Science.gov

Sample records for high light conditions

  1. Chlorophyll b degradation by chlorophyll b reductase under high-light conditions.

    PubMed

    Sato, Rei; Ito, Hisashi; Tanaka, Ayumi

    2015-12-01

    The light-harvesting chlorophyll a/b binding protein complex of photosystem II (LHCII) is the main antenna complex of photosystem II (PSII). Plants change their LHCII content depending on the light environment. Under high-light conditions, the content of LHCII should decrease because over-excitation damages the photosystem. Chlorophyll b is indispensable for accumulating LHCII, and chlorophyll b degradation induces LHCII degradation. Chlorophyll b degradation is initiated by chlorophyll b reductase (CBR). In land plants, NON-YELLOW COLORING 1 (NYC1) and NYC1-Like (NOL) are isozymes of CBR. We analyzed these mutants to determine their functions under high-light conditions. During high-light treatment, the chlorophyll a/b ratio was stable in the wild-type (WT) and nol plants, and the LHCII content decreased in WT plants. The chlorophyll a/b ratio decreased in the nyc1 and nyc1/nol plants, and a substantial degree of LHCII was retained in nyc1/nol plants after the high-light treatment. These results demonstrate that NYC1 degrades the chlorophyll b on LHCII under high-light conditions, thus decreasing the LHCII content. After the high-light treatment, the maximum quantum efficiency of the PSII photochemistry was lower in nyc1 and nyc1/nol plants than in WT and nol plants. A larger light-harvesting system would damage PSII in nyc1 and nyc1/nol plants. The fluorescence spectroscopy of the leaves indicated that photosystem I was also damaged by the excess LHCII in nyc1/nol plants. These observations suggest that chlorophyll b degradation by NYC1 is the initial reaction for the optimization of the light-harvesting capacity under high-light conditions.

  2. Spring Ephemerals Adapt to Extremely High Light Conditions via an Unusual Stabilization of Photosystem II

    PubMed Central

    Tu, Wenfeng; Li, Yang; Liu, Wu; Wu, Lishuan; Xie, Xiaoyan; Zhang, Yuanming; Wilhelm, Christian; Yang, Chunhong

    2016-01-01

    Ephemerals, widely distributed in the Gobi desert, have developed significant characteristics to sustain high photosynthetic efficiency under high light (HL) conditions. Since the light reaction is the basis for photosynthetic conversion of solar energy to chemical energy, the photosynthetic performances in thylakoid membrane of the spring ephemerals in response to HL were studied. Three plant species, namely two C3 spring ephemeral species of Cruciferae: Arabidopsis pumila (A. pumila) and Sisymbrium altissimum (S. altissimum), and the model plant Arabidopsis thaliana (A. thaliana) were chosen for the study. The ephemeral A. pumila, which is genetically close to A. thaliana and ecologically in the same habitat as S. altissimum, was used to avoid complications arising from the superficial differences resulted from comparing plants from two extremely contrasting ecological groups. The findings manifested that the ephemerals showed significantly enhanced activities of photosystem (PS) II under HL conditions, while the activities of PSII in A. thaliana were markedly decreased under the same conditions. Detailed analyses of the electron transport processes revealed that the increased plastoquinone pool oxidization, together with the enhanced PSI activities, ensured a lowered excitation pressure to PSII of both ephemerals, and thus facilitated the photosynthetic control to avoid photodamage to PSII. The analysis of the reaction centers of the PSs, both in terms of D1 protein turnover kinetics and the long-term adaptation, revealed that the unusually stable PSs structure provided the basis for the ephemerals to carry out high photosynthetic performances. It is proposed that the characteristic photosynthetic performances of ephemerals were resulted from effects of the long-term adaptation to the harsh environments. PMID:26779223

  3. Tribological Evaluation of Candidate Gear Materials Operating Under Light Loads in Highly Humid Conditions

    NASA Technical Reports Server (NTRS)

    Dellacorte, Christopher; Thomas, Fransua; Leak, Olivia Ann

    2015-01-01

    A series of pin-on-disk sliding wear tests were undertaken to identify candidate materials for a pair of lightly loaded timing gears operating under highly humid conditions. The target application involves water purification and thus precludes the use of oil, grease and potentially toxic solid lubricants. The baseline sliding pair is austenitic stainless steel operating against a carbon filled polyimide. The test load and sliding speed (4.9 N, 2.7 m/s) were chosen to represent average contact conditions of the meshing gear teeth. In addition to the baseline materials, the hard superelastic NiTiNOL 60 (60NiTi) was slid against itself, against the baseline polyimide, and against 60NiTi onto which a commercially deposited dry film lubricant (DFL) was applied. The alternate materials were evaluated as potential replacements to achieve a longer wear life and improved dimensional stability for the timing gear application. An attempt was also made to provide solid lubrication to self-mated 60NiTi by rubbing the polyimide against the disk wear track outside the primary 60NiTi-60NiTi contact, a method named stick or transfer-film lubrication. The selected test conditions gave repeatable friction and wear data and smooth sliding surfaces for the baseline materials similar to those in the target application. Friction and wear for self-mated stainless steel were high and erratic. Self-mated 60NiTi gave acceptably low friction (approx. 0.2) and modest wear but the sliding surfaces were rough and potentially unsuitable for the gear application. Tests in which 60NiTi pins were slid against DFL coated 60NiTi and DFL coated stainless steel gave low friction and long wear life. The use of stick lubrication via the secondary polyimide pin provided effective transfer film lubrication to self-mated 60NiTi tribological specimens. Using this approach, friction levels were equal or lower than the baseline polyimide-stainless combination and wear was higher but within data scatter observed

  4. Tribological Evaluation of Candidate Gear Materials Operating Under Light Loads in Highly Humid Conditions

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher; Thomas, Fransua; Leak, Olivia Ann

    2015-01-01

    A series of pin-on-disk sliding wear tests were undertaken to identify candidate materials for a pair of lightly loaded timing gears operating under highly humid conditions. The target application involves water purification and thus precludes the use of oil, grease and potentially toxic solid lubricants. The baseline sliding pair is austenitic stainless steel operating against a carbon filled polyimide. The test load and sliding speed (4.9N, 2.7ms) were chosen to represent average contact conditions of the meshing gear teeth. In addition to the baseline materials, the hard superelastic NiTiNOL 60 (60NiTi) was slid against itself, against the baseline polyimide, and against 60NiTi onto which a commercially deposited dry film lubricant (DFL) was applied. The alternate materials were evaluated as potential replacements to achieve a longer wear life and improved dimensional stability for the timing gear application. An attempt was also made to provide solid lubrication to self-mated 60NiTi by rubbing the polyimide against the disk wear track outside the primary 60NiTi-60NiTi contact, a method named stick or transfer-film lubrication. The selected test conditions gave repeatable friction and wear data and smooth sliding surfaces for the baseline materials similar to those in the target application. Friction and wear for self-mated stainless steel were high and erratic. Self-mated 60NiTi gave acceptably low friction (0.2) and modest wear but the sliding surfaces were rough and potentially unsuitable for the gear application. Tests in which 60NiTi pins were slid against DFL coated 60NiTi and DFL coated stainless steel gave low friction and long wear life. The use of stick lubrication via a secondary polyimide pin provided effective transfer film lubrication to self-mated 60NiTi tribological specimens. Using this approach, friction levels were equal or lower than the baseline polyimide-stainless combination and wear was higher but within data scatter observed in these

  5. Partitioning of absorbed light energy differed between the sun-exposed side and the shaded side of apple fruits under high light conditions.

    PubMed

    Chen, Changsheng; Zhang, Di; Li, Pengmin; Ma, Fengwang

    2012-11-01

    Fractions of absorbed light energy consumed via photochemistry and different thermal dissipation processes was quantified and compared between the sun-exposed peel and the shaded peel of apple fruits at different developmental stages. During fruit development, the fraction of absorbed light consumed via photochemistry was no more than 7% in the sun-exposed peel and no more than 5% in the shaded peel under high light conditions. Under high light, the fraction of absorbed light energy consumed via light dependent thermal dissipation was higher whereas that via constitutive thermal dissipation was lower in the sun-exposed peel. The light dependent thermal dissipation in the sun-exposed peel mainly depended on the xanthophyll cycle, and the xanthophyll cycle pool size was significantly larger in the sun-exposed peel than in the shaded peel. The light dependent thermal dissipation in the shaded peel was dependent on both the xanthophyll cycle and the presence of inactivated reaction centers. Under high light conditions, the densities of both Q(A)-reducing reaction centers and Q(B)-reducing reaction centers decreased faster in the shaded peel than in the sun-exposed peel. The thermal dissipation related to photoinhibition increased and then kept unchanged in the sun-exposed peel but decreased in the shaded peel during fruit development. We conclude that under high light intensities, fruit peel looses the excess energy in order of predominance: first by the xanthophyll cycle, then the thermal dissipation related to photoinhibition, next through inactivated reaction centers, and finally by constitutive thermal dissipation.

  6. High Efficiency Light Harvesting by Carotenoids in the LH2 Complex from Photosynthetic Bacteria: Unique Adaptation to Growth under Low-Light Conditions

    PubMed Central

    2015-01-01

    Rhodopin, rhodopinal, and their glucoside derivatives are carotenoids that accumulate in different amounts in the photosynthetic bacterium, Rhodoblastus (Rbl.) acidophilus strain 7050, depending on the intensity of the light under which the organism is grown. The different growth conditions also have a profound effect on the spectra of the bacteriochlorophyll (BChl) pigments that assemble in the major LH2 light-harvesting pigment–protein complex. Under high-light conditions the well-characterized B800-850 LH2 complex is formed and accumulates rhodopin and rhodopin glucoside as the primary carotenoids. Under low-light conditions, a variant LH2, denoted B800-820, is formed, and rhodopinal and rhodopinal glucoside are the most abundant carotenoids. The present investigation compares and contrasts the spectral properties and dynamics of the excited states of rhodopin and rhodopinal in solution. In addition, the systematic differences in pigment composition and structure of the chromophores in the LH2 complexes provide an opportunity to explore the effect of these factors on the rate and efficiency of carotenoid-to-BChl energy transfer. It is found that the enzymatic conversion of rhodopin to rhodopinal by Rbl. acidophilus 7050 grown under low-light conditions results in nearly 100% carotenoid-to-BChl energy transfer efficiency in the LH2 complex. This comparative analysis provides insight into how photosynthetic systems are able to adapt and survive under challenging environmental conditions. PMID:25171303

  7. High efficiency light harvesting by carotenoids in the LH2 complex from photosynthetic bacteria: unique adaptation to growth under low-light conditions.

    PubMed

    Magdaong, Nikki M; LaFountain, Amy M; Greco, Jordan A; Gardiner, Alastair T; Carey, Anne-Marie; Cogdell, Richard J; Gibson, George N; Birge, Robert R; Frank, Harry A

    2014-09-25

    Rhodopin, rhodopinal, and their glucoside derivatives are carotenoids that accumulate in different amounts in the photosynthetic bacterium, Rhodoblastus (Rbl.) acidophilus strain 7050, depending on the intensity of the light under which the organism is grown. The different growth conditions also have a profound effect on the spectra of the bacteriochlorophyll (BChl) pigments that assemble in the major LH2 light-harvesting pigment-protein complex. Under high-light conditions the well-characterized B800-850 LH2 complex is formed and accumulates rhodopin and rhodopin glucoside as the primary carotenoids. Under low-light conditions, a variant LH2, denoted B800-820, is formed, and rhodopinal and rhodopinal glucoside are the most abundant carotenoids. The present investigation compares and contrasts the spectral properties and dynamics of the excited states of rhodopin and rhodopinal in solution. In addition, the systematic differences in pigment composition and structure of the chromophores in the LH2 complexes provide an opportunity to explore the effect of these factors on the rate and efficiency of carotenoid-to-BChl energy transfer. It is found that the enzymatic conversion of rhodopin to rhodopinal by Rbl. acidophilus 7050 grown under low-light conditions results in nearly 100% carotenoid-to-BChl energy transfer efficiency in the LH2 complex. This comparative analysis provides insight into how photosynthetic systems are able to adapt and survive under challenging environmental conditions.

  8. Starch and lipid accumulation in eight strains of six Chlorella species under comparatively high light intensity and aeration culture conditions.

    PubMed

    Takeshita, Tsuyoshi; Ota, Shuhei; Yamazaki, Tomokazu; Hirata, Aiko; Zachleder, Vilém; Kawano, Shigeyuki

    2014-04-01

    The microalgae family Chlorella species are known to accumulate starch and lipids. Although nitrogen or phosphorous deficiencies promote starch and lipids formation in many microalgae, these deficiencies also limit their growth and productivity. Therefore, the Chlorellaceae strains were attempted to increase starch and lipids productivity under high-light-intensity conditions (600-μmol photons m(-2)s(-1)). The 12:12-h light-dark (LD) cycle conditions elicited more stable growth than the continuous light (LL) conditions, whereas the starch and lipids yields increased in LL conditions. The amount of starch and lipids per cell increased in Chlorella viscosa and Chlorella vulgaris in sulfur-deficient medium, and long-chain fatty acids with 20 or more carbon atoms accumulated in cells grown in sulfur-deficient medium. Accumulation of starch and lipids was investigated in eight strains. The accumulation was strain-dependent, and varied according to the medium and light conditions. Five of the eight Chlorella strains exhibited similar accumulation patterns.

  9. Synchrotron Radiation and High Pressure: New Light on Materials Under Extreme Conditions

    NASA Astrophysics Data System (ADS)

    Hemley, Russell

    2005-03-01

    Current technological advances now make it possible to perform experiments on materials subjected to static or sustained conditions up to multimegabar pressures (>300 GPa) and from cryogenic temperatures to several thousand degrees (˜0.5 eV range). With these techniques, densities of condensed matter can be increased over an order of magnitude, causing numerous transformations and new physical and chemical phenomena to occur. Growth in this area largely been made possible by accelerating developments in diamond-anvil cell methods coupled with new synchrotron radiation techniques. Significant advances have occurred in x-ray diffraction, spectroscopy, inelastic scattering, radiography, and infrared spectroscopy. With recent developments, structure refinements based on polycrystalline data up to multimegabar pressures have been possible. Single-crystal methods have been extended to megabar pressure, with the prospect of full crystallographic refinements. `Three- dimensional' diffraction data can be collected for determining strength, deformation, and elastic tensors at high P-T conditions. Studies carried out during the past three years provide numerous breakthroughs in high-pressure x-ray spectroscopy and a broad range of inelastic scattering methods. Other experiments have exploited the use of x-ray radiography over a range of pressures. Finally, synchrotron infrared measurements have revealed a wealth of high-pressure phenomena, particularly for molecular systems. Examples to be discussed include investigations of dense hydrogen; transformations in molecular materials; novel ceramics; new types of superconductors, electronic, and magnetic materials; and liquids and amorphous materials.

  10. Synchrotron radiation and high pressure: new light on materials under extreme conditions.

    PubMed

    Hemley, Russell J; Mao, Ho-kwang; Struzhkin, Viktor V

    2005-03-01

    With the steady development of static high-pressure techniques in recent years, it is now possible to probe in increasing detail the novel behavior of materials subjected to extreme conditions of multimegabar pressures (>300 GPa) and temperatures from cryogenic states to thousands of degrees. By and large, the growth in this area has been made possible by accelerating developments in diamond-anvil cell methods coupled with new synchrotron radiation techniques. Significant advances have occurred in high-pressure powder and single-crystal diffraction, spectroscopy, inelastic scattering, radiography, and infrared spectroscopy. A brief overview of selected highlights in each of these classes of experiments is presented that illustrate both the state-of-the-art as well as current technical and scientific challenges. The experiments have been made possible by the development of a spectrum of new techniques at both third- and second-generation high-energy sources together with key advances in high-pressure technology. The results have implications for a variety of problems in physics, chemistry, materials science, geoscience, planetary science, and biology.

  11. High efficiency incandescent lighting

    SciTech Connect

    Bermel, Peter; Ilic, Ognjen; Chan, Walker R.; Musabeyoglu, Ahmet; Cukierman, Aviv Ruben; Harradon, Michael Robert; Celanovic, Ivan; Soljacic, Marin

    2014-09-02

    Incandescent lighting structure. The structure includes a thermal emitter that can, but does not have to, include a first photonic crystal on its surface to tailor thermal emission coupled to, in a high-view-factor geometry, a second photonic filter selected to reflect infrared radiation back to the emitter while passing visible light. This structure is highly efficient as compared to standard incandescent light bulbs.

  12. High Intensity Lights

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Xenon arc lamps developed during the Apollo program by Streamlight, Inc. are the basis for commercial flashlights and emergency handlights. These are some of the brightest portable lights made. They throw a light some 50 times brighter than automobile high beams and are primarily used by police and military. The light penetrates fog and smoke and returns less back-scatter light. They are operated on portable power packs as boat and auto batteries. An infrared model produces totally invisible light for covert surveillance.

  13. Light energy dissipation under water stress conditions

    SciTech Connect

    Stuhlfauth, T.; Scheuermann, R.; Fock, H.P. )

    1990-04-01

    Using {sup 14}CO{sub 2} gas exchange and metabolite analyses, stomatal as well as total internal CO{sub 2} uptake and evolution were estimated. Pulse modulated fluorescence was measured during induction and steady state of photosynthesis. Leaf water potential of Digitalis lanata EHRH. plants decreased to {minus}2.5 megapascals after withholding irrigation. By osmotic adjustment, leaves remained turgid and fully exposed to irradiance even at severe water stress. Due to the stress-induced reduction of stomatal conductance, the stomatal CO{sub 2} exchange was drastically reduced, whereas the total CO{sub 2} uptake and evolution were less affected. Stomatal closure induced an increase in the reassimilation of internally evolved CO{sub 2}. This CO{sub 2}-recycling consumes a significant amount of light energy in the form of ATP and reducing equivalents. As a consequence, the metabolic demand for light energy is only reduced by about 40%, whereas net photosynthesis is diminished by about 70% under severe stress conditions. By CO{sub 2} recycling, carbon flux, enzymatic substrate turnover and consumption of light energy were maintained at high levels, which enabled the plant to recover rapidly after rewatering. In stressed D. lanata plants a variable fluorescence quenching mechanism, termed coefficient of actinic light quenching, was observed. Besides water conservation, light energy dissipation is essential and involves regulated metabolic variations.

  14. High Brightness OLED Lighting

    SciTech Connect

    Spindler, Jeffrey; Kondakova, Marina; Boroson, Michael; Hamer, John

    2016-05-25

    In this work we describe the technology developments behind our current and future generations of high brightness OLED lighting panels. We have developed white and amber OLEDs with excellent performance based on the stacking approach. Current products achieve 40-60 lm/W, while future developments focus on achieving 80 lm/W or higher.

  15. Early Transcriptional Defense Responses in Arabidopsis Cell Suspension Culture under High-Light Conditions1[C][W][OA

    PubMed Central

    González-Pérez, Sergio; Gutiérrez, Jorge; García-García, Francisco; Osuna, Daniel; Dopazo, Joaquín; Lorenzo, Óscar; Revuelta, José L.; Arellano, Juan B.

    2011-01-01

    The early transcriptional defense responses and reactive oxygen species (ROS) production in Arabidopsis (Arabidopsis thaliana) cell suspension culture (ACSC), containing functional chloroplasts, were examined at high light (HL). The transcriptional analysis revealed that most of the ROS markers identified among the 449 transcripts with significant differential expression were transcripts specifically up-regulated by singlet oxygen (1O2). On the contrary, minimal correlation was established with transcripts specifically up-regulated by superoxide radical or hydrogen peroxide. The transcriptional analysis was supported by fluorescence microscopy experiments. The incubation of ACSC with the 1O2 sensor green reagent and 2′,7′-dichlorofluorescein diacetate showed that the 30-min-HL-treated cultures emitted fluorescence that corresponded with the production of 1O2 but not of hydrogen peroxide. Furthermore, the in vivo photodamage of the D1 protein of photosystem II indicated that the photogeneration of 1O2 took place within the photosystem II reaction center. Functional enrichment analyses identified transcripts that are key components of the ROS signaling transduction pathway in plants as well as others encoding transcription factors that regulate both ROS scavenging and water deficit stress. A meta-analysis examining the transcriptional profiles of mutants and hormone treatments in Arabidopsis showed a high correlation between ACSC at HL and the fluorescent mutant family of Arabidopsis, a producer of 1O2 in plastids. Intriguingly, a high correlation was also observed with ABA deficient1 and more axillary growth4, two mutants with defects in the biosynthesis pathways of two key (apo)carotenoid-derived plant hormones (i.e. abscisic acid and strigolactones, respectively). ACSC has proven to be a valuable system for studying early transcriptional responses to HL stress. PMID:21531897

  16. Terrain on Europa under Changing Lighting Conditions

    NASA Technical Reports Server (NTRS)

    1997-01-01

    These images obtained by the Solid State Imaging (CCD) system aboard NASA's Galileo spacecraft show the same region of Europa under different lighting conditions. The upper image was obtained on June 28th, 1996 during Galileo's first orbit around Jupiter under 'high-sun' conditions -- the equivalent of taking a picture from a high altitude at noon (with the sun directly overhead). Note that albedo (light/dark) features are emphasized. Compare this to the lower image containing a higher-resolution inset. This (inset) image was taken on November 6th, 1996 during the spacecraft's third orbit under 'low-sun' illumination -- the equivalent of taking a picture from a high altitude at sunrise or sunset. Note that in this image the albedo features are not readily apparent. Instead, the topography of the terrain is emphasized. Planetary geologists use information from images acquired under a variety of lighting conditions to identify different types of structures and interpret how they formed. Note that the bright linear features in the upper image are seen to be ridges in the lower image. The circular feature on the right side of both images, Cilix, is approximately 25 kilometers (15 miles) across.

    The area seen in the upper image is 312 kilometers (187 miles) by 570 kilometers (342 miles) across; the area covered by the inset is 36 kilometers (22 miles) by 315 kilometers (190 miles) across. Both of these images are centered near 2 South latitude, 185 West longitude. North is to the top of the frames.

    The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

  17. Lighting Condition Analysis for Mars Moon Phobos

    NASA Technical Reports Server (NTRS)

    Li, Zu Qun; Crues, Edwin Z.; Bielski, Paul; De Carufel, Guy

    2016-01-01

    A manned mission to Phobos may be an important precursor and catalyst for the human exploration of Mars, as it will fully demonstrate the technologies for a successful Mars mission. A comprehensive understanding of Phobos' environment such as lighting condition and gravitational acceleration are essential to the mission success. The lighting condition is one of many critical factors for landing zone selection, vehicle power subsystem design, and surface mobility vehicle path planning. Due to the orbital characteristic of Phobos, the lighting condition will change dramatically from one Martian season to another. This study uses high fidelity computer simulation to investigate the lighting conditions, specifically the solar radiation flux over the surface, on Phobos. Ephemeris data from the Jet Propulsion Laboratory (JPL) DE405 model was used to model the state of the Sun, the Earth, and Mars. An occultation model was developed to simulate Phobos' self-shadowing and its solar eclipses by Mars. The propagated Phobos' state was compared with data from JPL's Horizon system to ensure the accuracy of the result. Results for Phobos lighting condition over one Martian year are presented in this paper, which include length of solar eclipse, average solar radiation intensity, surface exposure time, total maximum solar energy, and total surface solar energy (constrained by incident angle). The results show that Phobos' solar eclipse time changes throughout the Martian year with the maximum eclipse time occurring during the Martian spring and fall equinox and no solar eclipse during the Martian summer and winter solstice. Solar radiation intensity is close to minimum at the summer solstice and close to maximum at the winter solstice. Total surface exposure time is longer near the north pole and around the anti- Mars point. Total maximum solar energy is larger around the anti-Mars point. Total surface solar energy is higher around the anti-Mars point near the equator. The

  18. Redox-Dependent Modulation of Anthocyanin Biosynthesis by the TCP Transcription Factor TCP15 during Exposure to High Light Intensity Conditions in Arabidopsis.

    PubMed

    Viola, Ivana L; Camoirano, Alejandra; Gonzalez, Daniel H

    2016-01-01

    TCP proteins integrate a family of transcription factors involved in the regulation of developmental processes and hormone responses. It has been shown that most members of class I, one of the two classes in which the TCP family is divided, contain a conserved Cys that leads to inhibition of DNA binding when oxidized. In this work, we describe that the class-I TCP protein TCP15 inhibits anthocyanin accumulation during exposure of plants to high light intensity by modulating the expression of transcription factors involved in the induction of anthocyanin biosynthesis genes, as suggested by the study of plants that express TCP15 from the 35SCaMV promoter and mutants in TCP15 and the related gene TCP14. In addition, the effect of TCP15 on anthocyanin accumulation is lost after prolonged incubation under high light intensity conditions. We provide evidence that this is due to inactivation of TCP15 by oxidation of Cys-20 of the TCP domain. Thus, redox modulation of TCP15 activity in vivo by high light intensity may serve to adjust anthocyanin accumulation to the duration of exposure to high irradiation conditions.

  19. Object detectability at increased ambient lighting conditions

    SciTech Connect

    Pollard, Benjamin J.; Chawla, Amarpreet S.; Delong, David M.; Hashimoto, Noriyuki; Samei, Ehsan

    2008-06-15

    Under typical dark conditions encountered in diagnostic reading rooms, a reader's pupils will contract and dilate as the visual focus intermittently shifts between the high luminance display and the darker background wall, resulting in increased visual fatigue and the degradation of diagnostic performance. A controlled increase of ambient lighting may, however, reduce the severity of these pupillary adjustments by minimizing the difference between the luminance level to which the eyes adapt while viewing an image (L{sub adp}) and the luminance level of diffusely reflected light from the area surrounding the display (L{sub s}). Although ambient lighting in reading rooms has conventionally been kept at a minimum to maintain the perceived contrast of film images, proper Digital Imaging and Communications in Medicine (DICOM) calibration of modern medical-grade liquid crystal displays can compensate for minor lighting increases with very little loss of image contrast. This paper describes two psychophysical studies developed to evaluate and refine optimum reading room ambient lighting conditions through the use of observational tasks intended to simulate real clinical practices. The first study utilized the biologic contrast response of the human visual system to determine a range of representative L{sub adp} values for typical medical images. Readers identified low contrast horizontal objects in circular foregrounds of uniform luminance (5, 12, 20, and 30 cd/m{sup 2}) embedded within digitized mammograms. The second study examined the effect of increased ambient lighting on the detection of subtle objects embedded in circular foregrounds of uniform luminance (5, 12, and 35 cd/m{sup 2}) centered within a constant background of 12 cd/m{sup 2} luminance. The images were displayed under a dark room condition (1 lux) and an increased ambient lighting level (50 lux) such that the luminance level of the diffusely reflected light from the background wall was approximately

  20. Object detectability at increased ambient lighting conditions.

    PubMed

    Pollard, Benjamin J; Chawla, Amarpreet S; Delong, David M; Hashimoto, Noriyuki; Samei, Ehsan

    2008-06-01

    Under typical dark conditions encountered in diagnostic reading rooms, a reader's pupils will contract and dilate as the visual focus intermittently shifts between the high luminance display and the darker background wall, resulting in increased visual fatigue and the degradation of diagnostic performance. A controlled increase of ambient lighting may, however, reduce the severity of these pupillary adjustments by minimizing the difference between the luminance level to which the eyes adapt while viewing an image (L(adp)) and the luminance level of diffusely reflected light from the area surrounding the display (L(s)). Although ambient lighting in reading rooms has conventionally been kept at a minimum to maintain the perceived contrast of film images, proper Digital Imaging and Communications in Medicine (DICOM) calibration of modern medical-grade liquid crystal displays can compensate for minor lighting increases with very little loss of image contrast. This paper describes two psychophysical studies developed to evaluate and refine optimum reading room ambient lighting conditions through the use of observational tasks intended to simulate real clinical practices. The first study utilized the biologic contrast response of the human visual system to determine a range of representative L(adp) values for typical medical images. Readers identified low contrast horizontal objects in circular foregrounds of uniform luminance (5, 12, 20, and 30 cd/m2) embedded within digitized mammograms. The second study examined the effect of increased ambient lighting on the detection of subtle objects embedded in circular foregrounds of uniform luminance (5, 12, and 35 cd/m2) centered within a constant background of 12 cd/m2 luminance. The images were displayed under a dark room condition (1 lux) and an increased ambient lighting level (50 lux) such that the luminance level of the diffusely reflected light from the background wall was approximately equal to the image L(adp) value of

  1. Co-expression of cytochrome b561 and ascorbate oxidase in leaves of wild watermelon under drought and high light conditions.

    PubMed

    Nanasato, Yoshihiko; Akashi, Kinya; Yokota, Akiho

    2005-09-01

    Despite carrying out C3 photosynthesis, wild watermelon (Citrullus lanatus sp.) exhibits exceedingly good tolerance to severe drought at high light intensities. However, the mechanism(s) by which this plant protects itself from photodamage has yet to be elucidated. In this study, we characterized wild watermelon cytochrome b561 (cyt b561), which potentially mediates regeneration of apoplastic ascorbate by transferring electrons from cytosolic ascorbate across the plasma membrane. Two cDNA species for wild watermelon cyt b561, designated CLb561A and CLb561B, were isolated. Levels of both CLb561A mRNA and protein were significantly elevated in the leaves during drought at a light intensity of 700 micromol photons m(-2) s(-1). The transcript of CLb561B was detected to a much lesser extent, but no CLb561B protein was produced under any condition used in this study. A transient expression assay with the CLb561A::green fluorescent protein fusion construct showed clear fluorescence on the plasma membrane of onion epidermal cells. The CLb561A protein was enriched in the plasma membrane fraction in leaves of transgenic tobacco expressing CLb561A. Moreover, the high activity of apoplastic ascorbate oxidase (AO), which was able to dispose of cyt b561-transferred reducing equivalents, increased in leaves of wild watermelon grown at high light intensity, but not lower light intensities. Taken together, these observations suggest the occurrence of a novel pathway for excess light energy dissipation in wild watermelon leaves, where excessive energy absorbed by chloroplasts can be transported to and dissipated safely in the apoplasts through the cooperative action of cyt b561 and AO.

  2. Lighting Condition Analysis for Mars' Moon Phobos

    NASA Technical Reports Server (NTRS)

    Li, Zu Qun; de Carufel, Guy; Crues, Edwin Z.; Bielski, Paul

    2016-01-01

    This study used high fidelity computer simulation to investigate the lighting conditions, specifically the solar radiation flux over the surface, on Phobos. Ephemeris data from the Jet Propulsion Laboratory (JPL) DE405 model was used to model the state of the Sun, Earth, Moon, and Mars. An occultation model was developed to simulate Phobos' self-shadowing and its solar eclipses by Mars. The propagated Phobos state was compared with data from JPL's Horizon system to ensure the accuracy of the result. Results for Phobos lighting conditions over one Martian year are presented, which include the duration of solar eclipses, average solar radiation intensity, surface exposure time, and radiant exposure for both sun tracking and fixed solar arrays. The results show that: Phobos' solar eclipse time varies throughout the Martian year, with longer eclipse durations during the Martian northern spring and fall seasons and no eclipses during the Martian northern summer and winter seasons; solar radiation intensity is close to minimum in late spring and close to maximum in late fall; exposure time per orbit is relatively constant over the surface during the spring and fall but varies with latitude during the summer and winter; and Sun tracking solar arrays generate more energy than a fixed solar array. A usage example of the result is also present in this paper to demonstrate the utility.

  3. Lighting Condition Analysis for Mars' Moon Phobos

    NASA Technical Reports Server (NTRS)

    Li, Zu Qun; de Carufel, Guy; Crues, Edwin Z.; Bielski, Paul

    2016-01-01

    This study used high fidelity computer simulation to investigate the lighting conditions, specifically the solar radiation flux over the surface, on Phobos. Ephemeris data from the Jet Propulsion Laboratory (JPL) DE405 model was used to model the state of the Sun, Earth, Moon, and Mars. An occultation model was developed to simulate Phobos' self-shadowing and its solar eclipses by Mars. The propagated Phobos state was compared with data from JPL's Horizon system to ensure the accuracy of the result. Results for Phobos lighting conditions over one Martian year are presented, which include the duration of solar eclipses, average solar radiation intensity, surface exposure time, available energy per unit area for sun tracking arrays, and available energy per unit area for fixed arrays (constrained by incident angle). The results show that: Phobos' solar eclipse time varies throughout the Martian year, with longer eclipse durations during the Martian spring and fall seasons and no eclipses during the Martian summer and winter seasons; solar radiation intensity is close to minimum at the summer solstice and close to maximum at the winter solstice; exposure time per orbit is relatively constant over the surface during the spring and fall but varies with latitude during the summer and winter; and Sun tracking solar arrays generate more energy than a fixed solar array. A usage example of the result is also present in this paper to demonstrate the utility.

  4. Field-Grown Grapevine Berries Use Carotenoids and the Associated Xanthophyll Cycles to Acclimate to UV Exposure Differentially in High and Low Light (Shade) Conditions

    PubMed Central

    Joubert, Chandré; Young, Philip R.; Eyéghé-Bickong, Hans A.; Vivier, Melané A.

    2016-01-01

    Light quantity and quality modulate grapevine development and influence berry metabolic processes. Here we studied light as an information signal for developing and ripening grape berries. A Vitis vinifera Sauvignon Blanc field experiment was used to identify the impacts of UVB on core metabolic processes in the berries under both high light (HL) and low light (LL) microclimates. The primary objective was therefore to identify UVB-specific responses on berry processes and metabolites and distinguish them from those responses elicited by variations in light incidence. Canopy manipulation at the bunch zone via early leaf removal, combined with UVB-excluding acrylic sheets installed over the bunch zones resulted in four bunch microclimates: (1) HL (control); (2) LL (control); (3) HL with UVB attenuation and (4) LL with UVB attenuation. Metabolite profiles of three berry developmental stages showed predictable changes to known UV-responsive compound classes in a typical UV acclimation (versus UV damage) response. Interestingly, the berries employed carotenoids and the associated xanthophyll cycles to acclimate to UV exposure and the berry responses differed between HL and LL conditions, particularly in the developmental stages where berries are still photosynthetically active. The developmental stage of the berries was an important factor to consider in interpreting the data. The green berries responded to the different exposure and/or UVB attenuation signals with metabolites that indicate that the berries actively managed its metabolism in relation to the exposure levels, displaying metabolic plasticity in the photosynthesis-related metabolites. Core processes such as photosynthesis, photo-inhibition and acclimation were maintained by differentially modulating metabolites under the four treatments. Ripe berries also responded metabolically to the light quality and quantity, but mostly formed compounds (volatiles and polyphenols) that have direct antioxidant and/or

  5. Field-Grown Grapevine Berries Use Carotenoids and the Associated Xanthophyll Cycles to Acclimate to UV Exposure Differentially in High and Low Light (Shade) Conditions.

    PubMed

    Joubert, Chandré; Young, Philip R; Eyéghé-Bickong, Hans A; Vivier, Melané A

    2016-01-01

    Light quantity and quality modulate grapevine development and influence berry metabolic processes. Here we studied light as an information signal for developing and ripening grape berries. A Vitis vinifera Sauvignon Blanc field experiment was used to identify the impacts of UVB on core metabolic processes in the berries under both high light (HL) and low light (LL) microclimates. The primary objective was therefore to identify UVB-specific responses on berry processes and metabolites and distinguish them from those responses elicited by variations in light incidence. Canopy manipulation at the bunch zone via early leaf removal, combined with UVB-excluding acrylic sheets installed over the bunch zones resulted in four bunch microclimates: (1) HL (control); (2) LL (control); (3) HL with UVB attenuation and (4) LL with UVB attenuation. Metabolite profiles of three berry developmental stages showed predictable changes to known UV-responsive compound classes in a typical UV acclimation (versus UV damage) response. Interestingly, the berries employed carotenoids and the associated xanthophyll cycles to acclimate to UV exposure and the berry responses differed between HL and LL conditions, particularly in the developmental stages where berries are still photosynthetically active. The developmental stage of the berries was an important factor to consider in interpreting the data. The green berries responded to the different exposure and/or UVB attenuation signals with metabolites that indicate that the berries actively managed its metabolism in relation to the exposure levels, displaying metabolic plasticity in the photosynthesis-related metabolites. Core processes such as photosynthesis, photo-inhibition and acclimation were maintained by differentially modulating metabolites under the four treatments. Ripe berries also responded metabolically to the light quality and quantity, but mostly formed compounds (volatiles and polyphenols) that have direct antioxidant and

  6. High Intensity Lighting

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Nightime illumination is an important part of round-the-clock pre-launch preparations because NASA uses TV and film cameras to monitor each step of the preliminaries and at times to identify the cause of malfunction during countdown. Generating a one billion candlepower beam visible 50 miles away, the lamps developed by Duro-Test Corporation provide daylight quality light that eliminates color distortion in film and TV coverage. The lighting system was first used at Kennedy Space Center in 1968 for the launch of Apollo 8. Modified versions are available in wide range of applications, such as the battery of spotlights with colored filters that light up Niagara Falls, as well as the lamps used in the projectors for the Smithsonian's IMAX Theatre, indoor theatres with supersized screens and outdoor projection systems.

  7. Effects of weather conditions, light conditions, and road lighting on vehicle speed.

    PubMed

    Jägerbrand, Annika K; Sjöbergh, Jonas

    2016-01-01

    Light conditions are known to affect the number of vehicle accidents and fatalities but the relationship between light conditions and vehicle speed is not fully understood. This study examined whether vehicle speed on roads is higher in daylight and under road lighting than in darkness, and determined the combined effects of light conditions, posted speed limit and weather conditions on driving speed. The vehicle speed of passenger cars in different light conditions (daylight, twilight, darkness, artificial light) and different weather conditions (clear weather, rain, snow) was determined using traffic and weather data collected on an hourly basis for approximately 2 years (1 September 2012-31 May 2014) at 25 locations in Sweden (17 with road lighting and eight without). In total, the data included almost 60 million vehicle passes. The data were cleaned by removing June, July, and August, which have different traffic patterns than the rest of the year. Only data from the periods 10:00 A.M.-04:00 P.M. and 06:00 P.M.-10:00 P.M. were used, to remove traffic during rush hour and at night. Multivariate adaptive regression splines was used to evaluate the overall influence of independent variables on vehicle speed and nonparametric statistical testing was applied to test for speed differences between dark-daylight, dark-twilight, and twilight-daylight, on roads with and without road lighting. The results show that vehicle speed in general depends on several independent variables. Analyses of vehicle speed and speed differences between daylight, twilight and darkness, with and without road lighting, did not reveal any differences attributable to light conditions. However, vehicle speed decreased due to rain or snow and the decrease was higher on roads without road lighting than on roads with lighting. These results suggest that the strong association between traffic accidents and darkness or low light conditions could be explained by drivers failing to adjust their

  8. High voltage pulse conditioning

    DOEpatents

    Springfield, Ray M.; Wheat, Jr., Robert M.

    1990-01-01

    Apparatus for conditioning high voltage pulses from particle accelerators in order to shorten the rise times of the pulses. Flashover switches in the cathode stalk of the transmission line hold off conduction for a determinable period of time, reflecting the early portion of the pulses. Diodes upstream of the switches divert energy into the magnetic and electrostatic storage of the capacitance and inductance inherent to the transmission line until the switches close.

  9. 2-Cysteine Peroxiredoxins and Thylakoid Ascorbate Peroxidase Create a Water-Water Cycle That Is Essential to Protect the Photosynthetic Apparatus under High Light Stress Conditions1

    PubMed Central

    Awad, Jasmin; Stotz, Henrik U.; Fekete, Agnes; Krischke, Markus; Engert, Cornelia; Havaux, Michel; Berger, Susanne; Mueller, Martin J.

    2015-01-01

    Different peroxidases, including 2-cysteine (2-Cys) peroxiredoxins (PRXs) and thylakoid ascorbate peroxidase (tAPX), have been proposed to be involved in the water-water cycle (WWC) and hydrogen peroxide (H2O2)-mediated signaling in plastids. We generated an Arabidopsis (Arabidopsis thaliana) double-mutant line deficient in the two plastid 2-Cys PRXs (2-Cys PRX A and B, 2cpa 2cpb) and a triple mutant deficient in 2-Cys PRXs and tAPX (2cpa 2cpb tapx). In contrast to wild-type and tapx single-knockout plants, 2cpa 2cpb double-knockout plants showed an impairment of photosynthetic efficiency and became photobleached under high light (HL) growth conditions. In addition, double-mutant plants also generated elevated levels of superoxide anion radicals, H2O2, and carbonylated proteins but lacked anthocyanin accumulation under HL stress conditions. Under HL conditions, 2-Cys PRXs seem to be essential in maintaining the WWC, whereas tAPX is dispensable. By comparison, this HL-sensitive phenotype was more severe in 2cpa 2cpb tapx triple-mutant plants, indicating that tAPX partially compensates for the loss of functional 2-Cys PRXs by mutation or inactivation by overoxidation. In response to HL, H2O2- and photooxidative stress-responsive marker genes were found to be dramatically up-regulated in 2cpa 2cpb tapx but not 2cpa 2cpb mutant plants, suggesting that HL-induced plastid to nucleus retrograde photooxidative stress signaling takes place after loss or inactivation of the WWC enzymes 2-Cys PRX A, 2-Cys PRX B, and tAPX. PMID:25667319

  10. Prevention of polymorphic light eruption with a sunscreen of very high protection level against UVB and UVA radiation under standardized photodiagnostic conditions.

    PubMed

    Schleyer, Verena; Weber, Oliver; Yazdi, Amir; Benedix, Frauke; Dietz, Klaus; Röcken, Martin; Berneburg, Mark

    2008-01-01

    Polymorphic light eruption (PLE), with an overall prevalence of 10-20%, is mainly provoked by ultraviolet A (UVA) (320-400 nm) and to a lesser degree by UVB (280-320 nm). The most effective prophylaxis of PLE, application of UV protection clothing, is not feasible for all sun-exposed areas of the skin and UV-hardening is time-consuming and may be associated with side-effects. Most sunscreens protect predominantly against UVB and therefore fail to prevent PLE. The protection level of potent UVA-protective filters remains unresolved. This single-centre, open, placebo-controlled, intra-individual, comparative study, analysed the efficacy of a sunscreen of very high protection level against UVB and UVA, containing methylene bis-benzotriazolyl tetramethylbutylphenol (Tinosorb M), bis-ethylhexyloxyphenol methoxyphenyl triazine (Tinosorb S) and butyl methoxydibenzoylmethane as UVA absorbing filters, in the prevention of PLE under standardized photodiagnostic conditions. After determination of the minimal erythema dose at day 0, photoprovocation was performed in 12 patients with a clinical history of PLE, on days 1, 2 and 3 with 100 J/cm2 UVA and variable doses of UVB, starting with the 1.5-fold minimal erythema dose of UVB. Prior to irradiation, placebo was applied to the right and sunscreen to the left dorsal forearm under COLIPA (European Cosmetic, Toiletry and Perfumery Association) conditions. In 10 patients PLE could be provoked at the placebo site, with positive reactions in 90% of the UVA, 40% of the UVB and 90% of the UVA/UVB irradiated fields. At the site with the active treatment none of these patients developed PLE. These data demonstrate that a sunscreen with effective filters against UVA and UVB can successfully prevent the development of PLE. Further studies are needed to examine whether regular application of sunscreen under everyday conditions, especially in doses less than the tested COLIPA-norm, could be an equivalent alternative to UV-hardening therapy.

  11. Heat shock transcriptional responses in an MC-Producing Cyanobacterium (Planktothrix agardhii) and its MC-deficient mutant under high light conditions.

    PubMed

    Tran, Thi Du Chi; Bernard, Cecile; Ammar, Myriam; Chaouch, Soraya; Comte, Katia

    2013-01-01

    Microcystins (MCs) are the most commonly-reported hepatotoxins produced by various cyanobacterial taxa in fresh waters to constitute a potential threat to human and animal health. The biological role of MCs in the producer organisms is not known, and it would be very useful to understand the driving force behind the toxin production. Recent studies have suggested that MCs may have a protective function in cells facing environmental stress. Following this starting premise, we speculate that under adverse conditions the expression of stress-related genes coding for Heat Shock Proteins (Hsp) might be different in an MC-producing strain and its MC-deficient mutant. We therefore used RT-qPCR to compare the expression of 13 hsp genes of an MC-producing strain of Planktothrix agardhii (CYA126/8) and its MC-deficient ΔmcyD mutant over different periods of exposure to high light stress (HL). Three reference genes (RGs) were selected from six candidates to normalize the RT-qPCR data. Of these three RGs (rsh, rpoD, and gltA), gltA is used here for the first time as an RG in prokaryotes. Under HL stress, five genes were found to be strongly up-regulated in both strains (htpG, dnaK, hspA, groES, and groEL). Unexpectedly, we found that the MC-producing wild type strain accumulated higher levels of htpG and dnaK transcripts in response to HL stress than the MC-deficient mutant. In addition, a significant increase in the mcyE transcript was detected in the mutant, suggesting that MCs are required under HL conditions. We discuss several possible roles of MCs in the response to HL stress through their possible involvement in the protective mechanisms of the cells.

  12. High power cladding light strippers

    NASA Astrophysics Data System (ADS)

    Wetter, Alexandre; Faucher, Mathieu; Sévigny, Benoit

    2008-02-01

    The ability to strip cladding light from double clad fiber (DCF) fibers is required for many different reasons, one example is to strip unwanted cladding light in fiber lasers and amplifiers. When removing residual pump light for example, this light is characterized by a large numerical aperture distribution and can reach power levels into the hundreds of watts. By locally changing the numerical aperture (N.A.) of the light to be stripped, it is possible to achieve significant attenuation even for the low N.A. rays such as escaped core modes in the same device. In order to test the power-handling capability of this device, one hundred watts of pump and signal light is launched from a tapered fusedbundle (TFB) 6+1x1 combiner into a high power-cladding stripper. In this case, the fiber used in the cladding stripper and the output fiber of the TFB was a 20/400 0.06/0.46 N.A. double clad fiber. Attenuation of over 20dB in the cladding was measured without signal loss. By spreading out the heat load generated by the unwanted light that is stripped, the package remained safely below the maximum operating temperature internally and externally. This is achieved by uniformly stripping the energy along the length of the fiber within the stripper. Different adhesive and heat sinking techniques are used to achieve this uniform removal of the light. This suggests that these cladding strippers can be used to strip hundreds of watts of light in high power fiber lasers and amplifiers.

  13. High intensity portable fluorescent light

    NASA Technical Reports Server (NTRS)

    Kendall, F. B.

    1972-01-01

    Eight high intensity portable fluorescent lights were produced. Three prototype lights were also produced, two of which were subsequently updated to the physical and operational configuration of the qualification and flight units. Positioning of lamp apertures and reflectors in these lights is such that the light is concentrated and intensified in a specific pattern rather than widely diffused. Indium amalgam control of mercury vapor pressure in the lamp gives high output at lamp ambient temperatures up to 105 C. A small amount of amalgam applied to each electrode stem helps to obtain fast warm-up. Shrinking a Teflon sleeve on the tube and potting metal caps on each end of the lamp minimizes dispersion of mercury vapor and glass particles in the event of accidental lamp breakage. Operation at 20 kHz allows the lamps to consume more power than at low frequency, thus increasing their light output and raising their efficiency. When used to expose color photographic film, light from the lamps produces results approximately equal to sunlight.

  14. High performance light emitting transistors

    NASA Astrophysics Data System (ADS)

    Namdas, Ebinazar B.; Ledochowitsch, Peter; Yuen, Jonathan D.; Moses, Daniel; Heeger, Alan J.

    2008-05-01

    Solution processed light emitting field-effect transistors (LEFETs) with peak brightness exceeding 2500cd/m2 and external quantum efficiency of 0.15% are demonstrated. The devices utilized a bilayer film comprising a hole transporting polymer, poly(2,5-bis(3-tetradecylthiophen-2-yl)thieno[3,2-b] thiophene) and a light emitting polymer, Super Yellow, a polyphenylenevinylene derivative. The LEFETs were fabricated in the bottom gate architecture with top-contact Ca /Ag as source/drain electrodes. Light emission was controlled by the gate voltage which controls the hole current. These results indicate that high brightness LEFETs can be made by using the bilayer film (hole transporting layer and a light emitting polymer).

  15. Long-duration animal tracking in difficult lighting conditions.

    PubMed

    Stern, Ulrich; Zhu, Edward Y; He, Ruo; Yang, Chung-Hui

    2015-07-01

    High-throughput analysis of animal behavior requires software to analyze videos. Such software typically depends on the experiments' being performed in good lighting conditions, but this ideal is difficult or impossible to achieve for certain classes of experiments. Here, we describe techniques that allow long-duration positional tracking in difficult lighting conditions with strong shadows or recurring "on"/"off" changes in lighting. The latter condition will likely become increasingly common, e.g., for Drosophila due to the advent of red-shifted channel rhodopsins. The techniques enabled tracking with good accuracy in three types of experiments with difficult lighting conditions in our lab. Our technique handling shadows relies on single-animal tracking and on shadows' and flies' being accurately distinguishable by distance to the center of the arena (or a similar geometric rule); the other techniques should be broadly applicable. We implemented the techniques as extensions of the widely-used tracking software Ctrax; however, they are relatively simple, not specific to Drosophila, and could be added to other trackers as well.

  16. Long-duration animal tracking in difficult lighting conditions

    NASA Astrophysics Data System (ADS)

    Stern, Ulrich; Zhu, Edward Y.; He, Ruo; Yang, Chung-Hui

    2015-07-01

    High-throughput analysis of animal behavior requires software to analyze videos. Such software typically depends on the experiments’ being performed in good lighting conditions, but this ideal is difficult or impossible to achieve for certain classes of experiments. Here, we describe techniques that allow long-duration positional tracking in difficult lighting conditions with strong shadows or recurring “on”/“off” changes in lighting. The latter condition will likely become increasingly common, e.g., for Drosophila due to the advent of red-shifted channelrhodopsins. The techniques enabled tracking with good accuracy in three types of experiments with difficult lighting conditions in our lab. Our technique handling shadows relies on single-animal tracking and on shadows’ and flies’ being accurately distinguishable by distance to the center of the arena (or a similar geometric rule); the other techniques should be broadly applicable. We implemented the techniques as extensions of the widely-used tracking software Ctrax; however, they are relatively simple, not specific to Drosophila, and could be added to other trackers as well.

  17. Long-duration animal tracking in difficult lighting conditions

    PubMed Central

    Stern, Ulrich; Zhu, Edward Y.; He, Ruo; Yang, Chung-Hui

    2015-01-01

    High-throughput analysis of animal behavior requires software to analyze videos. Such software typically depends on the experiments’ being performed in good lighting conditions, but this ideal is difficult or impossible to achieve for certain classes of experiments. Here, we describe techniques that allow long-duration positional tracking in difficult lighting conditions with strong shadows or recurring “on”/“off” changes in lighting. The latter condition will likely become increasingly common, e.g., for Drosophila due to the advent of red-shifted channelrhodopsins. The techniques enabled tracking with good accuracy in three types of experiments with difficult lighting conditions in our lab. Our technique handling shadows relies on single-animal tracking and on shadows’ and flies’ being accurately distinguishable by distance to the center of the arena (or a similar geometric rule); the other techniques should be broadly applicable. We implemented the techniques as extensions of the widely-used tracking software Ctrax; however, they are relatively simple, not specific to Drosophila, and could be added to other trackers as well. PMID:26130571

  18. Suboptimal Light Conditions Influence Source-Sink Metabolism during Flowering

    PubMed Central

    Christiaens, Annelies; De Keyser, Ellen; Pauwels, Els; De Riek, Jan; Gobin, Bruno; Van Labeke, Marie-Christine

    2016-01-01

    Reliance on carbohydrates during flower forcing was investigated in one early and one late flowering cultivar of azalea (Rhododendron simsii hybrids). Carbohydrate accumulation, invertase activity, and expression of a purported sucrose synthase gene (RsSUS) was monitored during flower forcing under suboptimal (natural) and optimal (supplemental light) light conditions, after a cold treatment (7°C + dark) to break flower bud dormancy. Post-production sucrose metabolism and flowering quality was also assessed. Glucose and fructose concentrations and invertase activity increased in petals during flowering, while sucrose decreased. In suboptimal light conditions RsSUS expression in leaves increased as compared to optimal light conditions, indicating that plants in suboptimal light conditions have a strong demand for carbohydrates. However, carbohydrates in leaves were markedly lower in suboptimal light conditions compared to optimal light conditions. This resulted in poor flowering of plants in suboptimal light conditions. Post-production flowering relied on the stored leaf carbon, which could be accumulated under optimal light conditions in the greenhouse. These results show that flower opening in azalea relies on carbohydrates imported from leaves and is source-limiting under suboptimal light conditions. PMID:26973689

  19. Strategy Guideline: High Performance Residential Lighting

    SciTech Connect

    Holton, J.

    2012-02-01

    The Strategy Guideline: High Performance Residential Lighting has been developed to provide a tool for the understanding and application of high performance lighting in the home. The high performance lighting strategies featured in this guide are drawn from recent advances in commercial lighting for application to typical spaces found in residential buildings. This guide offers strategies to greatly reduce lighting energy use through the application of high quality fluorescent and light emitting diode (LED) technologies. It is important to note that these strategies not only save energy in the home but also serve to satisfy the homeowner's expectations for high quality lighting.

  20. High Hats, Swiss Cheese, and Fluorescent Lighting?

    SciTech Connect

    McCullough, Jeffrey J.; Gordon, Kelly L.

    2002-08-30

    For DOE, PNNL is conducting a competitive procurement to promote market introduction of new residential recessed downlights (also known as ''recessed cans'' or ''high hats'') that are airtight, rated for insulated ceilings, and hard-wired for CFLs. This paper discusses the potential energy savings of new high-efficiency downlights, and the results of product testing to date. Recessed downlights are the most popular residential lighting fixtures in the United States, with 21.7 million fixtures sold in 2000. An estimated 350 million are currently installed in American homes. Recessed cans are relatively inexpensive, and provide an unobtrusive, directed source of light for kitchens, hallways, and living rooms. Recessed cans are energy-intensive in three ways. First, virtually all recessed cans currently installed in the residential sector use incandescent light sources, typically reflector-type lamps drawing 65-150 watts. Second, heat from incandescent lamps adds to air-conditioning loads. Third, most installed recessed cans are not airtight, so they allow conditioned air to escape from the living area into unconditioned spaces such as attics. Addressing both lighting energy use and air leakage in recessed cans has proven challenging. Lighting energy efficiency is greatly improved by using CFLs. Air leakage can be addressed by making fixtures airtight. But when CFLs are used in an airtight recessed can, heat generated by the lamp and ballast is trapped within the fixture. Excessive heat causes reduced light output and shorter lifespan of the CFL. The procurement was designed to overcome these technical challenges and make new products available in the marketplace.

  1. High-bay Lighting Energy Conservation Measures

    SciTech Connect

    Ian Metzger, Jesse Dean

    2010-12-31

    This software requires inputs of simple high-bay lighting system inventory information and calculates the energy and cost benefits of various retrofit opportunities. This tool includes energy conservation measures for: 1000 Watt to 750 Watt High-pressure Sodium lighting retrofit, 400 Watt to 360 Watt High Pressure Sodium lighting retrofit, High Intensity Discharge to T5 lighting retrofit, High Intensity Discharge to T8 lighting retrofit, and Daylighting. This tool calculates energy savings, demand reduction, cost savings, building life cycle costs including: simple payback, discounted payback, net-present value, and savings to investment ratio. In addition this tool also displays the environmental benefits of a project.

  2. Supervised retinal biometrics in different lighting conditions.

    PubMed

    Azemin, Mohd Zulfaezal Che; Kumar, Dinesh K; Sugavaneswaran, Lakshmi; Krishnan, Sridhar

    2011-01-01

    Retinal image has been considered for number of health and biometrics applications. However, the reliability of these has not been investigated thoroughly. The variation observed in retina scans taken at different times is attributable to differences in illumination and positioning of the camera. It causes some missing bifurcations and crossovers from the retinal vessels. Exhaustive selection of optimal parameters is needed to construct the best similarity metrics equation to overcome the incomplete landmarks. In this paper, we extracted multiple features from the retina scans and employs supervised classification to overcome the shortcomings of the current techniques. The experimental results of 60 retina scans with different lightning conditions demonstrate the efficacy of this technique. The results were compared with the existing methods.

  3. Aural-Nondetectability Model Predictions for Night-Vision Goggles across Ambient Lighting Conditions

    DTIC Science & Technology

    2015-12-01

    approximate starlight, half- moon , and room light. All of these devices operate in a linear mode under low-light conditions (no active gating to limit...mid, half- moon ; and 3) high, room light. Although the absolute luminance approximated the specified lighting conditions, the spectra from the light...Radiative addition (W/m2) Photopic only Photopic+infrared Starlight LED 3.93E-06 6.19E-08 1.23E-07 Half- Moon LED 3.40E-03 5.36E-05 2.31E-04 Room

  4. Differential regulation of two sucrose transporters by defoliation and light conditions in perennial ryegrass.

    PubMed

    Furet, Pierre-Maxime; Berthier, Alexandre; Decau, Marie-Laure; Morvan-Bertrand, Annette; Prud'homme, Marie-Pascale; Noiraud-Romy, Nathalie; Meuriot, Frédéric

    2012-12-01

    Sucrose transport between source and sink tissues is supposed to be a key-step for an efficient regrowth of perennial rye-grass after defoliation and might be altered by light conditions. We assessed the effect of different light regimes (high vs low light applied before or after defoliation) on growth, fructans and sucrose mobilization, as well as on sucrose transporter expression during 14 days of regrowth. Our results reported that defoliation led to a mobilization of C reserves (first sucrose and then fructans), which was parallel to an induction of LpSUT1 sucrose transporter expression in source and sink tissues (i.e. leaf sheaths and elongating leaf bases, respectively) irrespective to light conditions. Light regime (high or low light) had little effects on regrowth and on C reserves mobilization during the first 48 h of regrowth after defoliation. Thereafter, low light conditions, delaying the recovery of photosynthetic capacities, had a negative effect on C reserves re-accumulation (especially sucrose). Surprisingly, high light did not enhance sucrose transporter expression. Indeed, while light conditions had no effect on LpSUT1 expression, LpSUT2 transcripts levels were enhanced for low light grown plants. These results indicate that two sucrose transporter currently identified in Lolium perenne L. are differentially regulated by light and sucrose.

  5. Strategy Guideline. High Performance Residential Lighting

    SciTech Connect

    Holton, J.

    2012-02-01

    This report has been developed to provide a tool for the understanding and application of high performance lighting in the home. The strategies featured in this guide are drawn from recent advances in commercial lighting for application to typical spaces found in residential buildings. This guide offers strategies to greatly reduce lighting energy use through the application of high quality fluorescent and light emitting diode (LED) technologies. It is important to note that these strategies not only save energy in the home but also serve to satisfy the homeowner’s expectations for high quality lighting.

  6. 78 FR 27033 - Safety Zone; High Water Conditions; Illinois River

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-09

    ... SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AA00 Safety Zone; High Water Conditions; Illinois River... intended to place restrictions on vessels due to current extreme high-water conditions. This safety zone is... History and Information On April 18, 2013, in light of dangerously high water conditions, the Coast...

  7. High-resolution light microscopy of nanoforms

    NASA Astrophysics Data System (ADS)

    Vodyanoy, Vitaly; Pustovyy, Oleg; Vainrub, Arnold

    2007-09-01

    We developed a high resolution light imaging system. Diffraction gratings with 100 nm width lines as well as less than 100 nm size features of different-shaped objects are clearly visible on a calibrated microscope test slide (Vainrub et al., Optics Letters, 2006, 31, 2855). The two-point resolution increase results from a known narrowing of the central diffraction peak for the annular aperture. Better visibility and advanced contrast of the smallest features in the image are due to enhancement of high spatial frequencies in the optical transfer function. The imaging system is portable, low energy, and battery operated. It has been adapted to use in both transmitting and reflecting light. It is particularly applicable for motile nanoform systems where structure and functions can be depicted in real time. We have isolated micrometer and submicrometer particles, termed proteons, from human and animal blood. Proteons form by reversible seeded aggregation of proteins around proteon nucleating centers (PNCs). PNCs are comprised of 1-2nm metallic nanoclusters containing 40-300 atoms. Proteons are capable of spontaneous assembling into higher nanoform systems assuming structure of complicated topology. The arrangement of complex proteon system mimics the structure of a small biological cell. It has structures that imitate membrane and nucleolus or nuclei. Some of these nanoforms are motile. They interact and divide. Complex nanoform systems can spontaneously reduce to simple proteons. The physical properties of these nanoforms could shed some light on the properties of early life forms or forms at extreme conditions.

  8. Effect of lighting conditions on zebrafish growth and development.

    PubMed

    Villamizar, Natalia; Vera, Luisa María; Foulkes, Nicholas Simon; Sánchez-Vázquez, Francisco Javier

    2014-04-01

    In the underwater environment, the properties of light (intensity and spectrum) change rapidly with depth and water quality. In this article, we have described how and to what extent lighting conditions can influence the development, growth, and survival of zebrafish. Fertilized eggs and the corresponding larvae were exposed to different visible light wavelengths (violet, blue, green, yellow, red, and white) in a 12-h light-12-h dark (LD) cycle until 30 days posthatching (dph), when the expression of morphometric parameters and growth (igf1a, igf2a)- and stress-related (crh and pomca) genes were examined. Another group of larvae was raised under constant darkness (DD) until 5 or 10 dph, after which they were transferred to a LD of white light. A third group remained under DD to investigate the effects of light deprivation upon zebrafish development. The results revealed that the hatching rate was highest under blue and violet light, while total length at 30 dph was greatest under blue, white, and violet light. Red light led to reduced feeding activity and poor survival (100% mortality). Larvae raised under constant white light (LL) showed a higher proportion of malformations, as did larvae raised under LD violet light. The expression of growth and stress factors was upregulated in the violet (igf1a, igf2a, pomca, and chr) and blue (igf2a) groups, which is consistent with the higher growth recorded and the higher proportion of malformations detected under the violet light. All larvae kept under DD died before 18 dph, but the survival rates improved in larvae transferred to LD at 5 dph and at 10 dph. In summary, these findings revealed that lighting conditions are crucial factors influencing zebrafish larval development and growth.

  9. Light conditions affect the roll-induced vestibuloocular reflex in Xenopus laevis tadpoles

    NASA Astrophysics Data System (ADS)

    El-Yamany, Nabil A.

    2008-12-01

    In Xenopus laevis tadpoles, effects of asymmetrical light conditions on the roll-induced vestibuloocular reflex (rVOR) were tested for the developmental period between stage 47 and 49. For comparison, the rVOR was tested in dim- and high-symmetrical light environments. Test parameters were the rVOR gain and rVOR amplitude. Under all light conditions, the rVOR increased from tadpole stage 47 to 49. For all stages, the asymmetrical light field induced the strongest response, the dim light field the weakest one. The response for the left and right eye was identical, even if the tadpoles were tested under asymmetrical light conditions. The experiments can be considered as hints (1) for an age-dependent light sensitivity of vestibular neurons, and (2) for the existence of control systems for coordinated eye movements that has its origin in the proprioceptors of the extraocular eye muscles.

  10. Disposable indicators for monitoring lighting conditions in museums.

    PubMed

    Bacci, Mauro; Cucci, Costanza; Dupont, Anne-Laurence; Lavédrine, Bertrand; Picollo, Marcello; Porcinai, Simone

    2003-12-15

    Photoinduced alterations of light-sensitive artifacts represent one of the main problems that conservators and curators have to face for environmental control in museums and galleries. Therefore, increasing attention has been recently devoted to developing strategies of indoor light monitoring, especially aimed at minimizing the cumulated light exposure for the objects on exhibit. In this work a prototype of a light dosimeter, constituted by a photosensitive dyes/polymer mixture applied on a paper substrate, is presented. This indicator, specially designed for a preventive assessment of the risk of damage for highly light-sensitive objects, undergoes a progressive color variation as its exposure to the light increases. Different, easily distinguishable color steps are exhibited depending on the light dose received, so that the dosimeter can be used straightforwardly to have a first, instrumentation-free estimation of the total light exposure. A reflectance spectroscopy study in the 350-860 nm range was carried out on prototype dosimeters exposed to light emitted from a tungsten-halogen lamp to investigate the response of the dosimeter to the light and to study the fading mechanism. Two different approaches were evaluated for the calibration of the prototype: colorimetry and principal component analysis of the reflectance spectra. The usefulness of the two methods in providing a quantitative indication of the light dose received was evaluated.

  11. Transitioning to Low-GWP Alternatives in Residential and Light Commercial Air Conditioning

    EPA Pesticide Factsheets

    This fact sheet provides current information on low global warming potential (GWP) alternatives for new equipment in residential and light commercial air conditioning (AC), in lieu of high-GWP hydrofluorocarbons (HFCs).

  12. [Comparison of light response models of photosynthesis in Nelumbo nucifera leaves under different light conditions].

    PubMed

    Leng, Han-Bing; Qin, Jun; Ye, King; Feng, Shu-Cheng; Gao, Kai

    2014-10-01

    The light responses of Nelumbo nucifera 'Boli Furen', a local N. nucifera species was investigated under full light and 50% shading conditions in Shanghai. The net photosynthetic rate-light response curves of N. nucifera leaves were fitted and analyzed through four light response models to identify the best-fit models of different light conditions and explore the adaptability of N. nucifera to shading environment. The results showed that the sequence of fitting effect of the four light response models was in descending order of modified rectangular hyperbola model > exponential model > non-rectangular hyperbola model > rectangular hyperbola model. The latter three models had no extreme values, and could not directly and accurately provide values of light saturation point (LSP) and maximum net photosynthetic rate (Pn max). In contrast, the modified rectangular hyperbola model showed the best fit for LSP, Pn max, dark respiration rate (Rd) and LCP resulting in the minimum relative errors between the measured and fitted values. Light response parameters of N. nucifera declined with the decreasing light. There were no significant differences between full light and shade treatments except for Rd. It was indicated that N. nucifera had good photosynthetic adaptive response and adjustment to weak light to maintain normal growth.

  13. Boundary conditions on faster-than-light transportation systems

    NASA Technical Reports Server (NTRS)

    Bennett, Gary L.; Knowles, H. B.

    1993-01-01

    In order to be consistent with current physical theories, any proposal of a faster-than light (FTL) transportation system must satisfy several critical conditions. It must predict the mass, space, and time dimensional changes predicted by relativity physics when velocity falls below the speed of light. It must also not violate causality, and remain consistent with quantum physics in the limit of microscopic systems. It is also essential that the proposal conserve energy.

  14. Exposure to high- and low-light conditions in an open-field test of anxiety increases c-Fos expression in specific subdivisions of the rat basolateral amygdaloid complex.

    PubMed

    Hale, Matthew W; Bouwknecht, J Adriaan; Spiga, Francesca; Shekhar, Anantha; Lowry, Christopher A

    2006-12-11

    Anxiety states and anxiety-related behaviors appear to be regulated by a distributed and highly interconnected system of forebrain structures including the basolateral amygdaloid complex (basolateral amygdala). Despite a wealth of research examining the role of the basolateral amygdala in anxiety-related behaviors and anxiety states, the specific subdivisions of the basolateral amygdala that are involved in responses to anxiogenic stimuli have not been examined. In this study, we investigated the effects of exposure to a novel open-field environment, with either low- or high-levels of illumination, on expression of the protein product of the immediate-early gene c-Fos in subdivisions of the rat basolateral amygdala. The subdivisions studied included the lateral, ventrolateral and ventromedial parts of the lateral amygdaloid nucleus, the anterior, posterior and ventral parts of the basolateral amygdaloid nucleus and the anterior and posterior part of the basomedial amygdaloid nucleus. Small increases in the number of c-Fos-immunoreactive cells were observed in several, but not all, of the subdivisions of the basolateral amygdala studied following exposure of rats to either the high- or low-light conditions, compared to home cage or handled control groups. Open-field exposure in both the high- and low-light conditions resulted in a marked increase in c-Fos expression in the anterior part of the basolateral amygdaloid nucleus compared to either home cage or handled control groups. These findings point toward anatomical and functional heterogeneity within the basolateral amygdaloid complex and an important role of the anterior part of the basolateral amygdaloid nucleus in the neural mechanisms underlying physiological or behavioral responses to this anxiety-related stimulus.

  15. Gene expression by Onoclea Sensibilis gametophytes under different light conditions

    SciTech Connect

    Chansa-ngavej, K.; Raghavan, V.

    1987-04-01

    Gametophytes of the fern Onoclea sensibilis grow as filaments in red light or in complete darkness by divisions perpendicular to the long axis of the cell. When transferred to blue light the gametophytes exhibit a plate-like structure as a result of both transverse and longitudinal cell divisions. Both 1-D and 2-D SDS-polyacrylamide gel electrophoresis revealed quantitative and qualitative differences in the polypeptide patterns of the gametophytes grown in red and blue light regimes and in complete darkness. NAD/sup +/-Glyceraldehyde-3-phosphate dehydrogenase activity was found to increase sharply within 4 hours of transfer of the gametophytes from red light to blue light and to complete darkness. /sup 3/H-Leucine was incorporated at a higher rate into proteins of gametophytes after 2 hours of transfer from red light to blue light and to complete darkness. These results seem to indicate possible involvement of differential protein synthesis and hence differential gene expression during growth of gametophytes under different light conditions.

  16. High-fidelity teleportation between light and atoms

    SciTech Connect

    Hammerer, K.; Polzik, E. S.; Cirac, J. I.

    2006-12-15

    We show how high-fidelity quantum teleportation of light to atoms can be achieved in the same setup as was used in the recent experiment [J. Sherson et al., Nature 443, 557, 2006], where such an interspecies quantum state transfer was demonstrated for the first time. Our improved protocol takes advantage of the rich multimode entangled structure of the state of atoms and scattered light and requires simple postprocessing of homodyne detection signals and squeezed light in order to achieve fidelities up to 90% (85%) for teleportation of coherent (qubit) states under realistic experimental conditions. The remaining limitation is due to atomic decoherence and light losses.

  17. Efficient color face detection algorithm under different lighting conditions

    NASA Astrophysics Data System (ADS)

    Chow, Tze-Yin; Lam, Kin-Man; Wong, Kwok-Wai

    2006-01-01

    We present an efficient and reliable algorithm to detect human faces in an image under different lighting conditions. In our algorithm, skin-colored pixels are identified using a region-based approach, which can provide more reliable skin color segmentation under various lighting conditions. In addition, to compensate for extreme lighting conditions, a color compensation scheme is proposed, and the distributions of the skin-color components under various illuminations are modeled by means of the maximum-likelihood method. With the skin-color regions detected, a ratio method is proposed to determine the possible positions of the eyes in the image. Two eye candidates form a possible face region, which is then verified as a face or not by means of a two-stage procedure with an eigenmask. Finally, the face boundary region of a face candidate is further verified by a probabilistic approach to reduce the chance of false alarms. Experimental results based on the HHI MPEG-7 face database, the AR face database, and the CMU pose, illumination, and expression (PIE) database show that this face detection algorithm is efficient and reliable under different lighting conditions and facial expressions.

  18. Acclimation strategy of Rhodopseudomonas palustris to high light irradiance.

    PubMed

    Muzziotti, Dayana; Adessi, Alessandra; Faraloni, Cecilia; Torzillo, Giuseppe; De Philippis, Roberto

    2017-04-01

    The ability of Rhodopseudomonas palustris cells to rapidly acclimate to high light irradiance is an essential issue when cells are grown under sunlight. The aim of this study was to investigate the photo-acclimation process in Rhodopseudomonas palustris 42OL under different culturing conditions: (i) anaerobic (AnG), (ii) aerobic (AG), and (iii) under H2-producing (HP) conditions both at low (LL) and high light (HL) irradiances. The results obtained clearly showed that the photosynthetic unit was significantly affected by the light irradiance at which Rp. palustris 42OL was grown. The synthesis of carotenoids was affected by both illumination and culturing conditions. At LL, lycopene was the main carotenoid synthetized under all conditions tested, while at HL under HP conditions, it resulted the predominant carotenoid. Oppositely, under AnG and AG at HL, rhodovibrin was the major carotenoid detected. The increase in light intensity produced a deeper variation in light-harvesting complexes (LHC) ratio. These findings are important for understanding the ecological distribution of PNSB in natural environments, mostly characterized by high light intensities, and for its growth outdoors.

  19. Lighting conditions affect testosterone feedback sensitivity in castrated rats.

    PubMed

    Porkka-Heiskanen, T; Laakso, M L; Stenberg, D; Johansson, G; Peder, M

    1989-01-01

    It has been shown in the Syrian hamster that a short photoperiod sensitizes the hypothalamo-hypophyseal axis of castrated animals to the negative feedback effect of testosterone. There is some evidence that even the reproductive system of the rat, which is generally considered not to be very sensitive to light, can respond to changes in illumination. Therefore, we found it of interest to examine whether alterations in lighting conditions produce changes of sensitivity in the negative feedback effect of testosterone in the rat. We kept intact, castrated, and castrated testosterone-treated animals either in periodic (L:D 12:12) or constant light for 7 days starting 4 weeks after castration. In all 3 testosterone-injected groups, serum luteinizing hormone (LH) was lower in constant than in periodic light. Exogenous testosterone did not decrease the castration-induced elevations of pituitary LH and follicle-stimulating hormone (FSH). On the contrary, testosterone increased the pituitary contents of LH and FSH, especially in constant light. We conclude that, in constant light, the hypothalamo-hypophyseal axis of the castrated rat becomes more sensitive to the negative feedback action of testosterone.

  20. Supplementary artificial light to increase egg production of geese under natural lighting conditions.

    PubMed

    Wang, Chin-Meng; Chen, Lih-Ren; Lee, Shuen-Rong; Jea, Yu-Shine; Kao, Jung-Yie

    2009-07-01

    A new supplementary lighting program was designed to increase the egg production of geese under natural light conditions. The objective of this study was to evaluate the effects of the supplementary lighting program on egg production of White Roman geese in an open housing system at the Tropic of Cancer. Forty mature White Roman geese were randomly allocated into two groups (male:female=1:4). The supplementary lighting program with a total daily photoperiod of between 12.0 h and 13.5 h was initiated on 1 November and withdrawn from the experimental group on 30 January. In contrast, the geese in the control group were kept under natural lighting conditions throughout this study. The results showed that the laying peak of the experimental group occurred earlier than normal in the reproductive season and the geese continued laying throughout the breeding season. The geese in the experimental group had 47.6 eggs/goose which was significantly (P<0.05) more than that of the control group having 26.4 eggs/goose. We can conclude that the supplemental lighting method will result in an earlier laying peak of the geese in the breeding season and higher egg production. The supplementary lighting program was able to maximize egg production in geese at the Tropic of Cancer.

  1. Biodegradation of a Light NAPL under Varying Soil Environmental Conditions

    NASA Astrophysics Data System (ADS)

    Yadav, B. K.; Hassanizadeh, S. M.; Kleingeld, P. J.

    2009-12-01

    To see the impact of different soil environmental conditions on LNAPL biodegradation, a series of batch, microcosm, column and 2-D tank experiments under controlled conditions have been planned. Microcosms along with batch experiments have been designed for five different moisture contents ranging from residual to saturated, and under varying temperature condition. The batches are being used for two saturated soils containing toluene. For the unsaturated cases, fifteen microcosms are designed to mimic natural conditions more closely. The microcosms consist of a transparent outer column and an air permeable, but watertight, inner tube comprised of toluene phobic material. The space between the outer column and the inner porous tube is filled with a soil having a particular moisture content with a known amount of toluene. The inner porous tube is filled with air at atmospheric pressure, providing sufficient oxygen for the degradation of considered light NAPL. A special sampling mechanism has been fabricated to enable airtight soil sampling. Four columns have been designed for studying the impact of water table fluctuation on the LNAPL fate and transport in variably-saturated soil. Water table in two columns will be static and remaining two will be subjected to a fluctuation. Finally a 2-D tank setup, made of a steel box and a glass cover, has been refurbished for bioremediation process of LNAPL from start to finish. The main body is constructed of one piece of 1.5 mm thick stainless steel formed into a box with inner dimensions of 200cm-long x 94cm-high x 4cm-deep. The front cover is made of glass wall having 19-mm thickness. The soil is going to be packed between the two walls. The groundwater will be flowing horizontally from left to right and the water table level in the tank will be controlled by two end chambers. The chambers are separated from the soil by a fine meshed stainless steel sheet. The spatial and the temporal distributions of the LNAPL and its

  2. High-aperture cryogenic light microscopy.

    PubMed

    Le Gros, M A; McDermott, G; Uchida, M; Knoechel, C G; Larabell, C A

    2009-07-01

    We report here the development of instruments and protocols for carrying out high numerical aperture immersion light microscopy on cryogenic specimens. Imaging by this modality greatly increases the lifetimes of fluorescence probes, including those commonly used for protein localization studies, while retaining the ability to image the specimen with high fidelity and spatial resolution. The novel use of a cryogenic immersion fluid also minimizes the refractive index mismatch between the sample and lens, leading to a more efficient coupling of the light from the sample to the image forming system. This enhancement is applicable to both fluorescence and transmitted light microscopy techniques. The design concepts used for the cryogenic microscope can be applied to virtually any existing light-based microscopy technique. This prospect is particularly exciting in the context of 'super-resolution' techniques, where enhanced fluorescence lifetime probes are especially useful. Thus, using this new modality it is now possible to observe dynamic events in a live cell, and then rapidly vitrify the specimen at a specific time point prior to carrying out high-resolution imaging. The techniques described can be used in conjunction with other imaging modalities in correlated studies. We have also developed instrumentation to perform cryo-light imaging together with soft X-ray tomography on the same cryo-fixed specimen as a means of carrying out high content, quantifiable correlated imaging analyses. These methods are equally applicable to correlated light and electron microscopy of frozen biological objects.

  3. High Pressure Microwave Powered UV Light Sources

    NASA Astrophysics Data System (ADS)

    Cekic, M.; Frank, J. D.; Popovic, S.; Wood, C. H.

    1997-10-01

    Industrial microwave powered (*electrodeless*) light sources have been limited to quiescent pressures of 300 Torr of buffer gas and metal- halide fills. Recently developed multi-atmospheric electronegative bu lb fills (noble gas-halide excimers, metal halide) require electric field s for ionization that are often large multiples of the breakdown voltage for air. For these fills an auxiliary ignition system is necessary. The most successful scheme utilizes a high voltage pulse power supply and a novel field emission source. Acting together they create localized condition of pressure reduction and high free electron density. This allows the normal microwave fields to drive this small region into avalanche, ignite the bulb, and heat the plasma to it's operating poin t Standard diagnostic techniques of high density discharges are inapplicable to the excimer bulbs, because of the ionic molecular exci ted state structure and absence of self-absorption. The method for temperature determination is based on the equilibrium population of certain vibrational levels of excimer ionic excited states. Electron d ensity was determined from the measurements of Stark profiles of H_β radiation from a small amount of hydrogen mixed with noble gas and halogens. At the present time, high pressure (Te 0.5eV, ne 3 x 10^17 cm-3) production bulbs produce over 900W of radiation in a 30nm band, centered at 30nm. Similarly, these prototypes when loaded with metal-halide bulb fills produce 1 kW of radiation in 30nm wide bands, centered about the wavelength of interest.

  4. Photoacclimation supports environmental tolerance of a sponge to turbid low-light conditions

    NASA Astrophysics Data System (ADS)

    Biggerstaff, A.; Smith, D. J.; Jompa, J.; Bell, J. J.

    2015-12-01

    Changes to coral reefs are occurring worldwide, often resulting in declining environmental quality which can be in the form of higher sedimentation rates and increased turbidity. While environmental acclimation to turbid and low-light conditions has been extensively studied in corals, far less is known about other phototrophic reef invertebrates. The photosynthetic cyanobacteria containing sponge Lamellodysidea herbacea is one of the most abundant sponges in the Wakatobi Marine National Park (WMNP, Indonesia), and its abundance is greatest at highly disturbed, turbid sites. This study investigated photoacclimation of L. herbacea symbionts to turbid reef sites using in situ PAM fluorometry combined with shading and transplant experiments at environmental extremes of light availability for this species. We found in situ photoacclimation of L. herbacea to both shallow, clear, high-light environments and deep, turbid, low-light environments. Shading experiments provide some evidence that L. herbacea are dependent on nutrition from their photosymbionts as significant tissue loss was seen in shaded sponges. Symbionts within surviving shaded tissue showed evidence of photoacclimation. Lamellodysidea herbacea transplanted from high- to low-light conditions appeared to have photoacclimated within 5 d with no significant effect of the lowered light level on survival. This ability of L. herbacea to photoacclimate to rapid and extreme changes in light availability may be one of the factors contributing to their survival on more turbid reef sites in the WMNP. Our study highlights the ability of some sponge species to acclimate to changes in light levels as a result of increased turbidity.

  5. Identification of traffic accident risk-prone areas under low lighting conditions

    NASA Astrophysics Data System (ADS)

    Ivan, K.; Haidu, I.; Benedek, J.; Ciobanu, S. M.

    2015-02-01

    Besides other non-behavioural factors, the low lighting conditions significantly influence the frequency of the traffic accidents in the urban environment. This paper intends to identify the impact of low lighting conditions on the traffic accidents in the city of Cluj-Napoca. The dependence degree between lighting and the number of traffic accidents was analyzed by the Pearson's correlation and the relation between the spatial distribution of traffic accidents and the lighting conditions was determined by the frequency ratio model. The vulnerable areas within the city were identified based on the calculation of the injured persons rate for the 0.5 km2 equally-sized areas uniformly distributed within the study area. The results have shown a strong linear dependence between the low lighting conditions and the number of traffic accidents in terms of three seasonal variations and a high probability of traffic accidents occurrence under the above-mentioned conditions, at the city entrances-exits, which represent also vulnerable areas within the study area. Knowing the linear dependence and the spatial relation between the low lighting and the number of traffic accidents, as well as the consequences induced by their occurrence enabled us to identify the high traffic accident risk areas in the city of Cluj-Napoca.

  6. Muscular pre-conditioning using light-emitting diode therapy (LEDT) for high-intensity exercise: a randomized double-blind placebo-controlled trial with a single elite runner.

    PubMed

    Ferraresi, Cleber; Beltrame, Thomas; Fabrizzi, Fernando; do Nascimento, Eduardo Sanches Pereira; Karsten, Marlus; Francisco, Cristina de Oliveira; Borghi-Silva, Audrey; Catai, Aparecida Maria; Cardoso, Daniel Rodrigues; Ferreira, Antonio Gilberto; Hamblin, Michael R; Bagnato, Vanderlei Salvador; Parizotto, Nivaldo Antonio

    2015-07-01

    Recently, low-level laser (light) therapy (LLLT) has been used to improve muscle performance. This study aimed to evaluate the effectiveness of near-infrared light-emitting diode therapy (LEDT) and its mechanisms of action to improve muscle performance in an elite athlete. The kinetics of oxygen uptake (VO2), blood and urine markers of muscle damage (creatine kinase--CK and alanine), and fatigue (lactate) were analyzed. Additionally, some metabolic parameters were assessed in urine using proton nuclear magnetic resonance spectroscopy ((1)H NMR). A LED cluster with 50 LEDs (λ = 850 nm; 50 mW 15 s; 37.5 J) was applied on legs, arms and trunk muscles of a single runner athlete 5 min before a high-intense constant workload running exercise on treadmill. The athlete received either Placebo-1-LEDT; Placebo-2-LEDT; or Effective-LEDT in a randomized double-blind placebo-controlled trial with washout period of 7 d between each test. LEDT improved the speed of the muscular VO2 adaptation (∼-9 s), decreased O2 deficit (∼-10 L), increased the VO2 from the slow component phase (∼+348 ml min(-1)), and increased the time limit of exercise (∼+589 s). LEDT decreased blood and urine markers of muscle damage and fatigue (CK, alanine and lactate levels). The results suggest that a muscular pre-conditioning regimen using LEDT before intense exercises could modulate metabolic and renal function to achieve better performance.

  7. High Intensity Organic Light-emitting Diodes

    NASA Astrophysics Data System (ADS)

    Qi, Xiangfei

    This thesis is dedicated to the fabrication, modeling, and characterization to achieve high efficiency organic light-emitting diodes (OLEDs) for illumination applications. Compared to conventional lighting sources, OLEDs enabled the direct conversion of electrical energy into light emission and have intrigued the world's lighting designers with the long-lasting, highly efficient illumination. We begin with a brief overview of organic technology, from basic organic semiconductor physics, to its application in optoelectronics, i.e. light-emitting diodes, photovoltaics, photodetectors and thin-film transistors. Due to the importance of phosphorescent materials, we will focus on the photophysics of metal complexes that is central to high efficiency OLED technology, followed by a transient study to examine the radiative decay dynamics in a series of phosphorescent platinum binuclear complexes. The major theme of this thesis is the design and optimization of a novel architecture where individual red, green and blue phosphorescent OLEDs are vertically stacked and electrically interconnected by the compound charge generation layers. We modeled carrier generation from the metal-oxide/doped organic interface based on a thermally assisted tunneling mechanism. The model provides insights to the optimization of a stacked OLED from both electrical and optical point of view. To realize the high intensity white lighting source, the efficient removal of heat is of a particular concern, especially in large-area devices. A fundamental transfer matrix analysis is introduced to predict the thermal properties in the devices. The analysis employs Laplace transforms to determine the response of the system to the combined effects of conduction, convection, and radiation. This perspective of constructing transmission matrices greatly facilitates the calculation of transient coupled heat transfer in a general multi-layer composite. It converts differential equations to algebraic forms, and

  8. Color snakes for dynamic lighting conditions on mobile manipulation platforms.

    SciTech Connect

    Schaub, Hanspeter; Smith, Christopher Elmer (University of New Mexico, Albuquerque, NM)

    2003-03-01

    Statistical active contour models (aka statistical pressure snakes) have attractive properties for use in mobile manipulation platforms as both a method for use in visual servoing and as a natural component of a human-computer interface. Unfortunately, the constantly changing illumination expected in outdoor environments presents problems for statistical pressure snakes and for their image gradient-based predecessors. This paper introduces a new color-based variant of statistical pressure snakes that gives superior performance under dynamic lighting conditions and improves upon the previously published results of attempts to incorporate color imagery into active deformable models.

  9. High Energy Efficiency Air Conditioning

    SciTech Connect

    Edward McCullough; Patrick Dhooge; Jonathan Nimitz

    2003-12-31

    This project determined the performance of a new high efficiency refrigerant, Ikon B, in a residential air conditioner designed to use R-22. The refrigerant R-22, used in residential and small commercial air conditioners, is being phased out of production in developed countries beginning this year because of concerns regarding its ozone depletion potential. Although a replacement refrigerant, R-410A, is available, it operates at much higher pressure than R-22 and requires new equipment. R-22 air conditioners will continue to be in use for many years to come. Air conditioning is a large part of expensive summer peak power use in many parts of the U.S. Previous testing and computer simulations of Ikon B indicated that it would have 20 - 25% higher coefficient of performance (COP, the amount of cooling obtained per energy used) than R-22 in an air-cooled air conditioner. In this project, a typical new R-22 residential air conditioner was obtained, installed in a large environmental chamber, instrumented, and run both with its original charge of R-22 and then with Ikon B. In the environmental chamber, controlled temperature and humidity could be maintained to obtain repeatable and comparable energy use results. Tests with Ikon B included runs with and without a power controller, and an extended run for several months with subsequent analyses to check compatibility of Ikon B with the air conditioner materials and lubricant. Baseline energy use of the air conditioner with its original R-22 charge was measured at 90 deg F and 100 deg F. After changeover to Ikon B and a larger expansion orifice, energy use was measured at 90 deg F and 100 deg F. Ikon B proved to have about 19% higher COP at 90 deg F and about 26% higher COP at 100 deg F versus R-22. Ikon B had about 20% lower cooling capacity at 90 deg F and about 17% lower cooling capacity at 100 deg F versus R-22 in this system. All results over multiple runs were within 1% relative standard deviation (RSD). All of these

  10. Rapidly pulsed, high intensity, incoherent light source

    NASA Technical Reports Server (NTRS)

    Evans, J. C., Jr.; Brandhorst, H. W., Jr. (Inventor)

    1974-01-01

    A rapid pulsing, high intensity, incoherent light is produced by selectively energizing a plurality of discharge lamps with a triggering circuit. Each lamp is connected to a capacitor, and a power supply is electrically connected to all but one of the capacitors. This last named capacitor is electrically connected to a discharge lamp which is connected to the triggering circuit.

  11. Melatonin administration modifies circadian motor activity under constant light depending on the lighting conditions during suckling.

    PubMed

    Carpentieri, Agata R; Oliva, Clara; Díez-Noguera, Antoni; Cambras, Trinitat

    2015-01-01

    Early lighting conditions have been described to produce long-term effects on circadian behavior, which may also influence the response to agents acting on the circadian system. It has been suggested that melatonin (MEL) may act on the circadian pacemaker and as a scavenger of reactive oxygen and nitrogen species. Here, we studied the oxidative and behavioral changes caused by prolonged exposure to constant light (LL) in groups of rats that differed in MEL administration and in lighting conditions during suckling. The rats were exposed to either a light-dark cycle (LD) or LL. At 40 days old, rats were treated for 2 weeks with a daily subcutaneous injection of MEL (10 mg/kg body weight) or a vehicle at activity onset. Blood samples were taken before and after treatment, to determine catalase (CAT) activity and nitrite level in plasma. As expected, LL-reared rats showed a more stable motor activity circadian rhythm than LD rats. MEL treatment produced more reactivity in LD- than in LL rats, and was also able to alter the phase of the rhythm in LD rats. There were no significant differences in nitrite levels or CAT activity between the groups, although both variables increased with time. Finally, we also tested depressive signs by means of sucrose consumption, and anhedonia was found in LD males treated with MEL. The results suggest that the lighting conditions in early infancy are important for the long-term functionality of the circadian system, including rhythm manifestation, responses to MEL and mood alterations.

  12. Control of Laser High-Harmonic Generation with Counterpropagating Light

    NASA Astrophysics Data System (ADS)

    Voronov, S. L.; Kohl, I.; Madsen, J. B.; Simmons, J.; Terry, N.; Titensor, J.; Wang, Q.; Peatross, J.

    2001-09-01

    Relatively weak counterpropagating light is shown to disrupt the emission of laser high-harmonic generation. Harmonic orders ranging from the teens to the low thirties produced by a 30-femtosecond pulse in a narrow argon jet are ``shut down'' with a contrast as high as 2 orders of magnitude by a chirped 1-picosecond counterpropagating laser pulse (60 times less intense). Alternatively, under poor phase-matching conditions, the counterpropagating light boosts harmonic production by similar contrast through quasiphase matching where out-of-phase emission is suppressed.

  13. HPLC analysis of ballpoint pen inks stored at different light conditions.

    PubMed

    Andrasko, J

    2001-01-01

    A method for comparison of ink entries on documents stored in different light conditions is presented. Various blue inks were exposed to light, both daylight and artificial light from fluorescent tubes. Inks were then extracted from the document and analyzed by HPLC (high performance liquid chromatography). Significant changes in composition were noted on exposure to light. These changes were followed by using ternary diagrams constructed for dyes generally present in blue-colored inks--Crystal Violet, Methyl Violet, and Tetramethyl Para Rosaniline. Also, the amount of the various compounds formed by decomposition of these dyes on exposure to light was measured and employed for comparison of inks. An example of the use of the proposed method in casework is given.

  14. High-definition imaging system based on spatial light modulators with light-scattering mode.

    PubMed

    Kikuchi, Hiroshi; Fujii, Takanori; Kawakita, Masahiro; Hirano, Yoshiyuki; Fujikake, Hideo; Sato, Fumio; Takizawa, Kuniharu

    2004-01-01

    We have developed a prototype high-definition imaging system using polymer-dispersed liquid-crystal (PDLC) light valves, which can modulate unpolarized light with high spatial resolution and exhibit a high optical efficiency, based on the light-scattering effect. We fabricated high-definition light valves with a fine polymer-matrix structure in a PDLC film by controlling the curing conditions used during the photopolymerization-induced phase separation and formation process. This device has excellent characteristics, such as a high resolution, with 50 lp/mm for a limiting resolution and greater than 20 lp/mm at the 50% modulation transfer function point, and a reflectivity of greater than 60%. An optically addressable full-color projection display was designed, consisting of three PDLC light valves, a schlieren optical system based on shift-decentralization optics with a xenon lamp illumination and input-image sources with 1.5 million pixels, including electrical image compensation of the gamma characteristics. We succeeded in displaying pictures on a 110-inch screen with a resolution of 810 TV lines and a luminous flux of 1900-2100 American National Standards Institute lumens.

  15. Blue light is essential for high light acclimation and photoprotection in the diatom Phaeodactylum tricornutum

    PubMed Central

    Wilhelm, Christian

    2013-01-01

    The objective of the present study was to test the hypothesis that the acclimation to different light intensities in the diatom Phaeodactylum tricornutum is controlled by light quality perception mechanisms. Therefore, semi-continuous cultures of P. tricornutum were illuminated with equal amounts of photosynthetically absorbed radiation of blue (BL), white (WL), and red light (RL) and in combination of two intensities of irradiance, low (LL) and medium light (ML). Under LL conditions, growth rates and photosynthesis rates were similar for all cultures. However, BL cultures were found to be in an acclimation state with an increased photoprotective potential. This was deduced from an increased capacity of non-photochemical quenching, a larger pool of xanthophyll cycle pigments, and a higher de-epoxidation state of xanthophyll cycle pigments compared to WL and RL cultures. Furthermore, in the chloroplast membrane proteome of BL cells, an upregulation of proteins involved in photoprotection, e.g. the Lhcx1 protein and zeaxanthin epoxidase, was evident. ML conditions induced increased photosynthesis rates and a further enhanced photoprotective potential for algae grown under BL and WL. In contrast, RL cultures exhibited no signs of acclimation towards increased irradiance. The data implicate that in diatoms the photoacclimation to high light intensities requires the perception of blue light. PMID:23183259

  16. Neuroleptics under high risk conditions.

    PubMed

    Oyewumi, L K

    1983-08-01

    A critical review of various high risk situations in which neuroleptics could be used and have been used in clinical practice is presented. These high risk situations include: women of child bearing age (pregnant women, lactating and/or nursing mothers), the two extremes of life (children and the elderly), patients with sexual dysfunction, patients with tardive dyskinesia, non-psychotic psychiatric patients, physically ill and suicidal patients. The extraordinary applications of these drugs, such as for rapid tranquilization and megadose regimens are examined. The author provides guidelines for the use of neuroleptics in these clinical situations.

  17. Circadian Oscillation of the Lettuce Transcriptome under Constant Light and Light-Dark Conditions.

    PubMed

    Higashi, Takanobu; Aoki, Koh; Nagano, Atsushi J; Honjo, Mie N; Fukuda, Hirokazu

    2016-01-01

    Although, the circadian clock is a universal biological system in plants and it orchestrates important role of plant production such as photosynthesis, floral induction and growth, there are few such studies on cultivated species. Lettuce is one major cultivated species for both open culture and plant factories and there is little information concerning its circadian clock system. In addition, most of the relevant genes have not been identified. In this study, we detected circadian oscillation in the lettuce transcriptome using time-course RNA sequencing (RNA-Seq) data. Constant light (LL) and light-dark (LD) conditions were used to detect circadian oscillation because the circadian clock has some basic properties: one is self-sustaining oscillation under constant light and another is entrainment to environmental cycles such as light and temperature. In the results, 215 contigs were detected as common oscillating contigs under both LL and LD conditions. The 215 common oscillating contigs included clock gene-like contigs CCA1 (CIRCADIAN CLOCK ASSOCIATED 1)-like, TOC1 (TIMING OF CAB EXPRESSION 1)-like and LHY (LATE ELONGATED HYPOCOTYL)-like, and their expression patterns were similar to those of Arabidopsis. Functional enrichment analysis by GO (gene ontology) Slim and GO Fat showed that the GO terms of response to light stimulus, response to stress, photosynthesis and circadian rhythms were enriched in the 215 common oscillating contigs and these terms were actually regulated by circadian clocks in plants. The 215 common oscillating contigs can be used to evaluate whether the gene expression pattern related to photosynthesis and optical response performs normally in lettuce.

  18. High-intensity sources for light ions

    SciTech Connect

    Leung, K.N.

    1995-10-01

    The use of the multicusp plasma generator as a source of light ions is described. By employing radio-frequency induction discharge, the performance of the multicusp source is greatly improved, both in lifetime and in high brightness H{sup +} and H{sup {minus}} beam production. A new technique for generating multiply-charged ions in this type of ion source is also presented.

  19. [Effects of light condition on structure and photosynthetic characteristics of leaves in 'Hanfu' apple].

    PubMed

    Ma, Hui-Li; Lu, De-Guo

    2014-07-01

    By using microscope technique and gas exchange method, the effects of light conditions on structure and photosynthetic characteristics of the leaves were studied with potted and fielded 'Hanfu' apple as materials. The results showed that the palisade tissue, spongy tissue and the total leaf thickness of 'Hanfu' apple was declined under the weak light environment, the palisade tissue were declined by 34.5% (pot) and 25.0% (field), and the total leaf thickness were declined by 27.1% (pot) and 18.3% (field). The light compensation point (LCP) of the field shading leaves was lowest (30.8 +/- 1.3 micromol x m(-2) x s(-1)), the saturation point (LSP) in full light was 22.7% (pot) and 48.2% (field) higher than in shading, respectively. The adaptability of the potted 'Hanfu' apple leaves built under different light conditions had different resistivity after exposing to high light, the startup time of maximum photosynthetic rates (15.4 micromol x m(-2) x s(-1) in full light and 12.7 micromol x m(-2) x s(-1) in shading) were different, which was 23 min and 33 min, respectively. Long-time shading impacted on the quality and photosynthetic capacity of 'Hanfu' apple leaves.

  20. High Quantum Efficiency OLED Lighting Systems

    SciTech Connect

    Shiang, Joseph

    2011-09-30

    The overall goal of the program was to apply improvements in light outcoupling technology to a practical large area plastic luminaire, and thus enable the product vision of an extremely thin form factor high efficiency large area light source. The target substrate was plastic and the baseline device was operating at 35 LPW at the start of the program. The target LPW of the program was a >2x improvement in the LPW efficacy and the overall amount of light to be delivered was relatively high 900 lumens. Despite the extremely difficult challenges associated with scaling up a wet solution process on plastic substrates, the program was able to make substantial progress. A small molecule wet solution process was successfully implemented on plastic substrates with almost no loss in efficiency in transitioning from the laboratory scale glass to large area plastic substrates. By transitioning to a small molecule based process, the LPW entitlement increased from 35 LPW to 60 LPW. A further 10% improvement in outcoupling efficiency was demonstrated via the use of a highly reflecting cathode, which reduced absorptive loss in the OLED device. The calculated potential improvement in some cases is even larger, ~30%, and thus there is considerable room for optimism in improving the net light coupling efficacy, provided absorptive loss mechanisms are eliminated. Further improvements are possible if scattering schemes such as the silver nanowire based hard coat structure are fully developed. The wet coating processes were successfully scaled to large area plastic substrate and resulted in the construction of a 900 lumens luminaire device.

  1. Physiological and pathological clinical conditions and light scattering in brain

    NASA Astrophysics Data System (ADS)

    Kurata, Tsuyoshi; Iwata, Sachiko; Tsuda, Kennosuke; Kinoshita, Masahiro; Saikusa, Mamoru; Hara, Naoko; Oda, Motoki; Ohmae, Etsuko; Araki, Yuko; Sugioka, Takashi; Takashima, Sachio; Iwata, Osuke

    2016-08-01

    MRI of preterm infants at term commonly reveals subtle brain lesions such as diffuse white matter injury, which are linked with later cognitive impairments. The timing and mechanism of such injury remains unclear. The reduced scattering coefficient of near-infrared light (μs’) has been shown to correlate linearly with gestational age in neonates. To identify clinical variables associated with brain μs’, 60 preterm and full-term infants were studied within 7 days of birth. Dependence of μs’ obtained from the frontal head on clinical variables was assessed. In the univariate analysis, smaller μs’ was associated with antenatal glucocorticoid, emergency Caesarean section, requirement for mechanical ventilation, smaller gestational age, smaller body sizes, low 1- and 5-minute Apgar scores, higher cord blood pH and PO2, and higher blood HCO3‑ at the time of study. Multivariate analysis revealed that smaller gestational age, requirement for mechanical ventilation, and higher HCO3‑ at the time of study were correlated with smaller μs’. Brain μs’ depended on variables associated with physiological maturation and pathological conditions of the brain. Further longitudinal studies may help identify pathological events and clinical conditions responsible for subtle brain injury and subsequent cognitive impairments following preterm birth.

  2. The JLab high power ERL light source

    SciTech Connect

    G.R. Neil; C. Behre; S.V. Benson; M. Bevins; G. Biallas; J. Boyce; J. Coleman; L.A. Dillon-Townes; D. Douglas; H.F. Dylla; R. Evans; A. Grippo; D. Gruber; J. Gubeli; D. Hardy; C. Hernandez-Garcia; K. Jordan; M.J. Kelley; L. Merminga; J. Mammosser; W. Moore; N. Nishimori; E. Pozdeyev; J. Preble; R. Rimmer; Michelle D. Shinn; T. Siggins; C. Tennant; R. Walker; G.P. Williams and S. Zhang

    2005-03-19

    A new THz/IR/UV photon source at Jefferson Lab is the first of a new generation of light sources based on an Energy-Recovered, (superconducting) Linac (ERL). The machine has a 160 MeV electron beam and an average current of 10 mA in 75 MHz repetition rate hundred femtosecond bunches. These electron bunches pass through a magnetic chicane and therefore emit synchrotron radiation. For wavelengths longer than the electron bunch the electrons radiate coherently a broadband THz {approx} half cycle pulse whose average brightness is > 5 orders of magnitude higher than synchrotron IR sources. Previous measurements showed 20 W of average power extracted[1]. The new facility offers simultaneous synchrotron light from the visible through the FIR along with broadband THz production of 100 fs pulses with >200 W of average power. The FELs also provide record-breaking laser power [2]: up to 10 kW of average power in the IR from 1 to 14 microns in 400 fs pulses at up to 74.85 MHz repetition rates and soon will produce similar pulses of 300-1000 nm light at up to 3 kW of average power from the UV FEL. These ultrashort pulses are ideal for maximizing the interaction with material surfaces. The optical beams are Gaussian with nearly perfect beam quality. See www.jlab.org/FEL for details of the operating characteristics; a wide variety of pulse train configurations are feasible from 10 microseconds long at high repetition rates to continuous operation. The THz and IR system has been commissioned. The UV system is to follow in 2005. The light is transported to user laboratories for basic and applied research. Additional lasers synchronized to the FEL are also available. Past activities have included production of carbon nanotubes, studies of vibrational relaxation of interstitial hydrogen in silicon, pulsed laser deposition and ablation, nitriding of metals, and energy flow in proteins. This paper will present the status of the system and discuss some of the discoveries we have made

  3. The JLab high power ERL light source

    NASA Astrophysics Data System (ADS)

    Neil, G. R.; Behre, C.; Benson, S. V.; Bevins, M.; Biallas, G.; Boyce, J.; Coleman, J.; Dillon-Townes, L. A.; Douglas, D.; Dylla, H. F.; Evans, R.; Grippo, A.; Gruber, D.; Gubeli, J.; Hardy, D.; Hernandez-Garcia, C.; Jordan, K.; Kelley, M. J.; Merminga, L.; Mammosser, J.; Moore, W.; Nishimori, N.; Pozdeyev, E.; Preble, J.; Rimmer, R.; Shinn, M.; Siggins, T.; Tennant, C.; Walker, R.; Williams, G. P.; Zhang, S.

    2006-02-01

    A new THz/IR/UV photon source at Jefferson Lab is the first of a new generation of light sources based on an Energy-Recovered, (superconducting) Linac (ERL). The machine has a 160 MeV electron beam and an average current of 10 mA in 75 MHz repetition rate hundred femtosecond bunches. These electron bunches pass through a magnetic chicane and therefore emit synchrotron radiation. For wavelengths longer than the electron bunch the electrons radiate coherently a broadband THz ˜ half cycle pulse whose average brightness is >5 orders of magnitude higher than synchrotron IR sources. Previous measurements showed 20 W of average power extracted [Carr, et al., Nature 420 (2002) 153]. The new facility offers simultaneous synchrotron light from the visible through the FIR along with broadband THz production of 100 fs pulses with >200 W of average power. The FELs also provide record-breaking laser power [Neil, et al., Phys. Rev. Lett. 84 (2000) 662]: up to 10 kW of average power in the IR from 1 to 14 μm in 400 fs pulses at up to 74.85 MHz repetition rates and soon will produce similar pulses of 300-1000 nm light at up to 3 kW of average power from the UV FEL. These ultrashort pulses are ideal for maximizing the interaction with material surfaces. The optical beams are Gaussian with nearly perfect beam quality. See www.jlab.org/FEL for details of the operating characteristics; a wide variety of pulse train configurations are feasible from 10 ms long at high repetition rates to continuous operation. The THz and IR system has been commissioned. The UV system is to follow in 2005. The light is transported to user laboratories for basic and applied research. Additional lasers synchronized to the FEL are also available. Past activities have included production of carbon nanotubes, studies of vibrational relaxation of interstitial hydrogen in silicon, pulsed laser deposition and ablation, nitriding of metals, and energy flow in proteins. This paper will present the status of the

  4. Light shield and cooling apparatus. [high intensity ultraviolet lamp

    NASA Technical Reports Server (NTRS)

    Meador, T. G., Jr. (Inventor)

    1974-01-01

    A light shield and cooling apparatus was developed for a high intensity ultraviolet lamp including water and high pressure air for cooling and additional apparatus for shielding the light and suppressing the high pressure air noise.

  5. Physiological and antioxidant responses of two accessions of Arabidopsis thaliana in different light and temperature conditions.

    PubMed

    Szymańska, Renata; Nowicka, Beatrycze; Gabruk, Michał; Glińska, Sława; Michlewska, Sylwia; Dłużewska, Jolanta; Sawicka, Anna; Kruk, Jerzy; Laitinen, Roosa

    2015-06-01

    During their lifetime, plants need to adapt to a changing environment, including light and temperature. To understand how these factors influence plant growth, we investigated the physiological and antioxidant responses of two Arabidopsis accessions, Shahdara (Sha) from the Shahdara valley (Tajikistan, Central Asia) in a mountainous area and Lovvik-5 (Lov-5) from northern Sweden to different light and temperature conditions. These accessions originate from different latitudes and have different life strategies, both of which are known to be influenced by light and temperature. We showed that both accessions grew better in high-light and at a lower temperature (16°C) than in low light and at 23°C. Interestingly, Sha had a lower chlorophyll content but more efficient non-photochemical quenching than Lov-5. Sha, also showed a higher expression of vitamin E biosynthetic genes. We did not observe any difference in the antioxidant prenyllipid level under these conditions. Our results suggest that the mechanisms that keep the plastoquinone (PQ)-pool in more oxidized state could play a role in the adaptation of these accessions to their local climatic conditions.

  6. Improving the range of UHF RFID transponders using solar energy harvesting under low light conditions

    NASA Astrophysics Data System (ADS)

    Ascher, A.; Lehner, M.; Eberhardt, M.; Biebl, E.

    2015-11-01

    The sensitivity of passive UHF RFID transponders (Radio Frequency Identification) is the key issue, which determines the maximum read range of an UHF RFID system. During this work the ability of improving the sensitivity using solar energy harvesting, especially for low light conditions, is shown. To use the additional energy harvested from the examined silicon and organic solar cells, the passive RFID system is changed into a semi-active one. This needs no changes on the reader hardware itself, only the used RFIC (Radio Frequency Integrated Circuit) of the transponder has to possess an additional input pin for an external supply voltage. The silicon and organic cells are evaluated and compared to each other regarding their low light performance. The different cells are examined in a shielded box, which is protected from the environmental lighting. Additionally, a demonstrator is shown, which makes the measurement of the extended read range with respect to the lighting conditions possible. If the cells are completely darkened, the sensitivity gain is ascertained using high capacity super caps. Due to the measurements an enhancement in range up to 70 % could be guaranteed even under low light conditions.

  7. Influence of Light Conditions and Light Sources on Clinical Measurement of Natural Teeth Color using VITA Easyshade Advance 4,0® Spectrophotometer. Pilot Study.

    PubMed Central

    Posavec, Ivona; Prpić, Vladimir

    2016-01-01

    Objectives The purpose of this study was to evaluate and compare lightness (L), chroma (C) and hue (h), green-red (a) and blue-yellow (b) character of the color of maxillary right central incisors in different light conditions and light sources. Materials and methods Two examiners who were well trained in digital color evaluation participated in the research. Intraclass correlation coefficients (ICCs) were used to analyze intra- and interobserver reliability. The LCh and L*a*b* values were determined at 08.15 and at 10.00 in the morning under three different light conditions. Tooth color was assessed in 10 subjects using intraoral spectrophotometer VITA Easyshade Advance 4.0® set at the central region of the vestibular surface of the measured tooth. Results Intra- and interobserver ICC values were high for both examiners and ranged from 0.57 to 0.99. Statistically significant differences in LCh and L*a*b* values measured in different time of the day and certain light condition were not found (p>0.05). Statistically significant differences in LCh and L*a*b* values measured under three different light conditions were not found, too (p>0.05). Conclusions VITA Easyshade Advance 4.0® is reliable enough for daily clinical work in order to assess tooth color during the fabrication of esthtic appliances because it is not dependent on light conditions and light sources. PMID:28275281

  8. Pre-Conditioning with Low-Level Laser (Light) Therapy: Light Before the Storm

    PubMed Central

    Agrawal, Tanupriya; Gupta, Gaurav K.; Rai, Vikrant; Carroll, James D.; Hamblin, Michael R.

    2014-01-01

    Pre-conditioning by ischemia, hyperthermia, hypothermia, hyperbaric oxygen (and numerous other modalities) is a rapidly growing area of investigation that is used in pathological conditions where tissue damage may be expected. The damage caused by surgery, heart attack, or stroke can be mitigated by pre-treating the local or distant tissue with low levels of a stress-inducing stimulus, that can induce a protective response against subsequent major damage. Low-level laser (light) therapy (LLLT) has been used for nearly 50 years to enhance tissue healing and to relieve pain, inflammation and swelling. The photons are absorbed in cytochrome(c) oxidase (unit four in the mitochondrial respiratory chain), and this enzyme activation increases electron transport, respiration, oxygen consumption and ATP production. A complex signaling cascade is initiated leading to activation of transcription factors and up- and down-regulation of numerous genes. Recently it has become apparent that LLLT can also be effective if delivered to normal cells or tissue before the actual insult or trauma, in a pre-conditioning mode. Muscles are protected, nerves feel less pain, and LLLT can protect against a subsequent heart attack. These examples point the way to wider use of LLLT as a pre-conditioning modality to prevent pain and increase healing after surgical/medical procedures and possibly to increase athletic performance. PMID:25552961

  9. High-fat feeding alters the clock synchronization to light.

    PubMed

    Mendoza, Jorge; Pévet, Paul; Challet, Etienne

    2008-12-15

    High-fat feeding in rodents leads to metabolic abnormalities mimicking the human metabolic syndrome, including obesity and insulin resistance. These metabolic diseases are associated with altered temporal organization of many physiological functions. The master circadian clock located in the suprachiasmatic nuclei controls most physiological functions and metabolic processes. Furthermore, under certain conditions of feeding (hypocaloric diet), metabolic cues are capable of altering the suprachiasmatic clock's responses to light. To determine whether high-fat feeding (hypercaloric diet) can also affect resetting properties of the suprachiasmatic clock, we investigated photic synchronization in mice fed a high-fat or chow (low-fat) diet for 3 months, using wheel-running activity and body temperature rhythms as daily phase markers (i.e. suprachiasmatic clock's hands). Compared with the control diet, mice fed with the high-fat diet exhibited increased body mass index, hyperleptinaemia, higher blood glucose, and increased insulinaemia. Concomitantly, high-fat feeding led to impaired adjustment to local time by photic resetting. At the behavioural and physiological levels, these alterations include slower rate of re-entrainment of behavioural and body temperature rhythms after 'jet-lag' test (6 h advanced light-dark cycle) and reduced phase-advancing responses to light. At a molecular level, light-induced phase shifts have been correlated, within suprachiasmatic cells, with a high induction of c-FOS, the protein product of immediate early gene c-fos, and phosphorylation of the extracellular signal-regulated kinases I/II (P-ERK). In mice fed a high-fat diet, photic induction of both c-FOS and P-ERK in the suprachiasmatic nuclei was markedly reduced. Taken together, the present data demonstrate that high-fat feeding modifies circadian synchronization to light.

  10. Chloroplast Distribution in Arabidopsis thaliana (L.) Depends on Light Conditions during Growth.

    PubMed Central

    Trojan, A.; Gabrys, H.

    1996-01-01

    Chloroplasts of Arabidopsis thaliana move in response to blue light. Sensitivity to light and the range of fluence rates to which the chloroplasts respond were found to be comparable to those of other higher plants studied. We investigated typical chloroplast distributions in Arabidopsis grown under three different light conditions:standard-light conditions, similar to natural light intensities; weak-light intensities, close to the compensation point of photosynthesis; and strong-light intensities, close to the saturation of the light-response curve of photosynthesis. We observed a striking difference in chloroplast arrangement in darkness between plants grown under weak- and strong-light conditions. There was a slight difference after weak-light pretreatment, and the arrangements of chloroplasts after strong-light pretreatment in both plant groups were very similar. These results support the ecological significance of chloroplast movements. PMID:12226297

  11. Very high numerical aperture light transmitting device

    DOEpatents

    Allison, Stephen W.; Boatner, Lynn A.; Sales, Brian C.

    1998-01-01

    A new light-transmitting device using a SCIN glass core and a novel calcium sodium cladding has been developed. The very high index of refraction, radiation hardness, similar solubility for rare earths and similar melt and viscosity characteristics of core and cladding materials makes them attractive for several applications such as high-numerical-aperture optical fibers and specialty lenses. Optical fibers up to 60 m in length have been drawn, and several simple lenses have been designed, ground, and polished. Preliminary results on the ability to directly cast optical components of lead-indium phosphate glass are also discussed as well as the suitability of these glasses as a host medium for rare-earth ion lasers and amplifiers.

  12. Light weight high-stiffness stage platen

    DOEpatents

    Spence, Paul A.

    2001-01-01

    An improved light weight, stiff stage platen for photolithography is provided. The high stiffness of the stage platen is exemplified by a relatively high first resonant vibrational mode as determined, for instance, by finite element modal analysis. The stage platen can be employed to support a chuck that is designed to secure a mask or wafer. The stage platen includes a frame that has interior walls that define an interior region and that has exterior walls wherein the outer surfaces of at least two adjacent walls are reflective mirror surfaces; and a matrix of ribs within the interior region that is connected to the interior walls wherein the stage platen exhibits a first vibrational mode at a frequency of greater than about 1000 Hz.

  13. High Efficiency, Illumination Quality OLEDs for Lighting

    SciTech Connect

    Joseph Shiang; James Cella; Kelly Chichak; Anil Duggal; Kevin Janora; Chris Heller; Gautam Parthasarathy; Jeffery Youmans; Joseph Shiang

    2008-03-31

    The goal of the program was to demonstrate a 45 lumen per watt white light device based upon the use of multiple emission colors through the use of solution processing. This performance level is a dramatic extension of the team's previous 15 LPW large area illumination device. The fundamental material system was based upon commercial polymer materials. The team was largely able to achieve these goals, and was able to deliver to DOE a 90 lumen illumination source that had an average performance of 34 LPW a 1000 cd/m{sup 2} with peak performances near 40LPW. The average color temperature is 3200K and the calculated CRI 85. The device operated at a brightness of approximately 1000cd/m{sup 2}. The use of multiple emission colors particularly red and blue, provided additional degrees of design flexibility in achieving white light, but also required the use of a multilayered structure to separate the different recombination zones and prevent interconversion of blue emission to red emission. The use of commercial materials had the advantage that improvements by the chemical manufacturers in charge transport efficiency, operating life and material purity could be rapidly incorporated without the expenditure of additional effort. The program was designed to take maximum advantage of the known characteristics of these material and proceeded in seven steps. (1) Identify the most promising materials, (2) assemble them into multi-layer structures to control excitation and transport within the OLED, (3) identify materials development needs that would optimize performance within multilayer structures, (4) build a prototype that demonstrates the potential entitlement of the novel multilayer OLED architecture (5) integrate all of the developments to find the single best materials set to implement the novel multilayer architecture, (6) further optimize the best materials set, (7) make a large area high illumination quality white OLED. A photo of the final deliverable is shown. In

  14. Light conditions affect the performance of Yponomeuta evonymellus on its native host Prunus padus and the alien Prunus serotina.

    PubMed

    Łukowski, A; Giertych, M J; Walczak, U; Baraniak, E; Karolewski, P

    2017-04-01

    The bird cherry ermine moth, Yponomeuta evonymellus L., is considered an obligatory monophagous insect pest that feeds only on native European Prunus padus L. In recent years, however, increased larval feeding on alien P. serotina Ehrh. has been observed. In both species, general defoliation is extensive for shade grown trees, whereas it is high in P. padus, but very low in P. serotina, when trees are grown in full light conditions. The aim of the present study was to identify how the plant host species and light conditions affect the performance of Y. evonymellus. The influence of host species and light condition on their growth and development, characterized by the parameters of pupation, adult eclosion, body mass, potential fecundity, and wing size, was measured in a 2 × 2 experimental design (two light treatments, two hosts). In comparison with high light (HL) conditions, a greater percentage of pupation and a longer period and less dynamic adult emerge was observed under low light (LL) conditions. The effect of host species on these parameters was not significant. In contrast, mass, fecundity and all of the studied wing parameters were higher in larvae that grazed on P. padus than on P. serotina. Similarly the same parameters were also higher on shrubs in HL as compared with those grown under LL conditions. In general, light conditions, rather than plant species, were more often and to a greater extent, responsible for differences in the observed parameters of insect development and potential fecundity.

  15. Energy Effective Courtroom Lighting: An Analysis of Existing Conditions and Recommended Improvements

    SciTech Connect

    Jones, Carol C.; Richman, Eric E.

    2006-03-31

    Providing high quality and energy efficient lighting in courtrooms is a complex task, and it represents a greater challenge than most other Federal space types. Energy efficient lighting in courtrooms must be accomplished with no sacrifice in quality; efficiency must be effectively invisible to the occupants. The Whole Building Design Guide puts forth the goals well: “As the preeminent symbol of Federal authority in local communities, a Federal courthouse must express solemnity, stability, integrity, rigor and fairness.” The courtrooms themselves must have a sense of majesty and be aesthetically inspiring. When paired with the visual needs in a courtroom—given the wide variety of tasks and the critical nature of the courtroom proceedings—one has a challenge indeed. In consideration of these issue, this report reviews existing conditions in courtrooms and provides specific guidance about solutions that will accomplish the dual objectives of high quality and energy efficiency. The material covers all aspects of courtroom lighting, including design criteria, design and application strategies, energy efficient technologies, procurement and team selection, design process and implementation, and education. A detailed energy analysis was performed to develop a baseline for energy consumption in courtroom lighting, and the primary root cause was found to be a high use of incandescent technology. Point-by-point calculations were completed to provide an energy efficient alternative that met the high level of criteria for performance in courtrooms. Additional detailed guidance has been provided in the spirit of a holistic solution. It is hoped and anticipated that the recommended solutions will transform courtroom lighting towards both energy efficiency and high quality lighting. This is more important than ever before given the passage of the Energy Policy Act of 2005, which significantly changes the energy usage requirements in Federal Buildings. Ultimately it is

  16. Deterioration of the high-mounted brake light.

    PubMed

    Cameron, D L

    1995-10-01

    An unusually high failure rate in the high-mounted, center brake light was observed in a survey of normal local traffic. Such failure increases the potential for delay or error in perception of the rear lights by following drivers.

  17. Light-dark condition regulates sirtuin mRNA levels in the retina.

    PubMed

    Ban, Norimitsu; Ozawa, Yoko; Inaba, Takaaki; Miyake, Seiji; Watanabe, Mitsuhiro; Shinmura, Ken; Tsubota, Kazuo

    2013-11-01

    Sirtuins (Sirt1-7) are nicotinamide adenine dinucleotide (NAD)-dependent protein deacetylases/ADP-ribosyltransferases that modulate many metabolic responses affecting aging. Sirtuins expressed in tissues and organs involved in systemic metabolism have been extensively studied. However, the characteristics of sirtuins in the retina, where local energy expenditure changes dynamically in response to light stimuli, are largely unknown. Here we analyzed sirtuin mRNA levels by real-time PCR, and found that all seven sirtuins are highly expressed in the retina compared with other tissues, such as liver. We then analyzed the sirtuin mRNA profiles in the retina over time, under a 12-h light/12-h dark cycle (LD condition) and in constant darkness (DD condition). All seven sirtuins showed significant daily variation under the LD condition, with all except Sirt6 being increased in the dark phase. The expression patterns were different under the DD condition, suggesting that sirtuin mRNA levels except Sirt6 are affected by light-dark condition. These findings were not obtained in the brain and liver. In addition, the mRNA expression patterns of Nicotinamide phosphoribosyltransferase (Nampt), peroxisome proliferator-activated receptor gamma coactivator (PGC1α), and transcription factor A, mitochondrial (Tfam) in the retina, were similar to those of the sirtuins except Sirt6. Our observations provide new insights into the metabolic mechanisms of the retina and the sirtuins' regulatory systems.

  18. Vertical Stand Transparent Light-Emitting Diode Architecture for High-Efficiency and High-Power Light-Emitting Diodes

    NASA Astrophysics Data System (ADS)

    Pan, Chih-Chien; Koslow, Ingrid; Sonoda, Junichi; Ohta, Hiroaki; Ha, Jun-Seok; Nakamura, Shuji; DenBaars, Steven P.

    2010-08-01

    Using a transparent ZnO vertical stand as a submount, a novel Light-emitting diode architecture, which is similar to conventional lighting bulbs, was proposed. The emission power of a blue LED based on c-plane (0001) bulk GaN was increased by 14.2 and 5.1% compared with those of conventional and suspended die packages, respectively. The output power and external quantum efficiency of LEDs respectively reached 31.7 mW and 57.1% at a forward current of 20 mA under direct current conditions. The high thermal conductivity and refractive index of the transparent submount simultaneously resulted in high current operation and high external efficiency.

  19. The Jefferson Lab High Power Light Source

    SciTech Connect

    James R. Boyce

    2006-01-01

    Jefferson Lab has designed, built and operated two high average power free-electron lasers (FEL) using superconducting RF (SRF) technology and energy recovery techniques. Between 1999-2001 Jefferson Lab operated the IR Demo FEL. This device produced over 2 kW in the mid-infrared, in addition to producing world record average powers in the visible (50 W), ultraviolet (10 W) and terahertz range (50 W) for tunable, short-pulse (< ps) light. This FEL was the first high power demonstration of an accelerator configuration that is being exploited for a number of new accelerator-driven light source facilities that are currently under design or construction. The driver accelerator for the IR Demo FEL uses an Energy Recovered Linac (ERL) configuration that improves the energy efficiency and lowers both the capital and operating cost of such devices by recovering most of the power in the spent electron beam after optical power is extracted from the beam. The IR Demo FEL was de-commissioned in late 2001 for an upgraded FEL for extending the IR power to over 10 kW and the ultraviolet power to over 1 kW. The FEL Upgrade achieved 10 kW of average power in the mid-IR (6 microns) in July of 2004, and its IR operation currently is being extended down to 1 micron. In addition, we have demonstrated the capability of on/off cycling and recovering over a megawatt of electron beam power without diminishing machine performance. A complementary UV FEL will come on-line within the next year. This paper presents a summary of the FEL characteristics, user community accomplishments with the IR Demo, and planned user experiments.

  20. Highly Automated Module Production Incorporating Advanced Light Management

    SciTech Connect

    Perelli-Minetti, Michael; Roof, Kyle

    2015-08-11

    The objective was to enable a high volume, cost effective solution for increasing the amount of light captured by PV modules through utilization of an advanced Light Re-directing Film and to follow a phased approach to develop and implement this new technology in order to achieve an expected power gain of up to 12 watts per module. Full size PV modules were manufactured using a new Light Redirecting Film (LRF) material applied to two different areas of PV modules in order to increase the amount of light captured by the modules. One configuration involved applying thin strips of LRF film over the tabbing ribbon on the cells in order to redirect the light that is normally absorbed by the tabbing ribbon to the active areas of the cells. A second configuration involved applying thin strips of LRF film over the white spaces between cells within a module in order to capture some of the light that is normally reflected from the white areas back through the front glass of the modules. Significant power increases of 1.4% (3.9 watts) and 1.0% (3.2 watts), respectively, compared to standard PV modules were measured under standard test conditions. The performance of PV modules with LRF applied to the tabbing ribbon was modeled. The results showed that the power increase provided by LRF depended greatly on the angle of incident light with the optimum performance only occurring when the light was within a narrow range of being perpendicular to the solar module. The modeling showed that most of the performance gain would be lost when the angle of incident light was greater than 28 degrees off axis. This effect made the orientation of modules with LRF applied to tabbing ribbons very important as modules mounted in “portrait” mode were predicted to provide little to no power gain from LRF under real world conditions. Based on these results, modules with LRF on tabbing ribbons would have to be mounted in “landscape” mode to realize a performance advantage. In addition

  1. On High-Order Radiation Boundary Conditions

    NASA Technical Reports Server (NTRS)

    Hagstrom, Thomas

    1995-01-01

    In this paper we develop the theory of high-order radiation boundary conditions for wave propagation problems. In particular, we study the convergence of sequences of time-local approximate conditions to the exact boundary condition, and subsequently estimate the error in the solutions obtained using these approximations. We show that for finite times the Pade approximants proposed by Engquist and Majda lead to exponential convergence if the solution is smooth, but that good long-time error estimates cannot hold for spatially local conditions. Applications in fluid dynamics are also discussed.

  2. Light-Emitting Diodes (LED) for Primary Animal Habitat Lighting in Highly Controlled Environments

    NASA Technical Reports Server (NTRS)

    Winget, C. M.; Syrkin, N.; Heeke, D.; Mele, G.; Holley, D. C.; Dalton, Bonnie P. (Technical Monitor)

    1996-01-01

    Significant alterations in Biological Clock responses have been reported following sidereal time changes (e.g., Jet-lag), and exposure to microgravity (e.g., daytime sleepiness). Additionally, light reduces circulating melatonin (spectral specificity greatest between 450-500 nm). It was hypothesized that LEDs can replace the current light sources used in zero gravity and terrestrial research laboratories because of their small size, low mass, low energy consumption and long functional life. This report evaluates the capacity of LEDs to entrain the circadian system of rats as judged by measurement of overt behavioral circadian rhythms (activity, feeding, drinking). These data were collected in highly controlled environments similar to the shuttle Animal Enclosure Modules. Two groups were compared: control - animals exposed to standard cool-white fluorescent lights, and test - animals exposed to LEDs with a spectral power distribution matching the fluorescent lights. Gross locomotor activity, feeding and drinking frequencies were continuously monitored and stored at 10 minute intervals. Animals were exposed to the following photoperiods: 28 days of 12L:12D, 19 days of 24L:0D and 16 days of 12L:12D. Light intensities tested varied between 0.1 to 100 lux. Rats received food and water ad libitum, and temperature and humidity were controlled throughout the study. The general health status of all rats was acceptable for each day of this study. No incidents of aggressive behavior were observed. Growth, locomotor activity, food and water consumption were comparable for all groups of animals, i.e, the circadian characteristics of the animals under these conditions were comparable. These results indicate that LED arrays are as effective in maintaining circadian rhythm stability as the commonly used cool-white fluorescent light sources. LEDs with their flexible spectrum, low energy requirements and minimal heat production have advantages for some chronopharmacology studies and

  3. Photocathodes for High Repetition Rate Light Sources

    SciTech Connect

    Ben-Zvi, Ilan

    2014-04-20

    This proposal brought together teams at Brookhaven National Laboratory (BNL), Lawrence Berkeley National Laboratory (LBNL) and Stony Brook University (SBU) to study photocathodes for high repetition rate light sources such as Free Electron Lasers (FEL) and Energy Recovery Linacs (ERL). Below details the Principal Investigators and contact information. Each PI submits separately for a budget through his corresponding institute. The work done under this grant comprises a comprehensive program on critical aspects of the production of the electron beams needed for future user facilities. Our program pioneered in situ and in operando diagnostics for alkali antimonide growth. The focus is on development of photocathodes for high repetition rate Free Electron Lasers (FELs) and Energy Recovery Linacs (ERLs), including testing SRF photoguns, both normal-­conducting and superconducting. Teams from BNL, LBNL and Stony Brook University (SBU) led this research, and coordinated their work over a range of topics. The work leveraged a robust infrastructure of existing facilities and the support was used for carrying out the research at these facilities. The program concentrated in three areas: a) Physics and chemistry of alkali-­antimonide cathodes (BNL – LBNL) b) Development and testing of a diamond amplifier for photocathodes (SBU -­ BNL) c) Tests of both cathodes in superconducting RF photoguns (SBU) and copper RF photoguns (LBNL) Our work made extensive use of synchrotron radiation materials science techniques, such as powder-­ and single-­crystal diffraction, x-­ray fluorescence, EXAFS and variable energy XPS. BNL and LBNL have many complementary facilities at the two light sources associated with these laboratories (NSLS and ALS, respectively); use of these will be a major thrust of our program and bring our understanding of these complex materials to a new level. In addition, CHESS at Cornell will be used to continue seamlessly throughout the NSLS dark period and

  4. HELIX: The High Energy Light Isotope Experiment

    NASA Astrophysics Data System (ADS)

    Musser, Jim

    This is the lead proposal for a new suborbital program, HELIX (High-Energy Light Isotope eXperiment), designed to make measurements of the isotopic composition of light cosmic-ray nuclei from ~200 MeV/nuc to ~10 GeV/nuc. Past measurements of this kind have provided profound insights into the nature and origin of cosmic rays, revealing, for instance, information on acceleration and confinement time scales, and exposing some conspicuous discrepancies between solar and cosmic-ray abundances. The most detailed information currently available comes from the ACE/CRIS mission, but is restricted to energies below a few 100 MeV/nuc. HELIX aims at extending this energy range by over an order of magnitude, where, in most cases, no measurements of any kind exist, and where relativistic time dilation affects the apparent lifetime of radioactive clock nuclei. The HELIX measurements will provide essential information for understanding the propagation history of cosmic rays in the galaxy. This is crucial for properly interpreting several intriguing anomalies reported in recent cosmic-ray measurements, pertaining to the energy spectra of protons, helium, and heavier nuclei, and to the anomalous rise in the positron fraction at higher energy. HELIX employs a high-precision magnet spectrometer to provide measurements which are not achievable by any current or planned instrument. The superconducting magnet originally used for the HEAT payload in five successful high-altitude flights will be combined with state-of-the-art detectors to measure the charge, time-of-flight, magnetic rigidity, and velocity of cosmic-ray particles with high precision. The instrumentation includes plastic scintillators, silicon-strip detectors repurposed from Fermilab's CDF detector, a high-performance gas drift chamber, and a ring-imaging Cherenkov counter employing aerogel radiators and silicon photomultipliers. To reduce cost and technical risk, the HELIX program will be structured in two stages. The first

  5. Organic light-emitting diodes: High-throughput virtual screening

    NASA Astrophysics Data System (ADS)

    Hirata, Shuzo; Shizu, Katsuyuki

    2016-10-01

    Computer networks, trained with data from delayed-fluorescence materials that have been successfully used in organic light-emitting diodes, facilitate the high-speed prediction of good emitters for display and lighting applications.

  6. Light Initiated High Explosives (LIHE) Test Technique and Capabilities

    NASA Astrophysics Data System (ADS)

    Covert, Timothy

    2009-06-01

    The Light Initiated High Explosives (LIHE) test facility has been re-established and chartered to impart impulsive loads to a variety of targets. This loading is achieved through the detonation of a primary explosive applied directly to the target surface using a robotic spraying system. Using light as the initiating mechanism ensures virtually simultaneous loading. Uniform, discontinuous, or graded explosive loading conditions are achievable over complex shapes with the LIHE process. This direct detonation technique is a demonstrated capability at the LIHE facility. Test results will be presented. In addition to the direct detonation technique, the LIHE facility is developing the capability to explosively accelerate a thin flyer plate to impact various test targets. This explosively accelerated flyer plate (X-Flyer) will enable pressure control during impulsive loading. By controlling flyer density (material), thickness, velocity, and acceleration gap, the impact pressure amplitude and pulse duration can be controlled. Similar to the direct detonation technique, a primary explosive is robotically sprayed onto the flyer plate and subsequently detonated using an intense flash of light. Through the control of the explosive deposition and flyer gap, virtually simultaneous impact is achievable for either uniform or graded loading conditions. X-Flyer test results will be presented.

  7. High Extraction Phosphors for Solid State Lighting

    SciTech Connect

    Summers, Chris; Menkara, Hisham; Wagner, Brent

    2011-09-01

    We have developed high-index, high efficiency bulk luminescent materials and novel nano-sized phosphors for improved solid-state white LED lamps. These advances can potentially contribute to reducing the loss in luminous efficiencies due to scattering, re-absorption, and thermal quenching. The bulk and nanostructured luminescent materials investigated are index matched to GaN and have broad and size-tunable absorption bands, size and impurity tuned emission bands, size-driven elimination of scattering effects, and a separation between absorption and emission bands. These innovations were accomplished through the use of novel synthesis techniques suitable for high volume production for LED lamp applications. The program produced a full-color set of high quantum yield phosphors with high chemical stability. In the bulk phosphor study, the ZnSeS:Cu,Ag phosphor was optimized to achieve >91% efficiency using erbium (Er) and other activators as sensitizers. Detailed analysis of temperature quenching effects on a large number of ZnSeS:Cu,Ag,X and strontium- and calcium-thiogallate phosphors lead to a breakthrough in the understanding of the anti-quenching behavior and a physical bandgap model was developed of this phenomena. In a follow up to this study, optimized phosphor blends for high efficiency and color performance were developed and demonstrated a 2-component phosphor system with good white chromaticity, color temperature, and high color rendering. By extending the protocols of quantum dot synthesis, large nanocrystals, greater than 20 nm in diameter were synthesized and exhibited bulk-like behavior and blue light absorption. The optimization of ZnSe:Mn nanophosphors achieved ~85% QE The limitations of core-shell nanocrystal systems were addressed by investigating alternative deltadoped structures. To address the manufacturability of these systems, a one-pot manufacturing protocol was developed for ZnSe:Mn nanophosphors. To enhance the stability of these material

  8. Vacuum fluctuations and the conditional homodyne detection of squeezed light

    NASA Astrophysics Data System (ADS)

    Carmichael, H. J.; Nha, Hyunchul

    2004-08-01

    Conditional homodyne detection of quadrature squeezing is compared with standard nonconditional detection. Whereas the latter identifies nonclassicality in a quantitative way, as a reduction of the noise power below the shot noise level, conditional detection makes a qualitative distinction between vacuum state squeezing and squeezed classical noise. Implications of this comparison for the realistic interpretation of vacuum fluctuations (stochastic electrodynamics) are discussed.

  9. A squeezed light source operated under high vacuum

    PubMed Central

    Wade, Andrew R.; Mansell, Georgia L.; Chua, Sheon S. Y.; Ward, Robert L.; Slagmolen, Bram J. J.; Shaddock, Daniel A.; McClelland, David E.

    2015-01-01

    Non-classical squeezed states of light are becoming increasingly important to a range of metrology and other quantum optics applications in cryptography, quantum computation and biophysics. Applications such as improving the sensitivity of advanced gravitational wave detectors and the development of space-based metrology and quantum networks will require robust deployable vacuum-compatible sources. To date non-linear photonics devices operated under high vacuum have been simple single pass systems, testing harmonic generation and the production of classically correlated photon pairs for space-based applications. Here we demonstrate the production under high-vacuum conditions of non-classical squeezed light with an observed 8.6 dB of quantum noise reduction down to 10 Hz. Demonstration of a resonant non-linear optical device, for the generation of squeezed light under vacuum, paves the way to fully exploit the advantages of in-vacuum operations, adapting this technology for deployment into new extreme environments. PMID:26657616

  10. Novel Characteristics of Photodamage to PSII in a High-Light-Sensitive Symbiodinium Phylotype.

    PubMed

    Karim, Widiastuti; Seidi, Azadeh; Hill, Ross; Chow, Wah S; Minagawa, Jun; Hidaka, Michio; Takahashi, Shunichi

    2015-06-01

    Dinoflagellates from the genus Symbiodinium form symbiotic relationships with many marine invertebrates, including reef-building corals. Symbiodinium is genetically diverse, and acquiring suitable Symbiodinium phylotypes is crucial for the host to survive in habitat environments, such as high-light conditions. The sensitivity of Symbiodinium to high light differs among Symbiodinium phylotypes, but the mechanism that controls light sensitivity has not yet been fully resolved. In the present study using high-light-tolerant and -sensitive Symbiodinium phylotypes, we examined what determines sensitivity to high light. In growth experiments under different light intensities, Symbiodinium CS-164 (clade B1) and CCMP2459 (clade B2) were identified as high-light-tolerant and -sensitive phylotypes, respectively. Measurements of the maximum quantum yield of photosystem II (PSII) and the maximum photosynthetic oxygen production rate after high-light exposure demonstrated that CCMP2459 is more sensitive to photoinhibition of PSII than CS-164, and tends to lose maximum photosynthetic activity faster. Measurement of photodamage to PSII under light of different wavelength ranges demonstrated that PSII in both Symbiodinium phylotypes was significantly more sensitive to photodamage under shorter wavelength regions of light spectra (<470 nm). Importantly, PSII in CCMP2459, but not CS-164, was also sensitive to photodamage under the regions of light spectra around 470-550 and 630-710 nm, where photosynthetic antenna proteins of Symbiodinium have light absorption peaks. This finding indicates that the high-light-sensitive CCMP2459 has an extra component of photodamage to PSII, resulting in higher sensitivity to high light. Our results demonstrate that sensitivity of PSII to photodamage differs among Symbiodinium phylotypes and this determines their sensitivity to high light.

  11. Natural light-micro aerobic condition for PSB wastewater treatment: a flexible, simple, and effective resource recovery wastewater treatment process.

    PubMed

    Lu, Haifeng; Han, Ting; Zhang, Guangming; Ma, Shanshan; Zhang, Yuanhui; Li, Baoming; Cao, Wei

    2017-03-13

    Photosynthetic bacteria (PSB) have two sets of metabolic pathways. They can degrade pollutants through light metabolic under light-anaerobic or oxygen metabolic pathways under dark-aerobic conditions. Both metabolisms function under natural light-microaerobic condition, which demands less energy input. This work investigated the characteristics of PSB wastewater treatment process under that condition. Results showed that PSB had very strong adaptability to chemical oxygen demand (COD) concentration; with F/M of 5.2-248.5 mg-COD/mg-biomass, the biomass increased three times and COD removal reached above 91.5%. PSB had both advantages of oxygen metabolism in COD removal and light metabolism in resource recovery under natural light-microaerobic condition. For pollutants' degradation, COD, total organic carbon, nitrogen, and phosphorus removal reached 96.2%, 91.0%, 70.5%, and 92.7%, respectively. For resource recovery, 74.2% of C in wastewater was transformed into biomass. Especially, coexistence of light and oxygen promote N recovery ratio to 70.9%, higher than with the other two conditions. Further, 93.7% of N-removed was synthesized into biomass. Finally, CO2 emission reduced by 62.6% compared with the traditional process. PSB wastewater treatment under this condition is energy-saving, highly effective, and environment friendly, and can achieve pollution control and resource recovery.

  12. Conditional homodyne detection of light with squeezed quadrature fluctuations

    SciTech Connect

    Vines, Justin; Vyas, Reeta; Singh, Surendra

    2006-08-15

    We discuss the detection of field quadrature fluctuations in conditional homodyne detection experiments and possible sources of error in such an experiment. We also present modifications to these experiments to help eliminate such errors and extend their range of applicability.

  13. LIGHT SCATTERING: Fast path-integration technique in simulation of light propagation through highly scattering objects

    NASA Astrophysics Data System (ADS)

    Voronov, Aleksandr V.; Tret'yakov, Evgeniy V.; Shuvalov, Vladimir V.

    2004-06-01

    Based on the path-integration technique and the Metropolis method, the original calculation scheme is developed for solving the problem of light propagation through highly scattering objects. The elimination of calculations of 'unnecessary' realisations and the phenomenological description of processes of multiple small-angle scattering provided a drastic increase (by nine and more orders of magnitude) in the calculation rate, retaining the specific features of the problem (consideration of spatial inhomogeneities, boundary conditions, etc.). The scheme allows one to verify other fast calculation algorithms and to obtain information required to reconstruct the internal structure of highly scattering objects (of size ~1000 scattered lengths and more) by the method of diffusion optical tomography.

  14. Delineation of the southern elephant seal's main foraging environments defined by temperature and light conditions

    NASA Astrophysics Data System (ADS)

    Vacquié-Garcia, Jade; Guinet, Christophe; Laurent, Cécile; Bailleul, Frédéric

    2015-03-01

    Changes in marine environments, induced by the global warming, are likely to influence the prey field distribution and consequently the foraging behaviour and the distribution of top marine predators. Thanks to bio-logging, the simultaneous measurements of fine-scale foraging behaviors and oceanographic parameters by predators allow characterizing their foraging environments and provide insights into their prey distribution. In this context, we propose to delimit and to characterize the foraging environments of a marine predator, the Southern Elephant Seal (SES). To do so, the relationship between oceanographic factors and prey encounter events (PEE) was investigated in 12 females SES from Kerguelen Island simultaneously equipped with accelerometers and with a range of physical sensors (temperature, light and depth). PEEs were assessed from the accelerometer data at high spatio-temporal precision while the physical sensors allowed the continuous monitoring of environmental conditions encountered by the SES when diving. First, visited and foraging environments were distinguished according to the oceanographic conditions encountered in the absence and in presence of PEE. Then, a hierarchical classification of the physical parameters recorded during PEEs led to the distinction of five different foraging environments. These foraging environments were structured according to the main frontal systems of the SO. One was located north to the subantarctic front (SAF) and characterized by high temperature and depth, and low light levels. Another, characterized by intermediate levels of temperature, light and depth, was located between the SAF and the polar front (PF). And finally, the last three environments were all found south to the PF and, characterized by low temperature but highly variable depth and light levels. The large physical and/or spatial differences found between these environments suggest that, depending on the location, different prey communities are

  15. Denoising Algorithm for the Pixel-Response Non-Uniformity Correction of a Scientific CMOS Under Low Light Conditions

    NASA Astrophysics Data System (ADS)

    Hu, Changmiao; Bai, Yang; Tang, Ping

    2016-06-01

    We present a denoising algorithm for the pixel-response non-uniformity correction of a scientific complementary metal-oxide-semiconductor (CMOS) image sensor, which captures images under extremely low-light conditions. By analyzing the integrating sphere experimental data, we present a pixel-by-pixel flat-field denoising algorithm to remove this fixed pattern noise, which occur in low-light conditions and high pixel response readouts. The response of the CMOS image sensor imaging system to the uniform radiance field shows a high level of spatial uniformity after the denoising algorithm has been applied.

  16. Photosystem II cycle activity and alternative electron transport in the diatom Phaeodactylum tricornutum under dynamic light conditions and nitrogen limitation.

    PubMed

    Wagner, Heiko; Jakob, Torsten; Lavaud, Johann; Wilhelm, Christian

    2016-05-01

    Alternative electron sinks are an important regulatory mechanism to dissipate excessively absorbed light energy particularly under fast changing dynamic light conditions. In diatoms, the cyclic electron transport (CET) around Photosystem II (PS II) is an alternative electron transport pathway (AET) that contributes to avoidance of overexcitation under high light illumination. The combination of nitrogen limitation and high-intensity irradiance regularly occurs under natural conditions and is expected to force the imbalance between light absorption and the metabolic use of light energy. The present study demonstrates that under N limitation, the amount of AET and the activity of CETPSII in the diatom Phaeodactylum tricornutum were increased. Thereby, the activity of CETPSII was linearly correlated with the amount of AET rates. It is concluded that CETPSII significantly contributes to AET in P. tricornutum. Surprisingly, CETPSII was found to be activated already at the end of the dark period under N-limited conditions. This coincided with a significantly increased degree of reduction of the plastoquinone (PQ) pool. The analysis of the macromolecular composition of cells of P. tricornutum under N-limited conditions revealed a carbon allocation in favor of carbohydrates during the light period and their degradation during the dark phase. A possible linkage between the activity of CETPSII and degree of reduction of the PQ pool on the one side and the macromolecular changes on the other is discussed.

  17. Adult Tea Green Leafhoppers, Empoasca onukii (Matsuda), Change Behaviors under Varying Light Conditions

    PubMed Central

    Shi, Longqing; Vasseur, Liette; Huang, Huoshui; Zeng, Zhaohua; Hu, Guiping; Liu, Xin; You, Minsheng

    2017-01-01

    Insect behaviors are often influenced by light conditions including photoperiod, light intensity, and wavelength. Understanding pest insect responses to changing light conditions may help with developing alternative strategies for pest control. Little is known about the behavioral responses of leafhoppers (Hemiptera: Cicadellidae) to light conditions. The behavior of the tea green leafhopper, Empoasca onukii Matsuda, was examined when exposed to different light photoperiods or wavelengths. Observations included the frequency of locomotion and cleaning activities, and the duration of time spent searching. The results suggested that under normal photoperiod both female and male adults were generally more active in darkness (i.e., at night) than in light. In continuous darkness (DD), the locomotion and cleaning events in Period 1 (7:00–19:00) were significantly increased, when compared to the leafhoppers under normal photoperiod (LD). Leafhoppers, especially females, changed their behavioral patterns to a two day cycle under DD. Under continuous illumination (continuous quartz lamp light, yellow light at night, and green light at night), the activities of locomotion, cleaning, and searching were significantly suppressed during the night (19:00–7:00) and locomotion activities of both females and males were significantly increased during the day (7:00–19:00), suggesting a shift in circadian rhythm. Our work suggests that changes in light conditions, including photoperiod and wavelength, can influence behavioral activities of leafhoppers, potentially affecting other life history traits such as reproduction and development, and may serve as a method for leafhopper behavioral control. PMID:28103237

  18. Dementia screening in light of the diversity of the condition.

    PubMed

    Gualtieri, C Thomas

    2004-01-01

    Dementia is a general term, not a specific diagnosis. There are many different causes of dementia, and the different etiologies are associated with different neuropsychological profiles. This complicates the problem of dementia screening. Detection of dementing conditions at the earliest possible stage requires batteries of tests, rather than a single test. The cognitive domains that must be addressed include the following: visual and verbal memory, sustained attention and complex attention, working memory, processing speed, reaction time, psychomotor speed and executive function.

  19. High extraction efficiency ultraviolet light-emitting diode

    DOEpatents

    Wierer, Jonathan; Montano, Ines; Allerman, Andrew A.

    2015-11-24

    Ultraviolet light-emitting diodes with tailored AlGaN quantum wells can achieve high extraction efficiency. For efficient bottom light extraction, parallel polarized light is preferred, because it propagates predominately perpendicular to the QW plane and into the typical and more efficient light escape cones. This is favored over perpendicular polarized light that propagates along the QW plane which requires multiple, lossy bounces before extraction. The thickness and carrier density of AlGaN QW layers have a strong influence on the valence subband structure, and the resulting optical polarization and light extraction of ultraviolet light-emitting diodes. At Al>0.3, thinner QW layers (<2.5 nm are preferred) result in light preferentially polarized parallel to the QW plane. Also, active regions consisting of six or more QWs, to reduce carrier density, and with thin barriers, to efficiently inject carriers in all the QWs, are preferred.

  20. High-Efficiency Nitride-Base Photonic Crystal Light Sources

    SciTech Connect

    James Speck; Evelyn Hu; Claude Weisbuch; Yong-Seok Choi; Kelly McGroddy; Gregor Koblmuller; Elison Matioli; Elizabeth Rangel; Fabian Rol; Dobri Simeonov

    2010-01-31

    The research activities performed in the framework of this project represent a major breakthrough in the demonstration of Photonic Crystals (PhC) as a competitive technology for LEDs with high light extraction efficiency. The goals of the project were to explore the viable approaches to manufacturability of PhC LEDS through proven standard industrial processes, establish the limits of light extraction by various concepts of PhC LEDs, and determine the possible advantages of PhC LEDs over current and forthcoming LED extraction concepts. We have developed three very different geometries for PhC light extraction in LEDs. In addition, we have demonstrated reliable methods for their in-depth analysis allowing the extraction of important parameters such as light extraction efficiency, modal extraction length, directionality, internal and external quantum efficiency. The information gained allows better understanding of the physical processes and the effect of the design parameters on the light directionality and extraction efficiency. As a result, we produced LEDs with controllable emission directionality and a state of the art extraction efficiency that goes up to 94%. Those devices are based on embedded air-gap PhC - a novel technology concept developed in the framework of this project. They rely on a simple and planar fabrication process that is very interesting for industrial implementation due to its robustness and scalability. In fact, besides the additional patterning and regrowth steps, the process is identical as that for standard industrially used p-side-up LEDs. The final devices exhibit the same good electrical characteristics and high process yield as a series of test standard LEDs obtained in comparable conditions. Finally, the technology of embedded air-gap patterns (PhC) has significant potential in other related fields such as: increasing the optical mode interaction with the active region in semiconductor lasers; increasing the coupling of the incident

  1. Effect of lighting conditions on brain network complexity associated with response learning.

    PubMed

    Fidalgo, Camino; Conejo, Nélida M; González-Pardo, Héctor; Arias, Jorge L

    2013-10-25

    Several studies have reported the brain regions involved in response learning. However, there is discrepancy regarding the lighting conditions in the experimental setting (i.e. under dark or light conditions). In this regard, it would be relevant to know if the presence/absence of visual cues in the environment has any effect in the brain networks involved in a response learning task. Animals were trained in a water T-maze under two different lighting conditions (light versus dark). All subjects reached the learning criterion of 80% correct arm choices. Quantitative cytochrome oxidase (CO) histochemistry was used as a metabolic brain mapping technique. Our results show that the ventral hippocampus and the parietal cortex are associated with the acquisition of a response learning task regardless of lighting conditions. In addition, when the same task is run in the dark, widespread recruitment of structures involving cortical, limbic and striatal regions was found.

  2. Evaluation of Different Light Conditions in the Working Environment for Handling Photosensitive and Thermolabile Compounds.

    PubMed

    Hernandez Duran, Tania; Ravela, Neel; Sanchez Rivero, Sandra; De Jesus Castro Sandoval, Teresita; Hoogmartens, Jos; Pendela, Murali

    2015-01-01

    Lighting in the working environment plays a significant role on the degree of degradation of photosensitive, thermolabile compounds and on working efficiency. Light emitting diodes (LEDs) are semiconductor light emitting devices that are promising artificial light sources with easy modulation of light wave signals and are also known for low heat generation. Therefore, the effect of polychromatic LED light was tested in the working environment using the drug compounds montelukast, nifedipine, and clavulanic acid, which are known to be photosensitive or thermolabile. As a control, other lighting sources like a sodium lamp, a classic (incandescent, tungsten) lamp, and indirect sunlight were also used in this study. All the experiments were carried out with methanolic solutions at room temperature. An Acquity UPLC/MS/MS system was used for quantification of the main analytes and degradation products. Under the tested conditions, LED lighting proved to be more suitable for handling photosensitive and thermolabile compounds.

  3. Physiological functions of PsbS-dependent and PsbS-independent NPQ under naturally fluctuating light conditions.

    PubMed

    Ikeuchi, Masahiro; Uebayashi, Nozomu; Sato, Fumihiko; Endo, Tsuyoshi

    2014-07-01

    The PsbS protein plays an important role in dissipating excess light energy as heat in photosystem II (PSII). However, the physiological importance of PsbS under naturally fluctuating light has not been quantitatively estimated. Here we investigated energy allocation in PSII in PsbS-suppressed rice transformants (ΔpsbS) under both naturally fluctuating and constant light conditions. Under constant light, PsbS was essential for inducing the rapid formation of light-inducible thermal dissipation (Φ(NPQ)), which consequently suppressed the rapid formation of basal intrinsic decay (Φ(f,D)), while the quantum yield of electron transport (Φ(II)) did not change. In the steady state phase, the difference between the wild type (WT) and ΔpsbS was minimized. Under regularly fluctuating light, the reduced PsbS resulted in higher Φ(II) upon the transition from high light to low light and in lower Φ(II) upon the transition from low light to high light, indicating that Φ(II) was, to some extent, controlled by PsbS. Under naturally fluctuating light in a greenhouse, rapid changes in Φ(II) were compensated by Φ(NPQ) in the WT, but by Φ(f,D) in ΔpsbS. As a consequence, a significantly lower ΣNPQ integrated Φ(NPQ) over a whole day) and higher Σf,D were found in ΔpsbS. Furthermore, thermal dissipation associated with photoinhibtion was enhanced in ΔpsbS. These results suggest that PsbS plays an important role in photoprotective process at the induction phase of photosynthesis as well as under field conditions. The physiological relevance of PsbS as a photoprotection mechanism and the identities of Φ(NPQ) and Φ(f,D) are discussed.

  4. Quality control of PSII: behavior of PSII in the highly crowded grana thylakoids under excessive light.

    PubMed

    Yamamoto, Yasusi; Kai, Suguru; Ohnishi, Atsuki; Tsumura, Nodoka; Ishikawa, Tomomi; Hori, Haruka; Morita, Noriko; Ishikawa, Yasuo

    2014-07-01

    The grana thylakoids of higher plant chloroplasts are crowded with PSII and the associated light-harvesting complexes (LHCIIs). They constitute supercomplexes, and often form semi-crystalline arrays in the grana. The crowded condition of the grana may be necessary for efficient trapping of excitation energy by LHCII under weak light, but it might hinder proper movement of LHCII necessary for reversible aggregation of LHCII in the energy-dependent quenching of Chl fluorescence under moderate high light. When the thylakoids are illuminated with extreme high light, the reaction center-binding D1 protein of PSII is photodamaged, and the damaged protein migrates to the grana margins for degradation and subsequent repair. In both moderate and extreme high-light conditions, fluidity of the thylakoid membrane is crucial. In this review, we first provide an overview of photoprotective processes, then discuss changes in membrane fluidity and mobility of the protein complexes in the grana under excessive light, which are closely associated with photoprotection of PSII. We hypothesize that reversible aggregation of LHCII, which is necessary to avoid light stress under moderate high light, and swift turnover of the photodamaged D1 protein under extreme high light are threatened by irreversible protein aggregation induced by reactive oxygen species in photochemical reactions.

  5. Quality Control of PSII: Behavior of PSII in the Highly Crowded Grana Thylakoids Under Excessive Light

    PubMed Central

    Yamamoto, Yasusi; Kai, Suguru; Ohnishi, Atsuki; Tsumura, Nodoka; Ishikawa, Tomomi; Hori, Haruka; Morita, Noriko; Ishikawa, Yasuo

    2014-01-01

    The grana thylakoids of higher plant chloroplasts are crowded with PSII and the associated light-harvesting complexes (LHCIIs). They constitute supercomplexes, and often form semi-crystalline arrays in the grana. The crowded condition of the grana may be necessary for efficient trapping of excitation energy by LHCII under weak light, but it might hinder proper movement of LHCII necessary for reversible aggregation of LHCII in the energy-dependent quenching of Chl fluorescence under moderate high light. When the thylakoids are illuminated with extreme high light, the reaction center-binding D1 protein of PSII is photodamaged, and the damaged protein migrates to the grana margins for degradation and subsequent repair. In both moderate and extreme high-light conditions, fluidity of the thylakoid membrane is crucial. In this review, we first provide an overview of photoprotective processes, then discuss changes in membrane fluidity and mobility of the protein complexes in the grana under excessive light, which are closely associated with photoprotection of PSII. We hypothesize that reversible aggregation of LHCII, which is necessary to avoid light stress under moderate high light, and swift turnover of the photodamaged D1 protein under extreme high light are threatened by irreversible protein aggregation induced by reactive oxygen species in photochemical reactions. PMID:24610582

  6. High-flux focusable color-tunable and efficient white-light-emitting diode light engine for stage lighting

    NASA Astrophysics Data System (ADS)

    Chakrabarti, Maumita; Pedersen, Henrik Chresten; Petersen, Paul Michael; Poulsen, Christian; Poulsen, Peter Behrensdorff; Dam-Hansen, Carsten

    2016-08-01

    A color mixing light-emitting diode (LED) light engine that can replace 2-kW halogen-Fresnel spotlight with high-luminous flux in excess of 20,000 lm is reported for applications in professional stage and studio lighting. The light engine focuses and mixes the light from 210 LEDs of five different colors through a microlens array (MA) at the gate of Ø50 mm. Hence, it produces homogeneous color-mixed tunable white light from 3000 to 6000 K that can be adjustable from flood to spot position providing 10% translational loss, whereas the corresponding loss from the halogen-Fresnel spotlight is 37%. The design, simulation, and optimization of the light engine is described and compared to the experimental characterization of a prototype. The light engine is optimized through the simulated design of reflector, total internal reflection lens, and MA, as well as the number of LEDs. An optical efficiency of 59% and a luminous efficacy of 33 lm/W are achieved, which is three times higher than the 2-kW halogen-Fresnel spotlight. In addition to having color rendering of color rendering index Ra>85 and television lighting consistency index 12>70, the dimmable and tunable white light can be color controlled during the operational time.

  7. Diurnal variations of hormonal secretion, alertness and cognition in extreme chronotypes under different lighting conditions

    PubMed Central

    Maierova, L.; Borisuit, A.; Scartezzini, J.-L.; Jaeggi, S. M.; Schmidt, C.; Münch, M.

    2016-01-01

    Circadian rhythms in physiology and behavior are modulated by external factors such as light or temperature. We studied whether self-selected office lighting during the habitual waking period had a different impact on alertness, cognitive performance and hormonal secretion in extreme morning and evening chronotypes (N = 32), whose preferred bed- and wake-up times differed by several hours. The self-selected lighting condition was compared with constant bright light and a control condition in dim light. Saliva samples for hormonal analyses, subjective ratings of alertness, wellbeing, visual comfort and cognitive performance were regularly collected. Between the self-selected and the bright, but not the dim lighting condition, the onset of melatonin secretion in the evening (as marker for circadian phase) was significantly different for both chronotypes. Morning chronotypes reported a faster increase in sleepiness during the day than evening chronotypes, which was associated with higher cortisol secretion. Wellbeing, mood and performance in more difficult cognitive tasks were better in bright and self-selected lighting than in dim light for both chronotypes, whereas visual comfort was best in the self-selected lighting. To conclude, self-selection of lighting at work might positively influence biological and cognitive functions, and allow for inter-individual differences. PMID:27646174

  8. Light modulated toxicity of isoproturon toward natural stream periphyton photosynthesis: a comparison between constant and dynamic light conditions.

    PubMed

    Laviale, Martin; Prygiel, Jean; Créach, Anne

    2010-05-10

    This study tested if a variation in light intensity, in comparison to constant light required in well-designed toxicity test, could have measurable consequences on the sensitivity of phototrophic biofilms (periphyton) to isoproturon. Two independent experiments were carried out to investigate the combined effects of light and isoproturon on the photochemical behavior of intact natural biofilms by measurements of chlorophyll fluorescence and pigment composition. Experiment 1 consisted of exposing biofilms to series of isoproturon concentrations (0-2 mg L(-1)) for 7 h under constant light at different irradiance levels (25-300 micromol m(-2) s(-1)). In experiment 2, biofilms were exposed using more environmentally realistic conditions to three selected concentrations of isoproturon (2, 6 and 20 microg L(-1)) during a 7-h-simulated daily light cycle. Our results demonstrated that light, considered here as a direct physical stressor, slightly modulated the acute toxicity of isoproturon on these diatom dominated communities. This was attributed to the fact that these two factors act specifically on the photosynthetic activity. Furthermore, it was shown that a dynamic light regime increased periphyton sensitivity to isoproturon by challenging its photoprotective mechanisms such as the xanthophyll cycle, therefore implying that traditional ecotoxicological bioassays lead to underestimate the effect of isoproturon.

  9. Analysis of condition for uniform lighting generated by array of light emitting diodes with large view angle.

    PubMed

    Qin, Zong; Wang, Kai; Chen, Fei; Luo, Xiaobing; Liu, Sheng

    2010-08-02

    In this research, the condition for uniform lighting generated by array of LEDs with large view angle was studied. The luminous intensity distribution of LED is not monotone decreasing with view angle. A LED with freeform lens was designed as an example for analysis. In a system based on LEDs designed in house with a thickness of 20mm and rectangular arrangement, the condition for uniform lighting was derived and the analytical results demonstrated that the uniformity was not decreasing monotonously with the increasing of LED-to-LED spacing. The illuminance uniformities were calculated with Monte Carlo ray tracing simulations and the uniformity was found to increase with the increasing of certain LED-to-LED spacings anomalously. Another type of large view angle LED and different arrangements were discussed in addition. Both analysis and simulation results showed that the method is available for LED array lighting system design on the basis of large view angle LED..

  10. Bactericidal Mechanisms of Ag2O/TNBs under both Dark and Light Conditions

    NASA Astrophysics Data System (ADS)

    Jin, Yinjia; Dai, Zhaoyi; Liu, Fei; Kim, Hyunjung; Tong, Meiping; Hou, Yanglong

    2013-04-01

    Ag2O deposited titanium dioxides nanobelts (Ag2O/TNBs) were fabricated and used to investigate the toxic effects on aquatic microorganisms. The disinfection activities of Ag2O/TNBs on two representative bacterial strains: Gram-negative E. coli and Gram-positive B. subtilis, were examined under both dark and light conditions. Ag2O/TNBs exhibited stronger bactericidal activities than TNBs under both dark and light conditions. For both cell types, disinfection effects of Ag2O/TNBs were greater under light conditions relative to those under dark conditions. The bactericidal mechanisms of Ag2O/TNBs under both dark and light conditions were explored. Under dark conditions, neither Ag+ ions released from Ag2O/TNBs nor TNBs contributed to the bactericidal activities of Ag2O/TNBs. Under light conditions, both the released Ag+ions and TNBs yet were found to have contributions to the bactericidal effects of Ag2O/TNBs. Active species (H2O2, ?O2-, ande-) generated by Ag2O/TNBs played important roles in the disinfection processes under both dark and light conditions. Without the presence of active species, the direct contact of Ag2O/TNBs with bacterial cells had no bactericidal effect.

  11. Visible light metasurfaces based on gallium nitride high contrast gratings

    NASA Astrophysics Data System (ADS)

    Wang, Zhenhai; He, Shumin; Liu, Qifa; Wang, Wei

    2016-05-01

    We propose visible-light metasurfaces (VLMs) capable of serving as lens and beam deflecting element based on gallium nitride (GaN) high contrast gratings (HCGs). By precisely manipulating the wavefront of the transmitted light, we theoretically demonstrate an HCG focusing lens with transmissivity of 86.3%, and a VLM with beam deflection angle of 6.09° and transmissivity as high as 91.4%. The proposed all-dielectric metasurfaces are promising for GaN-based visible light-emitting diodes (LEDs), which would be robust and versatile for controlling the output light propagation and polarization, as well as enhancing the extraction efficiency of the LEDs.

  12. Does anatoxin-a influence the physiology of Microcystis aeruginosa and Acutodesmus acuminatus under different light and nitrogen conditions?

    PubMed

    Chia, Mathias Ahii; Cordeiro-Araújo, Micheline Kézia; Lorenzi, Adriana Sturion; Bittencourt-Oliveira, Maria do Carmo

    2016-11-01

    Due to changing global climatic conditions, a lot of attention has been given to cyanobacteria and their bioactive secondary metabolites. These conditions are expected to increase the frequency of cyanobacterial blooms, and consequently, the concentrations of cyanotoxins in aquatic ecosystems. Unfortunately, there are very few studies that address the effects of cyanotoxins on the physiology of phytoplankton species under different environmental conditions. In the present study, we investigated the effect of the cyanotoxin anatoxin-a (ATX-A) on Microcystis aeruginosa (cyanobacteria) and Acutodesmus acuminatus (chlorophyta) under varying light and nitrogen conditions. Low light (LL) and nitrogen limitation (LN) resulted in significant cell density reduction of the two species, while the effect of ATX-A on M. aeruginosa was not significant. However, under normal (NN) and high nitrogen (HN) concentrations, exposure to ATX-A resulted in significantly (p < 0.05) lower cell density of A. acuminatus. Pigment content of M. aeruginosa significantly (p < 0.05) declined in the presence of ATX-A, regardless of the light condition. Under each light condition, exposure to ATX-A caused a reduction in total microcystin (MC) content of M. aeruginosa. The detected MC levels varied as a function of nitrogen and ATX-A concentrations. The production of reactive oxygen species (H2O2) and antioxidant enzyme activities of both species were significantly altered by ATX-A under different light and nitrogen conditions. Our results revealed that under different light and nitrogen conditions, the response of M. aeruginosa and A. acuminatus to ATX-A was variable, which demonstrated the need for different endpoints of environmental factors during ecotoxicological investigations.

  13. Stray-light suppression with high-collection efficiency in laser light-scattering experiments

    NASA Technical Reports Server (NTRS)

    Deilamian, K.; Gillaspy, J. D.; Kelleher, D. E.

    1992-01-01

    An optical system is described for collecting a large fraction of fluorescent light emitted isotropically from a cylindrical interaction region. While maintaining an overall detection efficiency of 9 percent, the system rejects, by more than 12 orders of magnitude, incident laser light along a single axis that intersects the interaction region. Such a system is useful for a wide variety of light-scattering experiments in which high-collection efficiency is desirable, but in which light from an incident laser beam must be rejected without resorting to spectral filters.

  14. Analysis of light emitting diode array lighting system based on human vision: normal and abnormal uniformity condition.

    PubMed

    Qin, Zong; Ji, Chuangang; Wang, Kai; Liu, Sheng

    2012-10-08

    In this paper, condition for uniform lighting generated by light emitting diode (LED) array was systematically studied. To take human vision effect into consideration, contrast sensitivity function (CSF) was novelly adopted as critical criterion for uniform lighting instead of conventionally used Sparrow's Criterion (SC). Through CSF method, design parameters including system thickness, LED pitch, LED's spatial radiation distribution and viewing condition can be analytically combined. In a specific LED array lighting system (LALS) with foursquare LED arrangement, different types of LEDs (Lambertian and Batwing type) and given viewing condition, optimum system thicknesses and LED pitches were calculated and compared with those got through SC method. Results show that CSF method can achieve more appropriate optimum parameters than SC method. Additionally, an abnormal phenomenon that uniformity varies with structural parameters non-monotonically in LALS with non-Lambertian LEDs was found and analyzed. Based on the analysis, a design method of LALS that can bring about better practicability, lower cost and more attractive appearance was summarized.

  15. Structure light telecentric stereoscopic vision 3D measurement system based on Scheimpflug condition

    NASA Astrophysics Data System (ADS)

    Mei, Qing; Gao, Jian; Lin, Hui; Chen, Yun; Yunbo, He; Wang, Wei; Zhang, Guanjin; Chen, Xin

    2016-11-01

    We designed a new three-dimensional (3D) measurement system for micro components: a structure light telecentric stereoscopic vision 3D measurement system based on the Scheimpflug condition. This system creatively combines the telecentric imaging model and the Scheimpflug condition on the basis of structure light stereoscopic vision, having benefits of a wide measurement range, high accuracy, fast speed, and low price. The system measurement range is 20 mm×13 mm×6 mm, the lateral resolution is 20 μm, and the practical vertical resolution reaches 2.6 μm, which is close to the theoretical value of 2 μm and well satisfies the 3D measurement needs of micro components such as semiconductor devices, photoelectron elements, and micro-electromechanical systems. In this paper, we first introduce the principle and structure of the system and then present the system calibration and 3D reconstruction. We then present an experiment that was performed for the 3D reconstruction of the surface topography of a wafer, followed by a discussion. Finally, the conclusions are presented.

  16. Proteins involved in biophoton emission and flooding-stress responses in soybean under light and dark conditions.

    PubMed

    Kamal, Abu Hena Mostafa; Komatsu, Setsuko

    2016-02-01

    To know the molecular systems basically flooding conditions in soybean, biophoton emission measurements and proteomic analyses were carried out for flooding-stressed roots under light and dark conditions. Photon emission was analyzed using a photon counter. Gel-free quantitative proteomics were performed to identify significant changes proteins using the nano LC-MS along with SIEVE software. Biophoton emissions were significantly increased in both light and dark conditions after flooding stress, but gradually decreased with continued flooding exposure compared to the control plants. Among the 120 significantly identified proteins in the roots of soybean plants, 73 and 19 proteins were decreased and increased in the light condition, respectively, and 4 and 24 proteins were increased and decreased, respectively, in the dark condition. The proteins were mainly functionally grouped into cell organization, protein degradation/synthesis, and glycolysis. The highly abundant lactate/malate dehydrogenase proteins were decreased in flooding-stressed roots exposed to light, whereas the lysine ketoglutarate reductase/saccharopine dehydrogenase bifunctional enzyme was increased in both light and dark conditions. Notably, however, specific enzyme assays revealed that the activities of these enzymes and biophoton emission were sharply increased after 3 days of flooding stress. This finding suggests that the source of biophoton emission in roots might involve the chemical excitation of electron or proton through enzymatic or non-enzymatic oxidation and reduction reactions. Moreover, the lysine ketoglutarate reductase/saccharopine dehydrogenase bifunctional enzyme may play important roles in responses in flooding stress of soybean under the light condition and as a contributing factor to biophoton emission.

  17. Resin-based composite light-cured properties assessed by laboratory standards and simulated clinical conditions.

    PubMed

    Ilie, N; Bauer, H; Draenert, M; Hickel, R

    2013-01-01

    SUMMARY The following parameters were varied: 1) irradiation technique: top and bottom polymerization according to the ISO standard, and polymerization from only the top, simulating clinical situations; 2) polymerization time: 5, 10, 20, and 40 seconds; 3) storage conditions: 24 hours in distilled water, thermocycling followed by storage for four weeks in artificial saliva or alcohol. Flexural strength (FS), flexural modulus (Eflexural), indentation modulus (E), Vickers hardness (HV), and degree of conversion (DC) were measured. The laboratory results were similar to those measured by mimicking clinical conditions only at high polymerization times and mild storage conditions (20 seconds and 40 seconds and storage for 24 hours in water, and 40 seconds with aging and storing in saliva). Significantly higher DC values were measured on the top than on the bottom of a 2-mm layer for all polymerization times. Overall, 5-second and 10-second irradiation times induced significantly lower DC values compared to the currently recommended polymerization times of 20 and 40 seconds at both the top and bottom of the samples. The initial DC differences as a function of irradiation time are leveled at 24 hours of storage but seem to do well in predicting long-term material behavior. A minimum irradiation time of 20 seconds is necessary clinically to achieve the best mechanical properties with modern high-intensity light emitting diode (LED) units.

  18. Metabolomic analysis indicates a pivotal role of the hepatotoxin microcystin in high light adaptation of Microcystis.

    PubMed

    Meissner, Sven; Steinhauser, Dirk; Dittmann, Elke

    2015-05-01

    Microcystis is a freshwater cyanobacterium frequently forming nuisance blooms in the summer months. The genus belongs to the predominant producers of the potent hepatotoxin microcystin. The success of Microcystis and its remarkable resistance to high light conditions are not well understood. Here, we have compared the metabolic response of Microcystis aeruginosa PCC7806, its microcystin-deficient ΔmcyB mutant (Mut) and the cyanobacterial model organism Synechocystis PCC6803 to high light exposure of 250 μmol photons m(-2)  s(-1) using GC/MS-based metabolomics. Microcystis wild type and Mut show pronounced differences in their metabolic reprogramming upon high light. Seventeen per cent of the detected metabolites showed significant differences between the two genotypes after high light exposure. Whereas the microcystin-producing wild type shows a faster accumulation of glycolate upon high light illumination, loss of microcystin leads to an accumulation of general stress markers such as trehalose and sucrose. The study further uncovers differences in the high light adaptation of the bloom-forming cyanobacterium Microcystis and the model cyanobacterium Synechocystis. Most notably, Microcystis invests more into carbon reserves such as glycogen after high light exposure. Our data shed new light on the lifestyle of bloom-forming cyanobacteria, the role of the widespread toxin microcystin and the metabolic diversity of cyanobacteria.

  19. Symbiodinium transcriptome and global responses of cells to immediate changes in light intensity when grown under autotrophic or mixotrophic conditions.

    PubMed

    Xiang, Tingting; Nelson, William; Rodriguez, Jesse; Tolleter, Dimitri; Grossman, Arthur R

    2015-04-01

    Symbiosis between unicellular dinoflagellates (genus Symbiodinium) and their cnidarian hosts (e.g. corals, sea anemones) is the foundation of coral reef ecosystems. Dysfunction of this symbiosis under changing environmental conditions has led to global reef decline. Little information is known about Symbiodinium gene expression and mechanisms by which light impacts host-symbiont associations. To address these issues, we generated a transcriptome from axenic Symbiodinium strain SSB01. Here we report features of the transcriptome, including occurrence and length distribution of spliced leader sequences, the functional landscape of encoded proteins and the impact of light on gene expression. Expression of many Symbiodinium genes appears to be significantly impacted by light. Transcript encoding cryptochrome 2 declined in high light while some transcripts for Regulators of Chromatin Condensation (RCC1) declined in the dark. We also identified a transcript encoding a light harvesting AcpPC protein with homology to Chlamydomonas LHCSR2. The level of this transcript increased in high light autotrophic conditions, suggesting that it is involved in photo-protection and the dissipation of excess absorbed light energy. The most extensive changes in transcript abundances occurred when the algae were transferred from low light to darkness. Interestingly, transcripts encoding several cell adhesion proteins rapidly declined following movement of cultures to the dark, which correlated with a dramatic change in cell surface morphology, likely reflecting the complexity of the extracellular matrix. Thus, light-sensitive cell adhesion proteins may play a role in establishing surface architecture, which may in turn alter interactions between the endosymbiont and its host.

  20. Observations of swash under highly dissipative conditions

    NASA Astrophysics Data System (ADS)

    Ruessink, B. G.; Kleinhans, M. G.; van den Beukel, P. G. L.

    1998-02-01

    Video measurements of swash were made at the low-sloping beach of the multiple bar system at Terschelling, Netherlands. The majority of the measurements were conducted under highly dissipative conditions with Iribarren numbers ξ0 (the ratio of beach slope to the square root of offshore wave steepness) less than 0.2. Infragravity (0.004-0.05 Hz) waves dominated the swash with an average ratio of infragravity and total swash height Rig/R of 0.85. Using linear regression we investigated the dependence of swash parameters on environmental conditions such as short-wave height, period, and local beach slope. On average, Rig was about 30% of the offshore wave height H0; the slope in the linear H0 dependence of Rig amounted to only 0.18, considerably smaller than that observed on steeper beaches. The data set shows evidence for saturation of the higher infragravity frequencies for ξ0 less than, roughly, 0.27. In our opinion, this saturation caused the constant of proportionality in the linear relationship between Rig/H0 and ξ0 to be significantly larger than that observed under higher Iribarren number regimes. The saturated tails of the swash spectra had an approximate f-3 roll-off (where f is frequency), whereas, in general, the nonsaturated parts were white. This lack of significant peaks casts doubt on the causality between infragravity waves and nearshore bars.

  1. Thiol-Capped Gold Nanoparticles Swell-Encapsulated into Polyurethane as Powerful Antibacterial Surfaces Under Dark and Light Conditions

    PubMed Central

    Macdonald, Thomas J.; Wu, Ke; Sehmi, Sandeep K.; Noimark, Sacha; Peveler, William J.; du Toit, Hendrik; Voelcker, Nicolas H.; Allan, Elaine; MacRobert, Alexander J.; Gavriilidis, Asterios; Parkin, Ivan P.

    2016-01-01

    A simple procedure to develop antibacterial surfaces using thiol-capped gold nanoparticles (AuNPs) is shown, which effectively kill bacteria under dark and light conditions. The effect of AuNP size and concentration on photo-activated antibacterial surfaces is reported and we show significant size effects, as well as bactericidal activity with crystal violet (CV) coated polyurethane. These materials have been proven to be powerful antibacterial surfaces against both Gram-positive and Gram-negative bacteria. AuNPs of 2, 3 or 5 nm diameter were swell-encapsulated into PU before a coating of CV was applied (known as PU-AuNPs-CV). The antibacterial activity of PU-AuNPs-CV samples was tested against Staphylococcus aureus and Escherichia coli as representative Gram-positive and Gram-negative bacteria under dark and light conditions. All light conditions in this study simulated a typical white-light hospital environment. This work demonstrates that the antibacterial activity of PU-AuNPs-CV samples and the synergistic enhancement of photoactivity of triarylmethane type dyes is highly dependent on nanoparticle size and concentration. The most powerful PU-AuNPs-CV antibacterial surfaces were achieved using 1.0 mg mL−1 swell encapsulation concentrations of 2 nm AuNPs. After two hours, Gram-positive and Gram-negative bacteria were reduced to below the detection limit (>4 log) under dark and light conditions. PMID:27982122

  2. Thiol-Capped Gold Nanoparticles Swell-Encapsulated into Polyurethane as Powerful Antibacterial Surfaces Under Dark and Light Conditions

    NASA Astrophysics Data System (ADS)

    MacDonald, Thomas J.; Wu, Ke; Sehmi, Sandeep K.; Noimark, Sacha; Peveler, William J.; Du Toit, Hendrik; Voelcker, Nicolas H.; Allan, Elaine; MacRobert, Alexander J.; Gavriilidis, Asterios; Parkin, Ivan P.

    2016-12-01

    A simple procedure to develop antibacterial surfaces using thiol-capped gold nanoparticles (AuNPs) is shown, which effectively kill bacteria under dark and light conditions. The effect of AuNP size and concentration on photo-activated antibacterial surfaces is reported and we show significant size effects, as well as bactericidal activity with crystal violet (CV) coated polyurethane. These materials have been proven to be powerful antibacterial surfaces against both Gram-positive and Gram-negative bacteria. AuNPs of 2, 3 or 5 nm diameter were swell-encapsulated into PU before a coating of CV was applied (known as PU-AuNPs-CV). The antibacterial activity of PU-AuNPs-CV samples was tested against Staphylococcus aureus and Escherichia coli as representative Gram-positive and Gram-negative bacteria under dark and light conditions. All light conditions in this study simulated a typical white-light hospital environment. This work demonstrates that the antibacterial activity of PU-AuNPs-CV samples and the synergistic enhancement of photoactivity of triarylmethane type dyes is highly dependent on nanoparticle size and concentration. The most powerful PU-AuNPs-CV antibacterial surfaces were achieved using 1.0 mg mL‑1 swell encapsulation concentrations of 2 nm AuNPs. After two hours, Gram-positive and Gram-negative bacteria were reduced to below the detection limit (>4 log) under dark and light conditions.

  3. πSPIM: high NA high resolution isotropic light-sheet imaging in cell culture dishes

    PubMed Central

    Theer, Patrick; Dragneva, Denitsa; Knop, Michael

    2016-01-01

    Light-sheet fluorescence microscopy (LSFM), also termed single plane illumination microscopy (SPIM), enables live cell fluorescence imaging with optical sectioning capabilities superior to confocal microscopy and without any out-of-focus exposure of the specimen. However, the need of two objective lenses, one for light-sheet illumination and one for imaging, imposes geometrical constraints that require LSFM setups to be adapted to the specific needs of different types of specimen in order to obtain optimal imaging conditions. Here we demonstrate the use of an oblique light-sheet configuration adapted to provide the highest possible Gaussian beam enabled resolution in LSFM. The oblique light-sheet configuration furthermore enables LSFM imaging at the surface of a cover slip, without the need of specific sample mounting. In addition, the system is compatible with simultaneous high NA wide-field epi-fluorescence imaging of the specimen contained in a glass-bottom cell culture dish. This prevents cumbersome sample mounting and enables rapid screening of large areas of the specimen followed by high-resolution LSFM imaging of selected cells. We demonstrate the application of this microscope for in toto imaging of endocytosis in yeast, showing for the first time imaging of all endocytic events of a given cell over a period of >5 minutes with sub-second resolution. PMID:27619647

  4. MORPHOLOGICAL AND PHYSIOLOGICAL EFFECTS IN PROBOSCIA ALATA (BACILLARIOPHYCEAE) GROWN UNDER DIFFERENT LIGHT AND CO2 CONDITIONS OF THE MODERN SOUTHERN OCEAN(1).

    PubMed

    Hoogstraten, Astrid; Timmermans, Klaas R; de Baar, Hein J W

    2012-06-01

    The combined effects of different light and aqueous CO2 conditions were assessed for the Southern Ocean diatom Proboscia alata (Brightwell) Sundström in laboratory experiments. Selected culture conditions (light and CO2(aq) ) were representative for the natural ranges in the modern Southern Ocean. Light conditions were 40 (low) and 240 (high) μmol photons · m(-2)  · s(-1) . The three CO2(aq) conditions ranged from 8 to 34 μmol · kg(-1) CO2(aq) (equivalent to a pCO2 from 137 to 598 μatm, respectively). Clear morphological changes were induced by these different CO2(aq) conditions. Cells in low [CO2(aq) ] formed spirals, while many cells in high [CO2(aq) ] disintegrated. Cell size and volume were significantly affected by the different CO2(aq) concentrations. Increasing CO2(aq) concentrations led to an increase in particulate organic carbon concentrations per cell in the high light cultures, with exactly the opposite happening in the low light cultures. However, other parameters measured were not influenced by the range of CO2(aq) treatments. This included growth rates, chlorophyll a concentration and photosynthetic yield (FV /FM ). Different light treatments had a large effect on nutrient uptake. High light conditions caused an increased nutrient uptake rate compared to cells grown in low light conditions. Light and CO2 conditions co-determined in various ways the response of P. alata to changing environmental conditions. Overall P. alata appeared to be well adapted to the natural variability in light availability and CO2(aq) concentration of the modern Southern Ocean. Nevertheless, our results showed that P. alata is susceptible to future changes in inorganic carbon concentrations in the Southern Ocean.

  5. High efficiency III-nitride light-emitting diodes

    DOEpatents

    Crawford, Mary; Koleske, Daniel; Cho, Jaehee; Zhu, Di; Noemaun, Ahmed; Schubert, Martin F; Schubert, E. Fred

    2013-05-28

    Tailored doping of barrier layers enables balancing of the radiative recombination among the multiple-quantum-wells in III-Nitride light-emitting diodes. This tailored doping enables more symmetric carrier transport and uniform carrier distribution which help to reduce electron leakage and thus reduce the efficiency droop in high-power III-Nitride LEDs. Mitigation of the efficiency droop in III-Nitride LEDs may enable the pervasive market penetration of solid-state-lighting technologies in high-power lighting and illumination.

  6. Effectiveness of dye sensitised solar cell under low light condition using wide band dye

    SciTech Connect

    Sahmer, Ahmad Zahrin Mohamed, Norani Muti Zaine, Siti Nur Azella

    2015-07-22

    Dye sensistised solar cell (DSC) based on nanocrystalline TiO{sub 2} has the potential to be used in indoor consumer power application. In realizing this, the DSC must be optimized to generate power under low lighting condition and under wider visible light range. The use of wide band dye N749 which has a wider spectrum sensitivity increases the photon conversion to electron between the visible light spectrums of 390nm to 700nm. This paper reports the study on the effectiveness of the dye solar cell with N749 dye under low light condition in generating usable power which can be used for indoor consumer application. The DSC was fabricated using fluorine doped tin oxide (FTO) glass with screen printing method and the deposited TiO{sub 2} film was sintered at 500°C. The TiO{sub 2} coated FTO glass was then soaked in the N749 dye, assembled into test cell, and tested under the standard test condition at irradiance of 1000 W/m{sup 2} with AM1.5 solar soaker. The use of the 43T mesh for the dual pass screen printing TiO{sub 2} paste gives a uniform TiO{sub 2} film layer of 16 µm. The low light condition was simulated using 1/3 filtered irradiance with the solar soaker. The fabricated DSC test cell with the N749 dye was found to have a higher efficiency of 6.491% under low light condition compared to the N719 dye. Under the standard test condition at 1 sun the N749 test cell efficiency is 4.55%. The increases in efficiency is attributed to the wider spectral capture of photon of the DSC with N749 dye. Furthermore, the use of N749 dye is more effective under low light condition as the V{sub OC} decrement is less significant compared to the latter.

  7. Accumulation of phenylpropanoids and correlated gene expression in hairy roots of tartary buckwheat under light and dark conditions.

    PubMed

    Thwe, Aye Aye; Kim, YeJi; Li, Xiaohua; Kim, Yeon Bok; Park, Nam-Il; Kim, Haeng Hoon; Kim, Sun-Ju; Park, Sang Un

    2014-12-01

    Differential expression patterns of flavonoid biosynthetic pathway genes in the hairy roots of tartary buckwheat cultivars "Hokkai T8" and "Hokkai T10" were studied over a time course of the light-dark cycle. The Agrobacterium rhizogenes-mediated transformation system was applied for inducing hairy roots. Further, a total of six phenolic compounds and two anthocyanins were analyzed in the hairy roots which were exposed to both light and dark conditions, and their amounts were estimated by HPLC. The gene expression levels peaked on day 5 of culture during the time course of both dark and light conditions. Notably, FtPAL, Ft4CL, FtC4H, FtCHI, FtF3H, FtF3'H-1, and FtFLS-1 were more highly expressed in Hokkai T10 than in Hokkai T8 under dark conditions, among which FtPAL and FtCHI were found to be significantly upregulated, except on day 20 of culture. Significantly higher levels of phenolic compound, rutin, along with two anthocyanins were detected in the hairy roots of Hokkai T10 under both conditions. Furthermore, among all the phenolic compounds detected, the amount of rutin in Hokkai T10 hairy roots was found to be ∼5-fold (59,01 mg/g dry weight) higher than that in the control (12.45 mg/g dry weight) at the respective time periods under light and dark conditions.

  8. Directional orientation of birds by the magnetic field under different light conditions.

    PubMed

    Wiltschko, Roswitha; Stapput, Katrin; Thalau, Peter; Wiltschko, Wolfgang

    2010-04-06

    This paper reviews the directional orientation of birds with the help of the geomagnetic field under various light conditions. Two fundamentally different types of response can be distinguished. (i) Compass orientation controlled by the inclination compass that allows birds to locate courses of different origin. This is restricted to a narrow functional window around the total intensity of the local geomagnetic field and requires light from the short-wavelength part of the spectrum. The compass is based on radical-pair processes in the right eye; magnetite-based receptors in the beak are not involved. Compass orientation is observed under 'white' and low-level monochromatic light from ultraviolet (UV) to about 565 nm green light. (ii) 'Fixed direction' responses occur under artificial light conditions such as more intense monochromatic light, when 590 nm yellow light is added to short-wavelength light, and in total darkness. The manifestation of these responses depends on the ambient light regime and is 'fixed' in the sense of not showing the normal change between spring and autumn; their biological significance is unclear. In contrast to compass orientation, fixed-direction responses are polar magnetic responses and occur within a wide range of magnetic intensities. They are disrupted by local anaesthesia of the upper beak, which indicates that the respective magnetic information is mediated by iron-based receptors located there. The influence of light conditions on the two types of response suggests complex interactions between magnetoreceptors in the right eye, those in the upper beak and the visual system.

  9. Directional orientation of birds by the magnetic field under different light conditions

    PubMed Central

    Wiltschko, Roswitha; Stapput, Katrin; Thalau, Peter; Wiltschko, Wolfgang

    2010-01-01

    This paper reviews the directional orientation of birds with the help of the geomagnetic field under various light conditions. Two fundamentally different types of response can be distinguished. (i) Compass orientation controlled by the inclination compass that allows birds to locate courses of different origin. This is restricted to a narrow functional window around the total intensity of the local geomagnetic field and requires light from the short-wavelength part of the spectrum. The compass is based on radical-pair processes in the right eye; magnetite-based receptors in the beak are not involved. Compass orientation is observed under ‘white’ and low-level monochromatic light from ultraviolet (UV) to about 565 nm green light. (ii) ‘Fixed direction’ responses occur under artificial light conditions such as more intense monochromatic light, when 590 nm yellow light is added to short-wavelength light, and in total darkness. The manifestation of these responses depends on the ambient light regime and is ‘fixed’ in the sense of not showing the normal change between spring and autumn; their biological significance is unclear. In contrast to compass orientation, fixed-direction responses are polar magnetic responses and occur within a wide range of magnetic intensities. They are disrupted by local anaesthesia of the upper beak, which indicates that the respective magnetic information is mediated by iron-based receptors located there. The influence of light conditions on the two types of response suggests complex interactions between magnetoreceptors in the right eye, those in the upper beak and the visual system. PMID:19864263

  10. High-output LED-based light engine for profile lighting fixtures with high color uniformity using freeform reflectors.

    PubMed

    Gadegaard, Jesper; Jensen, Thøger Kari; Jørgensen, Dennis Thykjær; Kristensen, Peter Kjær; Søndergaard, Thomas; Pedersen, Thomas Garm; Pedersen, Kjeld

    2016-02-20

    In the stage lighting and entertainment market, light engines (LEs) for lighting fixtures are often based on high-intensity discharge (HID) bulbs. Switching to LED-based light engines gives possibilities for fast switching, additive color mixing, a longer lifetime, and potentially, more energy-efficient systems. The lumen output of a single LED is still not sufficient to replace an HID source in high-output profile fixtures, but combining multiple LEDs can create an LE with a similar output, but with added complexity. This paper presents the results of modeling and testing such a light engine. Custom ray-tracing software was used to design a high-output red, green and blue LED-based light engine with twelve CBT-90 LEDs using a dual-reflector principle. The simulated optical system efficiency was 0.626 with a perfect (R=1) reflector coating for light delivered on a target surface through the entire optical system. A profile lighting fixture prototype was created, and provided an output of 6744 lumen and an efficiency of 0.412. The lower efficiency was mainly due to a non-optimal reflector coating, and the optimized design is expected to reach a significantly higher efficiency.

  11. Light transmission through intraocular lenses with or without yellow chromophore (blue light filter) and its potential influence on functional vision in everyday environmental conditions.

    PubMed

    Owczarek, Grzegorz; Gralewicz, Grzegorz; Skuza, Natalia; Jurowski, Piotr

    2016-01-01

    In this research the factors used to evaluate the light transmission through two types of acrylic hydrophobic intraocular lenses, one that contained yellow chromophore that blocks blue light transmission and the other which did not contain that filter, were defined according to various light condition, e.g., daylight and at night. The potential influence of light transmission trough intraocular lenses with or without yellow chromophore on functional vision in everyday environmental conditions was analysed.

  12. Light transmission through intraocular lenses with or without yellow chromophore (blue light filter) and its potential influence on functional vision in everyday environmental conditions

    PubMed Central

    Owczarek, Grzegorz; Gralewicz, Grzegorz; Skuza, Natalia; Jurowski, Piotr

    2016-01-01

    In this research the factors used to evaluate the light transmission through two types of acrylic hydrophobic intraocular lenses, one that contained yellow chromophore that blocks blue light transmission and the other which did not contain that filter, were defined according to various light condition, e.g., daylight and at night. The potential influence of light transmission trough intraocular lenses with or without yellow chromophore on functional vision in everyday environmental conditions was analysed. PMID:26327154

  13. Characterization of lighted upflow anaerobic sludge blanket (LUASB) method under sulfate-rich conditions.

    PubMed

    Sawayama, S; Tsukahara, K; Yagishita, T; Hanada, S

    2001-01-01

    Growth of phototrophic bacteria was induced from granules in a lighted upflow anaerobic sludge blanket (LUASB) reactor supplied with an organic-acid-based medium containing 141.7 mg S.l(-1) of SO4(2-) under light conditions (100 microE.m(-2).s(-1)). We investigated the population dynamics of phototrophic bacteria in the LUASB reactor and the performance of the LUASB reactor for wastewater treatment and poly-beta-hydroxybutyrate (PHB) production under anaerobic light and sulfate-rich conditions. In vivo absorption spectra and a colony count suggested that populations of Rhodopseudomonas palustris and Blastochloris sulfoviridis in the LUASB reactor supplied with a medium containing 574.4 mg S.l(-1) of SO4(2-) under light conditions were lower than those supplied with a medium containing 1.0 or 141.7 mg S.l(-1) of SO4(2-) under parallel conditions. Removal efficiencies of ammonium and phosphate in the LUASB reactor supplied with the medium containing 141.7 mg S.l(-1) of SO4(2-) under light conditions were higher than those under parallel conditions but without illumination. The difference in the results of runs under light or dark conditions suggested that the ammonium and phosphate ion removal efficiencies were improved by increasing the amount of phototrophic bacterial biomass in the LUASB reactor under sulfate-rich conditions. The average PHB production rates of the bacterial cells recovered from the effluent of the LUASB reactor supplied with a medium containing 141.7, 283.5 or 574.4 mg S.l(-1) of SO4(2-) were 1.0-2.9 mg.l(-1)-reactor.d(-1) and the average PHB content based on the dry bacterial biomass was 1.4-3.6%.

  14. High root temperature affects the tolerance to high light intensity in Spathiphyllum plants.

    PubMed

    Soto, Adriana; Hernández, Laura; Quiles, María José

    2014-10-01

    Spathiphyllum wallisii plants were sensitive to temperature stress under high illumination, although the susceptibility of leaves to stress may be modified by root temperature. Leaves showed higher tolerance to high illumination, in both cold and heat conditions, when the roots were cooled, probably because the chloroplast were protected by excess excitation energy dissipation mechanisms such as cyclic electron transport. When the roots were cooled both the activity of electron donation by NADPH and ferredoxin to plastoquinone and the amount of PGR5 polypeptide, an essential component of cyclic electron flow around PSI, increased. However, when the stems were heated or cooled under high illumination, but the roots were heated, the quantum yield of PSII decreased considerably and neither the electron donation activity by NADPH and ferredoxin to plastoquinone nor the amount of PGR5 polypeptide increased. In such conditions, the cyclic electron flow cannot be enhanced by high light and PSII is damaged as a result of insufficient dissipation of excess light energy. Additionally, the damage to PSII induced the increase in both chlororespiratory enzymes, NDH complex and PTOX.

  15. Biological dinitrogen fixation by selected soil cyanobacteria as affected by strain origin, morphotype, and light conditions.

    PubMed

    Hrčková, K; Simek, M; Hrouzek, P; Lukešová, A

    2010-09-01

    The potential for N(2) fixation by heterocystous cyanobacteria isolated from soils of different geographical areas was determined as nitrogenase activity (NA) using the acetylene reduction assay. Morphology of cyanobacteria had the largest influence on NA determined under light conditions. NA was generally higher in species lacking thick slime sheaths. The highest value (1446 nmol/h C(2)H(4) per g fresh biomass) was found in the strain of branched cyanobacterium Hassalia (A Has1) from the polar region. A quadratic relationship between NA and biomass was detected in the Tolypothrix group under light conditions. The decline of NA in dark relative to light conditions ranged from 37 to 100 % and differed among strains from distinct geographical areas. Unlike the NA of temperate and tropical strains, whose decline in dark relative to light was 24 and 17 %, respectively, the NA of polar strains declined to 1 % in the dark. This difference was explained by adaptation to different light conditions in temperate, tropical, and polar habitats. NA was not related to the frequency of heterocysts in strains of the colony-forming cyanobacterium Nostoc. Colony morphology and life cycle are therefore more important for NA then heterocyst frequency. NA values probably reflect the environmental conditions where the cyanobacterium was isolated and the physiological and morphological state of the strain.

  16. Face relighting from a single image under arbitrary unknown lighting conditions.

    PubMed

    Wang, Yang; Zhang, Lei; Liu, Zicheng; Hua, Gang; Wen, Zhen; Zhang, Zhengyou; Samaras, Dimitris

    2009-11-01

    In this paper, we present a new method to modify the appearance of a face image by manipulating the illumination condition, when the face geometry and albedo information is unknown. This problem is particularly difficult when there is only a single image of the subject available. Recent research demonstrates that the set of images of a convex Lambertian object obtained under a wide variety of lighting conditions can be approximated accurately by a low-dimensional linear subspace using a spherical harmonic representation. Moreover, morphable models are statistical ensembles of facial properties such as shape and texture. In this paper, we integrate spherical harmonics into the morphable model framework by proposing a 3D spherical harmonic basis morphable model (SHBMM). The proposed method can represent a face under arbitrary unknown lighting and pose simply by three low-dimensional vectors, i.e., shape parameters, spherical harmonic basis parameters, and illumination coefficients, which are called the SHBMM parameters. However, when the image was taken under an extreme lighting condition, the approximation error can be large, thus making it difficult to recover albedo information. In order to address this problem, we propose a subregion-based framework that uses a Markov random field to model the statistical distribution and spatial coherence of face texture, which makes our approach not only robust to extreme lighting conditions, but also insensitive to partial occlusions. The performance of our framework is demonstrated through various experimental results, including the improved rates for face recognition under extreme lighting conditions.

  17. Nanosecond high-power dense microplasma switch for visible light

    SciTech Connect

    Bataller, A. Koulakis, J.; Pree, S.; Putterman, S.

    2014-12-01

    Spark discharges in high-pressure gas are known to emit a broadband spectrum during the first 10 s of nanoseconds. We present calibrated spectra of high-pressure discharges in xenon and show that the resulting plasma is optically thick. Laser transmission data show that such a body is opaque to visible light, as expected from Kirchoff's law of thermal radiation. Nanosecond framing images of the spark absorbing high-power laser light are presented. The sparks are ideal candidates for nanosecond, high-power laser switches.

  18. Effect of BPA on the germination, root development, seedling growth and leaf differentiation under different light conditions in Arabidopsis thaliana.

    PubMed

    Pan, Wen-Juan; Xiong, Can; Wua, Qiu-Ping; Liu, Jin-Xia; Liao, Hong-Mei; Chen, Wei; Liu, Yong-Sheng; Zheng, Lei

    2013-11-01

    Bisphenol A (BPA) is a well-known environmental toxic substance, which exerts unfavorable effects through endocrine disruptor (ER)-dependent and ER-independent mechanisms to threaten ecological systems seriously. BPA may also interact with other environmental factors, such as light and heavy metals, to have a synergetic effect in plants. However, there is little data concerning the toxic effect of BPA on the primary producers-plants and its possible interaction with light-dependent response. Here, the effects of BPA on germination, fresh weight, tap root length, and leaf differentiation were studied in Arabidopsis thaliana under different parts of light spectrum (dark, red, yellow, green, blue, and white light). Our results showed that low-dose BPA (1.0, 5.0 µM) caused an increase in the fresh weight, the tap root length and the lateral root formation of A. thaliana seedlings, while high-dose BPA (10.0, 25.0 µM) show an inhibition effect in a dose-dependent manner. Unlike karrikins, the effects of BPA on germination fresh weight and tap roots length under various light conditions are similar, which imply that BPA has no notable role in priming light response in germination and early seedling growth in A. thaliana. Meanwhile, BPA exposure influences the differentiation of A. thaliana leaf blade significantly in a light-dependent manner with little to no effect in dark and clear effect under red illumination.

  19. Effects of blue light deficiency on acclimation of light energy partitioning in PSII and CO2 assimilation capacity to high irradiance in spinach leaves.

    PubMed

    Matsuda, Ryo; Ohashi-Kaneko, Keiko; Fujiwara, Kazuhiro; Kurata, Kenji

    2008-04-01

    Blue light effects on the acclimation of energy partitioning characteristics in PSII and CO2 assimilation capacity in spinach to high growth irradiance were investigated. Plants were grown hydroponically in different light treatments that were a combination of two light qualities and two irradiances,i.e. white light and blue-deficient light at photosynthetic photon flux densities (PPFDs) of 100 and 500 micromol m(-2) s(-1). The CO2 assimilation rate, the quantum efficiency of PSII(PhiPSII) and thermal dissipation activity (F(v)/F(m)-F'(v)/F'(m)) in young, fully expanded leaves were measured under 1,600 micromol m(-2) s(-1) white light. The CO2 assimilation rate and (PhiPSII) were higher, while F(v)/F(m)-F'(v)/F'(m) was lower in plants grown under high irradiance than in plants grown under low irradiance. These responses were observed irrespective of the presence or absence of blue light during growth. The extent of the increase in the CO2 assimilation rate and PhiPSII and the decrease in F(v)/F(m)-F'(v)/F'(m) by high growth irradiance was smaller under blue light-deficient conditions. These results indicate that blue light helps to boost the acclimation responses of energy partitioning in PSII and CO2 assimilation to high irradiance. Similarly, leaf N, Cyt f and Chl contents per unit leaf area increased by high growth irradiance, and the extent of the increment in leaf N, Cyt f and Chl was smaller under blue light-deficient conditions. Regression analysis showed that the differences in energy partitioning in PSIIand CO2 assimilation between plants grown under high white light and high blue-deficient light were closely related to the difference in leaf N.

  20. LED light engine concept with ultra-high scalable luminance

    NASA Astrophysics Data System (ADS)

    Hoelen, Christoph; de Boer, Dick; Bruls, Dominique; van der Eyden, Joost; Koole, Rolf; Li, Yun; Mirsadeghi, Mo; Vanbroekhoven, Vincent; Van den Bergh, John-John; Van de Voorde, Patrick

    2016-03-01

    Although LEDs have been introduced successfully in many general lighting applications during the past decade, high brightness light source applications are still suffering from the limited luminance of LEDs. High power LEDs are generally limited in luminance to ca 100 Mnit (108 lm/m2sr) or less, while dedicated devices for projection may achieve luminance values up to ca 300 Mnit with phosphor converted green. In particular for high luminous flux applications with limited étendue, like in front projection systems, only very modest luminous flux values in the beam can be achieved with LEDs compared to systems based on discharge lamps. In this paper we introduce a light engine concept based on a light converter rod pumped with blue LEDs that breaks through the étendue and brightness limits of LEDs, enabling LED light source luminance values that are more than 4 times higher than what can be achieved with LEDs so far. In LED front projection systems, green LEDs are the main limiting factor. With our green light emitting modules, peak luminance values well above 1.2 Gnit have been achieved, enabling doubling of the screen brightness of LED based DLP projection systems, and even more when this technology is applied to other colors as well. This light source concept, introduced as the ColorSpark High Lumen Density (HLD) LED technology, enables a breakthrough in the performance of LED-based light engines not only for projection, where >2700 ANSI lm was demonstrated, but for a wide variety of high brightness applications.

  1. A guideline for analyzing circadian wheel-running behavior in rodents under different lighting conditions

    PubMed Central

    Jud, Corinne; Schmutz, Isabelle; Hampp, Gabriele; Oster, Henrik

    2005-01-01

    Most behavioral experiments within circadian research are based on the analysis of locomotor activity. This paper introduces scientists to chronobiology by explaining the basic terminology used within the field. Furthermore, it aims to assist in designing, carrying out, and evaluating wheel-running experiments with rodents, particularly mice. Since light is an easily applicable stimulus that provokes strong effects on clock phase, the paper focuses on the application of different lighting conditions. PMID:16136228

  2. Photomorphogenesis and pigment induction in lentil seedling roots exposed to low light conditions.

    PubMed

    Vollsnes, A V; Melø, T B; Futsaether, C M

    2012-05-01

    Although roots are normally hidden in soil, they may inadvertently be exposed to low light levels in experiments or in natural conditions through cracks or light transmittance through the soil. Light has been implicated in root morphogenesis. Thus, effects of low light conditions on lentil (Lens culinaris L. cv. Verte du Puy) root morphology and root pigmentation were studied. Lentil seedlings were grown in peat or transparent, nutrient-fortified agar at a 12-h light (PAR 240 μmol · m(-2) · s(-1)), 12-h dark cycle. Roots were exposed to low levels (≈ 1-10 μmol · m(-2) · s(-1)) of broadband white light, either directly or indirectly by aboveground light penetrating the growth medium. Control roots were grown in darkness. In situ spectroscopy was used to measure transmittance and reflectance spectra of intact root tissue by mounting the upper part of the primary root directly in a spectrophotometer equipped with an integrating sphere attachment. The transmittance and reflectance spectra were used to calculate the in situ root absorbance spectrum. Absorbance bands were found in the regions 480-500 nm and 650-680 nm, possibly due to low levels of root-localised carotenoids and chlorophylls, respectively. Low light levels (≈ 1-10 μmol · m(-2) · s(-1) ) transmitted through the growth medium significantly increased root pigment concentration and root biomass, and altered root morphology by enhancing lateral root formation and inhibiting root elongation relative to roots grown in complete darkness. The light-induced changes in root morphogenesis and pigmentation appear to be primarily due to upper root light perception.

  3. Highly efficient light management for perovskite solar cells.

    PubMed

    Wang, Dong-Lin; Cui, Hui-Juan; Hou, Guo-Jiao; Zhu, Zhen-Gang; Yan, Qing-Bo; Su, Gang

    2016-01-06

    Organic-inorganic halide perovskite solar cells have enormous potential to impact the existing photovoltaic industry. As realizing a higher conversion efficiency of the solar cell is still the most crucial task, a great number of schemes were proposed to minimize the carrier loss by optimizing the electrical properties of the perovskite solar cells. Here, we focus on another significant aspect that is to minimize the light loss by optimizing the light management to gain a high efficiency for perovskite solar cells. In our scheme, the slotted and inverted prism structured SiO2 layers are adopted to trap more light into the solar cells, and a better transparent conducting oxide layer is employed to reduce the parasitic absorption. For such an implementation, the efficiency and the serviceable angle of the perovskite solar cell can be promoted impressively. This proposal would shed new light on developing the high-performance perovskite solar cells.

  4. Highly efficient light management for perovskite solar cells

    PubMed Central

    Wang, Dong-Lin; Cui, Hui-Juan; Hou, Guo-Jiao; Zhu, Zhen-Gang; Yan, Qing-Bo; Su, Gang

    2016-01-01

    Organic-inorganic halide perovskite solar cells have enormous potential to impact the existing photovoltaic industry. As realizing a higher conversion efficiency of the solar cell is still the most crucial task, a great number of schemes were proposed to minimize the carrier loss by optimizing the electrical properties of the perovskite solar cells. Here, we focus on another significant aspect that is to minimize the light loss by optimizing the light management to gain a high efficiency for perovskite solar cells. In our scheme, the slotted and inverted prism structured SiO2 layers are adopted to trap more light into the solar cells, and a better transparent conducting oxide layer is employed to reduce the parasitic absorption. For such an implementation, the efficiency and the serviceable angle of the perovskite solar cell can be promoted impressively. This proposal would shed new light on developing the high-performance perovskite solar cells. PMID:26733112

  5. Increased collection efficiency of LIFI high intensity electrodeless light source

    NASA Astrophysics Data System (ADS)

    Hafidi, Abdeslam; DeVincentis, Marc; Duelli, Markus; Gilliard, Richard

    2008-02-01

    Recently, RF driven electrodeless high intensity light sources have been implemented successfully in the projection display systems for HDTV and videowall applications. This paper presents advances made in the RF waveguide and electric field concentrator structures with the purpose of reducing effective arc size and increasing light collection. In addition, new optical designs are described that further improve system efficiency. The results of this work demonstrate that projection system light throughput is increased relative to previous implementations and performance is optimized for home theater and other front projector applications that maintain multi-year lifetime without re-lamping, complete spectral range, fast start times and high levels of dynamic contrast due to dimming flexibility in the light source system.

  6. Photorespiration participates in the assimilation of acetate in Chlorella sorokiniana under high light.

    PubMed

    Xie, Xiujun; Huang, Aiyou; Gu, Wenhui; Zang, Zhengrong; Pan, Guanghua; Gao, Shan; He, Linwen; Zhang, Baoyu; Niu, Jianfeng; Lin, Apeng; Wang, Guangce

    2016-02-01

    The development of microalgae on an industrial scale largely depends on the economic feasibility of mass production. High light induces productive suspensions during cultivation in a tubular photobioreactor. Herein, we report that high light, which inhibited the growth of Chlorella sorokiniana under autotrophic conditions, enhanced the growth of this alga in the presence of acetate. We compared pigments, proteomics and the metabolic flux ratio in C. sorokiniana cultivated under high light (HL) and under low light (LL) in the presence of acetate. Our results showed that high light induced the synthesis of xanthophyll and suppressed the synthesis of chlorophylls. Acetate in the medium was exhausted much more rapidly in HL than in LL. The data obtained from LC-MS/MS indicated that high light enhanced photorespiration, the Calvin cycle and the glyoxylate cycle of mixotrophic C. sorokiniana. The results of metabolic flux ratio analysis showed that the majority of the assimilated carbon derived from supplemented acetate, and photorespiratory glyoxylate could enter the glyoxylate cycle. Based on these data, we conclude that photorespiration provides glyoxylate to speed up the glyoxylate cycle, and releases acetate-derived CO2 for the Calvin cycle. Thus, photorespiration connects the glyoxylate cycle and the Calvin cycle, and participates in the assimilation of supplemented acetate in C. sorokiniana under high light.

  7. Microbial Thiocyanate Utilization under Highly Alkaline Conditions

    PubMed Central

    Sorokin, Dimitry Y.; Tourova, Tatyana P.; Lysenko, Anatoly M.; Kuenen, J. Gijs

    2001-01-01

    Three kinds of alkaliphilic bacteria able to utilize thiocyanate (CNS−) at pH 10 were found in highly alkaline soda lake sediments and soda soils. The first group included obligate heterotrophs that utilized thiocyanate as a nitrogen source while growing at pH 10 with acetate as carbon and energy sources. Most of the heterotrophic strains were able to oxidize sulfide and thiosulfate to tetrathionate. The second group included obligately autotrophic sulfur-oxidizing alkaliphiles which utilized thiocyanate nitrogen during growth with thiosulfate as the energy source. Genetic analysis demonstrated that both the heterotrophic and autotrophic alkaliphiles that utilized thiocyanate as a nitrogen source were related to the previously described sulfur-oxidizing alkaliphiles belonging to the gamma subdivision of the division Proteobacteria (the Halomonas group for the heterotrophs and the genus Thioalkalivibrio for autotrophs). The third group included obligately autotrophic sulfur-oxidizing alkaliphilic bacteria able to utilize thiocyanate as a sole source of energy. These bacteria could be enriched on mineral medium with thiocyanate at pH 10. Growth with thiocyanate was usually much slower than growth with thiosulfate, although the biomass yield on thiocyanate was higher. Of the four strains isolated, the three vibrio-shaped strains were genetically closely related to the previously described sulfur-oxidizing alkaliphiles belonging to the genus Thioalkalivibrio. The rod-shaped isolate differed from the other isolates by its ability to accumulate large amounts of elemental sulfur inside its cells and by its ability to oxidize carbon disulfide. Despite its low DNA homology with and substantial phenotypic differences from the vibrio-shaped strains, this isolate also belonged to the genus Thioalkalivibrio according to a phylogenetic analysis. The heterotrophic and autotrophic alkaliphiles that grew with thiocyanate as an N source possessed a relatively high level of cyanase

  8. H2 production in Rhodopseudomonas palustris as a way to cope with high light intensities.

    PubMed

    Muzziotti, Dayana; Adessi, Alessandra; Faraloni, Cecilia; Torzillo, Giuseppe; De Philippis, Roberto

    2016-06-01

    The ability of coping with the damaging effects of high light intensity represents an essential issue when purple non-sulfur bacteria (PNSB) are grown under direct sunlight for photobiological hydrogen production. This study was aimed at investigating whether H2 photo-evolution could represent, for Rhodopseudomonas palustris 42OL, a safety valve to dissipate an excess of reducing power generated under high light intensities. The physiological status of this strain was assessed under anaerobic (AnG) and aerobic (AG) growing conditions and under H2-producing (HP) conditions at low and high light intensities. The results obtained clearly showed that Fv/Fm ratio was significantly affected by the light intensity under which R. palustris 42OL cells were grown, under either AnG or AG conditions, while, under HP, it constantly remained at its highest value. The increase in light intensity significantly increased the H2 production rate, which showed a positive correlation with the maximum electron transfer rate (rETRmax). These findings are important for optimization of hydrogen production by PNSB under solar light.

  9. Light management for photovoltaics using high-index nanostructures

    NASA Astrophysics Data System (ADS)

    Brongersma, Mark L.; Cui, Yi; Fan, Shanhui

    2014-05-01

    High-performance photovoltaic cells use semiconductors to convert sunlight into clean electrical power, and transparent dielectrics or conductive oxides as antireflection coatings. A common feature of these materials is their high refractive index. Whereas high-index materials in a planar form tend to produce a strong, undesired reflection of sunlight, high-index nanostructures afford new ways to manipulate light at a subwavelength scale. For example, nanoscale wires, particles and voids support strong optical resonances that can enhance and effectively control light absorption and scattering processes. As such, they provide ideal building blocks for novel, broadband antireflection coatings, light-trapping layers and super-absorbing films. This Review discusses some of the recent developments in the design and implementation of such photonic elements in thin-film photovoltaic cells.

  10. Matter under extreme conditions experiments at the Linac Coherent Light Source

    NASA Astrophysics Data System (ADS)

    Glenzer, S. H.; Fletcher, L. B.; Galtier, E.; Nagler, B.; Alonso-Mori, R.; Barbrel, B.; Brown, S. B.; Chapman, D. A.; Chen, Z.; Curry, C. B.; Fiuza, F.; Gamboa, E.; Gauthier, M.; Gericke, D. O.; Gleason, A.; Goede, S.; Granados, E.; Heimann, P.; Kim, J.; Kraus, D.; MacDonald, M. J.; Mackinnon, A. J.; Mishra, R.; Ravasio, A.; Roedel, C.; Sperling, P.; Schumaker, W.; Tsui, Y. Y.; Vorberger, J.; Zastrau, U.; Fry, A.; White, W. E.; Hasting, J. B.; Lee, H. J.

    2016-05-01

    The matter in extreme conditions end station at the Linac Coherent Light Source (LCLS) is a new tool enabling accurate pump-probe measurements for studying the physical properties of matter in the high-energy density (HED) physics regime. This instrument combines the world’s brightest x-ray source, the LCLS x-ray beam, with high-power lasers consisting of two nanosecond Nd:glass laser beams and one short-pulse Ti:sapphire laser. These lasers produce short-lived states of matter with high pressures, high temperatures or high densities with properties that are important for applications in nuclear fusion research, laboratory astrophysics and the development of intense radiation sources. In the first experiments, we have performed highly accurate x-ray diffraction and x-ray Thomson scattering measurements on shock-compressed matter resolving the transition from compressed solid matter to a co-existence regime and into the warm dense matter state. These complex charged-particle systems are dominated by strong correlations and quantum effects. They exist in planetary interiors and laboratory experiments, e.g., during high-power laser interactions with solids or the compression phase of inertial confinement fusion implosions. Applying record peak brightness x-rays resolves the ionic interactions at atomic (Ångstrom) scale lengths and measure the static structure factor, which is a key quantity for determining equation of state data and important transport coefficients. Simultaneously, spectrally resolved measurements of plasmon features provide dynamic structure factor information that yield temperature and density with unprecedented precision at micron-scale resolution in dynamic compression experiments. These studies have demonstrated our ability to measure fundamental thermodynamic properties that determine the state of matter in the HED physics regime.

  11. Photo acoustic study of plants exposed to varying light intensity growth conditions: Spectral and morphological changes

    NASA Astrophysics Data System (ADS)

    Mesquita, R. C.; Barja, P. R.; da Silva, E. C.; Mansanares, A. M.

    2005-06-01

    In this paper we describe results of photo acoustic (PA) measurements carried out on various plants exposed to varying light intensity conditions. Depending on the species and light intensity conditions, the PA absorption spectra show differences in peaks associated with pigments and the cuticle. These differences are related to the spatial distribution of the pigments that differs from plant to plant. We have also performed systematic study of oxygen evolution at different wavelengths. The obtained oxygen spectra are equivalent to the action spectra usually acquired by determining the CO2 uptake and energy storage. The intensities of oxygen spectra exhibit differences depending on distinct morphology of plant.

  12. High Resolution Measurement of Light in Terrestrial Ecosystems Using Photodegrading Dyes

    PubMed Central

    Roales, Javier; Durán, Jorge; Bechtold, Heather A.; Groffman, Peter M.; Rosi-Marshall, Emma J.

    2013-01-01

    Incoming solar radiation is the main determinant of terrestrial ecosystem processes, such as primary production, litter decomposition, or soil mineralization rates. Light in terrestrial ecosystems is spatially and temporally heterogeneous due to the interaction among sunlight angle, cloud cover and tree-canopy structure. To integrate this variability and to know light distribution over time and space, a high number of measurements are needed, but tools to do this are usually expensive and limited. An easy-to-use and inexpensive method that can be used to measure light over time and space is needed. We used two photodegrading fluorescent organic dyes, rhodamine WT (RWT) and fluorescein, for the quantification of light. We measured dye photodegradation as the decrease in fluorescence across an irradiance gradient from full sunlight to deep shade. Then, we correlated it to accumulated light measured with PAR quantum sensors and obtained a model for this behavior. Rhodamine WT and fluorescein photodegradation followed an exponential decay curve with respect to accumulated light. Rhodamine WT degraded slower than fluorescein and remained unaltered after exposure to temperature changes. Under controlled conditions, fluorescence of both dyes decreased when temperatures increased, but returned to its initial values after cooling to the pre-heating temperature, indicating no degradation. RWT and fluorescein can be used to measure light under a varying range of light conditions in terrestrial ecosystems. This method is particularly useful to integrate solar radiation over time and to measure light simultaneously at different locations, and might be a better alternative to the expensive and time consuming traditional light measurement methods. The accuracy, low price and ease of this method make it a powerful tool for intensive sampling of large areas and for developing high resolution maps of light in an ecosystem. PMID:24069440

  13. High resolution measurement of light in terrestrial ecosystems using photodegrading dyes.

    PubMed

    Roales, Javier; Durán, Jorge; Bechtold, Heather A; Groffman, Peter M; Rosi-Marshall, Emma J

    2013-01-01

    Incoming solar radiation is the main determinant of terrestrial ecosystem processes, such as primary production, litter decomposition, or soil mineralization rates. Light in terrestrial ecosystems is spatially and temporally heterogeneous due to the interaction among sunlight angle, cloud cover and tree-canopy structure. To integrate this variability and to know light distribution over time and space, a high number of measurements are needed, but tools to do this are usually expensive and limited. An easy-to-use and inexpensive method that can be used to measure light over time and space is needed. We used two photodegrading fluorescent organic dyes, rhodamine WT (RWT) and fluorescein, for the quantification of light. We measured dye photodegradation as the decrease in fluorescence across an irradiance gradient from full sunlight to deep shade. Then, we correlated it to accumulated light measured with PAR quantum sensors and obtained a model for this behavior. Rhodamine WT and fluorescein photodegradation followed an exponential decay curve with respect to accumulated light. Rhodamine WT degraded slower than fluorescein and remained unaltered after exposure to temperature changes. Under controlled conditions, fluorescence of both dyes decreased when temperatures increased, but returned to its initial values after cooling to the pre-heating temperature, indicating no degradation. RWT and fluorescein can be used to measure light under a varying range of light conditions in terrestrial ecosystems. This method is particularly useful to integrate solar radiation over time and to measure light simultaneously at different locations, and might be a better alternative to the expensive and time consuming traditional light measurement methods. The accuracy, low price and ease of this method make it a powerful tool for intensive sampling of large areas and for developing high resolution maps of light in an ecosystem.

  14. High light intensity protects photosynthetic apparatus of pea plants against exposure to lead.

    PubMed

    Romanowska, E; Wróblewska, B; Drozak, A; Siedlecka, M

    2006-01-01

    The electron transport rates and coupling factor activity in the chloroplasts; adenylate contents, rates of photosynthesis and respiration in the leaves as well as activity of isolated mitochondria were investigated in Pisum sativum L. leaves of plants grown under low or high light intensity and exposed after detachment to 5 mM Pb(NO(3))(2). The presence of Pb(2+) reduced rate of photosynthesis in the leaves from plants grown under the high light (HL) and low light (LL) conditions, whereas the respiration was enhanced in the leaves from HL plants. Mitochondria from Pb(2+) treated HL-leaves oxidized glycine at a higher rate than those isolated from LL leaves. ATP content in the Pb-treated leaves increased to a greater extend in the HL than LL grown plants. Similarly ATP synthase activity increased markedly when chloroplasts isolated from control and Pb-treated leaves of HL and LL grown plants were subjected to high intensity light. The presence of Pb ions was found inhibit ATP synthase activity only in chloroplasts from LL grown plants or those illuminated with low intensity light. Low light intensity during growth also lowered PSI electron transport rates and the Pb(2+) induced changes in photochemical activity of this photosystem were visible only in the chloroplasts isolated from LL grown plants. The activity of PSII was influenced by Pb ions on similar manner in both light conditions. This study demonstrates that leaves from plants grown under HL conditions were more resistant to lead toxicity than those obtained from the LL grown plants. The data indicate that light conditions during growth might play a role in regulation of photosynthetic and respiratory energy conservation in heavy metal stressed plants by increasing the flexibility of the stoichiometry of ATP to ADP production.

  15. Effects of light shading and climatic conditions on the metabolic behavior of flonicamid in red bell pepper.

    PubMed

    Jung, Da-I; Farha, Waziha; Abd El-Aty, A M; Kim, Sung-Woo; Rahman, Md Musfiqur; Choi, Jeong-Heui; Kabir, Md Humayun; Im, So Jeong; Lee, Young-Jun; Truong, Lieu T B; Shin, Ho-Chul; Im, Geon-Jae; Shim, Jae-Han

    2016-03-01

    The degradation behavior of flonicamid and its metabolites (4-trifluoromethylnicotinic acid (TFNA) and N-(4-trifluoromethylnicotinoyl) glycine (TFNG)) was evaluated in red bell pepper over a period of 90 days under glass house conditions, including high temperature, low and high humidity, and in a vinyl house covered with high density polyethylene light shade covering film (35 and 75%). Flonicamid (10% active ingredient) was applied (via foliar application) to all fruits, including those groups grown under normal conditions (glass house) or under no shade cover (vinyl house). Samples were extracted using a Quick, Easy, Cheap, Effective, Rugged, and Safe "QuEChERS" method and analyzed using liquid chromatography-tandem mass spectrometry (LC/MS/MS). The method performance, including linearity, recovery, limits of detection (LOD), and quantitation (LOQ), was satisfactory. Throughout the experimental period, the residual levels of flonicamid and TFNG were not uniform, whereas that of TFNA remained constant. The total sum of the residues (flonicamid and its metabolites) was higher in the vinyl house with shade cover than in the glass house, under various conditions. The total residues were significantly higher when the treatment was applied under high light shade (75%). The flonicamid half-life decreased from 47.2 days (under normal conditions) to 28.4 days (at high temperatures) in the glass house, while it increased from 47.9 days (no shade cover) to 66 days (75% light shading) in the vinyl house. High humidity leads to decreases in the total sum of flonicamid residues in red bell pepper grown in a glass house, because it leads to an increase in the rate of water loss, which in turn accelerates the volatilization of the pesticide. For safety reasons, it is advisable to grow red bell pepper under glass house conditions because of the effects of solar radiation, which increases the rate of flonicamid degradation into its metabolites.

  16. Scalable Light Module for Low-Cost, High-Efficiency Light- Emitting Diode Luminaires

    SciTech Connect

    Tarsa, Eric

    2015-08-31

    During this two-year program Cree developed a scalable, modular optical architecture for low-cost, high-efficacy light emitting diode (LED) luminaires. Stated simply, the goal of this architecture was to efficiently and cost-effectively convey light from LEDs (point sources) to broad luminaire surfaces (area sources). By simultaneously developing warm-white LED components and low-cost, scalable optical elements, a high system optical efficiency resulted. To meet program goals, Cree evaluated novel approaches to improve LED component efficacy at high color quality while not sacrificing LED optical efficiency relative to conventional packages. Meanwhile, efficiently coupling light from LEDs into modular optical elements, followed by optimally distributing and extracting this light, were challenges that were addressed via novel optical design coupled with frequent experimental evaluations. Minimizing luminaire bill of materials and assembly costs were two guiding principles for all design work, in the effort to achieve luminaires with significantly lower normalized cost ($/klm) than existing LED fixtures. Chief project accomplishments included the achievement of >150 lm/W warm-white LEDs having primary optics compatible with low-cost modular optical elements. In addition, a prototype Light Module optical efficiency of over 90% was measured, demonstrating the potential of this scalable architecture for ultra-high-efficacy LED luminaires. Since the project ended, Cree has continued to evaluate optical element fabrication and assembly methods in an effort to rapidly transfer this scalable, cost-effective technology to Cree production development groups. The Light Module concept is likely to make a strong contribution to the development of new cost-effective, high-efficacy luminaries, thereby accelerating widespread adoption of energy-saving SSL in the U.S.

  17. Angle of sky light polarization derived from digital images of the sky under various conditions.

    PubMed

    Zhang, Wenjing; Cao, Yu; Zhang, Xuanzhe; Yang, Yi; Ning, Yu

    2017-01-20

    Skylight polarization is used for navigation by some birds and insects. Skylight polarization also has potential for human navigation applications. Its advantages include relative immunity from interference and the absence of error accumulation over time. However, there are presently few examples of practical applications for polarization navigation technology. The main reason is its weak robustness during cloudy weather conditions. In this paper, the real-time measurement of the sky light polarization pattern across the sky has been achieved with a wide field of view camera. The images were processed under a new reference coordinate system to clearly display the symmetrical distribution of angle of polarization with respect to the solar meridian. A new algorithm for the extraction of the image axis of symmetry is proposed, in which the real-time azimuth angle between the camera and the solar meridian is accurately calculated. Our experimental results under different weather conditions show that polarization navigation has high accuracy, is strongly robust, and performs well during fog and haze, clouds, and strong sunlight.

  18. High light induced changes in organization, protein profile and function of photosynthetic machinery in Chlamydomonas reinhardtii.

    PubMed

    Nama, Srilatha; Madireddi, Sai Kiran; Devadasu, Elsin Raju; Subramanyam, Rajagopal

    2015-11-01

    The green alga Chlamydomonas (C.) reinhardtii is used as a model organism to understand the efficiency of photosynthesis along with the organization and protein profile of photosynthetic apparatus under various intensities of high light exposure for 1h. Chlorophyll (Chl) a fluorescence induction, OJIPSMT transient was decreased with increase in light intensity indicating the reduction in photochemical efficiency. Further, circular dichroism studies of isolated thylakoids from high light exposed cells showed considerable change in the pigment-pigment interactions and pigment-proteins interactions. Furthermore, the organization of supercomplexes from thylakoids is studied, in which, one of the hetero-trimer of light harvesting complex (LHC) II is affected significantly in comparison to other complexes of LHC's monomers. Also, other supercomplexes, photosystem (PS)II reaction center dimer and PSI complexes are reduced. Additionally, immunoblot analysis of thylakoid proteins revealed that PSII core proteins D1 and D2 were significantly decreased during high light treatment. Similarly, the PSI core proteins PsaC, PsaD and PsaG were drastically changed. Further, the LHC antenna proteins of PSI and PSII were differentially affected. From our results it is clear that LHCs are damaged significantly, consequently the excitation energy is not efficiently transferred to the reaction center. Thus, the photochemical energy transfer from PSII to PSI is reduced. The inference of the study deciphers the structural and functional changes driven by light may therefore provide plants/alga to regulate the light harvesting capacity in excess light conditions.

  19. Spatial light modulators for high-brightness projection displays.

    PubMed

    Takizawa, K; Fujii, T; Kikuchi, H; Fujikake, H; Kawakita, M; Hirano, Y; Sato, F

    1999-09-10

    We fabricated polymer-dispersed liquid-crystal light valves (PDLCLV's) consisting of a 30-microm-thick hydrogenated amorphous-silicon film and a 10-microm-thick polymer-dispersed liquid-crystal (PDLC) film composed of nematic liquid-crystal (LC) microdroplets surrounded by polymer. The device can modulate high-power reading light, because the PDLC becomes transparent or opalescent independent of the polarization state of the reading light when either sufficient or no writing light is incident on the PDLCLV. This device has a limiting resolution of 50 lp/mm (lp indicates line pairs), a reading light efficiency of 60%, a ratio of intensity of light incident on the PDLC layer to intensity of light radiated from the layer, and an extinction ratio of 130:1. The optically addressed video projection system with three PDLCLV's, LC panels of 1048 x 480 pixels as input image sources, a 1-kW Xe lamp, and a schlieren optical system projected television (TV) pictures of 600 and 450 TV lines in the horizontal and the vertical directions on a screen with a diagonal length of 100 in. The total output flux of this system was 1500 lm.

  20. Light emitting diode with high aspect ratio submicron roughness for light extraction and methods of forming

    DOEpatents

    Li, Ting

    2013-08-13

    The surface morphology of an LED light emitting surface is changed by applying a reactive ion etch (RIE) process to the light emitting surface. High aspect ratio, submicron roughness is formed on the light emitting surface by transferring a thin film metal hard-mask having submicron patterns to the surface prior to applying a reactive ion etch process. The submicron patterns in the metal hard-mask can be formed using a low cost, commercially available nano-patterned template which is transferred to the surface with the mask. After subsequently binding the mask to the surface, the template is removed and the RIE process is applied for time duration sufficient to change the morphology of the surface. The modified surface contains non-symmetric, submicron structures having high aspect ratio which increase the efficiency of the device.

  1. Light emitting diode with high aspect ratio submicron roughness for light extraction and methods of forming

    DOEpatents

    Li, Ting [Ventura, CA

    2011-04-26

    The surface morphology of an LED light emitting surface is changed by applying a reactive ion etch (RIE) process to the light emitting surface. High aspect ratio, submicron roughness is formed on the light emitting surface by transferring a thin film metal hard-mask having submicron patterns to the surface prior to applying a reactive ion etch process. The submicron patterns in the metal hard-mask can be formed using a low cost, commercially available nano-patterned template which is transferred to the surface with the mask. After subsequently binding the mask to the surface, the template is removed and the RIE process is applied for time duration sufficient to change the morphology of the surface. The modified surface contains non-symmetric, submicron structures having high aspect ratio which increase the efficiency of the device.

  2. Examination of the interaction of different lighting conditions and chronic mild stress in animal model.

    PubMed

    Muller, A; Gal, N; Betlehem, J; Fuller, N; Acs, P; Kovacs, G L; Fusz, K; Jozsa, R; Olah, A

    2015-09-01

    We examined the effects of different shift work schedules and chronic mild stress (CMS) on mood using animal model. The most common international shift work schedules in nursing were applied by three groups of Wistar-rats and a control group with normal light-dark cycle. One subgroup from each group was subjected to CMS. Levels of anxiety and emotional life were evaluated in light-dark box. Differences between the groups according to independent and dependent variables were examined with one- and two-way analysis of variance, with a significance level defined at p < 0.05. Interaction of lighting regimen and CMS was proved to be significant according to time spent in the light compartment and the average number of changes between the light and dark compartments. Results of our examination confirm that the changes of lighting conditions evocate anxiety more prominently than CMS. No significant differences were found between the results of the low rotating group and the control group, supposing that this schedule is the least harmful to health. Our results on the association between the use of lighting regimens and the level of CMS provide evidence that the fast rotating shift work schedule puts the heaviest load on the organism of animals.

  3. High-NOON states by mixing quantum and classical light.

    PubMed

    Afek, Itai; Ambar, Oron; Silberberg, Yaron

    2010-05-14

    Precision measurements can be brought to their ultimate limit by harnessing the principles of quantum mechanics. In optics, multiphoton entangled states, known as NOON states, can be used to obtain high-precision phase measurements, becoming more and more advantageous as the number of photons grows. We generated "high-NOON" states (N = 5) by multiphoton interference of quantum down-converted light with a classical coherent state in an approach that is inherently scalable. Super-resolving phase measurements with up to five entangled photons were produced with a visibility higher than that obtainable using classical light only.

  4. Status and Future of High-Power Light-Emitting Diodes for Solid-State Lighting

    NASA Astrophysics Data System (ADS)

    Krames, Michael R.; Shchekin, Oleg B.; Mueller-Mach, Regina; Mueller, Gerd O.; Zhou, Ling; Harbers, Gerard; Craford, M. George

    2007-06-01

    Status and future outlook of III-V compound semiconductor visible-spectrum light-emitting diodes (LEDs) are presented. Light extraction techniques are reviewed and extraction efficiencies are quantified in the 60%+ (AlGaInP) and ~80% (InGaN) regimes for state-of-the-art devices. The phosphor-based white LED concept is reviewed and recent performance discussed, showing that high-power white LEDs now approach the 100-lm/W regime. Devices employing multiple phosphors for “warm” white color temperatures (~3000 4000 K) and high color rendering (CRI > 80), which provide properties critical for many illumination applications, are discussed. Recent developments in chip design, packaging, and high current performance lead to very high luminance devices (~50 Mcd/m2 white at 1 A forward current in 1 x 1 mm2 chip) that are suitable for application to automotive forward lighting. A prognosis for future LED performance levels is considered given further improvements in internal quantum efficiency, which to date lag achievements in light extraction efficiency for InGaN LEDs.

  5. High Energy Density Science at the Linac Coherent Light Source

    SciTech Connect

    Lee, R W

    2007-10-19

    High energy density science (HEDS), as a discipline that has developed in the United States from National Nuclear Security Agency (NNSA)-sponsored laboratory research programs, is, and will remain, a major component of the NNSA science and technology strategy. Its scientific borders are not restricted to NNSA. 'Frontiers in High Energy Density Physics: The X-Games of Contemporary Science' identified numerous exciting scientific opportunities in this field, while pointing to the need for a overarching interagency plan for its evolution. Meanwhile, construction of the first x-ray free-electron laser, the Office-of-Science-funded Linear Coherent Light Source-LCLS: the world's first free electron x-ray laser, with 100-fsec time resolution, tunable x-ray energies, a high rep rate, and a 10 order-of-magnitude increase in brightness over any other x-ray source--led to the realization that the scientific needs of NNSA and the broader scientific community could be well served by an LCLS HEDS endstation employing both short-pulse and high-energy optical lasers. Development of this concept has been well received in the community. NNSA requested a workshop on the applicability of LCLS to its needs. 'High Energy Density Science at the LCLS: NNSA Defense Programs Mission Need' was held in December 2006. The workshop provided strong support for the relevance of the endstation to NNSA strategic requirements. The range of science that was addressed covered a wide swath of the vast HEDS phase space. The unique possibilities provided by the LCLS in areas of intense interest to NNSA Defense Programs were discussed. The areas of focus included warm dense matter and equations of state, hot dense matter, and behavior of high-pressure materials under conditions of high strain-rate and extreme dynamic loading. Development of new and advanced diagnostic techniques was also addressed. This report lays out the relevant science, as brief summaries (Ch. II), expanded descriptions (Ch. V), and a

  6. Carbon and Nitrogen dynamics in forest soils depending on light conditions and tree species

    NASA Astrophysics Data System (ADS)

    Veselinovic, Bojana; Hager, Herbert

    2013-04-01

    Climate change mitigation actions under the Kyoto Protocol apply among other decreases of CO2-emissions and/or increases of carbon (C) stocks. As soils represent the second biggest C-reservoir on Earth, an exact estimation of the stocks and reliable knowledge on C-dynamics in forest soils is of high importance. Anyhow, here, the accurate GHG-accounting, emission reductions and increase in C stocks is hampered due to lack of reliable data and solid statistical methods for the factors which influence C-sequestration in and its release from these systems. In spite of good progress in the scientific research, these factors are numerous and diverse in their interactions. This work focuses on influence of the economically relevant tree species - Picea abies, Fagus sylvatica and Quercus spp. - and light conditions on forest floor and mineral soil C and N dynamics in forest soils. Spruce monocultures have been widely used management practices in central European forests during the past century. Such stands are in lower altitudes and on heavy and water logged soils unstable and prone to disturbances, especially to windthrows. We hypothesize that windthrow areas loose C & N and that the establishment of the previous nutrient stocks is, if at all, only possible to be reached over the longer periods of time. We research also how the increased OM depletion affects the change of C & N stocks in forest floor vs. mineral soil. Conversion of such secondary spruce monocultures to site adequate beech and oak forests may enable higher stocks allocated predominantly as stable organic carbon and as plant available nitrogen. For this purpose sites at 300-700 m altitude with planosols were chosen in the region of the Northern Alpine Foothills. A false chronosequence approach was used in order to evaluate the impacts of the tree species and change in light conditions on dynamic of C & N in the forest floor and mineral soil, over the period 0-100 (for oak 120 y.) years. The C- and N

  7. High Efficiency LED Lamp for Solid-State Lighting

    SciTech Connect

    James Ibbetson

    2006-12-31

    This report contains a summary of technical achievements during a three-year project to demonstrate high efficiency, solid-state lamps based on gallium nitride/silicon carbide light-emitting diodes. Novel chip designs and fabrication processes are described for a new type of nitride light-emitting diode with the potential for very high efficiency. This work resulted in the demonstration of blue light-emitting diodes in the one watt class that achieved up to 495 mW of light output at 350 mA drive current, corresponding to quantum and wall plug efficiencies of 51% and 45%, respectively. When combined with a phosphor in Cree's 7090 XLamp package, these advanced blue-emitting devices resulted in white light-emitting diodes whose efficacy exceeded 85 lumens per watt. In addition, up to 1040 lumens at greater than 85 lumens per watt was achieved by combining multiple devices to make a compact white lamp module with high optical efficiency.

  8. Modeling the impact of roadway emissions in light wind, stable and transition conditions

    EPA Science Inventory

    This paper examines the processes that govern air pollution dispersion under light wind, stable and transition conditions by using a state-of-the-art dispersion model to interpret measurements from a tracer experiment conducted next to US highway 99 in Sacramento in 1981–1982 dur...

  9. High light decreases xylem contribution to fruit growth in tomato.

    PubMed

    Hanssens, Jochen; DE Swaef, Tom; Steppe, Kathy

    2015-03-01

    Recently, contradicting evidence has been reported on the contribution of xylem and phloem influx into tomato fruits, urging the need for a better understanding of the mechanisms involved in fruit growth. So far, little research has been performed on quantifying the effect of light intensity on the different contributors to the fruit water balance. However, as light intensity affects both transpiration and photosynthesis, it might be expected to induce important changes in the fruit water balance. In this study, tomato plants (Solanum lycopersicum L.) were grown in light and shade conditions and the fruit water balance was studied by measuring fruit growth of girdled and intact fruits with linear variable displacement transducers combined with a model-based approach. Results indicated that the relative xylem contribution significantly increased when shading lowered light intensity. This resulted from both a higher xylem influx and a lower phloem influx during the daytime. Plants from the shade treatment were able to maintain a stronger gradient in total water potential between stem and fruits during daytime, thereby promoting xylem influx. It appeared that the xylem pathway was still functional at 35 days after anthesis and that relative xylem contribution was strongly affected by environmental conditions.

  10. New technologies in lighting systems for high-speed film and photography regarding high-intensity and heat problems

    NASA Astrophysics Data System (ADS)

    Severon, Burkhard

    1991-04-01

    Increasing frame rates and the heat sensibility of test objects forced the development of new lighting systems. For example at the automotive industry, where continuous light sources are indispensable for the high speed photography of car crash tests and automobile components tests, the further development of high efficient safety systems, so as Air-Bag systems, needs very datailed analysis of the accelerated motions. Frame rates from 2.000 up to 10.000 frames per second are requested and beside adequate camera systems and film material, this also means high intensive lighting systems. The need for high intensity could be easy achieved by the use of additional light fixtures but the request for more intensity comes along with the problem of heat. The test objects and the auxiliary materials become more and more temperature- sensitive. Very offen they have to be used under strict climate conditions. Mainly there where the test objects are already placed inside the illuminated area, the heat radiation of the light sources to the test objects have to be reduced. So high intensive, flicker free and less heat are today's requirements of light performance. This paper will present solutions to meet those demands.

  11. Strontium and barium iodide high light yield scintillators

    NASA Astrophysics Data System (ADS)

    Cherepy, Nerine J.; Hull, Giulia; Drobshoff, Alexander D.; Payne, Stephen A.; van Loef, Edgar; Wilson, Cody M.; Shah, Kanai S.; Roy, Utpal N.; Burger, Arnold; Boatner, Lynn A.; Choong, Woon-Seng; Moses, William W.

    2008-02-01

    Europium-doped strontium and barium iodide are found to be readily growable by the Bridgman method and to produce high scintillation light yields. SrI2(Eu ) emits into the Eu2+ band, centered at 435nm, with a decay time of 1.2μs and a light yield of ˜90000photons/MeV. It offers energy resolution better than 4% full width at half maximum at 662keV, and exhibits excellent light yield proportionality. BaI2(Eu ) produces >30000photons/MeV into the Eu2+ band at 420nm (<1μs decay). An additional broad impurity-mediated recombination band is present at 550nm (>3μs decay), unless high-purity feedstock is used.

  12. High resolution map of light pollution over Poland

    NASA Astrophysics Data System (ADS)

    Netzel, Henryka; Netzel, Paweł

    2016-09-01

    In 1976 Berry introduced a simple mathematical equation to calculate artificial night sky brightness at zenith. In the original model cities, considered as points with given population, are only sources of light emission. In contrary to Berry's model, we assumed that all terrain surface can be a source of light. Emission of light depends on percent of built up area in a given cell. We based on Berry's model. Using field measurements and high-resolution data we obtained the map of night sky brightness over Poland in 100-m resolution. High resolution input data, combined with a very simple model, makes it possible to obtain detailed structures of the night sky brightness without complicating the calculations.

  13. Implementation of focusing and redirecting light through highly scattering media

    NASA Astrophysics Data System (ADS)

    Coyotl-Ocelotl, B.; Porras-Aguilar, R.; Ramos-Garcia, R.; Ramirez-San-Juan, J. C.

    2015-08-01

    Optical imaging through highly scattering media such as biological tissue is limited by light scattering. Recently, it has been shown that wavefront shaping is a powerful tool to overcome this problem. In this work, wavefront shaping using spatial light modulators is used to compensate static scattering media (piece of translucent tape) to allow focusing of different intensity distributions. Light propagation is engineered into a specific region of interest. For this purpose, a sequential phase shape algorithm was implemented experimentally. This algorithm is used to encode a phase distribution on an incident beam to pre-compensate phase distortions acquired by the beam after propagating through the tape. The sequential algorithm combined with a spatial light modulator is used to synthesize a phase distribution required for redirecting light using wavefront shaping. The scattered light was re-directed at the detector plane, in order to be: i) focused at a single pixel, ii) at squared regions of 3×3 and 5×5 pixeles and iii) a line pattern of 41 pixels of the camera. Furthermore, the region of interest was placed outside the central area of the camera opening the possibility of image formation.

  14. High efficiency air cycle air conditioning system

    SciTech Connect

    Rannenberg, G. C.

    1985-11-19

    An air cycle air conditioning system is provided with regenerative heat exchangers upstream and downstream of an expansion turbine. A closedloop liquid circulatory system serially connects the two regenerative heat exchangers for regeneration without the bulk associated with air-to-air heat exchange. The liquid circulatory system may also provide heat transport to a remote sink heat exchanger and from a remote load as well as heat exchange within the sink heat exchanger and load for enhanced compactness and efficiency.

  15. Diurnal photosynthesis, water use efficiency and light use efficiency of wheat under Mediterranean field conditions.

    PubMed

    Evrendilek, Fatih; Ben Asher, Jiftah; Aydin, Mehmet

    2008-05-01

    Photosynthesis and transpiration rates of wheat leaves (Triticum aestivum L.) were measured at 30 min intervals under Mediterranean field conditions, using Photosynthesis Monitor system (PM-48M). The dynamics of net photosynthetic rate (P(N)), transpiration rate (E(T)), water use efficiency (WUE), light use efficiency (LUE), stomatal conductance (g(s)), photosynthetically active radiation (PAR), air temperature (T), relative humidity (RH), and atmospheric CO2 concentration (Catm) were quantified at five rainfed wheat sites with the same stages of development (midflowering) along south-to-north and east-to-west transects for eight days in April. Diurnal P(N) (3.6 to 6.6 micromol m(-2) s(-1)), PAR (392 to 564 micromol m2 sec(-1)), LUE (0.006 to 0.015) and WUE (0.0001 to 0.011) did not vary significantly across all five wheat sites (p > 0.05). P(N) and E(T) were strongly coupled and highly correlated with PAR (p < 0.001). Best multiple linear regression (MLR) models accounted for 92% of variations in P(N) as a function of PAR and E(T), and 90% in E(T) as a function of PAR and RH (p < 0.001). P(N) exhibited a peak at mid-morning, and a photosynthetic midday depression under the limiting effects of high evaporative demand. Diurnal variations in WUE and LUE showed a bimodal behavior with the maximum values in early morning and late afternoon. As the impacts of global climate change become increasingly felt, continuous measurements of climate-crop-soil-managementinteractions under natural conditions play a pivotal role not only in exploring changes in ecophysiological properties of strategic crops for food security such as wheat but also in devising preventive and mitigative management practices to ensure sustained agricultural productivity.

  16. Highly stable superhydrophobic surfaces under flow conditions

    NASA Astrophysics Data System (ADS)

    Lee, Moonchan; Yim, Changyong; Jeon, Sangmin

    2015-01-01

    We synthesized hydrophobic anodic aluminum oxide nanostructures with pore diameters of 35, 50, 65, and 80 nm directly on quartz crystal microresonators, and the stability of the resulting superhydrophobicity was investigated under flow conditions by measuring changes in the resonance frequency and dissipation factor. When the quartz substrates were immersed in water, their hydrophobic surfaces did not wet due to the presence of an air interlayer. The air interlayer was gradually replaced by water over time, which caused decreases in the resonance frequency (i.e., increases in mass) and increases in the dissipation factor (i.e., increases in viscous damping). Although the water contact angles of the nanostructures increased with increasing pore size, the stability of their superhydrophobicity increased with decreasing pore size under both static conditions (without flow) and dynamic conditions (with flow); this increase can be attributed to an increase in the solid surface area that interacts with the air layer above the nanopores as the pore size decreases. Further, the effects of increasing the flow rate on the stability of the superhydrophobicity were quantitatively determined.

  17. Different colors of light lead to different adaptation and activation as determined by high-density EEG.

    PubMed

    Münch, M; Plomp, G; Thunell, E; Kawasaki, A; Scartezzini, J L; Herzog, M H

    2014-11-01

    Light adaptation is crucial for coping with the varying levels of ambient light. Using high-density electroencephalography (EEG), we investigated how adaptation to light of different colors affects brain responsiveness. In a within-subject design, sixteen young participants were adapted first to dim white light and then to blue, green, red, or white bright light (one color per session in a randomized order). Immediately after both dim and bright light adaptation, we presented brief light pulses and recorded event-related potentials (ERPs). We analyzed ERP response strengths and brain topographies and determined the underlying sources using electrical source imaging. Between 150 and 261 ms after stimulus onset, the global field power (GFP) was higher after dim than bright light adaptation. This effect was most pronounced with red light and localized in the frontal lobe, the fusiform gyrus, the occipital lobe and the cerebellum. After bright light adaptation, within the first 100 ms after light onset, stronger responses were found than after dim light adaptation for all colors except for red light. Differences between conditions were localized in the frontal lobe, the cingulate gyrus, and the cerebellum. These results indicate that very short-term EEG brain responses are influenced by prior light adaptation and the spectral quality of the light stimulus. We show that the early EEG responses are differently affected by adaptation to different colors of light which may contribute to known differences in performance and reaction times in cognitive tests.

  18. Simplified Generation of High-Angular-Momentum Light Beams

    NASA Technical Reports Server (NTRS)

    Savchenkov, Anatoliy; Maleki, Lute; Matsko, Andrey; Strekalov, Dmitry; Grudinin, Ivan

    2007-01-01

    A simplified method of generating a beam of light having a relatively high value of angular momentum (see figure) involves the use of a compact apparatus consisting mainly of a laser, a whispering- gallery-mode (WGM) resonator, and optical fibers. The method also can be used to generate a Bessel beam. ( Bessel beam denotes a member of a class of non-diffracting beams, so named because their amplitudes are proportional to Bessel functions of the radii from their central axes. High-order Bessel beams can have high values of angular momentum.) High-angular-momentum light beams are used in some applications in biology and nanotechnology, wherein they are known for their ability to apply torque to make microscopic objects rotate. High-angular-momentum light beams could also be used to increase bandwidths of fiber-optic communication systems. The present simplified method of generating a high-angular-momentum light beam was conceived as an alternative to prior such methods, which are complicated and require optical setups that include, variously, holograms, modulating Fabry-Perot cavities, or special microstructures. The present simplified method exploits a combination of the complex structure of the electromagnetic field inside a WGM resonator, total internal reflection in the WGM resonator, and the electromagnetic modes supported by an optical fiber. The optical fiber used to extract light from the WGM resonator is made of fused quartz. The output end of this fiber is polished flat and perpendicular to the fiber axis. The input end of this fiber is cut on a slant and placed very close to the WGM resonator at an appropriate position and orientation. To excite the resonant whispering- gallery modes, light is introduced into the WGM resonator via another optical fiber that is part of a pigtailed fiber-optic coupler. Light extracted from the WGM resonator is transformed into a high-angular- momentum beam inside the extraction optical fiber and this beam is emitted from the

  19. Individual differences in circadian waveform of Siberian hamsters under multiple lighting conditions.

    PubMed

    Evans, Jennifer A; Elliott, Jeffrey A; Gorman, Michael R

    2012-10-01

    Because the circadian clock in the mammalian brain derives from a network of interacting cellular oscillators, characterizing the nature and bases of circadian coupling is fundamental to understanding how the pacemaker operates. Various phenomena involving plasticity in circadian waveform have been theorized to reflect changes in oscillator coupling; however, it remains unclear whether these different behavioral paradigms reference a unitary underlying process. To test whether disparate coupling assays index a common mechanism, we examined whether there is covariation among behavioral responses to various lighting conditions that produce changes in circadian waveform. Siberian hamsters, Phodopus sungorus, were transferred from long to short photoperiods to distinguish short photoperiod responders (SP-R) from nonresponders (SP-NR). Short photoperiod chronotyped hamsters were subsequently transferred, along with unselected controls, to 24-h light:dark:light: dark cycles (LDLD) with dim nighttime illumination, a procedure that induces bifurcated entrainment. Under LDLD, SP-R hamsters were more likely to bifurcate their rhythms than were SP-NR hamsters or unselected controls. After transfer from LDLD to constant dim light, SP-R hamsters were also more likely to become arrhythmic compared to SP-NR hamsters and unselected controls. In contrast, short photoperiod chronotype did not influence more transient changes in circadian waveform. The present data reveal a clear relationship in the plasticity of circadian waveform across 3 distinct lighting conditions, suggesting a common mechanism wherein individual differences reflect variation in circadian coupling.

  20. Light-intensity modulator withstands high heat fluxes

    NASA Technical Reports Server (NTRS)

    Maples, H. G.; Strass, H. K.

    1966-01-01

    Mechanism modulates and controls the intensity of luminous radiation in light beams associated with high-intensity heat flux. This modulator incorporates two fluid-cooled, externally grooved, contracting metal cylinders which when rotated about their longitudinal axes present a circular aperture of varying size depending on the degree of rotation.

  1. Overexpression of Glycolate Oxidase Confers Improved Photosynthesis under High Light and High Temperature in Rice.

    PubMed

    Cui, Li-Li; Lu, Yu-Sheng; Li, Yong; Yang, Chengwei; Peng, Xin-Xiang

    2016-01-01

    While glycolate oxidase (GLO) is well known as a key enzyme for the photorespiratory metabolism in plants, its physiological function and mechanism remains to be further clarified. Our previous studies have shown that suppression of GLO in rice leads to stunted growth and inhibited photosynthesis (Pn) which is positively and linearly correlated with decreased GLO activities. It is, therefore, of interest to further understand whether Pn can be improved when GLO is up-regulated? In this study, four independent overexpression rice lines, with gradient increases in GLO activity, were generated and functionally analyzed. Phenotypic observations showed that the growth could be improved when GLO activities were increased by 60 or 100%, whereas reduced growth was noticed when the activity was further increased by 150 or 210%. As compared with WT plants, all the overexpression plants exhibited significantly improved Pn under conditions of high light and high temperature, but not under normal conditions. In addition, the overexpression plants were more resistant to the MV-induced photooxidative stress. It was further demonstrated that the antioxidant enzymes, and the antioxidant metabolite glutathione was not significantly altered in the overexpression plants. In contrast, H2O2 and salicylic acid (SA) were correspondingly induced upon the GLO overexpression. Taken together, the results suggest that GLO may play an important role for plants to cope with high light and high temperature, and that H2O2 and SA may serve as signaling molecules to trigger stress defense responses but antioxidant reactions appear not to be involved in the defense.

  2. Overexpression of Glycolate Oxidase Confers Improved Photosynthesis under High Light and High Temperature in Rice

    PubMed Central

    Cui, Li-Li; Lu, Yu-sheng; Li, Yong; Yang, Chengwei; Peng, Xin-Xiang

    2016-01-01

    While glycolate oxidase (GLO) is well known as a key enzyme for the photorespiratory metabolism in plants, its physiological function and mechanism remains to be further clarified. Our previous studies have shown that suppression of GLO in rice leads to stunted growth and inhibited photosynthesis (Pn) which is positively and linearly correlated with decreased GLO activities. It is, therefore, of interest to further understand whether Pn can be improved when GLO is up-regulated? In this study, four independent overexpression rice lines, with gradient increases in GLO activity, were generated and functionally analyzed. Phenotypic observations showed that the growth could be improved when GLO activities were increased by 60 or 100%, whereas reduced growth was noticed when the activity was further increased by 150 or 210%. As compared with WT plants, all the overexpression plants exhibited significantly improved Pn under conditions of high light and high temperature, but not under normal conditions. In addition, the overexpression plants were more resistant to the MV-induced photooxidative stress. It was further demonstrated that the antioxidant enzymes, and the antioxidant metabolite glutathione was not significantly altered in the overexpression plants. In contrast, H2O2 and salicylic acid (SA) were correspondingly induced upon the GLO overexpression. Taken together, the results suggest that GLO may play an important role for plants to cope with high light and high temperature, and that H2O2 and SA may serve as signaling molecules to trigger stress defense responses but antioxidant reactions appear not to be involved in the defense. PMID:27540387

  3. Nanoimprint lithography for green water-repellent film derived from biomass with high-light transparency

    NASA Astrophysics Data System (ADS)

    Takei, Satoshi; Hanabata, Makoto

    2015-03-01

    Newly eco-friendly high light transparency film with plant-based materials was investigated to future development of liquid crystal displays and optical devices with water repellency as a chemical design concept of nanoimprint lithography. This procedure is proven to be suitable for material design and the process conditions of ultraviolet curing nanoimprint lithography for green water-repellent film derived from biomass with high-light transparency. The developed formulation of advanced nanoimprinted materials design derived from lactulose and psicose, and the development of suitable UV nanoimprint conditions produced high resolutions of the conical shaped moth-eye regularly-nanostructure less than approximately 200 nm diameter, and acceptable patterning dimensional accuracy by the replication of 100 times of UV nanoimprint lithography cycles. The newly plant-based materials and the process conditions are expected as one of the defect less nanoimprint lithographic technologies in next generation electronic devices.

  4. Optical power splitter for splitting high power light

    DOEpatents

    English, R.E. Jr.; Christensen, J.J.

    1995-04-18

    An optical power splitter for the distribution of high-power light energy has a plurality of prisms arranged about a central axis to form a central channel. The input faces of the prisms are in a common plane which is substantially perpendicular to the central axis. A beam of light which is substantially coaxial to the central axis is incident on the prisms and at least partially strikes a surface area of each prism input face. The incident beam also partially passes through the central channel. 5 figs.

  5. Optical power splitter for splitting high power light

    DOEpatents

    English, Jr., Ronald E.; Christensen, John J.

    1995-01-01

    An optical power splitter for the distribution of high-power light energy has a plurality of prisms arranged about a central axis to form a central channel. The input faces of the prisms are in a common plane which is substantially perpendicular to the central axis. A beam of light which is substantially coaxial to the central axis is incident on the prisms and at least partially strikes a surface area of each prism input face. The incident beam also partially passes through the central channel.

  6. N-formylkynurenine as a marker of high light stress in photosynthesis.

    PubMed

    Dreaden, Tina M; Chen, Jun; Rexroth, Sascha; Barry, Bridgette A

    2011-06-24

    Photosystem II (PSII) is the membrane protein complex that catalyzes the photo-induced oxidation of water at a manganese-calcium active site. Light-dependent damage and repair occur in PSII under conditions of high light stress. The core reaction center complex is composed of the D1, D2, CP43, and CP47 intrinsic polypeptides. In this study, a new chromophore formed from the oxidative post-translational modification of tryptophan is identified in the CP43 subunit. Tandem mass spectrometry peptide sequencing is consistent with the oxidation of the CP43 tryptophan side chain, Trp-365, to produce N-formylkynurenine (NFK). Characterization with ultraviolet visible absorption and ultraviolet resonance Raman spectroscopy supports this assignment. An optical assay suggests that the yield of NFK increases 2-fold (2.2 ± 0.5) under high light illumination. A concomitant 2.4 ± 0.5-fold decrease is observed in the steady-state rate of oxygen evolution under the high light conditions. NFK is the product formed from reaction of tryptophan with singlet oxygen, which can be produced under high light stress in PSII. Reactive oxygen species reactions lead to oxidative damage of the reaction center, D1 protein turnover, and inhibition of electron transfer. Our results are consistent with a role for the CP43 NFK modification in photoinhibition.

  7. Laser surface texturization for high power cladding light stripper

    NASA Astrophysics Data System (ADS)

    Berisset, Michael; Lebrun, Léo.; Faucon, Marc; Kling, Rainer; Boullet, Johan; Aguergaray, Claude

    2016-03-01

    We demonstrated herein a new type of cladding light strippers suitable for high power systems. By precisely micro-machining the surface of the fiber we create CLS with efficiencies as high as 97 % for large NA, multi-mode, cladding light (NA = 0.3), and 70 % for single-mode, low NA, light. The NA of the cladding light is reduced from 0.3 down to 0.08. The CLS exhibit a 1°C/stripped-Watt temperature elevation making them very suitable for high power applications. This fabrication method is simple and reliable. We have tested different texturization geometries on several different fibers: 20/400 from Nufern, KAGOME, and LMA 10 and LMA 15 fibers (results not shown herein) and we observed good efficiencies and temperature elevation behavior for all of them. Finally, large scale production of CLS with this method is possible since the time necessary to prepare on CLS is very small, in the order of few seconds.

  8. High light acclimation of Chromera velia points to photoprotective NPQ.

    PubMed

    Belgio, Erica; Trsková, Eliška; Kotabová, Eva; Ewe, Daniela; Prášil, Ondřej; Kaňa, Radek

    2017-04-12

    It has previously been shown that the long-term treatment of Arabidopsis thaliana with the chloroplast inhibitor lincomycin leads to photosynthetic membranes enriched in antennas, strongly reduced in photosystem II reaction centers (PSII) and with enhanced nonphotochemical quenching (NPQ) (Belgio et al. Biophys J 102:2761-2771, 2012). Here, a similar physiological response was found in the microalga Chromera velia grown under high light (HL). In comparison to cells acclimated to low light, HL cells displayed a severe re-organization of the photosynthetic membrane characterized by (1) a reduction of PSII but similar antenna content; (2) partial uncoupling of antennas from PSII; (3) enhanced NPQ. The decrease in the number of PSII represents a rather unusual acclimation response compared to other phototrophs, where a smaller PSII antenna size is more commonly found under high light. Despite the diminished PSII content, no net damage could be detected on the basis of the Photosynthesis versus irradiance curve and electron transport rates pointing at the excess capacity of PSII. We therefore concluded that the photoinhibition is minimized under high light by a lower PSII content and that cells are protected by NPQ in the antennas.

  9. Light energy allocation at PSII under field light conditions: how much energy is lost in NPQ-associated dissipation?

    PubMed

    Endo, Tsuyoshi; Uebayashi, Nozomu; Ishida, Satoshi; Ikeuchi, Masahiro; Sato, Fumihiko

    2014-08-01

    In the field, plants are exposed to fluctuating light, where photosynthesis occurs under conditions far from a steady state. Excess energy dissipation associated with energy quenching of chlorophyll fluorescence (qE) functions as an efficient photo-protection mechanism in photosystem II. PsbS is an important regulator of qE, especially for the induction phase of qE. Beside the regulatory energy dissipation, some part of energy is lost through relaxation of excited chlorophyll molecules. To date, several models to quantify energy loss through these dissipative pathways in PSII have been proposed. In this short review, we compare and evaluate these models for PSII energy allocation when they are applied to non-steady state photosynthesis. As a case study, an investigation on energy allocation to qE-associated dissipation at PSII under non-steady state photosynthesis using PsbS-deficient rice transformants is introduced. Diurnal and seasonal changes in PSII energy allocation in rice under natural light are also presented. Future perspective of studies on PSII energy allocation is discussed.

  10. Optical anisotropy of cubic photonic crystals under conditions of multiple-mode light propagation

    NASA Astrophysics Data System (ADS)

    Ukleev, T. A.; Yurasova, D. I.; Shevchenko, N. N.; Sel'kin, A. V.

    2016-11-01

    Bragg reflection spectra of light are studied for opal-like photonic crystals made of polystyrene spheres. A resonant enhancement of reflectivity is observed in cross-polarization configuration of the analyzer and polarizer when varying the azimuthal orientation of a sample in respect to the incidence plane. The cross-polarization effect takes place at oblique incidence of light on the lateral (111) crystal plane with the plane of incidence being non-perpendicular to the inclined (11-1) crystal plane. The effect is shown to be due to the multiple Bragg diffraction of light when the resonant Bragg conditions are fulfilled at a certain angle of incidence and azimuth for the lateral and inclined crystal planes simultaneously.

  11. Modeling light and temperature influence on ammonium removal by Scenedesmus sp. under outdoor conditions.

    PubMed

    Ruiz-Martínez, Ana; Serralta, Joaquin; Seco, Aurora; Ferrer, Jose

    2016-10-01

    The ammonium removal rate of the microalga Scenedesmus sp. was studied under outdoor conditions. Microalgae were grown in a 500 L flat-plate photobioreactor and fed with the effluent of a submerged anaerobic membrane bioreactor. Temperature ranged between 9.5 °C and 32.5 °C and maximum light intensity was 1,860 μmol·m(-2)·s(-1). A maximum specific ammonium removal rate of 3.71 mg NH4(+)-N·g TSS(-1)·h(-1) was measured (at 22.6 °C and with a light intensity of 1,734 μmol·m(-2)·s(-1)). A mathematical model considering the influence of ammonium concentration, light and temperature was validated. The model successfully reproduced the observed values of ammonium removal rate obtained and it is thus presented as a useful tool for plant operation.

  12. High-Efficiency Nitride-Based Solid-State Lighting

    SciTech Connect

    Paul T. Fini; Shuji Nakamura

    2005-07-30

    In this final technical progress report we summarize research accomplished during Department of Energy contract DE-FC26-01NT41203, entitled ''High-Efficiency Nitride-Based Solid-State Lighting''. Two teams, from the University of California at Santa Barbara (Principle Investigator: Dr. Shuji Nakamura) and the Lighting Research Center at Rensselaer Polytechnic Institute (led by Dr. N. Narendran), pursued the goals of this contract from thin film growth, characterization, and packaging/luminaire design standpoints. The UCSB team initially pursued the development of blue gallium nitride (GaN)-based vertical-cavity surface-emitting lasers, as well as ultraviolet GaN-based light emitting diodes (LEDs). In Year 2, the emphasis shifted to resonant-cavity light emitting diodes, also known as micro-cavity LEDs when extremely thin device cavities are fabricated. These devices have very directional emission and higher light extraction efficiency than conventional LEDs. Via the optimization of thin-film growth and refinement of device processing, we decreased the total cavity thickness to less than 1 {micro}m, such that micro-cavity effects were clearly observed and a light extraction efficiency of over 10% was reached. We also began the development of photonic crystals for increased light extraction, in particular for so-called ''guided modes'' which would otherwise propagate laterally in the device and be re-absorbed. Finally, we pursued the growth of smooth, high-quality nonpolar a-plane and m-plane GaN films, as well as blue light emitting diodes on these novel films. Initial nonpolar LEDs showed the expected behavior of negligible peak wavelength shift with increasing drive current. M-plane LEDs in particular show promise, as unpackaged devices had unsaturated optical output power of {approx} 3 mW at 200 mA drive current. The LRC's tasks were aimed at developing the subcomponents necessary for packaging UCSB's light emitting diodes, and packaging them to produce a white

  13. Alteration of media composition and light conditions change morphology, metabolic profile, and beauvericin biosynthesis in Cordyceps bassiana mycelium.

    PubMed

    Hyun, Sun-Hee; Lee, Seok-Young; Park, Shin Jung; Kim, Da Yeon; Chun, Young-Jin; Sung, Gi-Ho; Kim, Seong Hwan; Choi, Hyung-Kyoon

    2013-01-01

    Metabolic alterations of Cordyceps bassiana mycelium were investigated under the following culture medium and light conditions: dextrose agar supplemented with 0.5% yeast extract (SDAY) medium with light (SL), SDAY medium without light (SD), nut medium without light (ND), and iron-supplemented SDAY medium without light (FD). The levels of asparagine, aspartic acid, glutamic acid, glutamine, histidine, lysine, ornithine, and proline were significantly higher under SD and SL conditions. The levels of most of the alcohols, saturated fatty acids, unsaturated fatty acids, fatty acid esters, sterols, and terpenes were higher under the ND condition than in the other conditions, but beauvericin was not detectable under the ND condition. The FD condition was favorable for the enhanced production of aminomalonic acid, malic acid, mannonic acid, and erythritol. Thus, the metabolic characteristics of C. bassiana can be manipulated by varying the cultivation conditions, rendering this fungus potentially favorable as a nutraceutical and medicinal resource.

  14. The high-order quantum coherence of thermal light

    NASA Astrophysics Data System (ADS)

    Chen, Hui

    Thermal light, such as sunlight, is usually considered classical light. In a macroscopic picture, classical theory successfully explained the first-order coherence phenomena of thermal light. The macroscopic theory, based on the statistical behavior of light intensity fluctuations, however, can only phenomenologically explain the second- or higher-order coherence phenomena of thermal light. This thesis introduces a microscopic quantum picture, based on the interferences of a large number of randomly distributed and randomly radiated subfields, wavepackets or photons, to the study of high-order coherence of thermal light. This thesis concludes that the second-order intensity fluctuation correlation is caused by nonlocal interference: a pair of wavepackets, which are randomly paired together, interferes with the pair itself at two distant space-time coordinates. This study has the following practical motivations: (1) to simulate N-qbits. Practical quantum computing requires quantum bits(qubits) of N-digit to represent all possible integers from 0 to 2N-1 simultaneously. A large number of independent particles can be prepared to represent a large set of N orthogonal |0> and |1> bits. In fact, based on our recent experiments of simulating the high-order correlation of entangled photons, thermal radiation is suggested as a promising source for quantum information processing. (2) to achieve sunlight ghost imaging. Ghost imaging has three attractive non-classical features: (a) the ghost camera can "see" targets that can never be seen by a classic camera; (2) it is turbulence-free; and (3) its spatial resolution is mainly determined by the angular diameter of the light source. For example, a sunlight ghost image of an object on earth may achieve a spatial resolution of 200 micrometer because the angular diameter of sun is 0.53 degree with respect to Earth. Although ghost imaging has been experimental demonstrated by using entangled photon pairs and "pseudo-thermal light

  15. NANOSTRUCTURED HIGH PERFORMANCE ULTRAVIOLET AND BLUE LIGHT EMITTING DIODES FOR SOLID STATE LIGHTING

    SciTech Connect

    Arto V. Nurmikko; Jung Han

    2004-10-01

    We report on research results in this project which synergize advanced material science approaches with fundamental optical physics concepts pertaining to light-matter interaction, with the goal of solving seminal problems for the development of very high performance light emitting diodes (LEDs) in the blue and near ultraviolet for Solid State Lighting applications. Accomplishments in the first 12 month contract period include (1) new means of synthesizing zero- and one-dimensional GaN nanostructures, (2) establishment of the building blocks for making GaN-based microcavity devices, and (3) demonstration of top-down approach to nano-scale photonic devices for enhanced spontaneous emission and light extraction. These include a demonstration of eight-fold enhancement of the external emission efficiency in new InGaN QW photonic crystal structures. The body of results is presented in this report shows how a solid foundation has been laid, with several noticeable accomplishments, for innovative research, consistent with the stated milestones.

  16. Modes of antibacterial action of curcumin under dark and light conditions: A toxicoproteomics approach.

    PubMed

    Shlar, Ilya; Droby, Samir; Rodov, Victor

    2017-03-15

    Curcumin is a potent natural food-grade antimicrobial compound. Exposure to light further enhances its antimicrobial capacity. Proteomic methods were used in this study for investigating the mechanistic aspects of the antibacterial curcumin effects in the dark and upon illumination. Escherichia coli cells exposed to water-dispersible curcumin-methyl-β-cyclodextrin inclusion complex under dark and light conditions were compared with the non-treated cells kept under the same illumination regimes. Curcumin treatment in the dark evoked adaptive responses aimed at mitigation of oxidative stress, DNA protection, proteostasis, modulation of redox state via changing NADH level, and gasotransmitter (H2S and NH3) biosynthesis. Although part of these phenomena were also present in E. coli treated under light, the light-induced curcumin toxicity was prevailed by maladaptive responses. The ROS burst induced upon curcumin treatment under light overrode the cellular adaptive mechanisms disrupting the iron metabolism, deregulating the iron-sulfur cluster biosynthesis and eventually leading to cell death. The toxicoproteomic findings were validated by transcriptomic analysis and by assessment of intracellular ROS, NADH, NADPH and iron levels.

  17. Real-time detection of concealed chemical hazards under ambient light conditions using Raman spectroscopy.

    PubMed

    Cletus, Biju; Olds, William; Fredericks, Peter M; Jaatinen, Esa; Izake, Emad L

    2013-07-01

    Current concerns regarding terrorism and international crime highlight the need for new techniques for detecting unknown and hazardous substances. A novel Raman spectroscopy-based technique, spatially offset Raman spectroscopy (SORS), was recently devised for noninvasively probing the contents of diffusely scattering and opaque containers. Here, we demonstrate a modified portable SORS sensor for detecting concealed substances in-field under different background lighting conditions. Samples including explosive precursors, drugs, and an organophosphate insecticide (chemical warfare agent surrogate) were concealed inside diffusely scattering packaging including plastic, paper, and cloth. Measurements were carried out under incandescent and fluorescent light as well as under daylight to assess the suitability of the probe for different real-life conditions. In each case, it was possible to identify the substances against their reference Raman spectra in less than 1 min. The developed sensor has potential for rapid detection of concealed hazardous substances in airports, mail distribution centers, and customs checkpoints.

  18. Energy Harvesting for GaAs Photovoltaics Under Low-Flux Indoor Lighting Conditions.

    PubMed

    Teran, Alan S; Moon, Eunseong; Lim, Wootaek; Kim, Gyouho; Lee, Inhee; Blaauw, David; Phillips, Jamie D

    2016-07-01

    GaAs photovoltaics are promising candidates for indoor energy harvesting to power small-scale (≈1 mm(2)) electronics. This application has stringent requirements on dark current, recombination, and shunt leakage paths due to low-light conditions and small device dimensions. The power conversion efficiency and the limiting mechanisms in GaAs photovoltaic cells under indoor lighting conditions are studied experimentally. Voltage is limited by generation-recombination dark current attributed to perimeter sidewall surface recombination based on the measurements of variable cell area. Bulk and perimeter recombination coefficients of 1.464 pA/mm(2) and 0.2816 pA/mm, respectively, were extracted from dark current measurements. Resulting power conversion efficiency is strongly dependent on cell area, where current GaAs of 1-mm(2) indoor photovoltaic cells demonstrates power conversion efficiency of approximately 19% at 580 lx of white LED illumination. Reductions in both bulk and perimeter sidewall recombination are required to increase maximum efficiency (while maintaining small cell area near 1 mm(2)) to approach the theoretical power conversion efficiency of 40% for GaAs cells under typical indoor lighting conditions.

  19. Energy Harvesting for GaAs Photovoltaics Under Low-Flux Indoor Lighting Conditions

    PubMed Central

    Teran, Alan S.; Moon, Eunseong; Lim, Wootaek; Kim, Gyouho; Lee, Inhee; Blaauw, David; Phillips, Jamie D.

    2016-01-01

    GaAs photovoltaics are promising candidates for indoor energy harvesting to power small-scale (≈1 mm2) electronics. This application has stringent requirements on dark current, recombination, and shunt leakage paths due to low-light conditions and small device dimensions. The power conversion efficiency and the limiting mechanisms in GaAs photovoltaic cells under indoor lighting conditions are studied experimentally. Voltage is limited by generation–recombination dark current attributed to perimeter sidewall surface recombination based on the measurements of variable cell area. Bulk and perimeter recombination coefficients of 1.464 pA/mm2 and 0.2816 pA/mm, respectively, were extracted from dark current measurements. Resulting power conversion efficiency is strongly dependent on cell area, where current GaAs of 1-mm2 indoor photovoltaic cells demonstrates power conversion efficiency of approximately 19% at 580 lx of white LED illumination. Reductions in both bulk and perimeter sidewall recombination are required to increase maximum efficiency (while maintaining small cell area near 1 mm2) to approach the theoretical power conversion efficiency of 40% for GaAs cells under typical indoor lighting conditions. PMID:28133394

  20. Multilayer surface albedo for face recognition with reference images in bad lighting conditions.

    PubMed

    Lai, Zhao-Rong; Dai, Dao-Qing; Ren, Chuan-Xian; Huang, Ke-Kun

    2014-11-01

    In this paper, we propose a multilayer surface albedo (MLSA) model to tackle face recognition in bad lighting conditions, especially with reference images in bad lighting conditions. Some previous researches conclude that illumination variations mainly lie in the large-scale features of an image and extract small-scale features in the surface albedo (or surface texture). However, this surface albedo is not robust enough, which still contains some detrimental sharp features. To improve robustness of the surface albedo, MLSA further decomposes it as a linear sum of several detailed layers, to separate and represent features of different scales in a more specific way. Then, the layers are adjusted by separate weights, which are global parameters and selected for only once. A criterion function is developed to select these layer weights with an independent training set. Despite controlled illumination variations, MLSA is also effective to uncontrolled illumination variations, even mixed with other complicated variations (expression, pose, occlusion, and so on). Extensive experiments on four benchmark data sets show that MLSA has good receiver operating characteristic curve and statistical discriminating capability. The refined albedo improves recognition performance, especially with reference images in bad lighting conditions.

  1. Effects of light condition after simulated acid snow stress on leaves of winter wheat.

    PubMed

    Inada, Hidetoshi; Fujikawa, Seizo; Saito, Hideyuki; Arakawa, Keita

    2007-01-01

    Winter plants regrow after freeze-thawing in acidic meltwater from the acid-snow layer in early winter or early spring. In this study, the responses of cold-acclimated wheat seedlings to different light conditions during the regrowth period after simulated acid snow (SAS) stress were investigated. After freeze-thawing in sulfuric acid (SAS stress) of pH 2.0, dry weight and the maximal quantum yield of photosystem II (PSII) decreased more in mature leaves than in young leaves. In a subsequent regrowth period under light condition, dry weight, relative water content, and the maximal quantum yield of PSII were severely affected in mature leaves but were only slightly affected in SAS (pH 2.0)-stressed young leaves. The levels of membrane lipid peroxidation and hydrogen peroxide in mature leaves of SAS (pH 2.0)-stressed seedlings were significantly higher than those in young leaves during the regrowth period under light condition. The superoxide dismutase activity in young leaves was higher than that in mature leaves during the regrowth period. These results indicate that mature leaves of seedlings during the snow melt season are more sensitive than young leaves to photooxidative stress because of their low acid snow stress tolerance and low capacity for the detoxification of superoxide.

  2. High Temperature Chemical Kinetic Combustion Modeling of Lightly Methylated Alkanes

    SciTech Connect

    Sarathy, S M; Westbrook, C K; Pitz, W J; Mehl, M

    2011-03-01

    Conventional petroleum jet and diesel fuels, as well as alternative Fischer-Tropsch (FT) fuels and hydrotreated renewable jet (HRJ) fuels, contain high molecular weight lightly branched alkanes (i.e., methylalkanes) and straight chain alkanes (n-alkanes). Improving the combustion of these fuels in practical applications requires a fundamental understanding of large hydrocarbon combustion chemistry. This research project presents a detailed high temperature chemical kinetic mechanism for n-octane and three lightly branched isomers octane (i.e., 2-methylheptane, 3-methylheptane, and 2,5-dimethylhexane). The model is validated against experimental data from a variety of fundamental combustion devices. This new model is used to show how the location and number of methyl branches affects fuel reactivity including laminar flame speed and species formation.

  3. High-speed OCT light sources and systems [Invited

    PubMed Central

    Klein, Thomas; Huber, Robert

    2017-01-01

    Imaging speed is one of the most important parameters that define the performance of optical coherence tomography (OCT) systems. During the last two decades, OCT speed has increased by over three orders of magnitude. New developments in wavelength-swept lasers have repeatedly been crucial for this development. In this review, we discuss the historical evolution and current state of the art of high-speed OCT systems, with focus on wavelength swept light sources and swept source OCT systems. PMID:28270988

  4. High light transmission through thin absorptive corrugated films.

    PubMed

    Dmitruk, Nicolas L; Korovin, Alexander V

    2008-05-01

    The enhancement of light transmittance through periodically relief thin absorptive film at surface plasmon polariton excitation conditions, as a function of relief interrelation, was considered theoretically. Our calculation of transmittance-reflectance through periodically relief thin absorptive film was performed in the framework of differential formalism. There are two basic relief interrelation forms, namely, correlated and anticorrelated ones. The obtained spectral and angular dependencies demonstrate an essential increase of surface plasmon polariton peaks in the case of anticorrelated corrugation of film in comparison with the correlated ones.

  5. Season-dependent and independent responses of Mediterranean scrub to light conditions.

    PubMed

    Zunzunegui, María; Díaz-Barradas, Mari Cruz; Jáuregui, Juan; Rodríguez, Herminia; Álvarez-Cansino, Leonor

    2016-05-01

    Semi-arid plant species cope with excess of solar radiation with morphological and physiological adaptations that assure their survival when other abiotic stressors interact. At the leaf level, sun and shade plants may differ in the set of traits that regulate environmental stressors. Here, we evaluated if leaf-level physiological seasonal response of Mediterranean scrub species (Myrtus communis, Halimium halimifolium, Rosmarinus officinalis, and Cistus salvifolius) depended on light availability conditions. We aimed to determine which of these responses prevailed independently of the marked seasonality of Mediterranean climate, to define a leaf-level strategy in the scrub community. Thirty six leaf response variables - involving gas exchange, water status, photosystem II photochemical efficiency, photosynthetic pigments and leaf structure - were seasonally measured in sun exposed and shaded plants under field conditions. Physiological responses showed a common pattern throughout the year, in spite of the marked seasonality of the Mediterranean climate and of species-specific differences in the response to light intensity. Variables related to light use, CO2 assimilation, leaf pigment content, and LMA (leaf mass area) presented differences that were consistent throughout the year, although autumn was the season with greater contrast between sun and shade plants. Our data suggest that in Mediterranean scrub shade plants the lutein pool could have an important role in the photoprotection of the photosynthetic tissues. There was a negative linear correlation between the ratio lutein/total chlorophylls and the majority of leaf level variables. The combined effect of abiotic stress factors (light and drought or light and cold) was variable-specific, in some cases enhancing differences between sun and shade plants, while in others leading to unified strategies in all scrub species.

  6. Influence of iron precipitated condition and light intensity on microalgae activated sludge based wastewater remediation.

    PubMed

    Anbalagan, Anbarasan; Schwede, Sebastian; Lindberg, Carl-Fredrik; Nehrenheim, Emma

    2017-02-01

    The indigenous microalgae-activated sludge (MAAS) process during remediation of municipal wastewater was investigated by studying the influence of iron flocculation step and light intensity. In addition, availability of total phosphorous (P) and photosynthetic activity was examined in fed-batch and batch mode under northern climatic conditions and limited lighting. This was followed by a semi-continuous operation with 4 d of hydraulic retention time and mean cell residence time of 6.75 d in a photo-bioreactor (PBR) with varying P availability. The fed-batch condition showed that P concentrations of 3-4 mg L(-1) were effective for photosynthetic chl. a development in iron flocculated conditions. In the PBR, the oxygen evolution rate increased with increase in the concentration of MAAS (from 258 to 573 mg TSS L(-1)) at higher surface photosynthetic active radiation (250 and 500 μmol m(-2) s(-1)). Additionally, the rate approached a saturation phase at low MAAS (110 mg L(-1)) with higher light intensities. Semi-continuous operation with luxury P uptake and effective P condition showed stable average total nitrogen removal of 88 and 92% respectively, with residual concentrations of 3.77 and 2.21 mg L(-1). The corresponding average P removal was 68 and 59% with residual concentrations of 2.32 and 1.75 mg L(-1). The semi-continuous operation produced a rapidly settleable MAAS under iron flocculated condition with a settling velocity of 92-106 m h(-1) and sludge volume index of 31-43 ml g(-1) in the studied cases.

  7. HIGH-EFFICIENCY NITRIDE-BASED SOLID-STATE LIGHTING

    SciTech Connect

    Dr. Paul T. Fini; Prof. Shuji Nakamura

    2002-09-01

    In this annual report we summarize the progress obtained in the first year with the support of DoE contract No.DE-FC26-01NT41203, entitled ''High-Efficiency Nitride-Based Solid-State Lighting''. The two teams, from the University of California at Santa Barbara (Principle Investigator: Dr. Shuji Nakamura) and Rensselaer Polytechnic Institute (led by Dr. N. Narendran), are pursuing the goals of this contract from thin film growth, characterization, and packaging standpoints. The UCSB team has made significant progress in the development of GaN vertical cavity surface-emitting lasers (VCSELs) as well as light-emitting diodes (LEDs) with AlGaN active regions emitting in the ultraviolet (UV). The Rensselaer team has developed target specifications for some of the key parameters for the proposed solid-state lighting system, including a luminous flux requirement matrix for various lighting applications, optimal spectral power distributions, and the performance characteristics of currently available commercial LEDs for eventual comparisons to the devices developed in the scope of this project.

  8. Interactions between lighting and space conditioning energy use in U.S. commercial buildings

    SciTech Connect

    Sezgen, O.; Koomey, J.G.

    1998-04-01

    Reductions in lighting energy have secondary effects on cooling and heating energy consumption. In general, lighting energy reductions increase heating and decrease cooling requirements of a building. The net change in a building`s annual energy requirements, however, is difficult to quantify and depends on the building characteristics, operating conditions, and climate. This paper characterizes the effects of lighting/HVAC interactions on the annual heating/cooling requirements of prototypical US commercial buildings through computer simulations using the DOE-2.1E building energy analysis program. Twelve building types of two vintages and five climates are chosen to represent the US commercial building stock. For each combination of building type, vintage, and climate, a prototypical building is simulated with varying lighting power densities, and the resultant changes in heating and cooling loads are recorded. These loads are used together with market information on the saturation of the different HVAC equipment in the commercial buildings to determine the changes i energy use and expenditures for heating and cooling. Results are presented by building type for the US as a whole. Therefore, the data presented in this paper can be utilized to assess the secondary effects of lighting-related federal policies with widespread impacts, like minimum efficiency standards. Generally, in warm climates the interactions will induce monetary savings and in cold climates the interactions will induce monetary penalties. For the commercial building stock in the US, a reduction in lighting energy that is well distributed geographically will induce neither significant savings nor significant penalties from associated changes in HVAC primary energy and energy expenditures.

  9. Successful "First Light" for VLT High-Resolution Spectrograph

    NASA Astrophysics Data System (ADS)

    1999-10-01

    with UVES at KUEYEN was of SN 1987A , the famous supernova that exploded in the Large Magellanic Cloud (LMC) in February 1987, and the brightest supernova of the last 400 years. ESO PR Photo 37a/99 ESO PR Photo 37a/99 [Preview - JPEG: 400 x 455 pix - 87k] [Normal - JPEG: 645 x 733 pix - 166k] Caption to ESO PR Photo 37a/99 : This is a direct image of SN1987A, flanked by two nearby stars. The distance between these two is 4.5 arcsec. The slit (2.0 arcsec wide) through which the echelle spectrum shown in PR Photo 37b/99 was obtained, is outlined. This reproduction is from a 2-min exposure through a R(ed) filter with the FORS1 multi-mode instrument at VLT ANTU, obtained in 0.55 arcsec seeing on September 20, 1998. North is up and East is left. ESO PR Photo 37b/99 ESO PR Photo 37b/99 [Preview - JPEG: 400 x 459 pix - 130k] [Normal - JPEG: 800 x 917 pix - 470k] [High-Res - JPEG: 3000 x 3439 pix - 6.5M] Caption to ESO PR Photo 37b/99 : This shows the raw image, as read from the CCD, with the recorded echelle spectrum of SN1987A. With this technique, the supernova spectrum is divided into many individual parts ( spectral orders , each of which appears as a narrow horizontal line) that together cover the wavelength interval from 479 to 682 nm (from the bottom to the top), i.e. from blue to red light. Many bright emission lines from different elements are visible, e.g. the strong H-alpha line from hydrogen near the centre of the fourth order from the top. Emission lines from the terrestrial atmosphere are seen as vertical bright lines that cover the full width of the individual horizontal bands. Since this exposure was done with the nearly Full Moon above the horizon, an underlying, faint absorption-line spectrum of reflected sunlight is also visible. The exposure time was 30 min and the seeing conditions were excellent (0.5 arcsec). ESO PR Photo 37c/99 ESO PR Photo 37c/99 [Preview - JPEG: 400 x 355 pix - 156k] [Normal - JPEG: 800 x 709 pix - 498k] [High-Res - JPEG: 1074 x 952

  10. The effects of lighting conditions on responses of cells selective for face views in the macaque temporal cortex.

    PubMed

    Hietanen, J K; Perrett, D I; Oram, M W; Benson, P J; Dittrich, W H

    1992-01-01

    Neural mechanisms underlying recognition of objects must overcome the changes in an object's appearance caused by inconsistent viewing conditions, particularly those that occur with changes in lighting. In humans, lesions to the posterior visual association cortex can impair the ability to recognize objects and faces across different lighting conditions. Inferotemporal lesions in monkey have been shown to produce a similar difficulty in object matching tasks. Here we report on the extent to which cell responses selective for the face and other views of the head in monkey temporal cortex tolerate changes in lighting. For each cell studied the (preferred) head view eliciting maximal response was first established under normal lighting. Cells were then tested with the preferred head view lit from different directions (i.e. front, above, below or from the side). Responses of some cells failed to show complete generalization across all lighting conditions but together as a "population" they responded equally strongly under all four lighting conditions. Further tests on sub-groups of cells revealed that stimulus selectivity was maintained despite unusual lighting. The cells discriminated between head and control stimuli and between different views of the head independent of the lighting direction. The results indicate that constancy of recognition across different lighting conditions is apparent in the responses of single cells in the temporal cortex. Lighting constancy appears to be established by matching the retinal image to view-specific descriptions of objects (i.e. neurons which compute object structure from a limited range of perspective views).

  11. Retinal Pre-Conditioning by CD59a Knockout Protects against Light-Induced Photoreceptor Degeneration

    PubMed Central

    Wilson, Brooks; Zhao, Liangliang; Bhuyan, Rupak; Bandyopadhyay, Mausumi; Lyubarsky, Arkady; Yu, Chen; Li, Yafeng; Kanu, Levi; Miwa, Takashi; Song, Wen-Chao; Finnemann, Silvia C.; Rohrer, Bärbel; Dunaief, Joshua L.

    2016-01-01

    Complement dysregulation plays a key role in the pathogenesis of age-related macular degeneration (AMD), but the specific mechanisms are incompletely understood. Complement also potentiates retinal degeneration in the murine light damage model. To test the retinal function of CD59a, a complement inhibitor, CD59a knockout (KO) mice were used for light damage (LD) experiments. Retinal degeneration and function were compared in WT versus KO mice following light damage. Gene expression changes, endoplasmic reticulum (ER) stress, and glial cell activation were also compared. At baseline, the ERG responses and rhodopsin levels were lower in CD59aKO compared to wild-type (WT) mice. Following LD, the ERG responses were better preserved in CD59aKO compared to WT mice. Correspondingly, the number of photoreceptors was higher in CD59aKO retinas than WT controls after LD. Under normal light conditions, CD59aKO mice had higher levels than WT for GFAP immunostaining in Müller cells, mRNA and protein levels of two ER-stress markers, and neurotrophic factors. The reduction in photon capture, together with the neurotrophic factor upregulation, may explain the structural and functional protection against LD in the CD59aKO. PMID:27893831

  12. Metabolomic Responses of Arabidopsis Suspension Cells to Bicarbonate under Light and Dark Conditions

    PubMed Central

    Misra, Biswapriya B.; Yin, Zepeng; Geng, Sisi; de Armas, Evaldo; Chen, Sixue

    2016-01-01

    Global CO2 level presently recorded at 400 ppm is expected to reach 550 ppm in 2050, an increment likely to impact plant growth and productivity. Using targeted LC-MS and GC-MS platforms we quantified 229 and 29 metabolites, respectively in a time-course study to reveal short-term responses to different concentrations (1, 3, and 10 mM) of bicarbonate (HCO3−) under light and dark conditions. Results indicate that HCO3− treatment responsive metabolomic changes depend on the HCO3− concentration, time of treatment, and light/dark. Interestingly, 3 mM HCO3− concentration treatment induced more significantly changed metabolites than either lower or higher concentrations used. Flavonoid biosynthesis and glutathione metabolism were common to both light and dark-mediated responses in addition to showing concentration-dependent changes. Our metabolomics results provide insights into short-term plant cellular responses to elevated HCO3− concentrations as a result of ambient increases in CO2 under light and dark. PMID:27762345

  13. Constant Light Output Ballasting For High Intensity Discharge Lamps

    NASA Astrophysics Data System (ADS)

    Donkin, Adrian

    1988-02-01

    Since the commercial introduction some twenty years ago of HMI* (Hydragyrum-mercury, Medium, Iodide) type lamps, as a source intended primarily for floodlighting applications, their attraction as a cinematographic light source has been apparent due to their largely desirable characteristics. Use in this field has been restricted due to the absolute requirement for an alternating current supply - with a sine wave supply frame rates are limited to a sub-multiple of the supply frequency with the supply frequency phase locked to the camera frame rate. This has effectively barred metal halide HID lighting from use in high speed photography. The general characteristics of metal halide HID lamps are presented alongside a sample of other light sources. An electronic ballast which has been proven to 12000 Watts in the motion picture industry is then described which overcomes the limitations of the conventional magnetic ballast - the square wave output of the electronic ballast theoretically allows the use of any camera frame rate/shutter angle combination. Finally the suitability of luminaires for high speed photography is discussed.

  14. Nanostructured High Performance Ultraviolet and Blue Light Emitting Diodes for Solid State Lighting

    SciTech Connect

    Arto V. Nurmikko; Jung Han

    2005-09-30

    We report on research results in this project which synergize advanced material science approaches with fundamental optical physics concepts pertaining to light-matter interaction, with the goal of solving seminal problems for the development of very high performance light emitting diodes (LEDs) in the blue and near ultraviolet for Solid State Lighting applications. Accomplishments in the second 12 month contract period include (i) new means of synthesizing AlGaN and InN quantum dots by droplet heteroepitaxy, (ii) synthesis of AlGaInN nanowires as building blocks for GaN-based microcavity devices, (iii) progress towards direct epitaxial alignment of the dense arrays of nanowires, (iv) observation and measurements of stimulated emission in dense InGaN nanopost arrays, (v) design and fabrication of InGaN photonic crystal emitters, and (vi) observation and measurements of enhanced fluorescence from coupled quantum dot and plasmonic nanostructures. The body of results is presented in this report shows how a solid foundation has been laid, with several noticeable accomplishments, for innovative research, consistent with the stated milestones.

  15. Nanostructured High Performance Ultraviolet and Blue Light Emitting Diodes for Solid State Lighting

    SciTech Connect

    Arto V. Nurmikko; Jung Han

    2007-03-31

    We report on research results in this project which synergize advanced material science approaches with fundamental optical physics concepts pertaining to light-matter interaction, with the goal of solving seminal problems for the development of very high performance light emitting diodes (LEDs) in the blue and near ultraviolet for Solid State Lighting applications. Accomplishments in the duration of the contract period include (i) new means of synthesizing AlGaN and InN quantum dots by droplet heteroepitaxy, (ii) synthesis of AlGaInN nanowires as building blocks for GaN-based microcavity devices, (iii) progress towards direct epitaxial alignment of the dense arrays of nanowires, (iv) observation and measurements of stimulated emission in dense InGaN nanopost arrays, (v) design and fabrication of InGaN photonic crystal emitters, and (vi) observation and measurements of enhanced fluorescence from coupled quantum dot and plasmonic nanostructures. The body of results is presented in this report shows how a solid foundation has been laid, with several noticeable accomplishments, for innovative research, consistent with the stated milestones.

  16. High brightness formamidinium lead bromide perovskite nanocrystal light emitting devices.

    PubMed

    Perumal, Ajay; Shendre, Sushant; Li, Mingjie; Tay, Yong Kang Eugene; Sharma, Vijay Kumar; Chen, Shi; Wei, Zhanhua; Liu, Qing; Gao, Yuan; Buenconsejo, Pio John S; Tan, Swee Tiam; Gan, Chee Lip; Xiong, Qihua; Sum, Tze Chien; Demir, Hilmi Volkan

    2016-11-09

    Formamidinium lead halide (FAPbX3) has attracted greater attention and is more prominent recently in photovoltaic devices due to its broad absorption and higher thermal stability in comparison to more popular methylammonium lead halide MAPbX3. Herein, a simple and highly reproducible room temperature synthesis of device grade high quality formamidinium lead bromide CH(NH2)2PbBr3 (FAPbBr3) colloidal nanocrystals (NC) having high photoluminescence quantum efficiency (PLQE) of 55-65% is reported. In addition, we demonstrate high brightness perovskite light emitting device (Pe-LED) with these FAPbBr3 perovskite NC thin film using 2,2',2″-(1,3,5-Benzinetriyl)-tris(1-phenyl-1-H-benzimidazole) commonly known as TPBi and 4,6-Bis(3,5-di(pyridin-3-yl)phenyl)-2-methylpyrimidine (B3PYMPM) as electron transport layers (ETL). The Pe-LED device with B3PYMPM as ETL has bright electroluminescence of up to 2714 cd/m(2), while the Pe-LED device with TPBi as ETL has higher peak luminous efficiency of 6.4 cd/A and peak luminous power efficiency of 5.7 lm/W. To our knowledge this is the first report on high brightness light emitting device based on CH(NH2)2PbBr3 widely known as FAPbBr3 nanocrystals in literature.

  17. High brightness formamidinium lead bromide perovskite nanocrystal light emitting devices

    PubMed Central

    Perumal, Ajay; Shendre, Sushant; Li, Mingjie; Tay, Yong Kang Eugene; Sharma, Vijay Kumar; Chen, Shi; Wei, Zhanhua; Liu, Qing; Gao, Yuan; Buenconsejo, Pio John S.; Tan, Swee Tiam; Gan, Chee Lip; Xiong, Qihua; Sum, Tze Chien; Demir, Hilmi Volkan

    2016-01-01

    Formamidinium lead halide (FAPbX3) has attracted greater attention and is more prominent recently in photovoltaic devices due to its broad absorption and higher thermal stability in comparison to more popular methylammonium lead halide MAPbX3. Herein, a simple and highly reproducible room temperature synthesis of device grade high quality formamidinium lead bromide CH(NH2)2PbBr3 (FAPbBr3) colloidal nanocrystals (NC) having high photoluminescence quantum efficiency (PLQE) of 55–65% is reported. In addition, we demonstrate high brightness perovskite light emitting device (Pe-LED) with these FAPbBr3 perovskite NC thin film using 2,2′,2″-(1,3,5-Benzinetriyl)-tris(1-phenyl-1-H-benzimidazole) commonly known as TPBi and 4,6-Bis(3,5-di(pyridin-3-yl)phenyl)-2-methylpyrimidine (B3PYMPM) as electron transport layers (ETL). The Pe-LED device with B3PYMPM as ETL has bright electroluminescence of up to 2714 cd/m2, while the Pe-LED device with TPBi as ETL has higher peak luminous efficiency of 6.4 cd/A and peak luminous power efficiency of 5.7 lm/W. To our knowledge this is the first report on high brightness light emitting device based on CH(NH2)2PbBr3 widely known as FAPbBr3 nanocrystals in literature. PMID:27827424

  18. High brightness formamidinium lead bromide perovskite nanocrystal light emitting devices

    NASA Astrophysics Data System (ADS)

    Perumal, Ajay; Shendre, Sushant; Li, Mingjie; Tay, Yong Kang Eugene; Sharma, Vijay Kumar; Chen, Shi; Wei, Zhanhua; Liu, Qing; Gao, Yuan; Buenconsejo, Pio John S.; Tan, Swee Tiam; Gan, Chee Lip; Xiong, Qihua; Sum, Tze Chien; Demir, Hilmi Volkan

    2016-11-01

    Formamidinium lead halide (FAPbX3) has attracted greater attention and is more prominent recently in photovoltaic devices due to its broad absorption and higher thermal stability in comparison to more popular methylammonium lead halide MAPbX3. Herein, a simple and highly reproducible room temperature synthesis of device grade high quality formamidinium lead bromide CH(NH2)2PbBr3 (FAPbBr3) colloidal nanocrystals (NC) having high photoluminescence quantum efficiency (PLQE) of 55–65% is reported. In addition, we demonstrate high brightness perovskite light emitting device (Pe-LED) with these FAPbBr3 perovskite NC thin film using 2,2‧,2″-(1,3,5-Benzinetriyl)-tris(1-phenyl-1-H-benzimidazole) commonly known as TPBi and 4,6-Bis(3,5-di(pyridin-3-yl)phenyl)-2-methylpyrimidine (B3PYMPM) as electron transport layers (ETL). The Pe-LED device with B3PYMPM as ETL has bright electroluminescence of up to 2714 cd/m2, while the Pe-LED device with TPBi as ETL has higher peak luminous efficiency of 6.4 cd/A and peak luminous power efficiency of 5.7 lm/W. To our knowledge this is the first report on high brightness light emitting device based on CH(NH2)2PbBr3 widely known as FAPbBr3 nanocrystals in literature.

  19. Distribution of light in the human retina under natural viewing conditions

    NASA Astrophysics Data System (ADS)

    Gibert, Jorge C.

    Age-related macular degeneration (AMD) is the leading cause of blindness inAmerica. The fact that AMD wreaks most of the damage in the center of the retina raises the question of whether light, integrated over long periods, is more concentrated in the macula. A method, based on eye-tracking, was developed to measure the distribution of light in the retina under natural viewing conditions. The hypothesis was that integrated over time, retinal illumination peaked in the macula. Additionally a possible relationship between age and retinal illumination was investigated. The eye tracker superimposed the subject's gaze position on a video recorded by a scene camera. Five informed subjects were employed in feasibility tests, and 58 naive subjects participated in 5 phases. In phase 1 the subjects viewed a gray-scale image. In phase 2, they observed a sequence of photographic images. In phase 3 they viewed a video. In phase 4, they worked on a computer; in phase 5, the subjects walked around freely. The informed subjects were instructed to gaze at bright objects in the field of view and then at dark objects. Naive subjects were allowed to gaze freely for all phases. Using the subject's gaze coordinates, and the video provided by the scene camera, the cumulative light distribution on the retina was calculated for ˜15° around the fovea. As expected for control subjects, cumulative retinal light distributions peaked and dipped in the fovea when they gazed at bright or dark objects respectively. The light distribution maps obtained from the naive subjects presented a tendency to peak in the macula for phases 1, 2, and 3, a consistent tendency in phase 4 and a variable tendency in phase 5. The feasibility of using an eye-tracker system to measure the distribution of light in the retina was demonstrated, thus helping to understand the role played by light exposure in the etiology of AMD. Results showed that a tendency for light to peak in the macula is a characteristic of some

  20. Effect of light and oxygen and adaptation to changing light conditions in a photosynthetic mutant in which the LHII complex of Rhv. sulfidophilum was heterologously expressed in a strain of Rb. capsulatus whose puc operon was deleted.

    PubMed

    Barbieri Md, María del Rosario; Kerber, Norma L; Pucheu, Norma L; Tadros, Monier H; García, Augusto F

    2002-09-01

    In this paper we show the effect of oxygen and light on the expression of the photosynthetic apparatus of a mutant heterologously expressing the puc operon. This mutant was obtained by introducing in trans an expression plasmid, bearing the puc A, B, and C genes of Rhv. sulfidophilum, as well as its own promoter, in an LHII(-) mutant of Rb. capsulatus. The results showed that oxygen and light repressed LHII expression. Even low-light intensities lowered the LHII content to undetectable levels by spectrophotometry or by SDS-PAGE. In high-light grown cells, where the relative ratios of LHI and LHII complexes were significantly diminished, we were able to detect LHII complexes. Under the latter condition, the absorption spectrum showed that some pigment accumulated in the membrane even in the absence of cell division. These pigments were used in a later step to assemble LHII complexes, when the high-light grown cells were transferred to semiaerobiosis in the dark. Transition of high-light grown cells to low-light conditions allowed us to study the adaptability of these heterologous mutant cells. We observed that adaptation never occurred, in part probably owing to energy limitation.

  1. New robust and highly customizable light source management system

    NASA Astrophysics Data System (ADS)

    Minegishi, Yuji; Takahisa, Kenji; Ochiai, Hideyuki; Ohta, Takeshi; Enami, Tatsuo

    2015-03-01

    In semiconductor lithography, light sources play a significant role in the wafer production process as well as impacting the manufacturing cost per wafer. Chip manufacturers going forward will be challenged to develop new ways to become more cost effective than their competitors, and the software tools necessary to compete in this environment must be capable of effectively adapting to the unique needs of each manufacturer. Gigaphoton has developed a new highly customizable software system for managing light sources. It not only offers a simple and intuitive user interface that can be operated using a standard web browser on PCs, tablets, and smartphones, but also a platform for users and third parties to develop unique extensions and optimizations.

  2. Chlamydomonas reinhardtii responding to high light: A role for 2-propenal (acrolein).

    PubMed

    Roach, Thomas; Baur, Theresa; Stöggl, Wolfgang; Krieger-Liszkay, Anja

    2017-03-21

    High light causes photosystem II to generate singlet oxygen ((1) O2 ), a reactive oxygen species (ROS) that can react with membrane lipids, releasing reactive electrophile species (RES), such as acrolein. To investigate how RES may contribute to light stress responses, Chlamydomonas reinhardtii was high light-treated in photoautotrophic and mixotrophic conditions and also in an oxygen-enriched atmosphere to elevate ROS production. The responses were compared to exogenous acrolein. Non-photochemical quenching (NPQ) was higher in photoautotrophic cells, as a consequence of a more de-epoxidized state of the xanthophyll cycle pool and more LHCSR3 protein, showing that photosynthesis was under more pressure than in mixotrophic cells. Photoautotrophic cells had lowered α-tocopherol and β-carotene contents and a higher level of protein carbonylation, indicators of elevated (1) O2 production. Levels of glutathione, glutathione peroxidase (GPX5) and glutathione-S-transferase (GST1), important antioxidants against RES, were also increased in photoautotrophic cells. In parallel to wild-type, the LHCSR3-deficient npq4 mutant was high light-treated, which in photoautotrophic conditions exhibited particular sensitivity under elevated oxygen, the treatment that induced the highest RES levels, including acrolein. The npq4 mutant had more GPX5 and GST1 alongside higher levels of carbonylated protein and a more oxidized glutathione redox state. In wild-type cells glutathione contents doubled after 4 h treatment, either with high light under elevated oxygen or with a non-critical dose (600 ppm) of acrolein. Exogenous acrolein also increased GST1 levels, but not GPX5. Overall, RES-associated oxidative damage and glutathione metabolism are prominently associated with light stress and potentially in signaling responses of C. reinhardtii.

  3. Drivers' eye movements as a function of collision avoidance warning conditions in red light running scenarios.

    PubMed

    Zhang, Yuting; Yan, Xuedong; Li, Xiaomeng; Xue, Qingwan

    2016-11-01

    The intersection collision avoidance warning systems (ICAWSs) have substantial potentials in improving driving performance and reducing the number and severity of intersection collisions, through helping drivers timely detect hazardous conflicting vehicles in precrash scenarios. However, the influences of ICAWS on drivers' visual performance have barely been discussed. This study focuses on exploring the patterns in drivers' eye movements as a function of ICAWS's warning conditions in red light running scenarios based on a driving simulation experiment. Two types of speech warning conditions including warning timings (varied form 2.5s to 5.5s) and directional information (with or without) are examined, and the no-warning condition is the baseline. The results revealed that more subjects would be likely to benefit from the ICWAS under the earlier warning timings. The warning condition of 4.5s ahead of a collision had the best effectiveness in terms of visual performances. Under such a warning timing, drivers had shorter fixation duration and higher frequency of searching for the red light running (RLR) vehicles. Compared to the warning condition without directional information, the directional warning information could capture drivers' attention more efficiently, help driver direct fixations toward the RLR vehicles more quickly and lead to more scanning activities. Compared to female drivers, male drivers had more scanning activities when approaching intersections, detected the RLR vehicles more quickly and were more likely to avoid the RLR collisions. Besides, the experiment results indicated that the female drivers were more inclined to trust the warning information and got more benefits from the RLR-ICAWS in terms of the crash risk reduction rate than male drivers. Finally, the conclusions lead the way toward warning condition design recommendations for improving the effectiveness of the RLR-ICAWSs.

  4. Edaphic and light conditions of sympatric plant morphotypes in western Amazonia

    PubMed Central

    2014-01-01

    Abstract Here I present a dataset of edaphic and light conditions associated with the occurrence of sympatric morphotypes of Geonoma macrostachys (Arecaceae/Palmae), a candidate case study from Amazonia hypothesized to have evolved under ecological speciation. Transects were established in three lowland rainforests in Peru, and the abundance of each local morphotype of this species was recorded in a total area of 4.95 hectares. Composite soil samples and hemispherical photographs were taken along the transects were the species occurred to obtain information on soil nutrients, soil texture, and indirect measurements of light availability. The raw and summary tables disclose the characteristics of each study site and habitats within them, which could be useful to soil scientists, ecologists, and conservationists engaged in similar research activities or meta-analyses in Amazonia. PMID:24891831

  5. Introduction of correlative light and airSEMTM microscopy imaging for tissue research under ambient conditions

    PubMed Central

    Solomonov, Inna; Talmi-Frank, Dalit; Milstein, Yonat; Addadi, Sefi; Aloshin, Anna; Sagi, Irit

    2014-01-01

    A complete fingerprint of a tissue sample requires a detailed description of its cellular and extracellular components while minimizing artifacts. We introduce the application of a novel scanning electron microscope (airSEMTM) in conjunction with light microscopy for functional analysis of tissue preparations at nanometric resolution (<10 nm) and under ambient conditions. Our metal-staining protocols enable easy and detailed visualization of tissues and their extracellular scaffolds. A multimodality imaging setup, featuring airSEMTM and a light microscope on the same platform, provides a convenient and easy-to-use system for obtaining structural and functional correlative data. The airSEMTM imaging station complements other existing imaging solutions and shows great potential for studies of complex biological systems. PMID:25100357

  6. Edaphic and light conditions of sympatric plant morphotypes in western Amazonia.

    PubMed

    Roncal, Julissa

    2014-01-01

    Here I present a dataset of edaphic and light conditions associated with the occurrence of sympatric morphotypes of Geonomamacrostachys (Arecaceae/Palmae), a candidate case study from Amazonia hypothesized to have evolved under ecological speciation. Transects were established in three lowland rainforests in Peru, and the abundance of each local morphotype of this species was recorded in a total area of 4.95 hectares. Composite soil samples and hemispherical photographs were taken along the transects were the species occurred to obtain information on soil nutrients, soil texture, and indirect measurements of light availability. The raw and summary tables disclose the characteristics of each study site and habitats within them, which could be useful to soil scientists, ecologists, and conservationists engaged in similar research activities or meta-analyses in Amazonia.

  7. Circadian Oscillation of the Lettuce Transcriptome under Constant Light and Light–Dark Conditions

    PubMed Central

    Higashi, Takanobu; Aoki, Koh; Nagano, Atsushi J.; Honjo, Mie N.; Fukuda, Hirokazu

    2016-01-01

    Although, the circadian clock is a universal biological system in plants and it orchestrates important role of plant production such as photosynthesis, floral induction and growth, there are few such studies on cultivated species. Lettuce is one major cultivated species for both open culture and plant factories and there is little information concerning its circadian clock system. In addition, most of the relevant genes have not been identified. In this study, we detected circadian oscillation in the lettuce transcriptome using time-course RNA sequencing (RNA-Seq) data. Constant light (LL) and light–dark (LD) conditions were used to detect circadian oscillation because the circadian clock has some basic properties: one is self-sustaining oscillation under constant light and another is entrainment to environmental cycles such as light and temperature. In the results, 215 contigs were detected as common oscillating contigs under both LL and LD conditions. The 215 common oscillating contigs included clock gene-like contigs CCA1 (CIRCADIAN CLOCK ASSOCIATED 1)-like, TOC1 (TIMING OF CAB EXPRESSION 1)-like and LHY (LATE ELONGATED HYPOCOTYL)-like, and their expression patterns were similar to those of Arabidopsis. Functional enrichment analysis by GO (gene ontology) Slim and GO Fat showed that the GO terms of response to light stimulus, response to stress, photosynthesis and circadian rhythms were enriched in the 215 common oscillating contigs and these terms were actually regulated by circadian clocks in plants. The 215 common oscillating contigs can be used to evaluate whether the gene expression pattern related to photosynthesis and optical response performs normally in lettuce. PMID:27512400

  8. Constitutive Cylindrospermopsin Pool Size in Cylindrospermopsis raciborskii under Different Light and CO2 Partial Pressure Conditions

    PubMed Central

    Pierangelini, Mattia; Sinha, Rati; Burford, Michele A.; Neilan, Brett A.

    2015-01-01

    Cylindrospermopsin (CYN) and 7-deoxy-cylindrospermopsin (dCYN) are potent hepatotoxic alkaloids produced by numerous species of cyanobacteria, including the freshwater Cylindrospermopsis raciborskii. C. raciborskii is an invasive cyanobacterium, and the study of how environmental parameters drive CYN production has received significant interest from water managers and health authorities. Light and CO2 affect cell growth and physiology in photoautotrophs, and these are potential regulators of cyanotoxin biosynthesis. In this study, we investigated how light and CO2 affect CYN and dCYN pool size as well as the expression of the key genes, cyrA and cyrK, involved in CYN biosynthesis in a toxic C. raciborskii strain. For cells growing at different light intensities (10 and 100 μmol photons m−2 s−1), we observed that the rate of CYN pool size production (μCYN) was coupled to the cell division rate (μc) during batch culture. This indicated that CYN pool size under our experimental conditions is constant and cell quotas of CYN (QCYN) and dCYN (QdCYN) are fixed. Moreover, a lack of correlation between expression of cyrA and total CYN cell quotas (QCYNs) suggests that the CYN biosynthesis is regulated posttranscriptionally. Under elevated CO2 (1,300 ppm), we observed minor effects on QCYN and no effects on expression of cyrA and cyrK. We conclude that the CYN pool size is constitutive and not affected by light and CO2 conditions. Thus, C. raciborskii bloom toxicity is determined by the absolute abundance of C. raciborskii cells within the water column and the relative abundance of toxic and nontoxic strains. PMID:25724956

  9. Thin Film Packaging Solutions for High Efficiency OLED Lighting Products

    SciTech Connect

    2008-06-30

    The objective of the 'Thin Film Packaging Solutions for High Efficiency OLED Lighting Products' project is to demonstrate thin film packaging solutions based on SiC hermetic coatings that, when applied to glass and plastic substrates, support OLED lighting devices by providing longer life with greater efficiency at lower cost than is currently available. Phase I Objective: Demonstrate thin film encapsulated working phosphorescent OLED devices on optical glass with lifetime of 1,000 hour life, CRI greater than 75, and 15 lm/W. Phase II Objective: Demonstrate thin film encapsulated working phosphorescent OLED devices on plastic or glass composite with 25 lm/W, 5,000 hours life, and CRI greater than 80. Phase III Objective: Demonstrate 2 x 2 ft{sup 2} thin film encapsulated working phosphorescent OLED with 40 lm/W, 10,000 hour life, and CRI greater than 85. This report details the efforts of Phase III (Budget Period Three), a fourteen month collaborative effort that focused on optimization of high-efficiency phosphorescent OLED devices and thin-film encapsulation of said devices. The report further details the conclusions and recommendations of the project team that have foundation in all three budget periods for the program. During the conduct of the Thin Film Packaging Solutions for High Efficiency OLED Lighting Products program, including budget period three, the project team completed and delivered the following achievements: (1) a three-year marketing effort that characterized the near-term and longer-term OLED market, identified customer and consumer lighting needs, and suggested prototype product concepts and niche OLED applications lighting that will give rise to broader market acceptance as a source for wide area illumination and energy conservation; (2) a thin film encapsulation technology with a lifetime of nearly 15,000 hours, tested by calcium coupons, while stored at 16 C and 40% relative humidity ('RH'). This encapsulation technology was characterized

  10. Unregulated gaseous exhaust emission from modern ethanol fuelled light duty vehicles in cold ambient condition

    NASA Astrophysics Data System (ADS)

    Clairotte, M.; Adam, T. W.; Zardini, A. A.; Astorga, C.

    2011-12-01

    the first minutes of the cycle, before the light-off of the Three-Way Catalyst (TWC). Less ammonia has been emitted with ethanol fuel, in particular in low ambient condition (E75 versus E5). Ammonia is a harmful compound for human health and vegetation, and is a precursor of secondary aerosol. Even if agricultural activities are the main source of anthropogenic ammonia, the contribution from the transport sector increases significantly during the cold season. Consequently, using high concentrated ethanol as fuel may have a positive impact on ammonia emission in urban area. However, ethanol fuel had a negative impact on formaldehyde and acetaldehyde. The latter together with methane was notably emitted in low ambient temperature, in comparison with gasoline fuel (E5). Moreover, the OFP at -7°C was influenced by the amount of ethanol in gasoline, mainly because of the increase of ozone precursors linked to ethanol (ethylene, acetylene, and acetaldehyde). Even if ozone concentration levels are generally lower during the cold seasons these results show that the issue should be considered globally before promoting the use of high concentrated ethanol fuel in a large scale.

  11. High-definition projection screen based on multiple light scattering technique

    NASA Astrophysics Data System (ADS)

    Suzuki, Hiromasa; Okumura, Takamitsu; Tagaya, Akihiro; Higuchi, Eizaburo; Koike, Yasuhiro

    2004-05-01

    A novel rear projection screen (Blue Ocean screen, Nitto Jyushi Kogyo, Co., Ltd.) has been developed. Blue Ocean screen is a single polymer plate requiring no lens element. The projected image is formed on the screen surface by the multiple light scattering. An image light is multiply scattered and is converted into homogeneous light distribution efficiently due to the internal particles of micron order dispersed in the acrylic polymer matrix. An ambient light is reduced by the dye molecules doped in the polymer and the anti-reflective coating on the screen surface. The condition of the particles and the concentration of the dye molecules have been optimized by the ray tracing simulation program based on Mie scattering theory using a Monte Carlo method. The screen containing the particles of optimum condition exhibits the wide viewing angle, the well-controlled color balance, and the high sharpness level at the same time. The contrast level of the projected image in ambient light is improved by controlling the concentration of the dye molecules. This paper describes the optimization obtained theoretically and experimentally, and demonstrates the advantage of Blue Ocean screen.

  12. Benefits of high energy UV185 nm light to inactivate bacteria.

    PubMed

    Liu, Yi; Ogden, Kimberly

    2010-01-01

    Inactivating and eliminating bacteria from ultra pure water (UPW) systems is always a significant problem for semiconductor and pharmaceutical industries. To alleviate the problem, ultraviolet (UV) radiation-both monochromatic UV254 light and high pressure UV185 light-is traditionally used for bacterial sterilization and in the case of the later, breakdown of trace organic molecules. The focus of this work is to understand the factors that influence the effectiveness of these UV treatments on Xanthomonas sp. bacteria typically found in UPW systems. In particular, the factors associated with the reactor condition, such as the light source and environment were investigated. It is shown that inactivation follows first order kinetics, and that the rates are comparable to others found in the literature for gram negative bacteria. Also, growth phase and harvesting conditions are shown to influence inactivation rate. Furthermore, it was determined that UV185 radiation, although limited by water absorption, significantly enhances the inactivation rate of bacteria if given suitable transmission distance. Rates of inactivation were enhanced by 40% when UV185 light is used in addition to UV254 light.

  13. Interactive effects of juvenile defoliation, light conditions, and interspecific competition on growth and ectomycorrhizal colonization of Fagus sylvatica and Pinus sylvestris seedlings.

    PubMed

    Trocha, Lidia K; Weiser, Ewa; Robakowski, Piotr

    2016-01-01

    Seedlings of forest tree species are exposed to a number of abiotic (organ loss or damage, light shortage) and biotic (interspecific competition) stress factors, which may lead to an inhibition of growth and reproduction and, eventually, to plant death. Growth of the host and its mycorrhizal symbiont is often closely linked, and hence, host damage may negatively affect the symbiont. We designed a pot experiment to study the response of light-demanding Pinus sylvestris and shade-tolerant Fagus sylvatica seedlings to a set of abiotic and biotic stresses and subsequent effects on ectomycorrhizal (ECM) root tip colonization, seedling biomass, and leaf nitrogen content. The light regime had a more pronounced effect on ECM colonization than did juvenile damage. The interspecific competition resulted in higher ECM root tip abundance for Pinus, but this effect was insignificant in Fagus. Low light and interspecific competition resulted in lower seedling biomass compared to high light, and the effect of the latter was partially masked by high light. Leaf nitrogen responded differently in Fagus and Pinus when they grew in interspecific competition. Our results indicated that for both light-demanding (Pinus) and shade-tolerant (Fagus) species, the light environment was a major factor affecting seedling growth and ECM root tip abundance. The light conditions favorable for the growth of seedlings may to some extent compensate for the harmful effects of juvenile organ loss or damage and interspecific competition.

  14. Highly efficient exciplex phosphorescence from organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Virgili, D.; Cocchi, M.; Fattori, V.; Sabatini, C.; Kalinowski, J.; Williams, J. A. G.

    2006-12-01

    The efficiency of organic exciplex light-emitting-devices (EXLEDs) can be greatly improved by introduction of a phosphorescent sensitizer with a high electronic affinity. In the electron-hole combination process at the electron donor/acceptor interface, solely singlet exciplexes are generated producing the exciplex fluorescence. A phosphor sensitizer allows the formation in the emitter bulk of triplet exciplexes, which yield highly efficient exciplex phosphorescence. As an example, we use a Pt-based phosphor (PtL 2Cl) doped into a star-burst amine hole transporting donor (m-MTDATA) and bathophenanthroline (BPT) electron-transporting acceptor system which in a bi-layer EXLED reveals an exciplex high electro-phosphorescence external quantum yield of 2.4% photon/carrier.

  15. Light masking in the field: an experiment with nocturnal and diurnal spiny mice under semi-natural field conditions.

    PubMed

    Rotics, Shay; Dayan, Tamar; Levy, Ofir; Kronfeld-Schor, Noga

    2011-02-01

    Light masking has been studied almost exclusively in the laboratory. The authors populated four field enclosures with locally coexisting nocturnal Acomys cahirinus and diurnal A. russatus, and monitored their body temperatures (T(b)) using implanted temperature-sensitive radio transmitters. A 3-h light pulse was initiated at the beginning of two consecutive nights; preceding nights were controls. A. cahirinus T(b) and calculated activity levels decreased significantly during the light pulse, demonstrating a negative light masking response (light effect on T(b): -0.32 °C ± 0.15 °C; average calculated activity records during the light pulse: 7 ± 1.53, control: 9.8 ± 1.62). Diurnal A. russatus did not respond to the light pulse. We conclude that light masking is not an artifact of laboratory conditions but represents a natural adaptive response in free-living populations.

  16. High-speed multilevel 512x512 spatial light modulator

    NASA Astrophysics Data System (ADS)

    Bauchert, Kipp A.; Serati, Steven A.

    2000-03-01

    Recent advances in our high-speed multi-level (analog) 512 X 512 liquid crystal spatial light modulator (SLM) will be presented. These advancements include smaller pixel pitch, greatly improved optical efficiency, and higher speed operation. The new VLSI SLM can utilize Ferroelectric Liquid Crystal to Nematic Liquid Crystal to achieve phase-only, amplitude-only, and phase-amplitude-coupled modulation. This device has applications in optical processing, optical storage, holographic display, and beam steering. Design criteria and experimental data will be presented.

  17. Altered Clock and Lipid Metabolism-Related Genes in Atherosclerotic Mice Kept with Abnormal Lighting Condition

    PubMed Central

    Zhu, Zhu; Hua, Bingxuan; Shang, Zhanxian; Yuan, Gongsheng; Xu, Lirong; Li, Ermin; Li, Xiaobo; Yan, Zuoqin; Qian, Ruizhe

    2016-01-01

    Background. The risk of atherosclerosis is elevated in abnormal lipid metabolism and circadian rhythm disorder. We investigated whether abnormal lighting condition would have influenced the circadian expression of clock genes and clock-controlled lipid metabolism-related genes in ApoE-KO mice. Methods. A mouse model of atherosclerosis with circadian clock genes expression disorder was established using ApoE-KO mice (ApoE-KO LD/DL mice) by altering exposure to light. C57 BL/6J mice (C57 mice) and ApoE-KO mice (ApoE-KO mice) exposed to normal day and night and normal diet served as control mice. According to zeitgeber time samples were acquired, to test atheromatous plaque formation, serum lipids levels and rhythmicity, clock genes, and lipid metabolism-related genes along with Sirtuin 1 (Sirt1) levels and rhythmicity. Results. Atherosclerosis plaques were formed in the aortic arch of ApoE-KO LD/DL mice. The serum lipids levels and oscillations in ApoE-KO LD/DL mice were altered, along with the levels and diurnal oscillations of circadian genes, lipid metabolism-associated genes, and Sirt1 compared with the control mice. Conclusions. Abnormal exposure to light aggravated plaque formation and exacerbated disorders of serum lipids and clock genes, lipid metabolism genes and Sirt1 levels, and circadian oscillation. PMID:27631008

  18. Economic analysis of greenhouse lighting: light emitting diodes vs. high intensity discharge fixtures.

    PubMed

    Nelson, Jacob A; Bugbee, Bruce

    2014-01-01

    Lighting technologies for plant growth are improving rapidly, providing numerous options for supplemental lighting in greenhouses. Here we report the photosynthetic (400-700 nm) photon efficiency and photon distribution pattern of two double-ended HPS fixtures, five mogul-base HPS fixtures, ten LED fixtures, three ceramic metal halide fixtures, and two fluorescent fixtures. The two most efficient LED and the two most efficient double-ended HPS fixtures had nearly identical efficiencies at 1.66 to 1.70 micromoles per joule. These four fixtures represent a dramatic improvement over the 1.02 micromoles per joule efficiency of the mogul-base HPS fixtures that are in common use. The best ceramic metal halide and fluorescent fixtures had efficiencies of 1.46 and 0.95 micromoles per joule, respectively. We also calculated the initial capital cost of fixtures per photon delivered and determined that LED fixtures cost five to ten times more than HPS fixtures. The five-year electric plus fixture cost per mole of photons is thus 2.3 times higher for LED fixtures, due to high capital costs. Compared to electric costs, our analysis indicates that the long-term maintenance costs are small for both technologies. If widely spaced benches are a necessary part of a production system, the unique ability of LED fixtures to efficiently focus photons on specific areas can be used to improve the photon capture by plant canopies. Our analysis demonstrates, however, that the cost per photon delivered is higher in these systems, regardless of fixture category. The lowest lighting system costs are realized when an efficient fixture is coupled with effective canopy photon capture.

  19. Economic Analysis of Greenhouse Lighting: Light Emitting Diodes vs. High Intensity Discharge Fixtures

    PubMed Central

    Nelson, Jacob A.; Bugbee, Bruce

    2014-01-01

    Lighting technologies for plant growth are improving rapidly, providing numerous options for supplemental lighting in greenhouses. Here we report the photosynthetic (400–700 nm) photon efficiency and photon distribution pattern of two double-ended HPS fixtures, five mogul-base HPS fixtures, ten LED fixtures, three ceramic metal halide fixtures, and two fluorescent fixtures. The two most efficient LED and the two most efficient double-ended HPS fixtures had nearly identical efficiencies at 1.66 to 1.70 micromoles per joule. These four fixtures represent a dramatic improvement over the 1.02 micromoles per joule efficiency of the mogul-base HPS fixtures that are in common use. The best ceramic metal halide and fluorescent fixtures had efficiencies of 1.46 and 0.95 micromoles per joule, respectively. We also calculated the initial capital cost of fixtures per photon delivered and determined that LED fixtures cost five to ten times more than HPS fixtures. The five-year electric plus fixture cost per mole of photons is thus 2.3 times higher for LED fixtures, due to high capital costs. Compared to electric costs, our analysis indicates that the long-term maintenance costs are small for both technologies. If widely spaced benches are a necessary part of a production system, the unique ability of LED fixtures to efficiently focus photons on specific areas can be used to improve the photon capture by plant canopies. Our analysis demonstrates, however, that the cost per photon delivered is higher in these systems, regardless of fixture category. The lowest lighting system costs are realized when an efficient fixture is coupled with effective canopy photon capture. PMID:24905835

  20. High-Voltage LED Light Engine with Integrated Driver

    SciTech Connect

    Soer, Wouter

    2016-02-29

    LED luminaires have seen dramatic changes in cost breakdown over the past few years. The LED component cost, which until recently was the dominant portion of luminaire cost, has fallen to a level of the same order as the other luminaire components, such as the driver, housing, optics etc. With the current state of the technology, further luminaire performance improvement and cost reduction is realized most effectively by optimization of the whole system, rather than a single component. This project focuses on improving the integration between LEDs and drivers. Lumileds has developed a light engine platform based on low-cost high-power LEDs and driver topologies optimized for integration with these LEDs on a single substrate. The integration of driver and LEDs enables an estimated luminaire cost reduction of about 25% for targeted applications, mostly due to significant reductions in driver and housing cost. The high-power LEDs are based on Lumileds’ patterned sapphire substrate flip-chip (PSS-FC) technology, affording reduced die fabrication and packaging cost compared to existing technology. Two general versions of PSS-FC die were developed in order to create the desired voltage and flux increments for driver integration: (i) small single-junction die (0.5 mm2), optimal for distributed lighting applications, and (ii) larger multi-junction die (2 mm2 and 4 mm2) for high-power directional applications. Two driver topologies were developed: a tapped linear driver topology and a single-stage switch-mode topology, taking advantage of the flexible voltage configurations of the new PSS-FC die and the simplification opportunities enabled by integration of LEDs and driver on the same board. A prototype light engine was developed for an outdoor “core module” application based on the multi-junction PSS-FC die and the single-stage switch-mode driver. The light engine meets the project efficacy target of 128 lm/W at a luminous flux

  1. High-performance lighting evaluated by photobiological parameters.

    PubMed

    Rebec, Katja Malovrh; Gunde, Marta Klanjšek

    2014-08-10

    The human reception of light includes image-forming and non-image-forming effects which are triggered by spectral distribution and intensity of light. Ideal lighting is similar to daylight, which could be evaluated by spectral or chromaticity match. LED-based and CFL-based lighting were analyzed here, proposed according to spectral and chromaticity match, respectively. The photobiological effects were expressed by effectiveness for blue light hazard, cirtopic activity, and photopic vision. Good spectral match provides light with more similar effects to those obtained by the chromaticity match. The new parameters are useful for better evaluation of complex human responses caused by lighting.

  2. Hydrogen production by the unicellular, diazotrophic cyanobacterium Cyanothece sp. strain ATCC 51142 under conditions of continuous light.

    PubMed

    Min, Hongtao; Sherman, Louis A

    2010-07-01

    We report on the hydrogen production properties of the unicellular, diazotrophic cyanobacterium Cyanothece sp. strain ATCC 51142. This organism has a versatile metabolism and can grow in the presence or absence of combined nitrogen and can grow photosynthetically or mixotrophically and heterotrophically in the presence of glycerol. The strain produces a bidirectional hydrogenase (encoded by the hox genes), an uptake hydrogenase (hupLS), and nitrogenase (nifHDK). We demonstrated hydrogen production by both the hydrogenase and the nitrogenase under appropriate metabolic conditions. The highest rates of hydrogen production were produced under nitrogen-fixing conditions when cells were grown and incubated under continuous light conditions, in either the presence or absence of glycerol. Under such nitrogen-fixing conditions, we have achieved rates of 300 micromol H(2)/mg chloramphenicol (Chl)/hr during the first 24 h of incubation. The levels of H(2) measured were dependent upon the incubation conditions, such as sparging with argon, which generated anaerobic conditions. We demonstrated that the same conditions led to high levels of H(2) production and N(2) fixation, indicating that low-oxygen conditions favor nitrogenase activity for both processes. The levels of hydrogen produced by the hydrogenase are much lower, typically 5 to 10 micromol H(2)/mg Chl/hr. Hydrogenase activity was dependent upon electron transport through photosystem II (PS II), whereas nitrogenase activity was more dependent on PS I, as well as on respiration. Although cells do not double under the incubation conditions when sparged with argon to provide a low-oxygen environment, the cells are metabolically active, and hydrogen production can be inhibited by the addition of chloramphenicol to inhibit protein synthesis.

  3. A newly proposed disease condition produced by light exposure during night: asynchronization.

    PubMed

    Kohyama, Jun

    2009-04-01

    The bedtime of preschoolers/pupils/students in Japan has become progressively later with the result sleep duration has become progressively shorter. With these changes, more than half of the preschoolers/pupils/students in Japan recently have complained of daytime sleepiness, while approximately one quarter of junior and senior high school students in Japan reportedly suffer from insomnia. These preschoolers/pupils/students may be suffering from behaviorally induced insufficient sleep syndrome due to inadequate sleep hygiene. If this diagnosis is correct, they should be free from these complaints after obtaining sufficient sleep by avoiding inadequate sleep hygiene. However, such a therapeutic approach often fails. Although social factors are often involved in these sleep disturbances, a novel clinical notion--asynchronization--can further a deeper understanding of the pathophysiology of these disturbances. The essence of asynchronization is a disturbance in various aspects (e.g., cycle, amplitude, phase and interrelationship) of the biological rhythms that normally exhibit circadian oscillation, presumably involving decreased activity of the serotonergic system. The major trigger of asynchronization is hypothesized to be a combination of light exposure during the night and a lack of light exposure in the morning. In addition to basic principles of morning light and an avoidance of nocturnal light exposure, presumable potential therapeutic approaches for asynchronization involve both conventional ones (light therapy, medications (hypnotics, antidepressants, melatonin, vitamin B12), physical activation, chronotherapy) and alternative ones (kampo, pulse therapy, direct contact, control of the autonomic nervous system, respiration (qigong, tanden breathing), chewing, crawling). A morning-type behavioral preference is described in several of the traditional textbooks for good health. The author recommends a morning-type behavioral lifestyle as a way to reduce

  4. High average power solid state laser power conditioning system

    SciTech Connect

    Steinkraus, R.F.

    1987-03-03

    The power conditioning system for the High Average Power Laser program at Lawrence Livermore National Laboratory (LLNL) is described. The system has been operational for two years. It is high voltage, high power, fault protected, and solid state. The power conditioning system drives flashlamps that pump solid state lasers. Flashlamps are driven by silicon control rectifier (SCR) switched, resonant charged, (LC) discharge pulse forming networks (PFNs). The system uses fiber optics for control and diagnostics. Energy and thermal diagnostics are monitored by computers.

  5. Light-induced disulfide dimerization of recoverin under ex vivo and in vivo conditions.

    PubMed

    Zernii, Evgeni Yu; Nazipova, Aliya A; Gancharova, Olga S; Kazakov, Alexey S; Serebryakova, Marina V; Zinchenko, Dmitry V; Tikhomirova, Natalya K; Senin, Ivan I; Philippov, Pavel P; Permyakov, Eugene A; Permyakov, Sergei E

    2015-06-01

    Despite vast knowledge of the molecular mechanisms underlying photochemical damage of photoreceptors, linked to progression of age-related macular degeneration, information on specific protein targets of the light-induced oxidative stress is scarce. Here, we demonstrate that prolonged intense illumination (halogen bulb, 1500 lx, 1-5 h) of mammalian eyes under ex vivo (cow) or in vivo (rabbit) conditions induces disulfide dimerization of recoverin, a Ca(2+)-dependent inhibitor of rhodopsin kinase. Western blotting and mass spectrometry analysis of retinal extracts reveals illumination time-dependent accumulation of disulfide homodimers of recoverin and its higher order disulfide cross-linked species, including a minor fraction of mixed disulfides with intracellular proteins (tubulins, etc.). Meanwhile, monomeric bovine recoverin remains mostly reduced. These effects are accompanied by accumulation of disulfide homodimers of visual arrestin. Histological studies demonstrate that the light-induced oxidation of recoverin and arrestin occurs in intact retina (illumination for 2 h), while illumination for 5 h is associated with damage of the photoreceptor layer. A comparison of ex vivo levels of disulfide homodimers of bovine recoverin with redox dependence of its in vitro thiol-disulfide equilibrium (glutathione redox pair) gives the lowest estimate of redox potential in rod outer segments under illumination from -160 to -155 mV. Chemical crosslinking and dynamic light scattering data demonstrate an increased propensity of disulfide dimer of bovine recoverin to multimerization/aggregation. Overall, the oxidative stress caused by the prolonged intense illumination of retina might affect rhodopsin desensitization via concerted disulfide dimerization of recoverin and arrestin. The developed herein models of eye illumination are useful for studies of the light-induced thiol oxidation of visual proteins.

  6. Seagrass dynamics in shallow coastal lagoons: Interactions with fluid dynamics, sediment resuspension and light conditions

    NASA Astrophysics Data System (ADS)

    Carr, J. A.; D'Odorico, P.; McGlathery, K.; Wiberg, P. L.

    2010-12-01

    Sea grasses have been recognized for their ability to stabilize the benthic sediments of shallow coastal lagoons, thereby reducing the turbidity of the water column and providing a light environment that is more favorable for sea grass establishment and growth. Sea grasses are complex, in that they involve different strategies of carbon allocation between below and above ground biomass, and the partitioning of the overall biomass into a discrete number of stems and leaves. Stem density and canopy height, in turn, modify the flow field, sediment resuspension, and the light environment. It is still unclear how these seasonal and interannual dynamics of seagrass vegetation may be affected by and interact with the process of sediment resuspension under fluctuating climatic and hydrologic conditions. To this end, a coupled model hydrodynamic model of vegetation-sediment-water flow interactions and vegetation growth is developed and used to examine the feedback between seagrass vegetation density and sediment resuspension and water column turbidity. The daily growth model is designed to capture underground biomass and the growth and senescence of above ground biomass structural components (e.g., leaves and stems). This allows for investigating how the interseasonal and seasonal variability in shoot and leaf density within a meadow affects the strength of positive feedback between seagrass and their light environment. Eight years of hourly wind, light, tides and water temperature are used to drive the coupled model from an initial mature meadow state as well as a seedling state. The model demonstrates both the emergence of bistable behavior as well as the limited resilience of seagrass meadows due to the strength of the positive feedback. The effects of increased water depths and water temperatures on the health and resilience of a seagrass meadow were also investigated. As both water depth and water temperatures increase, the system only exhibits bistable behavior with

  7. Effects of post-harvest light conditions on quality and aromatic volatile formation in 'Hakuho' peach (Prunus persica Batsch) fruits.

    PubMed

    Li, Bin; Jia, Hui-Juan; Okamoto, Goro

    2007-06-01

    The effect of light condition during post-harvest storage on fruit quality of 'Hakuho' peach (Prunus persica Batsch) was examined. Fruits were harvested at the immature stage (7 d before the tree-ripening stage) and firm-ripe (3 d before the tree-ripening) stage and stored at 25 degrees C under light (ca 80 micromol m(-2) s(-1) at the fruit top by a fluorescent lamp) and in darkness. The light and dark conditions did not significantly influence the ethylene production rate except for the fully ripened fruits harvested at firm-ripe stage and stored under light. However, no difference in fruit firmness was detected among treatments at full-ripe stage. The skin anthocyanin content increased significantly during storage under light. Total soluble solid (TSS) content of juice at the full ripe stage was not affected significantly by the storage condition, although titratable acidity (TA) in immature harvested fruits decreased more quickly during storage under light compared with those stored in darkness. Dark storage limited the decrease in juice asparagine to some extent. Aromatic lactones, such as gamma-decalactone and gamma-dodecalactone, both in skin and in flesh tissues increased more rapidly when the fruits were stored under a light condition, irrespective of fruit harvest stage. From these results, we conclude that fruit storage under a light condition is better for fruit quality of the 'Hakuho' peaches than storage in darkness.

  8. Digital image database processing to simulate image formation in ideal lighting conditions of the human eye

    NASA Astrophysics Data System (ADS)

    Castañeda-Santos, Jessica; Santiago-Alvarado, Agustin; Cruz-Félix, Angel S.; Hernández-Méndez, Arturo

    2015-09-01

    The pupil size of the human eye has a large effect in the image quality due to inherent aberrations. Several studies have been performed to calculate its size relative to the luminance as well as considering other factors, i.e., age, size of the adapting field and mono and binocular vision. Moreover, ideal lighting conditions are known, but software suited to our specific requirements, low cost and low computational consumption, in order to simulate radiation adaptation and image formation in the retina with ideal lighting conditions has not yet been developed. In this work, a database is created consisting of 70 photographs corresponding to the same scene with a fixed target at different times of the day. By using this database, characteristics of the photographs are obtained by measuring the luminance average initial threshold value of each photograph by means of an image histogram. Also, we present the implementation of a digital filter for both, image processing on the threshold values of our database and generating output images with the threshold values reported for the human eye in ideal cases. Some potential applications for this kind of filters may be used in artificial vision systems.

  9. Systemic regulation of leaf anatomical structure, photosynthetic performance, and high-light tolerance in sorghum.

    PubMed

    Jiang, Chuang-Dao; Wang, Xin; Gao, Hui-Yuan; Shi, Lei; Chow, Wah Soon

    2011-03-01

    Leaf anatomy of C3 plants is mainly regulated by a systemic irradiance signal. Since the anatomical features of C4 plants are different from that of C3 plants, we investigated whether the systemic irradiance signal regulates leaf anatomical structure and photosynthetic performance in sorghum (Sorghum bicolor), a C4 plant. Compared with growth under ambient conditions (A), no significant changes in anatomical structure were observed in newly developed leaves by shading young leaves alone (YS). Shading mature leaves (MS) or whole plants (S), on the other hand, caused shade-leaf anatomy in newly developed leaves. By contrast, chloroplast ultrastructure in developing leaves depended only on their local light conditions. Functionally, shading young leaves alone had little effect on their net photosynthetic capacity and stomatal conductance, but shading mature leaves or whole plants significantly decreased these two parameters in newly developed leaves. Specifically, the net photosynthetic rate in newly developed leaves exhibited a positive linear correlation with that of mature leaves, as did stomatal conductance. In MS and S treatments, newly developed leaves exhibited severe photoinhibition under high light. By contrast, newly developed leaves in A and YS treatments were more resistant to high light relative to those in MS- and S-treated seedlings. We suggest that (1) leaf anatomical structure, photosynthetic capacity, and high-light tolerance in newly developed sorghum leaves were regulated by a systemic irradiance signal from mature leaves; and (2) chloroplast ultrastructure only weakly influenced the development of photosynthetic capacity and high-light tolerance. The potential significance of the regulation by a systemic irradiance signal is discussed.

  10. Ghrelin receptor-knockout mice display alterations in circadian rhythms of activity and feeding under constant lighting conditions.

    PubMed

    Lamont, E Waddington; Bruton, J; Blum, I D; Abizaid, A

    2014-01-01

    Ghrelin is an orexigenic hormone produced by the stomach. Ghrelin, however, may also be a modulator of the circadian system given that ghrelin receptors are expressed in the master clock, the suprachiasmatic nucleus (SCN) and several outputs of this region. To investigate this, we performed analyses of running wheel activity and neuronal activation in wild type (WT) and growth hormone secretagogue receptor-knockout (GHSR-KO) mice under various lighting conditions. GHSR-KO and WT mice were maintained under constant dark (DD) or constant light (LL) with ad libitum access to food before being placed on a schedule of temporally restricted access to food (4 h/day) for 2 weeks. There were no differences between KO and WT mice in free-running period under DD, but GHSR-KO mice required more days to develop a high level of food anticipatory activity, and this was lower than that observed in WT mice. Under LL, GHSR-KO mice showed greater activity overall, lengthening of their circadian period, and more resistance to the disorganisational effects of LL. Furthermore, GHSR-KO mice showed greater activity overall, and greater activity in anticipation of a scheduled meal under LL. These behavioral effects were not correlated with changes in the circadian expression of the Fos, Per1 or Per2 proteins under any lighting conditions. These results suggest that the ghrelin receptor plays a role in modulating the activity of the circadian system under normal conditions and under restricted feeding schedules, but does so through mechanisms that remain to be determined.

  11. Responses of Ulva prolifera to short-term nutrient enrichment under light and dark conditions

    NASA Astrophysics Data System (ADS)

    Sun, Kai-Ming; Li, Ruixiang; Li, Yan; Xin, Ming; Xiao, Jie; Wang, Zongling; Tang, Xuexi; Pang, Min

    2015-09-01

    To define responses of short-term nutrient uptake in Ulva prolifera, we measured uptake rates, enzyme activity, and tissue nutrient content in lab experiments where we manipulated nutrient supply and irradiation. Nitrate uptake of U. prolifera was significantly impacted by the external nitrate concentrations, and ammonium uptake was mainly determined by the light availability. The measured nitrogen contents in tissues were higher than the calculated values from the uptake of dissolve inorganic nitrogen, indicating that U. prolifera might use multiple nitrogen sources. High external phosphate concentrations and sufficient light can accelerate the phosphate uptake of U. prolifera, while the measured phosphorus contents in tissues were lower than the calculated values from the uptake of phosphate, suggesting a possibility of internal phosphorus release. The enzymatic activities of nitrate reductase (NR), acid phosphatase (AcP) and alkaline phosphatase (AP) showed little changes, indicating that enzymatic activity might not a direct factor determining the short-term nutrient uptake of U. prolifera.

  12. Expression profiling of the bloom-forming cyanobacterium Nodularia CCY9414 under light and oxidative stress conditions

    PubMed Central

    Kopf, Matthias; Möke, Fred; Bauwe, Hermann; Hess, Wolfgang R; Hagemann, Martin

    2015-01-01

    Massive blooms of toxic cyanobacteria frequently occur in the central Baltic Sea during the summer. In the surface scum, cyanobacterial cells are exposed to high light (HL) intensity, high oxygen partial pressure and other stresses. To mimic these conditions, cultures of Nodularia spumigena CCY9414, which is a strain isolated from a cyanobacterial summer bloom in the Baltic Sea, were incubated at a HL intensity of 1200 μmol photons m−2 s−1 or a combination of HL and increased oxygen partial pressure. Using differential RNA sequencing, we compared the global primary transcriptomes of control and stressed cells. The combination of oxidative and light stresses induced the expression of twofold more genes compared with HL stress alone. In addition to the induction of known stress-responsive genes, such as psbA, ocp and sodB, Nodularia cells activated the expression of genes coding for many previously unknown light- and oxidative stress-related proteins. In addition, the expression of non-protein-coding RNAs was found to be stimulated by these stresses. Among them was an antisense RNA to the phycocyanin-encoding mRNA cpcBAC and the trans-encoded regulator of photosystem I, PsrR1. The large genome capacity allowed Nodularia to harbor more copies of stress-relevant genes such as psbA and small chlorophyll-binding protein genes, combined with the coordinated induction of these and many additional genes for stress acclimation. Our data provide a first insight on how N. spumigena became adapted to conditions relevant for a cyanobacterial bloom in the Baltic Sea. PMID:25689027

  13. In high-light-acclimated coffee plants the metabolic machinery is adjusted to avoid oxidative stress rather than to benefit from extra light enhancement in photosynthetic yield.

    PubMed

    Martins, Samuel C V; Araújo, Wagner L; Tohge, Takayuki; Fernie, Alisdair R; DaMatta, Fábio M

    2014-01-01

    Coffee (Coffea arabica L.) has been traditionally considered as shade-demanding, although it performs well without shade and even out-yields shaded coffee. Here we investigated how coffee plants adjust their metabolic machinery to varying light supply and whether these adjustments are supported by a reprogramming of the primary and secondary metabolism. We demonstrate that coffee plants are able to adjust its metabolic machinery to high light conditions through marked increases in its antioxidant capacity associated with enhanced consumption of reducing equivalents. Photorespiration and alternative pathways are suggested to be key players in reductant-consumption under high light conditions. We also demonstrate that both primary and secondary metabolism undergo extensive reprogramming under high light supply, including depression of the levels of intermediates of the tricarboxylic acid cycle that were accompanied by an up-regulation of a range of amino acids, sugars and sugar alcohols, polyamines and flavonoids such as kaempferol and quercetin derivatives. When taken together, the entire dataset is consistent with these metabolic alterations being primarily associated with oxidative stress avoidance rather than representing adjustments in order to facilitate the plants from utilizing the additional light to improve their photosynthetic performance.

  14. The matter in extreme conditions instrument at the Linac Coherent Light Source

    DOE PAGES

    Nagler, Bob; Arnold, Brice; Bouchard, Gary; ...

    2015-04-21

    The LCLS beam provides revolutionary capabilities for studying the transient behavior of matter in extreme conditions. The particular strength of the Matter in Extreme Conditions instrument is that it combines the unique LCLS beam with high-power optical laser beams, and a suite of dedicated diagnostics tailored for this field of science. In this paper an overview of the beamline, the capabilities of the instrumentation, and selected highlights of experiments and commissioning results are presented.

  15. The Matter in Extreme Conditions instrument at the Linac Coherent Light Source

    PubMed Central

    Nagler, Bob; Arnold, Brice; Bouchard, Gary; Boyce, Richard F.; Boyce, Richard M.; Callen, Alice; Campell, Marc; Curiel, Ruben; Galtier, Eric; Garofoli, Justin; Granados, Eduardo; Hastings, Jerry; Hays, Greg; Heimann, Philip; Lee, Richard W.; Milathianaki, Despina; Plummer, Lori; Schropp, Andreas; Wallace, Alex; Welch, Marc; White, William; Xing, Zhou; Yin, Jing; Young, James; Zastrau, Ulf; Lee, Hae Ja

    2015-01-01

    The LCLS beam provides revolutionary capabilities for studying the transient behavior of matter in extreme conditions. The particular strength of the Matter in Extreme Conditions instrument is that it combines the unique LCLS beam with high-power optical laser beams, and a suite of dedicated diagnostics tailored for this field of science. In this paper an overview of the beamline, the capabilities of the instrumentation, and selected highlights of experiments and commissioning results are presented. PMID:25931063

  16. Quality evaluation of green tea leaf cultured under artificial light condition using gas chromatography/mass spectrometry.

    PubMed

    Miyauchi, Shunsuke; Yonetani, Tsutomu; Yuki, Takayuki; Tomio, Ayako; Bamba, Takeshi; Fukusaki, Eiichiro

    2017-02-01

    For an experimental model to elucidate the relationship between light quality during plant culture conditions and plant quality of crops or vegetables, we cultured tea plants (Camellia sinensis) and analyzed their leaves as tea material. First, metabolic profiling of teas from a tea contest in Japan was performed with gas chromatography/mass spectrometry (GC/MS), and then a ranking predictive model was made which predicted tea rankings from their metabolite profile. Additionally, the importance of some compounds (glutamine, glutamic acid, oxalic acid, epigallocatechin, phosphoric acid, and inositol) was elucidated for measurement of the quality of tea leaf. Subsequently, tea plants were cultured in artificial conditions to control these compounds. From the result of prediction by the ranking predictive model, the tea sample supplemented with ultraviolet-A (315-399 nm) showed the highest ranking. The improvement in quality was thought to come from the high amino-acid and decreased epigallocatechin content in tea leaves. The current study shows the use and value of metabolic profiling in the field of high-quality crops and vegetables production that has been conventionally evaluated by human sensory analysis. Metabolic profiling enables us to form hypothesis to understand and develop high quality plant cultured under artificial condition.

  17. New application of superconductors: High sensitivity cryogenic light detectors

    NASA Astrophysics Data System (ADS)

    Cardani, L.; Bellini, F.; Casali, N.; Castellano, M. G.; Colantoni, I.; Coppolecchia, A.; Cosmelli, C.; Cruciani, A.; D'Addabbo, A.; Di Domizio, S.; Martinez, M.; Tomei, C.; Vignati, M.

    2017-02-01

    In this paper we describe the current status of the CALDER project, which is developing ultra-sensitive light detectors based on superconductors for cryogenic applications. When we apply an AC current to a superconductor, the Cooper pairs oscillate and acquire kinetic inductance, that can be measured by inserting the superconductor in a LC circuit with high merit factor. Interactions in the superconductor can break the Cooper pairs, causing sizable variations in the kinetic inductance and, thus, in the response of the LC circuit. The continuous monitoring of the amplitude and frequency modulation allows to reconstruct the incident energy with excellent sensitivity. This concept is at the basis of Kinetic Inductance Detectors (KIDs) that are characterized by natural aptitude to multiplexed read-out (several sensors can be tuned to different resonant frequencies and coupled to the same line), resolution of few eV, stable behavior over a wide temperature range, and ease in fabrication. We present the results obtained by the CALDER collaboration with 2×2 cm2 substrates sampled by 1 or 4 Aluminum KIDs. We show that the performances of the first prototypes are already competitive with those of other commonly used light detectors, and we discuss the strategies for a further improvement.

  18. HIGH-EFFICIENCY NITRIDE-BASED SOLID-STATE LIGHTING

    SciTech Connect

    Paul T. Fini; Shuji Nakamura

    2003-10-30

    In this second annual report we summarize the progress in the second-year period of Department of Energy contract DE-FC26-01NT41203, entitled ''High- Efficiency Nitride-Based Solid-State Lighting''. The two teams, from the University of California at Santa Barbara (Principle Investigator: Dr. Shuji Nakamura) and Rensselaer Polytechnic Institute (led by Dr. N. Narendran), are pursuing the goals of this contract from thin film growth, characterization, and packaging standpoints. The UCSB team has recently made significant progress in the development of light-emitting diodes (LEDs) with AlGaN active regions emitting in the ultraviolet (UV), resonant-cavity LEDs (RCLEDs), as well as lateral epitaxial overgrowth (LEO) techniques to obtain large-area non-polar GaN films with low average dislocation density. The Rensselaer team has benchmarked the performance of commercially available LED systems and has also conducted efforts to develop an optimized RCLED packaging scheme, including development of advanced epoxy encapsulant chemistries.

  19. Determination of light absorption, scattering and anisotropy factor of a highly scattering medium using backscattered circularly polarized light

    NASA Astrophysics Data System (ADS)

    Xu, M.; Alrubaiee, M.; Gayen, S. K.; Alfano, R. R.

    2007-02-01

    The absorption coefficient, the scattering coefficient and the anisotropy factor of a highly scattering medium are determined using the diffuse reflectance of an obliquely incident beam of circularly polarized light. This approach determines both the anisotropy factor and the cutoff size parameter for the fractal continuous scattering medium such as biological tissue and tissue phantoms from depolarization of the backscattered light.

  20. Light

    NASA Astrophysics Data System (ADS)

    Vernon, C. G.

    2016-09-01

    Preface; 1. Historical; 2. Waves and wave-motion; 3. The behaviour of ripples; 4. The behaviour of light; 5. Refraction through glass blocks and prisms; 6. The imprinting of curvatures; 7. Simple mathematical treatment; 8. More advanced mathematical treatment; 9. The velocity of light; 10. The spectrum and colour; 11. Geometrical optics; 12. The eye and optical instruments; 13. Sources of light; 14. Interference, diffraction and polarisation; 15. Suggestions for class experiments; Index.

  1. Modifying the high rate algal pond light environment and its effects on light absorption and photosynthesis.

    PubMed

    Sutherland, Donna L; Montemezzani, Valerio; Howard-Williams, Clive; Turnbull, Matthew H; Broady, Paul A; Craggs, Rupert J

    2015-03-01

    The combined use of high rate algal ponds (HRAPs) for wastewater treatment and commercial algal production is considered to be an economically viable option. However, microalgal photosynthesis and biomass productivity is constrained in HRAPs due to light limitation. This paper investigates how the light climate in the HRAP can be modified through changes in pond depth, hydraulic retention time (HRT) and light/dark turnover rate and how this impacts light absorption and utilisation by the microalgae. Wastewater treatment HRAPs were operated at three different pond depth and HRT during autumn. Light absorption by the microalgae was most affected by HRT, significantly decreasing with increasing HRT, due to increased internal self-shading. Photosynthetic performance (as defined by Pmax, Ek and α), significantly increased with increasing pond depth and decreasing HRT. Despite this, increasing pond depth and/or HRT, resulted in decreased pond light climate and overall integrated water column net oxygen production. However, increased light/dark turnover was able to compensate for this decrease, bringing the net oxygen production in line with shallower ponds operated at shorter HRT. On overcast days, modelled daily net photosynthesis significantly increased with increased light/dark turnover, however, on clear days such increased turnover did not enhance photosynthesis. This study has showed that light absorption and photosynthetic performance of wastewater microalgae can be modified through changes to pond depth, HRT and light/dark turnover.

  2. Light Conditions Affect the Measurement of Oceanic Bacterial Production via Leucine Uptake

    PubMed Central

    Morán, Xosé Anxelu G.; Massana, Ramon; Gasol, Josep M.

    2001-01-01

    The effect of irradiance in the range of 400 to 700 nm or photosynthetically active radiation (PAR) on bacterial heterotrophic production estimated by the incorporation of 3H-leucine (referred to herein as Leu) was investigated in the northwestern Mediterranean Sea and in a coastal North Atlantic site, with Leu uptake rates ranging over 3 orders of magnitude. We performed in situ incubations under natural irradiance levels of Mediterranean samples taken from five depths around solar noon and compared them to incubations in the dark. In two of the three stations large differences were found between light and dark uptake rates for the surfacemost samples, with dark values being on average 133 and 109% higher than in situ ones. Data obtained in coastal North Atlantic waters confirmed that dark enclosure may increase Leu uptake rates more than threefold. To explain these differences, on-board experiments of Leu uptake versus irradiance were performed with Mediterranean samples from depths of 5 and 40 m. Incubations under a gradient of 12 to 1,731 μmol of photons m−2 s−1 evidenced a significant increase in incorporation rates with increasing PAR in most of the experiments, with dark-incubated samples departing from this pattern. These results were not attributed to inhibition of Leu uptake in the light but to enhanced bacterial response when transferred to dark conditions. The ratio of dark to light uptake rates increased as dissolved inorganic nitrogen concentrations decreased, suggesting that bacterial nutrient deficiency was overcome by some process occurring only in the dark bottles. PMID:11525969

  3. High-order harmonics in light curves of Kepler planets

    NASA Astrophysics Data System (ADS)

    Armstrong, Caden; Rein, Hanno

    2015-10-01

    The Kepler mission was launched in 2009 and has discovered thousands of planet candidates. In a recent paper, Esteves et al. found a periodic signal in the light curves of KOI-13 and HAT-P-7, with a frequency triple the orbital frequency of a transiting planet. We found similar harmonics in many systems with a high occurrence rate. At this time, the origins of the signal are not entirely certain. We look carefully at the possibility of errors being introduced through our data processing routines but conclude that the signal is real. The harmonics on multiples of the orbital frequency are a result of non-sinusoidal periodic signals. We speculate on their origin and generally caution that these harmonics could lead to wrong estimates of planet albedos, beaming mass estimates, and ellipsoidal variations.

  4. High Incidence of Breast Cancer in Light-Polluted Areas with Spatial Effects in Korea.

    PubMed

    Kim, Yun Jeong; Park, Man Sik; Lee, Eunil; Choi, Jae Wook

    2016-01-01

    We have reported a high prevalence of breast cancer in light-polluted areas in Korea. However, it is necessary to analyze the spatial effects of light polluted areas on breast cancer because light pollution levels are correlated with region proximity to central urbanized areas in studied cities. In this study, we applied a spatial regression method (an intrinsic conditional autoregressive [iCAR] model) to analyze the relationship between the incidence of breast cancer and artificial light at night (ALAN) levels in 25 regions including central city, urbanized, and rural areas. By Poisson regression analysis, there was a significant correlation between ALAN, alcohol consumption rates, and the incidence of breast cancer. We also found significant spatial effects between ALAN and the incidence of breast cancer, with an increase in the deviance information criterion (DIC) from 374.3 to 348.6 and an increase in R2 from 0.574 to 0.667. Therefore, spatial analysis (an iCAR model) is more appropriate for assessing ALAN effects on breast cancer. To our knowledge, this study is the first to show spatial effects of light pollution on breast cancer, despite the limitations of an ecological study. We suggest that a decrease in ALAN could reduce breast cancer more than expected because of spatial effects.

  5. Rhodobacter capsulatus Catalyzes Light-Dependent Fe(II) Oxidation under Anaerobic Conditions as a Potential Detoxification Mechanism▿

    PubMed Central

    Poulain, Alexandre J.; Newman, Dianne K.

    2009-01-01

    Diverse bacteria are known to oxidize millimolar concentrations of ferrous iron [Fe(II)] under anaerobic conditions, both phototrophically and chemotrophically. Yet whether they can do this under conditions that are relevant to natural systems is understood less well. In this study, we tested how light, Fe(II) speciation, pH, and salinity affected the rate of Fe(II) oxidation by Rhodobacter capsulatus SB1003. Although R. capsulatus cannot grow photoautotrophically on Fe(II), it oxidizes Fe(II) at rates comparable to those of bacteria that do grow photoautotrophically on Fe(II) as soon as it is exposed to light, provided it has a functional photosystem. Chelation of Fe(II) by diverse organic ligands promotes Fe(II) oxidation, and as the pH increases, so does the oxidation rate, except in the presence of nitrilotriacetate; nonchelated forms of Fe(II) are also more rapidly oxidized at higher pH. Salt concentrations typical of marine environments inhibit Fe(II) oxidation. When growing photoheterotrophically on humic substances, R. capsulatus is highly sensitive to low concentrations of Fe(II); it is inhibited in the presence of concentrations as low as 5 μM. The product of Fe(II) oxidation, ferric iron, does not hamper growth under these conditions. When other parameters, such as pH or the presence of chelators, are adjusted to promote Fe(II) oxidation, the growth inhibition effect of Fe(II) is alleviated. Together, these results suggest that Fe(II) is toxic to R. capsulatus growing under strictly anaerobic conditions and that Fe(II) oxidation alleviates this toxicity. PMID:19717624

  6. High-speed Light Peak optical link for high energy applications

    NASA Astrophysics Data System (ADS)

    Chang, F. X.; Chiang, F.; Deng, B.; Hou, J.; Hou, S.; Liu, C.; Liu, T.; Teng, P. K.; Wang, C. H.; Xu, T.; Ye, J.

    2014-11-01

    Optical links provide high speed data transmission with low mass fibers favorable for applications in high energy experiments. We report investigation of a compact Light Peak optical engine designed for data transmission at 4.8 Gbps. The module is assembled with bare die VCSEL, PIN diodes and a control IC aligned within a prism receptacle for light coupling to fiber ferrule. Radiation damage in the receptacle was examined with 60Co gamma ray. Radiation induced single event effects in the optical engine were studied with protons, neutrons and X-ray tests.

  7. Active imaging systems to see through adverse conditions: Light-scattering based models and experimental validation

    NASA Astrophysics Data System (ADS)

    Riviere, Nicolas; Ceolato, Romain; Hespel, Laurent

    2014-10-01

    Onera, the French aerospace lab, develops and models active imaging systems to understand the relevant physical phenomena affecting these systems performance. As a consequence, efforts have been done on the propagation of a pulse through the atmosphere and on target geometries and surface properties. These imaging systems must operate at night in all ambient illumination and weather conditions in order to perform strategic surveillance for various worldwide operations. We have implemented codes for 2D and 3D laser imaging systems. As we aim to image a scene in the presence of rain, snow, fog or haze, we introduce such light-scattering effects in our numerical models and compare simulated images with measurements provided by commercial laser scanners.

  8. Environmental degradation of polyacrylamides. 1. Effects of artificial environmental conditions: temperature, light, and pH.

    PubMed

    Smith, E A; Prues, S L; Oehme, F W

    1996-11-01

    A polyacrylamide thickening agent (PATA) was formulated at four concentrations in distilled-deionized water, without and with a glyphosate-surfactant herbicide (GH). Over a 6-week period, these mixtures were exposed to various controlled temperature and light conditions. Acrylamide concentration, ammonium concentration, and pH were measured at weekly intervals to assess the degradation of polyacrylamide and acrylamide. Satellite studies were conducted to examine the effect of altered pH on solutions of PATA (i.e., does pH promote polyacrylamide depolymerization?) and GH binding to amine groups (i.e., protection from degradation). The results of these studies suggest that polyacrylamide can degrade to acrylamide by thermal and photolytic effects, that changes in pH do not promote the depolymerization of polyacrylamide, and that GH does protect polyacrylamide and acrylamide from environmental degradation. Statistically there was no linear correlation between the various parameters measured.

  9. Three dimensional imaging by partially coherent light under non-paraxial condition

    PubMed Central

    Sung, Yongjin; Sheppard, Colin J. R.

    2012-01-01

    In this paper, we present the theory of 3-D imaging using partially coherent light under the non-paraxial condition. Using the linear system approach, we derive the image intensity in terms of the 3-D non-paraxial transmission cross-coefficient (TCC) and the transmission function defined in this paper. We present that the 3-D TCC can be calculated by multiple applications of the 3-D FFT instead of the 6-D integral in the original formula. Using the simplified formula, we simulate phase contrast and Nomarski-DIC (differential interference contrast) imaging of a transparent 3-D object. Within our knowledge, the 3-D model for the DIC based on the 3-D non-paraxial TCC is the most rigorous approach that has been suggested. It demonstrates clearly the optical sectioning effect of DIC. PMID:21478949

  10. Light and water are not simple conditions: fine tuning of animal housing in male C57BL/6 mice.

    PubMed

    Langgartner, Dominik; Foertsch, Sandra; Füchsl, Andrea M; Reber, Stefan O

    2017-01-01

    While animal housing conditions are highly controlled and standardized between different laboratories, there are still many subtle differences that unavoidably influence the host organisms and, consequently, interlaboratory reproducibility. Here, we investigated the physiological and immunological consequences between two light/dark cycle (LDC) lengths (14-h/10-h vs. 12-h/12-h LDC) and two commonly used forms of drinking water (acidified drinking water (AW) versus normal tap water (NW)) in single-housed (SH) mice. Our results indicate that SH mice bred under a 12-h/12-h LDC and NW at the supplier's facility showed increased basal morning plasma corticosterone (CORT) levels even 4 weeks after arrival at our animal facility employing a 14-h/10-h LDC and AW. This effect was even more pronounced two weeks after arrival and had abated after 8 weeks. In agreement, increased plasma adrenocorticotropic hormone (ACTH), adrenal in vitro ACTH sensitivity, as well as relative and absolute adrenal weight normalized during this 8-week exposure to the novel and unfamiliar 14-h/10-h LDC and AW. Employment of a 12-h/12-h LDC in our facility completely abrogated the CORT-elevating effects of the 14-h/10-h LDC, despite these animals drinking AW. When both the water and light conditions were matched to those at the supplier's facility, we observed a further reduction in adrenal weight, increased thymus weight, and decreased pro-inflammatory cytokine secretion of isolated and anti-CD3/28-stimulated mesenteric lymph node cells. In summary, our results indicate that prolonged alteration of both the light phase and drinking water represent severe and long-lasting stressors for laboratory rodents. These findings are of general interest for all scientists obtaining their experimental animals from conventional suppliers.

  11. Handling high data rate detectors at Diamond Light Source

    NASA Astrophysics Data System (ADS)

    Pedersen, U. K.; Rees, N.; Basham, M.; Ferner, F. J. K.

    2013-03-01

    An increasing number of area detectors, in use at Diamond Light Source, produce high rates of data. In order to capture, store and process this data High Performance Computing (HPC) systems have been implemented. This paper will present the architecture and usage for handling high rate data: detector data capture, large volume storage and parallel processing. The EPICS area Detector frame work has been adopted to abstract the detectors for common tasks including live processing, file format and storage. The chosen data format is HDF5 which provides multidimensional data storage and NeXuS compatibility. The storage system and related computing infrastructure include: a centralised Lustre based parallel file system, a dedicated network and a HPC cluster. A well defined roadmap is in place for the evolution of this to meet demand as the requirements and technology advances. For processing the science data the HPC cluster allow efficient parallel computing, on a mixture of ×86 and GPU processing units. The nature of the Lustre storage system in combination with the parallel HDF5 library allow efficient disk I/O during computation jobs. Software developments, which include utilising optimised parallel file reading for a variety of post processing techniques, are being developed in collaboration as part of the Pan-Data EU Project (www.pan-data.eu). These are particularly applicable to tomographic reconstruction and processing of non crystalline diffraction data.

  12. Super high power mid-infrared femtosecond light bullet

    NASA Astrophysics Data System (ADS)

    Panagiotopoulos, Paris; Whalen, Patrick; Kolesik, Miroslav; Moloney, Jerome V.

    2015-08-01

    Mid-infrared ultrashort high energy laser sources are opening up new opportunities in science, including keV-class high harmonic generation and monoenergetic MeV-class proton acceleration. As new higher energy sources become available, potential applications for atmospheric propagation can dramatically grow to include stand-off detection, laser communications, shock-driven remote terahertz enhancement and extended long-lived thermal waveguides to transport high power microwave and radiofrequency waves. We reveal a new paradigm for long-range, low-loss, ultrahigh power ultrashort pulse propagation at mid-infrared wavelengths in the atmosphere. Before the onset of critical self-focusing, energy in the fundamental wave continually leaks into shock-driven spectrally broadened higher harmonics. A persistent near-invariant solitonic leading edge on the multi-terawatt pulse waveform transports most of the power over hundred-metre-long distances. Such light bullets are resistant to uncontrolled multiple filamentation and are expected to spark extensive research in optics, where the use of mid-infrared lasers is currently much under-utilized.

  13. A strategy for oxygen conditioning at high altitude: comparison with air conditioning.

    PubMed

    West, John B

    2015-09-15

    Large numbers of people live or work at high altitude, and many visit to trek or ski. The inevitable hypoxia impairs physical working capacity, and at higher altitudes there is also cognitive impairment. Twenty years ago oxygen enrichment of room air was introduced to reduce the hypoxia, and this is now used in dormitories, hotels, mines, and telescopes. However, recent advances in technology now allow large amounts of oxygen to be obtained from air or cryogenic oxygen sources. As a result it is now feasible to oxygenate large buildings and even institutions such as hospitals. An analogy can be drawn between air conditioning that has improved the living and working conditions of millions of people who live in hot climates and oxygen conditioning that can do the same at high altitude. Oxygen conditioning is similar to air conditioning except that instead of cooling the air, the oxygen concentration is raised, thus reducing the equivalent altitude. Oxygen conditioning on a large scale could transform living and working conditions at high altitude, where it could be valuable in homes, hospitals, schools, dormitories, company headquarters, banks, and legislative settings.

  14. 15 CFR 14.14 - High risk special award conditions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 15 Commerce and Foreign Trade 1 2010-01-01 2010-01-01 false High risk special award conditions. 14.14 Section 14.14 Commerce and Foreign Trade Office of the Secretary of Commerce UNIFORM...-PROFIT, AND COMMERCIAL ORGANIZATIONS Pre-Award Requirements § 14.14 High risk special award...

  15. Methodology of high-resolution photography for mural condition database

    NASA Astrophysics Data System (ADS)

    Higuchi, R.; Suzuki, T.; Shibata, M.; Taniguchi, Y.

    2015-08-01

    Digital documentation is one of the most useful techniques to record the condition of cultural heritage. Recently, high-resolution images become increasingly useful because it is possible to show general views of mural paintings and also detailed mural conditions in a single image. As mural paintings are damaged by environmental stresses, it is necessary to record the details of painting condition on high-resolution base maps. Unfortunately, the cost of high-resolution photography and the difficulty of operating its instruments and software have commonly been an impediment for researchers and conservators. However, the recent development of graphic software makes its operation simpler and less expensive. In this paper, we suggest a new approach to make digital heritage inventories without special instruments, based on our recent our research project in Üzümlü church in Cappadocia, Turkey. This method enables us to achieve a high-resolution image database with low costs, short time, and limited human resources.

  16. Investigation of gender- and age-related preferences of men and women regarding lighting conditions for activation and relaxation

    NASA Astrophysics Data System (ADS)

    Schweitzer, S.; Schinagl, C.; Djuras, G.; Frühwirth, M.; Hoschopf, H.; Wagner, F.; Schulz, B.; Nemitz, W.; Grote, V.; Reidl, S.; Pritz, P.; Moser, M.; Wenzl, F. P.

    2016-09-01

    In recent years, LED lighting became an indispensable alternative to conventional lighting systems. Sophisticated solutions offer not only comfortable white light with a good color rendering. They also provide the possibility of changing illuminance and color temperature. Some systems even simulate daylight over the entire day, some including natural variations as due to clouds. Such systems are supposed to support the chronobiological needs of human and to have a positive effect on well-being, performance, sleep-quality and health. Lighting can also be used to support specific aims in a situation, like to improve productivity in activation or to support recreation in relaxation. Research regarding suitable light-settings for such situations and superordinate questions like their influence on well-being and health is still incomplete. We investigated the subjective preferences of men and women regarding light-settings for activation and relaxation. We supplied two rooms and four cubes with light sources that provide the possibility of tuning illuminance, color temperature and deviation from Plackian locus. More than 80 individuals - belonging to four groups differing in gender and age - were asked to imagine activating and recovering situations for which they should adjust suitable and pleasant lighting by tuning the above mentioned light properties. It was shown that there are clear differences in the lighting conditions preferred for these two situations. Also some combined gender- and age-specific differences became apparent.

  17. Effects of Formulation Variables and Storage Conditions on Light Protected Vitamin B12 Mixed Parenteral Formulations

    PubMed Central

    Monajjemzadeh, Farnaz; Ebrahimi, Fatemeh; Zakeri-Milani, Parvin; Valizadeh, Hadi

    2014-01-01

    Purpose: In this research the effect of vitamin B1 and B6 on cyanocobalamin stability in commercial light protected parenteral formulations and upon adding stabilizing agents will be investigated and best formulation composition and proper storage condition will be introduced. Methods: In this research some additives such as co solvents and tonicity adjusters, surfactants, antioxidants and chelating agents as well as buffer solutions, were used to improve the stability of the parenteral mixed formulations of B12 in the presence of other B vitamins (B1 and B6). Screening tests and accelerated stability tests were performed according to ICH guidelines Q1A (R2). Results: Shelf life evaluation revealed the best formulation and the proper storage condition. The results indicated the first kinetic models for all tested formulations and the optimum pH value was determined to be 5.8. There was no evidence of B12 loss when mixed with B1 and B6 in a medical syringe at room temperature for maximum of 8 hours. Conclusion: It is necessary to formulate vitamin B12 mixed parenteral solutions using proper phosphate buffers (pH=5.8) and to indicate “Store in refrigerator” on the mixed parenteral formulations of vitamin B12 with other B vitamins, which has not been expressed on the label of tested Brand formulations at the time of this study. PMID:25436187

  18. Plants Actively Avoid State Transitions upon Changes in Light Intensity: Role of Light-Harvesting Complex II Protein Dephosphorylation in High Light1[OPEN

    PubMed Central

    Suorsa, Marjaana; Rantala, Marjaana; Aro, Eva-Mari

    2015-01-01

    Photosystem II (PSII) core and light-harvesting complex II (LHCII) proteins in plant chloroplasts undergo reversible phosphorylation upon changes in light intensity (being under control of redox-regulated STN7 and STN8 kinases and TAP38/PPH1 and PSII core phosphatases). Shift of plants from growth light to high light results in an increase of PSII core phosphorylation, whereas LHCII phosphorylation concomitantly decreases. Exactly the opposite takes place when plants are shifted to lower light intensity. Despite distinct changes occurring in thylakoid protein phosphorylation upon light intensity changes, the excitation balance between PSII and photosystem I remains unchanged. This differs drastically from the canonical-state transition model induced by artificial states 1 and 2 lights that concomitantly either dephosphorylate or phosphorylate, respectively, both the PSII core and LHCII phosphoproteins. Analysis of the kinase and phosphatase mutants revealed that TAP38/PPH1 phosphatase is crucial in preventing state transition upon increase in light intensity. Indeed, tap38/pph1 mutant revealed strong concomitant phosphorylation of both the PSII core and LHCII proteins upon transfer to high light, thus resembling the wild type under state 2 light. Coordinated function of thylakoid protein kinases and phosphatases is shown to secure balanced excitation energy for both photosystems by preventing state transitions upon changes in light intensity. Moreover, PROTON GRADIENT REGULATION5 (PGR5) is required for proper regulation of thylakoid protein kinases and phosphatases, and the pgr5 mutant mimics phenotypes of tap38/pph1. This shows that there is a close cooperation between the redox- and proton gradient-dependent regulatory mechanisms for proper function of the photosynthetic machinery. PMID:25902812

  19. Plants Actively Avoid State Transitions upon Changes in Light Intensity: Role of Light-Harvesting Complex II Protein Dephosphorylation in High Light.

    PubMed

    Mekala, Nageswara Rao; Suorsa, Marjaana; Rantala, Marjaana; Aro, Eva-Mari; Tikkanen, Mikko

    2015-06-01

    Photosystem II (PSII) core and light-harvesting complex II (LHCII) proteins in plant chloroplasts undergo reversible phosphorylation upon changes in light intensity (being under control of redox-regulated STN7 and STN8 kinases and TAP38/PPH1 and PSII core phosphatases). Shift of plants from growth light to high light results in an increase of PSII core phosphorylation, whereas LHCII phosphorylation concomitantly decreases. Exactly the opposite takes place when plants are shifted to lower light intensity. Despite distinct changes occurring in thylakoid protein phosphorylation upon light intensity changes, the excitation balance between PSII and photosystem I remains unchanged. This differs drastically from the canonical-state transition model induced by artificial states 1 and 2 lights that concomitantly either dephosphorylate or phosphorylate, respectively, both the PSII core and LHCII phosphoproteins. Analysis of the kinase and phosphatase mutants revealed that TAP38/PPH1 phosphatase is crucial in preventing state transition upon increase in light intensity. Indeed, tap38/pph1 mutant revealed strong concomitant phosphorylation of both the PSII core and LHCII proteins upon transfer to high light, thus resembling the wild type under state 2 light. Coordinated function of thylakoid protein kinases and phosphatases is shown to secure balanced excitation energy for both photosystems by preventing state transitions upon changes in light intensity. Moreover, proton gradient regulation5 (PGR5) is required for proper regulation of thylakoid protein kinases and phosphatases, and the pgr5 mutant mimics phenotypes of tap38/pph1. This shows that there is a close cooperation between the redox- and proton gradient-dependent regulatory mechanisms for proper function of the photosynthetic machinery.

  20. Electric signalling in fruit trees in response to water applications and light-darkness conditions.

    PubMed

    Gurovich, Luis A; Hermosilla, Paulo

    2009-02-15

    A fundamental property of all living organisms is the generation and conduction of electrochemical impulses throughout their different tissues and organs, resulting from abiotic and biotic changes in environmental conditions. In plants and animals, signal transmission can occur over long and short distances, and it can correspond to intra- and inter-cellular communication mechanisms that determine the physiological behaviour of the organism. Rapid plant and animal responses to environmental changes are associated with electrical excitability and signalling. The same molecules and pathways are used to drive physiological responses, which are characterized by movement (physical displacement) in animals and by continuous growth in plants. In the field of environmental plant electrophysiology, automatic and continuous measurements of electrical potential differences (DeltaEP) between plant tissues can be effectively used to study information transport mechanisms and physiological responses that result from external stimuli on plants. A critical mass of data on electrical behaviour in higher plants has accumulated in the last 5 years, establishing plant neurobiology as the most recent discipline of plant science. In this work, electrical potential differences were monitored continuously using Ag/AgCl microelectrodes, which were inserted 15mm deep into sapwood at various positions in the trunks of several fruit-bearing trees. Electrodes were referenced to an unpolarisable Ag/AgCl microelectrode, which was installed 5cm deep in the soil. Systematic patterns of DeltaEP during day-night cycles and at different conditions of soil water availability are discussed as alternative tools to assess early plant stress conditions. This research relates to the adaptive response of trees to soil water availability and light-darkness cycles.

  1. Socially adjusted synchrony in the activity profiles of common marmosets in light-dark conditions.

    PubMed

    Melo, Paula; Gonçalves, Bruno; Menezes, Alexandre; Azevedo, Carolina

    2013-07-01

    Synchronized state of activity and rest might be attained by mechanisms of entrainment and masking. Most zeitgebers not only act to entrain but also to mask circadian rhythms. Although the light-dark (LD) cycle is the main zeitgeber of circadian rhythms in marmosets, social cues can act as weaker zeitgebers. Evidence on the effects of social entrainment in marmosets has been collected in isolated animals or in pairs where activity is not individually recorded. To characterize the synchronization between the daily activity profiles of individuals in groups under LD conditions, the motor activity of animals from five groups was continuously monitored using actiwatches for 15 days during the 5th, 8th, and 11th months of life of juveniles. Families consisting of twins (4 ♂♀/1 ♂♂) and their parents were maintained under controlled lighting (LD 12:12 h), temperature, and humidity conditions. Synchronization was evaluated through the synchrony between the circadian activity profiles obtained from the Pearson correlation index between possible pairs of activity profiles in the light and dark phases. We also calculated the phase-angle differences between the activity onset of one animal in relation to the activity onset of each animal in the group (ψ(on)). A similar procedure was performed for activity offset (ψ(off)). By visual analysis, the correlation between the activity profiles of individuals within each family was stronger than that of individuals from different families. A mixed-model analysis showed that within the group, the correlation was stronger between twins than between twins and their parents in all families, except for the family in which both juveniles were males. Because a twin is an important social partner for juveniles, a sibling is likely to have a stronger influence on its twin's activity rhythm than other family members. Considering only the light phase, the second strongest correlation was observed between the activity profiles of the

  2. Dual design resistor for high voltage conditioning and transmission lines

    DOEpatents

    Siggins, Timothy Lynn; Murray, Charles W.; Walker, Richard L.

    2007-01-23

    A dual resistor for eliminating the requirement for two different value resistors. The dual resistor includes a conditioning resistor at a high resistance value and a run resistor at a low resistance value. The run resistor can travel inside the conditioning resistor. The run resistor is capable of being advanced by a drive assembly until an electrical path is completed through the run resistor thereby shorting out the conditioning resistor and allowing the lower resistance run resistor to take over as the current carrier.

  3. High light extraction efficiency in bulk-GaN based volumetric violet light-emitting diodes

    SciTech Connect

    David, Aurelien Hurni, Christophe A.; Aldaz, Rafael I.; Cich, Michael J.; Ellis, Bryan; Huang, Kevin; Steranka, Frank M.; Krames, Michael R.

    2014-12-08

    We report on the light extraction efficiency of III-Nitride violet light-emitting diodes with a volumetric flip-chip architecture. We introduce an accurate optical model to account for light extraction. We fabricate a series of devices with varying optical configurations and fit their measured performance with our model. We show the importance of second-order optical effects like photon recycling and residual surface roughness to account for data. We conclude that our devices reach an extraction efficiency of 89%.

  4. MISR empirical stray light corrections in high-contrast scenes

    NASA Astrophysics Data System (ADS)

    Limbacher, J. A.; Kahn, R. A.

    2015-07-01

    We diagnose the potential causes for the Multi-angle Imaging SpectroRadiometer's (MISR) persistent high aerosol optical depth (AOD) bias at low AOD with the aid of coincident MODerate-resolution Imaging Spectroradiometer (MODIS) imagery from NASA's Terra satellite. Stray light in the MISR instrument is responsible for a large portion of the high AOD bias in high-contrast scenes, such as broken-cloud scenes that are quite common over ocean. Discrepancies among MODIS and MISR nadir-viewing blue, green, red, and near-infrared images are used to optimize seven parameters individually for each wavelength, along with a background reflectance modulation term that is modeled separately, to represent the observed features. Independent surface-based AOD measurements from the AErosol RObotic NETwork (AERONET) and the Marine Aerosol Network (MAN) are compared with MISR research aerosol retrieval algorithm (RA) AOD retrievals for 1118 coincidences to validate the corrections when applied to the nadir and off-nadir cameras. With these corrections, plus the baseline RA corrections and enhanced cloud screening applied, the median AOD bias for all data in the mid-visible (green, 558 nm) band decreases from 0.006 (0.020 for the MISR standard algorithm (SA)) to 0.000, and the RMSE decreases by 5 % (27 % compared to the SA). For AOD558 nm < 0.10, which includes about half the validation data, 68th percentile absolute AOD558 nm errors for the RA have dropped from 0.022 (0.034 for the SA) to < 0.02 (~ 0.018).

  5. Impacts of Combustion Conditions and Photochemical Processing on the Light Absorption of Biomass Combustion Aerosol.

    PubMed

    Martinsson, J; Eriksson, A C; Nielsen, I Elbæk; Malmborg, V Berg; Ahlberg, E; Andersen, C; Lindgren, R; Nyström, R; Nordin, E Z; Brune, W H; Svenningsson, B; Swietlicki, E; Boman, C; Pagels, J H

    2015-12-15

    The aim was to identify relationships between combustion conditions, particle characteristics, and optical properties of fresh and photochemically processed emissions from biomass combustion. The combustion conditions included nominal and high burn rate operation and individual combustion phases from a conventional wood stove. Low temperature pyrolysis upon fuel addition resulted in "tar-ball" type particles dominated by organic aerosol with an absorption Ångström exponent (AAE) of 2.5-2.7 and estimated Brown Carbon contributions of 50-70% to absorption at the climate relevant aethalometer-wavelength (520 nm). High temperature combustion during the intermediate (flaming) phase was dominated by soot agglomerates with AAE 1.0-1.2 and 85-100% of absorption at 520 nm attributed to Black Carbon. Intense photochemical processing of high burn rate flaming combustion emissions in an oxidation flow reactor led to strong formation of Secondary Organic Aerosol, with no or weak absorption. PM1 mass emission factors (mg/kg) of fresh emissions were about an order of magnitude higher for low temperature pyrolysis compared to high temperature combustion. However, emission factors describing the absorption cross section emitted per kg of fuel consumed (m(2)/kg) were of similar magnitude at 520 nm for the diverse combustion conditions investigated in this study. These results provide a link between biomass combustion conditions, emitted particle types, and their optical properties in fresh and processed plumes which can be of value for source apportionment and balanced mitigation of biomass combustion emissions from a climate and health perspective.

  6. An assessment of high-power light-emitting diodes for high frame rate schlieren imaging

    NASA Astrophysics Data System (ADS)

    Willert, Christian E.; Mitchell, Daniel M.; Soria, Julio

    2012-08-01

    The feasibility of using high-power light-emitting diodes (LED) as a light source for high frame rate schlieren imaging is investigated. Continuous sequences of high-intensity light pulses are achieved by overdriving the LED with current pulses up to a factor of ten beyond its specifications. In comparison to commonly used pulsed light sources such as gas discharge lamps and pulsed lasers, the pulsed LED has several attractive advantages: the pulse-to-pulse intensity variation is on the same order of magnitude as the detector (camera) noise permitting quantitative intensity measurements. The LED's narrow emission bandwidth reduces chromatic abberations, yet it is spectrally wide enough to prevent the appearance of speckle and diffraction effects in the images. Most importantly, the essentially lag-free light emission within tens of nanoseconds of the applied current pulse allows the LED to be operated at varying frequencies (i.e., asynchronously), which generally is not possible with neither lasers nor discharge lamps. The pulsed LED source, driven by a simple driver circuit, is demonstrated on two schlieren imaging setups. The first configuration visualizes the temporal evolution of shock structures and sound waves of an under-expanded jet that is impinging on a rigid surface at frame rates of 500 kHz to 1 MHz. In a second application, long sequences of several thousand high-resolution images are acquired on a free jet at a frame rate of 1 kHz. The low-intensity fluctuation and large sample number allow a reliable computation of two-point correlation data from the image sequences.

  7. Design and optimization of a back-flow limiter for the high performance light water reactor

    SciTech Connect

    Fischer, Kai; Laurien, Eckart; Claas, Andreas G.; Schulenberg, Thomas

    2007-07-01

    Design and Analysis of a back-flow limiter are presented, which is implemented as a safety device in the four inlet lines of the Reactor Pressure Vessel (RPV) of the High Performance Light Water Reactor (HPLWR). As a passive component, the back-flow limiter has no moving parts and belongs to the group of fluid diodes. It has low flow resistance for regular operation condition and a high flow resistance when the flow direction is reversed which is the case if a break of the feedwater line occurs. The increased flow resistance is due to a substantially increased swirl for reverse flow condition. The design is optimized employing 1D flow analyses in combination with 3D CFD analyses with respect to geometrical modifications, like the nozzle shape and swirler angles. (authors)

  8. Prospects for high-gain, high yield NIF targets driven by 2ω (green) light

    NASA Astrophysics Data System (ADS)

    Suter, L. J.; Glenzer, S.; Haan, S.; Hammel, B.; Manes, K.; Meezan, N.; Moody, J.; Spaeth, M.; Oades, K.; Stevenson, M.

    2016-10-01

    For several years we have been exploring the possibility of using green (2w) light for indirect drive ignition on NIF. The rationale for this work is the possibility of extracting significantly more energy from NIF in green light, as compared to blue (3w) light, and driving far more energetic capsules than we originally envisioned when we started planning NIF in the early 1990's. This paper attempts to provide a comprehensive picture of the progress we have made exploring 2w for NIF ignition. First we describe the potential operating regime for NIF at 2w and how that can translate into a very large "design space" for exploring ignition target designs. We then present the results of 2w ignition target design studies indicating that we can achieving adequate drive and symmetry with 2w and showing how we might capitalize on the large amount of energy available by electing to trade-off coupling efficiency for, say, better symmetry or plasma conditions. These simulations also define plasma conditions for ignition-relevant 2w laser-plasma interaction experiments that have been recently performed. We summarize the results of these experiments which indicate that 2w LPI is not very different from 3w's. Finally, we show how recent experimental findings on mitigating 2w laser plasma interactions through reduced intensity and/or judicious choice of plasma composition can be incorporated into ignition target designs.

  9. Local analogs of high-redshift galaxies: Interstellar medium conditions

    NASA Astrophysics Data System (ADS)

    Bian, Fuyan; Kewley, Lisa J.; Dopita, Michael A.; Juneau, Stephanie

    2017-03-01

    Local analog galaxies play an important role in understanding the properties of high-redshift galaxies. We present a method to select a type of local analog that closely resembles the ionized interstellar medium conditions in high-redshift galaxies. These galaxies are selected based on their locations in the [O III]/Hβ versus [N II]/Hα nebular emission-line diagnostic diagram. The ionization parameters and electron densities in these analogs are comparable to those in z ~= 2 - 3 galaxies, but higher than those in normal SDSS galaxies by ~= 0.6 dex and ~= 0.9 dex, respectively. We find that the high sSFR and SFR surface density can enhance the electron densities and the ionization parameters, but still cannot fully explain the difference in ISM condition between nearby galaxies and the local analogs/high-redshift galaxies.

  10. Evolution of quality characteristics of minimally processed asparagus during storage in different lighting conditions.

    PubMed

    Sanz, S; Olarte, C; Ayala, F; Echávarri, J F

    2009-08-01

    The effect of different types of lighting (white, green, red, and blue light) on minimally processed asparagus during storage at 4 degrees C was studied. The gas concentrations in the packages, pH, mesophilic counts, and weight loss were also determined. Lighting caused an increase in physiological activity. Asparagus stored under lighting achieved atmospheres with higher CO(2) and lower O(2) content than samples kept in the dark. This activity increase explains the greater deterioration experienced by samples stored under lighting, which clearly affected texture and especially color, accelerating the appearance of greenish hues in the tips and reddish-brown hues in the spears. Exposure to light had a negative effect on the quality parameters of the asparagus and it caused a significant reduction in shelf life. Hence, the 11 d shelf life of samples kept in the dark was reduced to only 3 d in samples kept under red and green light, and to 7 d in those kept under white and blue light. However, quality indicators such as the color of the tips and texture showed significantly better behavior under blue light than with white light, which allows us to state that it is better to use this type of light or blue-tinted packaging film for the display of minimally processed asparagus to consumers.

  11. Glow discharge techniques for conditioning high vacuum systems

    SciTech Connect

    Dylla, H.F.

    1988-03-01

    A review is given of glow discharge techniques which are useful for conditioning vacuum vessels for high vacuum applications. Substantial development of glow discharge techniques has been done for the purpose of in-situ conditioning of the large ultrahigh vacuum systems for particle accelerators and magnetic fusion devices. In these applications the glow discharge treatments remove impurities from vessel surfaces in order to minimize particle-induced desorption coefficients. Cleaning mechanisms involve a mixture of sputtering and ion- (or neutral) induced desorption effects depending on the gas mixture (ArO/sub 2/ vs. H/sub 2/) and excitation method (DC, RF, and ECR). The author will review the methodology of glow discharge conditioning, diagnostic measurements provided by residual gas and surface composition analysis, and applications to vessel conditioning and materials processing. 76 refs., 16 figs.

  12. Setting the light conditions for measuring root transparency for age-at-death estimation methods.

    PubMed

    Adserias-Garriga, Joe; Nogué-Navarro, Laia; Zapico, Sara C; Ubelaker, Douglas H

    2017-03-30

    Age-at-death estimation is one of the main goals in forensic identification, being an essential parameter to determine the biological profile, narrowing the possibility of identification in cases involving missing persons and unidentified bodies. The study of dental tissues has been long considered as a proper tool for age estimation with several age estimation methods based on them. Dental age estimation methods can be divided into three categories: tooth formation and development, post-formation changes, and histological changes. While tooth formation and growth changes are important for fetal and infant consideration, when the end of dental and skeletal growth is achieved, post-formation or biochemical changes can be applied. Lamendin et al. in J Forensic Sci 37:1373-1379, (1992) developed an adult age estimation method based on root transparency and periodontal recession. The regression formula demonstrated its accuracy of use for 40 to 70-year-old individuals. Later on, Prince and Ubelaker in J Forensic Sci 47(1):107-116, (2002) evaluated the effects of ancestry and sex and incorporated root height into the equation, developing four new regression formulas for males and females of African and European ancestry. Even though root transparency is a key element in the method, the conditions for measuring this element have not been established. The aim of the present study is to set the light conditions measured in lumens that offer greater accuracy when applying the Lamendin et al. method modified by Prince and Ubelaker. The results must be also taken into account in the application of other age estimation methodologies using root transparency to estimate age-at-death.

  13. SCHOOL AIR CONDITIONING/CASE STUDY, MCPHERSON HIGH SCHOOL.

    ERIC Educational Resources Information Center

    OSTENBERG, JOE W.

    THE STANFORD UNIVERSITY SCHOOL PLANNING LABORATORIES CONDUCTED AN EDUCATIONAL SURVEY OF THE EDUCATIONAL NEEDS OF THE MCPHERSON CITY SCHOOLS BY STUDYING THE EXISTING CONDITIONS, LOCAL ECONOMIES, AND POTENTIAL POPULATION GROWTH. IT WAS RECOMMENDED THAT A NEW SENIOR HIGH BE BUILT TO HOUSE 700-750 STUDENTS, THE ANTICIPATED ENROLLMENT 10 YEARS AFTER…

  14. Food for thought: Conditions for discourse reflection in the light of environmental assessment

    SciTech Connect

    Runhaar, Hens; Runhaar, Piety R.; Oegema, Tammo

    2010-11-15

    People tend to take notice of what is happening around them selectively. Discourses-frames through which actors give meaning to aspects of the world-act as built-in filters that distinguish relevant from irrelevant data. Use of knowledge generated by environmental assessments (EAs) in decision-making may be understood from this perspective. Environmental knowledge that is inconsistent with dominant discourses runs the risk of being ignored. Discourses on the value of EA as a tool for decision-making may have a similar effect. Stimulating decision-makers and stakeholders to critically reflect on and reconsider their discourses in the light of EAs-also known as frame reflection or policy learning-may enhance the probability that these assessments and the knowledge that they generate impact upon decision-making. Up to now little has been written about how discourse reflection in the context of EA can be promoted. Valuable inputs are fragmented over different bodies of literature. In this paper we draw from these bodies to identify favourable conditions for discourse reflection.

  15. Far red/near infrared light-induced cardioprotection under normal and diabetic conditions

    NASA Astrophysics Data System (ADS)

    Keszler, Agnes; Baumgardt, Shelley; Hwe, Christopher; Bienengraeber, Martin

    2015-03-01

    Far red/near infrared light (NIR) is beneficial against cardiac ischemia and reperfusion injury (I/R), although the exact underlying mechanism is unknown. Previously we established that NIR enhanced the cardioprotective effect of nitrite in the rabbit heart. Furthermore, we observed that the nitrosyl myoglobin (MbNO) level in ischemic tissue decreased upon irradiation of the heart. Our hypothesis was that protection against I/R is dependent on nitric oxide (NO)-release from heme-proteins, and remains present during diabetes. When mice were subjected to I/R NIR (660 nm) applied during the beginning of reperfusion reduced infarct size dose dependently compared to untreated animals. Similarly, the isolated (Langendorff) heart model resulted in sustained left ventricular diastolic pressure after I/R in NIR-treated hearts. NIRinduced protection was preserved in a diabetic mouse model (db/db) and during acute hyperglycemia. NIR liberated NO from nitrosyl hemoglobin (HbNO) and MbNO as well as from HbNO isolated from the blood of diabetic animals. In the Langendorff model, after application of the nitrosylated form of a hemoglobin-based oxygen carrier as an NO donor NIR induced an increase in NADH level, suggesting a mild inhibition of mitochondrial respiration by NO during reperfusion. Taken together, NIR applied during reperfusion protects the myocardium against I/R in a NO-dependent and mitochondrion-targeted manner. This unique mechanism is conserved under diabetic conditions where other protective strategies fail.

  16. Effects of Geroprotectors on Age-Related Changes in Proteolytic Digestive Enzyme Activities at Different Lighting Conditions.

    PubMed

    Morozov, A V; Khizhkin, E A; Svechkina, E B; Vinogradova, I A; Ilyukha, V A; Anisimov, V N; Khavinson, V Kh

    2015-10-01

    We studied the effect of melatonin and epithalon on age-related changes in proteolytic digestive enzyme activity in the pancreas and gastric mucosa of rats kept under different lighting conditions. In rats kept under standard illumination, pepsin activity and the total proteolytic activity in the stomach and pancreas increased by the age of 12 months, but then decreased. Constant and natural lighting disturbed the age dynamics of proteolytic digestive enzyme activity. Administration of melatonin and epithalon to animals exposed to constant lighting restored age dynamics of pepsin activity and little affected total proteolytic activity.

  17. Effects of different light conditions on repair of UV-B-induced damage in carpospores of Chondrus ocellatus Holm

    NASA Astrophysics Data System (ADS)

    Ju, Qing; Xiao, Hui; Wang, You; Tang, Xuexi

    2015-05-01

    We evaluated the effects of ultraviolet-B (UV-B) radiation and different light conditions on the repair of UV-B-induced damage in carpospores of Chondrus ocellatus Holm (Rhodophyta) in laboratory experiments. Carpospores were treated daily with different doses of UV-B radiation for 48 days, when vertical branches had formed in all treatments; after each daily treatment, the carpospores were subjected to photosynthetically active radiation (PAR), darkness, red light, or blue light during a 2-h repair stage. Carpospore diameters were measured every 4 days. We measured the growth and cellular contents of cyclobutane pyrimidine dimers (CPDs), chlorophyll a, phycoerythrin, and UV-B-absorbing mycosporine-like amino acids (MAAs) in carpospores on Day 48. Low doses of UV-B radiation (36 and 72 J/m2) accelerated the growth of C. ocellatus. However, as the amount of UV-B radiation increased, the growth rate decreased and morphological changes occurred. UV-B radiation significant damaged DNA and photosynthetic pigments and induced three kind of MAAs, palythine, asterina-330, and shinorine. PAR conditions were best for repairing UV-B-induced damage. Darkness promoted the activity of the DNA darkrepair mechanism. Red light enhanced phycoerythrin synthesis but inhibited light repair of DNA. Although blue light, increased the activity of DNA photolyase, greatly improving remediation efficiency, the growth and development of C. ocellatus carpospores were slower than in other light treatments.

  18. Comparative study of quality characteristics of Korean soy sauce made with soybeans germinated under dark and light conditions.

    PubMed

    Choi, Ung-Kyu; Jeong, Yeon-Shin; Kwon, O-Jun; Park, Jong-Dae; Kim, Young-Chan

    2011-01-01

    This study was conducted to evaluate the effects of germinating soybeans under dark and light conditions on the quality characteristics of Korean soy sauce made with germinated soybeans. The germination rate of soybeans germinated under dark conditions (GSD) was higher than that of soybeans germinated under light conditions (GSL), whereas the lengths of sprouts and relative weights of GSL did not differ from those of GSD. The L, a, b, and ΔT values of GSL were significantly lower than GSD. The color of GSD remained yellow, while GSL changed to a green color due to photosynthesis by chlorophyll. The total amino acid contents in soy sauce fermented with soybeans germinated under dark conditions (SSGD) and soy sauce fermented with soybeans germinated under light conditions (SSGL) were lower than in soy sauce fermented with non-germinated soybeans (SNGS). The levels of isoflavone content in SSGD and SSGL were significantly increased compared to the SNGS. In conclusion, the germination of soybeans under dark and light conditions is not only an increasing organoleptic preference, but also has implications for the health benefits of Korean soy sauce.

  19. High Power Light Gas Helicon Plasma Source for VASIMR

    NASA Technical Reports Server (NTRS)

    Squire, Jared P.; Chang-Diaz, Franklin R.; Glover, Timothy W.; Jacobson, Verlin T.; Baity, F. Wally; Carter, Mark D.; Goulding, Richard H.

    2004-01-01

    In the Advanced Space Propulsion Laboratory (ASPL) helicon experiment (VX-10) we have measured a plasma flux to input gas rate ratio near 100% for both helium and deuterium at power levels up to 10 kW. Recent results at Oak Ridge National Laboratory (ORNL) show enhanced efficiency operation with a high power density, over 5 kW in a 5 cm diameter tube. Our helicon is presently 9 cm in diameter and operates up to 10 kW of input power. The data here uses a Boswell double-saddle antenna design with a magnetic cusp just upstream of the antenna. Similar to ORNL, for deuterium at near 10 kW, we find an enhanced performance of operation at magnetic fields above the lower hybrid matching condition.

  20. Adaptation of iron requirement to hypoxic conditions at high altitude.

    PubMed

    Gassmann, Max; Muckenthaler, Martina U

    2015-12-15

    Adequate acclimatization time to enable adjustment to hypoxic conditions is one of the most important aspects for mountaineers ascending to high altitude. Accordingly, most reviews emphasize mechanisms that cope with reduced oxygen supply. However, during sojourns to high altitude adjustment to elevated iron demand is equally critical. Thus in this review we focus on the interaction between oxygen and iron homeostasis. We review the role of iron 1) in the oxygen sensing process and erythropoietin (Epo) synthesis, 2) in gene expression control mediated by the hypoxia-inducible factor-2 (HIF-2), and 3) as an oxygen carrier in hemoglobin, myoglobin, and cytochromes. The blood hormone Epo that is abundantly expressed by the kidney under hypoxic conditions stimulates erythropoiesis in the bone marrow, a process requiring high iron levels. To ensure that sufficient iron is provided, Epo-controlled erythroferrone that is expressed in erythroid precursor cells acts in the liver to reduce expression of the iron hormone hepcidin. Consequently, suppression of hepcidin allows for elevated iron release from storage organs and enhanced absorption of dietary iron by enterocytes. As recently observed in sojourners at high altitude, however, iron uptake may be hampered by reduced appetite and gastrointestinal bleeding. Reduced iron availability, as observed in a hypoxic mountaineer, enhances hypoxia-induced pulmonary hypertension and may contribute to other hypoxia-related diseases. Overall, adequate systemic iron availability is an important prerequisite to adjust to high-altitude hypoxia and may have additional implications for disease-related hypoxic conditions.

  1. Proteomic analysis of Saccharomyces cerevisiae under high gravity fermentation conditions.

    PubMed

    Pham, Trong Khoa; Chong, Poh Kuan; Gan, Chee Sian; Wright, Phillip C

    2006-12-01

    Saccharomyces cerevisiae KAY446 was utilized for ethanol production, with glucose concentrations ranging from 120 g/L (normal) to 300 g/L (high). Although grown in a high glucose environment, S. cerevisiae still retained the ability to produce ethanol with a high degree of glucose utilization. iTRAQ-mediated shotgun proteomics was applied to identify relative expression change of proteins under the different glucose conditions. A total of 413 proteins were identified from three replicate, independent LC-MS/MS runs. Unsurprisingly, many proteins in the glycolysis/gluconeogenesis pathway showed significant changes in expression level. Twenty five proteins involved in amino acid metabolism decreased their expression, while the expressions of 12 heat-shock related proteins were also identified. Under high glucose conditions, ethanol was produced as a major product. However, the assimilation of glucose as well as a number of byproducts was also enhanced. Therefore, to optimize the ethanol production under very high gravity conditions, a number of pathways will need to be deactivated, while still maintaining the correct cellular redox or osmotic state. Proteomics is demonstrated here as a tool to aid in this forward metabolic engineering.

  2. Transparent ZnO/glass surface acoustic wave based high performance ultraviolet light sensors

    NASA Astrophysics Data System (ADS)

    Wang, Wen-Bo; Gu, Hang; He, Xing-Li; Xuan, Wei-Peng; Chen, Jin-Kai; Wang, Xiao-Zhi; Luo, Ji-Kui

    2015-05-01

    Surface acoustic wave (SAW) resonators are a type of ultraviolet (UV) light sensors with high sensitivity, and they have been extensively studied. Transparent SAW devices are very useful and can be developed into various sensors and microfluidics for sensing/monitoring and lab-on-chip applications. We report the fabrication of high sensitivity SAW UV sensors based on piezoelectric (PE) ZnO thin films deposited on glass substrates. The sensors were fabricated and their performances against the post-deposition annealing condition were investigated. It was found that the UV-light sensitivity is improved by more than one order of magnitude after annealing. The frequency response increases significantly and the response becomes much faster. The optimized devices also show a small temperature coefficient of frequency and excellent repeatability and stability, demonstrating its potential for UV-light sensing application. Project supported by the National Natural Science Foundation of China (Grant Nos. 61274037 and 61301046) and the Research Fund for the Doctoral Program of Higher Education of China (Grant Nos. 20120101110031 and 20120101110054).

  3. High Energy Boundary Conditions for a Cartesian Mesh Euler Solver

    NASA Technical Reports Server (NTRS)

    Pandya, Shishir A.; Murman, Scott M.; Aftosmis, Michael J.

    2004-01-01

    Inlets and exhaust nozzles are often omitted or fared over in aerodynamic simulations of aircraft due to the complexities involving in the modeling of engine details such as complex geometry and flow physics. However, the assumption is often improper as inlet or plume flows have a substantial effect on vehicle aerodynamics. A tool for specifying inlet and exhaust plume conditions through the use of high-energy boundary conditions in an established inviscid flow solver is presented. The effects of the plume on the flow fields near the inlet and plume are discussed.

  4. Highly bright broadband red light produced by fluorescence polymer/InGaN hybrid light-emitting diodes.

    PubMed

    Lai, Chun-Feng; Chang, Chi-Jung; Hsieh, Cheng-Liang; Chen, Yung-Lin; Tuan, Chi-Shen

    2013-10-15

    The fabrication of fluorescence polymer/InGaN hybrid light-emitting diodes (LEDs) that emit highly bright broadband red light is presented in this Letter. The absorption peak of the fluorescence polymer was 455 nm, and the emission peak was 640 nm. The light output power and external quantum efficiency of hybrid LEDs at a driving current of 100 mA were 46.6 mW and 24.1%, respectively. The emission spectrum of hybrid LEDs was located at a wavelength of 641 nm, with a broadband FWHM of 106 nm. Thus this study offers potential methods for enhancing the output power of commercial white-light-emitting devices.

  5. Ultra-High Speed Fabrication of TiO2 Photoanode by Flash Light for Dye-Sensitized Solar Cell.

    PubMed

    Hwang, Hyun-Jun; Kim, Hak-Sung

    2015-07-01

    In this work, a new way to fabricate nanoporous TiO2 photoanode by flash light is demonstrated. TiO2 nanoparticles are sintered on FTO glass by flash light irradiation at room temperature in ambient condition, which is dramatically simple, ultrahigh speed and one-shot large area fabrication process compared to a conventional high temperature (120 °C) thermal sintering process. The effect of the flash light conditions (flash light energy, pulse numbers and pulse duration) on the nanostructures of sintered TiO2 layer, was studied and discussed using several microscopic and spectroscopic characterization techniques such as SEM, FT-IR, XRD and XPS. The sintered TiO2 photoanodes by flash light were used in DSSC and its performance were compared with that of DSSC fabricated by conventional thermal sintering process. It was found that a flash light sintered TiO2 photoanode has efficiency which is similar to that of the thermal sintered photoanode. It is expected that the newly developed flash light sintering technique of TiO2 nanoparticles would be a strong alternative to realize the room temperature and in-situ sintering of photoanode fabrication for outdoor solar cell fabrication.

  6. Second user workshop on high-power lasers at the Linac Coherent Light Source

    DOE PAGES

    Heimann, Phil; Glenzer, Siegfried

    2015-05-28

    The second international workshop on the physics enabled by the unique combination of high-power lasers with the world-class Linac Coherent Light Source (LCLS) free-electron X-ray laser beam was held in Stanford, CA, on October 7–8, 2014. The workshop was co-organized by UC Berkeley, Lawrence Berkeley, Lawrence Livermore, and SLAC National Accelerator Laboratories. More than 120 scientists, including 40 students and postdoctoral scientists who are working in high-intensity laser-matter interactions, fusion research, and dynamic high-pressure science came together from North America, Europe, and Asia. The focus of the second workshop was on scientific highlights and the lessons learned from 16 newmore » experiments that were performed on the Matter in Extreme Conditions (MEC) instrument since the first workshop was held one year ago.« less

  7. Third user workshop on high-power lasers at the Linac Coherent Light Source

    SciTech Connect

    Bolme, Cynthia Anne; Glenzer, Sigfried; Fry, Alan

    2016-03-24

    On October 5–6, 2015, the third international user workshop focusing on high-power lasers at the Linac Coherent Light Source (LCLS) was held in Menlo Park, CA, USA [1 R. Falcone, S. Glenzer, and S. Hau-Riege, Synchrotron Radiation News 27(2), 56–58 (2014)., 2 P. Heimann and S. Glenzer, Synchrotron Radiation News 28(3), 54–56 (2015).]. Here, the workshop was co-organized by Los Alamos National Laboratory and SLAC National Accelerator Laboratory. More than 110 scientists attended from North America, Europe, and Asia to discuss high-energy-density (HED) science that is enabled by the unique combination of high-power lasers with the LCLS X-rays at the LCLS-Matter in Extreme Conditions (MEC) endstation.

  8. Third user workshop on high-power lasers at the Linac Coherent Light Source

    DOE PAGES

    Bolme, Cynthia Anne; Glenzer, Sigfried; Fry, Alan

    2016-03-24

    On October 5–6, 2015, the third international user workshop focusing on high-power lasers at the Linac Coherent Light Source (LCLS) was held in Menlo Park, CA, USA [1 R. Falcone, S. Glenzer, and S. Hau-Riege, Synchrotron Radiation News 27(2), 56–58 (2014)., 2 P. Heimann and S. Glenzer, Synchrotron Radiation News 28(3), 54–56 (2015).]. Here, the workshop was co-organized by Los Alamos National Laboratory and SLAC National Accelerator Laboratory. More than 110 scientists attended from North America, Europe, and Asia to discuss high-energy-density (HED) science that is enabled by the unique combination of high-power lasers with the LCLS X-rays at themore » LCLS-Matter in Extreme Conditions (MEC) endstation.« less

  9. Dimming-discrete-multi-tone (DMT) for simultaneous color control and high speed visible light communication.

    PubMed

    Sung, Jiun-Yu; Chow, Chi-Wai; Yeh, Chien-Hung

    2014-04-07

    Visible light communication (VLC) using LEDs has attracted significant attention recently for the future secure, license-free and electromagnetic-interference (EMI)-free optical wireless communication. Dimming technique in LED lamp is advantageous for energy efficiency. Color control can be performed in the red-green-blue (RGB) LEDs by using dimming technique. It is highly desirable to employ dimming technique to provide simultaneous color and dimming control and high speed VLC. Here, we proposed and demonstrated a LED dimming control using dimming-discrete-multi-tone (DMT) modulation. High speed DMT-based VLC with simultaneous color and dimming control is demonstrated for the first time to the best of our knowledge. Demonstration and analyses for several modulation conditions and transmission distances are performed, for instance, demonstrating the data rate of 103.5 Mb/s (using RGB LED) with fast Fourier transform (FFT) size of 512.

  10. A method and technique for installing light-weight fragile, high-temperature fiber insulation

    NASA Technical Reports Server (NTRS)

    Ballantine, T. J. (Inventor)

    1982-01-01

    A method of installing fragile, light-weight, high-temperature fiber insulation, particularly where the insulation is to be used as a seal strip providing a high order of thermal barrier insulation is described. The process is based on provision of a strip of the mineral batting cut oversize by a predetermined amount, saturated in a fugitive polymer solution, compressed in a mold, dried and cured to form a rigidized batting material which may be machined to required shape. The machined dimensions would normally be at least nominally less than the dimensions of the cavity to be sealed. After insertion in the cavity, which may be a wire-mesh seal enclosure, the apparatus is subjected to baking at a temperature sufficiently high to cause the resin to burn off cleanly, leaving the batting substantially in its original condition and expanded into the cavity or seal enclosure.

  11. Method and technique for installing light-weight, fragile, high-temperature fiber insulation

    NASA Technical Reports Server (NTRS)

    Patel, B. C. (Inventor)

    1983-01-01

    A method of installing fragile, light weight, high temperature fiber insulation, particularly where the insulation is to be used as a seal strip providing a high order of thermal barrier insulation is discussed. The process is based on provision of a strip of the mineral batting cut oversize by a predetermined amount, saturated in a fugitive polymer solution, compressed in a mold, dried and cured to form a rigidized batting material which is machined to required shape. The machine dimensions would normally be at least nominally less than the dimensions of the cavity to be sealed. After insertion in the cavity, which may be a wire-mesh seal enclosure, the apparatus is subjected to baking at a temperature sufficiently high to cause the resin to burn off cleanly, leaving the batting substantially in its original condition and expanded into the cavity or seal enclosure.

  12. Second user workshop on high-power lasers at the Linac Coherent Light Source

    SciTech Connect

    Heimann, Phil; Glenzer, Siegfried

    2015-05-28

    The second international workshop on the physics enabled by the unique combination of high-power lasers with the world-class Linac Coherent Light Source (LCLS) free-electron X-ray laser beam was held in Stanford, CA, on October 7–8, 2014. The workshop was co-organized by UC Berkeley, Lawrence Berkeley, Lawrence Livermore, and SLAC National Accelerator Laboratories. More than 120 scientists, including 40 students and postdoctoral scientists who are working in high-intensity laser-matter interactions, fusion research, and dynamic high-pressure science came together from North America, Europe, and Asia. The focus of the second workshop was on scientific highlights and the lessons learned from 16 new experiments that were performed on the Matter in Extreme Conditions (MEC) instrument since the first workshop was held one year ago.

  13. Hot Dust Obscured Galaxies with Excess Blue Light: Dual AGN or Single AGN Under Extreme Conditions?

    NASA Astrophysics Data System (ADS)

    Assef, R. J.; Walton, D. J.; Brightman, M.; Stern, D.; Alexander, D.; Bauer, F.; Blain, A. W.; Diaz-Santos, T.; Eisenhardt, P. R. M.; Finkelstein, S. L.; Hickox, R. C.; Tsai, C.-W.; Wu, J. W.

    2016-03-01

    Hot dust-obscured galaxies (Hot DOGs) are a population of hyper-luminous infrared galaxies identified by the Wide-field Infrared Survey Explorer (WISE) mission from their very red mid-IR colors, and characterized by hot dust temperatures (T > 60 K). Several studies have shown clear evidence that the IR emission in these objects is powered by a highly dust-obscured active galactic nucleus (AGN) that shows close to Compton-thick absorption at X-ray wavelengths. Thanks to the high AGN obscuration, the host galaxy is easily observable, and has UV/optical colors usually consistent with those of a normal galaxy. Here we discuss a sub-population of eight Hot DOGs that show enhanced rest-frame UV/optical emission. We discuss three scenarios that might explain the excess UV emission: (i) unobscured light leaked from the AGN by reflection over the dust or by partial coverage of the accretion disk; (ii) a second unobscured AGN in the system; or (iii) a luminous young starburst. X-ray observations can help discriminate between these scenarios. We study in detail the blue excess Hot DOG WISE J020446.13-050640.8, which was serendipitously observed by Chandra/ACIS-I for 174.5 ks. The X-ray spectrum is consistent with a single, hyper-luminous, highly absorbed AGN, and is strongly inconsistent with the presence of a secondary unobscured AGN. Based on this, we argue that the excess blue emission in this object is most likely either due to reflection or a co-eval starburst. We favor the reflection scenario as the unobscured star formation rate needed to power the UV/optical emission would be ≳1000 M⊙ yr-1. Deep polarimetry observations could confirm the reflection hypothesis.

  14. HOT DUST OBSCURED GALAXIES WITH EXCESS BLUE LIGHT: DUAL AGN OR SINGLE AGN UNDER EXTREME CONDITIONS?

    SciTech Connect

    Assef, R. J.; Diaz-Santos, T.; Walton, D. J.; Brightman, M.; Stern, D.; Eisenhardt, P. R. M.; Tsai, C.-W.; Alexander, D.; Bauer, F.; Blain, A. W.; Finkelstein, S. L.; Hickox, R. C.; Wu, J. W.

    2016-03-10

    Hot dust-obscured galaxies (Hot DOGs) are a population of hyper-luminous infrared galaxies identified by the Wide-field Infrared Survey Explorer (WISE) mission from their very red mid-IR colors, and characterized by hot dust temperatures (T > 60 K). Several studies have shown clear evidence that the IR emission in these objects is powered by a highly dust-obscured active galactic nucleus (AGN) that shows close to Compton-thick absorption at X-ray wavelengths. Thanks to the high AGN obscuration, the host galaxy is easily observable, and has UV/optical colors usually consistent with those of a normal galaxy. Here we discuss a sub-population of eight Hot DOGs that show enhanced rest-frame UV/optical emission. We discuss three scenarios that might explain the excess UV emission: (i) unobscured light leaked from the AGN by reflection over the dust or by partial coverage of the accretion disk; (ii) a second unobscured AGN in the system; or (iii) a luminous young starburst. X-ray observations can help discriminate between these scenarios. We study in detail the blue excess Hot DOG WISE J020446.13–050640.8, which was serendipitously observed by Chandra/ACIS-I for 174.5 ks. The X-ray spectrum is consistent with a single, hyper-luminous, highly absorbed AGN, and is strongly inconsistent with the presence of a secondary unobscured AGN. Based on this, we argue that the excess blue emission in this object is most likely either due to reflection or a co-eval starburst. We favor the reflection scenario as the unobscured star formation rate needed to power the UV/optical emission would be ≳1000 M{sub ⊙} yr{sup −1}. Deep polarimetry observations could confirm the reflection hypothesis.

  15. Low Voltage High Precision Spatial Light ModulatorsFinal Report

    SciTech Connect

    Papavasiliou, A P

    2005-02-09

    The goal of this project was to make LLNL a leader in Spatial Light Modulators (SLMs) by developing the technology that will be needed by the next generation of SLMs. We would use new lower voltage actuators and bond those actuators directly to controlling circuitry to break the fundamental limitations that constrain current SLM technology. This three-year project was underfunded in the first year and not funded in the second year. With the funding that was available, we produced actuators and designs for the controlling circuitry that would have been integrated in the second year. Spatial light modulators (SLMs) are arrays of tiny movable mirrors that modulate the wave-fronts of light. SLMs can correct aberrations in incoming light for adaptive optics or modulate light for beam control, optical communication and particle manipulation. MicroElectroMechanical Systems (MEMS) is a technology that utilizes the microfabrication tools developed by the semiconductor industry to fabricate a wide variety of tiny machines. The first generation of MEMS SLMs have improved the functionality of SLMs while drastically reducing per pixel cost making arrays on the order of 1000 pixels readily available. These MEMS SLMs however are limited by the nature of their designs to be very difficult to scale above 1000 pixels and have very limited positioning accuracy. By co-locating the MEMS mirrors with CMOS electronics, we will increase the scalability and positioning accuracy. To do this we will have to make substantial advances in SLM actuator design, and fabrication.

  16. Photosynthetic traits of Siebold's beech seedlings in changing light conditions by removal of shading trees under elevated CO₂.

    PubMed

    Watanabe, M; Kitaoka, S; Eguchi, N; Watanabe, Y; Satomura, T; Takagi, K; Satoh, F; Koike, T

    2016-01-01

    The purpose of this study was to obtain basic information on acclimation capacity of photosynthesis in Siebold's beech seedlings to increasing light intensity under future elevated CO2 conditions. We monitored leaf photosynthetic traits of these seedlings in changing light conditions (before removal of shade trees, the year after removal of shade trees and after acclimation to open conditions) in a 10-year free air CO2 enrichment experiment in northern Japan. Elevated CO2 did not affect photosynthetic traits such as leaf mass per area, nitrogen content and biochemical photosynthetic capacity of chloroplasts (i.e. maximum rate of carboxylation and maximum rate of electron transport) before removal of the shade trees and after acclimation to open conditions; in fact, a higher net photosynthetic rate was maintained under elevated CO2 . However, in the year after removal of the shade trees, there was no increase in photosynthesis rate under elevated CO2 conditions. This was not due to photoinhibition. In ambient CO2 conditions, leaf mass per area and nitrogen content were higher in the year after removal of shade trees than before, whereas there was no increase under elevated CO2 conditions. These results indicate that elevated CO2 delays the acclimation of photosynthetic traits of Siebold's beech seedlings to increasing light intensity.

  17. Long-term adaptive response to high-frequency light signals in the unicellular photosynthetic eukaryote Dunaliella salina.

    PubMed

    Combe, Charlotte; Hartmann, Philipp; Rabouille, Sophie; Talec, Amelie; Bernard, Olivier; Sciandra, Antoine

    2015-06-01

    Productivity of microalgal cultivation processes is tightly related to photosynthetic efficiency, and therefore to light availability at the cell scale. In an agitated, highly turbid suspension,the light signal received by a single phytoplankton cell moving in a dense culture is a succession of flashes. The growth characteristics of microalgae under such dynamic light conditions are thus fundamental information to understand nonlinear properties of the photosynthetic process and to improve cultivation process design and operation. Studies of the long term consequences of dynamic illumination regime on photosynthesis require a very specific experimental set-up where fast varying signals are applied on the long term. In order to investigate the growth response of the unicellular photosynthetic eukaryote Dunaliella salina (Chlorophyceae) to intermittent light exposure, different light regimes using LEDs with the same average total light dose were applied in continuous cultures. Flashing light with different durations of light flashes (△t of 30 s, 15 s, 2 s and 0.1 s) followed by dark periods of variable length (0.67 ≤ L:D ≤ 2) yielding flash frequencies in the range 0.017-5 Hz, were compared to continuous illumination. Specific growth rate, photosynthetic pigments, lipid productivity and elemental composition were measured on two duplicates for each irradiance condition. The different treatments of intermittent light led to specific growth rates ranging from 0.25 to 0.93 day(-1) . While photosynthetic efficiency was enhanced with increased flash frequency, no significant differences were observed in the particular carbon and chlorophyll content. Pigment analysis showed that within this range of flash frequency, cells progressively photoacclimated to the average light intensity.

  18. Effects of carbon source and light intensity on the growth and total lipid production of three microalgae under different culture conditions.

    PubMed

    Gim, Geun Ho; Ryu, Jaewon; Kim, Moon Jong; Kim, Pyung Il; Kim, Si Wouk

    2016-05-01

    We attempted to enhance the growth and total lipid production of three microalgal species, Isochrysis galbana LB987, Nannochloropsis oculata CCAP849/1, and Dunaliella salina, which are capable of accumulating high content of lipid in cells. Low nitrogen concentration under photoautotrophic conditions stimulated total lipid production, but a decreasing total lipid content and an increasing biomass were observed with increasing nitrogen concentration. Among the different carbon sources tested for heterotrophic cultivation, glucose improved the growth of all three strains. The optimal glucose concentration for growth of I. galbana LB987 and N. oculata CCAP849/1 was 0.02 M, and that of D. salina was 0.05 M. Enhanced growth occurred when they were cultivated under heterotrophic or mixotrophic conditions compared with photoautotrophic conditions. Meanwhile, high total lipid accumulation in cells occurred when they were cultivated under photoautotrophic or mixotrophic conditions. During mixotrophic cultivation, biomass production was not affected significantly by light intensity; however, both chlorophyll concentration and total lipid content increased dramatically with increasing light intensity up to 150 µmol/m(2)/s. The amount and composition ratio of saturated and unsaturated fatty acids in cells were different from each other depending on both species and light intensity. The highest accumulation of total fatty acid (C16-C18) among the three strains was found from cells of N. oculata CCAP849/1, which indicates that this species can be used as a source for production of biodiesel.

  19. Unidirectional light scattering with high efficiency at optical frequencies based on low-loss dielectric nanoantennas

    NASA Astrophysics Data System (ADS)

    Shibanuma, Toshihiko; Albella, Pablo; Maier, Stefan A.

    2016-07-01

    Dielectric nanoparticles offer low optical losses and access to both electric and magnetic Mie resonances. This enables unidirectional scattering along the incident axis of light, owing to the interference between these two resonances. Here we theoretically and experimentally demonstrate that an asymmetric dimer of dielectric nanoparticles can provide unidirectional forward scattering with high efficiency. Theoretical analyses reveal that the dimer configuration can satisfy the first Kerker condition at the resonant peaks of electric and magnetic dipolar modes, therefore showing highly efficient directional forward scattering. The unidirectional forward scattering with high efficiency is confirmed in our experiments using a silicon nanodisk dimer on a transparent substrate. This study will boost the realization of practical applications using low-loss and efficient subwavelength all-dielectric nanoantennas.Dielectric nanoparticles offer low optical losses and access to both electric and magnetic Mie resonances. This enables unidirectional scattering along the incident axis of light, owing to the interference between these two resonances. Here we theoretically and experimentally demonstrate that an asymmetric dimer of dielectric nanoparticles can provide unidirectional forward scattering with high efficiency. Theoretical analyses reveal that the dimer configuration can satisfy the first Kerker condition at the resonant peaks of electric and magnetic dipolar modes, therefore showing highly efficient directional forward scattering. The unidirectional forward scattering with high efficiency is confirmed in our experiments using a silicon nanodisk dimer on a transparent substrate. This study will boost the realization of practical applications using low-loss and efficient subwavelength all-dielectric nanoantennas. Data availability. The data that support the findings of this study are available from the corresponding authors on request (E-mail: datainquiryEXSS@imperial.ac.uk).

  20. Rhythm of carbon and nitrogen fixation in unicellular cyanobacteria under turbulent and highly aerobic conditions.

    PubMed

    Krishnakumar, S; Gaudana, Sandeep B; Viswanathan, Ganesh A; Pakrasi, Himadri B; Wangikar, Pramod P

    2013-09-01

    Nitrogen fixing cyanobacteria are being increasingly explored for nitrogenase-dependent hydrogen production. Commercial success however will depend on the ability to grow these cultures at high cell densities. Photo-limitation at high cell densities leads to hindered photoautotrophic growth while turbulent conditions, which simulate flashing light effect, can lead to oxygen toxicity to the nitrogenase enzyme. Cyanothece sp. strain ATCC 51142, a known hydrogen producer, is reported to grow and fix nitrogen under moderately oxic conditions in shake flasks. In this study, we explore the growth and nitrogen fixing potential of this organism under turbulent conditions with volumetric oxygen mass transfer coefficient (KL a) values that are up to 20-times greater than in shake flasks. In a stirred vessel, the organism grows well in turbulent regime possibly due to a simulated flashing light effect with optimal growth at Reynolds number of approximately 35,000. A respiratory burst lasting for about 4 h creates anoxic conditions intracellularly with near saturating levels of dissolved oxygen in the extracellular medium. This is concomitant with complete exhaustion of intracellular glycogen storage and upregulation of nifH and nifX, the genes encoding proteins of the nitrogenase complex. Further, the rhythmic oscillations in exhaust gas CO2 and O2 profiles synchronize faithfully with those in biochemical parameters and gene expression thereby serving as an effective online monitoring tool. These results will have important implications in potential commercial success of nitrogenase-dependent hydrogen production by cyanobacteria.

  1. Is Ambient Light during the High Arctic Polar Night Sufficient to Act as a Visual Cue for Zooplankton?

    PubMed Central

    Cohen, Jonathan H.; Berge, Jørgen; Moline, Mark A.; Sørensen, Asgeir J.; Last, Kim; Falk-Petersen, Stig; Renaud, Paul E.; Leu, Eva S.; Grenvald, Julie; Cottier, Finlo; Cronin, Heather; Menze, Sebastian; Norgren, Petter; Varpe, Øystein; Daase, Malin; Darnis, Gerald; Johnsen, Geir

    2015-01-01

    The light regime is an ecologically important factor in pelagic habitats, influencing a range of biological processes. However, the availability and importance of light to these processes in high Arctic zooplankton communities during periods of 'complete' darkness (polar night) are poorly studied. Here we characterized the ambient light regime throughout the diel cycle during the high Arctic polar night, and ask whether visual systems of Arctic zooplankton can detect the low levels of irradiance available at this time. To this end, light measurements with a purpose-built irradiance sensor and coupled all-sky digital photographs were used to characterize diel skylight irradiance patterns over 24 hours at 79°N in January 2014 and 2015. Subsequent skylight spectral irradiance and in-water optical property measurements were used to model the underwater light field as a function of depth, which was then weighted by the electrophysiologically determined visual spectral sensitivity of a dominant high Arctic zooplankter, Thysanoessa inermis. Irradiance in air ranged between 1–1.5 x 10-5 μmol photons m-2 s-1 (400–700 nm) in clear weather conditions at noon and with the moon below the horizon, hence values reflect only solar illumination. Radiative transfer modelling generated underwater light fields with peak transmission at blue-green wavelengths, with a 465 nm transmission maximum in shallow water shifting to 485 nm with depth. To the eye of a zooplankter, light from the surface to 75 m exhibits a maximum at 485 nm, with longer wavelengths (>600 nm) being of little visual significance. Our data are the first quantitative characterisation, including absolute intensities, spectral composition and photoperiod of biologically relevant solar ambient light in the high Arctic during the polar night, and indicate that some species of Arctic zooplankton are able to detect and utilize ambient light down to 20–30m depth during the Arctic polar night. PMID:26039111

  2. Is Ambient Light during the High Arctic Polar Night Sufficient to Act as a Visual Cue for Zooplankton?

    PubMed

    Cohen, Jonathan H; Berge, Jørgen; Moline, Mark A; Sørensen, Asgeir J; Last, Kim; Falk-Petersen, Stig; Renaud, Paul E; Leu, Eva S; Grenvald, Julie; Cottier, Finlo; Cronin, Heather; Menze, Sebastian; Norgren, Petter; Varpe, Øystein; Daase, Malin; Darnis, Gerald; Johnsen, Geir

    2015-01-01

    The light regime is an ecologically important factor in pelagic habitats, influencing a range of biological processes. However, the availability and importance of light to these processes in high Arctic zooplankton communities during periods of 'complete' darkness (polar night) are poorly studied. Here we characterized the ambient light regime throughout the diel cycle during the high Arctic polar night, and ask whether visual systems of Arctic zooplankton can detect the low levels of irradiance available at this time. To this end, light measurements with a purpose-built irradiance sensor and coupled all-sky digital photographs were used to characterize diel skylight irradiance patterns over 24 hours at 79°N in January 2014 and 2015. Subsequent skylight spectral irradiance and in-water optical property measurements were used to model the underwater light field as a function of depth, which was then weighted by the electrophysiologically determined visual spectral sensitivity of a dominant high Arctic zooplankter, Thysanoessa inermis. Irradiance in air ranged between 1-1.5 x 10-5 μmol photons m-2 s-1 (400-700 nm) in clear weather conditions at noon and with the moon below the horizon, hence values reflect only solar illumination. Radiative transfer modelling generated underwater light fields with peak transmission at blue-green wavelengths, with a 465 nm transmission maximum in shallow water shifting to 485 nm with depth. To the eye of a zooplankter, light from the surface to 75 m exhibits a maximum at 485 nm, with longer wavelengths (>600 nm) being of little visual significance. Our data are the first quantitative characterisation, including absolute intensities, spectral composition and photoperiod of biologically relevant solar ambient light in the high Arctic during the polar night, and indicate that some species of Arctic zooplankton are able to detect and utilize ambient light down to 20-30m depth during the Arctic polar night.

  3. Arabidopsis ROOT PHOTOTROPISM2 Contributes to the Adaptation to High-Intensity Light in Phototropic Responses.

    PubMed

    Haga, Ken; Tsuchida-Mayama, Tomoko; Yamada, Mizuki; Sakai, Tatsuya

    2015-04-01

    Living organisms adapt to changing light environments via mechanisms that enhance photosensitivity under darkness and attenuate photosensitivity under bright light conditions. In hypocotyl phototropism, phototropin1 (phot1) blue light photoreceptors mediate both the pulse light-induced, first positive phototropism and the continuous light-induced, second positive phototropism, suggesting the existence of a mechanism that alters their photosensitivity. Here, we show that light induction of ROOT PHOTOTROPISM2 (RPT2) underlies photosensory adaptation in hypocotyl phototropism of Arabidopsis thaliana. rpt2 loss-of-function mutants exhibited increased photosensitivity to very low fluence blue light but were insensitive to low fluence blue light. Expression of RPT2 prior to phototropic stimulation in etiolated seedlings reduced photosensitivity during first positive phototropism and accelerated second positive phototropism. Our microscopy and biochemical analyses indicated that blue light irradiation causes dephosphorylation of NONPHOTOTROPIC HYPOCOTYL3 (NPH3) proteins and mediates their release from the plasma membrane. These phenomena correlate closely with the desensitization of phot1 signaling during the transition period from first positive phototropism to second positive phototropism. RPT2 modulated the phosphorylation of NPH3 and promoted reconstruction of the phot1-NPH3 complex on the plasma membrane. We conclude that photosensitivity is increased in the absence of RPT2 and that this results in the desensitization of phot1. Light-mediated induction of RPT2 then reduces the photosensitivity of phot1, which is required for second positive phototropism under bright light conditions.

  4. Synergistic bactericidal activity of Ag-TiO₂ nanoparticles in both light and dark conditions.

    PubMed

    Li, Minghua; Noriega-Trevino, Maria Eugenia; Nino-Martinez, Nereyda; Marambio-Jones, Catalina; Wang, Jinwen; Damoiseaux, Robert; Ruiz, Facundo; Hoek, Eric M V

    2011-10-15

    High-throughput screening was employed to evaluate bactericidal activities of hybrid Ag-TiO₂ nanoparticles comprising variations in TiO₂ crystalline phase, Ag content, and synthesis method. Hybrid Ag-TiO₂ nanoparticles were prepared by either wet-impregnation or UV photo deposition onto both Degussa P25 and DuPont R902 TiO₂ nanoparticles. The presence of Ag was confirmed by ICP, TEM, and XRD analysis. The size of Ag nanoparticles formed on anatase/rutile P25 TiO₂ nanoparticles was smaller than those formed on pure rutile R902. When activated by UV light, all hybrid Ag-TiO₂ nanoparticles exhibited stronger bactericidal activity than UV alone, Ag/UV, or UV/TiO₂. For experiments conducted in the dark, bactericidal activity of Ag-TiO₂ nanoparticles was greater than either bare TiO₂ (inert) or pure Ag nanoparticles, suggesting that the hybrid materials produced a synergistic antibacterial effect unrelated to photoactivity. Moreover, less Ag(+) dissolved from Ag-TiO₂ nanoparticles than from Ag nanoparticles, indicating the antibacterial activities of Ag-TiO₂ was not only caused by releasing of toxic metal ions. It is clear that nanotechnology can produce more effective bactericides; however, the challenge remains to identify practical ways to take advantage of these exciting new material properties.

  5. Coping with low light under high atmospheric dryness: shade acclimation in a Mediterranean conifer (Abies pinsapo Boiss.).

    PubMed

    Sancho-Knapik, Domingo; Peguero-Pina, José Javier; Flexas, Jaume; Herbette, Stéphane; Cochard, Hervé; Niinemets, Ülo; Gil-Pelegrín, Eustaquio

    2014-12-01

    Plant species living in the understory increase carbon (C) allocation toward leaf production for maximizing light capture at the expense of roots and stems, with negative consequences for the whole-plant hydraulic conductance. Moreover, under some conditions, the high atmospheric evaporative demand occurring in Mediterranean areas may be not well buffered by the canopy, which might be the case for relict conifer Abies pinsapo Boiss. growing in the forest understory. We hypothesized that acclimation to combined understory shade and high atmospheric dryness can be achieved through the adjustment of water losses to cope with the restriction in water transport. The results reveal high structural plasticity in A. pinsapo that allows light harvesting of this species to maximize light capture in the forest understory, and maintain a positive C balance under low light conditions. However, growth in the understory resulted in reduced leaf-specific conductivity, up to approximately four to five times, implying decreased plant capacity to supply water to the leaves. In order to cope with the high atmospheric evaporative demand in the understory, there is an adjustment of the stomatal conductance to the hydraulic conductivity by means of a reduction in the stomatal density in understory individuals, which is due to the almost complete lack of stomata in the adaxial side of the needles. To the extent of our knowledge, such a drastic phenotypic response found in a conifer when growing under shaded conditions had not been previously reported.

  6. Selecting Salient Features in High Feature to Exemplar Ratio Conditions

    DTIC Science & Technology

    2002-03-01

    We present an approach for identifying salient input features in high feature to exemplar ratio conditions. Basically we modify the SNR saliency...screening algorithm to improve the solution of the optimal salient feature subset problem. We propose that applying the SNR method to randomly selected...subsets (SRSS) has a superior potential to identify the salient features than the traditional SNR algorithm has. Two experimental studies are provided

  7. Prospects for High-Gain, High Yield NIF Targets Driven by 2ω (green) Light

    NASA Astrophysics Data System (ADS)

    Suter, Laurance

    2003-10-01

    For several years we have been exploring the possibility of using green (2w) light for indirect drive ignition on NIF. The rationale for this work is the possibility of extracting significantly more energy from NIF in green light, as compared to blue (3w) light, and driving far more energetic capsules than we originally envisioned when we started planning NIF in the early 1990's. This talk provides a comprehensive picture of the progress we have made exploring 2w for NIF ignition. First we describe the potential operating regime for NIF at 2w and how that can translate into a very large design space for exploring ignition target designs. We then present the results of several 2w ignition target design studies indicating that we can achieve adequate drive and symmetry with 2w and showing how we might capitalize on the large amount of energy available by electing to trade-off coupling efficiency for, say, better symmetry or plasma conditions. These simulations also define plasma conditions for ignition-relevant 2w laser-plasma interaction experiments that have been recently performed. We summarize the results of these experiments which indicate that 2w LPI is not very different from 3w. Finally, we show how recent experimental findings on mitigating 2w laser plasma interactions through reduced intensity and/or judicious choice of plasma composition can be incorporated into ignition target designs. This work performed under the auspices of the U. S. Department of Energy by the Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48. In collaboration with S. Glenzer, S. Haan, K. Manes, N. Meezan, J. Moody. M. Spaeth, LLNL; K. Oades, M. Stevenson AWE

  8. High light inhibits chlorophyll biosynthesis at the level of 5-aminolevulinate synthesis during de-etiolation in cucumber (Cucumis sativus) cotyledons.

    PubMed

    Aarti, D; Tanaka, R; Ito, H; Tanaka, A

    2007-01-01

    Using the vascular plant Cucumis sativus (cucumber) as a model, we studied the effects of high (intense and excess) light upon chlorophyll biosynthesis during de-etiolation. When illuminated with high light (1500-1600 microE/m2/s), etiolated cucumber cotyledons failed to synthesize chlorophyll entirely. However, upon transfer to low light conditions (40-45 microE/m2/s), chlorophyll biosynthesis and subsequent accumulation resumed following an initial 2-12 h delay. Duration of high light treatment negatively correlated with chlorophyll biosynthetic activity. Specifically, we found that high light severely inhibited 5-aminolevulinic acid (ALA) synthesis. This effect partly could be because of the decrease in protein level of glutamyl-tRNA reductase (GluTR) observed. Protein level of glutamate-1-semialdehyde (GSA-AT) remained unchanged. It was also found that high light did not suppress HEMA 1 expression. Therefore, we speculated that this significant inhibition of ALA synthesis might have occurred mainly because of concomitant inactivation of GluTR and/or inhibition of complex formation between GluTR and GSA-AT. Our further observation that both methyl viologen and rose bengal similarly inhibit ALA synthesis under low light conditions suggested that reactive oxygen species (ROS) could be responsible for the inhibition of ALA synthesis in cotyledons exposed to high light conditions.

  9. Atmospheric conditions during high ragweed pollen concentrations in Zagreb, Croatia

    NASA Astrophysics Data System (ADS)

    Prtenjak, Maja Telišman; Srnec, Lidija; Peternel, Renata; Madžarević, Valentina; Hrga, Ivana; Stjepanović, Barbara

    2012-11-01

    We examined the atmospheric conditions favourable to the occurrence of maximum concentrations of ragweed pollen with an extremely high risk of producing allergy. Over the 2002-2009 period, daily pollen data collected in Zagreb were used to identify two periods of high pollen concentration (> 600 grains/m3) for our analysis: period A (3-4 September 2002) and period B (6-7 September 2003). Synoptic conditions in both periods were very similar: Croatia was under the influence of a lower sector high pressure system moving slowly eastward over Eastern Europe. During the 2002-2009 period, this type of weather pattern (on ~ 70% of days), in conjunction with almost non-gradient surface pressure conditions in the area (on ~ 30% of days) characterised days when the daily pollen concentrations were higher than 400 grains/m3. Numerical experiments using a mesoscale model at fine resolution showed successful multi-day simulations reproducing the local topographic influence on wind flow and in reasonable agreement with available observations. According to the model, the relatively weak synoptic flow (predominantly from the eastern direction) allowed local thermal circulations to develop over Zagreb during both high pollen episodes. Two-hour pollen concentrations and 48-h back-trajectories indicated that regional-range transport of pollen grains from the central Pannonian Plain was the cause of the high pollen concentrations during period A. During period B, the north-westward regional-range transport in Zagreb was supplemented significantly by pronounced horizontal recirculation of pollen grains. This recirculation happened within the diurnal local circulation over the city, causing a late-evening increase in pollen concentration.

  10. Light absorption properties of brown carbon in the high Himalayas

    NASA Astrophysics Data System (ADS)

    Kirillova, Elena N.; Marinoni, Angela; Bonasoni, Paolo; Vuillermoz, Elisa; Facchini, Maria Cristina; Fuzzi, Sandro; Decesari, Stefano

    2016-08-01

    The light-absorbing properties of water-soluble brown carbon (WS-BrC) and methanol-soluble brown carbon (MeS-BrC) were studied in PM10 aerosols collected at the "Nepal Climate Observatory-Pyramid" (NCO-P) station (5079 m above sea level) during the period 2013-2014. The light absorption coefficients of WS-BrC and MeS-BrC were the highest during the premonsoon season and the lowest during monsoon. MeS-BrC absorbs about 2 times higher at 365 nm and about 3 times more at 550 nm compared to WS-BrC. The mass absorption cross section (MAC) of WS-BrC measured at 365 nm is similar to that observed previously at South Asian low-altitude sites. Fractional solar radiation absorption by BrC compared to BC considering the full solar spectrum showed that WS-BrC absorbs 4 ± 1% and MeS-BrC absorbs 9 ± 2% compared to BC at NCO-P. Such ratios become 8 ± 1% (for WS-BrC respect to BC) and 17 ± 5% (for MeS-BrC respect to BC) when accounting for correction factors proposed by previous studies to convert absorption coefficients in bulk solutions into light absorption by accumulation mode aerosol particles. These results confirm the importance of BrC in contributing to light-absorbing aerosols in this region of the world. However, the BrC absorption at 550 nm appears small compared to that of BC (1-5%, or 3-9% with conversion factors), and it is lower compared to global model estimates constrained by Aerosol Robotic Network observations. Finally, our study provides no clear evidence of a change in the fractional contribution of BrC with respect to BC to light absorption in the middle troposphere respect to the Indo-Gangetic plain boundary layer.

  11. Ice Fog and Light Snow Measurements Using a High-Resolution Camera System

    NASA Astrophysics Data System (ADS)

    Kuhn, Thomas; Gultepe, Ismail

    2016-09-01

    Ice fog, diamond dust, and light snow usually form over extremely cold weather conditions, and they affect both visibility and Earth's radiative energy budget. Prediction of these hydrometeors using models is difficult because of limited knowledge of the microphysical properties at the small size ranges due to measurement issues. These phenomena need to be better represented in forecast and climate models; therefore, in addition to remote sensing accurate measurements using ground-based instrumentation are required. An imaging instrument, aimed at measuring ice fog and light snow particles, has been built and is presented here. The ice crystal imaging (ICI) probe samples ice particles into a vertical, tapered inlet with an inlet flow rate of 11 L min-1. A laser beam across the vertical air flow containing the ice crystals allows for their detection by a photodetector collecting the scattered light. Detected particles are then imaged with high optical resolution. An illuminating LED flash and image capturing are triggered by the photodetector. In this work, ICI measurements collected during the fog remote sensing and modeling (FRAM) project, which took place during Winter of 2010-2011 in Yellowknife, NWT, Canada, are summarized and challenges related to measuring small ice particles are described. The majority of ice particles during the 2-month-long campaign had sizes between 300 and 800 μm. During ice fog events the size distribution measured had a lower mode diameter of 300 μm compared to the overall campaign average with mode at 500 μm.

  12. Highly efficient blue organic light emitting devices with indium-free transparent anode on flexible substrates

    SciTech Connect

    Wang, Liang; Swensen, James S.; Polikarpov, Evgueni; Matson, Dean W.; Bonham, Charles C.; Bennett, Wendy D.; Gaspar, Daniel J.; Padmaperuma, Asanga B.

    2010-09-30

    Indium-free transparent conducting oxides may provide a lower cost solution for the transparent anode in flexible displays and energy efficient solid state lighting. We report herein a near room temperature sputtering process for generating an indium-free transparent conductive oxide (TCO) coating on a flexible substrate. Specifically, we deposited gallium-doped zinc oxide (GZO) uniformly over a 12” diameter area at room temperature on polyethylene terephthalate (PET). During deposition, the system heats to about 60oC due to the energetic sputtering conditions, without any noticeable damage to the PET substrate. The GZO films exhibit excellent physical, optical and electrical properties: roughness ~7 nm, transmittance >85% and resistivity ~ 10-3 ohm• cm. Phosphorescent blue organic light-emitting devices (OLEDs) were fabricated on these substrates with comparable performance (16% external quantum efficiency and 33 lm/W power efficiency at 1mA/cm2) to that of devices fabricated on GZO (or ITO) deposited on glass substrates, suggesting flexible GZO/PET substrates may be used instead of high-cost and rigid ITO and glass for flexible displays and solid state lighting.

  13. Light-Emitting Diodes with Hierarchical and Multifunctional Surface Structures for High Light Extraction and an Antifouling Effect.

    PubMed

    Leem, Young-Chul; Park, Jung Su; Kim, Joon Heon; Myoung, NoSoung; Yim, Sang-Youp; Jeong, Sehee; Lim, Wantae; Kim, Sung-Tae; Park, Seong-Ju

    2016-01-13

    Bioinspired hierarchical structures on the surface of vertical light-emitting diodes (VLEDs) are demonstrated by combining a self-assembled dip-coating process and nanopatterning transfer method using thermal release tape. This versatile surface structure can efficiently reduce the total internal reflection and add functions, such as superhydrophobicity and high oleophobicity, to achieve an antifouling effect for VLEDs.

  14. Defining the light emitting area for displays in the unipolar regime of highly efficient light emitting transistors

    PubMed Central

    Ullah, Mujeeb; Armin, Ardalan; Tandy, Kristen; Yambem, Soniya D.; Burn, Paul L.; Meredith, Paul; Namdas, Ebinazar B.

    2015-01-01

    Light-emitting field effect transistors (LEFETs) are an emerging class of multifunctional optoelectronic devices. It combines the light emitting function of an OLED with the switching function of a transistor in a single device architecture. The dual functionality of LEFETs has the potential applications in active matrix displays. However, the key problem of existing LEFETs thus far has been their low EQEs at high brightness, poor ON/OFF and poorly defined light emitting area - a thin emissive zone at the edge of the electrodes. Here we report heterostructure LEFETs based on solution processed unipolar charge transport and an emissive polymer that have an EQE of up to 1% at a brightness of 1350 cd/m2, ON/OFF ratio > 104 and a well-defined light emitting zone suitable for display pixel design. We show that a non-planar hole-injecting electrode combined with a semi-transparent electron-injecting electrode enables to achieve high EQE at high brightness and high ON/OFF ratio. Furthermore, we demonstrate that heterostructure LEFETs have a better frequency response (fcut-off = 2.6 kHz) compared to single layer LEFETs. The results presented here therefore are a major step along the pathway towards the realization of LEFETs for display applications. PMID:25743444

  15. Steady State Microbunching for High Brilliance and High Repetition Rate Storage Ring-Based Light Sources

    SciTech Connect

    Chao, Alex; Ratner, Daniel; Jiao, Yi; /Beijing, Inst. High Energy Phys.

    2012-09-06

    Electron-based light sources have proven to be effective sources of high brilliance, high frequency radiation. Such sources are typically either linac-Free Electron Laser (FEL) or storage ring types. The linac-FEL type has high brilliance (because the beam is microbunched) but low repetition rate. The storage ring type has high repetition rate (rapid beam circulation) but comparatively low brilliance or coherence. We propose to explore the feasibility of a microbunched beam in a storage ring that promises high repetition rate and high brilliance. The steady-state-micro-bunch (SSMB) beam in storage ring could provide CW sources for THz, EUV, or soft X-rays. Several SSMB mechanisms have been suggested recently, and in this report, we review a number of these SSMB concepts as promising directions for high brilliance, high repetition rate light sources of the future. The trick of SSMB lies in the RF system, together with the associated synchrotron beam dynamics, of the storage ring. Considering various different RF arrangements, there could be considered a number of scenarios of the SSMB. In this report, we arrange these scenarios more or less in order of the envisioned degree of technical challenge to the RF system, and not in the chronological order of their original references. Once the stored beam is steady-state microbunched in a storage ring, it passes through a radiator repeatedly every turn (or few turns). The radiator extracts a small fraction of the beam energy as coherent radiation with a wavelength corresponding to the microbunched period of the beam. In contrast to an FEL, this radiator is not needed to generate the microbunching (as required e.g. by SASE FELs or seeded FELs), so the radiator can be comparatively simple and short.

  16. High-resolution multigrating spectrometer for high-quality deep-UV light source production

    NASA Astrophysics Data System (ADS)

    Suzuki, Toru; Kubo, Hirokazu; Suganuma, Takashi; Yamashita, Toshio; Wakabayashi, Osamu; Mizoguchi, Hakaru

    2001-09-01

    Deep UV lithography using ArF excimer laser requires very narrower spectral properties. However, spectrometers that have sufficient resolution to evaluate the ArF excimer laser are commercially not available. High-resolution multi-grating spectrometers for measuring spectral bandwidth at full width at half maximum (FWHM) and spectral purity of ArF excimer lasers are introduced. To achieve high resolution, a special grating arrangement called HEXA (Holographic and Echelle Gratings Expander Arrangement) is designed. A holographic grating and an echelle grating are used so that the input light is expanded and diffracted several times. The resolution of the HEXA spectrometer is more than two million. To evaluate the resolution and the stability of the spectrometer, we measured the instrument function by a coherent light source whose wavelength is same as ArF excimer laser. The experimentally obtained resolution of the spectrometer is 0.09pm or 0.05pm that is selectable. The measured dispersion has a good agreement with the theoretical value. To evaluate the spectral properties of excimer lasers, the instrument function must be very stable. This high-resolution spectrometer enables high quality control of line-narrowed ArF excimer laser mass production.

  17. Adverse health effects of high-effort/low-reward conditions.

    PubMed

    Siegrist, J

    1996-01-01

    In addition to the person-environment fit model (J. R. French, R. D. Caplan, & R. V. Harrison, 1982) and the demand-control model (R. A. Karasek & T. Theorell, 1990), a third theoretical concept is proposed to assess adverse health effects of stressful experience at work: the effort-reward imbalance model. The focus of this model is on reciprocity of exchange in occupational life where high-cost/low-gain conditions are considered particularly stressful. Variables measuring low reward in terms of low status control (e.g., lack of promotion prospects, job insecurity) in association with high extrinsic (e.g., work pressure) or intrinsic (personal coping pattern, e.g., high need for control) effort independently predict new cardiovascular events in a prospective study on blue-collar men. Furthermore, these variables partly explain prevalence of cardiovascular risk factors (hypertension, atherogenic lipids) in 2 independent studies. Studying adverse health effects of high-effort/low-reward conditions seems well justified, especially in view of recent developments of the labor market.

  18. High Technology Centrifugal Compressor for Commercial Air Conditioning Systems

    SciTech Connect

    Ruckes, John

    2006-04-15

    R&D Dynamics, Bloomfield, CT in partnership with the State of Connecticut has been developing a high technology, oil-free, energy-efficient centrifugal compressor called CENVA for commercial air conditioning systems under a program funded by the US Department of Energy. The CENVA compressor applies the foil bearing technology used in all modern aircraft, civil and military, air conditioning systems. The CENVA compressor will enhance the efficiency of water and air cooled chillers, packaged roof top units, and other air conditioning systems by providing an 18% reduction in energy consumption in the unit capacity range of 25 to 350 tons of refrigeration The technical approach for CENVA involved the design and development of a high-speed, oil-free foil gas bearing-supported two-stage centrifugal compressor, CENVA encompassed the following high technologies, which are not currently utilized in commercial air conditioning systems: Foil gas bearings operating in HFC-134a; Efficient centrifugal impellers and diffusers; High speed motors and drives; and System integration of above technologies. Extensive design, development and testing efforts were carried out. Significant accomplishments achieved under this program are: (1) A total of 26 builds and over 200 tests were successfully completed with successively improved designs; (2) Use of foil gas bearings in refrigerant R134a was successfully proven; (3) A high speed, high power permanent magnet motor was developed; (4) An encoder was used for signal feedback between motor and controller. Due to temperature limitations of the encoder, the compressor could not operate at higher speed and in turn at higher pressure. In order to alleviate this problem a unique sensorless controller was developed; (5) This controller has successfully been tested as stand alone; however, it has not yet been integrated and tested as a system; (6) The compressor successfully operated at water cooled condensing temperatures Due to temperature

  19. High explosive violent reaction (HEVR) from slow heating conditions

    SciTech Connect

    Vigil, A.S.

    1999-03-01

    The high explosives (HEs) developed and used at the Los Alamos National Laboratory are designed to be insensitive to impact and thermal insults under all but the most extreme conditions. Nevertheless, violent reactions do occasionally occur when HE is involved in an accident. The HE response is closely dependent on the type of external stimulus that initiates the reaction. For example, fast heating of conventional HE will probably result in fairly benign burning, while long-term, slow heating of conventional HE is more likely to produce an HEVR that will do much more damage to the immediate surroundings. An HEVR (High Explosive Violent Reaction) can be defined as the rapid release of energy from an explosive that ranges from slightly faster than a deflagration (very rapid burning) to a reaction that approaches a detonation. A number of thermal analyses have been done to determine slow heat/cook-off conditions that produce HE self-heating that can build up to a catastrophic runaway reaction. The author specifies the conditions that control reaction violence, describes experiments that produced an HEVR, describes analyses done to determine a heating rate threshold for HEVR, and lists possible HEVR situations.

  20. Ultrafilter Conditions for High Level Waste Sludge Processing

    SciTech Connect

    Geeting, John GH; Hallen, Richard T.; Peterson, Reid A.

    2006-08-28

    An evaluation of the optimal filtration conditions was performed based on test data obtained from filtration of a High Level Waste Sludge sample from the Hanford tank farms. This evaluation was performed using the anticipated configuration for the Waste Treatment Plant at the Hanford site. Testing was performed to identify the optimal pressure drop and cross flow velocity for filtration at both high and low solids loading. However, this analysis indicates that the actual filtration rate achieved is relatively insensitive to these conditions under anticipated operating conditions. The maximum filter flux was obtained by adjusting the system control valve pressure from 400 to 650 kPa while the filter feed concentration increased from 5 to 20 wt%. However, operating the system with a constant control valve pressure drop of 500 kPa resulted in a less than 1% reduction in the average filter flux. Also note that allowing the control valve pressure to swing as much as +/- 20% resulted in less than a 5% decrease in filter flux.

  1. High-Latitude Ionospheric Dynamics During Conditions of Northward IMF

    NASA Technical Reports Server (NTRS)

    Sharber, J. R.

    1996-01-01

    In order to better understand the physical processes operating during conditions of northward interplanetary magnetic field (IMF), in situ measurements from the Dynamics Explorer-2 (low altitude) polar satellite and simultaneous observations from the auroral imager on the Dynamics Explorer-1 (high altitude) satellite were used to investigate the relationships between optical emissions, particle precipitation, and convective flows in the high-latitude ionosphere. Field aligned current and convective flow patterns during IMF north include polar cap arcs, the theta aurora or transpolar arc, and the 'horse-collar' aurora. The initial part of the study concentrated on the electrodynamics of auroral features in the horse-collar aurora, a contracted but thickened emission region in which the dawn and dusk portions can spread to very high latitudes, while the latter part focused on the evolution of one type of IMF north auroral pattern to another, specifically the quiet-time horse-collar pattern to a theta aurora.

  2. [Seedlings growth and survival of five Acacia (Fabaceae) species that coexists in neotropical semi-arid forests of Argentina, under different light and water availability conditions].

    PubMed

    Venier, Paula; Cabido, Marcelo; Mangeaud, Arnaldo; Funes, Guillermo

    2013-06-01

    Seedlings growth and survival of five Acacia (Fabaceae) species that coexists in neotropical semi-arid forests of Argentina, under different light and water availability conditions. Seedling establishment is one of the most risky stages of plants, especially in arid and semiarid regions, where low water availability and high solar radiation influence its emergence, development and survival. In seasonally dry xerophytic forests occurring in North-Western Córdoba, central Argentina, five neotropical species of Acacia co-exist: A. aroma, A. caven, A. atramentaria, A. gilliesii and A. praecox. With the aim to evaluate growth variables and survival of these five species seedlings, in response to water stress and different light availability conditions, a greenhouse experiment was undertaken from March to June of 2010. Although small differences were found between species (F = 5.66, p = 0.001), all of them showed high percentages of seedling survival in response to different light and water treatments, suggesting that seedlings would be tolerant to water stress and could be established both in light and shade. On the other hand, although all species showed an increase in growth in light conditions and without water stress, we have found some trends towards a greater growth in the seedlings ofA. aroma, A. caven and A. atramentaria when compared to those of A. praecox and A. gilliessi in most of the variables considered (F = 41.9, p < 0.0001; F = 7.06, p < 0.0001; F = 53.59, p < 0.0001). This pattern was confirmed through a cluster analysis that classified the species in two main groups. These results, together with others already reported, would indicate a regenerative niche differentiation that might be favoring the regional coexistence of these five species in semiarid forests in central Argentina.

  3. Is blue optical filter necessary in high speed phosphor-based white light LED visible light communications?

    PubMed

    Sung, Jiun-Yu; Chow, Chi-Wai; Yeh, Chien-Hung

    2014-08-25

    Optical blue filter is usually regarded as a critical optical component for high speed phosphor-based white light emitting diode (LED) visible-light-communication (VLC). However, the optical blue filter plays different roles in VLC when using modulations of on-off keying (OOK) or discrete multi-tone (DMT). We show that in the DMT VLC system, the blue optical filter may be unnecessary, and even degrade the transmission performance (by reducing the optical signal-to-noise ratio (SNR)). Analyses and verifications by experiments are performed. To the best of our knowledge, this is the first time the function of blue filters in VLC is explicitly analyzed.

  4. Phosphorescent organic light emitting diodes with high efficiency and brightness

    DOEpatents

    Forrest, Stephen R; Zhang, Yifan

    2015-11-12

    An organic light emitting device including a) an anode; b) a cathode; and c) an emissive layer disposed between the anode and the cathode, the emissive layer comprising an organic host compound and a phosphorescent compound exhibiting a Stokes Shift overlap greater than 0.3 eV. The organic light emitting device may further include a hole transport layer disposed between the emissive layer and the anode; and an electron transport layer disposed between the emissive layer and the cathode. In some embodiments, the phosphorescent compound exhibits a phosphorescent lifetime of less than 10 .mu.s. In some embodiments, the concentration of the phosphorescent compound ranges from 0.5 wt. % to 10 wt. %.

  5. High Accuracy Temperature Measurements Using RTDs with Current Loop Conditioning

    NASA Technical Reports Server (NTRS)

    Hill, Gerald M.

    1997-01-01

    To measure temperatures with a greater degree of accuracy than is possible with thermocouples, RTDs (Resistive Temperature Detectors) are typically used. Calibration standards use specialized high precision RTD probes with accuracies approaching 0.001 F. These are extremely delicate devices, and far too costly to be used in test facility instrumentation. Less costly sensors which are designed for aeronautical wind tunnel testing are available and can be readily adapted to probes, rakes, and test rigs. With proper signal conditioning of the sensor, temperature accuracies of 0.1 F is obtainable. For reasons that will be explored in this paper, the Anderson current loop is the preferred method used for signal conditioning. This scheme has been used in NASA Lewis Research Center's 9 x 15 Low Speed Wind Tunnel, and is detailed.

  6. Gene Expressing and sRNA Sequencing Show That Gene Differentiation Associates with a Yellow Acer palmatum Mutant Leaf in Different Light Conditions

    PubMed Central

    Li, Shu-Shun; Li, Qian-Zhong; Rong, Li-Ping; Tang, Ling; Zhang, Bo

    2015-01-01

    Acer palmatum Thunb., like other maples, is a widely ornamental-use small woody tree for leaf shapes and colors. Interestingly, we found a yellow-leaves mutant “Jingling Huangfeng” turned to green when grown in shade or low-density light condition. In order to study the potential mechanism, we performed high-throughput sequencing and obtained 1,082 DEGs in leaves grown in different light conditions that result in A. palmatum significant morphological and physiological changes. A total of 989 DEGs were annotated and clustered, of which many DEGs were found associating with the photosynthesis activity and pigment synthesis. The expression of CHS and FDR gene was higher while the expression of FLS gene was lower in full-sunlight condition; this may cause more colorful substance like chalcone and anthocyanin that were produced in full-light condition, thus turning the foliage to yellow. Moreover, this is the first available miRNA collection which contains 67 miRNAs of A. palmatum, including 46 conserved miRNAs and 21 novel miRNAs. To get better understanding of which pathways these miRNAs involved, 102 Unigenes were found to be potential targets of them. These results will provide valuable genetic resources for further study on the molecular mechanisms of Acer palmatum leaf coloration. PMID:26788511

  7. Polar and high latitude substorms and solar wind conditions

    NASA Astrophysics Data System (ADS)

    Despirak, I. V.; Lyubchich, A. A.; Kleimenova, N. G.

    2014-09-01

    All substorm disturbances observed in polar latitudes can be divided into two types: polar, which are observable at geomagnetic latitudes higher than 70° in the absence of substorms below 70°, and high latitude substorms, which travel from auroral (<70°) to polar (>70°) geomagnetic latitudes. The aim of this study is to compare conditions in the IMF and solar wind, under which these two types of substorms are observable on the basis of data from meridional chain of magnetometers IMAGE and OMNI database for 1995, 2000, and 2006-2011. In total, 105 polar and 55 high latitude substorms were studied. It is shown that polar substorms are observable at a low velocity of solar wind after propagation of a high-speed recurrent stream during the late recovery phase of a magnetic storm. High latitude substorms, in contrast, are observable with a high velocity of solar wind, increased values of the Bz component of the IMF, the Ey component of the electric field, and solar wind temperature and pressure, when a high-speed recurrent stream passes by the Earth.

  8. White Organic Light Emitting Diodes for Solid State Lighting -- A Path Towards High Efficiency and Device Stability

    NASA Astrophysics Data System (ADS)

    Oloye, Temidayo Abiola

    White organic light emitting diodes (WOLEDs) are currently being developed as the next generation of solid state lighting sources. Although, there has been considerable improvements in device efficiency from the early days up until now, there are still major drawbacks for the implementation of WOLEDs to commercial markets. These drawbacks include short lifetimes associated with highly efficient and easier to fabricate device structures. Platinum (II) complexes are been explored as emitters for single emissive layer WOLEDs, due to their higher efficiencies and stability in device configurations. These properties have been attributed to their square planar nature. Tetradentate platinum (II) complexes in particular have been shown to be more rigid and thus more stable than their other multidentate counterparts. This thesis aims to explore the different pathways via molecular design of tetradentate platinum II complexes and in particular the percipient engineering of a highly efficient and stable device structure. Previous works have been able to obtain either highly efficient devices or stable devices in different device configurations. In this work, we demonstrate a device structure employing Pt2O2 as the emitter using mCBP as a host with EQE of above 20% and lifetime values (LT80) exceeding 6000hours at practical luminance of 100cd/m2. These results open up the pathway towards the commercialization of white organic light emitting diodes as a solid state lighting source.

  9. High immersive three-dimensional tabletop display system with high dense light field reconstruction

    NASA Astrophysics Data System (ADS)

    Zheng, Mengqing; Yu, Xunbo; Xie, Songlin; Sang, Xinzhu; Yu, Chongxiu

    2014-11-01

    Three-dimensional (3D) tabletop display is a kind of display with wide range of potential applications. An auto-stereoscopic 3D tabletop display system is designed to provide the observers with high level of immersive perception. To improve the freedom of viewing position, the eye tracking system and a set of active partially pixelated masks are utilized. To improve the display quality, large number of images is prepared to generate the stereo pair. The light intensity distribution and crosstalk of parallax images are measured respectively to evaluate the rationality of the auto-stereoscopic system. In the experiment, the high immersive auto-stereoscopic tabletop display system is demonstrated, together with the system architectures including hardware and software. Experimental results illustrate the effectiveness of the high immersive auto-stereoscopic tabletop display system.

  10. Lighting

    SciTech Connect

    Audin, L.

    1994-12-31

    EPAct covers a vast territory beyond lighting and, like all legislation, also contains numerous {open_quotes}favors,{close_quotes} compromises, and even some sleight-of-hand. Tucked away under Title XIX, for example, is an increase from 20% to 28% tax on gambling winnings, effective January 1, 1993 - apparently as a way to help pay for new spending listed elsewhere in the bill. Overall, it is a landmark piece of legislation, about a decade overdue. It remains to be seen how the Federal Government will enforce upgrading of state (or even their own) energy codes. There is no mention of funding for {open_quotes}energy police{close_quotes} in EPAct. Merely creating such a national standard, however, provides a target for those who sincerely wish to create an energy-efficient future.

  11. Evaluation of low-contrast perceptibility in dental restorative materials under the influence of ambient light conditions

    PubMed Central

    Lobo, I C; Lemos, A L B; Aguiar, M F

    2015-01-01

    Objectives: This study aimed to assess how details on dental restorative composites with different radio-opacities are perceived under the influence of ambient light. Methods: Resin composite step wedges (six steps, each 1-mm thick) were custom manufactured from three materials, respectively: (M1) Filtek™ Z350 (3M/ESPE, Saint Paul, MN); (M2) Prisma AP.H™ (Dentsply International Inc., Brazil) and (M3) Glacier® (SDI Limited, Victoria, Australia). Each step of the manufactured wedge received three standardized drillings of different diameters and depths. An aluminium (Al) step wedge with 12 steps (1-mm thick) was used as an internal standard to calculate the radio-opacity as pixel intensity values. Standardized digital images of the set were obtained, and 11 observers independently recorded the images, noting the number of noticeable details (drillings) under 2 dissimilar conditions: in a light environment (light was turned on in the room) and in low-light conditions (light in the room was turned off). The differences between images in terms of the number of details that were observed were statistically compared using ANOVA, Cronbach's alpha coefficient and Wilcoxon and Kruskal–Wallis tests, with a significance level setting of 5% (α = 0.05). Results: The M2 showed higher radio-opacity, the M1 displayed intermediate radio-opacity and the M3 showed lower radio-opacity, respectively; however, all three were without significance (p > 0.05) compared with each other. The differences in radio-opacity resulted in a significant variation (p < 0.05) in the number of noticeable details in the image, which were influenced by characteristics of details, in addition to the ambient-light level. Conclusions: The radio-opacity of materials and ambient light can affect the perception of details in digital radiographic images. PMID:25629721

  12. Comparison between DICOM-calibrated and uncalibrated consumer grade and 6-MP displays under different lighting conditions in panoramic radiography

    PubMed Central

    Haapea, M; Liukkonen, E; Huumonen, S; Tervonen, O; Nieminen, M T

    2015-01-01

    Objectives: To compare observer performance in the detection of anatomical structures and pathology in panoramic radiographs using consumer grade with and without digital imaging and communication in medicine (DICOM)-calibration and 6-megapixel (6-MP) displays under different lighting conditions. Methods: 30 panoramic radiographs were randomly evaluated on three displays under bright (510 lx) and dim (16 lx) ambient lighting by two observers with different years of experience. Dentinoenamel junction, dentinal caries and periapical inflammatory lesions, visibility of cortical border of the floor and pathological lesions in maxillary sinus were evaluated. Consensus between the observers was considered as reference. Intraobserver agreement was determined. Proportion of equivalent ratings and weighted kappa were used to assess reliability. The level of significance was set to p < 0.05. Results: The proportion of equivalent ratings with consensus differed between uncalibrated and DICOM-calibrated consumer grade displays in dentinal caries in the lower molar in dim lighting (p = 0.021) and between DICOM-calibrated consumer grade and 6-MP display in bright lighting (p = 0.038) for an experienced observer. Significant differences were found between uncalibrated and DICOM-calibrated consumer grade displays in dentinal caries in bright lighting (p = 0.044) and periapical lesions in the upper molar in dim lighting (p = 0.008) for a less experienced observer. Intraobserver reliability was better at detecting dentinal caries than at detecting periapical and maxillary sinus pathology. Conclusions: DICOM calibration may improve observer performance in panoramic radiography in different lighting conditions. Therefore, a DICOM-calibrated consumer grade display can be used instead of a medical display in dental practice without compromising the diagnostic quality. PMID:25564888

  13. Regulation of CCM genes in Chlamydomonas reinhardtii during conditions of light-dark cycles in synchronous cultures.

    PubMed

    Tirumani, Srikanth; Kokkanti, Mallikarjuna; Chaudhari, Vishal; Shukla, Manish; Rao, Basuthkar J

    2014-06-01

    We have investigated transcript level changes of CO(2)-concentrating mechanism (CCM) genes during light-dark (12 h:12 h) cycles in synchronized Chlamydomonas reinhardtii at air-level CO(2). CCM gene transcript levels vary at various times of light-dark cycles, even at same air-level CO(2). Transcripts of inorganic carbon transporter genes (HLA3, LCI1, CCP1, CCP2 and LCIA) and mitochondrial carbonic anhydrase genes (CAH4 and CAH5) are up regulated in light, following which their levels decline in dark. Contrastingly, transcripts of chloroplast carbonic anhydrases namely CAH6, CAH3 and LCIB are up regulated in dark. CAH3 and LCIB transcript levels reached maximum by the end of dark, followed by high expression into early light period. In contrast, CAH6 transcript level stayed high in dark, followed by high level even in light. Moreover, the up regulation of transcripts in dark was undone by high CO(2), suggesting that the dark induced CCM transcripts were regulated by CO(2) even in dark when CCM is absent. Thus while the CAH3 transcript level modulations appear not to positively correlate with that of CCM, the protein regulation matched with CCM status: in spite of high transcript levels in dark, CAH3 protein reached peak level only in light and localized entirely to pyrenoid, a site functionally relevant for CCM. Moreover, in dark, CAH3 protein level not only reduced but also the protein localized as a diffused pattern in chloroplast. We propose that transcription of most CCM genes, followed by protein level changes including their intracellular localization of a subset is subject to light-dark cycles.

  14. [Effects of sodium naphthalene acetate on growth and physiological characteristics of tomato seedlings under suboptimal temperature and light condition].

    PubMed

    Guo, Yun-na; Li, Yan-su; He, Chao-xing; Yu, Xian-chang

    2015-10-01

    Taking tomato 'Zhongza 105' as test material, the influences of sodium naphthalene acetate (SNA) on growth and physiological characteristics of tomato seedlings under suboptimal temperature and light condition were investigated. The results showed that the dry mass, vigorous seedling index, root activity, total nitrogen content, net photosynthesis rate (Pn) of tomato seedlings were significantly decreased by suboptimum temperature and light treatment. In addition, the catalase activity and zeatin riboside (ZR) concentration were also reduced. However, the superoxide dismutase, peroxidase activity and the content of abscisic acid (ABA) were increased. Compared with treatment of the same volume distilled water on tomato seedlings under suboptimum temperature and light condition, the dry mass of whole plant and vigorous seedling index of tomato seedlings were significantly increased by 16.4% and 22.9%, as the total N contents in roots and leaves and Pn were also increased by 8.5%, 28.5%and 37.0%, respectively, with the treatment of root application of 10 mg . L-1 SNA. Besides protective enzyme activity and the root activity were improved, the indole acetic acid (IAA) and ZR concentration of tomato were raised, and ABA concentration was reduced. The results indicated that root application of certain concentration of SNA could promote the growth of tomato seedlings by increasing the tomato root activity, protective enzymes activity, Pn and regulating endogenous hormone concentration under suboptimum temperature and light condition.

  15. Diamonds on Diamond: structural studies at extreme conditions on the Diamond Light Source.

    PubMed

    McMahon, M I

    2015-03-06

    Extreme conditions (EC) research investigates how the structures and physical and chemical properties of materials change when subjected to extremes of pressure and temperature. Pressures in excess of one million times atmospheric pressure can be achieved using a diamond anvil cell, and, in combination with high-energy, micro-focused radiation from a third-generation synchrotron such as Diamond, detailed structural information can be obtained using either powder or single-crystal diffraction techniques. Here, I summarize some of the research drivers behind international EC research, and then briefly describe the techniques by which high-quality diffraction data are obtained. I then highlight the breadth of EC research possible on Diamond by summarizing four examples from work conducted on the I15 and I19 beamlines, including a study which resulted in the first research paper from Diamond. Finally, I look to the future, and speculate as to the type of EC research might be conducted at Diamond over the next 10 years.

  16. Magnetic Refrigeration Technology for High Efficiency Air Conditioning

    SciTech Connect

    Boeder, A; Zimm, C

    2006-09-30

    Magnetic refrigeration was investigated as an efficient, environmentally friendly, flexible alternative to conventional residential vapor compression central air conditioning systems. Finite element analysis (FEA) models of advanced geometry active magnetic regenerator (AMR) beds were developed to minimize bed size and thus magnet mass by optimizing geometry for fluid flow and heat transfer and other losses. Conventional and magnetocaloric material (MCM) regenerator fabrication and assembly techniques were developed and advanced geometry passive regenerators were built and tested. A subscale engineering prototype (SEP) magnetic air conditioner was designed, constructed and tested. A model of the AMR cycle, combined with knowledge from passive regenerator experiments and FEA results, was used to design the regenerator beds. A 1.5 Tesla permanent magnet assembly was designed using FEA and the bed structure and plenum design was extensively optimized using FEA. The SEP is a flexible magnetic refrigeration platform, with individually instrumented beds and high flow rate and high frequency capability, although the current advanced regenerator geometry beds do not meet performance expectations, probably due to manufacturing and assembly tolerances. A model of the AMR cycle was used to optimize the design of a 3 ton capacity magnetic air conditioner, and the system design was iterated to minimize external parasitic losses such as heat exchanger pressure drop and fan power. The manufacturing cost for the entire air conditioning system was estimated, and while the estimated SEER efficiency is high, the magnetic air conditioning system is not cost competitive as currently configured. The 3 ton study results indicate that there are other applications where magnetic refrigeration is anticipated to have cost advantages over conventional systems, especially applications where magnetic refrigeration, through the use of its aqueous heat transfer fluid, could eliminate intermediate

  17. Red:far-red light conditions affect the emission of volatile organic compounds from barley (Hordeum vulgare), leading to altered biomass allocation in neighbouring plants

    PubMed Central

    Kegge, Wouter; Ninkovic, Velemir; Glinwood, Robert; Welschen, Rob A. M.; Voesenek, Laurentius A. C. J.; Pierik, Ronald

    2015-01-01

    Background and Aims Volatile organic compounds (VOCs) play various roles in plant–plant interactions, and constitutively produced VOCs might act as a cue to sense neighbouring plants. Previous studies have shown that VOCs emitted from the barley (Hordeum vulgare) cultivar ‘Alva’ cause changes in biomass allocation in plants of the cultivar ‘Kara’. Other studies have shown that shading and the low red:far-red (R:FR) conditions that prevail at high plant densities can reduce the quantity and alter the composition of the VOCs emitted by Arabidopsis thaliana, but whether this affects plant–plant signalling remains unknown. This study therefore examines the effects of far-red light enrichment on VOC emissions and plant–plant signalling between ‘Alva’ and ‘Kara’. Methods The proximity of neighbouring plants was mimicked by supplemental far-red light treatment of VOC emitter plants of barley grown in growth chambers. Volatiles emitted by ‘Alva’ under control and far-red light-enriched conditions were analysed using gas chromatography–mass spectrometry (GC-MS). ‘Kara’ plants were exposed to the VOC blend emitted by the ‘Alva’ plants that were subjected to either of the light treatments. Dry matter partitioning, leaf area, stem and total root length were determined for ‘Kara’ plants exposed to ‘Alva’ VOCs, and also for ‘Alva’ plants exposed to either control or far-red-enriched light treatments. Key Results Total VOC emissions by ‘Alva’ were reduced under low R:FR conditions compared with control light conditions, although individual volatile compounds were found to be either suppressed, induced or not affected by R:FR. The altered composition of the VOC blend emitted by ‘Alva’ plants exposed to low R:FR was found to affect carbon allocation in receiver plants of ‘Kara’. Conclusions The results indicate that changes in R:FR light conditions influence the emissions of VOCs in barley, and that these altered emissions

  18. Action of bimetallic nanocatalysts under reaction conditions and during catalysis: evolution of chemistry from high vacuum conditions to reaction conditions.

    PubMed

    Tao, Franklin Feng; Zhang, Shiran; Nguyen, Luan; Zhang, Xueqiang

    2012-12-21

    Bimetallic catalysts are one of the main categories of metal catalysts due to the tunability of electronic and geometric structures through alloying a second metal. The integration of a second metal creates a vast number of possibilities for varying the surface structure and composition of metal catalysts toward designing new catalysts. It is well acknowledged that the surface composition, atomic arrangement, and electronic state of bimetallic catalysts could be different from those before a chemical reaction or catalysis based on ex situ studies. Thanks to advances in electron-based surface analytical techniques, the surface chemistry and structure of bimetallic nanoparticles can be characterized under reaction conditions and during catalysis using ambient pressure analytical techniques including ambient pressure XPS, ambient pressure STM, X-ray absorption spectroscopy and others. These ambient pressure studies revealed various restructurings in the composition and arrangement of atoms in the surface region of catalysts under reaction conditions or during catalysis compared to that before reaction. These restructurings are driven by thermodynamic and kinetic factors. The surface energy of the constituent metals and adsorption energy of reactant molecules or dissociated species on a metal component are two main factors from the point of view of thermodynamics. Correlations between the authentic surface structure and chemistry of catalysts during catalysis and simultaneous catalytic performance were built for understanding catalytic mechanisms of bimetallic catalysts toward designing new catalysts with high activity, selectivity, and durability.

  19. Estimation of optimum specific light intensity per cell on a high-cell-density continuous culture of Chlorella zofingiensis not limited by nutrients or CO₂.

    PubMed

    Imaizumi, Yuki; Nagao, Norio; Yusoff, Fatimah Md; Taguchi, Satoru; Toda, Tatsuki

    2014-06-01

    To determine the optimum light intensity per cell required for rapid growth regardless of cell density, continuous cultures of the microalga Chlorella zofingiensis were grown with a sufficient supply of nutrients and CO2 and were subjected to different light intensities in the range of 75-1000 μE m(-2) s(-1). The cell density of culture increased over time for all light conditions except for the early stage of the high light condition of 1000 μE m(-2) s(-1). The light intensity per cell required for the high specific growth rate of 0.5 day(-1) was determined to be 28-45 μE g-ds(-1) s(-1). The specific growth rate was significantly correlated to light intensity (y=0.721×x/(66.98+x), r(2)=0.85, p<0.05). A high specific growth rate was maintained over a range of light intensities (250-1000 μE m(-2) s(-1)). This range of light intensities suggested that effective production of C. zofingiensis can be maintained outdoors under strong light by using the optimum specific light intensity.

  20. The Physical Conditions of Atomic Gas at High Redshift

    NASA Astrophysics Data System (ADS)

    Neeleman, Marcel

    In this thesis we provide insight into the chemical composition, physical conditions and cosmic distribution of atomic gas at high redshift. We study this gas in absorption against bright background quasars in absorption systems known as Damped Ly-alpha Systems (DLAs). These systems contain the bulk of the atomic gas at high redshift and are the likely progenitors of modern-day galaxies. In Chapter 2, we find that the atomic gas in DLAs obeys a mass-metallicity relationship that is similar to the mass-metallicity relationship seen in star-forming galaxies. The evolution of this relationship is linear with redshift, allowing for a planar equation to accurately describe this evolution, which provides a more stringent constraint on simulations modeling DLAs. Furthermore, the concomitant evolution of the mass-metallicity relationship of atomic gas and star-forming galaxies suggests an intimate link between the two. We next use a novel way to measure the physical conditions of the gas by using fine-structure line ratios of singly ionized carbon and silicon. By measuring the density of the upper and lower level states, we are able to determine the temperature, hydrogen density and electron density of the gas. We find that the conditions present in this high redshift gas are consistent with the conditions we see in the local interstellar medium (ISM). A few absorbers have higher than expected pressure, which suggests that they probe the ISM of star-forming galaxies. Finally in Chapter 4, we measure the cosmic neutral hydrogen density at redshifts below 1.6. Below this redshift, the Ly-alpha line of hydrogen is absorbed by the atmosphere, making detection difficult. Using the archive of the Hubble Space Telescope, we compile a comprehensive list of quasars for a search of DLAs at redshift below 1.6. We find that the incidence rate of DLAs and the cosmic neutral hydrogen density is smaller than previously measured, but consistent with the values both locally and at

  1. Insusceptibility of oxygen-evolving complex to high light in Betula platyphylla.

    PubMed

    Huang, Wei; Zhang, Shi-Bao; Hu, Hong

    2015-03-01

    High mountain plants growing at high altitude have to regularly cope with high light and high UV radiation that can lead to photodamage of oxygen-evolving complex (OEC). However, the underlying mechanism of photoprotection for OEC in high mountain plants is unclear. Sun leaves of Betula platyphylla were used to examine whether cyclic electron flow (CEF) around photosystem I (PSI) plays an important role in photoprotection for OEC. Our results indicated that the value of ETRI/ETRII ratio significantly increased under high light. With increasing light intensity, non-photochemical quenching (NPQ) gradually increased, and the fraction of P700 that is oxidized in a given state gradually increased. These results indicated that CEF was significantly activated under high light. After treatment with a high light of 1600 μmol photons m(-2) s(-1) for 8 h, the OEC activity did not decline, but the maximum quantum yield of PSII (F v /F m ) ratio significantly decreased. These results suggested that CEF-dependent generation of proton gradient across thylakoid membrane protected OEC activity against high light. Furthermore, the stability of PSI activity during exposure to high light suggested that the high CEF activity in B. platyphylla played an important role in photoprotection for PSI activity.

  2. Estimation of red-light running frequency using high-resolution traffic and signal data.

    PubMed

    Chen, Peng; Yu, Guizhen; Wu, Xinkai; Ren, Yilong; Li, Yueguang

    2017-03-23

    Red-light-running (RLR) emerges as a major cause that may lead to intersection-related crashes and endanger intersection safety. To reduce RLR violations, it's critical to identify the influential factors associated with RLR and estimate RLR frequency. Without resorting to video camera recordings, this study investigates this important issue by utilizing high-resolution traffic and signal event data collected from loop detectors at five intersections on Trunk Highway 55, Minneapolis, MN. First, a simple method is proposed to identify RLR by fully utilizing the information obtained from stop bar detectors, downstream entrance detectors and advance detectors. Using 12 months of event data, a total of 6550 RLR cases were identified. According to a definition of RLR frequency as the conditional probability of RLR on a certain traffic or signal condition (veh/1000veh), the relationships between RLR frequency and some influential factors including arriving time at advance detector, approaching speed, headway, gap to the preceding vehicle on adjacent lane, cycle length, geometric characteristics and even snowing weather were empirically investigated. Statistical analysis shows good agreement with the traffic engineering practice, e.g., RLR is most likely to occur on weekdays during peak periods under large traffic demands and longer signal cycles, and a total of 95.24% RLR events occurred within the first 1.5s after the onset of red phase. The findings confirmed that vehicles tend to run the red light when they are close to intersection during phase transition, and the vehicles following the leading vehicle with short headways also likely run the red light. Last, a simplified nonlinear regression model is proposed to estimate RLR frequency based on the data from advance detector. The study is expected to helpbetter understand RLR occurrence and further contribute to the future improvement of intersection safety.

  3. Thermophysical Properties Measurement of High-Temperature Liquids Under Microgravity Conditions in Controlled Atmospheric Conditions

    NASA Technical Reports Server (NTRS)

    Watanabe, Masahito; Ozawa, Shumpei; Mizuno, Akotoshi; Hibiya, Taketoshi; Kawauchi, Hiroya; Murai, Kentaro; Takahashi, Suguru

    2012-01-01

    Microgravity conditions have advantages of measurement of surface tension and viscosity of metallic liquids by the oscillating drop method with an electromagnetic levitation (EML) device. Thus, we are preparing the experiments of thermophysical properties measurements using the Materials-Science Laboratories ElectroMagnetic-Levitator (MSL-EML) facilities in the international Space station (ISS). Recently, it has been identified that dependence of surface tension on oxygen partial pressure (Po2) must be considered for industrial application of surface tension values. Effect of Po2 on surface tension would apparently change viscosity from the damping oscillation model. Therefore, surface tension and viscosity must be measured simultaneously in the same atmospheric conditions. Moreover, effect of the electromagnetic force (EMF) on the surface oscillations must be clarified to obtain the ideal surface oscillation because the EMF works as the external force on the oscillating liquid droplets, so extensive EMF makes apparently the viscosity values large. In our group, using the parabolic flight levitation experimental facilities (PFLEX) the effect of Po2 and external EMF on surface oscillation of levitated liquid droplets was systematically investigated for the precise measurements of surface tension and viscosity of high temperature liquids for future ISS experiments. We performed the observation of surface oscillations of levitated liquid alloys using PFLEX on board flight experiments by Gulfstream II (G-II) airplane operated by DAS. These observations were performed under the controlled Po2 and also under the suitable EMF conditions. In these experiments, we obtained the density, the viscosity and the surface tension values of liquid Cu. From these results, we discuss about as same as reported data, and also obtained the difference of surface oscillations with the change of the EMF conditions.

  4. High-precision beam shaper for coherent and incoherent light using a DLP spatial light modulator

    NASA Astrophysics Data System (ADS)

    Liang, Jinyang; Kohn, Rudolph N., Jr.; Becker, Michael F.; Heinzen, Daniel J.

    2011-03-01

    We designed a precision laser beam shaper using a Texas Instruments digital micromirror device (DMD) with a telescope system containing a pinhole low-pass filter. The performance of the beam shaper was measured by comparing the intensity and wave-front uniformity to the target function and by the energy conversion efficiency. We demonstrated flattop and other laser beam profiles with 1-1.5% root-mean-square (RMS) error for a raw camera image and nearly flat phase. A noise analysis of the system revealed that lower error is possible and that most of the error came from coherent speckle noise in the camera. A previous experiment using a 1064 nm single-mode fiber (SMF) laser produced around 7% beam power conversion efficiency. Here we report improvements in system automation and laser source flexibility that result in increasing both the speed of the system to calculate and produce a beam, and the beam uniformity and energy conversion efficiency. A LabVIEW program was written to accelerate the speed of the iterative process for beam profile refinement. A 760 nm super-luminescent light emitting diode (SLED) and a 781 nm Laser Diode (LD) were used as light sources in order to reduce the beam coherence and approach the ultimate performance of the shaper. Both sources greatly reduced the speckle noise and increased measured intensity uniformity. Experiments achieved less than 0.9% RMS error over the entire flattop area with a diameter of 1.32 mm. In addition, simulations were conducted to determine the optimized wavelengths for different types of DMDs. For the .7XGA DMD, the 5th diffraction order matches 750-800 nm. Matching the laser diode to this wavelength increased the power conversion efficiency (input beam to output beam) to 19.8%.

  5. Photosynthetic activity and growth analysis of the plant {Costus spicatus} cultivated under different light conditions

    NASA Astrophysics Data System (ADS)

    Campos, V. M.; Pasin, L. A. A. P.; Barja, P. R.

    2008-01-01

    The aim of the present work was to evaluate the effect of different radiance levels (25%, 50% and 100% of full sunlight) in growth (height, leaf area, number of leaves) and photosynthetic activity of the plant Costus spicatus, popularly known in Brazil as Caninha do Brejo. Photoacoustic (PA) measurements were performed in order to evaluate comparatively the photosynthetic activity rate of plants submitted to different light intensity regimes. The results obtained show that plants maintained under low light intensity levels (25% of sunlight) presented higher height, leaf area and number of leaves, while plants grown under full sunlight presented higher radicular length. PA measurements indicated higher photosynthetic rate for plants grown under 50% of full sunlight, but plants developed under 25% of full sunlight (75% shading) presented the fastest response to light incidence (photosynthetic induction).

  6. Cyclic AMP-inducible genes respond uniformly to seasonal lighting conditions in the rat pineal gland.

    PubMed

    Spessert, R; Gupta, B B P; Rohleder, N; Gerhold, S; Engel, L

    2006-12-01

    The encoding of photoperiodic information ensues in terms of the daily profile in the expression of cyclic AMP (cAMP)-inducible genes such as the arylalkylamine N-acetyltransferase (AA-NAT) gene that encodes the rate-limiting enzyme in melatonin formation. In the present study, we compared the influence of the photoperiodic history on the cAMP-inducible genes AA-NAT, inducible cyclic AMP early repressor (ICER), fos-related antigen-2 (FRA-2), mitogen-activated protein kinase phosphatase-1 (MKP-1), nerve growth factor inducible gene-A (NGFI-A) and nerve growth factor inducible gene-B (NGFI-B) in the pineal gland of rats. For this purpose, we monitored the daily profiles of each gene in the same pineal gland under a long (light/dark 16:8) and a short (light/dark 8:16) photoperiod by measuring the respective mRNA amounts by real-time polymerase chain reaction analysis. We found that, for all genes under investigation, the duration of increased nocturnal expression is lengthened and, in relation to light onset, the nocturnal rise is earlier under the long photoperiod (light/dark 16:8). Furthermore, with the exception of ICER, all other cAMP-inducible genes tend to display higher maximum expression under light/dark 8:16 than under light/dark 16:8. Photoperiod-dependent changes persist for all of the cAMP-inducible genes when the rats are kept for two cycles under constant darkness. Therefore, all cAMP-inducible genes are also influenced by the photoperiod of prior entrained cycles. Our study indicates that, despite differences regarding the expressional control and the temporal phasing of the daily profile, cAMP-inducible genes are uniformly influenced by photoperiodic history in the rat pineal gland.

  7. Adapting wood hydrolysate barriers to high humidity conditions.

    PubMed

    Yaich, Anas Ibn; Edlund, Ulrica; Albertsson, Ann-Christine

    2014-01-16

    The incorporation of layered silicates in bio-based barrier films resulted in lower water vapor permeability, and significantly lowered oxygen permeability at a relative humidity (RH) as high as 80%, with reduced moisture sensitivity of the wood hydrolysate (WH) based films. The applicability of WH based films was accordingly extended over a wider relative humidity condition range. Crude aqueous process liquor, the WH, was extracted from hardwood and utilized as a feed-stock for films without any upgrading pretreatment, yet producing superior oxygen barrier performance compared to partially upgraded WH and highly purified hemicelluloses. Films composed of crude WH and either one of two types of naturally occurring layered silicates, montmorillonite (MMT) or talc, as mineral additives, were evaluated with respect to oxygen and water vapor permeability, morphological, tensile and dynamic thermo-mechanical properties. Films with an oxygen permeability as low as 1.5 (cm(3)μm)/(m(2)daykPa) at 80% RH was achieved.

  8. [The oral cavity condition in patients with high blood pressure].

    PubMed

    Rosiak, Joanna; Kubić-Filiks, Beata; Szymańska, Jolanta

    2015-10-01

    The incidence of high blood pressure in adults is estimated at ca. 30-40% of the general population. Both hypertension disease and hypertensive drugs affect the condition of the patients' oral cavity. A review of the current literature shows that disorders most frequently found in the masticatory organ of patients with hypertension include: xerostomia, changes in salivary glands, gum hypertrophy, lichenoid lesions, taste disorders, and paraesthesias. The authors emphasize that patients with high blood pressure, along with the treatment of the underlying disease, should receive prophylactic and therapeutic dental care. This would enable reduction and/or elimination of unpleasant complaints, and also help prevent the emergence of secondary disorders in the patients' oral cavity as a result of hypertension pharmacotherapy.

  9. Soot formation in diesel combustion under high-EGR conditions.

    SciTech Connect

    Idicheria, Cherian A.; Pickett, Lyle M.

    2005-06-01

    Experiments were conducted in an optically accessible constant-volume combustion vessel to investigate soot formation at diesel combustion conditions - in a high exhaust-gas recirculation (EGR) environment. The ambient oxygen concentration was decreased systematically from 21% to 8% to simulate a wide range of EGR conditions. Quantitative measurements of in-situ soot in quasi-steady n-heptane and No.2 diesel fuel jets were made by using laser extinction and planar laser-induced incandescence (PLII) measurements. Flame lift-off length measurements were also made in support of the soot measurements. At constant ambient temperature, results show that the equivalence ratio estimated at the lift-off length does not vary with the use of EGR, implying an equal amount of fuel-air mixing prior to combustion. Soot measurements show that the soot volume fraction decreases with increasing EGR. The regions of soot formation are effectively 'stretched out' to longer axial and radial distances from the injector with increasing EGR, according to the dilution in ambient oxygen. However, the axial soot distribution and location of maximum soot collapses if plotted in terms of a 'flame coordinate', where the relative fuel-oxygen mixture is equivalent. The total soot in the jet cross-section at the maximum axial soot location initially increases and then decreases to zero as the oxygen concentration decreases from 21% to 8%. The trend is caused by competition between soot formation rates and increasing residence time. Soot formation rates decrease with decreasing oxygen concentration because of the lower combustion temperatures. At the same time, the residence time for soot formation increases, allowing more time for accumulation of soot. Increasing the ambient temperature above nominal diesel engine conditions leads to a rapid increase in soot for high-EGR conditions when compared to conditions with no EGR. This result emphasizes the importance of EGR cooling and its beneficial

  10. Visible light photooxidative performance of a high-nuclearity molecular bismuth vanadium oxide cluster

    PubMed Central

    Tucher, Johannes

    2014-01-01

    Summary The visible light photooxidative performance of a new high-nuclearity molecular bismuth vanadium oxide cluster, H3[{Bi(dmso)3}4V13O40], is reported. Photocatalytic activity studies show faster reaction kinetics under anaerobic conditions, suggesting an oxygen-dependent quenching of the photoexcited cluster species. Further mechanistic analysis shows that the reaction proceeds via the intermediate formation of hydroxyl radicals which act as oxidant. Trapping experiments using ethanol as a hydroxyl radical scavenger show significantly decreased photocatalytic substrate oxidation in the presence of EtOH. Photocatalytic performance analyses using monochromatic visible light irradiation show that the quantum efficiency Φ for indigo photooxidation is strongly dependent on the irradiation wavelength, with higher quantum efficiencies being observed at shorter wavelengths (Φ395nm ca. 15%). Recycling tests show that the compound can be employed as homogeneous photooxidation catalyst multiple times without loss of catalytic activity. High turnover numbers (TON ca. 1200) and turnover frequencies up to TOF ca. 3.44 min−1 are observed, illustrating the practical applicability of the cluster species. PMID:24991508

  11. Transient magnetic birefringence for determining magnetic nanoparticle diameters in dense, highly light scattering media

    NASA Astrophysics Data System (ADS)

    Köber, Mariana; Moros, Maria; Grazú, Valeria; de la Fuente, Jesus M.; Luna, Mónica; Briones, Fernando

    2012-04-01

    The increasing use of biofunctionalized magnetic nanoparticles in biomedical applications calls for further development of characterization tools that allow for determining the interactions of the nanoparticles with the biological medium in situ. In cell-incubating conditions, for example, nanoparticles may aggregate and serum proteins adsorb on the particles, altering the nanoparticles’ performance and their interaction with cell membranes. In this work we show that the aggregation of spherical magnetite nanoparticles can be detected with high sensitivity in dense, highly light scattering media by making use of magnetically induced birefringence. Moreover, the hydrodynamic particle diameter distribution of anisometric nanoparticle aggregates can be determined directly in these media by monitoring the relaxation time of the magnetically induced birefringence. As a proof of concept, we performed measurements on nanoparticles included in an agarose gel, which scatters light in a similar way as a more complex biological medium but where particle-matrix interactions are weak. Magnetite nanoparticles were separated by agarose gel electrophoresis and the hydrodynamic diameter distribution was determined in situ. For the different particle functionalizations and agarose concentrations tested, we could show that gel electrophoresis did not yield a complete separation of monomers and small aggregates, and that the electrophoretic mobility of the aggregates decreased linearly with the hydrodynamic diameter. Furthermore, the rotational particle diffusion was not clearly affected by nanoparticle-gel interactions. The possibility to detect nanoparticle aggregates and their hydrodynamic diameters in complex scattering media like cell tissue makes transient magnetic birefringence an interesting technique for biological applications.

  12. Amphetamine Conditioned Place Preference in High and Low Impulsive Rats

    PubMed Central

    Yates, Justin R.; Marusich, Julie A.; Gipson, Cassandra D.; Beckmann, Joshua S.; Bardo, Michael T.

    2011-01-01

    Stimulants such as d-amphetamine (AMPH) are used commonly to treat attention-deficit hyperactivity disorder (ADHD), but concerns have been raised regarding the use of AMPH due to its reinforcing and potentially addictive properties. The current study examined if individual differences in impulsive choice predict AMPH-induced hyperactivity and conditioned place preference (CPP). Rats were first tested in delay discounting using an adjusting delay procedure to measure impulsive choice and then were subsequently tested for AMPH CPP. High impulsive (HiI) and low impulsive (LoI) rats were conditioned across four sessions with 0.1, 0.5, or 1.5 mg/kg of AMPH. AMPH increased locomotor activity for HiI and LoI rats following 0.5 mg/kg but failed to increase activity following 0.1 and 1.5 mg/kg. CPP was established for HiI rats with both 0.5 and 1.5 mg/kg of AMPH, whereas LoI rats did not develop CPP following any dose of AMPH; HiI and LoI groups differed significantly following 0.5 mg/kg of AMPH. These results indicate that HiI rats are more sensitive to the rewarding effects of AMPH compared to LoI rats, which is consistent with research showing that high impulsive individuals may be more vulnerable to stimulant abuse. PMID:21807020

  13. Changes of vitamins A and E in the rat retina under light and dark conditions detected with TOF-SIMS

    NASA Astrophysics Data System (ADS)

    Amemiya, T.; Gong, H.; Takaya, K.; Tozu, M.; Ohashi, Y.

    2003-01-01

    Vitamin A is a key material for visual function and its metabolism is always important topics in visual sciences. TOF-SIMS (SIMS: secondary ion mass spectrometry) can detect organic materials and elements in relation to the cell and tissue. Changes of vitamin A distribution in the rat retina under light and dark adaptations were detected with TOF-SIMS. Vitamin A is present in combination with polyunsaturated fatty acids in the living cell. Vitamin E participates in the membrane stability. Thus we examined not only vitamin A, but also vitamin E. In light condition, vitamins A and E were increased in the photoreceptor cell. These findings suggest that these vitamins are increased in the light exposed retina.

  14. Soybean stem growth under high-pressure sodium with supplemental blue lighting

    NASA Technical Reports Server (NTRS)

    Wheeler, R. M.; Mackowiak, C. L.; Sager, J. C.

    1991-01-01

    To study high-pressure sodium (HPS) lamps used for plant lighting because of their high energy conversion efficiencies, 'McCall' soybean plants were grown for 28 days in growth chambers utilizing HPS lamps, with/without supplemental light from blue phosphor fluorescent lamps. Total photosynthetic photon flux levels, including blue fluorescent, were maintained near 300 or 500 micromol/sq m s. Results indicate that employment of HPS or other blue-deficient sources for lighting at low to moderate photosynthetic photon flux levels may cause abnormal stem elongation, but this can be prevented by the addition of a small amount of supplemental blue light.

  15. Differentially expressed proteins of soybean (Glycine max) pulvinus in light and dark conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean leaves (Glycine max) both track and avoid the sun through turgor changes of the pulvinus tissue at the base of leaves. Pulvinar response is known to be affected by both diurnally varying environmental factors and circadian patterns. Differential expression of the proteins between light and d...

  16. Photosynthesis, light use efficiency, and yield of reduced-chlorophyll soybean mutants in field conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Reducing chlorophyll (chl) content may improve the conversion efficiency of absorbed radiation into biomass (ec) and therefore yield in dense monoculture crops by improving light penetration and distribution within the canopy. Modeling suggests that reducing chl content may also reduce leaf temperat...

  17. High resolution Cerenkov light imaging of induced positron distribution in proton therapy

    SciTech Connect

    Yamamoto, Seiichi Fujii, Kento; Morishita, Yuki; Okumura, Satoshi; Komori, Masataka; Toshito, Toshiyuki

    2014-11-01

    Purpose: In proton therapy, imaging of the positron distribution produced by fragmentation during or soon after proton irradiation is a useful method to monitor the proton range. Although positron emission tomography (PET) is typically used for this imaging, its spatial resolution is limited. Cerenkov light imaging is a new molecular imaging technology that detects the visible photons that are produced from high-speed electrons using a high sensitivity optical camera. Because its inherent spatial resolution is much higher than PET, the authors can measure more precise information of the proton-induced positron distribution with Cerenkov light imaging technology. For this purpose, they conducted Cerenkov light imaging of induced positron distribution in proton therapy. Methods: First, the authors evaluated the spatial resolution of our Cerenkov light imaging system with a {sup 22}Na point source for the actual imaging setup. Then the transparent acrylic phantoms (100 × 100 × 100 mm{sup 3}) were irradiated with two different proton energies using a spot scanning proton therapy system. Cerenkov light imaging of each phantom was conducted using a high sensitivity electron multiplied charge coupled device (EM-CCD) camera. Results: The Cerenkov light’s spatial resolution for the setup was 0.76 ± 0.6 mm FWHM. They obtained high resolution Cerenkov light images of the positron distributions in the phantoms for two different proton energies and made fused images of the reference images and the Cerenkov light images. The depths of the positron distribution in the phantoms from the Cerenkov light images were almost identical to the simulation results. The decay curves derived from the region-of-interests (ROIs) set on the Cerenkov light images revealed that Cerenkov light images can be used for estimating the half-life of the radionuclide components of positrons. Conclusions: High resolution Cerenkov light imaging of proton-induced positron distribution was possible. The

  18. Utilization of potatoes for life support in space. V. Evaluation of cultivars in response to continuous light and high temperature

    NASA Technical Reports Server (NTRS)

    Tibbitts, T. W.; Cao, W.; Bennett, S. M.

    1992-01-01

    Twenty-four potato (Solanum tuberosum L.) cultivars from different regions of the world were evaluated in terms of their responses to continuous light (24 h photoperiod) and to high temperature (30 C) in two separate experiments under controlled environments. In each experiment, a first evaluation of the cultivars was made at day 35 after transplanting, at which time 12 cultivars exhibiting best growth and tuber initiation were selected. A final evaluation of the 12 cultivars was made after an additional 21 days of growth, at which time plant height, total dry weight, tuber dry weight, and tuber number were determined. In the continuous light evaluation, the 12 selected cultivars were Alaska 114, Atlantic, Bintje, Denali, Desiree, Haig, New York 81, Ottar, Rutt, Snogg, Snowchip, and Troll. In the high temperature evaluation, the 12 selected cultivars were Alpha, Atlantic, Bake King, Denali, Desiree, Haig, Kennebec, Norland, Russet Burbank, Rutt, Superior, and Troll. Among the cultivars selected under continuous irradiation, Desiree, Ottar, Haig, Rutt, Denali and Alaska showed the best potential for high productivity whereas New York 81 and Bintje showed the least production capability. Among the cultivars selected under high temperature, Rutt, Haig, Troll and Bake King had best performance whereas Atlantic, Alpha, Kennebec and Russet Burbank exhibited the least production potential. Thus, Haig and Rutt were the two cultivars that performed well under continuous irradiation and high temperature conditions, and could have maximum potential for adaptation to varying stress environments. These two cultivars may have the best potential for use in future space farming in which continuous light and/or high temperature conditions may exist. However, cultivar responses under combined conditions of continuous light and high temperature remains for further validation.

  19. A novel light tracing system with high-precision and high-sensitivity sensors setup

    NASA Astrophysics Data System (ADS)

    Lin, Chern-Sheng; Wu, Pin Yi; Tsai, Jen Min; Tseng, Yu Hung; Chen, Hsin-Hung; Hwang, Jiann-Lih

    2013-11-01

    This paper presents a novel light source tracing system, which is comprised of a light-tracing board, with four photo-sensors of different incline angles, correspondingly disposed on its four edges, which are adjustable according to the movement range of the light source in order to achieve light-tracing purposes. This system introduces the algorithm of four-edge-sensors with servo motors in each site to improve sensor's sensitivity. The measurement values of light perception can be feedback to the programmable logic controller by wireless transceiver module. After proportional-integral-derivative operation, the system can obtain the situation of light source. In a normal mode, the light source movement range is large, the range of the incline angle of the light sensors are also set to large to obtain wide detection angle. But in a locking mode, the incline angle of the light sensing plane decreases, thus, the measurement range reduces, and the sensitivity is higher.

  20. ZnO PN Junctions for Highly-Efficient, Low-Cost Light Emitting Diodes

    SciTech Connect

    David P. Norton; Stephen Pearton; Fan Ren

    2007-09-30

    By 2015, the US Department of Energy has set as a goal the development of advanced solid state lighting technologies that are more energy efficient, longer lasting, and more cost-effective than current technology. One approach that is most attractive is to utilize light-emitting diode technologies. Although III-V compound semiconductors have been the primary focus in pursuing this objective, ZnO-based materials present some distinct advantages that could yield success in meeting this objective. As with the nitrides, ZnO is a direct bandgap semiconductor whose gap energy (3.2 eV) can be tuned from 3.0 to 4 eV with substitution of Mg for higher bandgap, Cd for lower bandgap. ZnO has an exciton binding energy of 60 meV, which is larger than that for the nitrides, indicating that it should be a superior light emitting semiconductor. Furthermore, ZnO thin films can be deposited at temperatures on the order of 400-600 C, which is significantly lower than that for the nitrides and should lead to lower manufacturing costs. It has also been demonstrated that functional ZnO electronic devices can be fabricated on inexpensive substrates, such as glass. Therefore, for the large-area photonic application of solid state lighting, ZnO holds unique potential. A significant impediment to exploiting ZnO in light-emitting applications has been the absence of effective p-type carrier doping. However, the recent realization of acceptor-doped ZnO material overcomes this impediment, opening the door to ZnO light emitting diode development In this project, the synthesis and properties of ZnO-based pn junctions for light emitting diodes was investigated. The focus was on three issues most pertinent to realizing a ZnO-based solid state lighting technology, namely (1) achieving high p-type carrier concentrations in epitaxial and polycrystalline films, (2) realizing band edge emission from pn homojunctions, and (3) investigating pn heterojunction constructs that should yield efficient light

  1. Laser light backscatter from intermediate and high Z plasmas

    NASA Astrophysics Data System (ADS)

    Berger, R. L.; Constantin, C.; Divol, L.; Meezan, N.; Froula, D. H.; Glenzer, S. H.; Suter, L. J.; Niemann, C.

    2006-09-01

    In experiments at the Omega Laser Facility [J. M. Soures et al., Fusion Technol. 30, 492 (1996)], stimulated Brillouin backscatter (SBS) from gasbags filled with krypton and xenon gases was ten times lower than from CO2-filled gasbags with similar electron densities. The SBS backscatter was a 1%-5% for both 527 and 351nm interaction beams at an intensity of ˜1015W /cm2. The SRS backscatter was less than 1%. The 351nm interaction beam is below the threshold for filamentation and the SBS occurs in the density plateau between the blast waves. Inverse bremsstrahlung absorption of the incident and SBS light account for the lower reflectivity from krypton than from CO2. The 527nm interaction beam filaments in the blowoff plasma before the beam propagates through the blast wave, where it is strongly absorbed. Thus, most of the 527nm SBS occurs in the flowing plasma outside the blast waves.

  2. K2 High-cadence Light Curves of Transients

    NASA Astrophysics Data System (ADS)

    Rest, Armin; Garnavich, Peter M.; Tucker, Brad; Shaya, Edward J.; Olling, Robert; Kasen, Daniel; Zenteno, Alfredo; Margheim, Steven J.; Smith, Chris; James, David

    2017-01-01

    I will give an overview of the Kepler Extra-Galactic Survey (KEGS), a program using Kepler to search for supernovae, active galactic nuclei, and other transients in galaxies. To date we have found 22 supernova, and with 2 more years (through 2018) planned, including the forward-facing C16/C17, we hope to discover 20 - 30 more SN. The 30-minute cadence of Kepler has reveales subtle features in the light-curves of these supernova not detectable with any other survey, including, shock break-out in a large number of SN, improving our understanding of supernova progenitors. We can also search in nearby galaxies for very fast and faint transients, filling in a previously unaccessible parameter space.

  3. Noninvasive health condition monitoring device for workers at high altitudes conditions.

    PubMed

    Aqueveque, Pablo; Gutierrez, Cristopher; Saavedra, Francisco; Pino, Esteban J

    2016-08-01

    This work presents the design and implementation of a continuous monitoring device to control the health state of workers, for instance miners, at high altitudes. The extreme ambient conditions are harmful for peoples' health; therefore a continuous control of the workers' vital signs is necessary. The developed system includes physiological variables: electrocardiogram (ECG), respiratory activity and body temperature (BT), and ambient variables: ambient temperature (AT) and relative humidity (RH). The noninvasive sensors are incorporated in a t-shirt to deliver a functional device, and maximum comfort to the users. The device is able to continuously calculate heart rate (HR) and respiration rate (RR), and establish a wireless data transmission to a central monitoring station.

  4. The influence of bubble populations generated under windy conditions on the blue-green light transmission in the upper ocean: An exploratory approach

    NASA Astrophysics Data System (ADS)

    Wang, Chengan; Tan, Jianyu; Lai, Qingzhi

    2016-12-01

    The “blue-green window” in the ocean plays an important role in functions such as communication between vessels, underwater target identification, and remote sensing. In this study, the transmission process of blue-green light in the upper ocean is analyzed numerically using the Monte Carlo method. First, the effect of total number of photons on the numerical results is evaluated, and the most favorable number is chosen to ensure accuracy without excessive costs for calculation. Then, the physical and mathematical models are constructed. The rough sea surface is generated under windy conditions and the transmission signals are measured in the far field. Therefore, it can be conceptualized as a 1D slab with a rough boundary surface. Under windy conditions, these bubbles form layers that are horizontally homogeneous and decay exponentially with depth under the influence of gravity. The effects of bubble populations on the process of blue-green light transmission at different wind speeds, wavelengths, angle of incidence and chlorophyll-a concentrations are studied for both air-incident and water-incident cases. The results of this study indicate that the transmission process of blue-green light is significantly influenced by bubbles under high wind-speed conditions.

  5. High-Energy Density science at the Linac Coherent Light Source

    SciTech Connect

    Glenzer, S. H.; Fletcher, L. B.; Hastings, J. B.

    2016-04-01

    The Matter in Extreme Conditions end station at the Linac Coherent Light Source holds great promise for novel pump-probe experiments to make new discoveries in high- energy density science. Recently, our experiments have demonstrated the first spectrally- resolved measurements of plasmons using a seeded 8-keV x-ray laser beam. Forward x-ray Thomson scattering spectra from isochorically heated solid aluminum show a well-resolved plasmon feature that is down-shifted in energy by 19 eV from the incident 8 keV elastic scattering feature. In this spectral range, the simultaneously measured backscatter spectrum shows no spectral features indicating observation of collective plasmon oscillations on a scattering length comparable to the screening length. Moreover, this technique is a prerequisite for Thomson scattering measurements in compressed matter where the plasmon shift is a sensitive function of the free electron density and where the plasmon intensity provides information on temperature.

  6. Visible light photon counters (VLPCs) for high rate tracking medical imaging and particle astrophysics

    SciTech Connect

    Atac, M.

    1998-02-01

    This paper is on the operation principles of the Visible Light Photon Counters (VLPCs), application to high luminosity-high multiplicity tracking for High Energy Charged Particle Physics, and application to Medical Imaging and Particle Astrophysics. The VLPCs as Solid State Photomultipliers (SSPMS) with high quantum efficiency can detect down to single photons very efficiently with excellent time resolution and high avalanche gains.

  7. Volume-scalable high-brightness three-dimensional visible light source

    SciTech Connect

    Subramania, Ganapathi; Fischer, Arthur J; Wang, George T; Li, Qiming

    2014-02-18

    A volume-scalable, high-brightness, electrically driven visible light source comprises a three-dimensional photonic crystal (3DPC) comprising one or more direct bandgap semiconductors. The improved light emission performance of the invention is achieved based on the enhancement of radiative emission of light emitters placed inside a 3DPC due to the strong modification of the photonic density-of-states engendered by the 3DPC.

  8. Visual acuity and patient satisfaction at varied distances and lighting conditions after implantation of an aspheric diffractive multifocal one-piece intraocular lens

    PubMed Central

    Chang, Daniel H

    2016-01-01

    Purpose The aim of the study is to evaluate the visual acuity and patient satisfaction at varied distances under photopic and mesopic lighting conditions in patients bilaterally implanted with aspheric diffractive multifocal one-piece intraocular lenses. Methods In this retrospective–prospective study, 16 patients with a mean age of 66.2±9.2 years (range: 50–81 years) who had undergone bilateral phacoemulsification surgery with implantation of a Tecnis multifocal one-piece intraocular lens (ZMB00) were evaluated. Monocular and binocular uncorrected and distance-corrected visual acuities were measured at distance (20 ft), intermediate (70–80 cm), and near (35–40 cm) under photopic (85 cd/m2) and mesopic (3 cd/m2) lighting conditions and were compared using the paired t-test. All patients also completed a subjective questionnaire. Results At a mean follow-up of 9.5±3.9 months, distance, near, and intermediate visual acuity improved significantly from preoperative acuity. Under photopic and mesopic conditions, 93.8% and 62.5% of patients, respectively, had binocular uncorrected intermediate visual acuity of 20/40 or better, and 62.5% and 31.3% of patients had binocular uncorrected near visual acuity of 20/20 or better. All patients were satisfied with their overall vision without using glasses and/or contact lenses when compared with before surgery. A total of 87.5% of patients reported no glare and 68.8% of patients reported no halos around lights at night. Conclusion Tecnis multifocal one-piece intraocular lenses provide good distance, intermediate, and near visual acuity under photopic as well as mesopic lighting conditions. High levels of spectacle independence with low levels of photic phenomenon were achieved, resulting in excellent patient satisfaction. PMID:27536061

  9. Environmental conditions for alternative tree cover states in high latitudes

    NASA Astrophysics Data System (ADS)

    Abis, Beniamino; Brovkin, Victor

    2016-04-01

    Previous analysis of the vegetation cover from remote sensing revealed the existence of three alternative modes in the frequency distribution of boreal tree cover: a sparsely vegetated treeless state, a savanna-like state, and a forest state. Identifying which are the regions subject to multimodality, and assessing which are the main factors underlying their existence, is important to project future change of natural vegetation cover and its effect on climate. We study the impact on the forest cover fraction distribution of seven globally-observed environmental factors: mean annual rainfall, mean minimum temperature, growing degree days above 0, permafrost distribution, soil moisture, wildfire occurrence frequency, and thawing depth. Through the use of generalised additive models, regression trees, and conditional histograms, we find that the main factors determining the forest distribution in high latitudes are: permafrost distribution, mean annual rainfall, mean minimum temperature, soil moisture, and wildfire frequency. Additionally, we find differences between regions within the boreal area, such as Eurasia, Eastern North America, and Western North America. Furthermore, using a classification based on these factors, we show the existence and location of alternative tree cover states under the same climate conditions in the boreal region. These are areas of potential interest for a more detailed analysis of land-atmosphere interactions.

  10. Optimal conditions for tissue perforation using high intensity focused ultrasound

    NASA Astrophysics Data System (ADS)

    Mochizuki, Takashi; Kihara, Taizo; Ogawa, Kouji; Tanabe, Ryoko; Yosizawa, Shin; Umemura, Shin-ichiro; Kakimoto, Takashi; Yamashita, Hiromasa; Chiba, Toshio

    2012-10-01

    To perforate tissue lying deep part in body, a large size transducer was assembled by combining four spherical-shaped transducers, and the optimal conditions for tissue perforation have studied using ventricle muscle of chicken as a target. The ex vivo experiments showed that ventricle muscle was successfully perforated both when it was exposed to High Intensity Focused Ultrasound (HIFU) directly and when it was exposed to HIFU through atrial muscle layer. Moreover, it was shown that calculated acoustic power distributions are well similar to the perforation patterns, and that the acoustic energy distributes very complexly near the focus. Lastly, perforation on the living rabbit bladder wall was demonstrated as a preliminary in vivo experiment.

  11. PROBING THE PHYSICAL CONDITIONS OF ATOMIC GAS AT HIGH REDSHIFT

    SciTech Connect

    Neeleman, Marcel; Wolfe, Arthur M.; Prochaska, J. Xavier

    2015-02-10

    A new method is used to measure the physical conditions of the gas in damped Lyα systems (DLAs). Using high-resolution absorption spectra of a sample of 80 DLAs, we are able to measure the ratio of the upper and lower fine-structure levels of the ground state of C{sup +} and Si{sup +}. These ratios are determined solely by the physical conditions of the gas. We explore the allowed physical parameter space using a Monte Carlo Markov chain method to constrain simultaneously the temperature, neutral hydrogen density, and electron density of each DLA. The results indicate that at least 5% of all DLAs have the bulk of their gas in a dense, cold phase with typical densities of ∼100 cm{sup –3} and temperatures below 500 K. We further find that the typical pressure of DLAs in our sample is log (P/k{sub B} ) = 3.4 (K cm{sup –3}), which is comparable to the pressure of the local interstellar medium (ISM), and that the components containing the bulk of the neutral gas can be quite small with absorption sizes as small as a few parsecs. We show that the majority of the systems are consistent with having densities significantly higher than expected for a purely canonical warm neutral medium, indicating that significant quantities of dense gas (i.e., n {sub H} > 0.1 cm{sup –3}) are required to match observations. Finally, we identify eight systems with positive detections of Si II*. These systems have pressures (P/k{sub B} ) in excess of 20,000 K cm{sup –3}, which suggest that these systems tag a highly turbulent ISM in young, star-forming galaxies.

  12. Near-infrared organic light-emitting diodes with very high external quantum efficiency and radiance

    NASA Astrophysics Data System (ADS)

    Tuong Ly, Kiet; Chen-Cheng, Ren-Wu; Lin, Hao-Wu; Shiau, Yu-Jeng; Liu, Shih-Hung; Chou, Pi-Tai; Tsao, Cheng-Si; Huang, Yu-Ching; Chi, Yun

    2017-01-01

    Bright and efficient organic emitters of near-infrared light would be of use in applications ranging from biological imaging and medical therapy to night-vision devices. Here we report how a new class of Pt(II) complex phosphors have enabled the fabrication of organic light-emitting diodes that emit light at 740 nm with very high efficiency and radiance due to a high photoluminescence quantum yield of ∼81% and a highly preferred horizontal dipole orientation. The best devices exhibited an external quantum efficiency of 24 ± 1% in a normal planar organic light-emitting diode structure. The incorporation of a light out-coupling hemisphere structure further boosts the external quantum efficiency up to 55 ± 3%.

  13. High-base vector beam encoding/decoding for visible-light communications.

    PubMed

    Zhao, Yifan; Wang, Jian

    2015-11-01

    Polarization is a basic property of light. Different from well-known linear, circular, and elliptical polarizations, which are spatially homogeneous, a vector light beam with spatially variant polarization states has received increasing interest for its expanded functionalities. In this Letter, we present a visible-light communication link exploiting high-base vector beam encoding/decoding. Using a single phase-only spatial light modulator, we generate 16 states of vector beams representing hexadecimal numbers. In the visible-light communication link experiment, we transmit a random high-base number sequence with 10,000 hexadecimal numbers and a 64×64 pixel Lena gray image with 8192 hexadecimal numbers. The bit error rate is evaluated, and zero error among all received hexadecimal numbers is achieved, showing favorable link communication performance using the high-base vector beam encoding/decoding.

  14. Method to generate high efficient devices which emit high quality light for illumination

    DOEpatents

    Krummacher, Benjamin C.; Mathai, Mathew; Choong, Vi-En; Choulis, Stelios A.

    2009-06-30

    An electroluminescent apparatus includes an OLED device emitting light in the blue and green spectrums, and at least one down conversion layer. The down conversion layer absorbs at least part of the green spectrum light and emits light in at least one of the orange spectra and red spectra.

  15. High efficiency white organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Zhang, Gang; Dong, Weili; Gao, Hongyan; Tian, Xiaocui; Zhao, Lina; Jiang, Wenlong; Zhang, Xiyan

    2015-06-01

    The light emitting diodes with the structure of ITO/ m-MTDATA(20 nm)/NPB(10 nm)/CBP BCzVBi ( x, nm, 10%)/CBP(3 nm)/CBP: Ir(ppy)3: DCJTB(10 nm, 8 and 1%)/Bphen(30 nm)/Cs2CO3: Ag2O (2 nm, 20%)/Al (100 nm) employing phosphorescence sensitization and fluorescence doping, were manufactured. The performance of the devices was studied by adjusting the thickness of fluorescence dopant layer ( x = 15, 20, 25, and 30). The best performance was achieved when its thickness was 25 nm. The device has the maximum luminance of 20260 cd/m2 at applied voltage of 14 V and the maximum current efficiency of 11.70 cd/A at 7 V. The device displays a continuous change of color from yellow to white. The CIE coordinates change from (0.49, 0.48) to (0.32, 0.39) when the driving voltage is varied from 5 to 15 V.

  16. High light intensity plays a major role in emergence of population level variation in Arabidopsis thaliana along an altitudinal gradient

    PubMed Central

    Tyagi, Antariksh; Yadav, Amrita; Tripathi, Abhinandan Mani; Roy, Sribash

    2016-01-01

    Environmental conditions play an important role in the emergence of genetic variations in natural populations. We identified genome-wide patterns of nucleotide variations in the coding regions of natural Arabidopsis thaliana populations. These populations originated from 700 m to 3400 m a.m.s.l. in the Western Himalaya. Using a pooled RNA-Seq approach, we identified the local and global level population-specific SNPs. The biological functions of the SNP-containing genes were primarily related to the high light intensity prevalent at high-altitude regions. The novel SNPs identified in these genes might have arisen de novo in these populations. In another approach, the FSTs of SNP-containing genes were correlated with the corresponding climatic factors. ‘Radiation in the growing season’ was the only environmental factor found to be strongly correlated with the gene-level FSTs. In both the approaches, the high light intensity was identified as the primary abiotic stress associated with the variations in these populations. The differential gene expression analysis between field and controlled condition grown plants also showed high light intensity as the primary abiotic stress, particularly for the high altitude populations. Our results provide a genome-wide perspective of nucleotide variations in populations along altitudinal gradient and their putative role in emergence of these variations. PMID:27211014

  17. High level expression of human enteropeptidase light chain in Pichia pastoris.

    PubMed

    Pepeliaev, Stanislav; Krahulec, Ján; Černý, Zbyněk; Jílková, Jana; Tlustá, Marcela; Dostálová, Jana

    2011-10-20

    Human enterokinase (enteropeptidase, rhEP), a serine protease expressed in the proximal part of the small intestine, converts the inactive form of trypsinogen to active trypsin by endoproteolytic cleavage. The high specificity of the target site makes enterokinase an ideal tool for cleaving fusion proteins at defined cleavage sites. The mature active enzyme is comprised of two disulfide-linked polypeptide chains. The heavy chain anchors the enzyme in the intestinal brush border membrane, whereas the light chain represents the catalytic enzyme subunit. The synthetic gene encoding human enteropeptidase light chain with His-tag added at the C-terminus to facilitate protein purification was cloned into Pichia pastoris expression plasmids under the control of an inducible AOX1 or constitutive promoters GAP and AAC. Cultivation media and conditions were optimized as well as isolation and purification of the target protein. Up to 4 mg/L of rhEP was obtained in shake-flask experiments and the expression level of about 60-70 mg/L was achieved when cultivating in lab-scale fermentors. The constitutively expressing strains proved more efficient and less labor-demanding than the inducible ones. The rhEP was immobilized on AV 100 sorbent (Iontosorb) to allow repeated use of enterokinase, showing specific activity of 4U/mL of wet matrix.

  18. The Role of the Storage Carbon of Cotyledons in the Establishment of Seedlings of Hymenaea courbaril Under Different Light Conditions

    PubMed Central

    SANTOS, HENRIQUE P.; BUCKERIDGE, MARCOS S.

    2004-01-01

    • Background and Aims Hymenaea courbaril (Leguminosae-Caesalpinioideae) is a tree species with wide distribution through all of the Neotropics. It has large seeds (approx. 5 g) with non-photosynthetic storage cotyledons rich (40 %) in a cell wall polysaccharide (xyloglucan) as a carbon reserve. Because it is found in the understorey of tropical forests, it has been considered as a shade-tolerant, late-secondary species. However, the physiological mechanisms involved in seedling establishment, especially regarding the interplay between storage and light intensity, are not understood. In this work, the ecophysiological role of this carbon cotyledon reserve (xyloglucan) is characterized, emphasizing its effects on seedling growth and development during the transition from heterotrophy to autotrophy under different light conditions. • Methods Seedlings of H. courbaril were grown in environments with different light intensities, and with or without cotyledons detached before xyloglucan mobilization. Development, growth, photosynthesis and carbon partitioning (dry mass and [14C]sucrose) were analysed in each treatment. • Key Results The detachment of cotyledons was not important for seedling survival, but resulted in a strong restriction (50 % less) of shoot growth, which was the main sink for the cotyledon carbon reserves. Carbon restriction promoted an early maturation of the photosynthetic apparatus without changes in the net CO2 fixation per unit area. The reduced surface area of the first leaves in seedlings without cotyledons was evidence of limited growth and development of seedlings in low light conditions (22 µmol m−2 s−1 photon flux). • Conclusions There is an increase in the importance of storage xyloglucan in cotyledons for H. courbaril seedling development as light intensity decreases, confirming that this polymer plays a key role in the adaptation of this species to establish successfully in the shadowed understorey of the forest. PMID:15514028

  19. Vendors Future: Northern Light--Delivering High-Quality Content to a Large Internet Audience.

    ERIC Educational Resources Information Center

    Wiggins, Richard

    1997-01-01

    Describes a Web-based information service, Northern Light, which demonstrates a new paradigm for serving large populations of users and delivering high-quality content on topics both general and narrow. Discusses performance of the search engine, search syntax, Northern Light's special collection, and pricing. (AEF)

  20. High iron requirement for growth, photosynthesis, and low-light acclimation in the coastal cyanobacterium Synechococcus bacillaris.

    PubMed

    Sunda, William G; Huntsman, Susan A

    2015-01-01

    Iron limits carbon fixation in much of the modern ocean due to the very low solubility of ferric iron in oxygenated ocean waters. We examined iron-limitation of growth rate under varying light intensities in the coastal cyanobacterium Synechococcus bacillaris, a descendent of the oxygenic phototrophs that evolved ca. 3 billion years ago when the ocean was reducing and iron was present at much higher concentrations as soluble Fe(II). Decreasing light intensity increased the cellular iron:carbon (Fe:C) ratio needed to support a given growth rate, indicating that iron and light may co-limit the growth of Synechococcus in the ocean, as shown previously for eukaryotic phytoplankton. The cellular Fe:C ratios needed to support a given growth rate were 5- to 8-fold higher than ratios for coastal eukaryotic algae growing under the same light conditions. The higher iron requirements for growth in the coastal cyanobacterium may be largely caused by the high demand for iron in photosynthesis, and to higher ratios of iron-rich photosystem I to iron-poor photosystem II in Synechococcus than in eukaryotic algae. This high iron requirement may also be vestigial and represent an adaptation to the much higher iron levels in the ancient reducing ocean. Due to the high cellular iron requirement for photosynthesis and growth, and for low light acclimation, Synechococcus may be excluded from many low-iron and low-light environments. Indeed, it decreases rapidly with depth within the ocean's deep chlorophyll maximum (DCM) where iron and light levels are low, and lower-iron requiring picoeukaryotes typically dominate the biomass of phytoplankton community within the mid to lower DCM.

  1. High iron requirement for growth, photosynthesis, and low-light acclimation in the coastal cyanobacterium Synechococcus bacillaris

    PubMed Central

    Sunda, William G.; Huntsman, Susan A.

    2015-01-01

    Iron limits carbon fixation in much of the modern ocean due to the very low solubility of ferric iron in oxygenated ocean waters. We examined iron-limitation of growth rate under varying light intensities in the coastal cyanobacterium Synechococcus bacillaris, a descendent of the oxygenic phototrophs that evolved ca. 3 billion years ago when the ocean was reducing and iron was present at much higher concentrations as soluble Fe(II). Decreasing light intensity increased the cellular iron:carbon (Fe:C) ratio needed to support a given growth rate, indicating that iron and light may co-limit the growth of Synechococcus in the ocean, as shown previously for eukaryotic phytoplankton. The cellular Fe:C ratios needed to support a given growth rate were 5- to 8-fold higher than ratios for coastal eukaryotic algae growing under the same light conditions. The higher iron requirements for growth in the coastal cyanobacterium may be largely caused by the high demand for iron in photosynthesis, and to higher ratios of iron-rich photosystem I to iron-poor photosystem II in Synechococcus than in eukaryotic algae. This high iron requirement may also be vestigial and represent an adaptation to the much higher iron levels in the ancient reducing ocean. Due to the high cellular iron requirement for photosynthesis and growth, and for low light acclimation, Synechococcus may be excluded from many low-iron and low-light environments. Indeed, it decreases rapidly with depth within the ocean’s deep chlorophyll maximum (DCM) where iron and light levels are low, and lower-iron requiring picoeukaryotes typically dominate the biomass of phytoplankton community within the mid to lower DCM. PMID:26150804

  2. Shedding Light on Filovirus Infection with High-Content Imaging

    PubMed Central

    Pegoraro, Gianluca; Bavari, Sina; Panchal, Rekha G.

    2012-01-01

    Microscopy has been instrumental in the discovery and characterization of microorganisms. Major advances in high-throughput fluorescence microscopy and automated, high-content image analysis tools are paving the way to the systematic and quantitative study of the molecular properties of cellular systems, both at the population and at the single-cell level. High-Content Imaging (HCI) has been used to characterize host-virus interactions in genome-wide reverse genetic screens and to identify novel cellular factors implicated in the binding, entry, replication and egress of several pathogenic viruses. Here we present an overview of the most significant applications of HCI in the context of the cell biology of filovirus infection. HCI assays have been recently implemented to quantitatively study filoviruses in cell culture, employing either infectious viruses in a BSL-4 environment or surrogate genetic systems in a BSL-2 environment. These assays are becoming instrumental for small molecule and siRNA screens aimed at the discovery of both cellular therapeutic targets and of compounds with anti-viral properties. We discuss the current practical constraints limiting the implementation of high-throughput biology in a BSL-4 environment, and propose possible solutions to safely perform high-content, high-throughput filovirus infection assays. Finally, we discuss possible novel applications of HCI in the context of filovirus research with particular emphasis on the identification of possible cellular biomarkers of virus infection. PMID:23012631

  3. Shedding light on filovirus infection with high-content imaging.

    PubMed

    Pegoraro, Gianluca; Bavari, Sina; Panchal, Rekha G

    2012-08-01

    Microscopy has been instrumental in the discovery and characterization of microorganisms. Major advances in high-throughput fluorescence microscopy and automated, high-content image analysis tools are paving the way to the systematic and quantitative study of the molecular properties of cellular systems, both at the population and at the single-cell level. High-Content Imaging (HCI) has been used to characterize host-virus interactions in genome-wide reverse genetic screens and to identify novel cellular factors implicated in the binding, entry, replication and egress of several pathogenic viruses. Here we present an overview of the most significant applications of HCI in the context of the cell biology of filovirus infection. HCI assays have been recently implemented to quantitatively study filoviruses in cell culture, employing either infectious viruses in a BSL-4 environment or surrogate genetic systems in a BSL-2 environment. These assays are becoming instrumental for small molecule and siRNA screens aimed at the discovery of both cellular therapeutic targets and of compounds with anti-viral properties. We discuss the current practical constraints limiting the implementation of high-throughput biology in a BSL-4 environment, and propose possible solutions to safely perform high-content, high-throughput filovirus infection assays. Finally, we discuss possible novel applications of HCI in the context of filovirus research with particular emphasis on the identification of possible cellular biomarkers of virus infection.

  4. High power laser-driven ceramic phosphor plate for outstanding efficient white light conversion in application of automotive lighting

    PubMed Central

    Song, Young Hyun; Ji, Eun Kyung; Jeong, Byung Woo; Jung, Mong Kwon; Kim, Eun Young; Yoon, Dae Ho

    2016-01-01

    We report on Y3Al5O12: Ce3+ ceramic phosphor plate (CPP) using nano phosphor for high power laser diode (LD) application for white light in automotive lighting. The prepared CPP shows improved luminous properties as a function of Ce3+ concentration. The luminous properties of the Y3Al5O12: Ce3+ CPP nano phosphor are improved when compared to the Y3Al5O12: Ce3+ CPP with bulk phosphor, and hence, the luminous emittance, luminous flux, and conversion efficiency are improved. The Y3Al5O12: Ce3+ CPP with an optimal Ce3+ content of 0.5 mol % shows 2733 lm/mm2 value under high power blue radiant flux density of 19.1 W/mm2. The results indicate that Y3Al5O12: Ce3+ CPP using nano phosphor can serve as a potential material for solid-state laser lighting in automotive applications. PMID:27502730

  5. High power laser-driven ceramic phosphor plate for outstanding efficient white light conversion in application of automotive lighting.

    PubMed

    Song, Young Hyun; Ji, Eun Kyung; Jeong, Byung Woo; Jung, Mong Kwon; Kim, Eun Young; Yoon, Dae Ho

    2016-08-09

    We report on Y3Al5O12: Ce(3+) ceramic phosphor plate (CPP) using nano phosphor for high power laser diode (LD) application for white light in automotive lighting. The prepared CPP shows improved luminous properties as a function of Ce(3+) concentration. The luminous properties of the Y3Al5O12: Ce(3+) CPP nano phosphor are improved when compared to the Y3Al5O12: Ce(3+) CPP with bulk phosphor, and hence, the luminous emittance, luminous flux, and conversion efficiency are improved. The Y3Al5O12: Ce(3+) CPP with an optimal Ce(3+) content of 0.5 mol % shows 2733 lm/mm(2) value under high power blue radiant flux density of 19.1 W/mm(2). The results indicate that Y3Al5O12: Ce(3+) CPP using nano phosphor can serve as a potential material for solid-state laser lighting in automotive applications.

  6. Origins of life and biochemistry under high-pressure conditions.

    PubMed

    Daniel, Isabelle; Oger, Philippe; Winter, Roland

    2006-10-01

    Life on Earth can be traced back to as far as 3.8 billion years (Ga) ago. The catastrophic meteoritic bombardment ended between 4.2 and 3.9 Ga ago. Therefore, if life emerged, and we know it did, it must have emerged from nothingness in less than 400 million years. The most recent scenarios of Earth accretion predict some very unstable physico-chemical conditions at the surface of Earth, which, in such a short time period, would impede the emergence of life from a proto-biotic soup. A possible alternative would be that life originated in the depth of the proto-ocean of the Hadean Earth, under high hydrostatic pressure. The large body of water would filter harmful radiation and buffer physico-chemical variations, and therefore would provide a more stable radiation-free environment for pre-biotic chemistry. After a short introduction to Earth history, the current tutorial review presents biological and physico-chemical arguments in support of high-pressure origin for life on Earth.

  7. Analysis of light propagation in highly scattering media by path-length-assigned Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Ishii, Katsuhiro; Nishidate, Izumi; Iwai, Toshiaki

    2014-05-01

    Numerical analysis of optical propagation in highly scattering media is investigated when light is normally incident to the surface and re-emerges backward from the same point. This situation corresponds to practical light scattering setups, such as in optical coherence tomography. The simulation uses the path-length-assigned Monte Carlo method based on an ellipsoidal algorithm. The spatial distribution of the scattered light is determined and the dependence of its width and penetration depth on the path-length is found. The backscattered light is classified into three types, in which ballistic, snake, and diffuse photons are dominant.

  8. Highly efficient phosphor-converted white organic light-emitting diodes with moderate microcavity and light-recycling filters.

    PubMed

    Cho, Sang-Hwan; Oh, Jeong Rok; Park, Hoo Keun; Kim, Hyoung Kun; Lee, Yong-Hee; Lee, Jae-Gab; Do, Young Rag

    2010-01-18

    We demonstrate the combined effects of a microcavity structure and light-recycling filters (LRFs) on the forward electrical efficiency of phosphor-converted white organic light-emitting diodes (pc-WOLEDs). The introduction of a single pair of low- and high-index layers (SiO(2)/TiO(2)) improves the blue emission from blue OLED and the insertion of blue-passing and yellow-reflecting LRFs enhances the forward yellow emission from the YAG:Ce(3+) phosphors layers. The enhancement of the luminous efficacy of the forward white emission is 1.92 times that of a conventional pc-WOLED with color coordinates of (0.34, 0.34) and a correlated color temperature of about 4800 K.

  9. Effects of light intensity and air velocity on air temperature, water vapor pressure, and CO2 concentration inside a plant canopy under an artificial lighting condition.

    PubMed

    Kitaya, Y; Shibuya, T; Kozai, T; Kubota, C

    1998-01-01

    In order to characterize environmental variables inside a plant canopy under artificial lighting in the CELSS, we investigated the effects of light intensity and air velocity on air temperature, water vapor pressure, and CO2 concentration inside a plant canopy. Under a PPF of 500 micromoles m-2 s-1, air temperature was 2-3 degrees C higher, water vapor pressure was 0.6 kPa higher, and CO2 concentration was 25-35 micromoles mol-1 lower at heights ranging from 0 to 30 mm below the canopy than at a height 60 mm above the canopy. Increasing the PPF increased air temperature and water vapor pressure and decreased CO2 concentration inside the canopy. The air temperature was lower and the CO2 concentration was higher inside the canopy at an air velocity of 0.3 m s-1 than at an air velocity of 0.1 m s-1. The environmental variables inside the canopy under a high light intensity were characterized by higher air temperature, higher vapor pressure, and lower CO2 concentration than those outside the canopy.

  10. Reversal of the inhibitory effect of light and high temperature on germination of Phacelia tanacetifolia seeds by melatonin.

    PubMed

    Tiryaki, Iskender; Keles, Huseyin

    2012-04-01

    Possible role of melatonin in the germination of negatively photoblastic and thermosensitive seeds of Phacelia tanacetifolia Benth was studied. Final germination percentage (FGP) was determined in the presence or absence of light at various temperatures, ranging from 0 to 40°C. The highest FGP was determined as 48.7% and 92% at temperature of 15°C in the presence and absence of light, respectively. Seeds were primed with 1% KNO(3) containing various concentrations (0.3, 1, 6, 12, 30, 60, or 90 μM) of melatonin for 2 days at 15°C in darkness. Primed seeds were germinated at an inhibitory temperature of 30°C, and results were compared to those occurring at the optimum temperature of 15°C under both light and no light conditions. Melatonin incorporated into priming medium significantly reversed the inhibitory effects of light and high temperature. Germination was elevated from 2.5% to 52% of FGP for seeds primed in the presence of 6 μM melatonin in darkness at 30°C, while 1 μM melatonin had the highest FGP (21.0%) in the presence of light at 30°C. The highest FGP (47.5%) was obtained from seeds primed in the presence of 0.3 μM melatonin under the light condition at 15°C, while untreated seeds had 1.5% of FGP. The fastest seed germination was determined from seeds primed in the presence of 0.3 μM melatonin (G(50) = 0.56 days) at 15°C in darkness. The possible roles of melatonin in promoting germination parameters of photo- and thermosensitive seed germination are discussed.

  11. High density spin noise spectroscopy with squeezed light

    NASA Astrophysics Data System (ADS)

    Lucivero, Vito Giovanni; Jiménez-Martínez, Ricardo; Kong, Jia; Mitchell, Morgan

    2016-05-01

    Spin noise spectroscopy (SNS) has recently emerged as a powerful technique for determining physical properties of an unperturbed spin system from its power noise spectrum both in atomic and solid state physics. In the presence of a transverse magnetic field, we detect spontaneous spin fluctuations of a dense Rb vapor via Faraday rotation of an off-resonance probe beam, resulting in the excess of spectral noise at the Larmor frequency over a white photon shot-noise background. We report quantum enhancement of the signal-to-noise ratio via polarization squeezing of the probe beam up to 3dB over the full density range up to n = 1013 atoms cm-3, covering practical conditions used in optimized SNS experiments. Furthermore, we show that squeezing improves the trade-off between statistical sensitivity and systematic errors due to line broadening, a previously unobserved quantum advantage. Finally, we present a novel theoretical model on quantum limits of noise spectroscopies by defining a standard quantum limit under optimized regimes and by discussing the conditions of its overcoming due to squeezing.

  12. A high-performance and cost-effective grating coupler for ultraviolet light

    NASA Astrophysics Data System (ADS)

    Zhang, Jingjing; Chen, Dingbo; Yang, Junbo; Chang, Shengli; Zhang, Hailiang; Jia, Honghui

    2015-10-01

    The ultraviolet (UV) light wavelengths, typically defined to range from10-400nm, have proven to be useful for a number of applications, such as astronomy, biology, medicine and so on. It is important for us to study on the UV and related devices. In this paper, a novel and effective grating coupler for ultraviolet light was reported, which can couple efficiently ultraviolet light from fiber to waveguide at the wavelength of 300nm. The grating coupler was based on the oxide layer of silicon surface, because ultraviolet light can be transmitted pure silicon dioxide (SiO2) with low loss. Based on Bragg condition of grating, we use FDTD method to simulate and design the grating parameters operated under TM polarization. Using our optimization design parameters (period T, incident angle θ, filling factor f and etching height h) to optimize the mode matching between the fiber and the grating region, a relatively high coupling efficiency was obtained for the fiber and waveguide interface. In our design, filling factor f=0.55, period T=280nm etching height H=110nm, incident angle θ=11° can be realized in the process of manufacture. But coupling efficiency are sensitivity to the range of period of grating and incident angle θ, which increase the difficulty of processing and experiment, the process of technology and operation need high precision. Consequently, we the coupling efficiency can be largely increased and beyond 88.5% at center wavelength of 296nm and 1dB bandwidth, in which the theory analysis and the simulation results are in good agreement and coupling efficiency is the highest for this kind of coupler reported as we known. This kind submicron-sized SiO2 waveguides that can be fabricated by mature CMOS-compatible processes are showing promise for realistic dense photonic integrated circuit (PIC) in various applications including optical communications, optical interconnects, signal processing and sensing. The gratings open the path to pure silicon dioxide

  13. Age at menarche in schoolgirls from Tanzania in light of socioeconomic and sociodemographic conditioning.

    PubMed

    Rebacz, Ewa

    2009-03-01

    The goal of this study is to determine the age at menarche of girls from Tanzania examined in 2005 considering their families' social and material status. For the purpose of the analysis of the age at menarche, N = 71 girls were qualified (N = 8 from Dares Salaam and N = 63 from Mafinga) out of N = 98 who took part in the anthropological study. The calendar age of the girls who qualified for the determination of the age at menarche ranged from 12.9 to 22.7 years of age (X = 15.9 +/- 1.9). The age at menarche revealed using the recall method was 14.3 +/- 1.1 years. The menarche of the girls included in the study with a parent (mother or father) residing in town was found to be earlier (14.1 and 14.0 respectively). When neither parent completed schooling or had only primary education, the age at the daughter's menarche was on average 15.0 years. The girls whose fathers completed secondary school had their first menstruation at 14.8 years, while the daughters of mothers who finished secondary school--at 14.5. The lowest age at menarche was found in the group of girls whose parents obtained higher education (13.4 years in the case of the father and 13.3 in the case of the mother). A higher age at menarche was typical of the group of girls from families in which the number of children in the household was > or = 6 (15.2). In the two-way ANOVA equation, the lowest age at menarche was found in the girls whose families lived in town and had higher education, while the highest--where the family lived in the countryside and did not finish school or had primary school only. In the two-way ANOVA equation (education*self-estimation of the family's material situation), the lowest age at menarche (13.2) was found in the group where the father had higher education and the material situation was assessed as very good or rather good. My own studies are representative for similar African environments. The results obtained allow for comparison with research findings for highly

  14. High Quality Down Lighting Luminaire with 73% Overall System Efficiency

    SciTech Connect

    Robert Harrison; Steven C. Allen; Joseph Bernier; Robert Harrison

    2010-08-31

    This report summarizes work to develop a high flux, high efficiency LED-based downlight at OSRAM SYLVANIA under US Department of Energy contract DE-FC26-08NT01582. A new high power LED and electronic driver were developed for these downlights. The LED achieved 100 lumens per watt efficacy and 1700 lumen flux output at a correlated color temperature of 3500K. The driver had 90% electrical conversion efficiency while maintaining excellent power quality with power factor >0.99, and total harmonic distortion <10%. Two styles of downlights using the LED and driver were shown to exceed the project targets for steady-state luminous efficacy and flux of 70 lumens per watt and 1300 lumens, respectively. Compared to similar existing downlights using compact fluorescent or LED sources, these downlights had much higher efficacy at nearly the same luminous flux.

  15. Solution-processed, high-performance light-emitting diodes based on quantum dots.

    PubMed

    Dai, Xingliang; Zhang, Zhenxing; Jin, Yizheng; Niu, Yuan; Cao, Hujia; Liang, Xiaoyong; Chen, Liwei; Wang, Jianpu; Peng, Xiaogang

    2014-11-06

    Solution-processed optoelectronic and electronic devices are attractive owing to the potential for low-cost fabrication of large-area devices and the compatibility with lightweight, flexible plastic substrates. Solution-processed light-emitting diodes (LEDs) using conjugated polymers or quantum dots as emitters have attracted great interest over the past two decades. However, the overall performance of solution-processed LEDs--including their efficiency, efficiency roll-off at high current densities, turn-on voltage and lifetime under operational conditions-remains inferior to that of the best vacuum-deposited organic LEDs. Here we report a solution-processed, multilayer quantum-dot-based LED with excellent performance and reproducibility. It exhibits colour-saturated deep-red emission, sub-bandgap turn-on at 1.7 volts, high external quantum efficiencies of up to 20.5 per cent, low efficiency roll-off (up to 15.1 per cent of the external quantum efficiency at 100 mA cm(-2)), and a long operational lifetime of more than 100,000 hours at 100 cd m(-2), making this device the best-performing solution-processed red LED so far, comparable to state-of-the-art vacuum-deposited organic LEDs. This optoelectronic performance is achieved by inserting an insulating layer between the quantum dot layer and the oxide electron-transport layer to optimize charge balance in the device and preserve the superior emissive properties of the quantum dots. We anticipate that our results will be a starting point for further research, leading to high-performance, all-solution-processed quantum-dot-based LEDs ideal for next-generation display and solid-state lighting technologies.

  16. How do sink and source activities influence the reproduction and vegetative growth of spring ephemeral herbs under different light conditions?

    PubMed

    Sunmonu, Ninuola; Kudo, Gaku

    2014-07-01

    Spring ephemeral herbs inhabiting deciduous forests commonly complete reproduction and vegetative growth before canopy closure in early summer. Effects of shading by early canopy closure on reproductive output and vegetative growth, however, may vary depending on the seasonal allocation patterns of photosynthetic products between current reproduction and storage for future growth in each species. To clarify the effects of sink-source balance on seed production and bulb growth in a spring ephemeral herb, Gagea lutea, we performed a bract removal treatment (source reduction) and a floral-bud removal treatment (sink reduction) under canopy and open conditions. Leaf carbon fixations did not differ between the forest and open sites and among treatments. Bract carbon fixations were also similar between sites but tended to decrease when floral buds were removed. Seed production was higher under open condition but decreased by the bract-removal treatment under both light conditions. In contrast, bulb growth was independent of light conditions and the bract-removal treatment but increased greatly by the bud-removal treatment. Therefore, leaves and bracts acted as specialized source organs for vegetative and reproductive functions, respectively, but photosynthetic products by bracts were flexibly used for bulb growth when plants failed to set fruits. Extension of bright period was advantageous for seed production (i.e., source limited) but not for vegetative growth (i.e., sink limited) in this species.

  17. High Energy Boundary Conditions for a Cartesian Mesh Euler Solver

    NASA Technical Reports Server (NTRS)

    Pandya, Shishir; Murman, Scott; Aftosmis, Michael

    2003-01-01

    Inlets and exhaust nozzles are common place in the world of flight. Yet, many aerodynamic simulation packages do not provide a method of modelling such high energy boundaries in the flow field. For the purposes of aerodynamic simulation, inlets and exhausts are often fared over and it is assumed that the flow differences resulting from this assumption are minimal. While this is an adequate assumption for the prediction of lift, the lack of a plume behind the aircraft creates an evacuated base region thus effecting both drag and pitching moment values. In addition, the flow in the base region is often mis-predicted resulting in incorrect base drag. In order to accurately predict these quantities, a method for specifying inlet and exhaust conditions needs to be available in aerodynamic simulation packages. A method for a first approximation of a plume without accounting for chemical reactions is added to the Cartesian mesh based aerodynamic simulation package CART3D. The method consists of 3 steps. In the first step, a components approach where each triangle is assigned a component number is used. Here, a method for marking the inlet or exhaust plane triangles as separate components is discussed. In step two, the flow solver is modified to accept a reference state for the components marked inlet or exhaust. In the third step, the flow solver uses these separated components and the reference state to compute the correct flow condition at that triangle. The present method is implemented in the CART3D package which consists of a set of tools for generating a Cartesian volume mesh from a set of component triangulations. The Euler equations are solved on the resulting unstructured Cartesian mesh. The present methods is implemented in this package and its usefulness is demonstrated with two validation cases. A generic missile body is also presented to show the usefulness of the method on a real world geometry.

  18. Generation of high-power laser light with Gigahertz splitting.

    PubMed

    Unks, B E; Proite, N A; Yavuz, D D

    2007-08-01

    We demonstrate the generation of two high-power laser beams whose frequencies are separated by the ground state hyperfine transition frequency in (87)Rb. The system uses a single master diode laser appropriately shifted by high frequency acousto-optic modulators and amplified by semiconductor tapered amplifiers. This produces two 1 W laser beams with a frequency spacing of 6.834 GHz and a relative frequency stability of 1 Hz. We discuss possible applications of this apparatus, including electromagnetically induced transparency-like effects and ultrafast qubit rotations.

  19. Analysis of Compact Fluorescent Lights for Use by Patients with Photosensitive Conditions

    PubMed Central

    Klein, Rachel S.; Werth, Victoria P.; Dowdy, John C.; Sayre, Robert M.

    2010-01-01

    Ultraviolet radiation (UVR) is hazardous to patients with photosensitive skin disorders, such as lupus erythematosus, xeroderma pigmentosum and skin cancer. As such, these patients are advised to minimize their exposure to UVR. Classically, this is accomplished through careful avoidance of sun exposure and artificial tanning booths. Indoor light bulbs, however, are generally not considered to pose significant UVR hazard. We sought to test this notion by measuring the UV emissions of 19 different compact fluorescent light bulbs. The ability to induce skin damage was assessed with the CIE erythema action spectrum, ANSI S(λ) generalized UV hazard spectrum and the CIE photocarcinogenesis action spectrum. The results indicate that there is a great deal of variation amongst different bulbs, even within the same class. Although the irradiance of any given bulb is low, the possible daily exposure time is rather lengthy. This results in potential daily UVR doses ranging from 0.1 to 625 mJ cm−2, including a daily UVB (290–320 nm) dose of 0.01 to 15 mJ cm−2. Because patients are exposed continually over long time frames, this could lead to significant cumulative damage. It would therefore be prudent for patients to use bulbs with the lowest UV irradiance. PMID:19320850

  20. Optimized treatment conditions for textile wastewater reuse using photocatalytic processes under UV and visible light sources.

    PubMed

    Starling, Maria Clara V M; Castro, Luiz Augusto S; Marcelino, Rafaela B P; Leão, Mônica M D; Amorim, Camila C

    2016-02-11

    In this study, photo-Fenton systems using visible light sources with iron and ferrioxalate were tested for the DOC degradation and decolorization of textile wastewater. Textile wastewaters originated after the dyeing stage of dark-colored tissue in the textile industry, and the optimization of treatment processes was studied to produce water suitable for reuse. Dissolved organic carbon, absorbance, turbidity, anionic concentrations, carboxylic acids, and preliminary cost analysis were performed for the proposed treatments. Conventional photo-Fenton process achieved near 99 % DOC degradation rates and complete absorbance removal, and no carboxylic acids were found as products of degradation. Ferrioxalate photo-Fenton system achieved 82 % of DOC degradation and showed complete absorbance removal, and oxalic acid has been detected through HPLC analysis in the treated sample. In contrast, photo-peroxidation with UV light was proved effective only for absorbance removal, with DOC degradation efficiency near 50 %. Treated wastewater was compared with reclaimed water and had a similar quality, indicating that these processes can be effectively applied for textile wastewater reuse. The results of the preliminary cost analysis indicated costs of 0.91 to 1.07 US$ m(-3) for the conventional and ferrioxalate photo-Fenton systems, respectively. Graphical Abstract ᅟ.

  1. CdSe/ZnS quantum dot films for high performance flexible lighting and display applications.

    PubMed

    Altintas, Yemliha; Genc, Sinan; Talpur, Mohammad Younis; Mutlugun, Evren

    2016-07-22

    Colloidal quantum dots have attracted significant interest in recent years for lighting and display applications and have recently appeared in high-end market products. The integration of quantum dots with light emitting diodes has made them promising candidates for superior lighting applications with tunable optical characteristics. In this work we propose and demonstrate high quality colloidal quantum dots in their novel free-standing film forms to allow high quality white light generation to address flexible lighting and display applications. High quality quantum dots have been characterized using transmission electron microscopy, x-ray diffraction, x-ray photoelectron spectroscopy, steady state and time resolved photoluminescence and dynamic light scattering methods. The engineering of colloidal quantum dot composition and its optical properties in stand-alone film form has led to the experimentally high NTSC color gamut of 122.5 (CIE-1931) for display applications, color rendering index of 88.6, luminous efficacy of optical radiation value of 290 lm/Wopt and color temperature of 2763 K for lighting applications.

  2. CdSe/ZnS quantum dot films for high performance flexible lighting and display applications

    NASA Astrophysics Data System (ADS)

    Altintas, Yemliha; Genc, Sinan; Younis Talpur, Mohammad; Mutlugun, Evren

    2016-07-01

    Colloidal quantum dots have attracted significant interest in recent years for lighting and display applications and have recently appeared in high-end market products. The integration of quantum dots with light emitting diodes has made them promising candidates for superior lighting applications with tunable optical characteristics. In this work we propose and demonstrate high quality colloidal quantum dots in their novel free-standing film forms to allow high quality white light generation to address flexible lighting and display applications. High quality quantum dots have been characterized using transmission electron microscopy, x-ray diffraction, x-ray photoelectron spectroscopy, steady state and time resolved photoluminescence and dynamic light scattering methods. The engineering of colloidal quantum dot composition and its optical properties in stand-alone film form has led to the experimentally high NTSC color gamut of 122.5 (CIE-1931) for display applications, color rendering index of 88.6, luminous efficacy of optical radiation value of 290 lm/Wopt and color temperature of 2763 K for lighting applications.

  3. Effects of light and prey availability on Arctic freshwater protist communities examined by high-throughput DNA and RNA sequencing.

    PubMed

    Charvet, Sophie; Vincent, Warwick F; Lovejoy, Connie

    2014-06-01

    Protists in high-latitude lakes are constrained by cold temperatures, low inorganic nutrient supply and low light availability for much of the year due to ice cover and polar darkness. The lengthening ice-free periods in these freshwater ecosystems due to a warming climate results in increased light availability, but the overall impacts on phytoplankton and other protists are unknown. We experimentally investigated protist community responses to changes in light and prey availability in a dilution series in Ward Hunt Lake (latitude 83°05'N), in the Canadian High Arctic. The communities at the end of the experiment were characterized using high-throughput pyrosequencing of the V4 region of the 18S rRNA gene as a measure of taxonomic presence, and of 18S rRNA (from RNA converted to cDNA) as a taxon-specific indicator of community response. At the end of the experiment under low irradiance, cDNA reads were dominated by photosynthetic dinoflagellate genera, except at the greatest dilution where Cercozoa were most abundant. In contrast, the cDNA reads in the high light treatments were dominated by chrysophytes. Given the known trophic differences among dinoflagellates, cercozoans and chrysophytes, this apparent environmental selection implies that the rise in underwater irradiance associated with increasing ice-free conditions may affect microbial food web structure and function in polar lakes.

  4. Wine bottle colour and oxidative spoilage: whole bottle light exposure experiments under controlled and uncontrolled temperature conditions.

    PubMed

    Dias, Daniel A; Clark, Andrew C; Smith, Trevor A; Ghiggino, Kenneth P; Scollary, Geoffrey R

    2013-06-15

    Exposure of a Chardonnay wine to light from a mercury vapour lamp under controlled temperature conditions showed that colour enhancement was dependent on bottle colour. The increase in colouration was Antique Greenlight exposure. Without temperature control, wine colour development was highest in Antique Green and lowest in Flint. This alternate order reflects the ability of the darker bottles to retain heat longer than lighter coloured ones as confirmed by surface temperature decay rates. Specific pigments contributing to the wine colour enhancement in uncontrolled temperature/light exposure experiments could not be identified, although tentative evidence was obtained for the presence of flavan-3-ol based compounds. The different bottle glass surfaces did not influence the rate of loss of dissolved oxygen or oxidation of ascorbic acid. The potential to develop the results obtained in this study to identify markers for light and/or temperature exposure of white wines is discussed.

  5. Serum-free light-chain analysis in diagnosis and management of multiple myeloma and related conditions.

    PubMed

    Milani, Paolo; Palladini, Giovanni; Merlini, Giampaolo

    2016-01-01

    The introduction of the serum-free light-chain (S-FLC) assay has been a breakthrough in the diagnosis and management of plasma cell dyscrasias, particularly monoclonal light-chain diseases. The first method, proposed in 2001, quantifies serum-free light-chains using polyclonal antibodies. More recently, assays based on monoclonal antibodies have entered into clinical practice. S-FLC measurement plays a central role in the screening for multiple myeloma and related conditions, in association with electrophoretic techniques. Analysis of S-FLC is essential in assessing the risk of progression of precursor diseases to overt plasma cell dyscrasias. It is also useful for risk stratification in solitary plasmacytoma and AL amyloidosis. The S-FLC measurement is part of the new diagnostic criteria for multiple myeloma, and provides a marker to follow changes in clonal substructure over time. Finally, the evaluation of S-FLC is fundamental for assessing the response to treatment in monoclonal light chain diseases.

  6. Effect of light, packaging condition and dark storage durations on colour and lipid oxidative stability of cooked ham.

    PubMed

    Haile, Demewez Moges; De Smet, Stefaan; Claeys, Erik; Vossen, Els

    2013-04-01

    The colour and lipid oxidative stability of sliced cooked ham stored at 4 °C were studied in relation to dark storage duration, lighting and packaging conditions. Colour stability was monitored by instrumental colour measurement (CIE L*a*b* colour space) whereas lipid stability was measured by the determination of the 2-thiobarbituric acid reactive substances (TBARS). A significantly higher discoloration observed in products wrapped in foil and kept in light than products wrapped in foil and kept in dark. Colour loss was estimated by loss of redness (a*), a*/b*, nitrosomyoglobin, chroma (C); or increase of lightness (L*), MetMb, hue angle (H°). Colour loss was more dependent upon photochemical process than dark storage duration and packaging types. Lipid oxidation was not significantly affected by light exposure. However lipid oxidation was significantly affected by dark storage duration as noticed from better lipid stability of products stored for short duration in dark. Better colour stability was observed on products packed in MAP with less residual oxygen.

  7. Real-world fuel efficiency and exhaust emissions of light-duty diesel vehicles and their correlation with road conditions.

    PubMed

    Hu, Jingnan; Wu, Ye; Wang, Zhishi; Li, Zhenhua; Zhou, Yu; Wang, Haitao; Bao, Xiaofeng; Hao, Jiming

    2012-01-01

    The real-world fuel efficiency and exhaust emission profiles of CO, HC and NOx for light-duty diesel vehicles were investigated. Using a portable emissions measurement system, 16 diesel taxies were tested on different roads in Macao and the data were normalized with the vehicle specific power bin method. The 11 Toyota Corolla diesel taxies have very good fuel economy of (5.9 +/- 0.6) L/100 km, while other five diesel taxies showed relatively high values at (8.5 +/- 1.7) L/100 km due to the variation in transmission systems and emission control strategies. Compared to similar Corolla gasoline models, the diesel cars confirmed an advantage of ca. 20% higher fuel efficiency. HC and CO emissions of all the 16 taxies are quite low, with the average at (0.05 +/- 0.02) g/km and (0.38 +/- 0.15) g/km, respectively. The average NOx emission factor of the 11 Corolla taxies is (0.56 +/- 0.17) g/km, about three times higher than their gasoline counterparts. Two of the three Hyundai Sonata taxies, configured with exhaust gas recirculation (EGR) + diesel oxidation catalyst (DOC) emission control strategies, indicated significantly higher NO2 emissions and NO2/NOx ratios than other diesel taxies and consequently trigger a concern of possibly adverse impacts on ozone pollution in urban areas with this technology combination. A clear and similar pattern for fuel consumption and for each of the three gaseous pollutant emissions with various road conditions was identified. To save energy and mitigate CO2 emissions as well as other gaseous pollutant emissions in urban area, traffic planning also needs improvement.

  8. Resolving High Amplitude Surface Motion with Diffusing Light

    NASA Technical Reports Server (NTRS)

    Wright, W.; Budakian, R.; Putterman, Seth J.

    1996-01-01

    A new technique has been developed for the purpose of imaging high amplitude surface motion. With this method one can quantitatively measure the transition to ripple wave turbulence. In addition, one can measure the phase of the turbulent state. These experiments reveal strong coherent structures in turbulent range of motion.

  9. [A mathematical model of water stress and light condition effects on cotton dry matter and yield formation].

    PubMed

    Liu, Xianzhao; Kang, Shaozhong; Xia, Weisheng

    2002-09-01

    A mathematical model was developed to analyze the effects of water stress and light condition on crop dry matter accumulation and yield formation based on canopy carbon net assimilation rate. The function leaf water potential (psi l) indicating the water status of canopy was incorporated into this model, according to the assumption that the canopy resistance (Rc) was increased under the conditions of water stress and low light density. Psi l was estimated by a simplified regression equation, in which, the independent variables were relative soil moisture (Aw), ambient temperature (Ta), and vapor pressure deficit (VPD). The aerodynamic resistance (Ra) in the model was defined as a function of wind speed (u), and the yield was calculated by a linear increase in harvest index (hi) with time. The modeled data agreed well with the data observed from pot experiment. Sensitivity analysis and simulation results suggested that the model could be useful in identifying environment factors, especially soil water content and light density effects on crop growth and yield formation.

  10. Temperature transmission of high-output light-curing units through dentin.

    PubMed

    Loney, R W; Price, R B

    2001-01-01

    Light-curing units used for polymerizing restorative resins produce heat during operation. Newer curing units with concentrating light guides or different light sources may require shorter curing times, however, the effect of such modifications on temperature transfer to the pulp is unknown. This study examined the effect of high output light-curing units on temperature transfer through resin composite and dentin. Temperature rise was measured for 40 seconds for one curing light (Optilux 401 Curing Light) with either a standard 8 mm light guide tip or a light-concentrating tip (Turbo Light Guide), and for three seconds with a plasma arc lamp (Apollo 95E Curing Light). Temperatures were directly recorded at the tip of the light guide and through a sandwich composed of a 1 mm thick pre-cured cylinder of resin composite and dentin (dentin thickness either 0.58 mm or 1.45 mm). The mean temperature rise ranged from 1.8degrees C, measured through the sandwich of 1 mm of composite and 1.45 mm of dentin with the plasma are unit, to 26.4degrees C measured directly on the Turbo light guide. For each light guide, the temperature increase was greatest when measured directly on the curing tip and least when measured through the composite and 1.45 mm dentin specimens. When measured through the composite/dentin sandwich, the plasma arc unit produced the lowest temperature increase (0.58 mm thick dentin specimen = 5.1 degrees C; 1.45 mm thick dentin specimen = 1.8 degrees C). For a given thickness of resin, the differences in temperature change for all comparisons among the three curing unit/light guides were significant at the 95% level of confidence. Also, for a given light, the differences in temperature for all comparisons among the dentin thicknesses were significant at the 95% level of confidence. However, there were three comparisons of light unit and dentin thickness interaction that were not significant at the 95% leyel of confidence. For all other comparisons of

  11. Robust cladding light stripper for high-power fiber lasers using soft metals.

    PubMed

    Babazadeh, Amin; Nasirabad, Reza Rezaei; Norouzey, Ahmad; Hejaz, Kamran; Poozesh, Reza; Heidariazar, Amir; Golshan, Ali Hamedani; Roohforouz, Ali; Jafari, S Naser Tabatabaei; Lafouti, Majid

    2014-04-20

    In this paper we present a novel method to reliably strip the unwanted cladding light in high-power fiber lasers. Soft metals are utilized to fabricate a high-power cladding light stripper (CLS). The capability of indium (In), aluminum (Al), tin (Sn), and gold (Au) in extracting unwanted cladding light is examined. The experiments show that these metals have the right features for stripping the unwanted light out of the cladding. We also find that the metal-cladding contact area is of great importance because it determines the attenuation and the thermal load on the CLS. These metals are examined in different forms to optimize the contact area to have the highest possible attenuation and avoid localized heating. The results show that sheets of indium are very effective in stripping unwanted cladding light.

  12. An improved method for stripping cladding light in high power fiber lasers

    NASA Astrophysics Data System (ADS)

    Li, Tenglong; Wu, Juan; Sun, Yinghong; Wang, Yanshan; Ma, Yi

    2015-02-01

    In order to ensure the high power all-fiber laser reliability and excellent beam quality, it is necessary to strip the unwanted cladding light. The common method for stripping cladding light is to recoat the double cladding fiber with a high index gel, but localized heating and low thermal conductivity of the recoating gel are the prime factors limiting the power-handling capability of the cladding power stripper(CPS). An improved fabrication technique to manufacture the CPS is presented. Light stripping section of the fiber is fused with a transparent quartz tube, by applying different amount of etchant along the quartz tube, frosted surface is created and uniformly removal of the cladding light is achieved. The quartz tube is joined to water-cooled thermal enclosure tightly without the gel to avoid heat aggregation. The power-handling capability of the device is tested under 200W of cladding light, and attenuation of 20 dB is achieved.

  13. Electrical signals in avocado trees: responses to light and water availability conditions.

    PubMed

    Oyarce, Patricio; Gurovich, Luis

    2010-01-01

    Plant responses to environmental changes are associated with electrical excitability and signaling; automatic and continuous measurements of electrical potential differences (DeltaEP) between plant tissues can be effectively used to study information transport mechanisms and physiological responses that result from external stimuli on plants. The generation and conduction of electrochemical impulses within plant different tissues and organs, resulting from abiotic and biotic changes in environmental conditions is reported. In this work, electrical potential differences are monitored continuously using Ag/AgCl microelectrodes, inserted 5 mm deep into sapwood at two positions in the trunks of several Avocado trees. Electrodes are referenced to a non polarisable Ag/AgCl microelectrode installed 20 cm deep in the soil. Systematic patterns of DeltaEP during absolute darkness, day-night cycles and different conditions of soil water availability are discussed as alternative tools to assess early plant stress conditions.

  14. Factors contributing to the high light tolerance of leaves in vivo - involvement of photo-protective energy dissipation and singlet oxygen scavenging.

    PubMed

    Hideg, Eva; Majer, Petra

    2010-01-01

    Contributions of preventive and antioxidant (energy dissipating and singlet oxygen neutralizing) processes to tolerating high light stress (photoinhibition) were examined in green-house grown tobacco (Nicotiana tabacum) plants acclimated to high or low light conditions and also in sun and shade leaves collected from a natural grown linden tree (Tilia platyphyllos). Tobacco leaves survived a short (1 h) exposure to photoinhibition by activating non-regulated non-photochemical quenching [Y(NO)] rather than relying on photo-protective, regulated non-photochemical quenching [Y(NPQ)]. Low light acclimated leaves had lower singlet oxygen scavenging ability and activated Y(NO) to a larger extent than high light acclimated ones. Low light grown leaves also suffered singlet oxygen mediated photo-damage, while no singlet oxygen was detected in high light acclimated leaves during photoinhibition. Natural grown linden leaves, however, coped with prolonged daily exposures to high light mainly by activating regulated non-photochemical quenching Y(NPQ), although they also featured very efficient singlet oxygen neutralizing. Our results suggest that high light tolerance is achieved by preventing photoinhibition of photosystem II via efficient photo-protective energy dissipation rather than relying on quenching of stress-induced pro-oxidative agents.

  15. SPIM-fluid: open source light-sheet based platform for high-throughput imaging

    PubMed Central

    Gualda, Emilio J.; Pereira, Hugo; Vale, Tiago; Estrada, Marta Falcão; Brito, Catarina; Moreno, Nuno

    2015-01-01

    Light sheet fluorescence microscopy has recently emerged as the technique of choice for obtaining high quality 3D images of whole organisms/embryos with low photodamage and fast acquisition rates. Here we present an open source unified implementation based on Arduino and Micromanager, which is capable of operating Light Sheet Microscopes for automatized 3D high-throughput imaging on three-dimensional cell cultures and model organisms like zebrafish, oriented to massive drug screening. PMID:26601007

  16. Characteristics of High-Efficient InGaN-Based White LED Lighting

    DTIC Science & Technology

    2000-07-01

    UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADPO 11311 TITLE: Characteristics of High-Efficient InGaN -Based White LED ...thru ADP011332 UNCLASSIFIED Characteristics of high-efficient InGaN -based white LED lighting Yuji Uchida’, Tatsumi Setomoto’, Tsunemasa Taguchi...characteristics of an efficient white LEDs lighting source, which is composed of cannon-ball type 10 cd-class InGaN -based white LEDs , are described. It is

  17. Current-confinement structure and extremely high current density in organic light-emitting transistors.

    PubMed

    Sawabe, Kosuke; Imakawa, Masaki; Nakano, Masaki; Yamao, Takeshi; Hotta, Shu; Iwasa, Yoshihiro; Takenobu, Taishi

    2012-12-04

    Extremely high current densities are realized in single-crystal ambipolar light-emitting transistors using an electron-injection buffer layer and a current-confinement structure via laser etching. Moreover, a linear increase in the luminance was observed at current densities of up to 1 kA cm(-2) , which is an efficiency-preservation improvement of three orders of magnitude over conventional organic light-emitting diodes (OLEDs) at high current densities.

  18. High opportunity for postcopulatory sexual selection under field conditions.

    PubMed

    Turnell, Biz R; Shaw, Kerry L

    2015-08-01

    In polygamous systems, male fitness is determined not only by mating success but also by fertilization success. Despite the growing interest over the past several decades in postcopulatory sexual selection, its relative importance compared to precopulatory sexual selection remains a subject of debate. Here, we use extensive behavioral observations of a seminatural population of Hawaiian swordtail crickets, Laupala cerasina, and molecular paternity assignment to measure the opportunities for pre- and postcopulatory selection. Because postcopulatory selection has the potential to operate at multiple stages, we also separately attribute its effects to factors specific to mating events versus factors specific to males. We find that variance in postcopulatory success is over four times as great as variance in precopulatory success, with most of it unexplained by male mating order or the number of nuptial gifts given. Surprisingly, we also find that male singing effort is under postcopulatory selection, suggesting that males who sing more frequently also have more competitive ejaculates. Our results are consistent with the hypothesis that high polyandry levels promote greater relative postcopulatory selection. They also highlight the need for detailed behavioral observations under conditions as natural as possible when measuring mating and reproductive success.

  19. Assessment of weak light condition in parallel four-step phase-shifting digital holography.

    PubMed

    Miao, Lin; Nitta, Kouichi; Matoba, Osamu; Awatsuji, Yasuhiro

    2013-01-01

    Minimum optical energy required for four-step parallel phase-shifting digital holography (PPSDH) is evaluated numerically by using photon-counting analysis. PPSDH enables us to develop instantaneous three-dimensional (3D) measurement by single-shot measurement. In fast measurement of dynamic 3D events, detected optical power at an image sensor will be decreased. For biomedical sensing, maximum light intensity exists for preventing the damage of the tissue. In the numerical evaluation, a photon-counting approach is used for the evaluation of minimum detected energy by comparing the reconstructed images. Numerical results indicate that hundreds of photons at each pixel in the image sensor are enough for the reconstruction and total detected energy in a multiplexed hologram is about 1 pJ.

  20. Light-driven topochemical polymerization under organogel conditions of a symmetrical dipeptide-diacetylene system.

    PubMed

    Mazzier, Daniela; Mosconi, Dario; Marafon, Giulia; Reheman, Aikebaier; Toniolo, Claudio; Moretto, Alessandro

    2017-02-01

    A symmetrical dipeptide-based diacetylene system (DAs) was found to be able to self-assemble in dichloromethane and to form a compact fiber network which resulted in a stable organogel. As a consequence of the organogel formation, we explored the possibility to run a light-induced topochemical polymerization. This is a typical reaction of ordered diacetylene moieties taking advantage from their organized packing mode resulting from fiber formation. Evidence for the generation of peptide-based polydiacetylenes is provided by Raman, UV-Vis, and CD spectroscopies and a set of microscopic techniques. Finally, we succeeded in processing a polymeric composite by use of the electrospinning technique, starting from a mixture of a dipeptide-based diacetylene and polymethyl methacrylate. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.

  1. Conditional repair by locally switching the thermal healing capability of dynamic covalent polymers with light

    PubMed Central

    Fuhrmann, Anne; Göstl, Robert; Wendt, Robert; Kötteritzsch, Julia; Hager, Martin D.; Schubert, Ulrich S.; Brademann-Jock, Kerstin; Thünemann, Andreas F.; Nöchel, Ulrich; Behl, Marc; Hecht, Stefan

    2016-01-01

    Healable materials could play an important role in reducing the environmental footprint of our modern technological society through extending the life cycles of consumer products and constructions. However, as most healing processes are carried out by heat alone, the ability to heal damage generally kills the parent material's thermal and mechanical properties. Here we present a dynamic covalent polymer network whose thermal healing ability can be switched ‘on' and ‘off' on demand by light, thereby providing local control over repair while retaining the advantageous macroscopic properties of static polymer networks. We employ a photoswitchable furan-based crosslinker, which reacts with short and mobile maleimide-substituted poly(lauryl methacrylate) chains forming strong covalent bonds while simultaneously allowing the reversible, spatiotemporally resolved control over thermally induced de- and re-crosslinking. We reason that our system can be adapted to more complex materials and has the potential to impact applications in responsive coatings, photolithography and microfabrication. PMID:27941924

  2. Comparison of Color Model in Cotton Image Under Conditions of Natural Light

    NASA Astrophysics Data System (ADS)

    Zhang, J. H.; Kong, F. T.; Wu, J. Z.; Wang, S. W.; Liu, J. J.; Zhao, P.

    Although the color images contain a large amount of information reflecting the species characteristics, different color models also get different information. The selection of color models is the key to separating crops from background effectively and rapidly. Taking the cotton images collected under natural light as the object, we convert the color components of RGB color model, HSL color model and YIQ color model respectively. Then, we use subjective evaluation and objective evaluation methods, evaluating the 9 color components of conversion. It is concluded that the Q component of the soil, straw and plastic film region gray values remain the same without larger fluctuation when using subjective evaluation method. In the objective evaluation, we use the variance method, average gradient method, gray prediction objective evaluation error statistics method and information entropy method respectively to find the minimum numerical of Q color component suitable for background segmentation.

  3. Conditional repair by locally switching the thermal healing capability of dynamic covalent polymers with light

    NASA Astrophysics Data System (ADS)

    Fuhrmann, Anne; Göstl, Robert; Wendt, Robert; Kötteritzsch, Julia; Hager, Martin D.; Schubert, Ulrich S.; Brademann-Jock, Kerstin; Thünemann, Andreas F.; Nöchel, Ulrich; Behl, Marc; Hecht, Stefan

    2016-12-01

    Healable materials could play an important role in reducing the environmental footprint of our modern technological society through extending the life cycles of consumer products and constructions. However, as most healing processes are carried out by heat alone, the ability to heal damage generally kills the parent material's thermal and mechanical properties. Here we present a dynamic covalent polymer network whose thermal healing ability can be switched `on' and `off' on demand by light, thereby p