-inositol revealed a greater kcat and much lower Km value than those obtained with the monosaccharides, resulting in over a 2,000-fold increase in kcat/Km values. TK2285 homologs are distributed among members of Thermococcales, and in most species, the gene is positioned close to a myo-inositol monophosphate synthase gene. Our results suggest the presence of a novel subfamily of the ribokinase family whose members are present in Archaea and recognize myo-inositol as a substrate. PMID:23737529

  11. Flexural isostasy: Constraints from gravity and topography power spectra

    NASA Astrophysics Data System (ADS)

    Watts, Tony; Moore, James

    2017-04-01

    We have used the spherical harmonic coefficients that describe the EGM2008 gravity and topography model (Pavlis et al. 2010) to quantify the role of flexural isostasy in contributing to Earth's gravity and topography. Power spectra show that the gravity effect of the topography and its flexural compensation contributes significantly to the observed free-air gravity anomaly field for degree 33-180, which corresponds approximately to wavelengths of 220-1200 km. The best fit is for an elastic thickness of the lithosphere, Te, of 34.0±4.0 km. Smaller values of Te, under-predict while high values of Te, over-predict the observed gravity spectra. The best fit value is a global average and so it is reasonable to speculate that regions exist where Te is both lower and higher. This is confirmed in studies of selected regions such as the Hawaiian-Emperor seamount chain and the Ganges-Himalaya foreland fold and thrust belt where we show that flexural isostatic anomalies are near zero in regions where Te approaches 34 km (e.g. Hawaiian ridge) and of large amplitude in regions of lower (e.g. Emperor) and higher Te (e.g. Ganges-Himalaya). Plate flexure may be significant at higher (180-441) and lower (12-33) degrees, but topography appears either uncompensated or fully compensated at these degrees, irrespective of the actual Te. Nevertheless, all isostatic models under-predict the observed gravity spectra at degree <12 and so we interpret the low order Earth's gravity field as caused by non-isostatic processes due to dynamic motions such as those associated with mantle convection.

  12. OMI Total Ozone Column Product Validated Against UVMFR Retrievals

    NASA Astrophysics Data System (ADS)

    Ioannis, Raptis Panagiotis; Kazadziz, Stelios; Eleftherantos, Kostas; Kosmopoulos, Panagiotis; Amiridis, Vassilis

    2015-11-01

    The Ozone Monitoring Instrument (OMI) is a spectroradiometer on board NASA Aura, providing Total Ozone Column (TOC), almost globally, every day, with a spatial resolution of 13kmX24 km, since July 2004. In the next few months Sentinel-5P will be launched, and carry TROPOMI, a spaceborne nadir viewing spectrometer which will cover tha same spectral range, narrowing the spatial resolution to 7 km X 7 km and extending current data record. Studies have evaluated OMI's product using Brewer spectroradiometer measurements and found average biases to be less than 3%.UVMFR (Ultraviolet Multifilter Radiometer) is an instrument designed to measure total and diffuse and calculate Direct solar Irradiance at 7 wavelengths in the UV spectrum, with high accuracy and very high frequency. Main advantages of this instrument is the portability, the automatic calibration procedure, simple operational use, unattended functionality and the relatively low cost. In that frame it could become a very effective solution to validate satellite products.A method was developed to retrieve TOC, from UVMFR measurements combined with radiative transfer model calculations. Lookup tables of ratios of direct solar irradiance at 305nm and 325nm in respect to TOC, Solar Zenith Angle and Aerosol Optical Depth have been constructed and compared with UVMFR irradiance measurements in order to retrieve TOC.We used UVMFR measurements in Athens, Greece during the period July 2009 to May 2014 to create a TOC time series with high temporal frequency (1 minute for cloudless conditions).The validation of the method have been assessed using a Brewer spectroradiometer operating in parallel for the whole period. In order to compare OMI-based and ground-based TOC measurements we have calculated UVMFR daily values of TOC averaging measurements in a 2 hour window around OMI overpass. This comparison revealed differences up to 7%, with mean differences at 4.2 DU and standard deviation of 8.7%. Same seasonal cycle was observed in both data sets, with minimum values at October-November andmaximum at April-May. Also a small seasonal dependent difference among the time series was observed. OMI retrieval permanently underestimated during spring months, and overestimated at summer months. We investigated this behavior by examining Ozone Effective Temperature influence by its effect on ozone absorption coefficient and detect a relation of 0.9% TOC change per K. We applied a correction to the data set using stratospheric temperature climatological values.This method could be be adopted in order to validate TROPOMI retrievals in places where Brewer instruments are not available, benefiting from instrument 's mobility and low cost and portability.

  13. Distribution and Kinematics of O VI in the Galactic Halo

    NASA Astrophysics Data System (ADS)

    Savage, B. D.; Sembach, K. R.; Wakker, B. P.; Richter, P.; Meade, M.; Jenkins, E. B.; Shull, J. M.; Moos, H. W.; Sonneborn, G.

    2003-05-01

    Far-Ultraviolet Spectroscopic Explorer (FUSE) spectra of 100 extragalactic objects and two distant halo stars are analyzed to obtain measures of O VI λλ1031.93, 1037.62 absorption along paths through the Milky Way thick disk/halo. Strong O VI absorption over the velocity range from -100 to 100 km s-1 reveals a widespread but highly irregular distribution of O VI, implying the existence of substantial amounts of hot gas with T~3×105 K in the Milky Way thick disk/halo. The integrated column density, log[N(O VI) cm-2], ranges from 13.85 to 14.78 with an average value of 14.38 and a standard deviation of 0.18. Large irregularities in the gas distribution are found to be similar over angular scales extending from <1° to 180°, implying a considerable amount of small- and large-scale structure in the absorbing gas. The overall distribution of O VI is not well described by a symmetrical plane-parallel layer of patchy O VI absorption. The simplest departure from such a model that provides a reasonable fit to the observations is a plane-parallel patchy absorbing layer with an average O VI midplane density of n0(O VI)=1.7×10-8 cm-3, a scale height of ~2.3 kpc, and a ~0.25 dex excess of O VI in the northern Galactic polar region. The distribution of O VI over the sky is poorly correlated with other tracers of gas in the halo, including low- and intermediate-velocity H I, Hα emission from the warm ionized gas at ~104 K, and hot X-ray-emitting gas at ~106 K. The O VI has an average velocity dispersion, b~60 km s-1, and standard deviation of 15 km s-1. Thermal broadening alone cannot explain the large observed profile widths. The average O VI absorption velocities toward high-latitude objects (|b|>45deg) range from -46 to 82 km s-1, with a high-latitude sample average of 0 km s-1 and a standard deviation of 21 km s-1. High positive velocity O VI absorbing wings extending from ~100 to ~250 km s-1 observed along 21 lines of sight may be tracing the flow of O VI into the halo. A combination of models involving the radiative cooling of hot fountain gas, the cooling of supernova bubbles in the halo, and the turbulent mixing of warm and hot halo gases is required to explain the presence of O VI and other highly ionized atoms found in the halo. The preferential venting of hot gas from local bubbles and superbubbles into the northern Galactic polar region may explain the enhancement of O VI in the north. If a fountain flow dominates, a mass flow rate of approximately 1.4 Msolar yr-1 of cooling hot gas to each side of the Galactic plane with an average density of 10-3 cm-3 is required to explain the average value of log[N(O VI)sin|b|] observed in the southern Galactic hemisphere. Such a flow rate is comparable to that estimated for the Galactic intermediate-velocity clouds.

  14. A high-resolution and observationally constrained OMI NO 2 satellite retrieval

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldberg, Daniel L.; Lamsal, Lok N.; Loughner, Christopher P.

    Here, this work presents a new high-resolution NO 2 dataset derived from the NASA Ozone Monitoring Instrument (OMI) NO 2 version 3.0 retrieval that can be used to estimate surface-level concentrations. The standard NASA product uses NO 2 vertical profile shape factors from a 1.25° × 1° (~110 km × 110 km) resolution Global Model Initiative (GMI) model simulation to calculate air mass factors, a critical value used to determine observed tropospheric NO 2 vertical columns. To better estimate vertical profile shape factors, we use a high-resolution (1.33 km × 1.33 km) Community Multi-scale Air Quality (CMAQ) model simulation constrained by in situmore » aircraft observations to recalculate tropospheric air mass factors and tropospheric NO 2 vertical columns during summertime in the eastern US. In this new product, OMI NO 2 tropospheric columns increase by up to 160% in city centers and decrease by 20–50 % in the rural areas outside of urban areas when compared to the operational NASA product. Our new product shows much better agreement with the Pandora NO 2 and Airborne Compact Atmospheric Mapper (ACAM) NO 2 spectrometer measurements acquired during the DISCOVER-AQ Maryland field campaign. Furthermore, the correlation between our satellite product and EPA NO 2 monitors in urban areas has improved dramatically: r 2 = 0.60 in the new product vs. r 2 = 0.39 in the operational product, signifying that this new product is a better indicator of surface concentrations than the operational product. Our work emphasizes the need to use both high-resolution and high-fidelity models in order to recalculate satellite data in areas with large spatial heterogeneities in NO x emissions. Although the current work is focused on the eastern US, the methodology developed in this work can be applied to other world regions to produce high-quality region-specific NO 2 satellite retrievals.« less

  15. A high-resolution and observationally constrained OMI NO 2 satellite retrieval

    DOE PAGES

    Goldberg, Daniel L.; Lamsal, Lok N.; Loughner, Christopher P.; ...

    2017-09-26

    Here, this work presents a new high-resolution NO 2 dataset derived from the NASA Ozone Monitoring Instrument (OMI) NO 2 version 3.0 retrieval that can be used to estimate surface-level concentrations. The standard NASA product uses NO 2 vertical profile shape factors from a 1.25° × 1° (~110 km × 110 km) resolution Global Model Initiative (GMI) model simulation to calculate air mass factors, a critical value used to determine observed tropospheric NO 2 vertical columns. To better estimate vertical profile shape factors, we use a high-resolution (1.33 km × 1.33 km) Community Multi-scale Air Quality (CMAQ) model simulation constrained by in situmore » aircraft observations to recalculate tropospheric air mass factors and tropospheric NO 2 vertical columns during summertime in the eastern US. In this new product, OMI NO 2 tropospheric columns increase by up to 160% in city centers and decrease by 20–50 % in the rural areas outside of urban areas when compared to the operational NASA product. Our new product shows much better agreement with the Pandora NO 2 and Airborne Compact Atmospheric Mapper (ACAM) NO 2 spectrometer measurements acquired during the DISCOVER-AQ Maryland field campaign. Furthermore, the correlation between our satellite product and EPA NO 2 monitors in urban areas has improved dramatically: r 2 = 0.60 in the new product vs. r 2 = 0.39 in the operational product, signifying that this new product is a better indicator of surface concentrations than the operational product. Our work emphasizes the need to use both high-resolution and high-fidelity models in order to recalculate satellite data in areas with large spatial heterogeneities in NO x emissions. Although the current work is focused on the eastern US, the methodology developed in this work can be applied to other world regions to produce high-quality region-specific NO 2 satellite retrievals.« less

  16. A high-resolution and observationally constrained OMI NO2 satellite retrieval

    NASA Astrophysics Data System (ADS)

    Goldberg, Daniel L.; Lamsal, Lok N.; Loughner, Christopher P.; Swartz, William H.; Lu, Zifeng; Streets, David G.

    2017-09-01

    This work presents a new high-resolution NO2 dataset derived from the NASA Ozone Monitoring Instrument (OMI) NO2 version 3.0 retrieval that can be used to estimate surface-level concentrations. The standard NASA product uses NO2 vertical profile shape factors from a 1.25° × 1° (˜ 110 km × 110 km) resolution Global Model Initiative (GMI) model simulation to calculate air mass factors, a critical value used to determine observed tropospheric NO2 vertical columns. To better estimate vertical profile shape factors, we use a high-resolution (1.33 km × 1.33 km) Community Multi-scale Air Quality (CMAQ) model simulation constrained by in situ aircraft observations to recalculate tropospheric air mass factors and tropospheric NO2 vertical columns during summertime in the eastern US. In this new product, OMI NO2 tropospheric columns increase by up to 160 % in city centers and decrease by 20-50 % in the rural areas outside of urban areas when compared to the operational NASA product. Our new product shows much better agreement with the Pandora NO2 and Airborne Compact Atmospheric Mapper (ACAM) NO2 spectrometer measurements acquired during the DISCOVER-AQ Maryland field campaign. Furthermore, the correlation between our satellite product and EPA NO2 monitors in urban areas has improved dramatically: r2 = 0.60 in the new product vs. r2 = 0.39 in the operational product, signifying that this new product is a better indicator of surface concentrations than the operational product. Our work emphasizes the need to use both high-resolution and high-fidelity models in order to recalculate satellite data in areas with large spatial heterogeneities in NOx emissions. Although the current work is focused on the eastern US, the methodology developed in this work can be applied to other world regions to produce high-quality region-specific NO2 satellite retrievals.

  17. Purification and Partial Characterization of a Fructanase which Hydrolyzes Natural Polysaccharides from Sugarcane Juice 1

    PubMed Central

    Legaz, M. Estrella; Martin, Luisa; Pedrosa, Mercedes M.; Vicente, Carlos; de Armas, Roberto; Martínez, Maritza; Medina, Isabel; Rodriguez, Carlos W.

    1990-01-01

    A new sugarcane (Saccharum officinarum L.) fructanase which hydrolyzes both high molecular weight polysaccharides ∣Fructose4:Galactitol5∣n (SP) and moderate-sized carbohydrates ∣Fructose2:Galactitol33∣n (MMWC) has been purified from sugarcane juice. The Km value has been estimated to be 33.7 micrograms per milliliter and 20 micrograms per milliliter for SP and MMWC, respectively. The optimal pH and temperature values are 6.0 and 30°C, respectively. Purified protein has a pl value of 6.35 and a molecular weight of 13.2 kilodaltons. Fructanase activity appears to be Mn2+-dependent. PMID:16667334

  18. The Western Arabian intracontinental volcanic fields as a potential UNESCO World Heritage site

    NASA Astrophysics Data System (ADS)

    Németh, Károly; Moufti, Mohammed R.

    2017-04-01

    UNESCO promotes conservation of the geological and geomoprhological heritage through promotion of protection of these sites and development of educational programs under the umbrella of geoparks among the most globally significant ones labelled as UNESCO Global Geoparks. UNESCO also maintains a call to list those natural sites that provide universal outstanding values to demonstrate geological features or their relevance to our understanding the evolution of Earth. Volcanoes currently got a surge in nomination to be UNESCO World Heritage sites. Volcanic fields in the contrary fell in a grey area of nominations as they represents the most common manifestation of volcanism on Earth hence they are difficult to view as having outstanding universal values. A nearly 2500-km long 300-km wide region of dispersed volcanoes located in the Western Arabian Penninsula mostly in the Kingdom of Saudi Arabia form a near-continuous location that carries universal outstanding value as one of the most representative manifestation of dispersed intracontinental volcanism on Earth to be nominated as an UNESCO World Heritage site. The volcanic fields formed in the last 20 Ma along the Red Sea as group of simple basaltic to more mature and long-lived basalt to trachyte-to-rhyolite volcanic fields each carries high geoheritage values. While these volcanic fields are dominated by scoria and spatter cones and transitional lava fields, there are phreatomagmatic volcanoes among them such as maars and tuff rings. Phreatomagmatism is more evident in association with small volcanic edifices that were fed by primitive magmas, while phreatomagmatic influences during the course of a larger volume eruption are also known in association with the silicic eruptive centres in the harrats of Rahat, Kishb and Khaybar. Three of the volcanic fields are clearly bimodal and host small-volume relatively short-lived lava domes and associated block-and-ash fans providing a unique volcanic landscape commonly not considerred to be associated with dispersed intracontinental volcanic fields. In addition the nominated volcanic region also hosts the largest and youngest historic eruption (Al Madinah Eruption) in Western Saudi Arabia took place at 1256-AD, lasted 52 days and produced at least 0.29-km3 of pahoehoe-to-aa transitional lava fields that were emitted through a 2.3 km-long fissure and associated spatter-to-scoria cone complexes. The Western Arabian intracontinental volcanic fields provide the best exposed and most diverse type of intracontinental volcanic fields on Earth that also occupies the largest surface area. In addition, this chain of volcanic fields are also host significant archaeological and human occupation sites help to understand early human evolution as well as hosting several historic locations with high cultural heritage values. These generally intact and well-exposed volcanic zones hosting globally unique geoheritage sites can form the basis of complex geoeducational programs through the establishment of various volcanic geoparks in the region that can link together a UNESCO World Heritage Site on the basis of their global universal volcanic geoheritage values.

  19. Spatial Characteristics of the 630-nm Artificial Ionospheric Airglow Generation Region During the Sura Facility Pumping

    NASA Astrophysics Data System (ADS)

    Shindin, A. V.; Klimenko, V. V.; Kogogin, D. A.; Beletsky, A. B.; Grach, S. M.; Nasyrov, I. A.; Sergeev, E. N.

    2018-05-01

    We describe the method and the results of modeling and retrieval of the spatial distribution of excited oxygen atoms in the HF-pumped ionospheric region based on two-station records of artificial airglow in the red line (λ = 630 nm). The HF ionospheric pumping was provided by the Sura facility. The red-line records of the night-sky portraits were obtained at two reception points—directly at the heating facility and 170 km east of it. The results were compared with the vertical ionospheric sounding data. It was found that in the course of the experiments the airglow region was about 250 km high and did not depend on the altitude of the pump-wave resonance. The characteristic size of the region was 35 km, and the shape of the distribution isosurfaces was well described by oblique spheroids or a drop-shaped form. The average value of the maximum concentration of excited atoms during the experiment was about 1000 cm-3.

  20. NO(y) Correlation with N2O and CH4 in the Midlatitude Stratosphere

    NASA Technical Reports Server (NTRS)

    Kondo, Y.; Schmidt, U.; Sugita, T.; Engel, A.; Koike, M.; Aimedieu, P.; Gunson, M. R.; Rodriguez, J.

    1996-01-01

    Total reactive nitrogen (NO(y)), nitrous oxide (NO2), methane (CH4), and ozone (03) were measured on board a balloon launched from Aire sur l'Adour (44 deg N, 0 deg W), France on October 12, 1994. Generally, NO(y) was highly anti-correlated with N2O and CH4 at altitudes between 15 and 32 km. The linear NO(y) - N2O and NO(y) - CH4 relationships obtained by the present observations are very similar to those obtained on board ER-2 and DC-8 aircraft previously at altitude below 20 km in the northern hemisphere. They also agree well with the data obtained by the Atmospheric Trace Molecule Spectroscopy (ATMOS) instrument at 41 deg N in November 1994. Slight departures from linear correlations occurred around 29 km, where N2O and CH4 mixing ratios were larger than typical midlatitude values, suggesting horizontal transport of tropical airmasses to northern midlatitudes in a confined altitude region.

  1. Discovery and observation of BY Draconis variables

    NASA Astrophysics Data System (ADS)

    Bopp, B. W.; Noah, P. V.; Klimke, A.; Africano, J.

    1981-10-01

    The discovery of BY Draconis variables was efficiently accomplished by a spectroscopic survey of dK-M stars for weak H-alpha emissions, using 1-2 A resolution. The four BY Dra variables discovered are all spectroscopic binaries with P values lower than about 10 d, in light of which, it is noted that the onset of high surface activity and appearance of H-alpha emission occur sharply at v(equator) of approximately 5 km/sec. At v(equator) of about 3 km/sec, dK-M stars have low levels of surface activity. It is found that while there is a range of Ca II emission strength, and only the strongest emitters of this line are BY Dra and/or flare stars, the H-alpha feature changes abruptly to an emission feature signaling the onset of flaring and/or the BY Dra syndrome. An increase of the rotation rate above v(equator) 5 km/sec does not appear to increase the level of surface activity.

  2. Failure Wave in DEDF and Soda-Lime Glass During Rod Impact

    NASA Astrophysics Data System (ADS)

    Orphal, Dennis; Behner, Thilo; Anderson, Charles; Templeton, Douglas

    2005-07-01

    Investigations of glass by planar, and classical and symmetric Taylor impact experiments reveal that failure wave velocity U/F depends on impact velocity, geometry, and the type of glass. U/F typically increases with impact velocity to between ˜ 1.4 C/S and C/L (shear and longitudinal wave velocities, respectively). This paper reports the results of direct high-speed photographic measurements of the failure wave for gold rod impact from 1.2 and 2.0 km/s on DEDF glass (C/S = 2.0, C/L =3.5 km/s). The average rod penetration velocity, u, was measured using flash X-rays. Gold rods eliminated penetrator strength effects. U/F for gold rod impact on DEDF is ˜ 1.0-1.2 km/s, which is considerably less than C/S. The increase of u with impact velocity is greater than that of U/F. These results are confirmed by soda-lime glass impact on a gold rod at an impact velocity of 1300 m/s. Similar results are found in``edge-on-impact'' tests; U/F values of 1.4 km/s and 2.4-2.6 km/s in soda-lime glass are reported for W-alloy rod impact, considerably less than C/S (3.2 km/s) [1,2]. [1] Bless, et. al.(1990) AIP Proc. Shock Comp. Cond. Matter---1989, pp. 939-942 (1990) [2] E. L. Zilberbrand, et. al. (1999) Int. J. Impact Engng., 23, 995-1001 (1999).

  3. Seismic Imaging of the crust and upper mantle beneath Afar, Ethiopia

    NASA Astrophysics Data System (ADS)

    Hammond, J. O.; Kendall, J. M.; Stuart, G. W.; Ebinger, C. J.

    2009-12-01

    In March 2007 41 seismic stations were deployed in north east Ethiopia. These stations recorded until October 2009, whereupon the array was condensed to 13 stations. Here we show estimates of crustal structure derived from receiver functions and upper mantle velocity structure, derived from tomography and shear-wave splitting using the first 2.5 years of data. Bulk crustal structure has been determined by H-k stacking receiver functions. Crustal Thickness varies from ~45km on the rift margins to ~16km beneath the northeastern Afar stations. Estimates of Vp/Vs show normal continental crust values (1.7-1.8) on the rift margins, and very high values (2.0-2.2) in Afar, similar to results for the Main Ethiopian Rift (MER). This supports ideas of high levels of melt in the crust beneath the Ethiopian Rift. Additionally, we use a common conversion point migration technique to obtain high resolution images of crustal structure beneath the region. Both techniques show a linear region of thin crust (~16km) trending north-south, the same trend as the Red Sea rift. SKS-wave splitting results show a general north east-south west fast direction in the MER, systematically rotating to a more north-south fast direction towards the Red Sea. Additionally, stations close to the recent Dabbahu diking episode show sharp lateral changes over small lateral distances (40° over <30km), with fast directions overlying the Dabbahu segment aligning parallel with the recent diking. This supports ideas of melt dominated anisotropy beneath the Ethiopian rift. The magnitude of splitting in this region is smaller than that seen at the MER, suggesting a thinner region of melt, or less focused melt is causing the anisotropy. Seismic tomography inversions show that in the top 150km low velocities highlight plate boundaries. The low velocity anomalies extend from the main Ethiopian rift NE, towards Djibouti, and from Djibouti NW towards the Dabbahu segment The lowest velocities exist on the rift margins, supporting ideas of preferential melt generation at these regions of high strain. This includes a region of low velocity close to the edge of the proposed location of the Danakil microplate. Outside of these focused regions the velocities are relatively fast. Below ~250km the anomaly broadens to cover most of the Afar region with only the rift margins remaining fast. At transition zone depths little anomaly is seen beneath Afar, but some low velocities remain present beneath the MER. These studies suggest that in northern Ethiopia the Red Sea rift is dominant. The presence of thin crust beneath northern Afar suggests that the Red Sea rift is creating oceanic like crust in this region. The lack of deep mantle low velocity anomalies beneath Afar suggest that a typical narrow conduit plume does not exist in this region, rather the velocity models seem more similar to passive upwelling of material beneath Afar.

  4. A Transformation-Induced Shear Instability Model for Deep Earthquakes Based on Laboratory Nanoseismological and Microstructural Observations

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Zhu, L.; Shi, F.; Schubnel, A.; Hilairet, N.; Yu, T.; Rivers, M. L.; Gasc, J.; Li, Z.; Brunet, F.

    2016-12-01

    Global earthquake hypocenters depth displays a bimodal distribution: a first peak at < 50 km and a second peak around 550 - 600 km, before ceasing abruptly near 700 km. How fractures initiate, nucleate, and propagate at depths >70 km remains one of the greatest puzzles in earth science, since increasing pressure inhibits fracture propagation. Here we report high-resolution acoustic emission (AE) analysis of fractures triggered by partial transformation from olivine to spinel in Mg2GeO4, an analog to (Mg,Fe)2SiO4, the dominant mineral in the upper mantle. State-of-the-art synchrotron techniques and seismological methodologies were used for fault imaging and for event location and waveform analysis. Our results reveal unprecedented details of rupture nucleation and propagation, in both space and time: AE event magnitudes follow the Gutenberg-Richter law, with b values generally consistent with seismological observations, while the empirical relation between magnitude and rupture area is extended to millimeter-sized samples. A new rupture model for deep-focus earthquakes is proposed based on the well-known strain localization theory for pressure sensitive (dilatant) materials. The results show that shear failure processes, even at great depths, are scale-invariant.

  5. Evidence for Ultra-fast Outflows in Radio-quiet Active Galactic Nuclei. II. Detailed Photoionization Modeling of Fe K-shell Absorption Lines

    NASA Astrophysics Data System (ADS)

    Tombesi, F.; Cappi, M.; Reeves, J. N.; Palumbo, G. G. C.; Braito, V.; Dadina, M.

    2011-11-01

    X-ray absorption line spectroscopy has recently shown evidence for previously unknown Ultra-fast Outflows (UFOs) in radio-quiet active galactic nuclei (AGNs). These have been detected essentially through blueshifted Fe XXV/XXVI K-shell transitions. In the previous paper of this series we defined UFOs as those highly ionized absorbers with an outflow velocity higher than 10,000 km s-1 and assessed the statistical significance of the associated blueshifted absorption lines in a large sample of 42 local radio-quiet AGNs observed with XMM-Newton. The present paper is an extension of that work. First, we report a detailed curve of growth analysis of the main Fe XXV/XXVI transitions in photoionized plasmas. Then, we estimate an average spectral energy distribution for the sample sources and directly model the Fe K absorbers in the XMM-Newton spectra with the detailed Xstar photoionization code. We confirm that the frequency of sources in the radio-quiet sample showing UFOs is >35% and that the majority of the Fe K absorbers are indeed associated with UFOs. The outflow velocity distribution spans from ~10,000 km s-1 (~0.03c) up to ~100,000 km s-1 (~0.3c), with a peak and mean value of ~42,000 km s-1 (~0.14c). The ionization parameter is very high and in the range log ξ ~ 3-6 erg s-1 cm, with a mean value of log ξ ~ 4.2 erg s-1 cm. The associated column densities are also large, in the range N H ~ 1022-1024 cm-2, with a mean value of N H ~ 1023 cm-2. We discuss and estimate how selection effects, such as those related to the limited instrumental sensitivity at energies above 7 keV, may hamper the detection of even higher velocities and higher ionization absorbers. We argue that, overall, these results point to the presence of extremely ionized and possibly almost Compton-thick outflowing material in the innermost regions of AGNs. This also suggests that UFOs may potentially play a significant role in the expected cosmological feedback from AGNs and their study can provide important clues on the connection between accretion disks, winds, and jets.

  6. The velocity structure of the lunar crust.

    NASA Technical Reports Server (NTRS)

    Kovach, R. L.; Watkins, J. S.

    1973-01-01

    Seismic refraction data, obtained at the Apollo 14 and 16 sites, when combined with other lunar seismic data, allow a compressional wave velocity profile of the lunar near-surface and crust to be derived. The regolith, although variable in thickness over the lunar surface, possesses surprisingly similar seismic properties. Underlying the regolith at both the Apollo 14 Fra Mauro site and the Apollo 16 Descartes site is low-velocity brecciated material or impact derived debris. Key features of the lunar seismic velocity profile are: (1) velocity increases from 100 to 300 m/sec in the upper 100 m to about 4 km/sec at 5 km depth, (2) a more gradual increase from about 4 km/sec to about 6 km/sec at 25 km depth,(3) a discontinuity at a depth of 25 km, and (4) a constant value of about 7 km/sec at depths from 25 km to about 60 km.

  7. Exploring KM Features of High-Performance Companies

    NASA Astrophysics Data System (ADS)

    Wu, Wei-Wen

    2007-12-01

    For reacting to an increasingly rival business environment, many companies emphasize the importance of knowledge management (KM). It is a favorable way to explore and learn KM features of high-performance companies. However, finding out the critical KM features of high-performance companies is a qualitative analysis problem. To handle this kind of problem, the rough set approach is suitable because it is based on data-mining techniques to discover knowledge without rigorous statistical assumptions. Thus, this paper explored KM features of high-performance companies by using the rough set approach. The results show that high-performance companies stress the importance on both tacit and explicit knowledge, and consider that incentives and evaluations are the essentials to implementing KM.

  8. Classification of X-ray solar flares regarding their effects on the lower ionosphere electron density profile

    NASA Astrophysics Data System (ADS)

    Grubor, D. P.; Ulić, D. M. Å.; Žigman, V.

    2008-06-01

    The classification of X-ray solar flares is performed regarding their effects on the Very Low Frequency (VLF) wave propagation along the Earth-ionosphere waveguide. The changes in propagation are detected from an observed VLF signal phase and amplitude perturbations, taking place during X-ray solar flares. All flare effects chosen for the analysis are recorded by the Absolute Phase and Amplitude Logger (AbsPal), during the summer months of 2004-2007, on the single trace, Skelton (54.72 N, 2.88 W) to Belgrade (44.85 N, 20.38 E) with a distance along the Great Circle Path (GCP) D≍2000 km in length. The observed VLF amplitude and phase perturbations are simulated by the computer program Long-Wavelength Propagation Capability (LWPC), using Wait's model of the lower ionosphere, as determined by two parameters: the sharpness (β in 1/km) and reflection height (H' in km). By varying the values of β and H' so as to match the observed amplitude and phase perturbations, the variation of the D-region electron density height profile Ne(z) was reconstructed, throughout flare duration. The procedure is illustrated as applied to a series of flares, from class C to M5 (5×10-5 W/m2 at 0.1-0.8 nm), each giving rise to a different time development of signal perturbation. The corresponding change in electron density from the unperturbed value at the unperturbed reflection height, i.e. Ne(74 km)=2.16×108 m-3 to the value induced by an M5 class flare, up to Ne(74 km)=4×1010 m-3 is obtained. The β parameter is found to range from 0.30-0.49 1/km and the reflection height H' to vary from 74-63 km. The changes in Ne(z) during the flares, within height range z=60 to 90 km are determined, as well.

  9. Quantifying gully erosion contribution from morphodynamic analysis of historical aerial photographs in a large catchment SW Spain

    NASA Astrophysics Data System (ADS)

    Hayas, Antonio; Giráldez, Juan V.; Laguna, Ana; Peña, Peña; Vanwalleghem, Tom

    2015-04-01

    Gully erosion is widely recognized as an important erosion process and source of sediment, especially in Mediterranean basins. Recent advances in monitoring techniques, such as ground-based LiDAR, drone-bounded cameras or photoreconstruction, allow quantifying gully erosion rates with unprecedented accuracy. However, many studies only focus on gully growth during a short period. In agricultural areas, farmers frequently erase gullies artificially. Over longer time scales, this results in an important dynamic of gully growth and infilling. Also, given the significant temporal variability of precipitation, land use and the proper gully erosion processes, gully growth is non-linear over time. This study therefore aims at analyzing gully morphodynamics over a long time scale (1957-2011) in a large catchment in order to quantify gully erosion processes and its contribution to overall sediment dynamics. The 20 km2 study area is located in SW Spain. The extension of the gully network was digitized by photographic interpretation based on aerial photographs from 1957, 1981, 1985, 1999, 2002, 2005, 2007, 2009 and 2011. Gully width was measured at representative control points for each of these years. During this period, the dominant land use changed considerably from herbaceous crops to olive orchards. A field campaign was conducted in 2014 to measure current gully width and depth. Total gully volume and uncertainty was determined by Monte Carlo-based simulations of gully cross-sectional area for unmeasured sections. The extension of the gully network both increased and decreased in the study period. Gully density varied between 1.93 km km-2 in 1957, with a minimum of 1.37 km km-2 in 1981 and a maximum of 5.40 km km-2 in 2011. Gully width estimated in selected points from the orthophotos range between 0.9 m and 59.2 m, and showed a good lognormal fit. Field campaigns results in a collection of cross-section measures with gullies widths between 1.87 and 28.5 m and depths from 0.55 m to 5.02 m. A gully width-depth relation was established according to a logarithm expression with an overall r2 of 0.82. As no historical information on gully depth was available, this relation was assumed to be constant over time. Monte Carlo simulation was then used to generate width and depth values for the different gully segments, based on different lognormal distributions fitted to the estimated gully widths from 1957-2011 and on the width-depth regression. The calculated mean gully volume between 1953 and 2011 varied between 145.103 m3 and 2454.103 m3. The contribution of gully erosion to the overall sediment budget was found to be relatively stable between 1957-2008 with a mean value of 11.2 ton ha-1 year-1, while in the period 2008-2011 which includes frequent rainy days winter resulted in a mean value of 604 ton ha-1 year-1. Uncertainty estimates by Monte Carlo place the estimated contribution of gully erosion for this last period between 523-694 ton ha-1 year-1. The relation between gully erosion rates and driving factors such as land use change and rainfall was analysed in order to explain this variation. The high gully erosion rates of the period 2008-2011 could be linked to extreme rainfall events. This study has determined gully erosion rates with a high temporal resolution over several decades. The results show that gully erosion rates are highly variable and therefore that a simple interpolation between the start and end date would highly underestimate gully contribution during certain years, such as for example between 2005-2011. Overall, gully erosion is shown to be an important process of sediment generation in Mediterranean basins.

  10. Floating plastic debris in the Central and Western Mediterranean Sea.

    PubMed

    Ruiz-Orejón, Luis F; Sardá, Rafael; Ramis-Pujol, Juan

    2016-09-01

    In two sea voyages throughout the Mediterranean (2011 and 2013) that repeated the historical travels of Archduke Ludwig Salvator of Austria (1847-1915), 71 samples of floating plastic debris were obtained with a Manta trawl. Floating plastic was observed in all the sampled sites, with an average weight concentration of 579.3 g dw km(-2) (maximum value of 9298.2 g dw km(-2)) and an average particle concentration of 147,500 items km(-2) (the maximum concentration was 1,164,403 items km(-2)). The plastic size distribution showed microplastics (<5 mm) in all the samples. The most abundant particles had a surface area of approximately 1 mm(2) (the mesh size was 333 μm). The general estimate obtained was a total value of 1455 tons dw of floating plastic in the entire Mediterranean region, with various potential spatial accumulation areas. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Helium isotopes at Rungwe Volcanic Province, Tanzania, and the origin of East African Plateaux

    NASA Astrophysics Data System (ADS)

    Hilton, D. R.; Halldórsson, S. A.; Barry, P. H.; Fischer, T. P.; de Moor, J. M.; Ramirez, C. J.; Mangasini, F.; Scarsi, P.

    2011-11-01

    We report helium isotope ratios (3He/4He) of lavas and tephra of the Rungwe Volcanic Province (RVP) in southern Tanzania. Values as high as 15RA (RA = air 3He/4He) far exceed typical upper mantle values, and are the first observation of plume-like ratios south of the Turkana Depression which separates the topographic highs of the Ethiopia and Kenya domes. The African Superplume - a tilted low-velocity seismic anomaly extending to the core-mantle boundary beneath southern Africa - is the likely source of these high 3He/4He ratios. High 3He/4He ratios at RVP together with similarly-high values along the Main Ethiopian Rift and in Afar provide compelling evidence that the African Superplume is a feature that extends through the 670-km seismic discontinuity and provides dynamic support - either as a single plume or via multiple upwellings - for the two main topographic features of the East Africa Rift System as well as heat and mass to drive continuing rift-related magmatism.

  12. An informative solution to a seismological inverse problem.

    PubMed

    Gilbert, F; Dziewonski, A; Brune, J

    1973-05-01

    Preliminary results are presented that infer that 2 sec should be added to the tabular values for P phases and 4 sec to the tabular values for S phases of seismic travel times. From seismic evidence, the radius of the inner core of the Earth is 1229-1250 km; the radius of the outer core is 3482-3485 km. Data are presented relating resolving power with error of measurement for the Earth's mantle.

  13. Spatial patterns in heavy-mineral concentrations along the Curonian Spit coast, southeastern Baltic Sea

    NASA Astrophysics Data System (ADS)

    Pupienis, Donatas; Buynevich, Ilya; Ryabchuk, Daria; Jarmalavičius, Darius; Žilinskas, Gintautas; Fedorovič, Julija; Kovaleva, Olga; Sergeev, Alexander; Cichoń-Pupienis, Anna

    2017-08-01

    The 98-km-long Curonian Spit is fronted by beaches mainly composed of quartz sand with minor high-density fractions. In this study heavy-mineral concentration (HMC) trends and grain-size statistical parameters were used to assess their role as indicators of natural processes, human activities, and patterns of longshore transport. A total of 92 surface sand samples were collected at 1 km intervals from the middle of the beach along the Baltic Sea shoreline of the spit between Klaipėda strait in Lithuania and Zelenogradsk in Russia. HMC contribution was assessed in the laboratory using bulk low-field magnetic susceptibility (MS) as a proxy for ferrimagnetic and paramagnetic mineral content. Quartz-dominated (background) sand is generally characterized by low MS values of κ < 50 μSI, whereas higher values κ > 150 μSI are typical for heavy-mineral-rich sand. The greatest MS values along the middle of the beach occur in the southern part of the spit and are 40 times higher than in the northern sector. This pattern suggests the existence of a longshore particle flux with HMC distribution having the potential as a useful tracer of longshore sediment transport. Local anomalously high MS excursions are associated with contribution of iron-rich materials from adjacent man-made structures. Therefore, temporally constrained HMC distribution along the middle of the beach reflects the cumulative effect of antecedent geologic framework, longshore sediment transfer, erosional and accretionary processes, wave and wind climate, and local coastal protective structures.

  14. Mars-Gram Validation with Mars Global Surveyor Data

    NASA Technical Reports Server (NTRS)

    Justus, C. G.; Johnson, D.; Parker, Nelson C. (Technical Monitor)

    2002-01-01

    Mars Global Reference Atmospheric Model (Mars-GRAM 2001) is an engineering-level Mars atmosphere model widely used for many b4ars mission applications. From 0-80 km, it is based on NASA Ames Mars General Circulation Model (MGCM), while above 80 km it is based on University of Arizona Mars Thermospheric General Circulation Model. Mars-GRAM 2001 and MGCM use surface topography from Mars Global Surveyor Mars Orbiting Laser Altimeter (MOLA). Validation studies are described comparing Mars-GRAM with Mars Global Surveyor Radio Science (RS) and Thermal Emission Spectrometer (TES) data. RS data from 2480 profiles were used, covering latitudes 75deg S to 72deg N, surface to approx. 40 km, for seasons ranging from areocentric longitude of Sun (Ls) = 70-160deg and 265-310deg. RS data spanned a range of local times, mostly 0-9 hours and 18-24 hours. For interests in aerocapture and precision landing, comparisons concentrated on atmospheric density. At a fixed height of 20 km, measured RS density varied by about a factor of 2.5 over the range of latitudes and Ls values observed. Evaluated at matching positions and times, average RS/Mars-GRAM density ratios were generally lf0.05, except at heights above approx. 25 km and latitudes above approx.50deg N. Average standard deviation of RS/Mars-GRAM density ratio was 6%. TES data were used covering surface to approx. 40 km, over more than a full Mars year (February, 1999 - June, 2001, just before start of Mars global dust storm). Depending on season, TES data covered latitudes 85deg S to 85deg N. Most TES data were concentrated near local times 2 hours and 14 hours. Observed average TES/Mars-GRAM density ratios were generally 1+/-0.05, except at high altitudes (15-30 km, depending on season) and high latitudes (> 45deg N), or at most altitudes in the southern hemisphere at Ls approx. 90 and 180deg). Compared to TES averages for a given latitude and season, TES data had average density standard deviation about the mean of approx. 6.5-10.5% (varying with height) for all data, or approx. 5- 12%, depending on time of day and dust optical depth. Average standard deviation of TES/Mars-GRAM density ratio was 8.9% for local time 2 hours and 7.1% for 1o:al time 14 hours. Thus standard deviation of observed TES/Mars-GRAM density ratio, evaluated at matching positions and times, is about the same as the standard deviation of TES data about the TES mean value at a given position and season.

  15. New constraints on the crustal structure beneath northern Tyrrhenian Sea

    NASA Astrophysics Data System (ADS)

    Levin, V. L.; Park, J. J.

    2009-12-01

    We present new seismological data on the seismic structure beneath the Tyrrhenian Sea between Corsica and the coast of Italy. Teleseismic receiver functions from two Tyrrhenian islands (Elba and Gorgona) identify clear P-to-S mode-converted waves from two distinct interfaces, at ~20 and ~45 km depth. Both interfaces are characterized by an increase of seismic wavespeed with depth. Using a summation of direct and multiply-reflected body waves within the P wave coda we estimate the mean ratio of compressional and shear wave speeds above the 45 km interface to be 1.75-1.80. Using reflectivity computations in 1D layered models we develop a model of seismic wavespeed distribution that yields synthetic seismograms very similar to those observed. We apply a Ps-multiple summation procedure to the synthetic waveforms to further verify the match between observed and predicted wavefields. The lower layer of our model, between 20 and 45 km, has Vp ~ 7.5 km/sec, a value that can be ascribed to either very fast crustal rocks or very slow upper mantle rocks. The Vp/Vs ratio is ~1.8 in this intermediate layer. On the basis of a well-constrained downward increase in seismic wave speed beneath this second layer, we interpret it as the magmatically reworked lower crust, a lithology that has been proposed to explain high-Vp layers in the crustal roots of island-arc terranes and volcanically altered continental margins, as well as lower-crustal high-Vp features sometimes seen beneath continental rifts. The presence of a thick layer of high-Vp, but crustal, lithology beneath the Tyrrhenian Sea differs considerably from previous estimates that interpreted the interface at ~20 km as the Moho. Our new interpretation obviates a need for a crustal thickness change of over 20 km at the crest of the Apennines orogen. We propose an alteration in the properties of the lower crust instead. We argue that ongoing convergent subduction of the Adriatic lithospehre is not required beneath northern Apennines, and that a delamination or vertical "drip" of detached lithosphere would fit the observations well.

  16. Geodynamic models for the post-orogenic exhumation of the lower crust

    NASA Astrophysics Data System (ADS)

    Bodur, O. F.; Gogus, O.; Karabulut, H.; Pysklywec, R. N.; Okay, A. I.

    2015-12-01

    Recent geodynamic modeling studies suggest that the exhumation of the high pressure and the very/ultra high-pressure crustal rocks may occur due to the slab detachment (break-off), slab roll-back (retreat) and the buoyancy-flow controlled subduction channel. We use convective removal (Rayleigh-Taylor, 'dripping' instability) mechanism to quantitatively investigate the burial and the exhumation pattern of the lower/middle crustal rocks from ocean subduction to post-collisional geodynamic configuration. In order to address the model evolution and track crustal particles for deciphering P-T-t variation, we conduct a series of thermo-mechanical numerical experiments with arbitrary Eularian-Lagrangian finite element code (SOPALE). We show how additional model parameters (e.g moho temperature, upper-middle crustal activation energy, density contrast between the lithosphere and the underlying mantle) can effectively influence the burial and exhumation depths, rate and the styles (e.g clockwise or counterclockwise). First series of experiments are designed to investigate the exhumation of crustal rocks at 32 km depth for only post-collisional tectonic setting -where pre-existing ocean subduction has not been implemented-. Model predictions show that a max. 8 km lower crustal burial occurs concurrent with the lower crustal convergence as a response to the mantle lithosphere dripping instability. The subsequent exhumation of these rocks up to -25 km- is predicted at an exhumation rate of 1.24 cm/year controlled by the removal of the underlying mantle lithosphere instability with crustal extension. At the second series of experiments, we tracked the burial and exhumation history of crustal particles at 22 and 31 km depths while pre-existing ocean subduction has been included before the continental collision. Model results show that burial depths down to 62 km occurs and nearly the 32 km of exhumation is predicted again by the removal of the mantle lithosphere after the dripping instability but the crustal rocks are buried deeper because of the downward forcing of the sinking ocean plate. We suggest that the first set of model results are comparable to the peak pressure calculations from the high pressure rocks of the Afyon Zone in western Turkey with a significant offset (175°C) in temperature values.

  17. Human class II (pi) alcohol dehydrogenase has a redox-specific function in norepinephrine metabolism.

    PubMed Central

    Mårdh, G; Dingley, A L; Auld, D S; Vallee, B L

    1986-01-01

    Studies of the function of human alcohol dehydrogenase (ADH) have revealed substrates that are virtually unique for class II ADH (pi ADH). It catalyzes the formation of the intermediary glycols of norepinephrine metabolism, 3,4-dihydroxyphenylglycol and 4-hydroxy-3-methoxyphenylglycol, from the corresponding aldehydes 3,4-dihydroxymandelaldehyde and 4-hydroxy-3-methoxymandelaldehyde with Km values of 55 and 120 microM and kcat/Km ratios of 14,000 and 17,000 mM-1 X min-1; these are from 60- to 210-fold higher than those obtained with class I ADH isozymes. The catalytic preference of class II ADH also extends to benzaldehydes. The kcat/Km values for the reduction of benzaldehyde, 3,4-dihydroxybenzaldehyde and 4-hydroxy-3-methoxybenzaldehyde by pi ADH are from 9- to 29-fold higher than those for a class I isozyme, beta 1 gamma 2 ADH. Furthermore, the norepinephrine aldehydes are potent inhibitors of alcohol (ethanol) oxidation by pi ADH. The high catalytic activity of pi ADH-catalyzed reduction of the aldehydes in combination with a possible regulatory function of the aldehydes in the oxidative direction leads to essentially "unidirectional" catalysis by pi ADH. These features and the presence of pi ADH in human liver imply a physiological role for pi ADH in the degradation of circulating epinephrine and norepinephrine. PMID:3466164

  18. Comparison of Oxidation Kinetics of Nitrite-Oxidizing Bacteria: Nitrite Availability as a Key Factor in Niche Differentiation

    PubMed Central

    Nowka, Boris; Daims, Holger

    2014-01-01

    Nitrification has an immense impact on nitrogen cycling in natural ecosystems and in wastewater treatment plants. Mathematical models function as tools to capture the complexity of these biological systems, but kinetic parameters especially of nitrite-oxidizing bacteria (NOB) are lacking because of a limited number of pure cultures until recently. In this study, we compared the nitrite oxidation kinetics of six pure cultures and one enrichment culture representing three genera of NOB (Nitrobacter, Nitrospira, Nitrotoga). With half-saturation constants (Km) between 9 and 27 μM nitrite, Nitrospira bacteria are adapted to live under significant substrate limitation. Nitrobacter showed a wide range of lower substrate affinities, with Km values between 49 and 544 μM nitrite. However, the advantage of Nitrobacter emerged under excess nitrite supply, sustaining high maximum specific activities (Vmax) of 64 to 164 μmol nitrite/mg protein/h, contrary to the lower activities of Nitrospira of 18 to 48 μmol nitrite/mg protein/h. The Vmax (26 μmol nitrite/mg protein/h) and Km (58 μM nitrite) of “Candidatus Nitrotoga arctica” measured at a low temperature of 17°C suggest that Nitrotoga can advantageously compete with other NOB, especially in cold habitats. The kinetic parameters determined represent improved basis values for nitrifying models and will support predictions of community structure and nitrification rates in natural and engineered ecosystems. PMID:25398863

  19. Vega: A rapidly rotating pole-on star

    NASA Technical Reports Server (NTRS)

    Gulliver, Austin F.; Hill, Graham; Adelman, Saul J.

    1994-01-01

    High-dispersion (2.4 A/mm), ultrahigh signal-to-noise ratio (3000:1) Reticon spectra of Vega revealed two distinct types of profiles. The strong lines exhibit classical rotational profiles with enhanced wings, but the weak lines have distinctly different, flat-bottomed profiles. Using ATLAS9 model atmopheres and SYNTHE synthetic spectra, Vega has been modeled as a rapidly rotating, pole-on star with a gradient in temperature and gravity over the photosphere. By fitting to the flat-bottomed line profiles of Fe 1 lambda 4528 and Ti 2 lambda 4529, we find least-squares fit values of V sin i = 21.8 plus or minus 0.2 km/sec polar T(sub eff) = 9695 plus or minus 25 K, polar log(base 10)g = 3.75 plus or minus 0.02 dex, V(sub eq) = 245 plus or minus 15 km/sec, and inclination 5 deg .1 plus or minus 0 deg .3. The variations in T(sub eff) and log(base 10)g over the photosphere total 390 K and 0.08 dex, respectively. Assuming V sin i = 21.8 km/sec, an independent fit to the observed continuous flux from 1200 to 10,500 A produced a similar set of values with polar T(sub eff) = 9595 plus or minus 20 K, polar log(base 10)g = 3.80 plus or minus 0.03 dex, and inclination 6 deg .0 plus or minus 0 deg .7.

  20. Seismic b-value anomalies prior to the 3rd January 2016, Mw = 6.7 Manipur earthquake of northeast India

    NASA Astrophysics Data System (ADS)

    Borgohain, Jayanta Madhab; Borah, Kajaljyoti; Biswas, Rajib; Bora, Dipok K.

    2018-04-01

    Spatial variation of seismic b-value is estimated in the Indo-Myanmar subduction zone of northeast (NE) India using the homogeneous part of earthquake catalogue (1996-2015), recorded by International Seismological Center (ISC), consisting of 895 events of magnitude MW ≥ 3.9. The study region is divided into 1° × 1° square grids and b-values are estimated at each grid by maximum likelihood method. In this study, the b-value varies from 0.75 to 1.54 in the region. Significant variation of low b-value in the respective location may indicate high stress accumulation in that region. Spatial variation reveals intermediate b-value anomalies around the epicenter of the Mw = 6.7 Manipur earthquake which occurred on 3rd January at 23:05 UTC (4 January 2016 at 04:35 IST). The variations of b-values are also estimated with respect to depth. The low b-value associated with the depth range ∼15-55 km, which may imply crustal homogeneity and high stress accumulation in the crust. Since, NE India lies in the seismic zone V of the country; this study can be helpful to understand seismotectonics in the region.

  1. Study on the Coastline Change of Jiaozhou Bay Based on High Resolution Remote Sensing Image

    NASA Astrophysics Data System (ADS)

    Zhu, H.; Xing, B.; Ni, S.; Wei, P.

    2018-05-01

    In recent years, with the rapid development of the Jiaozhou Bay area of Qingdao, the influence of human activities on the coastline of Jiaozhou Bay is becoming more and more serious. Based on the high resolution remote sensing image data of 10 periods from 2001 to 2017 in the Jiaozhou Bay area, and combined with the data of on-the-spot survey and expert knowledge, this paper have completed the interpretation and extraction of coastline data of each year, and analyzed the distribution, size, rate of change, and trend of the increase and decrease of the coastal area of Jiaozhou Bay in different time periods, combined with the economic construction and the marine hydrodynamic environment of the region to analyze the reasons for the change of the coastline of Jiaozhou Bay. The results show that the increase and reduction of the coastal area of Jiaozhou Bay was mainly affected by human activities such as sea reclamation and marine aquaculture, resulting in a gradual change in the rate of increase and decrease with human development. For coastal advance part,2001-2013, the average increase rate on the coastal area of Jiaozhou Bay was 2.30 km2/a, showing a trend of rapid growth, 2013-2017 the average increase rate of 0.53 km2/a, and the growth rate slowed down. For coastal retreat part, 2001-2013, the average decrease rate was 2.58 × 10-3 km2/a. 2013-2014, the decrease rate reached a peak value of 1.11 km2/a. 2014-2017, the average decrease rate was 0.14 km2/a. The decrease rate shows a trend of increasing first and then slowing down.

  2. The 2007 Nazko, British Columbia, earthquake sequence: Injection of magma deep in the crust beneath the Anahim volcanic belt

    USGS Publications Warehouse

    Cassidy, J.F.; Balfour, N.; Hickson, C.; Kao, H.; White, Rickie; Caplan-Auerbach, J.; Mazzotti, S.; Rogers, Gary C.; Al-Khoubbi, I.; Bird, A.L.; Esteban, L.; Kelman, M.; Hutchinson, J.; McCormack, D.

    2011-01-01

    On 9 October 2007, an unusual sequence of earthquakes began in central British Columbia about 20 km west of the Nazko cone, the most recent (circa 7200 yr) volcanic center in the Anahim volcanic belt. Within 25 hr, eight earthquakes of magnitude 2.3-2.9 occurred in a region where no earthquakes had previously been recorded. During the next three weeks, more than 800 microearthquakes were located (and many more detected), most at a depth of 25-31 km and within a radius of about 5 km. After about two months, almost all activity ceased. The clear P- and S-wave arrivals indicated that these were high-frequency (volcanic-tectonic) earthquakes and the b value of 1.9 that we calculated is anomalous for crustal earthquakes but consistent with volcanic-related events. Analysis of receiver functions at a station immediately above the seismicity indicated a Moho near 30 km depth. Precise relocation of the seismicity using a double-difference method suggested a horizontal migration at the rate of about 0:5 km=d, with almost all events within the lowermost crust. Neither harmonic tremor nor long-period events were observed; however, some spasmodic bursts were recorded and determined to be colocated with the earthquake hypocenters. These observations are all very similar to a deep earthquake sequence recorded beneath Lake Tahoe, California, in 2003-2004. Based on these remarkable similarities, we interpret the Nazko sequence as an indication of an injection of magma into the lower crust beneath the Anahim volcanic belt. This magma injection fractures rock, producing high-frequency, volcanic-tectonic earthquakes and spasmodic bursts.

  3. Flood frequency analysis for nonstationary annual peak records in an urban drainage basin

    USGS Publications Warehouse

    Villarini, G.; Smith, J.A.; Serinaldi, F.; Bales, J.; Bates, P.D.; Krajewski, W.F.

    2009-01-01

    Flood frequency analysis in urban watersheds is complicated by nonstationarities of annual peak records associated with land use change and evolving urban stormwater infrastructure. In this study, a framework for flood frequency analysis is developed based on the Generalized Additive Models for Location, Scale and Shape parameters (GAMLSS), a tool for modeling time series under nonstationary conditions. GAMLSS is applied to annual maximum peak discharge records for Little Sugar Creek, a highly urbanized watershed which drains the urban core of Charlotte, North Carolina. It is shown that GAMLSS is able to describe the variability in the mean and variance of the annual maximum peak discharge by modeling the parameters of the selected parametric distribution as a smooth function of time via cubic splines. Flood frequency analyses for Little Sugar Creek (at a drainage area of 110 km2) show that the maximum flow with a 0.01-annual probability (corresponding to 100-year flood peak under stationary conditions) over the 83-year record has ranged from a minimum unit discharge of 2.1 m3 s- 1 km- 2 to a maximum of 5.1 m3 s- 1 km- 2. An alternative characterization can be made by examining the estimated return interval of the peak discharge that would have an annual exceedance probability of 0.01 under the assumption of stationarity (3.2 m3 s- 1 km- 2). Under nonstationary conditions, alternative definitions of return period should be adapted. Under the GAMLSS model, the return interval of an annual peak discharge of 3.2 m3 s- 1 km- 2 ranges from a maximum value of more than 5000 years in 1957 to a minimum value of almost 8 years for the present time (2007). The GAMLSS framework is also used to examine the links between population trends and flood frequency, as well as trends in annual maximum rainfall. These analyses are used to examine evolving flood frequency over future decades. ?? 2009 Elsevier Ltd.

  4. The first complete inventory of the local glaciers and ice caps on Greenland

    NASA Astrophysics Data System (ADS)

    Rastner, P.; Bolch, T.; Mölg, N.; Machguth, H.; Le Bris, R.; Paul, F.

    2012-12-01

    Glacier inventories provide essential baseline information for the determination of water resources, glacier-specific changes in area and volume, climate change impacts as well as past, potential and future contribution of glaciers to sea-level rise. Although Greenland is heavily glacierised and thus highly relevant for all of the above points, a complete inventory of its glaciers was not available so far. Here we present the results and details of a new and complete inventory that has been compiled from more than 70 Landsat scenes (mostly acquired between 1999 and 2002) using semi-automated glacier mapping techniques. A digital elevation model (DEM) was used to derive drainage divides from watershed analysis and topographic attributes for each glacier entity. To serve the needs of different user communities, we assigned to each glacier one of three connectivity levels with the ice sheet (CL0, CL1, CL2; i.e. no, weak, and strong connection) to clearly, but still flexibly, distinguish the local glaciers and ice caps (GIC) from the ice sheet and its outlet glaciers. In total, we mapped ~ 20 300 glaciers larger than 0.05 km2 (of which ~ 900 are marine terminating), covering an area of 130 076 ± 4032 km2, or 89 720 ± 2781 km2 without the CL2 GIC. The latter value is about 50% higher than the mean value of more recent previous estimates. Glaciers smaller than 0.5 km2 contribute only 1.5% to the total area but more than 50% (11 000) to the total number. In contrast, the 25 largest GIC (> 500 km2) contribute 28% to the total area, but only 0.1% to the total number. The mean elevation of the GIC is 1700 m in the eastern sector and around 1000 m otherwise. The median elevation increases with distance from the coast, but has only a weak dependence on mean glacier aspect.

  5. The modelled surface mass balance of the Antarctic Peninsula at 5.5 km horizontal resolution

    NASA Astrophysics Data System (ADS)

    van Wessem, J. M.; Ligtenberg, S. R. M.; Reijmer, C. H.; van de Berg, W. J.; van den Broeke, M. R.; Barrand, N. E.; Thomas, E. R.; Turner, J.; Wuite, J.; Scambos, T. A.; van Meijgaard, E.

    2016-02-01

    This study presents a high-resolution (˜ 5.5 km) estimate of surface mass balance (SMB) over the period 1979-2014 for the Antarctic Peninsula (AP), generated by the regional atmospheric climate model RACMO2.3 and a firn densification model (FDM). RACMO2.3 is used to force the FDM, which calculates processes in the snowpack, such as meltwater percolation, refreezing and runoff. We evaluate model output with 132 in situ SMB observations and discharge rates from six glacier drainage basins, and find that the model realistically simulates the strong spatial variability in precipitation, but that significant biases remain as a result of the highly complex topography of the AP. It is also clear that the observations significantly underrepresent the high-accumulation regimes, complicating a full model evaluation. The SMB map reveals large accumulation gradients, with precipitation values above 3000 mm we yr-1 in the western AP (WAP) and below 500 mm we yr-1 in the eastern AP (EAP), not resolved by coarser data sets such as ERA-Interim. The average AP ice-sheet-integrated SMB, including ice shelves (an area of 4.1 × 105 km2), is estimated at 351 Gt yr-1 with an interannual variability of 58 Gt yr-1, which is dominated by precipitation (PR) (365 ± 57 Gt yr-1). The WAP (2.4 × 105 km2) SMB (276 ± 47 Gt yr-1), where PR is large (276 ± 47 Gt yr-1), dominates over the EAP (1.7 × 105 km2) SMB (75 ± 11 Gt yr-1) and PR (84 ± 11 Gt yr-1). Total sublimation is 11 ± 2 Gt yr-1 and meltwater runoff into the ocean is 4 ± 4 Gt yr-1. There are no significant trends in any of the modelled AP SMB components, except for snowmelt that shows a significant decrease over the last 36 years (-0.36 Gt yr-2).

  6. Predictive value of health-related fitness tests for self-reported mobility difficulties among high-functioning elderly men and women.

    PubMed

    Hämäläinen, H Pauliina; Suni, Jaana H; Pasanen, Matti E; Malmberg, Jarmo J; Miilunpalo, Seppo I

    2006-06-01

    The functional independence of elderly populations deteriorates with age. Several tests of physical performance have been developed for screening elderly persons who are at risk of losing their functional independence. The purpose of the present study was to investigate whether several components of health-related fitness (HRF) are valid in predicting the occurrence of self-reported mobility difficulties (MD) among high-functioning older adults. Subjects were community-dwelling men and women, born 1917-1941, who participated in the assessment of HRF [6.1-m (20-ft) walk, one-leg stand, backwards walk, trunk side-bending, dynamic back extension, one-leg squat, 1-km walk] and who were free of MD in 1996 (no difficulties in walking 2- km, n=788; no difficulties in climbing stairs, n=647). Postal questionnaires were used to assess the prevalence of MD in 1996 and the occurrence of new MD in 2002. Logistic regression analysis was used as the statistical method. Both inability to perform the backwards walk and a poorer result in it were associated with risk of walking difficulties in the logistic model, with all the statistically significant single test items included. Results of 1-km walk time and one-leg squat strength test were also associated with risk, although the squat was statistically significant only in two older birth cohorts. Regarding stair-climbing difficulties, poorer results in the 1-km walk, dynamic back extension and one-leg squat tests were associated with increased risk of MD. The backwards walk, one-leg squat, dynamic back extension and 1-km walk tests were the best predictors of MD. These tests are recommended for use in screening high-functioning older people at risk of MD, as well as to target physical activity counseling to those components of HRF that are important for functional independence.

  7. Number concentration, size distribution and horizontal mass flux of Asian dust particles collected over free troposphere of Chinese desert region in calm weather condition using balloon borne measurements.

    NASA Astrophysics Data System (ADS)

    Habib, A.; Chen, B.

    2017-12-01

    Balloon borne measurements were carried out during calm weather conditions in Taklamakan Desert, which is considered as one of the major source areas of Asian dust (KOSA) particles. Vertical distribution of aerosols number concentration, size distribution, mass concentration and horizontal mass flux due to westerly wind was investigated .Vertical distribution of aerosol number concentration and size distribution at Dunhuang (40 °00'N, 94°30'E) China were observed by optical particle counter (OPC) on August 17, 2001, October 17, 2011, January 11, 2002, April 30, 2002. Five channels (0.3, 0.5, 0.8, 1.2 and 3.6 µm) were used in OPC for particle sizing measurements. Aerosol number concentration in winter season (January 11, 2002) at 3-5 km was very high. Variation of free tropospheric aerosols in April 30, 2002 was noticeable. Many inversions of temperature and aerosol concentration change are found at these inversion points. Super micron range was noticeable in size distribution of all balloon borne measurements. High values of estimated mass concentration of aerosols were observed at the ground atmosphere (1-2 km), and interestingly relatively high concentrations were frequently detected above about 2 km. Wind pattern observed by ERA-interim data sets at 500 and 850 hPa, shows that westerly winds were dominated in Taklamakan Desert during balloon borne observation period. Average horizontal mass flux of background Asian dust due to westerly wind was about in the range of 1219-58.5 μg/m³ tons/km2/day. Most of the profiles showed active transport of aerosols in the westerly dominated region, while, fluxes were found to be very low on January 11, 2002, compared with the other seasons. Vertical profiles of aerosols number concentration showed that significant transport of aerosols was dominated in westerly region (4-7 km). Low horizontal mass flux of aerosols was found in winter season

  8. Water miscible mono alcohols' effect on the proteolytic performance of Bacillus clausii serine alkaline protease.

    PubMed

    Duman, Yonca Avci; Kazan, Dilek; Denizci, Aziz Akin; Erarslan, Altan

    2014-01-01

    In this study, our investigations showed that the increasing concentrations of all examined mono alcohols caused a decrease in the Vm, kcat and kcat/Km values of Bacillus clausii GMBE 42 serine alkaline protease for casein hydrolysis. However, the Km value of the enzyme remained almost the same, which was an indicator of non-competitive inhibition. Whereas inhibition by methanol was partial non-competitive, inhibition by the rest of the alcohols tested was simple non-competitive. The inhibition constants (KI) were in the range of 1.32-3.10 M, and the order of the inhibitory effect was 1-propanol>2-propanol>methanol>ethanol. The ΔG(≠) and ΔG(≠)E-T values of the enzyme increased at increasing concentrations of all alcohols examined, but the ΔG(≠)ES value of the enzyme remained almost the same. The constant Km and ΔG(≠)ES values in the presence and absence of mono alcohols indicated the existence of different binding sites for mono alcohols and casein on enzyme the molecule. The kcat of the enzyme decreased linearly by increasing log P and decreasing dielectric constant (D) values, but the ΔG(≠) and ΔG(≠)E-T values of the enzyme increased by increasing log P and decreasing D values of the reaction medium containing mono alcohols.

  9. Occurrence and Magnitude of High Reflectance Materials on the Moon

    NASA Astrophysics Data System (ADS)

    Nuno, R. G.; Boyd, A. K.; Robinson, M. S.

    2013-12-01

    We utilize a Lunar Reconnaissance Orbiter (LRO) Wide Angle Camera (WAC) 643 nm photometrically normalized (30°, 0°, 30°; i, e, g) reflectance map to investigate the occurrence and origin of high reflectance materials on the Moon. Compositional differences (mainly iron and titanium content) and maturity state (e.g. Copernican crater rays and swirls) are the predominant factors affecting reflectance variations observed on the Moon. Therefore, comparing reflectance values of different regions yields insight into the composition and relative exposure age of lunar materials. But an accurate comparison requires precise reflectance values normalized across every region being investigated. The WAC [1] obtains monthly near-global ground coverage, each month's observations acquired with different lighting conditions. Boyd et al. [2] utilized a geologically homogeneous subset [0°N to 90°N, 146°E to 148°E] of the WAC observations to determine an equation that describes how viewing and lighting angles affect reflectance values. A normalized global reflectance map was generated by applying the local empirical solution globally, with photometric angles derived from the WAC Global Lunar Digital Terrain Model (DTM)(GLD100) [3]. The GLD100 enables accurate correction of reflectance differences caused by local topographic undulations at the scale of 300 meters. We compare reflectance values across the Moon within 80°S to 80°N latitude. The features with the highest reflectance are steep crater walls within Copernican aged craters, such as the walls of Giordano Bruno, which have normalized reflectance values up to 0.35. Near-impact ejecta of some craters have high reflectance values, such as Virtanen (0.22). There are also broad relatively flat features with high reflectance, such as the 900-km Thales-Compton region (0.24) and the 600-km extent of Anaxagoras (Copernican age) ejecta (0.20). Since the interior of Anaxagoras contains occurrences of pure anorthosite [4], the high reflectance of its ray system may be due to both composition and maturity. Some relatively small isolated features exhibit high reflectance, such as the Compton-Belkovich Volcanic Complex (0.24) and rilles in the floor of Compton crater (0.27). Features associated with pure anorthosite [4] are also found to have high reflectance values, such as occurrences in Mare Orientale (0.22). Since the photometric normalization accounted for topography up to the 300-m horizontal spatial scale, uncertainties remain for steep crater walls. We are currently reducing these uncertainties for selected craters with high resolution (15 meter baseline) stereo-based NAC DTMs. References: [1] Robinson et al. (2010), Space Sci. Rev. [2] Boyd et al. (2013) AGU, this conference. [3] Scholten et al. (2012) JGR. [4] Ohtake et al. (2009) Nature.

  10. EQUATION OF STATE FOR NUCLEONIC AND HYPERONIC NEUTRON STARS WITH MASS AND RADIUS CONSTRAINTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tolos, Laura; Centelles, Mario; Ramos, Angels

    We obtain a new equation of state for the nucleonic and hyperonic inner core of neutron stars that fulfils the 2 M {sub ⊙} observations as well as the recent determinations of stellar radii below 13 km. The nucleonic equation of state is obtained from a new parameterization of the FSU2 relativistic mean-field functional that satisfies these latest astrophysical constraints and, at the same time, reproduces the properties of nuclear matter and finite nuclei while fulfilling the restrictions on high-density matter deduced from heavy-ion collisions. On the one hand, the equation of state of neutron star matter is softened aroundmore » saturation density, which increases the compactness of canonical neutron stars leading to stellar radii below 13 km. On the other hand, the equation of state is stiff enough at higher densities to fulfil the 2 M {sub ⊙} limit. By a slight modification of the parameterization, we also find that the constraints of 2 M {sub ⊙} neutron stars with radii around 13 km are satisfied when hyperons are considered. The inclusion of the high magnetic fields present in magnetars further stiffens the equation of state. Hyperonic magnetars with magnetic fields in the surface of ∼10{sup 15} G and with values of ∼10{sup 18} G in the interior can reach maximum masses of 2 M {sub ⊙} with radii in the 12–13 km range.« less

  11. Corneal Anterior Power Calculation for an IOL in Post-PRK Patients.

    PubMed

    De Bernardo, Maddalena; Iaccarino, Stefania; Cennamo, Michela; Caliendo, Luisa; Rosa, Nicola

    2015-02-01

    After corneal refractive surgery, there is an overestimation of the corneal power with the devices routinely used to measure it. Therefore, the objective of this study was to determine whether, in patients who underwent photorefractive keratectomy (PRK), it is possible to predict the earlier preoperative anterior corneal power from the postoperative (PO) posterior corneal power. A comparison is made using a formula published by Saiki for laser in situ keratomileusis patients and a new one calculated specifically from PRK patients. The Saiki formula was tested in 98 eyes of 98 patients (47 women) who underwent PRK for myopia or myopic astigmatism. Moreover, anterior and posterior mean keratometry (Km) values from a Scheimpflug camera were measured to obtain a specific regression formula. The mean (±SD) preoperative Km was 43.50 (±1.39) diopters (D) (range, 39.25 to 47.05 D). The mean (±SD) Km value calculated with the Saiki formula using the 6 months PO posterior Km was 42.94 (±1.19) D (range, 40.34 to 45.98 D) with a statistically significant difference (p < 0.001). Six months after PRK in our patients, the posterior Km was correlated with the anterior preoperative one by the following regression formula: y = -4.9707x + 12.457 (R² = 0.7656), where x is PO posterior Km and y is preoperative anterior Km, similar to the one calculated by Saiki. Care should be taken in using the Saiki formula to calculate the preoperative Km in patients who underwent PRK.

  12. Correlation between microturbulence and nonradial pulsations in iota Herculis

    NASA Astrophysics Data System (ADS)

    Said, N. M. M.; Razelan, M. M.; Chong, H. Y.; Aziz, A. H. A.; Zainuddin, M. Z.

    2015-04-01

    In this work, we study the correlation between microturbulence and nonradial pulsations of iota Herculis a B3 IV-typed star. This research is conducted using 144 spectra of iota Herculis taken from the ELODIE archive data (May 17 to 21, 1995) and 47 spectra from the archive data of Ritter Observatory (February 6, 1994 to October 30, 1995). The spectra of the ELODIE and the Ritter Observatory are analysed using the rvidlines subroutine of IRAF software to obtain the value of nonradial pulsations velocities (which represented by the heliocentric radial velocities). The heliocentric radial velocities (HRV) of iota Herculis obtained from ELODIE and Ritter Observatory are from -13.66 km s-1 to -17.09 km s-1 and -13.60 km s-1 to -29.70 km s-1, respectively. The microturbulent velocities are determined by using the important equation of the full width at half-maximum (FWHM) of the line profile for Doppler broadening. The value varies from 3.44 km s-1 to 5.32 km s-1 for the ELODIE data whereas the Ritter Observatory data are from 1.50 km s-1 to 5.83 km s-1. Both curves of HRV and microturbulent velocities show an identical pattern which the HRV curves will increase when the microturbulent velocities curves increase and vice versa. We propose the correlation between microturbulence and nonradial pulsations in this star is due to the gravity waves which drive the nonradial pulsations and subsequently induce the microturbulence.

  13. Lithospheric flexural strength and effective elastic thicknesses of the Eastern Anatolia (Turkey) and surrounding region

    NASA Astrophysics Data System (ADS)

    Oruç, Bülent; Gomez-Ortiz, David; Petit, Carole

    2017-12-01

    The Lithospheric structure of Eastern Anatolia and the surrounding region, including the northern part of the Arabian platform is investigated via the analysis and modeling of Bouguer anomalies from the Earth Gravitational Model EGM08. The effective elastic thickness of the lithosphere (EET) that corresponds to the mechanical cores of the crust and lithospheric mantle is determined from the spectral coherence between Bouguer anomalies and surface elevation data. Its average value is 18.7 km. From the logarithmic amplitude spectra of Bouguer anomalies, average depths of the lithosphere-asthenosphere boundary (LAB), Moho, Conrad and basement in the study area are constrained at 84 km, 39 km, 16 km and 7 km, respectively. The geometries of the LAB and Moho are then estimated using the Parker-Oldenburg inversion algorithm. We also present a lithospheric strength map obtained from the spatial variations of EET determined by Yield Stress Envelopes (YSE). The EET varies in the range of 12-23 km, which is in good agreement with the average value obtained from spectral analysis. Low EET values are interpreted as resulting from thermal and flexural lithospheric weakening. According to the lithospheric strength of the Eastern Anatolian region, the rheology model consists of a strong but brittle upper crust, a weak and ductile lower crust, and a weak lower part of the lithosphere. On the other hand, lithosphere strength corresponds to weak and ductile lower crust, a strong upper crust and a strong uppermost lithospheric mantle for the northern part of the Arabian platform.

  14. Prediction of the potential geographic distribution of the ectomycorrhizal mushroom Tricholoma matsutake under multiple climate change scenarios.

    PubMed

    Guo, Yanlong; Li, Xin; Zhao, Zefang; Wei, Haiyan; Gao, Bei; Gu, Wei

    2017-04-10

    Effective conservation and utilization strategies for natural biological resources require a clear understanding of the geographic distribution of the target species. Tricholoma matsutake is an ectomycorrhizal (ECM) mushroom with high ecological and economic value. In this study, the potential geographic distribution of T. matsutake under current conditions in China was simulated using MaxEnt software based on species presence data and 24 environmental variables. The future distributions of T. matsutake in the 2050s and 2070s were also projected under the RCP 8.5, RCP 6, RCP 4.5 and RCP 2.6 climate change emission scenarios described in the Special Report on Emissions Scenarios (SRES) by the Intergovernmental Panel on Climate Change (IPCC). The areas of marginally suitable, suitable and highly suitable habitats for T. matsutake in China were approximately 0.22 × 10 6  km 2 , 0.14 × 10 6  km 2 , and 0.11 × 10 6  km 2 , respectively. The model simulations indicated that the area of marginally suitable habitats would undergo a relatively small change under all four climate change scenarios; however, suitable habitats would significantly decrease, and highly suitable habitat would nearly disappear. Our results will be influential in the future ecological conservation and management of T. matsutake and can be used as a reference for studies on other ectomycorrhizal mushroom species.

  15. Prediction of the potential geographic distribution of the ectomycorrhizal mushroom Tricholoma matsutake under multiple climate change scenarios

    NASA Astrophysics Data System (ADS)

    Guo, Yanlong; Li, Xin; Zhao, Zefang; Wei, Haiyan; Gao, Bei; Gu, Wei

    2017-04-01

    Effective conservation and utilization strategies for natural biological resources require a clear understanding of the geographic distribution of the target species. Tricholoma matsutake is an ectomycorrhizal (ECM) mushroom with high ecological and economic value. In this study, the potential geographic distribution of T. matsutake under current conditions in China was simulated using MaxEnt software based on species presence data and 24 environmental variables. The future distributions of T. matsutake in the 2050s and 2070s were also projected under the RCP 8.5, RCP 6, RCP 4.5 and RCP 2.6 climate change emission scenarios described in the Special Report on Emissions Scenarios (SRES) by the Intergovernmental Panel on Climate Change (IPCC). The areas of marginally suitable, suitable and highly suitable habitats for T. matsutake in China were approximately 0.22 × 106 km2, 0.14 × 106 km2, and 0.11 × 106 km2, respectively. The model simulations indicated that the area of marginally suitable habitats would undergo a relatively small change under all four climate change scenarios; however, suitable habitats would significantly decrease, and highly suitable habitat would nearly disappear. Our results will be influential in the future ecological conservation and management of T. matsutake and can be used as a reference for studies on other ectomycorrhizal mushroom species.

  16. Prediction of the potential geographic distribution of the ectomycorrhizal mushroom Tricholoma matsutake under multiple climate change scenarios

    PubMed Central

    Guo, Yanlong; Li, Xin; Zhao, Zefang; Wei, Haiyan; Gao, Bei; Gu, Wei

    2017-01-01

    Effective conservation and utilization strategies for natural biological resources require a clear understanding of the geographic distribution of the target species. Tricholoma matsutake is an ectomycorrhizal (ECM) mushroom with high ecological and economic value. In this study, the potential geographic distribution of T. matsutake under current conditions in China was simulated using MaxEnt software based on species presence data and 24 environmental variables. The future distributions of T. matsutake in the 2050s and 2070s were also projected under the RCP 8.5, RCP 6, RCP 4.5 and RCP 2.6 climate change emission scenarios described in the Special Report on Emissions Scenarios (SRES) by the Intergovernmental Panel on Climate Change (IPCC). The areas of marginally suitable, suitable and highly suitable habitats for T. matsutake in China were approximately 0.22 × 106 km2, 0.14 × 106 km2, and 0.11 × 106 km2, respectively. The model simulations indicated that the area of marginally suitable habitats would undergo a relatively small change under all four climate change scenarios; however, suitable habitats would significantly decrease, and highly suitable habitat would nearly disappear. Our results will be influential in the future ecological conservation and management of T. matsutake and can be used as a reference for studies on other ectomycorrhizal mushroom species. PMID:28393865

  17. Deep-Sea Macrobenthos Community Structure Proximal to the 2010 Macondo Well Blowout (2010-2011)

    NASA Astrophysics Data System (ADS)

    Briggs, K. B.; Brunner, C. A.; Yeager, K. M.

    2017-12-01

    Macrobenthos, polycyclic aromatic hydrocarbons (PAH) and sedimentary organic carbon (SOC) were sampled by multicorer in the vicinity of the Deepwater Horizon well head in October 2010 and 2011 to assess the effects of the April 2010 spill. Four stations were sampled east of the well head, four stations were sampled west of the well head, and "control" stations were sampled 58 and 65 km to the southwest. The macrobenthos community, as expected for continental slope/bathyal (water depth 1160-1760 m) benthos, was highly diverse. Polychaetes dominated at all stations, with either crustaceans or mollusks comprising the next most abundant taxon. The stations within five km of the well head showed slightly lower diversity than the more distal stations six months after the blowout. Compared to the "control" station, proportions of suspension feeders were generally depressed at stations with high PAH concentrations. Anomalously high values for abundance and diversity (and PAH) were found at one station 20 km west of the well head. The median body size of macrobenthos was negatively correlated with total PAH concentration, with 74% of the variation in median size explained by variation in PAH, when the anomalous station was excluded. Macrobenthos abundance did not appear to be influenced by SOC. Abundance and diversity of the macrobenthos was generally higher 18 months after the blowout, with measured PAH concentrations diminished to below background level.

  18. NREL: International Activities - Afghanistan Resource Maps

    Science.gov Websites

    facilities, load centers, terrain conditions, and land use. The high-resolution (1-km) annual wind power maps . The high-resolution (10-km) annual and seasonal solar resource maps were developed using weather -km Resolution Annual Maps (Direct) Low-Res (JPG 104 KB) | High-Res (ZIP 330 KB) 40-km Resolution

  19. VizieR Online Data Catalog: NGC 2264, NGC 2547 and NGC 2516 stellar radii (Jackson+, 2016)

    NASA Astrophysics Data System (ADS)

    Jackson, R. J.; Jeffries, R. D.; Randich, S.; Bragaglia, A.; Carraro, G.; Costado, M. T.; Flaccomio, E.; Lanzafame; Lardo, C.; Monaco, L.; Morbidelli, L.; Smiljanic, R.; Zaggia, S.

    2015-11-01

    File Table1.dat contains Photometric and spectroscopic data of GES Survey targets in clusters in NGC 2547, NGC 2516, NGC 22264 downloaded from the Edinburugh GES archive (http://ges/roe.ac.uk/) . Photometric data comprised the (Cousins) I magnitude and 2MASS J, H and K magnitudes. Spectroscopic data comprises the signal to noise ratio, S/N of the target spectrum, the radial velocity, RV (in km/s), the projected equatorial velocity, vsini (in km/s), the number of separate observations co-added to produce the target spectrum and the log of effective temperature (logTeff) of the template spectrum fitted to measure RV and vsini. The absolute precision in RV, pRV (in km/s) and relative precision vsini (pvsini) were estimated, as a function of the logTeff, vsini and S/N, using the prescription described in Jackson et al. (2015A&A...580A..75J, Cat. J/A+A/580/A75). File Table3.dat contains measured and calculated properties of cluster targets with resolved vsini and a reported rotation period. The cluster name, right ascension, RA (deg) and declination, Dec (deg) are given for targets with measured periods given in the literature. Dynamic properties comprise: the radial velocity, RV (in km/s), the absolute precision in RV, pRV (km/s), the projected equatorial velocity, vsini (in km/s), the relative precision in vsini (pvsini) and the rotational period (in days). Also shown are values of absolute K magnitude, MK log of luminosity, log L (in solar units) and probability of cluster membership estimated using cluster data given in the text. Period shows reported values of cluster taken from the literature Estimated values of the projected radius, Rsini (in Rsolar) and uncertainty in projected radius, e_Rsini (in Rsolar) are given for targets where vsini>5km/s and pvsini>0.2. The final column shows a flag which is set to 1 for targets in cluster NGC 2264 where a (H-K) versus (J-H) colour-colour plot indicates possible infra-red excess. Period shows reported values of cluster taken from the literature (2 data files).

  20. Balloon-based interferometric techniques

    NASA Technical Reports Server (NTRS)

    Rees, David

    1985-01-01

    A balloon-borne triple-etalon Fabry-Perot Interferometer, observing the Doppler shifts of absorption lines caused by molecular oxygen and water vapor in the far red/near infrared spectrum of backscattered sunlight, has been used to evaluate a passive spaceborne remote sensing technique for measuring winds in the troposphere and stratosphere. There have been two successful high altitude balloon flights of the prototype UCL instrument from the National Scientific Balloon Facility at Palestine, TE (May 80, Oct. 83). The results from these flights have demonstrated that an interferometer with adequate resolution, stability and sensitivity can be built. The wind data are of comparable quality to those obtained from operational techniques (balloon and rocket sonde, cloud-top drift analysis, and from the gradient wind analysis of satellite radiance measurements). However, the interferometric data can provide a regular global grid, over a height range from 5 to 50 km in regions of clear air. Between the middle troposphere (5 km) and the upper stratosphere (40 to 50 km), an optimized instrument can make wind measurements over the daylit hemisphere with an accuracy of about 3 to 5 m/sec (2 sigma). It is possible to obtain full height profiles between altitudes of 5 and 50 km, with 4 km height resolution, and a spatial resolution of about 200 km, along the orbit track. Below an altitude of about 10 km, Fraunhofer lines of solar origin are possible targets of the Doppler wind analysis. Above an altitude of 50 km, the weakness of the backscattered solar spectrum (decreasing air density) is coupled with the low absorption crosssection of all atmospheric species in the spectral region up to 800 nm (where imaging photon detectors can be used), causing the along-the-track resolution (or error) to increase beyond values useful for operational purposes. Within the region of optimum performance (5 to 50 km), however, the technique is a valuable potential complement to existing wind measuring systems and can provide a low cost addition to powerful active (LIDAR) wind measuring systems now under development.

  1. Images for the base of the Pacific lithospheric plate beneath Wellington, New Zealand, from 500 kg dynamite shots recorded on a 100 km-long, 1000 seismometer array

    NASA Astrophysics Data System (ADS)

    Stern, T. A.; Henrys, S. A.; Sato, H.; Okaya, D. A.

    2012-12-01

    Seismic P and S-wave reflections are recorded from a west-dipping horizon at depth of 105 km beneath Wellington, New Zealand. From the depth and dip of this horizon we interpret this horizon to be the bottom of the subducting Pacific plate. In May 2011 the Seismic Array on Hikurangi margin Experiment (SAHKE) recorded reflections on a ~100 km-long high-resolution seismic line across the lower North Island of New Zealand. The main goal of this experiment was to provide a detailed image of the west dipping subducted Pacific plate beneath the Wellington city region. The seismic line had ~1000 seismographs spaced between 50-100 m apart and the 500 kg shots were in 50 m-deep, drill holes. An exceptionally high-resolution image for the top of the subducting Pacific Plate at a depth of 20-25 km beneath the Wellington region is seen. In addition, on most of the shots are a pair of 10-14 Hz reflections between 27 and 29 s two-way-travel-time (twtt) at zero offset. The quality of this reflection pair varies from shot to shot. When converted to depth and ray-traced the best solution for these deep events is a west-dipping ( ~ 15 degrees) horizon at a depth of about 105 km. This is consistent with the dip of the upper surface of the plate beneath Wellington, and therefore we argue that the deep (~105 km) reflector is the base of the Pacific plate. On two of the shots another pair 5-8 Hz reflections can also be seen between 47 and 52 s, and the move-out of these events is consistent with them being S-wave reflections from the same 105 km deep, west-dipping, boundary for a Vp/Vs ~ 1.74. Both the P-and S-wave reflections occur in pairs of twtt-thickness of 2 and 5 s, respectively and appear to define a ~ 6-8 km thick channel at the base of the plate if the Vp/Vs ratio~ 5/2 or 2.5. Such a high value of Vp/Vs is consistent with the channel containing fluids or partial melt of an unknown percent. Although we can't rule out the double reflections in both P and S as being multiples, this seems unlikely as multiples are not seen any where else in the shot gathers. Thus the lithosphere-asthenosphere boundary (LAB), at least in this setting, appears to be a sharp boundary, less than 10 km thick. As the top of the subduction zone is 20-25 km deep beneath our profile, the total thickness of the plate beneath Wellington is about 80 km. This is consistent with the thickness of old oceanic plates measured elsewhere with passive seismic methods.

  2. Lithospheric-Mantle Structure of the Kaapvaal Craton, South Africa, Derived from Thermodynamically Self-Consistent Modelling of Magnetotelluric, Surface-Wave Dispersion, S-wave Receiver Function, Heat-flow, Elevation and Xenolith Observations

    NASA Astrophysics Data System (ADS)

    Muller, Mark; Fullea, Javier; Jones, Alan G.; Adam, Joanne; Lebedev, Sergei; Piana Agostinetti, Nicola

    2013-04-01

    Results from recent geophysical and mantle-xenolith geochemistry studies of the Kaapvaal Craton appear, at times, to provide disparate views of the physical, chemical and thermal structure of the lithosphere. Models from our recent SAMTEX magnetotelluric (MT) surveys across the Kaapvaal Craton indicate a resistive, 220-240 km thick lithosphere for the central core of the craton. One published S-wave receiver function (SRF) study and other surface-wave studies suggest a thinner lithosphere characterised by a ~160 km thick high-velocity "lid" underlain by a low-velocity zone (LVZ) of between 65-150 km in thickness. Other seismic studies suggest that the (high-velocity) lithosphere is thicker, in excess of 220 km. Mantle xenolith pressure-temperature arrays from Mesozoic kimberlites require that the base of the "thermal" lithosphere (i.e., the depth above which a conductive geotherm is maintained - the tLAB) is at least 220 km deep, to account for mantle geotherms in the range 35-38 mWm-2. Richly diamondiferous kimberlites across the Kaapvaal Craton require a lithospheric thickness substantially greater than 160 km - the depth of the top of the diamond stability field. In this paper we use the recently developed LitMod software code to derive, thermodynamically consistently, a range of 1-D electrical resistivity, seismic velocity, density and temperature models from layered geochemical models of the lithosphere based on mantle xenolith compositions. In our work, the "petrological" lithosphere-asthenosphere boundary (pLAB) (i.e., the top of the fertile asthenospheric-mantle) and the "thermal" LAB (tLAB) are coincident. Lithospheric-mantle models are found simultaneously satisfying all geophysical observables: MT responses, new surface-wave dispersion data, published SRFs, surface elevation and heat-flow. Our results show: 1. All lithospheric-mantle models are characterised by a seismic LVZ with a minimum velocity at the depth of the petrological/thermal LAB. The top of the LVZ does not correspond with the LAB. 2. Thin (~160 km-thick) lithospheric-mantle models are consistent with surface elevation and heat-flow observations only for unreasonably low average crustal heat production values (~0.4 µWm-3). However, such models are inconsistent both with the surface-wave dispersion data and youngest (Group I) palaeo-geotherms defined by xenolith P-T arrays. 3. A three-layered geochemical model, with lithospheric thickness in excess of 230 km, is required to match all geophysical and xenolith constraints. 4. The chemical transition from a depleted harzburgitic composition (above) to a refertilised high-T lherzolitic composition (below) at 160 km depth produces a sharp onset of the seismic LVZ and a sharp increase in density. Synthetic SRFs indicate that this chemical transition is able to account for the reported S-to-P conversion event at 160 km depth. In this this instance the 160 km deep SRF event does not represent the petrological/thermal LAB.

  3. Predicted optical performance of the high-altitude balloon experiment (HABE) telescope in an adverse thermal environment

    NASA Astrophysics Data System (ADS)

    Akau, Ronald L.; Givler, Richard C.; Eastman, Daniel R.

    1994-07-01

    The High-Altitude Balloon Experiment telescope was designed to operate at an ambient temperature of -55 degree(s)C and an altitude of 26 km, using a precooled primary mirror. Although at this altitude the air density is only 1.4 percent of the value at sea level, the temperature gradients within the telescope are high enough to deform the optical wavefront. This problem is considerably lessened by precooling the primary mirror to -35 degree(s)C. This paper describes the application of several codes to determine the range of wavefront deformation during a mission.

  4. Interplanetary Propagation Behavior of the Fast Coronal Mass Ejection on 23 July 2012

    NASA Astrophysics Data System (ADS)

    Temmer, M.; Nitta, N. V.

    2015-03-01

    The fast coronal mass ejection (CME) on 23 July 2012 caused attention because of its extremely short transit time from the Sun to 1 AU, which was shorter than 21 h. In situ data from STEREO-A revealed the arrival of a fast forward shock with a speed of more than 2200 km s-1 followed by a magnetic structure moving with almost 1900 km s-1. We investigate the propagation behavior of the CME shock and magnetic structure with the aim to reproduce the short transit time and high impact speed as derived from in situ data. We carefully measured the 3D kinematics of the CME using the graduated cylindrical shell model and obtained a maximum speed of 2580±280 km s-1 for the CME shock and 2270±420 km s-1 for its magnetic structure. Based on the 3D kinematics, the drag-based model (DBM) reproduces the observational data reasonably well. To successfully simulate the CME shock, the ambient flow speed needs to have an average value close to the slow solar wind speed (450 km s-1), and the initial shock speed at a distance of 30 R ⊙ should not exceed ≈ 2300 km s-1, otherwise it would arrive much too early at STEREO-A. The model results indicate that an extremely small aerodynamic drag force is exerted on the shock, smaller by one order of magnitude than average. As a consequence, the CME hardly decelerates in interplanetary space and maintains its high initial speed. The low aerodynamic drag can only be reproduced when the density of the ambient solar wind flow, in which the fast CME propagates, is decreased to ρ sw=1 - 2 cm-3 at the distance of 1 AU. This result is consistent with the preconditioning of interplanetary space by a previous CME.

  5. 3D upper crustal seismic structure across Santorini volcanic field: Constraints on magmatic and tectonic interactions

    NASA Astrophysics Data System (ADS)

    Heath, B.; Hooft, E. E. E.; Toomey, D. R.; Papazachos, C. V.; Walls, K.; Paulatto, M.; Morgan, J. V.; Nomikou, P.; Warner, M.

    2017-12-01

    To investigate magmatic-tectonic interactions at an arc volcano, we collected a dense, active-source, seismic dataset across the Santorini Volcano, Greece, with 90 ocean bottom seismometers, 65 land seismometers, and 14,300 marine sound sources. We use over 140,000 travel-time picks to obtain a P-wave tomography model of the upper crustal structure of the Santorini volcano and surrounding tectonically extended region. Regionally, the shallow (<2 km) velocity structure is dominated by low- and high-velocity anomalies of several sediment-filled grabens and horsts of Attico-Cycladic metamorphic basement, which correlate well with Bouguer gravity anomalies and preliminary shallow attenuation results (using waveform amplitudes and t* values). We find regional Pliocene and younger faults bounding basement grabens and horsts to be predominately oriented in a NE-SW direction with Santorini itself located in a graben bounded by faults striking in this direction. In contrast, volcanic vents and dikes expressed at the surface seem to strike about 20° clockwise relative to these regional faults. In the northern caldera of Santorini, a 4-km wide region of anomalously low velocities and high attenuation directly overlies an inferred source of 2011-2012 inflation (4-4.5 km depth), however it is located at shallower depths ( 1-2km). The imaged low-velocity anomaly may correspond to hydrothermal activity (due to increased porosity and alteration) and/or brecciation from a prior episode of caldera collapse. It is bounded by anomalously fast velocities (at 1-2 km depth) that parallel the regional fault orientation and are correspondingly rotated 20° to surface dikes. At 4-5 km depth beneath the northern caldera basin, low-velocity anomalies and attenuated seismic arrivals provide preliminary evidence for a magma body; the low-velocity anomaly is elongated in the same direction as regional volcanic vents. The difference in strike of volcanic and tectonic features indicates oblique extension and potential time-variation in the minimum stress direction.

  6. Advective and Conductive Heat Flow Budget Across the Wagner Basin, Northern Gulf of California

    NASA Astrophysics Data System (ADS)

    Neumann, F.; Negrete-Aranda, R.; Contreras, J.; Müller, C.; Hutnak, M.; Gonzalez-Fernandez, A.; Harris, R. N.; Sclater, J. G.

    2015-12-01

    In May 2015, we conducted a cruise across the northern Gulf of California, an area of continental rift basin formation and rapid deposition of sediments. The cruise was undertaken aboard the R/V Alpha Helix; our goal was to study variation in superficial conductive heat flow, lateral changes in the shallow thermal conductivity structure, and advective transport of heat across the Wagner basin. We used a Fielax heat flow probe with 22 thermistors that can penetrate up to 6 m into the sediment cover. The resulting data set includes 53 new heat flow measurements collected along three profiles. The longest profile (42 km) contains 30 measurements spaced 1-2 km apart. The western part of the Wagner basin (hanging wall block) exhibit low to normal conductive heat flow whereas the eastern part of the basin (foot wall block) heat flow is high to very high (up to 2500 mWm-2). Two other short profiles (12 km long each) focused on resolving an extremely high heat flow anomaly up to 15 Wm-2 located near the intersection between the Wagner bounding fault system and the Cerro Prieto fault. We hypothesize that the contrasting heat flow values observed across the Wagner basin are due to horizontal water circulation through sand layers and fault pathways of high permeability. Circulation appears to be from west (recharge zone) to east (discharge zone). Additionally, our results reveal strong vertical advection of heat due to dehydration reactions and compaction of fine grained sediments.

  7. Electromagnetic study of lithospheric structure in Trans-European Suture Zone in Poland

    NASA Astrophysics Data System (ADS)

    Jóźwiak, Waldemar; Ślęzak, Katarzyna; Nowożyński, Krzysztof; Neska, Anne

    2016-04-01

    The area covered by magnetotelluric surveys in Poland is mostly related to the Trans-European Suture Zone (TESZ), the largest tectonic boundary in Europe. Numerous 1D, 2D, and pseudo-3D and 3D models of the electrical resistivity distribution were constructed, and a new interpretation method based on Horizontal Magnetic Tensor analysis has been applied recently. The results indicate that the TESZ is a lithospheric discontinuity and there are noticeable differences in geoelectric structures between the East European Craton (EEC), the transitional zone (TESZ), and the Paleozoic Platform (PP). The electromagnetic sounding is a very efficient tool for recognizing the lithospheric structure especially it helps in identification of important horizontal (or lateral) inhomogeneities in the crust. Due to our study we can clearly determine the areas of the East European Craton of high resistivity, Paleozoic Platform of somewhat lower resistivity value, and transitional TESZ of complicated structure. At the East European Craton, we observe very highly resistive lithosphere, reaching 220-240 km depth. Underneath, there is distinctly greater conductivity values, most probably resulting from partial melting of rocks; this layer may represent the asthenosphere. The resistivity of the lithosphere under the Paleozoic Platform is somewhat lower, and its thickness does not exceed 150 km. The properties of the lithosphere in the transition zone, under the TESZ, differ significantly. The presented models include prominent, NW-SE striking conductive lineaments. These structures, that related with the TESZ, lie at a depth of 10-30 km. They are located in a mid-crustal level and they reach the boundary of the EEC. The structures we initially connect to the Variscan Deformation Front (VDF) and the Caledonian Deformation Front (CDF). The differentiation of conductivity visible in the crust continues in the upper mantle.

  8. Geospatial distribution modeling and determining suitability of groundwater quality for irrigation purpose using geospatial methods and water quality index (WQI) in Northern Ethiopia

    NASA Astrophysics Data System (ADS)

    Gidey, Amanuel

    2018-06-01

    Determining suitability and vulnerability of groundwater quality for irrigation use is a key alarm and first aid for careful management of groundwater resources to diminish the impacts on irrigation. This study was conducted to determine the overall suitability of groundwater quality for irrigation use and to generate their spatial distribution maps in Elala catchment, Northern Ethiopia. Thirty-nine groundwater samples were collected to analyze and map the water quality variables. Atomic absorption spectrophotometer, ultraviolet spectrophotometer, titration and calculation methods were used for laboratory groundwater quality analysis. Arc GIS, geospatial analysis tools, semivariogram model types and interpolation methods were used to generate geospatial distribution maps. Twelve and eight water quality variables were used to produce weighted overlay and irrigation water quality index models, respectively. Root-mean-square error, mean square error, absolute square error, mean error, root-mean-square standardized error, measured values versus predicted values were used for cross-validation. The overall weighted overlay model result showed that 146 km2 areas are highly suitable, 135 km2 moderately suitable and 60 km2 area unsuitable for irrigation use. The result of irrigation water quality index confirms 10.26% with no restriction, 23.08% with low restriction, 20.51% with moderate restriction, 15.38% with high restriction and 30.76% with the severe restriction for irrigation use. GIS and irrigation water quality index are better methods for irrigation water resources management to achieve a full yield irrigation production to improve food security and to sustain it for a long period, to avoid the possibility of increasing environmental problems for the future generation.

  9. Inferred Variable FeO Content in Medium-sized Lunar Pyroclastic Deposits from LRO Diviner Data

    NASA Technical Reports Server (NTRS)

    Bennett, K. A.; Horgan, B.; Greenhagen, B.; Allen, C.; Bell, J. F., III

    2014-01-01

    Lunar pyroclastic deposits (LPDs) are low albedo features that mantle underlying terrain (Gaddis et al. 1985). They are high priority targets for science and exploration as they are believed to originate from and therefore reflect the composition of the deep lunar interior (NRC, 2011). They are also the best potential resource of oxygen out of any Apollo samples (Allen et al. 1996). Historically, LPDs have been divided into regional versus local categories (Gaddis et al. 2003). The large (>1000 km2 area) regional deposits are deeply sourced (>400 km deep) and result from fire fountaining. Small (<1000 km2) local deposits are thought to result from Vulcanian eruptions in which magma is slowly emplaced beneath the surface until enough volatiles exsolve and the high pressure causes an explosion. Bennett et al. (2013) identified a local deposit (674 km2 area) that may have resulted from both Vulcanian activity and fire fountaining. This deposit potentially represents a new intermediate class of LPDs that straddles the interface between the two formation mechanisms. The deposit also exhibits the highest inferred FeO wt.% of any known lunar glass. In this work we investigate the inferred FeO abundances of other medium-sized deposits to characterize this potential new class of deposits and understand the magnitude of variations in inferred FeO among pyroclastic deposits. We use the method of Greenhagen et al. (2010) to calculate the wavelength of the Christiansen Feature (CF) from Lunar Reconnaissance Orbiter Diviner Lunar Radiometer instrument thermal-infrared observations for four medium-sized deposits. From the CF values, we estimate each deposit's FeO abundance using the method of Allen et al. (2012). The four LPDs that we examined (Oppenheimer South, Beer, Cleomedes, and J. Herschel) all have average CF values from 8.22-8.28 microns, corresponding to FeO abundances of approx. 10-15 wt.%. All of these values are within the range and uncertainties of FeO abundances measured in Apollo samples. As previously identified, the Oppenheimer South deposit exhibits an area of enhanced CF values (8.49 microns) that, if the methods of Allen et al. (2012) can be extrapolated, correspond to a highest observed approx. 30 wt.% FeO. Moon Mineralogy Mapper near-infrared spectra indicate that this area is glass-rich as opposed to olivine-rich. While we are still investigating the nature of the high CF wavelength in Oppenheimer South, spatially-resolved observations there and (to a smaller degree) in our other study sites, shows that FeO wt.% can vary within LPDs. Thus, obtaining only the average FeO abundance over a large area may not be adequate to understand global variation. The magnitude of Oppenheimer South's CF variability, if due to actual surface variations rather than calibration artifacts or spectral mixing, could indicate that it is a unique deposit and not part of a new mid-sized class of deposits. The higher value could be a result of its location within the South Pole Aitken Basin and exsolution of more deeply sourced magma due to the thin crust there.

  10. High resolution mesospheric sodium properties for adaptive optics applications

    NASA Astrophysics Data System (ADS)

    Pfrommer, T.; Hickson, P.

    2014-05-01

    Context. The performance of laser guide star adaptive optics (AO) systems for large optical and infrared telescopes is affected by variability of the sodium layer, located at altitudes between 80 and 120 km in the upper mesosphere and lower thermosphere. The abundance and density structure of the atomic sodium found in this region is subject to local and global weather effects, planetary and gravity waves and magnetic storms, and is variable on time scales down to tens of milliseconds, a range relevant to AO. Aims: It is therefore important to characterize the structure and dynamical evolution of the sodium region on small, as well as large spatial and temporal scales. Parameters of particular importance for AO are the mean sodium altitude, sodium layer width and the temporal power spectrum of the centroid altitude. Methods: We have conducted a three-year campaign employing a high-resolution lidar system installed on the 6-m Large Zenith Telescope (LZT) located near Vancouver, Canada. During this period, 112 nights of useful data were obtained. Results: The vertical density profile of atomic sodium shows remarkable structure and variability. Smooth Gaussian-shaped profiles rarely occur. Multiple internal layers are frequently found. These layers often have sharp lower edges, with scale heights of just a few hundred meters, and tend to drift downwards at a typical rate of one kilometer every two to three hours. Individual layers can persist for many hours, but their density and internal structure can be highly variable. Sporadic layers are seen reaching peak densities several times the average, often in just a few minutes. Coherent vertical oscillations are often found, typically extending over tens of kilometers in altitude. Regions of turbulence are evident and Kelvin-Helmholtz instability are sometimes seen. The mean value of the centroid altitude is found to be 90.8 ± 0.1 km. The sodium layer width was determined by computing the altitude range that contains a specified fraction of the returned sodium light. We find a mean value of 13.1 ± 0.3 km for the range containing 95% of the photons, with a maximum width of 21 km. The temporal power spectral density of fluctuations of the centroid altitude is well described by a power law having an index that ranges from -1.6 to -2.3 with a mean value of -1.87 ± 0.02. This is significantly steeper than the value of -5/3 that would be expected if the dynamics were dominated by Kolmogorov turbulence, indicating that other factors such as gravity waves play an important role. The amplitude of the power spectrum has a mean value of 34+6-5~m2 Hz-1 at a frequency of 1 Hz, but ranges over two orders of magnitude. The annual means of the index and amplitude show a variation that is well beyond the calculated error range. Long-term global weather patterns may be responsible for this effect. The database is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/565/A102

  11. The long-term strength of Europe and its implications for plate-forming processes.

    PubMed

    Pérez-Gussinyé, M; Watts, A B

    2005-07-21

    Field-based geological studies show that continental deformation preferentially occurs in young tectonic provinces rather than in old cratons. This partitioning of deformation suggests that the cratons are stronger than surrounding younger Phanerozoic provinces. However, although Archaean and Phanerozoic lithosphere differ in their thickness and composition, their relative strength is a matter of much debate. One proxy of strength is the effective elastic thickness of the lithosphere, Te. Unfortunately, spatial variations in Te are not well understood, as different methods yield different results. The differences are most apparent in cratons, where the 'Bouguer coherence' method yields large Te values (> 60 km) whereas the 'free-air admittance' method yields low values (< 25 km). Here we present estimates of the variability of Te in Europe using both methods. We show that when they are consistently formulated, both methods yield comparable Te values that correlate with geology, and that the strength of old lithosphere (> or = 1.5 Gyr old) is much larger (mean Te > 60 km) than that of younger lithosphere (mean Te < 30 km). We propose that this strength difference reflects changes in lithospheric plate structure (thickness, geothermal gradient and composition) that result from mantle temperature and volatile content decrease through Earth's history.

  12. Evaluation and projected changes of precipitation statistics in convection-permitting WRF climate simulations over Central Europe

    NASA Astrophysics Data System (ADS)

    Knist, Sebastian; Goergen, Klaus; Simmer, Clemens

    2018-02-01

    We perform simulations with the WRF regional climate model at 12 and 3 km grid resolution for the current and future climates over Central Europe and evaluate their added value with a focus on the daily cycle and frequency distribution of rainfall and the relation between extreme precipitation and air temperature. First, a 9 year period of ERA-Interim driven simulations is evaluated against observations; then global climate model runs (MPI-ESM-LR RCP4.5 scenario) are downscaled and analyzed for three 12-year periods: a control, a mid-of-century and an end-of-century projection. The higher resolution simulations reproduce both the diurnal cycle and the hourly intensity distribution of precipitation more realistically compared to the 12 km simulation. Moreover, the observed increase of the temperature-extreme precipitation scaling from the Clausius-Clapeyron (C-C) scaling rate of 7% K-1 to a super-adiabatic scaling rate for temperatures above 11 °C is reproduced only by the 3 km simulation. The drop of the scaling rates at high temperatures under moisture limited conditions differs between sub-regions. For both future scenario time spans both simulations suggest a slight decrease in mean summer precipitation and an increase in hourly heavy and extreme precipitation. This increase is stronger in the 3 km runs. Temperature-extreme precipitation scaling curves in the future climate are projected to shift along the 7% K-1 trajectory to higher peak extreme precipitation values at higher temperatures. The curves keep their typical shape of C-C scaling followed by super-adiabatic scaling and a drop-off at higher temperatures due to moisture limitation.

  13. The added value of dynamical downscaling in a climate change scenario simulation:A case study for European Alps and East Asia

    NASA Astrophysics Data System (ADS)

    Im, Eun-Soon; Coppola, Erika; Giorgi, Filippo

    2010-05-01

    Since anthropogenic climate change is a rather important factor for the future human life all over the planet and its effects are not globally uniform, climate information at regional or local scales become more and more important for an accurate assessment of the potential impact of climate change on societies and ecosystems. High resolution information with suitably fine-scale for resolving complex geographical features could be a critical factor for successful linkage between climate models and impact assessment studies. However, scale mismatch between them still remains major problem. One method for overcoming the resolution limitations of global climate models and for adding regional details to coarse-grid global projections is to use dynamical downscaling by means of a regional climate model. In this study, the ECHAM5/MPI-OM (1.875 degree) A1B scenario simulation has been dynamically downscaled by using two different approaches within the framework of RegCM3 modeling system. First, a mosaic-type parameterization of subgrid-scale topography and land use (Sub-BATS) is applied over the European Alpine region. The Sub-BATS system is composed of 15 km coarse-grid cell and 3 km sub-grid cell. Second, we developed the RegCM3 one-way double-nested system, with the mother domain encompassing the eastern regions of Asia at 60 km grid spacing and the nested domain covering the Korean Peninsula at 20 km grid spacing. By comparing the regional climate model output and the driving global model ECHAM5/MPI-OM output, it is possible to estimate the added value of physically-based dynamical downscaling when for example impact studies at hydrological scale are performed.

  14. Global carbonyl sulfide (OCS) measured by MIPAS/Envisat during 2002-2012

    NASA Astrophysics Data System (ADS)

    Glatthor, Norbert; Höpfner, Michael; Leyser, Adrian; Stiller, Gabriele P.; von Clarmann, Thomas; Grabowski, Udo; Kellmann, Sylvia; Linden, Andrea; Sinnhuber, Björn-Martin; Krysztofiak, Gisèle; Walker, Kaley A.

    2017-02-01

    We present a global carbonyl sulfide (OCS) data set covering the period June 2002 to April 2012, derived from FTIR (Fourier transform infrared) limb emission spectra measured with the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) on the ENVISAT satellite. The vertical resolution is 4-5 km in the height region 6-15 km and 15 at 40 km altitude. The total estimated error amounts to 40-50 pptv between 10 and 20 km and to 120 pptv at 40 km altitude. MIPAS OCS data show no systematic bias with respect to balloon observations, with deviations mostly below ±50 pptv. However, they are systematically higher than the OCS volume mixing ratios of the ACE-FTS instrument on SCISAT, with maximum deviations of up to 100 pptv in the altitude region 13-16 km. The data set of MIPAS OCS exhibits only moderate interannual variations and low interhemispheric differences. Average concentrations at 10 km altitude range from 480 pptv at high latitudes to 500-510 pptv in the tropics and at northern mid-latitudes. Seasonal variations at 10 km altitude amount to up to 35 pptv in the Northern and up to 15 pptv in the Southern Hemisphere. Northern hemispheric OCS abundances at 10 km altitude peak in June in the tropics and around October at high latitudes, while the respective southern hemispheric maxima were observed in July and in November. Global OCS distributions at 250 hPa (˜ 10-11 km) show enhanced values at low latitudes, peaking during boreal summer above the western Pacific and the Indian Ocean, which indicates oceanic release. Further, a region of depleted OCS amounts extending from Brazil to central and southern Africa was detected at this altitude, which is most pronounced in austral summer. This depletion is related to seasonally varying vegetative uptake by the tropical forests. Typical signatures of biomass burning like the southern hemispheric biomass burning plume are not visible in MIPAS data, indicating that this process is only a minor source of upper tropospheric OCS. At the 150 hPa level (˜ 13-14 km) enhanced amounts of OCS were also observed inside the Asian monsoon anticyclone, but this enhancement is not especially outstanding compared to other low latitude regions at the same altitude. At the 80 hPa level (˜ 17-18 km), equatorward transport of mid-latitude air masses containing lower OCS amounts around the summertime anticyclones was observed. A significant trend could not be detected in upper tropospheric MIPAS OCS amounts, which points to globally balanced sources and sinks. Simulations with the ECHAM-MESSy model reproduce the observed latitudinal cross sections fairly well.

  15. Comparison of interball-2 spacecraft potential from IESP and KM-7 experiments in high-latitude regions of the magnetosphere at altitudes of 2-3 RE

    NASA Astrophysics Data System (ADS)

    Smirnova, N.; Afonin, V.; Smilauer, Ja.; Stanev, G.

    Measurements of Interball-2 spacecraft potential by two instruments, IESP and KM-7, are reviewed and simultaneous measurements are compared. Unacceptable discrepancy between results of spacecraft potential measurements, including opposite signs, was found. Actually, both experiments are methodically identical: they used the same type of sensor - spherical Langmuir probes operating in the ``floating'' mode, and they have measured the same parameter - the voltage difference between the probe and the satellite structure. The IESP instrument measured one value of this parameter at fixed bias current to the probe. The KM-7 measured the whole current-voltage characteristic (the probe current as a function of the probe potential), which consists of 11 IESP-type measurements at different values of bias current. The difference lies only in the way of technical implementation, as the probes were operating in different ambient conditions. The IESP probes were mounted at the ends of long booms and thus were affected by the solar UV emission, while the KM-7 probe was rather well protected against UV emission by proper mounting and screening the head of the sensor from both direct UV emission and those reflected from spacecraft elements. The comparison of two data sets and variations along the orbit has shown, that KM-7 correctly measures the spacecraft potential. In high-latitude inner magnetosphere (in auroral region and polar cap) at altitudes 2-3 RE the spacecraft potential was predominantly negative down to -10 V, increasing up to about +5 V in some locations at rather extended parts of the satellite orbit. Reasonably good agreement between two experiments was obtained only at spacecraft potential <= -2 V and after inversion the sign of available calibration curve of IESP experiment; in this case both experiments very accurately reflect variation of potential data even in the small details. The operation mode of IESP experiment was not optimal and requires further analysis. The wave results obtained with IESP may be considered as reliable only when both experiments show, after inversion of available IESP calibration curve, coincident data, but the phase relations, if any, will be inversed in any case. The method of spacecraft potential measurements adopted in IESP should be used only for positive potential; if realspacecraft potential is negative, the method gives wrong and misleading results.

  16. An algorithm for the estimation of bounds on the emissivity and temperatures from thermal multispectral airborne remotely sensed data

    NASA Technical Reports Server (NTRS)

    Jaggi, S.; Quattrochi, D.; Baskin, R.

    1992-01-01

    The effective flux incident upon the detectors of a thermal sensor, after it has been corrected for atmospheric effects, is a function of a non-linear combination of the emissivity of the target for that channel and the temperature of the target. The sensor system cannot separate the contribution from the emissivity and the temperature that constitute the flux value. A method that estimates the bounds on these temperatures and emissivities from thermal data is described. This method is then tested with remotely sensed data obtained from NASA's Thermal Infrared Multispectral Scanner (TIMS) - a 6 channel thermal sensor. Since this is an under-determined set of equations i.e. there are 7 unknowns (6 emissivities and 1 temperature) and 6 equations (corresponding to the 6 channel fluxes), there exist theoretically an infinite combination of values of emissivities and temperature that can satisfy these equations. Using some realistic bounds on the emissivities, bounds on the temperature are calculated. These bounds on the temperature are refined to estimate a tighter bound on the emissivity of the source. An error analysis is also carried out to quantitatively determine the extent of uncertainty introduced in the estimate of these parameters. This method is useful only when a realistic set of bounds can be obtained for the emissivities of the data. In the case of water the lower and upper bounds were set at 0.97 and 1.00 respectively. Five flights were flown in succession at altitudes of 2 km (low), 6 km (mid), 12 km (high), and then back again at 6 km and 2 km. The area selected with the Ross Barnett reservoir near Jackson, Mississippi. The mission was flown during the predawn hours of 1 Feb. 1992. Radiosonde data was collected for that duration to profile the characteristics of the atmosphere. Ground truth temperatures using thermometers and radiometers were also obtained over an area of the reservoir. The results of two independent runs of the radiometer data averaged 7.03 plus or minus .70 for the first run and 7.31 plus or minus .88 for the second run. The results of the algorithm yield a temperature of 7.68 for the low altitude data to 8.73 for the high altitude data.

  17. Tropical upper troposphere and tropopause layer in situ measurement of H2O by the micro- SDLA balloon borne diode laser spectrometer: modelling interpretation.

    NASA Astrophysics Data System (ADS)

    Durry, G.; Huret, N.; Freitas, S.; Hauchecorne, A.; Longo, K.

    2006-12-01

    During the HIBISCUS European campaign in Bauru (Brazil, 22°S) in 2004, the micro-SDLA diode laser sensor was flown twice on February the 13th (SF2 flight) and the 24th (SF4 flight) from small size open stratospheric balloons operated by the CNES. In situ measurements of H2O, CH4 at high spatial resolution (a few meters) were obtained in the UT and in the TTL. Both flights took place in convective conditions. Layering in the TTL water vapour content is observed with values from 3 ppmv (typical of TTL) to high values of 6 ppmv. To investigate such layering we have used a combination of 3D trajectory calculations (Freitas et al., JGR, 2000) using the mesoscale model BRAMS outputs and Potential vorticity map obtained from the high- resolution PV-advection model MIMOSA (Hauchecorne et al., JGR, 2001). The mesoscale model BRAMS allows us to study processes associated with convective systems, whereas isentropic transport at global scale is investigated with MIMOSA. Backward 3D trajectories have been calculated every km for the two flights. It appears that a very strong uplifting from the ground to 16.5 km has occurred 80 hours before the SF4 flight. This uplifting is associated with a 3 ppmv water vapor layer whereas just above twice more water vapour is observed. This layer with high water vapor is associated with trajectories that skim over the top of the convective region. This leads us to discuss on the ability of convective system to inject water vapour in the TTL. For both flights we investigate also the impact of isentropic transport from extratropical region on TTL water vapour content. It appears that for the SF2 and SF4 flight using the PV maps from MIMOSA model we report filamentation in the TTL and in the UT respectively. This filamentation is associated in the UT with strong dehydration observed at 8-10 km for the SF4 flight and with high water vapour content in the TTL typical of mid- latitude region during SF2 flight.

  18. Validity of Lactate Thresholds in Inline Speed Skating.

    PubMed

    Hecksteden, Anne; Heinze, Tobias; Faude, Oliver; Kindermann, Wilfried; Meyer, Tim

    2015-09-01

    Lactate thresholds are commonly used as estimates of the highest workload where lactate production and elimination are in equilibrium (maximum lactate steady state [MLSS]). However, because of the high static load on propulsive muscles, lactate kinetics in inline speed skating may differ significantly from other endurance exercise modes. Therefore, the discipline-specific validity of lactate thresholds has to be verified. Sixteen competitive inline-speed skaters (age: 30 ± 10 years; training per week: 10 ± 4 hours) completed an exhaustive stepwise incremental exercise test (start 24 km·h, step duration 3 minutes, increment 2 km·h) to determine individual anaerobic threshold (IAT) and the workload corresponding to a blood lactate concentration of 4 mmol·L (LT4) and 2-5 continuous load tests of (up to) 30 minutes to determine MLSS. The IAT and LT4 correlated significantly with MLSS, and the mean differences were almost negligible (MLSS 29.5 ± 2.5 km·h; IAT 29.2 ± 2.0 km·h; LT4 29.6 ± 2.3 km·h; p > 0.1 for all differences). However, the variability of differences was considerable resulting in 95% limits of agreement in the upper range of values known from other endurance disciplines (2.6 km·h [8.8%] for IAT and 3.1 km·h [10.3%] for LT4). Consequently, IAT and LT4 may be considered as valid estimates of the MLSS in inline speed skating, but verification by means of a constant load test should be considered in cases of doubt or when optimal accuracy is needed (e.g., in elite athletes or scientific studies).

  19. Annual Dynamics of Forest Areas in South America during 2007-2010 at 50-m Spatial Resolution

    NASA Astrophysics Data System (ADS)

    Qin, Y.; Xiao, X.; Dong, J.; Zhou, Y.; Wang, J.; Doughty, R.; Chen, Y.; Zou, Z.; Moore, B., III

    2017-12-01

    The user community has an urgent need for high accuracy tropical forest distribution and spatio-temporal changes since tropical forests are facing defragmentation and persistent clouds. In this study, we selected South America as a hotspot and presented a robust approach to map annual forests during 2007-2010 based on the coupled greenness-relevant MOD13Q1 NDVI and structure/biomass-relevant ALOS PALSAR time series data. We analyzed the consistency and uncertainty among eight major forest maps at continental, country, and pixel scales. The 50-m PALSAR/MODIS forest area in South America was about 8.63×106 km2 in 2010. Large differences in total forest area (8.2×106 km2-12.7×106 km2) existed among these forest products. Forest products generated under a similar forest definition had similar or even larger variation than those generated under differing forest definitions. One needs to consider leaf area index as an adjusting factor and use much higher threshold values in the VCF datasets to estimate forest cover. Analyses of PALSAR/MODIS forest maps showed a relatively small and equivalent rate of loss (3.2×104 km2 year-1) in net forest cover to that of FAO FRA (3.3×104 km2 year-1). PALSAR/MODIS forest maps showed that more and more deforestation occurred in the intact forest areas. The rate of forest loss (1.95×105 km2 year-1) was higher than that of Global Forest Watch (0.81×105 km2 year-1). Caution should be used when using the different forest maps to analyze forest loss and make policies regarding forest ecosystem services and biodiversity conservation.

  20. Linkage between seasonal hydrology and carbon flux dynamics in tundra ponds: Samoylov Island, Lena River Delta, Siberia

    NASA Astrophysics Data System (ADS)

    Abnizova, Anna; Bornemann, Niko; Boike, Julia

    2010-05-01

    Arctic ponds have been recently recognized as being highly sensitive to changing climate. To date, ponds and lakes are disappearing in Alaska, Siberia and Canadian High Arctic because of climate warming (Fitzgerald et al. 2003; Smith et al. 2005; and Smol et al. 2007). While numerous limnological studies have been done on arctic ponds located in the Canadian High Arctic (Douglas and Smol, 1994; Hamilton et al. 2001; Lim et al., 2001), there is a limited number of studies on tundra ponds located in other circumpolar environments (e.g. Northern Siberia). Duff et al. (1999) describes tundra lakes in northern Russia as clear, dilute, oligotrophic lakes with low nutrients and dissolved organic carbon concentration. While numerous ponds and lakes exists in the Lena River Delta averaging to 2120 lakes of all sizes for every 1000 km2, no studies have been done to understand carbon flux dynamics of these freshwater ecosystems. In this study hydrological monitoring based on water balance framework was applied to a series of ponds and lakes located on Samoylov Island, 120 km south of the Arctic Ocean in the southern central Lena River Delta (72° 22' N, 126 ° 30' E) from July to September 2008. To better understand spatial differences in pond hydrology and carbon flux dynamics, the physical and biochemical data was collected from 42 tundra ponds. The selection of the ponds was based on their size (small, medium, large) and depth values ranging from 10 to 120 cm. The estimation of the seasonal water budget in 2008 showed that losses through evapotranspiration were offset by similar precipitation inputs and resulted in the equilibrium storage values in the study ponds prior to the freeze-back. Preliminary analysis showed that more than 50% of the ponds had DOC > 6.5 mg/l which exceeds average value of other Arctic ponds reported in literature (Duff et al. 1999 and Hamilton et al. 2001). Elevated DOC concentrations (> 8 mg/l) were found in the small and medium ponds with depth values ranging from 15 to 30 cm. The values of other environmental variables were significantly correlated with high correlations among Ca, Mg and Sr (r = 0.89 to 0.92). Similar to Duff et al. (1999) significant but weak correlations were found between conductivity, Al, Ca, Fe, Mn and DOC values. While arctic pond ecosystems are highly sensitive to the harmful effect of ultraviolet radiation, such elevated DOC values in the study ponds might contribute to better resilience of the pond ecosystem.

  1. Earthquake sources near Uturuncu Volcano

    NASA Astrophysics Data System (ADS)

    Keyson, L.; West, M. E.

    2013-12-01

    Uturuncu, located in southern Bolivia near the Chile and Argentina border, is a dacitic volcano that was last active 270 ka. It is a part of the Altiplano-Puna Volcanic Complex, which spans 50,000 km2 and is comprised of a series of ignimbrite flare-ups since ~23 ma. Two sets of evidence suggest that the region is underlain by a significant magma body. First, seismic velocities show a low velocity layer consistent with a magmatic sill below depths of 15-20 km. This inference is corroborated by high electrical conductivity between 10km and 30km. This magma body, the so called Altiplano-Puna Magma Body (APMB) is the likely source of volcanic activity in the region. InSAR studies show that during the 1990s, the volcano experienced an average uplift of about 1 to 2 cm per year. The deformation is consistent with an expanding source at depth. Though the Uturuncu region exhibits high rates of crustal seismicity, any connection between the inflation and the seismicity is unclear. We investigate the root causes of these earthquakes using a temporary network of 33 seismic stations - part of the PLUTONS project. Our primary approach is based on hypocenter locations and magnitudes paired with correlation-based relative relocation techniques. We find a strong tendency toward earthquake swarms that cluster in space and time. These swarms often last a few days and consist of numerous earthquakes with similar source mechanisms. Most seismicity occurs in the top 10 kilometers of the crust and is characterized by well-defined phase arrivals and significant high frequency content. The frequency-magnitude relationship of this seismicity demonstrates b-values consistent with tectonic sources. There is a strong clustering of earthquakes around the Uturuncu edifice. Earthquakes elsewhere in the region align in bands striking northwest-southeast consistent with regional stresses.

  2. Heat flow through a basaltic outcrop on a sedimented young ridge flank

    NASA Astrophysics Data System (ADS)

    Wheat, C. Geoffrey; Mottl, Michael J.; Fisher, Andrew T.; Kadko, David; Davis, Earl E.; Baker, Edward

    2004-12-01

    One hundred seven thermal gradients were measured in shallow surface sediments using the submersible Alvin within a 0.5 km2 area on and around the 65-m-high, mostly sediment-covered Baby Bare outcrop located on the eastern flank of the Juan de Fuca Ridge. Heat flow values range from 0.35 W m-2, which is close to the average value (0.27 W m-2) for the sediment-buried 3.5-Myr-old crust surrounding the outcrop, to as high as 490 W m-2. Some measurements are purely conductive, whereas others are consistent with upward fluid seepage through this sediment layer. Highest heat flow values are found roughly 10 m below the summit along a ridge-parallel fault where shimmering water, springs, and communities of clams were found. Heat flow values surrounding a second fault are elevated to a lesser extent (maximum of 9.2 W m-2). The total power output from this 0.5 km2 area is 1.5 MW, about 10 times greater than the conductive power output predicted for a commensurate area of 3.5-Myr crust. Much of this heat loss is conductive (˜84%), consistent with an independent estimate of the convective heat flux from Rn/heat anomalies in spring fluids and in the water column above the springs. Calculations suggest that the 64°C isotherm, which is the temperature in the surrounding upper crust, is <20 m below the summit, corresponding to a height that is 30 m above the surrounding turbidite plain. These elevated fluid temperatures at shallow depths provide thermal buoyance to drive seafloor seepage from the outcrop.

  3. Proterozoic crustal boundary in the southern part of the Illinois Basin

    USGS Publications Warehouse

    Heigold, P.C.; Kolata, Dennis R.

    1993-01-01

    Recently acquired COCORP and proprietary seismic reflection data in the southern part of the Illinois Basin, combined with other geological and geophysical data, indicate that a WNW-trending Proterozoic terrane boundary (40 km wide) lies within basement. The boundary is characterized by the termination of subhorizontal Proterozoic reflectors and associated diffraction patterns along a line coinciding with the major magnetic lineament in this region (South Central Magnetic Lineament). North of the boundary, where reflectors thought to represent a sequence of layered Proterozoic rocks in the upper crust are widespread and as much as 11 km thick, total magnetic intensity values are relatively high, suggesting layers of rock with high magnetic susceptibility. To the south, the Proterozoic rocks are acoustically transparent on seismic reflection sections and total magnetic intensity values are relatively low. Moreover, relatively high Bouguer gravity anomaly values to the south may be caused by a dense, altered, lower crustal layer similar to that interpreted from deep seismic refraction studies to underlie the northern Mississippi Embayment. The boundary lies along the projected trend of the northern margin of the Early Proterozoic Central Plains orogen and we suggest that it marks the convergent margin of this orogen. Reactivation of the boundary and the associated zone of weakness during late Paleozoic times apparently resulted in structural deformation in the southern part of the Illinois Basin, including movement along the Cottage Grove Fault System and Ste. Genevieve Fault Zone and igneous activity at Hicks Dome. In addition to the role played by this crustal boundary in the evolution of the Illinois Basin, its location between the Wabash Valley Seismic Zone to the northeast and the New Madrid Seismic Zone to the southwest may be a significant factor in present-day seismicity. ?? 1993.

  4. Development Study of Pedestrian Bridge at Gramedia Bookstore Jalan Raden Intan Bandar Lampung

    NASA Astrophysics Data System (ADS)

    Bernaditha, C. M.

    2018-03-01

    Bandar Lampung with high enough population densities has provides transportation facilities for pedestrian such as pedestrian bridge. This pedestrian bridges spread at Bandar Lampung’s traffic congested area, shopping centre nor education centre. Jl. Raden Intan as one of primary collector road with four lanes one direction at Bandar Lampung has high LHR (average daily traffic) movemenet pattern especially at morning, day and afternoon rush hour that make it difficult for pedestrian who want to cross the road. Therefore pedes trian bridge at this section Jl. Raden Intan highly needed especially at in front of Gramedia Bookstore with large amount of crossing pedestrian volume. From this research and analysis, found that number of LHR (average daily traffic) at Jl. Raden Intan shows large number traffic volume that is 4509 passenger car unit/hour at morning rush hour (07.00-08.30), with value of V/C Ratio or Degree of Saturation reach 0,92 (E category), while the amount of pedestrian who cross ahead from Gramedia Bookstore to Bank Muammalat is 29 people per 15 minutes. Other than that based on the calculation results of pedestrian volume and traffic volume at rush hour as follow: average pedestrian volume at rush hour is 146 people/hour between the range 100-1250 people/hour and traffic volume 7521 vehicles/hour over than 7000 vehicles/hour, and also the value PV2=1,682x1010 which is means the value of PV2 worth over 2x108, moreover the speed plan Jl. Raden Intan between 60-80 km/hour above 70 km/hour. Based on the calculation and analysis above, it can be concluded transportation facilities recommended for Jl. Raden Intan is pedestrian bridge.

  5. Luminal glucose concentrations in the gut under normal conditions.

    PubMed

    Ferraris, R P; Yasharpour, S; Lloyd, K C; Mirzayan, R; Diamond, J M

    1990-11-01

    Luminal glucose (Glc) concentrations in the small intestine (SI) are widely assumed to be 50-500 mM. These values have posed problems for interpreting SI luminal osmolality and absorptive capacity, Glc transporter Michaelis-Menten constants (Km), and the physiological role of active Glc transport and its regulation. Hence we measured luminal contents, osmolality, and Glc, Na+, and K+ concentrations in normally feeding rats, rabbits, and dogs. Measured Glc concentrations were compatible with the portion of measured osmolality not accounted for by Na+ and K+ salts, amino acids, and peptides. Mean SI luminal osmolalities were less than or equal to 100 mosmol/kg hypertonic. For animals on the most nearly physiological diets, SI Glc concentrations averaged 0.4-24 mM and ranged with time and SI region from 0.2 to a maximum of 48 mM. The older published very high values are artifacts of direct infusion of concentrated Glc solutions into the gut, nonspecific Glc assays, and failure to test for quantitative recovery or to centrifuge samples in the cold. By storing food after meals and releasing it between meals, rat stomach greatly damps diurnal fluctuations in quantity and osmolality of food reaching the SI and hence also damps fluctuations in absorption rates. These new values for luminal Glc have five important physiological implications: the problem of accounting for apparently very hypertonic SI contents in the face of high osmotic water permeability disappears; the effective Km of the SI Glc transporter is now comparable to prevailing Glc concentrations; the SI no longer appears to have enormous excess absorptive capacity for Glc; regulation of Glc transport by dietary intake now makes functional sense; and the claim that high luminal Glc concentrations permit solvent drag to become the major mode of Glc absorption under normal conditions is undermined.

  6. The 0.57 Ma plinian eruption of the Granadilla Member, Tenerife (Canary Islands): an example of complexity in eruption dynamics and evolution

    NASA Astrophysics Data System (ADS)

    Bryan, S. E.; Cas, R. A. F.; Martí, J.

    2000-12-01

    The Granadilla Member is one of the most widely dispersed and largest volume pyroclastic units at Tenerife (Canary Islands) and represents the culminating eruption to a second cycle of explosive volcanism of the Las Cañadas edifice. The member, dated at 0.57 Ma, comprises a plinian fall deposit, the Granadilla pumice, which is overlain by ignimbrite up to 30 m thick. The Granadilla pumice is up to 9 m thick approximately 10 km from source (Pyle bt value is 5.35 km), and is subdivided into four fall units. Unit 1 is up to 1.2 m thick and is further divisible into another four pumice fall subunits, based on bedding and grainsize differences. Unit 2 is a thin but distinctive ash layer (˜2 cm thick), and its wide dispersal (>550 km2), constant thickness, planar laminations and ash aggregate textures collectively indicate a phreatoplinian fall origin. The lithic-rich nature and abundance of unaltered lithic fragments reflect magma interaction with aquifer-derived water at depth. Unit 3 (≤1.8 m thick), records a reversal to dry plinian eruptive activity. Unit 4, the thickest of the fall units (up to 6.3 m thick), records the maximum dispersal and intensity of the eruption (Pyle bt and bc values are 5.7 and 6.3 km, respectively), best illustrated by the presence of large pumice bombs up to 30 cm diameter (at distances up to 20 km from vent), and reverse grading of lithic and pumice clasts. The widespread (>500 km2), nonwelded and pumice-rich Granadilla ignimbrite (unit 5) records the collapse of the plinian eruption column. The ignimbrite has a simple sheet-like geometry, but exhibits a complex internal stratigraphy. The base of the ignimbrite locally cuts down through the underlying Granadilla pumice removing it entirely, indicating up to 9 m of erosion by the pyroclastic flows. A coarse, vent-derived lithic breccia horizon towards the top of the ignimbrite is interpreted to record the onset of caldera collapse late in the eruption. Minimum volume estimates for the Granadilla pumice and ignimbrite are 5.2 and 5 km3, respectively. The dispersal area, deposit characteristics, and exponential thickness and clast size decay relationships with (isopach area)1/2 are consistent with dispersal and fallout from the umbrella region of a moderately high (˜17 to ≥25 km) plinian column. We propose that the eruption involved two vents, probably aligned along a NE-SW fissure within the Las Cañadas caldera.

  7. An Acousto-Optical Sensor with High Angular Resolution

    PubMed Central

    Kaloshin, Gennady; Lukin, Igor

    2012-01-01

    The paper introduces a new laser interferometry-based sensor for diagnosis of random media by means of high accuracy angle measurements and describes the results of its development and testing. Theoretical calculations of the dependence of the range of the laser interferometer on laser beam parameters, device geometry, and atmospheric turbulence characteristics are reported. It is demonstrated that at moderate turbulence intensities corresponding to those observed most frequently in turbulent atmosphere at moderate latitudes and with low interference contrast values, the performance range of the laser interferometer-based device exceeds 5 km. PMID:22737034

  8. Top-down quantification of NOx emissions from traffic in an urban area using a high-resolution regional atmospheric chemistry model

    NASA Astrophysics Data System (ADS)

    Kuik, Friderike; Kerschbaumer, Andreas; Lauer, Axel; Lupascu, Aurelia; von Schneidemesser, Erika; Butler, Tim M.

    2018-06-01

    With NO2 limit values being frequently exceeded in European cities, complying with the European air quality regulations still poses a problem for many cities. Traffic is typically a major source of NOx emissions in urban areas. High-resolution chemistry transport modelling can help to assess the impact of high urban NOx emissions on air quality inside and outside of urban areas. However, many modelling studies report an underestimation of modelled NOx and NO2 compared with observations. Part of this model bias has been attributed to an underestimation of NOx emissions, particularly in urban areas. This is consistent with recent measurement studies quantifying underestimations of urban NOx emissions by current emission inventories, identifying the largest discrepancies when the contribution of traffic NOx emissions is high. This study applies a high-resolution chemistry transport model in combination with ambient measurements in order to assess the potential underestimation of traffic NOx emissions in a frequently used emission inventory. The emission inventory is based on officially reported values and the Berlin-Brandenburg area in Germany is used as a case study. The WRF-Chem model is used at a 3 km × 3 km horizontal resolution, simulating the whole year of 2014. The emission data are downscaled from an original resolution of ca. 7 km × 7 km to a resolution of 1 km × 1 km. An in-depth model evaluation including spectral decomposition of observed and modelled time series and error apportionment suggests that an underestimation in traffic emissions is likely one of the main causes of the bias in modelled NO2 concentrations in the urban background, where NO2 concentrations are underestimated by ca. 8 µg m-3 (-30 %) on average over the whole year. Furthermore, a diurnal cycle of the bias in modelled NO2 suggests that a more realistic treatment of the diurnal cycle of traffic emissions might be needed. Model problems in simulating the correct mixing in the urban planetary boundary layer probably play an important role in contributing to the model bias, particularly in summer. Also taking into account this and other possible sources of model bias, a correction factor for traffic NOx emissions of ca. 3 is estimated for weekday daytime traffic emissions in the core urban area, which corresponds to an overall underestimation of traffic NOx emissions in the core urban area of ca. 50 %. Sensitivity simulations for the months of January and July using the calculated correction factor show that the weekday model bias can be improved from -8.8 µg m-3 (-26 %) to -5.4 µg m-3 (-16 %) in January on average in the urban background, and -10.3 µg m-3 (-46 %) to -7.6 µg m-3 (-34 %) in July. In addition, the negative bias of weekday NO2 concentrations downwind of the city in the rural and suburban background can be reduced from -3.4 µg m-3 (-12 %) to -1.2 µg m-3 (-4 %) in January and from -3.0 µg m-3 (-22 %) to -1.9 µg m-3 (-14 %) in July. The results and their consistency with findings from other studies suggest that more research is needed in order to more accurately understand the spatial and temporal variability in real-world NOx emissions from traffic, and apply this understanding to the inventories used in high-resolution chemical transport models.

  9. Effects of space weather on the ionosphere and LEO satellites' orbital trajectory in equatorial, low and middle latitude

    NASA Astrophysics Data System (ADS)

    Nwankwo, Victor U. J.; Chakrabarti, Sandip K.

    2018-04-01

    We study the effects of space weather on the ionosphere and low Earth orbit (LEO) satellites' orbital trajectory in equatorial, low- and mid-latitude (EQL, LLT and MLT) regions during (and around) the notable storms of October/November, 2003. We briefly review space weather effects on the thermosphere and ionosphere to demonstrate that such effects are also latitude-dependent and well established. Following the review we simulate the trend in variation of satellite's orbital radius (r), mean height (h) and orbit decay rate (ODR) during 15 October-14 November 2003 in EQL, LLT and MLT. Nominal atmospheric drag on LEO satellite is usually enhanced by space weather or solar-induced variations in thermospheric temperature and density profile. To separate nominal orbit decay from solar-induced accelerated orbit decay, we compute r, h and ODR in three regimes viz. (i) excluding solar indices (or effect), where r =r0, h =h0 and ODR =ODR0 (ii) with mean value of solar indices for the interval, where r =rm, h =hm and ODR =ODRm and (iii) with actual daily values of solar indices for the interval (r, h and ODR). For a typical LEO satellite at h = 450 km, we show that the total decay in r during the period is about 4.20 km, 3.90 km and 3.20 km in EQL, LLT and MLT respectively; the respective nominal decay (r0) is 0.40 km, 0.34 km and 0.22 km, while solar-induced orbital decay (rm) is about 3.80 km, 3.55 km and 2.95 km. h also varied in like manner. The respective nominal ODR0 is about 13.5 m/day, 11.2 m/day and 7.2 m/day, while solar-induced ODRm is about 124.3 m/day, 116.9 m/day and 97.3 m/day. We also show that severe geomagnetic storms can increase ODR by up to 117% (from daily mean value). However, the extent of space weather effects on LEO Satellite's trajectory significantly depends on the ballistic co-efficient and orbit of the satellite, and phase of solar cycles, intensity and duration of driving (or influencing) solar event.

  10. Geoelectric hazard maps for the continental United States

    NASA Astrophysics Data System (ADS)

    Love, Jeffrey J.; Pulkkinen, Antti; Bedrosian, Paul A.; Jonas, Seth; Kelbert, Anna; Rigler, E. Joshua; Finn, Carol A.; Balch, Christopher C.; Rutledge, Robert; Waggel, Richard M.; Sabata, Andrew T.; Kozyra, Janet U.; Black, Carrie E.

    2016-09-01

    In support of a multiagency project for assessing induction hazards, we present maps of extreme-value geoelectric amplitudes over about half of the continental United States. These maps are constructed using a parameterization of induction: estimates of Earth surface impedance, obtained at discrete geographic sites from magnetotelluric survey data, are convolved with latitude-dependent statistical maps of extreme-value geomagnetic activity, obtained from decades of magnetic observatory data. Geoelectric amplitudes are estimated for geomagnetic waveforms having 240 s sinusoidal period and amplitudes over 10 min that exceed a once-per-century threshold. As a result of the combination of geographic differences in geomagnetic activity and Earth surface impedance, once-per-century geoelectric amplitudes span more than 2 orders of magnitude and are an intricate function of location. For north-south induction, once-per-century geoelectric amplitudes across large parts of the United States have a median value of 0.26 V/km; for east-west geomagnetic variation the median value is 0.23 V/km. At some locations, once-per-century geoelectric amplitudes exceed 3 V/km.

  11. Geoelectric hazard maps for the continental United States

    USGS Publications Warehouse

    Love, Jeffrey J.; Pulkkinen, Antti; Bedrosian, Paul A.; Jonas, Seth; Kelbert, Anna; Rigler, Erin (Josh); Finn, Carol; Balch, Christopher; Rutledge, Robert; Waggel, Richard; Sabata, Andrew; Kozyra, Janet; Black, Carrie

    2016-01-01

    In support of a multiagency project for assessing induction hazards, we present maps of extreme-value geoelectric amplitudes over about half of the continental United States. These maps are constructed using a parameterization of induction: estimates of Earth surface impedance, obtained at discrete geographic sites from magnetotelluric survey data, are convolved with latitude-dependent statistical maps of extreme-value geomagnetic activity, obtained from decades of magnetic observatory data. Geoelectric amplitudes are estimated for geomagnetic waveforms having 240 s sinusoidal period and amplitudes over 10 min that exceed a once-per-century threshold. As a result of the combination of geographic differences in geomagnetic activity and Earth surface impedance, once-per-century geoelectric amplitudes span more than 2 orders of magnitude and are an intricate function of location. For north-south induction, once-per-century geoelectric amplitudes across large parts of the United States have a median value of 0.26 V/km; for east-west geomagnetic variation the median value is 0.23 V/km. At some locations, once-per-century geoelectric amplitudes exceed 3 V/km.

  12. Status assessment of the Endangered snow leopard Panthera uncia and other large mammals in the Kyrgyz Alay, using community knowledge corrected for imperfect detection

    USGS Publications Warehouse

    Taubmann, Julia; Sharma, Koustubh; Uulu, Kubanychbek Zhumabai; Hines, James; Mishra, Charudutt

    2015-01-01

    The Endangered snow leopard Panthera uncia occurs in the Central Asian Mountains, which cover c. 2 million km2. Little is known about its status in the Kyrgyz Alay Mountains, a relatively narrow stretch of habitat connecting the southern and northern global ranges of the species. In 2010 we gathered information on current and past (1990, the last year of the Soviet Union) distributions of snow leopards and five sympatric large mammals across 14,000 km2 of the Kyrgyz Alay. We interviewed 95 key informants from local communities. Across 49 400-km2 grid cells we obtained 1,606 and 962 records of species occurrence (site use) in 1990 and 2010, respectively. The data were analysed using the multi-season site occupancy framework to incorporate uncertainty in detection across interviewees and time periods. High probability of use by snow leopards in the past was recorded in > 70% of the Kyrgyz Alay. Between the two sampling periods 39% of sites showed a high probability of local extinction of snow leopard. We also recorded high probability of local extinction of brown bear Ursus arctos (84% of sites) and Marco Polo sheep Ovis ammon polii (47% of sites), mainly in regions used intensively by people. Data indicated a high probability of local colonization by lynx Lynx lynx in 41% of the sites. Although wildlife has declined in areas of central and eastern Alay, regions in the north-west, and the northern and southern fringes appear to retain high conservation value.

  13. Transition region response of the symmetric double probe and its application in the lower ionosphere

    NASA Technical Reports Server (NTRS)

    Szuszczewicz, E. P.

    1972-01-01

    The technique is discussed of the symmetric double-probe which readily lends itself to the in situ measurement of plasma temperature in the ionospheric D-region because it can lead to meaningful results under relatively high collision frequencies where the Langmuir probe has been observed to fail. It is shown that the modification to the original collision-free double-probe theory of Johnson and Malter for the determination of electron temperature is never greater than + or - 12%, with a value of (8 + or - 2)% nominally applicable in the case of D-region diagnostics. This technique was successfully operated on a Nike-Cajun payload flown at mid-day from White Sands, New Mexico to an apogee of 78.5 km. The associated electronics and deployed double-probe configuration are presented, and a current-voltage characteristic collected in the ascent stage at 73.7 km is briefly discussed. The values of electron temperature indicated by the sampled data are approximately 30% higher than those predicted by theory for the anticipated state of thermal equilibrium with the ambient neutrals.

  14. Kelvin-Helmholtz waves in extratropical cyclones passing over mountain ranges: KH Waves in Extratropical Cyclones over Mountain Ranges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Medina, Socorro; Houze, Robert A.

    2016-02-19

    Kelvin–Helmholtz billows with horizontal scales of 3–4 km have been observed in midlatitude cyclones moving over the Italian Alps and the Oregon Cascades when the atmosphere was mostly statically stable with high amounts of shear and Ri < 0.25. In one case, data from a mobile radar located within a windward facing valley documented a layer in which the shear between down-valley flow below 1.2 km and strong upslope cross-barrier flow above was large. Several episodes of Kelvin–Helmholtz waves were observed within the shear layer. The occurrence of the waves appears to be related to the strength of the shear:more » when the shear attained large values, an episode of billows occurred, followed by a sharp decrease in the shear. The occurrence of large values of shear and Kelvin–Helmholtz billows over two different mountain ranges suggests that they may be important features occurring when extratropical cyclones with statically stable flow pass over mountain ranges.« less

  15. Two-dimensional magnetohydrodynamic model of emerging magnetic flux in the solar atmosphere

    NASA Technical Reports Server (NTRS)

    Shibata, K.; Tajima, T.; Steinolfson, R. S.; Matsumoto, R.

    1989-01-01

    The nonlinear undular mode of the magnetic buoyancy instability in an isolated horizontal magnetic flux embedded in a two-temperature layered atmosphere (solar corona-chromosphere/photosphere) is investigated using a two-dimensional magnetohydrodynamic code. The results show that the flux sheet with beta of about 1 is initially located at the bottom of the photosphere, and that the gas slides down the expanding loop as the instability develops, with the evacuated loop rising as a result of enhanced magnetic buoyancy. The expansion of the magnetic loop in the nonlinear regime displays self-similar behavior. The rise velocity of the magnetic loop in the high chromosphere (10-15 km/s) and the velocity of downflow noted along the loop (30-50 km/s) are consistent with observed values for arch filament systems.

  16. Joint Sentinel-1 and SMAP data assimilation to improve soil moisture estimates

    NASA Astrophysics Data System (ADS)

    Lievens, H.; Reichle, R. H.; Liu, Q.; De Lannoy, G.; Dunbar, R. S.; Kim, S.; Das, N. N.; Cosh, M. H.; Walker, J. P.; Wagner, W.

    2017-12-01

    SMAP (Soil Moisture Active and Passive) radiometer observations at 40 km resolution are routinely assimilated into the NASA Catchment Land Surface Model (CLSM) to generate the SMAP Level 4 Soil Moisture product. The use of C-band radar backscatter observations from Sentinel-1 has the potential to add value to the radiance assimilation by increasing the level of spatial detail. The specifications of Sentinel-1 are appealing, particularly its high spatial resolution (5 by 20 m in interferometric wide swath mode) and frequent revisit time (6 day repeat cycle for the Sentinel-1A and Sentinel-1B constellation). However, the shorter wavelength of Sentinel-1 observations implies less sensitivity to soil moisture. This study investigates the value of Sentinel-1 data for hydrologic simulations by assimilating the radar observations into CLSM, either separately from or simultaneously with SMAP radiometer observations. To facilitate the assimilation of the radar observations, CLSM is coupled to the water cloud model, simulating the radar backscatter as observed by Sentinel-1. The innovations, i.e. differences between observations and simulations, are converted into increments to the model soil moisture state through an Ensemble Kalman Filter. The assimilation impact is assessed by comparing 3-hourly, 9 km surface and root-zone soil moisture simulations with in situ measurements from 9 km SMAP core validation sites and sparse networks, from May 2015 to 2017. The Sentinel-1 assimilation consistently improves surface soil moisture, whereas root-zone impacts are mostly neutral. Relatively larger improvements are obtained from SMAP assimilation. The joint assimilation of SMAP and Sentinel-1 observations performs best, demonstrating the complementary value of radar and radiometer observations.

  17. Electromagnetic, seismic and petro-physical investigations of the lithosphere-asthenosphere boundary in central Tibet

    NASA Astrophysics Data System (ADS)

    Vozar, J.; Fullea, J.; Jones, A. G.; Agius, M. R.; Lebedev, S.

    2011-12-01

    Combined seismological and electromagnetic investigations of the lithosphere and underlying asthenosphere have the potential to yield superior inferences than using either one on its own. Central Tibet offers an excellent natural laboratory for testing such approaches, given the high quality seismological and magnetotelluric (MT) data available as a consequence of INDEPTH studies. In particular, the presence and lateral and vertical extent of the Indian lithosphere beneath Tibet is highly debated. Integrated petrological-geophysical modeling of MT and surface-wave data, which are differently sensitive to temperature and composition, allows us to reduce the uncertainties associated with modeling these two data sets independently, as commonly undertaken. For the MT data, we use selected distortion-corrected MT transfer functions, from INDEPTH Phase III line 500 across central Tibet for 1D modeling. The selected data fit well the 1D assumption and exhibit large penetration depth. Our deep resistivity models can be classified into two different groups: i) the Lhasa Terrane and ii) the Qiangtang Terrane. For the Lhasa Terrane group, the models show the existence of two high conductive layers localized at depths of 60-80 km and more than 200 km, whereas for the Qiangtang Terrane these conductive layers appears to be occur at shallower depths, namely 30-50 km and 120 km depth respectively. Our dispersion curves for Rayleigh and Love surface waves were measured using seismograms recorded by stations of INDEPTH and PASSCAL experiments. Dispersion curves for central Lhasa and Qiangtang terranes show similarly low phase velocities at periods sampling the thick crust beneath the regions, but differ at periods sampling the mantle. Inverting the dispersion data for 1D, radially-anisotropic Vs profiles, we find that beneath central Qiangtang terrane shear velocity is lower than the global average down to 75 km below the Moho, indicating relatively high temperatures, whereas beneath Central Lhasa terrane S-velocities are close to global-average values. We perform the integrated petro-physical modeling of MT and surface-wave data using the software package LitMod. The program facilitates definition of realistic temperature and pressure distributions within the upper mantle, and characterizes the mineral assemblages given bulk chemical compositions as well as water content. This allows us to firstly define a bulk geoelectric and seismic model of the upper mantle based on laboratory and xenolith data for the most relevant mantle minerals, and secondly to compute synthetic geophysical observables that are compared with measured data (i.e., MT responses, surface-wave dispersion curves, topography, and surface heat flow). Our preliminary results suggest an 80-120 km-thick, dry lithosphere in the central part of the Qiangtang Terrane. In the central Lhasa Terrane the data can be explained by a relatively warm 100-120 km-thick Tibetian lithosphere underlain by an 80-120-km-thick Indian lithosphere. The mid-lower crust in Lhasa shows strong seismic and electric anisotropy, with a predominant E-W oriented high velocity/conductivity axis.

  18. Local earthquake tomography with the inclusion of full topography and its application to Kīlauea volcano, Hawai'i

    NASA Astrophysics Data System (ADS)

    Li, Peng; Lin, Guoqing

    2016-04-01

    We develop a new three-dimensional local earthquake tomography algorithm with the inclusion of full topography (LETFT). We present both synthetic and real data tests based on the P- and S-wave arrival time data for Kīlauea volcano in Hawai'i. A total of 33,768 events with 515,711 P-picks and 272,217 S-picks recorded by 35 stations at the Hawaiian Volcano Observatory are used in these tests. The comparison between the new and traditional methods based on the synthetic test shows that our new algorithm significantly improves the accuracy of the velocity model, especially at shallow depths. In the real data application, the P- and S-wave velocity models of Kīlauea show several intriguing features. We observe discontinuous high Vp (> 7.0 km/s) and Vs (> 3.9 km/s) zones at 5-14 km depth below Kīlauea caldera, its East Rift Zone (ERZ) and the Southwest Rift Zone, which may represent consolidated intrusive gabbro-ultramafic cumulates. At Kīlauea caldera, Vp and Vs decrease from ~ 3.9 km/s and ~ 2.6 km/s from the surface to ~ 3.7 km/s and ~ 2.3 km/s at 2 km depth. We resolve a high Vp zone (> 7.0 km/s) at 5-14 km depth and high Vs zone (> 3.9 km/s) at 5-11 km depth. This high Vp and Vs zone extends to the north of the ERZ at 5-10 km depth and to the upper ERZ at 8-12 km depth. In the Hilina Fault System, there is a high Vp layer (~ 7.0 km/s) at 4-6 km depth and a low Vp body of ~ 5.7 km/s at 6-11 km depth. The high Vp layer could be associated with the intrusive ultramafic gabbro sills. The velocity contrast on the north and south sides of the Koa'e Fault System indicates that the intrusive activities mainly occur to the north of the fault. Our new LETFT method performs well in both the synthetic and real data tests and we expect that it will reveal more robust velocity structures in areas with larger topographic variations.

  19. Nicotinamide riboside, an unusual, non-typical, substrate of purified purine-nucleoside phosphorylases.

    PubMed

    Wielgus-Kutrowska, B; Kulikowska, E; Wierzchowski, J; Bzowska, A; Shugar, D

    1997-01-15

    Nicotinamide 1-beta-D-riboside (Nir), the cationic, reducible moiety of the coenzyme NAD+, has been confirmed as an unusual substrate for purified purine-nucleoside phosphorylase (PNP) from a mammalian source (calf spleen). It is also a substrate of the enzyme from Escherichia coli. The Km values at pH 7, 1.48 mM and 0.62 mM, respectively, were 1-2 orders of magnitude higher than for the natural substrate inosine, but the Vmax values were comparable, 96% and 35% that for Ino. The pseudo first-order rate constants, Vmax/Km, were 1.1% and 2.5% for the calf spleen and E. coli enzymes. The aglycon, nicotinamide, was neither a substrate nor an inhibitor of PNP. Nir was a weak inhibitor of inosine phosphorolysis catalyzed by both enzymes, with Ki values close to the Km for its phosphorolysis, consistent with simple competitive inhibition; this was further confirmed by Dixon plots. Phosphorolysis of the fluorescent positively charged substrate 7-methylguanosine was also inhibited in a competitive manner by both Ino and Nir. Phosphorolysis of Nir by both enzymes was inhibited competitively by several specific inhibitors of calf spleen and E. coli PNP, with Ki values similar to those for inhibition of other natural substrates. The pH dependence of the kinetic constants for the phosphorolysis of Nir and of a variety of other substrates, was extensively investigated, particularly in the alkaline pH range, where Nir exhibited abnormally high substrate activity relative to the reduced reaction rates of both enzymes towards other anionic or neutral substrates. The overall results are discussed in relation to present concepts regarding binding and phosphorolysis of substrates by PNP based on crystallographic data of enzyme-inhibitor complexes, and current studies on enzymatic and nonenzymatic mechanisms of the cleavage of the Nir glycosidic bond.

  20. The suitability of using dissolved gases to determine groundwater discharge to high gradient streams

    USGS Publications Warehouse

    Gleeson, Tom; Manning, Andrew H.; Popp, Andrea; Zane, Mathew; Clark, Jordan F.

    2018-01-01

    Determining groundwater discharge to streams using dissolved gases is known to be useful over a wide range of streamflow rates but the suitability of dissolved gas methods to determine discharge rates in high gradient mountain streams has not been sufficiently tested, even though headwater streams are critical as ecological habitats and water resources. The aim of this study is to test the suitability of using dissolved gases to determine groundwater discharge rates to high gradient streams by field experiments in a well-characterized, high gradient mountain stream and a literature review. At a reach scale (550 m) we combined stream and groundwater radon activity measurements with an in-stream SF6 tracer test. By means of numerical modeling we determined gas exchange velocities and derived very low groundwater discharge rates (∼15% of streamflow). These groundwater discharge rates are below the uncertainty range of physical streamflow measurements and consistent with temperature, specific conductance and streamflow measured at multiple locations along the reach. At a watershed-scale (4 km), we measured CFC-12 and δ18O concentrations and determined gas exchange velocities and groundwater discharge rates with the same numerical model. The groundwater discharge rates along the 4 km stream reach were highly variable, but were consistent with the values derived in the detailed study reach. Additionally, we synthesized literature values of gas exchange velocities for different stream gradients which show an empirical relationship that will be valuable in planning future dissolved gas studies on streams with various gradients. In sum, we show that multiple dissolved gas tracers can be used to determine groundwater discharge to high gradient mountain streams from reach to watershed scales.

  1. The suitability of using dissolved gases to determine groundwater discharge to high gradient streams

    NASA Astrophysics Data System (ADS)

    Gleeson, Tom; Manning, Andrew H.; Popp, Andrea; Zane, Matthew; Clark, Jordan F.

    2018-02-01

    Determining groundwater discharge to streams using dissolved gases is known to be useful over a wide range of streamflow rates but the suitability of dissolved gas methods to determine discharge rates in high gradient mountain streams has not been sufficiently tested, even though headwater streams are critical as ecological habitats and water resources. The aim of this study is to test the suitability of using dissolved gases to determine groundwater discharge rates to high gradient streams by field experiments in a well-characterized, high gradient mountain stream and a literature review. At a reach scale (550 m) we combined stream and groundwater radon activity measurements with an in-stream SF6 tracer test. By means of numerical modeling we determined gas exchange velocities and derived very low groundwater discharge rates (∼15% of streamflow). These groundwater discharge rates are below the uncertainty range of physical streamflow measurements and consistent with temperature, specific conductance and streamflow measured at multiple locations along the reach. At a watershed-scale (4 km), we measured CFC-12 and δ18O concentrations and determined gas exchange velocities and groundwater discharge rates with the same numerical model. The groundwater discharge rates along the 4 km stream reach were highly variable, but were consistent with the values derived in the detailed study reach. Additionally, we synthesized literature values of gas exchange velocities for different stream gradients which show an empirical relationship that will be valuable in planning future dissolved gas studies on streams with various gradients. In sum, we show that multiple dissolved gas tracers can be used to determine groundwater discharge to high gradient mountain streams from reach to watershed scales.

  2. An expert knowledge-based approach to landslide susceptibility mapping using GIS and fuzzy logic

    NASA Astrophysics Data System (ADS)

    Zhu, A.-Xing; Wang, Rongxun; Qiao, Jianping; Qin, Cheng-Zhi; Chen, Yongbo; Liu, Jing; Du, Fei; Lin, Yang; Zhu, Tongxin

    2014-06-01

    This paper presents an expert knowledge-based approach to landslide susceptibility mapping in an effort to overcome the deficiencies of data-driven approaches. The proposed approach consists of three generic steps: (1) extraction of knowledge on the relationship between landslide susceptibility and predisposing factors from domain experts, (2) characterization of predisposing factors using GIS techniques, and (3) prediction of landslide susceptibility under fuzzy logic. The approach was tested in two study areas in China - the Kaixian study area (about 250 km2) and the Three Gorges study area (about 4600 km2). The Kaixian study area was used to develop the approach and to evaluate its validity. The Three Gorges study area was used to test both the portability and the applicability of the developed approach for mapping landslide susceptibility over large study areas. Performance was evaluated by examining if the mean of the computed susceptibility values at landslide sites was statistically different from that of the entire study area. A z-score test was used to examine the statistical significance of the difference. The computed z for the Kaixian area was 3.70 and the corresponding p-value was less than 0.001. This suggests that the computed landslide susceptibility values are good indicators of landslide occurrences. In the Three Gorges study area, the computed z was 10.75 and the corresponding p-value was less than 0.001. In addition, we divided the susceptibility value into four levels: low (0.0-0.25), moderate (0.25-0.5), high (0.5-0.75) and very high (0.75-1.0). No landslides were found for areas of low susceptibility. Landslide density was about three times higher in areas of very high susceptibility than that in the moderate susceptibility areas, and more than twice as high as that in the high susceptibility areas. The results from the Three Gorge study area suggest that the extracted expert knowledge can be extrapolated to another study area and the developed approach can be used in large-scale projects. Results from these case studies suggest that the expert knowledge-based approach is effective in mapping landslide susceptibility and that its performance is maintained when it is moved to a new area from the model development area without changes to the knowledge base.

  3. Analysis of the perihelic passages of the comet 1P/Halley in 1910 and in 1986

    NASA Astrophysics Data System (ADS)

    Voelzke, Marcos Rincon

    2016-07-01

    This work is based on a systematic analysis of images of 1P/Halley comet collected during its penultimate and ultimate approaches, i.e., in 1910 and in 1986. The present research basically characterised, identified, classified, measured and compared some of the tail structures of comet 1P/Halley like DEs, wavy structures and solitons. The images illustrated in the Atlas of Comet Halley 1910 II (Donn et al., 1986), which shows the comet in its 1910 passage, were compared with the images illustrated in The International Halley Watch Atlas of Large-Scale Phenomena (Brandt et al., 1992), which shows the comet in its 1986 passage. While two onsets of DEs were discovered after the perihelion passage in 1910, the average value of the corrected cometocentric velocity Vc was (57 ± 15) km/s; ten were discovered after the perihelion passage in 1986 with an average of corrected velocities equal to (130 ± 37) km/s. The mean value of the corrected wavelength of wavy structures, in 1910, is equal to (1.7 ± 0.1) x 10 ^{6} km and in 1986 is (2.2 ± 0.2) x 10 ^{6} km. The mean value of the amplitude A of the wave, in 1910, is equal to (1.4 ± 0.1) x 10 ^{5} km and in 1986 it is equal to (2.8 ± 0.5) x 10 ^{5} km. The goals of this research are to report the results obtained from the analysis of the P/Halleýs 1910 and 1986 images, to provide empirical data for comparison and to form the input for future physical/theoretical work.

  4. Comparative analysis of images of comet 1P/Halley in their perihelion passages in 1910 and 1986

    NASA Astrophysics Data System (ADS)

    Voelzke, Marcos Rincon

    This work is based on a systematic analysis of images of 1P/Halley comet collected during its penultimate and ultimate approaches, i.e., in 1910 and in 1986. The present research basically characterised, identified, classified, measured and compared some of the tail structures of comet 1P/Halley like DEs, wavy structures and solitons. The images illustrated in the Atlas of Comet Halley 1910 II (Donn et al., 1986), which shows the comet in its 1910 passage, were compared with the images illustrated in The International Halley Watch Atlas of Large-Scale Phenomena (Brandt et al., 1992), which shows the comet in its 1986 passage. While two onsets of DEs were discovered after the perihelion passage in 1910, the average value of the corrected cometocentric velocity Vc was (57 ± 15) km s (-1) ; ten were discovered after the perihelion passage in 1986 with an average of corrected velocities equal to (130 ± 37) km s (-1) .The mean value of the corrected wavelength of wavy structures, in 1910, is equal to (1.7 ± 0.1) x 10 (6) km and in 1986 is (2.2 ± 0.2) x 10 (6) km. The mean value of the amplitude A of the wave, in 1910, is equal to (1.4 ± 0.1) x 10 (5) km and in 1986 it is equal to (2.8 ± 0.5) x 10 (5) km. The goals of this research are to report the results obtained from the analysis of the P/Halleýs 1910 and 1986 images, to provide empirical data for comparison and to form the input for future physical/theoretical work.

  5. Analysis of the morphological structures of comet 1P/Halley in their perihelion passages in 1910 and 1986

    NASA Astrophysics Data System (ADS)

    Voelzke, Marcos Rincon

    2015-08-01

    This work is based on a systematic analysis of images of 1P/Halley comet collected during its penultimate and ultimate approaches, i.e., in 1910 and in 1986. The present research basically characterised, identified, classified, measured and compared some of the tail structures of comet 1P/Halley like DEs, wavy structures and solitons. The images illustrated in the Atlas of Comet Halley 1910 II (Donn et al., 1986), which shows the comet in its 1910 passage, were compared with the images illustrated in The International Halley Watch Atlas of Large-Scale Phenomena (Brandt et al., 1992), which shows the comet in its 1986 passage. While two onsets of DEs were discovered after the perihelion passage in 1910, the average value of the corrected cometocentric velocity Vc was (57 ± 15) km/s ; ten were discovered after the perihelion passage in 1986 with an average of corrected velocities equal to (130 ± 37) km/s .The mean value of the corrected wavelength of wavy structures, in 1910, is equal to (1.7 ± 0.1) x 106 km and in 1986 is (2.2 ± 0.2) x 106 km. The mean value of the amplitude A of the wave, in 1910, is equal to (1.4 ± 0.1) x 105 km and in 1986 it is equal to (2.8 ± 0.5) x 105 km. The goals of this research are to report the results obtained from the analysis of the P/Halleýs 1910 and 1986 images, to provide empirical data for comparison and to form the input for future physical/theoretical work.

  6. Sedimentary 4-desmethyl sterols and n-alkanols in an eutrophic urban estuary, Capibaribe River, Brazil.

    PubMed

    Fernandes, M B; Sicre, M A; Cardoso, J N; Macêdo, S J

    1999-06-15

    Sterols, n-alkanols, organic carbon (OC), C/N ratios and carbon isotope data (delta 13C) were investigated in sediments of the urban Capibaribe River estuary, NE Brazil, in order to assess allochthonous and autochthonous sources of organic matter (OM). Sedimentary OC values are high, but C/N ratios and delta 13C data generally fall within the range of values reported in other riverine systems, and suggest mixed inputs from aquatic and terrestrial matter. Mean values for total 4-desmethyl sterols and high molecular weight (HMW) n-alkanols are 11.0 micrograms/g and 2.8 micrograms/g, respectively. Sterols are found at highest levels in areas of enhanced urban outfalls. They can be related to major planktonic species growing in riverine waters. Stanol/stenol ratios suggest a high degree of alteration of the autochthonous OM as a result of elevated temperatures and microbiological proliferation. Even though sterols suggest the importance of autochthonous inputs to the river, HMW n-alkanols indicate major terrigenous accumulation at the mouth and 10 km upriver. Coprostanol and epicoprostanol levels are comparable to other sewage contaminated hydrosystems, but not as high as expected given the importance of sewage outfalls and low riverine water discharge. However, high (coprostanol)/(coprostanol + cholestanol) ratio values indicate that fecal contamination is significant.

  7. Exceptionally high abundances of microplastics in the oligotrophic Israeli Mediterranean coastal waters.

    PubMed

    van der Hal, Noam; Ariel, Asaf; Angel, Dror L

    2017-03-15

    Seasonal sea surface microplastic distribution was recorded at 17 sites along the Israeli Mediterranean coast. Microplastics (0.3-5mm) were found in all samples, with a mean abundance of 7.68±2.38particles/m 3 or 1,518,340particles/km 2 . Some areas had higher abundances of microplastics than others, although differences were neither consistent nor statistically significant. In some cases microplastic particles were found floating in large patches. One of these patches contained an extraordinary number of plastic particles; 324particles/m 3 or 64,812,600particles/km 2 . Microplastic abundances in Israeli coastal waters are disturbingly high; mean values were 1-2 orders of magnitude higher than abundances reported in other parts of the world. Light-colored (white or transparent) fragments were by far more abundant than all other microplastic colors and types. The results of this study underline the need for action to reduce the flux of plastics to the marine environment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Ecosystem development of Haizhou Bay Ecological Restoration Area from 2003 to 2013

    NASA Astrophysics Data System (ADS)

    Wang, Teng; Li, Yunkai; Xie, Bin; Zhang, Hu; Zhang, Shuo

    2017-12-01

    Two Ecopath mass-balance models were implemented for evaluating the structure and function of Haizhou Bay Ecological Restoration Area ecosystem using 14 ecological indicators in two distinctive years (2003 and 2013). The results showed that the size of HZERA ecosystem became larger as total biomass was increased in last decade, especially in primary producer and zooplankton groups. Total system throughput increased from 7496.00 t km-2 yr-1 to 9547.54 t km-2 yr-1. The P/R (production/respiration) ratio decreased over the decade. Finn's cycling index and Finn's mean path length increased over the decade. No keystone species (KS) occurred during ten years; however, evidences of top-down control in 2003 and 2013 models were demonstrated by high KS value belonging to Lophius litulon group in food web. Drawing upon Odum's theory of ecosystem maturity, the structured, web-like ecosystem of 2013 model had developed into a highly mature system compared with that of 2003 model.

  9. Shuttle high resolution accelerometer package experiment results - Atmospheric density measurements between 60-160 km

    NASA Technical Reports Server (NTRS)

    Blanchard, R. C.; Hinson, E. W.; Nicholson, J. Y.

    1988-01-01

    Indirect or inferred values of atmospheric density encountered by the Shuttle Orbiter during reentry have been calculated from acceleration measurements made by the High Resolution Accelerometer Package (HiRAP) and the Orbiter Inertial Measurement Unit (IMU) liner accelerometers. The atmospheric density data developed from this study represent a significant gain with respect to the body of data collected to date by various techniques in the altitude range of 60 to 160 km. The data are unique in that they cover a very wide horizontal range during each flight and provide insight into the actual density variations encountered along the reentry flight path. The data, which were collected over about 3 years, are also characterized by variations in solar activity, geomagnetic index, and local solar time. Comparison of the flight-derived densities with various atmospheric models have been made, and analyses have attempted to characterize the data and to show correlation with selected physical variables.

  10. Forecasting Lightning Threat Using WRF Proxy Fields

    NASA Technical Reports Server (NTRS)

    McCaul, E. W., Jr.

    2010-01-01

    Objectives: Given that high-resolution WRF forecasts can capture the character of convective outbreaks, we seek to: 1. Create WRF forecasts of LTG threat (1-24 h), based on 2 proxy fields from explicitly simulated convection: - graupel flux near -15 C (captures LTG time variability) - vertically integrated ice (captures LTG threat area). 2. Calibrate each threat to yield accurate quantitative peak flash rate densities. 3. Also evaluate threats for areal coverage, time variability. 4. Blend threats to optimize results. 5. Examine sensitivity to model mesh, microphysics. Methods: 1. Use high-resolution 2-km WRF simulations to prognose convection for a diverse series of selected case studies. 2. Evaluate graupel fluxes; vertically integrated ice (VII). 3. Calibrate WRF LTG proxies using peak total LTG flash rate densities from NALMA; relationships look linear, with regression line passing through origin. 4. Truncate low threat values to make threat areal coverage match NALMA flash extent density obs. 5. Blend proxies to achieve optimal performance 6. Study CAPS 4-km ensembles to evaluate sensitivities.

  11. The Dallas-Fort Worth Airport Earthquake Sequence: Seismicity Beyond Injection Period

    NASA Astrophysics Data System (ADS)

    Ogwari, Paul O.; DeShon, Heather R.; Hornbach, Matthew J.

    2018-01-01

    The 2008 Dallas-Fort Worth Airport earthquakes mark the beginning of seismicity rate changes linked to oil and gas operations in the central United States. We assess the spatial and temporal evolution of the sequence through December 2015 using template-based waveform correlation and relative location methods. We locate 400 earthquakes spanning 2008-2015 along a basement fault mapped as the Airport fault. The sequence exhibits temporally variable b values, and small-magnitude (m < 3.4) earthquakes spread northeast along strike over time. Pore pressure diffusion models indicate that the high-volume brine injection well located within 1 km of the 2008 earthquakes, although only operating from September 2008 to August 2009, contributes most significantly to long-term pressure perturbations, and hence stress changes, along the fault; a second long-operating, low-volume injector located 10 km north causes insufficient pressure changes. High-volume injection for a short time period near a critically stressed fault can induce long-lasting seismicity.

  12. Genetic and Biochemical Characterization of a Novel Metallo-β-Lactamase, TMB-1, from an Achromobacter xylosoxidans Strain Isolated in Tripoli, Libya

    PubMed Central

    El Salabi, Allaaeddin; Borra, Pardha Saradhi; Toleman, Mark A.; Samuelsen, Ørjan

    2012-01-01

    An Achromobacter xylosoxidans strain from the Tripoli central hospital produced a unique metallo-β-lactamase, designated TMB-1, which is related to DIM-1 (62%) and GIM-1 (51%). blaTMB-1 was embedded in a class 1 integron and located on the chromosome. The TMB-1 β-lactamase has lower kcat values than both DIM-1 and GIM-1 with cephalosporins and carbapenems. The Km values were more similar to those of GIM-1 than those of DIM-1, with the overall kcat/Km values being lower than those for GIM-1 and DIM-1. PMID:22290947

  13. Integrated seismic model of the crust and upper mantle of the Trans-European Suture zone between the Precambrian craton and Phanerozoic terranes in Central Europe

    NASA Astrophysics Data System (ADS)

    Wilde-Piórko, Monika; Świeczak, Marzena; Grad, Marek; Majdański, Mariusz

    2010-01-01

    The structure and evolution of the Trans-European Suture zone (TESZ), contact between Precambrian Europe to the northeast and Phanerozoic terranes to the southwest is one of the main tectonic questions in Europe. The knowledge of the crustal structure, lithosphere-asthenosphere boundary and mantle transition zone between two seismic discontinuities at depths "410" and "660" km, is one of the most important issues to understand the Earth's dynamics. To create a mantle model of the TESZ and surroundings we used different seismic data collected along the 950 km long POLONAISE'97 profile P4. Previous results of 2-D ray-tracing and P-wave travel time modelling and new results of P-wave travel time residuals methods and receiver function sections provide facts about the seismic structure from the surface down to 900 km depth. In the TESZ a large basin, about 125 km wide, is filled with sedimentary strata (Vp < 6.0 km s - 1 ) to about 20 km depth. This basin is asymmetric with its northeast margin being most abrupt. The crystalline crust under this basin is only about 20 km thick today indicating that the lithosphere of Baltica was either thinned drastically or terminated along the northeast margin of the basin. The East European craton (EEC) has a ~ 45 km thick three-layered crust. The crust of the accreted terranes to the southwest is relatively thin (~ 30 km) and similar to that found in other non-cratonal areas of Western Europe. The lower crust is relatively fast (Vp > 7.0 km s - 1 ) along most of the P4 profile. However, lower values to the southwest may indicate the termination of Baltica. High velocity (~ 8.35 km s - 1 ) uppermost mantle lies beneath the Avalonia/Variscan terranes, and may be due to rifting and/or subduction. The seismic lithosphere thickness for the EEC is about 200 km, while it is only 90 km in the Palaeozoic platform (PP). The mantle transition zone is shallower and about 30 km thicker under the EEC, which could be due to thermal conditions (lower temperature) and/or the presence of water and FeO. The result of this paper is a new compiled and integrated seismic velocity model, available in digital form down to 900 km depth ( http://www.igf.fuw.edu.pl/p4-mantle), which can be used as a preliminary model of the crust and upper mantle in the TESZ area in Central Europe.

  14. Spatio-temporal dimension of lightning flashes based on three-dimensional Lightning Mapping Array

    NASA Astrophysics Data System (ADS)

    López, Jesús A.; Pineda, Nicolau; Montanyà, Joan; Velde, Oscar van der; Fabró, Ferran; Romero, David

    2017-11-01

    3D mapping system like the LMA - Lightning Mapping Array - are a leap forward in lightning observation. LMA measurements has lead to an improvement on the analysis of the fine structure of lightning, allowing to characterize the duration and maximum extension of the cloud fraction of a lightning flash. During several years of operation, the first LMA deployed in Europe has been providing a large amount of data which now allows a statistical approach to compute the full duration and horizontal extension of the in-cloud phase of a lightning flash. The "Ebro Lightning Mapping Array" (ELMA) is used in the present study. Summer and winter lighting were analyzed for seasonal periods (Dec-Feb and Jun-Aug). A simple method based on an ellipse fitting technique (EFT) has been used to characterize the spatio-temporal dimensions from a set of about 29,000 lightning flashes including both summer and winter events. Results show an average lightning flash duration of 440 ms (450 ms in winter) and a horizontal maximum length of 15.0 km (18.4 km in winter). The uncertainties for summer lightning lengths were about ± 1.2 km and ± 0.7 km for the mean and median values respectively. In case of winter lightning, the level of uncertainty reaches up to 1 km and 0.7 km of mean and median value. The results of the successful correlation of CG discharges with the EFT method, represent 6.9% and 35.5% of the total LMA flashes detected in summer and winter respectively. Additionally, the median value of lightning lengths calculated through this correlative method was approximately 17 km for both seasons. On the other hand, the highest median ratios of lightning length to CG discharges in both summer and winter were reported for positive CG discharges.

  15. The Interaction between Logjams, Channel Evolution, and Sports Fisheries on a Dam Regulated Low Gradient River.

    NASA Astrophysics Data System (ADS)

    Schenk, E.; Hupp, C. R.; Moulin, B.

    2014-12-01

    The purpose of our study was to determine the interaction between in-stream large wood (LW), bank erosion, and sports fisheries in the 210 river kilometer (km) Coastal Plain segment of the dam-regulated Roanoke River, North Carolina. Methods included collecting background geomorphic data including a 200 km channel geometry survey and measurements from 701 bank erosion pins at 36 cross-sections over 132 km. LW concentrations were evaluated over a 177 km reach using georeferenced aerial video taken during regulated low flow (56 m3/s). LW transport was measured using 290 radio tagged LW pieces (mean diameter = 35.0 cm, length = 9.3 m) installed between 2008 and 2010. Largemouth bass (Micropterus salmoides) were surveyed in 2010 at 29 sites using a boat mounted electroshock unit. The abundance of LW in logjams was 59 pieces/km and these were concentrated (21.5 logjams/km) in an actively eroding reach with relatively high sinuosity, high local LW production rates, and narrow channel widths. Most jams (70%) are available nearly year round as aquatic habitat, positioned either on the lower bank or submerged at low-water flows. The actively eroding reach is adjusting to upstream dam regulation by channel widening. The channel upstream of this reach has widened and stabilized while the channel downstream of the eroding reach is still relatively narrow but with lower bank erosion rates. Repeat surveys of radio tagged LW determined that transport was common throughout the study area despite dam regulation and a low channel gradient (0.0016). The mean distance travelled by a radio tagged piece of LW was 11.9 km with a maximum of 101 km (84 tags moved, 96 stationary, 110 not found). Radio tagged LW that moved during the study was found at low flow either in logjams (44%), as individual LW (43%), or submerged mid-channel (14%). Largemouth bass biomass density (g/hr effort) was highest in the actively eroding reach where logjams were most common. Our results support the hypothesis that channel evolution processes control bank stability and complexity that in turn control logjam frequency. Areas with higher concentrations of logjams have larger and more largemouth bass, a valued sports fish.

  16. New Observations of Subarcsecond Photospheric Bright Points

    NASA Technical Reports Server (NTRS)

    Berger, T. E.; Schrijver, C. J.; Shine, R. A.; Tarbell, T. D.; Title, A. M.; Scharmer, G.

    1995-01-01

    We have used an interference filter centered at 4305 A within the bandhead of the CH radical (the 'G band') and real-time image selection at the Swedish Vacuum Solar Telescope on La Palma to produce very high contrast images of subarcsecond photospheric bright points at all locations on the solar disk. During the 6 day period of 15-20 Sept. 1993 we observed active region NOAA 7581 from its appearance on the East limb to a near-disk-center position on 20 Sept. A total of 1804 bright points were selected for analysis from the disk center image using feature extraction image processing techniques. The measured FWHM distribution of the bright points in the image is lognormal with a modal value of 220 km (0.30 sec) and an average value of 250 km (0.35 sec). The smallest measured bright point diameter is 120 km (0.17 sec) and the largest is 600 km (O.69 sec). Approximately 60% of the measured bright points are circular (eccentricity approx. 1.0), the average eccentricity is 1.5, and the maximum eccentricity corresponding to filigree in the image is 6.5. The peak contrast of the measured bright points is normally distributed. The contrast distribution variance is much greater than the measurement accuracy, indicating a large spread in intrinsic bright-point contrast. When referenced to an averaged 'quiet-Sun' area in the image, the modal contrast is 29% and the maximum value is 75%; when referenced to an average intergranular lane brightness in the image, the distribution has a modal value of 61% and a maximum of 119%. The bin-averaged contrast of G-band bright points is constant across the entire measured size range. The measured area of the bright points, corrected for pixelation and selection effects, covers about 1.8% of the total image area. Large pores and micropores occupy an additional 2% of the image area, implying a total area fraction of magnetic proxy features in the image of 3.8%. We discuss the implications of this area fraction measurement in the context of previously published measurements which show that typical active region plage has a magnetic filling factor on the order of 10% or greater. The results suggest that in the active region analyzed here, less than 50% of the small-scale magnetic flux tubes are demarcated by visible proxies such as bright points or pores.

  17. Lithospheric-Mantle Structure of the Kaapvaal Craton, South Africa, Derived From Thermodynamically Self-Consistent Modelling of Seismic Surface-Wave and S-wave Receiver Function, Heat-flow, Elevation, Xenolith and Magnetotelluric Observations

    NASA Astrophysics Data System (ADS)

    Muller, M. R.; Fullea, J.; Jones, A. G.; Adam, J.; Lebedev, S.; Piana Agostinetti, N.

    2012-12-01

    Results from recent geophysical and mantle-xenolith geochemistry studies of the Kaapvaal Craton appear, at times, to provide disparate views of the physical, chemical and thermal structure of the lithosphere. Models from our recent SAMTEX magnetotelluric (MT) surveys across the Kaapvaal Craton indicate a resistive, 220-240 km thick lithosphere for the central core of the craton. One published S-wave receiver function (SRF) study and other surface-wave studies suggest a thinner lithosphere characterised by a ~160 km thick high-velocity "lid" underlain by a low-velocity zone (LVZ) of between 65-150 km in thickness. Other seismic studies suggest that the (high-velocity) lithosphere is thicker, in excess of 220 km. Mantle xenolith pressure-temperature arrays from Mesozoic kimberlites require that the base of the "thermal" lithosphere (i.e., the depth above which a conductive geotherm is maintained) is at least 220 km deep, to account for mantle geotherms in the range 35-38 mWm-2. Richly diamondiferous kimberlites across the Kaapvaal Craton require a lithospheric thickness substantially greater than 160 km - the depth of the top of the diamond stability field. In this paper we use the recently developed LitMod software code to derive, thermodynamically consistently, a range of 1-D seismic velocity, density, electrical resistivity and temperature models from layered geochemical models of the lithosphere based on mantle xenolith compositions. In our work, the "petrological" lithosphere-asthenosphere boundary (pLAB) (i.e., the top of the fertile asthenospheric-mantle) and the "thermal" LAB (tLAB as defined above) are coincident. Lithospheric-mantle models are found simultaneously satisfying all geophysical observables: new surface-wave dispersion data, published SRFs, MT responses, surface elevation and heat-flow. Our results show: 1. All lithospheric-mantle models are characterised by a seismic LVZ with a minimum velocity at the depth of the petrological/thermal LAB. The top of the LVZ does not correspond with the LAB. 2. Thin (~160 km-thick) lithospheric-mantle models are consistent with surface elevation and heat-flow observations only for unreasonably low average crustal heat production values (~0.4 μWm-3). However, such models are inconsistent both with the surface-wave dispersion data and youngest (Group I) palaeo-geotherms defined by xenolith P-T arrays. 3. A three-layered geochemical model (consistent with mantle xenoliths), with lithospheric thickness in excess of 220 km, is required to match all geophysical constraints. 4. The chemical transition from a depleted harzburgitic composition (above) to a refertilised high-T lherzolitic composition (below) at 160 km depth produces a sharp onset of the seismic LVZ and a sharp increase in density. Synthetic SRFs will assess whether this chemical transition may account for the reported S-to-P conversion event at 160 km depth. However, in this this instance the SRF conversion event would not represent the petrological/thermal LAB.

  18. The high-resolution regional reanalysis COSMO-REA6

    NASA Astrophysics Data System (ADS)

    Ohlwein, C.

    2016-12-01

    Reanalyses gain more and more importance as a source of meteorological information for many purposes and applications. Several global reanalyses projects (e.g., ERA, MERRA, CSFR, JMA9) produce and verify these data sets to provide time series as long as possible combined with a high data quality. Due to a spatial resolution down to 50-70km and 3-hourly temporal output, they are not suitable for small scale problems (e.g., regional climate assessment, meso-scale NWP verification, input for subsequent models such as river runoff simulations). The implementation of regional reanalyses based on a limited area model along with a data assimilation scheme is able to generate reanalysis data sets with high spatio-temporal resolution. Within the Hans-Ertel-Centre for Weather Research (HErZ), the climate monitoring branch concentrates efforts on the assessment and analysis of regional climate in Germany and Europe. In joint cooperation with DWD (German Meteorological Service), a high-resolution reanalysis system based on the COSMO model has been developed. The regional reanalysis for Europe matches the domain of the CORDEX EURO-11 specifications, albeit at a higher spatial resolution, i.e., 0.055° (6km) instead of 0.11° (12km) and comprises the assimilation of observational data using the existing nudging scheme of COSMO complemented by a special soil moisture analysis with boundary conditions provided by ERA-Interim data. The reanalysis data set covers the past 20 years. Extensive evaluation of the reanalysis is performed using independent observations with special emphasis on precipitation and high-impact weather situations indicating a better representation of small scale variability. Further, the evaluation shows an added value of the regional reanalysis with respect to the forcing ERA Interim reanalysis and compared to a pure high-resolution dynamical downscaling approach without data assimilation.

  19. A high-resolution regional reanalysis for Europe

    NASA Astrophysics Data System (ADS)

    Ohlwein, C.

    2015-12-01

    Reanalyses gain more and more importance as a source of meteorological information for many purposes and applications. Several global reanalyses projects (e.g., ERA, MERRA, CSFR, JMA9) produce and verify these data sets to provide time series as long as possible combined with a high data quality. Due to a spatial resolution down to 50-70km and 3-hourly temporal output, they are not suitable for small scale problems (e.g., regional climate assessment, meso-scale NWP verification, input for subsequent models such as river runoff simulations). The implementation of regional reanalyses based on a limited area model along with a data assimilation scheme is able to generate reanalysis data sets with high spatio-temporal resolution. Within the Hans-Ertel-Centre for Weather Research (HErZ), the climate monitoring branch concentrates efforts on the assessment and analysis of regional climate in Germany and Europe. In joint cooperation with DWD (German Meteorological Service), a high-resolution reanalysis system based on the COSMO model has been developed. The regional reanalysis for Europe matches the domain of the CORDEX EURO-11 specifications, albeit at a higher spatial resolution, i.e., 0.055° (6km) instead of 0.11° (12km) and comprises the assimilation of observational data using the existing nudging scheme of COSMO complemented by a special soil moisture analysis with boundary conditions provided by ERA-Interim data. The reanalysis data set covers the past 20 years. Extensive evaluation of the reanalysis is performed using independent observations with special emphasis on precipitation and high-impact weather situations indicating a better representation of small scale variability. Further, the evaluation shows an added value of the regional reanalysis with respect to the forcing ERA Interim reanalysis and compared to a pure high-resolution dynamical downscaling approach without data assimilation.

  20. SAM II aerosol profile measurements, Poker Flat, Alaska; July 16-19, 1979

    NASA Technical Reports Server (NTRS)

    Mccormick, M. P.; Chu, W. P.; Mcmaster, L. R.; Grams, G. W.; Herman, B. M.; Pepin, T. J.; Russell, P. B.; Swissler, T. J.

    1981-01-01

    SAM II satellite measurements during the July 1979 Poker Flat mission, yielded an aerosol extinction coefficient of 0.0004/km at 1.0 micron wavelength, in the region of the stratospheric aerosol mixing ratio peak (12-16 km). The stratospheric aerosol optical depth for these data, calculated from the tropopause through 30 km, is approximately 0.001. These results are consistent with the average 1979 summertime values found throughout the Arctic.

  1. Gravity field and nature of continent-continent collision along the Himalaya

    NASA Astrophysics Data System (ADS)

    Verma, R. K.

    Gravity field (Bouguer) in the Himalaya is characterised by large negative-values ranging from nearly -180 mGal to over -450 mGal in Naga-Parbat/Haramosh massif which go up to -550 mGal in the Karakoram region. The observed Bouguer anomaly in NW Himalaya has been interpreted along a profile passing from Gujranwala (located at the edge of the Indian shield) to the Haramosh massif in terms of Moho depth and density contrast between the crust and the mantle. The Moho depth is interpreted to increase from nearly 35 km near the edge of Indian shield to 75 km (below sea level) underneath the Haramosh massif. A similar model is applicable to a profile passing to the west of Nanga Parbat massif, from Gujranwala to Ghizar, through the Kohistan region. However, along this profile high density lower crustal rocks appear to have been emplaced in the upper part along the Main Mantle thrust. The gravityanomalies in the Nepal-Tibet region hasbeen interpreted in terms of a northward sloping Moho which down faulted by about 15 km to attain a depth of 65 km around Tingri which corresponds to explosion seismology data. The nature of isostatic compensation prevailing underneath the Himalaya has been discussed.

  2. Electromagnetic outline of the Solfatara-Pisciarelli hydrothermal system, Campi Flegrei (Southern Italy)

    NASA Astrophysics Data System (ADS)

    Troiano, A.; Di Giuseppe, M. G.; Patella, D.; Troise, C.; De Natale, G.

    2014-05-01

    We describe the results from a combined controlled source audio magnetotelluric (CSAMT) and natural source magnetotelluric (MT) survey carried out in the Solfatara-Pisciarelli (S-P) area, located in the central part of the Campi Flegrei (CF) composite caldera, west of Naples, Southern Italy. The S-P area represents the most active zone within the CF caldera, in terms of hydrothermal manifestations and local seismicity. Since 1969, the CF caldera is experiencing ground deformation, seismicity and geochemical fluid changes, which are particularly evident in the S-P area. A 1 km long, nearly W-E directed CSAMT-MT profile crossing the fumarole field was carried out in the S-P area with the aim of deducting a resistivity model of the structural setting of the hydrothermal system in the first 3 km depth. An interpretation of the modelled section across the profile is given in this paper, taking advantage from already existing seismic, gravity and geochemical data in the same area. Three well distinct zones have been outlined. The first zone is a very shallow, electrically conductive body localized beneath the westernmost segment of the profile, which, within a short distance of about 100 m, dips westwards from near surface down to some hundred metres in depth. Mostly accounting for the very low resistivity (1-10 Ω m) and the exceedingly high values of vP/vS (> 4), this shallow zone has been ascribed to a water-saturated, high-pressurized geothermal reservoir. The second zone, which has been localized below the west-central portion of the CSAMT-MT transect, appears as a composite body made up of a nearly vertical plumelike structure that escapes at about 2.25 km depth from the top edge of the east side of a presumably horizontal platelike body. The plumelike structure rises up to the free surface in correspondence of the fumarole field, whereas the platelike structure deepens at least down to the 3 km of maximum exploration depth. The combined interpretation of resistivity (50-100 Ω m), body wave velocity ratio (vP/vS < 2.0), mass density contrast (Δσ < 0 g/cm3), and geochemical data indicates that the plumelike portion can likely be associated with a steam/gas-saturated column and the platelike portion with a high temperature (> 300 °C), over-pressurized, gas-saturated reservoir. Finally, the third zone, which has been localized beneath the eastern half of the transect, from about 1.2 km down to about 3 km of depth, is also characterized by very low resistivity values (1-10 Ω m). Jointly interpreted with seismic (vP/vS < 1.73) and gravity (⨂⌠ > 0 g/cm3) data, this last electrically conductive structure appears to be associated with a hydrothermally mineralized, clay-rich body.

  3. De-coupling interannual variations of vertical dust extinction over the Taklimakan Desert during 2007-2016 using CALIOP.

    PubMed

    Nan, Yang; Wang, Yuxuan

    2018-03-26

    During the springtime, mineral dust from the Taklimakan Desert (TD) is lifted up to high altitudes and transported long distances by the westerlies. The vertical distributions of Taklimakan dust are important for both long-range transport and climate effects. In this study, we use CALIOP Level 3 dust extinction to describe interannual variation of dust extinction in TD aggregated at each 1km interval (1-2km, 2-3km, 3-4km, 4-5km and 5-6km) above mean sea level during springtime from 2007 to 2016. 87% of dust extinction over TD is concentrated at 1-4km taking a major composition of dust aerosol optical depth (AOD) and only 8.1% dust AOD is at 4-6km. Interannual variation of seasonal and monthly dust extinction at 1-4km is almost as same as dust AOD (R>0.99) but different from that at 4-6km (R are around 0.42). Our analysis provides observational evidence from CALIOP that vertical dust extinction over TD has distinctively different variability below and above 4km altitude and this threshold divides dust transport in TD into two systems. Taklimakan dust aerosols are more related to dust transport at high altitudes (4-10km) than low altitudes (0-4km) over downwind regions. High dust extinction below 4km over TD is necessary but not sufficient conditions to ensure dust transport easterly, while high dust extinction levels at 4-6km over TD are both necessary and sufficient conditions; such contrast leads to the de-coupled interannual variability seen by CALIOP. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Numerical modelling of collapsing volcanic edifices

    NASA Astrophysics Data System (ADS)

    Costa, Ana; Marques, Fernando; Kaus, Boris

    2017-04-01

    The flanks of Oceanic Volcanic Edifice's (OVEs) can occasionally become unstable. If that occurs, they can deform in two different modes: either slowly along localization failure zones (slumps) or catastrophically as debris avalanches. Yet the physics of this process is incompletely understood, and the role of factors such as the OVE's strength (viscosity, cohesion, friction angle), dimensions, geometry, and existence of weak layers remain to be addressed. Here we perform numerical simulations to study the interplay between viscous and plastic deformation on the gravitational collapse of an OVE (diffuse deformation vs. localization of failure along discrete structures). We focus on the contribution of the edifice's strength parameters for the mode of deformation, as well as on the type of basement. Tests were performed for a large OVE (7.5 km high, 200 km long) and either purely viscous (overall volcano edifice viscosities between 1019-1023 Pa.s), or viscoplastic rheology (within a range of cohesion and friction angle values). Results show that (a) for a strong basement (no slip basal boundary condition), the deformation pattern suggests wide/diffuse "listric" deformation within the volcanic edifice, without the development of discrete plastic failure zones; (b) for a weak basement (free slip basal boundary condition), rapid collapse of the edifice through the propagation of plastic failure structures within the edifice occurs. Tests for a smaller OVE (4.5 km by 30 km) show that failure localization along large-scale listric structures occurs more readily for different combinations of cohesion and friction angles. In these tests, high cohesion values combined with small friction angles lead to focusing of deformation along a narrower band. Tests with a weak layer underlying part of the volcanic edifice base show deformation focused along discrete structures mainly dipping towards the distal sector of the volcano. These tests for a small OVE constitute a promising basis for the study of a currently active slump in the SE flank of Pico Island (Azores, Portugal). We will also address the effect of lithospheric flexure, and discuss initial 3D modelling results.

  5. Groundwater Estimation Using Remote Sensing Data on a Catchment Scale in New Zealand

    NASA Astrophysics Data System (ADS)

    Westerhoff, R.; Mu, Q.

    2014-12-01

    Long-term time series of satellite evapotranspiration (ET) were trialled for their additional value in aquifer characterisation on the catchment scale in New Zealand. In a simple chain-of-events approach yearly natural groundwater recharge was calculated with a 1x1km resolution. The chain consisted of (1) rainfall; (2) runoff due to slope; (3) actual ET; (4) soil permeability and water holding capacity; and (5) hydraulic conductivity of the deeper geology. As ET is a large part of the water balance (in New Zealand on average appr. 50% of rainfall), high resolution and high quality ET data is important for estimating groundwater recharge. Most global satellite data already embed a pseudo-model with coarse, global, input data. An example is ET data from the MODIS MOD16 product: although the spatial footprint of the satellite data is 1x1 km, input data to calculate ET contains global meteorology data. These data do not capture the extreme diversity in the New Zealand climate, where yearly rainfall and ET can change considerably over small distances. However, enough national ground-observed data are available to improve the MOD16 data. We improved monthly MOD16 ET by using the satellite data pattern as an interpolator between approximately 80 ground stations. Simple least squares fitting gave the best result. The added value of satellite data is obvious: the corrected MOD16 ET data have much higher spatial resolution and vegetation cover and growth is taken into account better.We then used national data to estimate 1x1km natural groundwater recharge: the corrected MOD16 PET and AET, in-situ based precipitation models; soil maps; geology maps; and (satellite-based) elevation. Validation with lysimeters and existing sub-catchment model output data looks promising, and further improvement with satellite soil moisture to estimate monthly recharge is underway. This work was done in the SMART Aquifer Characterisation (SAC) programme, a six-year research project funded by the New Zealand Ministry of Business, Innovation en Employment. Figure: Mean annual 1x1km PET (2000-2012) from MODIS MOD16 data, corrected for ground stations.

  6. Testing The Magmatic Underplating Hypothesis: An Example From The Uk and Ireland

    NASA Astrophysics Data System (ADS)

    Al-Kindi, S.; White, N.; Sinha, M.; England, R.

    Magmatic underplating associated with mantle plume activity is an important mech- anism for driving regional surface uplift and denudation of large portion of the continents. Here we present quantitative and predictive models linking the surface- measured uplift and denudation with deep crustal structure across the British Isles. The crustal model was derived from re-interpreting the 1982 wide-angle Caledonian Suture Seismic Project and it's Irish extension (CSSP&ICSSP) data sets. A joint CSSP/ICSSP velocity model was obtained for the first time by inverting for six main travel-time phases comprising more than 3000 picks having picking uncertainty ranges of 50-100 ms and average of 82 ms with best picks for first breaks at close offsets. Two indepen- dent tomographic codes namely RAYINVR (Zelt and Smith, 1992) and Jive3D (Ho- bro, 2000) were used to model the picked travel-times adopting 'interpreter-guided' and 'pure tomographic' approaches, respectively. The codes represent natural end- member approaches to travel-time tomography where the former seeks an irregular grid, minimum-parameter velocity model, whereas the later seeks minimum-structure velocity model. The final outcome of the two methods are remarkably similar which has greatly boosted confidence in the interpretation. Complementary resolution and uncertainty tests were preformed. The most striking feature of the outcome of the inversion processes is the emergence of a discrete high-velocity (7.0-7.5 km/s) intermediate layer above the Moho. The top interface of this layer is sampled by lower crustal reflections, whereas the layer velocity is sampled by refracted rays. The base of the layer is bounded by the Moho interface roughly at 33 km, constrained by upper mantle diving rays. Some Moho reflections were observed on some record sections, but the majority are believed to be masked by the early arriving, highly-reflective coda generated by resonance of seismic waves within the intermediate layer. The layer has maximum thickness of 8 + 1.6 km roughly half-way across the East Irish Sea and thins out towards the edges. The minimum width of this layer is well constrained by the strong lower crustal reflections to be approximately 550 km. The maximum width, could extend outside the ray coverage of this experiment with maximum layer thickness of 2 km at the edge of the model. This is roughly of the thickness of the smallest resolvable structure 1 at a depth of 30 km using a 5 Hz signal. Filtered gravity data was used to model a density model derived by converting the final preferred velocity model using an appropriate P-wave velocity-to-density conversion. The profile is characterised by a high positive gravity anomaly of about 30 mGal over the East Irish Sea. An excess of denser material in the lower crust (+0.20 Mgm-3) was essential to account for this gravity high, which is consistent with the wide-angle velocity model. Synthetic denudation values were calculated along the 2D crustal model assuming Airly isostasy for different elastic thickness, and were compared to real estimates pro- vided by Rowely, 1998. The two data sets show good correlation within the uncertain- ties of the estimates, which has encouraged futher analysis. An attempt at extending the two-dimensional results into the third dimension was carried out based on a sta- tistical correlation of 800 pairs of modelled underplating thickness values and 150 km high-pass gravity samples along the 2D line. The analysis has shown a high posi- tive correlation with R2=0.72 with a significant linear regression at the 95% confident level. This relationship was then computed to predict underplate thickness from the filtered gravity map and then compared with the available denudation maps. This anal- ysis has highlighted specific areas where underplating is postulated to derive surface uplift. 2

  7. Petrologic Constraints on Magma Plumbing Systems Beneath Hawaiian Volcanoes

    NASA Astrophysics Data System (ADS)

    Li, Y.; Peterman, K. J.; Scott, J. L.; Barton, M.

    2016-12-01

    We have calculated the pressures of partial crystalliztion of basaltic magmas from Hawaii using a petrological method. A total of 1576 major oxide analyses of glasses from four volcanoes (Kilauea and the Puna Ridge, Loihi, Mauna Loa, and Mauna Kea, on the Big Island) were compiled and used as input data. Glasses represent quenched liquid compositions and are ideal for calculation of pressures of partial crystallization. The results were filtered to exclude samples that yielded unrealistic high errors associated with the calculated pressure or negative value of pressure, and to exclude samples with non-basaltic compositions. Calculated pressures were converted to depths of partial crystallization. The majority (68.2%) of pressures for the shield-stage subaerial volcanoes Kilauea, Mauna Loa, and Mauna Kea, fall in the range 0-140 MPa, corresponding to depths of 0-5 km. Glasses from the Puna Ridge yield pressures ranging from 18 to 126 MPa and are virtually identical to pressures determined from glasses from Kilauea (0 to 129 MPa). These results are consistent with the presence of magma reservoirs at depths of 0-5 km beneath the large shield volcanoes. The inferred depth of the magma reservoir beneath the summit of Kilauea (average = 1.8 km, maximum = 5 km) agrees extremely well with depths ( 2-6 km) estimated from seismic studies. The results for Kilauea and Mauna Kea indicate that significant partial crystallization also occurs beneath the summit reservoirs at depths up to 11 km. These results are consistent with seismic evidence for the presence of a magma reservoir at 8-11 km beneath Kilauea at the base of the volcanic pile. The results for Loihi indicate crystallization at higher average pressures (100-400 MPa) and depths (3-14 km) than the large shield volcanoes, suggesting that the plumbing system is not yet fully developed, and that the Hawaiian volcanic plumbing systems evolve over time.

  8. Comparison of alternative spatial resolutions in the application of a spatially distributed biogeochemical model over complex terrain

    USGS Publications Warehouse

    Turner, D.P.; Dodson, R.; Marks, D.

    1996-01-01

    Spatially distributed biogeochemical models may be applied over grids at a range of spatial resolutions, however, evaluation of potential errors and loss of information at relatively coarse resolutions is rare. In this study, a georeferenced database at the 1-km spatial resolution was developed to initialize and drive a process-based model (Forest-BGC) of water and carbon balance over a gridded 54976 km2 area covering two river basins in mountainous western Oregon. Corresponding data sets were also prepared at 10-km and 50-km spatial resolutions using commonly employed aggregation schemes. Estimates were made at each grid cell for climate variables including daily solar radiation, air temperature, humidity, and precipitation. The topographic structure, water holding capacity, vegetation type and leaf area index were likewise estimated for initial conditions. The daily time series for the climatic drivers was developed from interpolations of meteorological station data for the water year 1990 (1 October 1989-30 September 1990). Model outputs at the 1-km resolution showed good agreement with observed patterns in runoff and productivity. The ranges for model inputs at the 10-km and 50-km resolutions tended to contract because of the smoothed topography. Estimates for mean evapotranspiration and runoff were relatively insensitive to changing the spatial resolution of the grid whereas estimates of mean annual net primary production varied by 11%. The designation of a vegetation type and leaf area at the 50-km resolution often subsumed significant heterogeneity in vegetation, and this factor accounted for much of the difference in the mean values for the carbon flux variables. Although area wide means for model outputs were generally similar across resolutions, difference maps often revealed large areas of disagreement. Relatively high spatial resolution analyses of biogeochemical cycling are desirable from several perspectives and may be particularly important in the study of the potential impacts of climate change.

  9. A medical home: value and implications of knowledge management.

    PubMed

    Orzano, A John; McInerney, Claire R; McDaniel, Reuben R; Meese, Abigail; Alajmi, Bibi; Mohr, Stewart M; Tallia, Alfred F

    2009-01-01

    Central to the "medical home" concept is the premise that the delivery of effective primary care requires a fundamental shift in relationships among practice members and between practice members and patients. Primary care practices can potentially increase their capacity to deliver effective care through knowledge management (KM), a process of sharing and making existing knowledge available or by developing new knowledge among practice members and patients. KM affects performance by influencing work relationships to enhance learning, decision making, and task execution. We extend our previous work to further characterize, describe, and contrast how primary care practices exhibit KM and explain why KM deserves attention in medical home redesign initiatives. Case studies were conducted, drawn from two higher and lower performing practices, which were purposely selected based on disease management, prevention, and productivity measures from an improvement trial. Observations of operations, clinical encounters, meetings, and interviews with office members and patients were transcribed and coded independently using a KM template developed from a previous secondary analysis. Face-to-face discussions resolved coding differences among research team members. Confirmation of findings was sought from practice participants. Practices manifested varying degrees of KM effectiveness through six interdependent processes and multiple overlapping tools. Social tools, such as face-to-face-communication for sharing and developing knowledge, were often more effective than were expensive technical tools such as an electronic medical record. Tool use was tailored for specific outcomes, interacted with each other, and leveraged by other organizational capacities. Practices with effective KM were more open to adopting and sustaining new ways of functioning, ways reflecting attributes of a medical home. Knowledge management differences occur within and between practices and can explain differences in performance. By relying more on social tools rather than costly, high-tech investment, KM leverages primary care's relationship-centered strength, facilitating practice redesign as a medical home.

  10. Quantifying the source regions of observed pore water B and δ^{11}B signatures at shallow depths in forearcs

    NASA Astrophysics Data System (ADS)

    Saffer, D. M.; Kopf, A. J.

    2006-12-01

    At many subduction zones, geochemistry of pore waters taken from boreholes and mud volcanoes indicates a contribution from deep, high-temperature sources. These observations include pore water freshening, elevated K, thermogenic hydrocarbons, enrichment in volatiles such as B and Li, and decreased δ11B, δ6Li, and δ37Cl. As tracers of subduction zone devolatilization, geochemical signatures provide constraints on fluid flow pathways and rates within the forearc; in addition, the return flux of volatiles to the oceans through forearcs may constitute a significant component of the global cycles for B and Li. Identifying the location and distribution of source regions for these tracers is one critical step toward characterizing subduction zone fluid transport systems. To date, this problem is relatively well studied for pore water freshening signals and thermogenic hydrocarbons. In contrast, there has been little work to rigorously constrain the locations of source regions for other tracers, or to quantify the expected source concentrations. Here, we focus on numerous observations of high [B] and low δ11B in fluids sampled at shallow depths, which have been interpreted to reflect desorption of isotopically light B from clays with increased temperature, and subsequent advection of the altered fluids to the seafloor either near the trench or on the continental slope. At the Costa Rican, Nankai, and N. Japan margins, observed values of [B] range from ~2000 to 4000 μM (typical seawater concentration is ~42 μM), and δ11B values are as low as ~25 ‰ (average seawater value is ~39.5 ‰). We use a simple model to combine (1) heating and compaction that accompany progressive burial of sediment with (2) previously published laboratory experimental data that constrain the distribution coefficient (Kd) for B in marine sediments as a function of temperature, to quantify the expected distribution of B concentrations and isotopic ratios within bulk mudstones in subduction zones. We track packages of sediment as they are heated and compacted, and calculate resulting [B] and δ11B step-wise from conservation of mass and applying a temperature-dependent Kd. The resulting distribution of [B] and δ11B depend primarily upon the rates of heating and porosity loss with burial. In our preliminary analysis, we consider a generic subduction zone with a total taper angle of 8°, and evaluate two end- member cases: cold and warm scenarios, in which heat flow on the incoming plate is set at 60 mW m-2, and 120 mW m-2, respectively. For the cold end-member scenario, simulated values of [B] within the subducted sedment at 30 km from the trench range from 650 to 1200 μM and values of δ11B range from 23.4 to 30.6 ‰. At 60 km from the trench, [B] ranges from 1010 to 3340 μM and δ11B from 18.0 to 25.0 ‰. For the warm scenario, simulated [B] ranges from 970 to 2400 μM at 30 km and 2250 to 11480 μM at 60 km; δ11B ranges from 19.2 to 25.2 ‰ at 30 km and 15.9 to 19.5 ‰ at 60 km. These signatures are generally stronger than those observed in pore fluids at shallow depths, consistent with the probable re-adsorption of some B during updip or vertical advection. Ultimately, the results of these calculations can be used as input for hydrologic models that include re-adsorption, to quantitatively investigate the fluid flow rates and permeabilities required to transport B at rates required to produce the observed signatures.

  11. The gravity field of the Red Sea and East Africa

    NASA Astrophysics Data System (ADS)

    Makris, Jannis; Henke, Christian H.; Egloff, Frank; Akamaluk, Thomas

    1991-11-01

    Reevaluation of all gravity data from the Red Sea, the Gulf of Aden and East Africa permitted the compilation of a new Bouguer anomaly map. The intensity of the gravity field and its regional pattern correlate closely with the topographic features of the region. The maximum Bouguer values (> + 100 mGal) are located over the median troughs of the Red Sea and Gulf of Aden. Dense juvenile oceanic crust in these rifts and intruding magmas in stretched continental areas produce excess mass responsible for the anomaly highs. In the Red Sea the orientation of the gravity highs is NW-SE in the south, turning to NE-SW in the north, almost parallel to the Aqaba-Dead Sea strike. This pattern reveals that the present basin axis is not identical with that which formed the Tertiary coastal margins and the pre-Red Sea zones of crustal weakness. In the Gulf of Aden, new oceanic crust along the Tadjura Trench and its eastward extension is also expressed in the Bouguer anomaly map by gravity highs and a sharp bending of the isolines. A maximum of approx. +150 mGal is located over the central section of the Sheba Ridge. Bouguer gravity values over the East African and Yemen Plateaus are of the order of -180 to -240 mGal, indicating significant crustal thickening. On the Somali Plateau, the Marda Fault also has a strong gravity signature that can be traced towards Somalia. By constraining crustal thickness and structure with seismic data and density values from the velocity distribution by means of the Nafe-Drake and Birch relationships, we computed density models for the crust and upper mantle. The crustal thickness is of the order of 40 km beneath the plateaus and only 5 to 6 km at the oceanized parts in the central and southern portions of the Red Sea median trough. The flanks of the southern Red Sea and the corresponding Arabian side are underlain by 12 to 16 km thick stretched continental type crust. Oceanization offshore Sudan and Egypt is asymmetrical. The continental crust terminates abruptly at about 20 km off the coastline, followed by an oceanic crust of early Miocene age that was produced in pull-apart basins. By contrast, the eastern side of the Red Sea trough offshore Saudi Arabia is floored by stretched continental crust that extends far into the sea. Seafloor spreading and the generation of oceanic crust in organized spreading centres are limited to the median troughs off Sudan and the northern part of Ethiopia and commenced approx. 5 m.y. BP. They are absent in the northern Red Sea, where crustal fracturing occurs only in pull-apart basins of Dead Sea-Aqaba orientation distributed in en-echelon pattern.

  12. Statistical Examination of Tornado Report and Warning Near-Storm Environments

    NASA Astrophysics Data System (ADS)

    Anderson-Frey, Alexandra K.

    This study makes use of a 13-year dataset of 14,814 tornado events and 44,961 tornado warnings in the continental United States, along with near-storm environmental data associated with each of those tornado events and warnings, to build a methodology that can be used to create nuanced climatologies of near-storm environmental data. Two key parameter spaces are identified as being particularly useful in this endeavor: mixed-layer convective available potential energy (MLCAPE) versus 0-6-km vector shear magnitude (SHR6) and mixed-layer lifting condensation level (MLLCL) versus 0-1-km storm-relative helicity (SRH1). In addition, the Significant Tornado Parameter (STP) is identified as a useful composite parameter that can highlight near-storm environments that are particularly favorable for the development of significant tornadoes. Two particular statistical methods for the analysis and characterization of near-storm environments are described and applied: Kernel Density Estimation (KDE), which is applied to bulk (proximity soundinglike) parameter values associated with each event or warning, and Self-Organizing Maps (SOMs), which are applied to fully two-dimensional plots of STP in an area surrounding each event or warning. The KDE approach characterizes and identifies differences in the environments of tornadoes forming in quasi-linear convective systems versus those forming in right-moving supercells; specific environmental traits are also identified for different geographical regions, seasons, and times of day. Tornado warning performance is found to be best in environments with particularly large values of MLCAPE and SHR6. The early evening transition (EET) period is of particular interest: MLCAPE and MLLCL heights are in the process of falling, and SHR6 and SRH1 are in the process of increasing. Accordingly, tornadoes rated 2 or greater on the enhanced Fujita scale (EF2+) are also most common during the EET, probability of detection (POD) is relatively high, and false-alarm ratio (FAR) is relatively low. Overall, when comparing the distribution of environments for events versus those for warnings, there is no "smoking gun" indicating a systematic problem with forecasting that explains the high overall false-alarm ratio, which instead seems to stem from the inability to know which storms in a given environment will be tornadic. The SOM approach establishes nine statistically distinct clusters of spatial distributions of STP values in the 480 km x 480 km region surrounding each tornado event or warning. For tornado events, distinct patterns are associated more with particular times of day, geographical locations, and times of year, and the use of two-dimensional data rather than point proximity sounding information means that these patterns can be identified and characterized with still more detail; for instance, the archetypal springtime dryline environment in the Great Plains emerges readily from the data. Although high values of STP tend to be associated with relatively high POD and relatively low FAR, the majority of tornado events occur within a pattern of low STP, with relatively high FAR and low POD. The two-dimensional plots produced by the SOM approach provide an intuitive way to create distinct climatologies of tornadic near-storm environments. Having established a methodology through the use of KDE and SOM, this research then examines the topic of tornado outbreaks [defined as ten or more (E)F1+ tornadoes that occur with no more than 6 h or 2,000 km between subsequent tornadoes]. Outbreak tornadoes in a given geographical region have greater SRH1 and SHR6 than isolated tornadoes in the same region, and also have considerably higher POD than isolated tornadoes. When SOMs are created for all (E)F1+ tornadoes, the percentage of outbreak tornadoes in a given node is found to depend more strongly on the magnitude of the STP value surrounding the tornado than its orientation. For the SOM of outbreak tornadoes, outbreaks occurring in environments with higher magnitudes of STP will generally also have the highest casualty rates, regardless of the specific two-dimensional pattern of STP. Two specific tornado outbreaks are then examined through this methodology, which allows the events to be placed into their climatological context with more nuance than typical proximity sounding-based approaches would allow.

  13. Earth's gravity field mapping requirements and concept. [using a supercooled gravity gradiometer

    NASA Technical Reports Server (NTRS)

    Vonbun, F. O.; Kahn, W. D.

    1981-01-01

    A future sensor is considered for mapping the Earth's gravity field to meet future scientific and practical requirements for earth and oceanic dynamics. These are approximately + or - 0.1 to 10 mgal over a block size of about 50 km and over land and an ocean geoid to 1 to 2 cm over a distance of about 50 km. To achieve these values requires a gravity gradiometer with a sensitivity of approximately 10 to the -4 power EU in a circular polar orbiting spacecraft with an orbital altitude ranging 160 km to 180 km.

  14. Gravity anomalies and flexure of the lithosphere at the Middle Amazon Basin, Brazil

    NASA Astrophysics Data System (ADS)

    Nunn, Jeffrey A.; Aires, Jose R.

    1988-01-01

    The Middle Amazon Basin is a large Paleozoic sedimentary basin on the Amazonian craton in South America. It contains up to 7 km of mainly shallow water sediments. A chain of Bouguer gravity highs of approximately +40 to +90 mGals transects the basin roughly coincident with the axis of maximum thickness of sediment. The gravity highs are flanked on either side by gravity lows of approximately -40 mGals. The observed gravity anomalies can be explained by a steeply sided zone of high density in the lower crust varying in width from 100 to 200 km wide. Within this region, the continental crust has been intruded/replaced by more dense material to more than half its original thickness of 45-50 km. The much wider sedimentary basin results from regional compensation of the subsurface load and the subsequent load of accumulated sediments by flexure of the lithosphere. The observed geometry of the basin is consistent with an elastic lithosphere model with a mechanical thickness of 15-20 km. Although this value is lower than expected for a stable cratonic region of Early Proterozoic age, it is within the accepted range of effective elastic thicknesses for the earth. Rapid subsidence during the late Paleozoic may be evidence of a second tectonic event or lithospheric relaxation which could lower the effective mechanical thickness of the lithosphere. The high-density zone in the lower crust, as delineated by gravity and flexural modeling, has a complex sinuous geometry which is narrow and south of the axis of maximum sediment thickness on the east and west margins and wide and offset to the north in the center of the basin. The linear trough geometry of the basin itself is a result of smoothing by regional compensation of the load in the lower crust.

  15. The Plumbing System of a Highly Explosive Basaltic Volcano: Sunset Crater, AZ

    NASA Astrophysics Data System (ADS)

    Allison, C. M.; Roggensack, K.; Clarke, A. B.

    2015-12-01

    We seek to better understand highly explosive basaltic eruptions with specific focus on magmatic volatile solubility in alkali basalts and the magma plumbing system. Sunset Crater, an alkali basalt (~3.7 wt.% alkalis) scoria cone volcano, erupted explosively in 1085 AD. We analyzed 125 primary melt inclusions (MIs) from Sunset Crater tephra deposited by 2 subplinian phases and 1 Strombolian explosion to compare magma volatiles and storage conditions. We picked rapidly quenched free olivine crystals and selected large volume MIs (50-180 μm) located toward crystal cores. MIs are faceted and exhibit little major element composition variability with minor post entrapment crystallization (2-10%). MIs are relatively dry but CO2-rich. Water content varies from 0.4 wt.% to 1.5 wt.% while carbon dioxide abundance ranges between 1,150 ppm and 3,250 ppm. Most MIs contain >1 wt.% H2O and >2,150 ppm CO2. All observed MIs contain a vapor bubble, so we are evaluating MI vapor bubbles with Raman spectroscopy and re-homogenization experiments to determine the full volatile budget. Because knowledge of volatile solubility is critical to accurately interpret results from MI analyses, we measured H2O-CO2 solubility in the Sunset Crater bulk composition. Fluid-saturated experiments at 4 and 6 kbar indicate shallower entrapment pressures for these MIs than values calculated for this composition using existing models. Assuming fluid saturation, MIs record depths from 6 km to 14 km, including groupings suggesting two pauses for longer-term storage at ~6 km and ~10.5 km. We do not observe any significant differences in MIs from phases exhibiting different eruptive styles, suggesting that while a high CO2 content may drive rapid magma ascent and be partly responsible for highly explosive eruptions, shallower processes may govern the final eruptive character. To track shallow processes during magma ascent from depth of MI-entrapment up to the surface, we are examining MI re-entrants.

  16. Ozone profile measurements at McMurdo Station Antarctica during the spring of 1987

    NASA Technical Reports Server (NTRS)

    Hofmann, D. J.; Harder, J. W.; Rosen, J. M.; Hereford, J.; Carpenter, J. R.

    1988-01-01

    During the Antarctic spring of 1986, 33 ozone soundings were conducted from McMurdo Station. These data indicated that the springtime decrease in ozone occurred rapidly between the altitudes of 12 and 20 km. During 1987, these measurements were repeated with 50 soundings between 29 August and 9 November. Digital conversions of standard electrochemical cell ozonesondes were again employed. The ozonesonde pumps were individually calibrated for flow rate as the high altitude performance of these pumps have been in question. While these uncertainties are not large in the region of the ozone hole, they are significant at high altitude and apparently resulted in an underestimate of total ozone of about 7 percent (average) as compared to the Total Ozone Mapping Spectrometer (TOMS) in 1986, when the flow rate recommended by the manufacturer was used. At the upper altitudes (approx. 30 km) the flow rate may be overestimated by as much as 15 percent using recommended values (see Harder et al., The UW Digital Ozonesonde: Characteristics and Flow Rate Calibration, poster paper, this workshop). These upper level values are used in the extrapolation, at constant mixing ratio, required to complete the sounding for total ozone. The first sounding was on 29 August, prior to major ozone depletion, when 274 DU total ozone (25 DU extrapolated) was observed. By early October total ozone had decreased to the 150 DU range; it then increased during mid-October owing to motion of the vortex and returned to a value of 148 DU (29 DU extrapolated) on 27 October.

  17. Unusual Childhood Waking as a Possible Precursor of the 1995 Kobe Earthquake

    PubMed Central

    Ikeya, Motoji; Whitehead, Neil E.

    2013-01-01

    Simple Summary The paper investigates whether young children may waken before earthquakes through a cause other than foreshocks. It concludes there is statistical evidence for this, but the mechanism best supported is anxiety produced by Ultra Low Frequency (ULF) electromagnetic waves. Abstract Nearly 1,100 young students living in Japan at a range of distances up to 500 km from the 1995 Kobe M7 earthquake were interviewed. A statistically significant abnormal rate of early wakening before the earthquake was found, having exponential decrease with distance and a half value approaching 100 km, but decreasing much slower than from a point source such as an epicentre; instead originating from an extended area of more than 100 km in diameter. Because an improbably high amount of variance is explained, this effect is unlikely to be simply psychological and must reflect another mechanism—perhaps Ultra-Low Frequency (ULF) electromagnetic waves creating anxiety—but probably not 222Rn excess. Other work reviewed suggests these conclusions may be valid for animals in general, not just children, but would be very difficult to apply for practical earthquake prediction. PMID:26487316

  18. Mesospheric ozone measurements by SAGE II

    NASA Technical Reports Server (NTRS)

    Chu, D. A.; Cunnold, D. M.

    1994-01-01

    SAGE II observations of ozone at sunrise and sunset (solar zenith angle = 90 deg) at approximately the same tropical latitude and on the same day exhibit larger concentrations at sunrise than at sunset between 55 and 65 km. Because of the rapid conversion between atomic oxygen and ozone, the onion-peeling scheme used in SAGE II retrievals, which is based on an assumption of constant ozone, is invalid. A one-dimensional photochemical model is used to simulate the diurnal variation of ozone particularly within the solar zenith angle of 80 deg - 100 deg. This model indicates that the retrieved SAGE II sunrise and sunset ozone values are both overestimated. The Chapman reactions produce an adequate simulation of the ozone sunrise/sunset ratio only below 60 km, while above 60 km this ratio is highly affected by the odd oxygen loss due to odd hydrogen reactions, particularly OH. The SAGE II ozone measurements are in excellent agreement with model results to which an onion peeling procedure is applied. The SAGE II ozone observations provide information on the mesospheric chemistry not only through the ozone profile averages but also from the sunrise/sunset ratio.

  19. The cumulative impacts of reclamation and dredging on the marine ecology and land-use in the Kingdom of Bahrain.

    PubMed

    Zainal, Khadija; Al-Madany, Ismail; Al-Sayed, Hashim; Khamis, Abdelqader; Al Shuhaby, Suhad; Al Hisaby, Ali; Elhoussiny, Wisam; Khalaf, Ebtisam

    2012-07-01

    This article assesses the ecological and economic impacts of land reclamation and dredging through consulting recent environmental impact assessment reports. Geographic features of Bahrain during 1963-2008 are produced using Geographical Information System. Extensive but inexpensive shallow coastal areas and tidal flats have been reclaimed particularly from 1997 to 2007 at a high rate of 21 km(2)/year. Formal records show the increase in the original land mass by the year 2008 to be 91 km(2). An estimated total cumulative loss of major habitats resulting from 10 reclamation projects was around 153.58 km(2). Also much larger scale impacts should be considered resulting from the borrow areas used for the extraction of sand or infill materials. A number of key habitats and species are affected in the vicinity of these projects. The study attempts to assign a monetary value to the marine ecosystem functions. There is a need for efficient coastal zone management to regulate a sustainable use of the marine resources. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Ecological validity of the Yo-Yo SFIE2 test.

    PubMed

    Krustrup, P; Randers, M; Horton, J; Brito, J; Rebelo, A

    2012-06-01

    The present study investigated the movement pattern of Portuguese top-level futsal referees (n=16) during competitive games and the ecological validity of the new Yo-Yo Sideways-Forwards Intermittent Endurance level 2 test (Yo-Yo SFIE2). Total distance covered (TD), high-intensity running (HIR), sprinting (SPR), and sideways running (Sw) during matches were 5.78±0.24 (±SEM), 0.77±0.08, 0.17±0.02 and 1.61±0.28 km, respectively, with peak 5-min values of 0.50±0.02, 0.12±0.01, 0.05±0.01 and 0.20±0.02 km, respectively. TD, HIR and Sw decreased by 30% (p<0.001), 43% and 60% (p<0.01), respectively from the first to the last 10-min period. Yo-Yo SFIE2 performance was 1205±107 (625-2015) m and showed large correlations with match-values and peak 5-min values for HIR (r=0.58 and 0.68, p<0.01) and SPR (r=0.56 and 0.57, p<0.05). Yo-Yo SFIE2 HR after 4 min [95±1 (87-99) % HRpeak] showed a nearly perfect inverse correlation with Yo-Yo SFIE2 performance (r= -0.90, p<0.001) and large inverse correlations (p<0.05) with match-values and peak 5-min values for HIR (r= -0.55 and -0.71) and SPR (r= -0.57 and -0.55). In conclusion, the Yo-Yo SFIE2 test is movement-specific for top-level futsal referees as high-intensity running and sideways running are important parts of their match activity profile, and maximal and sub-maximal versions of the Yo-Yo SFIE2 test correlates with certain aspects of the physical match performance of top-level futsal referees. © Georg Thieme Verlag KG Stuttgart · New York.

  1. Modelling trends in tropical column ozone with the UKCA chemistry-climate model

    NASA Astrophysics Data System (ADS)

    Keeble, James; Bednarz, Ewa; Banerjee, Antara; Abraham, Luke; Harris, Neil; Maycock, Amanda; Pyle, John

    2016-04-01

    Trends in tropical column ozone under a number of different emissions scenarios are explored with the UM-UKCA coupled chemistry climate model. A transient 1960-2100 simulation was run following the RCP6 scenario. Tropical averaged (10S-10N) total column ozone values decrease from the 1970s, reaching a minimum around 2000, and return to their 1980 values around 2040, consistent with the use and emission of ozone depleting substances, and their later controls under the Montreal Protocol. However, when the total column is subdivided into three partial columns, extending from the surface to the tropopause, the tropopause to 30km, and 30km to 50km, significant differences to the total column trend are seen. Modelled tropospheric column values increase from 1960-2000 before remaining steady throughout the 21st Century. Lower stratospheric column values decrease rapidly from 1960-2000, remain steady until 2050 before slowly decreasing to 2100, never recovering to their 1980s values. Upper stratospheric values decrease from 1960-2000, before rapidly increasing throughout the 21st Century, recovering to 1980s values by ~2020 and are significantly increased above the 1980s values by 2100. Using a series of idealised model simulations with varying concentrations of greenhouse gases and ozone depleting substances, we assess the physical processes driving the partial column response in the troposphere, lower stratosphere and upper stratosphere, and assess how these processes change under different emissions scenarios. Finally, we present a simple, linearised model for predicting tropical column ozone values based on greenhouse gas and ozone depleting substance scenarios.

  2. Using High Resolution Regional Climate Models to Quantify the Snow Albedo Feedback in a Region of Complex Terrain

    NASA Astrophysics Data System (ADS)

    Letcher, T.; Minder, J. R.

    2015-12-01

    High resolution regional climate models are used to characterize and quantify the snow albedo feedback (SAF) over the complex terrain of the Colorado Headwaters region. Three pairs of 7-year control and pseudo global warming simulations (with horizontal grid spacings of 4, 12, and 36 km) are used to study how the SAF modifies the regional climate response to a large-scale thermodynamic perturbation. The SAF substantially enhances warming within the Headwaters domain, locally as much as 5 °C in regions of snow loss. The SAF also increases the inter-annual variability of the springtime warming within Headwaters domain under the perturbed climate. Linear feedback analysis is used quantify the strength of the SAF. The SAF attains a maximum value of 4 W m-2 K-1 during April when snow loss coincides with strong incoming solar radiation. On sub-seasonal timescales, simulations at 4 km and 12 km horizontal grid-spacing show good agreement in the strength and timing of the SAF, whereas a 36km simulation shows greater discrepancies that are tired to differences in snow accumulation and ablation caused by smoother terrain. An analysis of the regional energy budget shows that transport by atmospheric motion acts as a negative feedback to regional warming, damping the effects of the SAF. On the mesoscale, this transport causes non-local warming in locations with no snow. The methods presented here can be used generally to quantify the role of the SAF in other regional climate modeling experiments.

  3. Probing ionospheric structures using the LOFAR radio telescope

    NASA Astrophysics Data System (ADS)

    Mevius, M.; van der Tol, S.; Pandey, V. N.; Vedantham, H. K.; Brentjens, M. A.; de Bruyn, A. G.; Abdalla, F. B.; Asad, K. M. B.; Bregman, J. D.; Brouw, W. N.; Bus, S.; Chapman, E.; Ciardi, B.; Fernandez, E. R.; Ghosh, A.; Harker, G.; Iliev, I. T.; Jelić, V.; Kazemi, S.; Koopmans, L. V. E.; Noordam, J. E.; Offringa, A. R.; Patil, A. H.; van Weeren, R. J.; Wijnholds, S.; Yatawatta, S.; Zaroubi, S.

    2016-07-01

    LOFAR is the LOw-Frequency Radio interferometer ARray located at midlatitude (52°53'N). Here we present results on ionospheric structures derived from 29 LOFAR nighttime observations during the winters of 2012/2013 and 2013/2014. We show that LOFAR is able to determine differential ionospheric total electron content values with an accuracy better than 0.001 total electron content unit = 1016m-2 over distances ranging between 1 and 100 km. For all observations the power law behavior of the phase structure function is confirmed over a long range of baseline lengths, between 1 and 80 km, with a slope that is, in general, larger than the 5/3 expected for pure Kolmogorov turbulence. The measured average slope is 1.89 with a one standard deviation spread of 0.1. The diffractive scale, i.e., the length scale where the phase variance is 1rad2, is shown to be an easily obtained single number that represents the ionospheric quality of a radio interferometric observation. A small diffractive scale is equivalent to high phase variability over the field of view as well as a short time coherence of the signal, which limits calibration and imaging quality. For the studied observations the diffractive scales at 150 MHz vary between 3.5 and 30 km. A diffractive scale above 5 km, pertinent to about 90% of the observations, is considered sufficient for the high dynamic range imaging needed for the LOFAR epoch of reionization project. For most nights the ionospheric irregularities were anisotropic, with the structures being aligned with the Earth magnetic field in about 60% of the observations.

  4. Comparison of the metabolism of parathion by a rat liver reconstituted mixed-function oxidase enzyme system and by a system containing cumene hydroperoxide and purified rat liver cytochrome P-450.

    PubMed

    Yoshihara, S; Neal, R A

    1977-01-01

    The metabolism of parathion by a reconstituted mixed-function oxidase enzyme system (rat liver cytochrome P-450, NADPH-cytochrome c reductase, dilauroyl phosphatidylcholine, deoxycholate, and NADPH) or a cumene hydroperoxide system (cytochrome P-450, dilauroyl phosphatidylcholine, and cumene hydroperoxide) have been compared. The products formed on incubation of parathion with both systems were paraoxon, diethyl phosphorothioic acid, diethyl phosphoric acid, p-nitrophenol, and atomic sulfur. The apparent KM values for parathion for formation of paraoxon and diethyl phosphorothioic acid with the cumene hydroperoxide system were 55 and 39 X 10(-6) M, respectively. These KM values are not significantly different. When the reconstituted system was used, apparent KM values of 2.8 x 10(-6) M for formation of paraoxon and 3.9 x 10(-6) M for The formation of diethyl phosphorothioic acid and diethyl phosphoric acid were determined. These KM values are also not significantly different. covalent binding of the sulfur atom, released in the metabolism of parathion to paraoxon, to the proteins of the reconstituted system and to cytochrome P-450 of the cumene hydroperoxide system was also examined. With both the reconstituted system and the cumene hydroperoxide system approximately 65% of the sulfur released became bound to the proteins of these enzyme systems. The binding of the sulfur atome resulted in a progressive inhibition of the metabolism of parathion by these two systems.

  5. Application of the [3H]Leucine Incorporation Technique for Quantification of Bacterial Secondary Production Associated with Decaying Wetland Plant Litter

    PubMed Central

    Gillies, Jane E.; Kuehn, Kevin A.; Francoeur, Steven N.; Neely, Robert K.

    2006-01-01

    The radiolabeled leucine incorporation technique for quantifying rates of bacterial production has increased in popularity since its original description for bacterioplankton communities. Prior studies addressing incorporation conditions (e.g., substrate saturation) for bacterial communities in other habitats, such as decaying plant litter, have reported a wide range of final leucine concentrations (400 nM to 50 μM) required to achieve saturation-level uptake. We assessed the application of the [3H]leucine incorporation procedure for measuring bacterial production on decaying wetland plant litter. Substrate saturation experiments (nine concentrations, 10 nM to 50 μM final leucine concentration) were conducted on three dates for microbial communities colonizing the submerged litter of three emergent plant species (Typha angustifolia, Schoenoplectus validus, and Phragmites australis). A modified [3H]leucine protocol was developed by coupling previously described incubation and alkaline extraction protocols with microdialysis (500 molecular weight cutoff membrane) of the final radiolabeled protein extract. The incorporation of [3H]leucine into protein exhibited a biphasic saturation curve, with lower apparent Km values ranging from 400 nM to 4.2 μM depending on the plant species studied. Upper apparent Km values ranged from 1.3 to 59 μM. These results suggest differential uptake by litter-associated microbial assemblages, with the lower apparent Km values possibly representing bacterial uptake and higher apparent Km values representing a combination of both bacterial and nonbacterial (e.g., eukaryotic) uptake. PMID:16957215

  6. Earth GRAM-99 and Trace Constituents

    NASA Technical Reports Server (NTRS)

    Justus, C. G.; Duvall, Aleta; Keller, Vernon W.

    2004-01-01

    Global Reference Atmospheric Model (GRAM-99) is an engineering-level model of Earth's atmosphere. It provides both mean values and perturbations for density, temperature, pressure, and winds, as well as monthly- and geographically-varying trace constituent concentrations. From 0-27 km, GRAM thermodynamics and winds are based on National Oceanic and Atmospheric Administration Global Upper Air Climatic Atlas (GUACA) climatology. Above 120 km, GRAM is based on the NASA Marshall Engineering Thermosphere (MET) model. In the intervening altitude region, GRAM is based on Middle Atmosphere Program (MAP) climatology that also forms the basis of the 1986 COSPAR International Reference Atmosphere (CIRA). Atmospheric composition is represented in GRAM by concentrations of both major and minor species. Above 120 km, MET provides concentration values for N2, O2, Ar, O, He, and H. Below 120 km, species represented also include H2O, O3, N2O, CO, CH4, and CO2. At COSPAR 2002 a comparison was made between GRAM constituents below 120 km and those provided by Naval Research Laboratory (NRL) climatology. No current need to update GRAM constituent climatology in that height range was identified. This report examines GRAM (MET) constituents between 100 and 1000 km altitudes. Discrepancies are noted between GRAM (MET) constituent number densities and mass density or molecular weight. Near 110 km altitude, there is up to about 25% discrepancy between MET number density and mass density (with mass density being valid and number densities requiring adjustment). Near 700 km altitude there is also up to about 25% discrepancy between MET number density and mean molecular weight (with molecular weight requiring adjustment). In neither case are MET mass density estimates invalidated. These discrepancies have been traced to MET subroutines SLV (which affects 90-170 km height range) and SLVH (which affects helium above 440 km altitude). With these discrepancies corrected, results are presented to illustrate GRAM (MET) constituent mole fractions in terms of height-latitude cross sections from 100 to 1000 km altitude, and latitude-longitude 'maps' at 450 km (approximate height of International Space Station). Plans are discussed for an update of MET (and GRAM) to correct these constituent inconsistencies and to incorporate several new thermospheric model features.

  7. Sea ice ridging in the eastern Weddell Sea

    NASA Astrophysics Data System (ADS)

    Lytle, V. I.; Ackley, S. F.

    1991-10-01

    In August 1986, sea ice ridge heights and spatial frequency in the eastern Weddell Sea were measured using a ship-based acoustical sounder. Using a minimum ridge sail height of 0.75 m, a total of 933 ridges were measured along a track length of 415 km. The ridge frequency varied from 0.4 to 10.5 ridges km-1. The mean height of the ridges was found to be about 1.1 m regardless of the ridge frequency. These results are compared to other ridging statistics from the Ross Sea and found to be similar. Comparison with Arctic data, however, indicates that the height and frequency of the ridges are considerably less in the Weddell Sea than in the Arctic. Whereas in the Arctic the mean ridge height tends to increase with the ridge frequency, we found that this was not the case in the Weddell Sea, where the mean ridge height remained constant irrespective of the ridge frequency. Estimates of the contribution of deformed ice to the total ice thickness are generally low except for a single 53-km section where the ridge frequency increased by an order of magnitude. This resulted in an increase in the equivalent mean ice thickness due to ridging from 0.04 m in the less deformed areas to 0.45 m in the highly deformed section. These values were found to be consistent with values obtained from drilled profile lines during the same cruise.

  8. Biochemical characterization of recombinant mevalonate kinase from Bacopa monniera.

    PubMed

    Kumari, Uma; Vishwakarma, Rishi K; Sonawane, Prashant; Abbassi, Shakeel; Khan, Bashir M

    2015-01-01

    Mevalonate kinase (MK; ATP: mevalonate 5-phosphotransferase; EC 2.7.1.36) plays a key role in isoprenoid biosynthetic pathway in plants. MK catalyzes the phosphorylation of mevalonate to form mevalonate-5-phosphate. The recombinant BmMK was cloned and over-expressed in E. coli BL21 (DE3), and purified to homogeneity by affinity chromatography followed by gel filtration. Optimum pH and temperature for forward reaction was found to be 7.0 and 30 °C, respectively. The enzyme was most stable at pH 8 at 25 °C with deactivation rate constant (Kd*) 1.398 × 10(-4) and half life (t1/2) 49 h. pH activity profile of BmMK indicates the involvement of carboxylate ion, histidine, lysine, arginine or aspartic acid at the active site of enzyme. Activity of recombinant BmMK was confirmed by phosphorylation of RS-mevalonate in the presence of Mg(2+), having Km and Vmax 331.9 μM and 719.1 pKat μg(-1), respectively. The values of kcat and kcat/Km for RS-mevalonate were determined to be 143.82 s(-1) and 0.43332 M(-1) s(-1) and kcat and kcat/Km values for ATP were found 150.9 s(-1) and 1.023 M(-1) s(-1). The metal ion studies suggested that BmMK is a metal dependent enzyme and highly active in the presence of MgCl2. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Pedagogical view of model metabolic cycles.

    PubMed

    García-Herrero, Victor; Sillero, Antonio

    2015-01-01

    The main purpose of this study was to present a simplified view of model metabolic cycles. Although the models have been elaborated with the Mathematica Program, and using a system of differential equations, the main conclusions were presented in a rather intuitive way, easily understandable by students of general courses of Biochemistry, and without any need of mathematical support. A change in any kinetic constant (Km or Vmax) of only one enzyme affected the metabolic profile of all the substrates of the cycle. In addition, it is shown how an increase in the Km or a decrease in the Vmax values of any particular enzyme promoted an increase of its substrate; the contrary occurred decreasing the Km or increasing the Vmax values. © 2015 The International Union of Biochemistry and Molecular Biology.

  10. Electrophysiological approach to determine kinetic parameters of sucrose uptake by single sieve elements or phloem parenchyma cells in intact Vicia faba plants

    PubMed Central

    Hafke, Jens B.; Höll, Sabina-Roxana; Kühn, Christina; van Bel, Aart J. E.

    2013-01-01

    Apart from cut aphid stylets in combination with electrophysiology, no attempts have been made thus far to measure in vivo sucrose-uptake properties of sieve elements. We investigated the kinetics of sucrose uptake by single sieve elements and phloem parenchyma cells in Vicia faba plants. To this end, microelectrodes were inserted into free-lying phloem cells in the main vein of the youngest fully-expanded leaf, half-way along the stem, in the transition zone between the autotrophic and heterotrophic part of the stem, and in the root axis. A top-to-bottom membrane potential gradient of sieve elements was observed along the stem (−130 mV to −110 mV), while the membrane potential of the phloem parenchyma cells was stable (approx. −100 mV). In roots, the membrane potential of sieve elements dropped abruptly to −55 mV. Bathing solutions having various sucrose concentrations were administered and sucrose/H+-induced depolarizations were recorded. Data analysis by non-linear least-square data fittings as well as by linear Eadie–Hofstee (EH) -transformations pointed at biphasic Michaelis–Menten kinetics (2 MM, EH: Km1 1.2–1.8 mM, Km2 6.6–9.0 mM) of sucrose uptake by sieve elements. However, Akaike's Information Criterion (AIC) favored single MM kinetics. Using single MM as the best-fitting model, Km values for sucrose uptake by sieve elements decreased along the plant axis from 1 to 7 mM. For phloem parenchyma cells, higher Km values (EH: Km1 10 mM, Km2 70 mM) as compared to sieve elements were found. In preliminary patch-clamp experiments with sieve-element protoplasts, small sucrose-coupled proton currents (−0.1 to −0.3 pA/pF) were detected in the whole-cell mode. In conclusion (a) Km values for sucrose uptake measured by electrophysiology are similar to those obtained with heterologous systems, (b) electrophysiology provides a useful tool for in situ determination of Km values, (c) As yet, it remains unclear if one or two uptake systems are involved in sucrose uptake by sieve elements, (d) Affinity for sucrose uptake by sieve elements exceeds by far that by phloem parenchyma cells, (e) Patch-clamp studies provide a feasible basis for quantification of sucrose uptake by single cells. The consequences of the findings for whole-plant carbohydrate partitioning are discussed. PMID:23914194

  11. Lower Troposphere Stratification and Pollutant Transport over Siberia in April 2006

    NASA Astrophysics Data System (ADS)

    Paris, J.; Nedelec, P.; Ramonet, M.; Golitsyn, G. S.; Belan, B. D.; Granberg, I. G.; Arshinov, M. Y.; Athier, G.; Boumard, F.; Cousin, J.; Ciais, P.

    2006-12-01

    In-situ airborne measurement of trace gases CO2, CO and O3 were performed during an intensive campaign over Central and Eastern Siberia, as part of the YAK-AEROSIB project. The campaign took place in April 11-14, 2006. At that time, the region was a weak source of CO2 (<1 gC m-2 d-1) but a number of fires occurred (http://maps.geog.umd.edu) south of the flight track, over north-eastern China. A total of 26 vertical profiles were collected from the ground level up to 7 km along a flight track of 5000 km between Novossibirsk and Yakutsk. The signature of local and more remote pollution sources was observed, associated with layers of elevated CO2 and CO concentrations, typically higher than 390 ppm and 250 ppb respectively. In most layers, a positive correlation between CO2 and CO is observed. The spatial extent of these layers can be tracked coherently on profiles up to 800 km apart. Layers are encountered above 3500 m, but they are more marked above 5000 m. This agrees well with a previously established climatology of ozone and water vapour layers in the troposphere from the MOZAIC programme. The representation of such layers in current chemistry transport is challenging, due to the model's limited vertical resolution and vertical mixing parameterization. The CO vertical distribution indicated a high variability near the surface (140-300 ppbv), more stable, but still variable concentrations between 1 and 4 km (120-200 ppbv) and surprisingly elevated CO values aloft, reaching up to 250 ppbv in the Eastern part of the flight track. High ozone values were occasionally found in the free troposphere (50-60 ppbv) with one intrusion of stratospheric air and one occurrence of active photochemistry in the Kemerovo area. Elsewhere, the lack of correlation between CO and ozone suggests the presence of aged air masses, without active photochemistry. Systematic back-trajectories calculated for each profile pointed out to zonal flow conditions, bringing pollution from Europe to Siberia. Some air masses originating from China and Mongolia south of the flight track were however sampled further to the South-East. High altitude CO concentrations are higher in the southern part of the track. The complementary use of the MOPITT space-borne CO observations suggested that the high CO concentrations measured during the YAK-AEROSIB campaign were probably caused by the transport of polluted air from China.

  12. The radii of Uranian rings alpha, beta, gamma, delta, epsilon, eta, 4, 5, and 6 from their occultations of SAO 158687

    NASA Technical Reports Server (NTRS)

    Elliot, J. L.; Dunham, E.; Wasserman, L. H.; Millis, R. L.; Churms, J.

    1978-01-01

    All available timing data for the occultations of SAO 158687 on March 10, 1977, by the cited rings of Uranus are analyzed. Least-squares fits to the data are performed using a model which postulates that rings alpha, beta, gamma, and delta are circular and coplanar. A solution obtained under the assumption that the ring plane coincides with the plane of the satellite orbits is adopted which yields radii of 44,844 km for ring alpha, 45,799 km for ring beta, 47,746 km for ring gamma, and 48,423 km for ring delta. The uncertainties in these values are discussed along with the apparent shapes and inclinations of these main rings. The mean radii estimated for the other rings are: 47,323 km for ring eta, 42,663 km for ring 4, 42,360 km for ring 5, and 41,980 km for ring 6.

  13. A High-Resolution, Three-Dimensional Model of Jupiter's Great Red Spot

    NASA Technical Reports Server (NTRS)

    Cho, James Y.-K.; delaTorreJuarez, Manuel; Ingersoll, Andrew P.; Dritschel, David G.

    2001-01-01

    The turbulent flow at the periphery of the Great Red Spot (GRS) contains many fine-scale filamentary structures, while the more quiescent core, bounded by a narrow high- velocity ring, exhibits organized, possibly counterrotating, motion. Past studies have neither been able to capture this complexity nor adequately study the effect of vertical stratification L(sub R)(zeta) on the GRS. We present results from a series of high-resolution, three-dimensional simulations that advect the dynamical tracer, potential vorticity. The detailed flow is successfully captured with a characteristic value of L(sub R) approx. equals 2000 km, independent of the precise vertical stratification profile.

  14. NREL: International Activities - Pakistan Resource Maps

    Science.gov Websites

    . The high-resolution (1-km) annual wind power maps were developed using a numerical modeling approach along with NREL's empirical validation methodology. The high-resolution (10-km) annual and seasonal KB) | High-Res (ZIP 281 KB) 40-km Resolution Annual Maps (Direct) Low-Res (JPG 156 KB) | High-Res

  15. Heat flow and thermal processes in the Jornada delMuerto, New Mexico

    NASA Technical Reports Server (NTRS)

    Reiter, M.

    1985-01-01

    Most heat flow data in rifts are uncertain largely because of hydrologic disturbances in regions of extensive fracturing. Estimates of heat flow in deep petroleum tests within a large basin of the Rio Grande rift, which has suffered little syn-rift fracturing, may begin to provide clearer insight into the relationships between high heat flow and crustal thinning processes. The Jornada del Muerto is a large basin located in the Rio Grande rift of south central New Mexico. The region of interest within the Jornada del Muerto is centered about 30 km east of the town of Truth or Consequences, and is approximately 60 km north-south by 30 km east-west. High heat flows are estimated for the region. Values increase from about 90 mWm(-2) in the northern part of the study area to about 125 mWm(-2) in the southern part. These high heat flows are rather enigmatic because in the immediate vicinities of the sites there is little evidence of Cenozoic volcanism or syn-rift extensional tectonics. It is suggested that the geothermal anomaly in the southern Jornada del Muerto (approx. 125 to approx. 95 mWm(-2) results from some type of mass movement-heat transfer mechanism operating in the crust just below the elastic layer. This conclusion is consistent with the geologic and geophysical data which describe a thin crust, apparently devoid of features indicative of extensional-tectonics in the upper part of the lastic crust.

  16. High-frequency Oscillations in Small Magnetic Elements Observed with Sunrise/SuFI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jafarzadeh, S.; Solanki, S. K.; Cameron, R. H.

    2017-04-01

    We characterize waves in small magnetic elements and investigate their propagation in the lower solar atmosphere from observations at high spatial and temporal resolution. We use the wavelet transform to analyze oscillations of both horizontal displacement and intensity in magnetic bright points found in the 300 nm and the Ca ii H 396.8 nm passbands of the filter imager on board the Sunrise balloon-borne solar observatory. Phase differences between the oscillations at the two atmospheric layers corresponding to the two passbands reveal upward propagating waves at high frequencies (up to 30 mHz). Weak signatures of standing as well as downward propagating waves are alsomore » obtained. Both compressible and incompressible (kink) waves are found in the small-scale magnetic features. The two types of waves have different, though overlapping, period distributions. Two independent estimates give a height difference of approximately 450 ± 100 km between the two atmospheric layers sampled by the employed spectral bands. This value, together with the determined short travel times of the transverse and longitudinal waves provide us with phase speeds of 29 ± 2 km s{sup −1} and 31 ± 2 km s{sup −1}, respectively. We speculate that these phase speeds may not reflect the true propagation speeds of the waves. Thus, effects such as the refraction of fast longitudinal waves may contribute to an overestimate of the phase speed.« less

  17. Analysis of record-breaking low ozone values during the 1997 winter over NDSC Station Lauder, New Zealand

    NASA Technical Reports Server (NTRS)

    Brinksma, E. J.; Meijer, Y. J.; Connor, B. J.; Manney, G. L.; Bergwerff, J. B.; Bodeker, G. E.; Boyd, I. S.; Liley, J. B.; Hogervorst, W.; Hovenier, J. W.; hide

    1998-01-01

    During early August 1997, the ozone column density measured over Lauder was unusually low, with a minimum value of 222 Dobson Units (DU) at August 10. These observations are striking since in August, during the Austral winter, the ozone column density should be heading towards its yearly maximum; The August mean ozone column density measured over Lauder between 1987 and 1996 was 348(+/-28) DU, the lowest monthly average in these ten years was 255 DU. Regular altitude profile measurements of ozone, performed at Network for the Detection of Stratospheric Change (NDSC) station Lauder, make it possible to do a detailed, altitude-resolved, study of the low ozone observations. The measurements show ozone poor air in two altitude regions of the stratosphere: A 'high region', extending from the 600 K to the 1050 K isentrope (25 to 34 km), and a 'low region', below about 550 K (22 km). High resolution reverse trajectory maps of potential vorticity (PV) and ozone mixing ratio, based on the assumption of passive advection by the large-scale three-dimensional winds, show that in the 'high region' the ozone poor air was part of the polar vortex, which was centered off the pole and extended over Lauder for several days, while in the 'low region' the ozone poor air was mixed in from low latitudes. A rapid recovery of the ozone column density, by more than 110 DU within 24 hours, was observed when in the low region an ozone rich filament of the polar vortex moved over Lauder, while in the high region the (ozone poor) high part of the vortex moved away.

  18. NO2/NO partitioning as a test of stratospheric ClO concentrations over Antarctica

    NASA Technical Reports Server (NTRS)

    Webster, Christopher R.

    1987-01-01

    Physical conditions in the 10-20 km region of the Antarctic stratosphere make the (NO2)/(NO) ratio particularly sensitive to high chlorine levels in the form of ClO. According to simple known photochemical relationships between NO2, NO, ClO, and O3, high ClO levels of 1 ppbv over Antarctica must be accompanied by large values of the (NO2)/(NO) ratio. At high ClO abundances, the (NO2)/(NO) ratio is approximately proportional to the ClO concentration. It is proposed that in-situ measurements of the (NO2)/(NO) ratio could be used to test the high chlorine hypothesis.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    M. P. Jensen; Toto, T.

    Standard Atmospheric Radiation Measurement (ARM) Climate Research Facility sounding files provide atmospheric state data in one dimension of increasing time and height per sonde launch. Many applications require a quick estimate of the atmospheric state at higher time resolution. The INTERPOLATEDSONDE (i.e., Interpolated Sounding) Value-Added Product (VAP) transforms sounding data into continuous daily files on a fixed time-height grid, at 1-minute time resolution, on 332 levels, from the surface up to a limit of approximately 40 km. The grid extends that high so the full height of soundings can be captured; however, most soundings terminate at an altitude between 25more » and 30 km, above which no data is provided. Between soundings, the VAP linearly interpolates atmospheric state variables in time for each height level. In addition, INTERPOLATEDSONDE provides relative humidity scaled to microwave radiometer (MWR) observations.« less

  20. Internal variability of a dynamically downscaled climate over North America

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jiali; Bessac, Julie; Kotamarthi, Rao

    This study investigates the internal variability (IV) of a regional climate model, and considers the impacts of horizontal resolution and spectral nudging on the IV. A 16-member simulation ensemble was conducted using the Weather Research Forecasting model for three model configurations. Ensemble members included simulations at spatial resolutions of 50 km and 12 km without spectral nudging and simulations at a spatial resolution of 12 km with spectral nudging. All the simulations were generated over the same domain, which covered much of North America. The degree of IV was measured as the spread between the individual members of the ensemblemore » during the integration period. The IV of the 12 km simulation with spectral nudging was also compared with a future climate change simulation projected by the same model configuration. The variables investigated focus on precipitation and near-surface air temperature. While the IVs show a clear annual cycle with larger values in summer and smaller values in winter, the seasonal IV is smaller for a 50-km spatial resolution than for a 12-km resolution when nudging is not applied. Applying a nudging technique to the 12-km simulation reduces the IV by a factor of two, and produces smaller IV than the simulation at 50 km without nudging. Applying a nudging technique also changes the geographic distributions of IV in all examined variables. The IV is much smaller than the inter-annual variability at seasonal scales for regionally averaged temperature and precipitation. The IV is also smaller than the projected changes in air-temperature for the mid- and late 21st century. However, the IV is larger than the projected changes in precipitation for the mid- and late 21st century.« less

  1. Rayleigh lidar observations of gravity wave activity in the stratosphere and lower mesosphere

    NASA Technical Reports Server (NTRS)

    Miller, M. S.; Gardner, C. S.; Liu, C. H.

    1987-01-01

    Forty-two monochromatic gravity wave events were observed in the 25 to 55 km altitude region during 16 nights of Rayleigh lidar measurements at Poker Flat, Alaska and Urbana, Illinois. The measured wave parameters were compared to previous radar and lidar measurements of gravity wave activity. Vertical wavelengths, lambda(z), between 2 and 11.5 km with vertical phase velocities, c(z), between 0.1 and 1 m/s were observed. Measured values of lambda(z) and c(z) were used to infer observed wave periods, T(ob), between 50 and 1000 minutes and horizontal wavelengths, lambda(x), from 25 to 2000 km. Dominant wave activity was found at vertical wavelengths between 2 to 4 km and 7 to 10 km. No seasonal variations were evident in the observed wave parameters. Vertical and horizontal wavelengths showed a clear tendency to increase with T(ob), which is consistent with recent sodium lidar studies of monochromatic wave events near the mesopause. Measured power law relationships between the wave parameters were lambda(z) varies as T(ob) sup 0.96, lambda(x) varies as T(ob) sup 1.8, and c(z) varies as T(ob) sup -0.85. The kinetic energy calculated for the monochromatic wave events varied as k(z) sup -2, k(x) sup -1, and f(ob) sup -1.7. The atmospheric scale heights calculated for each observation date range from 6.5 to 7.6 km with a mean value of 7 km. The increase of rms wind perturbations with altitude indicated an amplitude growth length of 20.9 km. The altitude profile of kinetic energy density decreased with height, suggesting that waves in this altitude region were subject to dissipation or saturation effects.

  2. Backscatter-to-Extinction Ratios in the Top Layers of Tropical Mesoscale Convective Systems and in Isolated Cirrus from LITE Observations

    NASA Technical Reports Server (NTRS)

    Platt, C. M. R.; Winker, D. M.; Vaughan, M. A.; Miller, S. D.

    1999-01-01

    Cloud-integrated attenuated backscatter from observations with the Lidar In-Space Technology Experiment (LITE) was studied over a range of cirrus clouds capping some extensive mesoscale convective systems (MCSS) in the Tropical West Pacific. The integrated backscatter when the cloud is completely attenuating, and when corrected for multiple scattering, is a measure of the cloud particle backscatter phase function. Four different cases of MCS were studied. The first was very large, very intense, and fully attenuating, with cloud tops extending to 17 km and a maximum lidar pulse penetration of about 3 km. It also exhibited the highest integrated attenuated isotropic backscatter, with values in the 532-nm channel of up to 2.5 near the center of the system, falling to 0.6 near the edges. The second MCS had cloud tops that extended to 14.8 km. Although MCS2 was almost fully attenuating, the pulse penetration into the cloud was up to 7 km and the MCS2 had a more diffuse appearance than MCS1. The integrated backscatter values were much lower in this system but with some systematic variations between 0.44 and 0.75. The third MCS was Typhoon Melissa. Values of integrated backscatter in tt-ds case varied from 1.64 near the eye of the typhoon to between 0.44 and 1.0 in the areas of typhoon outflow and in the 532-nm channel. Mean pulse penetration through the cloud top was 2-3 km, the lowest penetration of any of the systems. The fourth MCS consisted of a region of outflow from Typhoon Melissa. The cloud was semitransparent for more than half of the image time. During that time, maximum cloud depth was about 7 km. The integrated backscatter varied from about 0.38 to 0.63 in the 532-nm channel when the cloud was fully attenuating. In some isolated cirrus between the main systems, a plot of integrated backscatter against one minus the two-way transmittance gave a linear dependence with a maximum value of 0.35 when the clouds were fully attenuating. The effective backscatter-to-extinction ratios, when allowing for different multiple-scattering factors from space, were often within the range of those observed with ground-based lidar. Exceptions occurred near the centers of the most intense convection, where values were measured that were considerably higher than those in cirrus observed from the surface. In this case, the values were more compatible with theoretical values for perfectly formed hexagonal columns or plates. The large range in theoretically calculated back- scatter-to-extinction ratio and integrated multiple-scattering factor precluded a closer interpretation in terms of cloud microphysics.

  3. A spectral analysis of Deneb (A2 Iae)

    NASA Astrophysics Data System (ADS)

    Albayrak, B.

    2000-12-01

    This study presents a detailed model atmosphere abundance analysis of Deneb which was performed using Kurucz LTE ATLAS9 model atmospheres. The atmospheric parameters were determined from Mg I/II and Fe I/II equilibrium, and by fitting the Hgamma profile and optical region spectrophotometry. The compromise values which best satisfy these criteria are T_eff = 9000 K and log g = 1.45. The Mg I, Mg II, Si II, Ti II, Cr II, Fe I, and Fe II lines yield microturbulences of 3.60, 6.50, 8.50, 8.00, 11.90, 3.60, and 10.40 km s-1, respectively. An average microturbulence of 7 km s-1 was used for the other atomic species. From a comparision of the synthetic spectrum with the observations, the best value for the rotational velocity is v sin i = 25 km s-1, and for the macroturbulent velocity is zeta = 14 km s-1, which are similar to those of some earlier derived values. Also, the individual spectrograms have a range of radial velocity variation of ~ 15 km s-1 which is approximately equal to macroturbulent velocity. These values of the macroturbulence and the range of radial velocity variation are close to the sum of the amplitudes (10.44 km s-1) of all the pulsation periods found by Lucy (\\cite{lucy}), who also suggested that the surface motions of the atmosphere of Deneb can be identified with macroturbulence. Deneb showed a definite helium underabundance with a well determined He/H value = 0.071. The CNO values (C being mildly deficient, N being in moderate excess, and an O being slightly deficient) are consistent with the mixing of the CNO-cycled products into the surface layers from the processed materials presumably dredged-up from the interior. Aluminium is mildly deficient by ~ 0.24 dex with respect to solar value, while sulfur is moderately underabundant by ~ 0.43 dex in Deneb. Mg and Si have the solar abundances. The metal abundances (Ca to Ni) tend to be greater than solar except for Sc which is slightly deficient. The heavy elements abundances (Sr, Y, and Zr) are all greater than solar. These abundance patterns conform to the common tendency seen with other normal Population I A supergiants found by Venn (\\cite{venna}). The rare-earth elements (Ba, La, and Eu) which have been unexplored in other Galactic early A-type supergiants are significantly overabundant relative the Sun. Based on data obtained at the Dominion Astrophysical Observatory, Herzberg Institute of Astrophysics, National Research Council of Canada. Table A.1 is only available electronically with the On-Line publication at http://link.springer.de/link/service/00230/

  4. The GRAM-3 model

    NASA Technical Reports Server (NTRS)

    Justus, C. G.

    1987-01-01

    The Global Reference Atmosphere Model (GRAM) is under continuous development and improvement. GRAM data were compared with Middle Atmosphere Program (MAP) predictions and with shuttle data. An important note: Users should employ only step sizes in altitude that give vertical density gradients consistent with shuttle-derived density data. Using too small a vertical step size (finer then 1 km) will result in what appears to be unreasonably high values of density shears but what in reality is noise in the model.

  5. Canaveral National Seashore Water Quality and Aquatic Resource Inventory

    NASA Technical Reports Server (NTRS)

    Hall, C. R.; Provancha, J. A.; Oddy, D. M.; Lowers, R. L.; Drese, J. D.

    2001-01-01

    Mosquito Lagoon is a shallow, bar-built estuary located on the east central Florida Coast, primarily within the KSC boundary. The lagoon and watershed cover approximately 327 sq km (79422 acres) .The Lagoon occupies 159 sq km (37853 acres). Water depths average approximately 1m. The lagoon volume is approximately 1.6 x 10(exp 8)cu m. Water quality in Mosquito Lagoon is good. Salinity data typically range between 20 ppt and 35 ppt. The lowest value recorded was 4.5 ppt and the highest value was 37 ppt. Water temperatures fluctuate 2 - 3 C over a 24 h period. Cold front passage can rapidly alter water temperatures by 5 - 10 C or more in a short period of time. The highest temperature was 33.4 C and the lowest temperature was 8.8 C after a winter storm. Dissolved oxygen concentrations ranged from a low of 0.4 mg/l to a high of 15.3 mg/l. Extended periods of measurements below the Florida Department of Environmental Protection criteria of 4.0 mg/l were observed in fall and spring months suggesting high system respiration and oxygen demand. Metals such as antimony, arsenic, molybdenum and mercury were report as below detection limits for all samples. Cadmium, copper, chromium, silver, and zinc were found to be periodically above the Florida Department of Environmental Protection criteria for Class II and Class III surface waters.

  6. Estimation of ground motion for Bhuj (26 January 2001; Mw 7.6 and for future earthquakes in India

    USGS Publications Warehouse

    Singh, S.K.; Bansal, B.K.; Bhattacharya, S.N.; Pacheco, J.F.; Dattatrayam, R.S.; Ordaz, M.; Suresh, G.; ,; Hough, S.E.

    2003-01-01

    Only five moderate and large earthquakes (Mw ???5.7) in India-three in the Indian shield region and two in the Himalayan arc region-have given rise to multiple strong ground-motion recordings. Near-source data are available for only two of these events. The Bhuj earthquake (Mw 7.6), which occurred in the shield region, gave rise to useful recordings at distances exceeding 550 km. Because of the scarcity of the data, we use the stochastic method to estimate ground motions. We assume that (1) S waves dominate at R < 100 km and Lg waves at R ??? 100 km, (2) Q = 508f0.48 is valid for the Indian shield as well as the Himalayan arc region, (3) the effective duration is given by fc-1 + 0.05R, where fc is the corner frequency, and R is the hypocentral distance in kilometer, and (4) the acceleration spectra are sharply cut off beyond 35 Hz. We use two finite-source stochastic models. One is an approximate model that reduces to the ??2-source model at distances greater that about twice the source dimension. This model has the advantage that the ground motion is controlled by the familiar stress parameter, ????. In the other finite-source model, which is more reliable for near-source ground-motion estimation, the high-frequency radiation is controlled by the strength factor, sfact, a quantity that is physically related to the maximum slip rate on the fault. We estimate ???? needed to fit the observed Amax and Vmax data of each earthquake (which are mostly in the far field). The corresponding sfact is obtained by requiring that the predicted curves from the two models match each other in the far field up to a distance of about 500 km. The results show: (1) The ???? that explains Amax data for shield events may be a function of depth, increasing from ???50 bars at 10 km to ???400 bars at 36 km. The corresponding sfact values range from 1.0-2.0. The ???? values for the two Himalayan arc events are 75 and 150 bars (sfact = 1.0 and 1.4). (2) The ???? required to explain Vmax data is, roughly, half the corresponding value for Amax, while the same sfact explains both sets of data. (3) The available far-field Amax and Vmax data for the Bhuj mainshock are well explained by ???? = 200 and 100 bars, respectively, or, equivalently, by sfact = 1.4. The predicted Amax and Vmax in the epicentral region of this earthquake are 0.80 to 0.95 g and 40 to 55 cm/sec, respectively.

  7. Oxygen isotope geochemistry of the lassen volcanic center, California: Resolving crustal and mantle contributions to continental Arc magmatism

    USGS Publications Warehouse

    Feeley, T.C.; Clynne, M.A.; Winer, G.S.; Grice, W.C.

    2008-01-01

    This study reports oxygen isotope ratios determined by laser fluorination of mineral separates (mainly plagioclase) from basaltic andesitic to rhyolitic composition volcanic rocks erupted from the Lassen Volcanic Center (LVC), northern California. Plagioclase separates from nearly all rocks have ??18O values (6.1-8.4%) higher than expected for production of the magmas by partial melting of little evolved basaltic lavas erupted in the arc front and back-arc regions of the southernmost Cascades during the late Cenozoic. Most LVC magmas must therefore contain high 18O crustal material. In this regard, the ??18O values of the volcanic rocks show strong spatial patterns, particularly for young rhyodacitic rocks that best represent unmodified partial melts of the continental crust. Rhyodacitic magmas erupted from vents located within 3.5 km of the inferred center of the LVC have consistently lower ??18 O values (average 6.3% ?? 0.1%) at given SiO2 contents relative to rocks erupted from distal vents (>7.0 km; average 7.1% ?? 0.1%). Further, magmas erupted from vents situated at transitional distances have intermediate values and span a larger range (average 6.8% ?? 0.2%). Basaltic andesitic to andesitic composition rocks show similar spatial variations, although as a group the ??18O values of these rocks are more variable and extend to higher values than the rhyodacitic rocks. These features are interpreted to reflect assimilation of heterogeneous lower continental crust by mafic magmas, followed by mixing or mingling with silicic magmas formed by partial melting of initially high 18O continental crust (??? 9.0%) increasingly hybridized by lower ??18O (???6.0%) mantle-derived basaltic magmas toward the center of the system. Mixing calculations using estimated endmember source ??18O values imply that LVC magmas contain on a molar oxygen basis approximately 42 to 4% isotopically heavy continental crust, with proportions declining in a broadly regular fashion toward the center of the LVC. Conversely, the ??18O values of the rhyodacitic rocks suggest that the continental crust in the melt generation zones beneath the LVC has been substantially modified by intrusion of mantle-derived basaltic magmas, with the degree of hybridization ranging on a molar oxygen basis from approximately 60% at distances up to 12 km from the center of the system to 97% directly beneath the focus region. These results demonstrate on a relatively small scale the strong influence that intrusion of mantle-derived mafic magmas can have on modifying the composition of pre-existing continental crust in regions of melt production. Given this result, similar, but larger-scale, regional trends in magma compositions may reflect an analogous but more extensive process wherein the continental crust becomes progressively hybridized beneath frontal arc localities as a result of protracted intrusion of subduction-related basaltic magmas. ?? The Author 2008. Published by Oxford University Press. All rights reserved.

  8. A 4.5 km resolution Arctic Ocean simulation with the global multi-resolution model FESOM 1.4

    NASA Astrophysics Data System (ADS)

    Wang, Qiang; Wekerle, Claudia; Danilov, Sergey; Wang, Xuezhu; Jung, Thomas

    2018-04-01

    In the framework of developing a global modeling system which can facilitate modeling studies on Arctic Ocean and high- to midlatitude linkage, we evaluate the Arctic Ocean simulated by the multi-resolution Finite Element Sea ice-Ocean Model (FESOM). To explore the value of using high horizontal resolution for Arctic Ocean modeling, we use two global meshes differing in the horizontal resolution only in the Arctic Ocean (24 km vs. 4.5 km). The high resolution significantly improves the model's representation of the Arctic Ocean. The most pronounced improvement is in the Arctic intermediate layer, in terms of both Atlantic Water (AW) mean state and variability. The deepening and thickening bias of the AW layer, a common issue found in coarse-resolution simulations, is significantly alleviated by using higher resolution. The topographic steering of the AW is stronger and the seasonal and interannual temperature variability along the ocean bottom topography is enhanced in the high-resolution simulation. The high resolution also improves the ocean surface circulation, mainly through a better representation of the narrow straits in the Canadian Arctic Archipelago (CAA). The representation of CAA throughflow not only influences the release of water masses through the other gateways but also the circulation pathways inside the Arctic Ocean. However, the mean state and variability of Arctic freshwater content and the variability of freshwater transport through the Arctic gateways appear not to be very sensitive to the increase in resolution employed here. By highlighting the issues that are independent of model resolution, we address that other efforts including the improvement of parameterizations are still required.

  9. High-mass star formation possibly triggered by cloud-cloud collision in the H II region RCW 34

    NASA Astrophysics Data System (ADS)

    Hayashi, Katsuhiro; Sano, Hidetoshi; Enokiya, Rei; Torii, Kazufumi; Hattori, Yusuke; Kohno, Mikito; Fujita, Shinji; Nishimura, Atsushi; Ohama, Akio; Yamamoto, Hiroaki; Tachihara, Kengo; Hasegawa, Yutaka; Kimura, Kimihiro; Ogawa, Hideo; Fukui, Yasuo

    2018-05-01

    We report on the possibility that the high-mass star located in the H II region RCW 34 was formed by a triggering induced by a collision of molecular clouds. Molecular gas distributions of the 12CO and 13CO J = 2-1 and 12CO J = 3-2 lines in the direction of RCW 34 were measured using the NANTEN2 and ASTE telescopes. We found two clouds with velocity ranges of 0-10 km s-1 and 10-14 km s-1. Whereas the former cloud is as massive as ˜1.4 × 104 M⊙ and has a morphology similar to the ring-like structure observed in the infrared wavelengths, the latter cloud, with a mass of ˜600 M⊙, which has not been recognized by previous observations, is distributed to just cover the bubble enclosed by the other cloud. The high-mass star with a spectral type of O8.5V is located near the boundary of the two clouds. The line intensity ratio of 12CO J = 3-2/J = 2-1 yields high values (≳1.0), suggesting that these clouds are associated with the massive star. We also confirm that the obtained position-velocity diagram shows a similar distribution to that derived by a numerical simulation of the supersonic collision of two clouds. Using the relative velocity between the two clouds (˜5 km s-1), the collisional time scale is estimated to be ˜0.2 Myr with the assumption of a distance of 2.5 kpc. These results suggest that the high-mass star in RCW 34 was formed rapidly within a time scale of ˜0.2 Myr via a triggering of a cloud-cloud collision.

  10. Integrated 3D density modelling and segmentation of the Dead Sea Transform

    NASA Astrophysics Data System (ADS)

    Götze, H.-J.; El-Kelani, R.; Schmidt, S.; Rybakov, M.; Hassouneh, M.; Förster, H.-J.; Ebbing, J.

    2007-04-01

    A 3D interpretation of the newly compiled Bouguer anomaly in the area of the “Dead Sea Rift” is presented. A high-resolution 3D model constrained with the seismic results reveals the crustal thickness and density distribution beneath the Arava/Araba Valley (AV), the region between the Dead Sea and the Gulf of Aqaba/Elat. The Bouguer anomalies along the axial portion of the AV, as deduced from the modelling results, are mainly caused by deep-seated sedimentary basins ( D > 10 km). An inferred zone of intrusion coincides with the maximum gravity anomaly on the eastern flank of the AV. The intrusion is displaced at different sectors along the NNW-SSE direction. The zone of maximum crustal thinning (depth 30 km) is attained in the western sector at the Mediterranean. The southeastern plateau, on the other hand, shows by far the largest crustal thickness of the region (38-42 km). Linked to the left lateral movement of approx. 105 km at the boundary between the African and Arabian plate, and constrained with recent seismic data, a small asymmetric topography of the Moho beneath the Dead Sea Transform (DST) was modelled. The thickness and density of the crust suggest that the AV is underlain by continental crust. The deep basins, the relatively large intrusion and the asymmetric topography of the Moho lead to the conclusion that a small-scale asthenospheric upwelling could be responsible for the thinning of the crust and subsequent creation of the Dead Sea basin during the left lateral movement. A clear segmentation along the strike of the DST was obtained by curvature analysis: the northern part in the neighbourhood of the Dead Sea is characterised by high curvature of the residual gravity field. Flexural rigidity calculations result in very low values of effective elastic lithospheric thickness ( t e < 5 km). This points to decoupling of crust in the Dead Sea area. In the central, AV the curvature is less pronounced and t e increases to approximately 10 km. Curvature is high again in the southernmost part near the Aqaba region. Solutions of Euler deconvolution were visualised together with modelled density bodies and fit very well into the density model structures.

  11. The Atlanta tornado of 1975

    NASA Technical Reports Server (NTRS)

    Greneker, E. F.; Wilson, C. S.; Metcalf, J. I.

    1976-01-01

    Joint observations by radar and high-frequency sferics detectors at Georgia Institute of Technology provided unique data on the Atlanta tornado of Mar. 24, 1975. The classic hook echo was detected by radar at a range of about 26 km, 15 min before the tornado touched down. While the tornado was on the ground the sferics burst rate was very low, despite very high values recorded immediately before and after this interval. This observation, together with visual reports of a strong cloud-to-ground discharge at the time of tornado touchdown, suggests an interaction of the tornado with the electric field of the storm.

  12. Comparison of water vapor from observations and models in the Asian Monsoon UTLS region

    NASA Astrophysics Data System (ADS)

    Singer, C. E.; Clouser, B.; Gaeta, D. C.; Moyer, E. J.

    2017-12-01

    As part of the StratoClim campaign in July/August 2017, the Chicago Water Isotope Spectrometer (ChiWIS) made water vapor measurements from the mid-troposphere through the lower stratosphere (to 21 km altitude). We compare in-situ measurements with remote sensing observations and model projections both to validate measurements and to evalute the added value of high-precision in-situ sampling. Preliminary results and comparison with other StratoClim tracer measurements suggest that the UTLS region is highly structured, beyond what models or satellite instruments can capture, and that ChiWIS accurately captures these variations.

  13. GreenLITE: a new laser-based tool for near-real-time monitoring and mapping of CO2 and CH4 concentrations on scales from 0.04-25 km2

    NASA Astrophysics Data System (ADS)

    Dobler, Jeremy T.; Pernini, Timothy G.; Blume, Nathan; Zaccheo, T. Scott; Braun, Michael

    2017-08-01

    In 2013, Harris and Atmospheric and Environmental Research developed the greenhouse gas laser imaging tomography experiment (GreenLITE™) under a cooperative agreement with the National Energy Technology Laboratory of the Department of Energy. The system uses a pair of high-precision, intensity-modulated, continuous-wave (IMCW) transceivers and a series of retroreflectors to generate overlapping atmospheric density measurements from absorption of a particular greenhouse gas (e.g. CO2 or CH4), to provide an estimate of the two-dimensional spatial distribution of the gas within the area of interest. The system can take measurements over areas ranging from approximately 0.04 square kilometers (km2) to 25 km2 ( 200 meters (m) × 200 m, up to 5 km × 5 km). Multiple GreenLITE™ CO2 demonstrations have been carried out to date, including a full year, November 04, 2015 through November 14, 2016, deployment over a 25 km2 area of downtown Paris, France. In late 2016, the GreenLITE™ system was converted to provide similar measurements for CH4. Recent experiments showed that GreenLITE™ CH4 concentration readings correlated with an insitu instrument, calibrated with World Meteorological Organization traceable gas purchased from the NOAA Earth Systems Research Laboratory, to within approximately 0.5% of CH4 background or 10-15 parts per billion. Several experiments are planned in 2017 to further evaluate the accuracy of the CH4 and CO2 retrieved concentration values compared to the calibrated in situ instrument and to demonstrate the feasibility of GreenLITE™ for environmental and safety monitoring of CO2 and CH4 in industrial applications.

  14. Tectonic history of the Syria Planum province of Mars

    USGS Publications Warehouse

    Tanaka, K.L.; Davis, P.A.

    1988-01-01

    We attribute most of the development of extensive fractures in the Tharsis region to discrete tectonic provinces within the region, rather than to Tharsis as a single entity. One of these provinces is in Syria Planum. Faults and collapse structures in the Syria Planum tectonic province on Mars are grouped into 13 sets based on relative age, areal distribution, and morphology. According to superposition and fault crosscutting relations and crater counts we designate six distinct episodes of tectonic activity. Photoclinometric topographic profiles across 132 grabens and fault scarps show that Syria Planum grabens have widths (average of 2.5 km, and most range from 1 to 6 km) similar to lunar grabens, but the Martian grabens have slightly higher side walls (average abour 132 m) and gentler wall slopes (average of 9?? and range of 2??-25??) than lunar grabens (93 m high and 18?? slopes). Estimates of the amount of extension for individual grabens range from 20 to 350 m; most estimates of the thickness of the faulted layer range from 0.5 to 4.5 km (average is 1.5 km). This thickness range corresponds closely to the 0.8- to 3.6-km range in depth for pits, troughs, and canyons in Noctis Labyrinthus and along the walls of Valles Marineris. We propose that the predominant 1- to 1.5-km values obtained for both the thickness of the faulted layer and the depths of the pits, troughs, and theater heads of the canyons reflect the initial depth to the water table in this region, as governed by the depth to the base of ground ice. Maximum depths for these features may indicate lowered groundwater table depths and the base of ejecta material. -from Authors

  15. Submesoscale Sea Surface Temperature Variability from UAV and Satellite Measurements

    NASA Astrophysics Data System (ADS)

    Castro, S. L.; Emery, W. J.; Tandy, W., Jr.; Good, W. S.

    2017-12-01

    Technological advances in spatial resolution of observations have revealed the importance of short-lived ocean processes with scales of O(1km). These submesoscale processes play an important role for the transfer of energy from the meso- to small scales and for generating significant spatial and temporal intermittency in the upper ocean, critical for the mixing of the oceanic boundary layer. Submesoscales have been observed in sea surface temperatures (SST) from satellites. Satellite SST measurements are spatial averages over the footprint of the satellite. When the variance of the SST distribution within the footprint is small, the average value is representative of the SST over the whole pixel. If the variance is large, the spatial heterogeneity is a source of uncertainty in satellite derived SSTs. Here we show evidence that the submesoscale variability in SSTs at spatial scales of 1km is responsible for the spatial variability within satellite footprints. Previous studies of the spatial variability in SST, using ship-based radiometric data suggested that variability at scales smaller than 1 km is significant and affects the uncertainty of satellite-derived skin SSTs. We examine data collected by a calibrated thermal infrared radiometer, the Ball Experimental Sea Surface Temperature (BESST), flown on a UAV over the Arctic Ocean and compare them with coincident measurements from the MODIS spaceborne radiometer to assess the spatial variability of SST within 1 km pixels. By taking the standard deviation of all the BESST measurements within individual MODIS pixels we show that significant spatial variability exists within the footprints. The distribution of the surface variability measured by BESST shows a peak value of O(0.1K) with 95% of the pixels showing σ < 0.45K. More importantly, high-variability pixels are located at density fronts in the marginal ice zone, which are a primary source of submesoscale intermittency near the surface in the Arctic Ocean. Wavenumber spectra of the BESST SSTs indicate a spectral slope of -2, consistent with the presence of submesoscale processes. Furthermore, not only is the BESST wavenumber spectra able to match the MODIS SST spectra well, but also extends the spectral slope of -2 by 2 decades relative to MODIS, from wavelengths of 8km to 0.08km.

  16. Placido disk-based topography versus high-resolution rotating Scheimpflug camera for corneal power measurements in keratoconic and post-LASIK eyes: reliability and agreement.

    PubMed

    Penna, Rachele R; de Sanctis, Ugo; Catalano, Martina; Brusasco, Luca; Grignolo, Federico M

    2017-01-01

    To compare the repeatability/reproducibility of measurement by high-resolution Placido disk-based topography with that of a high-resolution rotating Scheimpflug camera and assess the agreement between the two instruments in measuring corneal power in eyes with keratoconus and post-laser in situ keratomileusis (LASIK). One eye each of 36 keratoconic patients and 20 subjects who had undergone LASIK was included in this prospective observational study. Two independent examiners worked in a random order to take three measurements of each eye with both instruments. Four parameters were measured on the anterior cornea: steep keratometry (Ks), flat keratometry (Kf), mean keratometry (Km), and astigmatism (Ks-Kf). Intra-examiner repeatability and inter-examiner reproducibility were evaluated by calculating the within-subject standard deviation (Sw) the coefficient of repeatability (R), the coefficient of variation (CoV), and the intraclass correlation coefficient (ICC). Agreement between instruments was tested with the Bland-Altman method by calculating the 95% limits of agreement (95% LoA). In keratoconic eyes, the intra-examiner and inter-examiner ICC were >0.95. As compared with measurement by high-resolution Placido disk-based topography, the intra-examiner R of the high-resolution rotating Scheimpflug camera was lower for Kf (0.32 vs 0.88), Ks (0.61 vs 0.88), and Km (0.32 vs 0.84) but higher for Ks-Kf (0.70 vs 0.57). Inter-examiner R values were lower for all parameters measured using the high-resolution rotating Scheimpflug camera. The 95% LoA were -1.28 to +0.55 for Kf, -1.36 to +0.99 for Ks, -1.08 to +0.50 for Km, and -1.11 to +1.48 for Ks-Kf. In the post-LASIK eyes, the intra-examiner and inter-examiner ICC were >0.87 for all parameters. The intra-examiner and inter-examiner R were lower for all parameters measured using the high-resolution rotating Scheimpflug camera. The intra-examiner R was 0.17 vs 0.88 for Kf, 0.21 vs 0.88 for Ks, 0.17 vs 0.86 for Km, and 0.28 vs 0.33 for Ks-Kf. The inter-examiner R was 0.09 vs 0.64 for Kf, 0.15 vs 0.56 for Ks, 0.09 vs 0.59 for Km, and 0.18 vs 0.23 for Ks-Kf. The 95% LoA were -0.54 to +0.58 for Kf, -0.51 to +0.53 for Ks and Km, and -0.28 to +0.27 for Ks-Kf. As compared with Placido disk-based topography, the high-resolution rotating Scheimpflug camera provides more repeatable and reproducible measurements of Ks, Kf and Ks in keratoconic and post-LASIK eyes. Agreement between instruments is fair in keratoconus and very good in post-LASIK eyes.

  17. Placido disk-based topography versus high-resolution rotating Scheimpflug camera for corneal power measurements in keratoconic and post-LASIK eyes: reliability and agreement

    PubMed Central

    Penna, Rachele R.; de Sanctis, Ugo; Catalano, Martina; Brusasco, Luca; Grignolo, Federico M.

    2017-01-01

    AIM To compare the repeatability/reproducibility of measurement by high-resolution Placido disk-based topography with that of a high-resolution rotating Scheimpflug camera and assess the agreement between the two instruments in measuring corneal power in eyes with keratoconus and post-laser in situ keratomileusis (LASIK). METHODS One eye each of 36 keratoconic patients and 20 subjects who had undergone LASIK was included in this prospective observational study. Two independent examiners worked in a random order to take three measurements of each eye with both instruments. Four parameters were measured on the anterior cornea: steep keratometry (Ks), flat keratometry (Kf), mean keratometry (Km), and astigmatism (Ks-Kf). Intra-examiner repeatability and inter-examiner reproducibility were evaluated by calculating the within-subject standard deviation (Sw) the coefficient of repeatability (R), the coefficient of variation (CoV), and the intraclass correlation coefficient (ICC). Agreement between instruments was tested with the Bland-Altman method by calculating the 95% limits of agreement (95% LoA). RESULTS In keratoconic eyes, the intra-examiner and inter-examiner ICC were >0.95. As compared with measurement by high-resolution Placido disk-based topography, the intra-examiner R of the high-resolution rotating Scheimpflug camera was lower for Kf (0.32 vs 0.88), Ks (0.61 vs 0.88), and Km (0.32 vs 0.84) but higher for Ks-Kf (0.70 vs 0.57). Inter-examiner R values were lower for all parameters measured using the high-resolution rotating Scheimpflug camera. The 95% LoA were -1.28 to +0.55 for Kf, -1.36 to +0.99 for Ks, -1.08 to +0.50 for Km, and -1.11 to +1.48 for Ks-Kf. In the post-LASIK eyes, the intra-examiner and inter-examiner ICC were >0.87 for all parameters. The intra-examiner and inter-examiner R were lower for all parameters measured using the high-resolution rotating Scheimpflug camera. The intra-examiner R was 0.17 vs 0.88 for Kf, 0.21 vs 0.88 for Ks, 0.17 vs 0.86 for Km, and 0.28 vs 0.33 for Ks-Kf. The inter-examiner R was 0.09 vs 0.64 for Kf, 0.15 vs 0.56 for Ks, 0.09 vs 0.59 for Km, and 0.18 vs 0.23 for Ks-Kf. The 95% LoA were -0.54 to +0.58 for Kf, -0.51 to +0.53 for Ks and Km, and -0.28 to +0.27 for Ks-Kf. CONCLUSION As compared with Placido disk-based topography, the high-resolution rotating Scheimpflug camera provides more repeatable and reproducible measurements of Ks, Kf and Ks in keratoconic and post-LASIK eyes. Agreement between instruments is fair in keratoconus and very good in post-LASIK eyes. PMID:28393039

  18. The origin and mechanisms of salinization of the Lower Jordan River

    USGS Publications Warehouse

    Farber, E.; Vengosh, A.; Gavrieli, I.; Marie, Amarisa; Bullen, T.D.; Mayer, B.; Holtzman, R.; Segal, M.; Shavit, U.

    2004-01-01

    The chemical and isotopic (87Sr/86Sr, ??11B, ??34Ssulfate, ??18Owater, ??15Nnitrate) compositions of water from the Lower Jordan River and its major tributaries between the Sea of Galilee and the Dead Sea were determined in order to reveal the origin of the salinity of the Jordan River. We identified three separate hydrological zones along the flow of the river: (1) A northern section (20 km downstream of its source) where the base flow composed of diverted saline and wastewaters is modified due to discharge of shallow sulfate-rich groundwater, characterized by low 87Sr/86Sr (0.7072), ??34Ssulfate (-2???), high ??11B (???36???), ??15Nnitrate (???15???) and high ??18Owater (-2 to-3???) values. The shallow groundwater is derived from agricultural drainage water mixed with natural saline groundwater and discharges to both the Jordan and Yarmouk rivers. The contribution of the groundwater component in the Jordan River flow, deduced from mixing relationships of solutes and strontium isotopes, varies from 20 to 50% of the total flow. (2) A central zone (20-50 km downstream from its source) where salt variations are minimal and the rise of 87Sr/86Sr and SO4/Cl ratios reflects predominance of eastern surface water flows. (3) A southern section (50-100 km downstream of its source) where the total dissolved solids of the Jordan River increase, particularly during the spring (70-80 km) and summer (80-100 km) to values as high as 11.1 g/L. Variations in the chemical and isotopic compositions of river water along the southern section suggest that the Zarqa River (87Sr/86Sr???0.70865; ??11B???25???) has a negligible affect on the Jordan River. Instead, the river quality is influenced primarily by groundwater discharge composed of sulfate-rich saline groundwater (Cl-=31-180 mM; SO4/Cl???0.2-0.5; Br/Cl???2-3??10-3; 87Sr/86Sr???0.70805; ??11B???30???; ??15Nnitrate ???17???, ??34Ssulfate=4-10???), and Ca-chloride Rift valley brines (Cl-=846-1500 mM; Br/Cl???6-8??10-3; 87Sr/86Sr???0.7080; ??11B???40???; ??34Ssulfate=4-10???). Mixing calculations indicate that the groundwater discharged to the river is composed of varying proportions of brines and sulfate-rich saline groundwater. Solute mass balance calculations point to a ???10% contribution of saline groundwater (Cl-=282 to 564 mM) to the river. A high nitrate level (up to 2.5 mM) in the groundwater suggests that drainage of wastewater derived irrigation water is an important source for the groundwater. This irrigation water appears to leach Pleistocene sediments of the Jordan Valley resulting in elevated sulfate contents and altered strontium and boron isotopic compositions of the groundwater that in turn impacts the water quality of the lower Jordan River. ?? 2004 Elsevier Ltd.

  19. The upper atmosphere layer height changes as a precursor of the Padang earthquake on 30 September 2009

    NASA Astrophysics Data System (ADS)

    Ednofri, Ednofri; Wu, Falin; Ahmed, Wasiu Akande; Zhao, Yan

    2017-09-01

    This research investigated the potential of the upper atmosphere layer height changes as precursor of the Padang Earthquake on 30 September 2009. We analyzed the occurrence of atmospheric gravity wave (AGW) in all-sky imager (ASI) images and h'F in ionosonde mounted on Kototabang (0.2°S, 100.3°E, -10.4° magnetic latitude) Indonesia from seven days before and after the earthquake and found that there was an unusual evening in h'F variation on 24 and 29 September 2009. A positive h'F deviation on 24 and 29 September 2009 are with a maximum value of 42 and 31.5. For both these dates, the maximum h'F value reached 234 km and 261 km at 00:30 LT and 20:30 LT with the median value of 192 km and 229.5 km, respectively. The increase in h'F on 24 September 2009 before the midnight was caused by encouragement from AGW observed at a wavelength of OH bands ( 86 km) that happened a few minutes earlier. While the increase in h'F on 29 September 2009, suspected to be caused by the emergence of the AGW, though it cannot be proven because ASI does not operate due to rainy weather over Kototabang. For Dst index during the month of September 2009, there is nothing worth under -50 nT, this means a change of altitude h'F six and one days before the earthquake is not caused by the influence of magnetic storm but caused by AGW resulting from the epicenter.

  20. Distribution of Magma and Hydrothermal Fluids Beneath the Laguna del Maule Volcanic Field, Central Chile Using Magnetotelluric Data

    NASA Astrophysics Data System (ADS)

    Unsworth, M. J.; Cordell, D. R.; Diaz, D.; Reyes, V.

    2016-12-01

    Geodetic data has shown that the surface around the Laguna del Maule volcanic field in central Chile has been moving upwards at rates in excess of 19 cm/yr since 2007 over a 200 km2 area. It has been hypothesized that this ground deformation is due to the inflation of a magma body beneath the lake. InSAR deformation modeling and gravity inversion suggest that the depth to the magma body is between 3 km b.s.l. and 0 km (at sea level). This magma body is a likely source for the large number of rhyolitic eruptions at this location over the last 25 ka. A dense broadband magnetotelluric (MT) array was collected from 2009 to 2015 and inverted using the ModEM inversion algorithm to produce a three-dimensional electrical resistivity model. The presence of a large surface conductor (<0.5 Ωm; 2.3 km a.s.l.) spatially coincident with the lake bed has the potential to attenuate signal and decrease resolution beneath the area of inflation. Additional broadband MT data were collected in 2016 and this new data suggest there is a mid-depth, weakly conductive feature (5 Ωm; 1 km b.s.l.) coincident with the area of maximum inflation which is resolvable despite the low-resistivity surface layer. There are many conductive features which lie on the perimeter of the zone of inflation including a large low-resistivity zone (<5 Ωm) at 5 km depth (3 km b.s.l.) north-west of the lake and a large low-resistivity zone (<10 Ωm) at 5 km depth (3 km b.s.l) north of the lake. The complex, three-dimensional model structure is supported by phase tensor analysis showing poorly-defined strike and high beta skew values (>3) at periods >2 s. The conductive features identified could be interpreted as either hydrothermal systems or magma and further analysis will contribute to better understanding this dynamic system.

  1. Chlorine Isotope Evidence for Syn-Subduction Modification of Serpentinites by Interaction with Sediment-Derived Fluid

    NASA Astrophysics Data System (ADS)

    Selverstone, J.; Sharp, Z. D.

    2012-12-01

    High-pressure serpentinites and rodingites and high- to ultrahigh-pressure metasedimentary rocks from the Aosta region, Italy, preserve strikingly different chlorine isotope compositions that can be used to constrain the nature of fluid-rock interactions during subduction. Serpentinites and rodingitized gabbroic dikes subducted to 70-80 km have bulk δ37Cl values between -1.6 and +0.9‰ (median= -0.5‰, n=26 plus 5 replicates; one amphibole-vein outlier at -2.9‰). Serpentinite δ37Cl values are positively correlated with Cr ± Cl contents (r2= 0.97 and 0.58) and negatively correlated with CaO (r2=0.72). BSE imaging and X-ray mapping reveal up to three generations of compositionally distinct serpentine and chlorite in single samples. The youngest generation, which is most abundant, has the lowest chlorine content. Three rodingite samples contain abundant texturally early fluid inclusions. These samples were finely crushed and leached in 18 MΩ H2O to extract water-soluble chlorides. The leachates, which are assumed to record the compositions of the fluid inclusions, have δ37Cl values that are 0.7-1.5‰ lower than the corresponding bulk rock values. Leachate from the outlier amph-magnesite vein is indistinguishable from the bulk value at -2.7‰. There is almost no overlap between the Cl isotope compositions of HP serp/rod samples and associated HP/UHP metasedimentary rocks. Calcmica schists, diamond-bearing Mn nodules, and impure marbles subducted to >130 km and calcmica schists and Mn crusts transported to 70-80 km have δ37Cl values between -4.5 and -1.5‰ (median= -2.7‰, n=25 plus 7 replicates; two outlier points at -0.5‰). Primary fluid inclusions in the diamondiferous samples contain carbonate- and silicate-bearing aqueous fluids with very low chloride contents (Frezzotti et al., 2011, Nature Geosci). Taken together, these data record a history of progressive modification of serpentinites and rodingites by mixing with low-δ37Cl, low-Cl, high-Ca fluids during subduction and metamorphism. Serpentinites with the highest Cr contents have Cl isotopic compositions identical to those of modern seafloor serpentinites (δ37Cl=0.2-0.6‰), consistent with primary serpentinization by seawater (e.g., Barnes et al. 2009, Lithos). Low-Cr serpentinites record significant interaction with a Ca-rich fluid that shifted the rocks to lower δ37Cl values and diluted the original Cr and Cl contents. The fluid was likely derived from continuous devolatilization reactions in associated low-δ37Cl, calcareous metasedimentary rocks. These data have important implications for models of subduction mass transfer associated with antigorite breakdown. If serpentinites are commonly modified by interaction with metasedimentary fluids prior to antigorite dehydration, chemical signatures imparted during deserpentinization will reflect the integrated history of fluid-rock interaction in the subduction channel rather than an endmember "serpentinite signature". The data further suggest that Cl may be hydrophobic in HP/UHP carbonate-bearing aqueous fluids, resulting in generation of low-Cl fluid during metamorphic devolatilization.

  2. [Susceptibilities of Escherichia coli, Salmonella and Staphylococcus aureus isolated from animals to ofloxacin and commonly used antimicrobial agents].

    PubMed

    Takahashi, I; Yoshida, T; Higashide, Y; Sakano, T

    1990-01-01

    Susceptibilities of Escherichia coli, Salmonella and Staphylococcus aureus isolated from chickens, pigs and cattle to ofloxacin (OFLX) and commonly used antimicrobial agents were investigated. 1. E. coli (28 isolates) demonstrated the highest level of susceptibility of OFLX (MIC 0.10-0.39 micrograms/ml for all the isolates) among all the test drugs. Commonly used antimicrobial agents to which these isolates responded with relatively high susceptibilities (MIC50 0.78-6.25 micrograms/ml) included oxolinic acid (OXA), ampicillin (ABPC), kanamycin (KM) and chloramphenicol (CP) with their MIC50 values in the increasing order as above. Drugs to which these isolates responded with moderate to weak susceptibilities (MIC50 25 approximately greater than 800 micrograms/ml) were doxycycline (DOXY), streptomycin (SM), spectinomycin (SPCM) and sulfadimethoxine (SDMX) in the increasing order of MIC50. E. coli isolates with resistances to all the test drugs other than OFLX and OXA amounted to 7.1-57.1% of the isolates examined and 20 isolates (71.4%) in total. 2. Susceptibilities to OFLX and 4 existing pyridonecarboxylic acid derivatives of E. coli (48 samples) isolated recently from diarrheal pigs were compared. When evaluated in terms of MIC50, the values of OFLX and norfloxacin were both 0.10 micrograms/ml. The values increased by differences of 0.39-3.13 micrograms/ml in an order of OXA, pipemidic acid and nalidixic acid. 3. Salmonella (28 isolates) demonstrated the highest level of susceptibility to OFLX (MIC 0.20-0.39 micrograms/ml for all the isolates) among all the test drugs. The drugs to which these isolates responded with relatively high to moderate susceptibilities (MIC50 0.78-12.5 micrograms/ml) included ABPC, OXA, DOXY, KM, CP and SM with their MIC50 values increasing in this order. The drugs to which the isolates responded with low susceptibilities (MIC50 above 100 micrograms/ml) were SPCM and SDMX. Of all the 28 Salmonella isolates tested, 7.1-32.1% were resistant to all the test drugs other than OFLX and OXA. These resistant isolates amounted to a total of 12 isolates (42.9%). 4. S. aureus (28 isolates) were highly susceptible to OFLX (MIC50 and MIC90 were both 0.78 micrograms/ml). Commonly used antimicrobial agents to which the isolates responded with high to relatively high susceptibilities (MIC50 0.10-6.25 micrograms/ml) were, in the increasing order of MIC50: DOXY, ABPC, tylosin, tiamulin, KM, OXA and CP. Drugs with moderate to low bacterial susceptibilities (MIC50 12.5-100 microns/ml) were SD, SDMX and SPCM. Isolates resistant to all the test drugs except OFLX and SDMX amounted to 3.6-50% of the 28 isolates examined and they totalled 20 isolates (71.4%).(ABSTRACT TRUNCATED AT 400 WORDS)

  3. The Richter scale: its development and use for determining earthquake source parameters

    USGS Publications Warehouse

    Boore, D.M.

    1989-01-01

    The ML scale, introduced by Richter in 1935, is the antecedent of every magnitude scale in use today. The scale is defined such that a magnitude-3 earthquake recorded on a Wood-Anderson torsion seismometer at a distance of 100 km would write a record with a peak excursion of 1 mm. To be useful, some means are needed to correct recordings to the standard distance of 100 km. Richter provides a table of correction values, which he terms -log Ao, the latest of which is contained in his 1958 textbook. A new analysis of over 9000 readings from almost 1000 earthquakes in the southern California region was recently completed to redetermine the -log Ao values. Although some systematic differences were found between this analysis and Richter's values (such that using Richter's values would lead to underand overestimates of ML at distances less than 40 km and greater than 200 km, respectively), the accuracy of his values is remarkable in view of the small number of data used in their determination. Richter's corrections for the distance attenuation of the peak amplitudes on Wood-Anderson seismographs apply only to the southern California region, of course, and should not be used in other areas without first checking to make sure that they are applicable. Often in the past this has not been done, but recently a number of papers have been published determining the corrections for other areas. If there are significant differences in the attenuation within 100 km between regions, then the definition of the magnitude at 100 km could lead to difficulty in comparing the sizes of earthquakes in various parts of the world. To alleviate this, it is proposed that the scale be defined such that a magnitude 3 corresponds to 10 mm of motion at 17 km. This is consistent both with Richter's definition of ML at 100 km and with the newly determined distance corrections in the southern California region. Aside from the obvious (and original) use as a means of cataloguing earthquakes according to size, ML has been used in predictions of ground shaking as a function of distance and magnitude; it has also been used in estimating energy and seismic moment. There is a good correlation of peak ground velocity and the peak motion on a Wood-Anderson instrument at the same location, as well as an observationally defined (and theoretically predicted) nonlinear relation between ML and seismic moment. An important byproduct of the establishment of the ML scale is the continuous operation of the network of Wood-Anderson seismographs on which the scale is based. The records from these instruments can be used to make relative comparisons of amplitudes and waveforms of recent and historic earthquakes; furthermore, because of the moderate gain, the instruments can write onscale records from great earthquakes at teleseismic distances and thus can provide important information about the energy radiated from such earthquakes at frequencies where many instruments have saturated. ?? 1989.

  4. Topographic Mapping of Pluto and Charon Using New Horizons Data

    NASA Astrophysics Data System (ADS)

    Schenk, P. M.; Beyer, R. A.; Moore, J. M.; Spencer, J. R.; McKinnon, W. B.; Howard, A. D.; White, O. M.; Umurhan, O. M.; Singer, K.; Stern, S. A.; Weaver, H. A.; Young, L. A.; Ennico Smith, K.; Olkin, C.; Horizons Geology, New; Geophysics Imaging Team

    2016-06-01

    New Horizons 2015 flyby of the Pluto system has resulted in high-resolution topographic maps of Pluto and Charon, the most distant objects so mapped. DEM's over ~30% of each object were produced at 100-300 m vertical and 300-800 m spatial resolutions, in hemispheric maps and high-resolution linear mosaics. Both objects reveal more relief than was observed at Triton. The dominant 800-km wide informally named Sputnik Planum bright ice deposit on Pluto lies in a broad depression 3 km deep, flanked by dispersed mountains 3-5 km high. Impact craters reveal a wide variety of preservation states from pristine to eroded, and long fractures are several km deep with throw of 0-2 km. Topography of this magnitude suggests the icy shell of Pluto is relatively cold and rigid. Charon has global relief of at least 10 km, including ridges of 2-3 km and troughs of 3-5 km of relief. Impact craters are up to 6 km deep. Vulcan Planum consists of rolling plains and forms a topographic moat along its edge, suggesting viscous flow.

  5. Crustal and upper mantle structure of the north-east of Egypt and the Afro-Arabian plate boundary region from Rayleigh-wave analysis

    NASA Astrophysics Data System (ADS)

    Corchete, V.; Chourak, M.; Hussein, H. M.; Atiya, K.; Timoulali, Y.

    2017-05-01

    The crustal and mantle structure of the north-eastern part of Egypt and the surrounding area is shown by means of S-velocity maps for depths ranging from zero to 45 km, determined by the regionalization and inversion of Rayleigh-wave dispersion. This analysis shows several types of crust with an average S-velocity ranging from 2.5 to 3.9 km/s. The values of S-velocity range from 2.5 km/s at the surface to 3.4 km/s at 10 km depth for the Sinai Peninsula, Gulf of Aqaba, Gulf of Suez, Red Sea, Dead Sea, western part of Dead sea and Arabian Plate. In the lower crust, the values of the S-velocity reach 4.0 km/s. In the uppermost mantle, the S-velocities range from 4.4 to 4.7 km/s. The crustal thickness ranges from the oceanic thin crust (around 15-20 km of thickness), for Red Sea and the extended continental margins, to 35-45 km of thickness for the Arabian plate. A gradual increasing crustal thickness is observed from north-east to south-west. While the Moho is located at 30-35 km of depth under the Sinai Peninsula, Gulf of Aqaba, Dead Sea Fault (DSF) and Dead Sea, a thinner crust (20-25 km of thickness) is found at the east of DSF and under the northern and the southern part of the Gulf of Suez. The crustal thickness varies within Sinai from the southern edge to the north, which provided an evidence for the presence of an Early Mesozoic passive margin with thinned continental crust in the north of Sinai. The change of crustal structure between the Gulf of Aqaba and the Gulf of Suez is due to the different tectonic and geodynamic processes affecting Sinai. In general, our results are consistent with surface geology and the Moho depth inferred from reflection and refraction data, receiver function, surface-wave analysis and P-S tomography. The strong variations in the base of the Moho reflect the complex evolution of the African and Arabian plate boundary region.

  6. Three-dimensional flexure modelling of seamounts near the Ogasawara Fracture Zone in the western Pacific

    NASA Astrophysics Data System (ADS)

    Lee, Tae-Gook; Moon, Jai-Woon; Jung, Mee-Sook

    2009-04-01

    The geophysical data were obtained in 2000-2003 during a survey of seamounts near the Ogasawara Fracture Zone (OFZ) to the northwest of the Marshall Islands in the western Pacific. The OFZ is unique in that it is a wide rift zone showing 600-km-long right-lateral movement between the Pigafetta Basin (PB) and East Mariana Basin (EMB), and contains many seamounts (e.g. the Magellan Seamounts and the seamounts on the Dutton Ridge). Most seamounts in this study are newly mapped using modern multibeam echosounder (Seabeam 2000) and denoted sequentially by Korea Ocean Research and Development Institute (KORDI). OSM2, OSM4, OSM7, OSM8-1 and OSM8-2 seamounts of the study area are located in the OFZ which formed by the spreading ridge between the Izanagi and Pacific plates, and OSM5-1, Seascan, OSM6-1 and OSM6-2 seamounts in the PB which is a part of the oldest oceanic crust in the Pacific. In this study, the densities of seamounts and the elastic thickness values of lithosphere are estimated by using 3-D flexure and gravity modelling by considering several boundary conditions and a constant sediment layer. The infinite model with two different elastic thickness values is the best-fitting model and it indicates that the OFZ was mechanically coupled with plate of different elastic thickness values, probably after the reorganization of Izanagi-Pacific spreading zone. Very low elastic thickness values (5-10 km), relatively young seamounts, and old lithosphere in the east study area suggest the possibility of the rejuvenation of the lithosphere by widespread volcanism pulses, whereas higher elastic thickness values (15-20 km), relatively younger lithosphere, and old seamounts of the west study area are comparable with a simple cooling plate model. It implies that the west study area is outside the rejuvenation range of the lithosphere. In the flexure and gravity modelling, the different residual pattern of OSM6-1 and OSM6-2, which are joined, suggests that they have different load densities or elastic thickness values. OSM2 and OSM7 may be close to a basaltic volcano with low viscosity because they have high densities and ratios of the basal diameter to the height, whereas OSM4, OSM5-1 and Seascan may be close to an andesitic volcano.

  7. Physical Properties of Gabbroic Rock Exposed in Oceanic Core Complexes- New Borehole Data From IODP Hole U1473A in the Indian Ocean and Prior Mid-Atlantic Ridge Results

    NASA Astrophysics Data System (ADS)

    Blackman, D. K.; Ildefonse, B.; Abe, N.; Harding, A. J.; Guerin, G.

    2016-12-01

    IODP Expedition 360 to Atlantis Bank on the Southwest Indian Ridge obtained physical property measurements of the 800 m section drilled into the footwall of the oceanic core complex. Compressional velocity (Vp) of core samples range from 5.9-7.2 km/s throughout the hole, with no simple relation to either basic rock type or alteration. Some intervals show a local trend, for example a general increase from 6.7-7.1 km/s over the interval 280-400 mbsf, above a major fault zone at 411-462 mbsf. Below the fault zone, core sample Vp is lower on average (6.6 km/s) than it is in the upper part of the hole (6.8 km/s). Some of this decrease is due to locally greater alteration, but higher oxide content also contributes. Borehole logs show lower Vp shallower than 400 m (6.3-6.4 km/s) and close match to olivine gabbro values below the fault zone, due to higher alteration levels and greater shallow fracturing. Local trends of decreasing Vp, over 10's of m correspond to increasing sample porosity within veined or fractured intervals. Porosities of core in Hole U1473A are low overall (<4.5%) and more variable above 570 mbsf than below. Electrical resistivity of the wallrock tracks logged velocity pattern, dropping below 100 ohm-m in altered or fractured intervals 20-50 m thick and rising over 1000 ohm-m where fresher rock was recovered. The range of velocity, density, and resistivity at Hole U1473A are similar to those in the other deep boreholes from Atlantis Bank (ODP Hole 735B, 1105A) and slightly higher than Vp in the gabbroic core of Atlantis Massif in the Atlantic, Hole U1309D. This may reflect erosion of the detachment zone when the bank was exposed at sealevel. Atlantis Massif displays an increase in Vp from the seafloor to a fault zone at 750 mbsf ( 4.0-6.2 km/s), followed by fairly constant values ( 6.7 km/s) at greater depths, interrupted by a highly altered olivine-rich troctolite interval 1080-1200 mbsf where velocity is up to 1 km/s slower. New analysis of seismic anisotropy based on sonic logs does not show any systematic signature for either core complex, but there are a few intervals up to 10 m thick where anisotropy due to local deformation or dominant fracture direction may be indicated. The new and prior borehole data will be presented in the context of available geophysical, lithologic and alteration results.

  8. Clouds Optically Gridded by Stereo COGS product

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oktem, Rusen; Romps, David

    COGS product is a 4D grid of cloudiness covering a 6 km × 6 km × 6 km cube centered at the central facility of SGP site at a spatial resolution of 50 meters and a temporal resolution of 20 seconds. The dimensions are X, Y, Z, and time, where X,Y, Z, correspond to east-west, north-south, and altitude of the grid point, respectively. COGS takes on values 0, 1, and -1 denoting "cloud", "no cloud", and "not available". 

  9. 1 Tb/s x km multimode fiber link combining WDM transmission and low-linewidth lasers.

    PubMed

    Gasulla, I; Capmany, J

    2008-05-26

    We have successfully demonstrated an error-free transmission of 10 x 20 Gb/s 200 GHz-spaced ITU channels through a 5 km link of 62.5-microm core-diameter graded-index multimode silica fiber. The overall figure corresponds to an aggregate bit rate per length product of 1 Tb/s x km, the highest value ever reported to our knowledge. Successful transmission is achieved by a combination of low-linewidth DFB lasers and the central launch technique.

  10. 2-dimensional triplicated waveform modeling of the mantle transition zone beneath Northeast Asia

    NASA Astrophysics Data System (ADS)

    Lai, Y.; Chen, L.; Wang, T.

    2017-12-01

    The Mantle Transition Zone (MTZ) of Northeast Asia has long been investigated by geoscientists for its critical importance where the subducted Pacific slab is stagnant above the 660km discontinuity, accompanied by complicated mantle processes. Taking advantages of the frequent occurrent deep earthquakes in subduction zone and dense seismic arrays in Northeast China, we successfully constructed the fine-scale P and SH velocity structure of a narrow azimuthal fan area based on 2-Dimensional (2D) triplicated waveform modeling for three deep close earthquakes, in which the triplicated waveforms are very sensitive to MTZ velocity structure in general, particularly the morphology of the stagnant slab in Northeast Asia. In our 2D triplication study, for the first time, we show a quite consistent feature of a high velocity layer for both Vp and Vs with the thickness of 140km and the length of 1200km just atop the 660km discontinuity, the western edge of the stagnant slab intersect with the North-South Gravity Lineament in China and has the subducting age of 30 Ma. Compared with a quite normal Vp, the Shear wave velocity reduction of -0.5% in the slab and -2.5% in the upper MTZ is required to reconcile the SH waves featured by the broad BOD. The high Vp/Vs ratio beneath Northeast Asia may imply a water-rich MTZ with the H2O content of 0.1-0.3 wt%. Particularly, a low velocity anomaly of about 150km wide was detected in the overall high-velocity stagnant slab by both P and SH triplicated waveform modeling, with the velocity anomaly value of -1% and -3%, respectively. The gap/window in the stagnant slab may provide a passage for hot deeper mantle materials to penetrate through the thick slab and feed the surface Changbaishan volcano. We also speculate that the existence of such a gap can be the manifestation of the original heterogeneity in the subducted slab and will further exacerbatethe impending gravitational instability and speed up mantle avalanche.

  11. 14C content in vegetation in the vicinities of Brazilian nuclear power reactors.

    PubMed

    Dias, Cíntia Melazo; Santos, Roberto Ventura; Stenström, Kristina; Nícoli, Iêda Gomes; Skog, Göran; da Silveira Corrêa, Rosangela

    2008-07-01

    (14)C specific activities were measured in grass samples collected around Brazilian nuclear power reactors. The specific activity values varied between 227 and 299 Bq/kg C. Except for two samples which showed (14)C specific activities 22% above background values, half of the samples showed background specific activities, and the other half had a (14)C excess of 1-18%. The highest specific activities were found close to the nuclear power plants and along the main wind directions (NE and NNE). The activity values were found to decrease with increasing distance from the reactors. The unexpectedly high (14)C excess values found in two samples were related to the local topography, which favors (14)C accumulation and limits the dispersion of the plume. The results indicate a clear (14)C anthropogenic signal within 5 km around the nuclear power plants which is most prominent along northeastwards, the prevailing wind direction.

  12. Improved Constraints on H 0 from a Combined Analysis of Gravitational-wave and Electromagnetic Emission from GW170817

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guidorzi, C.; Margutti, R.; Brout, D.

    The luminosity distance measurement of GW170817 derived from gravitational-wave analysis in Abbott et al. (2017a, hereafter A17:H0) is highly correlated with the measured inclination of the NS–NS system. To improve the precision of the distance measurement, we attempt to constrain the inclination by modeling the broadband X-ray-to-radio emission from GW170817, which is dominated by the interaction of the jet with the environment. We update our previous analysis and we consider the radio and X-ray data obtained at t < 40 days since merger. We find that the afterglow emission from GW170817 is consistent with an off-axis relativistic jet with energy E k~10 48 -3 × 10 50 erg propagating into an environment with density n ~ 10 -2–10-4 cm-3, with preference for wider jets (opening angle θ j = 15°). For these jets, our modeling indicates an off-axis angle θ obs ~25°–50°. We combine our constraints on θ obs with the joint distance–inclination constraint from LIGO. Using the same ~170 km s -1 peculiar velocity uncertainty assumed in A17:H0 but with an inclination constraint from the afterglow data, we get a value of H 0 =74.0 ±more » $$\\frac{11.5}{7.5}$$ km s -1 Mpc -1, which is higher than the value of H 0 70.0 ± $$\\frac{12.0}{8.0}$$ km s -1 Mpc -1 found in A17:H0. Further, using a more realistic peculiar velocity uncertainty of 250 km s -1 derived from previous work, we find km s -1 Mpc -1 for H 0 from this system. This is in modestly better agreement with the local distance ladder than the Planck cosmic microwave background, though such a significant discrimination will require ~50 such events. Finally, measurements at t > 100 days of the X-ray and radio emission will lead to tighter constraints.« less

  13. Improved Constraints on H 0 from a Combined Analysis of Gravitational-wave and Electromagnetic Emission from GW170817

    DOE PAGES

    Guidorzi, C.; Margutti, R.; Brout, D.; ...

    2017-12-18

    The luminosity distance measurement of GW170817 derived from gravitational-wave analysis in Abbott et al. (2017a, hereafter A17:H0) is highly correlated with the measured inclination of the NS–NS system. To improve the precision of the distance measurement, we attempt to constrain the inclination by modeling the broadband X-ray-to-radio emission from GW170817, which is dominated by the interaction of the jet with the environment. We update our previous analysis and we consider the radio and X-ray data obtained at t < 40 days since merger. We find that the afterglow emission from GW170817 is consistent with an off-axis relativistic jet with energy E k~10 48 -3 × 10 50 erg propagating into an environment with density n ~ 10 -2–10-4 cm-3, with preference for wider jets (opening angle θ j = 15°). For these jets, our modeling indicates an off-axis angle θ obs ~25°–50°. We combine our constraints on θ obs with the joint distance–inclination constraint from LIGO. Using the same ~170 km s -1 peculiar velocity uncertainty assumed in A17:H0 but with an inclination constraint from the afterglow data, we get a value of H 0 =74.0 ±more » $$\\frac{11.5}{7.5}$$ km s -1 Mpc -1, which is higher than the value of H 0 70.0 ± $$\\frac{12.0}{8.0}$$ km s -1 Mpc -1 found in A17:H0. Further, using a more realistic peculiar velocity uncertainty of 250 km s -1 derived from previous work, we find km s -1 Mpc -1 for H 0 from this system. This is in modestly better agreement with the local distance ladder than the Planck cosmic microwave background, though such a significant discrimination will require ~50 such events. Finally, measurements at t > 100 days of the X-ray and radio emission will lead to tighter constraints.« less

  14. Improved Constraints on H 0 from a Combined Analysis of Gravitational-wave and Electromagnetic Emission from GW170817

    NASA Astrophysics Data System (ADS)

    Guidorzi, C.; Margutti, R.; Brout, D.; Scolnic, D.; Fong, W.; Alexander, K. D.; Cowperthwaite, P. S.; Annis, J.; Berger, E.; Blanchard, P. K.; Chornock, R.; Coppejans, D. L.; Eftekhari, T.; Frieman, J. A.; Huterer, D.; Nicholl, M.; Soares-Santos, M.; Terreran, G.; Villar, V. A.; Williams, P. K. G.

    2017-12-01

    The luminosity distance measurement of GW170817 derived from gravitational-wave analysis in Abbott et al. (2017a, hereafter A17:H0) is highly correlated with the measured inclination of the NS–NS system. To improve the precision of the distance measurement, we attempt to constrain the inclination by modeling the broadband X-ray-to-radio emission from GW170817, which is dominated by the interaction of the jet with the environment. We update our previous analysis and we consider the radio and X-ray data obtained at t < 40 days since merger. We find that the afterglow emission from GW170817 is consistent with an off-axis relativistic jet with energy E k ∼ 1048 ‑3 × 1050 erg propagating into an environment with density n ∼ 10‑2–10‑4 cm‑3, with preference for wider jets (opening angle θ j = 15°). For these jets, our modeling indicates an off-axis angle θ obs ∼ 25°–50°. We combine our constraints on θ obs with the joint distance–inclination constraint from LIGO. Using the same ∼170 km s‑1 peculiar velocity uncertainty assumed in A17:H0 but with an inclination constraint from the afterglow data, we get a value of {H}0=74.0+/- \\tfrac{11.5}{7.5} km s‑1 Mpc‑1, which is higher than the value of {H}0=70.0+/- \\tfrac{12.0}{8.0} km s‑1 Mpc‑1 found in A17:H0. Further, using a more realistic peculiar velocity uncertainty of 250 km s‑1 derived from previous work, we find {H}0=75.5+/- \\tfrac{11.6}{9.6} km s‑1 Mpc‑1 for H 0 from this system. This is in modestly better agreement with the local distance ladder than the Planck cosmic microwave background, though such a significant discrimination will require ∼50 such events. Measurements at t > 100 days of the X-ray and radio emission will lead to tighter constraints.

  15. Solar flare induced ionospheric D-region enhancements from VLF amplitude observations

    NASA Astrophysics Data System (ADS)

    Thomson, N. R.; Clilverd, M. A.

    2001-11-01

    Enhancements of D-region electron densities caused by solar flares are determined from observations of VLF subionospheric amplitude changes and these enhancements are then related to the magnitudes of the X-ray fluxes measured by the GOES satellites. The electron densities are characterised by the two traditional parameters, /H' and /β (being measures of the ionospheric height and the rate of increase of electron density with height, respectively), which are found by VLF radio modelling of the observed amplitudes using the NOSC Earth-ionosphere waveguide programs (LWPC and Modefinder) mainly on two paths, one short and one long. The short path measurements were made near Cambridge, UK, on the 18.3kHz signals from the French transmitter 617km to the south while the long path measurements were made near Dunedin, NZ, on the 24.8kHz signals from NLK in Seattle, USA, 12.3Mm across the Pacific Ocean. The observations include flares up to a magnitude of about M5 (5×10-5Wm-2 at 0.1-0.8nm) which gave VLF amplitude enhancements up to about 8dB; these corresponded, under near solar maximum conditions (1992), to a reduction in /H' from about 71km down to about 63km and an increase in /β from 0.43km-1 up to about 0.49km-1. The increased values of /β during a flare are caused by the solar X-rays dominating all sources of ionisation during the flare in contrast with the normal unperturbed daytime values of /β which are significantly lower than for a single solar UV or X-ray source due to the extra electrons from the normal galactic cosmic ray ionisation in the lowest parts of the D-region. This steady, normal (unperturbed) cosmic ray influence on /β, and hence unperturbed VLF attenuation, is more marked at times of reduced solar Lyman-/α flux in the D-region such as at solar minimum, high latitudes or early or late in the day, thus explaining the normal (unperturbed) higher VLF attenuation rates previously reported in these conditions.

  16. Shear velocity profiles in the crust and lithospheric mantle across Tibet

    NASA Astrophysics Data System (ADS)

    Agius, M. R.; Lebedev, S.

    2010-12-01

    We constrain variations in the crustal and lithospheric structure across Tibet, using phase velocities of seismic surface waves. The data are seismograms recorded by broadband instruments of permanent and temporary networks within and around the plateau. Phase-velocity measurements are performed in broad period ranges using an elaborate recent implementation of the 2-station method. A combination of the cross-correlation and multimode-waveform-inversion measurements using tens to hundreds of seismograms per station pair produces robust, accurate phase-velocity curves for Rayleigh and Love waves. We use our new measurements to infer phase-velocity variations and to constrain S-velocity profiles in different parts of the plateau, including radial anisotropy and depths of lithospheric discontinuities. We observe a mid-crustal low-velocity zone (LVZ) in the 20-45 km depth range across the plateau, with S-velocities within a 3.2-3.5 km/s range. This LVZ coincides with a low-resistivity layer inferred from magnetotelluric studies, interpreted as evidence for partial melting in the middle crust. Surface-wave data are also consistent with radial anisotropy in this layer, indicative of horizontal flow. At the north-eastern boundary of the plateau, past the Kunlun Fault, the mid-crustal LVZ, in the sense of an S-velocity decrease with depth in the 15-25 km depth range, is not required by the surface-wave data although the velocity is still relatively low. The mantle-lithosphere structure shows a pronounced contrast between the south-western and central-northern parts of the plateau. The south-west is underlain by a thick, high-velocity, craton-like lithospheric mantle. Below central Lhasa the uppermost mantle appears to be close to global average with an increase in velocity between 150 - 250 km depth. Beneath central and northern Tibet, the average S velocity between the Moho and 200 km depth is close to the global continental average (4.5 km/s). In order to investigate the finer detail of the lithosphere in the North we perform an extensive series of test inversions. We find that surface-wave dispersion measurements alone are consistent both with models that have low S velocity just beneath the Moho, increasing with depth below, and with models that display a thin high-velocity mantle lid underlain by a low-velocity zone (asthenosphere). To resolve this non-uniqueness from the inversion model, we combine our surface-wave measurements in the Qiangtang Block with receiver-function constraints on the Moho depth, and Sn constraints on the uppermost mantle S velocities. We show that the data is matched significantly better with models that contain a thin, high-velocity lithosphere (up to 90 km thick) underlain by a low-velocity zone than by models with no wave-speed decrease between the Moho and ~100 km depth. In the deeper upper mantle (below ~150 km depth), S velocity increases and is likely to exceed the global average value.

  17. Where does the plasmasphere begin? Revisit to topside ionospheric profiles in comparison with plasmaspheric TEC from Jason-1

    NASA Astrophysics Data System (ADS)

    Lee, Han-Byul; Kim, Yong Ha; Kim, Eunsol; Hong, Junseok; Kwak, Young-Sil

    2016-10-01

    Topside ionospheric profiles have been measured by Alouette 1 and ISIS 1/2 in the periods of 1962-1972 and 1972-1979, respectively. The profiles cover from the orbital altitude of 1000 km to the F2 peak and show large variations over local time, latitude, and seasons. We here analyze these variations in comparison with plasmaspheric total electron contents (pTECs) that were measured by Jason-1 satellite from the altitude of 1336 km to 20,200 km (GPS orbit). The scale heights of the profiles are generally smaller in the daytime than nighttime but show large day-to-day variations, implying that the ionospheric profiles at 1000 km are changing dynamically, rather than being in diffusive equilibrium. We also derived transition heights between O+ and H+, which show a clear minimum at dawn for low-latitude profiles due to decreasing O+ density at night. To compare with pTEC, we compute topside ionospheric total electron content (tiTEC) by integrating over 800-1336 km using the slope of the profiles. The tiTEC varies in a clear diurnal pattern from 0.3 to 1 and 3 total electron content unit (TECU, 1 TECU = 1016 el m-2) for low and high solar activity, respectively, whereas Jason-1 pTEC values are distributed over 2-6 TECU and 4-8 TECU for low and high solar activity, respectively, with no apparent diurnal modulation. Latitudinal variations of tiTEC show distinctive hemispheric asymmetry while that of Jason-1 pTEC is closely symmetric about the magnetic equator. The local time and latitudinal variations of tiTEC basically resemble those of the ionosphere but are characteristically different from those of Jason-1 pTEC. Based on the difference between tiTEC and pTEC variations, we propose that the region above 1300 km should be considered as the plasmasphere. Lower altitudes for the base of "plasmaspheric TEC," as used in some studies, would cause contamination of ionospheric influence.

  18. Crustal Structure beneath Alaska from Receiver Functions

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Li, A.

    2017-12-01

    The crustal structure in Alaska has not been well resolved due to the remote nature of much of the state. The USArray Transportable Array (TA), which is operating in Alaska and northwestern Canada, significantly increases the coverage of broadband seismic stations in the region and allows for a more comprehensive study of the crust. We have analyzed P-receiver functions from earthquake data recorded by 76 stations of the TA and AK networks. Both common conversion point (CCP) and H-K methods are used to estimate the mean crustal thickness. The results from the CCP stacking method show that the Denali fault marks a sharp transition from thick crust in the south to thin crust in the north. The thickest crust up to 52 km is located in the St. Elias Range, which has been formed by oblique collision between the Yakutat microplate and North America. A thick crust of 48 km is also observed beneath the eastern Alaska Range. These observations suggest that high topography in Alaska is largely compensated by the thick crust root. The Moho depth ranges from 28 km to 35 km beneath the northern lowlands and increases to 40-45 km under the Books Range. The preliminary crustal thickness from the H-K method generally agrees with that from the CCP stacking with thicker crust beneath high mountain ranges and thinner crust beneath lowlands and basins. However, the offshore part is not well constrained due to the limited coverage of stations. The mean Vp/Vs ratio is around 1.7 in the Yukon-Tanana terrane and central-northern Alaska. The ratio is about 1.9 in central and southern Alaska with higher values at the Alaska Range, Wrangell Mountains, and St. Elias Range. Further data analyses are needed for obtaining more details of the crustal structure in Alaska to decipher the origin and development of different tectonic terranes.

  19. Differences in kinetic asymmetry between injured and noninjured novice runners: a prospective cohort study.

    PubMed

    Bredeweg, S W; Buist, I; Kluitenberg, B

    2013-09-01

    The purpose of this prospective study was to describe natural levels of asymmetry in running, compare levels of asymmetry between injured and noninjured novice runners and compare kinetic variables between the injured and noninjured lower limb within the novice runners with an injury. At baseline vertical ground reaction forces and symmetry angles (SA) were assessed with an instrumented treadmill equipped with three force measuring transducers. Female participants ran at 8 and 9 km h(-1) and male runners ran at 9 and 10 km h(-1). Participants were novice female and male recreational runners and were followed during a 9-week running program. Two hundred and ten novice runners enrolled this study, 133 (63.3%) female and 77 (36.7%) male runners. Thirty-four runners reported an RRI. At baseline SA values varied widely for all spatio-temporal and kinetic variables. The inter-individual differences in SA were also high. No significant differences in SA were found between female and male runners running at 9 km h(-1). In injured runners the SA of the impact peak was significantly lower compared to noninjured runners. Natural levels of asymmetry in running were high. The SA of impact peak in injured runners was lower compared to noninjured runners and no differences were seen between the injured and noninjured lower limbs. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. High-resolution spectroscopy of Venus: Detection of OCS, upper limit to H 2S, and latitudinal variations of CO and HF in the upper cloud layer

    NASA Astrophysics Data System (ADS)

    Krasnopolsky, Vladimir A.

    2008-10-01

    Venus was observed at 2.4 and 3.7 μm with a resolving power of 4×10 using the long-slit high-resolution spectrograph CSHELL at NASA IRTF. The observations were made along a chord that covered a latitude range of ± 60° at a local time near 8:00. The continuous reflectivity and limb brightening at 2.4 μm are fitted by the clouds with a single scattering albedo 1-a=0.01 and a pure absorbing layer with τ=0.09 above the clouds. The value of 1-a agrees with the refractive index of H 2SO 4 (85%) and the particle radius of 1 μm. The absorbing layer is similar to that observed by the UV spectrometer at the Pioneer Venus orbiter. However, its nature is puzzling. CO 2 was measured using its R32 and R34 lines. The retrieved product of the CO 2 abundance and airmass is constant at 1.9 km-atm along the instrument slit in the latitude range of ± 60°. The CO mixing ratio (measured using the P21 line) is rather constant at 70 ppm, and its variations of ˜10% may be caused by atmospheric dynamics. The observed value is higher than the 50 ppm retrieved previously from a spectrum of the full disk, possibly, because of some downward extension of the mesospheric morningside bulge of CO. The observations of the HF R3 line reveal a constant HF mixing ratio of 3.5±0.5 ppb within ± 60° of latitude, which is within the scatter in the previous measurements of HF. OCS has been detected for the first time at the cloud tops by summing 17 lines of the P-branch. The previous detections of OCS refer to the lower atmosphere at 30-35 km. The retrieved OCS mixing ratio varies with a scale height of 1 to 3 km. The mean OCS mixing ratio is ˜2 ppb at 70 km and ˜14 ppb at 64 km. Vertical motions in the atmosphere may change the OCS abundance. The detected OCS should significantly affect Venus' photochemistry. A sensitive search for H 2S using its line at 2688.93 cm -1 results in a 3 sigma upper limit of 23 ppb, which is more restrictive than the previous limit of 100 ppb.

  1. Effects of meteorology and secondary particle formation on visibility during heavy haze events in Beijing, China.

    PubMed

    Zhang, Qiang; Quan, Jiannong; Tie, Xuexi; Li, Xia; Liu, Quan; Gao, Yang; Zhao, Delong

    2015-01-01

    The causes of haze formation in Beijing, China were analyzed based on a comprehensive measurement, including PBL (planetary boundary layer), aerosol composition and concentrations, and several important meteorological parameters such as visibility, RH (relative humidity), and wind speed/direction. The measurement was conducted in an urban location from Nov. 16, 2012 to Jan. 15, 2013. During the period, the visibility varied from >20 km to less than a kilometer, with a minimum visibility of 667 m, causing 16 haze occurrences. During the haze occurrences, the wind speeds were less than 1m/s, and the concentrations of PM2.5 (particle matter with radius less than 2.5 μm) were often exceeded 200 μg/m(3). The correlation between PM2.5 concentration and visibility under different RH values shows that visibility was exponentially decreased with the increase of PM2.5 concentrations when RH was less than 80%. However, when RH was higher than 80%, the relationship was no longer to follow the exponentially decreasing trend, and the visibility maintained in very low values, even with low PM2.5 concentrations. Under this condition, the hygroscopic growth of particles played important roles, and a large amount of water vapor acted as particle matter (PM) for the reduction of visibility. The variations of meteorological parameters (RH, PBL heights, and WS (wind speed)), chemical species in gas-phase (CO, O3, SO2, and NOx), and gas-phase to particle-phase conversions under different visibility ranges were analyzed. The results show that from high visibility (>20 km) to low visibility (<2 km), the averaged PBL decreased from 1.24 km to 0.53 km; wind speeds reduced from 1m/s to 0.5m/s; and CO increased from 0.5 ppmv to 4.0 ppmv, suggesting that weaker transport/diffusion caused the haze occurrences. This study also found that the formation of SPM (secondary particle matter) was accelerated in the haze events. The conversions between SO2 and SO4 as well as NOx to NO3(-) increased, especially under high humidity conditions. When the averaged RH was 70%, the conversions between SO2 and SO4 accounted for about 20% concentration of PM2.5, indicating that formation of secondary particle matter had important contribution for the haze occurrences in Beijing. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Brachiopod δ18O values do reflect ambient oceanography: Lacepede Shelf, southern Australia

    NASA Astrophysics Data System (ADS)

    James, Noel P.; Bone, Yvonne; Kurtis Kyser, T.

    1997-06-01

    Although commonly used as proxies for attributes of ancient ocean waters, the δ18O values of brachiopods from modern seas are little studied. To evaluate the utility of brachiopods as recorders of regional oceanography, modern shells from the Lacepede Shelf (25 000 km2) of southern Australia were analyzed for δ18O, and the results were compared to the values of ambient seawater. Southern Ocean waters cover this area of extensive cool-water carbonate deposition, but there are distinct sectors of seasonal upwelling and lesser fluvial outflow. δ18O values of brachiopods across the environmental spectrum from 40 to 300 m water depth are in general isotopic equilibrium with surrounding seawater. Nevertheless, δ18O values from individual sample sites vary as much as 0.60‰. The area of cold-water upwelling in particular is clearly delimited by a group of high δ18O values. The range of values across this one shelf, on the order of 2.5‰, is similar to the range of values postulated on the basis of similar results for secular changes in many ancient oceans.

  3. The value of coastal wetlands for hurricane protection.

    PubMed

    Costanza, Robert; Pérez-Maqueo, Octavio; Martinez, M Luisa; Sutton, Paul; Anderson, Sharolyn J; Mulder, Kenneth

    2008-06-01

    Coastal wetlands reduce the damaging effects of hurricanes on coastal communities. A regression model using 34 major US hurricanes since 1980 with the natural log of damage per unit gross domestic product in the hurricane swath as the dependent variable and the natural logs of wind speed and wetland area in the swath as the independent variables was highly significant and explained 60% of the variation in relative damages. A loss of 1 ha of wetland in the model corresponded to an average USD 33,000 (median = USD 5000) increase in storm damage from specific storms. Using this relationship, and taking into account the annual probability of hits by hurricanes of varying intensities, we mapped the annual value of coastal wetlands by 1 km x 1 km pixel and by state. The annual value ranged from USD 250 to USD 51,000 ha(-1) yr(-1), with a mean of USD 8240 ha(-1) yr(-1) (median = USD 3230 ha(-1) yr(-1)) significantly larger than previous estimates. Coastal wetlands in the US were estimated to currently provide USD 23.2 billion yr(-1) in storm protection services. Coastal wetlands function as valuable, selfmaintaining "horizontal levees" for storm protection, and also provide a host of other ecosystem services that vertical levees do not. Their restoration and preservation is an extremely cost-effective strategy for society.

  4. Physics of sub-micron cosmic dust particles

    NASA Technical Reports Server (NTRS)

    Roy, N. L.

    1974-01-01

    Laboratory tests with simulated micrometeoroids to measure the heat transfer coefficient are discussed. Equations for ablation path length for electrically accelerated micrometeoroids entering a gas target are developed which yield guidelines for the laboratory measurement of the heat transfer coefficient. Test results are presented for lanthanum hexaboride (LaB sub 6) microparticles in air, argon, and oxygen targets. The tests indicate the heat transfer coefficient has a value of approximately 0.9 at 30 km/sec, and that it increases to approximately unity at 50 km/sec and above. Test results extend to over 100 km/sec. Results are also given for two types of small particle detectors. A solid state capacitor type detector was tested from 0.61 km/sec to 50 km/sec. An impact ionization type detector was tested from 1.0 to 150 km/sec using LaB sub 6 microparticles.

  5. The vertical distribution of HCl in the stratosphere

    NASA Technical Reports Server (NTRS)

    Raper, O. F.; Farmer, C. B.; Toth, R. A.; Robbins, B. D.

    1977-01-01

    The vertical distribution of HCl in the stratosphere has been measured from infrared solar absorption spectra recorded with a balloon-borne interferometer. The flights were made in September, 1975, and May, 1976 at float altitudes of 40 km and 37 km, respectively, near Palestine, Texas. Concentration profiles derived from the data show an increase from 0.6 ppbv at 20 km to 1.7 plus or minus .5 ppbv in the region of 37 km. Above 37 km, the data permit only the total abundance to be determined; this value is found to be equivalent to 1.6 plus or minus .6 ppbv if the gas were uniformly mixed. The results from the two flights are closely similar, and no significant seasonal variation in the HCl concentrations can be discerned. The balloon data are consistent with the profile in the 14-21 km altitude region of the stratosphere reported earlier from U-2 observations.

  6. Guatemala jadeitites and albitites were formed by deuterium-rich serpentinizing fluids deep within a subduction zone

    USGS Publications Warehouse

    Johnson, C.A.; Harlow, G.E.

    1999-01-01

    Jadeitites and albitites from the Motagua Valley, Guatemala, are high-pressure-low-temperature metasomatic rocks that occur as tectonic inclusions in serpentinite-matrix melange. Metasomatism was driven by a fluid with a ??18OH2O value of 6???, and a ??DH2O value that is high in comparison with metamorphic fluids at other high-pressure-low-temperature localities of similar grade. We infer that the fluid was originally seawater that was entrained during subduction either as mineral-bound H2O or as free pore waters. The fluid drove serpentinization reactions in ultramafic rocks, possibly leading to deuterium enrichment of H2O, prior to forming the Jadeitites and albitites at a depth of 29 ?? 11 km. There are isotopic and fluid-inclusion similarities to rodingites, which are Ca-rich metasomatites found at other serpentinite localities. Our results suggest that the serpentinization process, whether it occurs within subduction zones or on the flanks of oceanic spreading ridges, may produce residual fluids that are H2O rich, have 1-8 wt% equivalent NaCl, and have high, perhaps sea water-like, ??D values.

  7. Remote Sensing Analysis of Volume in Taihu Lake: Application for Icesat/hydroweb and Landsat Data

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Li, Y.; Lu, Y.; Yue, H.

    2018-04-01

    In order to evaluate the fluctuation of Taihui Lake, ICESat/Hydroweb and Landsat data recorded from 1975 to 2015 were used to examine changes in lake level and area, derived from Normalized Difference Water Index (NDWI) and Modified Normalized Difference Water Index (MNDWI), which are combined to indirectly evaluate water volume variations and water balance of Taihu Lake. The results show that the time series of lake area and volume variations of Taihu Lake exhibit a gradually increasing trend from 1975 to 2015 and the value rose from 2320.07 km2 and -0.0470 km3, respectively in 1975 to 2341.06 km2 and 0.2759 km3, respectively in 2015. The water level of Taihu Lake demonstrates a fluctuating trend during 1975-2015 and the value changed from 0.9826 m in 1975 to 1.1359 m in 2015. There was a moderate correlation for Taihu Lake (R2 ≈ 0.65) between water level and surface area. The water volume changes was in very good agreement for lake level changes and surface area variations (R2 > 0.85). Combining with lake level and area changes, water balance of Taihu Lake was acquired and it shows a positive water budgets of 0.0092 km3 during past 40 years.

  8. Physics-based real time ground motion parameter maps: the Central Mexico example

    NASA Astrophysics Data System (ADS)

    Ramirez Guzman, L.; Contreras Ruiz Esparza, M. G.; Quiroz Ramirez, A.; Carrillo Lucia, M. A.; Perez Yanez, C.

    2013-12-01

    We present the use of near real time ground motion simulations in the generation of ground motion parameter maps for Central Mexico. Simple algorithm approaches to predict ground motion parameters of civil protection and risk engineering interest are based on the use of observed instrumental values, reported macroseismic intensities and their correlations, and ground motion prediction equations (GMPEs). A remarkable example of the use of this approach is the worldwide Shakemap generation program of the United States Geological Survey (USGS). Nevertheless, simple approaches rely strongly on the availability of instrumental and macroseismic intensity reports, as well as the accuracy of the GMPEs and the site effect amplification calculation. In regions where information is scarce, the GMPEs, a reference value in a mean sense, provide most of the ground motion information together with site effects amplification using a simple parametric approaches (e.g. the use of Vs30), and have proven to be elusive. Here we propose an approach that includes physics-based ground motion predictions (PBGMP) corrected by instrumental information using a Bayesian Kriging approach (Kitanidis, 1983) and apply it to the central region of Mexico. The method assumes: 1) the availability of a large database of low and high frequency Green's functions developed for the region of interest, using fully three-dimensional and representative one-dimension models, 2) enough real time data to obtain the centroid moment tensor and a slip rate function, and 3) a computational infrastructure that can be used to compute the source parameters and generate broadband synthetics in near real time, which will be combined with recorded instrumental data. By using a recently developed velocity model of Central Mexico and an efficient finite element octree-based implementation we generate a database of source-receiver Green's functions, valid to 0.5 Hz, that covers 160 km x 300 km x 700 km of Mexico, including a large portion of the Pacific Mexican subduction zone. A subset of the velocity and strong ground motion data available in real time is processed to obtain the source parameters to generate broadband ground motions in a dense grid ( 10 km x 10 km cells). These are interpolated later with instrumental values using a Bayesian Kriging method. Peak ground velocity and acceleration, as well as SA (T=0.1, 0.5, 1 and 2s) maps, are generated for a small set of medium to large magnitude Mexican earthquakes (Mw=5 to 7.4). We evaluate each map by comparing against stations not considered in the computation.

  9. Understanding High Temperature Gradients in the Buckman Well Field, Santa Fe County, New Mexico

    NASA Astrophysics Data System (ADS)

    Folsom, M.; Gulvin, C. J.; Tamakloe, F. M.; Yauk, K.; Kelley, S.; Frost, J.; Jiracek, G. R.

    2014-12-01

    We propose a conceptual model to explain elevated thermal gradients, localized laterally over a few 100 m, discovered during the SAGE program in 2013 and confirmed in 2014 at the Buckman water well field in the Española Basin of north central New Mexico. The anomalous gradients of temperature with depth, dT/dz, exceed 70 ºC/km and are found in three shallow (< 100 m-deep) USGS monitoring wells close to the Rio Grande. A temperature increase of only 3 - 4 ºC at ~100 m depth would elevate the regional temperature value enough to yield the anomalous dT/dz values in the upper ~100 m. The coincidence of a 25 km2 region of InSAR-confirmed subsidence with the locally anomalous dT/dz region suggests a way to achieve a higher temperature at ~ 100 m depth. The mechanism is an isothermal release of warmer water from ~ 200 m depth along a fissure or reactivated fault. A fourth well, 290 m away, has a temperature gradient of only 33ºC/km in the upper 100 m and a distinctly different geochemical profile, suggesting aquifer compartmentalization and possible faulting close to the anomaly. In 2001 a 800 m-long surface scarp with up to 0.2 m offset appeared 2 km to the east in response to over-pumping that depressed the groundwater table by over 100 m. Such drawdown is expected to have 2 - 5 m of compaction with attendant movement along faults or fissures. This could allow groundwater to be released upward isothermally until encountering an unbreached aquitard where it would establish an elevated thermal boundary. Besides the local thermal anomaly, we have temperature-logged deeper water wells in the area. These and other measurements have been used to construct cross-sections of isotherms across the Española Basin along the groundwater flow units (GFUs). This allows comparison of the local thermal anomaly with classic, regional, basin hydrological models. For example, the fully-screened Skillet well, 2.3 km from the anomaly, shows a classic concave down dT/dz form indicating upwelling water. This is consistent with the regional hydraulic head and historical accounts of artesian wells pre-dating Buckman pumping. We quantified the upwelling by Péclet number analysis to be 0.076 - 0.11 m/yr. Numerical modeling using the TOUGH2 computer code is proceeding to further understand regional and local subsurface groundwater flow patterns and dT/dz values.

  10. Clumped isotope thermometry of calcite and dolomite in a contact metamorphic environment

    NASA Astrophysics Data System (ADS)

    Lloyd, Max K.; Eiler, John M.; Nabelek, Peter I.

    2017-01-01

    Clumped isotope compositions of slowly-cooled calcite and dolomite marbles record apparent equilibrium temperatures of roughly 150-200 °C and 300-350 °C, respectively. Because clumped isotope compositions are sensitive to the details of T-t path within these intervals, measurements of the Δ47 values of coexisting calcite and dolomite can place new constraints on thermal history of low-grade metamorphic rocks over a large portion of the upper crust (from ∼5 to ∼15 km depth). We studied the clumped isotope geochemistry of coexisting calcite and dolomite in marbles from the Notch Peak contact metamorphic aureole, Utah. Here, flat-lying limestones were intruded by a pluton, producing a regular, zoned metamorphic aureole. Calcite Δ47 temperatures are uniform, 156 ± 12 °C (2σ s.e.), across rocks varying from high-grade marbles that exceeded 500 °C to nominally unmetamorphosed limestones >5 km from the intrusion. This result appears to require that the temperature far from the pluton was close to this value; an ambient temperature just 20 °C lower would not have permitted substantial re-equilibration, and should have preserved depositional or early diagenetic Δ47 values several km from the pluton. Combining this result with depth constraints from overlying strata suggests the country rock here had an average regional geotherm of 22.3-27.4 °C/km from the late Jurassic Period until at least the middle Paleogene Period. Dolomite Δ47 in all samples above the talc + tremolite-in isograd record apparent equilibrium temperatures of 328-12+13 °C (1σ s.e.), consistent with the apparent equilibrium blocking temperature we expect for cooling from peak metamorphic conditions. At greater distances, dolomite Δ47 records temperatures of peak (anchi)metamorphism or pre-metamorphic diagenetic conditions. The interface between these domains is the location of the 330 °C isotherm associated with intrusion. Multiple-phase clumped isotope measurements are complemented by bulk δ13C and δ18O dolomite-calcite thermometry. These isotopic exchange thermometers are largely consistent with peak temperatures in all samples within 4 km of the contact, indicating that metamorphic recrystallization can occur even in samples too low-grade to produce growth of conventional metamorphic index minerals (i.e., talc and tremolite). Altogether, this work demonstrates the potential of these methods to quantify the conditions of metamorphism at sub-greenschist facies.

  11. Photochemical control of the distribution of Venusian water

    NASA Astrophysics Data System (ADS)

    Parkinson, Christopher D.; Gao, Peter; Esposito, Larry; Yung, Yuk; Bougher, Stephen; Hirtzig, Mathieu

    2015-08-01

    We use the JPL/Caltech 1-D photochemical model to solve continuity diffusion equation for atmospheric constituent abundances and total number density as a function of radial distance from the planet Venus. Photochemistry of the Venus atmosphere from 58 to 112 km is modeled using an updated and expanded chemical scheme (Zhang et al., 2010, 2012), guided by the results of recent observations and we mainly follow these references in our choice of boundary conditions for 40 species. We model water between 10 and 35 ppm at our 58 km lower boundary using an SO2 mixing ratio of 25 ppm as our nominal reference value. We then vary the SO2 mixing ratio at the lower boundary between 5 and 75 ppm holding water mixing ratio of 18 ppm at the lower boundary and finding that it can control the water distribution at higher altitudes. SO2 and H2O can regulate each other via formation of H2SO4. In regions of high mixing ratios of SO2 there exists a "runaway effect" such that SO2 gets oxidized to SO3, which quickly soaks up H2O causing a major depletion of water between 70 and 100 km. Eddy diffusion sensitivity studies performed characterizing variability due to mixing that show less of an effect than varying the lower boundary mixing ratio value. However, calculations using our nominal eddy diffusion profile multiplied and divided by a factor of four can give an order of magnitude maximum difference in the SO2 mixing ratio and a factor of a few difference in the H2O mixing ratio when compared with the respective nominal mixing ratio for these two species. In addition to explaining some of the observed variability in SO2 and H2O on Venus, our work also sheds light on the observations of dark and bright contrasts at the Venus cloud tops observed in an ultraviolet spectrum. Our calculations produce results in agreement with the SOIR Venus Express results of 1 ppm at 70-90 km (Bertaux et al., 2007) by using an SO2 mixing ratio of 25 ppm SO2 and 18 ppm water as our nominal reference values. Timescales for a chemical bifurcation causing a collapse of water concentrations above the cloud tops (>64 km) are relatively short and on the order of a less than a few months, decreasing with altitude to less than a few days.

  12. Ionization Efficiency in the Dayside Martian Upper Atmosphere

    NASA Astrophysics Data System (ADS)

    Cui, J.; Wu, X.-S.; Xu, S.-S.; Wang, X.-D.; Wellbrock, A.; Nordheim, T. A.; Cao, Y.-T.; Wang, W.-R.; Sun, W.-Q.; Wu, S.-Q.; Wei, Y.

    2018-04-01

    Combining the Mars Atmosphere and Volatile Evolution measurements of neutral atmospheric density, solar EUV/X-ray flux, and differential photoelectron intensity made during 240 nominal orbits, we calculate the ionization efficiency, defined as the ratio of the secondary (photoelectron impact) ionization rate to the primary (photon impact) ionization rate, in the dayside Martian upper atmosphere under a range of solar illumination conditions. Both the CO2 and O ionization efficiencies tend to be constant from 160 km up to 250 km, with respective median values of 0.19 ± 0.03 and 0.27 ± 0.04. These values are useful for fast calculation of the ionization rate in the dayside Martian upper atmosphere, without the need to construct photoelectron transport models. No substantial diurnal and solar cycle variations can be identified, except for a marginal trend of reduced ionization efficiency approaching the terminator. These observations are favorably interpreted by a simple scenario with ionization efficiencies, as a first approximation, determined by a comparison between relevant cross sections. Our analysis further reveals a connection between regions with strong crustal magnetic fields and regions with high ionization efficiencies, which are likely indicative of more efficient vertical transport of photoelectrons near magnetic anomalies.

  13. GPS Water Vapor Tomography: First results from the ESCOMPTE Field Experiment

    NASA Astrophysics Data System (ADS)

    Masson, F.; Champollion, C.; Bouin, M.-N.; Walpersdorf, A.; van Baelen, J.; Doerflinger, E.; Bock, O.

    2003-04-01

    We develop a tomographic software to model the spatial distribution of the tropospheric water vapor from GPS data. First we present simulations based on a real GPS station distribution and simple tropospheric models, which prove the potentiality of the method. Second we apply the software to the ESCOMPTE data. During the ESCOMPTE field experiment, a dense network of 17 dual frequency GPS receivers has been operated for two weeks within a 20 km x 20 km area around Marseille (Southern France). The network extends from the sea level to the top of the Etoile chain (~700 m high). The input data are the slant delay values obtained by combining the estimated zenith delay values with the horizontal gradients. The effect of the initial tropospheric water vapor model, the number and thickness of the layers of the model, the a priori model and data covariance and some other parameters will be discussed. Simultaneously water vapor radiometer, solar spectrometer, Raman lidar and radiosondes have been deployed to get a data set usable for comparison with the tomographic inversion results and validation of the method. Comparison with meteorological models (MesoNH - Meteo-France) will be shown.

  14. Interpolated Sounding and Gridded Sounding Value-Added Products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toto, T.; Jensen, M.

    Standard Atmospheric Radiation Measurement (ARM) Climate Research Facility sounding files provide atmospheric state data in one dimension of increasing time and height per sonde launch. Many applications require a quick estimate of the atmospheric state at higher time resolution. The INTERPOLATEDSONDE (i.e., Interpolated Sounding) Value-Added Product (VAP) transforms sounding data into continuous daily files on a fixed time-height grid, at 1-minute time resolution, on 332 levels, from the surface up to a limit of approximately 40 km. The grid extends that high so the full height of soundings can be captured; however, most soundings terminate at an altitude between 25more » and 30 km, above which no data is provided. Between soundings, the VAP linearly interpolates atmospheric state variables in time for each height level. In addition, INTERPOLATEDSONDE provides relative humidity scaled to microwave radiometer (MWR) observations.The INTERPOLATEDSONDE VAP, a continuous time-height grid of relative humidity-corrected sounding data, is intended to provide input to higher-order products, such as the Merged Soundings (MERGESONDE; Troyan 2012) VAP, which extends INTERPOLATEDSONDE by incorporating model data. The INTERPOLATEDSONDE VAP also is used to correct gaseous attenuation of radar reflectivity in products such as the KAZRCOR VAP.« less

  15. Study of MPLNET-Derived Aerosol Climatology over Kanpur, India, and Validation of CALIPSO Level 2 Version 3 Backscatter and Extinction Products

    NASA Technical Reports Server (NTRS)

    Misra, Amit; Tripathi, S. N.; Kaul, D. S.; Welton, Ellsworth J.

    2012-01-01

    The level 2 aerosol backscatter and extinction profiles from the NASA Micropulse Lidar Network (MPLNET) at Kanpur, India, have been studied from May 2009 to September 2010. Monthly averaged extinction profiles from MPLNET shows high extinction values near the surface during October March. Higher extinction values at altitudes of 24 km are observed from April to June, a period marked by frequent dust episodes. Version 3 level 2 Cloud Aerosol Lidar with Orthogonal Polarization (CALIOP) aerosol profile products have been compared with corresponding data from MPLNET over Kanpur for the above-mentioned period. Out of the available backscatter profiles, the16 profiles used in this study have time differences less than 3 h and distances less than 130 km. Among these profiles, four cases show good comparison above 400 m with R2 greater than 0.7. Comparison with AERONET data shows that the aerosol type is properly identified by the CALIOP algorithm. Cloud contamination is a possible source of error in the remaining cases of poor comparison. Another source of error is the improper backscatter-to-extinction ratio, which further affects the accuracy of extinction coefficient retrieval.

  16. Hydrothermal fluid flow and deformation in large calderas: Inferences from numerical simulations

    USGS Publications Warehouse

    Hurwitz, S.; Christiansen, L.B.; Hsieh, P.A.

    2007-01-01

    Inflation and deflation of large calderas is traditionally interpreted as being induced by volume change of a discrete source embedded in an elastic or viscoelastic half-space, though it has also been suggested that hydrothermal fluids may play a role. To test the latter hypothesis, we carry out numerical simulations of hydrothermal fluid flow and poroelastic deformation in calderas by coupling two numerical codes: (1) TOUGH2 [Pruess et al., 1999], which simulates flow in porous or fractured media, and (2) BIOT2 [Hsieh, 1996], which simulates fluid flow and deformation in a linearly elastic porous medium. In the simulations, high-temperature water (350??C) is injected at variable rates into a cylinder (radius 50 km, height 3-5 km). A sensitivity analysis indicates that small differences in the values of permeability and its anisotropy, the depth and rate of hydrothermal injection, and the values of the shear modulus may lead to significant variations in the magnitude, rate, and geometry of ground surface displacement, or uplift. Some of the simulated uplift rates are similar to observed uplift rates in large calderas, suggesting that the injection of aqueous fluids into the shallow crust may explain some of the deformation observed in calderas.

  17. Crustal structure in the Falcón Basin area, northwestern Venezuela, from seismic and gravimetric evidence

    NASA Astrophysics Data System (ADS)

    Bezada, Maximiliano J.; Schmitz, Michael; Jácome, María Inés; Rodríguez, Josmat; Audemard, Franck; Izarra, Carlos; The Bolivar Active Seismic Working Group

    2008-05-01

    The Falcón Basin in northwestern Venezuela has a complex geological history driven by the interactions between the South American and Caribbean plates. Igneous intrusive bodies that outcrop along the axis of the basin have been associated with crustal thinning, and gravity modeling has shown evidence for a significantly thinned crust beneath the basin. In this study, crustal scale seismic refraction/wide-angle reflection data derived from onshore/offshore active seismic experiments are interpreted and forward-modeled to generate a P-wave velocity model for a ˜450 km long profile. The final model shows thinning of the crust beneath the Falcón Basin where depth to Moho decreases to 27 km from a value of 40 km about 100 km to the south. A deeper reflected phase on the offshore section is interpreted to be derived from the downgoing Caribbean slab. Velocity values were converted to density and the resulting gravimetric response was shown to be consistent with the regional gravity anomaly. The crustal thinning proposed here supports a rift origin for the Falcón Basin.

  18. VizieR Online Data Catalog: Effects of preionization in radiative shocks (Sutherland+, 2017)

    NASA Astrophysics Data System (ADS)

    Sutherland, R. S.; Dopita, M. A.

    2017-06-01

    In this paper we treat the preionization problem in shocks over the velocity range 10

  19. Structure of the Peruvian Margin as imaged by Wide Angle and Reflection Seismic Data

    NASA Astrophysics Data System (ADS)

    Bialas, J.; Broser, A.; Hampel, A.; Kukowski, N.

    2001-12-01

    Within the GEOPECO project seismic reflection and refraction data were acquired during RV SONNE cruise SO-146 off Peru. The objectives were a quantitative characterization of the structures and geodynamics of the Peruvian section of the Andean subduction zone in regions with different tectonic development. Six wide angle seismic profiles (each app. 100 nm) were shot with three 32 l airguns and recorded by up to 14 OBH/S stations. The profiles cover the area which has been passed by the subducting Nazca ridge during the last 8 million years, from Yaquina basin in the North to about 15° South where the ridge currently subducts. Thorough modeling reveals the structure of the oceanic crust, the trench, and the adjacent continental slope in great detail. A small accretionary wedge was established some 2 million years after trespassing of the subducting ridge but did not increase in volume since then. Even compared to the one at 9° South, where Nazca Ridge subducted some 8 million years ago, the accretionary wedge is of similar size, some 30 km wide with a thickness of about 3 to 4 km. The relatively large subduction taper of 12° to 17° resulting from forward modeling is indicative for high basal friction and non-accretive subduction. Low p-wave velocities modeled at the top of the downgoing oceanic plate infer the presence of a subduction channel. The crustal thickness of the oceanic plate is 10 km between Nazca ridge and the Mendana fracture zone. North of the fracture zone, the age of the crust is some 10 million years younger (28 million years) than in the South and the crustal thickness is of typical oceanic values of 7 km. Two cross lines in Lima basin give insight into its internal structure. Along dip, the basin is some 150 km wide with a seperating basement high at the landward termination. The basin has an asymmetric shape and its depth varies between 1 and 3 km depth below sea floor. Along strike, the basin floor is almost horizontal. The top of the subducting oceanic plate is modeled at 25 km depth underneath the South-Eastern part of the basin.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scott M. White Dept. Geological Sciences University of South Carolina Columbia, SC 29208; Joy A. Crisp Jet Propulsion Laboratory, California Institute of Technology Pasadena, CA 91109; Frank J. Spera Dept. Earth Science University of California, Santa Barbara Santa Barbara, CA 93106

    A global compilation of 170 time-averaged volumetric volcanic output rates (Qe) is evaluated in terms of composition and petrotectonic setting to advance the understanding of long-term rates of magma generation and eruption on Earth. Repose periods between successive eruptions at a given site and intrusive:extrusive ratios were compiled for selected volcanic centers where long-term (>104 years) data were available. More silicic compositions, rhyolites and andesites, have a more limited range of eruption rates than basalts. Even when high Qe values contributed by flood basalts (9 ± 2 Å~ 10-1 km3/yr) are removed, there is a trend in decreasing average Qemore » with lava composition from basaltic eruptions (2.6 ± 1.0 Å~ 10-2 km3/yr) to andesites (2.3 ± 0.8 Å~ 10-3 km3/yr) and rhyolites (4.0 ± 1.4 Å~ 10-3 km3/yr). This trend is also seen in the difference between oceanic and continental settings, as eruptions on oceanic crust tend to be predominately basaltic. All of the volcanoes occurring in oceanic settings fail to have statistically different mean Qe and have an overall average of 2.8 ± 0.4 Å~ 10-2 km3/yr, excluding flood basalts. Likewise, all of the volcanoes on continental crust also fail to have statistically different mean Qe and have an overall average of 4.4 ± 0.8 Å~ 10-3 km3/yr. Flood basalts also form a distinctive class with an average Qe nearly two orders of magnitude higher than any other class. However, we have found no systematic evidence linking increased intrusive:extrusive ratios with lower volcanic rates. A simple heat balance analysis suggests that the preponderance of volcanic systems must be open magmatic systems with respect to heat and matter transport in order to maintain eruptible magma at shallow depth throughout the observed lifetime of the volcano. The empirical upper limit of Å`10-2 km3/yr for magma eruption rate in systems with relatively high intrusive:extrusive ratios may be a consequence of the fundamental parameters governing rates of melt generation (e.g., subsolidus isentropic decompression, hydration due to slab dehydration and heat transfer between underplated magma and the overlying crust) in the Earth« less

Top