Sample records for high light extraction

  1. Smooth light extraction in lighting optical fibre

    NASA Astrophysics Data System (ADS)

    Fernandez-Balbuena, A. A.; Vazquez-Molini, D.; Garcia-Botella, A.; Martinez-Anton, J. C.; Bernabeu, E.

    2011-10-01

    Recent advances in LED technology have relegated the use of optical fibre for general lighting, but there are several applications where it can be used as scanners lighting systems, daylight, cultural heritage lighting, sensors, explosion risky spaces, etc. Nowadays the use of high intensity LED to inject light in optical fibre increases the possibility of conjugate fibre + LED for lighting applications. New optical fibres of plastic materials, high core diameter up to 12.6 mm transmit light with little attenuation in the visible spectrum but there is no an efficient and controlled way to extract the light during the fibre path. Side extracting fibres extracts all the light on 2π angle so is not well suited for controlled lighting. In this paper we present an extraction system for mono-filament optical fibre which provides efficient and controlled light distribution. These lighting parameters can be controlled with an algorithm that set the position, depth and shape of the optical extraction system. The extraction system works by total internal reflection in the core of the fibre with high efficiency and low cost. A 10 m length prototype is made with 45° sectional cuts in the fibre core as extraction system. The system is tested with a 1W white LED illuminator in one side.

  2. High extraction efficiency ultraviolet light-emitting diode

    DOEpatents

    Wierer, Jonathan; Montano, Ines; Allerman, Andrew A.

    2015-11-24

    Ultraviolet light-emitting diodes with tailored AlGaN quantum wells can achieve high extraction efficiency. For efficient bottom light extraction, parallel polarized light is preferred, because it propagates predominately perpendicular to the QW plane and into the typical and more efficient light escape cones. This is favored over perpendicular polarized light that propagates along the QW plane which requires multiple, lossy bounces before extraction. The thickness and carrier density of AlGaN QW layers have a strong influence on the valence subband structure, and the resulting optical polarization and light extraction of ultraviolet light-emitting diodes. At Al>0.3, thinner QW layers (<2.5 nm are preferred) result in light preferentially polarized parallel to the QW plane. Also, active regions consisting of six or more QWs, to reduce carrier density, and with thin barriers, to efficiently inject carriers in all the QWs, are preferred.

  3. Numerical analysis of light extraction enhancement of GaN-based thin-film flip-chip light-emitting diodes with high-refractive-index buckling nanostructures

    NASA Astrophysics Data System (ADS)

    Yue, Qing-Yang; Yang, Yang; Cheng, Zhen-Jia; Guo, Cheng-Shan

    2018-06-01

    In this work, the light extraction efficiency enhancement of GaN-based thin-film flip-chip (TFFC) light-emitting diodes (LEDs) with high-refractive-index (TiO2) buckling nanostructures was studied using the three-dimensional finite difference time domain method. Compared with 2-D photonic crystals, the buckling structures have the advantages of a random directionality and a broad distribution in periodicity, which can effectively extract the guided light propagating in all azimuthal directions over a wide spectrum. Numerical studies revealed that the light extraction efficiency of buckling-structured LEDs reaches 1.1 times that of triangular lattice photonic crystals. The effects of the buckling structure feature sizes and the thickness of the N-GaN layer on the light extraction efficiency for TFFC LEDs were also investigated systematically. With optimized structural parameters, a significant light extraction enhancement of about 2.6 times was achieved for TiO2 buckling-structured TFFC LEDs compared with planar LEDs.

  4. Extraction of surface plasmons in organic light-emitting diodes via high-index coupling.

    PubMed

    Scholz, Bert J; Frischeisen, Jörg; Jaeger, Arndt; Setz, Daniel S; Reusch, Thilo C G; Brütting, Wolfgang

    2012-03-12

    The efficiency of organic light-emitting diodes (OLEDs) is still limited by poor light outcoupling. In particular, the excitation of surface plasmon polaritons (SPPs) at metal-organic interfaces represents a major loss channel. By combining optical simulations and experiments on simplified luminescent thin-film structures we elaborate the conditions for the extraction of SPPs via coupling to high-index media. As a proof-of-concept, we demonstrate the possibility to extract light from wave-guided modes and surface plasmons in a top-emitting white OLED by a high-index prism.

  5. [Progress of light extraction enhancement in organic light-emitting devices].

    PubMed

    Liu, Mo; Li, Tong; Wang, Yan; Zhang, Tian-Yu; Xie, Wen-Fa

    2011-04-01

    Organic light emitting devices (OLEDs) have been used in flat-panel displays and lighting with a near-30-year development. OLEDs possess many advantages, such as full solid device, fast response, flexible display, and so on. As the application of phosphorescence material, the internal quantum efficiency of OLED has almost reached 100%, but its external quantum efficiency is still not very high due to the low light extraction efficiency. In this review the authors summarizes recent advances in light extraction techniques that have been developed to enhance the light extraction efficiency of OLEDs.

  6. Enhancement of white light OLED efficiency by combining both internal and external light extraction structures

    NASA Astrophysics Data System (ADS)

    Kao, I.-Ling; Ku, Chun-Neng; Chen, Yi-Ping; Lin, Ding-Zheng

    2012-09-01

    We proposed an internal nanostructure with a high reflective index planarization layer to solve the optical loss due to the reflective index mismatch between ITO and glass substrate. In our experiments, we found the electrical property of OLED device was significantly influenced by the internal nanostructures without planarization layer. Moreover, the internal extraction structure (IES) is not necessarily beneficial for light extraction. Therefore, we proposed a new substrate combine both internal and external extraction structure (EES) to extract trapping light. We successfully developed a high refractive index (N 1.7) planarization material with flat surface (RMS roughness < 2 nm), and improved about 70% device efficiency compared to traditional glass substrate.

  7. Thue-Morse nanostructures for tunable light extraction in the visible region

    NASA Astrophysics Data System (ADS)

    Rippa, M.; Castagna, R.; Marino, A.; Tkachenko, V.; Palermo, G.; Pane, A.; Umeton, C.; Tabiryan, N.; Petti, L.

    2018-05-01

    Controlling light propagation at the nanoscale is a fascinating opportunity offered by modern photonics, more than a challenge to face off. This study is aimed at investigating a particular kind of nanocomposite and reconfigurable optical metamaterials that can be exploited for the realization of a new class of switchable photonic devices, representing a breakthrough with respect to the state of the art. Existing photonic devices exhibit, in general, a drawback in the absence of tunability; this work aims to the design and characterization of metamaterials exploiting reconfigurable media, like LCs, which enable realization of a tunable, high quality, photonic quasi-crystal based switchable mode selector. It turned out that, starting from an unpolarized white light source, through a light extraction mechanism based on the diffraction of light, the high quality structure, combined with a uniformly aligned Photo-responsive Liquid Crystal (PLC), is able to give rise to an extremely narrow (FWHM ≈5 nm) and linearly polarized single mode peak of the extracted light intensity. Moreover, we have shown that the spectral properties (switching) of the samples can be finely controlled by using both an external applied voltage and a suitable pump light source with a maximum increase of 45% of the extracted light. Finally, both Scanning Electron Microscopy (SEM) and Far Field Diffraction (FFD) analysis have shown the high quality morphology of the realized structure.

  8. High-Efficiency Nitride-Base Photonic Crystal Light Sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James Speck; Evelyn Hu; Claude Weisbuch

    2010-01-31

    The research activities performed in the framework of this project represent a major breakthrough in the demonstration of Photonic Crystals (PhC) as a competitive technology for LEDs with high light extraction efficiency. The goals of the project were to explore the viable approaches to manufacturability of PhC LEDS through proven standard industrial processes, establish the limits of light extraction by various concepts of PhC LEDs, and determine the possible advantages of PhC LEDs over current and forthcoming LED extraction concepts. We have developed three very different geometries for PhC light extraction in LEDs. In addition, we have demonstrated reliable methodsmore » for their in-depth analysis allowing the extraction of important parameters such as light extraction efficiency, modal extraction length, directionality, internal and external quantum efficiency. The information gained allows better understanding of the physical processes and the effect of the design parameters on the light directionality and extraction efficiency. As a result, we produced LEDs with controllable emission directionality and a state of the art extraction efficiency that goes up to 94%. Those devices are based on embedded air-gap PhC - a novel technology concept developed in the framework of this project. They rely on a simple and planar fabrication process that is very interesting for industrial implementation due to its robustness and scalability. In fact, besides the additional patterning and regrowth steps, the process is identical as that for standard industrially used p-side-up LEDs. The final devices exhibit the same good electrical characteristics and high process yield as a series of test standard LEDs obtained in comparable conditions. Finally, the technology of embedded air-gap patterns (PhC) has significant potential in other related fields such as: increasing the optical mode interaction with the active region in semiconductor lasers; increasing the coupling of the incident light into the active region of solar cells; increasing the efficiency of the phosphorous light conversion in white light LEDs etc. In addition to the technology of embedded PhC LEDs, we demonstrate a technique for improvement of the light extraction and emission directionality for existing flip-chip microcavity (thin) LEDs by introducing PhC grating into the top n-contact. Although, the performances of these devices in terms of increase of the extraction efficiency are not significantly superior compared to those obtained by other techniques like surface roughening, the use of PhC offers some significant advantages such as improved and controllable emission directionality and a process that is directly applicable to any material system. The PhC microcavity LEDs have also potential for industrial implementation as the fabrication process has only minor differences to that already used for flip-chip thin LEDs. Finally, we have demonstrated that achieving good electrical properties and high fabrication yield for these devices is straightforward.« less

  9. ELiXIR—Solid-State Luminaire With Enhanced Light Extraction by Internal Reflection

    NASA Astrophysics Data System (ADS)

    Allen, Steven C.; Steckl, Andrew J.

    2007-06-01

    A phosphor-converted light-emitting diode (pcLED) luminaire featuring enhanced light extraction by internal reflection (ELiXIR) with efficacy of 60 lm/W producing 18 lumens of yellowish green light at 100 mA is presented. The luminaire consists of a commercial blue high power LED, a polymer hemispherical shell lens with interior phosphor coating, and planar aluminized reflector. High extraction efficiency of the phosphor-converted light is achieved by separating the phosphor from the LED and using internal reflection to steer the light away from lossy reflectors and the LED package and out of the device. At 10 and 500 mA, the luminaire produces 2.1 and 66 lumens with efficacies of 80 and 37 lm/W, respectively. Technological improvements over existing commercial LEDs, such as more efficient pcLED packages or, alternatively, higher efficiency green or yellow for color mixing, will be essential to achieving 150 200 lm/W solid-state lighting. Advances in both areas are demonstrated.

  10. Effect of Pulsed Ultraviolet Light and High Hydrostatic Pressure on the Antigenicity of Almond Protein Extracts.

    USDA-ARS?s Scientific Manuscript database

    The efficacy of pulsed ultraviolet light (PUV) and high hydrostatic pressure (HHP) on reducing the IgE binding to the almond extracts, was studied using SDS-PAGE, Western Blot, and ELISA probed with human plasma containing IgE antibodies to almond allergens, and a polyclonal antibody against almond ...

  11. Solvent Extraction of Rare Earth Elements from a Nitric Acid Leach Solution of Apatite by Mixtures of Tributyl Phosphate and Di-(2-ethylhexyl) Phosphoric Acid

    NASA Astrophysics Data System (ADS)

    Ferdowsi, Ali; Yoozbashizadeh, Hossein

    2017-12-01

    Solvent extraction of rare earths from nitrate leach liquor of apatite using mixtures of tributyl phosphate (TBP) and di-(2-ethylhexyl) phosphoric acid (D2EHPA) was studied. The effects of nitrate and hydrogen ion concentration of the aqueous phase as well as the composition and concentration of extractants in the organic phase on the extraction behavior of lanthanum, cerium, neodymium, and yttrium were investigated. The distribution ratio of REEs increases by increasing the nitrate concentration in aqueous phase and concentration of extractants in organic phase, but the hydrogen ion concentration in aqueous phase has a decreasing effect. Yttrium as a heavy rare earth is more sensitive to these parameters than light rare earth elements. Although the composition of organic phase has a minor effect on the extraction of light rare earths, the percent of extraction of yttrium decreases dramatically by increasing the TBP content of organic phase. Mixtures of TBP and D2EHPA can show either synergism or antagonism extraction depending on the concentration and composition of extractants in organic phase. The best condition for separating rare earth elements in groups of heavy and light REEs can be achieved at high nitrate concentration, low H+ concentration, and high concentration of D2EHPA in organic phase. Separation of Ce and La by TBP and D2EHPA is practically impossible in the studied conditions; however, low nitrate concentration and high hydrogen ion concentration in aqueous phase and low concentration of extractants in organic phase favor the separation of Nd from other light rare earth elements.

  12. Less strained and more efficient GaN light-emitting diodes with embedded silica hollow nanospheres

    PubMed Central

    Kim, Jonghak; Woo, Heeje; Joo, Kisu; Tae, Sungwon; Park, Jinsub; Moon, Daeyoung; Park, Sung Hyun; Jang, Junghwan; Cho, Yigil; Park, Jucheol; Yuh, Hwankuk; Lee, Gun-Do; Choi, In-Suk; Nanishi, Yasushi; Han, Heung Nam; Char, Kookheon; Yoon, Euijoon

    2013-01-01

    Light-emitting diodes (LEDs) become an attractive alternative to conventional light sources due to high efficiency and long lifetime. However, different material properties between GaN and sapphire cause several problems such as high defect density in GaN, serious wafer bowing, particularly in large-area wafers, and poor light extraction of GaN-based LEDs. Here, we suggest a new growth strategy for high efficiency LEDs by incorporating silica hollow nanospheres (S-HNS). In this strategy, S-HNSs were introduced as a monolayer on a sapphire substrate and the subsequent growth of GaN by metalorganic chemical vapor deposition results in improved crystal quality due to nano-scale lateral epitaxial overgrowth. Moreover, well-defined voids embedded at the GaN/sapphire interface help scatter lights effectively for improved light extraction, and reduce wafer bowing due to partial alleviation of compressive stress in GaN. The incorporation of S-HNS into LEDs is thus quite advantageous in achieving high efficiency LEDs for solid-state lighting. PMID:24220259

  13. Enhanced light extraction in tunnel junction-enabled top emitting UV LEDs

    DOE PAGES

    Zhang, Yuewei; Allerman, Andrew A.; Krishnamoorthy, Sriram; ...

    2016-04-11

    The efficiency of ultra violet LEDs has been critically limited by the absorption losses in p-type and metal layers. In this work, surface roughening based light extraction structures are combined with tunneling based p-contacts to realize highly efficient top-side light extraction efficiency in UV LEDs. Surface roughening of the top n-type AlGaN contact layer is demonstrated using self-assembled Ni nano-clusters as etch mask. The top surface roughened LEDs were found to enhance external quantum efficiency by over 40% for UV LEDs with a peak emission wavelength of 326 nm. The method described here can enable highly efficient UV LEDs withoutmore » the need for complex manufacturing methods such as flip chip bonding.« less

  14. Preventing Ultraviolet Light-Induced Damage: The Benefits of Antioxidants

    ERIC Educational Resources Information Center

    Yip, Cheng-Wai

    2007-01-01

    Extracts of fruit peels contain antioxidants that protect the bacterium "Escherichia coli" against damage induced by ultraviolet light. Antioxidants neutralise free radicals, thus preventing oxidative damage to cells and deoxyribonucleic acid. A high survival rate of UV-exposed cells was observed when grapefruit or grape peel extract was…

  15. Light-extraction enhancement for light-emitting diodes: a firefly-inspired structure refined by the genetic algorithm

    NASA Astrophysics Data System (ADS)

    Bay, Annick; Mayer, Alexandre

    2014-09-01

    The efficiency of light-emitting diodes (LED) has increased significantly over the past few years, but the overall efficiency is still limited by total internal reflections due to the high dielectric-constant contrast between the incident and emergent media. The bioluminescent organ of fireflies gave incentive for light-extraction enhance-ment studies. A specific factory-roof shaped structure was shown, by means of light-propagation simulations and measurements, to enhance light extraction significantly. In order to achieve a similar effect for light-emitting diodes, the structure needs to be adapted to the specific set-up of LEDs. In this context simulations were carried out to determine the best geometrical parameters. In the present work, the search for a geometry that maximizes the extraction of light has been conducted by using a genetic algorithm. The idealized structure considered previously was generalized to a broader variety of shapes. The genetic algorithm makes it possible to search simultaneously over a wider range of parameters. It is also significantly less time-consuming than the previous approach that was based on a systematic scan on parameters. The results of the genetic algorithm show that (1) the calculations can be performed in a smaller amount of time and (2) the light extraction can be enhanced even more significantly by using optimal parameters determined by the genetic algorithm for the generalized structure. The combination of the genetic algorithm with the Rigorous Coupled Waves Analysis method constitutes a strong simulation tool, which provides us with adapted designs for enhancing light extraction from light-emitting diodes.

  16. Two-color light-emitting diodes with polarization-sensitive high extraction efficiency based on graphene

    NASA Astrophysics Data System (ADS)

    H, Sattarian; S, Shojaei; E, Darabi

    2016-05-01

    In the present study, graphene photonic crystals are employed to enhance the light extraction efficiency (LEE) of two-color, red and blue, light-emitting diode (LED). The transmission characteristics of one-dimensional (1D) Fibonacci graphene photonic crystal LED (FGPC-LED) are investigated by using the transfer matrix method and the scaling study is presented. We analyzed the influence of period, thickness, and permittivity in the structure to enhance the LEE. The transmission spectrum of 1D FGPC has been optimized in detail. In addition, the effects of the angle of incidence and the state of polarization are investigated. As the main result, we found the optimum values of relevant parameters to enhance the extraction of red and blue light from an LED as well as provide perfect omnidirectional and high peak transmission filters for the TE and TM modes.

  17. Investigation of saponification for determination of polychlorinated biphenyls in marine sediments.

    PubMed

    Numata, Masahiko; Yarita, Takashi; Aoyagi, Yoshie; Yamazaki, Misako; Takatsu, Akiko

    2005-02-01

    The effects of saponification conditions (temperature and water content of saponifying solution) on the determination of chlorinated biphenyls (CBs) in marine sediments were investigated. Although highly chlorinated biphenyls (nona- to deca-CBs) decomposed during high-temperature saponification, the degree of degradation was reduced by adding water to the ethanolic potassium hydroxide saponifying solution. Room-temperature saponification yielded quantitative recovery of highly chlorinated biphenyl surrogates but low extraction efficiencies of lightly chlorinated biphenyls (mono- to di-CBs). The same samples were analyzed by other extraction techniques, for example, pressurized liquid extraction, and analytical results were compared. The mono- and di-CB concentrations were correlated with the extraction temperatures of various extraction techniques. In particular, the concentrations of some CB congeners (CB11, CB14) were higher with saponification. The low degree of degradation of highly chlorinated biphenyls and the high recovery of lightly chlorinated biphenyls were compatible when room-temperature and high-temperature saponification were combined. Except for the anomalies of CB11 and CB14, the combined method gave satisfactory results for analysis of PCBs.

  18. Light extraction block with curved surface

    DOEpatents

    Levermore, Peter; Krall, Emory; Silvernail, Jeffrey; Rajan, Kamala; Brown, Julia J.

    2016-03-22

    Light extraction blocks, and OLED lighting panels using light extraction blocks, are described, in which the light extraction blocks include various curved shapes that provide improved light extraction properties compared to parallel emissive surface, and a thinner form factor and better light extraction than a hemisphere. Lighting systems described herein may include a light source with an OLED panel. A light extraction block with a three-dimensional light emitting surface may be optically coupled to the light source. The three-dimensional light emitting surface of the block may includes a substantially curved surface, with further characteristics related to the curvature of the surface at given points. A first radius of curvature corresponding to a maximum principal curvature k.sub.1 at a point p on the substantially curved surface may be greater than a maximum height of the light extraction block. A maximum height of the light extraction block may be less than 50% of a maximum width of the light extraction block. Surfaces with cross sections made up of line segments and inflection points may also be fit to approximated curves for calculating the radius of curvature.

  19. White organic light emitting diodes with enhanced internal and external outcoupling for ultra-efficient light extraction and Lambertian emission.

    PubMed

    Bocksrocker, Tobias; Preinfalk, Jan Benedikt; Asche-Tauscher, Julian; Pargner, Andreas; Eschenbaum, Carsten; Maier-Flaig, Florian; Lemme, Uli

    2012-11-05

    White organic light emitting diodes (WOLEDs) suffer from poor outcoupling efficiencies. The use of Bragg-gratings to enhance the outcoupling efficiency is very promising for light extraction in OLEDs, but such periodic structures can lead to angular or spectral dependencies in the devices. Here we present a method which combines highly efficient outcoupling by a TiO(2)-Bragg-grating leading to a 104% efficiency enhancement and an additional high quality microlens diffusor at the substrate/air interface. With the addition of this diffusor, we achieved not only a uniform white emission, but also further increased the already improved device efficiency by another 94% leading to an overall enhancement factor of about 4.

  20. Demonstration of a simplified optical mouse lighting module by integrating the non-Lambertian LED chip and the free-form surface.

    PubMed

    Pan, Jui-Wen; Tu, Sheng-Han

    2012-05-20

    A cost-effective, high-throughput, and high-yield method for the efficiency enhancement of an optical mouse lighting module is proposed. We integrated imprinting technology and free-form surface design to obtain a lighting module with high illumination efficiency and uniform intensity distribution. The imprinting technique can increase the light extraction efficiency and modulate the intensity distribution of light-emitting diodes. A modulated light source was utilized to add a compact free-form surface element to create a lighting module with 95% uniformity and 80% optical efficiency.

  1. OLED lighting devices having multi element light extraction and luminescence conversion layer

    DOEpatents

    Krummacher, Benjamin Claus; Antoniadis, Homer

    2010-11-16

    An apparatus such as a light source has a multi element light extraction and luminescence conversion layer disposed over a transparent layer of the light source and on the exterior of said light source. The multi-element light extraction and luminescence conversion layer includes a plurality of light extraction elements and a plurality of luminescence conversion elements. The light extraction elements diffuses the light from the light source while luminescence conversion elements absorbs a first spectrum of light from said light source and emits a second spectrum of light.

  2. GaN-based LEDs with a high light extraction composite surface structure fabricated by a modified YAG laser lift-off technology and the patterned sapphire substrates

    NASA Astrophysics Data System (ADS)

    Sun, Yongjian; Trieu, Simeon; Yu, Tongjun; Chen, Zhizhong; Qi, Shengli; Tian, Pengfei; Deng, Junjing; Jin, Xiaoming; Zhang, Guoyi

    2011-08-01

    Vertical structure LEDs have been fabricated with a novel light extraction composite surface structure composed of a micron grating and nano-structure. The composite surface structure was generated by using a modified YAG laser lift-off technique, separating the wafers from cone-shaped patterned sapphire substrates. LEDs thus fabricated showed the light output power increase about 1.7-2.5 times when compared with conventional vertical structure LEDs grown on plane sapphire substrates. A three-dimensional finite difference time domain method was used to simulate this new kind of LED device. It was determined that nano-structures in composite surface patterns play a key role in the improvement of light extraction efficiency of LEDs.

  3. Self-seeded injection-locked FEL amplifer

    DOEpatents

    Sheffield, Richard L.

    1999-01-01

    A self-seeded free electron laser (FEL) provides a high gain and extraction efficiency for the emitted light. An accelerator outputs a beam of electron pulses to a permanent magnet wiggler having an input end for receiving the electron pulses and an output end for outputting light and the electron pulses. An optical feedback loop collects low power light in a small signal gain regime at the output end of said wiggler and returns the low power light to the input end of the wiggler while outputting high power light in a high signal gain regime.

  4. Device structure for OLED light device having multi element light extraction and luminescence conversion layer

    DOEpatents

    Antoniadis,; Homer, Krummacher [Mountain View, CA; Claus, Benjamin [Regensburg, DE

    2008-01-22

    An apparatus such as a light source has a multi-element light extraction and luminescence conversion layer disposed over a transparent layer of the light source and on the exterior of said light source. The multi-element light extraction and luminescence conversion layer includes a plurality of light extraction elements and a plurality of luminescence conversion elements. The light extraction elements diffuses the light from the light source while luminescence conversion elements absorbs a first spectrum of light from said light source and emits a second spectrum of light.

  5. Optical Analysis of Power Distribution in Top-Emitting Organic Light Emitting Diodes Integrated with Nanolens Array Using Finite Difference Time Domain.

    PubMed

    Han, Kyung-Hoon; Park, Young-Sam; Cho, Doo-Hee; Han, Yoonjay; Lee, Jonghee; Yu, Byounggon; Cho, Nam Sung; Lee, Jeong-Ik; Kim, Jang-Joo

    2018-06-06

    Recently, we have addressed that a formation mechanism of a nanolens array (NLA) fabricated by using a maskless vacuum deposition is explained as the increase in surface tension of organic molecules induced by their crystallization. Here, as another research using finite difference time domain simulations, not electric field intensities but transmitted energies of electromagnetic waves inside and outside top-emitting blue organic light-emitting diodes (TOLEDs), without and with NLAs, are obtained, to easily grasp the effect of NLA formation on the light extraction of TOLEDs. Interestingly, the calculations show that NLA acts as an efficient light extraction structure. With NLA, larger transmitted energies in the direction from emitting layer to air are observed, indicating that NLAs send more light to air otherwise trapped in the devices by reducing the losses by waveguide and absorption. This is more significant for higher refractive index of NLA. Simulation and measurement results are consistent. A successful increase in both light extraction efficiency and color stability of blue TOLEDs, rarely reported before, is accomplished by introducing the highly process-compatible NLA technology using the one-step dry process. Blue TOLEDs integrated with a N, N'-di(1-naphthyl)- N, N'-diphenyl-(1,1'-biphenyl)-4,4'-diamine NLA with a refractive index of 1.8 show a 1.55-times-higher light extraction efficiency, compared to those without it. In addition, viewing angle characteristics are enhanced and image blurring is reduced, indicating that the manufacturer-adaptable technology satisfies the requirements of highly efficient and color-stable top-emission displays.

  6. Black bean coats: New source of anthocyanins stabilized by β-cyclodextrin copigmentation in a sport beverage.

    PubMed

    Aguilera, Yolanda; Mojica, Luis; Rebollo-Hernanz, Miguel; Berhow, Mark; de Mejía, Elvira González; Martín-Cabrejas, María A

    2016-12-01

    Anthocyanin-rich powders and aqueous extracts, with high antioxidant activities, were obtained from black bean seed coats and applied to colour a sport beverage. Idaho and Otomi bean coats were extracted in water-citric acid 2% (1/50, w/v), stirring for 4h at 40°C. Anthocyanins from Idaho and Otomi extracts (1.83mg and 1.02mg C3G/g, respectively) were applied to a commercially available sport beverage, with and without 2% β-cyclodextrin (βCD) under light and darkness conditions for 10days, and stored at 4°C and 25°C for 6weeks. At different light and storage conditions, anthocyanin degradation fitted a first-order reaction model. All bean coat anthocyanins combined with βCD showed extended half-life (up to 13months), higher D-values (up to 43months) and fewer differences in colourimetric properties (lightness, chroma and hue angle) under darkness and 4°C conditions. These black bean coat aqueous extracts and powders might represent natural alternatives to synthetic colorants, ecologically extracted, and with a high antioxidant potential. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Simplified Generation of High-Angular-Momentum Light Beams

    NASA Technical Reports Server (NTRS)

    Savchenkov, Anatoliy; Maleki, Lute; Matsko, Andrey; Strekalov, Dmitry; Grudinin, Ivan

    2007-01-01

    A simplified method of generating a beam of light having a relatively high value of angular momentum (see figure) involves the use of a compact apparatus consisting mainly of a laser, a whispering- gallery-mode (WGM) resonator, and optical fibers. The method also can be used to generate a Bessel beam. ( Bessel beam denotes a member of a class of non-diffracting beams, so named because their amplitudes are proportional to Bessel functions of the radii from their central axes. High-order Bessel beams can have high values of angular momentum.) High-angular-momentum light beams are used in some applications in biology and nanotechnology, wherein they are known for their ability to apply torque to make microscopic objects rotate. High-angular-momentum light beams could also be used to increase bandwidths of fiber-optic communication systems. The present simplified method of generating a high-angular-momentum light beam was conceived as an alternative to prior such methods, which are complicated and require optical setups that include, variously, holograms, modulating Fabry-Perot cavities, or special microstructures. The present simplified method exploits a combination of the complex structure of the electromagnetic field inside a WGM resonator, total internal reflection in the WGM resonator, and the electromagnetic modes supported by an optical fiber. The optical fiber used to extract light from the WGM resonator is made of fused quartz. The output end of this fiber is polished flat and perpendicular to the fiber axis. The input end of this fiber is cut on a slant and placed very close to the WGM resonator at an appropriate position and orientation. To excite the resonant whispering- gallery modes, light is introduced into the WGM resonator via another optical fiber that is part of a pigtailed fiber-optic coupler. Light extracted from the WGM resonator is transformed into a high-angular- momentum beam inside the extraction optical fiber and this beam is emitted from the polished flat output end. By adjusting the geometry of this apparatus, it is possible to generate a variety of optical beams characterized by a wide range of parameters. These beams generally have high angular momenta and can be of either Bessel or Bessel-related types.

  8. Red Light-enhanced Phytochrome Pelletability

    PubMed Central

    Pratt, Lee H.; Marmé, Dieter

    1976-01-01

    Red light-enhanced pelletability of phytochrome was observed in extracts of all 11 plants tested: Avena sativa L., Secale cereale L., Zea mays L., Cucurbita pepo L., Sinapis alba L., Pisum sativum L., Helianthus anuus L., Raphanus sativus L., Glycine max (L.) Merr., Phaseolus vulgaris L., and Lupinus albus L. This enhanced pelletability was observed in all 11 plants following in situ irradiation (in vivo binding) but only in Sinapis and Cucurbita after irradiation of crude extracts (in vitro binding). In vivo binding was not strongly dependent upon pH and, with few exceptions, was not markedly sensitive to high salt concentration, whereas in vitro binding was completely reversed by both high pH and high salt concentration. However, both binding phenomena were observed only with a divalent cation in the extract buffer. In vivo binding was further characterized using Avena which showed an increase in pelletability from less than 10% in dark control extracts to more than 60% in extracts of red light-irradiated shoots. The half-life for binding was 40 seconds at 0.5 C and was strongly temperature-dependent, binding being complete within 5 to 10 sec at 22 C. If pelletable phytochrome in the far red-absorbing form was photoconverted back to the red-absorbing form in situ, phytochrome was released from the pelletable condition with a half-life of 25 minutes at 25 C and 100 minutes at both 13 C and 3 C. No cooperativity in red light-enhanced pelletability with respect to phytochrome-far red-absorbing form was observed. PMID:16659745

  9. A Solution Processed Flexible Nanocomposite Electrode with Efficient Light Extraction for Organic Light Emitting Diodes

    NASA Astrophysics Data System (ADS)

    Li, Lu; Liang, Jiajie; Chou, Shu-Yu; Zhu, Xiaodan; Niu, Xiaofan; Zhibinyu; Pei, Qibing

    2014-03-01

    Highly efficient organic light emitting diodes (OLEDs) based on multiple layers of vapor evaporated small molecules, indium tin oxide transparent electrode, and glass substrate have been extensively investigated and are being commercialized. The light extraction from the exciton radiative decay is limited to less than 30% due to plasmonic quenching on the metallic cathode and the waveguide in the multi-layer sandwich structure. Here we report a flexible nanocomposite electrode comprising single-walled carbon nanotubes and silver nanowires stacked and embedded in the surface of a polymer substrate. Nanoparticles of barium strontium titanate are dispersed within the substrate to enhance light extraction efficiency. Green polymer OLED (PLEDs) fabricated on the nanocomposite electrode exhibit a maximum current efficiency of 118 cd/A at 10,000 cd/m2 with the calculated external quantum efficiency being 38.9%. The efficiencies of white PLEDs are 46.7 cd/A and 30.5%, respectively. The devices can be bent to 3 mm radius repeatedly without significant loss of electroluminescent performance. The nanocomposite electrode could pave the way to high-efficiency flexible OLEDs with simplified device structure and low fabrication cost.

  10. A solution processed flexible nanocomposite electrode with efficient light extraction for organic light emitting diodes.

    PubMed

    Li, Lu; Liang, Jiajie; Chou, Shu-Yu; Zhu, Xiaodan; Niu, Xiaofan; ZhibinYu; Pei, Qibing

    2014-03-17

    Highly efficient organic light emitting diodes (OLEDs) based on multiple layers of vapor evaporated small molecules, indium tin oxide transparent electrode, and glass substrate have been extensively investigated and are being commercialized. The light extraction from the exciton radiative decay is limited to less than 30% due to plasmonic quenching on the metallic cathode and the waveguide in the multi-layer sandwich structure. Here we report a flexible nanocomposite electrode comprising single-walled carbon nanotubes and silver nanowires stacked and embedded in the surface of a polymer substrate. Nanoparticles of barium strontium titanate are dispersed within the substrate to enhance light extraction efficiency. Green polymer OLED (PLEDs) fabricated on the nanocomposite electrode exhibit a maximum current efficiency of 118 cd/A at 10,000 cd/m(2) with the calculated external quantum efficiency being 38.9%. The efficiencies of white PLEDs are 46.7 cd/A and 30.5%, respectively. The devices can be bent to 3 mm radius repeatedly without significant loss of electroluminescent performance. The nanocomposite electrode could pave the way to high-efficiency flexible OLEDs with simplified device structure and low fabrication cost.

  11. A Solution Processed Flexible Nanocomposite Electrode with Efficient Light Extraction for Organic Light Emitting Diodes

    PubMed Central

    Li, Lu; Liang, Jiajie; Chou, Shu-Yu; Zhu, Xiaodan; Niu, Xiaofan; ZhibinYu; Pei, Qibing

    2014-01-01

    Highly efficient organic light emitting diodes (OLEDs) based on multiple layers of vapor evaporated small molecules, indium tin oxide transparent electrode, and glass substrate have been extensively investigated and are being commercialized. The light extraction from the exciton radiative decay is limited to less than 30% due to plasmonic quenching on the metallic cathode and the waveguide in the multi-layer sandwich structure. Here we report a flexible nanocomposite electrode comprising single-walled carbon nanotubes and silver nanowires stacked and embedded in the surface of a polymer substrate. Nanoparticles of barium strontium titanate are dispersed within the substrate to enhance light extraction efficiency. Green polymer OLED (PLEDs) fabricated on the nanocomposite electrode exhibit a maximum current efficiency of 118 cd/A at 10,000 cd/m2 with the calculated external quantum efficiency being 38.9%. The efficiencies of white PLEDs are 46.7 cd/A and 30.5%, respectively. The devices can be bent to 3 mm radius repeatedly without significant loss of electroluminescent performance. The nanocomposite electrode could pave the way to high-efficiency flexible OLEDs with simplified device structure and low fabrication cost. PMID:24632742

  12. Comparative study on luminescence extraction strategies of LED by large-scale fabrication of nanopillar and nanohole structures

    NASA Astrophysics Data System (ADS)

    Guo, Wei; Li, Junmei; Sheikhi, Moheb; Jiang, Jie’an; Yang, Zhenhai; Li, Hongwei; Guo, Shiping; Sheng, Jiang; Sun, Jie; Bo, Baoxue; Ye, Jichun

    2018-06-01

    Light extraction and current injection are two important considerations in the development of high efficiency light-emitting-diodes (LEDs), but usually cannot be satisfied simultaneously in nanostructure patterned devices. In this work, we investigated near-UV LEDs with nanopillar and nanohole patterns to improve light extraction efficiency. Photoluminescence (PL) intensities were enhanced by 8.0 and 4.1 times for nanopillar and nanohole LEDs compared to that of planar LED. Nanopillar LED exhibits higher PL emission than that of the nanohole LED, attributing to a convex shape sidewall for more effective outward light scattering, and reduction of quantum-confined-stark-effect owing to strain relaxation. However, nanopillar LED exhibits lower electroluminescence intensity than the nanohole sample, which calls for further optimization in carrier distributions. Experimental results were further supported by near-field electric field simulations. This work demonstrates the difference in optical and electrical behaviors between the nanopillar and nanohole LEDs, paving the way for detailed understanding on luminescence extraction mechanisms of nanostructure patterned UV emitters.

  13. Vacuum Nanohole Array Embedded Phosphorescent Organic Light Emitting Diodes

    PubMed Central

    Jeon, Sohee; Lee, Jeong-Hwan; Jeong, Jun-Ho; Song, Young Seok; Moon, Chang-Ki; Kim, Jang-Joo; Youn, Jae Ryoun

    2015-01-01

    Light extraction from organic light-emitting diodes that utilize phosphorescent materials has an internal efficiency of 100% but is limited by an external quantum efficiency (EQE) of 30%. In this study, extremely high-efficiency organic light emitting diodes (OLEDs) with an EQE of greater than 50% and low roll-off were produced by inserting a vacuum nanohole array (VNHA) into phosphorescent OLEDs (PhOLEDs). The resultant extraction enhancement was quantified in terms of EQE by comparing experimentally measured results with those produced from optical modeling analysis, which assumes the near-perfect electric characteristics of the device. A comparison of the experimental data and optical modeling results indicated that the VNHA extracts the entire waveguide loss into the air. The EQE obtained in this study is the highest value obtained to date for bottom-emitting OLEDs. PMID:25732061

  14. High-Sensitivity Ionization Trace-Species Detector

    NASA Technical Reports Server (NTRS)

    Bernius, Mark T.; Chutjian, Ara

    1990-01-01

    Features include high ion-extraction efficiency, compactness, and light weight. Improved version of previous ionization detector features in-line geometry that enables extraction of almost every ion from region of formation. Focusing electrodes arranged and shaped into compact system of space-charge-limited reversal electron optics and ion-extraction optics. Provides controllability of ionizing electron energies, greater efficiency of ionization, and nearly 100 percent ion-collection efficiency.

  15. Development of a diffraction imaging flow cytometer

    PubMed Central

    Jacobs, Kenneth M.; Lu, Jun Q.

    2013-01-01

    Diffraction images record angle-resolved distribution of scattered light from a particle excited by coherent light and can correlate highly with the 3D morphology of a particle. We present a jet-in-fluid design of flow chamber for acquisition of clear diffraction images in a laminar flow. Diffraction images of polystyrene spheres of different diameters were acquired and found to correlate highly with the calculated ones based on the Mie theory. Fast Fourier transform analysis indicated that the measured images can be used to extract sphere diameter values. These results demonstrate the significant potentials of high-throughput diffraction imaging flow cytometry for extracting 3D morphological features of cells. PMID:19794790

  16. Organic light emitting diode with light extracting layer

    DOEpatents

    Lu, Songwei

    2016-06-14

    A light extraction substrate includes a glass substrate having a first surface and a second surface. A light extraction layer is formed on at least one of the surfaces. The light extraction layer is a coating, such as a silicon-containing coating, incorporating nanoparticles.

  17. Extracting concentrated guided light.

    PubMed

    Ries, H; Segal, A; Karni, J

    1997-05-01

    The maximum concentration of radiation is proportional to the square of the refractive index of the medium in which it propagates. A medium with a high refractive index can also serve as a lightguide for concentrated radiation. However, if concentrated radiation is extracted from one medium, with a high refractive index, to another, whose index is lower (e.g., from fused silica into air), part of the radiation may be lost because of the total internal reflection at the interface. We present polygonal shapes suitable for efficient extraction of the concentrated radiation in a controllable way, without increasing the cross-section area (or diameter) of the lightguide. It is shown analytically and experimentally that the use of a secondary concentrator, followed by such a light extractor, both having a high refractive index, can provide considerably more power to a solar receiver with a specific aperture.

  18. Efficient Light Extraction of Organic Light-Emitting Diodes on a Fully Solution-Processed Flexible Substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tong, Kwing; Liu, Xiaofeng; Zhao, Fangchao

    A flexible, nanocomposite substrate for maximizing light outcoupling efficiencies of organic light-emitting diodes (OLEDs) is introduced. In depth investigation is performed on designing the integrated strategy based on considerations of surface conductivity, microcavity tuning, and internal light scattering. The resulting nanocomposite substrate consists of silver nanowires as the electrode and a high-index polymer layer and a light-scattering layer for light extraction. It is able to outcouple both the waveguide and the substrate modes, two modes accounting for significant losses in OLED device efficiency. With enhanced light outcoupling, white OLEDs subsequently fabricated on the nanocomposite substrates demonstrate performance metrics of 107more » lm W -1 power efficiency and 49% external quantum efficiency at 1000 cd m -2. Thus, the nanocomposite substrate is fabricated by solution processes at low temperatures for potentially low manufacturing cost.« less

  19. Efficient Light Extraction of Organic Light-Emitting Diodes on a Fully Solution-Processed Flexible Substrate

    DOE PAGES

    Tong, Kwing; Liu, Xiaofeng; Zhao, Fangchao; ...

    2017-07-18

    A flexible, nanocomposite substrate for maximizing light outcoupling efficiencies of organic light-emitting diodes (OLEDs) is introduced. In depth investigation is performed on designing the integrated strategy based on considerations of surface conductivity, microcavity tuning, and internal light scattering. The resulting nanocomposite substrate consists of silver nanowires as the electrode and a high-index polymer layer and a light-scattering layer for light extraction. It is able to outcouple both the waveguide and the substrate modes, two modes accounting for significant losses in OLED device efficiency. With enhanced light outcoupling, white OLEDs subsequently fabricated on the nanocomposite substrates demonstrate performance metrics of 107more » lm W -1 power efficiency and 49% external quantum efficiency at 1000 cd m -2. Thus, the nanocomposite substrate is fabricated by solution processes at low temperatures for potentially low manufacturing cost.« less

  20. Heat shock, visible light or high calcium augment the cytotoxic effects of Ailanthus altissima (Swingle) leaf extracts against Saccharomyces cerevisiae cells.

    PubMed

    Popa, Claudia Valentina; Lungu, Liliana; Cristache, Ligia Florentina; Ciuculescu, Crinu; Danet, Andrei Florin; Farcasanu, Ileana Cornelia

    2015-01-01

    To gain new insight into the antimicrobial potential of Ailanthus altissima Swingle, ethanol leaf extracts were evaluated for the antifungal effects against the model yeast Saccharomyces cerevisae. The extracts inhibited the yeast growth in a dose-dependent manner, and this effect could be augmented by heat shock, exposure to visible light or exposure to high concentrations of Ca(2+). Using transgenic yeast cells expressing the Ca(2+)-dependent photoprotein, aequorin, it was found that the leaf extracts induced cytosolic Ca(2+) elevation. Experiments on yeast mutants with defects in Ca(2+) transport demonstrated that the cytotoxicity of the A. altissima leaf extracts (AaLEs) was mediated by transient pulses of Ca(2+) ions which were released into the cytosol predominantly from the vacuole. The investigation of the antifungal synergies involving AaLEs may contribute to the development of optimal and safe combination therapies for the treatment of drug-resistant fungal infections.

  1. Organic light emitting diode with light extracting electrode

    DOEpatents

    Bhandari, Abhinav; Buhay, Harry

    2017-04-18

    An organic light emitting diode (10) includes a substrate (20), a first electrode (12), an emissive active stack (14), and a second electrode (18). At least one of the first and second electrodes (12, 18) is a light extracting electrode (26) having a metallic layer (28). The metallic layer (28) includes light scattering features (29) on and/or in the metallic layer (28). The light extracting features (29) increase light extraction from the organic light emitting diode (10).

  2. Resonant cavity light-emitting diodes based on dielectric passive cavity structures

    NASA Astrophysics Data System (ADS)

    Ledentsov, N.; Shchukin, V. A.; Kropp, J.-R.; Zschiedrich, L.; Schmidt, F.; Ledentsov, N. N.

    2017-02-01

    A novel design for high brightness planar technology light-emitting diodes (LEDs) and LED on-wafer arrays on absorbing substrates is proposed. The design integrates features of passive dielectric cavity deposited on top of an oxide- semiconductor distributed Bragg reflector (DBR), the p-n junction with a light emitting region is introduced into the top semiconductor λ/4 DBR period. A multilayer dielectric structure containing a cavity layer and dielectric DBRs is further processed by etching into a micrometer-scale pattern. An oxide-confined aperture is further amended for current and light confinement. We study the impact of the placement of the active region into the maximum or minimum of the optical field intensity and study an impact of the active region positioning on light extraction efficiency. We also study an etching profile composed of symmetric rings in the etched passive cavity over the light emitting area. The bottom semiconductor is an AlGaAs-AlAs multilayer DBR selectively oxidized with the conversion of the AlAs layers into AlOx to increase the stopband width preventing the light from entering the semiconductor substrate. The approach allows to achieve very high light extraction efficiency in a narrow vertical angle keeping the reasonable thermal and current conductivity properties. As an example, a micro-LED structure has been modeled with AlGaAs-AlAs or AlGaAs-AlOx DBRs and an active region based on InGaAlP quantum well(s) emitting in the orange spectral range at 610 nm. A passive dielectric SiO2 cavity is confined by dielectric Ta2O5/SiO2 and AlGaAs-AlOx DBRs. Cylindrically-symmetric structures with multiple ring patterns are modeled. It is demonstrated that the extraction coefficient of light to the air can be increased from 1.3% up to above 90% in a narrow vertical angle (full width at half maximum (FWHM) below 20°). For very small oxide-confined apertures 100nm the narrowing of the FWHM for light extraction can be reduced down to 5°. Consequently high efficiency high brightness arrays of micro-LEDs becomes possible. For single emitters the approach is particularly interesting for oscillator strength engineering allowing high speed data transmission and for single photonics applying single quantum dot (QD) emitters and allowing >90% coupling of the emission into single mode fiber. We also note that for longer wavelength ( 1300nm) QDs the thickness of the layers and surface patterns significantly increase allowing greatly reduced processing tolerances and applying further simplifications due to the possibility of using high contrast GaAs-AlOx DBRs.

  3. Visible light metasurfaces based on gallium nitride high contrast gratings

    NASA Astrophysics Data System (ADS)

    Wang, Zhenhai; He, Shumin; Liu, Qifa; Wang, Wei

    2016-05-01

    We propose visible-light metasurfaces (VLMs) capable of serving as lens and beam deflecting element based on gallium nitride (GaN) high contrast gratings (HCGs). By precisely manipulating the wavefront of the transmitted light, we theoretically demonstrate an HCG focusing lens with transmissivity of 86.3%, and a VLM with beam deflection angle of 6.09° and transmissivity as high as 91.4%. The proposed all-dielectric metasurfaces are promising for GaN-based visible light-emitting diodes (LEDs), which would be robust and versatile for controlling the output light propagation and polarization, as well as enhancing the extraction efficiency of the LEDs.

  4. Improved light-extraction efficiency from organic light-emitting diodes using hazy SiO2 thin films created by using an aerosol-deposition method

    NASA Astrophysics Data System (ADS)

    Moon, Byung Seuk; Lee, Soo-Hyoung; Huh, Yoon Ho; Kwon, O. Eun; Park, Byoungchoo; Lee, Bumjoo; Lee, Seung-Hyun; Hwang, Inchan

    2015-04-01

    We herein report an investigation of the effect of rough thin films of SiO2 granules deposited on glass substrates of organic light-emitting devices (OLEDs) by using a simple, low-cost and scalable process based on a powder spray of SiO2 granules in vacuum, known as the aerosol-deposition method, with regard to their external light-extraction capabilities. The rough and hazy thin SiO2 films produced by using aerosol-deposition and acting as scattering centers were able to efficiently reduce the light-trapping loss in the glass substrate (glass mode) for internally-generated photons and to enhance the external quantum efficiency (EQE) of the OLEDs. Based on aerosol-deposited silica films with a thickness of 800 nm and a haze of 22% on glass substrates, the EQE of phosphorescent green OLEDs was found to be enhanced by 17%, from an EQE of 7.0% for smooth bare glass substrates to an EQE of 8.2%. Furthermore, the EQEs of fluorescent blue and phosphorescent red OLEDs were shown to be enhanced by 16%, from an EQE of 3.7% to 4.3%, and by 16%, from an EQE of 9.3% to 10.8%, respectively. These improvements in the EQEs without serious changes in the emission spectra or the Lambertian emitter property clearly indicate the high potential of the aerosol-deposition technique for the realization of highly-efficient light extraction in colorful OLED lighting.

  5. Numerical analysis of lateral illumination lightpipes using elliptical grooves

    NASA Astrophysics Data System (ADS)

    Sánchez-Guerrero, Guillermo E.; Viera-González, Perla M.; Martínez-Guerra, Edgar; Ceballos-Herrera, Daniel E.

    2017-09-01

    Lightpipes are used for illumination in applications such as back-lighting or solar cell concentrators due to the high irradiance uniformity, but its optimal design requires several parameters. This work presents a procedure to design a square lightpipe to control the light-extraction on its lateral face using commercial LEDs placed symmetrically in the lightpipe frontal face. We propose the use of grooves using total internal reflection placed successively in the same face of extraction to control the area of emission. The LED area of emission is small compared with the illuminated area, and, as expected, the lateral face total power is attenuated. These grooves reduce the optical elements in the system and can control areas of illumination. A mathematical and numerical analysis are presented to determine the dependencies on the light-extraction.

  6. MRMer, an interactive open source and cross-platform system for data extraction and visualization of multiple reaction monitoring experiments.

    PubMed

    Martin, Daniel B; Holzman, Ted; May, Damon; Peterson, Amelia; Eastham, Ashley; Eng, Jimmy; McIntosh, Martin

    2008-11-01

    Multiple reaction monitoring (MRM) mass spectrometry identifies and quantifies specific peptides in a complex mixture with very high sensitivity and speed and thus has promise for the high throughput screening of clinical samples for candidate biomarkers. We have developed an interactive software platform, called MRMer, for managing highly complex MRM-MS experiments, including quantitative analyses using heavy/light isotopic peptide pairs. MRMer parses and extracts information from MS files encoded in the platform-independent mzXML data format. It extracts and infers precursor-product ion transition pairings, computes integrated ion intensities, and permits rapid visual curation for analyses exceeding 1000 precursor-product pairs. Results can be easily output for quantitative comparison of consecutive runs. Additionally MRMer incorporates features that permit the quantitative analysis experiments including heavy and light isotopic peptide pairs. MRMer is open source and provided under the Apache 2.0 license.

  7. Modeling of efficient light extraction in light-pipes through specular surfaces with elliptical and lineal front shapes

    NASA Astrophysics Data System (ADS)

    Sánchez-Guerrero, Guillermo E.; Viera-González, Perla M.; Ceballos-Herrera, Daniel E.; Martínez-Guerra, Edgar

    2016-09-01

    Extraction light in light-pipes with different specular surfaces was analyzed. In the analysis, the impact of the surface shape in all properties of the extracted light in order to obtain an efficient extraction and a uniform illumination using a LED as light source. Also, several parameters of the specular surface to obtain spatial uniformity inside the light-pipe are considered. In this case, the simulation was made for a rectangular light­pipe. One objective of this work is to compare how the front face shape of the specular surface can affect the extraction of light in the lateral face of the light-pipe, only straight and elliptical front faces were used in this work and the comparison between them at different tilts and lengths were made. The main purpose of the front face was extract the light uniformly at the lateral face and this was done by studying simulations on OpticStudio Zemax. The results show how the extraction length is lower in the elliptical front but its total power performs better than the line front.

  8. To enhance light extraction of OLED devices by multi-optic layers including a micro lens array

    NASA Astrophysics Data System (ADS)

    Chiu, Chuang-Hung; Chien, Chao-Heng; Kuo, Yu-Xaong; Lee, Jen-Chi

    2014-10-01

    In recent years, OLED has advantages including that larger light area, thinner thickness, excellent light uniformity, and can be as a flexible light source. Many display panel and lighting have been started to use the OLED due to OLED without back light system, thus how to make and employ light extracting layer could be important issue to enhance OLED brightness. The purpose of this study is to enhance the light extraction efficiency and light emitting area of OLED, so the micro lens array and the prism reflection layer were provided to enhance the surface light extracting efficiency of OLD. Finally the prism layer and diffusing layer were used to increase the uniformity of emitting area of OLED, which the efficiency of 31% increasing to compare with the OLED without light extracting film.

  9. Protective effects of bilberry and lingonberry extracts against blue light-emitting diode light-induced retinal photoreceptor cell damage in vitro

    PubMed Central

    2014-01-01

    Background Blue light is a high-energy or short-wavelength visible light, which induces retinal diseases such as age-related macular degeneration and retinitis pigmentosa. Bilberry (Vaccinium myrtillus L.) and lingonberry (Vaccinium vitis-idaea) contain high amounts of polyphenols (anthocyanins, resveratrol, and proanthocyanidins) and thus confer health benefits. This study aimed to determine the protective effects and mechanism of action of bilberry extract (B-ext) and lingonberry extract (L-ext) and their active components against blue light-emitting diode (LED) light-induced retinal photoreceptor cell damage. Methods Cultured murine photoreceptor (661 W) cells were exposed to blue LED light following treatment with B-ext, L-ext, or their constituents (cyanidin, delphinidin, malvidin, trans-resveratrol, and procyanidin B2). 661 W cell viability was assessed using a tetrazolium salt (WST-8) assay and Hoechst 33342 nuclear staining, and intracellular reactive oxygen species (ROS) production was determined using CM-H2DCFDA after blue LED light exposure. Activation of p38 mitogen-activated protein kinase (p38 MAPK), nuclear factor-kappa B (NF-κB), and LC3, an ubiquitin-like protein that is necessary for the formation of autophagosomes, were analyzed using Western blotting. Caspase-3/7 activation caused by blue LED light exposure in 661 W cells was determined using a caspase-3/7 assay kit. Results B-ext, L-ext, NAC, and their active components improved the viability of 661 W cells and inhibited the generation of intracellular ROS induced by blue LED light irradiation. Furthermore, B-ext and L-ext inhibited the activation of p38 MAPK and NF-κB induced by blue LED light exposure. Finally, B-ext, L-ext, and NAC inhibited caspase-3/7 activation and autophagy. Conclusions These findings suggest that B-ext and L-ext containing high amounts of polyphenols exert protective effects against blue LED light-induced retinal photoreceptor cell damage mainly through inhibition of ROS production and activation of pro-apoptotic proteins. PMID:24690313

  10. Preparation of Silica Aerogel from TEOS

    PubMed

    Tamon; Kitamura; Okazaki

    1998-01-15

    Silica alcogels were synthesized by the sol-gel polymerization of tetraethylorthosilicate (TEOS). In the synthesis, HCl and NH3 were used as hydrolysis and condensation catalysts. The gelation time became short and the visible light transmittance increased with increasing the amount of HCl or lengthening the hydrolysis time. The alcogels were dried under supercritical conditions with carbon dioxide, and silica aerogels were obtained. As a result of characterization by visible light transmission and N2 adsorption, the aerogels are mesoporous materials with high surface areas. The experimental results suggest that the aerogel properties are not influenced by the drying conditions such as extraction temperature, extraction time, depressurizing temperature, and depressurizing rate. On the other hand, the properties are changed under the conditions of sol-gel polymerization. In the preparation of highly transparent aerogels with high surface areas and large pore volumes, it is necessary to synthesize highly transparent alcogels. It is found that the visible light transmittance of alcogels is an index for preparing aerogels from TEOS. Copyright 1998 Academic Press. Copyright 1998Academic Press

  11. Soft lithography microlens fabrication and array for enhanced light extraction from organic light emitting diodes (OLEDs)

    DOEpatents

    Leung, Wai Y.; Park, Joong-Mok; Gan, Zhengqing; Constant, Kristen P.; Shinar, Joseph; Shinar, Ruth; ho, Kai-Ming

    2014-06-03

    Provided are microlens arrays for use on the substrate of OLEDs to extract more light that is trapped in waveguided modes inside the devices and methods of manufacturing same. Light extraction with microlens arrays is not limited to the light emitting area, but is also efficient in extracting light from the whole microlens patterned area where waveguiding occurs. Large microlens array, compared to the size of the light emitting area, extract more light and result in over 100% enhancement. Such a microlens array is not limited to (O)LEDs of specific emission, configuration, pixel size, or pixel shape. It is suitable for all colors, including white, for microcavity OLEDs, and OLEDs fabricated directly on the (modified) microlens array.

  12. Eastern Kodak Company

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Y.S. Tyan

    2009-06-30

    Lighting consumes more than 20% of electricity generated in the United States. Solid state lighting relies upon either inorganic or organic light-emitting diodes (OLEDs). OLED devices because of their thinness, fast response, excellent color, and efficiency could become the technology of choice for future lighting applications, provided progress is made to increase power efficiency and device lifetime and to develop cost-effective manufacturing processes. As a first step in this process, Eastman Kodak Company has demonstrated an OLED device architecture having an efficacy over 50 lm/W that exceeds the specifications of DOE Energy Star Program Requirements for Solid State Lighting. Themore » project included work designed to optimize an OLED device, based on a stacked-OLED structure, with performance parameters of: low voltage; improved light extraction efficiency; improved internal quantum efficiency; and acceptable lifetime. The stated goal for the end of the project was delivery of an OLED device architecture, suitable for development into successful commercial products, having over 50 lum/W power efficiency and 10,000 hours lifetime at 1000 cd/m{sup 2}. During the project, Kodak developed and tested a tandem hybrid IES device made with a fluorescent blue emitter, a phosphorescent yellow emitter, and a phosphorescent red emitter in a stacked structure. The challenge was to find low voltage materials that do not absorb excessive amounts of emitted light when the extraction enhancement structure is applied. Because an extraction enhancement structure forces the emitted light to travel several times through the OLED layers before it is emitted, it exacerbates the absorption loss. A variety of ETL and HTL materials was investigated for application in the low voltage SSL device structure. Several of the materials were found to successfully yield low operating device voltages without incurring excessive absorption loss when the extraction enhancement structure was applied. An internal extraction layer comprises two essential components: a light extraction element (LEE) that does the actual extraction of emitted light and a light coupling layer (LCL) that allows the emitted light to interact with the extraction element. Modeling results show that the optical index of the LCL needs to be high, preferably higher than that of the organic layers with an n value of {approx}1.8. In addition, since the OLED structure needs to be built on top of it the LCL needs to be physically and chemically benign. As the project concluded, our focus was on the tandem hybrid device, which proved to be the more efficient architecture. Cost-efficient device fabrication will provide the next challenges with this device architecture in order to allow this architecture to be commercialized.« less

  13. Estimating melanin location in the pigmented skin lesions by hue-saturation-lightness color space values of dermoscopic images.

    PubMed

    Sakai, Hiroshi; Ando, Yoshimi; Ikinaga, Kuniko; Tanaka, Masaru

    2017-05-01

    The depth of melanin in the skin can be estimated roughly by observation of the color exhibited on dermoscopy. Currently, there are no objective methods to estimate it. The aim of the present study was to clarify the relationship between the depth of melanin in the skin and the color variation exhibited, and to objectively estimate the 3-D location of melanin in the pigmented skin lesions from dermoscopic images. Representative colors in dermoscopic images of acral compound nevus, Spitz nevus and blue nevus were evaluated by the subjectively perceived color on dermoscopy and objective values in hue-saturation-lightness color space values. Brown colors due to small quantities of superficial melanin in the skin had high saturation and low lightness values, whereas black colors due to large quantities of superficial melanin had low saturation and low lightness values. On the other hand, colors due to melanin in the dermis were perceived as blue-gray on dermoscopy, but extracted colors showed gray-brown hue and intermediate saturation and high lightness values. In all cases, extracted representative colors of pigmented skin lesions had similar hue values within the red-orange range. Objective estimation of the 3-D location of melanin in the pigmented skin lesions is possible by the saturation and lightness values of the colors extracted from dermoscopic images. Subjectively perceived colors of melanin, especially in the dermis, can be modified by the surrounding environment effect and blue color perception. © 2017 Japanese Dermatological Association.

  14. Multiscale transparent electrode architecture for efficient light management and carrier collection in solar cells.

    PubMed

    Boccard, Mathieu; Battaglia, Corsin; Hänni, Simon; Söderström, Karin; Escarré, Jordi; Nicolay, Sylvain; Meillaud, Fanny; Despeisse, Matthieu; Ballif, Christophe

    2012-03-14

    The challenge for all photovoltaic technologies is to maximize light absorption, to convert photons with minimal losses into electric charges, and to efficiently extract them to the electrical circuit. For thin-film solar cells, all these tasks rely heavily on the transparent front electrode. Here we present a multiscale electrode architecture that allows us to achieve efficiencies as high as 14.1% with a thin-film silicon tandem solar cell employing only 3 μm of silicon. Our approach combines the versatility of nanoimprint lithography, the unusually high carrier mobility of hydrogenated indium oxide (over 100 cm(2)/V/s), and the unequaled light-scattering properties of self-textured zinc oxide. A multiscale texture provides light trapping over a broad wavelength range while ensuring an optimum morphology for the growth of high-quality silicon layers. A conductive bilayer stack guarantees carrier extraction while minimizing parasitic absorption losses. The tunability accessible through such multiscale electrode architecture offers unprecedented possibilities to address the trade-off between cell optical and electrical performance. © 2012 American Chemical Society

  15. Broadband Light Absorption and Efficient Charge Separation Using a Light Scattering Layer with Mixed Cavities for High-Performance Perovskite Photovoltaic Cells with Stability.

    PubMed

    Moon, Byeong Cheul; Park, Jung Hyo; Lee, Dong Ki; Tsvetkov, Nikolai; Ock, Ilwoo; Choi, Kyung Min; Kang, Jeung Ku

    2017-08-01

    CH 3 NH 3 PbI 3 is one of the promising light sensitizers for perovskite photovoltaic cells, but a thick layer is required to enhance light absorption in the long-wavelength regime ranging from PbI 2 absorption edge (500 nm) to its optical band-gap edge (780 nm) in visible light. Meanwhile, the thick perovskite layer suppresses visible-light absorption in the short wavelengths below 500 nm and charge extraction capability of electron-hole pairs produced upon light absorption. Herein, we find that a new light scattering layer with the mixed cavities of sizes in 100 and 200 nm between transparent fluorine-doped tin oxide and mesoporous titanium dioxide electron transport layer enables full absorption of short-wavelength photons (λ < 500 nm) to the perovskite along with enhanced absorption of long-wavelength photons (500 nm < λ < 780 nm). Moreover, the light-driven electric field is proven to allow efficient charge extraction upon light absorption, thereby leading to the increased photocurrent density as well as the fill factor prompted by the slow recombination rate. Additionally, the photocurrent density of the cell with a light scattering layer of mixed cavities is stabilized due to suppressed charge accumulation. Consequently, this work provides a new route to realize broadband light harvesting of visible light for high-performance perovskite photovoltaic cells. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Enhanced light extraction of scintillator using large-area photonic crystal structures fabricated by soft-X-ray interference lithography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Zhichao; Wu, Shuang; Liu, Bo, E-mail: lbo@tongji.edu.cn

    2015-06-15

    Soft-X-ray interference lithography is utilized in combination with atomic layer deposition to prepare photonic crystal structures on the surface of Bi{sub 4}Ge{sub 3}O{sub 12} (BGO) scintillator in order to extract the light otherwise trapped in the internal of scintillator due to total internal reflection. An enhancement with wavelength- and emergence angle-integration by 95.1% has been achieved. This method is advantageous to fabricate photonic crystal structures with large-area and high-index-contrast which enable a high-efficient coupling of evanescent field and the photonic crystal structures. Generally, the method demonstrated in this work is also suitable for many other light emitting devices where amore » large-area is required in the practical applications.« less

  17. Production of stable food-grade microencapsulated astaxanthin by vibrating nozzle technology.

    PubMed

    Vakarelova, Martina; Zanoni, Francesca; Lardo, Piergiovanni; Rossin, Giacomo; Mainente, Federica; Chignola, Roberto; Menin, Alessia; Rizzi, Corrado; Zoccatelli, Gianni

    2017-04-15

    Astaxanthin is a carotenoid known for its strong antioxidant and health-promoting characteristics, but it is also highly degradable and thus unsuited for several applications. We developed a sustainable method for the extraction and the production of stable astaxanthin microencapsulates. Nearly 2% astaxanthin was extracted by high-pressure homogenization of dried Haematococcus pluvialis cells in soybean oil. Astaxanthin-enriched oil was encapsulated in alginate and low-methoxyl pectin by Ca 2+ -mediated vibrating-nozzle extrusion technology. The 3% pectin microbeads resulted the best compromise between sphericity and oil retention upon drying. We monitored the stability of these astaxanthin beads under four different conditions of light, temperature and oxygen exposition. After 52weeks, the microbeads showed a total-astaxanthin retention of 94.1±4.1% (+4°C/-light/+O 2 ), 83.1±3.2% (RT/-light/-O 2 ), 38.3±2.2% (RT/-light/+O2), and 57.0±0.4% (RT/+light/+O 2 ), with different degradation kinetics. Refrigeration, therefore, resulted the optimal storage condition to preserve astaxanthin stability. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Design of a lighting system with high-power LEDs, large area electronics, and light management structure in the LUMENTILE European project

    NASA Astrophysics Data System (ADS)

    Carraro, L.; Simonetta, M.; Benetti, G.; Tramonte, A.; Capelli, G.; Benedetti, M.; Randone, E. M.; Ylisaukko-oja, A.; Keränen, K.; Facchinetti, T.; Giuliani, G.

    2017-02-01

    LUMENTILE (LUMinous ElectroNic TILE) is a project funded by the European Commission with the goal of developing a luminous tile with novel functionalities, capable of changing its color and interact with the user. Applications include interior/exterior tile for walls and floors covering, high-efficiency luminaries, and advertising under the form of giant video screens. High overall electrical efficiency of the tile is mandatory, as several millions of square meters are foreseen to be installed each year. Demand is for high uniformity of the illumination of the top tile surface, and for high optical extraction efficiency. These features are achieved by smart light management, using a new approach based on light guiding slab and spatially selective light extraction obtained using both diffusion and/or reflection from the top and bottom interfaces of the optical layer. Planar and edge configurations for the RGB LEDs are considered and compared. A square shape with side length from 20cm to 60cm is considered for the tiles. The electronic circuit layout must optimize the electrical efficiency, and be compatible with low-cost roll-to-roll production on flexible substrates. LED heat management is tackled by using dedicated solutions that allow operation in thermally harsh environment. An approach based on OLEDs has also been considered, still needing improvement on emitted power and ruggedness.

  19. Influence of agronomic variables on the composition of mate tea leaves (Ilex paraguariensis) extracts obtained from CO2 extraction at 30 degrees C and 175 bar.

    PubMed

    Esmelindro, Angela Aquino; Girardi, Jonathan Dos Santos; Mossi, Altemir; Jacques, Rosângela Assis; Dariva, Cláudio

    2004-04-07

    The aim of this work is to assess the influence of light intensity (plants with direct sun exposure and in a controlled light intensity) and age of leaves (6-24 months) on the characteristics of the extracts of mate tea leaves obtained from carbon dioxide at high pressures. Samples of mate were collected in an experiment conducted under agronomic control at Industria e Comercio de Erva-Mate Barão LTDA, Brazil. The content of selected organic compounds of the extracts was evaluated by gas chromatography together with mass spectrometry. Quantitative analysis of caffeine, theobromine, phytol, vitamin E, squalene, and stigmasterol was performed, and the results showed that field variables exert a strong influence on the liquid yield and on the chemical distribution of the extracts.

  20. Literally Green Chemical Synthesis of Artemisinin from Plant Extracts.

    PubMed

    Triemer, Susann; Gilmore, Kerry; Vu, Giang T; Seeberger, Peter H; Seidel-Morgenstern, Andreas

    2018-05-04

    Active pharmaceutical ingredients are either extracted from biological sources-where they are synthesized in complex, dynamic environments-or prepared in stepwise chemical syntheses by reacting pure reagents and catalysts under controlled conditions. A combination of these two approaches, where plant extracts containing reagents and catalysts are utilized in intensified chemical syntheses, creates expedient and sustainable processes. We illustrate this principle by reacting crude plant extract, oxygen, acid, and light to produce artemisinin, a key active pharmaceutical ingredient of the most powerful antimalarial drugs. The traditionally discarded extract of Artemisia annua plants contains dihydroartemisinic acid-the final biosynthetic precursor-as well as chlorophyll, which acts as a photosensitizer. Efficient irradiation with visible light in a continuous-flow setup produces artemisinin in high yield, and the artificial biosynthetic process outperforms syntheses with pure reagents. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Comparison of LiDAR-derived data and high resolution true color imagery for extracting urban forest cover

    Treesearch

    Aaron E. Maxwell; Adam C. Riley; Paul Kinder

    2013-01-01

    Remote sensing has many applications in forestry. Light detection and ranging (LiDAR) and high resolution aerial photography have been investigated as means to extract forest data, such as biomass, timber volume, stand dynamics, and gap characteristics. LiDAR return intensity data are often overlooked as a source of input raster data for thematic map creation. We...

  2. Flip-chip light emitting diode with resonant optical microcavity

    DOEpatents

    Gee, James M.; Bogart, Katherine H.A.; Fischer, Arthur J.

    2005-11-29

    A flip-chip light emitting diode with enhanced efficiency. The device structure employs a microcavity structure in a flip-chip configuration. The microcavity enhances the light emission in vertical modes, which are readily extracted from the device. Most of the rest of the light is emitted into waveguided lateral modes. Flip-chip configuration is advantageous for light emitting diodes (LEDs) grown on dielectric substrates (e.g., gallium nitride LEDs grown on sapphire substrates) in general due to better thermal dissipation and lower series resistance. Flip-chip configuration is advantageous for microcavity LEDs in particular because (a) one of the reflectors is a high-reflectivity metal ohmic contact that is already part of the flip-chip configuration, and (b) current conduction is only required through a single distributed Bragg reflector. Some of the waveguided lateral modes can also be extracted with angled sidewalls used for the interdigitated contacts in the flip-chip configuration.

  3. Photonic crystal light emitting diode based on Er and Si nanoclusters co-doped slot waveguide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lo Savio, R.; Galli, M.; Liscidini, M.

    We report on the design, fabrication, and electro-optical characterization of a light emitting device operating at 1.54 μm, whose active layer consists of silicon oxide containing Er-doped Si nanoclusters. A photonic crystal (PhC) is fabricated on the top-electrode to enhance the light extraction in the vertical direction, and thus the external efficiency of the device. This occurs if a photonic mode of the PhC slab is resonant with the Er emission energy, as confirmed by theoretical calculations and experimental analyses. We measure an increase of the extraction efficiency by a factor of 3 with a high directionality of light emission inmore » a narrow vertical cone. External quantum efficiency and power efficiency are among the highest reported for this kind of material. These results are important for the realization of CMOS-compatible efficient light emitters at telecom wavelengths.« less

  4. Improving light extraction of InGaN-based light emitting diodes with a roughened p-GaN surface using CsCl nano-islands.

    PubMed

    Wei, Tongbo; Kong, Qingfeng; Wang, Junxi; Li, Jing; Zeng, Yiping; Wang, Guohong; Li, Jinmin; Liao, Yuanxun; Yi, Futing

    2011-01-17

    InGaN-based light emitting diodes (LEDs) with a top nano-roughened p-GaN surface are fabricated using self-assembled CsCl nano-islands as etch masks. Following formation of hemispherical GaN nano-island arrays, electroluminescence (EL) spectra of roughened LEDs display an obvious redshift due to partial compression release in quantum wells through Inductively Coupled Plasma (ICP) etching. At a 350-mA current, the enhancement of light output power of LEDs subjected to ICP treatment with durations of 50, 150 and 250 sec compared with conventional LED have been determined to be 9.2, 70.6, and 42.3%, respectively. Additionally, the extraction enhancement factor can be further improved by increasing the size of CsCl nano-island. The economic and rapid method puts forward great potential for high performance lighting devices.

  5. General method to evaluate substrate surface modification techniques for light extraction enhancement of organic light emitting diodes

    NASA Astrophysics Data System (ADS)

    Krummacher, B. C.; Mathai, M. K.; Choong, V.; Choulis, S. A.; So, F.; Winnacker, A.

    2006-09-01

    The external light output of organic light emitting diodes (OLEDs) can be increased by modifying the light emitting surface. The apparent light extraction enhancement is given by the ratio between the efficiency of the unmodified device and the efficiency of the modified device. This apparent light extraction enhancement is dependent on the OLED architecture itself and is not the correct value to judge the effectiveness of a technique to enhance light outcoupling due to substrate surface modification. We propose a general method to evaluate substrate surface modification techniques for light extraction enhancement of OLEDs independent from the device architecture. This method is experimentally demonstrated using green electrophosphorescent OLEDs with different device architectures. The substrate surface of these OLEDs was modified by applying a prismatic film to increase light outcoupling from the device stack. It was demonstrated that the conventionally measured apparent light extraction enhancement by means of the prismatic film does not reflect the actual performance of the light outcoupling technique. Rather, by comparing the light extracted out of the prismatic film to that generated in the OLED layers and coupled into the substrate (before the substrate/air interface), a more accurate evaluation of light outcoupling enhancement can be achieved. Furthermore we show that substrate surface modification can change the output spectrum of a broad band emitting OLED.

  6. Investigation on the phenolic constituents in Hamamelis virginiana leaves by HPLC-DAD and LC-MS/MS.

    PubMed

    Duckstein, Sarina M; Stintzing, Florian C

    2011-08-01

    Aqueous and acetone/water extracts from Hamamelis virginiana leaves were investigated to obtain a thorough insight into their phenolic composition. To secure compound integrity, a gentle extraction method including the exclusion of light was used. Liquid chromatography tandem mass spectrometry (LC-MS/MS) analyses yielded a fingerprint including 27 phenolic constituents. Quantification of the key compounds on an equivalent basis by high-performance liquid chromatography diode-array detection (HPLC-DAD) showed that gallotannins consisting of six to 11 galloyl units constitute the main fraction, whereas procyanidins and catechin represented only a minor part. Closer inspection revealed that both extracts possess virtually the same galloyl hexose distribution, and the octagalloyl hexose represents the major tannin constituent. Additionally, eight flavonol glycosides and their corresponding aglycones quercetin and kaempferol, as well as three chlorogenic acid isomers and other hydroxycinnamic acids, were identified. Moreover, stability studies on the aqueous extract (5 °C, dark; room temperature, dark; room temperature, light) revealed that the phenolic profile underwent changes when exposed to light. Especially the gallotannins proved to be considerably unstable which may result in phytochemically altered Hamamelis leaf extracts upon transport and storage.

  7. Device reflectivity as a simple rule for predicting the suitability of scattering foils for improved OLED light extraction

    NASA Astrophysics Data System (ADS)

    Levell, Jack W.; Harkema, Stephan; Pendyala, Raghu K.; Rensing, Peter A.; Senes, Alessia; Bollen, Dirk; MacKerron, Duncan; Wilson, Joanne S.

    2013-09-01

    A general challenge in Organic Light Emitting Diodes (OLEDs) is to extract the light efficiently from waveguided modes within the device structure. This can be accomplished by applying an additional scattering layer to the substrate which results in outcoupling increases between 0% to <100% in external quantum efficiency. In this work, we aim to address this large variation and show that the reflectivity of the OLED is a simple and useful predictor of the efficiency of substrate scattering techniques without the need for detailed modeling. We show that by optimizing the cathode and anode structure of glass based OLEDs by using silver and an ITO free high conductive Agfa Orgacon™ PEDOT:PSS we are able to increase the external quantum efficiency of OLEDs with the same outcoupling substrates from 2.4% to 5.6%, an increase of 130%. In addition, Holst Centre and partners are developing flexible substrates with integrated light extraction features and roll to roll compatible processing techniques to enable this next step in OLED development both for lighting and display applications. These devices show promise as they are shatterproof substrates and facilitate low cost manufacture.

  8. Laser Rayleigh and Raman Diagnostics for Small Hydrogen/oxygen Rockets

    NASA Technical Reports Server (NTRS)

    Degroot, Wilhelmus A.; Zupanc, Frank J.

    1993-01-01

    Localized velocity, temperature, and species concentration measurements in rocket flow fields are needed to evaluate predictive computational fluid dynamics (CFD) codes and identify causes of poor rocket performance. Velocity, temperature, and total number density information have been successfully extracted from spectrally resolved Rayleigh scattering in the plume of small hydrogen/oxygen rockets. Light from a narrow band laser is scattered from the moving molecules with a Doppler shifted frequency. Two components of the velocity can be extracted by observing the scattered light from two directions. Thermal broadening of the scattered light provides a measure of the temperature, while the integrated scattering intensity is proportional to the number density. Spontaneous Raman scattering has been used to measure temperature and species concentration in similar plumes. Light from a dye laser is scattered by molecules in the rocket plume. Raman spectra scattered from major species are resolved by observing the inelastically scattered light with linear array mounted to a spectrometer. Temperature and oxygen concentrations have been extracted by fitting a model function to the measured Raman spectrum. Results of measurements on small rockets mounted inside a high altitude chamber using both diagnostic techniques are reported.

  9. Mechanism of light-dependent biosynthesis of silver nanoparticles mediated by cell extract of Neochloris oleoabundans.

    PubMed

    Bao, Zeqing; Lan, Christopher Q

    2018-06-04

    This study investigated the role of chlorophyll and light in the biosynthesis of silver nanoparticles (AgNPs) using disrupted cell aqueous extract of Neochloris oleoabundans. It was found that, while increasing sonication time increased the percentage of disrupted cells and efficiency of aqueous cell extraction, over-sonication reduced AgNPs production. AgNPs biosynthesis required illumination of white, blue, or purple light while AgNPs formation was undetectable under dark condition or illumination of orange or red light, indicating only photons of high energy levels among the photosynthetic active radiations are capable of exciting the electrons of chlorophylls to a state that is sufficient for Ag + reduction. Chlorophylls were demonstrated to be an essential component mediating the reduction of Ag + and results of mass balance suggest that chlorophylls need to be recycled for the reaction to complete. The ultimate electron donor was hypothesized to be water, which supplemented electrons through water splitting catalyzed by photosynthetic enzyme complexes such as photosystem II. A hypothetical reaction mechanism is proposed for the light-dependent biosynthesis of AgNPs based on systematic experimental results and literature data for the first time. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Effect of fluoride on root resorption following heavy and light orthodontic force application for 4 weeks and 12 weeks of retention.

    PubMed

    Karadeniz, Ersan I; Gonzales, Carmen; Turk, Tamer; Isci, Devrim; Sahin-Saglam, Aynur M; Alkis, Huseyin; Elekdag-Turk, Selma; Darendeliler, M Ali

    2013-05-01

    To evaluate the null hypothesis that fluoride intake via drinking water has no effect on orthodontic root resorption in humans after orthodontic force application for 4 weeks and 12 weeks of retention. Forty-eight patients who required maxillary premolar extractions as part of their orthodontic treatment were selected from two cities in Turkey. These cities had a high and low fluoride concentration in public water of ≥2 pm and ≤0.05 pm, respectively. The patients were randomly separated into four groups of 12 each: group 1HH, high fluoride (≥2 ppm) and heavy force (225 g); group 2LH, low fluoride (≤0.05 ppm) and heavy force; group 3HL, high fluoride and light force (25 g); and group 4LL, low fluoride and light force. Light or heavy buccal tipping force was applied on the upper first premolars for 28 days. At day 28, the left premolars were extracted (positive control side); the right premolars (experimental side) were extracted after 12 weeks of retention. The samples were analyzed with microcomputed tomography. On the positive control side, under heavy force application, the high fluoride groups exhibited less root resorption (P  =  .015). On the experimental side, it was found that fluoride reduced the total volume of root resorption craters; however, this effect was not statistically significant (P  =  .237). Moreover, the results revealed that under heavy force application experimental teeth exhibited more root resorption than positive control groups. The null hypothesis could not be rejected. High fluoride intake from public water did not have a beneficial effect on the severity of root resorption after a 4-week orthodontic force application and 12 weeks of passive retention.

  11. Extracting and shaping the light of OLED devices

    NASA Astrophysics Data System (ADS)

    Riedel, Daniel; Dlugosch, Julian; Wehlus, Thomas; Brabec, Christoph

    2015-09-01

    Before the market entry of organic light emitting diodes (OLEDs) into the field of general illumination can occur, limitations in lifetime, luminous efficacy and cost must be overcome. Additional requirements for OLEDs used for general illumination may be imposed by workplace glare reduction requirements, which demand limited luminance for high viewing angles. These requirements contrast with the typical lambertian emission characteristics of OLEDs, which result in the same luminance levels for all emission angles. As a consequence, without additional measures glare reduction could limit the maximum possible luminance of lambertian OLEDs to relatively low levels. However, high luminance levels are still desirable in order to obtain high light output. We are presenting solutions to overcome this dilemma. Therefore this work is focused on light-shaping structures for OLEDs with an internal light extraction layer. Simulations of beam-shaping structures and shapes are presented, followed by experimental measurements to verify the simulations of the most promising structures. An investigation of the loss channels has been carried out and the overall optical system efficiency was evaluated for all structures. The most promising light shaping structures achieve system efficiencies up to 80%. Finally, a general illumination application scenario has been simulated. The number of OLEDs needed to illuminate an office room has been deduced from this scenario. By using light-shaping structures for OLEDs, the number of OLEDs needed to reach the mandatory illuminance level for a workplace environment can be reduced to one third compared to lambertian OLEDs.

  12. Analysis of light extraction efficiency enhancement for thin-film-flip-chip InGaN quantum wells light-emitting diodes with GaN micro-domes.

    PubMed

    Zhao, Peng; Zhao, Hongping

    2012-09-10

    The enhancement of light extraction efficiency for thin-film flip-chip (TFFC) InGaN quantum wells (QWs) light-emitting diodes (LEDs) with GaN micro-domes on n-GaN layer was studied. The light extraction efficiency of TFFC InGaN QWs LEDs with GaN micro-domes were calculated and compared to that of the conventional TFFC InGaN QWs LEDs with flat surface. The three dimensional finite difference time domain (3D-FDTD) method was used to calculate the light extraction efficiency for the InGaN QWs LEDs emitting at 460nm and 550 nm, respectively. The effects of the GaN micro-dome feature size and the p-GaN layer thickness on the light extraction efficiency were studied systematically. Studies indicate that the p-GaN layer thickness is critical for optimizing the TFFC LED light extraction efficiency. Significant enhancement of the light extraction efficiency (2.5-2.7 times for λ(peak) = 460nm and 2.7-2.8 times for λ(peak) = 550nm) is achievable from TFFC InGaN QWs LEDs with optimized GaN micro-dome diameter and height.

  13. Robust cladding light stripper for high-power fiber lasers using soft metals.

    PubMed

    Babazadeh, Amin; Nasirabad, Reza Rezaei; Norouzey, Ahmad; Hejaz, Kamran; Poozesh, Reza; Heidariazar, Amir; Golshan, Ali Hamedani; Roohforouz, Ali; Jafari, S Naser Tabatabaei; Lafouti, Majid

    2014-04-20

    In this paper we present a novel method to reliably strip the unwanted cladding light in high-power fiber lasers. Soft metals are utilized to fabricate a high-power cladding light stripper (CLS). The capability of indium (In), aluminum (Al), tin (Sn), and gold (Au) in extracting unwanted cladding light is examined. The experiments show that these metals have the right features for stripping the unwanted light out of the cladding. We also find that the metal-cladding contact area is of great importance because it determines the attenuation and the thermal load on the CLS. These metals are examined in different forms to optimize the contact area to have the highest possible attenuation and avoid localized heating. The results show that sheets of indium are very effective in stripping unwanted cladding light.

  14. Development of functional nano-particle layer for highly efficient OLED

    NASA Astrophysics Data System (ADS)

    Lee, Jae-Hyun; Kim, Min-Hoi; Choi, Haechul; Choi, Yoonseuk

    2015-12-01

    Organic light emitting diodes (OLEDs) are now widely commercialized in market due to many advantages such as possibility of making thin or flexible devices. Nevertheless there are still several things to obtain the high quality flexible OLEDs, one of the most important issues is the light extraction of the device. It is known that OLEDs have the typical light loss such as the waveguide loss, plasmon absorption loss and internal total reflection. In this paper, we demonstrate the one-step processed light scattering films with aluminum oxide nano-particles and polystyrene matrix composite to achieve highly efficient OLEDs. Optical characteristics and surface roughness of light scattering film was optimized by changing the mixing concentration of Al2O3 nano-particles and investigated with the atomic force microscopy and hazemeter, respectively.

  15. ZnO nanorods/graphene/Ni/Au hybrid structures as transparent conductive layer in GaN LED for low work voltage and high light extraction

    NASA Astrophysics Data System (ADS)

    Xu, Kun; Xie, Yiyang; Ma, Huali; Du, Yinxiao; Zeng, Fanguang; Ding, Pei; Gao, Zhiyuan; Xu, Chen; Sun, Jie

    2016-12-01

    In this paper, by virtue of one-dimensional ZnO nanorods and two-dimensional graphene film hybrid structures, both the enhanced current spreading and enhanced light extraction were realized at the same time. A 1 nm/1 nm Ni/Au layer was used as an interlayer between graphene and pGaN to form ohmic contact, which makes the device have a good forward conduction properties. Through the comparison of the two groups of making ZnO nanorods or not, it was found that the 30% light extraction efficiency of the device was improved by using the ZnO nanorods. By analysis key parameters of two groups such as the turn-on voltage, work voltage and reverse leakage current, it was proved that the method for preparing surface nano structure by hydrothermal method self-organization growth ZnO nanorods applied in GaN LEDs has no influence to device's electrical properties. The hybrid structure application in GaN LED, make an achievement of a good ohmic contact, no use of ITO and enhancement of light extraction at the same time, meanwhile it does not change the device structure, introduce additional process, worsen the electrical properties.

  16. Embeded photonic crystal at the interface of p-GaN and Ag reflector to improve light extraction of GaN-based flip-chip light-emitting diode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhen, Aigong; Ma, Ping, E-mail: maping@semi.ac.cn; Zhang, Yonghui

    2014-12-22

    In this experiment, a flip-chip light-emitting diode with photonic crystal was fabricated at the interface of p-GaN and Ag reflector via nanospheres lithography technique. In this structure, photonic crystal could couple with the guide-light efficiently by reason of the little distance between photonic crystal and active region. The light output power of light emitting diode with embedded photonic crystal was 1.42 times larger than that of planar flip-chip light-emitting diode. Moreover, the embedded photonic crystal structure makes the far-field divergence angle decreased by 18° without spectra shift. The three-dimensional finite difference time domain simulation results show that photonic crystal couldmore » improve the light extraction, and enhance the light absorption caused by Ag reflector simultaneously, because of the roughed surface. The depth of photonic crystal is the key parameter affecting the light extraction and absorption. Light extraction efficiency increases with the depth photonic crystal structure rapidly, and reaches the maximum at the depth 80 nm, beyond which light extraction decrease drastically.« less

  17. Final Report DOE SSL Grant (No. DE-EE0006673) Advanced Light Extraction Structure for OLED Lighting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cooper, Gregory; Monickam, Selina

    The innovation proposed in this grant is to demonstrate a novel internal light extraction (ILE) design that can maximize the energy efficiency of Organic Light Emitting Diode (OLED) lighting devices without negatively impacting the device voltage, efficacy or angular color dependences. Even though, OLEDs have unique features compared to its inorganic counterparts, LEDs, in terms of technology development and market readiness levels, it still lags LEDs by several years. The main challenges as identified in the National Research Council’s 2013 Assessment on Solid State Lighting, are the cost of the materials and the low light extraction efficacy [1]. Improving themore » light extraction will improve both the $/Klm and lm/W, two important metrics DOE uses to measure the cost effectiveness of a light source.« less

  18. Recent advances in light outcoupling from white organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Gather, Malte C.; Reineke, Sebastian

    2015-01-01

    Organic light-emitting diodes (OLEDs) have been successfully introduced to the smartphone display market and have geared up to become contenders for applications in general illumination where they promise to combine efficient generation of white light with excellent color quality, glare-free illumination, and highly attractive designs. Device efficiency is the key requirement for such white OLEDs, not only from a sustainability perspective, but also because at the high brightness required for general illumination, losses lead to heating and may, thus, cause rapid device degradation. The efficiency of white OLEDs increased tremendously over the past two decades, and internal charge-to-photon conversion can now be achieved at ˜100% yield. However, the extraction of photons remains rather inefficient (typically <30%). Here, we provide an introduction to the underlying physics of outcoupling in white OLEDs and review recent progress toward making light extraction more efficient. We describe how structures that scatter, refract, or diffract light can be attached to the outside of white OLEDs (external outcoupling) or can be integrated close to the active layers of the device (internal outcoupling). Moreover, the prospects of using top-emitting metal-metal microcavity designs for white OLEDs and of tuning the average orientation of the emissive molecules within the OLED are discussed.

  19. Enhancing the light-extraction efficiency of AlGaN deep-ultraviolet light-emitting diodes using highly reflective Ni/Mg and Rh as p-type electrodes

    NASA Astrophysics Data System (ADS)

    Maeda, Noritoshi; Yun, Joosun; Jo, Masafumi; Hirayama, Hideki

    2018-04-01

    Improving the light-extraction efficiency (LEE) is a major issue for the development of deep-ultraviolet (DUV) light-emitting diodes (LEDs). For this improvement, we introduced a transparent p-AlGaN contact layer and a reflective p-type electrode. In this work, we investigated the improvements obtained by replacing conventional Ni/Au p-type electrodes with highly reflective Ni/Mg and Rh electrodes. The external quantum efficiencies (EQEs) of 279 nm DUV LEDs were increased from 4.2 to 6.6% and from 3.4 to 4.5% by introducing Ni/Mg and Rh p-type electrodes, respectively. The LEE enhancement factors for the Ni/Mg and Rh electrodes were 1.6 and 1.4, respectively. These results are explained by the fact that the measured reflectances of the Ni/Mg and Rh electrodes were approximately 80 and 55%, respectively. Moreover, it was concluded that a passivation layer is required for Ni/Mg electrodes to prevent the degradation of the LED properties by the oxidation of Mg.

  20. Hybrid heterojunction solar cell based on organic-inorganic silicon nanowire array architecture.

    PubMed

    Shen, Xiaojuan; Sun, Baoquan; Liu, Dong; Lee, Shuit-Tong

    2011-12-07

    Silicon nanowire arrays (SiNWs) on a planar silicon wafer can be fabricated by a simple metal-assisted wet chemical etching method. They can offer an excellent light harvesting capability through light scattering and trapping. In this work, we demonstrated that the organic-inorganic solar cell based on hybrid composites of conjugated molecules and SiNWs on a planar substrate yielded an excellent power conversion efficiency (PCE) of 9.70%. The high efficiency was ascribed to two aspects: one was the improvement of the light absorption by SiNWs structure on the planar components; the other was the enhancement of charge extraction efficiency, resulting from the novel top contact by forming a thin organic layer shell around the individual silicon nanowire. On the contrary, the sole planar junction solar cell only exhibited a PCE of 6.01%, due to the lower light trapping capability and the less hole extraction efficiency. It indicated that both the SiNWs structure and the thin organic layer top contact were critical to achieve a high performance organic/silicon solar cell. © 2011 American Chemical Society

  1. Light management in flexible OLEDs

    NASA Astrophysics Data System (ADS)

    Harkema, Stephan; Pendyala, Raghu K.; Geurts, Christian G. C.; Helgers, Paul L. J.; Levell, Jack W.; Wilson, Joanne S.; MacKerron, Duncan

    2014-10-01

    Organic light-emitting diodes (OLEDs) are a promising lighting technology. In particular OLEDs fabricated on plastic foils are believed to hold the future. These planar devices are subject to various optical losses, which requires sophisticated light management solutions. Flexible OLEDs on plastic substrates are as prone to losses related to wave guiding as devices on glass. However, we determined that OLEDs on plastic substrates are susceptible to another loss mode due to wave guiding in the thin film barrier. With modeling of white polymer OLEDs fabricated on PEN substrates, we demonstrate that this loss mode is particularly sensitive to polarized light emission. Furthermore, we investigated how thin film barrier approaches can be combined with high index light extraction layers. Our analysis shows that OLEDs with a thin film barrier consisting of an inorganic/organic/inorganic layer sequence, a low index inorganic negatively affects the OLED efficiency. We conclude that high index inorganics are more suitable for usage in high efficiency flexible OLEDs.

  2. Light emitting diode with high aspect ratio submicron roughness for light extraction and methods of forming

    DOEpatents

    Li, Ting [Ventura, CA

    2011-04-26

    The surface morphology of an LED light emitting surface is changed by applying a reactive ion etch (RIE) process to the light emitting surface. High aspect ratio, submicron roughness is formed on the light emitting surface by transferring a thin film metal hard-mask having submicron patterns to the surface prior to applying a reactive ion etch process. The submicron patterns in the metal hard-mask can be formed using a low cost, commercially available nano-patterned template which is transferred to the surface with the mask. After subsequently binding the mask to the surface, the template is removed and the RIE process is applied for time duration sufficient to change the morphology of the surface. The modified surface contains non-symmetric, submicron structures having high aspect ratio which increase the efficiency of the device.

  3. InGaN/GaN light-emitting diode having direct hole injection plugs and its high-current operation.

    PubMed

    Kim, Sungjoon; Cho, Seongjae; Jeong, Jaedeok; Kim, Sungjun; Hwang, Sungmin; Kim, Garam; Yoon, Sukho; Park, Byung-Gook

    2017-03-20

    The light-emitting diode (LED) with an improved hole injection and straightforward process integration is proposed. p-type GaN direct hole injection plugs (DHIPs) are formed on locally etched multiple-quantum wells (MQWs) by epitaxial lateral overgrowth (ELO) method. We confirm that the optical output power is increased up to 23.2% at an operating current density of 100 A/cm2. Furthermore, in order to identify the origin of improvement in optical performance, the transient light decay time and light intensity distribution characteristics were analyzed on the DHIP LED devices. Through the calculation of the electroluminescence (EL) decay time, internal quantum efficiency (IQE) is extracted along with the recombination parameters, which reveals that the DHIPs have a significant effect on enhancement of radiative recombination and reduction of efficiency droop. Furthermore, the mapping PL reveals that the DHIP LED also has a potential to improve the light extraction efficiency by hexagonal pyramid shaped DHIPs.

  4. High-efficiency Light-emitting Devices based on Semipolar III-Nitrides

    NASA Astrophysics Data System (ADS)

    Oh, Sang Ho

    In the future, the light-emitting diodes (LEDs) are expected to fully penetrate into the lighting market. A tremendous amount of energy will be saved through the LED-based lighting. Apparently, the amount of the energy saving strongly depends on the efficiency of the LEDs: this dissertation is all about the efficiency. First, the III-nitride LEDs grown on free-standing semipolar (202¯1¯) GaN substrates will be discussed. In many studies, LEDs grown on semipolar III-nitride substrates exhibited high efficiency at high current density. In this dissertation, "droop-free" (202¯1¯) blue LEDs will be demonstrated, especially for the standard industrial chip size. In addition, contact optimization process for (202¯1¯) LEDs will be discussed. Series resistance of the (202¯1¯) LED devices has been improved through the contact optimization. As a result, the wall-plug efficiency (WPE) of the device was boosted by ˜50%, compared to that of the previously reported (202¯1¯) LEDs. Also, chip shaping for the semipolar LEDs to enhance the extraction efficiency will be covered as well. A new mesa design will be introduced, and the cleaving scheme for semipolar LED wafers will be thoroughly discussed. Lastly, as a future work, selective area growth of ZnO light extraction features will be introduced and its preliminary result will be demonstrated.

  5. Optical devices featuring nonpolar textured semiconductor layers

    DOEpatents

    Moustakas, Theodore D; Moldawer, Adam; Bhattacharyya, Anirban; Abell, Joshua

    2013-11-26

    A semiconductor emitter, or precursor therefor, has a substrate and one or more textured semiconductor layers deposited onto the substrate in a nonpolar orientation. The textured layers enhance light extraction, and the use of nonpolar orientation greatly enhances internal quantum efficiency compared to conventional devices. Both the internal and external quantum efficiencies of emitters of the invention can be 70-80% or higher. The invention provides highly efficient light emitting diodes suitable for solid state lighting.

  6. The study of temperature and UV light effect in anthocyanin extract from dragon fruit (Hylocereus costaricensis) rind using UV-Visible spectrophotometer

    NASA Astrophysics Data System (ADS)

    Purbaningtias, Tri Esti; Aprilia, Anisa Cahyani; Fauzi'ah, Lina

    2017-12-01

    This study aimed to determine the total of anthocyanin content in ethanol extract from super red dragon fruit rind. The extraction was affected by temperature and light conditions. The determination of anthocyanin's total content was performed with a variation of pH and analyzed by UV-Visible spectrophotometer. The results showed that the average contained total anthocyanins obtained at room temperature, 40 and 60 °C were 4.6757, 5.6108, 21.9757 mg/L, respectively. In higher temperatures, it was observed the more anthocyanin extracted. The concentration of anthocyanin extract without UV light was 2.5716 mg/L, it was less than UV light assisted extract, i.e. 5.3770 mg / L.

  7. Synthesis of labeled compounds using recovered tritium from expired beta light sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matei, L.; Postolache, C.; Bubueanu, G.

    2008-07-15

    In this paper, the technological procedures for extracting tritium from beta light source are highlighted. The recovered tritium was used in the synthesis of organically labeled compounds and in the preparation of tritiated water (HTO) with high specific activity. Technological procedures for treatment of beta light sources consist of: envelope breaking into evacuated enclosure, the radioactive gaseous mixture pumping and its storage on metallic sodium. The mixtures of T{sub 2} and {sup 3}He were used in the synthesis of tritium labeled steroid hormones, nucleosides analogues and for the preparation of HTO with high radioactivity concentrations. (authors)

  8. Developmental toxicity of PAH mixtures in fish early life stages. Part I: adverse effects in rainbow trout.

    PubMed

    Le Bihanic, Florane; Morin, Bénédicte; Cousin, Xavier; Le Menach, Karyn; Budzinski, Hélène; Cachot, Jérôme

    2014-12-01

    A new gravel-contact assay using rainbow trout, Oncorhynchus mykiss, embryos was developed to assess the toxicity of polycyclic aromatic hydrocarbons (PAHs) and other hydrophobic compounds. Environmentally realistic exposure conditions were mimicked with a direct exposure of eyed rainbow trout embryos incubated onto chemical-spiked gravels until hatching at 10 °C. Several endpoints were recorded including survival, hatching delay, hatching success, biometry, developmental abnormalities, and DNA damage (comet and micronucleus assays). This bioassay was firstly tested with two model PAHs, fluoranthene and benzo[a]pyrene. Then, the method was applied to compare the toxicity of three PAH complex mixtures characterized by different PAH compositions: a pyrolytic extract from a PAH-contaminated sediment (Seine estuary, France) and two petrogenic extracts from Arabian Light and Erika oils, at two environmental concentrations, 3 and 10 μg g(-1) sum of PAHs. The degree and spectrum of toxicity were different according to the extract considered. Acute effects including embryo mortality and decreased hatching success were observed only for Erika oil extract. Arabian Light and pyrolytic extracts induced mainly sublethal effects including reduced larvae size and hemorrhages. Arabian Light and Erika extracts both induced repairable DNA damage as revealed by the comet assay versus the micronucleus assay. The concentration and proportion of methylphenanthrenes and methylanthracenes appeared to drive the toxicity of the three PAH fractions tested, featuring a toxic gradient as follows: pyrolytic < Arabian Light < Erika. The minimal concentration causing developmental defects was as low as 0.7 μg g(-1) sum of PAHs, indicating the high sensitivity of the assay and validating its use for toxicity assessment of particle-bound pollutants.

  9. Integration of non-Lambertian LED and reflective optical element as efficient street lamp.

    PubMed

    Pan, Jui-Wen; Tu, Sheng-Han; Sun, Wen-Shing; Wang, Chih-Ming; Chang, Jenq-Yang

    2010-06-21

    A cost effective, high throughput, and high yield method for the increase of street lamp potency was proposed in this paper. We integrated the imprinting technology and the reflective optical element to obtain a street lamp with high illumination efficiency and without glare effect. The imprinting technique can increase the light extraction efficiency and modulate the intensity distribution in the chip level. The non-Lambertian light source was achieved by using imprinting technique. The compact reflective optical element was added to efficiently suppress the emitting light intensity with small emitting angle for the uniform of illumination intensity and excluded the light with high emitting angle for the prevention of glare. Compared to the conventional street lamp, the novel design has 40% enhancement in illumination intensity, the uniform illumination and the glare effect elimination.

  10. Organic electroluminescent devices having improved light extraction

    DOEpatents

    Shiang, Joseph John [Niskayuna, NY

    2007-07-17

    Organic electroluminescent devices having improved light extraction include a light-scattering medium disposed adjacent thereto. The light-scattering medium has a light scattering anisotropy parameter g in the range from greater than zero to about 0.99, and a scatterance parameter S less than about 0.22 or greater than about 3.

  11. Ultrastructural effects of silicone oil on the clear crystalline lens of the human eye.

    PubMed

    Soliman, Wael; Sharaf, Mohamed; Abdelazeem, Khaled; El-Gamal, Dalia; Nafady, Allam

    2018-03-01

    To evaluate light and electron microscopic changes of the anterior capsule and its epithelium after clear lens extraction of vitrectomized myopic eyes with silicone oil tamponade. This prospective, controlled, non-randomized, interventional study included 20 anterior lens capsular specimens that were excised during combined clear lens extraction and silicone oil removal from previously vitrectomized highly myopic patients with silicone oil tamponade for previous retinal detachment surgeries. The specimens were examined via light microscopy and electron microscopy and compared with 20 anterior capsule specimens removed during clear lens extraction of non-vitrectomized highly myopic eyes. Light microscopic examination of clear lens anterior capsule specimens of vitrectomized myopic eyes filled with silicone oil showed relatively more flat cells with irregular outline of lens' epithelial cells with wide intercellular spaces, deeply stained nuclei, and multiple intracytoplasmic vacuoles. Scanning electron microscopy revealed collagenous surfaces filled with multiple pits, depressions, and abnormal deposits. Transmission electron microscopy revealed lens epithelial cells with apoptotic changes, many cytoplasmic vacuoles, and filopodia-like protrusions between lens epithelial cells and the capsule. Epithelial proliferation and multilayering were also observed. silicone oil may play a role in the development of apoptotic and histopathological changes in clear lens epithelial cells. Clarity of the lens at the time of silicone oil removal does not indicate an absence of cataractous changes. We found justification of combined clear lens extraction and silicone oil removal or combined phacovitrectomy when silicone oil injection is planned, but further long-term studies with larger patient groups are required.

  12. Light emitting diode with high aspect ratio submicron roughness for light extraction and methods of forming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Ting

    The surface morphology of an LED light emitting surface is changed by applying a reactive ion etch (RIE) process to the light emitting surface. High aspect ratio, submicron roughness is formed on the light emitting surface by transferring a thin film metal hard-mask having submicron patterns to the surface prior to applying a reactive ion etch process. The submicron patterns in the metal hard-mask can be formed using a low cost, commercially available nano-patterned template which is transferred to the surface with the mask. After subsequently binding the mask to the surface, the template is removed and the RIE processmore » is applied for time duration sufficient to change the morphology of the surface. The modified surface contains non-symmetric, submicron structures having high aspect ratio which increase the efficiency of the device.« less

  13. Comparison of various extraction techniques for the determination of polycyclic aromatic hydrocarbons in worms.

    PubMed

    Mooibroek, D; Hoogerbrugge, R; Stoffelsen, B H G; Dijkman, E; Berkhoff, C J; Hogendoorn, E A

    2002-10-25

    Two less laborious extraction methods, viz. (i) a simplified liquid extraction using light petroleum or (ii) microwave-assisted solvent extraction (MASE), for the analysis of polycyclic aromatic hydrocarbons (PAHs) in samples of the compost worm Eisenia andrei, were compared with a reference method. After extraction and concentration, analytical methodology consisted of a cleanup of (part) of the extract with high-performance gel permeation chromatography (HPGPC) and instrumental analysis of 15 PAHs with reversed-phase liquid chromatography with fluorescence detection (RPLC-FLD). Comparison of the methods was done by analysing samples with incurred residues (n=15, each method) originating from an experiment in which worms were exposed to a soil contaminated with PAHs. Simultaneously, the performance of the total lipid determination of each method was established. Evaluation of the data by means of principal component analysis (PCA) and analysis of variance (ANOVA) revealed that the performance of the light petroleum method for both the extraction of PAHs (concentration range 1-30 ng/g) and lipid content corresponds very well with the reference method. Compared to the reference method, the MASE method yielded somewhat lower concentrations for the less volatile PAHs, e.g., dibenzo[ah]anthracene and benzo[ghi]perylene and provided a significant higher amount of co-extracted material.

  14. Inactivation of Ca2+-induced ciliary reversal by high-salt extraction in the cilia of Paramecium.

    PubMed

    Kutomi, Osamu; Seki, Makoto; Nakamura, Shogo; Kamachi, Hiroyuki; Noguchi, Munenori

    2013-10-01

    Intracellular Ca(2+) induces ciliary reversal and backward swimming in Paramecium. However, it is not known how the Ca(2+) signal controls the motor machinery to induce ciliary reversal. We found that demembranated cilia on the ciliated cortical sheets from Paramecium caudatum lost the ability to undergo ciliary reversal after brief extraction with a solution containing 0.5 M KCl. KNO(3), which is similar to KCl with respect to chaotropic effect; it had the same effect as that of KCl on ciliary response. Cyclic AMP antagonizes Ca(2+)-induced ciliary reversal. Limited trypsin digestion prevents endogenous A-kinase and cAMP-dependent phosphorylation of an outer arm dynein light chain and induces ciliary reversal. However, the trypsin digestion prior to the high-salt extraction did not affect the inhibition of Ca(2+)-induced ciliary reversal caused by the high-salt extraction. Furthermore, during the course of the high-salt extraction, some axonemal proteins were extracted from ciliary axonemes, suggesting that they may be responsible for Ca(2+)-induced ciliary reversal.

  15. Light-induced pH change and its application to solid phase extraction of trace heavy metals by high-magnetization Fe3O4@SiO2@TiO2 nanoparticles followed by inductively coupled plasma mass spectrometry detection.

    PubMed

    Zhang, Nan; Peng, Hanyong; Hu, Bin

    2012-05-30

    We report here the preparation of high-magnetization Fe(3)O(4)@SiO(2)@TiO(2) nanoparticles for solid phase extraction of trace amounts of Cd(II), Cr(III), Mn(II) and Cu(II) from environmental waters. The prepared nanoparticles were characterized by scanning electron micrograph (SEM) and transmission electron microscopy (TEM). The high-magnetization nanoparticles carrying the target metals could be easily and fast separated from the aqueous solution simply by applying an external magnetic field while no filtration or centrifugation was necessary. A light-induced hydroxide ion emitter, molecular malachite green carbinol base (MGCB) was applied to adjust pH value of solution for quantitative adsorption instead of the conventional used buffer. In the presence of UV light, MGCB gives out OH(-) ions, and this leads to an increase in the pH value without the aid of buffer solution. Using high-magnetization Fe(3)O(4)@SiO(2)@TiO(2) nanoparticles as the extraction material and the light-induced MGCB for pH adjustment, we developed an efficient and convenient two-step method for separation/preconcentration trace amounts of Cd(II), Cr(III), Mn(II) and Cu(II) in environmental water samples followed by inductively coupled plasma mass spectrometry (ICP-MS) detection. The parameters affecting the extraction such as MGCB concentration, exposal time, sample volume, eluent condition, and interfering ions have been investigated in detail. Under the optimized conditions, the limits of detection for Cd(II), Cr(III), Mn(II) and Cu(II) were 4.0, 2.6, 1.6 and 2.3 ng L(-1), respectively, and the relative standard deviations (RSDs, c=1 μg L(-1), n=7) were 3.6%, 4.5%, 4.0 and 4.1%, respectively. The proposed method has been validated using certified reference materials, and it has been successfully applied in the determination of trace Cd(II), Cr(III), Mn(II) and Cu(II) in environmental water samples. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Biologically inspired LED lens from cuticular nanostructures of firefly lantern

    PubMed Central

    Kim, Jae-Jun; Lee, Youngseop; Kim, Ha Gon; Choi, Ki-Ju; Kweon, Hee-Seok; Park, Seongchong; Jeong, Ki-Hun

    2012-01-01

    Cuticular nanostructures found in insects effectively manage light for light polarization, structural color, or optical index matching within an ultrathin natural scale. These nanostructures are mainly dedicated to manage incoming light and recently inspired many imaging and display applications. A bioluminescent organ, such as a firefly lantern, helps to out-couple light from the body in a highly efficient fashion for delivering strong optical signals in sexual communication. However, the cuticular nanostructures, except the light-producing reactions, have not been well investigated for physical principles and engineering biomimetics. Here we report a unique observation of high-transmission nanostructures on a firefly lantern and its biological inspiration for highly efficient LED illumination. Both numerical and experimental results clearly reveal high transmission through the nanostructures inspired from the lantern cuticle. The nanostructures on an LED lens surface were fabricated by using a large-area nanotemplating and reconfigurable nanomolding with heat-induced shear thinning. The biologically inspired LED lens, distinct from a smooth surface lens, substantially increases light transmission over visible ranges, comparable to conventional antireflection coating. This biological inspiration can offer new opportunities for increasing the light extraction efficiency of high-power LED packages. PMID:23112185

  17. Three-Dimensional Hetero-Integration of Faceted GaN on Si Pillars for Efficient Light Energy Conversion Devices.

    PubMed

    Kim, Dong Rip; Lee, Chi Hwan; Cho, In Sun; Jang, Hanmin; Jeon, Min Soo; Zheng, Xiaolin

    2017-07-25

    An important pathway for cost-effective light energy conversion devices, such as solar cells and light emitting diodes, is to integrate III-V (e.g., GaN) materials on Si substrates. Such integration first necessitates growth of high crystalline III-V materials on Si, which has been the focus of many studies. However, the integration also requires that the final III-V/Si structure has a high light energy conversion efficiency. To accomplish these twin goals, we use single-crystalline microsized Si pillars as a seed layer to first grow faceted Si structures, which are then used for the heteroepitaxial growth of faceted GaN films. These faceted GaN films on Si have high crystallinity, and their threading dislocation density is similar to that of GaN grown on sapphire. In addition, the final faceted GaN/Si structure has great light absorption and extraction characteristics, leading to improved performance for GaN-on-Si light energy conversion devices.

  18. Crystallization-assisted nano-lens array fabrication for highly efficient and color stable organic light emitting diodes.

    PubMed

    Park, Young-Sam; Han, Kyung-Hoon; Kim, Jehan; Cho, Doo-Hee; Lee, Jonghee; Han, Yoonjay; Lim, Jong Tae; Cho, Nam Sung; Yu, Byounggon; Lee, Jeong-Ik; Kim, Jang-Joo

    2017-01-07

    To date, all deposition equipment has been developed to produce planar films. Thus lens arrays with a lens diameter of <1 mm have been manufactured by combining deposition with other technologies, such as masks, surface treatment, molding etc. Furthermore, a nano-lens array (NLA) with a sufficiently small lens diameter (<1 μm) is necessary to avoid image quality degradation in high resolution displays. In this study, an organic NLA made using a conventional deposition technique - without combining with other techniques - is reported. Very interestingly, grazing-incidence small-angle X-ray scattering (GI-SAXS) experiments indicate that the NLA is formed by the crystallization of organic molecules and the resulting increase in surface tension. The lens diameter can be tuned for use with any kind of light by controlling the process parameters. As an example of their potential applications, we use NLAs as a light extraction film for organic light emitting diodes (OLEDs). The NLA is integrated by directly depositing it on the top electrode of a collection of OLEDs. This is a dry process, meaning that it is fully compatible with the current OLED production process. Devices with NLAs exhibited a light extraction efficiency 1.5 times higher than devices without, which corresponds well with simulation results. The simulations show that this high efficiency is due to the reduction of the guided modes by scattering at the NLA. The NLAs also reduce image blurring, indicating that they increase color stability.

  19. An elegant route to overcome fundamentally-limited light extraction in AlGaN deep-ultraviolet light-emitting diodes: preferential outcoupling of strong in-plane emission (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kim, Jong Kyu; Lee, Jong Won; Kim, Dong-Yeong; Park, Jun Hyuk; Schubert, E. Fred; Kim, Jungsub; Kim, Yong-Il

    2016-09-01

    AlGaN-based deep ultraviolet (DUV) light-emitting diodes (LEDs) are being developed for their numerous applications such as purification of air and water, sterilization in food processing, UV curing, medical-, and defense-related light sources. However, external quantum efficiency (EQE) of AlGaN-based DUV LEDs is very poor (<5% for 250nm) particularly due to low hole concentration and light extraction efficiency (LEE). Conventional LEE-enhancing techniques used for GaInN-based visible LEDs turned out to be ineffective for DUV LEDs due to difference in intrinsic material property between GaInN and AlGaN (Al< 30%). Unlike GaInN visible LEDs, DUV light from a high Al-content AlGaN active region is strongly transverse-magnetic (TM) polarized, that is, the electric field vector is parallel to the (0001) c-axis and shows strong sidewall emission through m- or a-plane due to crystal-field split-off hole band being top most valence band. Therefore, a new LEE-enhancing approach addressing the unique intrinsic property of AlGaN DUV LEDs is strongly desired. In this study, an elegant approach based on a DUV LED having multiple mesa stripes whose inclined sidewalls are covered by a MgF2/Al omni-directional mirror to take advantage of the strongly anisotropic transverse-magnetic polarized emission pattern of AlGaN quantum wells is presented. The sidewall-emission-enhanced DUV LED breaks through the fundamental limitations caused by the intrinsic properties of AlGaN, thus shows a remarkable improvement in light extraction as well as operating voltage simultaneously. Furthermore, an analytic model is developed to understand and precisely estimate the extraction of DUV photons from AlGaN DUV LEDs, and hence to provide promising routes to maximize the power conversion efficiency.

  20. Method for optical pumping of thin laser media at high average power

    DOEpatents

    Zapata, Luis E [Livermore, CA; Beach, Raymond J [Livermore, CA; Honea, Eric C [Sunol, CA; Payne, Stephen A [Castro Valley, CA

    2004-07-13

    A thin, planar laser material is bonded to a light guide of an index-matched material forming a composite disk. Diode array or other pump light is introduced into the composite disk through the edges of the disk. Pump light trapped within the composite disk depletes as it multi-passes the laser medium before reaching an opposing edge of the disk. The resulting compound optical structure efficiently delivers concentrated pump light and to a laser medium of minimum thickness. The external face of the laser medium is used for cooling. A high performance cooler attached to the external face of the laser medium rejects heat. Laser beam extraction is parallel to the heat flux to minimize optical distortions.

  1. Green synthesis of Copper nanoparticle using ionic liquid-based extraction from Polygonum minus and their applications.

    PubMed

    Ullah, Habib; Wilfred, Cecilia Devi; Shaharun, Maizatul Shima

    2018-06-06

    The present work reports the extraction of phenolic compounds from Polygonum minus using ionic liquid as extracting solvent. In this work, 1-Butyl-3-methylimidazolium hydrogen sulfate [BMIM][HSO 4 ] was used for the extraction of bioactive compounds. Accordingly, ionic liquids based microwave-assisted extraction treatment for separating of bioactive compounds from polygonum minus was first performed in the present study. The results obtained in this work have high extraction yield in comparison with conventional solvent. UV/Vis results showed that microwave synthesis was fast, well dispersed and nanosized copper nanoparticle (CuNPs) in comparison with conventional synthesis. CuNPs was characterized by X-Rays diffractometer (XRD), Fourier transform infrared (FTIR), dynamic light scattering (DLS), field emission scanning electron microscopy combined with energy dispersive x-rays (FESEM-EDX), and thermogravimetric analysis (TGA). All the instrumental analyses confirmed the particles were nanosized. Furthermore, the antibacterial activity of as-synthesized CuNPs showed effective inhibitory zone against three different bacteria. The photocatalytic degradation of copper nanoparticles was studied using methylene blue (MB) and methyl orange (MO) dyes under UV light and degraded 99.9% within short time 8 and 7 minutes.

  2. Improvement of light extraction of LYSO scintillator by using a combination of self-assembly of nanospheres and atomic layer deposition.

    PubMed

    Zhu, Zhichao; Liu, Bo; Zhang, Haifeng; Ren, Weina; Cheng, Chuanwei; Wu, Shuang; Gu, Mu; Chen, Hong

    2015-03-23

    The self-assembled monolayer periodic array of polystyrene spheres conformally coated with TiO₂ layer using atomic layer deposition is designed to obtain a further enhancement of light extraction for LYSO scintillator. The maximum enhancement is 149% for the sample with polystyrene spheres conformally coated with TiO₂ layer, while the enhancement is only 76% for the sample with only polystyrene spheres. Such further enhancement could be contributed from the additional modes forming by TiO₂ layer due to its high refractive index, which can be approved by the simulation of electric field distribution. The experimental results are agreement with the simulated results. Furthermore, the prepared structured layer exhibits an excellent combination with the surface of scintillator, which is in favor of the practical application. Therefore, it is safely concluded that the combination of self-assembly method and atomic layer deposition is a promising approach to obtain a significant enhancement of light extraction for a large area. This method can be extended to many other luminescent materials and devices.

  3. Investigation of Carbonaceous Aerosol Optical Properties to Understand Impacts on Air Quality and Composition

    NASA Astrophysics Data System (ADS)

    Olson, Michael R.

    The optical properties of carbonaceous aerosols were investigated to understand the impact source emissions and ambient particulate matter (PM) have on atmospheric radiative forcing. Black carbon (BC) is a strong absorber of visible light and contributes highly to atmospheric radiative forcing, therefore it is important to link BC properties to combustion emission sources. Brown carbon (BrC) is poorly understood and may be an important contributor to both positive and negative radiative forcing. The research investigates these primary knowledge gaps. The optical properties of carbonaceous aerosols were investigated to understand the impact source emissions and ambient particulate matter (PM) have on atmospheric radiative forcing. Black carbon (BC) is a strong absorber of visible light and contributes highly to atmospheric radiative forcing, therefore it is important to link BC properties to combustion emission sources. Brown carbon (BrC) is poorly understood and may be an important contributor to both positive and negative radiative forcing. The research investigates these primary knowledge gaps. Multiple methods were developed and applied to quantify the mass absorption cross-section (MAC) at multiple wavelengths of source and ambient samples. The MAC of BC was determined to be approximately 7.5 m2g-1 at 520nm. However, the MAC was highly variable with OC fraction and wavelength. The BrC MAC was similar for all sources, with the highest absorption in the UV at 370nm; the MAC quickly decreases at larger wavelengths. In the UV, the light absorption by BrC could exceed BC contribution by over 100 times, but only when the OC fraction is large (>90%) as compared to the total carbon. BrC was investigated by measuring the light absorption of solvent extracted fractions in water, dichloromethane, and methanol. Source emissions exhibited greater light absorption in methanol extractions as compared to water and DCM extracts. The BrC MAC was 2.4 to 3.7 m2g-1 at 370nm in methanol. Ambient samples showed similar MACs for the water and methanol extracts. Dichloromethane extracts did not have a significant light absorption characteristics for ambient samples. BrC and BC were measured in Beijing, China. Both were reduced significantly when restrictive air pollution controls were put in place. The industrial regions south and east of Beijing were the highest contributors to ambient BrC and BC. The controls reduced BrC more than BC as compared to observations during the regions heating period. Using the color characteristics of ambient PM, a model was developed to estimate elemental and organic carbon (EC/OC). The method will allow fast and cost effective quantification of PM composition in combination with large climate and health studies, especially in the developing world.

  4. Approach to Low-Cost High-Efficiency OLED Lighting. Building Technologies Solid State Lighting (SSL) Program Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pei, Qibing

    2017-10-06

    This project developed an integrated substrate which organic light emitting diode (OLED) panel developers could employ the integrated substrate to fabricate OLED devices with performance and projected cost meeting the MYPP targets of the Solid State Lighting Program of the Department of Energy. The project optimized the composition and processing conditions of the integrated substrate for OLED light extraction efficiency and overall performance. The process was further developed for scale up to a low-cost process and fabrication of prototype samples. The encapsulation of flexible OLEDs based on this integrated substrate was also investigated using commercial flexible barrier films.

  5. Implementation of light extraction improvements of GaN-based light-emitting diodes with specific textured sidewalls

    NASA Astrophysics Data System (ADS)

    Chen, Chun-Yen; Chen, Wei-Cheng; Chang, Ching-Hong; Lee, Yu-Lin; Liu, Wen-Chau

    2018-05-01

    Textured-sidewall GaN-based light-emitting diodes (LEDs) with various sidewall angles (15-90°) and convex or concave sidewalls prepared using an inductively-coupled-plasma approach are comprehensively fabricated and studied. The device with 45° sidewalls (Device F) and that with convex sidewalls (Device B) show significant improvements in optical properties. Experiments show that, at an injection current of 350 mA, the light output power, external quantum efficiency, wall-plug efficiency, and luminous flux of Device F (Device B) are greatly improved by 18.3% (18.2%), 18.2% (18.2%), 17.3% (19.8%), and 16.6% (18.4%), respectively, compared to those of a conventional LED with flat sidewalls. In addition, negligible degradation in electrical properties is found. The enhanced optical performance is mainly attributed to increased light extraction in the horizontal direction due to a significant reduction in total internal reflection at the textured sidewalls. Therefore, the reported specific textured-sidewall structures (Devices B and F) are promising for high-power GaN-based LED applications.

  6. Large enhancement of light extraction efficiency in AlGaN-based nanorod ultraviolet light-emitting diode structures.

    PubMed

    Ryu, Han-Youl

    2014-02-04

    Light extraction efficiency (LEE) of AlGaN-based nanorod deep ultraviolet (UV) light-emitting diodes (LEDs) is numerically investigated using three-dimensional finite-difference time-domain simulations. LEE of deep UV LEDs is limited by strong light absorption in the p-GaN contact layer and total internal reflection. The nanorod structure is found to be quite effective in increasing LEE of deep UV LEDs especially for the transverse magnetic (TM) mode. In the nanorod LED, strong dependence of LEE on structural parameters such as the diameter of a nanorod and the p-GaN thickness is observed, which can be attributed to the formation of resonant modes inside the nanorod structure. Simulation results show that, when the structural parameters of the nanorod LED are optimized, LEE can be higher than 50% and 60% for the transverse electric (TE) and TM modes, respectively. The nanorod structure is expected to be a good candidate for the application to future high-efficiency deep UV LEDs. PACS: 41.20.Jb; 42.72.Bj; 85.60.Jb.

  7. Large enhancement of light extraction efficiency in AlGaN-based nanorod ultraviolet light-emitting diode structures

    PubMed Central

    2014-01-01

    Light extraction efficiency (LEE) of AlGaN-based nanorod deep ultraviolet (UV) light-emitting diodes (LEDs) is numerically investigated using three-dimensional finite-difference time-domain simulations. LEE of deep UV LEDs is limited by strong light absorption in the p-GaN contact layer and total internal reflection. The nanorod structure is found to be quite effective in increasing LEE of deep UV LEDs especially for the transverse magnetic (TM) mode. In the nanorod LED, strong dependence of LEE on structural parameters such as the diameter of a nanorod and the p-GaN thickness is observed, which can be attributed to the formation of resonant modes inside the nanorod structure. Simulation results show that, when the structural parameters of the nanorod LED are optimized, LEE can be higher than 50% and 60% for the transverse electric (TE) and TM modes, respectively. The nanorod structure is expected to be a good candidate for the application to future high-efficiency deep UV LEDs. PACS 41.20.Jb; 42.72.Bj; 85.60.Jb PMID:24495598

  8. Use of olive oil for soil extraction and ultraviolet degradation of polychlorinated dibenzo-p-dioxins and dibenzofurans.

    PubMed

    Isosaari, P; Tuhkanen, T; Vartiainen, T

    2001-03-15

    This paper represents a successful laboratory-scale photolysis of soil-bound tetra- to octachlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in olive oil. The irradiation source consisted of two blacklight lamps emitting light at a near-ultraviolet range. Samples used in the experiments included pure 1,2,3,4,6,7,8-heptachlorodibenzofuran, PCDD/F extract made of a wood preservative (chlorophenol product Ky 5), and soil that was highly contaminated with PCDD/Fs. Degradation of 1,2,3,4,6,7,8-heptachlorodibenzofuran dissolved in olive oil proceeded rapidlywith a first-order reaction half-life of 13 min. Irradiation of a soil sample resulted in an 84% reduction in PCDD/F toxicity equivalent (I-TEQ) in 17.5 h. A more complete degradation of soil-bound PCDD/Fs was achieved after extraction of the soil with olive oil. The oil was effective in solubilizing PCDD/Fs. After one extraction at room temperature, only 9% of I-TEQ remained in soil. Irradiation of the resulting extract reduced toxicity of the extract by 99%, and even the highly chlorinated congeners octachlorodibenzo-p-dioxin and octachlorodibenzofuran degraded easily (97 and 99% degradation, respectively). Photodegradation byproducts found included diphenyl ether and small amounts of dechlorination products, which were mainly nontoxic PCDD/Fs. Degradation was probably mediated by light absorption of unsaturated fatty acids and phenolic compounds in olive oil, leading to sensitized photolysis of PCDD/Fs.

  9. An accessible protocol for solid-phase extraction of N-linked glycopeptides through reductive amination by amine-functionalized magnetic nanoparticles.

    PubMed

    Zhang, Ying; Kuang, Min; Zhang, Lijuan; Yang, Pengyuan; Lu, Haojie

    2013-06-04

    In light of the significance of glycosylation for wealthy biological events, it is important to prefractionate glycoproteins/glycopeptides from complex biological samples. Herein, we reported a novel protocol of solid-phase extraction of glycopeptides through a reductive amination reaction by employing the easily accessible 3-aminopropyltriethoxysilane (APTES)-functionalized magnetic nanoparticles. The amino groups from APTES, which were assembled onto the surface of the nanoparticles through a one-step silanization reaction, could conjugate with the aldehydes from oxidized glycopeptides and, therefore, completed the extraction. To the best of our knowledge, this is the first example of applying the reductive amination reaction into the isolation of glycopeptides. Due to the elimination of the desalting step, the detection limit of glycopeptides was improved by 2 orders of magnitude, compared to the traditional hydrazide chemistry-based solid phase extraction, while the extraction time was shortened to 4 h, suggesting the high sensitivity, specificity, and efficiency for the extraction of N-linked glycopeptides by this method. In the meantime, high selectivity toward glycoproteins was also observed in the separation of Ribonuclease B from the mixtures contaminated with bovine serum albumin. What's more, this technique required significantly less sample volume, as demonstrated in the successful mapping of glycosylation of human colorectal cancer serum with the sample volume as little as 5 μL. Because of all these attractive features, we believe that the innovative protocol proposed here will shed new light on the research of glycosylation profiling.

  10. Evaluation of light extraction efficiency for the light-emitting diodes based on the transfer matrix formalism and ray-tracing method

    NASA Astrophysics Data System (ADS)

    Pingbo, An; Li, Wang; Hongxi, Lu; Zhiguo, Yu; Lei, Liu; Xin, Xi; Lixia, Zhao; Junxi, Wang; Jinmin, Li

    2016-06-01

    The internal quantum efficiency (IQE) of the light-emitting diodes can be calculated by the ratio of the external quantum efficiency (EQE) and the light extraction efficiency (LEE). The EQE can be measured experimentally, but the LEE is difficult to calculate due to the complicated LED structures. In this work, a model was established to calculate the LEE by combining the transfer matrix formalism and an in-plane ray tracing method. With the calculated LEE, the IQE was determined and made a good agreement with that obtained by the ABC model and temperature-dependent photoluminescence method. The proposed method makes the determination of the IQE more practical and conventional. Project supported by the National Natural Science Foundation of China (Nos.11574306, 61334009), the China International Science and Technology Cooperation Program (No. 2014DFG62280), and the National High Technology Program of China (No. 2015AA03A101).

  11. Metasurface integrated high energy efficient and high linearly polarized InGaN/GaN light emitting diode.

    PubMed

    Wang, Miao; Xu, Fuyang; Lin, Yu; Cao, Bing; Chen, Linghua; Wang, Chinhua; Wang, Jianfeng; Xu, Ke

    2017-07-06

    We proposed and demonstrated an integrated high energy efficient and high linearly polarized InGaN/GaN green LED grown on (0001) oriented sapphire with combined metasurface polarizing converter and polarizer system. It is different from those conventional polarized light emissions generated with plasmonic metallic grating in which at least 50% high energy loss occurs inherently due to high reflection of the transverse electric (TE) component of an electric field. A reflecting metasurface, with a two dimensional elliptic metal cylinder array (EMCA) that functions as a half-wave plate, was integrated at the bottom of a LED such that the back-reflected TE component, that is otherwise lost by a dielectric/metal bi-layered wire grids (DMBiWG) polarizer on the top emitting surface of the LED, can be converted to desired transverse magnetic (TM) polarized emission after reflecting from the metasurface. This significantly enhances the polarized light emission efficiency. Experimental results show that extraction efficiency of the polarized emission can be increased by 40% on average in a wide angle of ±60° compared to that with the naked bottom of sapphire substrate, or 20% compared to reflecting Al film on the bottom of a sapphire substrate. An extinction ratio (ER) of average value 20 dB within an angle of ±60° can be simultaneously obtained directly from an InGaN/GaN LED. Our results show the possibility of simultaneously achieving a high degree of polarization and high polarization extraction efficiency at the integrated device level. This advances the field of GaN LED toward energy efficiency, multi-functional applications in illumination, display, medicine, and light manipulation.

  12. Investigation on bandgap, diffraction, interference, and refraction effects of photonic crystal structure in GaN/InGaN LEDs for light extraction.

    PubMed

    Patra, Saroj Kanta; Adhikari, Sonachand; Pal, Suchandan

    2014-06-20

    In this paper, we have made a clear differentiation among bandgap, diffraction, interference, and refraction effects in photonic crystal structures (PhCs). For observing bandgap, diffraction, and refraction effects, PhCs are considered on the top p-GaN surface of light emitting diodes (LEDs), whereas for interference effect, hole type PhCs are considered to be embedded within n-GaN layer of LED. From analysis, it is observed that at a particular lattice periodicity, for which bandgap lies within the wavelength of interest shows a significant light extraction due to inhibition of guided mode. Beyond a certain periodicity, diffraction effect starts dominating and light extraction improves further. The interference effect is observed in embedded photonic crystal LEDs, where depth of etching supports constructive interference of outward light waves. We have also shed light on refraction effects exhibited by the PhCs and whether negative refraction properties of PhCs may be useful in case of LED light extraction.

  13. Extraction of bioactive compounds and free radical scavenging activity of purple basil (Ocimum basilicum L.) leaf extracts as affected by temperature and time.

    PubMed

    Pedro, Alessandra C; Moreira, Fernanda; Granato, Daniel; Rosso, Neiva D

    2016-05-13

    In the current study, response surface methodology (RSM) was used to assess the effects of extraction time and temperature on the content of bioactive compounds and antioxidant activity of purple basil leaf (Ocimum basilicum L.) extracts. The stability of anthocyanins in relation to temperature, light and copigmentation was also studied. The highest anthocyanin content was 67.40 mg/100 g extracted at 30 °C and 60 min. The degradation of anthocyanins with varying temperatures and in the presence of light followed a first-order kinetics and the activation energy was 44.95 kJ/mol. All the extracts exposed to light showed similar half-lives. The extracts protected from light, in the presence of copigments, showed an increase in half-life from 152.67 h for the control to 856.49 and 923.17 h for extract in the presence of gallic acid and phytic acid, respectively. These results clearly indicate that purple basil is a potential source of stable bioactive compounds.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Djavid, Mehrdad; Mi, Zetian, E-mail: zetian.mi@mcgill.ca

    The performance of conventional AlGaN deep ultraviolet light emitting diodes has been limited by the extremely low light extraction efficiency (<10%), due to the unique transverse magnetic (TM) polarized light emission. Here, we show that, by exploiting the lateral side emission, the extraction efficiency of TM polarized light can be significantly enhanced in AlGaN nanowire structures. Using the three-dimensional finite-difference time domain simulation, we demonstrate that the nanowire structures can be designed to inhibit the emission of guided modes and redirect trapped light into radiated modes. A light extraction efficiency of more than 70% can, in principle, be achieved bymore » carefully optimizing the nanowire size, nanowire spacing, and p-GaN thickness.« less

  15. Inner Retinal Oxygen Extraction Fraction in Response to Light Flicker Stimulation in Humans

    PubMed Central

    Felder, Anthony E.; Wanek, Justin; Blair, Norman P.; Shahidi, Mahnaz

    2015-01-01

    Purpose Light flicker has been shown to stimulate retinal neural activity, increase blood flow, and alter inner retinal oxygen metabolism (MO2) and delivery (DO2). The purpose of the study was to determine the change in MO2 relative to DO2 due to light flicker stimulation in humans, as assessed by the inner retinal oxygen extraction fraction (OEF). Methods An optical imaging system, based on a modified slit lamp biomicroscope, was developed for simultaneous measurements of retinal vascular diameter (D) and oxygen saturation (SO2). Retinal images were acquired in 20 healthy subjects before and during light flicker stimulation. Arterial and venous D (DA and DV) and SO2 (SO2A and SO2V) were quantified within a circumpapillary region. Oxygen extraction fraction was defined as the ratio of MO2 to DO2 and was calculated as (SO2A − SO2V)/SO2A. Reproducibility of measurements was assessed. Results Coefficients of variation and intraclass correlation coefficients of repeated measurements were <5% and ≥0.83, respectively. During light flicker stimulation, DA, DV , and SO2V significantly increased (P ≤ 0.004). Oxygen extraction fraction was 0.37 ± 0.08 before light flicker and significantly decreased to 0.31 ± 0.07 during light flicker (P = 0.001). Conclusions Oxygen extraction fraction before and during light flicker stimulation is reported in human subjects for the first time. Oxygen extraction fraction decreased during light flicker stimulation, indicating the change in DO2 exceeded that of MO2. This technology is potentially useful for the detection of changes in OEF response to light flicker in physiological and pathological retinal conditions. PMID:26469748

  16. Silver free III-nitride flip chip light-emitting-diode with wall plug efficiency over 70% utilizing a GaN tunnel junction

    NASA Astrophysics Data System (ADS)

    Yonkee, B. P.; Young, E. C.; DenBaars, S. P.; Nakamura, S.; Speck, J. S.

    2016-11-01

    A molecular beam epitaxy regrowth technique was demonstrated on standard industrial patterned sapphire substrate light-emitting diode (LED) epitaxial wafers emitting at 455 nm to form a GaN tunnel junction. By using an HF pretreatment on the wafers before regrowth, a voltage of 3.08 V at 20 A/cm2 was achieved on small area devices. A high extraction package was developed for comparison with flip chip devices which utilize an LED floating in silicone over a BaSO4 coated header and produced a peak external quantum efficiency (EQE) of 78%. A high reflectivity mirror was designed using a seven-layer dielectric coating backed by aluminum which has a calculated angular averaged reflectivity over 98% between 400 and 500 nm. This was utilized to fabricate a flip chip LED which had a peak EQE and wall plug efficiency of 76% and 73%, respectively. This flip chip could increase light extraction over a traditional flip chip LED due to the increased reflectivity of the dielectric based mirror.

  17. Multispectral Near-Infrared Imaging of Composite Restorations in Extracted Teeth.

    PubMed

    Logan, Cooper M; Co, Katrina U; Fried, William A; Simon, Jacob C; Staninec, Michal; And, Daniel Fried; Darling, Cynthia L

    2014-02-20

    One major advantage of composite restoration materials is that they can be color matched to the tooth. However, this presents a challenge when composites fail and they need to be replaced. Dentists typically spend more time repairing and replacing composites than placing new restorations. Previous studies have shown that near-infrared imaging can be used to distinguish between sound enamel and decay due to the differences in light scattering. The purpose of this study was to use a similar approach and exploit differences in light scattering to attain high contrast between composite and tooth structure. Extracted human teeth with composites (n=16) were imaged in occlusal transmission mode at wavelengths of 1300-nm, 1460-nm and 1550-nm using an InGaAs image sensor with a tungsten halogen light source with spectral filters. All samples were also imaged in the visible range using a high definition 3D digital microscope. Our results indicate that NIR wavelengths at 1460-nm and 1550-nm, coincident with higher water absorption yield the highest contrast between dental composites and tooth structure.

  18. Multispectral near-infrared imaging of composite restorations in extracted teeth

    NASA Astrophysics Data System (ADS)

    Logan, Cooper M.; Co, Katrina U.; Fried, William A.; Simon, Jacob C.; Staninec, Michal; Fried, Daniel; Darling, Cynthia L.

    2014-02-01

    One major advantage of composite restoration materials is that they can be color matched to the tooth. However, this presents a challenge when composites fail and they need to be replaced. Dentists typically spend more time repairing and replacing composites than placing new restorations. Previous studies have shown that near-infrared imaging can be used to distinguish between sound enamel and decay due to the differences in light scattering. The purpose of this study was to use a similar approach and exploit differences in light scattering to attain high contrast between composite and tooth structure. Extracted human teeth with composites (n=16) were imaged in occlusal transmission mode at wavelengths of 1300-nm, 1460-nm and 1550-nm using an InGaAs image sensor with a tungsten halogen light source with spectral filters. All samples were also imaged in the visible range using a high definition 3D digital microscope. Our results indicate that NIR wavelengths at 1460-nm and 1550-nm, coincident with higher water absorption yield the highest contrast between dental composites and tooth structure.

  19. Identification of light-independent inhibition of human immunodeficiency virus-1 infection through bioguided fractionation of Hypericum perforatum

    PubMed Central

    Maury, Wendy; Price, Jason P; Brindley, Melinda A; Oh, ChoonSeok; Neighbors, Jeffrey D; Wiemer, David F; Wills, Nickolas; Carpenter, Susan; Hauck, Cathy; Murphy, Patricia; Widrlechner, Mark P; Delate, Kathleen; Kumar, Ganesh; Kraus, George A; Rizshsky, Ludmila; Nikolau, Basil

    2009-01-01

    Background Light-dependent activities against enveloped viruses in St. John's Wort (Hypericum perforatum) extracts have been extensively studied. In contrast, light-independent antiviral activity from this species has not been investigated. Results Here, we identify the light-independent inhibition of human immunodeficiency virus-1 (HIV-1) by highly purified fractions of chloroform extracts of H. perforatum. Both cytotoxicity and antiviral activity were evident in initial chloroform extracts, but bioassay-guided fractionation produced fractions that inhibited HIV-1 with little to no cytotoxicity. Separation of these two biological activities has not been reported for constituents responsible for the light-dependent antiviral activities. Antiviral activity was associated with more polar subfractions. GC/MS analysis of the two most active subfractions identified 3-hydroxy lauric acid as predominant in one fraction and 3-hydroxy myristic acid as predominant in the other. Synthetic 3-hydroxy lauric acid inhibited HIV infectivity without cytotoxicity, suggesting that this modified fatty acid is likely responsible for observed antiviral activity present in that fraction. As production of 3-hydroxy fatty acids by plants remains controversial, H. perforatum seedlings were grown sterilely and evaluated for presence of 3-hydroxy fatty acids by GC/MS. Small quantities of some 3-hydroxy fatty acids were detected in sterile plants, whereas different 3-hydroxy fatty acids were detected in our chloroform extracts or field-grown material. Conclusion Through bioguided fractionation, we have identified that 3-hydroxy lauric acid found in field grown Hypericum perforatum has anti-HIV activity. This novel anti-HIV activity can be potentially developed into inexpensive therapies, expanding the current arsenal of anti-retroviral agents. PMID:19594941

  20. Molecular Chemistry of Atmospheric Brown Carbon Inferred from a Nationwide Biomass Burning Event

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Peng; Bluvshtein, Nir; Rudich, Yinon

    Lag Ba'Omer, a nationwide bonfire festival in Israel, was chosen as a case study to investigate the influence of a major biomass burning event on the light absorption properties of atmospheric brown carbon (BrC). The chemical composition and optical properties of BrC chromophores were investigated using a high performance liquid chromatography (HPLC) platform coupled to photo diode array (PDA) and high resolution mass spectrometry (HRMS) detectors. Substantial increase of BrC light absorption coefficient was observed during the night-long biomass burning event. Most chromophores observed during the event were attributed to nitroaromatic compounds, comprising 28 elemental formulas of at least 63more » structural isomers. The NAC, in combination, accounted for 50-80% of the total visible light absorption (> 400 nm) by solvent extractable BrC. The results highlight that NAC, particular nitrophenols, are important light absorption contributors of biomass burning organic aerosol (BBOA), suggesting that night time chemistry of ·NO 3 and N 2O 5 with particles may play a significant role in atmospheric transformations of BrC. Nitrophenols and related compounds were especially important chromophores of BBOA. The absorption spectra of the BrC chromophores are influenced by the extraction solvent and solution pH, implying that the aerosol acidity is an important factor controlling the light absorption properties of BrC.« less

  1. Molecular Chemistry of Atmospheric Brown Carbon Inferred from a Nationwide Biomass Burning Event

    DOE PAGES

    Lin, Peng; Bluvshtein, Nir; Rudich, Yinon; ...

    2017-08-26

    Lag Ba'Omer, a nationwide bonfire festival in Israel, was chosen as a case study to investigate the influence of a major biomass burning event on the light absorption properties of atmospheric brown carbon (BrC). The chemical composition and optical properties of BrC chromophores were investigated using a high performance liquid chromatography (HPLC) platform coupled to photo diode array (PDA) and high resolution mass spectrometry (HRMS) detectors. Substantial increase of BrC light absorption coefficient was observed during the night-long biomass burning event. Most chromophores observed during the event were attributed to nitroaromatic compounds, comprising 28 elemental formulas of at least 63more » structural isomers. The NAC, in combination, accounted for 50-80% of the total visible light absorption (> 400 nm) by solvent extractable BrC. The results highlight that NAC, particular nitrophenols, are important light absorption contributors of biomass burning organic aerosol (BBOA), suggesting that night time chemistry of ·NO 3 and N 2O 5 with particles may play a significant role in atmospheric transformations of BrC. Nitrophenols and related compounds were especially important chromophores of BBOA. The absorption spectra of the BrC chromophores are influenced by the extraction solvent and solution pH, implying that the aerosol acidity is an important factor controlling the light absorption properties of BrC.« less

  2. Phytochemical screening, acute toxicity, anxiolytic and antidepressant activities of the Nelumbo nucifera fruit.

    PubMed

    Rajput, Muhammad Ali; Khan, Rafeeq Alam

    2017-06-01

    Recently use of herbal therapies and diet rich in flavonoids and vitamin C have increased significantly to treat minor to modest anxiety disorders and various forms of depression. But further research and studies are necessary to evaluate the pharmacological & toxicological effects of plants. Hence present study was designed to conduct phytochemical screening, acute toxicity study, anxiolytic and antidepressant activities of the ethanol extract of Nelumbo nucifera fruit in order to ascertain its therapeutic potential. The qualitative phytochemical screening of the seed pods of the N. nucifera fruit extract exposed the existence of flavonoids, saponins, alkaloids, tannins and terpenoids in it. The acute toxicity of the N. nucifera fruit extract in mice revealed its LD 50 value to be greater than 5000 mg/kg. Antianxiety activity was determined by elevated plus maze and light and dark test using 35 male Wister rats weighing 200-220 g which were equally divided in to 5 groups. The animals used in EPM underwent testing in light and dark box just 30 min after EPM. The antidepressant effect was assessed by forced swimming test using 35 male albino mice weighing 20-25 g equally divided in to 5 groups. In elevated plus maze, N. nucifera fruit extract exhibited substantial rise in number of open arm entries and time spent in open arms at dose 50 mg/kg while highly noteworthy increase in both parameters were observed at extract doses 100 and 200 mg/kg as compared to control. In light dark test highly significant increase in the percentage of time spent in light compartment was observed as compared to control. In forced swimming test highly noteworthy decline in duration of immobility was recorded at doses 100 and 200 mg/kg on 15th day i-e after administration of 14 doses, as compared to control; whereas same doses demonstrated significant decrease as compared to control in duration of immobility after single dose administration i-e on 2nd day of experiment. Thus N. nucifera fruit have exhibited strong anxiolytic and antidepressant effects and proved to have a great potential for therapeutic applications such as anxiety and depression and thus encourage more preclinical and clinical trials in this field.

  3. Extracts from Lentinula edodes (Shiitake) Edible Mushrooms Enriched with Vitamin D Exert an Anti-Inflammatory Hepatoprotective Effect.

    PubMed

    Drori, Ariel; Shabat, Yehudit; Ben Ya'acov, Ami; Danay, Ofer; Levanon, Dan; Zolotarov, Lidya; Ilan, Yaron

    2016-04-01

    Vitamin D has been known for its anti-inflammatory properties. Extracts derived from Lentinula edodes (Shiitake) edible mushroom exert an anti-inflammatory effect. These extracts contain high levels of ergosterol, which converts into ergocalciferol (vitamin D2) following exposure to ultraviolet light, followed by absorption and hydroxylation into the active form 25-hydroxyvitamin D [25(OH)D]. To determine the anti-inflammatory effect of overexpression of vitamin D in edible mushrooms, L. edodes mushrooms were exposed to ultraviolet-B light, freeze-dried, followed by measurement of vitamin D2 contents, in their dry weight. C57B1/6 mice were orally treated with vitamin D2-enriched or nonenriched mushroom extract prior and during concanavalin A-immune-mediated liver injury. Exposure to ultraviolet light increased vitamin D2 content in Shiitake edible mushrooms. Following feeding of vitamin D-enriched mushroom extracts to mice with immune-mediated hepatitis, a significant decrease in liver damage was noted. This was shown by a decrease in alanine aminotransferase and aspartate aminotransferase serum levels, a decrease in proportion of mice with severe liver injury, and by improvement in liver histology. These effects were associated with a decrease in serum interferon gamma levels. A synergistic effect was noted between the anti-inflammatory effect of the mushroom extracts and that of vitamin D. Oral administration of vitamin D-enriched L. edodes edible mushroom exerts a synergistic anti-inflammatory effect in the immune-mediated hepatitis. The data support its potential use as safe immunomodulatory adjuvant for the treatment of HCV and nonalcoholic steatohepatitis.

  4. Extraction of quasi-straightforward-propagating photons from diffused light transmitting through a scattering medium by polarization modulation

    NASA Astrophysics Data System (ADS)

    Horinaka, Hiromichi; Hashimoto, Koji; Wada, Kenji; Cho, Yoshio; Osawa, Masahiko

    1995-07-01

    The utilization of light polarization is proposed to extract quasi-straightforward-propagating photons from diffused light transmitting through a scattering medium under continuously operating conditions. Removal of a floor level normally appearing on the dynamic range over which the extraction capability is maintained is demonstrated. By use of pulse-based observations this cw scheme of extraction of quasi-straightforward-propagating photons is directly shown to be equivalent to the use of a temporal gate in the pulse-based operation.

  5. Improvement of GaN light-emitting diodes with surface-treated Al-doped ZnO transparent Ohmic contacts by holographic photonic crystal

    NASA Astrophysics Data System (ADS)

    Yang, W. F.; Liu, Z. G.; Xie, Y. N.; Cai, J. F.; Liu, S.; Gong, H.; Wu, Z. Y.

    2012-06-01

    This letter presents a holographic photonic crystal (H-PhC) Al-doped ZnO (AZO) transparent Ohmic contact layer on p-GaN to increase the light output of GaN-based LEDs without destroying the p-GaN. The operating voltage of the PhC LEDs at 20 mA was almost the same as that of the typical planar AZO LEDs. While the resultant PhC LED devices exhibited significant improvements in light extraction, up to 1.22 times that of planar AZO LEDs without PhC integration. Temperature dependence of the integrated photoluminescence intensity indicates that this improvement can be attributed to the increased extraction efficiency due to the surface modification. These results demonstrate that the surface-treated AZO layer by H-PhCs is suitable for fabricating high-brightness GaN-based LEDs.

  6. High-power AlGaN-based near-ultraviolet light-emitting diodes grown on Si(111)

    NASA Astrophysics Data System (ADS)

    Li, Zengcheng; Liu, Legong; Huang, Yingnan; Sun, Qian; Feng, Meixin; Zhou, Yu; Zhao, Hanmin; Yang, Hui

    2017-07-01

    High-power AlGaN-based 385 nm near-ultraviolet light-emitting diodes (UVA-LEDs) grown on Si(111) substrates are reported. The threading dislocation (TD) density of AlGaN was reduced by employing an Al-composition step-graded AlN/AlGaN multilayer buffer. V-shaped pits were intentionally incorporated into the active region to screen the carriers from the nonradiative recombination centers (NRCs) around the TDs and to facilitate hole injection. The light extraction efficiency was enhanced by the surface roughening of a thin-film (TF) vertical chip structure. The as-fabricated TF-UVA-LED exhibited a light output power of 960 mW at 500 mA, corresponding to an external quantum efficiency of 59.7%.

  7. An assessment of the efficiency of fungal DNA extraction methods for maximizing the detection of medically important fungi using PCR.

    PubMed

    Karakousis, A; Tan, L; Ellis, D; Alexiou, H; Wormald, P J

    2006-04-01

    To date, no single reported DNA extraction method is suitable for the efficient extraction of DNA from all fungal species. The efficiency of extraction is of particular importance in PCR-based medical diagnostic applications where the quantity of fungus in a tissue biopsy may be limited. We subjected 16 medically relevant fungi to physical, chemical and enzymatic cell wall disruption methods which constitutes the first step in extracting DNA. Examination by light microscopy showed that grinding with mortar and pestle was the most efficient means of disrupting the rigid fungal cell walls of hyphae and conidia. We then trialled several published DNA isolation protocols to ascertain the most efficient method of extraction. Optimal extraction was achieved by incorporating a lyticase and proteinase K enzymatic digestion step and adapting a DNA extraction procedure from a commercial kit (MO BIO) to generate high yields of high quality DNA from all 16 species. DNA quality was confirmed by the successful PCR amplification of the conserved region of the fungal 18S small-subunit rRNA multicopy gene.

  8. Fluorescent light mediated a green synthesis of silver nanoparticles using the protein extract of weaver ant larvae.

    PubMed

    Khamhaengpol, Arunrat; Siri, Sineenat

    2016-10-01

    Alternative to crude plant extracts, a crude protein extract derived from animal cells is one of the potential sources of biomolecules for mediating a reduction of silver ions and a formation of silver nanoparticles (AgNPs) under a mild condition, which very few works have been reported. This work demonstrated a use of the protein extract of weaver ant larvae as a bio-facilitator for a simple, green synthesis of AgNPs under fluorescent light at room temperature. The protein extract of weaver ant larvae exhibited the reducing and antioxidant activities, which assisted a formation of AgNPs in the reaction containing only silver nitrate under light exposure. Transmission electron microscopy images revealed the dispersed, spherical AgNPs with an average size of 7.87±2.54nm. The maximum surface plasmon resonance (SPR) band of the synthesized AgNPs was at 435nm. The energy-dispersive X-ray analysis revealed that silver was a major element of the particles. The identity of AgNPs was confirmed by X-ray diffraction pattern, selected area electron diffraction and high resolution transmission electron microscopy analyses, which demonstrated the planes of face centered cubic silver. The synthesized AgNPs showed antibacterial activity against both Escherichia coli and Staphylococcus aureus with the minimum bactericidal concentration (MBC) values equally at 250μg/ml, suggesting their potential application as an effective antibacterial agent. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Composite phase ceramic phosphor of Al₂O₃-Ce:YAG for high efficiency light emitting.

    PubMed

    Tang, Yanru; Zhou, Shengming; Chen, Chong; Yi, Xuezhuan; Feng, Yue; Lin, Hui; Zhang, Shuai

    2015-07-13

    We present our achievement which is a ceramic plate phosphorable to produce white light when directly combined with commercially available blue light emitting diodes. The ceramic phase structure is that the Al₂O₃ particle is uniformly distributed in the Ce:YAG matrix. The Al₂O₃-Ce:YAG ceramic phosphor has a better luminous efficacy than the transparent Ce:YAG ceramic phosphor under the same test condition. The Al₂O₃ particle plays an important role in promoting the luminous efficacy. The Al₂O₃ particle changes the propagation of the light in ceramic, and it reduces the total internal reflection. That is why the composite phase ceramic phosphor improves extraction efficiency of light.

  10. Increased antioxidant activity and changes in phenolic profile of Kalanchoe pinnata (Lamarck) Persoon (Crassulaceae) specimens grown under supplemental blue light.

    PubMed

    Nascimento, Luana B S; Leal-Costa, Marcos V; Coutinho, Marcela A S; Moreira, Nattacha dos S; Lage, Celso L S; Barbi, Nancy dos S; Costa, Sônia S; Tavares, Eliana S

    2013-01-01

    Antioxidant compounds protect plants against oxidative stress caused by environmental conditions. Different light qualities, such as UV-A radiation and blue light, have shown positive effects on the production of phenols in plants. Kalanchoe pinnata (Lamarck) Persoon (Crassulaceae) is used for treating wounds and inflammations. Some of these beneficial effects are attributed to the antioxidant activity of plant components. We investigated the effects of blue light and UV-A radiation supplementation on the total phenol content, antioxidant activity and chromatographic profile of aqueous extracts from leaves of K. pinnata. Monoclonal plants were grown under white light, white plus blue light and white plus UV-A radiation. Supplemental blue light improved the antioxidant activity and changed the phenolic profile of the extracts. Analysis by HPLC of supplemental blue-light plant extracts revealed a higher proportion of the major flavonoid quercetin 3-O-α-L-arabinopyranosyl (1→2) α-L-rhamnopyranoside, as well as the presence of a wide variety of other phenolic substances. These findings may explain the higher antioxidant activity observed for this extract. Blue light is proposed as a supplemental light source in the cultivation of K. pinnata, to improve its antioxidant activity. © 2012 Wiley Periodicals, Inc. Photochemistry and Photobiology © 2012 The American Society of Photobiology.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Wei, E-mail: wguo2@ncsu.edu; Kirste, Ronny; Bryan, Zachary

    Enhanced light extraction efficiency was demonstrated on nanostructure patterned GaN and AlGaN/AlN Multiple-Quantum-Well (MQW) structures using mass production techniques including natural lithography and interference lithography with feature size as small as 100 nm. Periodic nanostructures showed higher light extraction efficiency and modified emission profile compared to non-periodic structures based on integral reflection and angular-resolved transmission measurement. Light extraction mechanism of macroscopic and microscopic nanopatterning is discussed, and the advantage of using periodic nanostructure patterning is provided. An enhanced photoluminescence emission intensity was observed on nanostructure patterned AlGaN/AlN MQW compared to as-grown structure, demonstrating a large-scale and mass-producible pathway to higher lightmore » extraction efficiency in deep-ultra-violet light-emitting diodes.« less

  12. Weak-microcavity organic light-emitting diodes with improved light out-coupling.

    PubMed

    Cho, Sang-Hwan; Song, Young-Woo; Lee, Joon-gu; Kim, Yoon-Chang; Lee, Jong Hyuk; Ha, Jaeheung; Oh, Jong-Suk; Lee, So Young; Lee, Sun Young; Hwang, Kyu Hwan; Zang, Dong-Sik; Lee, Yong-Hee

    2008-08-18

    We propose and demonstrate weak-microcavity organic light-emitting diode (OLED) displays with improved light-extraction and viewing-angle characteristics. A single pair of low- and high-index layers is inserted between indium tin oxide (ITO) and a glass substrate. The electroluminescent (EL) efficiencies of discrete red, green, and blue weak-microcavity OLEDs are enhanced by 56%, 107%, and 26%, respectively, with improved color purity. Moreover, full-color passive-matrix bottom-emitting OLED displays are fabricated by employing low-index layers of two thicknesses. As a display, the EL efficiency of white color was 27% higher than that of a conventional OLED display.

  13. High efficiency blue and white phosphorescent organic light emitting devices

    NASA Astrophysics Data System (ADS)

    Eom, Sang-Hyun

    Organic light-emitting devices (OLEDs) have important applications in full-color flat-panel displays and as solid-state lighting sources. Achieving high efficiency deep-blue phosphorescent OLEDs (PHOLEDs) is necessary for high performance full-color displays and white light sources with a high color rendering index (CRI); however it is more challenging compared to the longer wavelength light emissions such as green and red due to the higher energy excitations for the deep-blue emitter as well as the weak photopic response of deep-blue emission. This thesis details several effective strategies to enhancing efficiencies of deep-blue PHOLEDs based on iridium(III) bis(4',6'-difluorophenylpyridinato)tetrakis(1-pyrazolyl)borate (FIr6), which are further employed to demonstrate high efficiency white OLEDs by combining the deep-blue emitter with green and red emitters. First, we have employed 1,1-bis-(di-4-tolylaminophenyl) cyclohexane (TAPC) as the hole transporting material to enhance electron and triplet exciton confinement in Fir6-based PHOLEDs, which increased external quantum efficiency up to 18 %. Second, dual-emissive-layer (D-EML) structures consisting of an N,N -dicarbazolyl-3,5-benzene (mCP) layer doped with 4 wt % FIr6 and a p-bis (triphenylsilyly)benzene (UGH2) layer doped with 25 wt % FIr6 was employed to maximize exciton generation in the emissive layer. Combined with the p-i-n device structure, high power efficiencies of (25 +/- 2) lm/W at 100 cd/m2 and (20 +/- 2) lm/W at 1000 cd/m 2 were achieved. Moreover, the peak external quantum efficiency of (20 +/- 1) % was achieved by employing tris[3-(3-pyridyl)mesityl]borane (3TPYMB) as the electron transporting material, which further improves the exciton confinement in the emissive layer. With Cs2CO3 doping in the 3TPYMB layer to greatly increase its electrical conductivity, a peak power efficiency up to (36 +/- 2) lm/W from the deep-blue PHOLED was achieved, which also maintains Commission Internationale de L'Eclairage (CIE) coordinates of (0.16, 0.28). High efficiency white PHOLEDs are also demonstrated by incorporating green and red phosphorescent emitters together with the deep-blue emitter FIr6. Similar to the FIr6-only devices, the D-EML structure with high triplet energy charge transport materials leads to a maximum external quantum efficiency of (19 +/- 1) %. Using the p-i-n device structure, a peak power efficiency of (40 +/- 2) lm/W and (36 +/- 2) lm/W at 100 cd/m2 were achieved, and the white PHOLED possesses a CRI of 79 and CIE coordinates of (0.37, 0.40). The limited light extraction from the planar-type OLEDs is also one of the remaining challenges to the OLED efficiency. Here we have developed a simple soft lithography technique to fabricate a transparent, close-packed hemispherical microlens arrays. The application of such microlens arrays to the glass surface of the large-area fluorescent OLEDs enhanced the light extraction efficiency up to (70 +/- 7)%. It is also shown that the light extraction efficiency of the OLEDs is affected by microlens contact angle, OLEDs size, and detailed layer structure of the OLEDs.

  14. Evaluation of photodynamic therapy using a light-emitting diode lamp against Enterococcus faecalis in extracted human teeth.

    PubMed

    Rios, Alejandro; He, Jianing; Glickman, Gerald N; Spears, Robert; Schneiderman, Emet D; Honeyman, Allen L

    2011-06-01

    Photodynamic therapy (PDT) with high-power lasers as the light source has been proven to be effective in disinfecting root canals. The aim of this study was to evaluate the antimicrobial effect of PDT using toluidine blue O (TBO) and a low-energy light-emitting diode (LED) lamp after the conventional disinfection protocol of 6% NaOCl. Single-rooted extracted teeth were cleaned, shaped, and sealed at the apex before incubation with Enterococcus faecalis for 2 weeks. Roots were randomly assigned to five experimental groups and three control groups. Dentin shavings were collected from the root canals of all groups with a #50/.06 rotary file, colony-forming units were determined, and the bacterial survival rate was calculated for each treatment. The bacterial survival rate of the NaOCl/TBO/light group (0.1%) was significantly lower (P < .005) than the NaOCl (0.66%) and TBO/light groups (2.9%). PDT using TBO and a LED lamp has the potential to be used as an adjunctive antimicrobial procedure in conventional endodontic therapy. Copyright © 2011 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  15. Water extracts from winery by-products as tobacco defense inducers.

    PubMed

    Benouaret, Razik; Goujon, Eric; Trivella, Aurélien; Richard, Claire; Ledoigt, Gérard; Joubert, Jean-Marie; Mery-Bernardon, Aude; Goupil, Pascale

    2014-10-01

    Water extracts from winery by-products exhibited significant plant defense inducer properties. Experiments were conducted on three marc extracts containing various amounts of polyphenols and anthocyanins. Infiltration of red, white and seed grape marc extracts into tobacco leaves induced hypersensitive reaction-like lesions with cell death evidenced by Evans Blue staining. The infiltration zones and the surrounding areas revealed accumulation of autofluorescent compounds under UV light. Leaf infiltration of the three winery by-product extracts induced defense gene expression. The antimicrobial PR1, β-1,3-glucanase PR2, and chitinase PR3 target genes were upregulated locally in tobacco plants following grape marc extract treatments. The osmotin PR5 transcripts accumulated as well in red marc extract treated-tobacco leaves. Overall, the winery by-product extracts elicited an array of plant defense responses making the grape residues a potential use of high value compounds.

  16. RGB-Stack Light Emitting Diode Modules with Transparent Glass Circuit Board and Oil Encapsulation

    PubMed Central

    Li, Ying-Chang; Chang, Yuan-Hsiao; Singh, Preetpal; Chang, Liann-Be; Yeh, Der-Hwa; Chao, Ting-Yu; Jian, Si-Yun; Li, Yu-Chi; Lai, Chao-Sung; Ying, Shang-Ping

    2018-01-01

    The light emitting diode (LED) is widely used in modern solid-state lighting applications, and its output efficiency is closely related to the submounts’ material properties. Most submounts used today, such as low-power printed circuit boards (PCBs) or high-power metal core printed circuit boards (MCPCBs), are not transparent and seriously decrease the output light extraction. To meet the requirements of high light output and better color mixing, a three-dimensional (3-D) stacked flip-chip (FC) LED module is proposed and demonstrated. To realize light penetration and mixing, the mentioned 3-D vertically stacking RGB LEDs use transparent glass as FC package submounts called glass circuit boards (GCB). Light emitted from each GCB stacked LEDs passes through each other and thus exhibits good output efficiency and homogeneous light-mixing characteristics. In this work, the parasitic problem of heat accumulation, which caused by the poor thermal conductivity of GCB and leads to a serious decrease in output efficiency, is solved by a proposed transparent cooling oil encapsulation (OCP) method. PMID:29494534

  17. RGB-Stack Light Emitting Diode Modules with Transparent Glass Circuit Board and Oil Encapsulation.

    PubMed

    Li, Ying-Chang; Chang, Yuan-Hsiao; Singh, Preetpal; Chang, Liann-Be; Yeh, Der-Hwa; Chao, Ting-Yu; Jian, Si-Yun; Li, Yu-Chi; Tan, Cher Ming; Lai, Chao-Sung; Chow, Lee; Ying, Shang-Ping

    2018-03-01

    The light emitting diode (LED) is widely used in modern solid-state lighting applications, and its output efficiency is closely related to the submounts' material properties. Most submounts used today, such as low-power printed circuit boards (PCBs) or high-power metal core printed circuit boards (MCPCBs), are not transparent and seriously decrease the output light extraction. To meet the requirements of high light output and better color mixing, a three-dimensional (3-D) stacked flip-chip (FC) LED module is proposed and demonstrated. To realize light penetration and mixing, the mentioned 3-D vertically stacking RGB LEDs use transparent glass as FC package submounts called glass circuit boards (GCB). Light emitted from each GCB stacked LEDs passes through each other and thus exhibits good output efficiency and homogeneous light-mixing characteristics. In this work, the parasitic problem of heat accumulation, which caused by the poor thermal conductivity of GCB and leads to a serious decrease in output efficiency, is solved by a proposed transparent cooling oil encapsulation (OCP) method.

  18. Light Extraction From Solution-Based Processable Electrophosphorescent Organic Light-Emitting Diodes

    NASA Astrophysics Data System (ADS)

    Krummacher, Benjamin C.; Mathai, Mathew; So, Franky; Choulis, Stelios; Choong, And-En, Vi

    2007-06-01

    Molecular dye dispersed solution processable blue emitting organic light-emitting devices have been fabricated and the resulting devices exhibit efficiency as high as 25 cd/A. With down-conversion phosphors, white emitting devices have been demonstrated with peak efficiency of 38 cd/A and luminous efficiency of 25 lm/W. The high efficiencies have been a product of proper tuning of carrier transport, optimization of the location of the carrier recombination zone and, hence, microcavity effect, efficient down-conversion from blue to white light, and scattering/isotropic remission due to phosphor particles. An optical model has been developed to investigate all these effects. In contrast to the common misunderstanding that light out-coupling efficiency is about 22% and independent of device architecture, our device data and optical modeling results clearly demonstrated that the light out-coupling efficiency is strongly dependent on the exact location of the recombination zone. Estimating the device internal quantum efficiencies based on external quantum efficiencies without considering the device architecture could lead to erroneous conclusions.

  19. Multiframe super resolution reconstruction method based on light field angular images

    NASA Astrophysics Data System (ADS)

    Zhou, Shubo; Yuan, Yan; Su, Lijuan; Ding, Xiaomin; Wang, Jichao

    2017-12-01

    The plenoptic camera can directly obtain 4-dimensional light field information from a 2-dimensional sensor. However, based on the sampling theorem, the spatial resolution is greatly limited by the microlenses. In this paper, we present a method of reconstructing high-resolution images from the angular images. First, the ray tracing method is used to model the telecentric-based light field imaging process. Then, we analyze the subpixel shifts between the angular images extracted from the defocused light field data and the blur in the angular images. According to the analysis above, we construct the observation model from the ideal high-resolution image to the angular images. Applying the regularized super resolution method, we can obtain the super resolution result with a magnification ratio of 8. The results demonstrate the effectiveness of the proposed observation model.

  20. High reliable and chromaticity-tunable flip-chip w-LEDs with Ce:YAG glass-ceramics phosphor for long-lifetime automotive headlights applications

    NASA Astrophysics Data System (ADS)

    Ma, Chaoyang; Cao, Yongge; Shen, Xiaofei; Wen, Zicheng; Ma, Ran; Long, Jiaqi; Yuan, Xuanyi

    2017-07-01

    Nowadays, major commercial w-LEDs fabricated by the traditionally gold-wire-welding packaging technology have undergone considerable development as indoor/outdoor lighting sources due to its high-energy utilization efficiency, long service life, environmental friendliness, and excellent chromatic stability. While, new generation applications in projections, automotive lighting, street lighting, plaza lighting, and high-end general lighting need further improvements in power handling and light extraction. Herein, transparent Ce:YAG glass-ceramics (GCs) phosphor was prepared by low-temperature co-sintering polycrystalline Ce:YAG phosphor powder and home-made PbO-B2O3-ZnO-SiO2 glass powder. Thereafter, the flip-chip (FC) w-LEDs were fabricated with the GCs phosphor plates and FC blue chips. The GCs-based FC w-LEDs show not only excellent heat- and humidity-resistance characteristics, but also superior optical performances with an LE of 112.8 lm/W, a CRI of 71.2, a CCT of 6103 K as well as a chromaticity coordinate of (0.3202, 0.3298), under a high operation current of 400 mA. The technology route will open a practically commercial feasible approach to achieve excellent performances for advanced high-power FC w-LEDs.

  1. Cavity Optical Pulse Extraction: ultra-short pulse generation as seeded Hawking radiation.

    PubMed

    Eilenberger, Falk; Kabakova, Irina V; de Sterke, C Martijn; Eggleton, Benjamin J; Pertsch, Thomas

    2013-01-01

    We show that light trapped in an optical cavity can be extracted from that cavity in an ultrashort burst by means of a trigger pulse. We find a simple analytic description of this process and show that while the extracted pulse inherits its pulse length from that of the trigger pulse, its wavelength can be completely different. Cavity Optical Pulse Extraction is thus well suited for the development of ultrashort laser sources in new wavelength ranges. We discuss similarities between this process and the generation of Hawking radiation at the optical analogue of an event horizon with extremely high Hawking temperature. Our analytic predictions are confirmed by thorough numerical simulations.

  2. Cavity Optical Pulse Extraction: ultra-short pulse generation as seeded Hawking radiation

    PubMed Central

    Eilenberger, Falk; Kabakova, Irina V.; de Sterke, C. Martijn; Eggleton, Benjamin J.; Pertsch, Thomas

    2013-01-01

    We show that light trapped in an optical cavity can be extracted from that cavity in an ultrashort burst by means of a trigger pulse. We find a simple analytic description of this process and show that while the extracted pulse inherits its pulse length from that of the trigger pulse, its wavelength can be completely different. Cavity Optical Pulse Extraction is thus well suited for the development of ultrashort laser sources in new wavelength ranges. We discuss similarities between this process and the generation of Hawking radiation at the optical analogue of an event horizon with extremely high Hawking temperature. Our analytic predictions are confirmed by thorough numerical simulations. PMID:24060831

  3. Light extraction from organic light-emitting diodes for lighting applications by sand-blasting substrates.

    PubMed

    Chen, Shuming; Kwok, Hoi Sing

    2010-01-04

    Light extraction from organic light-emitting diodes (OLEDs) by scattering the light is one of the effective methods for large-area lighting applications. In this paper, we present a very simple and cost-effective method to rough the substrates and hence to scatter the light. By simply sand-blasting the edges and back-side surface of the glass substrates, a 20% improvement of forward efficiency has been demonstrated. Moreover, due to scattering effect, a constant color over all viewing angles and uniform light pattern with Lambertian distribution has been obtained. This simple and cost-effective method may be suitable for mass production of large-area OLEDs for lighting applications.

  4. Reversed-Phase High-Performance Liquid Chromatography for the Quantification and Optimization for Extracting 10 Kinds of Carotenoids in Pepper (Capsicum annuum L.) Leaves.

    PubMed

    Li, Jing; Xie, Jianming; Yu, Jihua; Lv, Jian; Zhang, Junfeng; Wang, Xiaolong; Wang, Cheng; Tang, Chaonan; Zhang, Yingchun; Dawuda, Mohammed Mujitaba; Zhu, Daiqiang; Ma, Guoli

    2017-09-27

    Carotenoids are considered to be crucial elements in many fields and, furthermore, the significant factor in pepper leaves under low light and chilling temperature. However, little literature focused on the method to determinate and extract the contents of carotenoid compositions in pepper leaves. Therefore, a time-saving and highly sensitive reversed-phase high-performance liquid chromatography method for separation and quantification of 10 carotenoids was developed, and an optimized technological process for carotenoid composition extraction in pepper leaves was established for the first time. Our final method concluded that six xanthophylls eluted after about 9-26 min. In contrast, four carotenes showed higher retention times after nearly 28-40 min, which significantly shortened time and improved efficiency. Meanwhile, we suggested that 8 mL of 20% KOH-methanol solution should be added to perform saponification at 60 °C for 30 min. The ratio of solid-liquid was 1:8, and the ultrasound-assisted extraction time was 40 min.

  5. Improving the optical performance of InGaN light-emitting diodes by altering light reflection and refraction with triangular air prism arrays.

    PubMed

    Kang, Ji Hye; Kim, Hyung Gu; Chandramohan, S; Kim, Hyun Kyu; Kim, Hee Yun; Ryu, Jae Hyoung; Park, Young Jae; Beak, Yun Seon; Lee, Jeong-Sik; Park, Joong Seo; Lysak, Volodymyr V; Hong, Chang-Hee

    2012-01-01

    The effect of triangular air prism (TAP) arrays with different distance-to-width (d/w) ratios on the enhancement of light extraction efficiency (LEE) of InGaN light-emitting diodes (LEDs) is investigated. The TAP arrays embedded at the sapphire/GaN interface act as light reflectors and refractors, and thereby improve the light output power due to the redirection of light into escape cones on both the front and back sides of the LED. Enhancement in radiometric power as high as 117% and far-field angle as low as 129° are realized with a compact arrangement of TAP arrays compared with that of a conventional LED made without TAP arrays under an injection current of 20 mA. © 2012 Optical Society of America

  6. Patterning of light-extraction nanostructures on sapphire substrates using nanoimprint and ICP etching with different masking materials.

    PubMed

    Chen, Hao; Zhang, Qi; Chou, Stephen Y

    2015-02-27

    Sapphire nanopatterning is the key solution to GaN light emitting diode (LED) light extraction. One challenge is to etch deep nanostructures with a vertical sidewall in sapphire. Here, we report a study of the effects of two masking materials (SiO2 and Cr) and different etching recipes (the reaction gas ratio, the reaction pressure and the inductive power) in a chlorine-based (BCl3 and Cl2) inductively coupled plasma (ICP) etching of deep nanopillars in sapphire, and the etching process optimization. The masking materials were patterned by nanoimprinting. We have achieved high aspect ratio sapphire nanopillar arrays with a much steeper sidewall than the previous etching methods. We discover that the SiO2 mask has much slower erosion rate than the Cr mask under the same etching condition, leading to the deep cylinder-shaped nanopillars (122 nm diameter, 200 nm pitch, 170 nm high, flat top, and a vertical sidewall of 80° angle), rather than the pyramid-shaped shallow pillars (200 nm based diameter, 52 nm height, and 42° sidewall) resulted by using Cr mask. The processes developed are scalable to large volume LED manufacturing.

  7. [Simultaneous determination of five synthetic sweeteners in food by solid phase extraction-high performance liquid chromatography-evaporative light scattering detection].

    PubMed

    Liu, Fang; Wang, Yan; Wang, Yuhong; Zhou, Junyi; Yan, Chao

    2012-03-01

    A high performance liquid chromatographic method with evaporative light scattering detection (HPLC-ELSD) was developed for the simultaneous determination of five synthetic sweeteners (acesulfame-K, saccharin sodium, sodium cyclamate, sucralose and aspartame) in food. The sweeteners were extracted by 0.1% (v/v) formic acid buffer solution. The extract of sample was cleaned up and concentrated with solid phase extraction (SPE) cartridge. Then the sweeteners were separated on a C18 column (3 microm) using 0.1% (v/v) formic acid buffer (adjusted to pH = 3.5 with aqueous ammonia solution)-methanol (61: 39, v/v) as mobile phase, and finally detected by ELSD. The results showed that the reasonable linearity was achieved for all the analytes over the range of 30 - 1000 mg/L with the correlation coefficients (r) greater than 0.997. The recoveries for the five sweeteners ranged from 85.6% to 109.0% at three spiked concentrations with the relative standard deviations (RSDs) lower than 4.0%. The limits of detection (LODs, S/N = 3) were 2.5 mg/L for both acesulfame-K and sucralose, 3 mg/L for saccharin sodium, 10 mg/L for sodium cyclamate, and 5 mg/L for aspartame. The method is simple, sensitive and low cost, and has been successfully applied to the simultaneous determination of the five synthetic sweeteners in food.

  8. In vivo quantification of chromophore concentration using fluorescence differential path length spectroscopy

    NASA Astrophysics Data System (ADS)

    Kruijt, Bastiaan; Kascakova, Slavka; de Bruijn, Henriette S.; van der Ploeg-van den Heuvel, Angelique; Sterenborg, Henricus J. C. M.; Robinson, Dominic J.; Amelink, Arjen

    2009-05-01

    We present an optical method based on fluorescence spectroscopy for measuring chromophore concentrations in vivo. Fluorescence differential path length spectroscopy (FPDS) determines chromophore concentration based on the fluorescence intensity corrected for absorption. The concentration of the photosensitizer m-THPC (Foscan®) was studied in vivo in normal rat liver, which is highly vascularized and therefore highly absorbing. Concentration estimates of m-THPC measured by FDPS on the liver are compared with chemical extraction. Twenty-five rats were injected with 0.3 mg/kg m-THPC. In vivo optical concentration measurements were performed on tissue 3, 24, 48, and 96 h after m-THPC administration to yield a 10-fold variation in tissue concentration. After the optical measurements, the liver was harvested for chemical extraction. FDPS showed good correlation with chemical extraction. FDPS also showed a correlation between m-THPC fluorescence and blood volume fraction at the two shortest drug-light intervals. This suggests different compartmental localization of m-THPC for different drug-light intervals that can be resolved using fluorescence spectroscopy. Differences in measured m-THPC concentration between FDPS and chemical extraction are related to the interrogation volume of each technique; ~0.2 mm3 and ~102 mm3, respectively. This indicates intra-animal variation in m-THPC distribution in the liver on the scale of the FDPS sampling volume.

  9. Dense Pattern Optical Multipass Cell

    NASA Technical Reports Server (NTRS)

    Silver, Joel A. (Inventor)

    2009-01-01

    A multiple pass optical cell and method comprising providing a pair of opposed cylindrical mirrors having curved axes with substantially equal focal lengths, positioning an entrance hole for introducing light into the cell and an exit hole for extracting light from the cell, wherein the entrance hole and exit hole are coextensive or non-coextensive, introducing light into the cell through the entrance hole, and extracting light from the cell through the exit hole.

  10. Dense pattern optical multipass cell

    DOEpatents

    Silver, Joel A [Santa Fe, NM

    2009-01-13

    A multiple pass optical cell and method comprising providing a pair of opposed cylindrical mirrors having curved axes with substantially equal focal lengths, positioning an entrance hole for introducing light into the cell and an exit hole for extracting light from the cell, wherein the entrance hole and exit hole are coextensive or non-coextensive, introducing light into the cell through the entrance hole, and extracting light from the cell through the exit hole.

  11. Crude ethanol extracts from grape seeds and peels exhibit anti-tyrosinase activity.

    PubMed

    Hsu, Cheng-Kuang; Chou, Su-Tze; Huang, Pai-Jane; Mong, Mei-Chin; Wang, Chien-Kuo; Hsueh, Yu-Pin; Jhan, Jyun-Kai

    2012-01-01

    This study aimed to evaluate the anti-tyrosinase activities of ethanol extracts from the peels and the seeds of Kyoho grapes and Red Globe grapes (KG-PEE, KG-SEE, RGG-PEE, and RGG-SEE). The total phenolic content in KG-SEE and RGG-SEE was 400 +/- 11 and 339 +/- 7 mg gallic acid equivalent/g, respectively, about 22 times and 13 times that in KG-PEE and RGG-PEE, respectively. Both seed extracts showed significantly higher anti-tyrosinase activity than the peel extracts due to their high total phenolic content. The gallic acid content in RGG-SEE was twice that in KG-SEE, and gallic acid showed high anti-tyrosinase activity; thus, RGG-SEE had higher anti-tyrosinase activity than KG-SEE. Lineweaver-Burk plots revealed that the inhibitory mechanism of the ethanol extracts from the grapes was a mix-type inhibition. Grape seed has a greater total phenolic content and has potential as a skin-lighting agent.

  12. Production of cumulative particles and light nuclear fragments at high p T values beyond the fragmentation region of nuclei in pA collisions at a proton energy of 50 GeV

    NASA Astrophysics Data System (ADS)

    Antonov, N. N.; Viktorov, V. A.; Gapienko, V. A.; Gapienko, G. S.; Gres', V. N.; Ilyushin, M. A.; Korotkov, V. A.; Mysnik, A. I.; Prudkoglyad, A. F.; Semak, A. A.; Terekhov, V. I.; Uglekov, V. Ya.; Ukhanov, M. N.; Chuiko, B. V.; Shimanskii, S. S.

    2015-05-01

    The first data on the production of cumulative π+, p, and light nuclear fragments d and t emitted from a nucleus with a high transverse momentum at an angle of 35° in the laboratory system have been reported. The data have been obtained at the SPIN setup at the interaction of a 50-GeV proton beam extracted from the U-70 accelerator (IHEP, Protvino) with C, Al, Cu, and W nuclei.

  13. Composition and Molecular Weight Distribution of Carob Germ Proteins Fractions

    USDA-ARS?s Scientific Manuscript database

    Biochemical properties of carob germ proteins were analyzed using a combination of selective extraction, reversed-phase high performance liquid chromatography (RP-HPLC), size exclusion chromatography coupled with multi-angle laser light scattering (SEC-MALS) and electrophoretic analysis. Using a mo...

  14. Characterization of carbonaceous aerosol by the stepwise-extraction thermal-optical-transmittance (SE-TOT) method

    NASA Astrophysics Data System (ADS)

    Cheng, Yuan; He, Ke-bin; Duan, Feng-kui; Du, Zhen-yu; Zheng, Mei; Ma, Yong-liang

    2012-11-01

    Carbonaceous aerosol collected in Beijing, China was characterized by a stepwise-extraction thermal-optical-transmittance (SE-TOT) method which allows for a quantitative separation of organic aerosol into distinct fractions. About 55% of the total organic carbon (OC) could be extracted by a mixture of hexane, methylene chloride and acetone. The extractable OC was further isolated into non-polar, low-polar and high-polar OC which constituted 10%, 23% and 22% of the total OC, respectively. The sum of low-polar and high-polar OC was found to coincide well with the secondary OC predicted by the elemental carbon tracer method, indicating that the low-polar and high-polar OC are strongly associated with secondary organic aerosol. Moreover, it was suggested that high relative humidity could enhance the production of high-polar OC through aqueous-phase reactions, because high-polar OC correlated strongly with oxalate and the ratio of high-polar OC to low-polar OC was significantly higher during the sampling events with high relative humidity (1.23 ± 0.35) comparing with results from the low relative humidity days (0.79 ± 0.23). In addition, the extractable OC was shown to be light-absorbing. The results of this study suggest that the SE-TOT method could provide new insights into the characterization of carbonaceous aerosol.

  15. Mobil-Badger technologies for benzene reduction in gasoline

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goelzer, A.R.; Ram, S.; Hernandez, A.

    1993-01-01

    Many refiners will need to reduce the barrels per day of benzene entering the motor gasoline pool. Mobil and Badger have developed and now jointly license three potential refinery alternatives to conventional benzene hydrosaturation to achieve this: Mobil Benzene Reduction, Ethylbenzene and Cumene. The Mobil Benzene Reduction Process (MBR) uses dilute olefins in FCC offgas to extensively alkylate dilute benzene as found in light reformate, light FCC gasoline, or cyclic C[sub 6] naphtha. MBR raises octanes and lowers C[sub 5]+ olefins. MBR does not involve costly hydrogen addition. The refinery-based Mobil/Badger Ethylbenzene Process reacts chemical-grade benzene extracted from light reformatemore » with dilute ethylene found in treated FCC offgas to make high-purity ethylbenzene. EB is the principal feedstock for the production of styrene. The Mobil/Badger Cumene Process alkylates FCC-derived dilute propylene and extracted benzene to selectively yield isopropyl benzene (cumene). Cumene is the principal feedstock for the production of phenol. All three processes use Mobil developed catalysts.« less

  16. Improved light output of plastic scintillator by a modified self-assembled photonic crystal

    NASA Astrophysics Data System (ADS)

    Chen, Liang; Zhu, Zhichao; Liu, Bo; Cheng, Chuanwei; Liu, Jinliang; Ruan, Jinlu; Zhang, Zhongbin; Ouyang, Xiaoping; Gu, Mu; Chen, Hong

    2017-11-01

    In this investigation, we have demonstrated that a modified self-assembled photonic crystal with conformal high refractive index material TiO2 can achieve a great enhancement of light extraction efficiency. A 2.26 fold wavelength- and angle-integrated enhancement ratio can be achieved. The conformal layer increases the number of leaky modes and thus improve the extraction efficiency. The enhancement is attributed to the leaky modes based on the individual microspheres with conformal layer. Their low quality factors with a broadband characteristic are advantageous to the broadband enhancement for the emission spectra of plastic scintillator. Furthermore, the dense conformal layers have excellent combination with the self-assembled microspheres and the whole preparation process cannot destroy the plastic scintillator, which is beneficial to the practical application.

  17. On the orbital period of the magnetic cataclysmic variable HU Aquarii

    NASA Astrophysics Data System (ADS)

    Vogel, J.; Schwope, A.; Schwarz, R.; Kanbach, G.; Dhillon, V. S.; Marsh, T. R.

    2008-02-01

    We present an analysis of ULTRACAM light curves of the magnetic cataclysmic variable HU Aquarii which were taken at the VLT in May 2005. Since the light curves were serendipitously obtained during a low state, they allowed us to determine the binary and the stellar parameters with high accuracy. The light curve was decomposed into the components originating from the accretion spot, the photosphere surrounding it and the white dwarf itself, which allowed us to extract the eclipse light curve for the pure white dwarf. Combined with high-time resolution observations with different instruments over a 12 year baseline it was possible to get exact eclipse timings of the white dwarf and thus establish a significant deviation from a linear ephemeris. If described by a quadratic term, the period decreases by -1.13×10-11 ss-1. Interpreting this change in period as a pure angular momentum loss (AML) effect, the rate of J˙ = -4.9×1035 erg is much too high to be explained by gravitational radiation alone.

  18. Enhanced light extraction efficiency of micro-ring array AlGaN deep ultraviolet light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Bekele Fayisa, Gabisa; Lee, Jong Won; Kim, Jungsub; Kim, Yong-Il; Park, Youngsoo; Kim, Jong Kyu

    2017-09-01

    An effective approach to overcome inherently poor light extraction efficiency of AlGaN-based deep ultraviolet (DUV) light-emitting diodes (LEDs) is presented. We demonstrated the 5 × 5 array micro-ring DUV LED having an inclined sidewall at the outer perimeter and a p-GaN-removed inner circle of the micro-ring, together with MgF2/Al omnidirectional reflectors. The micro-ring array DUV LED shows remarkably higher light output power by 70% than the reference, consistent with the calculated result, as well as comparable turn-on and operational voltages, which are attributed to the effective extraction of strong transverse-magnetic polarized anisotropic emission and the reduction of the absorption loss by the p-GaN contact layer, simultaneously.

  19. Herbal Extracts That Reduce Ocular Oxidative Stress May Enhance Attentive Performance in Humans.

    PubMed

    Cho, Hohyun; Kwon, Moonyoung; Jang, Hyojung; Lee, Jee-Bum; Yoon, Kyung Chul; Jun, Sung Chan

    2016-01-01

    We used herbal extracts in this study to investigate the effects of blue-light-induced oxidative stress on subjects' attentive performance, which is also associated with work performance. We employed an attention network test (ANT) to measure the subjects' work performance indirectly and used herbal extracts to reduce ocular oxidative stress. Thirty-two subjects participated in either an experimental group (wearing glasses containing herbal extracts) or a control group (wearing glasses without herbal extracts). During the ANT experiment, we collected electroencephalography (EEG) and electrooculography (EOG) data and measured button responses. In addition, electrocardiogram (ECG) data were collected before and after the experiments. The EOG results showed that the experimental group exhibited a reduced number of eye blinks per second during the experiment and faster button responses with a smaller variation than did the control group; this group also showed relatively more sustained tension in their ECG results. In the EEG analysis, the experimental group had significantly greater cognitive processing, with larger P300 and parietal 2-6 Hz activity, an orienting effect with neural processing of frontal area, high beta activity in the occipital area, and an alpha and beta recovery process after the button response. We concluded that reducing blue-light-induced oxidative stress with herbal extracts may be associated with reducing the number of eye blinks and enhancing attentive performance.

  20. Manipulating Refractive Index in Organic Light-Emitting Diodes.

    PubMed

    Salehi, Amin; Chen, Ying; Fu, Xiangyu; Peng, Cheng; So, Franky

    2018-03-21

    In a conventional organic light-emitting diode (OLED), only a fraction of light can escape to the glass substrate and air. Most radiation is lost to two major channels: waveguide modes and surface plasmon polaritons. It is known that reducing the refractive indices of the constituent layers in an OLED can enhance light extraction. Among all of the layers, the refractive index of the electron transport layer (ETL) has the largest impact on light extraction because it is the layer adjacent to the metallic cathode. Oblique angle deposition (OAD) provides a way to manipulate the refractive index of a thin film by creating an ordered columnar void structure. In this work, using OAD, the refractive index of tris(8-hydroxyquinoline)aluminum (Alq3) can be tuned from 1.75 to 1.45. With this low-index ETL deposited by OAD, the resulting phosphorescent OLED shows nearly 30% increase in light extraction efficiency.

  1. Heavy and light flavor jet quenching at RHIC and LHC energies

    NASA Astrophysics Data System (ADS)

    Cao, Shanshan; Luo, Tan; Qin, Guang-You; Wang, Xin-Nian

    2018-02-01

    The Linear Boltzmann Transport (LBT) model coupled to hydrodynamical background is extended to include transport of both light partons and heavy quarks through the quark-gluon plasma (QGP) in high-energy heavy-ion collisions. The LBT model includes both elastic and inelastic medium-interaction of both primary jet shower partons and thermal recoil partons within perturbative QCD (pQCD). It is shown to simultaneously describe the experimental data on heavy and light flavor hadron suppression in high-energy heavy-ion collisions for different centralities at RHIC and LHC energies. More detailed investigations within the LBT model illustrate the importance of both initial parton spectra and the shapes of fragmentation functions on the difference between the nuclear modifications of light and heavy flavor hadrons. The dependence of the jet quenching parameter q ˆ on medium temperature and jet flavor is quantitatively extracted.

  2. Heavy and light flavor jet quenching at RHIC and LHC energies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Shanshan; Luo, Tan; Qin, Guang-You

    The Linear Boltzmann Transport (LBT) model coupled to hydrodynamical background is extended to include transport of both light partons and heavy quarks through the quark–gluon plasma (QGP) in high-energy heavy-ion collisions. The LBT model includes both elastic and inelastic medium-interaction of both primary jet shower partons and thermal recoil partons within perturbative QCD (pQCD). It is shown to simultaneously describe the experimental data on heavy and light flavor hadron suppression in high-energy heavy-ion collisions for different centralities at RHIC and LHC energies. More detailed investigations within the LBT model illustrate the importance of both initial parton spectra and the shapes of fragmentation functions on the difference between the nuclear modifications of light and heavy flavor hadrons. Finally, the dependence of the jet quenching parametermore » $$\\hat{q}$$ on medium temperature and jet flavor is quantitatively extracted.« less

  3. Heavy and light flavor jet quenching at RHIC and LHC energies

    DOE PAGES

    Cao, Shanshan; Luo, Tan; Qin, Guang-You; ...

    2017-12-14

    The Linear Boltzmann Transport (LBT) model coupled to hydrodynamical background is extended to include transport of both light partons and heavy quarks through the quark–gluon plasma (QGP) in high-energy heavy-ion collisions. The LBT model includes both elastic and inelastic medium-interaction of both primary jet shower partons and thermal recoil partons within perturbative QCD (pQCD). It is shown to simultaneously describe the experimental data on heavy and light flavor hadron suppression in high-energy heavy-ion collisions for different centralities at RHIC and LHC energies. More detailed investigations within the LBT model illustrate the importance of both initial parton spectra and the shapes of fragmentation functions on the difference between the nuclear modifications of light and heavy flavor hadrons. Finally, the dependence of the jet quenching parametermore » $$\\hat{q}$$ on medium temperature and jet flavor is quantitatively extracted.« less

  4. A method for fast automated microscope image stitching.

    PubMed

    Yang, Fan; Deng, Zhen-Sheng; Fan, Qiu-Hong

    2013-05-01

    Image stitching is an important technology to produce a panorama or larger image by combining several images with overlapped areas. In many biomedical researches, image stitching is highly desirable to acquire a panoramic image which represents large areas of certain structures or whole sections, while retaining microscopic resolution. In this study, we develop a fast normal light microscope image stitching algorithm based on feature extraction. At first, an algorithm of scale-space reconstruction of speeded-up robust features (SURF) was proposed to extract features from the images to be stitched with a short time and higher repeatability. Then, the histogram equalization (HE) method was employed to preprocess the images to enhance their contrast for extracting more features. Thirdly, the rough overlapping zones of the images preprocessed were calculated by phase correlation, and the improved SURF was used to extract the image features in the rough overlapping areas. Fourthly, the features were corresponded by matching algorithm and the transformation parameters were estimated, then the images were blended seamlessly. Finally, this procedure was applied to stitch normal light microscope images to verify its validity. Our experimental results demonstrate that the improved SURF algorithm is very robust to viewpoint, illumination, blur, rotation and zoom of the images and our method is able to stitch microscope images automatically with high precision and high speed. Also, the method proposed in this paper is applicable to registration and stitching of common images as well as stitching the microscope images in the field of virtual microscope for the purpose of observing, exchanging, saving, and establishing a database of microscope images. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Ultrafast single photon emitting quantum photonic structures based on a nano-obelisk.

    PubMed

    Kim, Je-Hyung; Ko, Young-Ho; Gong, Su-Hyun; Ko, Suk-Min; Cho, Yong-Hoon

    2013-01-01

    A key issue in a single photon source is fast and efficient generation of a single photon flux with high light extraction efficiency. Significant progress toward high-efficiency single photon sources has been demonstrated by semiconductor quantum dots, especially using narrow bandgap materials. Meanwhile, there are many obstacles, which restrict the use of wide bandgap semiconductor quantum dots as practical single photon sources in ultraviolet-visible region, despite offering free space communication and miniaturized quantum information circuits. Here we demonstrate a single InGaN quantum dot embedded in an obelisk-shaped GaN nanostructure. The nano-obelisk plays an important role in eliminating dislocations, increasing light extraction, and minimizing a built-in electric field. Based on the nano-obelisks, we observed nonconventional narrow quantum dot emission and positive biexciton binding energy, which are signatures of negligible built-in field in single InGaN quantum dots. This results in efficient and ultrafast single photon generation in the violet color region.

  6. Emission enhancement, light extraction and carrier dynamics in InGaAs/GaAs nanowire arrays

    NASA Astrophysics Data System (ADS)

    Kivisaari, Pyry; Chen, Yang; Anttu, Nicklas

    2018-03-01

    Nanowires (NWs) have the potential for a wide range of new optoelectronic applications. For example, light-emitting diodes that span over the whole visible spectrum are currently being developed from NWs to overcome the well known green gap problem. However, due to their small size, NW devices exhibit special properties that complicate their analysis, characterization, and further development. In this paper, we develop a full optoelectronic simulation tool for NW array light emitters accounting for carrier transport and wave-optical emission enhancement (EE), and we use the model to simulate InGaAs/GaAs NW array light emitters with different geometries and temperatures. Our results show that NW arrays emit light preferentially to certain angles depending on the NW diameter and temperature, encouraging temperature- and angle-resolved measurements of NW array light emission. On the other hand, based on our results both the EE and light extraction efficiency can easily change by at least a factor of two between room temperature and 77 K, complicating the characterization of NW light emitters if conventional methods are used. Finally, simulations accounting for surface recombination emphasize its major effect on the device performance. For example, a surface recombination velocity of 104 cm s-1 reported earlier for bare InGaAs surfaces results in internal quantum efficiencies less than 30% for small-diameter NWs even at the temperature of 30 K. This highlights that core-shell structures or high-quality passivation techniques are eventually needed to achieve efficient NW-based light emitters.

  7. Lichen palatability depends on investments in herbivore defence.

    PubMed

    Gauslaa, Yngvar

    2005-03-01

    Lichens are well-suited organisms for experimental herbivory studies because their secondary compounds, assumed to deter grazing, can be non-destructively extracted. Thalli of 17 lichen species from various habitats were cut in two equal parts; compounds were extracted from one part by acetone, the other served as a control. These two pieces were offered as a paired choice to the generalist herbivore snail Cepaea hortensis. Control thalli of all lichens were consumed at a low rate regardless of their investments in acetone-extractable lichen compounds; naturally compound-deficient lichen species were not preferred compared to those with high contents. However, for extracted thalli, there was a highly significant positive correlation between rate of consumption and the extracted compound contents. These data imply that herbivore defence has evolved in different directions in different lichens. Studied members of Parmeliaceae, common in oligotrophic habitats, have high contents of carbon-rich acetone-soluble compounds; these lichens became highly palatable to snails subsequent to acetone rinsing. Extracted lichen compounds were applied to pieces of filter paper and fed to snails. Extracts from members of the Parmeliaceae significantly deterred feeding on paper. Such data suggest that generalist herbivores may have shaped evolution in the widespread and highly diverse Parmeliaceae towards high investments in lichen compounds. On the other hand, lichens belonging to the Physciaceae and Teloschistales, common in nutrient-enriched habitats, are deficient in, or have low concentrations of, lichen compounds. Such lichens did not become more palatable after acetone rinsing. The orange anthraquinone compound parietin, restricted to the Teloschistales, and which has previously been found to protect against excess light, did not deter grazing.

  8. The characteristics of brown carbon aerosol during winter in Beijing

    NASA Astrophysics Data System (ADS)

    Cheng, Yuan; He, Ke-bin; Du, Zhen-yu; Engling, Guenter; Liu, Jiu-meng; Ma, Yong-liang; Zheng, Mei; Weber, Rodney J.

    2016-02-01

    Brown carbon (i.e., light-absorbing organic carbon, or BrC) exerts important effects on the environment and on climate in particular. Based on spectrophotometric absorption measurements on extracts of bulk aerosol samples, this study investigated the characteristics of BrC during winter in Beijing, China. Organic compounds extractable by methanol contributed approximately 85% to the organic carbon (OC) mass. Light absorption by the methanol extracts exhibited a strong wavelength dependence, with an average absorption Ångström exponent of 7.10 (fitted between 310 and 450 nm). Normalizing the absorption coefficient (babs) measured at 365 nm to the extractable OC mass yielded an average mass absorption efficiency (MAE) of 1.45 m2/g for the methanol extracts. This study suggests that light absorption by BrC could be comparable with black carbon in the spectral range of near-ultraviolet light. Our results also indicate that BrC absorption and thus BrC radiative forcing could be largely underestimated when using water-soluble organic carbon (WSOC) as a surrogate for BrC. Compared to previous work relying only on WSOC, this study provides a more comprehensive understanding of BrC aerosol based on methanol extraction.

  9. Evaluation of the Nutraceutical and Cosmeceutical Potential of Two Cultivars of Rubus fruticosus L. under Different Cultivation Conditions.

    PubMed

    Papaioanou, Maria; Chronopoulou, Evangelia G; Ciobotari, Gheorghii; Efrose, Rodica C; Sfichi-Duke, Liliana; Chatzikonstantinou, Marianna; Pappa, Evangelia; Ganopoulos, Ioannis; Madesis, Panagiotis; Nianiou-Obeidat, Irini; Zeng, Taofen; Labrou, Nikolaos E

    2017-01-01

    The starting point for the development of new, functional products derived from Rubus fruticosus L. is to determine the optimal cultivation conditions that produce maximal yield of fruits containing desirable bioactive properties. Towards that goal, the effect of soil, soil/peat mixture and light intensity on the nutraceutical and cosmeceutical potential of two cultivars ('Thornfree' and 'Loch Ness') of Rubus fruticosus L. were evaluated. The assessment was carried out employing a range of methods for evaluating fruit properties associated with promoting good health such as total antioxidant capacity, secondary metabolites content (vitamin C, polyphenols, flavonoids and anthocyanins) and inhibition analysis of skin-regulating enzymes. 'Thornfree' cultivar produced fruits in all light conditions, while 'Loch Ness' did not produce fruits in low light conditions. The results showed that in Rubus fruticosus L. fruit, the chemical composition and bioactivity are strongly affected by both genetics factors and growing conditions. Extract from 'Thornfree' fruits obtained under low light and soil/peat conditions displayed superior properties such as high antioxidant capacity, high concentrations of phenolics, flavonoids and anthocyanins and high inhibitory potency towards the enzymes tyrosinase and elastase. This extract was used for the development of a topical skin care cream with excellent compatibility and stability. Our findings conclude that Rubus fruticosus L. cultivation may be efficiently and effectively manipulated through conventional cultivation techniques to produce promising bioactive ingredients with potential use in commercial cosmetics and pharmaceuticals. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. Study on Suitable Light Conditions and Efficient Lipid Extraction Technologies for Biodiesel Production Based on Microalgae

    NASA Astrophysics Data System (ADS)

    Wang, Yao; Zhang, Qingtao; Sun, Yuan; Yang, Chengjia

    2018-01-01

    As a new generation biodiesel feedstock, microalgae have most potential to replace fossil fuel. However, the limited scale and high cost are two bottleneck problems. Efficient microwave-assisted lipid extraction technologies and suitable light conditions for Chlorella Sorokiniana need further study for lowering the cost. In this study, three photoperiod groups(24L:0D, 12L:12D, 0L:24D), three illumination intensity groups (1800 lux, 3600 lux, 5400 lux)and four light spectrum groups (Red, green, blue, and white) were used to culture Chlorella Sorokiniana to investigate those effects on algae growth rate and biomass accumulation. The suitable microwave treatment was also studied to achieve an optimizing quantum fracturing technology. 400 w, 750 w and 1000 w microwave power were set and 60 °C, 75 °C, 90 °C microwave conditions were investigated. The results showed that Chlorella Sorokiniana under 24L:0D photoperiod with 5400 lux white light can achieve better growth rate. The 90 °C / 1000w microwave treatment was identified as the most simple, easy, and effective way for lipid extraction from Chlorella Sorokiniana. As the raw material of biodiesel production, C18:1, C18:2 and C18:3 have accounted for important components of fatty acid in Chlorella Sorokiniana. Therefore, Chlorella Sorokiniana is a good raw material for the production of good quality biodiesel under suitable and efficient technologies.

  11. Depth discrimination in acousto-optic cerebral blood flow measurement simulation

    NASA Astrophysics Data System (ADS)

    Tsalach, A.; Schiffer, Z.; Ratner, E.; Breskin, I.; Zeitak, R.; Shechter, R.; Balberg, M.

    2016-03-01

    Monitoring cerebral blood flow (CBF) is crucial, as inadequate perfusion, even for relatively short periods of time, may lead to brain damage or even death. Thus, significant research efforts are directed at developing reliable monitoring tools that will enable continuous, bed side, simple and cost-effective monitoring of CBF. All existing non invasive bed side monitoring methods, which are mostly NIRS based, such as Laser Doppler or DCS, tend to underestimate CBF in adults, due to the indefinite effect of extra-cerebral tissues on the obtained signal. If those are to find place in day to day clinical practice, the contribution of extra-cerebral tissues must be eliminated and data from the depth (brain) should be extracted and discriminated. Recently, a novel technique, based on ultrasound modulation of light was developed for non-invasive, continuous CBF monitoring (termed ultrasound-tagged light (UTL or UT-NIRS)), and shown to correlate with readings of 133Xe SPECT and laser Doppler. We have assembled a comprehensive computerized simulation, modeling this acousto-optic technique in a highly scattering media. Using the combination of light and ultrasound, we show how depth information may be extracted, thus distinguishing between flow patterns taking place at different depths. Our algorithm, based on the analysis of light modulated by ultrasound, is presented and examined in a computerized simulation. Distinct depth discrimination ability is presented, suggesting that using such method one can effectively nullify the extra-cerebral tissues influence on the obtained signals, and specifically extract cerebral flow data.

  12. High-resolution extraction of particle size via Fourier Ptychography

    NASA Astrophysics Data System (ADS)

    Li, Shengfu; Zhao, Yu; Chen, Guanghua; Luo, Zhenxiong; Ye, Yan

    2017-11-01

    This paper proposes a method which can extract the particle size information with a resolution beyond λ/NA. This is achieved by applying Fourier Ptychographic (FP) ideas to the present problem. In a typical FP imaging platform, a 2D LED array is used as light sources for angle-varied illuminations, a series of low-resolution images was taken by a full sequential scan of the array of LEDs. Here, we demonstrate the particle size information is extracted by turning on each single LED on a circle. The simulated results show that the proposed method can reduce the total number of images, without loss of reliability in the results.

  13. Object-oriented classification of forest structure from light detection and ranging data for stand mapping

    Treesearch

    Alicia A. Sullivan; Robert J. McGaughey; Hans-Erik Andersen; Peter Schiess

    2009-01-01

    Stand delineation is an important step in the process of establishing a forest inventory and provides the spatial framework for many forest management decisions. Many methods for extracting forest structure characteristics for stand delineation and other purposes have been researched in the past, primarily focusing on high-resolution imagery and satellite data. High-...

  14. Nano-particle based scattering layers for optical efficiency enhancement of organic light-emitting diodes and organic solar cells

    NASA Astrophysics Data System (ADS)

    Chang, Hong-Wei; Lee, Jonghee; Hofmann, Simone; Hyun Kim, Yong; Müller-Meskamp, Lars; Lüssem, Björn; Wu, Chung-Chih; Leo, Karl; Gather, Malte C.

    2013-05-01

    The performance of both organic light-emitting diodes (OLEDs) and organic solar cells (OSC) depends on efficient coupling between optical far field modes and the emitting/absorbing region of the device. Current approaches towards OLEDs with efficient light-extraction often are limited to single-color emission or require expensive, non-standard substrates or top-down structuring, which reduces compatibility with large-area light sources. Here, we report on integrating solution-processed nano-particle based light-scattering films close to the active region of organic semiconductor devices. In OLEDs, these films efficiently extract light that would otherwise remain trapped in the device. Without additional external outcoupling structures, translucent white OLEDs containing these scattering films achieve luminous efficacies of 46 lm W-1 and external quantum efficiencies of 33% (both at 1000 cd m-2). These are by far the highest numbers ever reported for translucent white OLEDs and the best values in the open literature for any white device on a conventional substrate. By applying additional light-extraction structures, 62 lm W-1 and 46% EQE are reached. Besides universally enhancing light-extraction in various OLED configurations, including flexible, translucent, single-color, and white OLEDs, the nano-particle scattering film boosts the short-circuit current density in translucent organic solar cells by up to 70%.

  15. Collaborative study of an enzymatic digestion method for the isolation of light filth from ground beef or hamburger.

    PubMed

    Alioto, P; Andreas, M

    1976-01-01

    Collaborative results are presented for a proposed method for light filth extraction from ground beef or hamburger. The method involves enzymatic digestion, wet sieving, and extraction with light mineral oil from 40% isopropanol. Recoveries are good and filter papers are clean. This method has been adopted as official first action.

  16. Enhanced light extraction from free-standing InGaN/GaN light emitters using bio-inspired backside surface structuring.

    PubMed

    Pynn, Christopher D; Chan, Lesley; Lora Gonzalez, Federico; Berry, Alex; Hwang, David; Wu, Haoyang; Margalith, Tal; Morse, Daniel E; DenBaars, Steven P; Gordon, Michael J

    2017-07-10

    Light extraction from InGaN/GaN-based multiple-quantum-well (MQW) light emitters is enhanced using a simple, scalable, and reproducible method to create hexagonally close-packed conical nano- and micro-scale features on the backside outcoupling surface. Colloidal lithography via Langmuir-Blodgett dip-coating using silica masks (d = 170-2530 nm) and Cl 2 /N 2 -based plasma etching produced features with aspect ratios of 3:1 on devices grown on semipolar GaN substrates. InGaN/GaN MQW structures were optically pumped at 266 nm and light extraction enhancement was quantified using angle-resolved photoluminescence. A 4.8-fold overall enhancement in light extraction (9-fold at normal incidence) relative to a flat outcoupling surface was achieved using a feature pitch of 2530 nm. This performance is on par with current photoelectrochemical (PEC) nitrogen-face roughening methods, which positions the technique as a strong alternative for backside structuring of c-plane devices. Also, because colloidal lithography functions independently of GaN crystal orientation, it is applicable to semipolar and nonpolar GaN devices, for which PEC roughening is ineffective.

  17. In vivo polarization dependant Second and Third harmonic generation imaging of Caenorhabditis elegans pharyngeal muscles

    NASA Astrophysics Data System (ADS)

    Filippidis, G.; Troulinaki, K.; Fotakis, C.; Tavernarakis, N.

    2009-07-01

    In this study Second and Third harmonic generation (SHG-THG) imaging measurements were performed to the pharyngeal muscles of the nematode Caenorhabditis elegans, in vivo with linearly polarized laser beam. Complementary information about the anatomy of the pharynx and the morphology of the anterior part of the worm were extracted. THG signals proved to have no dependence on incident light polarization, while SHG images are highly sensitive to the changes of the incident linearly polarized light.

  18. Spectrally resolved white light interferometry to measure material dispersion over a wide spectral band in a single acquisition.

    PubMed

    Arosa, Yago; Lago, Elena López; Varela, Luis Miguel; de la Fuente, Raúl

    2016-07-25

    In this paper we apply spectrally resolved white light interferometry to measure refractive and group index over a wide spectral band from 400 to 1000 nm. The output of a Michelson interferometer is spectrally decomposed by a homemade prism spectrometer with a high resolution camera. The group index is determined directly from the phase extracted from the spectral interferogram while the refractive index is estimated once its value at a given wavelength is known.

  19. Light extraction in planar light-emitting diode with nonuniform current injection: model and simulation.

    PubMed

    Khmyrova, Irina; Watanabe, Norikazu; Kholopova, Julia; Kovalchuk, Anatoly; Shapoval, Sergei

    2014-07-20

    We develop an analytical and numerical model for performing simulation of light extraction through the planar output interface of the light-emitting diodes (LEDs) with nonuniform current injection. Spatial nonuniformity of injected current is a peculiar feature of the LEDs in which top metal electrode is patterned as a mesh in order to enhance the output power of light extracted through the top surface. Basic features of the model are the bi-plane computation domain, related to other areas of numerical grid (NG) cells in these two planes, representation of light-generating layer by an ensemble of point light sources, numerical "collection" of light photons from the area limited by acceptance circle and adjustment of NG-cell areas in the computation procedure by the angle-tuned aperture function. The developed model and procedure are used to simulate spatial distributions of the output optical power as well as the total output power at different mesh pitches. The proposed model and simulation strategy can be very efficient in evaluation of the output optical performance of LEDs with periodical or symmetrical configuration of the electrodes.

  20. Enhanced light extraction from a GaN-based green light-emitting diode with hemicylindrical linear grating structure.

    PubMed

    Jin, Yuanhao; Yang, Fenglei; Li, Qunqing; Zhu, Zhendong; Zhu, Jun; Fan, Shoushan

    2012-07-02

    Significant enhancement in the light output from GaN-based green light-emitting diodes (LEDs) was achieved with a hemicylindrical grating structure on the top layer of the diodes. The grating structure was first optimized by the finite-difference time-domain (FDTD) method, which showed that the profile of the grating structure was critical for light extraction efficiency. It was found that the transmission efficiency of the 530 nm light emitted from the inside of the GaN LED increased for incidence angles between 23.58° and 60°. Such a structure was fabricated by electron-beam lithography and an etching method. The light output power from the LED was increased approximately 4.7 times compared with that from a conventional LED. The structure optimization is the key to the great increase in transmission efficiency. Furthermore, the light emitted from the edge of the LED units could be collected and extracted by the grating structures in adjacent LED units, thus enhancing the performance of the whole LED chip.

  1. Efficient electroluminescent cooling with a light-emitting diode coupled to a photovoltaic cell (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Xiao, Tianyao P.; Chen, Kaifeng; Santhanam, Parthiban; Fan, Shanhui; Yablonovitch, Eli

    2017-02-01

    The new breakthrough in photovoltaics, exemplified by the slogan "A great solar cell has to be a great light-emitting diode (LED)", has led to all the major new solar cell records, while also leading to extraordinary LED efficiency. As an LED becomes very efficient in converting its electrical input into light, the device cools as it operates because the photons carry away entropy as well as energy. If these photons are absorbed in a photovoltaic (PV) cell, the generated electricity can be used to provide part of the electrical input that drives the LED. Indeed, the LED/PV cell combination forms a new type of heat engine with light as the working fluid. The electroluminescent refrigerator requires only a small amount of external electricity to provide cooling, leading to a high coefficient of performance. We present the theoretical performance of such a refrigerator, in which the cool side (LED) is radiatively coupled to the hot side (PV) across a vacuum gap. The coefficient of performance is maximized by using a highly luminescent material, such as GaAs, together with device structures that optimize extraction of the luminescence. We consider both a macroscopic vacuum gap and a sub-wavelength gap; the latter allows for evanescent coupling of photons between the devices, potentially providing a further enhancement to the efficiency of light extraction. Using device assumptions based on the current record-efficiency solar cells, we show that electroluminescent cooling can, in certain regimes of cooling power, achieve a higher coefficient of performance than thermoelectric cooling.

  2. Research of spectacle frame measurement system based on structured light method

    NASA Astrophysics Data System (ADS)

    Guan, Dong; Chen, Xiaodong; Zhang, Xiuda; Yan, Huimin

    2016-10-01

    Automatic eyeglass lens edging system is now widely used to automatically cut and polish the uncut lens based on the spectacle frame shape data which is obtained from the spectacle frame measuring machine installed on the system. The conventional approach to acquire the frame shape data works in the contact scanning mode with a probe tracing around the groove contour of the spectacle frame which requires a sophisticated mechanical and numerical control system. In this paper, a novel non-contact optical measuring method based on structured light to measure the three dimensional (3D) data of the spectacle frame is proposed. First we focus on the processing approach solving the problem of deterioration of the structured light stripes caused by intense specular reflection on the frame surface. The techniques of bright-dark bi-level fringe projecting, multiple exposuring and high dynamic range imaging are introduced to obtain a high-quality image of structured light stripes. Then, the Gamma transform and median filtering are applied to enhance image contrast. In order to get rid of background noise from the image and extract the region of interest (ROI), an auxiliary lighting system of special design is utilized to help effectively distinguish between the object and the background. In addition, a morphological method with specific morphological structure-elements is adopted to remove noise between stripes and boundary of the spectacle frame. By further fringe center extraction and depth information acquisition through the method of look-up table, the 3D shape of the spectacle frame is recovered.

  3. In vivo flow cytometry for blood cell analysis using differential epi-detection of forward scattered light

    NASA Astrophysics Data System (ADS)

    Paudel, Hari P.; Jung, Yookyung; Raphael, Anthony; Alt, Clemens; Wu, Juwell; Runnels, Judith; Lin, Charles P.

    2018-02-01

    The present standard of blood cell analysis is an invasive procedure requiring the extraction of patient's blood, followed by ex-vivo analysis using a flow cytometer or a hemocytometer. We are developing a noninvasive optical technique that alleviates the need for blood extraction. For in-vivo blood analysis we need a high speed, high resolution and high contrast label-free imaging technique. In this proceeding report, we reported a label-free method based on differential epi-detection of forward scattered light, a method inspired by Jerome Mertz's oblique back-illumination microscopy (OBM) (Ford et al, Nat. Meth. 9(12) 2012). The differential epi-detection of forward light gives phase contrast image at diffraction-limited resolution. Unlike reflection confocal microscopy (RCM), which detects only sharp refractive index variation and suffers from speckle noise, this technique is suitable for detection of subtle variation of refractive index in biological tissue and it provides the shape and the size of cells. A custom built high speed electronic detection circuit board produces a real-time differential signal which yields image contrast based on phase gradient in the sample. We recorded blood flow in-vivo at 17.2k lines per second in line scan mode, or 30 frames per second (full frame), or 120 frame per second (quarter frame) in frame scan mode. The image contrast and speed of line scan data recording show the potential of the system for noninvasive blood cell analysis.

  4. Efficient Light Extraction from Organic Light-Emitting Diodes Using Plasmonic Scattering Layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rothberg, Lewis

    2012-11-30

    Our project addressed the DOE MYPP 2020 goal to improve light extraction from organic light-emitting diodes (OLEDs) to 75% (Core task 6.3). As noted in the 2010 MYPP, “the greatest opportunity for improvement is in the extraction of light from [OLED] panels”. There are many approaches to avoiding waveguiding limitations intrinsic to the planar OLED structure including use of textured substrates, microcavity designs and incorporating scattering layers into the device structure. We have chosen to pursue scattering layers since it addresses the largest source of loss which is waveguiding in the OLED itself. Scattering layers also have the potential tomore » be relatively robust to color, polarization and angular distributions. We note that this can be combined with textured or microlens decorated substrates to achieve additional enhancement.« less

  5. HETEROGENEOUS PHOTOCATALYTIC DECOMPOSITION OF POLY- AROMATIC HYDROCARBONS OVER TITANIUM DIOXIDE

    EPA Science Inventory

    The photocatalytic degradation of a mixture of 16 polyaromatic hydrocarbons (PAHs) was investigated in aqueous suspensions of high surface area TiO2 illuminated with 310–380 nm ultraviolet light. Triethylamine was utilized for extraction of PAH compounds from motor oil...

  6. Carbon Nanotubes Application in the Extraction Techniques of Pesticides: A Review.

    PubMed

    Jakubus, Aleksandra; Paszkiewicz, Monika; Stepnowski, Piotr

    2017-01-02

    Carbon nanotubes (CNTs) are currently one of the most promising groups of materials with some interesting properties, such as lightness, rigidity, high surface area, high mechanical strength in tension, good thermal conductivity or resistance to mechanical damage. These unique properties make CNTs a competitive alternative to conventional sorbents used in analytical chemistry, especially in extraction techniques. The amount of work that discusses the usefulness of CNTs as a sorbent in a variety of extraction techniques has increased significantly in recent years. In this review article, the most important feature and different applications of solid-phase extraction (SPE), including, classical SPE and dispersive SPE using CNTs for pesticides isolation from different matrices, are summarized. Because of high number of articles concerning the applicability of carbon materials to extraction of pesticides, the main aim of proposed publication is to provide updated review of the latest uses of CNTs by covering the period 2006-2015. Moreover, in this review, the recent papers and this one, which are covered in previous reviews, will be addressed and particular attention has been paid on the division of publications in terms of classes of pesticides, in order to systematize the available literature reports.

  7. Hybrid method for building extraction in vegetation-rich urban areas from very high-resolution satellite imagery

    NASA Astrophysics Data System (ADS)

    Jayasekare, Ajith S.; Wickramasuriya, Rohan; Namazi-Rad, Mohammad-Reza; Perez, Pascal; Singh, Gaurav

    2017-07-01

    A continuous update of building information is necessary in today's urban planning. Digital images acquired by remote sensing platforms at appropriate spatial and temporal resolutions provide an excellent data source to achieve this. In particular, high-resolution satellite images are often used to retrieve objects such as rooftops using feature extraction. However, high-resolution images acquired over built-up areas are associated with noises such as shadows that reduce the accuracy of feature extraction. Feature extraction heavily relies on the reflectance purity of objects, which is difficult to perfect in complex urban landscapes. An attempt was made to increase the reflectance purity of building rooftops affected by shadows. In addition to the multispectral (MS) image, derivatives thereof namely, normalized difference vegetation index and principle component (PC) images were incorporated in generating the probability image. This hybrid probability image generation ensured that the effect of shadows on rooftop extraction, particularly on light-colored roofs, is largely eliminated. The PC image was also used for image segmentation, which further increased the accuracy compared to segmentation performed on an MS image. Results show that the presented method can achieve higher rooftop extraction accuracy (70.4%) in vegetation-rich urban areas compared to traditional methods.

  8. Green synthesis of silver nanoparticles using Mentha pulegium and investigation of their antibacterial, antifungal and anticancer activity.

    PubMed

    Kelkawi, Ali Hamad Abd; Abbasi Kajani, Abolghasem; Bordbar, Abdol-Khalegh

    2017-06-01

    A simple and eco-friendly method for efficient synthesis of stable colloidal silver nanoparticles (AgNPs) using Mentha pulegium extracts is described. A series of reactions was conducted using different types and concentrations of plant extract as well as metal ions to optimize the reaction conditions. AgNPs were characterized by using UV-vis spectroscopy, transmission electron microscopy, atomic force microscopy, dynamic light scattering, zetasizer, energy-dispersive X-ray spectroscopy (EDAX) and Fourier transform infrared spectroscopy (FTIR). At the optimized conditions, plate shaped AgNPs with zeta potential value of -15.7 and plasmon absorption maximum at 450 nm were obtained using high concentration of aqueous extract. Efficient adsorption of organic compounds on the nanoparticles was confirmed by FTIR and EDAX. The biogenic AgNPs displayed promising antibacterial activity on Escherichia coli , Staphylococcus aureus , and Streptococcus pyogenes . The highest antibacterial activity of 25 µg mL-1 was obtained for all the strains using aqueous extract synthesized AgNPs. The aqueous extract synthesised AgNPs also showed considerable antifungal activity against fluconazole resistant Candida albicans . The cytotoxicity assay revealed considerable anticancer activity of AgNPs on HeLa and MCF-7 cancer cells. Overall results indicated high potential of M. pulegium extract to synthesis high quality AgNPs for biomedical applications.

  9. LYSO-based precision timing detectors with SiPM readout

    NASA Astrophysics Data System (ADS)

    Bornheim, A.; Hassanshahi, M. H.; Griffioen, M.; Mao, J.; Mangu, A.; Peña, C.; Spiropulu, M.; Xie, S.; Zhang, Z.

    2018-07-01

    Particle detectors based on scintillation light are particularly well suited for precision timing applications with resolutions of a few 10's of ps. The large primary signal and the initial rise time of the scintillation light result in very favorable signal-to-noise conditions with fast signals. In this paper we describe timing studies using a LYSO-based sampling calorimeter with wavelength-shifting capillary light extraction and silicon photomultipliers as photosensors. We study the contributions of various steps of the signal generation to the total time resolution, and demonstrate its feasibility as a radiation-hard technology for calorimeters at high intensity hadron colliders.

  10. Laser-induced periodic structures for light extraction efficiency enhancement of GaN-based light emitting diodes.

    PubMed

    Chen, Jiun-Ting; Lai, Wei-Chih; Kao, Yu-Jui; Yang, Ya-Yu; Sheu, Jinn-Kong

    2012-02-27

    The laser-induced periodic surface structure technique was used to form simultaneously dual-scale rough structures (DSRS) with spiral-shaped nanoscale structure inside semi-spherical microscale holes on p-GaN surface to improve the light-extraction efficiency of light-emitting diodes (LEDs). The light output power of DSRS-LEDs was 30% higher than that of conventional LEDs at an injection current of 20 mA. The enhancement in the light output power could be attributed to the increase in the probability of photons to escape from the increased surface area of textured p-GaN surface.

  11. High transmittance optical films based on quantum dot doped nanoscale polymer dispersed liquid crystals

    NASA Astrophysics Data System (ADS)

    Gandhi, Sahil Sandesh; Chien, Liang-Chy

    2016-04-01

    We propose a simple way to fabricate highly transparent nanoscale polymer dispersed liquid crystal (nano-PDLC) films between glass substrates and investigate their incident angle dependent optical transmittance properties with both collimated and Lambertian intensity distribution light sources. We also demonstrate that doping nano-PDLC films with 0.1% InP/ZnS core/shell quantum dots (QD) results in a higher optical transmittance. This work lays the foundation for such nanostructured composites to potentially serve as roll-to-roll coatable light extraction or brightness enhancement films in emissive display applications, superior to complex nanocorrugation techniques proposed in the past.

  12. GC-MS analysis of the antioxidant active fractions of Micromeria juliana with anticholinesterase activity.

    PubMed

    Oztürk, Mehmet; Kolak, Ufuk; Duru, Mehmet Emin; Harmandar, Mansur

    2009-09-01

    The aerial parts of Micromeria juliana (L.) Bentham ex Reichb. were extracted with light petroleum, acetone and methanol, successively. The antioxidant activity of different concentrations of the extracts was evaluated using different antioxidant tests, namely total antioxidant (lipid peroxidation inhibition activity), DPPH (1,1-diphenyl-2-picrylhydrazyl) radical scavenging, ferric reducing power, and metal chelating. Total antioxidant activity was determined using the beta-carotene-linoleic acid assay. Unexpectedly, the light petroleum extract exhibited strong lipid peroxidation inhibition activity. The extract was fractionated on a silica gel column and the antioxidant activity of the fractions was determined by the beta-carotene-linoleic assay at 25 microg/mL concentration. The fractions that exhibited more than 50% inhibition activity were analysed by GC and GC/MS; thus, the structure of fourteen compounds were elucidated. In addition, acetyl- and butyryl-cholinesterase inhibitory activities of the extracts were also determined in vitro. The light petroleum and acetone extracts were found to have mild butyrylcholinesterase inhibitory activity.

  13. Toward the excited isoscalar meson spectrum from lattice QCD

    DOE PAGES

    Dudek, Jozef J.; Edwards, Robert G.; Guo, Peng; ...

    2013-11-18

    We report on the extraction of an excited spectrum of isoscalar mesons using lattice QCD. Calculations on several lattice volumes are performed with a range of light quark masses corresponding to pion masses down to about ~400 MeV. The distillation method enables us to evaluate the required disconnected contributions with high statistical precision for a large number of meson interpolating fields. We find relatively little mixing between light and strange in most J PC channels; one notable exception is the pseudoscalar sector where the approximate SU(3) F octet, singlet structure of the η, η' is reproduced. We extract exotic Jmore » PC states, identified as hybrid mesons in which an excited gluonic field is coupled to a color-octet qqbar pair, along with non-exotic hybrid mesons embedded in a qq¯-like spectrum.« less

  14. ON-SITE SOLID-PHASE EXTRACTION AND LABORATORY ...

    EPA Pesticide Factsheets

    Fragrance materials such as synthetic musks in aqueous samples, are normally determined by gas chromatography/mass spectrometry in the selected ion monitoring (SIM) mode to provide maximum sensitivity after liquid-liquid extraction of I -L samples. Full-scan mass spectra are required to verify that a target analyte has been found by comparison with the mass spectra of fragrance compounds in the NIST mass spectral library. A I -L sample usually provides insufficient analyte for full scan data acquisition. This paper describes an on-site extraction method developed at the U.S. Environmental Protection Agency (USEPA)- Las Vegas Nevada - for synthetic musks from 60 L of wastewater effluent. Such a large sample volume permits high-quality, full-scan mass spectra to be obtained for a wide array of synthetic musks. Quantification of these compounds was achieved from the full-scan data directly, without the need to acquire SIM data. The detection limits obtained with this method are an order of magnitude lower than those obtained from liquid-liquid and other solid phase extraction methods. This method is highly reproducible, and recoveries ranged from 80 to 97% in spiked sewage treatment plant effluent. The high rate of sorbent-sample mass transfer eliminated the need for a methanolic activation step, which reduced extraction time, labor, and solvent use, More samples could be extracted in the field at lower cost. After swnple extraction, the light- weight cartridges ar

  15. Physical properties of root cementum: part 20. Effect of fluoride on orthodontically induced root resorption with light and heavy orthodontic forces for 4 weeks: a microcomputed tomography study.

    PubMed

    Karadeniz, Ersan Ilsay; Gonzales, Carmen; Nebioglu-Dalci, Oyku; Dwarte, Dennis; Turk, Tamer; Isci, Devrim; Sahin-Saglam, Aynur M; Alkis, Huseyin; Elekdag-Turk, Selma; Darendeliler, M Ali

    2011-11-01

    The major side effect of orthodontic treatment is orthodontically induced inflammatory root resorption. Fluoride was previously shown to reduce the volume of the root resorption craters in rats. However, the effect of fluoride on orthodontically induced inflammatory root resorption in humans has not yet been investigated. The aim of this study was to investigate the effect of high and low amounts of fluoride intake from birth on orthodontically induced inflammatory root resorption under light (25 g) and heavy (225 g) force applications. Forty-eight patients who required maxillary premolar extractions as part of their orthodontic treatment were selected from 2 cities in Turkey with high and low fluoride concentrations in the public water of ≥ 2 and ≤ 0.05 ppm, respectively. The patients were randomly separated into 4 groups of 12 each: group 1, high fluoride intake and heavy force; group 2, low fluoride intake and heavy force; group 3, high fluoride intake and light force; and group 4, low fluoride intake and light force. Light or heavy buccal tipping orthodontic forces were applied on the maxillary first premolars for 28 days. At day 28, the teeth were extracted, and the samples were analyzed with microcomputed tomography. Fluoride reduced the volume of root resorption craters in all groups; however, this effect was significantly different with high force application (P = 0.015). It was also found that light forces caused less root resorption than heavy forces. There was no statistical difference in the amount of root resorption observed on root surfaces (buccal, lingual, mesial, and distal) in all groups. However, the middle third of the roots showed the least root resorption. With high fluoride intake and heavy force application, less root resorption was found in all root surfaces and root thirds. Fluoride may reduce the volume of root resorption craters. This effect is significant with heavy force applications (P <0.05). The cervical and apical thirds of the root showed significantly greater root resorption after the application of buccal tipping force for 4 weeks. Copyright © 2011 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  16. In-Situ Wave Observations in the High Resolution Air-Sea Interaction DRI

    DTIC Science & Technology

    2007-09-30

    directional spectra extracted from the Coastal Data Information Program ( CDIP ) Harvest buoy located in 204 m depth off Point Conception. The initial sea...frequency-directional wave spectra (source: CDIP ). Upper panels: Typical summer-time South swell in the presence of a light North-West wind sea

  17. Enhanced light extraction of GaN-based light-emitting diodes with periodic textured SiO2 on Al-doped ZnO transparent conductive layer

    NASA Astrophysics Data System (ADS)

    Yu, Zhao; Bingfeng, Fan; Yiting, Chen; Yi, Zhuo; Zhoujun, Pang; Zhen, Liu; Gang, Wang

    2016-07-01

    We report an effective enhancement in light extraction of GaN-based light-emitting diodes (LEDs) with an Al-doped ZnO (AZO) transparent conductive layer by incorporating a top regular textured SiO2 layer. The 2 inch transparent through-pore anodic aluminum oxide (AAO) membrane was fabricated and used as the etching mask. The periodic pore with a pitch of about 410 nm was successfully transferred to the surface of the SiO2 layer without any etching damages to the AZO layer and the electrodes. The light output power was enhanced by 19% at 20 mA and 56% at 100 mA compared to that of the planar LEDs without a patterned surface. This approach offers a technique to fabricate a low-cost and large-area regular pattern on the LED chip for achieving enhanced light extraction without an obvious increase of the forward voltage. ).

  18. Anatomy and cell wall polysaccharides of almond (Prunus dulcis D. A. Webb) seeds.

    PubMed

    Dourado, Fernando; Barros, António; Mota, Manuel; Coimbra, Manuel A; Gama, Francisco M

    2004-03-10

    The anatomy of Prunus dulcis was analyzed by applying several differential staining techniques and light microscopy. Prunus dulcis seed has a thin and structurally complex seed coat, with lignified cellulosic tissue. The embryo has two voluminous cotyledons. Cotyledon cells have a high number of protein and lipid bodies, some of which have phytin. The provascular tissue, located in the cotyledons, is oriented in small bundles perpendicular to the transverse embryonic axis. Prunus dulcis cell wall material is very rich in arabinose (45 mol %). Glucose (23%), uronic acids (12%), and xylose (12%) are also major sugar components. The polymers obtained from the imidazole and Na(2)CO(3) extracts contain mainly pectic substances rich in arabinose, but the sugar content of these extracts was very low. The majority of the pectic substances (also rich in arabinose) was recovered with the KOH extracts. These extracts, with high sugar content, yielded also xyloglucans and acidic xylans. The 4 M KOH + H(3)BO(3) extracts yielded polysaccharides rich in uronic acids and xylose and very rich in arabinose, accounting for 27% of the cell wall material.

  19. Pectin from Opuntia ficus indica: Optimization of microwave-assisted extraction and preliminary characterization.

    PubMed

    Lefsih, Khalef; Giacomazza, Daniela; Dahmoune, Farid; Mangione, Maria Rosalia; Bulone, Donatella; San Biagio, Pier Luigi; Passantino, Rosa; Costa, Maria Assunta; Guarrasi, Valeria; Madani, Khodir

    2017-04-15

    Optimization of microwave-assisted extraction (MAE) of water-soluble pectin (WSP) from Opuntia ficus indica cladodes was performed using Response Surface Methodology. The effect of extraction time (X 1 ), microwave power (X 2 ), pH (X 3 ) and solid-to-liquid ratio (X 4 ) on the extraction yield was examined. The optimum conditions of MAE were as follows: X 1 =2.15min; X 2 =517W; X 3 =2.26 and X 4 =2g/30.6mL. The maximum obtained yield of pectin extraction was 12.57%. Total carbohydrate content of WSP is about 95.5% including 34.4% of Galacturonic acid. Pectin-related proteins represent only the 0.66% of WSP mass. HPSEC and light scattering analyses reveal that WSP is mostly constituted of high molecular pectin and FTIR measurements show that the microwave treatment does not alter the chemical structure of WSP, in which Galacturonic acid content and yield are 34.4% and 4.33%, respectively. Overall, application of MAE can give rise to high quality pectin. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Scalable Light Module for Low-Cost, High-Efficiency Light- Emitting Diode Luminaires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tarsa, Eric

    2015-08-31

    During this two-year program Cree developed a scalable, modular optical architecture for low-cost, high-efficacy light emitting diode (LED) luminaires. Stated simply, the goal of this architecture was to efficiently and cost-effectively convey light from LEDs (point sources) to broad luminaire surfaces (area sources). By simultaneously developing warm-white LED components and low-cost, scalable optical elements, a high system optical efficiency resulted. To meet program goals, Cree evaluated novel approaches to improve LED component efficacy at high color quality while not sacrificing LED optical efficiency relative to conventional packages. Meanwhile, efficiently coupling light from LEDs into modular optical elements, followed by optimallymore » distributing and extracting this light, were challenges that were addressed via novel optical design coupled with frequent experimental evaluations. Minimizing luminaire bill of materials and assembly costs were two guiding principles for all design work, in the effort to achieve luminaires with significantly lower normalized cost ($/klm) than existing LED fixtures. Chief project accomplishments included the achievement of >150 lm/W warm-white LEDs having primary optics compatible with low-cost modular optical elements. In addition, a prototype Light Module optical efficiency of over 90% was measured, demonstrating the potential of this scalable architecture for ultra-high-efficacy LED luminaires. Since the project ended, Cree has continued to evaluate optical element fabrication and assembly methods in an effort to rapidly transfer this scalable, cost-effective technology to Cree production development groups. The Light Module concept is likely to make a strong contribution to the development of new cost-effective, high-efficacy luminaries, thereby accelerating widespread adoption of energy-saving SSL in the U.S.« less

  1. Monolithic Flexible Vertical GaN Light-Emitting Diodes for a Transparent Wireless Brain Optical Stimulator.

    PubMed

    Lee, Han Eol; Choi, JeHyuk; Lee, Seung Hyun; Jeong, Minju; Shin, Jung Ho; Joe, Daniel J; Kim, DoHyun; Kim, Chang Wan; Park, Jung Hwan; Lee, Jae Hee; Kim, Daesoo; Shin, Chan-Soo; Lee, Keon Jae

    2018-05-18

    Flexible inorganic-based micro light-emitting diodes (µLEDs) are emerging as a significant technology for flexible displays, which is an important area for bilateral visual communication in the upcoming Internet of Things era. Conventional flexible lateral µLEDs have been investigated by several researchers, but still have significant issues of power consumption, thermal stability, lifetime, and light-extraction efficiency on plastics. Here, high-performance flexible vertical GaN light-emitting diodes (LEDs) are demonstrated by silver nanowire networks and monolithic fabrication. Transparent, ultrathin GaN LED arrays adhere to a human fingernail and stably glow without any mechanical deformation. Experimental studies provide outstanding characteristics of the flexible vertical μLEDs (f-VLEDs) with high optical power (30 mW mm -2 ), long lifetime (≈12 years), and good thermal/mechanical stability (100 000 bending/unbending cycles). The wireless light-emitting system on the human skin is successfully realized by transferring the electrical power f-VLED. Finally, the high-density GaN f-VLED arrays are inserted onto a living mouse cortex and operated without significant histological damage of brain. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Metasurfaces based on Gallium Nitride High Contrast Gratings at Visible Range

    NASA Astrophysics Data System (ADS)

    Wang, Zhenhai; He, Shumin; Liu, Qifa; Wang, Wei; Wang, Yongjin; Zhu, Hongbo; Grünberg Research Centre Team

    2015-03-01

    Metasurfaces are currently attracting global attention due to their ability to achieve full control of light propagation. However, these metasurfaces have thus far been constructed mostly from metallic materials, which greatly limit the diffraction efficiencies because of the ohmic losses. Semiconducting metasurfaces offer one potential solution to the issue of losses. Besides, the use of semiconducting materials can broaden the applicability of metasurfaces, as they enable facile integration with electronics and mechanical systems and can benefit from mature semiconductor fabrication technologies. We have proposed visible-light metasurfaces (VLMs) capable of serving as lenses and beam deflecting elements based on gallium nitride (GaN) high contrast gratings (HCGs). By precisely manipulating the wave-fronts of the transmitted light, we theoretically demonstrate an HCG focusing lens with transmissivity of 83.0% and numerical aperture of 0.77, and a VLM with beam deflection angle of 6.03° and transmissivity as high as 93.3%. The proposed metasurfaces are promising for GaN-based visible light-emitting diodes (LEDs), which would be robust and versatile for controlling the output light propagation and polarization, as well as enhancing the extraction efficiency of the LEDs.

  3. Enhanced light extraction efficiency of GaN-based light-emittng diodes by nitrogen implanted current blocking layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Yong Deok; Oh, Seung Kyu; Park, Min Joo

    Highlights: • A nitrogen implanted current-blocking layer was successfully demonstrated. • Light-extraction efficiency and radiant intensity was increased by more than 20%. • Ion implantation was successfully implemented in GaN based light-emitting diodes. - Abstract: GaN-based light emitting diodes (LEDs) with a nitrogen implanted current-blocking layer (CBL) were successfully demonstrated for improving the light extraction efficiency (LEE) and radiant intensity. The LEE and radiant intensity of the LEDs with a shallow implanted CBL with nitrogen was greatly increased by more than 20% compared to that of a conventional LED without the CBL due to an increase in the effective currentmore » path, which reduces light absorption at the thick p-pad electrode. Meanwhile, deep implanted CBL with a nitrogen resulted in deterioration of the LEE and radiant intensity because of formation of crystal damage, followed by absorption of the light generated at the multi-quantum well(MQW). These results clearly suggest that ion implantation method, which is widely applied in the fabrication of Si based devices, can be successfully implemented in the fabrication of GaN based LEDs by optimization of implanted depth.« less

  4. A single extraction and HPLC procedure for simultaneous analysis of phytosterols, tocopherols and lutein in soybeans.

    PubMed

    Slavin, Margaret; Yu, Liangli Lucy

    2012-12-15

    A saponification/extraction procedure and high performance liquid chromatography (HPLC) analysis method were developed and validated for simultaneous analysis of phytosterols, tocopherols and lutein (a carotenoid) in soybeans. Separation was achieved on a phenyl column with a ternary, isocratic solvent system of acetonitrile, methanol and water (48:22.5:29.5, v/v/v). Evaporative light scattering detection (ELSD) was used to quantify β-sitosterol, stigmasterol, campesterol, and α-, δ- and γ-tocopherols, while lutein was quantified with visible light absorption at 450 nm. Peak identification was verified by retention times and spikes with external standards. Standard curves were constructed (R(2)>0.99) to allow for sample quantification. Recovery of the saponification and extraction was demonstrated via analysis of spiked samples. Also, the accuracy of results of four soybeans using the described saponification and HPLC analytical method was validated against existing methods. This method offers a more efficient alternative to individual methods for quantifying lutein, tocopherols and sterols in soybeans. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Fish scale terrace GaInN/GaN light-emitting diodes with enhanced light extraction

    NASA Astrophysics Data System (ADS)

    Stark, Christoph J. M.; Detchprohm, Theeradetch; Zhao, Liang; Paskova, Tanya; Preble, Edward A.; Wetzel, Christian

    2012-12-01

    Non-planar GaInN/GaN light-emitting diodes were epitaxially grown to exhibit steps for enhanced light emission. By means of a large off-cut of the epitaxial growth plane from the c-plane (0.06° to 2.24°), surface morphologies of steps and inclined terraces that resemble fish scale patterns could controllably be achieved. These patterns penetrate the active region without deteriorating the electrical device performance. We find conditions leading to a large increase in light-output power over the virtually on-axis device and over planar sapphire references. The process is found suitable to enhance light extraction even without post-growth processing.

  6. Development of green extraction processes for Nannochloropsis gaditana biomass valorization.

    PubMed

    Sánchez-Camargo, Andrea Del Pilar; Pleite, Natalia; Mendiola, José Antonio; Cifuentes, Alejandro; Herrero, Miguel; Gilbert-López, Bienvenida; Ibáñez, Elena

    2018-04-23

    In the present work, the valorization of Nannochloropsis gaditana biomass is proposed within the concept of biorefinery. To this aim, high-pressure homogenization (HPH) was used to break down the strong cell wall and supercritical fluid extraction (SFE) with pure CO 2 was applied as a first step to extract valuable compounds (such as non-polar lipids and pigments). Extraction of the remaining residue for the recovery of bioactive compounds was studied by means of an experimental design based on response surface methodology (RSM) employing pressurized liquid extraction (PLE) with green solvents such as water and ethanol. Optimum extract was achieved with pure ethanol at 170°C for 20 min, providing an important antioxidant capacity (0.72 ± 0.03 mmol trolox eq g -1 extract). Complete chemical characterization of the optimum extract was carried out by using different chromatographic methods such as reverse-phase high-performance liquid chromatography with diode array detection (RP-HPLC-DAD), normal-phase HPLC with evaporative light scattering detection (NP-HPLC-ELSD) and gas chromatography coupled to mass spectrometry detection (GC-MS); carotenoids (e.g. violaxanthin), chlorophylls and polar lipids were the main compounds observed while palmitoleic, palmitic, myristic acids and the polyunsaturated eicosapentanoic (EPA) acid were the predominant fatty acids in all PLE extracts. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Identification of flexible structures by frequency-domain observability range context

    NASA Astrophysics Data System (ADS)

    Hopkins, M. A.

    2013-04-01

    The well known frequency-domain observability range space extraction (FORSE) algorithm provides a powerful multivariable system-identification tool with inherent flexibility, to create state-space models from frequency-response data (FRD). This paper presents a method of using FORSE to create "context models" of a lightly damped system, from which models of individual resonant modes can be extracted. Further, it shows how to combine the extracted models of many individual modes into one large state-space model. Using this method, the author has created very high-order state-space models that accurately match measured FRD over very broad bandwidths, i.e., resonant peaks spread across five orders-of-magnitude of frequency bandwidth.

  8. 2D SiNx photonic crystal coated Y3Al5O12:Ce3+ ceramic plate phosphor for high-power white light-emitting diodes.

    PubMed

    Park, Hoo Keun; Oh, Jeong Rok; Do, Young Rag

    2011-12-05

    This paper reports the optical effects of a two-dimensional (2D) SiNx photonic crystal layer (PCL) on Y3Al5O12:Ce3+ (YAG:Ce) yellow ceramic plate phosphor (CPP) in order to enhance the forward emission of YAG:Ce CPP-capped high-power white light-emitting diodes (LEDs). By adding the 2D SiNx PCL with a 580 nm lattice constant, integrated yellow emission was improved by a factor of 1.72 compared to that of a conventional YAG:Ce CPP capped on a blue LED cup. This enhanced forward yellow emission is attributed to increased extraction of yellow emission light and improved absorption of blue excitation light through Bragg scattering and/or the leaky modes produced by the 2D PCLs. The introduction of 2D PCL can also reduce the wide variation of optical properties as a function of both ambient temperature and applied current, compared to those of a high-power YAG:Ce CPP-capped LED.

  9. Flexible polymer waveguides for light-activated therapy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kim, Moonseok; Kwok, Sheldon J. J.; Lin, Harvey H.; Lee, Dong Hee; Yun, Seok Hyun

    2017-02-01

    Conventional light-activated therapies, such as photodynamic therapy (PDT), photochemical tissue bonding (PTB), collagen crosslinking (CXL), low-level light therapy (LLLT), and antimicrobial therapy utilize external light sources and light propagation through free space, limiting treatment to accessible and superficial areas of the body. Recent progress has been made in developing biocompatible polymer waveguides to enhance light delivery to deep tissues. To further expand clinical utility, waveguides should be flexible and tough enough to enable use in anatomically difficult-to-reach regions, while having the requisite optical properties to achieve uniform and efficient illumination of the target area. Here, we present a new class of flexible polymer waveguides optimized for uniform light extraction into tissues. Our slab waveguides comprise two designs: first, a flexible polydimethylsiloxane (PDMS) based elastomer for CXL, and second, a tough polyacrylamide and alginate hydrogel for large-area phototherapies. Our waveguides are optically transparent in the visible wavelengths (400-750 nm) and a multimode fiber is used to couple light into the waveguide. We characterized the light propagation through the waveguides and light extraction into tissue, and validated our results with optical simulation. By changing the thickness and scattering properties, uniform light extraction through the length of the waveguide could be achieved. We demonstrate proof-of-concept scleral photo-crosslinking of an ex vivo porcine eyeball for prevention of myopia.

  10. Improvements to III-nitride light-emitting diodes through characterization and material growth

    NASA Astrophysics Data System (ADS)

    Getty, Amorette Rose Klug

    A variety of experiments were conducted to improve or aid the improvement of the efficiency of III-nitride light-emitting diodes (LEDs), which are a critical area of research for multiple applications, including high-efficiency solid state lighting. To enhance the light extraction in ultraviolet LEDs grown on SiC substrates, a distributed Bragg reflector (DBR) optimized for operation in the range from 250 to 280 nm has been developed using MBE growth techniques. The best devices had a peak reflectivity of 80% with 19.5 periods, which is acceptable for the intended application. DBR surfaces were sufficiently smooth for subsequent epitaxy of the LED device. During the course of this work, pros and cons of AlGaN growth techniques, including analog versus digital alloying, were examined. This work highlighted a need for more accurate values of the refractive index of high-Al-content AlxGa1-xNin the UV wavelength range. We present refractive index results for a wide variety of materials pertinent to the fabrication of optical III-nitride devices. Characterization was done using Variable-Angle Spectroscopic Ellipsometry. The three binary nitrides, and all three ternaries, have been characterized to a greater or lesser extent depending on material compositions available. Semi-transparent p-contact materials and other thin metals for reflecting contacts have been examined to allow optimization of deposition conditions and to allow highly accurate modeling of the behavior of light within these devices. Standard substrate materials have also been characterized for completeness and as an indicator of the accuracy of our modeling technique. We have demonstrated a new technique for estimating the internal quantum efficiency (IQE) of nitride light-emitting diodes. This method is advantageous over the standard low-temperature photoluminescence-based method of estimating IQE, as the new method is conducted under the same conditions as normal device operation. We have developed processing techniques and have characterized patternable absorbing materials which eliminate scattered light within the device, allowing an accurate simulation of the device extraction efficiency. This efficiency, with measurements of the input current and optical output power, allow a straightforward calculation of the IQE. Two sets of devices were measured, one of material grown in-house, with a rough p-GaN surface, and one of commercial LED material, with smooth interfaces and very high internal quantum efficiency.

  11. Tissues viability and blood flow sensing based on a new nanophotonics method

    NASA Astrophysics Data System (ADS)

    Yariv, Inbar; Haddad, Menashe; Duadi, Hamootal; Motiei, Menachem; Fixler, Dror

    2018-02-01

    Extracting optical parameters of turbid medium (e.g. tissue) by light reflectance signals is of great interest and has many applications in the medical world, life science, material analysis and biomedical optics. The reemitted light from an irradiated tissue is affected by the light's interaction with the tissue components and contains the information about the tissue structure and physiological state. In this research we present a novel noninvasive nanophotonics technique, i.e., iterative multi-plane optical property extraction (IMOPE) based on reflectance measurements. The reflectance based IMOPE was applied for tissue viability examination, detection of gold nanorods (GNRs) within the blood circulation as well as blood flow detection using the GNRs presence within the blood vessels. The basics of the IMOPE combine a simple experimental setup for recording light intensity images with an iterative Gerchberg-Saxton (G-S) algorithm for reconstructing the reflected light phase and computing its standard deviation (STD). Changes in tissue composition affect its optical properties which results in changes in the light phase that can be measured by its STD. This work presents reflectance based IMOPE tissue viability examination, producing a decrease in the computed STD for older tissues, as well as investigating their organic material absorption capability. Finally, differentiation of the femoral vein from adjacent tissues using GNRs and the detection of their presence within blood circulation and tissues are also presented with high sensitivity (better than computed tomography) to low quantities of GNRs (<3 mg).

  12. Image Processing of Porous Silicon Microarray in Refractive Index Change Detection.

    PubMed

    Guo, Zhiqing; Jia, Zhenhong; Yang, Jie; Kasabov, Nikola; Li, Chuanxi

    2017-06-08

    A new method for extracting the dots is proposed by the reflected light image of porous silicon (PSi) microarray utilization in this paper. The method consists of three parts: pretreatment, tilt correction and spot segmentation. First, based on the characteristics of different components in HSV (Hue, Saturation, Value) space, a special pretreatment is proposed for the reflected light image to obtain the contour edges of the array cells in the image. Second, through the geometric relationship of the target object between the initial external rectangle and the minimum bounding rectangle (MBR), a new tilt correction algorithm based on the MBR is proposed to adjust the image. Third, based on the specific requirements of the reflected light image segmentation, the array cells are segmented into dots as large as possible and the distance between the dots is equal in the corrected image. Experimental results show that the pretreatment part of this method can effectively avoid the influence of complex background and complete the binarization processing of the image. The tilt correction algorithm has a shorter computation time, which makes it highly suitable for tilt correction of reflected light images. The segmentation algorithm makes the dots in a regular arrangement, excludes the edges and the bright spots. This method could be utilized in the fast, accurate and automatic dots extraction of the PSi microarray reflected light image.

  13. Image Processing of Porous Silicon Microarray in Refractive Index Change Detection

    PubMed Central

    Guo, Zhiqing; Jia, Zhenhong; Yang, Jie; Kasabov, Nikola; Li, Chuanxi

    2017-01-01

    A new method for extracting the dots is proposed by the reflected light image of porous silicon (PSi) microarray utilization in this paper. The method consists of three parts: pretreatment, tilt correction and spot segmentation. First, based on the characteristics of different components in HSV (Hue, Saturation, Value) space, a special pretreatment is proposed for the reflected light image to obtain the contour edges of the array cells in the image. Second, through the geometric relationship of the target object between the initial external rectangle and the minimum bounding rectangle (MBR), a new tilt correction algorithm based on the MBR is proposed to adjust the image. Third, based on the specific requirements of the reflected light image segmentation, the array cells are segmented into dots as large as possible and the distance between the dots is equal in the corrected image. Experimental results show that the pretreatment part of this method can effectively avoid the influence of complex background and complete the binarization processing of the image. The tilt correction algorithm has a shorter computation time, which makes it highly suitable for tilt correction of reflected light images. The segmentation algorithm makes the dots in a regular arrangement, excludes the edges and the bright spots. This method could be utilized in the fast, accurate and automatic dots extraction of the PSi microarray reflected light image. PMID:28594383

  14. Resonant-cavity light-emitting diodes for optical interconnects

    NASA Astrophysics Data System (ADS)

    Jin, Xu

    This dissertation addresses the issues related to external quantum efficiencies and light coupling efficiency of novel 1.3 mum Resonant-cavity light-emitting diodes (RCLEDs) on GaAs substrates. External quantum efficiency (QE) is defined as the number of extracted photons per injected electrons, i.e., the product of injection efficiency, internal QE, and light extraction efficiency. This study focuses on the latter two terms. Internal QE mainly depends on the properties of the active region quantum wells (QWs) used in the RCLEDs, such as composition, thickness, and strain compensation. GaAsSb/GaAs QW edge-emitting (EE) lasers are characterized experimentally to extract key parameters, such as internal QE and internal loss. With optimized QWs and a novel self-aligned EE lasers process, room temperature continuous wave (CW) operation of GaAsSb EE lasers has been demonstrated for the first time. The highest operational temperature for the EE lasers is 48°C at a wavelength as long as 1260 nm. This result is the best ever reported by a university group. In conventional LEDs, very little light generated by the active region, succeeds in escaping from the semiconductor material due to the small critical angle of total internal reflection. With the use of a resonant cavity, the light extraction efficiency of RCLEDs is significantly improved. Front and back reflectivities, detuning (offset) between resonant-cavity peak and electroluminescence, and electroluminescence linewidth have been identified as key factors influencing light extraction efficiency. Numerical simulations indicate that the fraction of luminescence transmitted through the top mirror of an optimized RCLED is around 9%, which is more than double that of conventional LEDs. This number will be larger when multiple reflections and photon recycling are considered; which are not included in the current model since they are structure dependent. The best GaAsSb/GaAs QW RCLEDs demonstrated in this work have shown narrow spectral linewidths of 7-10 nm, extracted light output power in the range of 200-300 muW, and modulation speed up to 300 MHz. This is the first demonstration of 1.3 muRCLEDs on GaAs substrates with performance comparable to InP based surface-emitting LEDs.

  15. Light fluorous-tagged traceless one-pot synthesis of benzimidazoles facilitated by microwave irradiation.

    PubMed

    Tseng, Chih-Chung; Tasi, Cheng-Hsun; Sun, Chung-Ming

    2012-06-01

    A novel protocol for rapid assemble of benzimidazole framework has been demonstrated. This method incorporated with light fluorous-tag provides a convenient method for diversification of benzimidazoles and for easy purification via fluorous solid-phase extraction (F-SPE) in a parallel manner. The key transformation of this study involves in situ reduction of aromatic nitro compound, amide formation, cyclization and aromatization promoted by microwave irradiation in a one-pot fashion. The strategy is envisaged to be applied for the establishment of drug-like small molecule libraries for high throughput screening.

  16. Optimized emission in nanorod arrays through quasi-aperiodic inverse design.

    PubMed

    Anderson, P Duke; Povinelli, Michelle L

    2015-06-01

    We investigate a new class of quasi-aperiodic nanorod structures for the enhancement of incoherent light emission. We identify one optimized structure using an inverse design algorithm and the finite-difference time-domain method. We carry out emission calculations on both the optimized structure as well as a simple periodic array. The optimized structure achieves nearly perfect light extraction while maintaining a high spontaneous emission rate. Overall, the optimized structure can achieve a 20%-42% increase in external quantum efficiency relative to a simple periodic design, depending on material quality.

  17. Phase-sensitive atomic dynamics in quantum light

    NASA Astrophysics Data System (ADS)

    Balybin, S. N.; Zakharov, R. V.; Tikhonova, O. V.

    2018-05-01

    Interaction between a quantum electromagnetic field and a model Ry atom with possible transitions to the continuum and to the low-lying resonant state is investigated. Strong sensitivity of atomic dynamics to the phase of applied coherent and squeezed vacuum light is found. Methods to extract the quantum field phase performing the measurements on the atomic system are proposed. In the case of the few-photon coherent state high accuracy of the phase determination is demonstrated, which appears to be much higher in comparison to the usually used quantum-optical methods such as homodyne detection.

  18. Quantification of lycopene in the processed tomato-based products by means of the light-emitting diode (LED) and compact photoacoustic (PA) detector

    NASA Astrophysics Data System (ADS)

    Bicanic, D.; Skenderović, H.; Marković, K.; Dóka, O.; Pichler, L.; Pichler, G.; Luterotti, S.

    2010-03-01

    The combined use of a high power light emitting diode (LED) and the compact photoacoustic (PA) detector offers the possibility for a rapid (no extraction needed), accurate (precision 1.5%) and inexpensive quantification of lycopene in different products derived from the thermally processed tomatoes. The concentration of lycopene in selected products ranges from a few mg to several tens mg per 100 g fresh weight. The HPLC was used as the well established reference method.

  19. Force and light tuning vertical tunneling current in the atomic layered MoS2.

    PubMed

    Li, Feng; Lu, Zhixing; Lan, Yann-Wen; Jiao, Liying; Xu, Minxuan; Zhu, Xiaoyang; Zhang, Xiankun; Wu, Hualin; Qi, Junjie

    2018-07-06

    In this work, the vertical electrical transport behavior of bilayer MoS 2 under the coupling of force and light was explored by the use of conductive atomic force microscopy. We found that the current-voltage behavior across the tip-MoS 2 -Pt junction is a tunneling current that can be well fitted by a Simmons approximation. The transport behavior is direct tunneling at low bias and Fowler-Nordheim tunneling at high bias, and the transition voltage and tunnel barrier height are extracted. The effect of force and light on the effective band gap of the junction is investigated. Furthermore, the source-drain current drops surprisingly when we continually increase the force, and the dropping point is altered by the provided light. This mechanism is responsible for the tuning of tunneling barrier height and width by force and light. These results provide a new way to design devices that take advantage of ultrathin two-dimensional materials. Ultrashort channel length electronic components that possess tunneling current are important for establishing high-efficiency electronic and optoelectronic systems.

  20. Reduced Photoinhibition under Low Irradiance Enhanced Kacip Fatimah (Labisia pumila Benth) Secondary Metabolites, Phenyl Alanine Lyase and Antioxidant Activity

    PubMed Central

    Ibrahim, Mohd Hafiz; Jaafar, Hawa Z.E.

    2012-01-01

    A randomized complete block design experiment was designed to characterize the relationship between production of total flavonoids and phenolics, anthocyanin, photosynthesis, maximum efficiency of photosystem II (Fv/Fm), electron transfer rate (Fm/Fo), phenyl alanine lyase activity (PAL) and antioxidant (DPPH) in Labisia pumila var. alata, under four levels of irradiance (225, 500, 625 and 900 μmol/m2/s) for 16 weeks. As irradiance levels increased from 225 to 900 μmol/m2/s, the production of plant secondary metabolites (total flavonoids, phenolics and antocyanin) was found to decrease steadily. Production of total flavonoids and phenolics reached their peaks under 225 followed by 500, 625 and 900 μmol/m2/s irradiances. Significant positive correlation of production of total phenolics, flavonoids and antocyanin content with Fv/Fm, Fm/Fo and photosynthesis indicated up-regulation of carbon-based secondary metabolites (CBSM) under reduced photoinhibition on the under low light levels condition. At the lowest irradiance levels, Labisia pumila extracts also exhibited a significantly higher antioxidant activity (DPPH) than under high irradiance. The improved antioxidative activity under low light levels might be due to high availability of total flavonoids, phenolics and anthocyanin content in the plant extract. It was also found that an increase in the production of CBSM was due to high PAL activity under low light, probably signifying more availability of phenylalanine (Phe) under this condition. PMID:22754297

  1. Emission Characteristics of Organic Light-Emitting Diodes and Organic Thin-Films with Planar and Corrugated Structures

    PubMed Central

    Wei, Mao-Kuo; Lin, Chii-Wann; Yang, Chih-Chung; Kiang, Yean-Woei; Lee, Jiun-Haw; Lin, Hoang-Yan

    2010-01-01

    In this paper, we review the emission characteristics from organic light-emitting diodes (OLEDs) and organic molecular thin films with planar and corrugated structures. In a planar thin film structure, light emission from OLEDs was strongly influenced by the interference effect. With suitable design of microcavity structure and layer thicknesses adjustment, optical characteristics can be engineered to achieve high optical intensity, suitable emission wavelength, and broad viewing angles. To increase the extraction efficiency from OLEDs and organic thin-films, corrugated structure with micro- and nano-scale were applied. Microstructures can effectively redirects the waveguiding light in the substrate outside the device. For nanostructures, it is also possible to couple out the organic and plasmonic modes, not only the substrate mode. PMID:20480033

  2. In vitro genotoxicity of exhaust emissions of diesel and gasoline engine vehicles operated on a unified driving cycle.

    PubMed

    Liu, Yu-Qing; Keane, Michael; Ensell, Mang; Miller, William; Kashon, Michael; Ong, Tong-man; Mauderly, Joe; Lawson, Doug; Gautam, Mridul; Zielinska, Barbara; Whitney, Kevin; Eberhardt, James; Wallace, William

    2005-01-01

    Acetone extracts of engine exhaust particulate matter (PM) and of vapor-phase semi-volatile organic compounds (SVOCs) collected from a set of 1998-2000 model year normal emitter diesel engine automobile or light trucks and from a set of 1982-1996 normal emitter gasoline engine automobiles or light trucks operated on the California Unified Driving Cycle at 22 [degree]C were assayed for in vitro genotoxic activities. Gasoline and diesel PM were comparably positive mutagens for Salmonella typhimurium strains YG1024 and YG1029 on a mass of PM extract basis with diesel higher on a mileage basis; gasoline SVOC was more active than diesel on an extracted-mass basis, with diesel SVOC more active on a mileage basis. For chromosomal damage indicated by micronucleus induction in Chinese hamster lung fibroblasts (V79 cells), diesel PM expressed about one-tenth that of gasoline PM on a mass of extract basis, but was comparably active on a mileage basis; diesel SVOC was inactive. For DNA damage in V79 cells indicated by the single cell gel electrophoresis (SCGE) assay, gasoline PM was positive while diesel PM was active at the higher doses; gasoline SVOC was active with toxicity preventing measurement at high doses, while diesel SVOC was inactive at all but the highest dose.

  3. New Measurements of High-Momentum Nucleons and Short-Range Structures in Nuclei

    DOE PAGES

    Fomin, N.; Arrington, J.; Asaturyan, R.; ...

    2012-02-01

    We present new, high-Q 2 measurements of inclusive electron scattering from high-momentum nucleons in nuclei. This yields an improved extraction of the strength of two-nucleon correlations for several nuclei, including light nuclei where clustering effects can, for the first time, be examined. The data extend to the kinematic regime where three-nucleon correlations are expected to dominate and we observe significantly greater strength in this region than previous measurements.

  4. Learning from Undocumented Students: Testimonios for Strategies to Support and Resist

    ERIC Educational Resources Information Center

    Kleyn, Tatyana; Alulema, Daniela; Khalifa, Farah; Morales Romero, Areli

    2018-01-01

    Undocumented students and their families are in the crossfire as the Trump administration has taken an aggressive stance to criminalize, deport, and degrade them. Through the testimonios of three undocumented immigrant college students and graduates, this article sheds light on their memorable moments in high school and college to extract lessons…

  5. Optimized mounting of a polyethylene naphthalate scintillation material in a radiation detector.

    PubMed

    Nakamura, Hidehito; Yamada, Tatsuya; Shirakawa, Yoshiyuki; Kitamura, Hisashi; Shidara, Zenichiro; Yokozuka, Takayuki; Nguyen, Philip; Kanayama, Masaya; Takahashi, Sentaro

    2013-10-01

    Polyethylene naphthalate (PEN) has great potential as a scintillation material for radiation detection. Here the optimum mounting conditions to maximize the light collection efficiency from PEN in a radiation detector are discussed. To this end, we have determined light yields emitted from irradiated PEN for various optical couplings between the substrate and the photodetector, and for various substrate surface treatments. The results demonstrate that light extraction from PEN is more sensitive to the optical couplings due to its high refractive index. We also assessed the extent of radioactive impurities in PEN as background sources and found that the impurities are equivalent to the environmental background level. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. FAST TRACK COMMUNICATION Host-free, yellow phosphorescent material in white organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Lee, Meng-Ting; Chu, Miao-Tsai; Lin, Jin-Sheng; Tseng, Mei-Rurng

    2010-11-01

    A white organic light-emitting diode (WOLED) with a high power efficiency has been demonstrated by dispersing a host-free, yellow phosphorescent material in between double blue phosphorescent emitters. The device performance achieved a comparable value to that of using a complicated host-guest doping system to form the yellow emitter in WOLEDs. Based on this device concept as well as the molecular engineering of blue phosphorescent host material and light-extraction film, a WOLED with a power efficiency of 65 lm W-1 at a practical brightness of 1000 cd m-2 with Commission Internationale d'Echariage coordinates (CIEx,y) of (0.37, 0.47) was achieved.

  7. Topography and refractometry of nanostructures using spatial light interference microscopy.

    PubMed

    Wang, Zhuo; Chun, Ik Su; Li, Xiuling; Ong, Zhun-Yong; Pop, Eric; Millet, Larry; Gillette, Martha; Popescu, Gabriel

    2010-01-15

    Spatial light interference microscopy (SLIM) is a novel method developed in our laboratory that provides quantitative phase images of transparent structures with a 0.3 nm spatial and 0.03 nm temporal accuracy owing to the white light illumination and its common path interferometric geometry. We exploit these features and demonstrate SLIM's ability to perform topography at a single atomic layer in graphene. Further, using a decoupling procedure that we developed for cylindrical structures, we extract the axially averaged refractive index of semiconductor nanotubes and a neurite of a live hippocampal neuron in culture. We believe that this study will set the basis for novel high-throughput topography and refractometry of man-made and biological nanostructures.

  8. Nanoscale determination of the mass enhancement factor in the lightly doped bulk insulator lead selenide.

    PubMed

    Zeljkovic, Ilija; Scipioni, Kane L; Walkup, Daniel; Okada, Yoshinori; Zhou, Wenwen; Sankar, R; Chang, Guoqing; Wang, Yung Jui; Lin, Hsin; Bansil, Arun; Chou, Fangcheng; Wang, Ziqiang; Madhavan, Vidya

    2015-03-27

    Bismuth chalcogenides and lead telluride/selenide alloys exhibit exceptional thermoelectric properties that could be harnessed for power generation and device applications. Since phonons play a significant role in achieving these desired properties, quantifying the interaction between phonons and electrons, which is encoded in the Eliashberg function of a material, is of immense importance. However, its precise extraction has in part been limited due to the lack of local experimental probes. Here we construct a method to directly extract the Eliashberg function using Landau level spectroscopy, and demonstrate its applicability to lightly doped thermoelectric bulk insulator PbSe. In addition to its high energy resolution only limited by thermal broadening, this novel experimental method could be used to detect variations in mass enhancement factor at the nanoscale level. This opens up a new pathway for investigating the local effects of doping and strain on the mass enhancement factor.

  9. Patterns of expression and normalized levels of the five Arabidopsis phytochromes.

    PubMed

    Sharrock, Robert A; Clack, Ted

    2002-09-01

    Using monoclonal antibodies specific for each apoprotein and full-length purified apoprotein standards, the levels of the five Arabidopsis phytochromes and their patterns of expression in seedlings and mature plants and under different light conditions have been characterized. Phytochrome levels are normalized to the DNA content of the various tissue extracts to approximate normalization to the number of cells in the tissue. One phytochrome, phytochrome A, is highly light labile. The other four phytochromes are much more light stable, although among these, phytochromes B and C are reduced 4- to 5-fold in red- or white-light-grown seedlings compared with dark-grown seedlings. The total amount of extractable phytochrome is 23-fold lower in light-grown than dark-grown tissues, and the percent ratios of the five phytochromes, A:B:C:D:E, are measured as 85:10:2:1.5:1.5 in etiolated seedlings and 5:40:15:15:25 in seedlings grown in continuous white light. The four light-stable phytochromes are present at nearly unchanging levels throughout the course of development of mature rosette and reproductive-stage plants and are present in leaves, stems, roots, and flowers. Phytochrome protein expression patterns over the course of seed germination and under diurnal and circadian light cycles are also characterized. Little cycling in response to photoperiod is observed, and this very low amplitude cycling of some phytochrome proteins is out of phase with previously reported cycling of PHY mRNA levels. These studies indicate that, with the exception of phytochrome A, the family of phytochrome photoreceptors in Arabidopsis constitutes a quite stable and very broadly distributed array of sensory molecules.

  10. Affinity-reversed-phase liquid chromatography assay to quantitate recombinant antibodies and antibody fragments in fermentation broth.

    PubMed

    Battersby, J E; Snedecor, B; Chen, C; Champion, K M; Riddle, L; Vanderlaan, M

    2001-08-24

    An automated dual-column liquid chromatography assay comprised of affinity and reversed-phase separations that quantifies the majority of antibody-related protein species found in crude cell extracts of recombinant origin is described. Although potentially applicable to any antibody preparation, we here use samples of anti-CD18 (Fab'2LZ) and a full-length antibody, anti-tissue factor (anti-TF), from various stages throughout a biopharmaceutical production process to describe the assay details. The targeted proteins were captured on an affinity column containing an anti-light-chain (kappa) Fab antibody (AME5) immobilized on controlled pore glass. The affinity column was placed in-line with a reversed-phase column and the captured components were transferred by elution with dilute acid and subsequently resolved by eluting the reversed-phase column with a shallow acetonitrile gradient. Characterization of the resolved components showed that most antibody fragment preparations contained a light-chain fragment, free light chain, light-chain dimer and multiple forms of Fab'. Analysis of full-length antibody preparations also resolved these fragments as well as a completely assembled form. Co-eluting with the full-length antibody were high-molecular-mass variants that were missing one or both light chains. Resolved components were quantified by comparison with peak areas of similarly treated standards. By comparing the two-dimensional polyacrylamide gel electrophoresis patterns of an Escherichia coli blank run, a production run and the material affinity captured (AME5) from a production run, it was determined that the AME5 antibody captured isoforms of light chain, light chain covalently attached to heavy chain, and truncated light chain isoforms. These forms comprise the bulk of the soluble product-related fragments found in E. coli cell extracts of recombinantly produced antibody fragments.

  11. Thermal management and light extraction in multi-chip and high-voltage LEDs by cup-shaped copper heat spreader technology

    NASA Astrophysics Data System (ADS)

    Horng, Ray-Hua; Hu, Hung-Lieh; Tang, Li-Shen; Ou, Sin-Liang

    2013-03-01

    For LEDs with original structure and copper heat spreader, the highest surface temperatures of 3×3 array LEDs modules were 52.6 and 42.67 °C (with 1050 mA injection current), while the highest surface temperatures of 4×4 array LEDs modules were 58.55 and 48.85 °C (with 1400 mA injection current), respectively. As the 5×5 array LEDs modules with original structure and copper heat spreader were fabricated, the highest surface temperatures at 1750 mA injection current were 68.51 and 56.73 °C, respectively. The thermal resistance of optimal LEDs array module with copper heat spreader on heat sink using compound solder is reduced obviously. On the other hand, the output powers of 3×3, 4×4 and 5×5 array LEDs modules with original structure were 3621.7, 6346.3 and 9760.4 mW at injection currents of 1050, 1400 and 1750 mA, respectively. Meanwhile, the output powers of these samples with copper heat spreader can be improved to 4098.5, 7150.3 and 10919.6 mW, respectively. The optical and thermal characteristics of array LEDs module have been improved significantly using the cup-shaped copper structure. Furthermore, various types of epoxy-packaged LEDs with cup-shaped structure were also fabricated. It is found that the light extraction efficiency of LED with semicircle package has 55% improvement as compared to that of LED with flat package. The cup-shaped copper structure was contacted directly with sapphire to enhance heat dissipation. In addition to efficient heat dissipation, the light extraction of the lateral emitting in high-power LEDs can be improved.

  12. Welding studs detection based on line structured light

    NASA Astrophysics Data System (ADS)

    Geng, Lei; Wang, Jia; Wang, Wen; Xiao, Zhitao

    2018-01-01

    The quality of welding studs is significant for installation and localization of components of car in the process of automobile general assembly. A welding stud detection method based on line structured light is proposed. Firstly, the adaptive threshold is designed to calculate the binary images. Then, the light stripes of the image are extracted after skeleton line extraction and morphological filtering. The direction vector of the main light stripe is calculated using the length of the light stripe. Finally, the gray projections along the orientation of the main light stripe and the vertical orientation of the main light stripe are computed to obtain curves of gray projection, which are used to detect the studs. Experimental results demonstrate that the error rate of proposed method is lower than 0.1%, which is applied for automobile manufacturing.

  13. Optimization of process parameters for supercritical fluid extraction of cholesterol from whole milk powder using ethanol as co-solvent.

    PubMed

    Dey Paul, Indira; Jayakumar, Chitra; Niwas Mishra, Hari

    2016-12-01

    In spite of being highly nutritious, the consumption of milk is hindered because of its high cholesterol content, which is responsible for numerous cardiac diseases. Supercritical carbon dioxide using ethanol as co-solvent was employed to extract cholesterol from whole milk powder (WMP). This study was undertaken to optimize the process parameters of supercritical fluid extraction (SCFE), viz. extraction temperature, pressure and volume of ethanol. The cholesterol content of WMP was quantified using high-performance liquid chromatography. The impact of the extraction conditions on the fat content (FC), solubility index (SI) and lightness (L*) of the SCFE-treated WMP were also investigated. The process parameters were optimized using response surface methodology. About 46% reduction in cholesterol was achieved at the optimized conditions of 48 °C, 17 MPa and 31 mL co-solvent; flow rate of expanded CO 2 , static time and dynamic time of extraction were 6 L min -1 , 10 min and 80 min respectively. The treated WMP retained its FC, SI, and L* at moderate limits of 183.67 g kg -1 , 96.3% and 96.90, respectively. This study demonstrated the feasibility of ethanol-modified SCFE of cholesterol from WMP with negligible changes in its physicochemical properties. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  14. Cellular Antioxidant and Anti-Inflammatory Effects of Coffee Extracts with Different Roasting Levels.

    PubMed

    Jung, Soohan; Kim, Min Hyung; Park, Jae Hee; Jeong, Yoonhwa; Ko, Kwang Suk

    2017-06-01

    During roasting, major changes occur in the composition and physiological effects of coffee beans. In this study, in vitro antioxidant effects and anti-inflammatory effects of Coffea arabica green coffee extracts were investigated at different roasting levels corresponding to Light, Medium, City, and French roast. Total caffeine did not show huge difference according to roasting level, but total chlorogenic acid contents were higher in light roasted coffee extract than other roasted groups. In addition, light roasted coffee extract had the highest antioxidant activity in the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. To determine the in vitro antioxidant property, coffee extracts were used to treat AML-12 cells. Intracellular glutathione (GSH) concentration and mRNA expression levels of genes related to GSH synthesis were negatively related to roasting levels. The anti-inflammatory effects of coffee extracts were investigated in lipopolysaccharide-treated RAW 264.7 macrophage cells. The cellular antioxidant activity of coffee extracts exhibited similar patterns as the AML-12 cells. The expression of mRNA for tumor necrosis factor-alpha and interleukin-6 was decreased in cells treated with the coffee extracts and the expression decreased with increasing roasting levels. These data suggest that coffee has physiological antioxidant and anti-inflammatory activities and these effects are negatively correlated with roasting levels in the cell models.

  15. Acclimation responses to high light by Guazuma ulmifolia Lam. (Malvaceae) leaves at different stages of development.

    PubMed

    Calzavara, A K; Rocha, J S; Lourenço, G; Sanada, K; Medri, C; Bianchini, E; Pimenta, J A; Stolf-Moreira, R; Oliveira, H C

    2017-09-01

    The re-composition of deforested environments requires the prior acclimation of seedlings to full sun in nurseries. Seedlings can overcome excess light either through the acclimation of pre-existing fully expanded leaves or through the development of new leaves that are acclimated to the new light environment. Here, we compared the acclimation capacity of mature (MatL, fully expanded at the time of transfer) and newly expanded (NewL, expanded after the light shift) leaves of Guazuma ulmifolia Lam. (Malvaceae) seedlings to high light. The seedlings were initially grown under shade and then transferred to full sunlight. MatL and NewL were used for chlorophyll fluorescence and gas exchange analyses, pigment extraction and morpho-anatomical measurements. After the transfer of seedlings to full sun, the MatL persisted and acclimated to some extent to the new light condition, since they underwent alterations in some morpho-physiological traits and maintained a functional electron transport chain and positive net photosynthesis rate. However, long-term exposure to high light led to chronic photoinhibition in MatL, which could be related to the limited plasticity of leaf morpho-anatomical attributes. However, the NewL showed a high capacity to use the absorbed energy in photochemistry and dissipate excess energy harmlessly, attributes that were favoured by the high structural plasticity exhibited by these leaves. Both the maintenance of mature, photosynthetically active leaves and the production of new leaves with a high capacity to cope with excess energy were important for acclimation of G. ulmifolia seedlings. © 2017 German Botanical Society and The Royal Botanical Society of the Netherlands.

  16. A trillion frames per second: the techniques and applications of light-in-flight photography.

    PubMed

    Faccio, Daniele; Velten, Andreas

    2018-06-14

    Cameras capable of capturing videos at a trillion frames per second allow to freeze light in motion, a very counterintuitive capability when related to our everyday experience in which light appears to travel instantaneously. By combining this capability with computational imaging techniques, new imaging opportunities emerge such as three dimensional imaging of scenes that are hidden behind a corner, the study of relativistic distortion effects, imaging through diffusive media and imaging of ultrafast optical processes such as laser ablation, supercontinuum and plasma generation. We provide an overview of the main techniques that have been developed for ultra-high speed photography with a particular focus on `light in flight' imaging, i.e. applications where the key element is the imaging of light itself at frame rates that allow to freeze it's motion and therefore extract information that would otherwise be blurred out and lost. . © 2018 IOP Publishing Ltd.

  17. Nanoimprint-Transfer-Patterned Solids Enhance Light Absorption in Colloidal Quantum Dot Solar Cells.

    PubMed

    Kim, Younghoon; Bicanic, Kristopher; Tan, Hairen; Ouellette, Olivier; Sutherland, Brandon R; García de Arquer, F Pelayo; Jo, Jea Woong; Liu, Mengxia; Sun, Bin; Liu, Min; Hoogland, Sjoerd; Sargent, Edward H

    2017-04-12

    Colloidal quantum dot (CQD) materials are of interest in thin-film solar cells due to their size-tunable bandgap and low-cost solution-processing. However, CQD solar cells suffer from inefficient charge extraction over the film thicknesses required for complete absorption of solar light. Here we show a new strategy to enhance light absorption in CQD solar cells by nanostructuring the CQD film itself at the back interface. We use two-dimensional finite-difference time-domain (FDTD) simulations to study quantitatively the light absorption enhancement in nanostructured back interfaces in CQD solar cells. We implement this experimentally by demonstrating a nanoimprint-transfer-patterning (NTP) process for the fabrication of nanostructured CQD solids with highly ordered patterns. We show that this approach enables a boost in the power conversion efficiency in CQD solar cells primarily due to an increase in short-circuit current density as a result of enhanced absorption through light-trapping.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hung, Cheng-Hung

    The main objective of this project was to develop a low-cost integrated substrate for rigid OLED solid-state lighting produced at a manufacturing scale. The integrated substrates could include combinations of soda lime glass substrate, light extraction layer, and an anode layer (i.e., Transparent Conductive Oxide, TCO). Over the 3 + year course of the project, the scope of work was revised to focus on the development of a glass substrates with an internal light extraction (IEL) layer. A manufacturing-scale float glass on-line particle embedding process capable of producing an IEL glass substrate having a thickness of less than 1.7mm andmore » an area larger than 500mm x 400mm was demonstrated. Substrates measuring 470mm x 370mm were used in the OLED manufacturing process for fabricating OLED lighting panels in single pixel devices as large as 120.5mm x 120.5mm. The measured light extraction efficiency (calculated as external quantum efficiency, EQE) for on-line produced IEL samples (>50%) met the project’s initial goal.« less

  19. Development of Active Films From Pectin and Fruit Extracts: Light Protection, Antioxidant Capacity, and Compounds Stability.

    PubMed

    Eça, Kaliana S; Machado, Mariana T C; Hubinger, Miriam D; Menegalli, Florencia C

    2015-11-01

    Pectin films containing fruit extracts were developed and tested in relation to ultraviolet light transmission, phytochemical contents, and antioxidant capacity during 90 d shelf life storage. Aqueous and alcoholic extracts from 5 different fruits (acerola, cashew apple, papaya, pequi, and strawberry) were obtained. Because the alcoholic extracts from acerola, cashew apple, and strawberry presented the highest phytochemical content and antioxidant capacity, they were incorporated into pectin films individually or as a mixture. Incorporation of these extracts into pectin films provided antioxidant capacity while retaining the physical properties. The pectin films containing fruit extract acted as adequate light barrier and prevented photooxidation. Among the prepared films, the pectin film containing acerola extract afforded the highest antioxidant capacity, with a half-life of 99 d. Overall, the results revealed that incorporation of fruit extracts into pectin films potentially produces antioxidant films and coatings for different food applications. The production of pectin films incorporated with fruit extract is based on combination of the antioxidant activity, natural color, and optical barrier properties from fruit phytochemical components to the active film. This film could be potentially used as active packing on food products in order to protect their nutrients against free radicals action and photooxidation and, hence, preserve the quality, integrity, and safety of food during the storage period. © 2015 Institute of Food Technologists®

  20. Impact of natural photosensitizer extraction solvent upon light absorbance in dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Suhaimi, Suriati; Mohamed Siddick, Siti Zubaidah; Ahmad Hambali, Nor Azura Malini; Retnasamy, Vithyacharan; Abdul Wahid, Mohamad Halim; Mohamad Shahimin, Mukhzeer

    2017-02-01

    Natural pigmentations of Ardisia, Bawang Sabrang, Harum Manis mango, Oxalis Triangularis and Rosella were used to study the general trend in performance of dyes as a photosensitizer in the application of dye-sensitized solar cells (DSSCs) based on optical light absorbance and photoelectrochemical characteristics. From the Ultraviolet-Visible Spectrophotometer with the recorded absorption measurements in the range between 400 nm to 800 nm, the dyes extracted from Rosella and Oxalis Triangularis in water solvent exhibited the conversion efficiency up to 0.68% and 0.67%, respectively. The light absorbance peak for dye extracted from Ardisia, Bawang Sabrang, Oxalis Triangularis and Rosella in water and ethanol solvent resulted in the range between 500 nm to 650 nm, while the Harum Manis mango resulted in the broader spectra in both water and ethanol solvent. The light absorbance spectra of each the dyes shows shifted wavelength spectrum when the extracted dye is adsorbed onto TiO2 film surface that might influenced the absorption of light by TiO2 particle in the visible region. The capabilities of the dyes to absorb light when bonded onto the TiO2 photoanode was found to be significant with the current-voltage conversion of the cell. The results demonstrates just the tip of the vastness of natural dyes' (native to tropical region) feasibility and applicability as a photosensitizer.

  1. An elegant route to overcome fundamentally-limited light extraction in AlGaN deep-ultraviolet light-emitting diodes: Preferential outcoupling of strong in-plane emission

    PubMed Central

    Lee, Jong Won; Kim, Dong Yeong; Park, Jun Hyuk; Schubert, E. Fred; Kim, Jungsub; Lee, Jinsub; Kim, Yong-Il; Park, Youngsoo; Kim, Jong Kyu

    2016-01-01

    While there is an urgent need for semiconductor-based efficient deep ultraviolet (DUV) sources, the efficiency of AlGaN DUV light-emitting diodes (LEDs) remains very low because the extraction of DUV photons is significantly limited by intrinsic material properties of AlGaN. Here, we present an elegant approach based on a DUV LED having multiple mesa stripes whose inclined sidewalls are covered by a MgF2/Al omni-directional mirror to take advantage of the strongly anisotropic transverse-magnetic polarized emission pattern of AlGaN quantum wells. The sidewall-emission-enhanced DUV LED breaks through the fundamental limitations caused by the intrinsic properties of AlGaN, thus shows a remarkable improvement in light extraction as well as operating voltage. Furthermore, an analytic model is developed to understand and precisely estimate the extraction of DUV photons from AlGaN DUV LEDs, and hence to provide promising routes for maximizing the power conversion efficiency. PMID:26935402

  2. An elegant route to overcome fundamentally-limited light extraction in AlGaN deep-ultraviolet light-emitting diodes: Preferential outcoupling of strong in-plane emission

    NASA Astrophysics Data System (ADS)

    Lee, Jong Won; Kim, Dong Yeong; Park, Jun Hyuk; Schubert, E. Fred; Kim, Jungsub; Lee, Jinsub; Kim, Yong-Il; Park, Youngsoo; Kim, Jong Kyu

    2016-03-01

    While there is an urgent need for semiconductor-based efficient deep ultraviolet (DUV) sources, the efficiency of AlGaN DUV light-emitting diodes (LEDs) remains very low because the extraction of DUV photons is significantly limited by intrinsic material properties of AlGaN. Here, we present an elegant approach based on a DUV LED having multiple mesa stripes whose inclined sidewalls are covered by a MgF2/Al omni-directional mirror to take advantage of the strongly anisotropic transverse-magnetic polarized emission pattern of AlGaN quantum wells. The sidewall-emission-enhanced DUV LED breaks through the fundamental limitations caused by the intrinsic properties of AlGaN, thus shows a remarkable improvement in light extraction as well as operating voltage. Furthermore, an analytic model is developed to understand and precisely estimate the extraction of DUV photons from AlGaN DUV LEDs, and hence to provide promising routes for maximizing the power conversion efficiency.

  3. Design of a backlighting structure for very large-area luminaries

    NASA Astrophysics Data System (ADS)

    Carraro, L.; Mäyrä, A.; Simonetta, M.; Benetti, G.; Tramonte, A.; Benedetti, M.; Randone, E. M.; Ylisaukko-Oja, A.; Keränen, K.; Facchinetti, T.; Giuliani, G.

    2017-02-01

    A novel approach for RGB semiconductor LED-based backlighting system is developed to satisfy the requirements of the Project LUMENTILE funded by the European Commission, whose scope is to develop a luminous electronic tile that is foreseen to be manufactured in millions of square meters each year. This unconventionally large-area surface of uniform, high-brightness illumination requires a specific optical design to keep a low production cost, while maintaining high optical extraction efficiency and a reduced thickness of the structure, as imposed by architectural design constraints. The proposed solution is based on a light-guiding layer to be illuminated by LEDs in edge configuration, or in a planar arrangement. The light guiding slab is finished with a reflective top interface and a diffusive or reflective bottom interface/layer. Patterning is used for both the top interface (punctual removal of reflection and generation of a light scattering centers) and for the bottom layer (using dark/bright printed pattern). Computer-based optimization algorithms based on ray-tracing are used to find optimal solutions in terms of uniformity of illumination of the top surface and overall light extraction efficiency. Through a closed-loop optimization process, that assesses the illumination uniformity of the top surface, the algorithm generates the desired optimized top and bottom patterns, depending on the number of LED sources used, their geometry, and the thickness of the guiding layer. Specific low-cost technologies to realize the patterning are discussed, with the goal of keeping the production cost of these very large-area luminaries below the value of 100$/sqm.

  4. Enhanced light output from a nitride-based power chip of green light-emitting diodes with nano-rough surface using nanoimprint lithography.

    PubMed

    Huang, H W; Lin, C H; Yu, C C; Lee, B D; Chiu, C H; Lai, C F; Kuo, H C; Leung, K M; Lu, T C; Wang, S C

    2008-05-07

    Enhanced light extraction from a GaN-based power chip (PC) of green light-emitting diodes (LEDs) with a rough p-GaN surface using nanoimprint lithography is presented. At a driving current of 350 mA and with a chip size of 1 mm × 1 mm packaged on transistor outline (TO)-cans, the light output power of the green PC LEDs with nano-rough p-GaN surface is enhanced by 48% when compared with the same device without a rough p-GaN surface. In addition, by examining the radiation patterns, the green PC LED with nano-rough p-GaN surface shows stronger light extraction with a wider view angle. These results offer promising potential to enhance the light output powers of commercial light-emitting devices by using the technique of nanoimprint lithography under suitable nanopattern design.

  5. A simple method for the extraction and identification of light density microplastics from soil.

    PubMed

    Zhang, Shaoliang; Yang, Xiaomei; Gertsen, Hennie; Peters, Piet; Salánki, Tamás; Geissen, Violette

    2018-03-01

    This article introduces a simple and cost-saving method developed to extract, distinguish and quantify light density microplastics of polyethylene (PE) and polypropylene (PP) in soil. A floatation method using distilled water was used to extract the light density microplastics from soil samples. Microplastics and impurities were identified using a heating method (3-5s at 130°C). The number and size of particles were determined using a camera (Leica DFC 425) connected to a microscope (Leica wild M3C, Type S, simple light, 6.4×). Quantification of the microplastics was conducted using a developed model. Results showed that the floatation method was effective in extracting microplastics from soils, with recovery rates of approximately 90%. After being exposed to heat, the microplastics in the soil samples melted and were transformed into circular transparent particles while other impurities, such as organic matter and silicates were not changed by the heat. Regression analysis of microplastics weight and particle volume (a calculation based on image J software analysis) after heating showed the best fit (y=1.14x+0.46, R 2 =99%, p<0.001). Recovery rates based on the empirical model method were >80%. Results from field samples collected from North-western China prove that our method of repetitive floatation and heating can be used to extract, distinguish and quantify light density polyethylene microplastics in soils. Microplastics mass can be evaluated using the empirical model. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. White Light Emission from Vegetable Extracts

    NASA Astrophysics Data System (ADS)

    Singh, Vikram; Mishra, Ashok K.

    2015-06-01

    A mixture of extracts from two common vegetables, red pomegranate and turmeric, when photoexcited at 380 nm, produced almost pure white light emission (WLE) with Commission Internationale d’Eclairage (CIE) chromaticity index (0.35, 0.33) in acidic ethanol. It was also possible to obtain WLE in polyvinyl alcohol film (0.32, 0.25), and in gelatin gel (0.26, 0.33) using the same extract mixture. The colour temperature of the WLE was conveniently tunable by simply adjusting the concentrations of the component emitters. The primary emitting pigments responsible for contributing to WLE were polyphenols and anthocyanins from pomegranate, and curcumin from turmeric. It was observed that a cascade of Forster resonance energy transfer involving polyphenolics, curcumin and anthocyanins played a crucial role in obtaining a CIE index close to pure white light. The optimized methods of extraction of the two primary emitting pigments from their corresponding plant sources are simple, cheap and fairly green.

  7. Study on Light Extraction from GaN-based Green Light-Emitting Diodes Using Anodic Aluminum Oxide Pattern and Nanoimprint Lithography

    PubMed Central

    Jiang, Shengxiang; Feng, Yulong; Chen, Zhizhong; Zhang, Lisheng; Jiang, Xianzhe; Jiao, Qianqian; Li, Junze; Chen, Yifan; Li, Dongsan; Liu, Lijian; Yu, Tongjun; Shen, Bo; Zhang, Guoyi

    2016-01-01

    An anodic aluminum oxide (AAO) patterned sapphire substrate, with the lattice constant of 520 ± 40 nm, pore dimension of 375 ± 50 nm, and height of 450 ± 25 nm was firstly used as a nanoimprint lithography (NIL) stamp and imprinted onto the surface of the green light-emitting diode (LED). A significant light extraction efficiency (LEE) was improved by 116% in comparison to that of the planar LED. A uniform broad protrusion in the central area and some sharp lobes were also obtained in the angular resolution photoluminescence (ARPL) for the AAO patterned LED. The mechanism of the enhancement was correlated to the fluctuations of the lattice constant and domain orientation of the AAO-pattern, which enabled the extraction of more guided modes from the LED device. PMID:26902178

  8. Image feature detection and extraction techniques performance evaluation for development of panorama under different light conditions

    NASA Astrophysics Data System (ADS)

    Patil, Venkat P.; Gohatre, Umakant B.

    2018-04-01

    The technique of obtaining a wider field-of-view of an image to get high resolution integrated image is normally required for development of panorama of a photographic images or scene from a sequence of part of multiple views. There are various image stitching methods developed recently. For image stitching five basic steps are adopted stitching which are Feature detection and extraction, Image registration, computing homography, image warping and Blending. This paper provides review of some of the existing available image feature detection and extraction techniques and image stitching algorithms by categorizing them into several methods. For each category, the basic concepts are first described and later on the necessary modifications made to the fundamental concepts by different researchers are elaborated. This paper also highlights about the some of the fundamental techniques for the process of photographic image feature detection and extraction methods under various illumination conditions. The Importance of Image stitching is applicable in the various fields such as medical imaging, astrophotography and computer vision. For comparing performance evaluation of the techniques used for image features detection three methods are considered i.e. ORB, SURF, HESSIAN and time required for input images feature detection is measured. Results obtained finally concludes that for daylight condition, ORB algorithm found better due to the fact that less tome is required for more features extracted where as for images under night light condition it shows that SURF detector performs better than ORB/HESSIAN detectors.

  9. Synthesis of silver nanoparticles by solar irradiation of cell-free Bacillus amyloliquefaciens extracts and AgNO3.

    PubMed

    Wei, Xuetuan; Luo, Mingfang; Li, Wei; Yang, Liangrong; Liang, Xiangfeng; Xu, Lin; Kong, Peng; Liu, Huizhou

    2012-01-01

    Silver nanoparticles (AgNPs) were obtained by solar irradiation of cell-free extracts of Bacillusamyloliquefaciens and AgNO3. Light intensity, extract concentration, and NaCl addition influenced the synthesis of AgNPs. Under optimized conditions (solar intensity 70,000 lx, extract concentration 3 mg/mL, and NaCl content 2 mM), 98.23±0.06% of the Ag+ (1 mM) was reduced to AgNPs within 80 min, and the ζ-potential of AgNPs reached -70.84±0.66 mV. TEM (Transmission electron microscopy) and XRD (X-ray diffraction) analysis confirmed that circular and triangular crystalline AgNPs with mean diameter of 14.6 nm were synthesized. Since heat-inactivated extracts also mediated the formation of AgNPs, enzymatic reactions are likely not involved in AgNPs formation. A high absolute ζ-potential value of the AgNPs, possibly caused by interaction with proteins likely explains the high stability of AgNPs suspensions. AgNPs showed antimicrobial activity against Bacillussubtilis and Escherichiacoli in liquid and solid medium. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Polyphenol-enriched Vaccinium uliginosum L. fractions reduce retinal damage induced by blue light in A2E-laden ARPE19 cell cultures and mice.

    PubMed

    Lee, Bom-Lee; Kang, Jung-Hwan; Kim, Hye-Mi; Jeong, Se-Hee; Jang, Dae-Sik; Jang, Young-Pyo; Choung, Se-Young

    2016-12-01

    Polyphenols exert beneficial effects on vision. We hypothesized that polyphenol components of Vaccinium uliginosum L. (V.U.) extract protect retinal pigment epithelial (RPE) cells against blue light-induced damage. Our aim was to test extracts containing polyphenol components to ascertain effects to reduce damage against blue light in RPEs. We measured the activity in fractions eluted from water, ethanol, and HP20 resin (FH), and found that the FH fraction had the highest beneficial activity. We isolated the individual active compounds from the FH fraction using chromatographic techniques, and found that FH contained flavonoids, anthocyanins, phenyl propanoids, and iridoids. Cell cultures of A2E-laden ARPE-19 exposed to blue light after treatment with V.U. extract fractions and their individual constituents indicated improvement. V uliginosum L extract fractions and constituent compounds significantly reduced A2E photo-oxidation-induced RPE cell death and inhibited intracellular A2E accumulation. Furthermore, Balb/c male mice were exposed to blue light at 10000 lux for 1 h/d for 2 weeks to induce retinal damage. One week after the final blue light exposure, retinal damage evaluated revealed that the outer nuclear layer thickness and nuclei count were improved. Histologic examination of murine photoreceptor cells demonstrated that FH, rich in polyphenols, inhibited the loss of outer nuclear layer thickness and nuclei. Our findings suggest that V.U. extract and eluted fractions are a potential source of bioactive compounds that potentially serve a therapeutic approach for age-related macular degeneration. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Light manipulation for organic optoelectronics using bio-inspired moth's eye nanostructures.

    PubMed

    Zhou, Lei; Ou, Qing-Dong; Chen, Jing-De; Shen, Su; Tang, Jian-Xin; Li, Yan-Qing; Lee, Shuit-Tong

    2014-02-10

    Organic-based optoelectronic devices, including light-emitting diodes (OLEDs) and solar cells (OSCs) hold great promise as low-cost and large-area electro-optical devices and renewable energy sources. However, further improvement in efficiency remains a daunting challenge due to limited light extraction or absorption in conventional device architectures. Here we report a universal method of optical manipulation of light by integrating a dual-side bio-inspired moth's eye nanostructure with broadband anti-reflective and quasi-omnidirectional properties. Light out-coupling efficiency of OLEDs with stacked triple emission units is over 2 times that of a conventional device, resulting in drastic increase in external quantum efficiency and current efficiency to 119.7% and 366 cd A(-1) without introducing spectral distortion and directionality. Similarly, the light in-coupling efficiency of OSCs is increased 20%, yielding an enhanced power conversion efficiency of 9.33%. We anticipate this method would offer a convenient and scalable way for inexpensive and high-efficiency organic optoelectronic designs.

  12. Enhanced light out-coupling efficiency of organic light-emitting diodes with an extremely low haze by plasma treated nanoscale corrugation

    NASA Astrophysics Data System (ADS)

    Hwang, Ju Hyun; Lee, Hyun Jun; Shim, Yong Sub; Park, Cheol Hwee; Jung, Sun-Gyu; Kim, Kyu Nyun; Park, Young Wook; Ju, Byeong-Kwon

    2015-01-01

    Extremely low-haze light extraction from organic light-emitting diodes (OLEDs) was achieved by utilizing nanoscale corrugation, which was simply fabricated with plasma treatment and sonication. The haze of the nanoscale corrugation for light extraction (NCLE) corresponds to 0.21% for visible wavelengths, which is comparable to that of bare glass. The OLEDs with NCLE showed enhancements of 34.19% in current efficiency and 35.75% in power efficiency. Furthermore, the OLEDs with NCLE exhibited angle-stable electroluminescence (EL) spectra for different viewing angles, with no change in the full width at half maximum (FWHM) and peak wavelength. The flexibility of the polymer used for the NCLE and plasma treatment process indicates that the NCLE can be applied to large and flexible OLED displays.Extremely low-haze light extraction from organic light-emitting diodes (OLEDs) was achieved by utilizing nanoscale corrugation, which was simply fabricated with plasma treatment and sonication. The haze of the nanoscale corrugation for light extraction (NCLE) corresponds to 0.21% for visible wavelengths, which is comparable to that of bare glass. The OLEDs with NCLE showed enhancements of 34.19% in current efficiency and 35.75% in power efficiency. Furthermore, the OLEDs with NCLE exhibited angle-stable electroluminescence (EL) spectra for different viewing angles, with no change in the full width at half maximum (FWHM) and peak wavelength. The flexibility of the polymer used for the NCLE and plasma treatment process indicates that the NCLE can be applied to large and flexible OLED displays. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr06547f

  13. Oxidation-Induced Increase In Photoreactivity of Bovine Retinal Lipid Extract.

    PubMed

    Koscielniak, A; Serafin, M; Duda, M; Oles, T; Zadlo, A; Broniec, A; Berdeaux, O; Gregoire, S; Bretillon, L; Sarna, T; Pawlak, A

    2017-12-01

    The mammalian retina contains a high level of polyunsaturated fatty acids, including docosahexaenoic acid (22:6) (DHA), which are highly susceptible to oxidation. It has been shown that one of the products of DHA oxidation-carboxyethylpyrrole (CEP), generated in situ, causes modifications of retinal proteins and induces inflammation response in the outer retina. These contributing factors may play a role in the development of age-related macular degeneration (AMD). It is also possible that some of the lipid oxidation products are photoreactive, and upon irradiation with blue light may generate reactive oxygen species. Therefore, in this work we analysed oxidation-induced changes in photoreactivity of lipids extracted from bovine neural retinas. Lipid composition of bovine neural retinas closely resembles that of human retinas making the bovine tissue a convenient model for studying the photoreactivity and potential phototoxicity of oxidized human retinal lipids. Lipid composition of bovine neural retinas Folch' extracts (BRex) was determined by gas chromatography (GC) and liquid chromatography coupled to an electrospray ionization source-mass spectrometer (LC-ESI-MS) analysis. Liposomes prepared from BRex, equilibrated with air, were oxidized in the dark at 37 °C for up to 400 h. The photoreactivity of BRex at different stages of oxidation was studied by EPR-oximetry and EPR-spin trapping. Photogeneration of singlet oxygen ( 1 O 2 , 1 Δ g ) by BRex was measured using time-resolved detection of the characteristic phosphorescence at 1270 nm. To establish contribution of lipid components to the analysed photoreactivity of Folch' extract of bovine retinas, a mixture of selected synthetic lipids in percent by weight (w/w %) ratio resembling that of the BRex has been also studied. Folch's extraction of bovine neural retinas was very susceptible to oxidation despite the presence of powerful endogenous antioxidants such as α-tocopherol and zeaxanthin. Non-oxidized and oxidized BRex photogenerated singlet oxygen with moderate quantum yield. Blue-light induced generation of superoxide anion by Folch' extract of bovine neural retinas strongly depended on the oxidation time. The observed photoreactivity of the studied extract gradually increased during its in vitro oxidation.

  14. Light illumination intensity dependence of photovoltaic parameter in polymer solar cells with ammonium heptamolybdate as hole extraction layer.

    PubMed

    Liu, Zhiyong; Niu, Shengli; Wang, Ning

    2018-01-01

    A low-temperature, solution-processed molybdenum oxide (MoO X ) layer and a facile method for polymer solar cells (PSCs) is developed. The PSCs based on a MoO X layer as the hole extraction layer (HEL) is a significant advance for achieving higher photovoltaic performance, especially under weaker light illumination intensity. Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) measurements show that the (NH 4 ) 6 Mo 7 O 24 molecule decomposes and forms the molybdenum oxide (MoO X ) molecule when undergoing thermal annealing treatment. In this study, PSCs with the MoO X layer as the HEL exhibited better photovoltaic performance, especially under weak light illumination intensity (from 100 to 10mWcm -2 ) compared to poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS)-based PSCs. Analysis of the current density-voltage (J-V) characteristics at various light intensities provides information on the different recombination mechanisms in the PSCs with a MoO X and PEDOT:PSS layer as the HEL. That the slopes of the open-circuit voltage (V OC ) versus light illumination intensity plots are close to 1 unity (kT/q) reveals that bimolecular recombination is the dominant and weaker monomolecular recombination mechanism in open-circuit conditions. That the slopes of the short-circuit current density (J SC ) versus light illumination intensity plots are close to 1 reveals that the effective charge carrier transport and collection mechanism of the MoO X /indium tin oxide (ITO) anode is the weaker bimolecular recombination in short-circuit conditions. Our results indicate that MoO X is an alternative candidate for high-performance PSCs, especially under weak light illumination intensity. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Spitzer Space Telescope Mid-IR Light Curves of Neptune

    NASA Technical Reports Server (NTRS)

    Stauffer, John; Marley, Mark S.; Gizis, John E.; Rebull, Luisa; Carey, Sean J.; Krick, Jessica; Ingalls, James G.; Lowrance, Patrick; Glaccum, William; Kirkpatrick, J. Davy; hide

    2016-01-01

    We have used the Spitzer Space Telescope in 2016 February to obtain high cadence, high signal-to-noise, 17 hr duration light curves of Neptune at 3.6 and 4.5 microns. The light curve duration was chosen to correspond to the rotation period of Neptune. Both light curves are slowly varying with time, with full amplitudes of 1.1 mag at 3.6 microns and 0.6 mag at 4.5 microns. We have also extracted sparsely sampled 18 hr light curves of Neptune at W1 (3.4 microns) and W2 (4.6 microns) from the Wide-field Infrared Survey Explorer (WISE)/NEOWISE archive at six epochs in 2010-2015. These light curves all show similar shapes and amplitudes compared to the Spitzer light curves but with considerable variation from epoch to epoch. These amplitudes are much larger than those observed with Kepler/K2 in the visible (amplitude approximately 0.02 mag) or at 845 nm with the Hubble Space Telescope (HST) in 2015 and at 763 nm in 2016 (amplitude approximately 0.2 mag). We interpret the Spitzer and WISE light curves as arising entirely from reflected solar photons, from higher levels in Neptune's atmosphere than for K2. Methane gas is the dominant opacity source in Neptune's atmosphere, and methane absorption bands are present in the HST 763 and 845 nm, WISE W1, and Spitzer 3.6 micron filters.

  16. The effect of red light and far-red light conditions on secondary metabolism in agarwood.

    PubMed

    Kuo, Tony Chien-Yen; Chen, Chuan-Hung; Chen, Shu-Hwa; Lu, I-Hsuan; Chu, Mei-Ju; Huang, Li-Chun; Lin, Chung-Yen; Chen, Chien-Yu; Lo, Hsiao-Feng; Jeng, Shih-Tong; Chen, Long-Fang O

    2015-06-12

    Agarwood, a heartwood derived from Aquilaria trees, is a valuable commodity that has seen prevalent use among many cultures. In particular, it is widely used in herbal medicine and many compounds in agarwood are known to exhibit medicinal properties. Although there exists much research into medicinal herbs and extraction of high value compounds, few have focused on increasing the quantity of target compounds through stimulation of its related pathways in this species. In this study, we observed that cucurbitacin yield can be increased through the use of different light conditions to stimulate related pathways and conducted three types of high-throughput sequencing experiments in order to study the effect of light conditions on secondary metabolism in agarwood. We constructed genome-wide profiles of RNA expression, small RNA, and DNA methylation under red light and far-red light conditions. With these profiles, we identified a set of small RNA which potentially regulates gene expression via the RNA-directed DNA methylation pathway. We demonstrate that light conditions can be used to stimulate pathways related to secondary metabolism, increasing the yield of cucurbitacins. The genome-wide expression and methylation profiles from our study provide insight into the effect of light on gene expression for secondary metabolism in agarwood and provide compelling new candidates towards the study of functional secondary metabolic components.

  17. Influence of olive and rosemary leaves extracts on chemically induced liver cirrhosis in male rats

    PubMed Central

    Al-Attar, Atef M.; Shawush, Nessreen A.

    2014-01-01

    The current study was undertaken to evaluate the protective activity of olive and rosemary leaves extracts on experimental liver cirrhosis induced by thioacetamide (TAA) in Wistar male rats. Highly significant decline in the values of body weight gain and highly statistically increase of liver/body weight ratio were noted in rats treated with TAA. Furthermore, the levels of serum alanine aminotransferase, aspartate aminotransferase, gamma glutamyl transferase, alkaline phosphatase and total bilirubin were statistically increased. Additionally, light microscopic examination of liver sections from rats treated with TAA showed a marked increase in the extracellular matrix collagen content and bridging fibrosis was prominent. There were bundles of collagen surrounding the lobules that resulted in large fibrous septa and distorted tissue architecture. Interestingly, the findings of this experimental study indicated that the extracts of olive and rosemary leaves and their combination possess hepatoprotective properties against TAA-induced hepatic cirrhosis by inhibiting the physiological and histopathological alterations. Moreover, these results suggest that the hepatoprotective effects of these extracts may be attributed to their antioxidant activities. PMID:25737646

  18. The theory behind the full scattering profile

    NASA Astrophysics Data System (ADS)

    Feder, Idit; Duadi, Hamootal; Fixler, Dror

    2018-02-01

    Optical methods for extracting properties of tissues are commonly used. These methods are non-invasive, cause no harm to the patient and are characterized by high speed. The human tissue is a turbid media hence it poses a challenge for different optical methods. In addition the analysis of the emitted light requires calibration for achieving accuracy information. Most of the methods analyze the reflected light based on their phase and amplitude or the transmitted light. We suggest a new optical method for extracting optical properties of cylindrical tissues based on their full scattering profile (FSP), which means the angular distribution of the reemitted light. The FSP of cylindrical tissues is relevant for biomedical measurement of fingers, earlobes or pinched tissues. We found the iso-pathlength (IPL) point, a point on the surface of the cylinder medium where the light intensity remains constant and does not depend on the reduced scattering coefficient of the medium, but rather depends on the spatial structure and the cylindrical geometry. However, a similar behavior was also previously reported in reflection from a semi-infinite medium. Moreover, we presented a linear dependency between the radius of the tissue and the point's location. This point can be used as a self-calibration point and thus improve the accuracy of optical tissue measurements. This natural phenomenon has not been investigated before. We show this phenomenon theoretically, based on the diffusion theory, which is supported by our simulation results using Monte Carlo simulation.

  19. Topography and refractometry of nanostructures using spatial light interference microscopy (SLIM)

    PubMed Central

    Wang, Zhuo; Chun, Ik Su; Li, Xiuling; Ong, Zhun-Yong; Pop, Eric; Millet, Larry; Gillette, Martha; Popescu, Gabriel

    2010-01-01

    Spatial Light Interference Microscopy (SLIM) is a novel method developed in our laboratory that provides quantitative phase images of transparent structures with 0.3 nm spatial and 0.03 nm temporal accuracy owing to the white light illumination and its common path interferometric geometry. We exploit these features and demonstrate SLIM's ability to perform topography at a single atomic layer in graphene. Further, using a decoupling procedure that we developed for cylindrical structures, we extract the axially-averaged refractive index of semiconductor nanotubes and a neurite of a live hippocampal neuron in culture. We believe that this study will set the basis for novel high-throughput topography and refractometry of man-made and biological nanostructures. PMID:20081970

  20. Far-infrared-light shadowgraphy for high extraction efficiency of extreme ultraviolet light from a CO2-laser-generated tin plasma

    NASA Astrophysics Data System (ADS)

    Matsukuma, Hiraku; Hosoda, Tatsuya; Suzuki, Yosuke; Yogo, Akifumi; Yanagida, Tatsuya; Kodama, Takeshi; Nishimura, Hiroaki

    2016-08-01

    The two-color, double-pulse method is an efficient scheme to generate extreme ultraviolet light for fabricating the next generation semiconductor microchips. In this method, a Nd:YAG laser pulse is used to expand a several-tens-of-micrometers-scale tin droplet, and a CO2 laser pulse is subsequently directed at the expanded tin vapor after an appropriate delay time. We propose the use of shadowgraphy with a CO2 laser probe-pulse scheme to optimize the CO2 main-drive laser. The distribution of absorption coefficients is derived from the experiment, and the results are converted to a practical absorption rate for the CO2 main-drive laser.

  1. GaN-Based Light-Emitting Diodes Grown on Nanoscale Patterned Sapphire Substrates with Void-Embedded Cortex-Like Nanostructures

    NASA Astrophysics Data System (ADS)

    Lin, Yu-Sheng; Yeh, J. Andrew

    2011-09-01

    High-efficiency GaN-based light-emitting diodes (LEDs) with an emitting wavelength of 438 nm were demonstrated utilizing nanoscale patterned sapphire substrates with void-embedded cortex-like nanostructures (NPSS-VECN). Unlike the previous nanopatterned sapphire substrates, the presented substrate has a new morphology that can not only improve the crystalline quality of GaN epilayers but also generate a void-embedded nanostructural layer to enhance light extraction. Under a driving current of 20 mA, the external quantum efficiency of an LED with NPSS-VECN is enhanced by 2.4-fold compared with that of the conventional LED. Moreover, the output powers of two devices respectively are 33.1 and 13.9 mW.

  2. Timing Analysis with INTEGRAL: Comparing Different Reconstruction Algorithms

    NASA Technical Reports Server (NTRS)

    Grinberg, V.; Kreykenboehm, I.; Fuerst, F.; Wilms, J.; Pottschmidt, K.; Bel, M. Cadolle; Rodriquez, J.; Marcu, D. M.; Suchy, S.; Markowitz, A.; hide

    2010-01-01

    INTEGRAL is one of the few instruments capable of detecting X-rays above 20keV. It is therefore in principle well suited for studying X-ray variability in this regime. Because INTEGRAL uses coded mask instruments for imaging, the reconstruction of light curves of X-ray sources is highly non-trivial. We present results from the comparison of two commonly employed algorithms, which primarily measure flux from mask deconvolution (ii-lc-extract) and from calculating the pixel illuminated fraction (ii-light). Both methods agree well for timescales above about 10 s, the highest time resolution for which image reconstruction is possible. For higher time resolution, ii-light produces meaningful results, although the overall variance of the lightcurves is not preserved.

  3. Improved utilization of fish waste by anaerobic digestion following omega-3 fatty acids extraction.

    PubMed

    Nges, Ivo Achu; Mbatia, Betty; Björnsson, Lovisa

    2012-11-15

    Fish waste is a potentially valuable resource from which high-value products can be obtained. Anaerobic digestion of the original fish waste and the fish sludge remaining after enzymatic pre-treatment to extract fish oil and fish protein hydrolysate was evaluated regarding the potential for methane production. The results showed high biodegradability of both fish sludge and fish waste, giving specific methane yields of 742 and 828 m(3)CH(4)/tons VS added, respectively. However, chemical analysis showed high concentrations of light metals which, together with high fat and protein contents, could be inhibitory to methanogenic bacteria. The feasibility of co-digesting the fish sludge with a carbohydrate-rich residue from crop production was thus investigated, and a full-scale process outlined for converting odorous fish waste to useful products. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Three-dimensional surface profile intensity correction for spatially modulated imaging

    NASA Astrophysics Data System (ADS)

    Gioux, Sylvain; Mazhar, Amaan; Cuccia, David J.; Durkin, Anthony J.; Tromberg, Bruce J.; Frangioni, John V.

    2009-05-01

    We describe a noncontact profile correction technique for quantitative, wide-field optical measurement of tissue absorption (μa) and reduced scattering (μs') coefficients, based on geometric correction of the sample's Lambertian (diffuse) reflectance intensity. Because the projection of structured light onto an object is the basis for both phase-shifting profilometry and modulated imaging, we were able to develop a single instrument capable of performing both techniques. In so doing, the surface of the three-dimensional object could be acquired and used to extract the object's optical properties. The optical properties of flat polydimethylsiloxane (silicone) phantoms with homogenous tissue-like optical properties were extracted, with and without profilometry correction, after vertical translation and tilting of the phantoms at various angles. Objects having a complex shape, including a hemispheric silicone phantom and human fingers, were acquired and similarly processed, with vascular constriction of a finger being readily detectable through changes in its optical properties. Using profilometry correction, the accuracy of extracted absorption and reduced scattering coefficients improved from two- to ten-fold for surfaces having height variations as much as 3 cm and tilt angles as high as 40 deg. These data lay the foundation for employing structured light for quantitative imaging during surgery.

  5. NDIR gas sensing using high performance AlInSb mid-infrared LEDs as light source

    NASA Astrophysics Data System (ADS)

    Camargo, E. G.; Goda, Y.; Morohara, O.; Fujita, H.; Geka, H.; Ueno, K.; Shibata, Y.; Kuze, N.

    2017-08-01

    In this paper, we report the performance of room temperature operated mid-infrared light emitting diode (LED) with an InSb buffer layer and AlInSb active/barrier layers, which showed to be suitable for non-dispersive infrared (NDIR) gas sensing. Characterization of the LED was performed and we found that good carrier confinement and crystalline quality was responsible for its high performance. High efficiency light extraction was obtained by adopting backside emission architecture together with surface roughening treatment and TiO2 anti-reflection coating. The fabricated AlInSb LED showed 75% higher power conversion efficiency when compared with a commercially available device. The developed LED, together with a commercially available infrared (IR) detector equipped with band-pass optical filter (AK9710, manufactured by Asahi Kasei Microdevices) were coupled into a mirror system forming a light path length of 80 mm, which was tested for CO2 gas sensing. For a non-absorbing environment, sensor output of 8 nA was obtained by driving the LED with peak current of 100 mA and, by exposing the system at CO2 concentration of 1000 ppm signal reduction due to absorbance around 12% was obtained.

  6. Use of the CEBAF Accelerator for IR and UV Free Electron Lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yunn, Byung; Sinclair, Charles; Leemann, Christoph

    1992-08-01

    The CEBAF superconducting linac is capable of accelerating electron beams suitable for driving high-power free-electron lasers. The 45 MeV injector linac with a 6 cm period wiggler can produce kilowatt output powers of infrared light (3.6-17 micrometer), while the 400 MeV north linac can produce ultraviolet light (~200 nm) at similar powers. The FELs require the addition of a high-peak intensity electron source (~ 60 A peak current) and extraction beam lines to wigglers with appropriate electron and photon optics. FEL operation is compatible with simultaneous baseline CEBAF nuclear physics operation. A design for a CEBAF-based FEL facility has beenmore » developed. The current status of the FEL project is reported.« less

  7. Development of AlGaN-based deep-ultraviolet (DUV) LEDs focusing on the fluorine resin encapsulation and the prospect of the practical applications

    NASA Astrophysics Data System (ADS)

    Hirano, Akira; Nagasawa, Yosuke; Ippommatsu, Masamichi; Aosaki, Ko; Honda, Yoshio; Amano, Hiroshi; Akasaki, Isamu

    2016-09-01

    AlGaN-based LEDs are expected to be useful for sterilization, deodorization, photochemical applications such as UV curing and UV printing, medical applications such as phototherapy, and sensing. Today, it has become clear that efficient AlGaN-based LED dies are producible between 355 and 250 nm with an external quantum efficiency (EQE) of 3% on flat sapphire. These dies were realized on flat sapphire without using a special technique, i.e., reduction in threading dislocation density or light extraction enhancement techniques such as the use of a photonic crystal or a patterned sapphire substrate. Despite the limited light extraction efficiency of about 8% owing to light absorption at a thick p-GaN contact layer, high EQEs of approximately 6% has been reproducible between 300 and 280 nm without using special techniques. Moreover, an EQE of 3.9% has been shown at 271 nm, despite the smaller current injection efficiency (CIE). The high EQEs are thought to correspond to the high internal quantum efficiency (IQE), indicating a small room for improving IQE. Accordingly, resin encapsulation on a simple submount is strongly desired. Recently, we have succeeded in demonstrating fluorine resin encapsulation on a ceramic sheet (chip-on-board, COB) that is massproducible. Furthermore, the molecular structure of a resin with a durability of more than 10,000 h is explained in this paper from the photochemical viewpoint. Thus, the key technologies of AlGaN-based DUV-LEDs having an EQE of 10% within a reasonable production cost have been established. The achieved efficiency makes AlGaN-based DUVLEDs comparable to high-pressure mercury lamps.

  8. Achieving High Current Density of Perovskite Solar Cells by Modulating the Dominated Facets of Room-Temperature DC Magnetron Sputtered TiO2 Electron Extraction Layer.

    PubMed

    Huang, Aibin; Lei, Lei; Zhu, Jingting; Yu, Yu; Liu, Yan; Yang, Songwang; Bao, Shanhu; Cao, Xun; Jin, Ping

    2017-01-25

    The short circuit current density of perovskite solar cell (PSC) was boosted by modulating the dominated plane facets of TiO 2 electron transport layer (ETL). Under optimized condition, TiO 2 with dominant {001} facets showed (i) low incident light loss, (ii) highly smooth surface and excellent wettability for precursor solution, (iii) efficient electron extraction, and (iv) high conductivity in perovskite photovoltaic application. A current density of 24.19 mA cm -2 was achieved as a value near the maximum limit. The power conversion efficiency was improved to 17.25%, which was the record value of PSCs with DC magnetron sputtered carrier transport layer. What is more, the room-temperature process had a great significance for the cost reduction and flexible application of PSCs.

  9. Inhibition of the protease activity of the light chain of type A botulinum neurotoxin by aqueous extract from stinging nettle (Urtica dioica) leaf.

    PubMed

    Gul, Nizamettin; Ahmed, S Ashraf; Smith, Leonard A

    2004-11-01

    We investigated the inhibitory effect of stinging nettle leaf extract on the protease activity of botulinum neurotoxin type A and B light chains. The nettle leaf infusion was fractionated and HPLC-based enzymatic assays were performed to determine the capacity of each fraction to inhibit the protease activity of botulinum neurotoxin type A and B light chains. Assay results demonstrated that a water-soluble fraction obtained from the nettle leaf infusion inhibited type A, but did not inhibit type B light chain protease activity. The inhibition mode of water soluble fraction against protease activity of type A light chain was analyzed and found to be a non-competitive.

  10. Binding, Antioxidant and Anti-proliferative Properties of Bioactive Compounds of Sweet Paprika (Capsicum annuum L.).

    PubMed

    Kim, Hong-Gi; Bae, Jong-Hyang; Jastrzebski, Zenon; Cherkas, Andriy; Heo, Buk-Gu; Gorinstein, Shela; Ku, Yang-Gyu

    2016-06-01

    The scope of this research was to determine the bioactive composition, antioxidant, binding, and anti-proliferative properties of red sweet paprika growing under artificial light. The amounts of carotenoids, chlorophyll, polyphenols, tannins, and flavonoids in red paprika (RP), cultivated in Korea, before and after light treatments under high pressure sodium (HPS) and lighting emitting plasma (LEP) lamps (RPControl, RPHPS, RPLEP), were analyzed in water (W) and ethanolic extracts (Et). Spectroscopic, radical scavenging assays, fluorescence and cytotoxicity measurements were applied. The results of this study showed that total chlorophyll and carotenes were the highest in RPHPS (10.50 ± 1.02 and 33.90 ± 3.26 μg/g dry weight (DW)). The strongest antioxidant capacity (μM TE/g DW) in a 2, 2'-azino-bis (3-ethyl-benzothiazoline-6-sulfonic acid) diammonium salt (ABTS(•+)) assay was in RPControlEt (24.34 ± 2.36), in a ferric-reducing/antioxidant power (FRAP) assay in RPHPSW (27.08 ± 2.4) and in a cupric reducing antioxidant (CUPRAC) in RPLEPW (70.99 ± 7.11). The paprika ethanolic extracts showed lower values in their bioactivity than the water ones. The binding and cytotoxicity abilities of extracted polyphenols correlated with their amounts. LEP treatment is better for plant growth characteristics than other conventional treatments. The investigated paprika samples can be used as a source of antioxidants.

  11. Effect of the Drying Process on the Intensification of Phenolic Compounds Recovery from Grape Pomace Using Accelerated Solvent Extraction

    PubMed Central

    Rajha, Hiba N.; Ziegler, Walter; Louka, Nicolas; Hobaika, Zeina; Vorobiev, Eugene; Boechzelt, Herbert G.; Maroun, Richard G.

    2014-01-01

    In light of their environmental and economic interests, food byproducts have been increasingly exploited and valorized for their richness in dietary fibers and antioxidants. Phenolic compounds are antioxidant bioactive molecules highly present in grape byproducts. Herein, the accelerated solvent extraction (ASE) of phenolic compounds from wet and dried grape pomace, at 45 °C, was conducted and the highest phenolic compounds yield (PCY) for wet (16.2 g GAE/100 g DM) and dry (7.28 g GAE/100 g DM) grape pomace extracts were obtained with 70% ethanol/water solvent at 140 °C. The PCY obtained from wet pomace was up to two times better compared to the dry byproduct and up to 15 times better compared to the same food matrices treated with conventional methods. With regard to Resveratrol, the corresponding dry pomace extract had a better free radical scavenging activity (49.12%) than the wet extract (39.8%). The drying pretreatment process seems to ameliorate the antiradical activity, especially when the extraction by ASE is performed at temperatures above 100 °C. HPLC-DAD analysis showed that the diversity of the flavonoid and the non-flavonoid compounds found in the extracts was seriously affected by the extraction temperature and the pretreatment of the raw material. This diversity seems to play a key role in the scavenging activity demonstrated by the extracts. Our results emphasize on ASE usage as a promising method for the preparation of highly concentrated and bioactive phenolic extracts that could be used in several industrial applications. PMID:25322155

  12. Effect of the drying process on the intensification of phenolic compounds recovery from grape pomace using accelerated solvent extraction.

    PubMed

    Rajha, Hiba N; Ziegler, Walter; Louka, Nicolas; Hobaika, Zeina; Vorobiev, Eugene; Boechzelt, Herbert G; Maroun, Richard G

    2014-10-15

    In light of their environmental and economic interests, food byproducts have been increasingly exploited and valorized for their richness in dietary fibers and antioxidants. Phenolic compounds are antioxidant bioactive molecules highly present in grape byproducts. Herein, the accelerated solvent extraction (ASE) of phenolic compounds from wet and dried grape pomace, at 45 °C, was conducted and the highest phenolic compounds yield (PCY) for wet (16.2 g GAE/100 g DM) and dry (7.28 g GAE/100 g DM) grape pomace extracts were obtained with 70% ethanol/water solvent at 140 °C. The PCY obtained from wet pomace was up to two times better compared to the dry byproduct and up to 15 times better compared to the same food matrices treated with conventional methods. With regard to Resveratrol, the corresponding dry pomace extract had a better free radical scavenging activity (49.12%) than the wet extract (39.8%). The drying pretreatment process seems to ameliorate the antiradical activity, especially when the extraction by ASE is performed at temperatures above 100 °C. HPLC-DAD analysis showed that the diversity of the flavonoid and the non-flavonoid compounds found in the extracts was seriously affected by the extraction temperature and the pretreatment of the raw material. This diversity seems to play a key role in the scavenging activity demonstrated by the extracts. Our results emphasize on ASE usage as a promising method for the preparation of highly concentrated and bioactive phenolic extracts that could be used in several industrial applications.

  13. Zinc Sulphide Overlayer Two-Dimensional Photonic Crystal for Enhanced Extraction of Light from a Micro Cavity Light-Emitting Diode

    NASA Astrophysics Data System (ADS)

    Mastro, Michael A.; Kim, Chul Soo; Kim, Mijin; Caldwell, Josh; Holm, Ron T.; Vurgaftman, Igor; Kim, Jihyun; Eddy, Charles R., Jr.; Meyer, Jerry R.

    2008-10-01

    A two-dimensional (2D) ZnS photonic crystal was deposited on the surface of a one-dimensional (1D) III-nitride micro cavity light-emitting diode (LED), to intermix the light extraction features of both structures (1D+2D). The deposition of an ideal micro-cavity optical thickness of ≈λ/2 is impractical for III-nitride LEDs, and in realistic multi-mode devices a large fraction of the light is lost to internal refraction as guided light. Therefore, a 2D photonic crystal on the surface of the LED was used to diffract and thus redirect this guided light out of the semiconductor over several hundred microns. Additionally, the employment of a post-epitaxy ZnS 2D photonic crystal avoided the typical etching into the GaN:Mg contact layer, a procedure which can cause damage to the near surface.

  14. Light-extraction efficiency and forward voltage in GaN-based light-emitting diodes with different patterns of V-shaped pits

    NASA Astrophysics Data System (ADS)

    Wang, Min-Shuai; Huang, Xiao-Jing

    2013-08-01

    We present a new method of making a textured V-pit surface for improving the light extraction efficiency in GaN-based light-emitting diodes and compare it with the usual low-temperature method for p-GaN V-pits. Three types of GaN-based light-emitting diodes (LEDs) with surface V-pits in different densities and regions were grown by metal—organic chemical vapor deposition. We achieved the highest output power and lowest forward voltage values with the p-InGaN V-pit LED. The V-pits enhanced the light output power values by 1.45 times the values of the conventional LED owing to an enhancement of the light scattering probability and an effective reduction of Mg-acceptor activation energy. Moreover, this new technique effectively solved the higher forward voltage problem of the usual V-pit LED.

  15. Characterization and environmental risk assessment of heavy metals in construction and demolition wastes from five sources (chemical, metallurgical and light industries, and residential and recycled aggregates).

    PubMed

    Gao, Xiaofeng; Gu, Yilu; Xie, Tian; Zhen, Guangyin; Huang, Sheng; Zhao, Youcai

    2015-06-01

    Total concentrations of heavy metals (Cu, Zn, Pb, Cr, Cd, and Ni) were measured among 63 samples of construction and demolition (C&D) wastes collected from chemical, metallurgical and light industries, and residential and recycled aggregates within China for risk assessment. The heavy metal contamination was primarily concentrated in the chemical and metallurgical industries, especially in the electroplating factory and zinc smelting plant. High concentrations of Cd were found in light industry samples, while the residential and recycled aggregate samples were severely polluted by Zn. Six most polluted samples were selected for deep research. Mineralogical analysis by X-ray fluorescence (XRF) spectrometry and X-ray diffraction (XRD), combined with element speciation through European Community Bureau of Reference (BCR) sequential extraction, revealed that a relatively slight corrosion happened in the four samples from electroplating plants but high transfer ability for large quantities of Zn and Cu. Lead arsenate existed in the acid extractable fraction in CI7-8 and potassium chromium oxide existed in the mobility fraction. High concentration of Cr could be in amorphous forms existing in CI9. The high content of sodium in the two samples from zinc smelter plants suggested severe deposition and erosion on the workshop floor. Large quantities of Cu existed as copper halide and most of the Zn appeared to be zinc, zinc oxide, barium zinc oxide, and zincite. From the results of the risk assessment code (RAC), the samples from the electroplating factory posed a very high risk of Zn, Cu, and Cr, a high risk of Ni, a middle risk of Pb, and a low risk of Cd. The samples from the zinc smelting plant presented a high risk of Zn, a middle risk of Cu, and a low risk of Pb, Cr, Cd, and Ni.

  16. A highly efficient, cell-free translation/translocation system prepared from Xenopus eggs.

    PubMed Central

    Matthews, G; Colman, A

    1991-01-01

    We describe the use of a Xenopus laevis egg extract for the in vitro translation and post translational modification of membrane and secretory proteins. This extract is capable of the translation and segregation into membranes of microgram per millilitre levels of protein from added mRNAs. Signal sequences of segregated proteins are efficiently cleaved and appropriate N-linked glycosylation patterns are produced. The extract also supports the quantitative assembly of murine immunoglobulin heavy and light chains into tetramers, and two events which take place beyond the endoplasmic reticulum, mannose 6 phosphorylation of murine cathepsin D and O-linked glycosylation of coronavirus E1 protein, also occur, but at reduced efficiency. The stability of the membranes allows protease protection studies and quantitative centrifugal fractionation of segregated and unsegregated proteins to be performed. Conditions for the use of stored extract have also been determined. Images PMID:1754376

  17. Optimization of lipids' ultrasonic extraction and production from Chlorella sp. using response-surface methodology.

    PubMed

    Hadrich, Bilel; Akremi, Ismahen; Dammak, Mouna; Barkallah, Mohamed; Fendri, Imen; Abdelkafi, Slim

    2018-04-17

    Three steps are very important in order to produce microalgal lipids: (1) controlling microalgae cultivation via experimental and modeling investigations, (2) optimizing culture conditions to maximize lipids production and to determine the fatty acid profile the most appropriate for biodiesel synthesis, and (3) optimizing the extraction of the lipids accumulated in the microalgal cells. Firstly, three kinetics models, namely logistic, logistic-with-lag and modified Gompertz, were tested to fit the experimental kinetics of the Chlorella sp. microalga culture established on standard conditions. Secondly, the response-surface methodology was used for two optimizations in this study. The first optimization was established for lipids production from Chlorella sp. culture under different culture conditions. In fact, different levels of nitrate concentrations, salinities and light intensities were applied to the culture medium in order to study their influences on lipids production and determine their fatty acid profile. The second optimization was concerned with the lipids extraction factors: ultrasonic's time and temperature, and chloroform-methanol solvent ratio. All models (logistic, logistic-with-lag and modified Gompertz) applied for the experimental kinetics of Chlorella sp. show a very interesting fitting quality. The logistic model was chosen to describe the Chlorella sp. kinetics, since it yielded the most important statistical criteria: coefficient of determination of the order of 94.36%; adjusted coefficient of determination equal to 93.79% and root mean square error reaching 3.685 cells · ml - 1 . Nitrate concentration and the two interactions involving the light intensity (Nitrate concentration × light intensity, and salinities × light intensity) showed a very significant influence on lipids production in the first optimization (p < 0.05). Yet, only the quadratic term of chloroform-methanol solvent ratio showed a significant influence on lipids extraction relative to the second step of optimization (p < 0.05). The two most abundant fatty acid methyl esters (≈72%) derived from the Chlorella sp. microalga cultured in the determined optimal conditions are: palmitic acid (C16:0) and oleic acid (C18:1) with the corresponding yields of 51.69% and 20.55% of total fatty acids, respectively. Only the nitrate deficiency and the high intensity of light can influence the microalgal lipids production. The corresponding fatty acid methyl esters composition is very suitable for biodiesel production. Lipids extraction is efficient only over long periods of time when using a solvent with a 2/1 chloroform/methanol ratio.

  18. Understanding Light Harvesting in Radial Junction Amorphous Silicon Thin Film Solar Cells

    PubMed Central

    Yu, Linwei; Misra, Soumyadeep; Wang, Junzhuan; Qian, Shengyi; Foldyna, Martin; Xu, Jun; Shi, Yi; Johnson, Erik; Cabarrocas, Pere Roca i

    2014-01-01

    The radial junction (RJ) architecture has proven beneficial for the design of a new generation of high performance thin film photovoltaics. We herein carry out a comprehensive modeling of the light in-coupling, propagation and absorption profile within RJ thin film cells based on an accurate set of material properties extracted from spectroscopic ellipsometry measurements. This has enabled us to understand and evaluate the impact of varying several key parameters on the light harvesting in radially formed thin film solar cells. We found that the resonance mode absorption and antenna-like light in-coupling behavior in the RJ cell cavity can lead to a unique absorption distribution in the absorber that is very different from the situation expected in a planar thin film cell, and that has to be taken into account in the design of high performance RJ thin film solar cells. When compared to the experimental EQE response of real RJ solar cells, this modeling also provides an insightful and powerful tool to resolve the wavelength-dependent contributions arising from individual RJ units and/or from strong light trapping due to the presence of the RJ cell array. PMID:24619197

  19. Use of ambient light in remote photoplethysmographic systems: comparison between a high-performance camera and a low-cost webcam.

    PubMed

    Sun, Yu; Papin, Charlotte; Azorin-Peris, Vicente; Kalawsky, Roy; Greenwald, Stephen; Hu, Sijung

    2012-03-01

    Imaging photoplethysmography (PPG) is able to capture useful physiological data remotely from a wide range of anatomical locations. Recent imaging PPG studies have concentrated on two broad research directions involving either high-performance cameras and or webcam-based systems. However, little has been reported about the difference between these two techniques, particularly in terms of their performance under illumination with ambient light. We explore these two imaging PPG approaches through the simultaneous measurement of the cardiac pulse acquired from the face of 10 male subjects and the spectral characteristics of ambient light. Measurements are made before and after a period of cycling exercise. The physiological pulse waves extracted from both imaging PPG systems using the smoothed pseudo-Wigner-Ville distribution yield functional characteristics comparable to those acquired using gold standard contact PPG sensors. The influence of ambient light intensity on the physiological information is considered, where results reveal an independent relationship between the ambient light intensity and the normalized plethysmographic signals. This provides further support for imaging PPG as a means for practical noncontact physiological assessment with clear applications in several domains, including telemedicine and homecare. © 2012 Society of Photo-Optical Instrumentation Engineers (SPIE).

  20. Use of ambient light in remote photoplethysmographic systems: comparison between a high-performance camera and a low-cost webcam

    NASA Astrophysics Data System (ADS)

    Sun, Yu; Papin, Charlotte; Azorin-Peris, Vicente; Kalawsky, Roy; Greenwald, Stephen; Hu, Sijung

    2012-03-01

    Imaging photoplethysmography (PPG) is able to capture useful physiological data remotely from a wide range of anatomical locations. Recent imaging PPG studies have concentrated on two broad research directions involving either high-performance cameras and or webcam-based systems. However, little has been reported about the difference between these two techniques, particularly in terms of their performance under illumination with ambient light. We explore these two imaging PPG approaches through the simultaneous measurement of the cardiac pulse acquired from the face of 10 male subjects and the spectral characteristics of ambient light. Measurements are made before and after a period of cycling exercise. The physiological pulse waves extracted from both imaging PPG systems using the smoothed pseudo-Wigner-Ville distribution yield functional characteristics comparable to those acquired using gold standard contact PPG sensors. The influence of ambient light intensity on the physiological information is considered, where results reveal an independent relationship between the ambient light intensity and the normalized plethysmographic signals. This provides further support for imaging PPG as a means for practical noncontact physiological assessment with clear applications in several domains, including telemedicine and homecare.

  1. FDTD analysis of the light extraction efficiency of OLEDs with a random scattering layer.

    PubMed

    Kim, Jun-Whee; Jang, Ji-Hyang; Oh, Min-Cheol; Shin, Jin-Wook; Cho, Doo-Hee; Moon, Jae-Hyun; Lee, Jeong-Ik

    2014-01-13

    The light extraction efficiency of OLEDs with a nano-sized random scattering layer (RSL-OLEDs) was analyzed using the Finite Difference Time Domain (FDTD) method. In contrast to periodic diffraction patterns, the presence of an RSL suppresses the spectral shift with respect to the viewing angle. For FDTD simulation of RSL-OLEDs, a planar light source with a certain spatial and temporal coherence was incorporated, and the light extraction efficiency with respect to the fill factor of the RSL and the absorption coefficient of the material was investigated. The design results were compared to the experimental results of the RSL-OLEDs in order to confirm the usefulness of FDTD in predicting experimental results. According to our FDTD simulations, the light confined within the ITO-organic waveguide was quickly absorbed, and the absorption coefficients of ITO and RSL materials should be reduced in order to obtain significant improvement in the external quantum efficiency (EQE). When the extinction coefficient of ITO was 0.01, the EQE in the RSL-OLED was simulated to be enhanced by a factor of 1.8.

  2. Bridging the "green gap" of LEDs: giant light output enhancement and directional control of LEDs via embedded nano-void photonic crystals.

    PubMed

    Tsai, Yu-Lin; Liu, Che-Yu; Krishnan, Chirenjeevi; Lin, Da-Wei; Chu, You-Chen; Chen, Tzu-Pei; Shen, Tien-Lin; Kao, Tsung-Sheng; Charlton, Martin D B; Yu, Peichen; Lin, Chien-Chung; Kuo, Hao-Chung; He, Jr-Hau

    2016-01-14

    Green LEDs do not show the same level of performance as their blue and red cousins, greatly hindering the solid-state lighting development, which is the so-called "green gap". In this work, nano-void photonic crystals (NVPCs) were fabricated to embed within the GaN/InGaN green LEDs by using epitaxial lateral overgrowth (ELO) and nano-sphere lithography techniques. The NVPCs act as an efficient scattering back-reflector to outcouple the guided and downward photons, which not only boost the light extraction efficiency of LEDs with an enhancement of 78% but also collimate the view angle of LEDs from 131.5° to 114.0°. This could be because of the highly scattering nature of NVPCs which reduce the interference giving rise to Fabry-Perot resonance. Moreover, due to the threading dislocation suppression and strain relief by the NVPCs, the internal quantum efficiency was increased by 25% and droop behavior was reduced from 37.4% to 25.9%. The enhancement of light output power can be achieved as high as 151% at a driving current of 350 mA. Giant light output enhancement and directional control via NVPCs point the way towards a promising avenue of solid-state lighting.

  3. Seasonal Shifts in the Biochemical Compoments of the Light Fraction, Particulate Organic Matter, and Two Humic Acid Fractions in An Iowa Soil

    USDA-ARS?s Scientific Manuscript database

    Soil organic matter is conventionally extracted through either physical or chemical means. The benefits of integrating both approaches into one fractionation procedure were evaluated on an Iowa corn-soybean soil used for a cover crop study. The light fraction was first extracted from the 0-5 cm soil...

  4. Scattering-type scanning near-field optical microscopy with low-repetition-rate pulsed light source through phase-domain sampling

    PubMed Central

    Wang, Haomin; Wang, Le; Xu, Xiaoji G.

    2016-01-01

    Scattering-type scanning near-field optical microscopy (s-SNOM) allows spectroscopic imaging with spatial resolution below the diffraction limit. With suitable light sources, s-SNOM is instrumental in numerous discoveries at the nanoscale. So far, the light sources have been limited to continuous wave or high-repetition-rate pulsed lasers. Low-repetition-rate pulsed sources cannot be used, due to the limitation of the lock-in detection mechanism that is required for current s-SNOM techniques. Here, we report a near-field signal extraction method that enables low-repetition-rate pulsed light sources. The method correlates scattering signals from pulses with the mechanical phases of the oscillating s-SNOM probe to obtain near-field signal, by-passing the apparent restriction imposed by the Nyquist–Shannon sampling theorem on the repetition rate. The method shall enable s-SNOM with low-repetition-rate pulses with high-peak-powers, such as femtosecond laser amplifiers, to facilitate investigations of strong light–matter interactions and nonlinear processes at the nanoscale. PMID:27748360

  5. Conformal fabrication of colloidal quantum dot solids for optically enhanced photovoltaics.

    PubMed

    Labelle, André J; Thon, Susanna M; Kim, Jin Young; Lan, Xinzheng; Zhitomirsky, David; Kemp, Kyle W; Sargent, Edward H

    2015-05-26

    Colloidal quantum dots (CQD) are an attractive thin-film material for photovoltaic applications due to low material costs, ease of fabrication, and size-tunable band gap. Unfortunately, today they suffer from a compromise between light absorption and photocarrier extraction, a fact that currently prevents the complete harvest of incoming above-band-gap solar photons. We have investigated the use of structured substrates and/or electrodes to increase the effective light path through the active material and found that these designs require highly conformal application of the light-absorbing films to achieve the greatest enhancement. This conformality requirement derives from the need for maximal absorption enhancement combined with shortest-distance charge transport. Here we report on a means of processing highly conformal layer-by-layer deposited CQD absorber films onto microstructured, light-recycling electrodes. Specifically, we engineer surface hydrophilicity to achieve conformal deposition of upper layers atop underlying ones. We show that only with the application of conformal coating can we achieve optimal quantum efficiency and enhanced power conversion efficiency in structured-electrode CQD cells.

  6. Deep Blue Phosphorescent Organic Light-Emitting Diodes with CIEy Value of 0.11 and External Quantum Efficiency up to 22.5.

    PubMed

    Li, Xiaoyue; Zhang, Juanye; Zhao, Zifeng; Wang, Liding; Yang, Hannan; Chang, Qiaowen; Jiang, Nan; Liu, Zhiwei; Bian, Zuqiang; Liu, Weiping; Lu, Zhenghong; Huang, Chunhui

    2018-03-01

    Organic light-emitting diodes (OLEDs) based on red and green phosphorescent iridium complexes are successfully commercialized in displays and solid-state lighting. However, blue ones still remain a challenge on account of their relatively dissatisfactory Commission International de L'Eclairage (CIE) coordinates and low efficiency. After analyzing the reported blue iridium complexes in the literature, a new deep-blue-emitting iridium complex with improved photoluminescence quantum yield is designed and synthesized. By rational screening host materials showing high triplet energy level in neat film as well as the OLED architecture to balance electron and hole recombination, highly efficient deep-blue-emission OLEDs with a CIE at (0.15, 0.11) and maximum external quantum efficiency (EQE) up to 22.5% are demonstrated. Based on the transition dipole moment vector measurement with a variable-angle spectroscopic ellipsometry method, the ultrahigh EQE is assigned to a preferred horizontal dipole orientation of the iridium complex in doped film, which is beneficial for light extraction from the OLEDs. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. RCWA and FDTD modeling of light emission from internally structured OLEDs.

    PubMed

    Callens, Michiel Koen; Marsman, Herman; Penninck, Lieven; Peeters, Patrick; de Groot, Harry; ter Meulen, Jan Matthijs; Neyts, Kristiaan

    2014-05-05

    We report on the fabrication and simulation of a green OLED with an Internal Light Extraction (ILE) layer. The optical behavior of these devices is simulated using both Rigorous Coupled Wave Analysis (RCWA) and Finite Difference Time-Domain (FDTD) methods. Results obtained using these two different techniques show excellent agreement and predict the experimental results with good precision. By verifying the validity of both simulation methods on the internal light extraction structure we pave the way to optimization of ILE layers using either of these methods.

  8. Anti-apoptotic effects of Curcuma longa L. extract and its curcuminoids against blue light-induced cytotoxicity in A2E-laden human retinal pigment epithelial cells.

    PubMed

    Park, Sang-Il; Lee, Eun Hye; Kim, So Ra; Jang, Young Pyo

    2017-03-01

    The purpose of the study was to investigate the protective effect of the Curcuma longa L. extract (CLE) and its curcuminoids against blue light-induced cytotoxicity in human retinal pigment epithelial (RPE) cells laded with A2E. A2E has been concerned in age-related macular degeneration (AMD). To perform this study, A2E-accumulated ARPE-19 cells were exposed to blue light to induce cytotoxicity. The cytotoxicity and apoptotic gene expression levels were evaluated using a lactate dehydrogenase (LDH) assay and real-time PCR analysis, respectively. Curcuma longa L. extract was found to exert a protective effect in a dose-dependent manner. At a concentration of 15 μm, curcumin, demethoxycurcumin and bisdemethoxycurcumin exerted significant protective effects against blue light-induced cytotoxicity. Treatment with CLE and curcuminoids meaningfully reduced the mRNA levels of c-Abl and p53, which was known to be augmented in apoptotic RPE cells. Demethoxycurcumin and bisdemethoxycurcumin were found to inhibit p38 expression, which is increased in blue light-irradiated A2E-accumulated RPE cells. Curcuma longa L. extract and its curcuminoids provided significant protection against photooxidative damage and apoptosis in the RPE cells. Our results suggest that curcuminoids may show potential in the treatment of AMD. © 2017 Royal Pharmaceutical Society.

  9. Determination of the charge radii of several light nuclei from precision, high-energy electron elastic scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kabir, Al Amin

    2015-12-01

    Analysis of high-energy electron scattering has been used to determine the charge radii of nuclei for several decades. Recent analysis of the Lamb shift in muonic hydrogen found an r.m.s. radius significantly different than the electron scattering result. To understand this puzzle we have analyzed the "LEDEX" data for the (e, e'p) reaction. This experiment includes measurements on several light nuclei, hydrogen, deuterium, lithium, boron, and carbon. To test our ability to measure absolute cross sections, as well as our ability to extract the charge radius, we tested our technique against the extremely well-measured carbon case and found excellent agreementmore » using the Fourier-Bessel parametrization. We then extended the procedure to boron and lithium, which show nice agreement with the latest theoretical calculations. For hydrogen, we see clearly the limits of this technique and therefore, the charge radius is determined from the traditional extrapolation to q 2 = 0. We will show that there is a model dependence in extracting the charge radius of hydrogen and its unambiguous determination is very difficult with available electron-scattering measurements.« less

  10. Specific Interaction between Redox Phospholipid Polymers and Plastoquinone in Photosynthetic Electron Transport Chain.

    PubMed

    Tanaka, Kenya; Kaneko, Masahiro; Ishikawa, Masahito; Kato, Souichiro; Ito, Hidehiro; Kamachi, Toshiaki; Kamiya, Kazuhide; Nakanishi, Shuji

    2017-04-19

    Redox phospholipid polymers added in culture media are known to be capable of extracting electrons from living photosynthetic cells across bacterial cell membranes with high cytocompatibility. In the present study, we identify the intracellular redox species that transfers electrons to the polymers. The open-circuit electrochemical potential of an electrolyte containing the redox polymer and extracted thylakoid membranes shift to positive (or negative) under light irradiation, when an electron transport inhibitor specific to plastoquinone is added upstream (or downstream) in the photosynthetic electron transport chain. The same trend is also observed for a medium containing living photosynthetic cells of Synechococcus elongatus PCC7942. These results clearly indicate that the phospholipid redox polymers extract photosynthetic electrons mainly from plastoquinone. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Changes during storage of quality parameters and in vitro antioxidant activity of extra virgin monovarietal oils obtained with two extraction technologies.

    PubMed

    Fadda, C; Del Caro, A; Sanguinetti, A M; Urgeghe, P P; Vacca, V; Arca, P P; Piga, A

    2012-10-01

    Extraction technology has a great effect on quality of olive oils. This paper studied 18 months of storage of two Sardinian extra virgin monovarietal oils obtained with a traditional and with a low oxidative stress technology. Oil samples were subjected to the following chemical analyses: acidity, peroxide value, ultraviolet light absorption K₂₃₂ and K₂₇₀, carotenoids, chlorophylls, tocopherols and total polyphenols. The antioxidant capacity of oils, polyphenol extract and oil extract (remaining after polyphenol extraction) was also determined as radical scavenging activity. The results show that both extraction technologies resulted in minor changes in legal and quality indices during storage, due surely to the high quality of the oils as well as to the very good storage conditions used. Oils obtained with the low oxidative stress technology showed lower peroxide value and acidity and resulted in up to 103% higher total polyphenol content as well as increased radical-scavenging activity, with respect to oils obtained with the traditional technology. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Primary characterization and evaluation of anti ulcerogenic activity of an aqueous extract from callus culture of Cereus peruvianus Mill. (Cactaceae).

    PubMed

    Jayme, Milena O; Ames, Franciele Q; Bersani-Amado, Ciomar A; Machado, Maria de Fatima P S; Mangolin, Claudete A; Goncalves, Regina A C; de Oliveira, Arildo J B

    2015-01-01

    In the current study we reported cultivation, extraction procedure, analysis and preliminary characterization of the aqueous extract from Cereus peruvianus callus culture and evaluated its anti ulcerogenic activity in vivo models of experimental ulcers in Wistar rats. The obtained aqueous extract from callus (AC) was dialyzed and subjected to freeze-thaw process, providing a possible polysaccharide. The carbohydrate and protein contents of the aqueous extract were estimated at 53.4% and 0.66%, respectively, composed primarily of galactose, arabinose and galacturonic acid, with minor amounts of glucose. This appeared heterogeneous when analyzed by high-performance size-exclusion chromatography and a multiangle laser light scattering detector (HPSEC-MALLS). The AC was found to be significantly effective against ethanol-induced lesions but was ineffective against indomethacin-induced lesions. The callus culture of C. peruvianus is an alternative source for the synthesis of substances originally produced by plants. The calluses grown indefinitely in vitro under controlled conditions are stable tissues, and the aqueous extract from calluses may be used instead of fully developed plants using the protocols described in this study.

  13. Stability of the Stevia-Derived Sweetener Rebaudioside A in Solution as Affected by Ultraviolet Light Exposure.

    PubMed

    Zhang, Jiewen; Bell, Leonard N

    2017-04-01

    Rebaudioside A is a natural noncaloric high-potency sweetener extracted from the leaves of Stevia rebaudiana. With rebaudioside A use increasing in foods, understanding the factors affecting its stability is necessary. This project evaluated the degradation rate constants of rebaudioside A in water, 0.1 M phosphate buffer, and 0.1 M citrate buffer at pH 3 and 7 as a function of ultraviolet (UV) light intensity (365 nm, 0 μW/cm 2 for dark conditions, 27 μW/cm 2 for low intensity, and 190 μW/cm 2 for high intensity) at 32.5 °C. Rebaudioside A stability was adversely affected by light exposure. The pseudo-1st-order degradation rate constants increased significantly (P < 0.05) with increasing light intensity in all solutions. Under dark conditions, rebaudioside A in phosphate buffers was more susceptible to breakdown than in water and citrate buffers at both pH levels. However, exposure to UV light resulted in rebaudioside A degradation occurring approximately 10 times faster in citrate than in phosphate buffers at both pH levels. The sensitivity of rebaudioside A to UV light was greater in citrate buffers than in water or phosphate buffers. The use of light-protective packaging for beverages containing rebaudioside A will improve its stability. © 2017 Institute of Food Technologists®.

  14. ZnO nanowires for tunable near-UV/blue LED

    NASA Astrophysics Data System (ADS)

    Pauporté, Thierry; Lupan, Oleg; Viana, Bruno

    2012-02-01

    Nanowires (NWs)-based light emitting diodes (LEDs) have drawn large interest due to many advantages compared to thin film based devices. Markedly improved performances are expected from nanostructured active layers for light emission. Nanowires can act as direct waveguides and favor light extraction without the use of lenses and reflectors. Moreover, the use of wires avoids the presence of grain boundaries and then the emission efficiency should be boosted by the absence of non-radiative recombinations at the joint defects. Electrochemical deposition technique was used for the preparation of ZnO-NWs based light emitters. Nanowires of high structural and optical quality have been epitaxially grown on p-GaN single crystalline films substrates. We have shown that the emission is directional with a wavelength that was tuned and red-shifted toward the visible region by doping with Cu in ZnO NWs.

  15. Perfect absorption in nanotextured thin films via Anderson-localized photon modes

    NASA Astrophysics Data System (ADS)

    Aeschlimann, Martin; Brixner, Tobias; Differt, Dominik; Heinzmann, Ulrich; Hensen, Matthias; Kramer, Christian; Lükermann, Florian; Melchior, Pascal; Pfeiffer, Walter; Piecuch, Martin; Schneider, Christian; Stiebig, Helmut; Strüber, Christian; Thielen, Philip

    2015-10-01

    The enhancement of light absorption in absorber layers is crucial in a number of applications, including photovoltaics and thermoelectrics. The efficient use of natural resources and physical constraints such as limited charge extraction in photovoltaic devices require thin but efficient absorbers. Among the many different strategies used, light diffraction and light localization at randomly nanotextured interfaces have been proposed to improve absorption. Although already exploited in commercial devices, the enhancement mechanism for devices with nanotextured interfaces is still subject to debate. Using coherent two-dimensional nanoscopy and coherent light scattering, we demonstrate the existence of localized photonic states in nanotextured amorphous silicon layers as used in commercial thin-film solar cells. Resonant absorption in these states accounts for the enhanced absorption in the long-wavelength cutoff region. Our observations establish that Anderson localization—that is, strong localization—is a highly efficient resonant absorption enhancement mechanism offering interesting opportunities for the design of efficient future absorber layers.

  16. Simultaneous and co-localized acousto-optic measurements of spectral and temporal properties of diffusive media

    NASA Astrophysics Data System (ADS)

    Balberg, Michal; Shechter, Revital; Girshovitz, Pinhas; Breskin, Ilan; Fantini, Sergio

    2017-02-01

    Acousto-optic (AO) modulation of light is used to extract both temporal and spectral information of diffusive media such as biological tissue, where they provide measures of blood flow and oxygen saturation of hemoglobin, respectively. The temporal information is extracted from the width of the power spectrum of the light intensity, whereas the spectral information is calculated from the spatial decay of the cross correlation between the light intensity and the generated ultrasonic signal. The ultrasonic signal is a coded phase modulated signal with a narrow autocorrelation, enabling localization of the measurement volume. Two different liquid phantoms are used, with similar scattering but different absorption properties. The difference in absorption calculated with the AO signal is compared to calculations based on the modified Beer Lambert law. As the same AO signal is used to extract both modalities, it might be used to extract hemodynamic related changes in the brain for diagnostic and functional assessment.

  17. Enhancing radiative energy transfer through thermal extraction

    NASA Astrophysics Data System (ADS)

    Tan, Yixuan; Liu, Baoan; Shen, Sheng; Yu, Zongfu

    2016-06-01

    Thermal radiation plays an increasingly important role in many emerging energy technologies, such as thermophotovoltaics, passive radiative cooling and wearable cooling clothes [1]. One of the fundamental constraints in thermal radiation is the Stefan-Boltzmann law, which limits the maximum power of far-field radiation to P0 = σT4S, where σ is the Boltzmann constant, S and T are the area and the temperature of the emitter, respectively (Fig. 1a). In order to overcome this limit, it has been shown that near-field radiations could have an energy density that is orders of magnitude greater than the Stefan-Boltzmann law [2-7]. Unfortunately, such near-field radiation transfer is spatially confined and cannot carry radiative heat to the far field. Recently, a new concept of thermal extraction was proposed [8] to enhance far-field thermal emission, which, conceptually, operates on a principle similar to oil immersion lenses and light extraction in light-emitting diodes using solid immersion lens to increase light output [62].Thermal extraction allows a blackbody to radiate more energy to the far field than the apparent limit of the Stefan-Boltzmann law without breaking the second law of thermodynamics. Thermal extraction works by using a specially designed thermal extractor to convert and guide the near-field energy to the far field, as shown in Fig. 1b. The same blackbody as shown in Fig. 1a is placed closely below the thermal extractor with a spacing smaller than the thermal wavelength. The near-field coupling transfers radiative energy with a density greater than σT4. The thermal extractor, made from transparent and high-index or structured materials, does not emit or absorb any radiation. It transforms the near-field energy and sends it toward the far field. As a result, the total amount of far-field radiative heat dissipated by the same blackbody is greatly enhanced above SσT4, where S is the area of the emitter. This paper will review the progress in thermal extraction. It is organized as follows. In Section 1, we will discuss the theory of thermal extraction [8]. In Section 2, we review an experimental implementation based on natural materials as the thermal extractor [8]. Lastly, in Section 3, we review the experiment that uses structured metamaterials as thermal extractors to enhance optical density of states and far-field emission [9].

  18. A comprehensive metabolite profiling of Isatis tinctoria leaf extracts.

    PubMed

    Mohn, Tobias; Plitzko, Inken; Hamburger, Matthias

    2009-05-01

    A broad-based characterisation of a pharmacologically active dichloromethane extract from Isatis tinctoria leaves was carried out. For a comprehensive picture we also included the polar constituents of I. tinctoria (MeOH extract) and for comparative purposes, the taxonomically closely related plant I. indigotica. Diode array detector, evaporative light scattering detector, atmospheric pressure chemical ionisation and electrospray ionisation mass spectrometry, and electrospray ionisation time-of-flight mass spectrometry detectors were used in parallel to ensure a wide coverage of secondary metabolites with highly diverging analytical properties. Off-line microprobe nuclear magnetic resonance spectroscopy after peak purification by semi-preparative high-pressure liquid chromatography served for structure elucidation of some minor constituents. More than 65 compounds belonging to various structural classes such as alkaloids, flavonoids, fatty acids, porphyrins, lignans, carotenoids, glucosinolates and cyclohexenones were unambiguously identified, and tentative structures were proposed for additional compounds. Numerous compounds were identified for the first time in the genus Isatis, and an indolic alkaloid was discovered.

  19. The aspect ratio effects on the performances of GaN-based light-emitting diodes with nanopatterned sapphire substrates

    NASA Astrophysics Data System (ADS)

    Kao, Chien-Chih; Su, Yan-Kuin; Lin, Chuing-Liang; Chen, Jian-Jhong

    2010-07-01

    The nanopatterned sapphire substrates (NPSSs) with aspect ratio that varied from 2.00 to 2.50 were fabricated by nanoimprint lithography. We could improve the epitaxial film quality and enhance the light extraction efficiency by NPSS technique. In this work, the aspect ratio effects on the performances of GaN-based light-emitting diodes (LEDs) with NPSS were investigated. The light output enhancement of GaN-based LEDs with NPSS was increased from 11% to 27% as the aspect ratio of the NPSS increases from 2.00 to 2.50. Owing to the same improvement of crystalline quality by using various aspect ratios of NPSS, these results indicated that the aspect ratio of the NPSS is strongly related to the light extraction efficiency.

  20. Light absorption of organic aerosol from pyrolysis of corn stalk

    NASA Astrophysics Data System (ADS)

    Li, Xinghua; Chen, Yanju; Bond, Tami C.

    2016-11-01

    Organic aerosol (OA) can absorb solar radiation in the low-visible and ultra-violet wavelengths thereby modifying radiative forcing. Agricultural waste burning emits a large quantity of organic carbon in many developing countries. In this work, we improved the extraction and analysis method developed by Chen and Bond, and extended the spectral range of OC absorption. We examined light absorbing properties of primary OA from pyrolysis of corn stalk, which is a major type of agricultural wastes. Light absorption of bulk liquid extracts of OA was measured using a UV-vis recording spectrophotometer. OA can be extracted by methanol at 95%, close to full extent, and shows polar character. Light absorption of organic aerosol has strong spectral dependence (Absorption Ångström exponent = 7.7) and is not negligible at ultra-violet and low-visible regions. Higher pyrolysis temperature produced OA with higher absorption. Imaginary refractive index of organic aerosol (kOA) is 0.041 at 400 nm wavelength and 0.005 at 550 nm wavelength, respectively.

  1. Nano-honeycomb structured transparent electrode for enhanced light extraction from organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Shi, Xiao-Bo; Qian, Min; Wang, Zhao-Kui; Liao, Liang-Sheng

    2015-06-01

    A universal nano-sphere lithography method has been developed to fabricate nano-structured transparent electrode, such as indium tin oxide (ITO), for light extraction from organic light-emitting diodes (OLEDs). Perforated SiO2 film made from a monolayer colloidal crystal of polystyrene spheres and tetraethyl orthosilicate sol-gel is used as a template. Ordered nano-honeycomb pits on the ITO electrode surface are obtained by chemical etching. The proposed method can be utilized to form large-area nano-structured ITO electrode. More than two folds' enhancement in both current efficiency and power efficiency has been achieved in a red phosphorescent OLED which was fabricated on the nano-structured ITO substrate.

  2. Determination of N-(trans-4-isopropylcyclohexylcarbonyl)-D-phenylalanine in human plasma by solid-phase extraction and column-switching high-performance liquid chromatography with ultraviolet detection.

    PubMed

    Ono, I; Matsuda, K; Kanno, S

    1996-04-12

    A column-switching high-performance liquid chromatography method with ultraviolet detection at 210 nm has been developed for the determination of N-(trans-4-isopropylcyclohexylcarbonyl)-D-phenylalanine (AY4166, I) in human plasma. Plasma samples were prepared by solid-phase extraction with Sep-Pak Light tC18, followed by HPLC. The calibration graph for I was linear in the range 0.1-20 micrograms/ml. The limit of quantitation of I, in plasma, was 0.05 microgram/ml. The recovery of spiked I (0.5 microgram/ml) to drug-free plasma was over 92% and the relative standard deviation of spiked I (0.5 microgram/ml) compared to drug-free plasma was 4.3% (n = 8).

  3. Extraction and labeling methods for microarrays using small amounts of plant tissue.

    PubMed

    Stimpson, Alexander J; Pereira, Rhea S; Kiss, John Z; Correll, Melanie J

    2009-03-01

    Procedures were developed to maximize the yield of high-quality RNA from small amounts of plant biomass for microarrays. Two disruption techniques (bead milling and pestle and mortar) were compared for the yield and the quality of RNA extracted from 1-week-old Arabidopsis thaliana seedlings (approximately 0.5-30 mg total biomass). The pestle and mortar method of extraction showed enhanced RNA quality at the smaller biomass samples compared with the bead milling technique, although the quality in the bead milling could be improved with additional cooling steps. The RNA extracted from the pestle and mortar technique was further tested to determine if the small quantity of RNA (500 ng-7 microg) was appropriate for microarray analyses. A new method of low-quantity RNA labeling for microarrays (NuGEN Technologies, Inc.) was used on five 7-day-old seedlings (approximately 2.5 mg fresh weight total) of Arabidopsis that were grown in the dark and exposed to 1 h of red light or continued dark. Microarray analyses were performed on a small plant sample (five seedlings; approximately 2.5 mg) using these methods and compared with extractions performed with larger biomass samples (approximately 500 roots). Many well-known light-regulated genes between the small plant samples and the larger biomass samples overlapped in expression changes, and the relative expression levels of selected genes were confirmed with quantitative real-time polymerase chain reaction, suggesting that these methods can be used for plant experiments where the biomass is extremely limited (i.e. spaceflight studies).

  4. On extracting hadron multiplicities and unpolarized nucleon structure ratios from SIDIS data at the HERMES experiment

    NASA Astrophysics Data System (ADS)

    Linden-Levy, Loren Alexander

    2008-10-01

    We present an analysis using the world's largest data set of semi-inclusive deep inelastic scattering (SIDIS) in the kinematic range 0.1 < x < 0.6 at an average Q2 of 2.5 GeV2. This data was collected at the HERMES experiment located in the east hall of the HERA accelerator between the years 2000 and 2006. The hadron multiplicity from these scattering events is extracted for identified charged pions, kaons and protons from two different gaseous targets (H & D). For the hydrogen (deuterium) target 12.5 (16.68) million events were recorded. Using these hadron multiplicities an attempt is made to extract unpolarized information about the parton momentum distribution functions (PDFs) inside the nucleon via the flavor tagging technique within the quark-parton model. In particular, one can exploit certain factorization assumptions and fragmentation symmetries to extract the valence quark ratio dv/ uv and the light sea asymmetry d -- u/(u -- d) from the measured pion multiplicities on hydrogen and deuterium targets. The excellent particle identification available in the HERMES spectrometer coupled with the overwhelming statistics that are available from the high density end-of-fill running (especially in 2002 and 2004) make the HERMES data invaluable for reinforcing the E866/NuSea Drell-Yan result on d/ u at a different and from an entirely different physical process. These PDF extractions are also an important test of many typical assumptions made in SIDIS analyses and must be taken into consideration in light of the future facilities that propose to use this technique.

  5. Inhibition of Prostaglandin E2 Production by Anti-inflammatory Hypericum perforatum Extracts and Constituents in RAW264.7 Mouse Macrophage Cells

    PubMed Central

    Hammer, Kimberly D. P.; Hillwig, Matthew L.; Solco, Avery K. S.; Dixon, Philip M.; Delate, Kathleen; Murphy, Patricia A.; Wurtele, Eve S.; Birt, Diane F.

    2008-01-01

    Hypericum perforatum (Hp) is commonly known for its antiviral, antidepressant, and cytotoxic properties, but traditionally Hp was also used to treat inflammation. In this study, the anti-inflammatory activity and cytotoxicity of different Hp extractions and accessions and constituents present within Hp extracts were characterized. In contrast to the antiviral activity of Hp, the anti-inflammatory activity observed with all Hp extracts was light-independent. When pure constituents were tested, the flavonoids, amentoflavone, hyperforin, and light-activated pseudohypericin, displayed anti-inflammatory activity, albeit at concentrations generally higher than the amount present in the Hp extracts. Constituents that were present in the Hp extracts at concentrations that inhibited the production of prostaglandin E2 (PGE2) were pseudohypericin and hyperforin, suggesting that they are the primary anti-inflammatory constituents along with the flavonoids, and perhaps the interactions of these constituents and other unidentified compounds are important for the anti-inflammatory activity of the Hp extracts. PMID:17696442

  6. Impact of high hydrostatic pressure and pasteurization on the structure and the extractability of bioactive compounds of persimmon “Rojo Brillante”.

    PubMed

    Hernández-Carrión, M; Vázquez-Gutiérrez, J L; Hernando, I; Quiles, A

    2014-01-01

    Rojo Brillante is an astringent oriental persimmon variety with high levels of bioactive compounds such as soluble tannins, carotenoids, phenolic acids, and dietary fiber. The purpose of this study was to investigate the effects of high hydrostatic pressure (HHP) and pasteurization on the structure of the fruit and on the extractability of certain bioactive compounds. The microstructure was studied using light microscopy, transmission electron microscopy, and low temperature scanning electron microscopy, and certain physicochemical properties (carotenoid and total soluble tannin content, antioxidant activity, fiber content, color, and texture properties) were measured. The structural changes induced by HHP caused a rise in solute circulation in the tissues that could be responsible for the increased carotenoid level and the unchanged antioxidant activity in comparison with the untreated persimmon. In contrast, the changes that took place during pasteurization lowered the tannin content and antioxidant activity. Consequently, HHP treatment could improve the extraction of potentially bioactive compoundsxsts from persimmons. A high nutritional value ingredient to be used when formulating new functional foods could be obtained using HHP. © 2013 Institute of Food Technologists®

  7. Analysis of post-earthquake reconstruction for Wenchuan earthquake based on night-time light data from DMSP/OLS

    NASA Astrophysics Data System (ADS)

    Cao, Yang; Zhang, Jing; Yang, Mingxiang; Lei, Xiaohui

    2017-07-01

    At present, most of Defense Meteorological Satellite Program's Operational Linescan System (DMSP/OLS) night-time light data are applied to large-scale regional development assessment, while there are little for the study of earthquake and other disasters. This study has extracted night-time light information before and after earthquake within Wenchuan county with adoption of DMSP/OLS night-time light data. The analysis results show that the night-time light index and average intensity of Wenchuan county were decreased by about 76% and 50% respectively from the year of 2007 to 2008. From the year of 2008 to 2011, the two indicators were increased by about 200% and 556% respectively. These research results show that the night-time light data can be used to extract the information of earthquake and evaluate the occurrence of earthquakes and other disasters.

  8. Optimizing pressurized liquid extraction of microbial lipids using the response surface method.

    PubMed

    Cescut, J; Severac, E; Molina-Jouve, C; Uribelarrea, J-L

    2011-01-21

    Response surface methodology (RSM) was used for the determination of optimum extraction parameters to reach maximum lipid extraction yield with yeast. Total lipids were extracted from oleaginous yeast (Rhodotorula glutinis) using pressurized liquid extraction (PLE). The effects of extraction parameters on lipid extraction yield were studied by employing a second-order central composite design. The optimal condition was obtained as three cycles of 15 min at 100°C with a ratio of 144 g of hydromatrix per 100 g of dry cell weight. Different analysis methods were used to compare the optimized PLE method with two conventional methods (Soxhlet and modification of Bligh and Dyer methods) under efficiency, selectivity and reproducibility criteria thanks to gravimetric analysis, GC with flame ionization detector, High Performance Liquid Chromatography linked to Evaporative Light Scattering Detector (HPLC-ELSD) and thin-layer chromatographic analysis. For each sample, the lipid extraction yield with optimized PLE was higher than those obtained with referenced methods (Soxhlet and Bligh and Dyer methods with, respectively, a recovery of 78% and 85% compared to PLE method). Moreover, the use of PLE led to major advantages such as an analysis time reduction by a factor of 10 and solvent quantity reduction by 70%, compared with traditional extraction methods. Copyright © 2010 Elsevier B.V. All rights reserved.

  9. Low-energy route for alcohol/gasohol recovery from fermentor beer. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mix, T.W.

    1982-03-01

    The production of gasohol directly from fermentor beer and gasoline is feasible and will enable a major reduction in the energy requirements for gasohol production. The fermentor beer is first enriched in a beer still to a 69 mol % ethanol, 31 mol % water product which is then dehydrated by extractive distillation with gasoline as the extractive agent. Gasohol is produced directly. In one version of the process, a heavy cut of gasoline, presumed available at a refinery before blending in of light components, is used as the extractive agent. The enriching column overhead vapors are used to reboilmore » the extractive distillation and steam stripping columns and to contribute to the preheating of the fermentor beer feed. Light components are blended into the heavy cut-ethanol bottom product from the extractive distillation column to form the desired gasohol. Energy requirements, including feed preheat, are 11,000 Btu per gallon of ethanol in the product gasohol. One hundred and fifty pound steam is required. In a second version, full range gasoline is used as the extractive agent. The enriching column overhead vapors are again used to reboil the extractive distillation and steam stripping columns and to contribute to the preheating of the fermentor beer feed. Light gasoline components recovered from the decanter following the overhead condenser of the extractive distillation column are blended in with the gasoline-ethanol product leaving the bottom of the extractive distillation column to form the desired gasohol. Energy requirements in this case are 13,000 Btu/gallon of ethanol in the product gasohol. In both of the above cases it is energy-conservative and desirable from a process standpoint to feed the enriched alcohol to the extractive distillation column as a liquid rather than as a vapor.« less

  10. Study on system for extracted type infrared gas analysis

    NASA Astrophysics Data System (ADS)

    Gu, Ruirui; Yao, Jun; Li, Wei; Li, Wenzhong; Zhang, Shaohua; Liu, Zhe; Wen, Qiang

    2015-12-01

    Based on the Beer-Lambert law and the characteristic IR absorption spectrum of CO, a system for extracted type infrared gas analysis has been designed and manufactured, which utilizes different absorptive degrees infrared light gain under different concentration degrees of the gas to be measured to the value of detect CO concentration, including optical path, electric circuit and gas path. A forward and backward gas detection chamber equipped with a micro flow sensor has been used in the optical path as well as a multistage high precision amplifier and filter circuit has been used in the electric circuit. The experimental results accord with the testing standard.

  11. High extraction efficiency GaN-based light-emitting diodes on embedded SiO2 nanorod array and nanoscale patterned sapphire substrate

    NASA Astrophysics Data System (ADS)

    Huang, Hung-Wen; Huang, Jhi-Kai; Kuo, Shou-Yi; Lee, Kang-Yuan; Kuo, Hao-Chung

    2010-06-01

    In this paper, GaN-based LEDs with a nanoscale patterned sapphire substrate (NPSS) and a SiO2 photonic quasicrystal (PQC) structure on an n-GaN layer using nanoimprint lithography are fabricated and investigated. The light output power of LED with a NPSS and a SiO2 PQC structure on an n-GaN layer was 48% greater than that of conventional LED. Strong enhancement in output power is attributed to better epitaxial quality and higher reflectance resulted from NPSS and PQC structures. Transmission electron microscopy images reveal that threading dislocations are blocked or bended in the vicinities of NPSS layer. These results provide promising potential to increase output power for commercial light emitting devices.

  12. Improved spectrophotometric analysis of fullerenes C60 and C70 in high-solubility organic solvents.

    PubMed

    Törpe, Alexander; Belton, Daniel J

    2015-01-01

    Fullerenes are among a number of recently discovered carbon allotropes that exhibit unique and versatile properties. The analysis of these materials is of great importance and interest. We present previously unreported spectroscopic data for C60 and C70 fullerenes in high-solubility solvents, including error bounds, so as to allow reliable colorimetric analysis of these materials. The Beer-Lambert-Bouguer law is found to be valid at all wavelengths. The measured data were highly reproducible, and yielded high-precision molar absorbance coefficients for C60 and C70 in o-xylene and o-dichlorobenzene, which both exhibit a high solubility for these fullerenes, and offer the prospect of improved extraction efficiency. A photometric method for a C60/C70 mixture analysis was validated with standard mixtures, and subsequently improved for real samples by correcting for light scattering, using a power-law fit. The method was successfully applied to the analysis of C60/C70 mixtures extracted from fullerene soot.

  13. SPITZER SPACE TELESCOPE MID-IR LIGHT CURVES OF NEPTUNE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stauffer, John; Rebull, Luisa; Carey, Sean J.

    2016-11-01

    We have used the Spitzer Space Telescope in 2016 February to obtain high cadence, high signal-to-noise, 17 hr duration light curves of Neptune at 3.6 and 4.5 μ m. The light curve duration was chosen to correspond to the rotation period of Neptune. Both light curves are slowly varying with time, with full amplitudes of 1.1 mag at 3.6 μ m and 0.6 mag at 4.5 μ m. We have also extracted sparsely sampled 18 hr light curves of Neptune at W1 (3.4 μ m) and W2 (4.6 μ m) from the Wide-feld Infrared Survey Explorer ( WISE )/ NEOWISEmore » archive at six epochs in 2010–2015. These light curves all show similar shapes and amplitudes compared to the Spitzer light curves but with considerable variation from epoch to epoch. These amplitudes are much larger than those observed with Kepler / K 2 in the visible (amplitude ∼0.02 mag) or at 845 nm with the Hubble Space Telescope ( HST ) in 2015 and at 763 nm in 2016 (amplitude ∼0.2 mag). We interpret the Spitzer and WISE light curves as arising entirely from reflected solar photons, from higher levels in Neptune’s atmosphere than for K 2. Methane gas is the dominant opacity source in Neptune’s atmosphere, and methane absorption bands are present in the HST 763 and 845 nm, WISE W1, and Spitzer 3.6 μ m filters.« less

  14. SCHOOL LIGHTING APPLICATION DATA. EXCERPTS FROM THE IES LIGHTING HANDBOOK, 3RD EDITION.

    ERIC Educational Resources Information Center

    Illuminating Engineering Society, New York, NY.

    THIS PUBLICATION REGARDING SCHOOL LIGHTING WAS PREPARED AS A USEFUL ADDITION TO THE AMERICAN STANDARD GUIDE FOR SCHOOL LIGHTING. THE MATERIAL HAS BEEN EXTRACTED FROM THE IES LIGHTING HANDBOOK TO INCLUDE A MORE DETAILED TREATMENT OF SUBJECTS TO WHICH THE DESIGNER MUST GIVE IMPORTANT CONSIDERATION. THERE IS A MORE EXTENSIVE TREATMENT OF REFLECTED…

  15. Analyte stability during the total testing process: studies of vitamins A, D and E by LC-MS/MS.

    PubMed

    Albahrani, Ali A; Rotarou, Victor; Roche, Peter J; Greaves, Ronda F

    2016-10-01

    There are limited evidence based studies demonstrating the stability of fat-soluble vitamins (FSV) measured in blood. This study aimed to examine the effects of light, temperature and time on vitamins A, D and E throughout the total testing process. Four experiments were conducted. Three investigated the sample matrix, of whole blood, serum and the extracted sample, against the variables of temperature and light; and the fourth experiment investigated the sample during the extraction process against the variable of light. All samples were analysed via our simultaneous FSV method using liquid chromatography-tandem mass spectrometry technology. The allowable clinical percentage change was calculated based on biological variation and desirable method imprecision for each analyte. The total change limit was ±7.3% for 25-OH-vitamin D3, ±11.8% for retinol and ±10.8% for α-tocopherol. Vitamins D and E were stable in the investigated conditions (concentration changes <4%) in the pre-analytical and analytical stages. Vitamin A showed photosensitivity in times >48 h with concentration changes of -6.8% (blood) and -6.5% (serum), both are within the allowable clinical percentage change. By contrast, the extracted retinol sample demonstrated a concentration change of -18.4% after 48 h of light exposure. However, vitamin A in the serum and extracted solution was stable for one month when stored at -20°C. Blood samples for vitamins D and E analyses can be processed in normal laboratory conditions of lighting and temperature. The required conditions for vitamin A analysis are similar when performed within 48 h. For longer-term storage, serum and vitamin A extracts should be stored at -20°C.

  16. Influence of storage conditions on the stability of monomeric anthocyanins studied by reversed-phase high-performance liquid chromatography.

    PubMed

    Morais, Helena; Ramos, Cristina; Forgács, Esther; Cserháti, Tibor; Oliviera, José

    2002-04-25

    The effect of light, storage time and temperature on the decomposition rate of monomeric anthocyanin pigments extracted from skins of grape (Vitis vinifera var. Red globe) was determined by reversed-phase high-performance liquid chromatography (RP-HPLC). The impact of various storage conditions on the pigment stability was assessed by stepwise regression analysis. RP-HPLC separated well the five anthocyanins identified and proved the presence of other unidentified pigments at lower concentrations. Stepwise regression analysis confirmed that the overall decomposition rate of monomeric anthocyanins, peonidin-3-glucoside and malvidin-3-glucoside significantly depended on the time and temperature of storage, the effect of storage time being the most important. The presence or absence of light exerted a negligible impact on the decomposition rate.

  17. Improvement of electroluminescence performance by integration of ZnO nanowires and single-crystalline films on ZnO/GaN heterojunction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Zhifeng; Zhang, Yuantao, E-mail: zhangyt@jlu.edu.cn; Cui, Xijun

    2014-03-31

    Heterojunction light-emitting diodes based on n-ZnO nanowires/ZnO single-crystalline films/p-GaN structure have been demonstrated for an improved electroluminescence performance. A highly efficient ultraviolet emission was observed under forward bias. Compared with conventional n-ZnO/p-GaN structure, high internal quantum efficiency and light extraction efficiency were simultaneously considered in the proposed diode. In addition, the diode can work continuously for ∼10 h with only a slight degradation in harsh environments, indicating its good reliability and application prospect in the future. This route opens possibilities for the development of advanced nanoscale devices in which the advantages of ZnO single-crystalline films and nanostructures can be integrated together.

  18. Enzymatic hydrolysis of oleuropein from Olea europea (olive) leaf extract and antioxidant activities.

    PubMed

    Yuan, Jiao-Jiao; Wang, Cheng-Zhang; Ye, Jian-Zhong; Tao, Ran; Zhang, Yu-Si

    2015-02-11

    Oleuropein (OE), the main polyphenol in olive leaf extract, is likely to decompose into hydroxytyrosol (HT) and elenolic acid under the action of light, acid, base, high temperature. In the enzymatic process, the content of OE in olive leaf extract and enzyme are key factors that affect the yield of HT. A selective enzyme was screened from among 10 enzymes with a high OE degradation rate. A single factor (pH, temperature, time, enzyme quantity) optimization process and a Box-Behnken design were studied for the enzymatic hydrolysis of 81.04% OE olive leaf extract. Additionally, enzymatic hydrolysis results with different substrates (38.6% and 81.04% OE) were compared and the DPPH antioxidant properties were also evaluated. The result showed that the performance of hydrolysis treatments was best using hemicellulase as a bio-catalyst, and the high purity of OE in olive extract was beneficial to biotransform OE into HT. The optimal enzymatic conditions for achieving a maximal yield of HT content obtained by the regression were as follows: pH 5, temperature 55 °C and enzyme quantity 55 mg. The experimental result was 11.31% ± 0.15%, and the degradation rate of OE was 98.54%. From the present investigation of the antioxidant activity determined by the DPPH method, the phenol content and radical scavenging effect were both decreased after enzymatic hydrolysis by hemicellulase. However, a high antioxidant activity of the ethyl acetate extract enzymatic hydrolysate (IC50 = 41.82 μg/mL) was demonstated. The results presented in this work suggested that hemicellulase has promising and attractive properties for industrial production of HT, and indicated that HT might be a valuable biological component for use in pharmaceutical products and functional foods.

  19. Pulsed ultraviolet light reduces immunoglobulin E binding to Atlantic white shrimp (Litopenaeus setiferus) extract.

    PubMed

    Shriver, Sandra; Yang, Wade; Chung, Si-Yin; Percival, Susan

    2011-07-01

    Pulsed ultraviolet light (PUV), a novel food processing and preservation technology, has been shown to reduce allergen levels in peanut and soybean samples. In this study, the efficacy of using PUV to reduce the reactivity of the major shrimp allergen, tropomyosin (36-kDa), and to attenuate immunoglobulin E (IgE) binding to shrimp extract was examined. Atlantic white shrimp (Litopenaeus setiferus) extract was treated with PUV (3 pulses/s, 10 cm from light source) for 4 min. Tropomyosin was compared in the untreated, boiled, PUV-treated and [boiled+PUV]-treated samples, and changes in the tropomyosin levels were determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). IgE binding of the treated extract was analyzed via immunoblot and enzyme-linked immunosorbent assay (ELISA) using pooled human plasma containing IgE antibodies against shrimp allergens. Results showed that levels of tropomyosin and IgE binding were reduced following PUV treatment. However, boiling increased IgE binding, while PUV treatment could offset the increased allergen reactivity caused by boiling. In conclusion, PUV treatment reduced the reactivity of the major shrimp allergen, tropomyosin, and decreased the IgE binding capacity of the shrimp extract.

  20. Real-time data-intensive computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parkinson, Dilworth Y., E-mail: dyparkinson@lbl.gov; Chen, Xian; Hexemer, Alexander

    2016-07-27

    Today users visit synchrotrons as sources of understanding and discovery—not as sources of just light, and not as sources of data. To achieve this, the synchrotron facilities frequently provide not just light but often the entire end station and increasingly, advanced computational facilities that can reduce terabytes of data into a form that can reveal a new key insight. The Advanced Light Source (ALS) has partnered with high performance computing, fast networking, and applied mathematics groups to create a “super-facility”, giving users simultaneous access to the experimental, computational, and algorithmic resources to make this possible. This combination forms an efficientmore » closed loop, where data—despite its high rate and volume—is transferred and processed immediately and automatically on appropriate computing resources, and results are extracted, visualized, and presented to users or to the experimental control system, both to provide immediate insight and to guide decisions about subsequent experiments during beamtime. We will describe our work at the ALS ptychography, scattering, micro-diffraction, and micro-tomography beamlines.« less

  1. Blue light differentially represses mesophyll conductance in high vs low latitude genotypes of Populus trichocarpa Torr. & Gray.

    PubMed

    Momayyezi, Mina; Guy, Robert D

    2017-06-01

    To explore what role chloroplast positioning might have in relation to latitudinal variation in mesophyll conductance (g m ) of Populus trichocarpa Torr. & Gray (black cottonwood), we examined photosynthetic response to different blue light treatments in six representative genotypes (three northern and three southern). The proportion of blue (B) to red light was varied from 0:100, 10:90, 20:80, 40:60, and 60:40 while keeping the total photosynthetic photon flux density constant. Mesophyll conductance was estimated by monitoring chlorophyll fluorescence in combination with gas exchange. Compared to the control (10% B), g m was significantly lower with increasing blue light. Consistent with a change in chloroplast positioning, there was a simultaneous but reversible decrease in chlorophyll content index (CCI), as measured by foliar greenness, while the extracted, actual chlorophyll content (ACC) remained unchanged. Blue-light-induced decreases in g m and CCI were greater in northern genotypes than in southern genotypes, both absolutely and proportionally, consistent with their inherently higher photosynthetic rate. Treatment of leaves with cytochalasin D, an inhibitor of actin-based chloroplast motility, reduced both CCI and ACC but had no effect on the CCI/ACC ratio and fully blocked any effect of blue light on CCI. Cytochalasin D reduced g m by ∼56% under 10% B, but did not block the effect of 60% B on g m , which was reduced a further 20%. These results suggest that the effect of high blue light on g m is at least partially independent of chloroplast repositioning. High blue light reduced carbonic anhydrase activity by 20% (P<0.05), consistent with a possible reduction in protein-mediated facilitation of CO 2 diffusion. Copyright © 2017 Elsevier GmbH. All rights reserved.

  2. Protective effects of Sapindus mukorossi Gaertn against fatty liver disease induced by high fat diet in rats.

    PubMed

    Peng, Qiuxian; Zhang, Qin; Xiao, Wei; Shao, Meng; Fan, Qin; Zhang, Hongwei; Zou, Yukai; Li, Xin; Xu, Wenxue; Mo, Zhixian; Cai, Hongbing

    2014-07-18

    Study the effects of alcohol extract of Sapindus mukorossi Gaertn (AESM) on the metabolism of blood fat, morphology of fenestrated liver sinusoidal endothelial cells (LSEC), and the ultrastructure of liver cells of the rats with non-alcoholic fatty liver disease (NAFLD). Divide SD rats into control group, model group, simvastatin (7.2 mg/kg) group, and S.mukorossi Gaertn group with high dosage (0.5 g/kg), moderate dosage (0.1 g/kg), and low dosage (0.05 g/kg). After feeding with fat-rich nutrients for 3 weeks and establishing the model of hepatic adipose, conduct intragastric administration and provide the rats with fat-rich nutrients at the same time. At the 43rd day, take blood sample and measure aminotransferase and different indexes of blood fat; take hepatic tissue for pathological section, and observe the hepatic morphological patterns under light microscope; obtain and fix the hepatic tissue after injecting perfusate into the body, and observe the changes of fenestrated LSEC under scanning electron microscope; observe the ultrastructure of liver cells under transmission electron microscope. High-dosage alcohol extracts of S.mukorossi Gaertn can alleviate the AST, ALT, TC, TG, LDL, γ-GT, and ALP level, as well as raise the HDL and APN level in the serum of NAFLD-rat model. In addition, through the observation from light microscope and electron microscopes, the morphology of the hepatic tissue and liver cells as well as the recovery of the fenestrated LSEC in the treatment group has become normal. Alcohol extracts of S.mukorossi Gaertn can regulate the level of blood fat and improve the pathological changes of the hepatic tissues in NAFLD-rat model, which demonstrates the effects of down-regulating fat level and protecting liver. Copyright © 2014. Published by Elsevier Inc.

  3. New Methods for B Decay Constants and Form Factors from Lattice NRQCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davies, Christine; Hughes, Ciaran; Monahan, Christopher

    We determine the normalisation of scalar and pseudo scalar current operators made from NonRelativistic QCD (NRQCD) b quarks and Highly Improved Staggered (HISQ) light quarks through O(αs∧QCD/mb). We use matrix elements of these operators to extract B meson decay constants and form factors and compare to those obtained using the standard vector and axial vector operators. We work on MILC second-generation 2+1+1 gluon field configurations, including those with physical light quarks in the sea. This provides a test of systematic uncertainties in these calculations and we find agreement between the results to the 2% level of uncertainty previously quoted.

  4. New methods for B decay constants and form factors from Lattice NRQCD

    NASA Astrophysics Data System (ADS)

    Davies, Christine; Hughes, Ciaran; Monahan, Christopher

    2018-03-01

    We determine the normalisation of scalar and pseudo scalar current operators made from NonRelativistic QCD (NRQCD) b quarks and Highly Improved Staggered (HISQ) light quarks through O(αs∧QCD/mb). We use matrix elements of these operators to extract B meson decay constants and form factors and compare to those obtained using the standard vector and axial vector operators. We work on MILC second-generation 2+1+1 gluon field configurations, including those with physical light quarks in the sea. This provides a test of systematic uncertainties in these calculations and we find agreement between the results to the 2% level of uncertainty previously quoted.

  5. Genetic algorithms used for the optimization of light-emitting diodes and solar thermal collectors

    NASA Astrophysics Data System (ADS)

    Mayer, Alexandre; Bay, Annick; Gaouyat, Lucie; Nicolay, Delphine; Carletti, Timoteo; Deparis, Olivier

    2014-09-01

    We present a genetic algorithm (GA) we developed for the optimization of light-emitting diodes (LED) and solar thermal collectors. The surface of a LED can be covered by periodic structures whose geometrical and material parameters must be adjusted in order to maximize the extraction of light. The optimization of these parameters by the GA enabled us to get a light-extraction efficiency η of 11.0% from a GaN LED (for comparison, the flat material has a light-extraction efficiency η of only 3.7%). The solar thermal collector we considered consists of a waffle-shaped Al substrate with NiCrOx and SnO2 conformal coatings. We must in this case maximize the solar absorption α while minimizing the thermal emissivity ɛ in the infrared. A multi-objective genetic algorithm has to be implemented in this case in order to determine optimal geometrical parameters. The parameters we obtained using the multi-objective GA enable α~97.8% and ɛ~4.8%, which improves results achieved previously when considering a flat substrate. These two applications demonstrate the interest of genetic algorithms for addressing complex problems in physics.

  6. Enhanced light out-coupling efficiency of organic light-emitting diodes with an extremely low haze by plasma treated nanoscale corrugation.

    PubMed

    Hwang, Ju Hyun; Lee, Hyun Jun; Shim, Yong Sub; Park, Cheol Hwee; Jung, Sun-Gyu; Kim, Kyu Nyun; Park, Young Wook; Ju, Byeong-Kwon

    2015-02-14

    Extremely low-haze light extraction from organic light-emitting diodes (OLEDs) was achieved by utilizing nanoscale corrugation, which was simply fabricated with plasma treatment and sonication. The haze of the nanoscale corrugation for light extraction (NCLE) corresponds to 0.21% for visible wavelengths, which is comparable to that of bare glass. The OLEDs with NCLE showed enhancements of 34.19% in current efficiency and 35.75% in power efficiency. Furthermore, the OLEDs with NCLE exhibited angle-stable electroluminescence (EL) spectra for different viewing angles, with no change in the full width at half maximum (FWHM) and peak wavelength. The flexibility of the polymer used for the NCLE and plasma treatment process indicates that the NCLE can be applied to large and flexible OLED displays.

  7. Size-controllable nanopyramids photonic crystal selectively grown on p-GaN for enhanced light-extraction of light-emitting diodes.

    PubMed

    Du, Chengxiao; Wei, Tongbo; Zheng, Haiyang; Wang, Liancheng; Geng, Chong; Yan, Qingfeng; Wang, Junxi; Li, Jinmin

    2013-10-21

    Size-controllable p-GaN hexagonal nanopyramids (HnPs)-photonic crystal (PhC) structures were selectively grown on flat p-GaN layer for the elimination of total internal reflection of light-emitting diodes (LEDs). The LEDs with HnPs-PhC of 46.3% bottom fill factor (PhC lattice constant is 730 nm) showed an improved light output power by 99.9% at forward current of 350 mA compared to the reference LEDs with flat p-GaN layer. We confirmed the effect of HnPs-PhC with different bottom fill factors and the effect of nanopyramid-shaped and nanocolumn-shaped PhC on the light-extraction of LEDs was also investigated by using three-dimensional finite-difference time-domain simulations.

  8. ANTIHEPATOTOXIC ACTICITY OF COCCINIA INDICA

    PubMed Central

    Gopalakrishnan, V.; Rao, K.N.V.; Devi, M.; Padmaha, N.; Lakshmi, P. Manju; Srividya, T.; Vadivukarasi, G.

    2001-01-01

    Aqueous, light petroleum, chloroform, alcohol, benzene and acetone extracts of the leaves of Coccinia indica. (Family: Cucurbitaceae) were screened for antihepatotoxic activity. The extracts were given after the liver was damaged with Ccl4 Liver function was assessed based on liver to body weight ratio pentobarbitone sleep time, serum levels of transaminase (SGPT, SGOT), alkaline phosphatase (SALP and bilirubin. Alcohol and light petroleum was found to have good anti-hepatotoxic activity. PMID:22557027

  9. Person Recognition System Based on a Combination of Body Images from Visible Light and Thermal Cameras.

    PubMed

    Nguyen, Dat Tien; Hong, Hyung Gil; Kim, Ki Wan; Park, Kang Ryoung

    2017-03-16

    The human body contains identity information that can be used for the person recognition (verification/recognition) problem. In this paper, we propose a person recognition method using the information extracted from body images. Our research is novel in the following three ways compared to previous studies. First, we use the images of human body for recognizing individuals. To overcome the limitations of previous studies on body-based person recognition that use only visible light images for recognition, we use human body images captured by two different kinds of camera, including a visible light camera and a thermal camera. The use of two different kinds of body image helps us to reduce the effects of noise, background, and variation in the appearance of a human body. Second, we apply a state-of-the art method, called convolutional neural network (CNN) among various available methods, for image features extraction in order to overcome the limitations of traditional hand-designed image feature extraction methods. Finally, with the extracted image features from body images, the recognition task is performed by measuring the distance between the input and enrolled samples. The experimental results show that the proposed method is efficient for enhancing recognition accuracy compared to systems that use only visible light or thermal images of the human body.

  10. Extraction of ochratoxin A in red wine with dopamine-coated magnetic multi-walled carbon nanotubes.

    PubMed

    Wan, Hong; Zhang, Bo; Bai, Xiao-Lin; Zhao, Yan; Xiao, Meng-Wei; Liao, Xun

    2017-10-01

    A new, rapid, green, and cost-effective magnetic solid-phase extraction of ochratoxin A from red wine samples was developed using polydopamine-coated magnetic multi-walled carbon nanotubes as the absorbent. The polydopamine-coated magnetic multi-walled carbon nanotubes were fabricated with magnetic multi-walled carbon nanotubes and dopamine by an in situ oxidative self-polymerization approach. Transmission electron microscopy, dynamic light scattering, X-ray photoelectron spectroscopy and vibrating sample magnetometry were used to characterize the absorbents. Ochratoxin A was quantified with high-performance liquid chromatography coupled with fluorescence detection, with excitation and emission wavelengths of 338 and 455 nm, respectively. The conditions affecting the magnetic solid-phase extraction procedure, such as pH, extraction solution, extraction time, absorbent amount, desorption solution and desorption time were investigated to obtain the optimal extraction conditions. Under the optimized conditions, the extraction recovery was 91.8-104.5% for ochratoxin A. A linear calibration curve was obtained in the range of 0.1-2.0 ng/mL. The limit of detection was 0.07 ng/mL, and the limit of quantitation was 0.21 ng/mL. The recoveries of ochratoxin A for spiked red wine sample ranged from 95.65 to 100.65% with relative standard deviation less than 8%. The polydopamine-coated magnetic multi-walled carbon nanotubes showed a high affinity toward ochratoxin A, allowing selective extraction and quantification of ochratoxin A from complex sample matrixes. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. A new morphology algorithm for shoreline extraction from DEM data

    NASA Astrophysics Data System (ADS)

    Yousef, Amr H.; Iftekharuddin, Khan; Karim, Mohammad

    2013-03-01

    Digital elevation models (DEMs) are a digital representation of elevations at regularly spaced points. They provide an accurate tool to extract the shoreline profiles. One of the emerging sources of creating them is light detection and ranging (LiDAR) that can capture a highly dense cloud points with high resolution that can reach 15 cm and 100 cm in the vertical and horizontal directions respectively in short periods of time. In this paper we present a multi-step morphological algorithm to extract shorelines locations from the DEM data and a predefined tidal datum. Unlike similar approaches, it utilizes Lowess nonparametric regression to estimate the missing values within the DEM file. Also, it will detect and eliminate the outliers and errors that result from waves, ships, etc by means of anomality test with neighborhood constrains. Because, there might be some significant broken regions such as branches and islands, it utilizes a constrained morphological open and close to reduce these artifacts that can affect the extracted shorelines. In addition, it eliminates docks, bridges and fishing piers along the extracted shorelines by means of Hough transform. Based on a specific tidal datum, the algorithm will segment the DEM data into water and land objects. Without sacrificing the accuracy and the spatial details of the extracted boundaries, the algorithm should smooth and extract the shoreline profiles by tracing the boundary pixels between the land and the water segments. For given tidal values, we qualitatively assess the visual quality of the extracted shorelines by superimposing them on the available aerial photographs.

  12. Polymer bulk heterojunction solar cells with PEDOT:PSS bilayer structure as hole extraction layer.

    PubMed

    Kim, Wanjung; Kim, Namhun; Kim, Jung Kyu; Park, Insun; Choi, Yeong Suk; Wang, Dong Hwan; Chae, Heeyeop; Park, Jong Hyeok

    2013-06-01

    A high current density obtained in a limited, nanometer-thick region is important for high efficiency polymer solar cells (PSCs). The conversion of incident photons to charge carriers only occurs in confined active layers; therefore, charge-carrier extraction from the active layer within the device by using solar light has an important impact on the current density and the related to power conversion efficiency. In this study, we observed a surprising result, that is, extracting the charge carrier generated in the active layer of a PSC device, with a thickness-controlled PEDOT:PSS bilayer that acted as a hole extraction layer (HEL), yielded a dramatically improved power conversion efficiency in two different model systems (P3HT:PC₆₀BM and PCDTBT:PC₇₀BM). To understand this phenomenon, we conducted optical strength simulation, photocurrent-voltage measurements, incident photon to charge carrier efficiency measurements, ultraviolet photoelectron spectroscopy, and AFM studies. The results revealed that approximately 60 nm was the optimum PEDOT:PSS bilayer HEL thickness in PSCs for producing the maximum power conversion efficiency. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Integrated High Resolution Digital Color Light Sensor in 130 nm CMOS Technology.

    PubMed

    Strle, Drago; Nahtigal, Uroš; Batistell, Graciele; Zhang, Vincent Chi; Ofner, Erwin; Fant, Andrea; Sturm, Johannes

    2015-07-22

    This article presents a color light detection system integrated in 130 nm CMOS technology. The sensors and corresponding electronics detect light in a CIE XYZ color luminosity space using on-chip integrated sensors without any additional process steps, high-resolution analog-to-digital converter, and dedicated DSP algorithm. The sensor consists of a set of laterally arranged integrated photodiodes that are partly covered by metal, where color separation between the photodiodes is achieved by lateral carrier diffusion together with wavelength-dependent absorption. A high resolution, hybrid, ∑∆ ADC converts each photo diode's current into a 22-bit digital result, canceling the dark current of the photo diodes. The digital results are further processed by the DSP, which calculates normalized XYZ or RGB color and intensity parameters using linear transformations of the three photo diode responses by multiplication of the data with a transformation matrix, where the coefficients are extracted by training in combination with a pseudo-inverse operation and the least-mean square approximation. The sensor system detects the color light parameters with 22-bit accuracy, consumes less than 60 μA on average at 10 readings per second, and occupies approx. 0.8 mm(2) of silicon area (including three photodiodes and the analog part of the ADC). The DSP is currently implemented on FPGA.

  14. Physiological response of BSC phototrophic community to EPS removal

    NASA Astrophysics Data System (ADS)

    Adessi, Alessandra; Cruz de Carvalho, Ricardo; Silvestre, Susana; Rossi, Federico; Mugnai, Gianmarco; Marques da Silva, Jorge; Branquinho, Cristina; De Philippis, Roberto

    2015-04-01

    Biological Soil Crusts (BSCs) are associations between soil particles and varying proportions of cyanobacteria, heterotrophic bacteria, algae, fungi, lichens and mosses. BSCs play a major role in soil stabilization, and in drylands have been well acknowledged for mitigating desertification effects. Amongst the wide diversity of organisms that compose BSCs, cyanobacteria are the first primary producers: they colonize nutrient-limited soils, modifying the micro-environment through the excretion of large amounts of extracellular polymeric substances (EPSs). EPSs represent a huge carbon and nitrogen source for other inhabitants of the crust, are three-dimensionally spread through the first millimeters of the soil, and have a recognized role in influencing the hydrological behavior of the crust. The aim of this study was to investigate the possible role that EPSs play in the physiology of the phototrophic community residing on a light crust (without mosses or lichens, thus mainly inhabited by cyanobacteria and algae). In particular it was investigated whether the three-dimensional matrix in which EPSs are organized allowed light distribution and diffusion inside the crust, thus influencing photosynthesis. Non-invasive techniques were used to extract the polymeric matrix and to analyze photosynthetic performances in native and extracted BSC samples. Preliminary results suggested that the mild extraction protocol allowed to remove a portion of the matrix, and that this treatment revealed highly significant differences in the optical properties of the crusts comparing native and extracted samples. The extraction did not affect cell viability, as samples after the extraction were still photosynthetically active. However, chlorophyll variable fluorescence was significantly lower in the extracted samples than in native ones, and susceptibility to photoinhibition was significantly modified. Evaluating the role of the EPSs in the community is essential to further understand the equilibrium of such fragile systems as BSCs. Indeed, an effect on the photosynthetic activity would be linked to primary production, thus to the existence, survival, and development of BSCs themselves. Acknowledgments: The Authors would like to acknowledge COST Action ES1104 for funding an STSM on this topic.

  15. Plasmonically sensitized metal-oxide electron extraction layers for organic solar cells.

    PubMed

    Trost, S; Becker, T; Zilberberg, K; Behrendt, A; Polywka, A; Heiderhoff, R; Görrn, P; Riedl, T

    2015-01-16

    ZnO and TiOx are commonly used as electron extraction layers (EELs) in organic solar cells (OSCs). A general phenomenon of OSCs incorporating these metal-oxides is the requirement to illuminate the devices with UV light in order to improve device characteristics. This may cause severe problems if UV to VIS down-conversion is applied or if the UV spectral range (λ < 400 nm) is blocked to achieve an improved device lifetime. In this work, silver nanoparticles (AgNP) are used to plasmonically sensitize metal-oxide based EELs in the vicinity (1-20 nm) of the metal-oxide/organic interface. We evidence that plasmonically sensitized metal-oxide layers facilitate electron extraction and afford well-behaved highly efficient OSCs, even without the typical requirement of UV exposure. It is shown that in the plasmonically sensitized metal-oxides the illumination with visible light lowers the WF due to desorption of previously ionosorbed oxygen, in analogy to the process found in neat metal oxides upon UV exposure, only. As underlying mechanism the transfer of hot holes from the metal to the oxide upon illumination with hν < Eg is verified. The general applicability of this concept to most common metal-oxides (e.g. TiOx and ZnO) in combination with different photoactive organic materials is demonstrated.

  16. Plasmonically sensitized metal-oxide electron extraction layers for organic solar cells

    PubMed Central

    Trost, S.; Becker, T.; Zilberberg, K.; Behrendt, A.; Polywka, A.; Heiderhoff, R.; Görrn, P.; Riedl, T.

    2015-01-01

    ZnO and TiOx are commonly used as electron extraction layers (EELs) in organic solar cells (OSCs). A general phenomenon of OSCs incorporating these metal-oxides is the requirement to illuminate the devices with UV light in order to improve device characteristics. This may cause severe problems if UV to VIS down-conversion is applied or if the UV spectral range (λ < 400 nm) is blocked to achieve an improved device lifetime. In this work, silver nanoparticles (AgNP) are used to plasmonically sensitize metal-oxide based EELs in the vicinity (1–20 nm) of the metal-oxide/organic interface. We evidence that plasmonically sensitized metal-oxide layers facilitate electron extraction and afford well-behaved highly efficient OSCs, even without the typical requirement of UV exposure. It is shown that in the plasmonically sensitized metal-oxides the illumination with visible light lowers the WF due to desorption of previously ionosorbed oxygen, in analogy to the process found in neat metal oxides upon UV exposure, only. As underlying mechanism the transfer of hot holes from the metal to the oxide upon illumination with hν < Eg is verified. The general applicability of this concept to most common metal-oxides (e.g. TiOx and ZnO) in combination with different photoactive organic materials is demonstrated. PMID:25592174

  17. Role of intraocular lens parameters in visual rehabilitation of patients after extracapsular cataract extraction

    NASA Astrophysics Data System (ADS)

    Bakutkin, Valery V.; Galanzha, Vladimir A.

    2001-01-01

    The main method of cataract treatment is micro surgical removing of the opaque lens from the eye with implantation of an intra ocular lens. We performed the comparative study of using various IOL models differing in its materials, index of refraction, spectral properties, configuration, shape, size and other features. Before and after the IOL implantation we performed the following test: visual acuity measuring, refractometry, keratometry, laser interferometric retinometry, color perception assessment, digital photo- and videorecording of the eye with image processing and some others. We found a number of correlations between the IOL properties and some characteristics of the patient's vision. The decentration of the IOL optical part more than 1,5 mm conduced to the non-corneal astigmatism and the prismatic effect. A small diameter of the IOL optical part and high index of refraction promotes to the appearance of the optical aberrations. Leucosapphire IOLs revealed the high degree of light reflection and the minimal adhesive ability of the IOL surface. Leucosapphire IOL revealed the high degree of light reflection and the minimal adhesive ability of the IOL surface. PMMA IOL revealed the low reflective power and the high adhesive ability. The best color vision was revealed in patients with PMMA IOL with an additional compound absorbing not only UV light but also short-wave blue light.

  18. Naturally occurring proteinaceous nanoparticles in Coptidis Rhizoma extract act as concentration-dependent carriers that facilitate berberine absorption

    PubMed Central

    Ma, Bing-Liang; Yin, Chun; Zhang, Bo-Kai; Dai, Yan; Jia, Yi-Qun; Yang, Yan; Li, Qiao; Shi, Rong; Wang, Tian-Ming; Wu, Jia-Sheng; Li, Yuan-Yuan; Lin, Ge; Ma, Yue-Ming

    2016-01-01

    Pharmacological activities of some natural products diminish and even disappear after purification. In this study, we explored the mechanisms underlying the decrease of acute oral toxicity of Coptidis Rhizoma extract after purification. The water solubility, in vitro absorption, and plasma exposure of berberine (the major active compound) in the Coptidis Rhizoma extract were much better than those of pure berberine. Scanning electron microscopy, laser scanning confocal microscopy (LSCM), and dynamic light scattering experiments confirmed that nanoparticles attached to very fine precipitates existed in the aqueous extract solution. The LSCM experiment showed that the precipitates were absorbed with the particles by the mouse intestine. High-speed centrifugation of the extract could not remove the nanoparticles and did not influence plasma exposure or acute oral toxicity. However, after extract dilution, the attached precipitates vanished, although the nanoparticles were preserved, and there were no differences in the acute oral toxicity and plasma exposure between the extract and pure berberine. The nanoparticles were then purified and identified as proteinaceous. Furthermore, they could absorb co-dissolved berberine. Our results indicate that naturally occurring proteinaceous nanoparticles in Coptidis Rhizoma extract act as concentration-dependent carriers that facilitate berberine absorption. These findings should inspire related studies in other natural products. PMID:26822920

  19. Comparison of various techniques for the extraction of umbelliferone and herniarin in Matricaria chamomilla processing fractions.

    PubMed

    Molnar, Maja; Mendešević, Nikolina; Šubarić, Drago; Banjari, Ines; Jokić, Stela

    2017-08-05

    Chamomile, a well-known medicinal plant, is a rich source of bioactive compounds, among which two coumarin derivatives, umbelliferone and herniarin, are often found in its extracts. Chamomile extracts have found a different uses in cosmetic industry, as well as umbelliferone itself, which is, due to its strong absorption of UV light, usually added to sunscreens, while herniarin (7-methoxycoumarin) is also known for its biological activity. Therefore, chamomile extracts with certain herniarin and umbelliferone content could be of interest for application in pharmaceutical and cosmetic products. The aim of this study was to compare the extracts of different chamomile fractions (unprocessed chamomile flowers first class, processed chamomile flowers first class, pulvis and processing waste) and to identify the best material and method of extraction to obtain herniarin and umbelliferone. Various extraction techniques such as soxhlet, hydrodistillation, maceration and supercritical CO 2 extraction were used in this study. Umbelliferone and herniarin content was determined by high performance liquid chromatography (HPLC). The highest yield of umbelliferone (11.80 mg/100 g) and herniarin (82.79 mg/100 g) were obtained from chamomile processing waste using maceration technique with 50% aqueous ethanol solution and this extract has also proven to possess antioxidant activity (61.5% DPPH scavenging activity). This study shows a possibility of potential utilization of waste from chamomile processing applying different extraction techniques.

  20. Involvement of myosin light-chain kinase in endothelial cell retraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wysolmerski, R.B.; Lagunoff, D.

    Permeabilized bovine pulmonary artery endothelial cell monolayers were used to investigate the mechanism of endothelial cell retraction. Postconfluent endothelial cells permeabilized with saponin retracted upon exposure to ATP and Ca{sup 2+}. Retraction was accompanied by thiophosphorylation of 19,000-Da myosin light chains when adenosine 5'-(gamma-({sup 35}S)thio)triphosphate was included in the medium. Both retraction and thiophosphorylation of myosin light chains exhibited a graded quantitative dependence on Ca{sup 2+}. When permeabilized monolayers were extracted in buffer D containing 100 mM KCl and 30 mM MgCl2 for 30 min, the cells failed to retract upon exposure to ATP and Ca{sup 2+}, and no thiophosphorylationmore » of myosin light chains occurred. The ability both to retract and to thiophosphorylate myosin light chains was restored by the addition to the permeabilized, extracted cells of myosin light-chain kinase and calmodulin together but not by either alone. These studies indicate that endothelial cell retraction, as does smooth muscle contraction, depends on myosin light-chain kinase phosphorylation of myosin light chains.« less

  1. Multi-dimensional spatial light communication made with on-chip InGaN photonic integration

    NASA Astrophysics Data System (ADS)

    Yang, Yongchao; Zhu, Bingcheng; Shi, Zheng; Wang, Jinyuan; Li, Xin; Gao, Xumin; Yuan, Jialei; Li, Yuanhang; Jiang, Yan; Wang, Yongjin

    2017-04-01

    Here, we propose, fabricate and characterize suspended photonic integration of InGaN multiple-quantum-well light-emitting diode (MQW-LED), waveguide and InGaN MQW-photodetector on a single chip. The unique light emission property of InGaN MQW-LED makes it feasible to establish multi-dimensional spatial data transmission using visible light. The in-plane light communication system is comprised of InGaN MQW-LED, waveguide and InGaN MQW-photodetector, and the out-of-plane data transmission is realized by detecting the free-space light emission via a commercial photodiode module. Moreover, a full-duplex light communication is experimentally demonstrated at a data transmission rate of 50 Mbps when both InGaN MQW-diodes operate under simultaneous light emission and detection mode. The in-plane superimposed signals are able to be extracted through the self-interference cancellation method, and the out-of-plane superimposed signals are in good agreement with the calculated signals according to the extracted transmitted signals. These results are promising for the development of on-chip InGaN photonic integration for diverse applications.

  2. High-performance thin-layer chromatographic methods in the evaluation of the antioxidant and anti-hyperglycemic activity of Myrmecodia platytyrea as a promising opportunity in diabetes treatment.

    PubMed

    Agatonovic-Kustrin, S; Morton, D W; Adam, A; Mizaton, H H; Zakaria, H

    2017-12-29

    The steady increase of diabetes is becoming a major burden on health care systems. As diabetic complications arise from oxidative stress, an antioxidant therapy along with anti-diabetic drugs is recommended. Myrmecodia or ant plant is highly valued as a traditional medicine in West Papua. It is used as an alternative treatment for diabetes, as the substances produced by ants can reduce blood sugar levels. The aim of this study was to develop and establish high-performance thin-layer chromatographic (HPTLC)-bioautographic methods to measure the antioxidant and hypoglycemic effects in different extracts from Myrmecodia platytyrea and to compare them with sterol content. Antioxidant activity in methanol, ethanol, dichloromethane (DCM) and ethyl acetate (EA) extracts were measured with a direct HPTLC-2,2-diphenyl-1-picrylhydrazyl free radical (DPPH) assay, while hypoglycemic effects were assessed using a newly developed α-amylase inhibitory activity assay. Stigmasterol is observed, after derivatization with anisaldehyde, as purple colored zones under visible light at hRF values of 0.66. The highest antioxidant activity was observed in the ethanol extract which is rich in polyphenols and flavonoids, while the DCM extract did not show antioxidant activity, but had significant α-amylase inhibitory activity. The highest α-amylase inhibitory activity was observed in the EA and DCM extracts and was related to their stigmasterol content. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  3. Hierarchical Recognition Scheme for Human Facial Expression Recognition Systems

    PubMed Central

    Siddiqi, Muhammad Hameed; Lee, Sungyoung; Lee, Young-Koo; Khan, Adil Mehmood; Truc, Phan Tran Ho

    2013-01-01

    Over the last decade, human facial expressions recognition (FER) has emerged as an important research area. Several factors make FER a challenging research problem. These include varying light conditions in training and test images; need for automatic and accurate face detection before feature extraction; and high similarity among different expressions that makes it difficult to distinguish these expressions with a high accuracy. This work implements a hierarchical linear discriminant analysis-based facial expressions recognition (HL-FER) system to tackle these problems. Unlike the previous systems, the HL-FER uses a pre-processing step to eliminate light effects, incorporates a new automatic face detection scheme, employs methods to extract both global and local features, and utilizes a HL-FER to overcome the problem of high similarity among different expressions. Unlike most of the previous works that were evaluated using a single dataset, the performance of the HL-FER is assessed using three publicly available datasets under three different experimental settings: n-fold cross validation based on subjects for each dataset separately; n-fold cross validation rule based on datasets; and, finally, a last set of experiments to assess the effectiveness of each module of the HL-FER separately. Weighted average recognition accuracy of 98.7% across three different datasets, using three classifiers, indicates the success of employing the HL-FER for human FER. PMID:24316568

  4. The influence of light quality on the accumulation of flavonoids in tobacco (Nicotiana tabacum L.) leaves.

    PubMed

    Fu, Bo; Ji, Xiaoming; Zhao, Mingqin; He, Fan; Wang, Xiaoli; Wang, Yiding; Liu, Pengfei; Niu, Lu

    2016-09-01

    Flavonoids are important secondary metabolites in plants regulated by the environment. To analyze the effect of light quality on the accumulation of flavonoids, we performed a rapid analysis of flavonoids in extracts of tobacco leaves using UHPLC-QTOF. A total of 12 flavonoids were detected and identified in tobacco leaves, which were classified into flavonoid methyl derivatives and flavonoid glycoside derivatives according to the groups linked to the flavonoid core. Correlation analysis was further conducted to investigate the effect of different wavelengths of light on their accumulation. The content of flavonoid methyl derivatives was positively correlated with the proportions of far-red light (FR; 716-810nm) and near-infrared light (NIR; 810-2200nm) in the sunlight spectrum and negatively correlated with the proportion of ultraviolet (UV-A; 350-400nm) and the red/far-red ratio (R/FR). By contrast, the content of flavonoid glycoside derivatives was positively correlated with the proportion of UV-A and the R/FR, and negatively correlated with FR and NIR. The results indicated that light quality with higher proportions of FR and NIR increases the activity of flavonoid methyltransferases but suppresses the activity of flavonoid glycoside transferases. While a high proportion of UV-A and a high R/FR can increase flavonoid glycoside transferase activity but suppress flavonoid methyltransferase activity. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Apparent rotation properties of space debris extracted from photometric measurements

    NASA Astrophysics Data System (ADS)

    Šilha, Jiří; Pittet, Jean-Noël; Hamara, Michal; Schildknecht, Thomas

    2018-02-01

    Knowledge about the rotation properties of space debris objects is essential for the active debris removal missions, accurate re-entry predictions and to investigate the long-term effects of the space environment on the attitude motion change. Different orbital regions and object's physical properties lead to different attitude states and their change over time. Since 2007 the Astronomical Institute of the University of Bern (AIUB) performs photometric measurements of space debris objects. To June 2016 almost 2000 light curves of more than 400 individual objects have been acquired and processed. These objects are situated in all orbital regions, from low Earth orbit (LEO), via global navigation systems orbits and high eccentricity orbit (HEO), to geosynchronous Earth orbit (GEO). All types of objects were observed including the non-functional spacecraft, rocket bodies, fragmentation debris and uncorrelated objects discovered during dedicated surveys. For data acquisition, we used the 1-meter Zimmerwald Laser and Astrometry Telescope (ZIMLAT) at the Swiss Optical Ground Station and Geodynamics Observatory Zimmerwald, Switzerland. We applied our own method of phase-diagram reconstruction to extract the apparent rotation period from the light curve. Presented is the AIUB's light curve database and the obtained rotation properties of space debris as a function of object type and orbit.

  6. Extraction of Renilla-type luciferin from the calcium-activated photoproteins aequorin, mnemiopsin, and berovin.

    PubMed Central

    Ward, W W; Cormier, M J

    1975-01-01

    Photoproteins, which emit light in an oxygen-independent intramolecular reaction initiated by calcium ions, have been isolated from several bioluminescent organisms, including the hydrozoan jellyfish Aequorea and the ctenophore Mnemiopsis. The system of a related anthozoan coelenterate, the sea pansy Renilla reniformis, however, is oxygen dependent, requiring two organic components, luciferin and luciferase. Previously published indirect evidence indicates that photoproteins may contain a Renilla-type luciferin. We have now extracted in high yield a Renilla-type luciferin from three photoproteins, aequorin (45% yield), mnemiopsin (98% yield), and berovin (85% yield). Photoprotein luciferin, released from the holoprotein by mercaptoethanol treatment and separated from apo-photoprotein by gel filtration, no longer responds to calcium but now requires luciferase and O2 for light production. Photoprotein luciferin is identical to Renilla luciferin with respect to reaction kinetics and bioluminescence spectral distribution. In view of these results, the generally accepted hypothesis that the photoprotein chromophore is a protein-stabilized hydroperoxide of luciferin must be modified. We believe, instead, that the chromophore is free luciferin and that oxygen is bound as an oxygenated derivative of an amino-acid side chain of the protein. We propose the general term "coelenterate luciferin" to describe the light-producing chromophore from all bioluminescent coelenterates and ctenophores. PMID:241074

  7. Light Absorption and Excitation-Emission Fluorescence of Urban Organic Aerosol Components and Their Relationship to Chemical Structure.

    PubMed

    Chen, Qingcai; Ikemori, Fumikazu; Mochida, Michihiro

    2016-10-18

    The present study used a combination of solvent and solid-phase extractions to fractionate organic compounds with different polarities from total suspended particulates in Nagoya, Japan, and their optical characteristics were obtained on the basis of their UV-visible absorption spectra and excitation-emission matrices (EEMs). The relationship between their optical characteristics and chemical structures was investigated based on high-resolution aerosol mass spectra (HR-AMS spectra), soft ionization mass spectra and Fourier transform infrared (FT-IR) spectra. The major light-absorption organics were less polar organic fractions, which tended to have higher mass absorption efficiencies (MAEs) and lower wavelength dependent Ångström exponents (Å) than the more polar organic fractions. Correlation analyses indicate that organic compounds with O and N atoms may contribute largely to the total light absorption and fluorescence of the organic aerosol components. The extracts from the aerosol samples were further characterized by a classification of the EEM profiles using a PARAFAC model. Different fluorescence components in the aerosol organic EEMs were associated with specific AMS ions and with different functional groups from the FT-IR analysis. These results may be useful to determine and further classify the chromophores in atmospheric organic aerosols using EEM spectroscopy.

  8. Gender Recognition from Human-Body Images Using Visible-Light and Thermal Camera Videos Based on a Convolutional Neural Network for Image Feature Extraction

    PubMed Central

    Nguyen, Dat Tien; Kim, Ki Wan; Hong, Hyung Gil; Koo, Ja Hyung; Kim, Min Cheol; Park, Kang Ryoung

    2017-01-01

    Extracting powerful image features plays an important role in computer vision systems. Many methods have previously been proposed to extract image features for various computer vision applications, such as the scale-invariant feature transform (SIFT), speed-up robust feature (SURF), local binary patterns (LBP), histogram of oriented gradients (HOG), and weighted HOG. Recently, the convolutional neural network (CNN) method for image feature extraction and classification in computer vision has been used in various applications. In this research, we propose a new gender recognition method for recognizing males and females in observation scenes of surveillance systems based on feature extraction from visible-light and thermal camera videos through CNN. Experimental results confirm the superiority of our proposed method over state-of-the-art recognition methods for the gender recognition problem using human body images. PMID:28335510

  9. Gender Recognition from Human-Body Images Using Visible-Light and Thermal Camera Videos Based on a Convolutional Neural Network for Image Feature Extraction.

    PubMed

    Nguyen, Dat Tien; Kim, Ki Wan; Hong, Hyung Gil; Koo, Ja Hyung; Kim, Min Cheol; Park, Kang Ryoung

    2017-03-20

    Extracting powerful image features plays an important role in computer vision systems. Many methods have previously been proposed to extract image features for various computer vision applications, such as the scale-invariant feature transform (SIFT), speed-up robust feature (SURF), local binary patterns (LBP), histogram of oriented gradients (HOG), and weighted HOG. Recently, the convolutional neural network (CNN) method for image feature extraction and classification in computer vision has been used in various applications. In this research, we propose a new gender recognition method for recognizing males and females in observation scenes of surveillance systems based on feature extraction from visible-light and thermal camera videos through CNN. Experimental results confirm the superiority of our proposed method over state-of-the-art recognition methods for the gender recognition problem using human body images.

  10. Microwave-assisted green synthesis of superparamagnetic nanoparticles using fruit peel extracts: surface engineering, T 2 relaxometry, and photodynamic treatment potential.

    PubMed

    Bano, Shazia; Nazir, Samina; Nazir, Alia; Munir, Saeeda; Mahmood, Tariq; Afzal, Muhammad; Ansari, Farzana Latif; Mazhar, Kehkashan

    2016-01-01

    Superparamagnetic iron oxide nanoparticles (SPIONs) have the potential to be used as multimodal imaging and cancer therapy agents due to their excellent magnetism and ability to generate reactive oxygen species when exposed to light. We report the synthesis of highly biocompatible SPIONs through a facile green approach using fruit peel extracts as the biogenic reductant. This green synthesis protocol involves the stabilization of SPIONs through coordination of different phytochemicals. The SPIONs were functionalized with polyethylene glycol (PEG)-6000 and succinic acid and were extensively characterized by X-ray diffraction analysis, field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, atomic force microscopy, Rutherford backscattering spectrometry, diffused reflectance spectroscopy, fluorescence emission, Fourier-transform infrared spectroscopy, ultraviolet-visible spectroscopy, and magnetization analysis. The developed SPIONs were found to be stable, almost spherical with a size range of 17-25 nm. They exhibited excellent water dispersibility, colloidal stability, and relatively high R 2 relaxivity (225 mM(-1) s(-1)). Cell viability assay data revealed that PEGylation or carboxylation appears to significantly shield the surface of the particles but does not lead to improved cytocompatibility. A highly significant increase of reactive oxygen species in light-exposed samples was found to play an important role in the photokilling of human cervical epithelial malignant carcinoma (HeLa) cells. The bio-SPIONs developed are highly favorable for various biomedical applications without risking interference from potentially toxic reagents.

  11. Microwave-assisted green synthesis of superparamagnetic nanoparticles using fruit peel extracts: surface engineering, T2 relaxometry, and photodynamic treatment potential

    PubMed Central

    Bano, Shazia; Nazir, Samina; Nazir, Alia; Munir, Saeeda; Mahmood, Tariq; Afzal, Muhammad; Ansari, Farzana Latif; Mazhar, Kehkashan

    2016-01-01

    Superparamagnetic iron oxide nanoparticles (SPIONs) have the potential to be used as multimodal imaging and cancer therapy agents due to their excellent magnetism and ability to generate reactive oxygen species when exposed to light. We report the synthesis of highly biocompatible SPIONs through a facile green approach using fruit peel extracts as the biogenic reductant. This green synthesis protocol involves the stabilization of SPIONs through coordination of different phytochemicals. The SPIONs were functionalized with polyethylene glycol (PEG)-6000 and succinic acid and were extensively characterized by X-ray diffraction analysis, field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, atomic force microscopy, Rutherford backscattering spectrometry, diffused reflectance spectroscopy, fluorescence emission, Fourier-transform infrared spectroscopy, ultraviolet-visible spectroscopy, and magnetization analysis. The developed SPIONs were found to be stable, almost spherical with a size range of 17–25 nm. They exhibited excellent water dispersibility, colloidal stability, and relatively high R2 relaxivity (225 mM−1 s−1). Cell viability assay data revealed that PEGylation or carboxylation appears to significantly shield the surface of the particles but does not lead to improved cytocompatibility. A highly significant increase of reactive oxygen species in light-exposed samples was found to play an important role in the photokilling of human cervical epithelial malignant carcinoma (HeLa) cells. The bio-SPIONs developed are highly favorable for various biomedical applications without risking interference from potentially toxic reagents. PMID:27570452

  12. Optimizing density patterns to achieve desired light extraction for displays

    NASA Astrophysics Data System (ADS)

    Davenport, T. L. R.; Cassarly, W. J.

    2007-01-01

    In displays such as backlights and signage, it is often desirable to produce a particular spatial luminance distribution of light. This work demonstrates an iterative optimization technique for determining the density of light extractors required to produce desired luminance distributions.

  13. Performance and stability analysis of curcumin dye as a photo sensitizer used in nanostructured ZnO based DSSC

    NASA Astrophysics Data System (ADS)

    Sinha, D.; De, D.; Ayaz, A.

    2018-03-01

    Environmental friendly natural dye curcumin extracted from low-cost Curcumina longa stem is used as a photo-sensitizer for the fabrication of ZnO-based dye-sensitized solar cells (DSSC). Nanostructured ZnO is fabricated on a transparent conducting glass (TCO), using a cost-effective chemical bath deposition technique. Scanning electron microscopic images show hexagonal patterned ZnO nano-towers decorated with several nanosteps. The average length of ZnO nano-tower is 5 μm and diameter is 1.2 μm. The UV-Vis spectroscopic study of the curcumin dye is used to understand the light absorption behavior as well as band gap energy of the extracted natural dye. The dye shows wider absorption band-groups over 350-470 nm and 500-600 nm with two peaks positioned at 425 nm and 525 nm. The optical band gap energy and energy band position of the dye is derived which supports its stability and high electron affinity that makes it suitable for light harvesting and effortless electron transfer from dye to the semiconductor or interface between them. FTIR spectrum of curcumin dye-sensitized ZnO-based DSSC shows the presence of anchoring groups and colouring constitutes. The I-V and P-V curves of the fabricated DSSC are measured under simulated light (100 mW/cm2). The highest visible light to electric conversion efficiency of 0.266% (using ITO) and 0.33% (using FTO) is achieved from the curcumin dye-sensitized cell.

  14. Physiological, biochemical and molecular processes associated with gravitropism in roots of maize

    NASA Astrophysics Data System (ADS)

    Biermann, B.; Feldman, L. J.

    1994-08-01

    This research aims to characterize regulation of the principal cytosolic protein kinases in maize, cultivar `Merit' root tips, since much evidence indicates that stimuli which modulate the gravitropic response in this system act through regulation of activity of these enzymes. To this end, we have cloned a maize protein kinase belonging to a group of plant protein kinases with a catalytic domain similar in primary structure to the second messenger-regulated protein kinases known in animal and fungal systems. However, both the unique structural features conserved among plant protein kinases in this group, and lack of evidence for cyclic nucleotide signalling in plants point to operation of a novel protein kinase regulatory mechanism in plants. In order to test effects of possible regulators on protein kinase activity, we developed a sensitive method for detecting regulation of autophosphoryl labelling of protein kinases in unfractionated maize protein extracts. Regulation of protein kinase autophosphorylation in these extracts was different from that known in animals and fungi, further suggesting operation of unique protein kinase regulatory mechanisms in plants. Previous research has shown that light, or factors modulated by light, regulate plant protein kinase activity. We found that protein kinase activity was co-immunoprecipitated with the plant photoreceptor phytochrome, and was associated with phytochrome by high-affinity chemical interactions. Far-red reversibility of red-light regulation of phytochrome phosphorylation by the associated protein kinase indicates that it may modulate or transduce the light signals which lead to gravitropic sensitivity in `Merit' maize.

  15. Evaluation of simulation alternatives for the brute-force ray-tracing approach used in backlight design

    NASA Astrophysics Data System (ADS)

    Desnijder, Karel; Hanselaer, Peter; Meuret, Youri

    2016-04-01

    A key requirement to obtain a uniform luminance for a side-lit LED backlight is the optimised spatial pattern of structures on the light guide that extract the light. The generation of such a scatter pattern is usually performed by applying an iterative approach. In each iteration, the luminance distribution of the backlight with a particular scatter pattern is analysed. This is typically performed with a brute-force ray-tracing algorithm, although this approach results in a time-consuming optimisation process. In this study, the Adding-Doubling method is explored as an alternative way for evaluating the luminance of a backlight. Due to the similarities between light propagating in a backlight with extraction structures and light scattering in a cloud of light scatterers, the Adding-Doubling method which is used to model the latter could also be used to model the light distribution in a backlight. The backlight problem is translated to a form upon which the Adding-Doubling method is directly applicable. The calculated luminance for a simple uniform extraction pattern with the Adding-Doubling method matches the luminance generated by a commercial raytracer very well. Although successful, no clear computational advantage over ray tracers is realised. However, the dynamics of light propagation in a light guide as used the Adding-Doubling method, also allow to enhance the efficiency of brute-force ray-tracing algorithms. The performance of this enhanced ray-tracing approach for the simulation of backlights is also evaluated against a typical brute-force ray-tracing approach.

  16. Anticancer and antioxidant activity of bread enriched with broccoli sprouts.

    PubMed

    Gawlik-Dziki, Urszula; Świeca, Michał; Dziki, Dariusz; Sęczyk, Łukasz; Złotek, Urszula; Różyło, Renata; Kaszuba, Kinga; Ryszawy, Damian; Czyż, Jarosław

    2014-01-01

    This study is focused on antioxidant and anticancer capacity of bread enriched with broccoli sprouts (BS) in the light of their potential bioaccessibility and bioavailability. Generally, bread supplementation elevated antioxidant potential of product (both nonenzymatic and enzymatic antioxidant capacities); however, the increase was not correlated with the percent of BS. A replacement up to 2% of BS gives satisfactory overall consumers acceptability and desirable elevation of antioxidant potential. High activity was especially found for extracts obtained after simulated digestion, which allows assuming their protective effect for upper gastrointestinal tract; thus, the anticancer activity against human stomach cancer cells (AGS) was evaluated. A prominent cytostatic response paralleled by the inhibition of AGS motility in the presence of potentially mastication-extractable phytochemicals indicates that phenolic compounds of BS retain their biological activity in bread. Importantly, the efficient phenolics concentration was about 12 μM for buffer extract, 13 μM for extracts after digestion in vitro, and 7 μM for extract after absorption in vitro. Our data confirm chemopreventive potential of bread enriched with BS and indicate that BS comprise valuable food supplement for stomach cancer chemoprevention.

  17. Fruit peel extract mediated green synthesis of zinc oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Nava, O. J.; Soto-Robles, C. A.; Gómez-Gutiérrez, C. M.; Vilchis-Nestor, A. R.; Castro-Beltrán, A.; Olivas, A.; Luque, P. A.

    2017-11-01

    This work presents a study of the effects on the photocatalytic capabilities of zinc oxide nanoparticles when prepared via green synthesis using different fruit peel extracts as reducing agents. Zinc nitrate was used as a source of the zinc ions, while Lycopersicon esculentum (tomato), Citrus sinensis (orange), Citrus paradisi (grapefruit) and Citrus aurantifolia (lemon) contributed their peels for extracts. The Synthesized Samples were studied and characterized through Fourier Transform Infrared Spectroscopy (FTIR), X-Ray Diffraction (XRD), and High Resolution Transmission Electron Microscopy (HRTEM). All samples presented a band at 618 cm-1, indicating the presence of the Znsbnd O bond. The different samples all presented the same hexagonal crystal growth in their structure, the Wurtzite phase. The surface morphology of the nanoparticles showed that, depending on the extract used, the samples vary in size and shape distribution due to the chemical composition of the extracts. The photocatalytic properties of the zinc oxide samples were tested through UV light aided degradation of methylene blue. Most samples exhibited degradation rates at 180 min of around 97%, a major improvement when compared to chemically synthesized commercially available zinc oxide nanoparticles.

  18. Photodynamic therapy of Curcuma longa extract stimulated with blue light against Aggregatibacter actinomycetemcomitans.

    PubMed

    Saitawee, Darika; Teerakapong, Aroon; Morales, Noppawan Phumala; Jitprasertwong, Paiboon; Hormdee, Doosadee

    2018-06-01

    Curcumin, one of an established curcuminoid substances extracted from Curcuma longa, has been used as a photosensitizer (PS) in photodynamic therapy (PDT). Curcuminoid substances has been reported to have benefits in treating dental chronic infection and inflammation diseases, such as chronic periodontitis. The purpose of this study was to find the optimum concentration of Curcuma longa (CL) extract, containing all curcuminoid substances, and the power density of blue light (BL) in photodynamic therapy against periodontally pathogenic bacteria, A. actinomycetemcomitans. Antibacterial activity of various concentrations of CL extract against A. actinomycetemcomitans was determined. Exponentially growing bacteria were combined with 2-fold dilution of CL extract solution ranging from 25 to 0.098 μg/ml. Co-culture bacteria treated with 0.12% chlorhexidine (CHX) served as the positive control. The effect of photostimulation with light emitting diode (LED) 420-480 nm at 16.8 J/cm 2 for 1 min on the selected concentration of CL extract was examined. Bacteria viability was determined by plate counting technique. In addition, production of free radicals was tested by electron spin resonance spectroscope (ESR) with 5,5-dimethyl-1-pyrroline N-oxide (DMPO). The antibacterial activity of CL extract was dose dependent. Without BL, 25 μg/ml CL extract showed 6.03 ± 0.39 log 10 A. actinomycetemcomitans. Interestingly, the combination of BL and 0.78 μg/ml CL extract solution showed complete absence of A. actinomycetemcomitans. Peak signal intensity of hydroxyl radical production was also detected with the combination of BL and CL. CL extract not only had antimicrobial activity but also could be used as an effective PS when stimulated with BL in PDT. The optimal antibacterial effect of CL extract with BL was equal to the standard oral disinfectant, 0.12% CHX. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Fabrication of a nano-cone array on a p-GaN surface for enhanced light extraction efficiency from GaN-based tunable wavelength LEDs.

    PubMed

    Soh, C B; Wang, B; Chua, S J; Lin, Vivian K X; Tan, Rayson J N; Tripathy, S

    2008-10-08

    We report on the fabrication of a nano-cone structured p-GaN surface for enhanced light extraction from tunable wavelength light emitting diodes (LEDs). Prior to p-contact metallization, self-assembled colloidal particles are deposited and used as a mask for plasma etching to create nano-cone structures on the p-GaN layer of LEDs. A well-defined periodic nano-cone array, with an average cone diameter of 300 nm and height of 150 nm, is generated on the p-GaN surface. The photoluminescence emission intensity recorded from the regions with the nano-cone array is increased by two times as compared to LEDs without surface patterning. The light output power from the LEDs with surface nano-cones shows significantly higher electroluminescence intensity at an injection current of 70 mA. This is due to the internal multiple scattering of light from the nano-cone sidewalls. Furthermore, we have shown that with an incorporation of InGaN nanostructures in the quantum well, the wavelength of these surface-patterned LEDs can be tuned from 517 to 488 nm with an increase in the injection current. This methodology may serve as a practical approach to increase the light extraction efficiency from wavelength tunable LEDs.

  20. Dynamic Features for Iris Recognition.

    PubMed

    da Costa, R M; Gonzaga, A

    2012-08-01

    The human eye is sensitive to visible light. Increasing illumination on the eye causes the pupil of the eye to contract, while decreasing illumination causes the pupil to dilate. Visible light causes specular reflections inside the iris ring. On the other hand, the human retina is less sensitive to near infra-red (NIR) radiation in the wavelength range from 800 nm to 1400 nm, but iris detail can still be imaged with NIR illumination. In order to measure the dynamic movement of the human pupil and iris while keeping the light-induced reflexes from affecting the quality of the digitalized image, this paper describes a device based on the consensual reflex. This biological phenomenon contracts and dilates the two pupils synchronously when illuminating one of the eyes by visible light. In this paper, we propose to capture images of the pupil of one eye using NIR illumination while illuminating the other eye using a visible-light pulse. This new approach extracts iris features called "dynamic features (DFs)." This innovative methodology proposes the extraction of information about the way the human eye reacts to light, and to use such information for biometric recognition purposes. The results demonstrate that these features are discriminating features, and, even using the Euclidean distance measure, an average accuracy of recognition of 99.1% was obtained. The proposed methodology has the potential to be "fraud-proof," because these DFs can only be extracted from living irises.

  1. Radiation of the high-order plasmonic modes of large gold nanospheres excited by surface plasmon polaritons.

    PubMed

    Chen, Jing-Dong; Xiang, Jin; Jiang, Shuai; Dai, Qiao-Feng; Tie, Shao-Long; Lan, Sheng

    2018-05-17

    Large metallic nanoparticles with sizes comparable to the wavelength of light are expected to support high-order plasmon modes exhibiting resonances in the visible to near infrared spectral range. However, the radiation behavior of high-order plasmon modes, including scattering spectra and radiation patterns, remains unexplored. Here, we report on the first observation and characterization of the high-order plasmon modes excited in large gold nanospheres by using the surface plasmon polaritons generated on the surface of a thin gold film. The polarization-dependent scattering spectra were measured by inserting a polarization analyzer in the collection channel and the physical origins of the scattering peaks observed in the scattering spectra were clearly identified. More interestingly, the radiation of electric quadrupoles and octupoles was resolved in both frequency and spatial domains. In addition, the angular dependences of the radiation intensity for all plasmon modes were extracted by fitting the polarization-dependent scattering spectra with multiple Lorentz line shapes. A significant enhancement of the electric field was found in the gap plasmon modes and it was employed to generate hot-electron intraband luminescence. Our findings pave the way for exploiting the high-order plasmon modes of large metallic nanoparticles in the manipulation of light radiation and light-matter interaction.

  2. Evaluating visual function in cataract.

    PubMed

    Elliott, D B

    1993-11-01

    This paper reviews recent research on the evaluation of visual function in cataract. Visual impairment in cataract is principally caused by increased intraocular forward light scatter. It is assumed that visual acuity (VA) measurements assess the impact of narrow angle light scatter. This also makes the measurement of high spatial frequency contrast sensitivity (CS) unnecessary. However, VA measurements alone are an inadequate assessment of visual impairment in some patients with cataract. In addition, it is suggested that a measurement of wide-angle light scatter is required. This can be evaluated directly using the van den Berg Straylightmeter, or indirectly using low spatial frequency CS or disability glare (DG) tests. The following are discussed: (1) the relative usefulness of these tests; (2) how they can be incorporated into the decision as to when to extract a cataract; and (3) the importance of considering binocular visual function.

  3. Effect of different solvents extracts and mode of action of Loktanella spp. Gb03 on toxic dinoflagellate

    NASA Astrophysics Data System (ADS)

    Hameed, Anmar; Usup, Gires; Ahmad, Asmat

    2016-11-01

    This study was aimed to evaluate the algicidal activity of Loktanella sp. Gb-03 bacterial extracts against toxic dinoflagellate, using various polar and non-polar solvents. For this purpose, six different solvent extracts were prepared (i.e. methanol, ethyl acetate, hexane, chloroform, acetonitrile and water). Ratio of 1:100 (v:v) (extract to dinoflagellate culture) of each extract was used for preliminary algicidal activity screening against toxic dinoflagellate Coolia malaynesis. Dinoflagellate cells at the stationary phase (1.0 × 103 cells/ mL) were treated with 1% (v/v) of each extract by using 24-well microplate. The plates were then incubated for 24 hours at dinoflagellate culture condition (under a light intensity of 140 µmol m-2s-1 and 12:12 hours light:dark photoperiod). The result of algicidal activity screening showed that all 6 extracts from Loktanella sp. Gb-03 had different ranges of algicidal activity against the toxic dinoflagellates. Ethyl acetate extract showed the highest activity against C. malaynesis and also other harmful dinoflagellate (Alexandrium sp. Alexandrium leei, Alexandrium affine, Alexandrium tamiyavanichi, Alexandrium tamarense, Gambierdiscus belizeanus, and Ostreopsis). This study was the first to explore the algicidal activity of Loktanella sp. Gb-03 extracts against toxic dinoflagellate with ethyl acetate as the best solvent to extract algicidal active compounds.

  4. Semiconductor light-emitting devices having concave microstructures providing improved light extraction efficiency and method for producing same

    DOEpatents

    Tansu, Nelson; Gilchrist, James F; Ee, Yik-Khoon; Kumnorkaew, Pisist

    2013-11-19

    A conventional semiconductor LED is modified to include a microlens layer over its light-emitting surface. The LED may have an active layer including at least one quantum well layer of InGaN and GaN. The microlens layer includes a plurality of concave microstructures that cause light rays emanating from the LED to diffuse outwardly, leading to an increase in the light extraction efficiency of the LED. The concave microstructures may be arranged in a substantially uniform array, such as a close-packed hexagonal array. The microlens layer is preferably constructed of curable material, such as polydimethylsiloxane (PDMS), and is formed by soft-lithography imprinting by contacting fluid material of the microlens layer with a template bearing a monolayer of homogeneous microsphere crystals, to cause concave impressions, and then curing the material to fix the concave microstructures in the microlens layer and provide relatively uniform surface roughness.

  5. Characterization of renal amyloid derived from the variable region of the lambda light chain subgroup II.

    PubMed Central

    Picken, M. M.; Gallo, G.; Buxbaum, J.; Frangione, B.

    1986-01-01

    Amyloid fibrils were extracted from the kidney of a patient (CHE) shown to have tetramers and dimers of a monoclonal lambda light chain in his serum, and whose bone marrow cells in short-term culture synthesized these forms and a smaller lambda fragment of approximately 10,000 to 12,000 daltons. Biochemical and serologic analysis of a fraction of a size (obtained from amyloid fibrils extracted from the kidney) similar to that synthesized by the bone marrow cells revealed a light chain fragment corresponding to the amino terminal end of the variable region of the lambda light chain subgroup II. The presence of similarly sized short fragments of lambda light chain in both the synthesized and deposited protein suggests that aberrant synthesis and/or proteolytic degradation may play a pathogenetic role in the process of amyloidogenesis. Images Figure 1 PMID:3089021

  6. Formation of nitrogen- and sulfur-containing light-absorbing compounds accelerated by evaporation of water from secondary organic aerosols

    NASA Astrophysics Data System (ADS)

    Nguyen, Tran B.; Lee, Paula B.; Updyke, Katelyn M.; Bones, David L.; Laskin, Julia; Laskin, Alexander; Nizkorodov, Sergey A.

    2012-01-01

    Aqueous extracts of secondary organic aerosols (SOA) generated from the ozonolysis of d-limonene were subjected to dissolution, evaporation, and re-dissolution in the presence and absence of ammonium sulfate (AS). Evaporation with AS at pH 4-9 produced chromophores that were stable with respect to hydrolysis and had a distinctive absorption band at 500 nm. Evaporation accelerated the rate of chromophore formation by at least three orders of magnitude compared to the reaction in aqueous solution, which produced similar compounds. Absorption spectroscopy and high-resolution nanospray desorption electrospray ionization (nano-DESI) mass spectrometry experiments suggested that the molar fraction of the chromophores was small (<2%), and that they contained nitrogen atoms. Although the colored products represented only a small fraction of SOA, their large extinction coefficients (>105 L mol-1 cm-1 at 500 nm) increased the effective mass absorption coefficient of the residual organics in excess of 103 cm2 g-1 - a dramatic effect on the optical properties from minor constituents. Evaporation of SOA extracts in the absence of AS resulted in the production of colored compounds only when the SOA extract was acidified to pH ˜ 2 with sulfuric acid. These chromophores were produced by acid-catalyzed aldol condensation, followed by a conversion into organosulfates. The presence of organosulfates was confirmed by high resolution mass spectrometry experiments. Results of this study suggest that evaporation of cloud or fog droplets containing dissolved organics leads to significant modification of the molecular composition and serves as a potentially important source of light-absorbing compounds.

  7. [The extraction and analysis of a- and b- wave from electroretinogram in human].

    PubMed

    Chen, Zi-he; Zheng, Chang-wei; Lei, Bo

    2013-12-01

    To determine the frequency range of a-b wave complex in the dark- and light-adapted electroretinogram (ERG) and to isolate the pure a- and b- waves. Case series study. Full-field ERGs were recorded in 16 eyes of 8 normal volunteers from October to November 2011. Digital filtering technique was used to extract the a- and b-waves from dark- and light-adapted ERG responses. The timings of a- and b-wave were measured to determine the frequency range of a-b wave complex. Major frequency components were determined from power spectra using fast Fourier transform (FFT). The effect of different order settings in the digital filter were compared to investigate the optimum condition, where the oscillatory potential (OP) was completely removed while the amplitudes and phases of the a- and b- waves were less affected. The Student-t test was used to compare the frequency range of a-b wave complex in dark- and light-adapted ERG. The averaged frequency range of the dark-adapted a-b wave complex was from (14.99 ± 2.39) to (25.35 ± 3.77) Hz, compared with (25.22 ± 6.56) to (32.47 ± 3.68) Hz for the light-adapted a-b wave complex, respectively, indicating the frequency range of the dark-adapted a-b wave complex was significantly less than the light-adapted a-b wave complex (t = 7.910, 7.693; both P < 0.01). The third order of the digital filter and a passband of 1 to 45 Hz was the best choice in term of removing the high frequency OP from the waveform of ERG and keeping the amplitude and phase of the a- and b- waves. The frequency of a-b wave complex is lower than that of OP. Therefore the a- and b- waves can be isolated from OP using different digital filter settings in human ERG. A third order and a passband of 1 to 45 Hz is the best choice to extract pure a- and b- waves from the original ERG.

  8. High-precision relative position and attitude measurement for on-orbit maintenance of spacecraft

    NASA Astrophysics Data System (ADS)

    Zhu, Bing; Chen, Feng; Li, Dongdong; Wang, Ying

    2018-02-01

    In order to realize long-term on-orbit running of satellites, space stations, etc spacecrafts, in addition to the long life design of devices, The life of the spacecraft can also be extended by the on-orbit servicing and maintenance. Therefore, it is necessary to keep precise and detailed maintenance of key components. In this paper, a high-precision relative position and attitude measurement method used in the maintenance of key components is given. This method mainly considers the design of the passive cooperative marker, light-emitting device and high resolution camera in the presence of spatial stray light and noise. By using a series of algorithms, such as background elimination, feature extraction, position and attitude calculation, and so on, the high precision relative pose parameters as the input to the control system between key operation parts and maintenance equipment are obtained. The simulation results show that the algorithm is accurate and effective, satisfying the requirements of the precision operation technique.

  9. Soft-Template Synthesis of Mesoporous Anatase TiO₂ Nanospheres and Its Enhanced Photoactivity.

    PubMed

    Li, Xiaojia; Zou, Mingming; Wang, Yang

    2017-11-10

    Highly crystalline mesoporous anatase TiO₂ nanospheres with high surface area (higher than P25 and anatase TiO₂) are prepared by a soft-template method. Despite the high specific surface area, these samples have three times lower equilibrium adsorption (<2%) than Degussa P25. The rate constant of the mesoporous anatase TiO₂ (0.024 min -1 ) reported here is 364% higher than that of P25 (0.0066 min -1 ), for the same catalytic loading. The results of oxidation-extraction photometry using several reactive oxygen species (ROS) scavengers indicated that mesoporous anatase TiO₂ generates more ROS than P25 under UV-light irradiation. This significant improvement in the photocatalytic performance of mesoporous spherical TiO₂ arises from the following synergistic effects in the reported sample: (i) high surface area; (ii) improved crystallinity; (iii) narrow pore wall thicknesses (ensuring the rapid migration of photogenerated carriers to the surface of the material); and (iv) greater ROS generation under UV-light.

  10. PROCESS OF PURIFYING URANIUM

    DOEpatents

    Seaborg, G.T.; Orlemann, E.F.; Jensen, L.H.

    1958-12-23

    A method of obtaining substantially pure uranium from a uranium composition contaminated with light element impurities such as sodium, magnesium, beryllium, and the like is described. An acidic aqueous solution containing tetravalent uranium is treated with a soluble molybdate to form insoluble uranous molybdate which is removed. This material after washing is dissolved in concentrated nitric acid to obtaln a uranyl nitrate solution from which highly purified uranium is obtained by extraction with ether.

  11. APPLIED PHYSICS. Mid-infrared plasmonic biosensing with graphene.

    PubMed

    Rodrigo, Daniel; Limaj, Odeta; Janner, Davide; Etezadi, Dordaneh; García de Abajo, F Javier; Pruneri, Valerio; Altug, Hatice

    2015-07-10

    Infrared spectroscopy is the technique of choice for chemical identification of biomolecules through their vibrational fingerprints. However, infrared light interacts poorly with nanometric-size molecules. We exploit the unique electro-optical properties of graphene to demonstrate a high-sensitivity tunable plasmonic biosensor for chemically specific label-free detection of protein monolayers. The plasmon resonance of nanostructured graphene is dynamically tuned to selectively probe the protein at different frequencies and extract its complex refractive index. Additionally, the extreme spatial light confinement in graphene—up to two orders of magnitude higher than in metals—produces an unprecedentedly high overlap with nanometric biomolecules, enabling superior sensitivity in the detection of their refractive index and vibrational fingerprints. The combination of tunable spectral selectivity and enhanced sensitivity of graphene opens exciting prospects for biosensing. Copyright © 2015, American Association for the Advancement of Science.

  12. Separation and identification of neutral cereal lipids by normal phase high-performance liquid chromatography, using evaporative light-scattering and electrospray mass spectrometry for detection.

    PubMed

    Rocha, João M; Kalo, Paavo J; Ollilainen, Velimatti; Malcata, F Xavier

    2010-04-30

    A novel method was developed for the analysis of molecular species in neutral lipid classes, using separation by normal phase high-performance liquid chromatography, followed by detection by evaporative light-scattering and electrospray ionization tandem mass spectrometry. Monoacid standards, i.e. sterol esters, triacylglycerols, fatty acids, diacylglycerols, free sterols and monoacylglycerols, were separated to baseline on microbore 3 microm-silica gel columns. Complete or partial separation of molecular species in each lipid class permitted identification by automatic tandem mass spectrometry of ammonium adducts, produced via positive electrospray ionization. After optimization of the method, separation and identification of molecular species of various lipid classes was comprehensively tested by analysis of neutral lipids from the free lipid extract of maize flour. 2010 Elsevier B.V. All rights reserved.

  13. Detection of proximal caries using quantitative light-induced fluorescence-digital and laser fluorescence: a comparative study.

    PubMed

    Yoon, Hyung-In; Yoo, Min-Jeong; Park, Eun-Jin

    2017-12-01

    The purpose of this study was to evaluate the in vitro validity of quantitative light-induced fluorescence-digital (QLF-D) and laser fluorescence (DIAGNOdent) for assessing proximal caries in extracted premolars, using digital radiography as reference method. A total of 102 extracted premolars with similar lengths and shapes were used. A single operator conducted all the examinations using three different detection methods (bitewing radiography, QLF-D, and DIAGNOdent). The bitewing x-ray scale, QLF-D fluorescence loss (ΔF), and DIAGNOdent peak readings were compared and statistically analyzed. Each method showed an excellent reliability. The correlation coefficient between bitewing radiography and QLF-D, DIAGNOdent were -0.644 and 0.448, respectively, while the value between QLF-D and DIAGNOdent was -0.382. The kappa statistics for bitewing radiography and QLF-D had a higher diagnosis consensus than those for bitewing radiography and DIAGNOdent. The QLF-D was moderately to highly accurate (AUC = 0.753 - 0.908), while DIAGNOdent was moderately to less accurate (AUC = 0.622 - 0.784). All detection methods showed statistically significant correlation and high correlation between the bitewing radiography and QLF-D. QLF-D was found to be a valid and reliable alternative diagnostic method to digital bitewing radiography for in vitro detection of proximal caries.

  14. Method for extracting long-equivalent wavelength interferometric information

    NASA Technical Reports Server (NTRS)

    Hochberg, Eric B. (Inventor)

    1991-01-01

    A process for extracting long-equivalent wavelength interferometric information from a two-wavelength polychromatic or achromatic interferometer. The process comprises the steps of simultaneously recording a non-linear sum of two different frequency visible light interferograms on a high resolution film and then placing the developed film in an optical train for Fourier transformation, low pass spatial filtering and inverse transformation of the film image to produce low spatial frequency fringes corresponding to a long-equivalent wavelength interferogram. The recorded non-linear sum irradiance derived from the two-wavelength interferometer is obtained by controlling the exposure so that the average interferogram irradiance is set at either the noise level threshold or the saturation level threshold of the film.

  15. Plant growth regulatory effect and insecticidal activity of the extracts of the Tree of Heaven (Ailanthus altissima L.)

    PubMed Central

    Tsao, Rong; Romanchuk, Frieda E; Peterson, Chris J; Coats, Joel R

    2002-01-01

    Background There is an urgent need to explore and utilize naturally occurring products for combating harmful agricultural and public health pests. Secondary metabolites in the leaves of the Tree of Heaven, Ailanthus altissima L. have been reported to be herbicidal and insecticidal. The mode of action, however, of the active compounds in A. altissima are not understood. In this paper, we report the chemical characteristics of the herbicidal and insecticidal components in this tree, and will discuss the effect of light on the bioactivity of the active components. Results Extracts from the fresh leaves of A. altissima showed a strong plant germination/growth inhibitory effect in laboratory bioassays against alfalfa (Medicago sativa). The effect was dose-dependent. The growth inhibitory components were in the methylene chloride soluble fraction of the extract. The effect was greater in the light than in the dark. Other fractions had plant growth enhancing effect at lower concentrations. The extract was slightly insecticidal against yellow fever mosquito larvae (Aedes aegypti). Conclusions The extract or its semi-purified fractions of A. altissima were strong plant growth inhibitors, therefore good candidates as potential environmentally safe and effective agricultural pest management agents. The finding that light affects the activity will be useful in the application of such natural products. PMID:11860616

  16. Nature's crucible: Manufacturing optical nonlinearities for high resolution, high sensitivity encoding in the compound eye of the fly, Musca domestica

    NASA Technical Reports Server (NTRS)

    Wilcox, Mike

    1993-01-01

    The number of pixels per unit area sampling an image determines Nyquist resolution. Therefore, the highest pixel density is the goal. Unfortunately, as reduction in pixel size approaches the wavelength of light, sensitivity is lost and noise increases. Animals face the same problems and have achieved novel solutions. Emulating these solutions offers potentially unlimited sensitivity with detector size approaching the diffraction limit. Once an image is 'captured', cellular preprocessing of information allows extraction of high resolution information from the scene. Computer simulation of this system promises hyperacuity for machine vision.

  17. Low-noise and high-speed photodetection system using optical feedback with a current amplification function

    NASA Astrophysics Data System (ADS)

    Akiba, M.

    2015-09-01

    A photodetection system with an optical-feedback circuit accompanied by current amplification was fabricated to minimize the drawbacks associated with a transimpedance amplifier (TIA) with a very high resistance feedback resistor. Current amplification was implemented by extracting an output light from the same light source that emitted the feedback light. The current gain corresponds to the ratio of the photocurrent created by the output light to that created by the feedback light because the feedback current value is identical to the input photocurrent value generated by an input light to be measured. The current gain has no theoretical limit. The output light was detected by a photodiode with a TIA having a small feedback resistance. The expression for the input-referred noise current of the optical-feedback photodetection system was derived, and the trade-off between sensitivity and response, which is a characteristic of TIA, was found to considerably improve. An optical-feedback photodetection system with an InGaAs pin photodiode was fabricated. The measured noise equivalent power of the system was 1.7 fW/Hz1/2 at 10 Hz and 1.3 μm, which is consistent with the derived expression. The time response of the system was found to deteriorate with decreasing photocurrent. The 50% rise time for a light pulse input increased from 3.1 μs at a photocurrent of 10 nA to 15 μs at photocurrents below 10 pA. The bandwidth of the input-referred noise current was 7 kHz, which is consistent with rise times below 10 pA.

  18. Low-noise and high-speed photodetection system using optical feedback with a current amplification function.

    PubMed

    Akiba, M

    2015-09-01

    A photodetection system with an optical-feedback circuit accompanied by current amplification was fabricated to minimize the drawbacks associated with a transimpedance amplifier (TIA) with a very high resistance feedback resistor. Current amplification was implemented by extracting an output light from the same light source that emitted the feedback light. The current gain corresponds to the ratio of the photocurrent created by the output light to that created by the feedback light because the feedback current value is identical to the input photocurrent value generated by an input light to be measured. The current gain has no theoretical limit. The output light was detected by a photodiode with a TIA having a small feedback resistance. The expression for the input-referred noise current of the optical-feedback photodetection system was derived, and the trade-off between sensitivity and response, which is a characteristic of TIA, was found to considerably improve. An optical-feedback photodetection system with an InGaAs pin photodiode was fabricated. The measured noise equivalent power of the system was 1.7 fW/Hz(1/2) at 10 Hz and 1.3 μm, which is consistent with the derived expression. The time response of the system was found to deteriorate with decreasing photocurrent. The 50% rise time for a light pulse input increased from 3.1 μs at a photocurrent of 10 nA to 15 μs at photocurrents below 10 pA. The bandwidth of the input-referred noise current was 7 kHz, which is consistent with rise times below 10 pA.

  19. Extraction of high-quality DNA from ethanol-preserved tropical plant tissues.

    PubMed

    Bressan, Eduardo A; Rossi, Mônica L; Gerald, Lee T S; Figueira, Antonio

    2014-04-24

    Proper conservation of plant samples, especially during remote field collection, is essential to assure quality of extracted DNA. Tropical plant species contain considerable amounts of secondary compounds, such as polysaccharides, phenols, and latex, which affect DNA quality during extraction. The suitability of ethanol (96% v/v) as a preservative solution prior to DNA extraction was evaluated using leaves of Jatropha curcas and other tropical species. Total DNA extracted from leaf samples stored in liquid nitrogen or ethanol from J. curcas and other tropical species (Theobroma cacao, Coffea arabica, Ricinus communis, Saccharum spp., and Solanum lycopersicon) was similar in quality, with high-molecular-weight DNA visualized by gel electrophoresis. DNA quality was confirmed by digestion with EcoRI or HindIII and by amplification of the ribosomal gene internal transcribed spacer region. Leaf tissue of J. curcas was analyzed by light and transmission electron microscopy before and after exposure to ethanol. Our results indicate that leaf samples can be successfully preserved in ethanol for long periods (30 days) as a viable method for fixation and conservation of DNA from leaves. The success of this technique is likely due to reduction or inactivation of secondary metabolites that could contaminate or degrade genomic DNA. Tissue conservation in 96% ethanol represents an attractive low-cost alternative to commonly used methods for preservation of samples for DNA extraction. This technique yields DNA of equivalent quality to that obtained from fresh or frozen tissue.

  20. Extraction of high-quality DNA from ethanol-preserved tropical plant tissues

    PubMed Central

    2014-01-01

    Background Proper conservation of plant samples, especially during remote field collection, is essential to assure quality of extracted DNA. Tropical plant species contain considerable amounts of secondary compounds, such as polysaccharides, phenols, and latex, which affect DNA quality during extraction. The suitability of ethanol (96% v/v) as a preservative solution prior to DNA extraction was evaluated using leaves of Jatropha curcas and other tropical species. Results Total DNA extracted from leaf samples stored in liquid nitrogen or ethanol from J. curcas and other tropical species (Theobroma cacao, Coffea arabica, Ricinus communis, Saccharum spp., and Solanum lycopersicon) was similar in quality, with high-molecular-weight DNA visualized by gel electrophoresis. DNA quality was confirmed by digestion with EcoRI or HindIII and by amplification of the ribosomal gene internal transcribed spacer region. Leaf tissue of J. curcas was analyzed by light and transmission electron microscopy before and after exposure to ethanol. Our results indicate that leaf samples can be successfully preserved in ethanol for long periods (30 days) as a viable method for fixation and conservation of DNA from leaves. The success of this technique is likely due to reduction or inactivation of secondary metabolites that could contaminate or degrade genomic DNA. Conclusions Tissue conservation in 96% ethanol represents an attractive low-cost alternative to commonly used methods for preservation of samples for DNA extraction. This technique yields DNA of equivalent quality to that obtained from fresh or frozen tissue. PMID:24761774

  1. Improved light extraction efficiency of InGaN-based multi-quantum well light emitting diodes by using a single die growth.

    PubMed

    Park, Min Joo; Kwon, K W; Kim, Y H; Park, S H; Kwak, Joon Seop

    2011-05-01

    We have demonstrated that the light extraction efficiency of the InGaN based multi-quantum well light-emitting diodes (LEDs) can be improved by using a single die growth (SDG) method. The SDG was performed by patterning the n-GaN and sapphire substrate with a size of single chip (600 x 250 microm2) by using a laser scriber, followed by the regrowth of the n-GaN and LED structures on the laser patterned n-GaN. We fabricated lateral LED chips having the SDG structures (SDG-LEDs), in which the thickness of the regrown n-GaN was varied from 2 to 6 microm. For comparison, we also fabricated conventional LED chips without the SDG structures. The SDG-LEDs showed lower operating voltage when compared to the conventional LEDs. In addition, the output power of the SDG-LEDs was significantly higher than that of the conventional LEDs. From optical ray tracing simulations, the increase in the thickness and sidewall angle of the regrown n-GaN and LED structures may enhance photon escapes from the tilted facets of the regrown n-GaN, followed by the increase in light output power and extraction efficiency of the SDG-LEDs.

  2. Person Recognition System Based on a Combination of Body Images from Visible Light and Thermal Cameras

    PubMed Central

    Nguyen, Dat Tien; Hong, Hyung Gil; Kim, Ki Wan; Park, Kang Ryoung

    2017-01-01

    The human body contains identity information that can be used for the person recognition (verification/recognition) problem. In this paper, we propose a person recognition method using the information extracted from body images. Our research is novel in the following three ways compared to previous studies. First, we use the images of human body for recognizing individuals. To overcome the limitations of previous studies on body-based person recognition that use only visible light images for recognition, we use human body images captured by two different kinds of camera, including a visible light camera and a thermal camera. The use of two different kinds of body image helps us to reduce the effects of noise, background, and variation in the appearance of a human body. Second, we apply a state-of-the art method, called convolutional neural network (CNN) among various available methods, for image features extraction in order to overcome the limitations of traditional hand-designed image feature extraction methods. Finally, with the extracted image features from body images, the recognition task is performed by measuring the distance between the input and enrolled samples. The experimental results show that the proposed method is efficient for enhancing recognition accuracy compared to systems that use only visible light or thermal images of the human body. PMID:28300783

  3. Alterations of Blood Pressure and ECG following Two-Week Consumption of Berberis integerrima Fruit Extract

    PubMed Central

    Mahdavi, Naser

    2014-01-01

    In light of the popularity and also the various nutritional and medicinal properties of Berberis integerrima, this study was conducted to assess the influence of its aqueous extract on hemodynamic and electrocardiogram (ECG) indices of rat. Animals were divided to control (CTL), B50, B100, and B200 groups that orally received tap water, aqueous extracts of B. integerrima fruit 50, 100, and 200 mg/kg/day, respectively, for two weeks and on day 15, data were recorded. Different doses of barberry fruit extract had no significant effect on blood pressure, heart rate, RR interval, P duration, and Q wave amplitude of electrocardiogram. Extract administration was associated with an incremental trend in PR interval that was not statistically significant. Higher doses (100 and 200 mg/kg) of extract significantly increased the QRS interval (P < 0.01 versus CTL and B50 groups) but decreased the QTc interval (P < 0.01 versus CTL group and P < 0.001 versus B50 group), the JT interval, and TpTe interval (P < 0.001 versus CTL and B50 groups). The results suggest that high doses of barberry extract definitely prolong the depolarization phase and shorten the repolarization phase of ventricular muscle and hence induce alteration in heart electrical conductivity. PMID:27351000

  4. Salient contour extraction from complex natural scene in night vision image

    NASA Astrophysics Data System (ADS)

    Han, Jing; Yue, Jiang; Zhang, Yi; Bai, Lian-fa

    2014-03-01

    The theory of center-surround interaction in non-classical receptive field can be applied in night vision information processing. In this work, an optimized compound receptive field modulation method is proposed to extract salient contour from complex natural scene in low-light-level (LLL) and infrared images. The kernel idea is that multi-feature analysis can recognize the inhomogeneity in modulatory coverage more accurately and that center and surround with the grouping structure satisfying Gestalt rule deserves high connection-probability. Computationally, a multi-feature contrast weighted inhibition model is presented to suppress background and lower mutual inhibition among contour elements; a fuzzy connection facilitation model is proposed to achieve the enhancement of contour response, the connection of discontinuous contour and the further elimination of randomly distributed noise and texture; a multi-scale iterative attention method is designed to accomplish dynamic modulation process and extract contours of targets in multi-size. This work provides a series of biologically motivated computational visual models with high-performance for contour detection from cluttered scene in night vision images.

  5. Spatiotemporal Evolution of the Imbalanced Regional Development in Mainland China Using Dmsp-Ols Data

    NASA Astrophysics Data System (ADS)

    Chen, K.; Jia, T.

    2017-09-01

    The Defense Meteorological Satellite Programs Operational Linescan System (DMSP-OLS) nighttime lights imagery has been widely used to monitor economic activities and regional development in recent decades. In this paper, we firstly processed the nighttime light imageries of the Mainland China from 1992 to 2013 due to the radiation or geometric errors. Secondly, by dividing the Mainland China into seven regions, we found high correlation between the sum light values and GDP of each region. Thirdly, we extracted the economic centers of each region based on their nighttime light images. Through the analysis, we found the distribution of these economic centers was relatively concentrated and the migration of these economic centers showed certain directional trend or circuitous changes, which suggested the imbalanced socio-economic development of each region. Then, we calculated the Regional Development Gini of each region using the nighttime light data, which indicated that social-economic development in South China presents great imbalance while it is relatively balanced in Southwest China. This study would benefit the macroeconomic control to regional economic development and the introduction of appropriate economic policies from the national level.

  6. Study on Locally Confined Deposition of Si Nanocrystals in High-Aspect-Ratio Si Nano-Pillar Array for Nano-Electronic and Nano-Photonic Applications

    DTIC Science & Technology

    2010-02-23

    reflection, thus increasing the quantum efficiency by one order of magnitude and improving the light extraction from the nano-roughened device surface by...respectively. At a biased current of 400 A, the highest external quantum efficiency is over 0.2% to obtain the maximum EL power of >1 W. In...processing techniques for improving the internal and external quantum efficiencies of Si MOSLEDs via detuning the size and density of high-aspect-ratio Si

  7. Highly efficient phosphorescent, TADF, and fluorescent OLEDs (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kim, Jang-Joo; Kim, Kwon-Hyeon; Moon, Chang-Ki; Shin, Hyun

    2016-09-01

    High efficiency OLEDs based on phosphorescent, thermally activated delayed fluorescent (TADF) and fluorescent emitters will be presented. We will show that EQEs over 60% is achievable if OLEDs are fabricated using organic semiconductors with the refractive indices of 1.5 and fully horizontal emitting dipoles without any extra light extracting structure. We will also show that reverse intersystem crossing RISC rate plays an important role to reduce the efficiency roll-off in efficient TADF and fluorescent OLEDs and a couple to methods will be presented to increase the RISC rate in the devices.

  8. Biosynthesis of ZnO nanoparticles using rambutan (Nephelium lappaceumL.) peel extract and their photocatalytic activity on methyl orange dye

    NASA Astrophysics Data System (ADS)

    Karnan, Thenmozhi; Selvakumar, Stanly Arul Samuel

    2016-12-01

    In the present study, describes the synthesis of ZnO nanoparticles from rambutan (Nephelium lappaceumL.) peel extract via bio synthesis method and developed a new low cost technology to prepare ZnO nanoparticles. During the synthesis, fruit peel extract act as a natural ligation agent. The successfully prepared product was analyzed with some standard characterization studies like X-Ray Diffraction (XRD), UV-VIS Diffuse reflectance spectra (UV-Vis DRS), Field Emission Scanning Electron Microscope (FESEM), High resolution transmittance electron microscope (HR-TEM), N2 adsorption-desorption isotherm and UV-Vis absorption Spectroscopy. The photocatalytic activity of ZnO nanoparticles was evaluated by photodegradation of methyl orange (MO) dye under UV light and the result depicts around 83.99% decolorisation efficiency at 120 min of illumination. In addition with photodecolorisation, mineralization was also achieved. The mineralization has been confirmed by measuring Chemical Oxygen Demand (COD) values.

  9. Lantana camara Linn leaf extract mediated green synthesis of gold nanoparticles and study of its catalytic activity

    NASA Astrophysics Data System (ADS)

    Dash, Shib Shankar; Bag, Braja Gopal; Hota, Poulami

    2015-03-01

    A facile one-step green synthesis of stable gold nanoparticles (AuNPs) has been described using chloroauric acid (HAuCl4) and the leaf extract of Lantana camara Linn (Verbenaceae family) at room temperature. The leaf extract enriched in various types of plant secondary metabolites is highly efficient for the reduction of chloroaurate ions into metallic gold and stabilizes the synthesized AuNPs without any additional stabilizing or capping agents. Detailed characterizations of the synthesized gold nanoparticles were carried out by surface plasmon resonance spectroscopy, transmission electron microscopy, dynamic light scattering, Zeta potential, X-ray diffraction and Fourier transform-infrared spectroscopy studies. The synthesized AuNPs have been utilized as a catalyst for the sodium borohydride reduction of 4-nitrophenol to 4-aminophenol in water at room temperature under mild reaction condition. The kinetics of the reduction reaction has been studied spectrophotometrically.

  10. Extracellular localization of the diterpene sclareol in clary sage (Salvia sclarea L., Lamiaceae).

    PubMed

    Caissard, Jean-Claude; Olivier, Thomas; Delbecque, Claire; Palle, Sabine; Garry, Pierre-Philippe; Audran, Arthur; Valot, Nadine; Moja, Sandrine; Nicolé, Florence; Magnard, Jean-Louis; Legrand, Sylvain; Baudino, Sylvie; Jullien, Frédéric

    2012-01-01

    Sclareol is a high-value natural product obtained by solid/liquid extraction of clary sage (Salvia sclarea L.) inflorescences. Because processes of excretion and accumulation of this labdane diterpene are unknown, the aim of this work was to gain knowledge on its sites of accumulation in planta. Samples were collected in natura or during different steps of the industrial process of extraction (steam distillation and solid/liquid extraction). Samples were then analysed with a combination of complementary analytical techniques (gas chromatography coupled to a mass spectrometer, polarized light microscopy, environmental scanning electron microscopy, two-photon fluorescence microscopy, second harmonic generation microscopy). According to the literature, it is hypothesized that sclareol is localized in oil pockets of secretory trichomes. This study demonstrates that this is not the case and that sclareol accumulates in a crystalline epicuticular form, mostly on calyces.

  11. Extracellular Localization of the Diterpene Sclareol in Clary Sage (Salvia sclarea L., Lamiaceae)

    PubMed Central

    Caissard, Jean-Claude; Olivier, Thomas; Delbecque, Claire; Palle, Sabine; Garry, Pierre-Philippe; Audran, Arthur; Valot, Nadine; Moja, Sandrine; Nicolé, Florence; Magnard, Jean-Louis; Legrand, Sylvain; Baudino, Sylvie; Jullien, Frédéric

    2012-01-01

    Sclareol is a high-value natural product obtained by solid/liquid extraction of clary sage (Salvia sclarea L.) inflorescences. Because processes of excretion and accumulation of this labdane diterpene are unknown, the aim of this work was to gain knowledge on its sites of accumulation in planta. Samples were collected in natura or during different steps of the industrial process of extraction (steam distillation and solid/liquid extraction). Samples were then analysed with a combination of complementary analytical techniques (gas chromatography coupled to a mass spectrometer, polarized light microscopy, environmental scanning electron microscopy, two-photon fluorescence microscopy, second harmonic generation microscopy). According to the literature, it is hypothesized that sclareol is localized in oil pockets of secretory trichomes. This study demonstrates that this is not the case and that sclareol accumulates in a crystalline epicuticular form, mostly on calyces. PMID:23133579

  12. The Influence of Materials of Electrodes of Sensitized Solar Cells on Their Capacitive and Electrical Characteristics

    NASA Astrophysics Data System (ADS)

    Lazarenko, P. I.; Kozyukhin, S. A.; Mokshina, A. I.; Sherchenkov, A. A.; Patrusheva, T. N.; Irgashev, R. A.; Lebedev, E. A.; Kozik, V. V.

    2018-05-01

    An estimation is made of the internal capacitance of sensitized solar cells (SSCs) manufactured by the method of extraction pyrolysis. The structures under study are characterized by a hysteresis in the current-voltage characteristic obtained in the direct and reverse modes of voltage variation. The investigations of SSCs demonstrate a high inertness of the parameters under connection and disconnection of the light source. The use of a transparent conductive ITO-electrode, manufactured by the extraction pyrolysis, increases the external capacitance of the cell and decelerates the processes of current decay after the light source connection compared to the commercial FTO-electrode. The values of charges, capacitances, and SSC charge conservation efficiencies are calculated and the internal resistance of the SSCs under study is estimated. According to the estimations performed, the specimen with an ITO-layer possesses a capacitance equal to C1 = 1.23·10-3 F, which is by two orders of magnitude higher than that of the specimen with a FTO-layer (C2 = 2.06·10-5 F).

  13. Gold nanorods based diffusion reflection measurements: current status and perspectives for clinical applications

    NASA Astrophysics Data System (ADS)

    Ankri, Rinat; Fixler, Dror

    2017-07-01

    Optical imaging is a powerful tool for investigating the structure and function of tissues. Tissue optical imaging technologies are generally discussed under two broad regimes: microscopic and macroscopic, while the latter is widely investigated in the field of light-tissue interaction. Among the developed optical technologies for tissue investigation, the diffusion reflectance (DR) method is a simple and safe technology. However, this method suffers from low specificity and low signal-to-noise ratio, so the extraction of the tissue properties is not an easy task. In this review, we describe the use of gold nanorods (GNRs) in DR spectroscopy. The GNRs present unique optical properties which enhance the scattering and absorption properties of a tissue. The GNRs can be easily targeted toward abnormal sites in order to improve the DR signal and to distinguish between the healthy and the abnormal sites in the tissue, with high specificity. This article describes the use of the DR-GNRs method for the detection of cancer and atherosclerosis, from light transfer theory, through the extraction of the tissue properties using the diffusion theory and up to DR in vivo measurements.

  14. Behavioural and physiological limits to vision in mammals

    PubMed Central

    Field, Greg D.

    2017-01-01

    Human vision is exquisitely sensitive—a dark-adapted observer is capable of reliably detecting the absorption of a few quanta of light. Such sensitivity requires that the sensory receptors of the retina, rod photoreceptors, generate a reliable signal when single photons are absorbed. In addition, the retina must be able to extract this information and relay it to higher visual centres under conditions where very few rods signal single-photon responses while the majority generate only noise. Critical to signal transmission are mechanistic optimizations within rods and their dedicated retinal circuits that enhance the discriminability of single-photon responses by mitigating photoreceptor and synaptic noise. We describe behavioural experiments over the past century that have led to the appreciation of high sensitivity near absolute visual threshold. We further consider mechanisms within rod photoreceptors and dedicated rod circuits that act to extract single-photon responses from cellular noise. We highlight how these studies have shaped our understanding of brain function and point out several unresolved questions in the processing of light near the visual threshold. This article is part of the themed issue ‘Vision in dim light’. PMID:28193817

  15. Identification of a Proteinaceous Component in the Leaf of Moringa Oleifera lam. with Effects on High Serum Creatinine

    PubMed Central

    Sahoo, S.; Raghavendra, K. M.; Biswas, S.

    2014-01-01

    Moringa oleifera Lam. has been an important plant in the history of mankind, both for its nutritional and medicinal uses. Apart from bactericidal effects, the parts of this plant have been effectively used in the treatment of circulatory, respiratory, endocrine, digestive as well as neural disorders. Till date, though, there has been no reported activity of the involvement of any proteinaceous extract from M. oleifera on high levels of serum creatinine. To address this issue, blood samples with high levels of serum creatinine (2 mg/dl and above) were treated with leaf extract from M. oleifera. The crude extract was partially purified initially and eventually purified to completion as well. All these proteinaceous fractions were used to treat samples with high levels of serum creatinine as mentioned above. While the treatment of serum sample having high creatinine with crude extract and partially purified protein fractions showed a decrease of approximately 20% in the levels of serum creatinine over a period of 24 h, the samples treated with purified protein fraction reduced the serum creatinine level by 50%. In light of the fact that increased level of serum creatinine levels have adverse downstream effects on the heart, lungs and other organs, this communication assumes significance because it suggests a way of reducing the level of serum creatinine as an emergency measure. Further, the identification and characterisation of this proteinaceous component and possible in vivo experiments would provide a major tool for the treatment of downstream complications associated with increased serum creatinine via a new sources, albeit a natural one. PMID:24799742

  16. Polyphenolic content, antiradical activity, stability and microbiological quality of elderberry (Sambucus nigra L.) extracts.

    PubMed

    Pliszka, Barbara

    2017-01-01

    The pharmaceutical and food industries expect detailed knowledge on the physicochemical properties of elderberry fruit extracts, their stability and microbiological quality, as well as the polyphenol content in elderberry cultivars. The characteristics of the extracts might be additionally modified by citric acid, which improves the stability of anthocyanins and protects processed fruits and syrups from pathogenic microorganisms. The choice of the method with citric acid was a consequence of the physicochemical charac teristics of elderberry pigments, which are not stable under the effect of light in alcoholic solutions. The aim of study was to analyze the properties of elderberry fruit extracts regarding polyphenol content and antiradical activity, as well as their stability and microbiological quality. The plant material consisted of fruit from four cultivars (Alleso, Korsor, Sampo, Samyl) of black elderberry (Sambucus nigra L.). The following were determined in fruit extracts: polyphe- nolic content (HPLC), antiradical activity (ABTS and DPPH) and stability and microbiological quality. The HPLC analysis of polyphenols demonstrated that the extracts from fruits collected from cv. Samyl had the highest 3-sambubioside cyanidin content and those from cv. Korsor contained the highest quantity of 3-glucoside cyanidin. The extracts from cv. Sampo fruit had a dominant 3-sambubioside-5-gluco- side cyanidin and 3,5-diglucoside cyanidin content. The highest quercetin (5.92 mg 100 mg-1 of extract) and caffeic acid (1.21 mg 100 mg-1 of extract) content was found in fruit extracts from cv. Alleso. The cultivars Samyl and Korsor had a higher level of anthocyanins and higher antiradical activity (ABTS) in fruit extracts than cv. Alleso and Sampo. The antiradical activity (DPPH) of fruit extracts from elderberry cultivars as- sessed in this research was similar. The degradation index for all fruit extracts was similar (DI = 1.035). The microbiological species detected in extracts were classified as moulds (Penicillum sp., Aspergillus sp.) and yeasts (Rhodotorula sp., Torulopsis sp., Trichosporon sp., Saccharomyces sp.). The research findings may support the selection of certain cultivars for industrial applications. The high stability of anthocyanins and low level of microbiological impurities in elderberry extracts ensure the high quality of such a raw material in food and pharmaceutical processing.

  17. A conifer-friendly high-throughput α-cellulose extraction method for δ13C and δ18O stable isotope ratio analysis

    NASA Astrophysics Data System (ADS)

    Lin, W.; Noormets, A.; domec, J.; King, J. S.; Sun, G.; McNulty, S.

    2012-12-01

    Wood stable isotope ratios (δ13C and δ18O) offer insight to water source and plant water use efficiency (WUE), which in turn provide a glimpse to potential plant responses to changing climate, particularly rainfall patterns. The synthetic pathways of cell wall deposition in wood rings differ in their discrimination ratios between the light and heavy isotopes, and α-cellulose is broadly seen as the best indicator of plant water status due to its local and temporal fixation and to its high abundance within the wood. To use the effects of recent severe droughts on the WUE of loblolly pine (Pinus taeda) throughout Southeastern USA as a harbinger of future changes, an effort has been undertaken to sample the entire range of the species and to sample the isotopic composition in a consistent manner. To be able to accommodate the large number of samples required by this analysis, we have developed a new high-throughput method for α-cellulose extraction, which is the rate-limiting step in such an endeavor. Although an entire family of methods has been developed and perform well, their throughput in a typical research lab setting is limited to 16-75 samples per week with intensive labor input. The resin exclusion step in conifersis is particularly time-consuming. We have combined the recent advances of α-cellulose extraction in plant ecology and wood science, including a high-throughput extraction device developed in the Potsdam Dendro Lab and a simple chemical-based resin exclusion method. By transferring the entire extraction process to a multiport-based system allows throughputs of up to several hundred samples in two weeks, while minimizing labor requirements to 2-3 days per batch of samples.

  18. Micro and nano-structured green gallium indium nitride/gallium nitride light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Stark, Christoph J. M.

    Light-emitting diodes (LEDs) are commonly designed and studied based on bulk material properties. In this thesis different approaches based on patterns in the nano and micrometer length scale range are used to tackle low efficiency in the green spectral region, which is known as “green gap”. Since light generation and extraction are governed by microscopic processes, it is instructive to study LEDs with lateral mesa sizes scaled to the nanometer range. Besides the well-known case of the quantum size effect along the growth direction, a continuous lateral scaling could reveal the mechanisms behind the purported absence of a green gap in nanowire LEDs and the role of their extraction enhancement. Furthermore the possibility to modulate strain and piezoelectric polarization by post growth patterning is of practical interest, because the internal electric fields in conventional wurtzite GaN LEDs cause performance problems. A possible alternative is cubic phase GaN, which is free of built-in polarization fields. LEDs on cubic GaN could show the link between strong polarization fields and efficiency roll-off at high current densities, also known as droop. An additional problem for all nitride-based LEDs is efficient light extraction. For a planar GaN LED only roughly 8% of the generated light can be extracted. Novel lightextraction structures with extraction-favoring geometry can yield significant increase in light output power. To investigate the effect of scaling the mesa dimension, micro and nano-sized LED arrays of variable structure size were fabricated. The nano-LEDs were patterned by electron beam lithography and dry etching. They contained up to 100 parallel nano-stripe LEDs connected to one common contact area. The mesa width was varied over 1 μm, 200 nm, and 50 nm. These LEDs were characterized electrically and optically, and the peak emission wavelength was found to depend on the lateral structure size. An electroluminescence (EL) wavelength shift of 3 nm towards smaller values was observed when the stripe width was reduced from 1 μm to 50 nm. At the same time a strong fourfold enhancement of the light emission from the patterned region over the unpatterned area was observed. Micro-patterned LEDs showed non-linear scaling of the light output power, and an enhancement of 39 % was achieved for structures with an area fill ratio of 0.5 over an LED with square mesa. Growth of cubic GaN and cubic GaInN/GaN LEDs was shown by M-OVPE in Vshaped grooves formed by the {111} planes of etched silicon. SEM images of the GaN layer in small ( 0.5 μm) regions show a contrast change where the phase boundary between cubic and wurtzite GaN is expected to occur. The growth parameter space is explored for optimal conditions while minimizing the alloying problem for GaN growth on Si. The cubic GaN phase is confirmed by electron back-scatter diffraction (EBSD) in the V-groove center, whereas wurtzite GaN is found near the groove edges. Luminescence of undoped GaN and GaInN/GaN multi-quantum well structures was studied by cathodoluminescence (CL). The undoped cubic GaN structure showed strong band-edge luminescence at 385 nm (3.22 eV) at 78 K, whereas for the MQW device strong emission at 498 nm is observed, even at room temperature. Full cubic LED structures were grown, and wavelength-stable electroluminescence at 489 nm was demonstrated. LEDs with integrated light extraction structures are grown on free-standing GaN substrates with different off-cut angles. The devices with different off-cut show pronounced features at the top surface that also penetrate the active region. For a 2.24° off-cut, these features resemble fish scales, where the feature sizes are in the μm-range. The 2.24° off-cut LED shows a 3.6-fold increased light output power compared to a LED on virtually on-axis substrate with 0.06° off-cut. The enhancement found in the fish scale LEDs is attributed to increased light scattering, effectively reducing the fraction of trapped light. These results show the potential of structures on the micro and nanometer scale for LED device performance and the progress on cubic GaN could open alternative ways to understand the droop problem.

  19. Development and Industrialization of InGaN/GaN LEDs on Patterned Sapphire Substrates for Low Cost Emitter Architecture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flemish, Joseph; Soer, Wouter

    2015-11-30

    Patterned sapphire substrate (PSS) technology has proven to be an effective approach to improve efficacy and reduce cost of light-emitting diodes (LEDs). The volume emission from the transparent substrate leads to high package efficiency, while the simple and robust architecture of PSS-based LEDs enables low cost. PSS substrates have gained wide use in mid-power LEDs over the past years. In this project, Lumileds has developed and industrialized PSS and epitaxy technology for high- power flip-chip LEDs to bring these benefits to a broader range of applications and accelerate the adoption of energy-efficient solid-state lighting (SSL). PSS geometries were designed formore » highly efficient light extraction in a flip-chip architecture and high-volume manufacturability, and corresponding sapphire patterning and epitaxy manufacturing processes were integrally developed. Concurrently, device and package architectures were developed to take advantage of the PSS flip-chip die in different types of products that meet application needs. The developed PSS and epitaxy technology has been fully implemented in manufacturing at Lumileds’ San Jose, CA location, and incorporated in illumination-grade LED products that have been successfully introduced to the market, including LUXEON Q and LUXEON FlipChip White.« less

  20. Integrated High Resolution Digital Color Light Sensor in 130 nm CMOS Technology

    PubMed Central

    Strle, Drago; Nahtigal, Uroš; Batistell, Graciele; Zhang, Vincent Chi; Ofner, Erwin; Fant, Andrea; Sturm, Johannes

    2015-01-01

    This article presents a color light detection system integrated in 130 nm CMOS technology. The sensors and corresponding electronics detect light in a CIE XYZ color luminosity space using on-chip integrated sensors without any additional process steps, high-resolution analog-to-digital converter, and dedicated DSP algorithm. The sensor consists of a set of laterally arranged integrated photodiodes that are partly covered by metal, where color separation between the photodiodes is achieved by lateral carrier diffusion together with wavelength-dependent absorption. A high resolution, hybrid, ∑∆ ADC converts each photo diode’s current into a 22-bit digital result, canceling the dark current of the photo diodes. The digital results are further processed by the DSP, which calculates normalized XYZ or RGB color and intensity parameters using linear transformations of the three photo diode responses by multiplication of the data with a transformation matrix, where the coefficients are extracted by training in combination with a pseudo-inverse operation and the least-mean square approximation. The sensor system detects the color light parameters with 22-bit accuracy, consumes less than 60 μA on average at 10 readings per second, and occupies approx. 0.8 mm2 of silicon area (including three photodiodes and the analog part of the ADC). The DSP is currently implemented on FPGA. PMID:26205275

  1. Scale-Up of the Electrodeposition of ZnO/Eosin Y Hybrid Thin Films for the Fabrication of Flexible Dye-Sensitized Solar Cell Modules.

    PubMed

    Bittner, Florian; Oekermann, Torsten; Wark, Michael

    2018-02-02

    The low-temperature fabrication of flexible ZnO photo-anodes for dye-sensitized solar cells (DSSCs) by templated electrochemical deposition of films was performed in an enlarged and technical simplified deposition setup to demonstrate the feasibility of the scale-up of the deposition process. After extraction of eosin Y (EY) from the initially deposited ZnO/EY hybrid films, mesoporous ZnO films with an area of about 40 cm² were reproducibly obtained on fluorine doped tin oxide (FTO)-glass as well as flexible indium tin oxide (ITO)-polyethylenterephthalate (PET) substrates. With a film thickness of up to 9 µm and a high specific surface area of up to about 77 m²·cm -3 the ZnO films on the flexible substrates show suitable properties for DSSCs. Operative flexible DSSC modules proved the suitability of the ZnO films for use as DSSC photo-anodes. Under a low light intensity of about 0.007 sun these modules achieved decent performance parameters with conversion efficiencies of up to 2.58%. With rising light intensity the performance parameters deteriorated, leading to conversion efficiencies below 1% at light intensities above 0.5 sun. The poor performance of the modules under high light intensities can be attributed to their high series resistances.

  2. Scale-Up of the Electrodeposition of ZnO/Eosin Y Hybrid Thin Films for the Fabrication of Flexible Dye-Sensitized Solar Cell Modules

    PubMed Central

    Oekermann, Torsten

    2018-01-01

    The low-temperature fabrication of flexible ZnO photo-anodes for dye-sensitized solar cells (DSSCs) by templated electrochemical deposition of films was performed in an enlarged and technical simplified deposition setup to demonstrate the feasibility of the scale-up of the deposition process. After extraction of eosin Y (EY) from the initially deposited ZnO/EY hybrid films, mesoporous ZnO films with an area of about 40 cm2 were reproducibly obtained on fluorine doped tin oxide (FTO)-glass as well as flexible indium tin oxide (ITO)–polyethylenterephthalate (PET) substrates. With a film thickness of up to 9 µm and a high specific surface area of up to about 77 m2·cm−3 the ZnO films on the flexible substrates show suitable properties for DSSCs. Operative flexible DSSC modules proved the suitability of the ZnO films for use as DSSC photo-anodes. Under a low light intensity of about 0.007 sun these modules achieved decent performance parameters with conversion efficiencies of up to 2.58%. With rising light intensity the performance parameters deteriorated, leading to conversion efficiencies below 1% at light intensities above 0.5 sun. The poor performance of the modules under high light intensities can be attributed to their high series resistances. PMID:29393910

  3. Extracting the chiral anomaly from γπ→ππ

    NASA Astrophysics Data System (ADS)

    Hoferichter, Martin; Kubis, Bastian; Sakkas, Dimitrios

    2012-12-01

    We derive dispersive representations for the anomalous process γπ→ππ with the ππ P-wave phase shift as input. We investigate how in this framework the chiral anomaly can be extracted from a cross-section measurement using all data up to 1 GeV, and discuss the importance of a precise representation of the γπ→ππ amplitude for the hadronic light-by-light contribution to the anomalous magnetic moment of the muon.

  4. LIF standoff research

    NASA Astrophysics Data System (ADS)

    Olson, C. L.; Cuneo, M. E.; Desjarlais, M. P.; Filuk, A. B.; Greenly, J. B.; Hanson, D. L.; Hinshelwood, D. D.; Hubbard, R. F.; Lampe, M.; Lockner, T. R.

    Present Light Ion Fusion (LIF) target experiments on PBFA 2 use a barrel diode in which the total transport length from the anode to the target is less than or equal to 15 cm. Future LIF development includes high yield applications (LMF) and energy production (ETF and LIBRA power plants) that require standoff - the generation of extracted ion beams and transport of these beams over distances of several meters. Standoff research includes the development of high efficiency extraction diodes (single stage and two-stage), improvements in beam quality (divergence, purity, uniformity, etc.), and the efficient transport and focusing of these beams over distances of several meters to a fusion target. Progress in all of these areas is discussed, as well as a strategy to reduce the divergence from the present 17 mrad for 5 MeV protons on SABRE to the required mrad for 35 MeV Li ions for LMF. The status of experiments is summarized, and future directions are indicated.

  5. Automated measurement of birefringence - Development and experimental evaluation of the techniques

    NASA Technical Reports Server (NTRS)

    Voloshin, A. S.; Redner, A. S.

    1989-01-01

    Traditional photoelasticity has started to lose its appeal since it requires a well-trained specialist to acquire and interpret results. A spectral-contents-analysis approach may help to revive this old, but still useful technique. Light intensity of the beam passed through the stressed specimen contains all the information necessary to automatically extract the value of retardation. This is done by using a photodiode array to investigate the spectral contents of the light beam. Three different techniques to extract the value of retardation from the spectral contents of the light are discussed and evaluated. An experimental system was built which demonstrates the ability to evaluate retardation values in real time.

  6. Velocity Distributions of Interplanetary Dust Derived from Astronomical Sky Spectra

    NASA Astrophysics Data System (ADS)

    Huestis, D. L.; Ali, S.; Cosby, P. C.; Slanger, T. G.

    2001-11-01

    Characterization of interplanetary dust is important for understanding the creation by accretion of planets and moons, the development of planetary atmospheres, and, potentially, for the initiation of prebiotic chemistry. The recent COBE mission has provided a profile in ecliptic coordinates of the distribution of interplanetary dust particles through their thermal infrared emission. Additional information about interplanetary dust can be extracted from its visible spectrum of scattered sunlight, called Zodiacal Light. Night sky spectra taken at large-aperture telescopes using high-resolution echelle spectrographs reveal Fraunhofer absorption features in the Zodiacal Light spectrum of scattered sunlight, a nuisance in subtraction from the spectrum of the extraterrestrial object under investigation. We are analyzing the intensity modulations and Doppler shifts of solar Fraunhofer absorption lines in the Zodiacal Light component of sky spectra, donated by collaborating astronomers using Keck/HIRES and other high-performance astronomical facilities. Our objectives include velocity distributions of interplanetary dust and improved separation of terrestrial and extraterrestrial sources in sky spectra. Participation of S. Ali was made possible by a grant from the NSF Physics Research Experiences for Undergraduates (REU) program.

  7. Precise Protein Photolithography (P3): High Performance Biopatterning Using Silk Fibroin Light Chain as the Resist

    PubMed Central

    Liu, Wanpeng; Zhou, Zhitao; Zhang, Shaoqing; Shi, Zhifeng; Tabarini, Justin; Lee, Woonsoo; Zhang, Yeshun; Gilbert Corder, S. N.; Li, Xinxin; Dong, Fei; Cheng, Liang; Liu, Mengkun; Kaplan, David L.; Omenetto, Fiorenzo G.

    2017-01-01

    Precise patterning of biomaterials has widespread applications, including drug release, degradable implants, tissue engineering, and regenerative medicine. Patterning of protein‐based microstructures using UV‐photolithography has been demonstrated using protein as the resist material. The Achilles heel of existing protein‐based biophotoresists is the inevitable wide molecular weight distribution during the protein extraction/regeneration process, hindering their practical uses in the semiconductor industry where reliability and repeatability are paramount. A wafer‐scale high resolution patterning of bio‐microstructures using well‐defined silk fibroin light chain as the resist material is presented showing unprecedent performances. The lithographic and etching performance of silk fibroin light chain resists are evaluated systematically and the underlying mechanisms are thoroughly discussed. The micropatterned silk structures are tested as cellular substrates for the successful spatial guidance of fetal neural stems cells seeded on the patterned substrates. The enhanced patterning resolution, the improved etch resistance, and the inherent biocompatibility of such protein‐based photoresist provide new opportunities in fabricating large scale biocompatible functional microstructures. PMID:28932678

  8. Differential carrier lifetime and transport effects in electrically injected III-nitride light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Rashidi, A.; Nami, M.; Monavarian, M.; Aragon, A.; DaVico, K.; Ayoub, F.; Mishkat-Ul-Masabih, S.; Rishinaramangalam, A.; Feezell, D.

    2017-07-01

    This work describes a small-signal microwave method for determining the differential carrier lifetime and transport effects in electrically injected InGaN/GaN light-emitting diodes (LEDs). By considering the carrier diffusion, capture, thermionic escape, and recombination, the rate equations are used to derive an equivalent small-signal electrical circuit for the LEDs, from which expressions for the input impedance and modulation response are obtained. The expressions are simultaneously fit to the experimental data for the input impedance and modulation response for nonpolar InGaN/GaN micro-LEDs on free-standing GaN substrates. The fittings are used to extract the transport related circuit parameters and differential carrier lifetimes. The dependence of the parameters on the device diameter and current density is reported. We also derive approximations for the modulation response under low and high injection levels and show that the transport of carriers affects the modulation response of the device, especially at low injection levels. The methods presented are relevant to the design of high-speed LEDs for visible-light communication.

  9. High-sensitivity detection of polysaccharide using phosphodiesters quaternary ammonium salt as probe by decreased resonance light scattering.

    PubMed

    Chen, Zhanguang; Liu, Guoliang; Chen, Maohuai; Wu, Mingyao

    2009-07-15

    Phosphodiesters quaternary ammonium salt (PQAS) displayed quite intense light scattering in aqueous solution under the optimum condition. In addition, the resonance light scattering (RLS) signal of PQAS was remarkably decreased after adding trace amount polysaccharide with the maximum peak located at 391 nm. It was found that the decreased RLS intensity of the PQAS-PPGL system (DeltaI(RLS)) was in proportion to PPGL concentration in the range of 0.1-30 ng mL(-1), with a lower detection limit of 0.05 ng mL(-1). Based on this rare decreased RLS phenomenon, the novel method of the determination of purified polysaccharide of Gracilaria Lemaneiformis (PPGL) at nanogram level was proposed in this contribution. The proposed approach was used to determine purified polysaccharide extracted from Gracilaria Lemaneiformis with satisfactory results. Compared with the reported polysaccharide assays, this proposed method has good selectivity, high sensitivity and is especially simple and convenient. Moreover, the mechanism of the reaction between PQAS and polysaccharide was investigated by RLS, fluorescence, and fluorescence lifetime spectra.

  10. High resolution analysis of soil elements with laser-induced breakdown

    DOEpatents

    Ebinger, Michael H [Santa Fe, NM; Harris, Ronny D [Los Alamos, NM

    2010-04-06

    The invention is a system and method of detecting a concentration of an element in a soil sample wherein an opening or slot is formed in a container that supports a soil sample that was extracted from the ground whereupon at least a length of the soil sample is exposed via the opening. At each of a plurality of points along the exposed length thereof, the soil sample is ablated whereupon a plasma is formed that emits light characteristic of the elemental composition of the ablated soil sample. Each instance of emitted light is separated according to its wavelength and for at least one of the wavelengths a corresponding data value related to the intensity of the light is determined. As a function of each data value a concentration of an element at the corresponding point along the length of the soil core sample is determined.

  11. UVA, UVB Light Doses and Harvesting Time Differentially Tailor Glucosinolate and Phenolic Profiles in Broccoli Sprouts.

    PubMed

    Moreira-Rodríguez, Melissa; Nair, Vimal; Benavides, Jorge; Cisneros-Zevallos, Luis; Jacobo-Velázquez, Daniel A

    2017-06-26

    Broccoli sprouts contain health-promoting glucosinolate and phenolic compounds that can be enhanced by applying ultraviolet light (UV). Here, the effect of UVA or UVB radiation on glucosinolate and phenolic profiles was assessed in broccoli sprouts. Sprouts were exposed for 120 min to low intensity and high intensity UVA (UVA L , UVA H ) or UVB (UVB L , UVB H ) with UV intensity values of 3.16, 4.05, 2.28 and 3.34 W/m², respectively. Harvest occurred 2 or 24 h post-treatment; and methanol/water or ethanol/water (70%, v / v ) extracts were prepared. Seven glucosinolates and 22 phenolics were identified. Ethanol extracts showed higher levels of certain glucosinolates such as glucoraphanin, whereas methanol extracts showed slight higher levels of phenolics. The highest glucosinolate accumulation occurred 24 h after UVB H treatment, increasing 4-methoxy-glucobrassicin, glucobrassicin and glucoraphanin by ~170, 78 and 73%, respectively. Furthermore, UVA L radiation and harvest 2 h afterwards accumulated gallic acid hexoside I (~14%), 4- O -caffeoylquinic acid (~42%), gallic acid derivative (~48%) and 1-sinapoyl-2,2-diferulolyl-gentiobiose (~61%). Increases in sinapoyl malate (~12%), gallotannic acid (~48%) and 5-sinapoyl-quinic acid (~121%) were observed with UVB H Results indicate that UV-irradiated broccoli sprouts could be exploited as a functional food for fresh consumption or as a source of bioactive phytochemicals with potential industrial applications.

  12. OTDR fiber-optical chemical sensor system for detection and location of hydrocarbon leakage.

    PubMed

    Buerck, J; Roth, S; Kraemer, K; Mathieu, H

    2003-08-15

    A distributed sensing system for apolar hydrocarbons is presented which is built from a polymer-clad silica fiber adapted to an optical time domain reflectometer (OTDR) set-up. OTDR measurements allow locating and detecting chemicals by measuring the time delay between short light pulses entering the fiber and discrete changes in the backscatter signals that are caused by local extraction of hydrocarbons into the fiber cladding. The light guiding properties of the fiber are affected by interaction of the extracted chemicals with the evanescent wave light field extending into the fiber cladding. Distributed sensing of pure liquid hydrocarbons (HC) and aqueous HC solutions with a commercially available mini-OTDR adapted to sensing fibers of up to 1km length could be demonstrated. A pulsed laser diode emitting at the 850 nm telecommunication wavelength was applied in the mini-OTDR to locate the HCs by analyzing the step drop (light loss) in the backscatter signal, which is induced by local refractive index (RI) increase in the silicone cladding due to the extracted HC. The prototype instrument can be applied for monitoring hydrocarbon leakage in large technical installations, such as tanks, chemical pipelines or chemical waste disposal containments.

  13. Optimal conditions for cordycepin production in surface liquid-cultured Cordyceps militaris treated with porcine liver extracts for suppression of oral cancer.

    PubMed

    Lin, Liang-Tzung; Lai, Ying-Jang; Wu, She-Ching; Hsu, Wei-Hsuan; Tai, Chen-Jei

    2018-01-01

    Cordycepin is one of the most crucial bioactive compounds produced by Cordyceps militaris and has exhibited antitumor activity in various cancers. However, industrial production of large amounts of cordycepin is difficult. The porcine liver is abundant in proteins, vitamins, and adenosine, and these ingredients may increase cordycepin production and bioconversion during C. militaris fermentation. We observed that porcine liver extracts increased cordycepin production. In addition, air supply (2 h/d) significantly increased the cordycepin level in surface liquid-cultured C. militaris after 14 days. Moreover, blue light light-emitting diode irradiation (16 h/d) increased cordycepin production. These findings indicated that these conditions are suitable for increasing cordycepin production. We used these conditions to obtain water extract from the mycelia of surface liquid-cultured C. militaris (WECM) and evaluated the anti-oral cancer activity of this extract in vitro and in vivo. The results revealed that WECM inhibited the cell viability of SCC-4 oral cancer cells and arrested the cell cycle in the G2/M phase. Oxidative stress and mitochondrial dysfunction (mitochondrial fission) were observed in SCC-4 cells treated with WECM for 12 hours. Furthermore, WECM reduced tumor formation in 7,12-dimethylbenz[a]anthracene-induced hamster buccal pouch carcinogenesis through the downregulation of proliferating cell nuclear antigen, vascular endothelial growth factor, and c-fos expression. The results indicated that porcine liver extracts irradiated with blue light light-emitting diode and supplied with air can be used as a suitable medium for the growth of mycelia and production of cordycepin, which can be used in the treatment of oral cancer. Copyright © 2017. Published by Elsevier B.V.

  14. Simultaneous determination of eight cyclopolypeptide antibiotics in feed by high performance liquid chromatography coupled with evaporation light scattering detection.

    PubMed

    Song, Xuqin; Xie, Jingmeng; Zhang, Meiyu; Zhang, Yingxia; Li, Jiufeng; Huang, Qiwen; He, Limin

    2018-02-15

    A high throughput, reliable and reproducible analysis strategy based on high performance liquid chromatography combined to evaporative light scattering detector (HPLC-ELSD) was developed for simultaneous determination of eight cyclopolypeptide antibiotics including vancomycin, polymyxin B (polymyxin B1 and polymyxin B2), polymyxin E (colistin A and colistin B), teicoplanin, bacitracin A, daptomycin and virginiamycin M1 in animal Feed. Feed samples were extracted with methanol-2% formic acid aqueous solution, followed by a solid-phase extraction step using a HLB cartridge. Under the optimum chromatographic conditions and ELSD parameters, target compounds were separated well on a short column filled with biphenyl stationary phase. The method was developed in accordance with pig complete feed and then extended to detect polypeptide antibiotics in piglet premix, pig feed additive, poultry complete feed and fattening pig premix. The results showed that logarithmic calibration curves of eight analytes were linear (r 2  > 0.99) within the concentration range of 5-200 mg mL -1 . The developed method provided good accuracy and precision for quantification of eight polypeptides in five kinds of feeds with recoveries ranging from 72.0% to 105.4% with relative standard deviations <9.5%. The limits of detection ranged from 2 to 5 mg kg -1 . Finally, the method was successfully applied to analyze polypeptide antibiotics in commercial feed. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. The light environment and cellular optics of the snow alga Chlamydomonas nivalis (Bauer) Wille.

    PubMed

    Gorton, H L; Williams, W E; Vogelmann, T C

    2001-06-01

    The alga Chlamydomonas nivalis lives in a high-light, cold environment: persistent alpine snowfields. Since the algae in snow receive light from all angles, the photon fluence rate is the critical parameter for photosynthesis, but it is rarely measured. We measured photon irradiance and photon fluence rate in the snow that contained blooms of C. nivalis. On a cloudless day the photon fluence rate at the snow surface was nearly twice the photon irradiance, and it can be many times greater than the photon irradiance when the solar angle is low or the light is diffuse. Beneath the surface the photon fluence rate can be five times the photon irradiance. Photon irradiance and photon fluence rate declined exponentially with depth, approximating the Bouguer-Lambert relationship. We used an integrating sphere to measure the spectral characteristics of a monolayer of cells and microscopic techniques to examine the spectral characteristics of individual cells. Astaxanthin blocked blue light and unknown absorbers blocked UV radiation; the penetration of these wavelengths through whole cells was negligible. We extracted astaxanthin, measured absorbance on a per-cell basis and estimated that the layer of astaxanthin within cells would allow only a small percentage of the blue light to reach the chloroplast, potentially protecting the chloroplast from excessive light.

  16. Full field optical coherence tomography can identify spermatogenesis in a rodent sertoli-cell only model.

    PubMed

    Ramasamy, Ranjith; Sterling, Joshua; Manzoor, Maryem; Salamoon, Bekheit; Jain, Manu; Fisher, Erik; Li, Phillip S; Schlegel, Peter N; Mukherjee, Sushmita

    2012-01-01

    Microdissection testicular sperm extraction (micro-TESE) has replaced conventional testis biopsies as a method of choice for obtaining sperm for in vitro fertilization for men with nonobstructive azoospermia. A technical challenge of micro-TESE is that the low magnification inspection of the tubules with a surgical microscope is insufficient to definitively identify sperm-containing tubules, necessitating tissue removal and cytologic assessment. Full field optical coherence tomography (FFOCT) uses white light interference microscopy to generate quick high-resolution tomographic images of fresh (unprocessed and unstained) tissue. Furthermore, by using a nonlaser safe light source (150 W halogen lamp) for tissue illumination, it ensures that the sperm extracted for in vitro fertilization are not photo-damaged or mutagenized. A focal Sertoli-cell only rodent model was created with busulfan injection in adult rats. Ex vivo testicular tissues from both normal and busulfan-treated rats were imaged with a commercial modified FFOCT system, Light-CT™, and the images were correlated with gold standard hematoxylin and eosin staining. Light-CT™ identified spermatogenesis within the seminiferous tubules in freshly excised testicular tissue, without the use of exogenous contrast or fixation. Normal adult rats exhibited tubules with uniform size and shape (diameter 328 ±11 μm). The busulfan-treated animals showed marked heterogeneity in tubular size and shape (diameter 178 ± 35 μm) and only 10% contained sperm within the lumen. FFOCT has the potential to facilitate real-time visualization of spermatogenesis in humans, and aid in micro-TESE for men with infertility.

  17. [Effect of total hypothermia on the fatty acid composition of blood phospholipids of rats and sousliks and light irradiation on chemical processes in lipid extract].

    PubMed

    Zabelinskiĭ, S A; Chebotareva, M A; Kalandarov, A M; Feĭzulaev, B A; Klichkhanov, N K; Krivchenko, A I; Kazennov, A M

    2011-01-01

    Effect of hypothermia on the fatty acid composition of rat and souslik blood phospholipids is studied. Different reaction of these animals to cooling is revealed: in rats no changes were observed in the fatty acid composition of blood phospholipids, whereas in the hibernating there were significant changes in the content of individual fatty acids (FA). The content of monoenic acids in sousliks decreased almost by 50%, while the content of saturated acid (C18) and of polyenic acids C18 : 2omega6 and C20 : 4omega6 rose significantly. Such changes seem to be the mechanism that promotes maintenance of the organism viability under conditions of a decreased level of metabolism, heart rhythm, and body temperature and is evolutionarily acquired. At the same time, the observed changes in the content of individual FA do not lead to sharp changes in such integrative parameters as the total non-saturation of phospholipids, which determines liquid properties of chylomicrons and other lipolipoprotein transport particles of the souslik blood. There are studied absorption spectra of blood lipid extracts of rats and sousliks under effect of light as well as effect of light upon the FA composition of lipid extracts of these animals. The FA composition of lipid extracts has been established to remain practically constant, whereas the character of changes of spectra under action of light indicates the presence in the extracts of oxidation-reduction reactions. The obtained data allow suggesting that in the lipid extract there occurs cooperation both of the phospholipid molecules themselves and of them with other organic molecules, which makes it possible for fatty acids to participate in processes of transport both of electrons and of protons. This novel role of FA as a participant of the electron transfer might probably be extrapolated to chemical reactions (processes) occurring inside the membrane.

  18. Fernblock (Polypodium leucotomos Extract): Molecular Mechanisms and Pleiotropic Effects in Light-Related Skin Conditions, Photoaging and Skin Cancers, a Review

    PubMed Central

    Parrado, Concepcion; Mascaraque, Marta; Gilaberte, Yolanda; Juarranz, Angeles; Gonzalez, Salvador

    2016-01-01

    Healthier life styles include increased outdoors time practicing sports and walking. This means increased exposure to the sun, leading to higher risk of sunburn, photoaging and skin cancer. In addition to topical barrier products, oral supplementations of various botanicals endowed with antioxidant activity are emerging as novel method of photoprotection. Polypodium leucotomos extract (PL, commercial name Fernblock®, IFC Group, Spain) is a powerful antioxidant due to its high content of phenolic compounds. PL is administered orally, with proven safety, and it can also be used topically. Its mechanisms include inhibition of the generation and release of reactive oxygen species (ROS) by ultraviolet (UV) light. It also prevents UV- and ROS-induced DNA damage with inhibition of AP1 and NF-κB and protection of natural antioxidant enzyme systems. At the cellular level, PL decreases cellular apoptosis and necrosis mediated UV and inhibits abnormal extracellular matrix remodeling. PL reduces inflammation, prevents immunosuppression, activates tumor suppressor p53 and inhibits UV-induced cyclooxygenase-2 (COX-2) enzyme expression. In agreement with increased p53 activity, PL decreased UV radiation-induced cell proliferation. PL also prevents common deletions mitochondrial DNA damage induced by UVA, and MMP-1 expression induced Visible Light and Infrared Radiation. These cellular and molecular effects are reflected in inhibitions of carcinogenesis and photoaging. PMID:27367679

  19. Fernblock (Polypodium leucotomos Extract): Molecular Mechanisms and Pleiotropic Effects in Light-Related Skin Conditions, Photoaging and Skin Cancers, a Review.

    PubMed

    Parrado, Concepcion; Mascaraque, Marta; Gilaberte, Yolanda; Juarranz, Angeles; Gonzalez, Salvador

    2016-06-29

    Healthier life styles include increased outdoors time practicing sports and walking. This means increased exposure to the sun, leading to higher risk of sunburn, photoaging and skin cancer. In addition to topical barrier products, oral supplementations of various botanicals endowed with antioxidant activity are emerging as novel method of photoprotection. Polypodium leucotomos extract (PL, commercial name Fernblock(®), IFC Group, Spain) is a powerful antioxidant due to its high content of phenolic compounds. PL is administered orally, with proven safety, and it can also be used topically. Its mechanisms include inhibition of the generation and release of reactive oxygen species (ROS) by ultraviolet (UV) light. It also prevents UV- and ROS-induced DNA damage with inhibition of AP1 and NF-κB and protection of natural antioxidant enzyme systems. At the cellular level, PL decreases cellular apoptosis and necrosis mediated UV and inhibits abnormal extracellular matrix remodeling. PL reduces inflammation, prevents immunosuppression, activates tumor suppressor p53 and inhibits UV-induced cyclooxygenase-2 (COX-2) enzyme expression. In agreement with increased p53 activity, PL decreased UV radiation-induced cell proliferation. PL also prevents common deletions mitochondrial DNA damage induced by UVA, and MMP-1 expression induced Visible Light and Infrared Radiation. These cellular and molecular effects are reflected in inhibitions of carcinogenesis and photoaging.

  20. Microlens array processor with programmable weight mask and direct optical input

    NASA Astrophysics Data System (ADS)

    Schmid, Volker R.; Lueder, Ernst H.; Bader, Gerhard; Maier, Gert; Siegordner, Jochen

    1999-03-01

    We present an optical feature extraction system with a microlens array processor. The system is suitable for online implementation of a variety of transforms such as the Walsh transform and DCT. Operating with incoherent light, our processor accepts direct optical input. Employing a sandwich- like architecture, we obtain a very compact design of the optical system. The key elements of the microlens array processor are a square array of 15 X 15 spherical microlenses on acrylic substrate and a spatial light modulator as transmissive mask. The light distribution behind the mask is imaged onto the pixels of a customized a-Si image sensor with adjustable gain. We obtain one output sample for each microlens image and its corresponding weight mask area as summation of the transmitted intensity within one sensor pixel. The resulting architecture is very compact and robust like a conventional camera lens while incorporating a high degree of parallelism. We successfully demonstrate a Walsh transform into the spatial frequency domain as well as the implementation of a discrete cosine transform with digitized gray values. We provide results showing the transformation performance for both synthetic image patterns and images of natural texture samples. The extracted frequency features are suitable for neural classification of the input image. Other transforms and correlations can be implemented in real-time allowing adaptive optical signal processing.

  1. Green grasses as light harvesters in dye sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Shanmugam, Vinoth; Manoharan, Subbaiah; Sharafali, A.; Anandan, Sambandam; Murugan, Ramaswamy

    2015-01-01

    Chlorophylls, the major pigments presented in plants are responsible for the process of photosynthesis. The working principle of dye sensitized solar cell (DSSC) is analogous to natural photosynthesis in light-harvesting and charge separation. In a similar way, natural dyes extracted from three types of grasses viz. Hierochloe Odorata (HO), Torulinium Odoratum (TO) and Dactyloctenium Aegyptium (DA) were used as light harvesters in dye sensitized solar cells (DSSCs). The UV-Vis absorption spectroscopy, Fourier transform infrared (FT-IR), and liquid chromatography-mass spectrometry (LC-MS) were used to characterize the dyes. The electron transport mechanism and internal resistance of the DSSCs were investigated by the electrochemical impedance spectroscopy (EIS). The performance of the cells fabricated with the grass extract shows comparable efficiencies with the reported natural dyes. Among the three types of grasses, the DSSC fabricated with the dye extracted from Hierochloe Odorata (HO) exhibited the maximum efficiency. LC-MS investigations indicated that the dominant pigment present in HO dye was pheophytin a (Pheo a).

  2. High-performance tandem organic light-emitting diodes based on a buffer-modified p/n-type planar organic heterojunction as charge generation layer

    NASA Astrophysics Data System (ADS)

    Wu, Yukun; Sun, Ying; Qin, Houyun; Hu, Shoucheng; Wu, Qingyang; Zhao, Yi

    2017-04-01

    High-performance tandem organic light-emitting diodes (TOLEDs) were realized using a buffer-modified p/n-type planar organic heterojunction (OHJ) as charge generation layer (CGL) consisting of common organic materials, and the configuration of this p/n-type CGL was "LiF/N,N'-diphenyl-N,N'-bis(1-napthyl)-1,1'-biphenyl-4,4'-diamine (NPB)/4,7-diphenyl-1,10-phenanthroline (Bphen)/molybdenum oxide (MoOx)". The optimized TOLED exhibited a maximum current efficiency of 77.6 cd/A without any out-coupling techniques, and the efficiency roll-off was greatly improved compared to the single-unit OLED. The working mechanism of the p/n-type CGL was discussed in detail. It is found that the NPB/Bphen heterojunction generated enough charges under a forward applied voltage and the carrier extraction was a tunneling process. These results could provide a new method to fabricate high-performance TOLEDs.

  3. Light-extraction enhancement of GaN-based 395  nm flip-chip light-emitting diodes by an Al-doped ITO transparent conductive electrode.

    PubMed

    Xu, Jin; Zhang, Wei; Peng, Meng; Dai, Jiangnan; Chen, Changqing

    2018-06-01

    The distinct ultraviolet (UV) light absorption of indium tin oxide (ITO) limits the performance of GaN-based near-UV light-emitting diodes (LEDs). Herein, we report an Al-doped ITO with enhanced UV transmittance and low sheet resistance as the transparent conductive electrode for GaN-based 395 nm flip-chip near-UV LEDs. The thickness dependence of optical and electrical properties of Al-doped ITO films is investigated. The optimal Al-doped ITO film exhibited a transmittance of 93.2% at 395 nm and an average sheet resistance of 30.1  Ω/sq. Meanwhile, at an injection current of 300 mA, the forward voltage decreased from 3.14 to 3.11 V, and the light output power increased by 13% for the 395 nm near-UV flip-chip LEDs with the optimal Al-doped ITO over those with pure ITO. This Letter provides a simple and repeatable approach to further improve the light extraction efficiency of GaN-based near-UV LEDs.

  4. Enhancing the efficacy of AREDS antioxidants in light-induced retinal degeneration

    PubMed Central

    Wong, Paul; Markey, M.; Rapp, C. M.; Darrow, R. M.; Ziesel, A.

    2017-01-01

    Purpose Light-induced photoreceptor cell degeneration and disease progression in age-related macular degeneration (AMD) involve oxidative stress and visual cell loss, which can be prevented, or slowed, by antioxidants. Our goal was to test the protective efficacy of a traditional Age-related Eye Disease Study antioxidant formulation (AREDS) and AREDS combined with non-traditional antioxidants in a preclinical animal model of photooxidative retinal damage. Methods Male Sprague-Dawley rats were reared in a low-intensity (20 lux) or high-intensity (200 lux) cyclic light environment for 6 weeks. Some animals received a daily dietary supplement consisting of a small cracker infused with an AREDS antioxidant mineral mixture, AREDS antioxidants minus zinc, or zinc oxide alone. Other rats received AREDS combined with a detergent extract of the common herb rosemary, AREDS plus carnosic acid, zinc oxide plus rosemary, or rosemary alone. Antioxidant efficacy was determined by measuring retinal DNA levels 2 weeks after 6 h of intense exposure to white light (9,000 lux). Western blotting was used to determine visual cell opsin and arrestin levels following intense light treatment. Rhodopsin regeneration was determined after 1 h of exposure to light. Gene array analysis was used to determine changes in the expression of retinal genes resulting from light rearing environment or from antioxidant supplementation. Results Chronic high-intensity cyclic light rearing resulted in lower levels of rod and cone opsins, retinal S-antigen (S-ag), and medium wavelength cone arrestin (mCAR) than found for rats maintained in low cyclic light. However, as determined by retinal DNA, and by residual opsin and arrestin levels, 2 weeks after acute photooxidative damage, visual cell loss was greater in rats reared in low cyclic light. Retinal damage decreased with AREDS plus rosemary, or with zinc oxide plus rosemary whereas AREDS alone and zinc oxide alone (at their daily recommended levels) were both ineffective. One week of supplemental AREDS plus carnosic acid resulted in higher levels of rod and cone cell proteins, and higher levels of retinal DNA than for AREDS alone. Rhodopsin regeneration was unaffected by the rosemary treatment. Retinal gene array analysis showed reduced expression of medium- wavelength opsin 1 and arrestin C in the high-light reared rats versus the low-light rats. The transition of rats from low cyclic light to a high cyclic light environment resulted in the differential expression of 280 gene markers, enriched for genes related to inflammation, apoptosis, cytokine, innate immune response, and receptors. Rosemary, zinc oxide plus rosemary, and AREDS plus rosemary suppressed 131, 241, and 266 of these genes (respectively) in high-light versus low-light animals and induced a small subset of changes in gene expression that were independent of light rearing conditions. Conclusions Long-term environmental light intensity is a major determinant of retinal gene and protein expression, and of visual cell survival following acute photooxidative insult. Rats preconditioned by high-light rearing exhibit lower levels of cone opsin mRNA and protein, and lower mCAR protein, than low-light reared animals, but greater retention of retinal DNA and proteins following photooxidative damage. Rosemary enhanced the protective efficacy of AREDS and led to the greatest effect on the retinal genome in animals reared in high environmental light. Chronic administration of rosemary antioxidants may be a useful adjunct to the therapeutic benefit of AREDS in slowing disease progression in AMD. PMID:29062223

  5. Effects of Coffee Extracts with Different Roasting Degrees on Antioxidant and Anti-Inflammatory Systems in Mice.

    PubMed

    Choi, Sukyoung; Jung, Soohan; Ko, Kwang Suk

    2018-03-16

    Coffee roasting affects the taste, color, and aroma of coffee. The Maillard reaction, a major reaction during the roasting process, produces melanoidin, which affects the overall antioxidant capacity and anti-inflammatory effects of coffee. In this experiment, coffee roasting was divided into four degrees: Light, Medium, City, and French. To examine the in vivo antioxidant and anti-inflammatory effects of coffee extracts with different roasting degrees, we used 10-week-old male C57BL/6 mice. Mice were pre-treated with coffee extracts for 10 days by oral gavage (300 mg/Kg.B.W). After the last pre-treatment, lipopolysaccharide (LPS, 15 mg/Kg.B.W) was injected intraperitoneally for immune stimulation. Histopathological analysis showed that hepatic portal vein invasion and liver necrosis were severe in the LPS-treated group. However, these phenomena were greatly ameliorated when mice were pre-treated with Light- or Medium-roasted coffee extracts. Hepatic glutathione level was increased in the French group but decreased in the LPS-stimulated group. When mice were treated with LPS, mRNA expression level of tumor necrosis factor-alpha (TNF-α) was increased, whereas TNF-α expression was significantly reduced in the Light and Medium groups. Treatment with coffee extracts decreased the mRNA expression levels of interleukin 6 (IL-6) in mice stimulated by LPS, regardless of coffee roasting degrees. These effects decreased with the increasing coffee roasting degree. Results of luciferase reporter assay revealed that these effects of coffee extracts were transcriptionally regulated by the NF-κB pathway. Taken together, these results suggest that the roasting degree affects the antioxidant and anti-inflammatory effects of coffee extracts.

  6. Morphologies and optical and electrical properties of InGaN/GaN micro-square array light-emitting diode chips.

    PubMed

    Han, Dan; Ma, Shufang; Jia, Zhigang; Liu, Peizhi; Jia, Wei; Shang, Lin; Zhai, Guangmei; Xu, Bingshe

    2018-04-10

    InGaN/GaN micro-square array light-emitting diode (LED) chips (micro-chips) have been prepared via the focused ion beam (FIB) etching technique, which can not only reduce ohmic contact degradation but also control the aspect ratio precisely in three-dimensional (3D) structure LED (3D-LED) device fabrication. The effects of FIB beam current and micro-square array depth on morphologies and optical and electrical properties of the micro-chips have been studied. Our results show that sidewall surface morphology and optical and electrical properties of the micro-chips degrade with increased beam current. After potassium hydroxide etching with different times, an optimal current-voltage and luminescence performance can be obtained. Combining the results of cathodoluminescence mappings and light output-current characteristics, the light extraction efficiency of the micro-chips is reduced as FIB etch depth increases. The mechanisms of micro-square depth on light extraction have been revealed by 3D finite difference time domain.

  7. OLED-based physiologically-friendly very low-color temperature illumination for night

    NASA Astrophysics Data System (ADS)

    Jou, Jwo-Huei; Shen, Shih-Ming; Tang, Ming-Chun; Chen, Pin-Chu; Chen, Szu-Hao; Wang, Yi-Shan; Chen, Chien-Chih; Wang, Ching-Chun; Hsieh, Chun-Yu; Lin, Chin-Chiao; Chen, Chien-Tien

    2012-09-01

    Numerous medical research studies reveal intense white or blue light to drastically suppress at night the secretion of melatonin (MLT), a protective oncostatic hormone. Lighting devices with lower color-temperature (CT) possess lesser MLT suppression effect based on the same luminance, explaining why physicians have long been calling for the development of lighting sources with low CT or free from blue emission for use at night to safeguard human health. We will demonstrate in the presentation the fabrication of OLED devices with very-low CT, especially those with CT much lower than that of incandescent bulbs (2500K) or even candles (2000K). Without any light extraction method, OLEDs with an around 1800K CT are easily obtainable with an efficacy of 30 lm/W at 1,000 nits. To also ensure high color-rendering to provide visual comfort, low CT OLEDs composing long wavelength dominant 5-spectrum emission have been fabricated. While keeping the color-rendering index as high as 85 and CT as low as 2100K, the resulting efficacy can also be much greater than that of incandescent bulbs (15 lm/W), proving these low CT OLED devices to be also capable of being energy-saving and high quality. The color-temperature can be further decreased to 1700K or lower upon removing the undesired short wavelength emission but on the cost of losing some color rendering index. It is hoped that the devised energy-saving, high quality low CT OLED could properly echo the call for a physiologically-friendly illumination for night, and more attention could be drawn to the development of MLT suppression-less non-white light.

  8. Influence of Culture Media on the Radiation Resistance of Micrococcus radiodurans

    PubMed Central

    Krabbenhoft, K. L.; Anderson, A. W.; Elliker, P. R.

    1967-01-01

    The addition of NZ-case (a tryptic digest of casein) to a growth medium (PC) consisting of tryptone, glucose, and yeast extract caused a significant decrease in γ radiation resistance of Micrococcus radiodurans. The level of radiation resistance was inversely related to the concentration of NZ-case. The ld50 for this organism was approximately 700 krad when grown in tryptone, glucose, yeast extract, and dl-methionine (TGYM) broth, but it was approximately one-half as resistant when grown in a PC medium containing 0.5% NZ-case (PCNZ). The resistance to ultraviolet light was also reduced. Cultures transferred from PCNZ to TGYM media regained the high level of resistance. Images Fig. 2 Fig. 3 PMID:5340165

  9. Simulation for light extraction efficiency of OLEDs with spheroidal microlenses in hexagonal array

    NASA Astrophysics Data System (ADS)

    Bae, Hyungchul; Kim, Jun Soo; Hong, Chinsoo

    2018-05-01

    A theoretical model based on ray optics is used to simulate the optical performance of organic light-emitting diodes (OLEDs) with spheroidal microlens arrays (MLAs) in a hexagonal array configuration using the Monte Carlo method. In simulations, ray tracing was performed until 20 reflections occurred from the metal cathode, with 10 consecutive reflections permitted in a single lens pattern. The parameters describing the shape and array of the lens pattern of a MLA are its radius, height, contact angle, and fill factor (FF). Many previous results on how these parameters affect light extraction efficiency (LEE) are inconsistent. In this paper, these contradictory results are discussed and explained by introducing a new parameter. To examine light extraction from an OLED through a MLA, the LEE enhancement is studied considering the effect of absorption by indium tin oxide during multiple reflections from the metal cathode. The device size where LEE enhancement is unchanged with changing lens pattern was identified for a fixed FF; under this condition, the optimal LEE enhancement, 84%, can be obtained using an OLED with a close-packed spheroidal MLA. An ideal maximum LEE enhancement of 120% was achieved with a device with an infinite-sized MLA. The angular intensity distribution of light emitted through a MLA is considered in addition to LEE enhancement for an optimized MLA.

  10. Haemostasis in Oral Surgery with Blue-Violet Light.

    PubMed

    Veleska-Stevkoska, Daniela; Koneski, Filip

    2018-04-15

    The invasive dental procedures usually result in wounds accompanied by physiological bleeding. Even though the bleeding is easily manageable, it is still one of the major concerns of the patients and a reason for their subjective discomfort. Recently, a novel approach with light-emitting diode (LED) was introduced to control the bleeding. This study aims to examine the effectiveness of the irradiation with blue-violet light LEDs on the haemostasis. The study included 40 patients with an indication for tooth extraction, divided into two groups: examination group (n = 30) and a control group (n = 10). The site of the extraction socket in the examination group was irradiated with LED (410 nm) until the bleeding stopped. The patients from the control group were treated by conventional gauze pressure to stop the bleeding (control group). The duration of irradiation and gauze pressure was measured and compared. The statistical analysis was performed with Student T-test. The examination group showed the shorter duration of bleeding compared to the control group for 13.67 seconds and 156 seconds, respectively. The most of the cases in the examination group were irradiated in 10 seconds (70%), followed by irradiation of 20 seconds (23.3%) and 30 seconds (6.6%). In the control group, the average time to stop the bleeding by the conventional method was 156 second. The blue-violet LED light shortens the bleeding time from the extraction socket after tooth extraction and may be a promising method for achieving haemostasis.

  11. Green synthesis of gold nanoparticles using aqueous ethanol extract of Curcuma mangga rhizomes as reducing agent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yee, Foo Yiing; Malek, Sri Nurestri Abd; Periasamy, Vengadesh

    Green synthesis of gold nanoparticles (AuNPs) had been developed as an alternative to chemical and physical methods due to its simplicity, cost effectiveness and eco-friendliness. The high biocompatibility and biostability features of AuNPs have found importance in biomedical applications in recent years. In this study, aqueous ethanol extract of Curcuma mangga rhizomes which acts as reducing and stabilizing agent was used to synthesize stable AuNPs by bioreduction of chloroauric acid. The formation of AuNPs was highlighted by the color change of the suspension from light yellow to reddish purple. Time-evolution was monitored by UV-visible spectroscopy, while surface plasmon (SP) absorptionmore » band of the AuNPs suspension was observed at a maximum absorption of 540 nm. Hydrodynamic radii and size distribution of the AuNPs in the suspension were evaluated using dynamic light scattering (DLS) and zeta potential measurement demonstrated negative surface charge. The particle size was calculated in the range of 2-30 nm using High Resolution Transmission Electron Microscopy (HRTEM). The morphology and elemental composition were further determined by Field Effect Scanning Electron Microscopy (FESEM) and Energy Dispersive X-ray (EDX) spectroscopy. Fourier transform infrared (FTIR) spectroscopy meanwhile was used to confirm the presence of AuNPs and functional groups involved in the gold bio-reduction process. Influence of the volume of extract and concentration of gold (III) chloride trihydrate (HAuCl{sub 4}.3H{sub 2}O) on the synthesis of AuNPs were also investigated. The results obtained indicate potential optimization and functionalization of AuNPs for future applications in bionanotechnology especially in the field of medicine.« less

  12. Green synthesis of gold nanoparticles using aqueous ethanol extract of Curcuma mangga rhizomes as reducing agent

    NASA Astrophysics Data System (ADS)

    Yee, Foo Yiing; Periasamy, Vengadesh; Malek, Sri Nurestri Abd

    2015-04-01

    Green synthesis of gold nanoparticles (AuNPs) had been developed as an alternative to chemical and physical methods due to its simplicity, cost effectiveness and eco-friendliness. The high biocompatibility and biostability features of AuNPs have found importance in biomedical applications in recent years. In this study, aqueous ethanol extract of Curcuma mangga rhizomes which acts as reducing and stabilizing agent was used to synthesize stable AuNPs by bioreduction of chloroauric acid. The formation of AuNPs was highlighted by the color change of the suspension from light yellow to reddish purple. Time-evolution was monitored by UV-visible spectroscopy, while surface plasmon (SP) absorption band of the AuNPs suspension was observed at a maximum absorption of 540 nm. Hydrodynamic radii and size distribution of the AuNPs in the suspension were evaluated using dynamic light scattering (DLS) and zeta potential measurement demonstrated negative surface charge. The particle size was calculated in the range of 2-30 nm using High Resolution Transmission Electron Microscopy (HRTEM). The morphology and elemental composition were further determined by Field Effect Scanning Electron Microscopy (FESEM) and Energy Dispersive X-ray (EDX) spectroscopy. Fourier transform infrared (FTIR) spectroscopy meanwhile was used to confirm the presence of AuNPs and functional groups involved in the gold bio-reduction process. Influence of the volume of extract and concentration of gold (III) chloride trihydrate (HAuCl4.3H2O) on the synthesis of AuNPs were also investigated. The results obtained indicate potential optimization and functionalization of AuNPs for future applications in bionanotechnology especially in the field of medicine.

  13. Anticancer and Antioxidant Activity of Bread Enriched with Broccoli Sprouts

    PubMed Central

    Gawlik-Dziki, Urszula; Świeca, Michał; Dziki, Dariusz; Sęczyk, Łukasz; Złotek, Urszula; Różyło, Renata; Kaszuba, Kinga; Ryszawy, Damian; Czyż, Jarosław

    2014-01-01

    This study is focused on antioxidant and anticancer capacity of bread enriched with broccoli sprouts (BS) in the light of their potential bioaccessibility and bioavailability. Generally, bread supplementation elevated antioxidant potential of product (both nonenzymatic and enzymatic antioxidant capacities); however, the increase was not correlated with the percent of BS. A replacement up to 2% of BS gives satisfactory overall consumers acceptability and desirable elevation of antioxidant potential. High activity was especially found for extracts obtained after simulated digestion, which allows assuming their protective effect for upper gastrointestinal tract; thus, the anticancer activity against human stomach cancer cells (AGS) was evaluated. A prominent cytostatic response paralleled by the inhibition of AGS motility in the presence of potentially mastication-extractable phytochemicals indicates that phenolic compounds of BS retain their biological activity in bread. Importantly, the efficient phenolics concentration was about 12 μM for buffer extract, 13 μM for extracts after digestion in vitro, and 7 μM for extract after absorption in vitro. Our data confirm chemopreventive potential of bread enriched with BS and indicate that BS comprise valuable food supplement for stomach cancer chemoprevention. PMID:25050366

  14. Determination of alcohol and extract concentration in beer samples using a combined method of near-infrared (NIR) spectroscopy and refractometry.

    PubMed

    Castritius, Stefan; Kron, Alexander; Schäfer, Thomas; Rädle, Matthias; Harms, Diedrich

    2010-12-22

    A new approach of combination of near-infrared (NIR) spectroscopy and refractometry was developed in this work to determine the concentration of alcohol and real extract in various beer samples. A partial least-squares (PLS) regression, as multivariate calibration method, was used to evaluate the correlation between the data of spectroscopy/refractometry and alcohol/extract concentration. This multivariate combination of spectroscopy and refractometry enhanced the precision in the determination of alcohol, compared to single spectroscopy measurements, due to the effect of high extract concentration on the spectral data, especially of nonalcoholic beer samples. For NIR calibration, two mathematical pretreatments (first-order derivation and linear baseline correction) were applied to eliminate light scattering effects. A sample grouping of the refractometry data was also applied to increase the accuracy of the determined concentration. The root mean squared errors of validation (RMSEV) of the validation process concerning alcohol and extract concentration were 0.23 Mas% (method A), 0.12 Mas% (method B), and 0.19 Mas% (method C) and 0.11 Mas% (method A), 0.11 Mas% (method B), and 0.11 Mas% (method C), respectively.

  15. Polish Yellow Sweet Clover (Melilotus officinalis L.) Honey, Chromatographic Fingerprints, and Chemical Markers.

    PubMed

    Jasicka-Misiak, Izabela; Makowicz, Ewa; Stanek, Natalia

    2017-01-15

    A case study of Polish Melilotus officinalis honey was presented for the first time. Gas chromatography-mass spectrometry (GC-MS) (after steam distillation, Soxhlet extraction, ultrasonic solvent extraction, and solid phase extraction (SPE)) and targeted high performance liquid chromatography with a photodiode array detector (HPLC-PAD) were applied to determine the characteristic components of honey. While ubiquitous in most honeys, carbohydrates, terpene derivatives, and phenylacetic acid dominated in the Soxhlet extracts (25.54%) and in the application of SPE (13.04%). In addition, lumichrome (1.85%) was found, and may be considered as a marker of this honey. Due to the presence of these compounds, Polish yellow sweet clover honey is similar to French lavender honeys. The major compounds determined in the methanolic extract were (+)-catechine (39.7%) and gallic acid (up to 30%), which can be regarded as specific chemical markers of the botanical origin of melilot honey. With respect to total phenolic and flavonoid contents, 1,1-diphenyl-2-picrylhydrazyl (DPPH) assays were determined spectrophotometrically. The honey exhibited a moderate antioxidant activity, typical for light honeys, which correlates well with its phenolic and flavonoid composition.

  16. TH-CD-201-10: Highly Efficient Synchronized High-Speed Scintillation Camera System for Measuring Proton Range, SOBP and Dose Distributions in a 2D-Plane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goddu, S; Sun, B; Grantham, K

    2016-06-15

    Purpose: Proton therapy (PT) delivery is complex and extremely dynamic. Therefore, quality assurance testing is vital, but highly time-consuming. We have developed a High-Speed Scintillation-Camera-System (HS-SCS) for simultaneously measuring multiple beam characteristics. Methods: High-speed camera was placed in a light-tight housing and dual-layer neutron shield. HS-SCS is synchronized with a synchrocyclotron to capture individual proton-beam-pulses (PBPs) at ∼504 frames/sec. The PBPs from synchrocyclotron trigger the HS-SCS to open its shutter for programmed exposure-time. Light emissions within 30×30×5cm3 plastic-scintillator (BC-408) were captured by a CCD-camera as individual images revealing dose-deposition in a 2D-plane with a resolution of 0.7mm for range andmore » SOBP measurements and 1.67mm for profiles. The CCD response as well as signal to noise ratio (SNR) was characterized for varying exposure times, gains for different light intensities using a TV-Optoliner system. Software tools were developed to analyze ∼5000 images to extract different beam parameters. Quenching correction-factors were established by comparing scintillation Bragg-Peaks with water scanned ionization-chamber measurements. Quenching corrected Bragg-peaks were integrated to ascertain proton-beam range (PBR), width of Spared-Out-Bragg-Peak (MOD) and distal.« less

  17. Green light emitting curcumin dye in organic solvents

    NASA Astrophysics Data System (ADS)

    Mubeen, Mohammad; Deshmukh, Abhay D.; Dhoble, S. J.

    2018-05-01

    In this modern world, the demand for the white light emission has increased because of its wide applications in various display and lighting devices, sensors etc. This white light can be produced by mixing red, green and blue lights. Thus this green light can be produced from the plant extract i.e., Turmeric. Curcumin is the essential element present in turmeric to generate the green light. The Photoluminescence (PL) emission is observed at 540 nm at 380nm excitation. This method of generating green light is very simple, cost effective and efficient when compared to other methods.

  18. A Pitch Extraction Method with High Frequency Resolution for Singing Evaluation

    NASA Astrophysics Data System (ADS)

    Takeuchi, Hideyo; Hoguro, Masahiro; Umezaki, Taizo

    This paper proposes a pitch estimation method suitable for singing evaluation incorporable in KARAOKE machines. Professional singers and musicians have sharp hearing for music and singing voice. They recognize that singer's voice pitch is “a little off key” or “be in tune”. In the same way, the pitch estimation method that has high frequency resolution is necessary in order to evaluate singing. This paper proposes a pitch estimation method with high frequency resolution utilizing harmonic characteristic of autocorrelation function. The proposed method can estimate a fundamental frequency in the range 50 ∼ 1700[Hz] with resolution less than 3.6 cents in light processing.

  19. Synthesis and antimicrobial activity of palladium nanoparticles from Prunus × yedoensis leaf extract

    USDA-ARS?s Scientific Manuscript database

    The eco-friendly production of palladium nanoparticles (PdNPs) by Prunus × yedoensis tree leaf extract was studied for the first time. Initial confirmation of PdNP production was confirmed by a color change from light yellow to dark brown. The optimization parameters show that pH 7, 8% leaf extract,...

  20. Green synthesis of silver nanoparticles from aqueous Aegle marmelos leaf extract

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jagajjanani Rao, K.; Paria, Santanu, E-mail: santanuparia@yahoo.com

    Graphical abstract: Silver nanoparticles capped with polyphenols present in Aegle marmelos leaf extract. Display Omitted Highlights: ► Silver nanoparticles are synthesized using Aegle marmelos leaf extract in aqueous media. ► Reduction reaction is fast and occurs at room temperature. ► The presence of polyphenols acts as in situ capping agent. -- Abstract: Synthesis of nanoparticles by green route is an emerging technique drawing more attention recently because of several advantages over the convention chemical routes. The present study reports one-pot synthesis and in situ stabilization of silver nanoparticles using Aegle marmelos leaf extract. Nanoparticles of almost uniform spherical size (∼60more » nm) were synthesized within ∼25 min reaction time at room temperature. The size of particles depends on the ratio of AgNO{sub 3} and leaf extract. The crystallinity, size, and shape of the nanoparticles were characterized by X-ray diffraction, dynamic light scattering, and scanning electron microscopy respectively. The size stability was attained by the capping effect of polyphenolic tannin compound, procatacheuate in the extract. The capped polyphenols can be removed from the particle surface by simple NaOH/methanol wash. The involvement of phenolic compounds in metal ion reduction and capping were supported by UV–visible spectroscopy, infrared spectroscopy, high performance liquid chromatography, and zeta potential measurements.« less

  1. Evaluation and prevention of the negative matrix effect of terpenoids on pesticides in apples quantification by gas chromatography-tandem mass spectrometry.

    PubMed

    Giacinti, Géraldine; Raynaud, Christine; Capblancq, Sophie; Simon, Valérie

    2016-12-21

    The sample matrix can enhance the gas chromatography signal of pesticide residues relative to that obtained with the same concentration of pesticide in solvent. This paper is related to negative matrix effects observed in coupled gas chromatography-mass spectrometry ion trap (GC/MS 2 ) quantification of pesticides in concentrated extracts of apple peel prepared by the Quick Easy Cheap Effective Rugged and Safe (QuEChERS) method. It is focused on the pesticides most frequently used on the apple varieties studied, throughout the crop cycle, right up to harvest, to combat pests and diseases and to improve fruit storage properties. Extracts from the fleshy receptacle (flesh), the epiderm (peel) and fruit of three apple varieties were studied by high-performance thin-layer chromatography hyphenated with UV-vis light detection (HPTLC/UV visible). The peel extracts had high concentrations of triterpenic acids (oleanolic and ursolic acids), reaching 25mgkg -1 , whereas these compounds were not detected in the flesh extracts (<0.05mgkg -1 ). A significant relationship has been found between the levels of these molecules and negative matrix effects in GC/MS 2 . The differences in the behavior of pesticides with respect to matrix effects can be accounted for by the physicochemical characteristics of the molecules (lone pairs, labile hydrogen, conjugation). The HPTLC/UV visible method developed here for the characterization of QuEChERS extracts acts as a complementary clean-up method, aimed to decrease the negative matrix effects of such extracts. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Evaluation and prevention of the negative matrix effect of terpenoids on pesticides in apples quantification by gas chromatography-tandem mass spectrometry.

    PubMed

    Giacinti, Géraldine; Raynaud, Christine; Capblancq, Sophie; Simon, Valérie

    2017-02-03

    The sample matrix can enhance the gas chromatography signal of pesticide residues relative to that obtained with the same concentration of pesticide in solvent. This paper is related to negative matrix effects observed in coupled gas chromatography-mass spectrometry ion trap (GC/MS 2 ) quantification of pesticides in concentrated extracts of apple peel prepared by the Quick Easy Cheap Effective Rugged and Safe (QuEChERS) method. It is focused on the pesticides most frequently used on the apple varieties studied, throughout the crop cycle, right up to harvest, to combat pests and diseases and to improve fruit storage properties. Extracts from the fleshy receptacle (flesh), the epiderm (peel) and fruit of three apple varieties were studied by high-performance thin-layer chromatography hyphenated with UV-vis light detection (HPTLC/UV visible). The peel extracts had high concentrations of triterpenic acids (oleanolic and ursolic acids), reaching 25mgkg -1 , whereas these compounds were not detected in the flesh extracts (<0.05mgkg -1 ). A significant relationship has been found between the levels of these molecules and negative matrix effects in GC/MS 2 . The differences in the behavior of pesticides with respect to matrix effects can be accounted for by the physicochemical characteristics of the molecules (lone pairs, labile hydrogen, conjugation). The HPTLC/UV visible method developed here for the characterization of QuEChERS extracts acts as a complementary clean-up method, aimed to decrease the negative matrix effects of such extracts. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Full spectral optical modeling of quantum-dot-converted elements for light-emitting diodes considering reabsorption and reemission effect.

    PubMed

    Li, Jia-Sheng; Tang, Yong; Li, Zong-Tao; Cao, Kai; Yan, Cai-Man; Ding, Xin-Rui

    2018-07-20

    Quantum dots (QDs) have attracted significant attention in light-emitting diode (LED) illumination and display applications, owing to their high quantum yield and unique spectral properties. However, an effective optical model of quantum-dot-converted elements (QDCEs) for (LEDs) that entirely considers the reabsorption and reemission effect is lacking. This suppresses the design of QDCE structures and further investigation of light-extraction/conversion mechanisms in QDCEs. In this paper, we proposed a full spectral optical modeling method for QDCEs packaged in LEDs, entirely considering the reabsorption and reemission effect, and its results are compared with traditional models without reabsorption or reemission. The comparisons indicate that the QDCE absorption loss of QD emission light is a major factor decreasing the radiant efficacy of LEDs, which should be considered when designing QDCE structures. According to the measurements of fabricated LEDs, only calculation results that entirely consider reabsorption and reemission show good agreement with experimental radiant efficacy, spectra, and peak wavelength at the same down-conversion efficiency. Consequently, it is highly expected that QDCE will be modeled considering the reabsorption and reemission events. This study provides a simple and effective modeling method for QDCEs, which shows great potential for their structure designs and fundamental investigations.

  4. Full spectral optical modeling of quantum-dot-converted elements for light-emitting diodes considering reabsorption and reemission effect

    NASA Astrophysics Data System (ADS)

    Li, Jia-Sheng; Tang, Yong; Li, Zong-Tao; Cao, Kai; Yan, Cai-Man; Ding, Xin-Rui

    2018-07-01

    Quantum dots (QDs) have attracted significant attention in light-emitting diode (LED) illumination and display applications, owing to their high quantum yield and unique spectral properties. However, an effective optical model of quantum-dot-converted elements (QDCEs) for (LEDs) that entirely considers the reabsorption and reemission effect is lacking. This suppresses the design of QDCE structures and further investigation of light-extraction/conversion mechanisms in QDCEs. In this paper, we proposed a full spectral optical modeling method for QDCEs packaged in LEDs, entirely considering the reabsorption and reemission effect, and its results are compared with traditional models without reabsorption or reemission. The comparisons indicate that the QDCE absorption loss of QD emission light is a major factor decreasing the radiant efficacy of LEDs, which should be considered when designing QDCE structures. According to the measurements of fabricated LEDs, only calculation results that entirely consider reabsorption and reemission show good agreement with experimental radiant efficacy, spectra, and peak wavelength at the same down-conversion efficiency. Consequently, it is highly expected that QDCE will be modeled considering the reabsorption and reemission events. This study provides a simple and effective modeling method for QDCEs, which shows great potential for their structure designs and fundamental investigations.

  5. Extraction Behaviors of Heavy Rare Earths with Organophosphoric Extractants: The Contribution of Extractant Dimer Dissociation, Acid Ionization, and Complexation. A Quantum Chemistry Study.

    PubMed

    Jing, Yu; Chen, Ji; Chen, Li; Su, Wenrou; Liu, Yu; Li, Deqian

    2017-03-30

    Heavy rare earths (HREs), namely Ho 3+ , Er 3+ , Tm 3+ , Yb 3+ and Lu 3+ , are rarer and more exceptional than light rare earths, due to the stronger extraction capacity for 100 000 extractions. Therefore, their incomplete stripping and high acidity of stripping become problems for HRE separation by organophosphoric extractants. However, the theories of extractant structure-performance relationship and molecular design method of novel HRE extractants are still not perfect. Beyond the coordination chemistry of the HRE-extracted complex, the extractant dimer dissociation, acid ionization, and complexation behaviors can be crucial to HRE extraction and reactivity of ionic species for understanding and further improving the extraction performance. To address the above issues, three primary fundamental processes, including extractant dimer dissociation, acid ionization, and HRE complexation, were identified and investigated systematically. The intrinsic extraction performances of HRE cations with four acidic organophosphoric extractants (P507, P204, P227 and Cyanex 272) were studied by using relativistic energy-consistent 4f core pseudopotentials, combined with density functional theory and a solvation model. Four acidic organophosphoric extractants have been qualified quantitatively from microscopic structures to chemical properties. It has been found that the Gibbs free energy changes of the overall extraction process (sequence: P204 > P227 > P507 > Cyanex 272) and their differences as a function of HREs (sequence: Ho/Er > Er/Tm > Tm/Yb > Yb/Lu) are in good agreement with the experimental maximum extraction capacities and separation factors. These results could provide an important approach to evaluate HRE extractants by the comprehensive consideration of dimer dissociation, acid ionization, and complexation processes. This paper also demonstrates the importance of the P-O bond, the P-C bond, isomer substituent, and solvation effects on the structure-performance relationship that can be used to guide molecular designs of HRE extraction in future.

  6. LICA AstroCalc, a software to analyze the impact of artificial light: Extracting parameters from the spectra of street and indoor lamps

    NASA Astrophysics Data System (ADS)

    Ayuga, Carlos Eugenio Tapia; Zamorano, Jaime

    2018-07-01

    The night sky spectra of light-polluted areas is the result of the artificial light scattered back from the atmosphere and the reemission of the light after reflections in painted surfaces. This emission comes mainly from street and decorative lamps. We have built an extensive database of lamps spectra covering from UV to near IR and the software needed to analyze them. We describe the LICA-AstroCalc free software that is a user friendly GUI tool to extract information from our database spectra or any other user provided spectrum. The software also includes the complete color database of paints from NCS comprising 1950 types. This helps to evaluate how different colors modify the reflected spectra from different lamps. All spectroscopic measurements have been validated with recommendations from CIELAB and ISO from NCS database.

  7. Flies and humans share a motion estimation strategy that exploits natural scene statistics

    PubMed Central

    Clark, Damon A.; Fitzgerald, James E.; Ales, Justin M.; Gohl, Daryl M.; Silies, Marion A.; Norcia, Anthony M.; Clandinin, Thomas R.

    2014-01-01

    Sighted animals extract motion information from visual scenes by processing spatiotemporal patterns of light falling on the retina. The dominant models for motion estimation exploit intensity correlations only between pairs of points in space and time. Moving natural scenes, however, contain more complex correlations. Here we show that fly and human visual systems encode the combined direction and contrast polarity of moving edges using triple correlations that enhance motion estimation in natural environments. Both species extract triple correlations with neural substrates tuned for light or dark edges, and sensitivity to specific triple correlations is retained even as light and dark edge motion signals are combined. Thus, both species separately process light and dark image contrasts to capture motion signatures that can improve estimation accuracy. This striking convergence argues that statistical structures in natural scenes have profoundly affected visual processing, driving a common computational strategy over 500 million years of evolution. PMID:24390225

  8. [Determination of β-sitosterol and total sterols content and antioxidant activity of oil in acai (Euterpe oleracea)].

    PubMed

    He, Cheng; Li, Wei; Zhang, Jian-Jun; Qu, Sheng-Sheng; Li, Jia-Jing; Wang, Lin-Yuan

    2014-12-01

    In order to establish a method for the determination of the sterols of the oil in the freeze-dried acai (Euterpe oleracea Mart.) and to evaluate its antioxidant activities, a saponification/extraction procedure and high performance liquid chromatography (HPLC) analysis method were developed and validated for the analysis of phytosterols in PEE (Petroleum ether extract). Separation was achieved on a Purosper STAR LP C18 column with a binary, gradient solvent system of acetonitrile and isopropanol. Evaporative light scattering detection (ELSD) was used to quantify β-sitosterol and the total sterols. Peak identification was verified by retention times and spikes with external standards. Standard curves were constructed (r = 0.999 2) to allow for sample quantification. Recovery of the saponification and extraction was demonstrated via analysis of spiked samples. The highest content of total sterols is β-sitosterol. The antioxidant activities of the extracts were evaluated using the total oxyradical scavenging capacity assay (TOSC assay). The result showed that the PEE exhibited significant antioxidant properties, sample concentration and the antioxidant capacity had a certain relevance.

  9. Green Synthesis of Silver Nanoparticles by using Eucalyptus Globulus Leaf Extract

    NASA Astrophysics Data System (ADS)

    Balamurugan, Madheswaran; Saravanan, Shanmugam

    2017-12-01

    A single step eco-friendly, energy efficient and economically scalable green method was employed to synthesize silver nanoparticles. In this work, the synthesis of silver nanoparticles using Eucalyptus globulus leaf extract as reducing and capping agent along with water as solvent at normal room temperature is described. Silver nanoparticles were prepared from aqueous silver nitrate solution by adding the leaf extract. The prepared nanoparticles were characterized by using UV-visible Spectrophotometer, X-ray diffractometer, High Resolution Transmission Electron Microscope (HR-TEM) and Fourier Transform Infrared Spectroscope (FTIS). X-ray diffraction studies brought to light the crystalline nature and the face centered cubic structure of the silver nanoparticles. Using HR-TEM. the nano sizes and morphology of the particles were studied. The mean sizes of the prepared silver nanoparticles ranged from 30 to 36 nm. The density of the particles was tuned by varying the molar ratio of silver nitrate. FTIS studies showed the functional group of organic molecules which were located on the surface of the silver nanoparticles. Originating from the leaf extracts, these organic molecules reduced and capped the particles.

  10. Green synthesis of gold nanoparticles using plant extracts as reducing agents

    PubMed Central

    Elia, Paz; Zach, Raya; Hazan, Sharon; Kolusheva, Sofiya; Porat, Ze’ev; Zeiri, Yehuda

    2014-01-01

    Gold nanoparticles (GNPs) were prepared using four different plant extracts as reducing and stabilizing agents. The extracts were obtained from the following plants: Salvia officinalis, Lippia citriodora, Pelargonium graveolens and Punica granatum. The size distributions of the GNPs were measured using three different methods: dynamic light scattering, nanoparticle-tracking analysis and analysis of scanning electron microscopy images. The three methods yielded similar size distributions. Biocompatibility was examined by correlation of L-cell growth in the presence of different amounts of GNPs. All GNPs showed good biocompatibility and good stability for over 3 weeks. Therefore, they can be used for imaging and drug-delivery applications in the human body. High-resolution transmission electron microscopy was used to view the shapes of the larger GNPs, while infrared spectroscopy was employed to characterize the various functional groups in the organic layer that stabilize the particles. Finally, active ingredients in the plant extract that might be involved in the formation of GNPs are proposed, based on experiments with pure antioxidants that are known to exist in that plant. PMID:25187704

  11. A spin-recovery parachute system for light general-aviation airplanes

    NASA Technical Reports Server (NTRS)

    Bradshaw, C.

    1980-01-01

    A tail mounted spin recovery parachute system was designed and developed for use on light general aviation airplanes. The system was designed for use on typical airplane configurations, including low wing, high wing, single engine and twin engine designs. A mechanically triggered pyrotechnic slug gun is used to forcibly deploy a pilot parachute which extracts a bag that deploys a ring slot spin recovery parachute. The total system weighs 8.2 kg. System design factors included airplane wake effects on parachute deployment, prevention of premature parachute deployment, positive parachute jettison, compact size, low weight, system reliability, and pilot and ground crew safety. Extensive ground tests were conducted to qualify the system. The recovery parachute was used successfully in flight 17 times.

  12. Temperature characteristics of epitaxially grown InAs quantum dot micro-disk lasers on silicon for on-chip light sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wan, Yating; Li, Qiang; Lau, Kei May, E-mail: eekmlau@ust.hk

    2016-07-04

    Temperature characteristics of optically pumped micro-disk lasers (MDLs) incorporating InAs quantum dot active regions are investigated for on-chip light sources. The InAs quantum dot MDLs were grown on V-groove patterned (001) silicon, fully compatible with the prevailing complementary metal oxide-semiconductor technology. By combining the high-quality whispering gallery modes and 3D confinement of injected carriers in quantum dot micro-disk structures, we achieved lasing operation from 10 K up to room temperature under continuous optical pumping. Temperature dependences of the threshold, lasing wavelength, slope efficiency, and mode linewidth are examined. An excellent characteristic temperature T{sub o} of 105 K has been extracted.

  13. Immunoglobulin light chains, glycosaminoglycans and amyloid.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stevens, F. J.; Kisilevsky, R.; Biosciences Division

    2000-03-01

    Immunoglobulin light chains are the precursor proteins for fibrils that are formed during primary amyloidosis and in amyloidosis associated with multiple myeloma. As found for the approximately 20 currently described forms of focal, localized, or systemic amyloidoses, light chain-related fibrils extracted from physiological deposits are invariably associated with glycosaminoglycans, predominantly heparan sulfate. Other amyloid-related proteins are either structurally normal, such as g2-microglobulin and islet amyloid polypeptide, fragments of normal proteins such as serum amyloid A protein or the precursor protein of the g peptide involved in Alzheimer's disease, or are inherited forms of single amino acid variants of a normalmore » protein such as found in the familial forms of amyloid associated with transthyretin. In contrast, the primary structures of light chains involved in fibril formation exhibit extensive mutational diversity rendering some proteins highly amyloidogenic and others non-pathological. The interactions between light chains and glycosaminoglycans are also affected by amino acid variation and may influence the clinical course of disease by enhancing fibril stability and contributing to resistance to protease degradation. Relatively little is currently known about the mechanisms by which glycosaminoglycans interact with light chains and light-chain fibrils. It is probable that future studies of this uniquely diverse family of proteins will continue o shed light on the processes of amyloidosis, and contribute as well to a greater understanding of the normal physiological roles of glycosaminoglycans.« less

  14. Highly efficient enantioselective liquid–liquid extraction of 1,2-amino-alcohols using SPINOL based phosphoric acid hosts† †Electronic supplementary information (ESI) available: Experimental data regarding the synthesis the hosts as well as procedures and raw data and for ELLE experiments. See DOI: 10.1039/c7sc02783d Click here for additional data file.

    PubMed Central

    Pinxterhuis, Erik B.; Gualtierotti, Jean-Baptiste; Heeres, Hero J.

    2017-01-01

    Access to enantiopure compounds on large scale in an environmentally friendly and cost-efficient manner remains one of the greatest challenges in chemistry. Resolution of racemates using enantioselective liquid–liquid extraction has great potential to meet that challenge. However, a relatively feeble understanding of the chemical principles and physical properties behind this technique has hampered the development of hosts possessing sufficient resolving power for their application to large scale processes. Herein we present, employing the previously untested SPINOL based phosphoric acids host family, an in depths study of the parameters affecting the efficiency of the resolution of amino-alcohols in the optic of further understanding the core principles behind ELLE. We have systematically investigated the dependencies of the enantioselection by parameters such as the choice of solvent, the temperature, as well as the pH and bring to light many previously unsuspected and highly intriguing interactions. Furthermore, utilizing these new insights to our advantage, we developed novel, highly efficient, extraction and resolving protocols which provide remarkable levels of enantioselectivity. It was shown that the extraction is catalytic in host by demonstrating transport in a U-tube and finally it was demonstrated how the solvent dependency could be exploited in an unprecedented triphasic resolution system. PMID:28989671

  15. Depth-resolved incoherent and coherent wide-field high-content imaging (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    So, Peter T.

    2016-03-01

    Recent advances in depth-resolved wide-field imaging technique has enabled many high throughput applications in biology and medicine. Depth resolved imaging of incoherent signals can be readily accomplished with structured light illumination or nonlinear temporal focusing. The integration of these high throughput systems with novel spectroscopic resolving elements further enable high-content information extraction. We will introduce a novel near common-path interferometer and demonstrate its uses in toxicology and cancer biology applications. The extension of incoherent depth-resolved wide-field imaging to coherent modality is non-trivial. Here, we will cover recent advances in wide-field 3D resolved mapping of refractive index, absorbance, and vibronic components in biological specimens.

  16. Cellulose Nanofibril Based-Aerogel Microreactors: A High Efficiency and Easy Recoverable W/O/W Membrane Separation System

    PubMed Central

    Zhang, Fang; Ren, Hao; Dou, Jing; Tong, Guolin; Deng, Yulin

    2017-01-01

    Hereby we report a novel cellulose nanofirbril aerogel-based W/O/W microreactor system that can be used for fast and high efficient molecule or ions extraction and separation. The ultra-light cellulose nanofibril based aerogel microspheres with high porous structure and water storage capacity were prepared. The aerogel microspheres that were saturated with stripping solution were dispersed in an oil phase to form a stable water-in-oil (W/O) suspension. This suspension was then dispersed in large amount of external waste water to form W/O/W microreactor system. Similar to a conventional emulsion liquid membrane (ELM), the molecules or ions in external water can quickly transport to the internal water phase. However, the microreactor is also significantly different from traditional ELM: the water saturated nanocellulose cellulose aerogel microspheres can be easily removed by filtration or centrifugation after extraction reaction. The condensed materials in the filtrated aerogel particles can be squeezed and washed out and aerogel microspheres can be reused. This novel process overcomes the key barrier step of demulsification in traditional ELM process. Our experimental indicates the novel microreactor was able to extract 93% phenol and 82% Cu2+ from external water phase in a few minutes, suggesting its great potential for industrial applications. PMID:28059153

  17. Cellulose Nanofibril Based-Aerogel Microreactors: A High Efficiency and Easy Recoverable W/O/W Membrane Separation System

    NASA Astrophysics Data System (ADS)

    Zhang, Fang; Ren, Hao; Dou, Jing; Tong, Guolin; Deng, Yulin

    2017-01-01

    Hereby we report a novel cellulose nanofirbril aerogel-based W/O/W microreactor system that can be used for fast and high efficient molecule or ions extraction and separation. The ultra-light cellulose nanofibril based aerogel microspheres with high porous structure and water storage capacity were prepared. The aerogel microspheres that were saturated with stripping solution were dispersed in an oil phase to form a stable water-in-oil (W/O) suspension. This suspension was then dispersed in large amount of external waste water to form W/O/W microreactor system. Similar to a conventional emulsion liquid membrane (ELM), the molecules or ions in external water can quickly transport to the internal water phase. However, the microreactor is also significantly different from traditional ELM: the water saturated nanocellulose cellulose aerogel microspheres can be easily removed by filtration or centrifugation after extraction reaction. The condensed materials in the filtrated aerogel particles can be squeezed and washed out and aerogel microspheres can be reused. This novel process overcomes the key barrier step of demulsification in traditional ELM process. Our experimental indicates the novel microreactor was able to extract 93% phenol and 82% Cu2+ from external water phase in a few minutes, suggesting its great potential for industrial applications.

  18. A route to improved extraction efficiency of light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Zhu, H.; Shan, C. X.; Wang, L. K.; Yang, Y.; Zhang, J. Y.; Yao, B.; Shen, D. Z.; Fan, X. W.

    2010-01-01

    The electroluminescence from an n-MgZnO/i-ZnO/MgO/p-GaN asymmetric double heterojunction has been demonstrated. With the injection of electrons from n-MgZnO and holes from p-GaN, an intense ultraviolet emission coming from the ZnO active layer was observed. It is revealed that the emission intensity of the diode recorded from the MgZnO side is significantly larger than that from the MgO side because of the asymmetric waveguide structure formed by the lower refractive index of MgO than that of MgZnO. The asymmetric waveguide structure reported in this letter may promise a simple and effective route to light-emitting diodes with improved light-extraction efficiency.

  19. Nondestructive Clinical Assessment of Occlusal Caries Lesions using Near-IR Imaging Methods

    PubMed Central

    Staninec, Michal; Douglas, Shane M.; Darling, Cynthia L.; Chan, Kenneth; Kang, Hobin; Lee, Robert C.; Fried, Daniel

    2011-01-01

    Objective Enamel is highly transparent in the near-IR (NIR) at wavelengths near 1300-nm, and stains are not visible. The purpose of this study was to use NIR transillumination and optical coherence tomography (OCT) to estimate the severity of caries lesions on occlusal surfaces both in vivo and on extracted teeth. Methods Extracted molars with suspected occlusal lesions were examined with OCT and polarization sensitive OCT (PS-OCT), and subsequently sectioned and examined with polarized light microscopy (PLM) and transverse microradiography (TMR). Teeth in test subjects with occlusal caries lesions that were not cavitated or visible on radiographs were examined using NIR transillumination at 1310 nm using a custom built probe attached to an indium gallium arsenide (InGaAs) camera and a linear OCT scanner. After imaging, cavities were prepared using dye staining to guide caries removal and physical impressions of the cavities were taken. Results The lesion severity determined from OCT and PS-OCT scans in vitro correlated with the depth determined using polarized light microscopy (PLM) and transverse microradiography (TMR). Occlusal caries lesions appeared in NIR images with high contrast in vivo. OCT scans showed that most of the lesions penetrated to dentin and spread laterally below the sound enamel. Conclusion This study demonstrates that both NIR transillumination and OCT are promising new methods for the clinical diagnosis of occlusal caries. PMID:22109697

  20. HPLC-ELSD Quantification and Centrifugal Partition Chromatography Isolation of 8-O-Acetylharpagide from Oxera coronata (Lamiaceae).

    PubMed

    Remeur, Camille; Le Borgne, Erell; Gauthier, Léa; Grougnet, Raphaël; Deguin, Brigitte; Poullain, Cyril; Litaudon, Marc

    2017-05-01

    Iridoid glycosides possess highly functionalised monoterpenoid aglycon with several contiguous stereocentres. For the most common, they are often present in quantities reaching several percentage of the fresh plant weight, and thus they may be regarded as starting material for the synthesis of a number of new chiral and bioactive molecules. To quantify and to isolate 8-O-acetylharpagide (AH) from several extracts of Oxera coronata R.P.J. de Kok, a Lamiaceae species endemic to New Caledonia, using HPLC-ELSD (evaporative light scattering detector) and centrifugal partition chromatography (CPC). Oxera coronata produces high amounts of AH in leaves, twigs and fruits. Water and methanol extracts of these plant parts were prepared. The content of AH in each extract was quantified by HPLC-ELSD, using acetonitrile-water (+0.1% formic acid) gradient elution. The HPLC method was validated for precision, linearity, limit of detection (LOD), limit of quantification (LOQ) and accuracy. A ternary solvent system ethyl acetate/n-propanol/water (3:2:5, v/v/v) was selected and applied to recover the target compound using Spot CPC from the leaves aqueous extract. HPLC-ELSD analysis followed by CPC purification led to the efficient isolation of AH from O. coronata leaves aqueous extract. HPLC-ELSD has proven to be a well-adapted detection and quantification method for iridoid glycosides, while CPC confirmed to be an efficient technique for the isolation of polar compounds. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  1. The broccoli (Brassica oleracea) phloem tissue proteome.

    PubMed

    Anstead, James A; Hartson, Steven D; Thompson, Gary A

    2013-11-07

    The transport of sugars, hormones, amino acids, proteins, sugar alcohols, and other organic compounds from the sites of synthesis to the sites of use or storage occurs through the conducting cells of the phloem. To better understand these processes a comprehensive understanding of the proteins involved is required. While a considerable amount of data has been obtained from proteomic analyses of phloem sap, this has mainly served to identify the soluble proteins that are translocated through the phloem network. In order to obtain more comprehensive proteomic data from phloem tissue we developed a simple dissection procedure to isolate phloem tissue from Brassica oleracea. The presence of a high density of phloem sieve elements was confirmed using light microscopy and fluorescently labeled sieve element-specific antibodies. To increase the depth of the proteomic analysis for membrane bound and associated proteins, soluble proteins were extracted first and subsequent extractions were carried out using two different detergents (SDS and CHAPSO). Across all three extractions almost four hundred proteins were identified and each extraction method added to the analysis demonstrating the utility of an approach combining several extraction protocols. The phloem was found to be enriched in proteins associated with biotic and abiotic stress responses and structural proteins. Subsequent expression analysis identified a number of genes that appear to be expressed exclusively or at very high levels in phloem tissue, including genes that are known to express specifically in the phloem as well as novel phloem genes.

  2. Structured Light Based 3d Scanning for Specular Surface by the Combination of Gray Code and Phase Shifting

    NASA Astrophysics Data System (ADS)

    Zhang, Yujia; Yilmaz, Alper

    2016-06-01

    Surface reconstruction using coded structured light is considered one of the most reliable techniques for high-quality 3D scanning. With a calibrated projector-camera stereo system, a light pattern is projected onto the scene and imaged by the camera. Correspondences between projected and recovered patterns are computed in the decoding process, which is used to generate 3D point cloud of the surface. However, the indirect illumination effects on the surface, such as subsurface scattering and interreflections, will raise the difficulties in reconstruction. In this paper, we apply maximum min-SW gray code to reduce the indirect illumination effects of the specular surface. We also analysis the errors when comparing the maximum min-SW gray code and the conventional gray code, which justifies that the maximum min-SW gray code has significant superiority to reduce the indirect illumination effects. To achieve sub-pixel accuracy, we project high frequency sinusoidal patterns onto the scene simultaneously. But for specular surface, the high frequency patterns are susceptible to decoding errors. Incorrect decoding of high frequency patterns will result in a loss of depth resolution. Our method to resolve this problem is combining the low frequency maximum min-SW gray code and the high frequency phase shifting code, which achieves dense 3D reconstruction for specular surface. Our contributions include: (i) A complete setup of the structured light based 3D scanning system; (ii) A novel combination technique of the maximum min-SW gray code and phase shifting code. First, phase shifting decoding with sub-pixel accuracy. Then, the maximum min-SW gray code is used to resolve the ambiguity resolution. According to the experimental results and data analysis, our structured light based 3D scanning system enables high quality dense reconstruction of scenes with a small number of images. Qualitative and quantitative comparisons are performed to extract the advantages of our new combined coding method.

  3. Lifelog-based lighting design for biofied building

    NASA Astrophysics Data System (ADS)

    Kake, Fumika; Mita, Akira

    2016-04-01

    A design tool is proposed for lighting control system that reflects histories of residents' past life using a genetic mechanism. There are many previous researches which show the preference of lighting design differs depending on people and their behaviors. And recently, due to the appearance of LED which can change light color easily, the number of lighting scenes have drastically increased. It is difficult for residents to grasp all patterns of lighting and understand what pattern of lighting design fits for their behaviors. So if we can extract lighting preferences and demands of each resident from histories of past life and reflect these information in next lighting control, it's possible to make living space more comfortable. An evolutionally adaptation mechanism learnt from living organisms is proposed in this research to extract the information from lifelog, especially focusing on methylation and mutation. Methylation is one of the epigenetic algorithms making a difference in phenotype without changing DNA sequence. Mutation is one of the genetic algorithms making a difference in phenotype by changing DNA sequence. Those two mechanisms are applied in the system. First, the lifelog of residents and using hysteresis of lighting equipment are collected. Then the lifelog is converted into the genetic information and stored. When the lifelog is stored enough, the superior genes will be picked up from the stored genetic information to be reflected in lighting control in next generation. Simulations to verify the versatility of the system were conducted.

  4. Manufacturing Process for OLED Integrated Substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hung, Cheng-Hung; McCamy, James; Ashtosh, Ganjoo

    2017-01-27

    The primary objective of this project is to demonstrate manufacturing processes for technologies that will enable commercialization of a large-area and low-cost “integrated substrate” product for rigid OLED SSL lighting. The integrated substrate product will consist of a low cost, float glass substrate combined with a transparent conductive anode film layer, and light out-coupling (internal and external extraction layers) structures. In combination, these design elements will enable an integrated substrate meeting or exceeding 2015 performance targets for cost ($60/m2), extraction efficiency (50%) and sheet resistance (<10 ohm/sq).

  5. Multielement extraction system for determining 19 trace elements in gold exploration samples

    USGS Publications Warehouse

    Clark, J. Robert; Viets, John G.; ,

    1990-01-01

    A multielement extraction system is being used successfully to provide essentially interference-free geochemical analyses to aid in gold exploration. The Methyl isobutyl ketone-Amine synerGistic Iodide Complex (MAGIC) extraction system separates Ag, As, Au, Bi, Cd, Cu, Ga, Hg, In, Mo, Pb, Pd, Pt, Sb, Se, Sn, Te, Tl, and Zn from interfering geological matrices. Quantitative extraction of these elements is accomplished over a broad range of acid normality making it possible to economically determine all 19 elements from a single digestion or leach solution. The resulting organic extracts are amenable to analysis by inductively coupled plasma atomic emission spectroscopy (ICP-AES) and flame atomic absorption spectroscopy (FAAS). For many years the principal shortcoming of ICP-AES was the complex spectral and stray-light interferences that were caused by the extreme variability of components such as Fe, Na, and Ca in common geological matrices. The MAGIC extraction allows determination of the extracted elements with enhanced sensitivity, from a virtually uniform matrix, by ICP-AES and FAAS. Because of its simultaneous multichannel capabilities, ICP-AES is the ideal instrumental technique for determining these 19 extracted elements. Ultratrace (sub-part-per-billion) determinations of Au and many of the other extracted elements can be made by graphite furnace atomic absorption spectroscopy (GFAAS), following back stripping of the extracts. The combination of the extraction followed by stripping of the organic phase eliminates 99.999% of potential interferences for Au. Gold determination by GFAAS from these extracts under the specified conditions yields a fourfold improvement in sensitivity over conventional GFAAS methods. This sensitivity enhancement and the interference-free matrix allow highly reliable determinations well into the parts-per-trillion range.

  6. A green deep eutectic solvent-based aqueous two-phase system for protein extracting.

    PubMed

    Xu, Kaijia; Wang, Yuzhi; Huang, Yanhua; Li, Na; Wen, Qian

    2015-03-15

    As a new type of green solvent, deep eutectic solvent (DES) has been applied for the extraction of proteins with an aqueous two-phase system (ATPS) in this work. Four kinds of choline chloride (ChCl)-based DESs were synthesized to extract bovine serum albumin (BSA), and ChCl-glycerol was selected as the suitable extraction solvent. Single factor experiments have been done to investigate the effects of the extraction process, including the amount of DES, the concentration of salt, the mass of protein, the shaking time, the temperature and PH value. Experimental results show 98.16% of the BSA could be extracted into the DES-rich phase in a single-step extraction under the optimized conditions. A high extraction efficiency of 94.36% was achieved, while the conditions were applied to the extraction of trypsin (Try). Precision, repeatability and stability experiments were studied and the relative standard deviations (RSD) of the extraction efficiency were 0.4246% (n=3), 1.6057% (n=3) and 1.6132% (n=3), respectively. Conformation of BSA was not changed during the extraction process according to the investigation of UV-vis spectra, FT-IR spectra and CD spectra of BSA. The conductivity, dynamic light scattering (DLS) and transmission electron microscopy (TEM) were used to explore the mechanism of the extraction. It turned out that the formation of DES-protein aggregates play a significant role in the separation process. All the results suggest that ChCl-based DES-ATPS are supposed to have the potential to provide new possibilities in the separation of proteins. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Extraction film for optical waveguide and method of producing same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tarsa, Eric J.; Durkee, John W.

    2017-05-16

    An optical waveguide includes a waveguide body and a film disposed on a surface of the waveguide body. The film includes a base and a plurality of undercut light extraction elements disposed between the base and the surface.

  8. Investigation of extractable organic compounds in deep-sea hydrothermal vent fluids along the Mid-Atlantic Ridge

    NASA Astrophysics Data System (ADS)

    McCollom, Thomas M.; Seewald, Jeffrey S.; German, Christopher R.

    2015-05-01

    The possibility that deep-sea hydrothermal vents may contain organic compounds produced by abiotic synthesis or by microbial communities living deep beneath the surface has led to numerous studies of the organic composition of vent fluids. Most of these studies have focused on methane and other light hydrocarbons, while the possible occurrence of more complex organic compounds in the fluids has remained largely unstudied. To address this issue, the presence of higher molecular weight organic compounds in deep-sea hydrothermal fluids was assessed at three sites along the Mid-Atlantic Ridge that span a range of temperatures (51 to >360 °C), fluid compositions, and host-rock lithologies (mafic to ultramafic). Samples were obtained at several sites within the Lucky Strike, Rainbow, and Lost City hydrothermal fields. Three methods were employed to extract organic compounds for analysis, including liquid:liquid extraction, cold trapping on the walls of a coil of titanium tubing, and pumping fluids through cartridges filled with solid phase extraction (SPE) sorbents. The only samples to consistently yield high amounts of extractable organic compounds were the warm (51-91 °C), highly alkaline fluids from Lost City, which contained elevated concentrations of C8, C10, and C12n-alkanoic acids and, in some cases, trithiolane, hexadecanol, squalene, and cholesterol. Collectively, the C8-C12 acids can account for about 15% of the total dissolved organic carbon in the Lost City fluids. The even-carbon-number predominance of the alkanoic acids indicates a biological origin, but it is unclear whether these compounds are derived from microbial activity occurring within the hydrothermal chimney proximal to the site of fluid discharge or are transported from deeper within the system. Hydrothermal fluids from the Lucky Strike and Rainbow fields were characterized by an overall scarcity of extractable dissolved organic compounds. Trace amounts of aromatic hydrocarbons including phenanthrenes and benzothiophene were the only compounds that could be identified as indigenous components of these fluids. Although hydrocarbons and fatty acids were observed in some samples, those compounds were likely derived from particulate matter or biomass entrained during fluid collection. In addition, extracts of some fluid samples from the Rainbow field were found to contain an unresolved complex mixture (UCM) of organic compounds. This UCM shared some characteristics with organic matter extracted from bottom seawater, suggesting that the organic matter observed in these samples might represent seawater-derived compounds that had persisted, albeit with partial alteration, during circulation through the hydrothermal system. While there is considerable evidence that Rainbow and Lost City vent fluids contain methane and other light hydrocarbons produced through abiotic reduction of inorganic carbon, we found no evidence for more complex organic compounds with an abiotic origin in the same fluids.

  9. Low-cost Scholl-coupling microporous polymer as an efficient solid-phase microextraction coating for the detection of light aromatic compounds.

    PubMed

    Xie, Xintong; Wang, Junhui; Zheng, Juan; Huang, Junlong; Ni, Chuyi; Cheng, Jie; Hao, Zhengping; Ouyang, Gangfeng

    2018-10-31

    A cost-effective microporous polymer was synthesized using cheap monomer and catalyst via one-step Scholl-coupling reaction, and its chemical, morphological characteristics and pore structure were investigated. The as-synthesized polymer with large surface area and narrow pore distribution (centered in 1.2 nm) was prepared as a fiber coating for solid-phase microextraction (SPME). Headspace SPME was used for the extraction of the light aromatic compounds, e.g. benzene, toluene, ethylbenzene, m-xylene, naphthalene and acenaphthene. The parameters influencing the extraction and desorption efficiencies, such as extraction temperature and time, salt concentration, desorption temperature and time were investigated and optimized. The results showed that the home-made fiber had superior extraction efficiencies compared with the commercial PDMS fiber. Under the optimized conditions, low detection limits (0.01-1.3 ng/L), wide linear ranges (from 50 to 20000 ng/L to 1-20000 ng/L), good repeatability (4.2-9.3%, n = 6) and reproducibility (0.30-11%, n = 3) were achieved. Moreover, the practical applicability of the coating and proposed method was evaluated by determining the target light aromatic compounds in environmental water samples with satisfied recoveries (83.2%-116%). Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Synthesis of high generation thermo-sensitive dendrimers for extraction of rivaroxaban from human fluid and pharmaceutic samples.

    PubMed

    Parham, Negin; Panahi, Homayon Ahmad; Feizbakhsh, Alireza; Moniri, Elham

    2018-04-13

    In this present study, poly (N-isopropylacrylamide) as a thermo-sensitive agent was grafted onto magnetic nanoparticles, then ethylenediamine and methylmethacrylate were used to synthesize the first generation of poly amidoamine (PAMAM) dendrimers successively and the process continued alternatively until the ten generations of dendrimers. The synthesized nanocomposite was investigated using Fourier transform infrared spectrometry, thermalgravimetry analysis, X-ray diffractometry, elemental analysis and vibrating-sample magnetometer. The particle size and morphology were characterized using dynamic light scattering, field emission scanning electron microscopy and transmission electron microscopy. Batch experiments were conducted to investigate the parameters affecting adsorption and desorption of rivaroxaban by synthesized nanocomposite. The maximum sorption of rivaroxaban by the synthesized nanocomposite was obtained at pH of 8. The resulting grafted magnetic nanoparticle dendrimers were applied for extraction of rivaroxaban from biologic human liquids and medicinal samples. The specifications of rivaroxaban sorbed by a magnetic nanoparticle dendrimer showed good accessibility and high capacity of the active sites within the dendrimers. Urine and drug matrix extraction recoveries of more than 92.5 and 99.8 were obtained, respectively. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Incoherent optical generalized Hough transform: pattern recognition and feature extraction applications

    NASA Astrophysics Data System (ADS)

    Fernández, Ariel; Ferrari, José A.

    2017-05-01

    Pattern recognition and feature extraction are image processing applications of great interest in defect inspection and robot vision among others. In comparison to purely digital methods, the attractiveness of optical processors for pattern recognition lies in their highly parallel operation and real-time processing capability. This work presents an optical implementation of the generalized Hough transform (GHT), a well-established technique for recognition of geometrical features in binary images. Detection of a geometric feature under the GHT is accomplished by mapping the original image to an accumulator space; the large computational requirements for this mapping make the optical implementation an attractive alternative to digital-only methods. We explore an optical setup where the transformation is obtained, and the size and orientation parameters can be controlled, allowing for dynamic scale and orientation-variant pattern recognition. A compact system for the above purposes results from the use of an electrically tunable lens for scale control and a pupil mask implemented on a high-contrast spatial light modulator for orientation/shape variation of the template. Real-time can also be achieved. In addition, by thresholding of the GHT and optically inverse transforming, the previously detected features of interest can be extracted.

  12. Cofactor-Dependent Aldose Dehydrogenase of Rhodopseudomonas spheroides

    PubMed Central

    Niederpruem, Donald J.; Doudoroff, Michael

    1965-01-01

    Niederpruem, Donald J. (University of California, Berkeley), and Michael Doudoroff. Cofactor-dependent aldose dehydrogenase of Rhodopseudomonas spheroides. J. Bacteriol. 89:697–705. 1965.—Particulate enzyme preparations of cell extracts of Rhodopseudomonas spheroides possess constitutive dehydrogenase and oxidase activities for aldose sugars, reduced nicotinamide adenine dinucleotide (NADH2), and succinate. The dehydrogenation of aldoses requires an unidentified cofactor which is not required for the oxidation of succinate nor of NADH2. The cofactor is present in the particulate fraction of aerobic cells, but is unavailable to the enzyme system. It can be liberated by boiling or by treatment with salts at high concentration. The cofactor also appears in the soluble fraction of aerobic cells, but only after exponential growth has ceased. Extracts of cells grown anaerobically in the light possess the apoenzyme, but not the cofactor, for aldose oxidation. Cofactor activity was found in extracts of Bacterium anitratum (= Moraxella sp.) but not in Escherichia coli, Pseudomonas fluorescens, yeast, or mouse liver. In 0.075 m tris(hydroxymethyl)aminomethane-phosphoric acid buffer (pH 7.3), the oxidation of NADH2 was stimulated and succinoxidase was inhibited by high salt concentrations. PMID:14273648

  13. Highly Simplified Tandem Organic Light-Emitting Devices Incorporating a Green Phosphorescence Ultrathin Emitter within a Novel Interface Exciplex for High Efficiency.

    PubMed

    Xu, Ting; Zhou, Jun-Gui; Huang, Chen-Chao; Zhang, Lei; Fung, Man-Keung; Murtaza, Imran; Meng, Hong; Liao, Liang-Sheng

    2017-03-29

    Herein we report a novel design philosophy of tandem OLEDs incorporating a doping-free green phosphorescent bis[2-(2-pyridinyl-N)phenyl-C](acetylacetonato)iridium(III) (Ir(ppy) 2 (acac)) as an ultrathin emissive layer (UEML) into a novel interface-exciplex-forming structure of 1,1-bis[(di-4-tolylamino)phenyl]cyclohexane (TAPC) and 1,3,5-tri(p-pyrid-3-yl-phenyl)benzene (TmPyPB). Particularly, relatively low working voltage and remarkable efficiency are achieved and the designed tandem OLEDs exhibit a peak current efficiency of 135.74 cd/A (EQE = 36.85%) which is two times higher than 66.2 cd/A (EQE = 17.97%) of the device with a single emitter unit. This might be one of the highest efficiencies of OLEDs applying ultrathin emitters without light extraction. Moreover, with the proposed structure, the color gamut of the displays can be effectively increased from 76% to 82% NTSC if the same red and blue emissions as those in the NTSC are applied. A novel form of harmonious fusion among interface exciplex, UEML, and tandem structure is successfully realized, which sheds light on further development of ideal OLED structure with high efficiency, simplified fabrication, low power consumption, low cost, and improved color gamut, simultaneously.

  14. A Probability-Based Algorithm Using Image Sensors to Track the LED in a Vehicle Visible Light Communication System.

    PubMed

    Huynh, Phat; Do, Trong-Hop; Yoo, Myungsik

    2017-02-10

    This paper proposes a probability-based algorithm to track the LED in vehicle visible light communication systems using a camera. In this system, the transmitters are the vehicles' front and rear LED lights. The receivers are high speed cameras that take a series of images of the LEDs. ThedataembeddedinthelightisextractedbyfirstdetectingthepositionoftheLEDsintheseimages. Traditionally, LEDs are detected according to pixel intensity. However, when the vehicle is moving, motion blur occurs in the LED images, making it difficult to detect the LEDs. Particularly at high speeds, some frames are blurred at a high degree, which makes it impossible to detect the LED as well as extract the information embedded in these frames. The proposed algorithm relies not only on the pixel intensity, but also on the optical flow of the LEDs and on statistical information obtained from previous frames. Based on this information, the conditional probability that a pixel belongs to a LED is calculated. Then, the position of LED is determined based on this probability. To verify the suitability of the proposed algorithm, simulations are conducted by considering the incidents that can happen in a real-world situation, including a change in the position of the LEDs at each frame, as well as motion blur due to the vehicle speed.

  15. Green tea extract induces protective autophagy in A549 non-small lung cancer cell line.

    PubMed

    Izdebska, Magdalena; Klimaszewska-Wiśniewska, Anna; Hałas, Marta; Gagat, Maciej; Grzanka, Alina

    2015-12-31

    For many decades, polyphenols, including green tea extract catechins, have been reported to exert multiple anti-tumor activities. However, to date the mechanisms of their action have not been completely elucidated. Thus, the aim of this study was to assess the effect of green tea extract on non-small lung cancer A549 cells. A549 cells following treatment with GTE were analyzed using the inverted light and fluorescence microscope. In order to evaluate cell sensitivity and cell death, the MTT assay and Tali image-based cytometer were used, respectively. Ultrastructural alterations were assessed using a transmission electron microscope. The obtained data suggested that GTE, even at the highest dose employed (150 μM), was not toxic to A549 cells. Likewise, the treatment with GTE resulted in only a very small dose-dependent increase in the population of apoptotic cells. However, enhanced accumulation of vacuole-like structures in response to GTE was seen at the light and electron microscopic level. Furthermore, an increase in the acidic vesicular organelles and LC3-II puncta formation was observed under the fluorescence microscope, following GTE treatment. The analysis of the functional status of autophagy revealed that GTE-induced autophagy may provide self-protection against its own cytotoxicity, since we observed that the blockage of autophagy by bafilomycin A1 decreased the viability of A549 cells and potentiated necrotic cell death induction in response to GTE treatment. Collectively, our results revealed that A549 cells are insensitive to both low and high concentrations of the green tea extract, probably due to the induction of cytoprotective autophagy. These data suggest that a potential utility of GTE in lung cancer therapy may lie in its synergistic combinations with drugs or small molecules that target autophagy, rather than in monotherapy.

  16. Laterally injected light-emitting diode and laser diode

    DOEpatents

    Miller, Mary A.; Crawford, Mary H.; Allerman, Andrew A.

    2015-06-16

    A p-type superlattice is used to laterally inject holes into an III-nitride multiple quantum well active layer, enabling efficient light extraction from the active area. Laterally-injected light-emitting diodes and laser diodes can enable brighter, more efficient devices that impact a wide range of wavelengths and applications. For UV wavelengths, applications include fluorescence-based biological sensing, epoxy curing, and water purification. For visible devices, applications include solid state lighting and projection systems.

  17. Green and Efficient Processing of Cinnamomum cassia Bark by Using Ionic Liquids: Extraction of Essential Oil and Construction of UV-Resistant Composite Films from Residual Biomass.

    PubMed

    Mehta, Mohit J; Kumar, Arvind

    2017-12-14

    There is significant interest in the development of a sustainable and integrated process for the extraction of essential oils and separation of biopolymers by using novel and efficient solvent systems. Herein, cassia essential oil enriched in coumarin is extracted from Cinnamomum cassia bark by using a protic ionic liquid (IL), ethylammonium nitrate (EAN), through dissolution and the creation of a biphasic system with the help of diethyl ether. The process has been perfected, in terms of higher biomass dissolution ability and essential oil yield through the addition of aprotic ILs (based on the 1-butyl-3-methylimidazolium (C 4 mim) cation and chloride or acetate anions) to EAN. After extraction of oil, cellulose-rich material and free lignin were regenerated from biomass-IL solutions by using a 1:1 mixture of acetone-water. The purity of the extracted essential oil and biopolymers were ascertained by means of FTIR spectroscopy, NMR spectroscopy, and GC-MS techniques. Because lignin contains UV-blocking chromophores, the oil-free residual lignocellulosic material has been directly utilized to construct UV-light-resistant composite materials in conjunction with the biopolymer chitosan. Composite material thus obtained was processed to form biodegradable films, which were characterized for mechanical and optical properties. The films showed excellent UV-light resistance and mechanical properties, thereby making it a material suitable for packaging and light-sensitive applications. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. A Cross Structured Light Sensor and Stripe Segmentation Method for Visual Tracking of a Wall Climbing Robot

    PubMed Central

    Zhang, Liguo; Sun, Jianguo; Yin, Guisheng; Zhao, Jing; Han, Qilong

    2015-01-01

    In non-destructive testing (NDT) of metal welds, weld line tracking is usually performed outdoors, where the structured light sources are always disturbed by various noises, such as sunlight, shadows, and reflections from the weld line surface. In this paper, we design a cross structured light (CSL) to detect the weld line and propose a robust laser stripe segmentation algorithm to overcome the noises in structured light images. An adaptive monochromatic space is applied to preprocess the image with ambient noises. In the monochromatic image, the laser stripe obtained is recovered as a multichannel signal by minimum entropy deconvolution. Lastly, the stripe centre points are extracted from the image. In experiments, the CSL sensor and the proposed algorithm are applied to guide a wall climbing robot inspecting the weld line of a wind power tower. The experimental results show that the CSL sensor can capture the 3D information of the welds with high accuracy, and the proposed algorithm contributes to the weld line inspection and the robot navigation. PMID:26110403

  19. Strong geometrical effects in submillimeter selective area growth and light extraction of GaN light emitting diodes on sapphire

    DOE PAGES

    Tanaka, Atsunori; Chen, Renjie; Jungjohann, Katherine L.; ...

    2015-11-27

    Advanced semiconductor devices often utilize structural and geometrical effects to tailor their characteristics and improve their performance. Our detailed understanding of such geometrical effects in the epitaxial selective area growth of GaN on sapphire substrates is reported here, and we utilize them to enhance light extraction from GaN light emitting diodes. Systematic size and spacing effects were performed side-by-side on a single 2” sapphire substrate to minimize experimental sampling errors for a set of 144 pattern arrays with circular mask opening windows in SiO 2. We show that the mask opening diameter leads to as much as 4 times increasemore » in the thickness of the grown layers for 20 μm spacings and that spacing effects can lead to as much as 3 times increase in thickness for a 350 μm dot diameter. We also observed that the facet evolution in comparison with extracted Ga adatom diffusion lengths directly influences the vertical and lateral overgrowth rates and can be controlled with pattern geometry. Lastly, such control over the facet development led to 2.5 times stronger electroluminescence characteristics from well-faceted GaN/InGaN multiple quantum well LEDs compared to non-faceted structures.« less

  20. Highly improved operation of monolithic BGO-PET blocks

    NASA Astrophysics Data System (ADS)

    Gonzalez-Montoro, A.; Sanchez, F.; Majewski, S.; Zanettini, S.; Benlloch, J. M.; Gonzalez, A. J.

    2017-11-01

    In PET scanners both scintillation crystals and photosensors are key components defining the system's performance and cost. Original PET systems used BGO or NaI(Tl) scintillators but achieved limited performance due to its slow decay and relatively low light output. Moreover, NaI(Tl) has low stopping power for 511 keV annihilation photons. In this study we report the possibility to reintroduce BGO crystals, and in particular in the form of monolithic blocks, especially suitable for low-dose large-size PET scanners, offering significantly improved sensitivity at a highly reduced cost compared to LYSO type fast scintillators. We have studied the performance of a monolithic BGO block as large as 50 × 50 × 15 mm3 with black-painted lateral walls to reduce lights spread, enabling accurate photon depth of interaction (DOI) measurements. A directional optical layer, called retro-reflector, was coupled to the entrance face bouncing back the scintillation light in the direction of the emission source and, therefore, adding to the light signal while preserving the narrow light cone distribution. Four configurations namely 12 × 12 and 16 × 16 SiPM arrays (3 mm × 3 mm each) as photosensors, with or without a nanopattern treatment at the crystal exit face, have been studied. This structure consisted of a thin layer of a specific high refractive index material shaped with a periodic nanopattern, increasing the scintillation light extraction. The readout returned information for each SiPM row and column, characterizing the X-Y light distribution projections. We have studied the detector spatial resolution using collimated 22Na sources at normal incidence. The DOI resolution was evaluated using collimated gamma beams with lateral incidence. The overall best detector performance was obtained for the 16× 16 SiPM array offering higher readout granularity. We have determined the spatial resolution for 3 separated DOI layers, obtaining the best results for the DOI region near to the photosensor.

  1. Antioxidant content in two CAM bromeliad species as a response to seasonal light changes in a tropical dry deciduous forest.

    PubMed

    González-Salvatierra, Claudia; Luis Andrade, José; Escalante-Erosa, Fabiola; García-Sosa, Karlina; Manuel Peña-Rodríguez, Luis

    2010-07-01

    Plants have evolved photoprotective mechanisms to limit photodamage; one of these mechanisms involves the biosynthesis of antioxidant metabolites to neutralize reactive oxygen species generated when plants are exposed to excess light. However, it is known that exposure of plants to conditions of extreme water stress and high light intensity results in their enhanced susceptibility to over-excitation of photosystem II and to photooxidative stress. In this investigation we used the 2,2-diphenyl-1-picrylhydrazyl reduction assay to conduct a broad survey of the effect of water availability and light exposure conditions on the antioxidant activity of the leaf extracts of two bromeliad species showing crassulacean acid metabolism. One of these was an epiphyte, Tillandsia brachycaulos, and the other a terrestrial species, Bromelia karatas. Both species were found growing wild in the tropical dry deciduous forest of Dzibilchaltún National Park, México. The microenvironment of T. brachycaulos and B. karatas experiences significant diurnal and seasonal light variations as well as changes in temperature and water availability. The results obtained showed that, for both bromeliads, increases in antioxidant activity occurred during the dry season, as a consequence of water stress and higher light conditions. Additionally, in T. brachycaulos there was a clear correlation between high light intensity conditions and the content of anthocyanins which accumulated below the leaf epidermis. This result suggests that the role of these pigments is as photoprotective screens in the leaves. The red coloration below the leaf epidermis of B. karatas was not due to anthocyanins but to other unidentified pigments. 2010 Elsevier GmbH. All rights reserved.

  2. Photon extraction from nitride ultraviolet light-emitting devices

    DOEpatents

    Schowalter, Leo J; Chen, Jianfeng; Grandusky, James R

    2015-02-24

    In various embodiments, a rigid lens is attached to a light-emitting semiconductor die via a layer of encapsulant having a thickness insufficient to prevent propagation of thermal expansion mismatch-induced strain between the rigid lens and the semiconductor die.

  3. Light sources and output couplers for a backlight with switchable emission angles

    NASA Astrophysics Data System (ADS)

    Fujieda, Ichiro; Imai, Keita; Takagi, Yoshihiko

    2007-09-01

    For switching viewing angles of a liquid crystal display, we proposed to place a liquid crystal device between an LED and a light-guide of a backlight. The first key component for this configuration is a light source with electronically-controlled emission angles. Here, we construct such a device by stacking an optical film and a polymer-network liquid crystal (PNLC) cell on top of a chip-type LED. The optical film contains opaque parallel plates that limit the LED output in a narrow angular range. The PNLC cell either transmits or scatters the light emerging from the optical film. Experiment using a 15μm-thick PNLC cell shows that the angular distribution becomes 2.3 times wider by turning off the PNLC cell. We place this light source at one end of a light-guide so that the angular distribution of the light propagating inside is controlled. The second key component is some types of micro-strucrures built on the light-guide to out-couple the propagating light. We first attached various optical films on a light-guide surface. Although the angular distribution of the extracted light was switched successfully, light was mostly emitted into an oblique direction, approximately 60° from the plane normal. Next, we used a half-cylinder in place of the optical films. The curved surface of the cylinder was attached to the light-guide with a small amount of matching oil, which constituted an optical window. We measured that the angular distribution of the extracted light decreased to 35° FWHM from 62° FWHM by turning on the PNLC cell.

  4. Optimizing Radiometric Processing and Feature Extraction of Drone Based Hyperspectral Frame Format Imagery for Estimation of Yield Quantity and Quality of a Grass Sward

    NASA Astrophysics Data System (ADS)

    Näsi, R.; Viljanen, N.; Oliveira, R.; Kaivosoja, J.; Niemeläinen, O.; Hakala, T.; Markelin, L.; Nezami, S.; Suomalainen, J.; Honkavaara, E.

    2018-04-01

    Light-weight 2D format hyperspectral imagers operable from unmanned aerial vehicles (UAV) have become common in various remote sensing tasks in recent years. Using these technologies, the area of interest is covered by multiple overlapping hypercubes, in other words multiview hyperspectral photogrammetric imagery, and each object point appears in many, even tens of individual hypercubes. The common practice is to calculate hyperspectral orthomosaics utilizing only the most nadir areas of the images. However, the redundancy of the data gives potential for much more versatile and thorough feature extraction. We investigated various options of extracting spectral features in the grass sward quantity evaluation task. In addition to the various sets of spectral features, we used photogrammetry-based ultra-high density point clouds to extract features describing the canopy 3D structure. Machine learning technique based on the Random Forest algorithm was used to estimate the fresh biomass. Results showed high accuracies for all investigated features sets. The estimation results using multiview data provided approximately 10 % better results than the most nadir orthophotos. The utilization of the photogrammetric 3D features improved estimation accuracy by approximately 40 % compared to approaches where only spectral features were applied. The best estimation RMSE of 239 kg/ha (6.0 %) was obtained with multiview anisotropy corrected data set and the 3D features.

  5. GaN-based flip-chip LEDs with highly reflective ITO/DBR p-type and via hole-based n-type contacts for enhanced current spreading and light extraction

    NASA Astrophysics Data System (ADS)

    Zhou, Shengjun; Zheng, Chenju; Lv, Jiajiang; Gao, Yilin; Wang, Ruiqing; Liu, Sheng

    2017-07-01

    We demonstrate GaN-based double-layer electrode flip-chip light-emitting diodes (DLE-FCLED) with highly reflective indium-tin oxide (ITO)/distributed bragg reflector (DBR) p-type contact and via hole-based n-type contacts. Transparent thin ITO in combination with TiO2/SiO2 DBR is used for reflective p-type ohmic contact, resulting in a significant reduction in absorption of light by opaque metal electrodes. The finely distributed via hole-based n-type contacts are formed on the n-GaN layer by etching via holes through p-GaN and multiple quantum well (MQW) active layer, leading to reduced lateral current spreading length, and hence alleviated current crowding effect. The forward voltage of the DLE-FCLED is 0.31 V lower than that of the top-emitting LED at 90 mA. The light output power of DLE-FCLED is 15.7% and 80.8% higher than that of top-emitting LED at 90 mA and 300 mA, respectively. Compared to top- emitting LED, the external quantum efficiency (EQE) of DLE-FCLED is enhanced by 15.4% and 132% at 90 mA and 300 mA, respectively. The maximum light output power of the DLE-FCLED obtained at 195.6 A/cm2 is 1.33 times larger than that of the top-emitting LED obtained at 93 A/cm2.

  6. Metal-assisted electroless fabrication of nanoporous p-GaN for increasing the light extraction efficiency of light emitting diodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Ruijun; Liu Duo; Zuo Zhiyuan

    2012-03-15

    We report metal-assisted electroless fabrication of nanoporous p-GaN to improve the light extraction efficiency of GaN-based light emitting diodes (LEDs). Although it has long been believed that p-GaN cannot be etched at room temperature, in this study we find that Ag nanocrystals (NCs) on the p-GaN surface enable effective etching of p-GaN in a mixture of HF and K{sub 2}S{sub 2}O{sub 8} under ultraviolet (UV) irradiation. It is further shown that the roughened GaN/air interface enables strong scattering of photons emitted from the multiple quantum wells (MQWs). The light output power measurements indicate that the nanoporous LEDs obtained after 10more » min etching show a 32.7% enhancement in light-output relative to the conventional LEDs at an injection current of 20 mA without significant increase of the operating voltage. In contrast, the samples etched for 20 min show performance degradation when compared with those etched for 10 min, this is attributed to the current crowding effect and increased surface recombination rate.« less

  7. High-performance flexible inverted organic light-emitting diodes by exploiting MoS2 nanopillar arrays as electron-injecting and light-coupling layers.

    PubMed

    Guo, Kunping; Si, Changfeng; Han, Ceng; Pan, Saihu; Chen, Guo; Zheng, Yanqiong; Zhu, Wenqing; Zhang, Jianhua; Sun, Chang; Wei, Bin

    2017-10-05

    Inverted organic light-emitting diodes (IOLEDs) on plastic substrates have great potential application in flexible active-matrix displays. High energy consumption, instability and poor electron injection are key issues limiting the commercialization of flexible IOLEDs. Here, we have systematically investigated the electrooptical properties of molybdenum disulfide (MoS 2 ) and applied it in developing highly efficient and stable blue fluorescent IOLEDs. We have demonstrated that MoS 2 -based IOLEDs can significantly improve electron-injecting capacity. For the MoS 2 -based device on plastic substrates, we have achieved a very high external quantum efficiency of 7.3% at the luminance of 9141 cd m -2 , which is the highest among the flexible blue fluorescent IOLEDs reported. Also, an approximately 1.8-fold improvement in power efficiency was obtained compared to glass-based IOLEDs. We attributed the enhanced performance of flexible IOLEDs to MoS 2 nanopillar arrays due to their light extraction effect. The van der Waals force played an important role in the formation of MoS 2 nanopillar arrays by thermal evaporation. Notably, MoS 2 -based flexible IOLEDs exhibit an intriguing efficiency roll-up, that is, the current efficiency increases slightly from 14.0 to 14.6 cd A -1 with the luminance increasing from 100 to 5000 cd m -2 . In addition, we observed that the initial brightness of 500 cd m -2 can be maintained at 97% after bending for 500 cycles, demonstrating the excellent mechanical stability of flexible IOLEDs. Furthermore, we have successfully fabricated a transparent, flexible IOLED with low efficiency roll-off at high current density.

  8. UV light impact on ellagitannins and wood surface colour of European oak ( Quercus petraea and Quercus robur)

    NASA Astrophysics Data System (ADS)

    Zahri, S.; Belloncle, C.; Charrier, F.; Pardon, P.; Quideau, S.; Charrier, B.

    2007-03-01

    Two European oak species ( Q. petraea and Q. robur) have a high content of phenols which may participate in the alteration of colour upon UV irradiation. To study the photodegradation process of oak surfaces, the two oak species extractives, vescalagin, castalagin, ellagic acid and gallic acid were analysed quantitatively by HPLC before and after UV irradiation. Irradiation time was altered between 3, 24, 72, 96, 120, 144, 192 and 216 h. In parallel, any colour changes of Oak wood surface was followed after 120 h of UV-irradiation by measuring CIELAB parameters (DL*, Da*, Db* and DE*). We observed that 60% of total phenol content of extractives decreased after the maximal exposure time. Our findings also showed that castalagin and gallic acid were destroyed after 216 h and vescalagin and ellagic acid after 72 h. This study proves the photosenibility of oakwood extractives which, supplementary to lignin degradation, would strongly result in the discolouration of oak heartwood.

  9. EVEREST: Pixel Level Decorrelation of K2 Light Curves

    NASA Astrophysics Data System (ADS)

    Luger, Rodrigo; Agol, Eric; Kruse, Ethan; Barnes, Rory; Becker, Andrew; Foreman-Mackey, Daniel; Deming, Drake

    2016-10-01

    We present EPIC Variability Extraction and Removal for Exoplanet Science Targets (EVEREST), an open-source pipeline for removing instrumental noise from K2 light curves. EVEREST employs a variant of pixel level decorrelation to remove systematics introduced by the spacecraft’s pointing error and a Gaussian process to capture astrophysical variability. We apply EVEREST to all K2 targets in campaigns 0-7, yielding light curves with precision comparable to that of the original Kepler mission for stars brighter than {K}p≈ 13, and within a factor of two of the Kepler precision for fainter targets. We perform cross-validation and transit injection and recovery tests to validate the pipeline, and compare our light curves to the other de-trended light curves available for download at the MAST High Level Science Products archive. We find that EVEREST achieves the highest average precision of any of these pipelines for unsaturated K2 stars. The improved precision of these light curves will aid in exoplanet detection and characterization, investigations of stellar variability, asteroseismology, and other photometric studies. The EVEREST pipeline can also easily be applied to future surveys, such as the TESS mission, to correct for instrumental systematics and enable the detection of low signal-to-noise transiting exoplanets. The EVEREST light curves and the source code used to generate them are freely available online.

  10. Green grasses as light harvesters in dye sensitized solar cells.

    PubMed

    Shanmugam, Vinoth; Manoharan, Subbaiah; Sharafali, A; Anandan, Sambandam; Murugan, Ramaswamy

    2015-01-25

    Chlorophylls, the major pigments presented in plants are responsible for the process of photosynthesis. The working principle of dye sensitized solar cell (DSSC) is analogous to natural photosynthesis in light-harvesting and charge separation. In a similar way, natural dyes extracted from three types of grasses viz. Hierochloe Odorata (HO), Torulinium Odoratum (TO) and Dactyloctenium Aegyptium (DA) were used as light harvesters in dye sensitized solar cells (DSSCs). The UV-Vis absorption spectroscopy, Fourier transform infrared (FT-IR), and liquid chromatography-mass spectrometry (LC-MS) were used to characterize the dyes. The electron transport mechanism and internal resistance of the DSSCs were investigated by the electrochemical impedance spectroscopy (EIS). The performance of the cells fabricated with the grass extract shows comparable efficiencies with the reported natural dyes. Among the three types of grasses, the DSSC fabricated with the dye extracted from Hierochloe Odorata (HO) exhibited the maximum efficiency. LC-MS investigations indicated that the dominant pigment present in HO dye was pheophytin a (Pheo a). Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Secondary metabolite from Nostoc XPORK14A inhibits photosynthesis and growth of Synechocystis PCC 6803.

    PubMed

    Shunmugam, Sumathy; Jokela, Jouni; Wahlsten, Matti; Battchikova, Natalia; Ateeq ur Rehman; Vass, Imre; Karonen, Maarit; Sinkkonen, Jari; Permi, Perttu; Sivonen, Kaarina; Aro, Eva-Mari; Allahverdiyeva, Yagut

    2014-06-01

    Screening of 55 different cyanobacterial strains revealed that an extract from Nostoc XPORK14A drastically modifies the amplitude and kinetics of chlorophyll a fluorescence induction of Synechocystis PCC6803 cells.After 2 d exposure to the Nostoc XPORK14A extract, Synechocystis PCC 6803 cells displayed reduced net photosynthetic activity and significantly modified electron transport properties of photosystem II under both light and dark conditions. However, the maximum oxidizable amount of P700 was not strongly affected. The extract also induced strong oxidative stress in Synechocystis PCC 6803 cells in both light and darkness. We identified the secondary metabolite of Nostoc XPORK14A causing these pronounced effects on Synechocystis cells. Mass spectrometry and nuclear magnetic resonance analyses revealed that this compound, designated as M22, has a non-peptide structure. We propose that M22 possesses a dualaction mechanism: firstly, by photogeneration of reactive oxygen species in the presence of light, which in turn affects the photosynthetic machinery of Synechocystis PCC 6803; and secondly, by altering the in vivo redox status of cells, possibly through inhibition of protein kinases.

  12. New measurements on isobaric fission product yields and mean kinetic energy for 241Pu thermal neutron-induced fission

    NASA Astrophysics Data System (ADS)

    Julien-Laferrière, Sylvain; Kessedjian, Grégoire; Serot, Olivier; Chebboubi, Abdelaziz; Bernard, David; Blanc, Aurélien; Köster, Ulli; Litaize, Olivier; Materna, Thomas; Meplan, Olivier; Rapala, Michal; Sage, Christophe

    2018-03-01

    Nuclear fission yields data measurements for thermal neutron induced fission of 241Pu have been carried out at the Institut Laue Langevin (ILL) in Grenoble, using the Lohengrin mass spectrometer. Mass, isotopic and isomeric yields have been extracted for the last measurements. A focus is given in this document to the mass yield results which are obtained for almost the entire heavy peak and most of the light high yields masses, along with the covariance matrix. The mean kinetic energy as a function of the fission product mass has also been extracted from the measurements. The total mean kinetic energy pre and post neutron emission have been assessed and compared to other works showing a rather good agreement.

  13. High-Resolution, Low-Cost Spectrometer-on-Chip

    DTIC Science & Technology

    2015-01-02

    extracted for each PhCs for λ=400 and 500 nm, respectively; d) example of the spectral response of our prototype to two input filtered lights. aBeam...packed into the size of a USB key. Nano-spectrometers with a resolution down to 0.5 nm and a spectral range up to 229 nm were successfully demonstrated...Our miniaturized spectrometers are defining the state-of-the-art for on-chip spectroscopy, as well as in terms of spectral resolution and bandwidth

  14. Novel Crystalline SiO2 Nanoparticles via Annelids Bioprocessing of Agro-Industrial Wastes

    PubMed Central

    2010-01-01

    The synthesis of nanoparticles silica oxide from rice husk, sugar cane bagasse and coffee husk, by employing vermicompost with annelids (Eisenia foetida) is reported. The product (humus) is calcinated and extracted to recover the crystalline nanoparticles. X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM) and dynamic light scattering (DLS) show that the biotransformation allows creating specific crystalline phases, since equivalent particles synthesized without biotransformation are bigger and with different crystalline structure. PMID:20802789

  15. Liposome-containing Hibiscus sabdariffa calyx extract formulations with increased antioxidant activity, improved dermal penetration and reduced dermal toxicity.

    PubMed

    Pinsuwan, Sirirat; Amnuaikit, Thanaporn; Ungphaiboon, Suwipa; Itharat, Arunporn

    2010-12-01

    Hibiscus sabdariffa Linn, or Roselle, is a medicinal plant used extensively in traditional Thai medicine since ancient times. The extracts of Roselle calyces possess antioxidant activity and have potential for development as active ingredients in cosmetic products. However the limitations of using Roselle extracts in cosmetics are its low skin permeation and dermal irritation. Liposome technology is an obvious approach that might overcome these problems. Liposome formulations of standardized Roselle extracts were developed with various lipid components. The formulation showing the highest entrapment efficiency was selected for stability, skin permeation and dermal irritability studies. The liposome formulation with the highest entrapment efficiency (83%) and smalôlest particle size (332 mm) was formulated with phosphatidylcholine from soybean (SPC): Tween 80: deoxycholic acid (DA); 84:16:2.5 weight ratio, total lipid of 200 g/mL and 10% w/v Roselle extract in final liposomal preparation. This liposome formulation was found to be stable after storage at 4 degrees C, protected from light, for 2 months. The in vitro skin permeation studies, using freshly excised pig skin and modified Franz-diffusion cells, showed that the liposome formulation was able to considerably increased the rate of permeation of active compounds in Roselle extracts compared to the Roselle extract solution. The in vivo dermal irritability testing on rabbit skin showed that the liposome formulation dramatically decreased skin irritability compared to the unformulated extract. These results showed that the liposomes containing Roselle extracts had good stability, high entrapment efficacy, increased skin permeation and low skin irritation.

  16. Non-contact Real-time heart rate measurements based on high speed circuit technology research

    NASA Astrophysics Data System (ADS)

    Wu, Jizhe; Liu, Xiaohua; Kong, Lingqin; Shi, Cong; Liu, Ming; Hui, Mei; Dong, Liquan; Zhao, Yuejin

    2015-08-01

    In recent years, morbidity and mortality of the cardiovascular or cerebrovascular disease, which threaten human health greatly, increased year by year. Heart rate is an important index of these diseases. To address this status, the paper puts forward a kind of simple structure, easy operation, suitable for large populations of daily monitoring non-contact heart rate measurement. In the method we use imaging equipment video sensitive areas. The changes of light intensity reflected through the image grayscale average. The light change is caused by changes in blood volume. We video the people face which include the sensitive areas (ROI), and use high-speed processing circuit to save the video as AVI format into memory. After processing the whole video of a period of time, we draw curve of each color channel with frame number as horizontal axis. Then get heart rate from the curve. We use independent component analysis (ICA) to restrain noise of sports interference, realized the accurate extraction of heart rate signal under the motion state. We design an algorithm, based on high-speed processing circuit, for face recognition and tracking to automatically get face region. We do grayscale average processing to the recognized image, get RGB three grayscale curves, and extract a clearer pulse wave curves through independent component analysis, and then we get the heart rate under the motion state. At last, by means of compare our system with Fingertip Pulse Oximeter, result show the system can realize a more accurate measurement, the error is less than 3 pats per minute.

  17. Improved photoluminescence efficiency in UV nanopillar light emitting diode structures by recovery of dry etching damage.

    PubMed

    Jeon, Dae-Woo; Jang, Lee-Woon; Jeon, Ju-Won; Park, Jae-Woo; Song, Young Ho; Jeon, Seong-Ran; Ju, Jin-Woo; Baek, Jong Hyeob; Lee, In-Hwan

    2013-05-01

    In this study, we have fabricated 375-nm-wavelength InGaN/AlInGaN nanopillar light emitting diodes (LED) structures on c-plane sapphire. A uniform and highly vertical nanopillar structure was fabricated using self-organized Ni/SiO2 nano-size mask by dry etching method. To minimize the dry etching damage, the samples were subjected to high temperature annealing with subsequent chemical passivation in KOH solution. Prior to annealing and passivation the UV nanopillar LEDs showed the photoluminescence (PL) efficiency about 2.5 times higher than conventional UV LED structures which is attributed to better light extraction efficiency and possibly some improvement of internal quantum efficiency due to partially relieved strain. Annealing alone further increased the PL efficiency by about 4.5 times compared to the conventional UV LEDs, while KOH passivation led to the overall PL efficiency improvement by more than 7 times. Combined results of Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) suggest that annealing decreases the number of lattice defects and relieves the strain in the surface region of the nanopillars whereas KOH treatment removes the surface oxide from nanopillar surface.

  18. Dem Reconstruction Using Light Field and Bidirectional Reflectance Function from Multi-View High Resolution Spatial Images

    NASA Astrophysics Data System (ADS)

    de Vieilleville, F.; Ristorcelli, T.; Delvit, J.-M.

    2016-06-01

    This paper presents a method for dense DSM reconstruction from high resolution, mono sensor, passive imagery, spatial panchromatic image sequence. The interest of our approach is four-fold. Firstly, we extend the core of light field approaches using an explicit BRDF model from the Image Synthesis community which is more realistic than the Lambertian model. The chosen model is the Cook-Torrance BRDF which enables us to model rough surfaces with specular effects using specific material parameters. Secondly, we extend light field approaches for non-pinhole sensors and non-rectilinear motion by using a proper geometric transformation on the image sequence. Thirdly, we produce a 3D volume cost embodying all the tested possible heights and filter it using simple methods such as Volume Cost Filtering or variational optimal methods. We have tested our method on a Pleiades image sequence on various locations with dense urban buildings and report encouraging results with respect to classic multi-label methods such as MIC-MAC, or more recent pipelines such as S2P. Last but not least, our method also produces maps of material parameters on the estimated points, allowing us to simplify building classification or road extraction.

  19. Comparative evaluation of three automated systems for DNA extraction in conjunction with three commercially available real-time PCR assays for quantitation of plasma Cytomegalovirus DNAemia in allogeneic stem cell transplant recipients.

    PubMed

    Bravo, Dayana; Clari, María Ángeles; Costa, Elisa; Muñoz-Cobo, Beatriz; Solano, Carlos; José Remigia, María; Navarro, David

    2011-08-01

    Limited data are available on the performance of different automated extraction platforms and commercially available quantitative real-time PCR (QRT-PCR) methods for the quantitation of cytomegalovirus (CMV) DNA in plasma. We compared the performance characteristics of the Abbott mSample preparation system DNA kit on the m24 SP instrument (Abbott), the High Pure viral nucleic acid kit on the COBAS AmpliPrep system (Roche), and the EZ1 Virus 2.0 kit on the BioRobot EZ1 extraction platform (Qiagen) coupled with the Abbott CMV PCR kit, the LightCycler CMV Quant kit (Roche), and the Q-CMV complete kit (Nanogen), for both plasma specimens from allogeneic stem cell transplant (Allo-SCT) recipients (n = 42) and the OptiQuant CMV DNA panel (AcroMetrix). The EZ1 system displayed the highest extraction efficiency over a wide range of CMV plasma DNA loads, followed by the m24 and the AmpliPrep methods. The Nanogen PCR assay yielded higher mean CMV plasma DNA values than the Abbott and the Roche PCR assays, regardless of the platform used for DNA extraction. Overall, the effects of the extraction method and the QRT-PCR used on CMV plasma DNA load measurements were less pronounced for specimens with high CMV DNA content (>10,000 copies/ml). The performance characteristics of the extraction methods and QRT-PCR assays evaluated herein for clinical samples were extensible at cell-based standards from AcroMetrix. In conclusion, different automated systems are not equally efficient for CMV DNA extraction from plasma specimens, and the plasma CMV DNA loads measured by commercially available QRT-PCRs can differ significantly. The above findings should be taken into consideration for the establishment of cutoff values for the initiation or cessation of preemptive antiviral therapies and for the interpretation of data from clinical studies in the Allo-SCT setting.

  20. Fabrication of novel two-dimensional nanopatterned conductive PEDOT:PSS films for organic optoelectronic applications.

    PubMed

    Petti, Lucia; Rippa, Massimo; Capasso, Rossella; Nenna, Giuseppe; De Girolamo Del Mauro, Anna; Pandolfi, Giuseppe; Maglione, Maria Grazia; Minarini, Carla

    2013-06-12

    This paper presents a novel strategy to fabricate two-dimensional poly(3,4 ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) photonic crystals (PCs) combining electron beam lithography (EBL) and plasma etching (PE) processes. The surface morphology of PEDOT:PSS PCs after mild oxygen plasma treatment was investigated by scanning electron microscopy. The effects on light extraction are studied experimentally. Vertical extraction of light was found to be strongly dependent on the geometric parameters of the PCs. By changing the lattice type from triangular to square and the geometrical parameters of the photonic structures, the resonance peak could be tuned from a narrow blue emission at 445 nm up to a green emission at 525 nm with a full width at half-maximum of 20 nm, which is in good agreement with Bragg's diffraction theory and free photon band structure. Both finite-difference time-domain and plane wave expansion methods are used to calculate the resonant frequencies and the photonic band structures in the two-dimensional photonic crystals showing a very good agreement with the experiment results. A 2D nanopatterned transparent anode was also fabricated onto a flexible polyethylene terephthalate (PET) substrate and it was integrated into an organic light-emitting diode (OLED). The obtained results fully confirm the feasibility of the developed process of micro/nano patterning PEDOT:PSS. Engineered polymer electrodes prepared by this unique method are useful in a wide variety of high-performance flexible organic optoelectronics.

Top